
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Algorithm Design and
Applications

Michael T. Goodrich
Department of Information and Computer Science

University of California, Irvine

Roberto Tamassia
Department of Computer Science

Brown University

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

iii

www.it-ebooks.info

http://www.it-ebooks.info/

To Karen, Paul, Anna, and Jack
– Michael T. Goodrich

To Isabel
– Roberto Tamassia

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Preface xi

1 Algorithm Analysis 1
1.1 Analyzing Algorithms . 3

1.2 A Quick Mathematical Review 19

1.3 A Case Study in Algorithm Analysis 29

1.4 Amortization . 34

1.5 Exercises . 42

Part I: Data Structures

2 Basic Data Structures 51
2.1 Stacks and Queues . 53

2.2 Lists . 60

2.3 Trees . 68

2.4 Exercises . 84

3 Binary Search Trees 89
3.1 Searches and Updates . 91

3.2 Range Queries . 101

3.3 Index-Based Searching . 104

3.4 Randomly Constructed Search Trees 107

3.5 Exercises . 110

4 Balanced Binary Search Trees 115
4.1 Ranks and Rotations . 117

4.2 AVL Trees . 120

4.3 Red-Black Trees . 126

4.4 Weak AVL Trees . 130

4.5 Splay Trees . 139

4.6 Exercises . 149

5 Priority Queues and Heaps 155
5.1 Priority Queues . 157

5.2 PQ-Sort, Selection-Sort, and Insertion-Sort 158

5.3 Heaps . 163

5.4 Heap-Sort . 174

5.5 Extending Priority Queues . 179

5.6 Exercises . 182

v

www.it-ebooks.info

http://www.it-ebooks.info/

vi Contents

6 Hash Tables 187
6.1 Maps . 189

6.2 Hash Functions . 192

6.3 Handling Collisions and Rehashing 198

6.4 Cuckoo Hashing . 206

6.5 Universal Hashing . 212

6.6 Exercises . 215

7 Union-Find Structures 219
7.1 Union-Find and Its Applications 221

7.2 A List-Based Implementation 225

7.3 A Tree-Based Implementation 228

7.4 Exercises . 236

Part II: Sorting and Selection

8 Merge-Sort and Quick-Sort 241
8.1 Merge-Sort . 243

8.2 Quick-Sort . 250

8.3 A Lower Bound on Comparison-Based Sorting 257

8.4 Exercises . 259

9 Fast Sorting and Selection 265
9.1 Bucket-Sort and Radix-Sort 267

9.2 Selection . 270

9.3 Weighted Medians . 276

9.4 Exercises . 279

Part III: Fundamental Techniques

10 The Greedy Method 283
10.1 The Fractional Knapsack Problem 286

10.2 Task Scheduling . 289

10.3 Text Compression and Huffman Coding 292

10.4 Exercises . 298

11 Divide-and-Conquer 303
11.1 Recurrences and the Master Theorem 305

11.2 Integer Multiplication . 313

11.3 Matrix Multiplication . 315

11.4 The Maxima-Set Problem . 317

11.5 Exercises . 319

www.it-ebooks.info

http://www.it-ebooks.info/

Contents vii

12 Dynamic Programming 323
12.1 Matrix Chain-Products . 325

12.2 The General Technique . 329

12.3 Telescope Scheduling . 331

12.4 Game Strategies . 334

12.5 The Longest Common Subsequence Problem 339

12.6 The 0-1 Knapsack Problem 343

12.7 Exercises . 346

13 Graphs and Traversals 353
13.1 Graph Terminology and Representations 355

13.2 Depth-First Search . 365

13.3 Breadth-First Search . 370

13.4 Directed Graphs . 373

13.5 Biconnected Components . 386

13.6 Exercises . 392

Part IV: Graph Algorithms

14 Shortest Paths 397
14.1 Single-Source Shortest Paths 399

14.2 Dijkstra’s Algorithm . 400

14.3 The Bellman-Ford Algorithm 407

14.4 Shortest Paths in Directed Acyclic Graphs 410

14.5 All-Pairs Shortest Paths . 412

14.6 Exercises . 418

15 Minimum Spanning Trees 423
15.1 Properties of Minimum Spanning Trees 425

15.2 Kruskal’s Algorithm . 428

15.3 The Prim-Jarńık Algorithm . 433

15.4 Barůvka’s Algorithm . 436

15.5 Exercises . 439

16 Network Flow and Matching 443
16.1 Flows and Cuts . 445

16.2 Maximum Flow Algorithms . 452

16.3 Maximum Bipartite Matching 458

16.4 Baseball Elimination . 460

16.5 Minimum-Cost Flow . 462

16.6 Exercises . 469

www.it-ebooks.info

http://www.it-ebooks.info/

viii Contents

Part V: Computational Intractability

17 NP-Completeness 473
17.1 P and NP . 476

17.2 NP-Completeness . 483

17.3 CNF-SAT and 3SAT . 489

17.4 VERTEX-COVER, CLIQUE, and SET-COVER 492

17.5 SUBSET-SUM and KNAPSACK 496

17.6 HAMILTONIAN-CYCLE and TSP 499

17.7 Exercises . 502

18 Approximation Algorithms 507
18.1 The Metric Traveling Salesperson Problem 511

18.2 Approximations for Covering Problems 515

18.3 Polynomial-Time Approximation Schemes 518

18.4 Backtracking and Branch-and-Bound 521

18.5 Exercises . 525

Part VI: Additional Topics

19 Randomized Algorithms 529
19.1 Generating Random Permutations 531

19.2 Stable Marriages and Coupon Collecting 534

19.3 Minimum Cuts . 539

19.4 Finding Prime Numbers . 546

19.5 Chernoff Bounds . 551

19.6 Skip Lists . 557

19.7 Exercises . 563

20 B-Trees and External Memory 569
20.1 External Memory . 571

20.2 (2,4) Trees and B-Trees . 574

20.3 External-Memory Sorting . 590

20.4 Online Caching Algorithms 593

20.5 Exercises . 600

21 Multidimensional Searching 603
21.1 Range Trees . 605

21.2 Priority Search Trees . 609

21.3 Quadtrees and k-d Trees . 614

21.4 Exercises . 618

www.it-ebooks.info

http://www.it-ebooks.info/

Contents ix

22 Computational Geometry 623
22.1 Operations on Geometric Objects 625

22.2 Convex Hulls . 630

22.3 Segment Intersection . 638

22.4 Finding a Closest Pair of Points 642

22.5 Exercises . 646

23 String Algorithms 651
23.1 String Operations . 653

23.2 The Boyer-Moore Algorithm 656

23.3 The Knuth-Morris-Pratt Algorithm 660

23.4 Hash-Based Lexicon Matching 664

23.5 Tries . 669

23.6 Exercises . 680

24 Cryptography 685
24.1 Greatest Common Divisors (GCD) 687

24.2 Modular Arithmetic . 691

24.3 Cryptographic Operations . 699

24.4 The RSA Cryptosystem . 703

24.5 The El Gamal Cryptosystem 706

24.6 Exercises . 708

25 The Fast Fourier Transform 711
25.1 Convolution . 713

25.2 Primitive Roots of Unity . 715

25.3 The Discrete Fourier Transform 717

25.4 The Fast Fourier Transform Algorithm 721

25.5 Exercises . 727

26 Linear Programming 731
26.1 Formulating the Problem . 734

26.2 The Simplex Method . 739

26.3 Duality . 746

26.4 Applications of Linear Programming 750

26.5 Exercises . 753

A Useful Mathematical Facts 761
Bibliography 765
Index 774

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
This book is designed to provide a comprehensive introduction to the design and

analysis of computer algorithms and data structures. We have made each chapter to

be relatively independent of other chapters so as to provide instructors and readers

greater flexibility with respect to which chapters to explore. Moreover, the exten-

sive collection of topics we include provides coverage of both classic and emerging

algorithmic methods, including the following:

• Mathematics for asymptotic analysis, including amortization and random-

ization

• General algorithm design techniques, including the greedy method, divide-

and-conquer, and dynamic programming

• Data structures, including lists, trees, heaps, search trees, B-trees, hash ta-

bles, skip lists, union-find structures, and multidimensional trees

• Algorithmic frameworks, including NP-completeness, approximation algo-

rithms, and external-memory algorithms

• Fundamental algorithms, including sorting, graph algorithms, computational

geometry, numerical algorithms, cryptography, Fast Fourier Transform (FFT),

and linear programming.

Application-Motivated Approach

This is an exciting time for computer science. Computers have moved beyond their

early uses as computational engines to now be used as information processors,

with applications to every other discipline. Moreover, the expansion of the Inter-

net has brought about new paradigms and modalities for computer applications to

society and commerce. For instance, computers can be used to store and retrieve

large amounts of data, and they are used in many other application areas, such as

sports, video games, biology, medicine, social networking, engineering, and sci-

ence. Thus, we feel that algorithms should be taught to emphasize not only their

mathematical analysis but also their practical applications.

To fulfill this need, we have written each chapter to begin with a brief discus-

sion of an application that motivates the topic of that chapter. In some cases, this

application comes from a real-world use of the topic discussed in the chapter, and in

other cases it is a contrived application that highlights how the topic of the chapter

could be used in practice. Our intent in providing this motivation is to give readers

a conceptual context and practical justification to accompany their reading of each

chapter. In addition to this application-based motivation we include also detailed

pseudocode descriptions and complete mathematical analysis. Indeed, we feel that

mathematical rigor should not simply be for its own sake, but also for its pragmatic

implications.

xi

www.it-ebooks.info

http://www.it-ebooks.info/

xii Preface

For the Instructor
This book is structured to allow an instructor a great deal of freedom in how to orga-

nize and present material. The dependence between chapters is relatively minimal,

which allows the instructor to cover topics in her preferred sequence. Moreover,

each chapter is designed so that it can be covered in 1–3 lectures, depending on the

depth of coverage.

Example Courses

This book has several possible uses as a textbook. It can be used, for instance,

for a core Algorithms course, which is classically known as CS7. Alternatively,

it could be used for an upper-division/graduate data structures course, an upper-

division/graduate algorithms course, or a two-course sequence on these topics. To

highlight these alternatives, we give an example syllabus for each of these possible

courses below.

Example syllabus for a core Algorithms (CS7) course:

1. Algorithm Analysis

(Skip, skim, or review Chapters 2–4 on fundamental data structures)1

5. Priority Queues and Heaps

6. Hash Tables

7. Union-Find Structures

8. Merge-Sort and Quick-Sort

9. Fast Sorting and Selection (if time permits)

10. The Greedy Method

11. Divide-and-Conquer

12. Dynamic Programming

13. Graphs and Traversals

14. Shortest Paths

15. Minimum Spanning Trees

16. Network Flow and Matching (if time permits)

17. NP-Completeness

18. Approximation Algorithms

Optional choices from Chapters 19–26, as time permits

The optional choices from Chapters 19–26 that could be covered at the end of the

course include randomized algorithms, computational geometry, string algorithms,

cryptography, Fast Fourier Transform (FFT), and linear programming.

1These topics, and possibly even the topics of Chapters 5 and 6, are typically covered to at least a
basic level in a Data Structures course that could be a prerequisite to this course.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface xiii

Example syllabus for an upper-division/graduate Data Structures course:

1. Algorithm Analysis

2. Basic Data Structures

3. Binary Search Trees

4. Balanced Binary Search Trees

5. Priority Queues and Heaps

6. Hash Tables

7. Union-Find Structures

8. Merge-Sort and Quick-Sort

13. Graphs and Traversals

14. Shortest Paths

15. Minimum Spanning Trees

20. B-Trees and External-Memory

21. Multi-Dimensional Searching

Example syllabus for an upper-division/graduate Algorithms course:

(Skip, skim, or review Chapters 1–8)

9. Fast Sorting and Selection

10. The Greedy Method

11. Divide-and-Conquer

12. Dynamic Programming

16. Network Flow and Matching

17. NP-Completeness

18. Approximation Algorithms

19. Randomized Algorithms

22. Computational Geometry

23. String Algorithms

24. Cryptography

25. The Fast Fourier Transform (FFT)

26. Linear Programming

This course could be taught either as a stand-alone course or in conjunction with

an upper-division Data Structures course, such as that given above.

Of course, other options are also possible. Let us not belabor this point, how-

ever, leaving such creative arrangements to instructors.

www.it-ebooks.info

http://www.it-ebooks.info/

xiv Preface

Three Kinds of Exercises
This book contains many exercises—over 800—which are divided between the fol-

lowing three categories:

• reinforcement exercises, which test comprehension of chapter topics

• creativity exercises, which test creative utilization of techniques from the

chapter

• application exercises, which test uses of the topics of the chapter for real-

world or contrived applications

The exercises are distributed so that roughly 35% are reinforcement exercises, 40%

are creativity exercises, and 25% are application exercises.

Web Added-Value Education
This book comes accompanied by an extensive website:

http://www.wiley.com/college/goodrich/
This site includes an extensive collection of educational aids that augment the topics

of this book. Specifically for students we include the following:

• Presentation handouts in PDF format for most topics in this book

• Hints on selected exercises.

The hints should be of particular interest for creativity and application problems

that may be quite challenging for some students.

For instructors using this book, there is a dedicated portion of the site just for

them, which includes the following additional teaching aids:

• Solutions to selected exercises in this book

• Editable presentations in PowerPoint format for most topics in this book.

Prerequisites
We have written this book assuming that the reader comes to it with certain knowl-

edge. In particular, we assume that the reader has a basic understanding of elemen-

tary data structures, such as arrays and linked lists, and is at least vaguely familiar

with a high-level programming language, such as C, C++, Java, or Python. Thus,

all algorithms are described in a high-level “pseudocode,” which avoids some de-

tails, such as error condition testing, but is suitable for a knowledgeable reader to

convert algorithm descriptions into working code.

In terms of mathematical background, we assume the reader is familiar with

exponents, logarithms, summations, limits, and elementary probability. Even so,

we review many of these concepts in Chapter 1, and we give a summary of other

useful mathematical facts, including elementary probability, in Appendix A.

www.it-ebooks.info

http://www.wiley.com/college/goodrich
http://www.it-ebooks.info/

Preface xv

About the Authors
Professors Goodrich and Tamassia are well-recognized researchers in algorithms

and data structures, having published many papers in this field, with applications

to computer security, cryptography, Internet computing, information visualization,

and geometric computing. They have served as principal investigators in several

joint projects sponsored by the National Science Foundation, the Army Research

Office, and the Defense Advanced Research Projects Agency. They are also active

in educational technology research.

Michael Goodrich received his Ph.D. in Computer Sciences from Purdue Uni-

versity in 1987. He is a Chancellor’s Professor in the Department of Computer

Science at University of California, Irvine. Previously, he was a professor at Johns

Hopkins University. His research interests include analysis, design, and implemen-

tation of algorithms, data security, cloud computing, graph drawing, and computa-

tional geometry. He is a Fulbright scholar and a fellow of the American Association

for the Advancement of Science (AAAS), Association for Computing Machinery

(ACM), and Institute of Electrical and Electronics Engineers (IEEE). He is a re-

cipient of the IEEE Computer Society Technical Achievement Award, the ACM

Recognition of Service Award, and the Pond Award for Excellence in Undergrad-

uate Teaching. He serves on the advisory boards of the International Journal of
Computational Geometry & Applications (IJCGA) and of the Journal of Graph
Algorithms and Applications (JGAA).

Roberto Tamassia received his Ph.D. in Electrical and Computer Engineering

from the University of Illinois at Urbana-Champaign in 1988. He is the Plastech

Professor of Computer Science in the Department of Computer Science at Brown

University. He is also the Director of Brown’s Center for Geometric Computing.

His research interests include data security, applied cryptography, cloud computing,

analysis, design, and implementation of algorithms, graph drawing and computa-

tional geometry. He is a fellow of the American Association for the Advancement

of Science (AAAS), Association for Computing Machinery (ACM), and Institute

for Electrical and Electronic Engineers (IEEE). He is also a recipient of the Tech-

nical Achievement Award from the IEEE Computer Society. He co-founded the

Journal of Graph Algorithms and Applications (JGAA) and the Symposium on

Graph Drawing. He serves as co-editor-in-chief of JGAA.

Acknowledgments
There are a number of individuals with whom we have collaborated on research

and educational projects about algorithms. Working with them helped us refine the

vision and content of this book. Specifically, we thank Jeff Achter, Vesselin Ar-

naudov, James Baker, Ryan Baker, Benjamin Boer, John Boreiko, Devin Borland,

Lubomir Bourdev, Ulrik Brandes, Stina Bridgeman, Bryan Cantrill, Yi-Jen Chiang,

www.it-ebooks.info

http://www.it-ebooks.info/

xvi Preface

Robert Cohen, David Ellis, David Emory, Jody Fanto, Ben Finkel, Peter Fröhlich,

Ashim Garg, David Ginat, Natasha Gelfand, Esha Ghosh, Michael Goldwasser,

Mark Handy, Michael Horn, Greg Howard, Benoı̂t Hudson, Jovanna Ignatowicz,

James Kelley, Evgenios Kornaropoulos, Giuseppe Liotta, David Mount, Jeremy

Mullendore, Olga Ohrimenko, Seth Padowitz, Bernardo Palazzi, Charalampos Pa-

pamanthou, James Piechota, Daniel Polivy, Seth Proctor, Susannah Raub, Haru

Sakai, John Schultz, Andrew Schwerin, Michael Shapiro, Michael Shim, Michael

Shin, Galina Shubina, Amy Simpson, Christian Straub, Ye Sun, Nikos Triandopou-

los, Luca Vismara, Danfeng Yao, Jason Ye, and Eric Zamore.

We are grateful to our editor, Beth Golub, for her enthusiastic support of this

project. The production team at Wiley has been great. Many thanks go to people

who helped us with the book development, including Jayne Ziemba, Jennifer Wel-

ter, Debbie Martin, Chris Ruel, Julie Kennedy, Wanqian Ye, Joyce Poh, and Ja-

nis Soo.

We are especially grateful to Michael Bannister, Jenny Lam, and Joseph Si-

mons for their contributions to the chapter on linear programming. We would like

to thank Siddhartha Sen and Robert Tarjan for an illuminating discussion about

balanced search trees.

We are truly indebted to the outside reviewers, and especially to Jack Snoeyink,

for detailed comments and constructive criticism, which were extremely useful.

These other outside reviewers included John Donald, Hui Yang, Nicholas Tran,

John Black, My Thai, Dana Randall, Ming-Yang Kao, Qiang Cheng, Ravi Janar-

den, Fikret Ercal, Jack Snoeyink, S. Muthukrishnan, Elliot Anshelevich, Mukkai

Krishnamoorthy, Roxanne Canosa, Michael Cutler, Roger Crawfis, Glencora Bor-

radaile, and Jennifer Welch.

This manuscript was prepared primarily with LATEX for the text and Microsoft

PowerPoint R©, Visio R©, and Adobe FrameMaker R© for the figures.

Finally, we warmly thank Isabel Cruz, Karen Goodrich, Giuseppe Di Battista,

Franco Preparata, Ioannis Tollis, and our parents for providing advice, encourage-

ment, and support at various stages of the preparation of this book. We also thank

them for reminding us that there are things in life beyond writing books.

Michael T. Goodrich

Roberto Tamassia

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

1 Algorithm Analysis

Microscope: U.S. government image, from the N.I.H. Medical Instrument
Gallery, DeWitt Stetten, Jr., Museum of Medical Research. Hubble Space Tele-
scope: U.S. government image, from NASA, STS-125 Crew, May 25, 2009.

Contents

1.1 Analyzing Algorithms 3
1.2 A Quick Mathematical Review 19
1.3 A Case Study in Algorithm Analysis 29
1.4 Amortization . 34
1.5 Exercises . 42

www.it-ebooks.info

http://www.it-ebooks.info/

2 Chapter 1. Algorithm Analysis

Scientists often have to deal with differences in scale, from the microscopi-

cally small to the astronomically large, and they have developed a wide range of

tools for dealing with the differences in scale in the objects they study. Similarly,

computer scientists must also deal with scale, but they deal with it primarily in

terms of data volume rather than physical object size. In the world of information

technology, scalability refers to the ability of a system to gracefully accommodate

growing sizes of inputs or amounts of workload. Being able to achieve scalability

for a computer system can mean the difference between a technological solution

that can succeed in the marketplace or scientific application and one that becomes

effectively unusable as data volumes increase. In this book, we are therefore inter-

ested in the design of scalable algorithms and data structures.

Simply put, an algorithm is a step-by-step procedure for performing some task

in a finite amount of time, and a data structure is a systematic way of organiz-

ing and accessing data. These concepts are central to computing, and this book is

dedicated to the discussion of paradigms and principles for the design and imple-

mentation of correct and efficient data structures and algorithms. But to be able to

determine the degree to which algorithms and data structures are scalable, we must

have precise ways of analyzing them.

The primary analysis tool we use in this book is to characterize the running
time of an algorithm or data structure operation, with space usage also being of

interest. Running time is a natural measure for the purposes of scalability, since

time is a precious resource. It is an important consideration in economic and sci-

entific applications, since everyone expects computer applications to run as fast as

possible.

We begin this chapter by describing the basic framework needed for analyzing

algorithms, which includes the language for describing algorithms, the computa-

tional model that language is intended for, and the main factors we count when

considering running time. We also include a brief discussion of how recursive

algorithms are analyzed. In Section 1.1.5, we present the main notation we use to

characterize running times—the so-called “big-Oh” notation. These tools comprise

the main theoretical tools for designing and analyzing algorithms.

In Section 1.2, we take a short break from our development of the framework

for algorithm analysis to review some important mathematical facts, including dis-

cussions of summations, logarithms, proof techniques, and basic probability. Given

this background and our notation for algorithm analysis, we present a case study on

algorithm analysis in Section 1.3, focusing on a problem often used as a test ques-

tion during job interviews. We follow this case study in Section 1.4 by presenting

an interesting analysis technique, known as amortization, which allows us to ac-

count for the group behavior of many individual operations. Finally, we conclude

the chapter with some exercises that include several problems inspired by questions

commonly asked during job interviews at major software and Internet companies.

www.it-ebooks.info

http://www.it-ebooks.info/

1.1. Analyzing Algorithms 3

1.1 Analyzing Algorithms

The running time of an algorithm or data structure operation typically depends on

a number of factors, so what should be the proper way of measuring it? If an

algorithm has been implemented, we can study its running time by executing it

on various test inputs and recording the actual time spent in each execution. Such

measurements can be taken in an accurate manner by using system calls that are

built into the language or operating system for which the algorithm is written. In

general, we are interested in determining the dependency of the running time on the

size of the input. In order to determine this, we can perform several experiments

on many different test inputs of various sizes. We can then visualize the results

of such experiments by plotting the performance of each run of the algorithm as

a point with x-coordinate equal to the input size, n, and y-coordinate equal to the

running time, t. (See Figure 1.1.) To be meaningful, this analysis requires that

we choose good sample inputs and test enough of them to be able to make sound

statistical claims about the algorithm.

In general, the running time of an algorithm or data structure method increases

with the input size, although it may also vary for distinct inputs of the same size.

Also, the running time is affected by the hardware environment (processor, clock

rate, memory, disk, etc.) and software environment (operating system, program-

ming language, compiler, interpreter, etc.) in which the algorithm is implemented,

compiled, and executed. All other factors being equal, the running time of the same

algorithm on the same input data will be smaller if the computer has, say, a much

faster processor or if the implementation is done in a program compiled into native

machine code instead of an interpreted implementation run on a virtual machine.

50 1000

t (ms)

n

10

20

30

40

50

60

Figure 1.1: Results of an experimental study on the running time of an algorithm.

A dot with coordinates (n, t) indicates that on an input of size n, the running time

of the algorithm is t milliseconds (ms).

www.it-ebooks.info

http://www.it-ebooks.info/

4 Chapter 1. Algorithm Analysis

Requirements for a General Analysis Methodology

Experimental studies on running times are useful, but they have some limitations:

• Experiments can be done only on a limited set of test inputs, and care must

be taken to make sure these are representative.

• It is difficult to compare the efficiency of two algorithms unless experiments

on their running times have been performed in the same hardware and soft-

ware environments.

• It is necessary to implement and execute an algorithm in order to study its

running time experimentally.

Thus, while experimentation has an important role to play in algorithm analysis,

it alone is not sufficient. Therefore, in addition to experimentation, we desire an

analytic framework that

• Takes into account all possible inputs

• Allows us to evaluate the relative efficiency of any two algorithms in a way

that is independent from the hardware and software environment

• Can be performed by studying a high-level description of the algorithm with-

out actually implementing it or running experiments on it.

This methodology aims at associating with each algorithm a function f(n) that

characterizes the running time of the algorithm in terms of the input size n. Typical

functions that will be encountered include n and n2. For example, we will write

statements of the type “Algorithm A runs in time proportional to n,” meaning that

if we were to perform experiments, we would find that the actual running time of

algorithm A on any input of size n never exceeds cn, where c is a constant that

depends on the hardware and software environment used in the experiment. Given

two algorithms A and B, where A runs in time proportional to n and B runs in time

proportional to n2, we will prefer A to B, since the function n grows at a smaller

rate than the function n2.

We are now ready to “roll up our sleeves” and start developing our method-

ology for algorithm analysis. There are several components to this methodology,

including the following:

• A language for describing algorithms

• A computational model that algorithms execute within

• A metric for measuring algorithm running time

• An approach for characterizing running times, including those for recursive

algorithms.

We describe these components in more detail in the remainder of this section.

www.it-ebooks.info

http://www.it-ebooks.info/

1.1. Analyzing Algorithms 5

1.1.1 Pseudo-Code
Programmers are often asked to describe algorithms in a way that is intended for

human eyes only. Such descriptions are not computer programs, but are more struc-

tured than usual prose. They also facilitate the high-level analysis of a data structure

or algorithm. We call these descriptions pseudocode.

An Example of Pseudo-Code

The array-maximum problem is the simple problem of finding the maximum el-

ement in an array A storing n integers. To solve this problem, we can use an

algorithm called arrayMax, which scans through the elements of A using a for
loop.

The pseudocode description of algorithm arrayMax is shown in Algorithm 1.2.

Algorithm arrayMax(A, n):
Input: An array A storing n ≥ 1 integers.

Output: The maximum element in A.

currentMax ← A[0]
for i ← 1 to n − 1 do

if currentMax < A[i] then
currentMax ← A[i]

return currentMax

Algorithm 1.2: Algorithm arrayMax.

Note that the pseudocode is more compact than an equivalent actual software

code fragment would be. In addition, the pseudocode is easier to read and under-

stand.

Using Pseudo-Code to Prove Algorithm Correctness

By inspecting the pseudocode, we can argue about the correctness of algorithm ar-
rayMax with a simple argument. Variable currentMax starts out being equal to the

first element of A. We claim that at the beginning of the ith iteration of the loop,

currentMax is equal to the maximum of the first i elements in A. Since we compare

currentMax to A[i] in iteration i, if this claim is true before this iteration, it will be

true after it for i + 1 (which is the next value of counter i). Thus, after n − 1 itera-

tions, currentMax will equal the maximum element in A. As with this example, we

want our pseudocode descriptions to always be detailed enough to fully justify the

correctness of the algorithm they describe, while being simple enough for human

readers to understand.

www.it-ebooks.info

http://www.it-ebooks.info/

6 Chapter 1. Algorithm Analysis

What Is Pseudo-Code?

Pseudo-code is a mixture of natural language and high-level programming con-

structs that describe the main ideas behind a generic implementation of a data

structure or algorithm. There really is no precise definition of the pseudocode
language, however, because of its reliance on natural language. At the same time,

to help achieve clarity, pseudocode mixes natural language with standard program-

ming language constructs. The programming language constructs we choose are

those consistent with modern high-level languages such as Python, C++, and Java.

These constructs include the following:

• Expressions: We use standard mathematical symbols to express numeric

and Boolean expressions. We use the left arrow sign (←) as the assignment

operator in assignment statements (equivalent to the = operator in C, C++,

and Java) and we use the equal sign (=) as the equality relation in Boolean

expressions (equivalent to the “==” relation in C, C++, and Java).

• Method declarations: Algorithm name(param1, param2, . . .) declares a

new method “name” and its parameters.

• Decision structures: if condition then true-actions [else false-actions]. We

use indentation to indicate what actions should be included in the true-actions

and false-actions, and we assume Boolean operators allow for short-circuit

evaluation.

• While-loops: while condition do actions. We use indentation to indicate

what actions should be included in the loop actions.

• Repeat-loops: repeat actions until condition. We use indentation to indicate

what actions should be included in the loop actions.

• For-loops: for variable-increment-definition do actions. We use indentation

to indicate what actions should be included among the loop actions.

• Array indexing: A[i] represents the ith cell in the array A. We usually index

the cells of an array A of size n from 1 to n, as in mathematics, but sometimes

we instead such an array from 0 to n − 1, consistent with C, C++, and Java.

• Method calls: object.method(args) (object is optional if it is understood).

• Method returns: return value. This operation returns the value specified to

the method that called this one.

When we write pseudocode, we must keep in mind that we are writing for a

human reader, not a computer. Thus, we should strive to communicate high-level

ideas, not low-level implementation details. At the same time, we should not gloss

over important steps. Like many forms of human communication, finding the right

balance is an important skill that is refined through practice.

Now that we have developed a high-level way of describing algorithms, let

us next discuss how we can analytically characterize algorithms written in pseu-

docode.

www.it-ebooks.info

http://www.it-ebooks.info/

1.1. Analyzing Algorithms 7

1.1.2 The Random Access Machine (RAM) Model
As we noted above, experimental analysis is valuable, but it has its limitations. If

we wish to analyze a particular algorithm without performing experiments on its

running time, we can take the following more analytic approach directly on the

high-level code or pseudocode. We define a set of high-level primitive operations
that are largely independent from the programming language used and can be iden-

tified also in the pseudocode. Primitive operations include the following:

• Assigning a value to a variable

• Calling a method

• Performing an arithmetic operation (for example, adding two numbers)

• Comparing two numbers

• Indexing into an array

• Following an object reference

• Returning from a method.

Specifically, a primitive operation corresponds to a low-level instruction with an

execution time that depends on the hardware and software environment but is nev-

ertheless constant. Instead of trying to determine the specific execution time of

each primitive operation, we will simply count how many primitive operations are

executed, and use this number t as a high-level estimate of the running time of the

algorithm. This operation count will correlate to an actual running time in a spe-

cific hardware and software environment, for each primitive operation corresponds

to a constant-time instruction, and there are only a fixed number of primitive opera-

tions. The implicit assumption in this approach is that the running times of different

primitive operations will be fairly similar. Thus, the number, t, of primitive opera-

tions an algorithm performs will be proportional to the actual running time of that

algorithm.

RAM Machine Model Definition

This approach of simply counting primitive operations gives rise to a computational

model called the Random Access Machine (RAM). This model, which should not

be confused with “random access memory,” views a computer simply as a CPU

connected to a bank of memory cells. Each memory cell stores a word, which can

be a number, a character string, or an address—that is, the value of a base type. The

term “random access” refers to the ability of the CPU to access an arbitrary memory

cell with one primitive operation. To keep the model simple, we do not place

any specific limits on the size of numbers that can be stored in words of memory.

We assume the CPU in the RAM model can perform any primitive operation in

a constant number of steps, which do not depend on the size of the input. Thus,

an accurate bound on the number of primitive operations an algorithm performs

corresponds directly to the running time of that algorithm in the RAM model.

www.it-ebooks.info

http://www.it-ebooks.info/

8 Chapter 1. Algorithm Analysis

1.1.3 Counting Primitive Operations
We now show how to count the number of primitive operations executed by an al-

gorithm, using as an example algorithm arrayMax, whose pseudocode was given

back in Algorithm 1.2. We do this analysis by focusing on each step of the algo-

rithm and counting the primitive operations that it takes, taking into consideration

that some operations are repeated, because they are enclosed in the body of a loop.

• Initializing the variable currentMax to A[0] corresponds to two primitive op-

erations (indexing into an array and assigning a value to a variable) and is

executed only once at the beginning of the algorithm. Thus, it contributes

two units to the count.

• At the beginning of the for loop, counter i is initialized to 1. This action

corresponds to executing one primitive operation (assigning a value to a vari-

able).

• Before entering the body of the for loop, condition i < n is verified. This

action corresponds to executing one primitive instruction (comparing two

numbers). Since counter i starts at 1 and is incremented by 1 at the end of

each iteration of the loop, the comparison i < n is performed n times. Thus,

it contributes n units to the count.

• The body of the for loop is executed n − 1 times (for values 1, 2, . . . , n − 1
of the counter). At each iteration, A[i] is compared with currentMax (two

primitive operations, indexing and comparing), A[i] is possibly assigned

to currentMax (two primitive operations, indexing and assigning), and the

counter i is incremented (two primitive operations, summing and assigning).

Hence, at each iteration of the loop, either four or six primitive operations are

performed, depending on whether A[i] ≤ currentMax or A[i] > currentMax.

Therefore, the body of the loop contributes between 4(n − 1) and 6(n − 1)
units to the count.

• Returning the value of variable currentMax corresponds to one primitive op-

eration, and is executed only once.

To summarize, the number of primitive operations t(n) executed by algorithm ar-
rayMax is at least

2 + 1 + n + 4(n − 1) + 1 = 5n

and at most

2 + 1 + n + 6(n − 1) + 1 = 7n − 2.

The best case (t(n) = 5n) occurs when A[0] is the maximum element, so that

variable currentMax is never reassigned. The worst case (t(n) = 7n − 2) occurs

when the elements are sorted in increasing order, so that variable currentMax is

reassigned at each iteration of the for loop.

www.it-ebooks.info

http://www.it-ebooks.info/

1.1. Analyzing Algorithms 9

Average-Case and Worst-Case Analysis

Like the arrayMax method, an algorithm may run faster on some inputs than it

does on others. In such cases we may wish to express the running time of such an

algorithm as an average taken over all possible inputs. Although such an average
case analysis would often be valuable, it is typically quite challenging. It requires

us to define a probability distribution on the set of inputs, which is typically a diffi-

cult task. Figure 1.3 schematically shows how, depending on the input distribution,

the running time of an algorithm can be anywhere between the worst-case time and

the best-case time. For example, what if inputs are really only of types “A” or “D”?

An average-case analysis also typically requires that we calculate expected run-

ning times based on a given input distribution. Such an analysis often requires

heavy mathematics and probability theory.

Therefore, except for experimental studies or the analysis of algorithms that are

themselves randomized, we will, for the remainder of this book, typically charac-

terize running times in terms of the worst case. We say, for example, that algorithm

arrayMax executes t(n) = 7n− 2 primitive operations in the worst case, meaning

that the maximum number of primitive operations executed by the algorithm, taken

over all inputs of size n, is 7n − 2.

This type of analysis is much easier than an average-case analysis, as it does

not require probability theory; it just requires the ability to identify the worst-case

input, which is often straightforward. In addition, taking a worst-case approach can

actually lead to better algorithms. Making the standard of success that of having an

algorithm perform well in the worst case necessarily requires that it perform well on

every input. That is, designing for the worst case can lead to stronger algorithmic

“muscles,” much like a track star who always practices by running uphill.

Input Instance

R
u

n
n

in
g

 T
im

e

1 ms

2 ms

3 ms

4 ms

5 ms

A B C D E F G

worst-case time

best-case time

}average-case time?

Figure 1.3: The difference between best-case and worst-case time. Each bar repre-

sents the running time of some algorithm on a different possible input.

www.it-ebooks.info

http://www.it-ebooks.info/

10 Chapter 1. Algorithm Analysis

1.1.4 Analyzing Recursive Algorithms

Iteration is not the only interesting way of solving a problem. Another useful tech-

nique, which is employed by many algorithms, is to use recursion. In this tech-

nique, we define a procedure P that is allowed to make calls to itself as a subrou-

tine, provided those calls to P are for solving subproblems of smaller size. The

subroutine calls to P on smaller instances are called “recursive calls.” A recur-

sive procedure should always define a base case, which is small enough that the

algorithm can solve it directly without using recursion.

We give a recursive solution to the array maximum problem in Algorithm 1.4.

This algorithm first checks if the array contains just a single item, which in this

case must be the maximum; hence, in this simple base case we can immediately

solve the problem. Otherwise, the algorithm recursively computes the maximum

of the first n − 1 elements in the array and then returns the maximum of this value

and the last element in the array.

As with this example, recursive algorithms are often quite elegant. Analyzing

the running time of a recursive algorithm takes a bit of additional work, however.

In particular, to analyze such a running time, we use a recurrence equation, which

defines mathematical statements that the running time of a recursive algorithm must

satisfy. We introduce a function T (n) that denotes the running time of the algorithm

on an input of size n, and we write equations that T (n) must satisfy. For example,

we can characterize the running time, T (n), of the recursiveMax algorithm as

T (n) =
{

3 if n = 1
T (n − 1) + 7 otherwise,

assuming that we count each comparison, array reference, recursive call, max cal-

culation, or return as a single primitive operation. Ideally, we would like to char-

acterize a recurrence equation like that above in closed form, where no references

to the function T appear on the righthand side. For the recursiveMax algorithm, it

isn’t too hard to see that a closed form would be T (n) = 7(n − 1) + 3 = 7n − 4.
In general, determining closed form solutions to recurrence equations can be much

more challenging than this, and we study some specific examples of recurrence

equations in Chapter 8, when we study some sorting and selection algorithms. We

study methods for solving recurrence equations of a general form in Section 11.1.

Algorithm recursiveMax(A, n):
Input: An array A storing n ≥ 1 integers.

Output: The maximum element in A.

if n = 1 then
return A[0]

return max{recursiveMax(A, n − 1), A[n − 1]}
Algorithm 1.4: Algorithm recursiveMax.

www.it-ebooks.info

http://www.it-ebooks.info/

1.1. Analyzing Algorithms 11

1.1.5 Asymptotic Notation

We have clearly gone into laborious detail for evaluating the running time of such

a simple algorithm as arrayMax and its recursive cousin, recursiveMax. Such

an approach would clearly prove cumbersome if we had to perform it for more

complicated algorithms. In general, each step in a pseudocode description and each

statement in a high-level language implementation tends to correspond to a small

number of primitive operations that does not depend on the input size. Thus, we

can perform a simplified analysis that estimates the number of primitive operations

executed up to a constant factor, by counting the steps of the pseudocode or the

statements of the high-level language executed. Fortunately, there is a notation that

allows us to characterize the main factors affecting an algorithm’s running time

without going into all the details of exactly how many primitive operations are

performed for each constant-time set of instructions.

The “Big-Oh” Notation

Let f(n) and g(n) be functions mapping nonnegative integers to real numbers. We

say that f(n) is O(g(n)) if there is a real constant c > 0 and an integer constant

n0 ≥ 1 such that f(n) ≤ cg(n) for every integer n ≥ n0. This definition is often

pronounced as “f(n) is big-Oh of g(n)” or “f(n) is order g(n).” (See Figure 1.5.)

Example 1.1: 7n − 2 is O(n).

Proof: We need a real constant c > 0 and an integer constant n0 ≥ 1 such that
7n − 2 ≤ cn for every integer n ≥ n0. It is easy to see that a possible choice is
c = 7 and n0 = 1, but there are other possibilities as well.

Input Size

R
u
n
n
in

g
 T

im
e

cg(n)

f(n)

n0

Figure 1.5: The function f(n) is O(g(n)), for f(n) ≤ c · g(n) when n ≥ n0.

www.it-ebooks.info

http://www.it-ebooks.info/

12 Chapter 1. Algorithm Analysis

The big-Oh notation allows us to say that a function of n is “less than or equal

to” another function (by the inequality “≤” in the definition), up to a constant factor

(by the constant c in the definition) and in the asymptotic sense as n grows toward

infinity (by the statement “n ≥ n0” in the definition).

The big-Oh notation is used widely to characterize running times and space

bounds of algorithm in terms of a parameter, n, which represents the “size” of the

problem. For example, if we are interested in finding the largest element in an

array of integers (see arrayMax given in Algorithm 1.2), it would be most natural

to let n denote the number of elements of the array. For example, we can write

the following precise statement on the running time of algorithm arrayMax from

Algorithm 1.2.

Theorem 1.2: The running time of algorithm arrayMax for computing the max-
imum element in an array of n integers is O(n).

Proof: As shown in Section 1.1.3, the number of primitive operations executed

by algorithm arrayMax is at most 7n − 2. We may therefore apply the big-Oh

definition with c = 7 and n0 = 1 and conclude that the running time of algorithm

arrayMax is O(n).

Let us consider a few additional examples that illustrate the big-Oh notation.

Example 1.3: 20n3 + 10n log n + 5 is O(n3).

Proof: 20n3 + 10n log n + 5 ≤ 35n3, for n ≥ 1.

In fact, any polynomial, akn
k + ak−1n

k−1 + · · · + a0, will always be O(nk).

Example 1.4: 3 log n + log log n is O(log n).

Proof: 3 log n + log log n ≤ 4 log n, for n ≥ 2. Note that log log n is not even
defined for n = 1, but log log n < log n, for n ≥ 2. That is why we use n ≥ 2.

Example 1.5: 2100 is O(1).

Proof: 2100 ≤ 2100 · 1, for n ≥ 1. Note that variable n does not appear in the
inequality, since we are dealing with constant-valued functions.

Example 1.6: 5n log n + 2n is O(n log n).

Proof: 5n log n + 2n ≤ 7n log n, for n ≥ 2 (but not for n = 1).

As mentioned above, we are typically interested in characterizing the running

time or space usage of algorithm in terms of a function, f(n), which we bound

using the big-Oh notion. For this reason, we should use the big-Oh notation to

characterize such a function, f(n), using an asymptotically small and simple func-

tion, g(n). For instance, while it is true that a function, f(n) = 4n3 + 3n4/3, is

O(n5), it is more informative to say that such an f(n) is O(n3). Moreover, it is

www.it-ebooks.info

http://www.it-ebooks.info/

1.1. Analyzing Algorithms 13

often difficult or cumbersome to characterize the running time or space usage of

algorithm exactly, whereas characterizing such measures using the big-Oh notion

is typically easier.

Instead of always applying the big-Oh definition directly to obtain a big-Oh

characterization, we can often use the following rules to simplify our task of figur-

ing out the simplest characterization.

Theorem 1.7: Let d(n), e(n), f(n), and g(n) be functions mapping nonnegative
integers to nonnegative reals.

1. If d(n) is O(f(n)), then ad(n) is O(f(n)), for any constant a > 0.

2. If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)+e(n) is O(f(n)+g(n)).
3. If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is O(f(n)g(n)).
4. If d(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is O(g(n)).
5. If f(n) is a polynomial of degree d (that is, f(n) = a0 + a1n + · · ·+ adn

d),
then f(n) is O(nd).

6. nx is O(an) for any fixed x > 0 and a > 1.

7. log nx is O(log n) for any fixed x > 0.

8. logx n is O(ny) for any fixed constants x > 0 and y > 0.

It is considered poor taste to include constant factors and lower order terms in

the big-Oh notation. For example, it is not fashionable to say that the function 2n2

is O(4n2 + 6n log n), although this is completely correct. We should strive instead

to describe the function in the big-Oh in simplest terms.

Example 1.8: 2n3 + 4n2 log n is O(n3).
Proof: We can apply the rules of Theorem 1.7 as follows:

• log n is O(n) (Rule 8).

• 4n2 log n is O(4n3) (Rule 3).

• 2n3 + 4n2 log n is O(2n3 + 4n3) (Rule 2).

• 2n3 + 4n3 is O(n3) (Rule 5 or Rule 1).

• 2n3 + 4n2 log n is O(n3) (Rule 4).

Some functions appear often in the analysis of algorithms and data structures,

and we often use special terms to refer to them. Table 1.6 shows some terms com-

monly used in algorithm analysis.

logarithmic linear quadratic polynomial exponential
O(log n) O(n) O(n2) O(nk) (k ≥ 1) O(an) (a > 1)

Table 1.6: Terminology for classes of functions.

www.it-ebooks.info

http://www.it-ebooks.info/

14 Chapter 1. Algorithm Analysis

Using the Big-Oh Notation

It is considered poor taste, in general, to say “f(n) ≤ O(g(n)),” since the big-Oh

already denotes the “less-than-or-equal-to” concept. Likewise, although common,

it is not completely correct to say “f(n) = O(g(n))” (with the usual understand-

ing of the “=” relation), and it is actually incorrect to say “f(n) ≥ O(g(n))” or

“f(n) > O(g(n)).” It is best to say “f(n) is O(g(n)).” For the more mathemati-

cally inclined, it is also correct to say,

“f(n) ∈ O(g(n)),”

for the big-Oh notation is, technically speaking, denoting a whole collection of

functions.

Even with this interpretation, there is considerable freedom in how we can use

arithmetic operations with the big-Oh notation, provided the connection to the def-

inition of the big-Oh is clear. For instance, we can say,

“f(n) is g(n) + O(h(n)),”

which would mean that there are constants c > 0 and n0 ≥ 1 such that f(n) ≤
g(n) + ch(n) for n ≥ n0. As in this example, we may sometimes wish to give the

exact leading term in an asymptotic characterization. In that case, we would say

that “f(n) is g(n) + O(h(n)),” where h(n) grows slower than g(n). For example,

we could say that 2n log n + 4n + 10
√

n is 2n log n + O(n).

Big-Omega and Big-Theta

Just as the big-Oh notation provides an asymptotic way of saying that a function

is “less than or equal to” another function, there are other notations that provide

asymptotic ways of making other types of comparisons.

Let f(n) and g(n) be functions mapping integers to real numbers. We say that

f(n) is Ω(g(n)) (pronounced “f(n) is big-Omega of g(n)”) if g(n) is O(f(n));
that is, there is a real constant c > 0 and an integer constant n0 ≥ 1 such that

f(n) ≥ cg(n), for n ≥ n0. This definition allows us to say asymptotically that

one function is greater than or equal to another, up to a constant factor. Likewise,

we say that f(n) is Θ(g(n)) (pronounced “f(n) is big-Theta of g(n)”) if f(n) is

O(g(n)) and f(n) is Ω(g(n)); that is, there are real constants c′ > 0 and c′′ > 0,

and an integer constant n0 ≥ 1 such that c′g(n) ≤ f(n) ≤ c′′g(n), for n ≥ n0.

The big-Theta allows us to say that two functions are asymptotically equal, up

to a constant factor. We consider some examples of these notations below.

www.it-ebooks.info

http://www.it-ebooks.info/

1.1. Analyzing Algorithms 15

Example 1.9: 3 log n + log log n is Ω(log n).

Proof: 3 log n + log log n ≥ 3 log n, for n ≥ 2.

This example shows that lower-order terms are not dominant in establishing

lower bounds with the big-Omega notation. Thus, as the next example sums up,

lower-order terms are not dominant in the big-Theta notation either.

Example 1.10: 3 log n + log log n is Θ(log n).

Proof: This follows from Examples 1.4 and 1.9.

Some Words of Caution

A few words of caution about asymptotic notation are in order at this point. First,

note that the use of the big-Oh and related notations can be somewhat misleading

should the constant factors they “hide” be very large. For example, while it is true

that the function 10100n is Θ(n), if this is the running time of an algorithm being

compared to one whose running time is 10n log n, we should prefer the Θ(n log n)-
time algorithm, even though the linear-time algorithm is asymptotically faster. This

preference is because the constant factor, 10100, which is called “one googol,” is

believed by many astronomers to be an upper bound on the number of atoms in

the observable universe. So we are unlikely to ever have a real-world problem that

has this number as its input size. Thus, even when using the big-Oh notation, we

should at least be somewhat mindful of the constant factors and lower order terms

we are “hiding.”

The above observation raises the issue of what constitutes a “fast” algorithm.

Generally speaking, any algorithm running in O(n log n) time (with a reasonable

constant factor) should be considered efficient. Even an O(n2)-time method may be

fast enough in some contexts—that is, when n is small. But an algorithm running

in Θ(2n) time should never be considered efficient. This fact is illustrated by a

famous story about the inventor of the game of chess. He asked only that his king

pay him 1 grain of rice for the first square on the board, 2 grains for the second, 4

grains for the third, 8 for the fourth, and so on. But try to imagine the sight of 264

grains stacked on the last square! In fact, this number cannot even be represented

as a standard long integer in most programming languages.

Therefore, if we must draw a line between efficient and inefficient algorithms,

it is natural to make this distinction be that between those algorithms running in

polynomial time and those requiring exponential time. That is, make the distinction

between algorithms with a running time that is O(nk), for some constant k ≥ 1,

and those with a running time that is Θ(cn), for some constant c > 1. Like so many

notions we have discussed in this section, this too should be taken with a “grain of

salt,” for an algorithm running in Θ(n100) time should probably not be considered

“efficient.” Even so, the distinction between polynomial-time and exponential-time

algorithms is considered a robust measure of tractability.

www.it-ebooks.info

http://www.it-ebooks.info/

16 Chapter 1. Algorithm Analysis

Little-Oh and Little-Omega

There are also some ways of saying that one function is strictly less than or strictly

greater than another asymptotically, but these are not used as often as the big-Oh,

big-Omega, and big-Theta. Nevertheless, for the sake of completeness, we give

their definitions as well.

Let f(n) and g(n) be functions mapping integers to real numbers. We say

that f(n) is o(g(n)) (pronounced “f(n) is little-oh of g(n)”) if, for any constant

c > 0, there is a constant n0 > 0 such that f(n) ≤ cg(n) for n ≥ n0. Likewise,

we say that f(n) is ω(g(n)) (pronounced “f(n) is little-omega of g(n)”) if g(n)
is o(f(n)), that is, if, for any constant c > 0, there is a constant n0 > 0 such

that g(n) ≤ cf(n) for n ≥ n0. Intuitively, o(·) is analogous to “less than” in an

asymptotic sense, and ω(·) is analogous to “greater than” in an asymptotic sense.

Example 1.11: The function f(n) = 12n2 + 6n is o(n3) and ω(n).

Proof: Let us first show that f(n) is o(n3). Let c > 0 be any constant. If we
take n0 = (12 + 6)/c = 18/c, then 18 ≤ cn, for n ≥ n0. Thus, if n ≥ n0,

f(n) = 12n2 + 6n ≤ 12n2 + 6n2 = 18n2 ≤ cn3.

Thus, f(n) is o(n3).
To show that f(n) is ω(n), let c > 0 again be any constant. If we take n0 =

c/12, then, for n ≥ n0, 12n ≥ c. Thus, if n ≥ n0,

f(n) = 12n2 + 6n ≥ 12n2 ≥ cn.

Thus, f(n) is ω(n).

For the reader familiar with limits, we note that f(n) is o(g(n)) if and only if

lim
n→∞

f(n)
g(n)

= 0,

provided this limit exists. The main difference between the little-oh and big-Oh

notions is that f(n) is O(g(n)) if there exist constants c > 0 and n0 ≥ 1 such

that f(n) ≤ cg(n), for n ≥ n0; whereas f(n) is o(g(n)) if for all constants

c > 0 there is a constant n0 such that f(n) ≤ cg(n), for n ≥ n0. Intuitively,

f(n) is o(g(n)) if f(n) becomes insignificant compared to g(n) as n grows toward

infinity. As previously mentioned, asymptotic notation is useful because it allows

us to concentrate on the main factor determining a function’s growth.

To summarize, the asymptotic notations of big-Oh, big-Omega, and big-Theta,

as well as little-oh and little-omega, provide a convenient language for us to analyze

data structures and algorithms. As mentioned earlier, these notations provide con-

venience because they let us concentrate on the “big picture” rather than low-level

details.

www.it-ebooks.info

http://www.it-ebooks.info/

1.1. Analyzing Algorithms 17

1.1.6 The Importance of Asymptotic Notation

Asymptotic notation has many important benefits, which might not be immediately

obvious. Specifically, we illustrate one important aspect of the asymptotic view-

point in Table 1.7. This table explores the maximum size allowed for an input

instance for various running times to be solved in 1 second, 1 minute, and 1 hour,

assuming each operation can be processed in 1 microsecond (1 μs). It also shows

the importance of algorithm design, because an algorithm with an asymptotically

slow running time (for example, one that is O(n2)) is beaten in the long run by

an algorithm with an asymptotically faster running time (for example, one that is

O(n log n)), even if the constant factor for the faster algorithm is worse.

Running Maximum Problem Size (n)

Time 1 second 1 minute 1 hour

400n 2,500 150,000 9,000,000

20n�log n� 4,096 166,666 7,826,087

2n2 707 5,477 42,426

n4 31 88 244

2n 19 25 31

Table 1.7: Maximum size of a problem that can be solved in one second, one

minute, and one hour, for various running times measured in microseconds.

The importance of good algorithm design goes beyond just what can be solved

effectively on a given computer, however. As shown in Table 1.8, even if we

achieve a dramatic speedup in hardware, we still cannot overcome the handicap

of an asymptotically slow algorithm. This table shows the new maximum problem

size achievable for any fixed amount of time, assuming algorithms with the given

running times are now run on a computer 256 times faster than the previous one.

Running New Maximum

Time Problem Size

400n 256m
20n�log n� approx. 256((log m)/(7 + log m))m

2n2 16m
n4 4m
2n m + 8

Table 1.8: Increase in the maximum size of a problem that can be solved in a certain

fixed amount of time, by using a computer that is 256 times faster than the previous

one, for various running times of the algorithm. Each entry is given as a function

of m, the previous maximum problem size.

www.it-ebooks.info

http://www.it-ebooks.info/

18 Chapter 1. Algorithm Analysis

Ordering Functions by Their Growth Rates

Suppose two algorithms solving the same problem are available: an algorithm A,

which has a running time of Θ(n), and an algorithm B, which has a running time

of Θ(n2). Which one is better? The little-oh notation says that n is o(n2), which

implies that algorithm A is asymptotically better than algorithm B, although for a

given (small) value of n, it is possible for algorithm B to have lower running time

than algorithm A. Still, in the long run, as shown in the above tables, the benefits

of algorithm A over algorithm B will become clear.

In general, we can use the little-oh notation to order functions by asymptotic

growth rate, as we show in Table 1.9.

Some Functions Ordered by Growth Rate Common Name

log n logarithmic

log2 n polylogarithmic√
n square root

n linear

n log n linearithmic

n2 quadratic

n3 cubic

2n exponential

Table 1.9: An ordered list of simple functions such that if a function f(n) precedes

a function g(n) in the list, then f(n) is o(g(n)). Using common terminology, the

function, logc n, for any c > 0, is also polylogarithmic, and the functions, n2 and

n3, are also polynomial.

In Table 1.10, we illustrate the difference in the growth rate of the functions

shown in Table 1.9.

n log n log2 n
√

n n log n n2 n3 2n

4 2 4 2 8 16 64 16
16 4 16 4 64 256 4, 096 65, 536
64 6 36 8 384 4, 096 262, 144 1.84 × 1019

256 8 64 16 2, 048 65, 536 16, 777, 216 1.15 × 1077

1, 024 10 100 32 10, 240 1, 048, 576 1.07 × 109 1.79 × 10308

4, 096 12 144 64 49, 152 16, 777, 216 6.87 × 1010 101233

16, 384 14 196 128 229, 376 268, 435, 456 4.4 × 1012 104932

65, 536 16 256 256 1, 048, 576 4.29 × 109 2.81 × 1014 1019728

262, 144 18 324 512 4, 718, 592 6.87 × 1010 1.8 × 1016 1078913

Table 1.10: Growth rates of several functions. Note the point at which the function√
n dominates log2 n.

www.it-ebooks.info

http://www.it-ebooks.info/

1.2. A Quick Mathematical Review 19

1.2 A Quick Mathematical Review
In this section, we briefly review some of the fundamental concepts from discrete

mathematics that will arise in several of our discussions. In addition to these fun-

damental concepts, Appendix A includes a list of other useful mathematical facts

that apply in the context of data structure and algorithm analysis.

1.2.1 Summations
A notation that appears again and again in the analysis of data structures and algo-

rithms is the summation, which is defined as

b∑
i=a

f(i) = f(a) + f(a + 1) + f(a + 2) + · · · + f(b).

Summations arise in data structure and algorithm analysis because the running

times of loops naturally give rise to summations. For example, a summation that

often arises in data structure and algorithm analysis is the geometric summation.

Theorem 1.12: For any integer n ≥ 0 and any real number 0 < a 	= 1, consider
n∑

i=0

ai = 1 + a + a2 + · · · + an

(remembering that a0 = 1 if a > 0). This summation is equal to

1 − an+1

1 − a
.

Summations as shown in Theorem 1.12 are called geometric summations, be-

cause each term is geometrically larger than the previous one if a > 1. That is,

the terms in such a geometric summation exhibit exponential growth. For example,

everyone working in computing should know that

1 + 2 + 4 + 8 + · · · + 2n−1 = 2n − 1,

for this is the largest integer that can be represented in binary notation using n bits.

Another summation that arises in several contexts is
n∑

i=1

i = 1 + 2 + 3 + · · · + (n − 2) + (n − 1) + n.

This summation often arises in the analysis of loops in cases where the number of

operations performed inside the loop increases by a fixed, constant amount with

each iteration. This summation also has an interesting history. In 1787, a German

elementary schoolteacher decided to keep his 9- and 10-year-old pupils occupied

with the task of adding up all the numbers from 1 to 100. But almost immediately

after giving this assignment, one of the children claimed to have the answer—5,050.

www.it-ebooks.info

http://www.it-ebooks.info/

20 Chapter 1. Algorithm Analysis

That elementary school student was none other than Carl Gauss, who would

grow up to be one of the greatest mathematicians of the 19th century. It is widely

suspected that young Gauss derived the answer to his teacher’s assignment using

the following identity.

Theorem 1.13: For any integer n ≥ 1, we have
n∑

i=1

i =
n(n + 1)

2
.

Proof: We give two “visual” justifications of Theorem 1.13 in Figure 1.11, both

of which are based on computing the area of a collection of rectangles representing

the numbers 1 through n. In Figure 1.11a we draw a big triangle over an ordering

of the rectangles, noting that the area of the rectangles is the same as that of the big

triangle (n2/2) plus that of n small triangles, each of area 1/2. In Figure 1.11b,

which applies when n is even, we note that 1 plus n is n + 1, as is 2 plus n − 1, 3
plus n − 2, and so on. There are n/2 such pairings.

1 2 n0

1

2

n

3

3
...

1 n/2
0

1

2

n

3

2

n+1

...

(a) (b)

Figure 1.11: Visual justifications of Theorem 1.13. Both illustrations visualize the

identity in terms of the total area covered by n unit-width rectangles with heights

1, 2, . . . , n. In (a) the rectangles are shown to cover a big triangle of area n2/2
(base n and height n) plus n small triangles of area 1/2 each (base 1 and height 1).

In (b), which applies only when n is even, the rectangles are shown to cover a big

rectangle of base n/2 and height n + 1.

www.it-ebooks.info

http://www.it-ebooks.info/

1.2. A Quick Mathematical Review 21

1.2.2 Logarithms and Exponents
One of the interesting and sometimes even surprising aspects of the analysis of data

structures and algorithms is the ubiquitous presence of logarithms and exponents,

where we say

logb a = c if a = bc.

As is the custom in the computing literature, we omit writing the base b of the

logarithm when b = 2. For example, log 1024 = 10.

There are a number of important rules for logarithms and exponents, including

the following:

Theorem 1.14: Let a, b, and c be positive real numbers. We have

1. logb ac = logb a + logb c

2. logb a/c = logb a − logb c

3. logb ac = c logb a

4. logb a = (logc a)/ logc b

5. blogc a = alogc b

6. (ba)c = bac

7. babc = ba+c

8. ba/bc = ba−c.

Also, as a notational shorthand, we use logc n to denote the function (log n)c

and we use log log n to denote log(log n). Rather than show how we could derive

each of the above identities, which all follow from the definition of logarithms and

exponents, let us instead illustrate these identities with a few examples of their

usefulness.

Example 1.15: We illustrate some interesting cases when the base of a logarithm
or exponent is 2. The rules cited refer to Theorem 1.14.

• log(2n log n) = 1 + log n + log log n, by Rule 1 (twice)

• log(n/2) = log n − log 2 = log n − 1, by Rule 2

• log
√

n = log(n)1/2 = (log n)/2, by Rule 3

• log log
√

n = log(log n)/2 = log log n − 1, by Rules 2 and 3

• log4 n = (log n)/ log 4 = (log n)/2, by Rule 4

• log 2n = n, by Rule 3

• 2log n = n, by Rule 5

• 22 log n = (2log n)2 = n2, by Rules 5 and 6

• 4n = (22)n = 22n, by Rule 6

• n223 log n = n2 · n3 = n5, by Rules 5, 6, and 7

• 4n/2n = 22n/2n = 22n−n = 2n, by Rules 6 and 8

www.it-ebooks.info

http://www.it-ebooks.info/

22 Chapter 1. Algorithm Analysis

The Floor and Ceiling Functions

One additional comment concerning logarithms is in order. The value of a loga-

rithm is typically not an integer, yet the running time of an algorithm is typically

expressed by means of an integer quantity, such as the number of operations per-

formed. Thus, an algorithm analysis may sometimes involve the use of the so-called

“floor” and “ceiling” functions, which are defined respectively as follows:

•
x� = the largest integer less than or equal to x

• �x� = the smallest integer greater than or equal to x.

These functions give us a way to convert real-valued functions into integer-valued

functions. Even so, functions used to analyze data structures and algorithms are

often expressed simply as real-valued functions (for example, n log n or n3/2). We

should read such a running time as having a “big” ceiling function surrounding it.1

1.2.3 Simple Justification Techniques
We will sometimes wish to make strong claims about a certain data structure or al-

gorithm. We may, for example, wish to show that our algorithm is correct or that it

runs fast. In order to rigorously make such claims, we must use mathematical lan-

guage, and in order to back up such claims, we must justify or prove our statements.

Fortunately, there are several simple ways to do this.

By Example

Some claims are of the generic form, “There is an element x in a set S that has

property P .” To justify such a claim, we need only produce a particular x ∈ S that

has property P . Likewise, some hard-to-believe claims are of the generic form,

“Every element x in a set S has property P .” To justify that such a claim is false,

we need to only produce a particular x from S that does not have property P . Such

an instance is called a counterexample.

Example 1.16: A certain Professor Amongus claims that every number of the
form 2i − 1 is a prime, when i is an integer greater than 1. Professor Amongus is
wrong.

Proof: To prove Professor Amongus is wrong, we need to find a counter-
example. Fortunately, we need not look too far, for 24 − 1 = 15 = 3 · 5.

1Real-valued running-time functions are almost always used in conjunction with the asymptotic
notation described in Section 1.1.5, for which the use of the ceiling function would usually be redun-
dant anyway. (See Exercise R-1.25.)

www.it-ebooks.info

http://www.it-ebooks.info/

1.2. A Quick Mathematical Review 23

Contrapositives and Contradiction

Another set of justification techniques involves the use of the negative. The two

primary such methods are the use of the contrapositive and the contradiction. To

justify the statement “if p is true, then q is true,” we instead establish that “if q is

not true, then p is not true.” Logically, these two statements are the same, but the

latter, which is called the contrapositive of the first, may be easier to think about.

Example 1.17: If ab is odd, then a is odd and b is odd.

Proof: To justify this claim, let us prove the contrapositive, “If a is even or b is
even, then ab is even.” So, suppose a = 2i or b = 2i, for some integer i. Then we
have ab = (2i)b = 2ib, or we have ab = a(2i) = 2ai; hence, in either case, ab is
even. Since this establishes the contrapositive, it proves the original statement.

Besides showing a use of the contrapositive proof technique, the above exam-

ple also contains an application of DeMorgan’s law. This law helps us deal with

negations, for it states that the negation of a statement, “p or q,” is “not p and not

q,” and that the negation of a statement, “p and q,” is “not p or not q.”

Another justification technique is proof by contradiction, which also often in-

volves using DeMorgan’s law. In applying the proof by contradiction technique,

we establish that a statement q is true by first supposing that q is false and then

showing that this assumption leads to a contradiction (such as 2 	= 2 or 1 > 3).

By reaching such a contradiction, we show that no consistent situation exists with

q being false, so q must be true. Of course, in order to reach this conclusion, we

must be sure our situation is consistent before we assume q is false.

Example 1.18: If ab is even, then a is even or b is even.

Proof: Let ab be even. We wish to show that a is even or b is even. So, with the
hope of leading to a contradiction, let us assume the opposite, namely, suppose a
is odd and b is odd. Then a = 2i + 1 and b = 2j + 1, for some integers i and j.
Hence, ab = (2i + 1)(2j + 1) = 4ij + 2i + 2j + 1 = 2(2ij + i + j) + 1; that is,
ab is odd. But this is a contradiction: ab cannot simultaneously be odd and even.
Therefore, a is even or b is even.

Induction

Most of the claims we make about a running time or a space bound involve an inte-

ger parameter n (usually denoting an intuitive notion of the “size” of the problem).

Moreover, most of these claims are equivalent to saying some statement q(n) is

true “for all n ≥ 1.” Since this is making a claim about an infinite set of numbers,

we cannot justify this exhaustively in a direct fashion.

We can often justify claims such as those above as true, however, by using the

technique of induction. This technique amounts to showing that, for any particular

www.it-ebooks.info

http://www.it-ebooks.info/

24 Chapter 1. Algorithm Analysis

n ≥ 1, there is a finite sequence of implications that starts with something known

to be true and ultimately leads to showing that q(n) is true. Specifically, we begin a

proof by induction by showing that q(n) is true for n = 1 (and possibly some other

values n = 2, 3, . . . , k, for some constant k). Then we justify that the inductive

“step” is true for n > k, namely, we show “if q(i) is true for i < n, then q(n) is

true.” The combination of these two pieces completes the proof by induction.

Example 1.19: Consider the Fibonacci sequence: F (1) = 1, F (2) = 2, and
F (n) = F (n − 1) + F (n − 2) for n > 2. We claim that F (n) < 2n.

Proof: We will show our claim is right by induction.
Base cases: (n ≤ 2). F (1) = 1 < 2 = 21 and F (2) = 2 < 4 = 22.
Induction step: (n > 2). Suppose our claim is true for n′ < n. Consider F (n).
Since n > 2, F (n) = F (n − 1) + F (n − 2). Moreover, since n − 1 < n and
n−2 < n, we can apply the inductive assumption (sometimes called the “inductive
hypothesis”) to imply that F (n) < 2n−1 + 2n−2. In addition,

2n−1 + 2n−2 < 2n−1 + 2n−1 = 2 · 2n−1 = 2n.

Let us do another inductive argument, this time for a fact we have seen before.

Theorem 1.20: (which is the same as Theorem 1.13)
n∑

i=1

i =
n(n + 1)

2
.

Proof: We will justify this equality by induction.

Base case: n = 1. Trivial, for 1 = n(n + 1)/2, if n = 1.

Induction step: n ≥ 2. Assume the claim is true for n′ < n. Consider n.

n∑
i=1

i = n +
n−1∑
i=1

i.

By the induction hypothesis, then

n∑
i=1

i = n +
(n − 1)n

2
,

which we can simplify as

n +
(n − 1)n

2
=

2n + n2 − n

2
=

n2 + n

2
=

n(n + 1)
2

.

It is useful to think about the concreteness of the inductive technique. It shows

that, for any particular n, there is a finite step-by-step sequence of implications that

starts with something true and leads to the truth about n. In short, the inductive

argument is a formula for building a sequence of direct proofs.

www.it-ebooks.info

http://www.it-ebooks.info/

1.2. A Quick Mathematical Review 25

Loop Invariants

The final justification technique we discuss in this section is the loop invariant.
To prove some statement S about a loop is correct, define S in terms

of a series of smaller statements S0,S1, . . . ,Sk, where

1. The initial claim, S0, is true before the loop begins.

2. If Si−1 is true before iteration i begins, then one can show that

Si will be true after iteration i is over.

3. The final statement, Sk, implies the statement S that we wish to

justify as being true.

We have, in fact, already seen the loop-invariant justification technique at work

in Section 1.1.1 (for the correctness of arrayMax), but let us nevertheless give one

more example here. In particular, let us consider applying the loop invariant method

to justify the correctness of Algorithm arrayFind, shown in Algorithm 1.12, which

searches for an element x in an array A.

To show arrayFind to be correct, we use a loop invariant argument. That is, we

inductively define statements, Si, for i = 0, 1, . . . , n, that lead to the correctness

of arrayFind. Specifically, we claim the following to be true at the beginning of

iteration i:

Si: x is not equal to any of the first i elements of A.

This claim is true at the beginning of the first iteration of the loop, since there

are no elements among the first 0 in A (this kind of a trivially-true claim is said to

hold vacuously). In iteration i, we compare element x to element A[i] and return

the index i if these two elements are equal, which is clearly correct. If the two

elements x and A[i] are not equal, then we have found one more element not equal

to x and we increment the index i. Thus, the claim Si will be true for this new value

of i, for the beginning of the next iteration. If the while-loop terminates without

ever returning an index in A, then Sn is true—there are no elements of A equal to

x. Therefore, the algorithm is correct to return the nonindex value −1, as required.

Algorithm arrayFind(x, A):
Input: An element x and an n-element array, A.

Output: The index i such that x = A[i] or −1 if no element of A is equal to x.

i ← 0
while i < n do

if x = A[i] then
return i

else
i ← i + 1

return −1
Algorithm 1.12: Algorithm arrayFind.

www.it-ebooks.info

http://www.it-ebooks.info/

26 Chapter 1. Algorithm Analysis

1.2.4 Basic Probability
When we analyze algorithms that use randomization or if we wish to analyze the

average-case performance of an algorithm, then we need to use some basic facts

from probability theory. The most basic is that any statement about a probability

is defined upon a sample space S, which is defined as the set of all possible out-

comes from some experiment. We leave the terms “outcomes” and “experiment”

undefined in any formal sense, however.

Example 1.21: Consider an experiment that consists of the outcome from flip-
ping a coin five times. This sample space has 25 different outcomes, one for each
different ordering of possible flips that can occur.

Sample spaces can also be infinite, as the following example illustrates.

Example 1.22: Consider an experiment that consists of flipping a coin until it
comes up heads. This sample space is infinite, with each outcome being a sequence
of i tails followed by a single flip that comes up heads, for i ∈ {0, 1, 2, 3, . . .}.

A probability space is a sample space S together with a probability function,

Pr, that maps subsets of S to real numbers in the interval [0, 1]. It captures math-

ematically the notion of the probability of certain “events” occurring. Formally,

each subset A of S is called an event, and the probability function Pr is assumed

to possess the following basic properties with respect to events defined from S:

1. Pr(∅) = 0.

2. Pr(S) = 1.

3. 0 ≤ Pr(A) ≤ 1, for any A ⊆ S.

4. If A, B ⊆ S and A ∩ B = ∅, then Pr(A ∪ B) = Pr(A) + Pr(B).

Independence

Two events A and B are independent if

Pr(A ∩ B) = Pr(A) · Pr(B).

A collection of events {A1, A2, . . . , An} is mutually independent if

Pr(Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = Pr(Ai1) Pr(Ai2) · · ·Pr(Aik),

for any subset {Ai1 , Ai2 , . . . , Aik}.

Example 1.23: Let A be the event that the roll of a die is a 6, let B be the event
that the roll of a second die is a 3, and let C be the event that the sum of these two
dice is a 10. Then A and B are independent events, but C is not independent with
either A or B.

www.it-ebooks.info

http://www.it-ebooks.info/

1.2. A Quick Mathematical Review 27

Conditional Probability

The conditional probability that an event A occurs, given an event B, is denoted

as Pr(A|B), and is defined as

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
,

assuming that Pr(B) > 0.

Example 1.24: Let A be the event that a roll of two dice sums to 10, and let B
be the event that the roll of the first die is a 6. Note that Pr(B) = 1/6 and that
Pr(A ∩ B) = 1/36, for there is only one way two dice can sum to 10 if the first
one is a 6 (namely, if the second is a 4). Thus, Pr(A|B) = (1/36)/(1/6) = 1/6.

Random Variables and Expectation

An elegant way for dealing with events is in terms of random variables. Intuitively,

random variables are variables whose values depend upon the outcome of some

experiment. Formally, a random variable is a function X that maps outcomes from

some sample space S to real numbers. An indicator random variable is a random

variable that maps outcomes to the set {0, 1}. Often in algorithm analysis we use

a random variable X that has a discrete set of possible outcomes to characterize

the running time of a randomized algorithm. In this case, the sample space S is

defined by all possible outcomes of the random sources used in the algorithm. We

are usually most interested in the typical, average, or “expected” value of such a

random variable. The expected value of a discrete random variable X is defined as

E(X) =
∑

x

x Pr(X = x),

where the summation is defined over the range of X .

Theorem 1.25 (The Linearity of Expectation): Let X and Y be two arbi-
trary random variables. Then E(X + Y) = E(X) + E(Y).

Proof:

E(X + Y) =
∑

x

∑
y

(x + y) Pr(X = x ∩ Y = y)

=
∑

x

∑
y

x Pr(X = x ∩ Y = y) +
∑

x

∑
y

y Pr(X = x ∩ Y = y)

=
∑

x

∑
y

x Pr(X = x ∩ Y = y) +
∑

y

∑
x

y Pr(Y = y ∩ X = x)

=
∑

x

x Pr(X = x) +
∑

y

y Pr(Y = y)

= E(X) + E(Y).

www.it-ebooks.info

http://www.it-ebooks.info/

28 Chapter 1. Algorithm Analysis

Note that this proof does not depend on any independence assumptions about the

events when X and Y take on their respective values.

Example 1.26: Let X be a random variable that assigns the outcome of the roll
of two fair dice to the sum of the number of dots showing. Then E(X) = 7.

Proof: To justify this claim, let X1 and X2 be random variables corresponding
to the number of dots on each die, respectively. Thus, X1 = X2 (that is, they are
two instances of the same function) and E(X) = E(X1+X2) = E(X1)+E(X2).
Each outcome of the roll of a fair die occurs with probability 1/6. Thus

E(Xi) =
1
6

+
2
6

+
3
6

+
4
6

+
5
6

+
6
6

=
7
2
,

for i = 1, 2. Therefore, E(X) = 7.

Two random variables X and Y are independent if

Pr(X = x|Y = y) = Pr(X = x),

for all real numbers x and y.

Theorem 1.27: If two random variables X and Y are independent, then

E(XY) = E(X)E(Y).

Example 1.28: Let X be a random variable that assigns the outcome of a roll of
two fair dice to the product of the number of dots showing. Then E(X) = 49/4.

Proof: Let X1 and X2 be random variables denoting the number of dots on each
die. The variables X1 and X2 are clearly independent; hence

E(X) = E(X1X2) = E(X1)E(X2) = (7/2)2 = 49/4.

Chernoff Bounds

It is often necessary in the analysis of randomized algorithms to bound the sum

of a set of random variables. One set of inequalities that makes this tractable is

the set of Chernoff Bounds. Let X1, X2, . . . , Xn be a set of mutually independent

indicator random variables, such that each Xi is 1 with some probability pi > 0
and 0 otherwise. Let X =

∑n
i=1 Xi be the sum of these random variables, and let

μ denote the mean of X , that is, μ = E(X) =
∑n

i=1 pi. We prove the following

later in this book (Section 19.5).

Theorem 1.29: Let X be as above. Then, for δ > 0,

Pr(X > (1 + δ)μ) <

[
eδ

(1 + δ)(1+δ)

]μ
,

and, for 0 < δ ≤ 1,

Pr(X < (1 − δ)μ) < e−μδ2/2.

www.it-ebooks.info

http://www.it-ebooks.info/

1.3. A Case Study in Algorithm Analysis 29

1.3 A Case Study in Algorithm Analysis

Having presented the general framework for describing and analyzing algorithms,

we now present a case study in algorithm analysis to make this discussion more

concrete. Specifically, we show how to use the big-Oh notation to analyze three

algorithms that solve the same problem but have different running times.

The problem we focus on is one that is reportedly often used as a job inter-

view question by major software and Internet companies—the maximum subarray
problem. Here, we are given an array of integers and asked to find the subarray

whose elements have the largest sum. See the example of Figure 1.13. That is,

given array A = [a1, a2, . . . , an], find indices j and k that maximize the sum

sj,k = aj + aj+1 + · · · + ak =
k∑

i=j

ai.

Note that each element of the array could have a positive, negative, or zero value.

Thus, in the special case where all array elements are negative, the solution is an

empty subarray of conventional zero sum.

To define the problem more formally, we conventionally define the special array

element A[0] = 0 and let A[j : k] denote the sequence of elements of A from index

j to index k (0 ≤ j ≤ k ≤ n). The maximum subarray problem consists of finding

the sequence A[j : k] (0 ≤ j ≤ k ≤ n) that maximizes sj,k, the sum of its values.

Such a maximum sum is referred to as the maximum subarray sum of array A.

-8

-6

-4

-2

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11

A = [-2, -4, 3, -1, 5, 6, -7, -2, 4, -3, 2]

sum = 1 sum = -1

sum = 13 (the maximum)

Figure 1.13: An instance of the maximum subarray problem. In this case, the max-

imum subarray is A[3 : 6], that is, the maximum sum is s3,6 = 13.

www.it-ebooks.info

http://www.it-ebooks.info/

30 Chapter 1. Algorithm Analysis

In addition to being a good problem for testing the thinking skills of prospec-

tive employees, the maximum subarray problem also has applications in pattern

analysis in digitized images.

1.3.1 A First Solution to the Maximum Subarray Problem
Our first algorithm for the maximum subarray problem, which we call Maxsub-
Slow, is shown in Algorithm 1.14. It computes the maximum of every possible

subarray summation, sj,k, of A separately.

Algorithm MaxsubSlow(A):
Input: An n-element array A of numbers, indexed from 1 to n.

Output: The maximum subarray sum of array A.

m ← 0 // the maximum found so far

for j ← 1 to n do
for k ← j to n do

s ← 0 // the next partial sum we are computing

for i ← j to k do
s ← s + A[i]

if s > m then
m ← s

return m

Algorithm 1.14: Algorithm MaxsubSlow.

It isn’t hard to see that the MaxsubSlow algorithm is correct. This algorithm

calculates the partial sum, sj,k, of every possible subarray, by adding up the values

in the subarray A[j : k]. Moreover, for every such subarray sum, it compares that

sum to a running maximum and if the new value is greater than the old, it updates

that maximum to the new value. In the end, this will be maximum subarray sum.

Incidentally, both the calculating of subarray summations and the computing of

the maximum so far are examples of an accumulator pattern, where we incremen-

tally accumulate values into a single variable to compute a sum or maximum (or

minimum). This is a pattern that is used in a lot of algorithms, but in this case it is

not being used in the most efficient way possible.

Analyzing the running time of the MaxsubSlow algorithm is easy. In particu-

lar, the outer loop, for index j, will iterate n times, its inner loop, for index k, will

iterate at most n times, and the inner-most loop, for index i, will iterate at most n
times. Thus, the running time of the MaxsubSlow algorithm is O(n3). Unfortu-

nately, in spite of its use of the accumulator design pattern, giving the MaxsubSlow
algorithm as a solution to the maximum subarray problem would be a bad idea dur-

ing a job interview. This is a slow algorithm for the maximum subarray problem.

www.it-ebooks.info

http://www.it-ebooks.info/

1.3. A Case Study in Algorithm Analysis 31

1.3.2 An Improved Maximum Subarray Algorithm

We can design an improved algorithm for the maximum subarray problem by ob-

serving that we are wasting a lot of time by recomputing all the subarray sum-

mations from scratch in the inner loop of the MaxsubSlow algorithm. There is

a much more efficient way to calculate these summations. The crucial insight is

to consider all the prefix sums, which are the sums of the first t integers in A for

t = 1, 2, . . . , n. That is, consider each prefix sum, St, which is defined as

St = a1 + a2 + · · · + at =
t∑

i=1

ai.

If we are given all such prefix sums, then we can compute any subarray summation,

sj,k, in constant time using the formula

sj,k = Sk − Sj−1,

where we use the notational convention that S0 = 0. To see this, note that

Sk − Sj−1 =
k∑

i=1

ai −
j−1∑
i=1

ai

=
k∑

i=j

ai = sj,k,

where we use the notational convention that
∑0

i=1 ai = 0. We can incorporate the

above observations into an improved algorithm for the maximum subarray problem,

called MaxsubFaster, which we show in Algorithm 1.15.

Algorithm MaxsubFaster(A):
Input: An n-element array A of numbers, indexed from 1 to n.

Output: The maximum subarray sum of array A.

S0 ← 0 // the initial prefix sum

for i ← 1 to n do
Si ← Si−1 + A[i]

m ← 0 // the maximum found so far

for j ← 1 to n do
for k ← j to n do

s = Sk − Sj−1

if s > m then
m ← s

return m

Algorithm 1.15: Algorithm MaxsubFaster.

www.it-ebooks.info

http://www.it-ebooks.info/

32 Chapter 1. Algorithm Analysis

Analyzing the MaxsubFaster Algorithm

The correctness of the MaxsubFaster algorithm follows along the same arguments

as for the MaxsubSlow algorithm, but it is much faster. In particular, the outer

loop, for index j, will iterate n times, its inner loop, for index k, will iterate at

most n times, and the steps inside that loop will only take O(1) time in each itera-

tion. Thus, the total running time of the MaxsubFaster algorithm is O(n2), which

improves the running time of the MaxsubSlow algorithm by a linear factor.

True story: A former student of one of the authors gave this very algorithm dur-

ing a job interview for a major software company, when asked about the maximum

subarray problem, correctly observing that this algorithm beats the running time of

the naive O(n3)-time algorithm by a linear factor. Sadly, this student did not get a

job offer, however, and one reason could have been because there is an even better

solution to the maximum subarray problem, which the student didn’t give.

1.3.3 A Linear-Time Maximum Subarray Algorithm
We can improve the running time for solving the maximum subarray further by

applying the intuition behind the prefix sums idea to the computation of the maxi-

mum itself. Recall our notation of letting sj,k denote the partial sum of the values

in A[j : k]. Instead of computing prefix sum St = s1,t, what if, we compute a

maximum suffix sum, Mt, which is the maximum of sj,t for j = 1, · · · , t?
Such a definition is an interesting idea, but it is not quite right, because it doesn’t

include the boundary case where we wouldn’t want any subarray that ends at t, in

the event that all such subarrays sum up to a negative number. Instead, let us define

Mt = max{0, max
j=1,··· ,t

{sj,t} }.

In other words, Mt is the maximum of 0 and the maximum sj,k value where

we restrict k to equal t. For example, in the array shown in Figure 1.13, we have

M2 = 0, M3 = 3, and M4 = 2.

This definition implies that if Mt > 0, then it is the summation value for a

maximum subarray that ends at t, and if Mt = 0, then we can safely ignore any

subarray that ends at t.
Note that if we know all the Mt values, for t = 1, 2, . . . , n, then the solution to

the maximum subarray problem would simply be the maximum of all these values.

So let us consider how we could compute these Mt values.

The crucial observation is that, for t ≥ 2, if we have a maximum subarray that

ends at t, and it has a positive sum, then it is either A[t : t] or it is made up of the

maximum subarray that ends at t − 1 plus A[t]. If this were not the case, then we

could make a subarray of even larger sum by swapping out the one we chose to end

at t − 1 with the maximum one that ends at t − 1, which would contradict the fact

www.it-ebooks.info

http://www.it-ebooks.info/

1.3. A Case Study in Algorithm Analysis 33

that we have the maximum subarray that ends at t. In addition, if taking the value

of maximum subarray that ends at t − 1 and adding A[t] makes this sum no longer

be positive, then Mt = 0, for there is no subarray that ends at t with a positive

summation. In other words, we can define M0 = 0 as a boundary condition, and

use the following formula to compute Mt, for t = 1, 2, . . . , n:

Mt = max{0, Mt−1 + A[t]}.
Therefore, we can solve the maximum subarray problem using the algorithm,

MaxsubFastest, shown in Algorithm 1.16.

Algorithm MaxsubFastest(A):
Input: An n-element array A of numbers, indexed from 1 to n.

Output: The maximum subarray sum of array A.

M0 ← 0 // the initial prefix maximum

for t ← 1 to n do
Mt ← max{0, Mt−1 + A[t]}

m ← 0 // the maximum found so far

for t ← 1 to n do
m ← max{m, Mt}

return m

Algorithm 1.16: Algorithm MaxsubFastest.

Analyzing the MaxsubFastest Algorithm

The MaxsubFastest algorithm consists of two loops, which each iterate exactly n
times and take O(1) time in each iteration. Thus, the total running time of the Max-
subFastest algorithm is O(n). Incidentally, in addition to using the accumulator

pattern, to calculate the Mt and m variables based on previous values of these vari-

ables, it also can be viewed as a simple application of the dynamic programming
technique, which we discuss in Chapter 12.

Given all these positive aspects of this algorithm, even though we can’t guaran-

tee that a prospective employee will get a job offer by describing the

MaxsubFastest algorithm when asked about the maximum subarray problem,

we can at least guarantee that this is the way to nail this question. Still, we are

nonetheless leaving one small detail as an exercise (C-1.1), which is to modify the

description of the MaxsubFastest algorithm so that, in addition to the value of the

maximum subarray summation, it also outputs the indices j and k that identify the

maximum subarray A[j : k].

www.it-ebooks.info

http://www.it-ebooks.info/

34 Chapter 1. Algorithm Analysis

1.4 Amortization
An important analysis tool useful for understanding the running times of algorithms

that have steps with widely varying performance is amortization. The term “amor-

tization” itself comes from the field of accounting, which provides an intuitive mon-

etary metaphor for algorithm analysis, as we shall see in this section.

The typical data structure usually supports a wide variety of different methods

for accessing and updating the elements it stores. Likewise, some algorithms oper-

ate iteratively, with each iteration performing a varying amount of work. In some

cases, we can effectively analyze the performance of these data structures and al-

gorithms on the basis of the worst-case running time of each individual operation.

Amortization takes a different viewpoint. Rather than focusing on each operation

separately, it considers the interactions between all the operations by studying the

running time of a series of these operations.

The Clearable Table Data Structure

As an example of amortized analysis, let us introduce a simple data structure, the

clearable table. This structure stores a table of elements, which can be accessed by

their indices in the table. In addition, the clearable table supports the following two

methods:

add(e): Add the element e to the next available cell in the table.

clear(): Empty the table by removing all its elements.

Let S be a clearable table with n elements implemented by means of an array,

with a fixed upper bound, N , on its size. Operation clear takes Θ(n) time, since

we should dereference all the elements in the table in order to really empty it.

Now consider a series of n operations on an initially empty clearable table S.

If we take a worst-case viewpoint, we may say that the running time of this series

of operations is O(n2), since the worst case of a single clear operation in the series

is O(n), and there may be as many as O(n) clear operations in this series. While

this analysis is correct, it is also an overstatement, since an analysis that takes into

account the interactions between the operations shows that the running time of the

entire series is actually O(n).

Theorem 1.30: A series of n operations on an initially empty clearable table im-
plemented with an array takes O(n) time.

Proof: Let M0, . . . , Mn−1 be the series of operations performed on S, and let

Mi0 , . . . , Mik−1
be the k clear operations within the series. We have

0 ≤ i0 < . . . < ik−1 ≤ n − 1.

www.it-ebooks.info

http://www.it-ebooks.info/

1.4. Amortization 35

Let us also define i−1 = −1. The running time of operation Mij (a clear operation)

is O(ij − ij−1), because at most ij − ij−1 −1 elements could have been added into

the table (using the add operation) since the previous clear operation Mij−1 or

since the beginning of the series. Thus, the running time for the clear operations is

O

⎛
⎝k−1∑

j=0

(ij − ij−1)

⎞
⎠ .

A summation such as this is known as a telescoping sum, for all terms other than

the first and last cancel each other out. That is, this summation is O(ik−1 − i−1),
which is O(n). All the remaining operations of the series take O(1) time each.

Thus, we conclude that a series of n operations performed on an initially empty

clearable table takes O(n) time.

Theorem 1.30 indicates that the average running time of any operation on a

clearable table is O(1), where the average is taken over an arbitrary series of oper-

ations, starting with an initially empty clearable table.

Amortizing an Algorithm’s Running Time

The above example provides a motivation for the amortization technique, which

gives us a worst-case way of performing an average-case analysis. Formally, we

define the amortized running time of an operation within a series of operations as

the worst-case running time of the series of operations divided by the number of

operations. When the series of operations is not specified, it is usually assumed

to be a series of operations from the repertoire of a certain data structure, starting

from an empty structure. Thus, by Theorem 1.30, we can say that the amortized

running time of each operation for a clearable table structure is O(1) when we

implement that clearable table with an array. Note that the actual running time of

an operation may be much higher than its amortized running time (for example, a

particular clear operation may take O(n) time).

The advantage of using amortization is that it gives us a way to do a robust

average-case analysis without using any probability. It simply requires that we have

some way of characterizing the worst-case running time for performing a series of

operations. We can even extend the notion of amortized running time so as to assign

each individual operation in a series of operations its own amortized running time,

provided the total actual time taken to process the entire series of operations is no

more than the sum of amortized bounds given to the individual operations.

There are several ways of doing an amortized analysis. The most obvious way

is to use a direct argument to derive bounds on the total time needed to perform

a series of operations, which is what we did in the proof of Theorem 1.30. While

direct arguments can often be found for a simple series of operations, performing an

amortized analysis of a nontrivial series of operations is often easier using special

techniques for amortized analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

36 Chapter 1. Algorithm Analysis

1.4.1 Amortization Techniques
There are two fundamental techniques for performing an amortized analysis, one

based on a financial model—the accounting method—and the other based on an

energy model—the potential function method.

The Accounting Method

The accounting method for performing an amortized analysis is to use a scheme of

credits and debits for keeping track of the running time of the different operations in

the series. The basis of the accounting method is simple. We view the computer as

a coin-operated appliance that requires the payment of 1 cyber-dollar for a constant

amount of computing time. We also view an operation as a sequence of constant

time primitive operations, which each cost 1 cyber-dollar to be executed. When

an operation is executed, we should have enough cyber-dollars available to pay for

its running time. Of course, the most obvious approach is to charge an operation

a number of cyber-dollars equal to the number of primitive operations performed.

However, the interesting aspect of using the accounting method is that we do not

have to be fair in the way we charge the operations. Namely, we can overcharge

some operations that execute few primitive operations and use the profit made on

them to help out other operations that execute many primitive operations. This

mechanism may allow us to charge the same amount a of cyber-dollars to each

operation in the series, without ever running out of cyber-dollars to pay for the

computer time. Hence, if we can set up such a scheme, called an amortization
scheme, we can say that each operation in the series has an amortized running time

that is O(a). When designing an amortization scheme, it is often convenient to

think of the unspent cyber-dollars as being “stored” in certain places of the data

structure, for example, at the elements of a table.

An alternative amortization scheme charges different amounts to the various

operations. In this case, the amortized running time of an operation is proportional

to the total charges made divided by the number of operations.

We now go back to the clearable table example and present an amortization

scheme for it that yields an alternative proof of Theorem 1.30. Let us assume that

one cyber-dollar is enough to pay for the execution of operation of an index access

or an add operation, and for the time spent by operation clear to dereference one

element. We shall charge each operation 2 cyber-dollars. This means undercharg-

ing operation clear and overcharging all the other operations by 1 cyber-dollar.

The cyber-dollar profited in an add operation will be stored at the element in-

serted by the operation. (See Figure 1.17.) When a clear operation is executed,

the cyber-dollar stored at each element in the table is used to pay for the time spent

dereferencing it. Hence, we have a valid amortization scheme, where each opera-

tion is charged 2 cyber-dollars, and all the computing time is paid for. This simple

amortization scheme implies the result of Theorem 1.30.

www.it-ebooks.info

http://www.it-ebooks.info/

1.4. Amortization 37

0 2 4 5 6 7 8 9 110 12 13 14 151

$ $ $ $ $ $ $ $ $ $

Figure 1.17: Cyber-dollars stored at the elements of a clearable table S in the amor-

tized analysis of a series of operations on S.

Notice that the worst case for the running time occurs for a series of add op-

erations followed by a single clear operation. In other cases, at the end of the

series of operations, we may end up with some unspent cyber-dollars, which are

those profited from index access operations and those stored at the elements still

in the sequence. Indeed, the computing time for executing a series of n operations

can be paid for with the amount of cyber-dollars between n and 2n. Our amorti-

zation scheme accounts for the worst case by always charging 2 cyber-dollars per

operation.

At this point, we should stress that the accounting method is simply an analysis

tool. It does not require that we modify a data structure or the execution of an

algorithm in any way. In particular, it does not require that we add objects for

keeping track of the cyber-dollars spent.

Potential Functions

Another useful technique for performing an amortized analysis is based on an en-

ergy model. In this approach, we associate with our structure a value, Φ, which

represents the current energy state of our system. Each operation that we perform

will contribute some additional amount, known as the amortized time, to Φ, but

then also extracts value from Φ in proportion to the amount of time actually spent.

Formally, we let Φ0 ≥ 0 denote the initial value of Φ, before we perform any op-

erations, and we use Φi to denote the value of the potential function, Φ, after we

perform the ith operation. The main idea of using the potential function argument

is to use the change in potential for the ith operation, Φi−Φi−1, to characterize the

amortized time needed for that operation.

Let us focus more closely on the action of the ith operation, letting ti denote its

actual running time. We define the amortized running time of the ith operation as

t′i = ti + Φi − Φi−1.

That is, the amortized cost of the ith operation is the actual running time plus the

net change in potential that operation causes (which may be positive or negative).

Or, put another way,

ti = t′i + Φi−1 − Φi,

that is, the actual time spent is the amortized cost plus the net drop in potential.

www.it-ebooks.info

http://www.it-ebooks.info/

38 Chapter 1. Algorithm Analysis

Denote by T ′ the total amortized time for performing n operations on our struc-

ture. That is,

T ′ =
n∑

i=1

t′i.

Then the total actual time, T , taken by our n operations can be bounded as

T =
n∑

i=1

ti

=
n∑

i=1

(
t′i + Φi−1 − Φi

)

=
n∑

i=1

t′i +
n∑

i=1

(Φi−1 − Φi)

= T ′ +
n∑

i=1

(Φi−1 − Φi)

= T ′ + Φ0 − Φn,

since the second term above forms a telescoping sum. In other words, the total

actual time spent is equal to the total amortized time plus the net drop in potential

over the entire sequence of operations. Thus, so long as Φn ≥ Φ0, then T ≤ T ′,
the actual time spent is no more than the amortized time.

To make this concept more concrete, let us repeat our analysis of the clearable

table using a potential argument. In this case, we choose the potential Φ of our

system to be the actual number of elements in our clearable table. We claim that

the amortized time for any operation is 2, that is, t′i = 2, for i = 1, . . . , n. To

justify this, let us consider the two possible methods for the ith operation.

• add(e): inserting the element e into the table increases Φ by 1 and the actual

time needed is 1 unit of time. So, in this case,

1 = ti = t′i + Φi−1 − Φi = 2 − 1,

which is clearly true.

• clear(): removing all m elements from the table requires no more than m+2
units of time—m units to do the removal plus at most 2 units for the method

call and its overhead. But this operation also drops the potential Φ of our

system from m to 0 (we even allow for m = 0). So, in this case

m + 2 = ti = t′i + Φi−1 − Φi = 2 + m,

which clearly holds.

Therefore, the amortized time to perform any operation on a clearable table is O(1).
Moreover, since Φi ≥ Φ0, for any i ≥ 1, the actual time, T , to perform n operations

on an initially empty clearable table is O(n).

www.it-ebooks.info

http://www.it-ebooks.info/

1.4. Amortization 39

1.4.2 Analyzing an Extendable Array Implementation
A major weakness of the simple array implementation for a clearable table given

above is that it requires advance specification of a fixed capacity, N , for the total

number of elements that may be stored in the table. If the actual number of ele-

ments, n, of the table is much smaller than N , then this implementation will waste

space. Worse, if n increases past N , then this implementation will crash.

Let us provide a means to grow the array A that stores the elements of a ta-

ble S. Of course, in any conventional programming language, such as C, C++, and

Java, we cannot actually grow the array A; its capacity is fixed at some number N .

Instead, when an overflow occurs, that is, when n = N and method add is called,

we perform the following steps:

1. Allocate a new array B of capacity 2N .

2. Copy A[i] to B[i], for i = 0, . . . , N − 1.

3. Let A = B, that is, we use B as the array supporting S.

This array replacement strategy is known as an extendable array. (See Fig-

ure 1.18.) Intuitively, this strategy is much like that of the hermit crab, which

moves into a larger shell when it outgrows its previous one.

Figure 1.18: An illustration of the three steps for “growing” an extendable array:

(a) create new array B; (b) copy elements from A to B; (c) reassign reference A to

the new array. Not shown is the future garbage collection of the old array.

In terms of efficiency, this array replacement strategy might at first seem slow,

for performing a single array replacement of size n required by some element in-

sertion takes Θ(n) time. Still, notice that after we perform an array replacement,

our new array allows us to add n new elements to the table before the array must

be replaced again. This simple fact allows us to show that the running time of a

series of operations performed on an initially empty extendable table is actually

quite efficient. As a shorthand notation, let us refer to the insertion of an element to

be the last element in a vector as an “add” operation. Using amortization, we can

show that performing a sequence of such add operations on a table implemented

with an extendable array is actually quite efficient.

www.it-ebooks.info

http://www.it-ebooks.info/

40 Chapter 1. Algorithm Analysis

Theorem 1.31: Let S be a table implemented by means of an extendable array
A, as described above. The total time to perform a series of n add operations in S,
starting from S being empty and A having size N = 1, is O(n).

Proof: We justify this theorem using the accounting method for amortization. To

perform this analysis, we again view the computer as a coin-operated appliance that

requires the payment of 1 cyber-dollar for a constant amount of computing time.

When an operation is executed, we should have enough cyber-dollars available in

our current “bank account” to pay for that operation’s running time. Thus, the total

amount of cyber-dollars spent for any computation will be proportional to the total

time spent on that computation. The beauty of this analysis is that we can over

charge some operations to save up cyber-dollars to pay for others.

Let us assume that 1 cyber-dollar is enough to pay for the execution of each

add operation in S, excluding the time for growing the array. Also, let us assume

that growing the array from size k to size 2k requires k cyber-dollars for the time

spent copying the elements. We shall charge each add operation 3 cyber-dollars.

Thus, we over charge each add operation not causing an overflow by 2 cyber-

dollars. Think of the 2 cyber-dollars profited in an insertion that does not grow the

array as being “stored” at the element inserted. An overflow occurs when the table

S has 2i elements, for some integer i ≥ 0, and the size of the array used by S
is 2i. Thus, doubling the size of the array will require 2i cyber-dollars. Fortunately,

these cyber-dollars can be found at the elements stored in cells 2i−1 through 2i−1.

(See Figure 1.19.) Note that the previous overflow occurred when the number

of elements became larger than 2i−1 for the first time, and thus the cyber-dollars

stored in cells 2i−1 through 2i − 1 were not previously spent. Therefore, we have a

valid amortization scheme in which each operation is charged 3 cyber-dollars and

all the computing time is paid for. That is, we can pay for the execution of n add
operations using 3n cyber-dollars.

(a)

0 2 4 5 6 731

$ $ $ $

$ $ $ $

(b)

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$

$

Figure 1.19: A costly add operation: (a) a full 8-cell with 2 cyber-dollars for cells

4 through 7; (b) an add doubles the capacity. Copying elements spends the cyber-

dollars in the table, inserting the new element spends 1 cyber-dollar charged to the

add, and 2 cyber-dollars “of profit” are stored at cell 8.

www.it-ebooks.info

http://www.it-ebooks.info/

1.4. Amortization 41

A table can be doubled in size with each extension, as we have described it, or

we can specify an explicit capacityIncrement parameter that determines the fixed

amount an array should grow with each expansion. That is, this parameter is set

to a value, k, then the array adds k new cells when it grows. We must utilize such

a parameter with caution, however. For most applications, doubling in size is the

right choice, as the following theorem shows.

Theorem 1.32: If we create an initially empty table with a fixed positive capac-
ityIncrement value, then performing a series of n add operations on this vector
takes Ω(n2) time.

Proof: Let c > 0 be the capacityIncrement value, and let c0 > 0 denote the

initial size of the array. An overflow will be caused by an add operation when the

current number of elements in the table is c0 + ic, for i = 0, . . . , m − 1, where

m =
(n − c0)/c�. Hence, by Theorem 1.13, the total time for handling the

overflows is proportional to

m−1∑
i=0

(c0 + ci) = c0m + c

m−1∑
i=0

i = c0m + c
m(m − 1)

2
,

which is Ω(n2). Thus, performing the n add operations takes Ω(n2) time.

Figure 1.20 compares the running times of a series of add operations on an

initially empty table, for two initial values of capacityIncrement.
We discuss applications of amortization further when we discuss splay trees

(Section 4.5) and a tree structure for set partitions (Section 7.1).

ru
nn

in
g

tim
e

of
 a

n
ad

d
 o

pe
ra

tio
n

1 2 4 5 6 7 8 9 113 10 12 13 14 15 16

current number of elements

ru
nn

in
g

tim
e

of
 a

n
ad

d
 o

pe
ra

tio
n

1 2 4 5 6 7 8 9 113 10 12 13 14 15 16

current number of elements

(a) (b)
Figure 1.20: Running times of a series of add operations on an extendable table. In

(a) the size is doubled with each expansion, and in (b) it is simply incremented by

capacityIncrement = 3.

www.it-ebooks.info

http://www.it-ebooks.info/

42 Chapter 1. Algorithm Analysis

1.5 Exercises

Reinforcement
R-1.1 Graph the functions 12n, 6n log n, n2, n3, and 2n using a logarithmic scale for

the x- and y-axes; that is, if the function value f(n) is y, plot this as a point with
x-coordinate at log n and y-coordinate at log y.

R-1.2 Show that the MaxsubSlow algorithm runs in Ω(n3) time.

R-1.3 Algorithm A uses 10n log n operations, while algorithm B uses n2 operations.
Determine the value n0 such that A is better than B for n ≥ n0.

R-1.4 Repeat the previous problem assuming B uses n
√

n operations.

R-1.5 Show that log3 n is o(n1/3).

R-1.6 Show that the following two statements are equivalent:

(a) The running time of algorithm A is always O(f(n)).
(b) In the worst case, the running time of algorithm A is O(f(n)).

R-1.7 Order the following list of functions by the big-Oh notation. Group together (for
example, by underlining) those functions that are big-Theta of one another.

6n log n 2100 log log n log2 n 2log n

22n �√n� n0.01 1/n 4n3/2

3n0.5 5n
2n log2 n� 2n n log4 n

4n n3 n2 log n 4log n
√

log n

Hint: When in doubt about two functions f(n) and g(n), consider log f(n) and
log g(n) or 2f(n) and 2g(n).

R-1.8 For each function f(n) and time t in the following table, determine the largest
size n of a problem that can be solved in time t assuming that the algorithm
to solve the problem takes f(n) microseconds. Recall that log n denotes the
logarithm in base 2 of n. Some entries have already been completed to get you
started.

1 Second 1 Hour 1 Month 1 Century

log n ≈ 10300000

√
n

n

n log n

n2

n3

2n

n! 12

www.it-ebooks.info

http://www.it-ebooks.info/

1.5. Exercises 43

R-1.9 Bill has an algorithm, find2D, to find an element x in an n × n array A. The
algorithm find2D iterates over the rows of A and calls the algorithm arrayFind,
of Algorithm 1.12, on each one, until x is found or it has searched all rows of A.
What is the worst-case running time of find2D in terms of n? Is this a linear-time
algorithm? Why or why not?

R-1.10 Consider the following recurrence equation, defining T (n), as

T (n) =
{

4 if n = 1
T (n − 1) + 4 otherwise.

Show, by induction, that T (n) = 4n.

R-1.11 Give a big-Oh characterization, in terms of n, of the running time of the Loop1
method shown in Algorithm 1.21.

R-1.12 Perform a similar analysis for method Loop2 shown in Algorithm 1.21.

R-1.13 Perform a similar analysis for method Loop3 shown in Algorithm 1.21.

R-1.14 Perform a similar analysis for method Loop4 shown in Algorithm 1.21.

R-1.15 Perform a similar analysis for method Loop5 shown in Algorithm 1.21.

Algorithm Loop1(n):
s ← 0
for i ← 1 to n do

s ← s + i

Algorithm Loop2(n):
p ← 1
for i ← 1 to 2n do

p ← p · i
Algorithm Loop3(n):

p ← 1
for i ← 1 to n2 do

p ← p · i
Algorithm Loop4(n):

s ← 0
for i ← 1 to 2n do

for j ← 1 to i do
s ← s + i

Algorithm Loop5(n):
s ← 0
for i ← 1 to n2 do

for j ← 1 to i do
s ← s + i

Algorithm 1.21: A collection of loop methods.

www.it-ebooks.info

http://www.it-ebooks.info/

44 Chapter 1. Algorithm Analysis

R-1.16 Show that if f(n) is O(g(n)) and d(n) is O(h(n)), then the summation f(n) +
d(n) is O(g(n) + h(n)).

R-1.17 Show that O(max{f(n), g(n)}) = O(f(n) + g(n)).

R-1.18 Show that f(n) is O(g(n)) if and only if g(n) is Ω(f(n)).

R-1.19 Show that if p(n) is a polynomial in n, then log p(n) is O(log n).

R-1.20 Show that (n + 1)5 is O(n5).

R-1.21 Show that 2n+1 is O(2n).

R-1.22 Show that n is o(n log n).

R-1.23 Show that n2 is ω(n).

R-1.24 Show that n3 log n is Ω(n3).

R-1.25 Show that �f(n)� is O(f(n)) if f(n) is a positive nondecreasing function that is
always greater than 1.

R-1.26 Justify the fact that if d(n) is O(f(n)) and e(n) is O(g(n)), then the product
d(n)e(n) is O(f(n)g(n)).

R-1.27 Given the values of the maximum suffix sums, Mt (t = 1, · · · , 11), for the array
A = [−2,−4, 3,−1, 5, 6,−7,−2, 4,−3, 2].

R-1.28 What is the amortized running time of an operation in a series of n add operations
on an initially empty extendable table implemented with an array such that the
capacityIncrement parameter is always maintained to be �log(m+1)�, where m
is the number of elements of the stack? That is, each time the table is expanded
by �log(m + 1)� cells, its capacityIncrement is reset to �log(m′ + 1)� cells,
where m is the old size of the table and m′ is the new size (in terms of actual
elements present).

R-1.29 Describe a recursive algorithm for finding both the minimum and the maximum
elements in an array A of n elements. Your method should return a pair (a, b),
where a is the minimum element and b is the maximum. What is the running
time of your method?

R-1.30 Suppose you have an array of n numbers and you select each one independently
with probability 1/n1/2. Use the Chernoff bound to determine an upper bound
on the probability that you would have more than 4n1/2 elements in this random
sample.

R-1.31 Rewrite the proof of Theorem 1.31 under the assumption that the cost of growing
the array from size k to size 2k is 3k cyber-dollars. How much should each add
operation be charged to make the amortization work?

R-1.32 Suppose we have a set of n balls and we choose each one independently with
probability 1/n1/2 to go into a basket. Derive an upper bound on the probability
that there are more than 3n1/2 balls in the basket.

www.it-ebooks.info

http://www.it-ebooks.info/

1.5. Exercises 45

Creativity
C-1.1 Describe how to modify the description of the MaxsubFastest algorithm so that,

in addition to the value of the maximum subarray summation, it also outputs the
indices j and k that identify the maximum subarray A[j : k].

C-1.2 Describe how to modify the MaxsubFastest algorithm so that it uses just a sin-
gle loop and, instead of computing n + 1 different Mt values, it maintains just a
single variable M .

C-1.3 What is the amortized running time of the operations in a sequence of n opera-
tions P = p1p2 . . . pn if the running time of pi is Θ(i) if i is a multiple of 3, and
is constant otherwise?

C-1.4 What is the total running time of counting from 1 to n in binary if the time needed
to add 1 to the current number i is proportional to the number of bits in the binary
expansion of i that must change in going from i to i + 1?

C-1.5 Consider the following recurrence equation, defining a function T (n):

T (n) =
{

1 if n = 1
T (n − 1) + n otherwise,

Show, by induction, that T (n) = n(n + 1)/2.

C-1.6 Consider the following recurrence equation, defining a function T (n):

T (n) =
{

1 if n = 0
T (n − 1) + 2n otherwise,

Show, by induction, that T (n) = 2n+1 − 1.

C-1.7 Consider the following recurrence equation, defining a function T (n):

T (n) =
{

1 if n = 0
2T (n − 1) otherwise,

Show, by induction, that T (n) = 2n.

C-1.8 Al and Bill are arguing about the performance of their sorting algorithms. Al
claims that his O(n log n)-time algorithm is always faster than Bill’s O(n2)-
time algorithm. To settle the issue, they implement and run the two algorithms
on many randomly generated data sets. To Al’s dismay, they find that if n < 100,
the O(n2)-time algorithm actually runs faster, and only when n ≥ 100 is the
O(n log n)-time algorithm better. Explain why this scenario is possible. You
may give numerical examples.

C-1.9 Give an example of a positive function f(n) such that f(n) is neither O(n) nor
Ω(n).

C-1.10 Show that
∑n

i=1 i2 is O(n3).

C-1.11 Show that
∑n

i=1 i/2i < 2.

Hint: Try to bound this sum term by term with a geometric progression.

www.it-ebooks.info

http://www.it-ebooks.info/

46 Chapter 1. Algorithm Analysis

C-1.12 Show that logb f(n) is Θ(log f(n)) if b > 1 is a constant.

C-1.13 Describe a method for finding both the minimum and maximum of n numbers
using fewer than 3n/2 comparisons.

Hint: First construct a group of candidate minimums and a group of candidate
maximums.

C-1.14 An n-degree polynomial p(x) is an equation of the form

p(x) =
n∑

i=0

aix
i,

where x is a real number and each ai is a constant.

a. Describe a simple O(n2)-time method for computing p(x) for a particular
value of x.

b. Consider now a rewriting of p(x) as

p(x) = a0 + x(a1 + x(a2 + x(a3 + · · · + x(an−1 + xan) · · ·))),
which is known as Horner’s method. Using the big-Oh notation, character-
ize the number of multiplications and additions this method of evaluation
uses.

C-1.15 Consider the following induction “proof” that all sheep in a flock are the same
color:

Base case: One sheep. It is clearly the same color as itself.

Induction step: A flock of n sheep. Take a sheep, a, out of the flock. The
remaining n − 1 are all the same color by induction. Now put sheep a back in
the flock, and take out a different sheep, b. By induction, the n − 1 sheep (now
with a in their group) are all the same color. Therefore, a is the same color as all
the other sheep; hence, all the sheep in the flock are the same color.

What is wrong with this “proof”?

C-1.16 Consider the following “proof” that the Fibonacci function, F (n), defined as
F (1) = 1, F (2) = 2, F (n) = F (n − 1) + F (n − 2), is O(n):
Base case (n ≤ 2): F (1) = 1, which is O(1), and F (2) = 2, which is O(2).
Induction step (n > 2): Assume the claim is true for n′ < n. Consider n.
F (n) = F (n−1)+F (n−2). By induction, F (n−1) is O(n−1) and F (n−2)
is O(n − 2). Then, F (n) is O((n − 1) + (n − 2)), by the identity presented in
Exercise R-1.16. Therefore, F (n) is O(n), since O((n− 1)+ (n− 2)) is O(n).
What is wrong with this “proof”?

C-1.17 Consider the Fibonacci function, F (n), from the previous exercise. Show by
induction that F (n) is Ω((3/2)n).

C-1.18 Draw a visual justification of Theorem 1.13 analogous to that of Figure 1.11b for
the case when n is odd.

C-1.19 An array A contains n− 1 unique integers in the range [0, n− 1]; that is, there is
one number from this range that is not in A. Design an O(n)-time algorithm for
finding that number. You are allowed to use only O(1) additional space besides
the array A itself.

www.it-ebooks.info

http://www.it-ebooks.info/

1.5. Exercises 47

C-1.20 Show that the summation
∑n

i=1�log2 i� is O(n log n).

C-1.21 Show that the summation
∑n

i=1�log2 i� is Ω(n log n).

C-1.22 Show that the summation
∑n

i=1�log2(n/i)� is O(n). You may assume that n is
a power of 2.

Hint: Use induction to reduce the problem to that for n/2.

C-1.23 Let S be a set of n lines such that no two are parallel and no three meet in the
same point. Show by induction that the lines in S determine Θ(n2) intersection
points.

C-1.24 Suppose that each row of an n × n array A consists of 1’s and 0’s such that, in
any row of A, all the 1’s come before any 0’s in that row. Assuming A is already
in memory, describe a method running in O(n) time (not O(n2) time) for finding
the row of A that contains the most 1’s.

C-1.25 Suppose that each row of an n×n array A consists of 1’s and 0’s such that, in any
row i of A, all the 1’s come before any 0’s in that row. Suppose further that the
number of 1’s in row i is at least the number in row i+1, for i = 0, 1, . . . , n− 2.
Assuming A is already in memory, describe a method running in O(n) time (not
O(n2) time) for counting the number of 1’s in the array A.

C-1.26 Describe, using pseudocode, a method for multiplying an n × m matrix A and
an m× p matrix B. Recall that the product C = AB is defined so that C[i][j] =∑m

k=1 A[i][k] · B[k][j]. What is the running time of your method?

C-1.27 Give a recursive algorithm to compute the product of two positive integers m and
n using only addition.

C-1.28 Give complete pseudocode for a new class, ShrinkingTable, that performs the
add method of the extendable table, as well as methods, remove(), which re-
moves the last (actual) element of the table, and shrinkToFit(), which replaces
the underlying array with an array whose capacity is exactly equal to the number
of elements currently in the table.

C-1.29 Consider an extendable table that supports both add and remove methods, as de-
fined in the previous exercise. Moreover, suppose we grow the underlying array
implementing the table by doubling its capacity any time we need to increase the
size of this array, and we shrink the underlying array by half any time the number
of (actual) elements in the table dips below N/4, where N is the current capacity
of the array. Show that a sequence of n add and remove methods, starting from
an array with capacity N = 1, takes O(n) time.

C-1.30 Consider an implementation of the extendable table, but instead of copying the
elements of the table into an array of double the size (that is, from N to 2N)
when its capacity is reached, we copy the elements into an array with �√N�
additional cells, going from capacity N to N + �√N�. Show that performing a
sequence of n add operations (that is, insertions at the end) runs in Θ(n3/2) time
in this case.

www.it-ebooks.info

http://www.it-ebooks.info/

48 Chapter 1. Algorithm Analysis

Applications
A-1.1 Communication security is extremely important in computer networks, and one

way many network protocols achieve security is to encrypt messages. Typical
cryptographic schemes for the secure transmission of messages over such net-
works are based on the fact that no efficient algorithms are known for factoring
large integers. Hence, if we can represent a secret message by a large prime
number p, we can transmit over the network the number r = p · q, where q > p
is another large prime number that acts as the encryption key. An eavesdropper
who obtains the transmitted number r on the network would have to factor r in
order to figure out the secret message p.

Using factoring to figure out a message is very difficult without knowing the
encryption key q. To understand why, consider the following naive factoring
algorithm:

For every integer p such that 1 < p < r, check whether p divides r.
If so, print “The secret message is p!” and stop; if not, continue.

a. Suppose that the eavesdropper uses the above algorithm and has a computer
that can carry out in 1 microsecond (1 millionth of a second) a division
between two integers of up to 100 bits each. Give an estimate of the time
that it will take in the worst case to decipher the secret message if r has
100 bits.

b. What is the worst-case time complexity of the above algorithm? Since the
input to the algorithm is just one large number r, assume that the input size
n is the number of bytes needed to store r, that is, n = (log2 r)/8, and that
each division takes time O(n).

A-1.2 Program the three algorithms given in the chapter for the maximum subarray
problem, from Section 1.3, and perform a careful experimental analysis of their
running times. Plot their running times as a function of their input sizes as scatter
plots on both a linear-linear scale and a log-log scale. Choose representative
values of the size n, and run at least five tests for each size value n in your tests.
Note that the slope of a line plotted on a log-log scale is based on the exponent
of a function, since log nc = c log n.

A-1.3 Implement an extendable table using arrays that can increase in size as elements
are added. Perform an experimental analysis of each of the running times for
performing a sequence of n add methods, assuming the array size is increased
from N to the following possible values:

a. 2N
b. N + �√N�
c. N + �log N�
d. N + 100.

A-1.4 An evil king has a cellar containing n bottles of expensive wine, and his guards
have just caught a spy trying to poison the king’s wine. Fortunately, the guards
caught the spy after he succeeded in poisoning only one bottle. Unfortunately,
they don’t know which one. To make matters worse, the poison the spy used was

www.it-ebooks.info

http://www.it-ebooks.info/

1.5. Exercises 49

very deadly; just one drop diluted even a billion to one will still kill someone.
Even so, the poison works slowly; it takes a full month for the person to die.
Design a scheme that allows the evil king to determine exactly which one of
his wine bottles was poisoned in just one month’s time while expending at most
O(log n) of his taste testers.

Note: All the remaining problems are inspired by questions reported to have been
asked in job interviews for major software and Internet companies.

A-1.5 Suppose you are given a set of small boxes, numbered 1 to n, identical in every
respect except that each of the first i contain a pearl whereas the remaining n− i
are empty. You also have two magic wands that can each test whether a box
is empty or not in a single touch, except that a wand disappears if you test it
on an empty box. Show that, without knowing the value of i, you can use the
two wands to determine all the boxes containing pearls using at most o(n) wand
touches. Express, as a function of n, the asymptotic number of wand touches
needed.

A-1.6 Repeat the previous problem assuming that you now have k magic wands, with
k > 2 and k < log n. Express, as a function of n and k, the asymptotic number
of wand touches needed to identify all the magic boxes containing pearls.

A-1.7 Suppose you are given an integer c and an array, A, indexed from 1 to n, of n
integers in the range from 1 to 5n (possibly with duplicates). Describe an efficient
algorithm for determining if there are two integers, A[i] and A[j], in A that sum
to c, that is, such that c = A[i] + A[j], for 1 ≤ i < j ≤ n. What is the running
time of your algorithm?

A-1.8 Given an array, A, describe an efficient algorithm for reversing A. For example,
if A = [3, 4, 1, 5], then its reversal is A = [5, 1, 4, 3]. You can only use O(1)
memory in addition to that used by A itself. What is the running time of your
algorithm?

A-1.9 Given a string, S, of n digits in the range from 0 to 9, describe an efficient
algorithm for converting S into the integer it represents. What is the running
time of your algorithm?

A-1.10 Given an array, A, of n integers, find the longest subarray of A such that all the
numbers in that subarray are in sorted order. What is the running time of your
method?

A-1.11 Given an array, A, of n positive integers, each of which appears in A exactly
twice, except for one integer, x, describe an O(n)-time method for finding x
using only a single variable besides A.

A-1.12 Given an array, A, of n − 2 unique integers in the range from 1 to n, describe an
O(n)-time method for finding the two integers in the range from 1 to n that are
not in A. You may use only O(1) space in addition to the space used by A.

A-1.13 Suppose you are writing a simulator for a single-elimination sports tournament
(like in NCAA Division-1 basketball). There are n teams at the beginning of
the tournament and in each round of the tournament teams are paired up and the
games for each pair are simulated. Winners progress to the next round and losers
are sent home. This continues until a grand champion team is the final winner.

www.it-ebooks.info

http://www.it-ebooks.info/

50 Chapter 1. Algorithm Analysis

Suppose your simulator takes O(log n) time to process each game. How much
time does your simulator take in total?

A-1.14 Suppose you are given an array, A, of n positive integers. Describe an O(n)
algorithm for removing all the even numbers from A. That is, if A has m odd
numbers, then, after you are done, these odd numbers should occupy the first m
cells of A in the same relative order they were in originally.

A-1.15 Given an integer k > 0 and an array, A, of n bits, describe an efficient algorithm
for finding the shortest subarray of A that contains k 1’s. What is the running
time of your method?

A-1.16 A certain town has exactly n married heterosexual couples. Every wife knows
whether every other wife’s husband is cheating on his wife or not, but no wife
knows if her own husband is cheating or not. In fact, if a wife ever learns that
her husband is cheating on her, then she will poison him that very night. So no
husband will ever confess that he is cheating. One day, the mayor (who is not
married) announces that there is at least one cheating husband in the town. What
happens next?

A-1.17 Imagine that a magician has just given you a biased coin. It looks just like a
normal coin, with a “heads” side and a “tails” side, but each time this coin is
flipped, it is more likely to come up heads than tails. How can you use this coin
to generate an unbiased sequence of independent random bits, that is, a random
sequence of 0’s and 1’s where each bit has an independent equal probability of
being a 0 or 1?

A-1.18 Suppose you are processing a stream of bytes, one at a time, but you don’t know
in advance how many there will be, as the last byte is a special EOF character.
You only get to consider each byte once. Describe a scheme for choosing a byte
in this stream at random so that every byte in the stream has an equal chance of
being chosen. You may use only an O(1) amount of space.

Chapter Notes
The big-Oh notation has prompted several discussions over its proper use [36, 95, 128].
Knuth [129, 128], for example, defines it using the notation f(n) = O(g(n)), but refers
to this “equality” as being only “one way.” We have chosen to take a more standard view
of equality and view the big-Oh notation as a set, following Brassard [36]. The linear-
time algorithm we gave for the maximum subarray problem is due to Kadane [26]. For
more information on amortization, please see Tarjan [207, 208]. We include a number of
useful mathematical facts in Appendix A. The reader interested in further study into the
analysis of algorithms is referred to the books by Graham, Knuth, and Patashnik [93], and
Sedgewick and Flajolet [190]. Finally, for more information about using experimentation
to estimate the running time of algorithms, we refer the interested reader to papers by
McGeoch and coauthors [151, 152, 153].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

2 Basic Data Structures

An astronaut recording a video of a Hubble Space Telescope servicing mission
in 1997. U.S. government image. NASA.

Contents

2.1 Stacks and Queues . 53
2.2 Lists . 60
2.3 Trees . 68
2.4 Exercises . 84

www.it-ebooks.info

http://www.it-ebooks.info/

52 Chapter 2. Basic Data Structures

The Internet is designed to route information in discrete packets, which are

at most 1500 bytes in length. Because of this design, any time a video stream is

transmitted on the Internet, it must be subdivided into packets and these packets

must each be individually routed to their destination. In the case of a stored video

file, it is desirable to send packets using the Transmission Control Protocol (TCP),

since this protocol guarantees that all the packets will arrive at their destination in

the correct order. Nevertheless, because of vagaries and errors, the time it takes for

these packets to arrive at their destination can be highly variable. Thus, we need a

way of “smoothing out” these variations in order to avoid long pauses if someone

wants to watch a video at the same time it is being transmitted.

This smoothing is typically achieved is by using a buffer, which is a portion

of computer memory that is used to temporarily store items, as they are being pro-

duced by one computational process and consumed by another. For example, in

this case of video packets arriving via TCP, the networking process is producing the

packets and the playback process is consuming them. Thus, ignoring any rewind-

ing, this producer-consumer model is enforcing a first-in, first-out (FIFO) protocol

for the packets, in that the consumer process is always retrieving the packet that has

been in the buffer the longest. (See Figure 2.1.)

Figure 2.1: Using a buffer to smooth video transmission over the Internet.

Network packets are produced by the TCP process, which inserts packets in the

correct order into the buffer, but does so at a variable rate. Packets are consumed by

the video player process, which removes packets from the buffer at a constant speed

according to the video standard it is using. The buffer enforces a first-in, first-out

(FIFO) protocol and, if it is big enough, it should smooth out the packet production

and consumption so that packets can be processed at the average transmission rate

without annoying pauses. In this chapter, we explore how to implement such a

buffer using a queue data structure, which itself can be implemented with either an

array or a linked list. We also study several other basic data structures, including

stacks, lists, and trees, along with applications of these structures.

www.it-ebooks.info

http://www.it-ebooks.info/

2.1. Stacks and Queues 53

2.1 Stacks and Queues

2.1.1 Stacks
A stack is a container of objects that are inserted and removed according to the last-
in first-out (LIFO) principle. Objects can be inserted into a stack at any time, but

only the most-recently inserted (that is, “last”) object can be removed at any time.

The name “stack” is derived from the metaphor of a stack of plates in a spring-

loaded cafeteria plate dispenser. In this case, the fundamental operations involve

the “pushing” and “popping” of plates on the stack.

Example 2.1: Internet web browsers store the addresses of recently visited sites
on a stack. Each time a user visits a new site, that site’s address is “pushed” onto the
stack of addresses. The browser then allows the user to “pop” back to previously
visited sites using the “back” button.

Viewed abstractly, a stack, S, is a container that supports the following two

methods:

push(o): Insert object o at the top of the stack.

pop(): Remove from the stack and return the top object on the

stack, that is, the most recently inserted element still in

the stack; an error occurs if the stack is empty.

A Simple Array-Based Implementation

A stack is easily implemented with an N -element array S, with elements stored

from S[0] to S[t], where t is an integer that gives the index of the top element in S.

Note that one of the important details of such an implementation is that we must

specify some maximum size N for our stack, say, N = 1, 000. (See Figure 2.2.)

S
0 1 2 N–1t

...

Figure 2.2: Implementing a stack with an array S. The top element is in cell S[t].

If we use the convention that arrays begin at index 0, then we would initialize t
to −1 (for an initially empty stack), and we can use this value to also test if a stack

is empty. In addition, we can use this variable to determine the number of elements

in a stack (t+1). In this array-based implementation of a stack, we also must signal

an error condition that arises if we try to insert a new element and the array S is

full. Given this error condition, we can then implement the main methods of a stack

as described in Algorithm 2.3.

www.it-ebooks.info

http://www.it-ebooks.info/

54 Chapter 2. Basic Data Structures

Algorithm push(o):
if t + 1 = N then

return that a stack-full error has occurred

t ← t + 1
S[t] ← o
return

Algorithm pop():
if t < 0 then

return that a stack-empty error has occurred

e ← S[t]
S[t] ← null
t ← t − 1
return e

Algorithm 2.3: Implementing a stack with an array.

Turning to the analysis of this array-based implementation of a stack, it should

be clear that each of the stack methods, push and pop, runs in a constant amount

of time. This is because they only involve a constant number of simple arithmetic

operations, comparisons, and assignment statements. That is, in this array-based

implementation of the stack, each method runs in O(1) time.

The array implementation of a stack is both simple and efficient, and is widely

used in a variety of computing applications. Nevertheless, this implementation has

one negative aspect; it must assume a fixed upper bound N on the ultimate size of

the stack. An application may actually need much less space than this, in which

case we would be wasting memory. Alternatively, an application may need more

space than this, in which case our stack implementation may “crash” the application

with an error as soon as it tries to push its (N + 1)st object on the stack. Thus,

even with its simplicity and efficiency, the array-based stack implementation is not

always ideal.

Fortunately, there is another implementation, which is to use a linked list, dis-

cussed later in this chapter. Such an implementation would not have a size limi-

tation (other than that imposed by the total amount of memory on our computer)

and it would use an amount of space proportional to the actual number of ele-

ments stored in the stack. Alternatively, we could also use an extendable table,

as discussed in Section 1.4.2, which could grow in size as the stack grows. In

cases where we have a good estimate on the number of items needing to go in

the stack, however, the array-based implementation is hard to beat, because they

achieve O(1)-time performance for the push and pop operations. Stacks serve a

vital role in a number of computing applications, so it is helpful to have a fast stack

implementation, such as the simple array-based implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

2.1. Stacks and Queues 55

Using Stacks for Procedure Calls and Recursion

Stacks have an important application in the runtime environments of programming

languages, such as C, C++, Java, and Python. Each thread in a running program

written in one of these languages has a private stack, called the method stack, which

is used to keep track of local variables and other important information on methods,

as they are invoked during execution. (See Figure 2.4.)

More specifically, during the execution of a program thread, the runtime en-

vironment maintains a stack whose elements are descriptors of the currently ac-

tive (that is, nonterminated) invocations of methods. These descriptors are called

frames. A frame for some invocation of method cool stores the current values of

the local variables and parameters of method cool, as well as information on the

method that called cool and on what needs to be returned to this method.

Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:
PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Stack

Figure 2.4: An example of a method stack: Method fool has just been called by

method cool, which itself was previously called by method main. Note the values

of the program counter, parameters, and local variables stored in the stack frames.

When the invocation of method fool terminates, the invocation of method cool will

resume its execution at instruction 217, which is obtained by incrementing the value

of the program counter stored in the stack frame.

www.it-ebooks.info

http://www.it-ebooks.info/

56 Chapter 2. Basic Data Structures

The runtime environment keeps the address of the statement the thread is cur-

rently executing in the program in a special register, called the program counter.

When a method, cool, invokes another method, fool, the current value of the pro-

gram counter is recorded in the frame of the current invocation of cool (so the

computer will “know” where to return to when method fool is done).

At the top of the method stack is the frame of the running method—that is,

the method that currently has control of the execution. The remaining elements of

the stack are frames of the suspended methods—that is, methods that have invoked

another method and are currently waiting for it to return control to them upon its

termination. The order of the elements in the stack corresponds to the chain of

invocations of the currently active methods. When a new method is invoked, a

frame for this method is pushed onto the stack. When it terminates, its frame is

popped from the stack and the computer resumes the processing of the previously

suspended method.

The method stack also performs parameter passing to methods. Specifically,

many languages, such as C and Java, use the call-by-value parameter passing pro-

tocol using the method stack. This means that the current value of a variable (or

expression) is what is passed as an argument to a called method. In the case of

a variable x of a primitive type, such as an int or float, the current value of x is

simply the number that is associated with x. When such a value is passed to the

called method, it is assigned to a local variable in the called method’s frame. (This

simple assignment is also illustrated in Figure 2.4.) Note that if the called method

changes the value of this local variable, it will not change the value of the variable

in the calling method.

Recursion

One of the benefits of using a stack to implement method invocation is that it allows

programs to use recursion (Section 1.1.4). That is, it allows a method to call itself

as a subroutine.

Recall that in using this technique correctly, we must always design a recursive

method so that it is guaranteed to terminate at some point (for example, by always

making recursive calls for “smaller” instances of the problem and handling the

“smallest” instances nonrecursively as special cases). We note that if we design

an “infinitely recursive” method, it will not actually run forever. It will instead, at

some point, use up all the memory available for the method stack and generate an

out-of-memory or stack-overflow error. If we use recursion with care, however, the

method stack will implement recursive methods without any trouble. Each call of

the same method will be associated with a different frame, complete with its own

values for local variables. Recursion can be very powerful, as it often allows us to

design simple and efficient programs for fairly difficult problems.

www.it-ebooks.info

http://www.it-ebooks.info/

2.1. Stacks and Queues 57

2.1.2 Queues
Another basic data structure is the queue. It is a close “cousin” of the stack, as

a queue is a container of objects that are inserted and removed according to the

first-in first-out (FIFO) principle, as in the video buffering application discussed

at the beginning of this chapter. That is, elements can be inserted at any time, but

only the element that has been in the queue the longest can be removed at any time.

We usually say that elements enter the queue at the rear and are removed from the

front.

Queue Definition

Viewed abstractly, a queue keeps objects in a sequence, where element access and

deletion are restricted to the first element in the sequence, which is called the front
of the queue, and element insertion is restricted to the end of the sequence, which

is called the rear of the queue. Thus, we enforce the rule that items are inserted

and removed according to the FIFO principle. A queue supports the following two

fundamental methods:

enqueue(o): Insert object o at the rear of the queue.

dequeue(): Remove and return from the queue the object at the front;

an error occurs if the queue is empty.

A Simple Array-Based Implementation

As with a stack, we can implement a queue with an array, but the details are slightly

more complicated. In this case, we use an array, Q, with capacity N , for storing

its elements. Since the main rule for a queue is that we insert and delete objects

according to the FIFO principle, we must decide how we are going to keep track of

the front and rear of the queue.

To avoid moving objects once they are placed in Q, we define two variables f
and r, which have the following meanings:

• f is an index to the cell of Q storing the first element of the queue (which is

the next candidate to be removed by a dequeue operation), unless the queue

is empty (in which case f = r).

• r is an index to the next available array cell in Q.

Initially, we assign f = r = 0, and we indicate that the queue is empty by the

condition f = r. Now, when we remove an element from the front of the queue, we

can simply increment f to index the next cell. Likewise, when we add an element,

we can simply increment r to index the next available cell in Q. We have to be a

little careful not to overflow the end of the array, however. Consider, for example,

what happens if we repeatedly enqueue and dequeue a single element N different

www.it-ebooks.info

http://www.it-ebooks.info/

58 Chapter 2. Basic Data Structures

times. We would have f = r = N . If we were then to try to insert the element

just one more time, we would get an array-out-of-bounds error (since the N valid

locations in Q are from Q[0] to Q[N − 1]), even though there is plenty of room in

the queue in this case. To avoid this problem and be able to utilize all of the array

Q, we let the f and r indices “wrap around” the end of Q. That is, we now view Q
as a “circular array” that goes from Q[0] to Q[N − 1] and then immediately back

to Q[0] again. (See Figure 2.5.)

N–10 1 2

Q ...

rf
(a)

...Q
N–10 1 2 fr

(b)

Figure 2.5: Implementing a queue using an array Q in a circular fashion: (a) the

“normal” configuration with f ≤ r; (b) the “wrapped around” configuration with

r < f . The cells storing queue elements are highlighted.

Implementing this circular view of Q is pretty easy. Each time we increment f
or r, we simply compute this increment as “(f + 1) mod N” or “(r + 1) mod N ,”

respectively. Recall here that the operator “mod” is the modulo operator, which is

computed by taking the remainder after an integral division, so that, if y is nonzero,

then

x mod y = x −
x/y�y.

Consider now the situation that occurs if we enqueue N objects without de-

queuing them. We would have f = r, which is the same condition as when the

queue is empty. Hence, we would not be able to tell the difference between a full

queue and an empty one in this case. Fortunately, this is not a big problem, and

a number of ways for dealing with it exist. For example, we can simply insist

that Q can never hold more than N − 1 objects. The above simple rule for han-

dling a full queue takes care of the final problem with our implementation, and

leads to the pseudocoded descriptions of the main queue methods given in Al-

gorithm 2.6. Note that we may compute the size of the queue by means of the

expression (N − f + r) mod N , which gives the correct result both in the “nor-

mal” configuration (when f ≤ r) and in the “wrapped around” configuration (when

r < f).

www.it-ebooks.info

http://www.it-ebooks.info/

2.1. Stacks and Queues 59

Algorithm dequeue():
if f = r then

return an error condition that the queue is empty

temp ← Q[f]
Q[f] ← null
f ← (f + 1) mod N
return temp

Algorithm enqueue(o):
if (N − f + r) mod N = N − 1 then

return an error condition that the queue is full

Q[r] ← o
r ← (r + 1) mod N
return

Algorithm 2.6: Implementing a queue with an array, which is viewed circularly.

Analysis and Applications of Queues

As with our array-based stack implementation, it should be clear that each of the

above queue methods based on implementing the queue with an array executes in

a constant number of statements involving arithmetic operations, comparisons, and

assignments. Thus, each method in this array-based queue implementation runs in

O(1) time.

We have already discussed the application of queues to the problem of buffering

video as it is streamed on the Internet. There are several other applications of

queues, as well. For instance, a queue is an ideal data structure for processing

online ticketing requests. Likewise, a queue is typically used to manage a printer
spooler, which is a process that manages documents that are sent to be output by a

printer.

As with the array-based stack implementation, the only real disadvantage of

the array-based queue implementation is that we artificially set the capacity of the

queue to be some number N . In a real application, we may actually need more

or less queue capacity than this, but if we have a good estimate of the number of

elements that will be in the queue at the same time, then the array-based implemen-

tation is quite efficient. If we don’t have a good estimate, however, then we can

implement a queue using a linked list, which is a data structure we discuss in the

next section.

www.it-ebooks.info

http://www.it-ebooks.info/

60 Chapter 2. Basic Data Structures

2.2 Lists
Stacks and queues store elements according to a linear sequence determined by

update operations that act on the “ends” of the sequence. Lists, on the other hand,

which we discuss in this section, maintain linear orders while allowing for accesses

and updates in the “middle.”

2.2.1 Index-Based Lists
Suppose we are given a linear sequence, S, that contains n elements. We can

uniquely refer to each element e of S using an integer in the range [0, n− 1] that is

equal to the number of elements of S that precede e in S. In particular, we define

the index (or rank) of an element e in S to be the number of elements that are

before e in S. Hence, the first element in a sequence is at index 0 and the last

element is at index n − 1.

Note that this notion of “index” is different from indices of cells in an array,

since array cells are static. This notion of index in a list of elements implies that

the index of an element can change depending on whether elements before it are

inserted or removed in its list. Such an index in a list is therefore dynamic and

depends on the operations that are performed on the list. For instance, if we insert a

new element at the beginning of such a list, the index of each of the other elements

increases by one. This definition is consistent, for example, with the ArrayList
class in Java.

We refer to a linear sequence that supports access to its elements by their indices

in this way as an index-based list.
An index-based list, S, storing n elements supports the following methods:

get(r): Return the element of S with index r; an error condition

occurs if r < 0 or r > n − 1.

set(r, e): Replace with e the element at index r and return it; an

error condition occurs if r < 0 or r > n − 1.

add(r, e): Insert a new element e into S to have index r; an error

condition occurs if r < 0 or r > n.

remove(r): Remove from S the element at index r; an error condition

occurs if r < 0 or r > n − 1.

An obvious choice for implementing an index-based list is to use an array A,

where A[i] stores (a reference to) the element with index i. We choose the size

N of array A to be sufficiently large, and we maintain in an instance variable the

actual number n < N of elements in the list. The details of the implementation

of the methods of index-based list are reasonably simple. To implement the get(r)

www.it-ebooks.info

http://www.it-ebooks.info/

2.2. Lists 61

operation, for example, we just return A[r]. Implementations of methods add(r, e)
and remove(r) are given in Algorithm 2.7.

Algorithm add(r, e):
if n = N then

return “Array is full.”

if r < n then
for i ← n − 1, n − 2, . . . , r do

A[i + 1] ← A[i] // make room for the new element

A[r] ← e
n ← n + 1

Algorithm remove(r):
e ← A[r] // e is a temporary variable

if r < n − 1 then
for i ← r, r + 1, . . . , n − 2 do

A[i] ← A[i + 1] // fill in for the removed element

n ← n − 1
return e

Algorithm 2.7: Methods in an array implementation of an index-based list.

An important (and time-consuming) part of this implementation involves the

shifting of elements up or down to keep the occupied cells in the array contiguous.

That is, in inserting a new element at rank r we must shift up by 1 the places where

all elements previously of index r and higher are stored. Likewise, in removing an

element at rank r we must shift down by 1 the places where all elements previously

of index r + 1 and higher are stored. These shifting operations are required to

maintain our rule of always storing an element of rank i at index i in A. (See

Figure 2.8 and also Exercise C-2.8.)

S
N–10 1 2 n–1r

(a)

S
N–10 1 2 n–1r

(b)

Figure 2.8: Array-based implementation of an index-based list, S: (a) shifting up

for an insertion at index r; (b) shifting down for a removal at index r.

www.it-ebooks.info

http://www.it-ebooks.info/

62 Chapter 2. Basic Data Structures

Analysis of an Array Implementation of an Index-Based List

Table 2.9 shows the running times of the methods of an index-based list imple-

mented with an array. Note that the insertion and removal methods can take time

much longer than O(1). In particular, add(r, e) runs in time Θ(n) in the worst

case. Indeed, the worst case for this operation occurs when r = 0, since all the ex-

isting n elements have to be shifted over. A similar argument applies to the method

remove(r), which runs in O(n) time, because we have to shift n−1 elements in the

worst case (r = 0). In fact, assuming that each possible index is equally likely to

be passed as an argument to these operations, their average running time is Θ(n),
since we would have to shift n/2 elements on average.

Method Time
get(r) O(1)

set(r, e) O(1)
add(r, e) O(n)

remove(r) O(n)

Table 2.9: Worst-case performance of an index-based list with n elements imple-

mented with an array. The space usage is O(N), where N is the size of the array.

Looking more closely at add(r, e) and remove(r), we note that they each run in

time O(n−r+1), for only those elements at rank r and higher have to be shifted up

or down. Thus, inserting or removing an item at the end of a list, using the methods

add(n, e) and remove(n − 1), respectively take O(1) time each. That is, inserting

or removing an element at the end of an index-based list takes constant time, as

would inserting or removing an element within a constant number of cells from

the end. Still, with the above implementation, inserting or removing an element at

the beginning of a list requires shifting every other element by one; hence, it takes

Θ(n) time. Thus, there is an asymmetry to this implementation—updates at the

end are fast, whereas updates at the beginning are slow.

Actually, with a little effort, we can produce an array-based implementation

of this structure that achieves O(1) time for insertions and removals at index 0,

as well as insertions and removals at the end of the list. Achieving this requires

that we give up on our rule that an element at list-index i is stored in the array at

index i, however, as we would have to use a circular array approach like we used

in Section 2.1.2 to implement a queue. We leave the details of this implementation

for an exercise (C-2.8). In addition, we note that an index-based list can also be

implemented to achieve constant-time amortized insertion and removal operations

at the end of a list, by using an extendable table (Section 1.4.2), which, in fact, is

the default implementation of the ArrayList class in Java.

www.it-ebooks.info

http://www.it-ebooks.info/

2.2. Lists 63

2.2.2 Linked Lists
Using an index is not the only way to refer to elements in a list. We could alterna-

tively implement a list S so that each element is stored in a special node object with

references (that is, pointers) to the nodes before and after it in the list. In this case,

it could be more natural and efficient to use a node instead of an index to identify

where to access and update a list. In this section, we explore such a way of using

nodes to represent “places” in a list.

To abstract a way of storing elements in a list, we introduce the concept of

position in a list, which formalizes the intuitive notion of “node” that is storing an

element relative to others in the list. In this framework, we view a linked list as

a container of elements that stores each element at a node position and that keeps

these positions arranged in a linear order relative to one another. A position is itself

an object that supports the following simple method:

element(): Return the element stored at this position.

A position (or node) is always defined relatively, that is, in terms of its neigh-

bors. In a list, a position p will always be “after” some position q and “before”

some position s (unless p is the first or last position). A position p, which is associ-

ated with some element e in a list S, does not change, even if the rank of e changes

in S, unless we explicitly remove e (and, hence, destroy position p). Moreover, the

position p does not change even if we replace or swap the element e stored at p with

another element. These facts about positions allow us to define a set of position-

based list methods that take position objects as parameters and also provide position

objects as return values.

Using the concept of position to encapsulate the idea of “node” in a list, we can

define a linked list. This structure supports the following methods for a list, S:

first(): Return the position of the first element of S; an error

occurs if S is empty.

last(): Return the position of the last element of S; an error oc-

curs if S is empty.

before(p): Return the position of the element of S preceding the one

at position p; an error occurs if p is the first position.

after(p): Return the position of the element of S following the one

at position p; an error occurs if p is the last position.

The above methods allow us to refer to relative positions in a list, starting at

the beginning or end, and to be able to move incrementally up or down the list. As

mentioned above, these positions can be thought of as nodes in the list, but note

that there are no specific references to pointers or links to previous or next nodes in

these methods.

www.it-ebooks.info

http://www.it-ebooks.info/

64 Chapter 2. Basic Data Structures

We can also include the following update methods for a linked list.

insertBefore(p, e): Insert a new element e into S before position p in S.

insertAfter(p, e): Insert a new element e into S after position p in S.

remove(p): Remove from S the element at position p.

This approach allows us to view an ordered collection of objects in terms of

their places, without worrying about the exact way those places are represented. In

addition, this structure, with its built-in notion of position, is useful in a number of

settings. For example, a simple text editor embeds the notion of positional insertion

and removal, since such editors typically perform all updates relative to a cursor,

which represents the current position in a list of characters being edited.

We can use node objects to implement a linked list, so that a great variety of

operations, including insertion and removal at various places, can run in O(1) time.

A node in a singly linked list stores in a next link a reference to the next node in

the list. Thus, a singly linked list can only be traversed in one direction—from

the head to the tail. A node in a doubly linked list, on the other hand, stores two

references—a next link, which points to the next node in the list, and a prev link,

which points to the previous node in the list. Therefore, a doubly linked list can be

traversed in either direction. Being able to determine the previous and next node

from any given node in a list greatly simplifies list implementation; so let us assume

we are using such doubly linked nodes to implement a linked list.

To simplify updates and searching, it is convenient to add special nodes at both

ends of the list: a header node just before the head of the list, and a trailer node

just after the tail of the list. These “dummy” or sentinel nodes do not store any

element, but their ubiquitous existence allows us to avoid worrying about special

cases for inserting and removing elements at the beginning or end of a list. The

header has a valid next reference but a null prev reference, while the trailer has

a valid prev reference but a null next reference. A doubly linked list with these

sentinels is shown in Figure 2.10. Note that a linked list object would simply need

to store these two sentinels and a size counter that keeps track of the number of

elements (not counting sentinels) in the list.

header

New York Providence San Francisco

trailer

Figure 2.10: A doubly linked list with sentinels, header and trailer, marking the

ends of the list. An empty list would have these sentinels pointing to each other.

www.it-ebooks.info

http://www.it-ebooks.info/

2.2. Lists 65

We can simply make the nodes of the linked list implement the position con-

cept, defining a method element(), which returns the element stored at the node.

Thus, the nodes themselves act as positions.

Consider how we might implement the insertAfter(p, e) method, for inserting

an element e after position p. We create a new node v to hold the element e, link

v into its place in the list, and then update the next and prev references of v’s

two new neighbors. This method is given in pseudocode in Algorithm 2.11 and is

illustrated in Figure 2.12.

Algorithm insertAfter(p, e):
Create a new node v
v.element ← e
v.prev ← p // link v to its predecessor

v.next ← p.next // link v to its successor

(p.next).prev ← v // link p’s old successor to v
p.next ← v // link p to its new successor, v
return v // the position for the element e

Algorithm 2.11: Inserting an element e after a position p in a linked list.

header

Baltimore Paris Providence

trailer

(a)header

Baltimore Paris Providence

trailer

New York

(b)header trailer

New York Paris ProvidenceBaltimore

(c)

Figure 2.12: Adding a new node after the position for “Baltimore”: (a) before the

insertion; (b) creating node v and linking it in; (c) after the insertion.

www.it-ebooks.info

http://www.it-ebooks.info/

66 Chapter 2. Basic Data Structures

The algorithms for methods insertBefore, insertFirst, and insertLast are similar

to that for method insertAfter; we leave their details as an exercise (R-2.3). Next,

consider the remove(p) method, which removes the element e stored at position p.

To perform this operation, we link the two neighbors of p to refer to one another

as new neighbors—linking out p. Note that after p is linked out, no nodes will be

pointing to p; hence, a garbage collector can reclaim the space for p. This algorithm

is given in Algorithm 2.13 and is illustrated in Figure 2.14. Recalling our use of

sentinels, note that this algorithm works even if p is the first, last, or only real

position in the list.

Algorithm remove(p):
t ← p.element // a temporary variable to hold the return value

(p.prev).next ← p.next // linking out p
(p.next).prev ← p.prev
p.prev ← null // invalidating the position p
p.next ← null
return t

Algorithm 2.13: Removing an element e stored at a position p in a linked list.

header trailer

New York Paris ProvidenceBaltimore

(a)
header trailer

New York Paris ProvidenceBaltimore

(b)
header trailer

New York ProvidenceBaltimore

(c)

Figure 2.14: Removing the object stored at the position for “Paris”: (a) before the

removal; (b) linking out the old node; (c) after the removal (and garbage collection).

www.it-ebooks.info

http://www.it-ebooks.info/

2.2. Lists 67

Analyzing List Implementations

Let us consider the performance of the above node-based linked list implementa-

tion. It should not be too difficult to see that all of the methods for a linked list can

be implemented to run in O(1) time using a node-based approach. That is, we can

perform the methods for a linked list to have running times as shown in Table 2.15.

Method Time
first() O(1)
last() O(1)

before(p) O(1)
after(p) O(1)

insertBefore(p, e) O(1)
insertAfter(p, e) O(1)

remove(p) O(1)

Table 2.15: Worst-case performance of a node-based linked list with n elements.

The space usage is O(n), where n is the number of elements in the list.

Thinking generally about accessing elements by either indices or nodes, we

can compare the performance of a linked list to that of an array-based list imple-

mentation. If we need to be accessing elements by their ranks or indices, clearly

an array-based list is more efficient than a linked list, since the only way to deter-

mine the rank of an element e in a linked list is to follow the sequence of pointers

from the node storing e to the end or beginning of its list. Thus, using a linked

list for index-based operations would require O(n) time for each such operation.

Regarding update operations, the linked-list implementation beats the array-based

implementation in the position-based update operations, since it can insert or re-

move elements in the “middle” of a list in constant time, whereas an array-based

implementation takes O(n) time (to keep the list contiguous in the array).

Considering space usage, note that an array requires O(N) space, where N is

the size of the array (unless we utilize an extendable array), while a doubly linked

list uses O(n) space, where n is the number of elements in the sequence. If n
is much less than N , this implies that the asymptotic space usage of a linked-list

implementation is better than that of a fixed-size array, although there is a small

constant factor overhead that is larger for linked lists, since arrays do not need links

to maintain the ordering of their cells.

Array-based and linked-list implementations of lists each have advantages and

disadvantages, therefore. The correct one for a particular application depends on

the operations that are to be performed and the memory space available.

www.it-ebooks.info

http://www.it-ebooks.info/

68 Chapter 2. Basic Data Structures

2.3 Trees
Viewed abstractly, a tree is a data structure that stores elements hierarchically. With

the exception of the top element, each element in a tree has a parent element and

zero or more children elements. A tree is usually visualized by placing elements

inside ovals or rectangles, and by drawing the connections between parents and

children with straight lines. (See Figure 2.16.) We typically call the top element

the root of the tree, but it is drawn as the highest element, with the other elements

being connected below (just the opposite of a botanical tree).

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

Figure 2.16: A tree representing a portion of a file system.

A tree T is a set of nodes storing elements in a parent-child relationship with

the following properties:

• T has a special node r, called the root of T , with no parent node.

• Each node v of T different from r has a unique parent node u.

Note that according to the above definition, a tree cannot be empty, since it must

have at least one node, the root. One could also allow the definition to include

empty trees, but we adopt the convention that a tree always has a root so as to keep

our presentation simple and to avoid having to always deal with the special case of

an empty tree in our algorithms.

If node u is the parent of node v, then we say that v is a child of u. Two nodes

that are children of the same parent are siblings. A node is external if it has no

children, and it is internal if it has one or more children. External nodes are also

known as leaves. The subtree of T rooted at a node v is the tree consisting of all

the descendants of v in T (including v itself). An ancestor of a node is either the

node itself, its parent, or an ancestor of its parent. Conversely, we say that a node v
is a descendant of a node u if u is an ancestor of v.

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Trees 69

Example 2.2: In most operating systems, files are organized hierarchically into
nested directories (also called folders), which are presented to the user in the form
of a tree. (See Figure 2.16.) More specifically, the internal nodes of the tree are
associated with directories and the external nodes are associated with regular files.
In Unix-like operating systems, the root of the tree is appropriately called the “root
directory,” and is represented by the symbol “/.” It is the ancestor of all directories
and files in such a file system.

A tree is ordered if there is a linear ordering defined for the children of each

node; that is, we can identify children of a node as being the first, second, third,

and so on. Ordered trees typically indicate the linear order relationship existing

between siblings by listing them in the correct order.

Example 2.3: A structured document, such as a book, is hierarchically organized
as a tree whose internal nodes are chapters, sections, and subsections, and whose
external nodes are paragraphs, tables, figures, the bibliography, and so on. (See
Figure 2.17.) We could in fact consider expanding the tree further to show para-
graphs consisting of sentences, sentences consisting of words, and words consisting
of characters. In any case, such a tree is an example of an ordered tree, because
there is a well-defined ordering among the children of each node.

...... ¶¶...¶ ¶

Book

Part A Part B ReferencesPreface

...Ch. 1 Ch. 5 Ch. 6 Ch. 9¶ ¶ ¶ ¶

...§ 1.4§ 1.1 § 5.7§ 5.1 § 9.6§ 9.1§ 6.5§ 6.1

Figure 2.17: A tree associated with a book.

A binary tree is an ordered tree in which every node has at most two children. A

binary tree is proper if each internal node has two children. For each internal node

in a binary tree, we label each child as either being a left child or a right child.

These children are ordered so that a left child comes before a right child. The

subtree rooted at a left or right child of an internal node v is called a left subtree
or right subtree, respectively, of v. Of course, even an improper binary tree is still

a general tree, with the property that each internal node has at most two children.

Binary trees have a number of useful applications, including the following.

www.it-ebooks.info

http://www.it-ebooks.info/

70 Chapter 2. Basic Data Structures

Example 2.4: An arithmetic expression can be represented by a tree whose ex-
ternal nodes are associated with variables or constants, and whose internal nodes
are associated with one of the operators +, −, ×, and /. (See Figure 2.18.) Each
node in such a tree has a value associated with it.

• If a node is external, then its value is that of its variable or constant.

• If a node is internal, then its value is defined by applying its operation to the
values of its children.

Such an arithmetic expression tree is a proper binary tree, since each of the oper-
ators +, −, ×, and / take exactly two operands. Of course, if we were to allow
for unary operators, like negation (−), as in “−x,” then we could have an improper
binary tree.

/

3 1

3 2

9 5

3

47

6

+

+

+

–

– –

Figure 2.18: A binary tree representing an arithmetic expression. This tree repre-

sents the expression ((((3 + 1) × 3)/((9 − 5) + 2)) − ((3 × (7 − 4)) + 6)). The

value associated with the internal node labeled “/” is 2.

2.3.1 A Tree Definition
Viewed abstractly, a tree stores elements at positions, which, as with positions in

a list, are defined relative to neighboring positions. The positions in a tree are its

nodes, and neighboring positions satisfy the parent-child relationships that define a

valid tree. Therefore, we use the terms “position” and “node” interchangeably for

trees. As with a list position, a position object for a tree supports the element()
method, which returns the object at this position. The real power of node positions

in a tree, however, comes from the following accessor methods for a tree:

root(): Return the root of the tree.

parent(v): Return the parent of node v; an error occurs if v is root.

children(v): Return a set containing the children of node v.

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Trees 71

If a tree T is ordered, then the children(v) operation returns the children of v in

order. If v is an external node, then children(v) is an empty set.

In addition, we also include the following query methods:

isInternal(v): Test whether node v is internal.

isExternal(v): Test whether node v is external.

isRoot(v): Test whether node v is the root.

There are also a number of methods a tree should support that are not necessarily

related to its tree structure. Such generic methods include the following:

size(): Return the number of nodes in the tree.

elements(): Return a set containing all the elements stored at nodes

of the tree.

positions(): Return a set containing all the nodes of the tree.

swapElements(v, w): Swap the elements stored at the nodes v and w.

replaceElement(v, e): Replace with e and return the element stored at node v.

We do not define any specialized update methods for a tree here. Instead, let

us reserve the potential to define different tree update methods in conjunction with

specific tree applications.

2.3.2 Tree Traversal
In this section, we present algorithms for performing some important traversal op-

erations on a tree.

Assumptions

In order to analyze the running time of tree-based algorithms, we make the follow-

ing assumptions on the running times of various methods for a tree:

• The accessor methods root() and parent(v) take O(1) time.

• The query methods isInternal(v), isExternal(v), and isRoot(v) take O(1)
time, as well.

• The accessor method children(v) takes O(cv) time, where cv is the number

of children of v.

• The generic methods swapElements(v, w) and replaceElement(v, e) take

O(1) time.

• The generic methods elements() and positions(), which return sets, take

O(n) time, where n is the number of nodes in the tree.

www.it-ebooks.info

http://www.it-ebooks.info/

72 Chapter 2. Basic Data Structures

In Section 2.3.4, we present data structures for trees that satisfy the above as-

sumptions. Before we describe how to implement a tree using a concrete data

structure, however, let us describe how we can use the methods for an abstract tree

structure to solve some interesting problems for trees.

Depth and Height

Let v be a node of a tree T . The depth of v is the number of ancestors of v,

excluding v itself. Note that this definition implies that the depth of the root of T
is 0. The depth of a node v can also be recursively defined as follows:

• If v is the root, then the depth of v is 0.

• Otherwise, the depth of v is one plus the depth of the parent of v.

Based on the above definition, the recursive algorithm depth, shown in Algo-

rithm 2.19, computes the depth of a node v of T by calling itself recursively on

the parent of v, and adding 1 to the value returned.

Algorithm depth(T, v):
if T.isRoot(v) then

return 0
else

return 1 + depth(T, T.parent(v))

Algorithm 2.19: Algorithm depth for computing the depth of a node v in a tree T .

The running time of algorithm depth(T, v) is O(1 + dv), where dv denotes the

depth of the node v in the tree T , because the algorithm performs a constant-time

recursive step for each ancestor of v. Thus, in the worst case, the depth algorithm

runs in O(n) time, where n is the total number of nodes in the tree T , since some

nodes may have nearly this depth in T . Although such a running time is a function

of the input size, it is more accurate to characterize the running time in terms of the

parameter dv, since this will often be much smaller than n.

The height of a tree T is equal to the maximum depth of an external node of T .

While this definition is correct, it does not lead to an efficient algorithm. Indeed,

if we were to apply the above depth-finding algorithm to each node in the tree T ,

we would derive an O(n2)-time algorithm to compute the height of T . We can do

much better, however, using the following recursive definition of the height of a

node v in a tree T :

• If v is an external node, then the height of v is 0.

• Otherwise, the height of v is one plus the maximum height of a child of v.

The height of a tree T is the height of the root of T .

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Trees 73

Algorithm height, shown in Algorithm 2.20 computes the height of tree T in

an efficient manner by using the above recursive definition of height. The algo-

rithm is expressed by a recursive method height(T, v) that computes the height of

the subtree of T rooted at a node v. The height of tree T is obtained by calling

height(T, T.root()).

Algorithm height(T, v):
if T.isExternal(v) then

return 0
else

h = 0
for each w ∈ T.children(v) do

h = max(h, height(T, w))
return 1 + h

Algorithm 2.20: Algorithm height for computing the height of the subtree of tree

T rooted at a node v.

The height algorithm is recursive, and if it is initially called on the root of T ,

it will eventually be called once on each node of T . Thus, we can determine the

running time of this method by an amortization argument where we first determine

the amount of time spent at each node (on the nonrecursive part), and then sum this

time bound over all the nodes. The computation of a set returned by children(v)
takes O(cv) time, where cv denotes the number of children of node v. Also, the for
loop has cv iterations, and each iteration of the loop takes O(1) time plus the time

for the recursive call on a child of v. Thus, the algorithm height spends O(1 + cv)
time at each node v, and its running time is O(

∑
v∈T (1+cv)). In order to complete

the analysis, we make use of the following property.

Theorem 2.5: Let T be a tree with n nodes, and let cv denote the number of
children of a node v of T . Then ∑

v∈T

cv = n − 1.

Proof: Each node of T , with the exception of the root, is a child of another node,

and thus contributes one unit to the summation
∑

v∈T cv.

By Theorem 2.5, the running time of Algorithm height when called on the root

of T is O(n), where n is the number of nodes of T .

A traversal of a tree T is a systematic way of accessing, or “visiting,” all the

nodes of T . We next present basic traversal schemes for trees, called preorder and

postorder traversals.

www.it-ebooks.info

http://www.it-ebooks.info/

74 Chapter 2. Basic Data Structures

Preorder Traversal

In a preorder traversal of a tree T , the root of T is visited first and then the sub-

trees rooted at its children are traversed recursively. If the tree is ordered, then the

subtrees are traversed according to the order of the children. The specific action

associated with the “visit” of a node v depends on the application of this traversal,

and could involve anything from incrementing a counter to performing some com-

plex computation for v. The pseudocode for the preorder traversal of the subtree

rooted at a node v is shown in Algorithm 2.21. We initially call this routine as

preorder(T, T.root()).

Algorithm preorder(T, v):
perform the “visit” action for node v
for each child w of v do

recursively traverse the subtree rooted at w by calling preorder(T, w)

Algorithm 2.21: Algorithm preorder.

The preorder traversal algorithm is useful for producing a linear ordering of

the nodes of a tree where parents must always come before their children in the

ordering. Such orderings have several different applications; we explore a simple

instance of such an application in the next example.

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

Figure 2.22: Preorder traversal of an ordered tree.

Example 2.6: The preorder traversal of the tree associated with a document, as
in Example 2.3, examines an entire document sequentially, from beginning to end.
If the external nodes are removed before the traversal, then the traversal examines
the table of contents of the document. (See Figure 2.22.)

The analysis of preorder traversal is actually similar to that of algorithm height
given above. At each node v, the nonrecursive part of the preorder traversal algo-

rithm requires time O(1 + cv), where cv is the number of children of v. Thus, by

Theorem 2.5, the overall running time of the preorder traversal of T is O(n).

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Trees 75

Postorder Traversal

Another important tree traversal algorithm is the postorder traversal. This algo-

rithm can be viewed as the opposite of the preorder traversal, because it recursively

traverses the subtrees rooted at the children of the root first, and then visits the root.

It is similar to the preorder traversal, however, in that we use it to solve a particular

problem by specializing an action associated with the “visit” of a node v. Still,

as with the preorder traversal, if the tree is ordered, we make recursive calls for

the children of a node v according to their specified order. Pseudo-code for the

postorder traversal is given in Algorithm 2.23.

Algorithm postorder(T, v):
for each child w of v do

recursively traverse the subtree rooted at w by calling postorder(T, w)
perform the “visit” action for node v

Algorithm 2.23: Method postorder.

The name of the postorder traversal comes from the fact that this traversal

method will visit a node v after it has visited all the other nodes in the subtree

rooted at v. (See Figure 2.24.)

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

Figure 2.24: Postorder traversal of the ordered tree of Figure 2.22.

The analysis of the running time of a postorder traversal is analogous to that

of a preorder traversal. The total time spent in the nonrecursive portions of the

algorithm is proportional to the time spent visiting the children of each node in

the tree. Thus, a postorder traversal of a tree T with n nodes takes O(n) time,

assuming that visiting each node takes O(1) time. That is, the postorder traversal

runs in linear time.

The postorder traversal method is useful for solving problems where we wish

to compute some property for each node v in a tree, but computing that property

for v requires that we have already computed that same property for v’s children.

www.it-ebooks.info

http://www.it-ebooks.info/

76 Chapter 2. Basic Data Structures

2.3.3 Binary Trees
One kind of tree that is of particular interest is the binary tree. As we mentioned in

Section 2.3, a proper binary tree is an ordered tree in which each internal node has

exactly two children. We make the convention that, unless otherwise stated, binary

trees are assumed to be proper. Note that our convention for binary trees is made

without loss of generality, for we can easily convert any improper binary tree into a

proper one, as we explore in Exercise C-2.16. Even without such a conversion, we

can consider an improper binary tree as proper, simply by viewing missing external

nodes as “null nodes” or place holders that still count as nodes.

Viewed abstractly, a binary tree is a specialization of a tree that supports three

additional accessor methods:

leftChild(v): Return the left child of v; an error condition occurs if v
is an external node.

rightChild(v): Return the right child of v; an error condition occurs if v
is an external node.

sibling(v): Return the sibling of node v; an error condition occurs if

v is the root.

Note that these methods must have additional error conditions if we are dealing with

improper binary trees. For example, in an improper binary tree, an internal node

may not have the left child or right child. We do not include here any methods for

updating a binary tree, for such methods can be created as required in the context

of specific needs.

Properties of Binary Trees

We denote the set of all nodes of a tree T at the same depth d as the level d of T .

In a binary tree, level 0 has one node (the root), level 1 has at most two nodes (the

children of the root), level 2 has at most four nodes, and so on. (See Figure 2.25.) In

general, level d has at most 2d nodes, which implies the following theorem (whose

proof is left to Exercise R-2.6).

Theorem 2.7: Let T be a proper binary tree with n nodes, and let h denote the
height of T . Then T has the following properties:

1. The number of external nodes in T is at least h + 1 and at most 2h.

2. The number of internal nodes in T is at least h and at most 2h − 1.

3. The total number of nodes in T is at least 2h + 1 and at most 2h+1 − 1.

4. The height of T is at least log(n + 1) − 1 and at most (n − 1)/2, that is,
log(n + 1) − 1 ≤ h ≤ (n − 1)/2.

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Trees 77

...

0

..
. ...

1

2

3

1

..
.

2

4

8

Level Nodes

Figure 2.25: Maximum number of nodes in the levels of a binary tree.

In addition, we also have the following.

Theorem 2.8: In a proper binary tree T , the number of external nodes is 1 more
than the number of internal nodes.

Proof: The proof is by induction. If T itself has only one node v, then v is exter-

nal, and the proposition clearly holds. Otherwise, we remove from T an (arbitrary)

external node w and its parent v, which is an internal node. If v has a parent u, then

we reconnect u with the former sibling z of w, as shown in Figure 2.26. This op-

eration, which we call removeAboveExternal(w), removes one internal node and

one external node, and it leaves the tree being a proper binary tree. Thus, by the

inductive hypothesis, the number of external nodes in this tree is one more than the

number of internal nodes. Since we removed one internal and one external node to

reduce T to this smaller tree, this same property must hold for T .

v

u

wz

u

z

u

z

(a) (b) (c)

Figure 2.26: Operation removeAboveExternal(w), which removes an external

node and its parent node, used in the justification of Theorem 2.8.

Note that the above relationship does not hold, in general, for nonbinary trees.

In subsequent chapters, we explore some important applications of the above

facts. Before we can discuss such applications, however, we should first understand

more about how binary trees are traversed and represented.

www.it-ebooks.info

http://www.it-ebooks.info/

78 Chapter 2. Basic Data Structures

Traversals of a Binary Tree

As with general trees, computations performed on binary trees often involve tree

traversals. In this section, we present binary tree traversal algorithms. As for run-

ning times, in addition to the assumptions on the running time for tree methods

made in Section 2.3.2, we assume that, for a binary tree, the children(v) opera-

tion takes O(1) time, because each node has either zero or two children. Likewise,

we assume that methods leftChild(v), rightChild(v), and sibling(v) each take O(1)
time.

Preorder Traversal of a Binary Tree

Since any binary tree can also be viewed as a general tree, the preorder traversal

for general trees (Code Fragment 2.21) can be applied to any binary tree. We can

simplify the pseudocode in the case of a binary tree traversal, however, as we show

in Algorithm 2.27.

Algorithm binaryPreorder(T, v):
perform the “visit” action for node v
if v is an internal node then

binaryPreorder(T, T.leftChild(v)) // recursively traverse left subtree

binaryPreorder(T, T.rightChild(v)) // recursively traverse right subtree

Algorithm 2.27: Algorithm binaryPreorder that performs the preorder traversal of

the subtree of a binary tree T rooted at node v.

Postorder Traversal of a Binary Tree

Analogously, the postorder traversal for general trees (Algorithm 2.23) can be spe-

cialized for binary trees, as shown in Algorithm 2.28.

Algorithm binaryPostorder(T, v):
if v is an internal node then

binaryPostorder(T, T.leftChild(v)) // recursively traverse left subtree

binaryPostorder(T, T.rightChild(v)) // recursively traverse right subtree

perform the “visit” action for the node v

Algorithm 2.28: Algorithm binaryPostorder for performing the postorder traversal

of the subtree of a binary tree T rooted at v.

Interestingly, the specialization of the general preorder and postorder traversal

methods to binary trees suggests a third traversal in a binary tree that is different

from both the preorder and postorder traversals.

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Trees 79

Inorder Traversal of a Binary Tree

An additional traversal method for a binary tree is the inorder traversal. In this

traversal, we visit a node between the recursive traversals of its left and right sub-

trees, as shown in Algorithm 2.29.

Algorithm inorder(T, v):
if v is an internal node then

inorder(T, T.leftChild(v)) // recursively traverse left subtree

perform the “visit” action for node v
if v is an internal node then

inorder(T, T.rightChild(v)) // recursively traverse right subtree

Algorithm 2.29: Algorithm inorder for performing the inorder traversal of the sub-

tree of a binary tree T rooted at a node v.

The inorder traversal of a binary tree T can be informally viewed as visiting

the nodes of T “from left to right.” Indeed, for every node v, the inorder traversal

visits v after all the nodes in the left subtree of v and before all the nodes in the

right subtree of v. (See Figure 2.30.)

3 1 9 5 47

+ 3 2 3

+ 6

/ +

Figure 2.30: Inorder traversal of a binary tree.

A Unified Tree Traversal Framework

Each traversal visits the nodes of a tree in a certain order and is guaranteed to visit

each node exactly once. We can unify the tree-traversal algorithms given above into

a single framework, however, by relaxing the requirement that each node be visited

exactly once. The resulting traversal method is called the Euler tour traversal,
which we study next. The advantage of this traversal is that it allows for more

general kinds of algorithms to be expressed easily.

www.it-ebooks.info

http://www.it-ebooks.info/

80 Chapter 2. Basic Data Structures

The Euler Tour Traversal of a Binary Tree

The Euler tour traversal of a binary tree T can be informally defined as a “walk”

around T , where we start by going from the root toward its left child, viewing the

edges of T as being “walls” that we always keep to our left. (See Figure 2.31.)

Each node v of T is encountered three times by the Euler tour:

• “On the left” (before the Euler tour of v’s left subtree)

• “From below” (between the Euler tours of v’s two subtrees)

• “On the right” (after the Euler tour of v’s right subtree).

If v is external, then these three “visits” actually all happen at the same time.

3 1 9 5 47

+ 3 2– 3 –

+ 6

/ +

–

Figure 2.31: Euler tour traversal of a binary tree.

We give pseudocode for the Euler tour of the subtree rooted at a node v in

Algorithm 2.32.

Algorithm eulerTour(T, v):
perform the action for visiting node v on the left

if v is an internal node then
recursively tour the left subtree of v by calling eulerTour(T, T.leftChild(v))

perform the action for visiting node v from below

if v is an internal node then
recursively tour the right subtree of v by calling

eulerTour(T, T.rightChild(v))
perform the action for visiting node v on the right

Algorithm 2.32: Algorithm eulerTour for computing the Euler tour traversal of the

subtree of a binary tree T rooted at a node v.

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Trees 81

The preorder traversal of a binary tree is equivalent to an Euler tour traversal

such that each node has an associated “visit” action occur only when it is encoun-

tered on the left. Likewise, the inorder and postorder traversals of a binary tree

are equivalent to an Euler tour such that each node has an associated “visit” action

occur only when it is encountered from below or on the right, respectively.

The Euler tour traversal extends the preorder, inorder, and postorder traversals,

but it can also perform other kinds of traversals. For example, suppose we wish

to compute the number of descendants of each node v in an n node binary tree T .

We start an Euler tour by initializing a counter to 0, and then increment the counter

each time we visit a node on the left. To determine the number of descendants of

a node v, we compute the difference between the values of the counter when v is

visited on the left and when it is visited on the right, and add 1. This simple rule

gives us the number of descendants of v, because each node in the subtree rooted

at v is counted between v’s visit on the left and v’s visit on the right. Therefore, we

have an O(n)-time method for computing the number of descendants of each node

in T .

The running time of the Euler tour traversal is easy to analyze, assuming visit-

ing a node takes O(1) time. Namely, in each traversal, we spend a constant amount

of time at each node of the tree during the traversal, so the overall running time

is O(n) for an n node tree.

Another application of the Euler tour traversal is to print a fully parenthe-

sized arithmetic expression from its expression tree (Example 2.4). The method

printExpression, shown in Algorithm 2.33, accomplishes this task by performing

the following actions in an Euler tour:

• “On the left” action: if the node is internal, print “(”

• “From below” action: print the value or operator stored at the node

• “On the right” action: if the node is internal, print “).”

Algorithm printExpression(T, v):
if T.isExternal(v) then

print the value stored at v
else

print “(”

printExpression(T, T.leftChild(v))
print the operator stored at v
printExpression(T, T.rightChild(v))
print “)”

Algorithm 2.33: An algorithm for printing the arithmetic expression associated with

the subtree of an arithmetic expression tree T rooted at v.

Having presented these pseudocode examples, we now describe a number of

efficient ways of realizing the tree abstraction by concrete data structures, such as

arrays and linked structures.

www.it-ebooks.info

http://www.it-ebooks.info/

82 Chapter 2. Basic Data Structures

2.3.4 Data Structures for Representing Trees

In this section, we describe concrete data structures for representing trees.

A Linked Structure for Binary Trees

A natural way to implement a binary tree T is to use a linked structure. In this

approach we represent each node v of T by an object with references to the element

stored at v and the positions associated with the children and parent of v. We show

a linked structure representation of a binary tree in Figure 2.34.

parent

element

rightleft

root

Baltimore Chicago New York Providence Seattle

size

5

(a) (b)

Figure 2.34: An example linked data structure for representing a binary tree: (a)

object associated with a node; (b) a structure for a binary tree with five nodes.

If v is the root of T , then the reference to the parent node is null, and if v
is an external node, then the references to the children of v are null. If we wish

to save space for cases when external nodes are empty, then we can have refer-

ences to empty external nodes be null. That is, we can allow a reference from an

internal node to an external node child to be null. In addition, it is fairly straight-

forward to implement each of the methods size(), isEmpty(), swapElements(v, w),
and replaceElement(v, e) in O(1) time. Moreover, the method positions() can be

implemented by performing an inorder traversal, and implementing the method

elements() is similar. Thus, methods positions() and elements() take O(n) time

each. Considering the space used by this data structure, note that there is a constant-

sized object for every node of tree T . Thus, the overall space used is O(n).

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Trees 83

A Linked Structure for General Trees

We can extend the linked structure for binary trees to represent general trees. Since

there is no limit on the number of children that a node v in a general tree can have,

we use a container (for example, a list or array) to store the children of v, instead of

using instance variables. This structure is schematically illustrated in Figure 2.35,

assuming we implement the container for a node as a list.

parent

childrenContainer

element

Baltimore Chicago

New York

Providence Seattle

(a) (b)

Figure 2.35: The linked structure for a tree: (a) the object associated with a node;

(b) the portion of the data structure associated with a node and its children.

We note that the performance of a linked implementation of a tree, shown in

Table 2.36, is similar to that of the linked implementation of a binary tree. The

main difference is that in the implementation of a tree we use an efficient container,

such as a list or array, to store the children of each node v, instead of direct links to

exactly two children.

Operation Time
size, isEmpty O(1)

positions, elements O(n)
swapElements, replaceElement O(1)

root, parent O(1)
children(v) O(cv)

isInternal, isExternal, isRoot O(1)

Table 2.36: Running times of the methods of an n-node tree implemented with a

linked structure. We let cv denote the number of children of a node v.

www.it-ebooks.info

http://www.it-ebooks.info/

84 Chapter 2. Basic Data Structures

2.4 Exercises

Reinforcement
R-2.1 Suppose you are given an array, A, containing n numbers in order. Describe in

pseudocode an efficient algorithm for reversing the order of the numbers in A
using a single for-loop that indexes through the cells of A, to insert each element
into a stack, and then another for-loop that removes the elements from the stack
and puts them back into A in reverse order. What is the running time of this
algorithm?

R-2.2 Solve the previous exercise using a queue instead of stack. That is, suppose
you are given an array, A, containing n numbers in order, as in the previous
exercise. Describe in pseudocode an efficient algorithm for reversing the order
of the numbers in A using a single for-loop that indexes through the cells of A,
to insert each element into a queue, and then another for-loop that removes the
elements from the queue and puts them back into A in reverse order. What is the
running time of this algorithm?

R-2.3 Describe, using pseudocode, an implementation of the method insertBefore(p, e),
for a linked list, assuming the list is implemented using a doubly linked list.

R-2.4 Draw an expression tree that has four external nodes, storing the numbers 1,
5, 6, and 7 (with each number stored one per external node but not necessarily
in this order), and has three internal nodes, each storing an operation from the
set {+,−,×, /} of binary arithmetic operators, so that the value of the root is
21. The operators are assumed to return rational numbers (not integers), and an
operator may be used more than once (but we only store one operator per internal
node).

R-2.5 Let T be an ordered tree with more than one node. Is it possible that the preorder
traversal of T visits the nodes in the same order as the postorder traversal of T ?
If so, give an example; otherwise, argue why this cannot occur. Likewise, is it
possible that the preorder traversal of T visits the nodes in the reverse order of
the postorder traversal of T ? If so, give an example; otherwise, argue why this
cannot occur.

R-2.6 Answer the following questions so as to justify Theorem 2.7.

a. Draw a binary tree with height 7 and maximum number of external nodes.
b. What is the minimum number of external nodes for a binary tree with

height h? Justify your answer.
c. What is the maximum number of external nodes for a binary tree with

height h? Justify your answer.
d. Let T be a binary tree with height h and n nodes. Show that

log(n + 1) − 1 ≤ h ≤ (n − 1)/2.

e. For which values of n and h can the above lower and upper bounds on h
be attained with equality?

www.it-ebooks.info

http://www.it-ebooks.info/

2.4. Exercises 85

R-2.7 Let T be a binary tree such that all the external nodes have the same depth. Let
De be the sum of the depths of all the external nodes of T , and let Di be the sum
of the depths of all the internal nodes of T . Find constants a and b such that

De + 1 = aDi + bn,

where n is the number of nodes of T .

R-2.8 Let T be a binary tree with n nodes, and let p be the level numbering of the nodes
of T , so that the root, r, is numbered as p(r) = 1, and a node v has left child
numbered 2p(v) and right child numbered 2p(v) + 1, if they exist.

a. Show that, for every node v of T , p(v) ≤ 2(n+1)/2 − 1.

b. Show an example of a binary tree with at least five nodes that attains the
above upper bound on the maximum value of p(v) for some node v.

Creativity
C-2.1 A double-ended queue, or deque, is a list that allows for insertions and removals

at either its head or its tail. Describe a way to implement a deque using a doubly
linked list, so that every operation runs in O(1) time.

C-2.2 Suppose that a friend has implemented a deque, as defined in the previous exer-
cise, using a singly linked list, but hasn’t given you the details, for example, of
whether the links go forward or backward in the list or whether sentinel nodes
are used. Nevertheless, show that one of the insertion or removal methods must
take Ω(n) time, where n is the number of elements in the deque.

C-2.3 Describe, in pseudocode, a link-hopping method for finding the middle node of
a doubly linked list with header and trailer sentinels, and an odd number of real
nodes between them. (Note: This method must only use link hopping; it cannot
use a counter.) What is the running time of this method?

C-2.4 Describe how to implement a queue using two stacks, so that the amortized run-
ning time for dequeue and enqueue is O(1), assuming that the stacks support
constant-time push, pop, and size methods. What is the worst-case running
time of the enqueue() and dequeue() methods in this case?

C-2.5 Describe how to implement a stack using two queues. What is the running time
of the push() and pop() methods in this case?

C-2.6 Describe a recursive algorithm for enumerating all permutations of the numbers
{1, 2, . . . , n}. What is the running time of your method?

C-2.7 Show that a stack and a queue can be used to realize any permutation. That is,
suppose you are given an empty stack, S, and the numbers, 1, 2, . . . , n, in this
order, initially stored in a queue, Q. Show how to use only these two structures,
and at most a constant number of additional registers, to result in any given per-
mutation, π, of the numbers, 1, 2, . . . , n, stored in the Q in the order specified by
π. What is the running time of your algorithm?

www.it-ebooks.info

http://www.it-ebooks.info/

86 Chapter 2. Basic Data Structures

C-2.8 Describe the structure and pseudocode for an array-based implementation of an
index-based list that achieves O(1) time for insertions and removals at index 0,
as well as insertions and removals at the end of the list. Your implementation
should also provide for a constant-time get method.

C-2.9 Using an array-based list, describe an efficient way of putting a sequence rep-
resenting a deck of n cards into random order. Use the function randomInt(n),
which returns a random number between 0 and n − 1, inclusive. Your method
should guarantee that every possible ordering is equally likely. What is the run-
ning time of your method?

C-2.10 Design an algorithm for drawing a binary tree, using quantities computed in a
tree traversal.

C-2.11 Design algorithms for the following operations for a node v in a binary tree T :

• preorderNext(v): return the node visited after v in a preorder traversal
of T

• inorderNext(v): return the node visited after v in an inorder traversal of T
• postorderNext(v): return the node visited after v in a postorder traversal

of T .

What are the worst-case running times of your algorithms?

C-2.12 Give an O(n)-time algorithm for computing the depth of all the nodes of a tree
T , where n is the number of nodes of T .

C-2.13 The balance factor of an internal node v of a binary tree is the difference between
the heights of the right and left subtrees of v. Show how to specialize the Euler
tour traversal to print the balance factors of all the nodes of a binary tree.

C-2.14 Two ordered trees T ′ and T ′′ are said to be isomorphic if one of the following
holds:

• Both T ′ and T ′′ consist of a single node

• Both T ′ and T ′′ have the same number k of subtrees, and the ith subtree of
T ′ is isomorphic to the ith subtree of T ′′, for i = 1, . . . , k.

Design an algorithm that tests whether two given ordered trees are isomorphic.
What is the running time of your algorithm?

C-2.15 Let a visit action in the Euler tour traversal be denoted by a pair (v, a), where
v is the visited node and a is one of left, below, or right. Design an algorithm
for performing operation tourNext(v, a), which returns the visit action (w, b)
following (v, a). What is the worst-case running time of your algorithm?

C-2.16 Show how to represent an improper binary tree by means of a proper one.

C-2.17 Let T be a binary tree with n nodes. Define a Roman node to be a node v in T ,
such that the number of descendants in v’s left subtree differ from the number
of descendants in v’s right subtree by at most 5. Describe a linear-time method
for finding each node v of T , such that v is not a Roman node, but all of v’s
descendants are Roman nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

2.4. Exercises 87

C-2.18 Describe in pseudocode a nonrecursive method for performing an Euler tour
traversal of a binary tree that runs in linear time and does not use a stack.

Hint: You can tell which visit action to perform at a node by taking note of where
you are coming from.

C-2.19 Describe in pseudocode a nonrecursive method for performing an inorder traver-
sal of a binary tree in linear time.

C-2.20 Let T be a binary tree with n nodes. Give a linear-time method that uses the
methods of the BinaryTree interface to traverse the nodes of T by increasing
values of the level numbering function p given in Exercise R-2.8. This traversal
is known as the level order traversal.

C-2.21 The path length of a tree T is the sum of the depths of all the nodes in T . Describe
a linear-time method for computing the path length of a tree T (which is not
necessarily binary).

C-2.22 Define the internal path length, I(T), of a tree T to be the sum of the depths of
all the internal nodes in T . Likewise, define the external path length, E(T), of
a tree T to be the sum of the depths of all the external nodes in T . Show that if
T is a binary tree with n internal nodes, then E(T) = I(T) + 2n.

Applications
A-2.1 In the children’s game “hot potato,” a group of n children sit in a circle passing an

object, called the “potato,” around the circle (say in a clockwise direction). The
children continue passing the potato until a leader rings a bell, at which point
the child holding the potato must leave the game, and the other children close up
the circle. This process is then continued until there is only one child remaining,
who is declared the winner. Using a list, describe an efficient method for imple-
menting this game. Suppose the leader always rings the bell immediately after
the potato has been passed k times. (Determining the last child remaining in this
variation of hot potato is known as the Josephus problem.) What is the running
time of your method in terms of n and k, assuming the list is implemented with
a doubly linked list? What if the list is implemented with an array?

A-2.2 Suppose you work for a company, iPuritan.com, that has strict rules for when two
employees, x and y, may date one another, requiring approval from their lowest-
level common supervisor. The employees at iPuritan.com are organized in a tree,
T , such that each node in T corresponds to an employee and each employee, z,
is considered a supervisor for all of the employees in the subtree of T rooted at
z (including z itself). The lowest-level common supervisor for x and y is the
employee lowest in the organizational chart, T , that is a supervisor for both x
and y. Thus, to find a lowest-level common supervisor for the two employees,
x and y, you need to find the lowest common ancestor (LCA) between the two
nodes for x and y, which is the lowest node in T that has both x and y as de-
scendants (where we allow a node to be a descendant of itself). Given the nodes
corresponding to the two employees x and y, describe an efficient algorithm for
finding the supervisor who may approve whether x and y may date each other,
that is, the LCA of x and y in T . What is the running time of your method?

www.it-ebooks.info

http://www.it-ebooks.info/

88 Chapter 2. Basic Data Structures

A-2.3 Suppose you work for a company, iPilgrim.com, whose n employees are or-
ganized in a tree T , so that each node is associated with an employee and each
employee is considered a supervisor for all the employees (including themselves)
in his or her subtree in T , as in the previous exercise. Furthermore, suppose that
communication in iPilgrim is done the “old fashioned” way, where, for an em-
ployee, x, to send a message to an employee, y, x must route this message up
to a lowest-level common supervisor of x and y, who then routes this message
down to y. The problem is to design an algorithm for finding the length of a
longest route that any message must travel in iPilgrim.com. That is, for any node
v in T , let dv denote the depth of v in T . The distance between two nodes v
and w in T is dv + dw − 2du, where u is the LCA u of v and w (as defined in
the previous exercise). The diameter of T is the maximum distance between two
nodes in T . Thus, the length of a longest route that any message must travel in
iPilgrim.com is equal to the diameter of T . Describe an efficient algorithm for
finding the diameter of T . What is the running time of your method?

Chapter Notes
The basic data structures of stacks, queues, and linked lists discussed in this chapter belong
to the folklore of computer science. They were first chronicled by Knuth in his seminal
book on Fundamental Algorithms [129]. In this chapter, we have taken the approach of
defining basic data structures first abstractly in terms of their methods and then in terms of
concrete implementations. This approach to data structure specification and implementa-
tion is an outgrowth of software engineering advances brought on by the object-oriented
design approach, and is now considered a standard approach for teaching data structures.
We were introduced to this approach to data structure design by the classic books by Aho,
Hopcroft, and Ullman on data structures and algorithms [8, 9].

Sequences and lists are pervasive concepts in the C++ Standard Template Library
(STL) [163], and they play fundamental roles in Java as well. Lists are also discussed in the
book by Arnold and Gosling [14]) and others, including Aho, Hopcroft, and Ullman [9],
who introduce the “position” abstraction, and Wood [217], who defines a list abstraction
similar to ours. Implementations of sequences via arrays and linked lists are discussed in
Knuth’s seminal book, Fundamental Algorithms [129].

The concept of viewing data structures as containers (and other principles of object-
oriented design) can be found in object-oriented design books by Booch [33] and
Budd [40]. The concept also exists under the name “collection class” in books by Gol-
berg and Robson [83] and Liskov and Guttag [144]. Our use of the “position” abstraction
for tree nodes derives from the “position” and “node” abstractions introduced by Aho,
Hopcroft, and Ullman [9]. Discussions of the classic preorder, inorder, and postorder tree
traversal methods can be found in Knuth’s Fundamental Algorithms book [129]. The Euler
tour traversal technique comes from the parallel algorithms community, as it is introduced
by Tarjan and Vishkin [204] and is discussed by JáJá [110] and by Karp and Ramachan-
dran [124]. The algorithm for drawing a tree is part of the “folklore” of graph drawing
algorithms. The reader interested in graph drawing is referred to the handbook edited by
Tamassia [203] and the book by Di Battista, Eades, Tamassia and Tollis [55]. The puzzler
in Exercise R-2.4 was communicated by Micha Sharir.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

3 Binary Search Trees

Lioconcha castrensis shell, 2005. Michael T. Goodrich. Used with permission.

Contents

3.1 Searches and Updates 91
3.2 Range Queries . 101
3.3 Index-Based Searching 104
3.4 Randomly Constructed Search Trees 107
3.5 Exercises . 110

www.it-ebooks.info

http://www.it-ebooks.info/

90 Chapter 3. Binary Search Trees

Figure 3.1: A three-dimensional virtual environment. U.S. Army photo.

In three-dimensional video games and virtual environments, it is important to

be able to locate objects relative to the other objects in their environment. For

example, if the system is modeling a player driving a simulated vehicle through

a virtual war zone, it is useful to know where that vehicle is relative to various

obstacles and other players. Such nearby objects are useful for the sake of rendering

a scene or identifying targets, for example. (See Figure 3.1.)

Of course, one way to do such a reference check for some object, x, relative to

a virtual environment is to compare x to every other object in the environment. For

an environment made up of n objects, such a search would require O(n) object-

object comparisons for x; hence, doing such a search for every object, x, would

take O(n2) time, which is expensive. Such a computation for a given object x
is not taking advantage of the fact that it is likely that there are potentially large

groups of objects far from x. It would be nice to quickly dismiss such groups as

being of low interest, rather than comparing each one to x individually.

For such reasons, many three-dimensional video games and virtual environ-

ments, including the earliest versions of the game Doom, create a partitioning of

space using a binary tree, by applying a technique known as binary space parti-
tioning. To create such a partitioning, we identify a plane, P , that divides the set

of objects into two groups of roughly equal size—those objects to the left of P and

those objects to the right of P . Then, for each group, we recursively subdivide them

with other separating planes until the number of objects in each subgroup is small

enough to handle as individuals. Given such a binary space partition (or BSP) tree,

we can then locate any object in the environment simply by locating it relative to

P , and then recursively locating it with respect to the objects that fall on the same

side of P as it does. Such BSP tree partitions represent a three-dimensional envi-

ronment using the data structure we discuss in this chapter, the binary search tree,

in that a BSP tree is a binary tree that stores objects at its nodes in a way that allows

us to perform searches by making left-or-right decisions at each of its nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

3.1. Searches and Updates 91

3.1 Searches and Updates
Suppose we are given an ordered set, S, of objects, represented as key-value pairs,

for which we would like to locate query objects, x, relative to the objects in this

set. That is, we would like to identify the nearest neighbors of x in S, namely, the

smallest object greater than x in S and the largest object smaller than x in S, if

these objects exist. One of the simplest ways of storing S in this way is to store

the elements of S in order in an array A. Such a representation would allow us, for

example, to identify the ith smallest key, simply by looking up the key of the item

stored in cell A[i]. In other words, if we needed a method, key(i), for accessing

the key of the ith smallest key-value pair, or elem(i), the element that is associated

with this key, then we could implement these methods in constant time given the

representation of S in sorted order in the array A. In addition, if we store the

elements of S in such a sorted array, A, then we know that the item at index i has a

key no smaller than keys of the items at indices less than i and no larger than keys

of the items at indices larger than i.

The Binary Search Algorithm

This observation allows us to quickly “home in” on a search key k using a variant of

the children’s game “high-low.” We call an item I of S a candidate if, at the current

stage of the search, we cannot rule out that I has key equal to k. The algorithm that

results from this strategy is known as binary search.

There are several ways to implement this strategy. The method we describe

here maintains two parameters, low and high, such that all the candidate items

have index at least low and at most high in S. Initially, low = 1 and high = n, and

we let key(i) denote the key at index i, which has elem(i) as its element. We then

compare k to the key of the median candidate, that is, the item with index

mid =
(low + high)/2�.
We consider three cases:

• If k = key(mid), then we have found the item we were looking for, and the

search terminates successfully returning elem(mid).
• If k < key(mid), then we recur on the first half of the vector, that is, on the

range of indices from low to mid − 1.

• If k > key(mid), we recursively search the range of indices from mid + 1 to

high.

This binary search method is given in detail in Algorithm 3.2. To initiate

a search for key k on an n-item sorted array, A, indexed from 1 to n, we call

BinarySearch(A, k, 1, n).

www.it-ebooks.info

http://www.it-ebooks.info/

92 Chapter 3. Binary Search Trees

Algorithm BinarySearch(A, k, low, high):
Input: An ordered array, A, storing n items, whose keys are accessed with

method key(i) and whose elements are accessed with method elem(i); a

search key k; and integers low and high
Output: An element of A with key k and index between low and high, if such

an element exists, and otherwise the special element null
if low > high then

return null
else

mid ←
(low + high)/2�
if k = key(mid) then

return elem(mid)
else if k < key(mid) then

return BinarySearch(A, k, low, mid − 1)
else

return BinarySearch(A, k,mid + 1, high)

Algorithm 3.2: Binary search in an ordered array.

We illustrate the binary search algorithm in Figure 3.3.

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

2 4 5 7 8 9 12 14 17 19 22 25 27 28 33 37

low high mid

high midlow

highlow mid

low=mid=high

Figure 3.3: Example of a binary search to search for an element with key 22 in a

sorted array. For simplicity, we show the keys but not the elements.

www.it-ebooks.info

http://www.it-ebooks.info/

3.1. Searches and Updates 93

Analyzing the Binary Search Algorithm

Considering the running time of binary search, we observe that a constant number

of operations are executed at each recursive call. Hence, the running time is pro-

portional to the number of recursive calls performed. A crucial fact is that, with

each recursive call, the number of candidate items still to be searched in the array

A is given by the value high− low + 1. Moreover, the number of remaining candi-

dates is reduced by at least one half with each recursive call. Specifically, from the

definition of mid, the number of remaining candidates is either

(mid − 1) − low + 1 =
⌊

low + high

2

⌋
− low ≤ high − low + 1

2

or

high − (mid + 1) + 1 = high −
⌊

low + high

2

⌋
≤ high − low + 1

2
.

Initially, the number of candidate is n; after the first call to BinarySearch, it is at

most n/2; after the second call, it is at most n/4; and so on. That is, if we let a

function, T (n), represent the running time of this method, then we can characterize

the running time of the recursive binary search algorithm as follows:

T (n) ≤
{

b if n < 2
T (n/2) + b else,

where b is a constant. In general, this recurrence equation shows that the number

of candidate items remaining after each recursive call is at most n/2i. (We discuss

recurrence equations like this one in more detail in Section 11.1.) In the worst case

(unsuccessful search), the recursive calls stop when there are no more candidate

items. Hence, the maximum number of recursive calls performed is the smallest

integer m such that n/2m < 1 . In other words (recalling that we omit a logarithm’s

base when it is 2), m > log n. Thus, we have m =
log n�+ 1, which implies that

BinarySearch(A, k, 1, n) runs in O(log n) time.

The space requirement of this solution is Θ(n), which is optimal, since we

have to store the n objects somewhere. This solution is only efficient if the set S is

static, however, that is, we don’t want to insert or delete any key-value pairs in S.

In the dynamic case, where we want to perform insertions and deletions, then such

updates take O(n) time. The reason for this poor performance in an insertion, for

instance, is due to our need to move elements in A greater than the insertion key in

order to keep all the elements in A in sorted order, similar to the methods described

in Section 2.2.1. Thus, using an ordered array to store elements to support fast

searching only makes sense for the sake of efficiency if we don’t need to perform

insertions or deletions.

www.it-ebooks.info

http://www.it-ebooks.info/

94 Chapter 3. Binary Search Trees

3.1.1 Binary Search Tree Definition

The data structure we discuss in this section, the binary search tree, applies the

motivation of the binary search procedure to a tree-based data structure, to support

update operations more efficiently. We define a binary search tree to be a binary

tree in which each internal node v stores an element e such that the elements stored

in the left subtree of v are less than or equal to e, and the elements stored in the

right subtree of v are greater than or equal to e. Furthermore, let us assume that

external nodes store no elements; hence, they could in fact be null or references to

a special NULL NODE object.

An inorder traversal of a binary search tree visits the elements stored in such

a tree in nondecreasing order. A binary search tree supports searching, where the

question asked at each internal node is whether the element at that node is less than,

equal to, or larger than the element being searched for.

We can use a binary search tree T to locate an element with a certain value x
by traversing down the tree T . At each internal node we compare the value of the

current node to our search element x. If the answer to the question is “smaller,”

then the search continues in the left subtree. If the answer is “equal,” then the

search terminates successfully. If the answer is “greater,” then the search continues

in the right subtree. Finally, if we reach an external node (which is empty), then the

search terminates unsuccessfully. (See Figure 3.4.)

12 36 75

25 42 62

31 90

58

Figure 3.4: A binary search tree storing integers. The thick solid path drawn with

thick lines is traversed when searching (successfully) for 36. The thick dashed path

is traversed when searching (unsuccessfully) for 70.

www.it-ebooks.info

http://www.it-ebooks.info/

3.1. Searches and Updates 95

3.1.2 Searching in a Binary Search Tree
Formally, a binary search tree is a binary tree, T , in which each internal node v of

T stores a key-value pair, (k, e), such that keys stored at nodes in the left subtree

of v are less than or equal to k, while keys stored at nodes in the right subtree of v
are greater than or equal to k.

In Algorithm 3.5, we give a recursive method TreeSearch, based on the above

strategy for searching in a binary search tree T . Given a search key k and a node

v of T , method TreeSearch returns a node (position) w of the subtree T (v) of T
rooted at v, such that one of the following two cases occurs:

• w is an internal node of T (v) that stores key k.

• w is an external node of T (v). All the internal nodes of T (v) that precede w
in the inorder traversal have keys smaller than k, and all the internal nodes of

T (v) that follow w in the inorder traversal have keys greater than k.

Thus, a method find(k), which returns the element associated with the key k, can

be performed on a set of key-value pairs stored in a binary search tree, T , by calling

the method TreeSearch(k, T.root()) on T . Let w be the node of T returned by

this call of the TreeSearch method. If node w is internal, we return the element

stored at w; otherwise, if w is external, then we return null.

Algorithm TreeSearch(k, v):
Input: A search key k, and a node v of a binary search tree T
Output: A node w of the subtree T (v) of T rooted at v, such that either w is an

internal node storing key k or w is the external node where an item with key

k would belong if it existed

if v is an external node then
return v

if k = key(v) then
return v

else if k < key(v) then
return TreeSearch(k, T.leftChild(v))

else
return TreeSearch(k, T.rightChild(v))

Algorithm 3.5: Recursive search in a binary search tree.

The analysis of the running time of this algorithm is simple. The binary tree

search algorithm executes a constant number of primitive operations for each node

it traverses in the tree. Each new step in the traversal is made on a child of the

previous node. That is, the binary tree search algorithm is performed on the nodes

of a path of T that starts from the root and goes down one level at a time. Thus, the

www.it-ebooks.info

http://www.it-ebooks.info/

96 Chapter 3. Binary Search Trees

number of such nodes is bounded by h + 1, where h is the height of T . In other

words, since we spend O(1) time per node encountered, the search method runs in

O(h) time, where h is the height of the binary search tree T . (See Figure 3.6.)

Figure 3.6: Illustrating the running time of searching in a binary search tree. The

figure uses standard visualization shortcuts of viewing a binary search tree as a big

triangle and a path from the root as a zig-zag line.

Admittedly, the height h of T can be as large as n, but we expect that it is usu-

ally much smaller. The best we can do for the height, h, is �log(n + 1)� (see Exer-

cise C-3.5), and we would hope that in most cases h would in fact be O(log n). For

instance, we show below, in Section 3.4, that a randomly constructed binary search

tree will have height O(log n) with high probability. For now, though, consider a

binary search tree, T , storing n items, such that, for each node v in T , each of v’s

children store at most three-quarters as many items in their subtrees as v does. Lots

of binary search trees could have this property, and, for any such tree, its height,

H(n), would satisfy the following recurrence equation:

H(n) ≤
{

1 if n < 2
H(3n/4) + 1 else.

In other words, a child of the root stores at most (3/4)n items in its subtree, any

of its children store at most (3/4)2n items in their subtrees, any of their children

store at most (3/4)3n items in their subtrees, and so on. Thus, since multiplying

by 3/4 is the same as dividing by 4/3, this implies that H(n) is at most �log4/3 n�,

which is O(log n). Intuitively, the reason we achieve a logarithmic height for T
in this case is that the subtrees rooted at each child of a node in T have roughly

“balanced” sizes.

We show in the next chapter how to maintain an upper bound of O(log n) on

the height of a search tree T , by maintaining similar notions of balance, even while

performing insertions and deletions. Before we describe such schemes, however,

let us describe how to do insertions and deletions in a standard binary search tree.

www.it-ebooks.info

http://www.it-ebooks.info/

3.1. Searches and Updates 97

3.1.3 Insertion in a Binary Search Tree

Binary search trees allow implementations of the insert and remove operations

using algorithms that are fairly straightforward, but not trivial. To perform the

operation insert(k, e) in a binary search tree T , to insert a key-value pair, (k, e),
we perform the following algorithm (which works even if the tree holds multiple

key-value pairs with the same key):

Let w ← TreeSearch(k, T.root())
while w is an internal node do

// There is item with key equal to k in T in this case

Let w ← TreeSearch(k, T.leftChild(w))
Expand w into an internal node with two external-node children

Store (k, e) at w

The above insertion algorithm eventually traces a path from the root of T down

to an external node, w, which is the appropriate place to insert an item with key k
based on the ordering of the items stored in T . This node then gets replaced with a

new internal node accommodating the new item. Hence, an insertion adds the new

item at the “bottom” of the search tree T . An example of insertion into a binary

search tree is shown in Figure 3.7.

The analysis of the insertion algorithm is analogous to that for searching. The

number of nodes visited is proportional to the height h of T in the worst case, since

we spend O(1) time at each node visited. Thus, the above implementation of the

method insert runs in O(h) time.

97

44

17 88

32 65

54 8228

29
76

80

(a) (b)

97

44

17 88

32 65

54 8228

29
76

80

78

Figure 3.7: Insertion of an item with key 78 into a binary search tree. Finding the

position to insert is shown in (a), and the resulting tree is shown in (b).

www.it-ebooks.info

http://www.it-ebooks.info/

98 Chapter 3. Binary Search Trees

3.1.4 Deletion in a Binary Search Tree
Performing a remove(k) operation, to remove an item with key k from a binary

search tree T is a bit more complex than the insertion algorithm, since we do not

wish to create any “holes” in the tree T . Such a hole, where an internal node would

not store an element, would make it difficult if not impossible for us to correctly

perform searches in the binary search tree. Indeed, if we have many removals that

do not restructure the tree T , then there could be a large section of internal nodes

that store no elements, which would confuse any future searches. Thus, we must

implement item deletion to avoid this situation.

The removal operation starts out simple enough, since we begin by execut-

ing algorithm TreeSearch(k, T.root()) on T to find a node storing key k. If

TreeSearch returns an external node, then there is no element with key k in T ,

and we return the special element null and are done. If TreeSearch returns an

internal node w instead, then w stores an item we wish to remove.

We distinguish two cases (of increasing difficulty) of how to proceed based on

whether w is a node that is easily removed:

• If one of the children of node w is an external node, say node z, we simply

remove w and z from T , and replace w with the sibling of z (which is an

operation called removeAboveExternal(z) in Section 2.3.4).

This case is illustrated in Figure 3.8.

97

44

17 88

32 65

54 8228

29 76

80

78

(a) (b)

w
z 97

44

17 88

65

54 82

28

29

76

80

78

Figure 3.8: Deletion from the binary search tree of Figure 3.7b, where the key to

remove (32) is stored at a node (w) with an external child: (a) shows the tree before

the removal, together with the nodes affected by the operation that removes the

external node, z, and its parent, w, replacing w with the sibling of z; (b) shows the

tree T after the removal.

www.it-ebooks.info

http://www.it-ebooks.info/

3.1. Searches and Updates 99

• If both children of node w are internal nodes, we cannot simply remove the

node w from T , since this would create a “hole” in T . Instead, we proceed

as follows (see Figure 3.9):

1. We find the first internal node y that follows w in an inorder traversal

of T . Node y is the left-most internal node in the right subtree of w,

and is found by going first to the right child of w and then down T from

there, following left children. Also, the left child x of y is the external

node that immediately follows node w in the inorder traversal of T .

2. We save the element stored at w in a temporary variable t, and move

the item of y into w. This action has the effect of removing the former

item stored at w.

3. We remove x and y from T by replacing y with x’s sibling, and

removing both x and y from T (which is equivalent to opera-

tion removeAboveExternal(x) on T , using the terminology of Sec-

tion 2.3.4).

4. We return the element previously stored at w, which we had saved in

the temporary variable t.

97

44

17 88

76

54 82

28

29

80

78

(a) (b)

w
97

44

17 88

65

54 82

28

29

76

80

78

w

y

x

Figure 3.9: Deletion from the binary search tree of Figure 3.7b, where the key to

remove (65) is stored at a node whose children are both internal: (a) before the

removal; (b) after the removal.

Note that in Step 1 above, we could have selected y as the right-most internal

node in the left subtree of w.

The analysis of the removal algorithm is analogous to that of the insertion and

search algorithms. We spend O(1) time at each node visited, and, in the worst case,

the number of nodes visited is proportional to the height h of T . Thus, in a binary

search tree, T , the remove method runs in O(h) time, where h is the height of T .

www.it-ebooks.info

http://www.it-ebooks.info/

100 Chapter 3. Binary Search Trees

3.1.5 The Performance of Binary Search Trees

A binary search tree T is an efficient implementation of an ordered set of n key-

value pairs but only if the height of T is small. For instance, if T is balanced so that

it has height O(log n), then we get logarithmic-time performance for the search

and update operations described above. In the worst case, however, T could have

height as large as n; hence, it would perform like an ordered linked list in this case.

Such a worst-case configuration arises, for example, if we insert a set of keys in

increasing order. (See Figure 3.10.)

10

20

30

40

Figure 3.10: Example of a binary search tree with linear height, obtained by insert-

ing keys in increasing order.

To sum up, we characterize the performance of the binary search tree data struc-

ture in the following theorem.

Theorem 3.1: A binary search tree T with height h for n key-element items uses
O(n) space and executes the operations find, insert, and remove each in O(h)
time.

Ideally, of course, we would like our binary search tree to have height O(log n),
and there are several ways to achieve this goal, including several that we explore in

the next chapter. For instance, as we explore in this chapter (in Section 3.4), if we

construct a binary search tree, T , by inserting a set of n items in random order, then

the height of T will be O(log n) with high probability. Alternatively, if we have

our entire set, S, of n items available, then we can sort S and build a binary search

tree, T , with height O(log n) from the sorted listing of S (see Exercise A-3.2).

In addition, if we already have a binary search tree, T , of O(log n) height, and

thereafter only perform deletions from T , then each of those deletion operations

will run in O(log n) time (although interspersing insertions and deletions can lead

to poor performance if we don’t have some way to maintain balance). There are a

number of other interesting operations that can be done using binary search trees,

however, besides simple searches and insertions and deletions.

www.it-ebooks.info

http://www.it-ebooks.info/

3.2. Range Queries 101

3.2 Range Queries
Besides the operations mentioned above, there are other interesting operations that

can be performed using a binary search tree. One such operation is the range
query operation, where, we are given an ordered set, S, of key-value pairs, stored

in a binary search tree, T , and are asked to perform the following query:

findAllInRange(k1, k2): Return all the elements stored in T with key k such that

k1 ≤ k ≤ k2.

Such an operation would be useful, for example, to find all cars within a given

price range in a set of cars for sale. Suppose, then, that we have a binary search

tree T representing S. To perform the findAllInRange(k1, k2) operation, we use a

recursive method, RangeQuery, that takes as arguments, k1 and k2, and a node v
in T . If node v is external, we are done. If node v is internal, we have three cases,

depending on the value of key(v), the key of the item stored at node v:

• key(v) < k1: We recursively search the right child of v.

• k1 ≤ key(v) ≤ k2: We report element(v) and recursively search both chil-

dren of v.

• key(v) > k2: We recursively search the left child of v.

We describe the details of this search procedure in Algorithm 3.11 and we illus-

trate it in Figure 3.12. We perform operation findAllInRange(k1, k2) by calling

RangeQuery(k1, k2, T.root()).

Algorithm RangeQuery(k1, k2, v):
Input: Search keys k1 and k2, and a node v of a binary search tree T
Output: The elements stored in the subtree of T rooted at v whose keys are in

the range [k1, k2]
if T.isExternal(v) then

return ∅
if k1 ≤ key(v) ≤ k2 then

L ← RangeQuery(k1, k2, T.leftChild(v))
R ← RangeQuery(k1, k2, T.rightChild(v))
return L ∪ {element(v)} ∪ R

else if key(v) < k1 then
return RangeQuery(k1, k2, T.rightChild(v))

else if k2 < key(v) then
return RangeQuery(k1, k2, T.leftChild(v))

Algorithm 3.11: The method for performing a range query in a binary search tree.

www.it-ebooks.info

http://www.it-ebooks.info/

102 Chapter 3. Binary Search Trees

12

18 55 81

99

68

23 42 74 90

21

37

49

61

30 80

Figure 3.12: A range query using a binary search tree for the keys k1 = 30 and k2 =
80. Paths P1 and P2 of boundary nodes are drawn with thick lines. The boundary

nodes storing items with key outside the interval [k1, k2] are drawn with dashed

lines. There are four internal inside nodes.

Intuitively, the method RangeQuery is a modification of the standard binary-

tree search method (Algorithm 3.5) to search for the keys between k1 and k2, inclu-

sive. For the sake of simplifying our analysis, however, let us assume that T does

not contain items with key k1 or k2.

Let P1 be the search path traversed when performing a search in tree T for

key k1. Path P1 starts at the root of T and ends at an external node of T . Define a

path P2 similarly with respect to k2. We identify each node v of T as belonging to

one of following three groups (see Figure 3.12):

• Node v is a boundary node if v belongs to P1 or P2; a boundary node stores

an item whose key may be inside or outside the interval [k1, k2].

• Node v is an inside node if v is not a boundary node and v belongs to a

subtree rooted at a right child of a node of P1 or at a left child of a node of P2;

an internal inside node stores an item whose key is inside the interval [k1, k2].

• Node v is an outside node if v is not a boundary node and v belongs to a sub-

tree rooted at a left child of a node of P1 or at a right child of a node of P2; an

internal outside node stores an item whose key is outside the interval [k1, k2].

www.it-ebooks.info

http://www.it-ebooks.info/

3.2. Range Queries 103

Analysis of the Range Query Operation

Consider an execution of the algorithm RangeQuery(k1, k2, r), where r is the root

of T . We traverse a path of boundary nodes, calling the algorithm recursively either

on the left or on the right child, until we reach either an external node or an internal

node w (which may be the root) with key in the range [k1, k2]. In the first case (we

reach an external node), the algorithm terminates returning the empty set. In the

second case, the execution continues by calling the algorithm recursively at both

of w’s children. We know that node w is the bottommost node common to paths

P1 and P2. For each boundary node v visited from this point on, we either make a

single call at a child of v, which is also a boundary node, or we make a call at one

child of v that is a boundary node and the other child that is an inside node. Once

we visit an inside node, we will visit all of its (inside node) descendants.

Since we spend a constant amount of work per node visited by the algorithm,

the running time of the algorithm is proportional to the number of nodes visited.

We count the nodes visited as follows:

• We visit no outside nodes.

• We visit at most 2h + 1 boundary nodes, where h is the height of T , since

boundary nodes are on the search paths P1 and P2 and they share at least one

node (the root of T).

• Each time we visit an inside node v, we also visit the entire subtree Tv of

T rooted at v and we add all the elements stored at internal nodes of Tv

to the reported set. If Tv holds sv items, then it has 2sv + 1 nodes. The

inside nodes can be partitioned into j disjoint subtrees T1, . . . , Tj rooted at

children of boundary nodes, where j ≤ 2h. Denoting with si the number of

items stored in tree Ti , we have that the total number of inside nodes visited

is equal to

j∑
i=1

(2si + 1) = 2s + j ≤ 2s + 2h.

Therefore, at most 2s + 4h + 1 nodes of T are visited and the operation

findAllInRange runs in O(h + s) time. We summarize:

Theorem 3.2: A binary search tree of height h storing n items supports range
query operations with the following performance:

• The space used is O(n).
• Operation findAllInRange takes O(h + s) time, where s is the number of

elements reported.

• Operations insert and remove each take O(h) time.

www.it-ebooks.info

http://www.it-ebooks.info/

104 Chapter 3. Binary Search Trees

3.3 Index-Based Searching

We began this chapter by discussing how to search in a sorted array, A, which

allows us to quickly identify the ith smallest item in the array simply by indexing

the cell A[i]. As we mentioned, a weakness of this array representation is that it

doesn’t support efficient updates, whereas a binary search tree allows for efficient

insertions and deletions. But when we switched to a binary search tree, we lost the

ability to quickly find the ith smallest item in our set. In this section, we show how

to regain that ability with a binary search tree.

Suppose, then, that we wish to support the following operation on a binary

search tree, T , storing n key-value pairs:

select(i): Return the item with ith smallest key, for 1 ≤ i ≤ n.

For example, if i = 1, then we would return the minimum item, if i = n, then we

would return the maximum, and if i = �n/2�, then we would return the median

(assuming n is odd).

The main idea for a simple way to support this method is to augment each

node, v, in T so as to add a new field, nv, to that node, where

• nv is the number of items stored in the subtree of T rooted at v.

For instance, see Figure 3.13.

Figure 3.13: A binary search tree augmented so that each node, v, stores a count,

nv, of the number of items stored in the subtree rooted at v. We show the key for

each node inside that node and the nv value of each node next to the node, except

for external nodes, which each have an nv count of 0.

www.it-ebooks.info

http://www.it-ebooks.info/

3.3. Index-Based Searching 105

Searching and Updating Augmented Binary Search Trees

Having defined the nv count for each node in a binary search tree, T , we need to

maintain it during updates to T . Fortunately, such updates are easy.

First, note that the nv count for any external node is 0, so we don’t even need

to store an actual nv field for external nodes (especially if they are null objects).

To keep the nv counts for internal nodes up to date, we simply need to modify the

insertion and deletion methods as follows:

• If we are doing an insertion at a node, w, in T (which was previously an

external node), then we set nw = 1 and we increment the nv count for each

node v that is an ancestor of w, that is, on the path from w to the root of T .

• If we are doing a deletion at a node, w, in T , then we decrement the nv count

for each node v that is on the path from w’s parent to the root of T .

In either the insertion or deletion case, the additional work needed to perform the

updates to nv counts takes O(h) time, where h is the height of T . This updating

takes an additional amount of time that is O(h), where h is the height of T , because

we spend an additional amount of O(1) time for each node from w to the root of T
in either case. (See Figure 3.14.)

Figure 3.14: A update in an a binary search tree augmented so that each node, v,

stores a count, nv, of the number of items stored in the subtree rooted at v. We show

the path taken, along with nv updates, during this update, which is an insertion of

a node with key 27 in the tree from Figure 3.13.

www.it-ebooks.info

http://www.it-ebooks.info/

106 Chapter 3. Binary Search Trees

Let us consider how to perform method select(i) on a tree, T , augmented as

described above. The main idea is to search down the tree, T , while maintaining

the value of i so that we are looking for the ith smallest key in the subtree we are

still searching in. We do this by calling the TreeSelect(i, r, T), shown in Algo-

rithm 3.15, where r is the root of T . Note that this algorithm assumes that the nv

count for any external node is 0. (See Figure 3.16.)

Algorithm TreeSelect(i, v, T):
Input: Search index i and a node v of a binary search tree T
Output: The item with ith smallest key stored in the subtree of T rooted at v

Let w ← T.leftChild(v)
if i ≤ nw then

return TreeSelect(i, w, T)
else if i = nw + 1 then

return (key(v), element(v))
else

return TreeSelect(i − nw − 1, T.rightChild(v), T)

Algorithm 3.15: The TreeSelect algorithm.

The correctness of this algorithm follows from the fact that we are always main-

taining i to be the index of the ith smallest item in the subtree we are searching in,

so that the item returned will be the correct index. In particular, note that when we

recursively search in a right subtree, we first subtract the count of the number of

items stored in the left subtree and the parent. The running time for performing this

query is O(h), where h is the height of T , since we spend O(1) time per level of T
in our search to the node storing the ith smallest key.

Figure 3.16: A search for the 10th smallest item in a binary search tree augmented

so that each node, v, stores a count, nv, of the number of items stored in the subtree

rooted at v. We show the path taken during this search, along with the value, i, that

is maintained during this search.

www.it-ebooks.info

http://www.it-ebooks.info/

3.4. Randomly Constructed Search Trees 107

3.4 Randomly Constructed Search Trees
Suppose we construct a binary search tree, T , by a sequence of insertions of n
distinct, random keys. Since the only thing that impacts the structure of T is the

relative order of the keys, we can assume, without loss of generality, that the keys

involved are the integers from 1 to n. That is, we can assume that we are given a

random permutation, P , of the keys in the set {1, 2, . . . , n}, where all permutations

are equally likely, and are asked to build the binary search tree, T , by inserting the

keys in P in the given order.

Let vj denote the node in T that holds the item with key j, and let D(vj) denote

the depth of vj in T . Note that D(vj) is a random variable, since T is constructed

at random (based on P). Define Xi,j to be a 0-1 indicator random variable that is

equal to 1 if and only if vi is an ancestor of vj , where, for the sake of this analysis,

we consider a node to be an ancestor of itself. That is, Xi,i = 1. We can write

D(vj) =
n∑

i=1

Xi,j − 1,

since the depth of a node is equal to the number of its proper ancestors. Thus, to de-

rive a bound on the expected value of D(vj), we need to determine the probability

that Xi,j is 1.

Lemma 3.3: The node vi is an ancestor of the node vj in T if and only if i appears
earliest in P of any integer in Ri,j , the range of integers between i and j, inclusive.

Proof: If i appears earliest in P of any integer in Ri,j , then, by definition, it is

inserted into T before any of these integers. Thus, at the time when j is inserted

into T , and we perform j in T , we must encounter the node vi as our depth D(vi)
comparison, since there is no other element from Ri,j at a higher level in T .

Suppose, on the other hand, that i appears earliest in P of any integer in Ri,j .

Then i is inserted into T before any item with a key in this range; hence, for the

search for j, we will encounter vi at some point along the way, since j has to be

located into this interval and, at the depth of vi, there is no other element from Ri,j

to use as a comparison key.

This fact allows us to then derive the probability that any Xi,j is 1, as follows.

Lemma 3.4: Let Xi,j be defined as above. Then Pr(Xi,j = 1) = 1/(|i−j|+1).

Proof: There are |i − j| + 1 items in the range from i to j, inclusive, and the

probability that i appears earliest in P of all of them is 1 over this number, since

all the numbers in this range have an equal and independent probability of being

earliest in P . The proof follows, then, from this fact and Lemma 3.3.

www.it-ebooks.info

http://www.it-ebooks.info/

108 Chapter 3. Binary Search Trees

An Analysis Based on Harmonic Numbers

In addition to the above lemmas, our analysis of a randomly constructed binary

search tree also involves harmonic numbers. For any integer n ≥ 1, we define the

nth harmonic number, Hn, as

Hn =
n∑

i=1

1
i
,

for which it is well known that Hn is O(log n). In fact,

lnn ≤ Hn ≤ 1 + lnn,

as we explore in Exercise C-3.11.

Harmonic numbers are important in our analysis, because of the following.

Lemma 3.5:

E[D(vj)] ≤ Hj + Hn−j+1 − 1.

Proof: To see this relationship, note that, by the linearity of expectation,

E[D(vj)] =
n∑

i=1

E[Xi,j] − 1

=
j∑

i=1

E[Xi,j] +
n∑

i=j+1

E[Xi,j] − 1

=
j∑

i=1

1
j − i + 1

+
n∑

i=j+1

1
i − j + 1

− 1

≤
j∑

k=1

1
k

+
n−j+1∑

k=1

1
k

− 1

= Hj + Hn−j+1 − 1.

So, in other words, the expected depth of any node in a randomly constructed

binary search tree with n nodes is O(log n). Or, put another way, the average depth

of the nodes in a randomly constructed binary search tree is O(log n).

Bounding the Overall Height with High Probability

In addition to the above bound for the average depth of a randomly constructed

binary search tree, we might also be interested in bounding the overall height of

such a tree, T , which is equal to the maximum depth of any node in T . In order to

analyze this maximum depth of a node in T , let us utilize the following Chernoff

bound (see Exercise C-19.14).

www.it-ebooks.info

http://www.it-ebooks.info/

3.4. Randomly Constructed Search Trees 109

Let X1, X2, . . . , Xn be a set of mutually independent indicator random vari-

ables, such that each Xi is 1 with some probability pi > 0 and 0 otherwise. Let

X =
∑n

i=1 Xi be the sum of these random variables, and let μ′ denote an upper

bound on the mean of X , that is, E(X) ≤ μ′. Then, for δ > 0,

Pr(X > (1 + δ)μ′) <

[
eδ

(1 + δ)(1+δ)

]μ′

.

Using this bound, we can derive the following theorem.

Theorem 3.6: If T is a randomly constructed binary search tree with n > 4
nodes, then the height of T is O(log n) with probability at least 1 − 1/n.

Proof: Recall that D(vj) =
∑n

i=1 Xi,j − 1. Let Lj =
∑j−1

i=1 Xi,j denote

the “left” part of this sum and Rj =
∑n

i=j+1 Xi,j denote the “right” part, with

both leaving off the term Xj,j . Then D(vj) = Lj + Rj . So, by symmetry, it is

sufficient for us to bound Rj , since a similar bound will hold for Lj . The important

observation is that all of the Xi,j terms in the definition of Rj are independent 0-1

random variables. This independence is due to the fact that whether i is chosen first

in P from {j, j + 1, . . . , i} has no bearing on whether i + 1 is chosen first in P
from {j, j + 1, . . . , i, i + 1}. Moreover, E[Rj] = Hn−j+1 ≤ Hn. Thus, by the

above Chernoff bound, for n > 4,

Pr(Rj > 4Hn) <

[
e3

44

]Hn

≤ 1
n2.5

,

since Hn ≥ lnn. Therefore, Pr(D(vj) > 8Hn) ≤ 2/n2.5, which implies that

the probability that any node in T has depth more than 8Hn is at most 2n/n2.5 =
2/n1.5. Since n > 4 and Hn is O(log n), this establishes the theorem.

So, if we construct a binary search tree, T , by inserting a set of n distinct items

in random order, then, with high probability, the height of T will be O(log n).

The Problem with Deletions

Unfortunately, if we intersperse random insertions with random deletions, using the

standard insertion and deletion algorithms given above, then the expected height of

the resulting tree is Θ(n1/2), not O(log n). Indeed, it has been reported that a major

database company experienced poor performance of one its products because of an

issue with maintaining the height of a binary search tree to be O(log n) even while

allowing for deletions. Thus, if we are hoping to achieve O(log n) depth for the

nodes in a binary search tree that is subject to both insertions and deletions, even

if these operations are for random keys, then we need to do more than simply

performing the above standard insertion and deletion operations. For example, we

could use one of the balanced search tree strategies discussed in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

110 Chapter 3. Binary Search Trees

3.5 Exercises

Reinforcement
R-3.1 Suppose you are given the array A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], and you

then perform the binary search algorithm given in this chapter to find the number
8. Which numbers in the array A are compared against the number 8?

R-3.2 Insert items with the following keys (in the given order) into an initially empty
binary search tree: 30, 40, 50, 24, 8, 58, 48, 26, 11, 13. Draw the tree that
results.

R-3.3 Suppose you have a binary search tree, T , storing numbers in the range from 1 to
500, and you do a search for the integer 250. Which of the following sequences
are possible sequences of numbers that were encountered in this search. For the
ones that are possible, draw the search path, and, for the ones that are impossible,
say why.

a. (2, 276, 264, 270, 250)

b. (100, 285, 156, 203, 275, 250)

c. (475, 360, 248, 249, 251, 250)

d. (450, 262, 248, 249, 270, 250)

R-3.4 Suppose T is a binary search tree of height 4 (including the external nodes) that is
storing all the integers in the range from 1 to 15, inclusive. Suppose further that
you do a search for the number 11. Explain why it is impossible for the sequence
of numbers you encounter in this search to be (9, 12, 10, 11).

R-3.5 Draw the binary search trees of minimum and maximum heights that store all the
integers in the range from 1 to 7, inclusive.

R-3.6 Give a pseudocode description of an algorithm to find the element with smallest
key in a binary search tree. What is the running time of your method?

R-3.7 Draw the binary search tree that results from deleting items with keys 17, 28, 54,
and 65, in this order, from the tree shown in Figure 3.7b.

R-3.8 A certain Professor Amongus claims that the order in which a fixed set of ele-
ments is inserted into a binary search tree does not matter—the same tree results
every time. Give a small example that proves Professor Amongus wrong.

R-3.9 Suppose you are given a sorted set, S, of n items, stored in a binary search tree.
How many different range queries can be done where both of the values, k1 and
k2, in the query range [k1, k2] are members of S?

R-3.10 Suppose that a binary search tree, T , is constructed by inserting the integers from
1 to n in this order. Give a big-Oh characterization of the number of comparisons
that were done to construct T .

R-3.11 Suppose you are given a binary search tree, T , which is constructed by inserting
the integers in the set {1, 2, . . . , n} in a random order into T , where all permu-
tations of this set are equally likely. What is the average running time of then
performing a select(i) operation on T ?

www.it-ebooks.info

http://www.it-ebooks.info/

3.5. Exercises 111

R-3.12 If one has a set, S, of n items, where n is even, then the median item in S is the
average of the ith and (i + 1)st smallest elements in S, where i = n/2. Describe
an efficient algorithm for computing the median of such a set S that is stored in
a binary search tree, T , where each node, v, in T is augmented with a count, nv ,
which stores the number of items stored in the subtree of T rooted at v.

R-3.13 What is H5, the 5th harmonic number?

Creativity
C-3.1 Suppose you are given a sorted array, A, of n distinct integers in the range from

1 to n + 1, so there is exactly one integer in this range missing from A. Describe
an O(log n)-time algorithm for finding the integer in this range that is not in A.

C-3.2 Let S and T be two ordered arrays, each with n items. Describe an O(log n)-
time algorithm for finding the kth smallest key in the union of the keys from S
and T (assuming no duplicates).

C-3.3 Describe how to perform the operation findAllElements(k), which returns every
element with a key equal to k (allowing for duplicates) in an ordered set of n key-
value pairs stored in an ordered array, and show that it runs in time O(log n+ s),
where s is the number of elements returned.

C-3.4 Describe how to perform the operation findAllElements(k), as defined in the
previous exercise, in an ordered set of key-value pairs implemented with a binary
search tree T , and show that it runs in time O(h + s), where h is the height of T
and s is the number of items returned.

C-3.5 Prove, by induction, that the height of a binary search tree containing n items is
at least �log(n + 1)�.

C-3.6 Describe how to perform an operation removeAllElements(k), which removes
all key-value pairs in a binary search tree T that have a key equal to k, and show
that this method runs in time O(h + s), where h is the height of T and s is the
number of items returned.

C-3.7 Let S be an ordered set of n items stored in a binary search tree, T , of height h.
Show how to perform the following method for S in O(h) time:

countAllInRange(k1, k2): Compute and return the number of items in S with
key k such that k1 ≤ k ≤ k2.

C-3.8 Describe the structure of a binary search tree, T , storing n items, such that T has
height Ω(n1/2) yet the average depth of the nodes in T is O(log n).

C-3.9 Suppose n key-value pairs all have the same key, k, and they are inserted into an
initially empty binary search tree using the algorithm described in Section 3.1.3.
Show that the height of the resulting tree is Θ(n). Also, describe a modifica-
tion to that algorithm based on the use of random choices and show that your
modification results in the binary search tree having height O(log n) with high
probability.

www.it-ebooks.info

http://www.it-ebooks.info/

112 Chapter 3. Binary Search Trees

C-3.10 Suppose that each row of an n × n array A consists of 1’s and 0’s such that, in
any row of A, all the 1’s come before any 0’s in that row. Assuming A is already
in memory, describe a method running in O(n log n) time (not O(n2) time!) for
counting the number of 1’s in A.

C-3.11 (For readers familiar with calculus): Use the fact that, for a decreasing integrable
function, f ,

∫ b+1

x=a

f(x)dx ≤
b∑

i=a

f(i) ≤
∫ b

x=a−1

f(x)dx,

to show that, for the nth harmonic number, Hn,

lnn ≤ Hn ≤ 1 + lnn.

C-3.12 Without using calculus (as in the previous exercise), show that, if n is a power of
2 greater than 1, then, for Hn, the nth harmonic number,

Hn ≤ 1 + Hn/2.

Use this fact to conclude that Hn ≤ 1 + �log n�, for any n ≥ 1.

Applications
A-3.1 Suppose you are asked to automate the prescription fulfillment system for a phar-

macy, MailDrugs. When an order comes in, it is given as a sequence of requests,
“x1 ml of drug y1,” “x2 ml of drug y2,” “x3 ml of drug y3,” and so on, where
x1 < x2 < x3 < · · · < xk. MailDrugs has a practically unlimited supply of
n distinctly sized empty drug bottles, each specified by its capacity in milliliters
(such 150 ml or 325 ml). To process a drug order, as specified above, you need to
match each request, “xi ml of drug yi,” with the size of the smallest bottle in the
inventory than can hold xi milliliters. Describe how to process such a drug order
of k requests so that it can be fulfilled in O(k log(n/k)) time, assuming the bottle
sizes are stored in an array, T , ordered by their capacities in milliliters.

A-3.2 Imagine that you work for a database company, which has a popular system for
maintaining sorted sets. After a negative review in an influential technology web-
site, the company has decided it needs to convert all of its indexing software from
using sorted arrays to an indexing strategy based on using binary search trees, so
as to be able to support insertions and deletions more efficiently. Your job is to
write a program that can take a sorted array, A, of n elements, and construct a
binary search tree, T , storing these same elements, so that doing a binary search
for any element in T will run in O(log n) time. Describe an O(n)-time algorithm
for doing this conversion.

www.it-ebooks.info

http://www.it-ebooks.info/

3.5. Exercises 113

A-3.3 Suppose you work for a computer game company, which is designing a first per-
son shooting game. In this game, players stand just outside of a circular playing
field and shoot at targets inside the circle. There are a lot of players and tar-
gets, however, so, for any given player, it only makes sense to display the targets
that are close by that player. Thus, whenever a new target, t, appears, the game
should only make it visible to the players that are in the same “zone” as t. In
order to support the fast processing of such queries, you offer to build a binary
space partitioning (BSP) tree, T , for use in the game engine. You are given the
(x, y) coordinates of all n players, which are in no particular order, but are con-
strained to all lie at different locations on a circle, C. Your job is to design an
efficient algorithm for building such a BSP tree, T , so that its height is O(log n).
Thus, the root, r, of T is associated with a line, L, that divides the set of play-
ers into two groups of roughly equal size. Then, it should recursively partition
each group into two groups of roughly equal size. Describe an O(n log n)-time
algorithm for constructing such a tree T . (See Figure 3.17.)

Figure 3.17: A circular environment for a first-person shooter game, where players

are represented as points (labeled with letters), together with a two-dimensional

BSP tree for this configuration, where dividing lines and nodes are similarly num-

bered.

A-3.4 It is sometimes necessary to send a description of a binary search tree in text
form, such as in an email or text message. Since it is a significant challenge to
draw a binary search tree using text symbols, it is useful to have a completely
textural way of representing a binary search tree. Fortunately, the structure of a
binary search tree is uniquely determined by labeling each node with its preorder
and postorder numbers. Thus, we can build a textural representation of a binary
search tree T by listing its nodes sorted according to their preorder labels, and
listing each node in terms of its contents and its postorder label. For example,
the tree of Figure 3.10 would be represented as the string,

[(10, 9), (∅, 1), (20, 8), (∅, 2), (30, 7), (∅, 3), (40, 6), (∅, 5), (∅, 6)].
Describe an O(n) time method for converting an n-node binary search tree, T ,
into such a textural representation.

A-3.5 Consider the reversal of the problem from the previous exercise. Now you are
the recipient of such a message, containing a textural representation of a binary
search tree as described in the previous exercise. Describe an algorithm running
in O(n log n) time, or better, for reconstructing the binary search tree, T , that is

www.it-ebooks.info

http://www.it-ebooks.info/

114 Chapter 3. Binary Search Trees

represented in this message.

A-3.6 Suppose you are building a first-person shooter game, where virtual zombies are
climbing up a wall while the player, who is moving left and right in front of the
wall, is trying to knock them down using various weapons. The position of each
zombie is represented with a pair, (x, y), where x is the horizontal position of the
zombie and y is its height on the wall. The player’s position is specified with just
a horizontal value, xp. One of the weapons that a player can use is a bomb, which
kills the zombie that is highest on the wall from all those zombies within a given
horizontal distance, r, of xp. Suppose the zombies are stored in a binary search
tree, T , of height h, ordered in terms of their horizontal positions. Describe
a method for augmenting T so as to answer maximum-zombie queries in O(h)
time, where such a query is given by a range [xp−r, xp+r] and you need to return
the coordinates of the zombie with maximum y-value whose horizontal position,
x, is in this range. Describe the operations that must be done for inserting and
deleting zombies as well as performing maximum-zombie queries.

A-3.7 The first-century historian, Flavius Josephus, recounts the story of how, when his
band of 41 soldiers was trapped by the opposing Roman army, they chose group
suicide over surrender. They collected themselves into a circle and repeatedly put
to death every third man around the circle, closing up the circle after every death.
This process repeated around the circle until the only ones left were Josephus and
one other man, at which point they took a new vote of their group and decided
to surrender after all. Based on this story, the Josephus problem involves con-
sidering the numbers 1 to n arranged in a circle and repeatedly removing every
mth number around the circle, outputting the resulting sequence of numbers. For
example, with n = 10 and m = 4, the sequence would be

4, 8, 2, 7, 3, 10, 9, 1, 6, 5.
Given values for n and m, describe an algorithm for outputting the sequence
resulting from this instance of the Josephus problem in O(n log n) time.

Chapter Notes
Interestingly, the binary search algorithm was first published in 1946, but was not pub-
lished in a fully correct form until 1962. For some lessons to be learned from this history,
please see the related discussions in Knuth’s book [131] and the papers by Bentley [28] and
Levisse [142]. Another excellent source for additional material about binary search trees is
the book by Mehlhorn in [157]. In addition, the handbook by Gonnet and Baeza-Yates [85]
contains a number of theoretical and experimental comparisons among binary search tree
implementations. Additional reading can be found in the book by Tarjan [207], and the
chapter by Mehlhorn and Tsakalidis [160].

Our analysis of randomly constructed binary search trees is based on the analysis of
randomized search trees by Seidel and Aragon [191]. The analysis that a random sequence
of insertions and deletions in a standard binary search tree can lead to it having Θ(n1/2)
depth is due to Culberson and Munro [53]. The report of a database company that expe-
rienced poor performance of one of its products due to an issue with how to maintain a
balanced binary search tree subject to insertions and deletions is included in a paper by Sen
and Tarjan [193].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

4 Balanced Binary Search Trees

U.S. Navy Blue Angels, performing their delta formation during the Blues on
the Bay Air Show at Marine Corps Base Hawaii in 2007. U.S. government
photo by Petty Officer 2nd Class Michael Hight, U.S. Navy.

Contents

4.1 Ranks and Rotations . 117
4.2 AVL Trees . 120
4.3 Red-Black Trees . 126
4.4 Weak AVL Trees . 130
4.5 Splay Trees . 139
4.6 Exercises . 149

www.it-ebooks.info

http://www.it-ebooks.info/

116 Chapter 4. Balanced Binary Search Trees

Real-time systems are computational platforms that have real-time constraints,

where computations must complete in a given amount of time. Examples include

antilock braking systems on cars, video and audio processing systems, operating

systems kernels, and web applications. In these real-time applications, if a soft-

ware component takes too much time to finish, then the entire system can crash

(sometimes literally).

Suppose, then, that you are designing a real-time web application for users to

find A-list celebrities who are closest to them in age. In other words, your system

should maintain a set of celebrities, sorted by their birth dates. In addition, it should

allow for celebrities to be added to your set (namely, when they become popular

enough to be added to the A-list) and removed from your set (say, when they fall

off the A-list).

Most importantly, your system should support a nearest-neighbor query, where

a user specifies their birth date and your system then returns the ten A-list stars

closest in age to the user. The real-time constraint for your system is that it has to

respond in at most a few hundred milliseconds or users will notice the delay and

go to your competitor. Of course, if users would simply be looking up celebrities

with a specific birth date, you could use a lookup table, indexed by birth date, to

implement your database. But such schemes don’t support fast nearest neighbor

queries.

Note that a binary search tree, T , provides almost everything you need in or-

der to implement your system, since it can maintain a sorted set of items so as to

perform insertions and removals based on their keys (which in this case are birth

dates). It also supports nearest-neighbor queries, in that, for any key k, we can

perform a search in T for the smallest key that is greater than or equal to k, or,

alternatively, for the largest key that is less than or equal to k. Given either of the

nodes in T storing such a key, we can then perform a forward or backward inorder

traversal of T starting from that point to list neighboring smaller or larger keys.

The problem is that without some way of limiting the height of T , the worst-

case running time for performing searches and updates in T can be linear in the

number of items it stores. Indeed, this worst-case behavior occurs if we insert and

delete keys in T in a somewhat sorted order, which is likely for your database, since

celebrities are typically added to the A-list when they are in their mid-twenties and

removed when they are in their mid-fifties. Without a way to restructure T while

you are using it, this kind of updating will result in T becoming unbalanced, which

will result in poor performance for searches and updates in your system.

Fortunately, there is a solution. Namely, as we discuss in this chapter, there are

ways of restructuring a binary search tree while it is being used so that it can guar-

antee logarithmic-time performance for searches and updates. These restructuring

methods result in a class of data structures known as balanced binary search trees.

www.it-ebooks.info

http://www.it-ebooks.info/

4.1. Ranks and Rotations 117

4.1 Ranks and Rotations

Recall that a binary search tree stores elements at the internal nodes of a proper

binary tree so that the key at each left child is not greater than its parent’s key and

the key at each right child is not less than its parent’s key. Searching in a binary

search tree can be described as a recursive procedure, as we did in the previous

chapter (in Algorithm 3.5), or as an iterative method, as we show in Algorithm 4.1.

Algorithm IterativeTreeSearch(k, T):
Input: A search key k and a binary search tree, T
Output: A node in T that is either an internal node storing key k or the external

node where an item with key k would belong in T if it existed

v ← T.root()
while v is not an external node do

if k = key(v) then
return v

else if k < key(v) then
v ← T.leftChild(v)

else
v ← T.rightChild(v)

return v
Algorithm 4.1: Searching a binary search tree iteratively.

As mentioned above, the worst-case performance of searching in a binary

search tree can be as bad as linear time, since the time to perform a search is pro-

portional to the height of the search tree. Such a performance is no better than that

of looking through all the elements in a set to find an item of interest. In order to

avoid this poor performance, we need ways of maintaining the height of a search

tree to be logarithmic in the number of nodes it has.

Balanced Binary Search Trees

The primary way to achieve logarithmic running times for search and update oper-

ations in a binary search tree, T , is to perform restructuring actions on T based on

specific rules that maintain some notion of “balance” between sibling subtrees in

T . We refer to a binary search tree that can maintain a height of O(log n) through

such balancing rules and actions as a balanced binary search tree. Intuitively, the

reason balance is so important is that when a binary search tree T is balanced, the

number of nodes in the tree increases exponentially as one moves down the levels

of T . Such an exponential increase in size implies that if T stores n items, then it

will have height O(log n).

www.it-ebooks.info

http://www.it-ebooks.info/

118 Chapter 4. Balanced Binary Search Trees

In this chapter, we discuss several kinds of balanced binary search trees. Three

of these search trees—AVL trees, red-black trees, and weak AVL trees—are rank-
balanced trees, where we define an integer rank, r(v), for each node, v, in a binary

search tree, T , where r(v) is either the height of v or a value related to the height

of v. Balance in such a tree, T , is enforced by maintaining certain rules on the

relative ranks of children and sibling nodes in T . These three rank-balanced trees

have slightly different rules guaranteeing that the height of a binary search tree

satisfying these rules has logarithmic height. The final type of balanced binary

search tree we discuss in this chapter is the splay tree, which achieves its balance

in an amortized way by blindly performing a certain kind of restructuring action,

called splaying, after every access and update operation.

One restructuring operation, which is used in all of the balanced binary search

trees we discuss is known as a rotation, of which there are four types. Here, we

describe a unified restructuring operation, called trinode restructuring, which com-

bines the four types of rotations into one action. The trinode restructuring opera-

tion involves a node, x, which has a parent, y, and a grandparent, z. This operation,

restructure(x), is described in detail in Algorithm 4.2 and illustrated in Figure 4.3.

At a high level, a trinode restructure temporarily renames the nodes x, y, and z as

a, b, and c, so that a precedes b and b precedes c in an inorder traversal of T . There

are four possible ways of mapping x, y, and z to a, b, and c, as shown in Figure 4.3,

which are unified into one case by our relabeling. The trinode restructure then re-

places z with the node called b, makes the children of this node be a and c, and

makes the children of a and c be the four previous children of x, y, and z (other

than x and y) while maintaining the inorder relationships of all the nodes in T .

Algorithm restructure(x):

Input: A node x of a binary search tree T that has both a parent y and a grand-

parent z
Output: Tree T after a trinode restructuring (which corresponds to a single or

double rotation) involving nodes x, y, and z

1: Let (a, b, c) be a left-to-right (inorder) listing of the nodes x, y, and z, and let

(T0, T1, T2, T3) be a left-to-right (inorder) listing of the four subtrees of x, y,

and z that are not rooted at x, y, or z.

2: Replace the subtree rooted at z with a new subtree rooted at b.

3: Let a be the left child of b and let T0 and T1 be the left and right subtrees of a,

respectively.

4: Let c be the right child of b and let T2 and T3 be the left and right subtrees of

c, respectively.

5: Recalculate the heights of a, b, and c, (or a “standin” function for height), from

the corresponding values stored at their children, and return b.

Algorithm 4.2: The trinode restructure operation for a binary search tree.

www.it-ebooks.info

http://www.it-ebooks.info/

4.1. Ranks and Rotations 119

c = x
b = y

a = z
c = x

b = y
a = z

single rotation

T3
T2

T1

T0 T3

T2T1T0

(a)

a = x
b = y

c = z
a = x

b = y
c = z

single rotation

T3
T2

T1

T0 T3T2T1

T0

(b)

double rotationa = z

b = x
c = y a = z

b = x
c = y

T3T2
T1

T0
T0

T1

T2
T3

(c)

double rotationc = z

b = x
a = y

T0

c = z
b = x

a = y

T1
T2

T0

T1
T2 T3

T3

(d)

Figure 4.3: Schematic illustration of a trinode restructure operation (Algorithm 4.2).

Parts (a) and (b) show a single rotation, and parts (c) and (d) show a double rotation.

The modification of a tree T caused by a trinode restructure operation is often

called a rotation, because of the geometric way we can visualize the way it changes

T . If b = y (see Algorithm 4.2), the trinode restructure method is called a single
rotation, for it can be visualized as “rotating” y over z. (See Figure 4.3a and b.)

Otherwise, if b = x, the trinode restructure operation is a double rotation, for it can

be visualized as first “rotating” x over y and then over z. (See Figure 4.3c and d.)

www.it-ebooks.info

http://www.it-ebooks.info/

120 Chapter 4. Balanced Binary Search Trees

4.2 AVL Trees
The first rank-balanced search tree we discuss is the AVL tree, which is named after

its inventors, Adel’son-Vel’skii and Landis, and is also the oldest known balanced

search tree, having been invented in 1962. In this case, we define the rank, r(v), of

a node, v, in a binary tree, T , simply to be the height of v in T . The rank-balancing

rule for AVL trees is then defined as follows:

Height-balance Property: For every internal node, v, in T , the heights of the chil-

dren of v may differ by at most 1. That is, if a node, v, in T has children, x
and y, then |r(x) − r(y)| ≤ 1.

(See Figure 4.4.)

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

Figure 4.4: An AVL tree. Heights are shown next to the nodes.

An immediate consequence of the height-balance property is that any subtree

of an AVL tree is itself an AVL tree. The height-balance property has also the im-

portant consequence of keeping the height small, as shown in the following propo-

sition.

Theorem 4.1: The height of an AVL tree, T , storing n items is O(log n).

Proof: Instead of trying to find an upper bound for the height of an AVL tree

directly, let us instead concentrate on the “inverse problem” of characterizing the

minimum number of internal nodes, nh, of an AVL tree with height h. As base

cases for a recursive definition, notice that n1 = 1, because an AVL tree of height

1 must have at least one internal node, and n2 = 2, because an AVL tree of height

2 must have at least two internal nodes. Now, for the general case of an AVL tree,

T , with the minimum number of nodes for height, h, note that the root of such a

tree will have as its children’s subtrees an AVL tree with the minimum number of

nodes for height h − 1 and an AVL tree with the minimum number of nodes for

height h − 2. Taking the root itself into account, we obtain the following formula

www.it-ebooks.info

http://www.it-ebooks.info/

4.2. AVL Trees 121

for the general case, h ≥ 3:

nh = 1 + nh−1 + nh−2.

This formula implies that the nh values are strictly increasing as h increases, in a

way that corresponds to the Fibonacci sequence (e.g., see Exercise C-4.3). In other

words, nh−1 > nh−2, for h ≥ 3, which allows us to simplify the above formula as

nh > 2nh−2.

This simplified formula shows that nh at least doubles each time h increases by 2,

which intuitively means that nh grows exponentially. Formally, this simplified for-

mula implies that

nh > 2
h
2
−1. (4.1)

By taking logarithms of both sides of Equation (4.1), we obtain

log nh >
h

2
− 1,

from which we get

h < 2 log nh + 2, (4.2)

which implies that an AVL tree storing n keys has height at most 2 log n + 2.

In fact, the bound of 2 log n + 2, from Equation (4.2), for the height of an AVL

tree is an overestimate. It is possible, for instance, to show that the height of an

AVL tree storing n items is at most 1.441 log (n + 1), as is explored, for instance,

in Exercise C-4.4. In any case, by Theorem 4.1 and the analysis of binary search

trees given in Section 3.1.1, searching in an AVL tree runs in O(log n) time. The

important issue remaining is to show how to maintain the height-balance property

of an AVL tree after an insertion or removal.

Insertion

An insertion in an AVL tree T begins as in an insert operation described in Sec-

tion 3.1.3 for a (simple) binary search tree. Recall that this operation always inserts

the new item at a node w in T that was previously an external node, and it makes

w become an internal node with operation expandExternal. That is, it adds two

external-node children to w. This action may violate the height-balance property,

however, for some nodes increase their heights by one. In particular, node w, and

possibly some of its ancestors, increase their heights by one. Therefore, let us

describe how to restructure T to restore its height balance.

In the AVL tree approach to achieving balance, given a binary search tree, T , we

say that a node v of T is balanced if the absolute value of the difference between the

heights of the children of v is at most 1, and we say that it is unbalanced otherwise.

Thus, the height-balance property characterizing AVL trees is equivalent to saying

that every internal node is balanced.

www.it-ebooks.info

http://www.it-ebooks.info/

122 Chapter 4. Balanced Binary Search Trees

Suppose that T satisfies the height-balance property, and hence is an AVL tree,

prior to our inserting the new item. As we have mentioned, after performing the

operation expandExternal(w) on T , the heights of some nodes of T , including w,

increase. All such nodes are on the path of T from w to the root of T , and these

are the only nodes of T that may have just become unbalanced. (See Figure 4.5a.)

Of course, if this happens, then T is no longer an AVL tree; hence, we need a

mechanism to fix the “unbalance” that we have just caused.

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0

T1

T2

T3
88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1

54

1

T0 T1

T2

T3

x

y

z

(a) (b)

x

y
z

Figure 4.5: An example insertion of an element with key 54 in the AVL tree of

Figure 4.4: (a) after adding a new node for key 54, the nodes storing keys 78
and 44 become unbalanced; (b) a trinode restructuring restores the height-balance

property. We show the heights of nodes next to them, and we identify the nodes x,

y, and z.

We restore the balance of the nodes in the binary search tree T by a simple

“search-and-repair” strategy. In particular, let z be the first node we encounter in

going up from w toward the root of T such that z is unbalanced. (See Figure 4.5a.)

Also, let y denote the child of z with higher height (and note that y must be an

ancestor of w). Finally, let x be the child of y with higher height (and if there

is a tie, choose x to be an ancestor of w). Note that node x could be equal to w
and x is a grandchild of z. Since z became unbalanced because of an insertion in

the subtree rooted at its child y, the height of y is 2 greater than its sibling. We

now rebalance the subtree rooted at z by calling the trinode restructuring method,

restructure(x), described in Algorithm 4.2. (See Figure 4.5b.)

Thus, we restore the height-balance property locally at the nodes x, y, and z.

In addition, since after performing the new item insertion the subtree rooted at b
replaces the one formerly rooted at z, which was taller by one unit, all the ancestors

of z that were formerly unbalanced become balanced. (The justification of this fact

is left as Exercise C-4.9.) Therefore, this one restructuring also restores the height-

balance property globally. That is, one rotation (single or double) is sufficient to

restore the height-balance in an AVL tree after an insertion. Of course, we may

have to update the height values (ranks) of O(log n) nodes after an insertion, but

the amount of structural changes after an insertion in an AVL tree is O(1).

www.it-ebooks.info

http://www.it-ebooks.info/

4.2. AVL Trees 123

Removal

We begin the implementation of the remove operation on an AVL tree T as in a

regular binary search tree. We may have some additional work, however, if this

update violates the height-balance property.

In particular, after removing an internal node with operation removeAboveEx-
ternal and elevating one of its children into its place, there may be an unbalanced

node in T on the path from the parent w of the previously removed node to the root

of T . (See Figure 4.6a.) In fact, there can be one such unbalanced node at most.

(The justification of this fact is left as Exercise C-4.8.)

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1

T0

T1

T2

T3

z

y

x

(a)

8817

78

50

48

62

1

1

2

2
3

1

54

1

T0

T1

T2

T3

y

x

(b)

44

4

z

0

0

Figure 4.6: Removal of the element with key 32 from the AVL tree of Figure 4.4:

(a) after removing the node storing key 32, the root becomes unbalanced; (b) a

(single) rotation restores the height-balance property.

As with insertion, we use trinode restructuring to restore balance in the tree T .

In particular, let z be the first unbalanced node encountered going up from w toward

the root of T . Also, let y be the child of z with larger height (note that node y is

the child of z that is not an ancestor of w). Finally, let x be the child of y defined

as follows:

• if one of the children of y is taller than the other, let x be the taller child of y;

• else (both children of y have the same height), let x be the child of y on the

same side as y (that is, if y is a left child, let x be the left child of y, else let

x be the right child of y).

In any case, we then perform a restructure(x) operation, which restores the

height-balance property locally, at the subtree that was formerly rooted at z and is

now rooted at the node we temporarily called b. (See Figure 4.6b.)

This trinode restructuring may reduce the height of the subtree rooted at b by 1,

which may cause in turn an ancestor of b to become unbalanced. Thus, a single

trinode restructuring may not restore the height-balance property globally after a

removal. So, after rebalancing z, we continue walking up T looking for unbalanced

www.it-ebooks.info

http://www.it-ebooks.info/

124 Chapter 4. Balanced Binary Search Trees

nodes. If we find another unbalanced node, we perform a restructure operation to

restore its balance, and continue marching up T looking for more, all the way to

the root.

Since the height of T is O(log n), where n is the number of items, by Theo-

rem 4.1, O(log n) trinode restructurings are sufficient to restore the height-balance

property.

Pseudo-code for AVL Trees

Pseudo-code descriptions of the metods for performing the insertion and removal

operations in an AVL tree are given in Algorithm 4.7.

We also include a common rebalancing method, rebalanceAVL, which re-

stores the balance to an AVL tree after performing either an insertion or a removal.

This method, in turn, makes use of the trinode restructure operation to restore

local balance to a node after an update. The rebalanceAVL method continues

testing for unbalance up the tree, and restoring balance to any unbalanced nodes it

finds, until it reaches the root.

Summarizing the Analysis of AVL Trees

We summarize the analysis of the performance of AVL trees as follows. (See Ta-

ble 4.8.) Operations find, insert, and remove visit the nodes along a root-to-leaf

path of T , plus, possibly their siblings, and spend O(1) time per node. The in-

sertion and removal methods perform this path traversal twice, actually, once down

this path to locate the node containing the update key and once up this path after the

update has occurred, to update height values (ranks) and do any necessary rotations

to restore balance. Thus, since the height of T is O(log n) by Theorem 4.1, each of

the above operations takes O(log n) time. That is, we have the following theorem.

Theorem 4.2: An AVL tree for n key-element items uses O(n) space and exe-
cutes the operations find, insert and remove to each take O(log n) time.

Operation Time Structural Changes
find O(log n) none

insert O(log n) O(1)
remove O(log n) O(log n)

Table 4.8: Performance of an n-element AVL tree. The space usage is O(n).

www.it-ebooks.info

http://www.it-ebooks.info/

4.2. AVL Trees 125

Algorithm insertAVL(k, e, T):
Input: A key-element pair, (k, e), and an AVL tree, T
Output: An update of T to now contain the item (k, e)
v ← IterativeTreeSearch(k, T)
if v is not an external node then

return “An item with key k is already in T ”

Expand v into an internal node with two external-node children

v.key ← k
v.element ← e
v.height ← 1
rebalanceAVL(v, T)

Algorithm removeAVL(k, T):
Input: A key, k, and an AVL tree, T
Output: An update of T to now have an item (k, e) removed

v ← IterativeTreeSearch(k, T)
if v is an external node then

return “There is no item with key k in T ”

if v has no external-node child then
Let u be the node in T with key nearest to k
Move u’s key-value pair to v
v ← u

Let w be v’s smallest-height child

Remove w and v from T , replacing v with w’s sibling, z
rebalanceAVL(z, T)

Algorithm rebalanceAVL(v, T):
Input: A node, v, where an imbalance may have occurred in an AVL tree, T
Output: An update of T to now be balanced

v.height ← 1 + max{v.leftChild().height, v.rightChild().height}
while v is not the root of T do

v ← v.parent()
if |v.leftChild().height − v.rightChild().height| > 1 then

Let y be the tallest child of v and let x be the tallest child of y
v ← restructure(x) // trinode restructure operation

v.height ← 1 + max{v.leftChild().height, v.rightChild().height}

Algorithm 4.7: Methods for item insertion and removal in an AVL tree, as well

as the method for rebalancing an AVL tree. This version of the rebalance method

does not include the heuristic of stopping as soon as balance is restored, and instead

always performs any needed rebalancing operations all the way to the root.

www.it-ebooks.info

http://www.it-ebooks.info/

126 Chapter 4. Balanced Binary Search Trees

4.3 Red-Black Trees
The data structure we discuss in this section, the red-black tree, is a binary search

tree that uses a kind of “pseudo-depth” to achieve balance using the approach of

a depth-bounded search tree. In particular, a red-black tree is a binary search tree

with nodes colored red and black in a way that satisfies the following properties:

External-Node Property: Every external node is black.

Internal-node Property: The children of a red node are black.

Black-depth Property: All the external nodes have the same black depth, that is,

the same number of black nodes as proper ancestors.

Some definitions of red-black trees also require that the root of a red-black tree be

black. An example of a red-black tree is shown in Figure 4.9.

Figure 4.9: An example binary search tree that is a red-black tree. We used thin

lines to denote red nodes and the edges from red nodes to their parents. Each

external node of this red-black tree has three black proper ancestors; hence, each

such node has black depth 3.

As is our convention in this book, we assume that items are stored in the in-

ternal nodes of a red-black tree, with the external nodes being empty placeholders.

That is, we assume that red-black trees are proper binary search trees, so that ev-

ery internal node has exactly two children. This allows us to describe search and

update algorithms assuming external nodes are real, but we note in passing that

at the expense of slightly more complicated search and update methods, external

nodes could be null or references to a NULL NODE object, as long as we can still

imagine them as existing.

The reason behind all these properties that define red-black trees is that they

lead to the following.

www.it-ebooks.info

http://www.it-ebooks.info/

4.3. Red-Black Trees 127

Theorem 4.3: The height of a red-black tree storing n items is O(log n).

Proof: Let nd denote the minimum number of internal nodes in a red-black tree

where all its external nodes have black depth d. Then

• n1 = 1, since we could have a single internal node with two black external-

node children.

• nd = 1 + 2nd−1, since we get the fewest number of internal nodes when we

have a black root with two black children.

This implies that nd = 2d − 1, that is, d = log(nd + 1). Now, let T be a red-black

tree storing n items (in its internal nodes), and let d be the common black depth

of each external node in T and let h be the height of T . By the definition of nd,

d ≤ log (n + 1). Notice that the internal-node property of red-black trees implies

that it is impossible to have two consecutive red nodes on any root-to-external-node

path. Thus, if an external node, v, has black depth d, then the actual depth of v can

be at most 2d + 1 (since the root is allowed to be red). Therefore,

h ≤ 2d + 1 ≤ 2 log (n + 1) + 1.

We assume that a red-black tree is realized with a linked structure for binary

trees, in which we store an item and a color indicator at each node. Moreover,

this color indicator only needs to be a single bit, since there are only two possible

colors—red or black.

The algorithm for searching in a red-black tree T is the same as that for a

standard binary search tree. That is, we traverse down T to either an internal node

holding an item with key equal to the search key or to an external node (without

finding an item with the desired key). Thus, searching in a red-black tree takes

O(log n) time.

Performing the update operations in a red-black tree is similar to that of a binary

search tree, except that we must additionally restore the color properties. Unfor-

tunately, the methods for doing this restoration are a bit complicated when deal-

ing directly with node colors; hence, as a first step toward simpler algorithms for

performing updates in a red-black tree, we provide an alternative definition of red-

black trees, which is equivalent to the standard definition given above.

A Rank-Based Definition of Red-Black Trees

One of the biggest challenges in designing algorithms for red-black trees is that

any change to a red-black tree has to maintain the black-depth property, which is

somewhat difficult to work with. Thus, it is useful to have an alternative definition

of red-black trees that avoids an explicit black-depth property.

So, instead of assigning colors to the nodes of a binary search tree, T , let us

instead assign an integer, r(v), to each node, v, in T , which we refer to as the rank

www.it-ebooks.info

http://www.it-ebooks.info/

128 Chapter 4. Balanced Binary Search Trees

of v. In order for an assignment of ranks to be valid, the rank of any node can never

be greater than the rank of its parent. For each node v in T other than the root, we

define the rank difference of v as the difference between the rank of v and the rank

of v’s parent.

We say that an assignment of ranks to the nodes of a binary search tree is red-
black-equivalent if it satisfies the following properties.

External-Node Property: Every external node has rank 0 and its parent, if it exists,

has rank 1.

Parent Property: The rank difference of every node, other than the root, is 0 or 1.

Grandparent Property: Any node with rank difference 0 is either a child of the

root or its parent has rank difference 1.

We can show that this set of properties is equivalent to the standard properties

for red-black trees. (See Figure 4.10.)

Figure 4.10: An example binary search tree that is a red-black tree, both by the

color-based definition and the rank-based definition. We show the rank next to

each node. Note that red nodes have rank difference equal to zero.

Theorem 4.4: Every red-black tree has a red-black-equivalent rank assignment.

Proof: Suppose T is a red-black tree. Without loss of generality, we can assume

the root of T is black. Define the black height of each node v in T as the number of

black descendants of v (not counting v) on a path from v to an external node. Note

that the black-depth property implies that this notion is well-defined. Now, assign

ranks to the nodes of T according to the following.

Rank-Assignment Rule: Give each black node, v, in T a rank, r(v), equal to its

black height, and give each red node, v, a rank, r(v), equal to the rank of its

(black) parent.

www.it-ebooks.info

http://www.it-ebooks.info/

4.3. Red-Black Trees 129

Then this assignment of ranks satisfies all the properties for being red-black-

equivalent. In particular, every external node will have rank 0 and a parent of

rank 1, the rank differences of every node will be 0 or 1, and any node with rank

difference 0 will have a parent with rank difference 1.

We also have the following result.

Theorem 4.5: Every tree with a red-black-equivalent rank assignment can be col-
ored as a red-black tree.

Proof: Suppose T is a binary tree with a red-black-equivalent rank assignment.

To come up with a coloring of T , use the following.

Color-Assignment Rule: If a node has rank difference 0, then color it red; other-

wise, color it black.

Thus, by the rules for a red-black-equivalent ranking, every external node will be

colored black and every red node will have a black parent. To see that every external

node has the same black depth, note that we can easily prove by induction that the

black depth of every external node in a subtree of T rooted at v is equal to the black

height of v, since every node has rank difference 0 or 1. Therefore, all the external

nodes are at the same black depth from the root.

This rank-based definition of red-black trees is still not quite what we need to

design simple update algorithms, but it is a good first step. In the next section,

we provide an alternative rank-based balancing scheme, which results in balanced

search trees that are structurally red-black trees but have improved performance

and simpler update algorithms. Thus, we omit from this book a description of

the complicated update algorithms for red-black trees. Let us, instead, take as a

given that red-black trees can achieve O(log n)-time performance for insertions

and deletions.

Table 4.11 summarizes the running times of the main operations of a red-black

tree. The main take-away message from this table is that a red-black tree achieves

logarithmic worst-case running times for both searching and updating.

Operation Time
find O(log n)

insert O(log n)
remove O(log n)

Table 4.11: Performance of an n-element red-black tree. The space usage is O(n).

www.it-ebooks.info

http://www.it-ebooks.info/

130 Chapter 4. Balanced Binary Search Trees

4.4 Weak AVL Trees
In this section, we discuss a type of rank-balanced trees, known as weak AVL trees
or wavl trees, that have features of both AVL trees and red-black trees. That is, as

we will show, every AVL tree is a weak AVL tree, and every weak AVL tree can

be colored as a red-black tree. Weak AVL trees achieve balance by enforcing rules

about integer ranks assigned to nodes, which are a kind of “stand in” for height

rather than having nodes have ranks exactly equal to their heights, as in AVL trees.

Also, by using such ranks, wavl trees are able to achieve efficiency and have simple

update methods.

In a weak AVL tree, T , we assign an integer rank, r(v), to each node, v in T ,

such that the rank of any node is less than the rank of its parent. For each node v in

T , the rank difference for v is the difference between the rank of v and the rank of

v’s parent. An internal node is a 1, 1-node if its children each have rank difference

1. It is a 2, 2-node if its children each have rank difference 2. And it is a 1, 2-node
if it has one child with rank difference 1 and one child with rank difference 2. The

ranks assigned to the nodes in a wavl tree must satisfy the following properties.

Rank-Difference Property: The rank difference of any non-root node is 1 or 2.

External-Node Property: Every external node has rank 0.

Internal-Node Property: An internal node with two external-node children cannot

be a 2, 2-node.

Note that just by the rank-difference and external-node properties, the height of a

wavl tree, T , is less than or equal to the rank of the root of T . (See Figure 4.12.)

Figure 4.12: Example of a wavl tree. The nodes are placed at y-coordinates equal

to their ranks.

www.it-ebooks.info

http://www.it-ebooks.info/

4.4. Weak AVL Trees 131

Theorem 4.6: The height of a wavl tree storing n items is at most 2 log (n + 1).

Proof: Let nr denote the minimum number of internal nodes in a wavl tree

whose root has rank r. Then, by the rules for ranks in a wavl tree,

n0 = 0
n1 = 1
n2 = 2
nr = 1 + 2nr−2, for r ≥ 3.

This implies that nr ≥ 2r/2 − 1, that is, r ≤ 2 log (nr + 1). Thus, by the definition

of nr, r ≤ 2 log (n+1). That is, the rank of the root is at most 2 log (n+1), which

implies that the height of the tree is bounded by 2 log (n + 1), since the height of a

wavl tree is never more than the rank of its root.

Thus, wavl trees are balanced binary search trees. We also have the following.

Theorem 4.7: Every AVL tree is a weak AVL tree.

Proof: Suppose we are given an AVL tree, T , with a rank assignment, r(v), for

the nodes of T , as described in Section 4.2, so that r(v) is equal to the height of v
in T . Then, every external node in T has rank 0. In addition, by the height-balance

property for AVL trees, every internal node is either a 1, 1-node or 1, 2-node; that

is, there are no 2, 2-nodes. Thus, the standard rank assignment, r(v), for an AVL

tree implies T is a weak AVL tree.

Put another way, an AVL tree is just a weak AVL tree with no 2, 2-nodes, which

motivates the name, “weak AVL tree.” We also get a relationship that goes from

wavl trees to red-black trees.

Theorem 4.8: Every wavl tree can be colored as a red-black tree.

Proof: Suppose we are given a wavl tree, T , with a rank assignment, r(v). For

each node v in T , assign a new rank, r′(v), to each node v as follows:

r′(v) =
r(v)/2�.
Then each external node still has rank 0 and the rank difference for any node is 0 or

1. In addition, note that the rank difference, in the r(v) rank assignment, between

a node and its grandparent must be at least 2; hence, in the r′(v) rank assignment,

the parent of any node with rank difference 0 must have rank difference 1. Thus,

the r′(v) rank assignment is red-black-equivalent; hence, by Theorem 4.5, T can

be colored as a red-black tree.

Nevertheless, the relationship does not go the other way, as there are some

red-black trees that cannot be given rank assignments to make them be wavl trees

(e.g., see Exercise R-4.16). In particular, the internal-node property distinguishes

wavl trees from red-black trees. Without this property, the two types of trees are

equivalent, as Theorem 4.8 and the following theorem show.

www.it-ebooks.info

http://www.it-ebooks.info/

132 Chapter 4. Balanced Binary Search Trees

Theorem 4.9: Every red-black tree can be given a rank assignment that satisfies
the rank-difference and external-node properties.

Proof: Let T be a red-black tree. For each black node in v, let r(v) be 2 times

the black height of v. If v is red, on the other hand, let r(v) be 1 more than the

(same) rank of its black children. Then the rank of every external node is 0 and the

rank difference for any node is 1 or 2.

Insertion

The insertion algorithm for weak AVL trees is essentially the same as for AVL

trees, except that we use node ranks for wavl trees instead of node ranks that are

exactly equal to node heights. Let q denote the node in a wavl tree where we just

performed an insertion, and note that q previously was an external node. Now q
has two external-node children; hence, we increase the rank of q by 1, which in

an action called a promotion at q. We then proceed according to the following

rebalancing operation:

• If q has rank difference 1 after promotion, or if q is the root, then we are done

with the rebalancing operation. Otherwise, if q now has rank-difference 0,

with its parent, p, then we proceed according to the following two cases.

1. q’s sibling has rank-difference 1. In this case, we promote q’s parent,

p. See Figure 4.13. This fixes the rank-difference property for q, but it

may cause a violation for p. So, we replace q by p and we repeat the

rebalancing operation for this new version of q.

2. q’s sibling has rank-difference 2. Let t denote a child of q that has

rank-difference 1. By induction, such a child always exists. We

perform a trinode restructuring operation at t by calling the method,

restructure(t), described in Algorithm 4.2. See Figure 4.14. We then

set the rank of the node replacing p (i.e., the one temporarily labeled

b) with the old rank p and we set the ranks of its children so that they

both have rank-difference 1. This terminates the rebalancing operation,

since it repairs all rule violations without creating any new ones.

As mentioned above, this insertion algorithm is essentially the same as that for

AVL trees. Moreover, it doesn’t create any 2, 2-nodes. Thus, if we construct a weak

AVL tree, T , via a sequence of n insertions and don’t perform any deletions, then

the height of T is the same as that for a similarly constructed AVL tree, namely, at

most 1.441 log (n + 1). (See Exercise C-4.4.)

In addition, note that we perform at most O(1) restructuring operations for any

insertion in a weak AVL tree. Interestingly, unlike AVL trees, this same efficiency

also holds for deletion in a wavl tree.

www.it-ebooks.info

http://www.it-ebooks.info/

4.4. Weak AVL Trees 133

(a)

(b)

Figure 4.13: Case 1 of rebalancing in a wavl tree after an insertion: node q has

rank-difference 0 (a violation) and its sibling, s, has rank-difference 1. To resolve

the rank-difference violation for node q, we promote p, the parent of q. (a) If p had

rank difference 2, we are done. (b) Else (p had rank-difference 1), we now have a

violation at p.

Deletion

Let us next consider how to perform a deletion in a wavl tree T . Recall that a

deletion in a binary search tree operates on a node v with an external-node child

u and another child q (which may also be an external node). Note that if q is an

internal node, q has rank 1 and v has rank 2. Else (q is an external node), q has rank

0 and v has rank 1.

To perform the deletion, nodes u and v are removed. If v was the root, then

q becomes the new root. Otherwise, let p be the former parent of v. Node q now

becomes a child of p. Note that p is either null or has rank 2, 3, or 4. Still, it

www.it-ebooks.info

http://www.it-ebooks.info/

134 Chapter 4. Balanced Binary Search Trees

(a)

(b)

Figure 4.14: Case 2 of rebalancing in a wavl tree after an insertion: node q has

rank-difference 0 (a violation) and its sibling, s, has rank-difference 2. To resolve

the violation for node q, we perform a trinode restructuring operation at t.

cannot be the case that q has rank 0 and p has rank 4, since that would mean v had

rank 2 with two rank-0 children, which is a violation of the internal-node property.

Thus, after deletion, q has rank-difference 2 or 3 unless it is the root. If q has rank-

difference 3, the deletion has caused a violation of the rank-difference property. To

remedy this violation we perform a rebalancing operation. Let s be the sibling of

q. We consider two cases:

www.it-ebooks.info

http://www.it-ebooks.info/

4.4. Weak AVL Trees 135

1. If s has rank difference 2 with p, then we reduce the rank of p by 1, which

is called a demotion, as shown in Figure 4.15. The demotion of p repairs the

violation of the rank-difference property at q. But it may case a violation of

the rank-difference property at p. So, in this case, we relabel p as q, and we

repeat the rebalancing operation.

2. Else (s has rank difference 1 with p), we consider two subcases:

(a) Both children of s have rank-difference 2. In this case, we demote both

p and s, as shown in Figure 4.16. These demotions repair the rank-

difference violation at q (and avoid a violation at s). But they may

create a rank-difference violation at p. So, in this case, we relabel p as

q, and we repeat the rebalancing operation.

(b) Node s has at least one child, t, with rank-difference 1. When both

children of s have rank-difference 1, we pick t as follows: if s is a

left child, then t is the left child of s, else t is the right child of s. In

this case, we perform a trinode restructuring operation at t, by calling

method, restructure(t), described in Algorithm 4.2. See Figure 4.17,

which also shows how to set the ranks of p, s and t. These actions repair

the rank-difference violation at q and do not create any new violations.

Thus, we can restore the balance after a deletion in a wavl tree after a sequence

of at most O(log n) demotions followed by a single trinode restructuring operation.

Table 4.18 summarizes the performance of wavl trees, as compared to AVL

trees and red-black trees (with black roots).

AVL trees red-black trees wavl trees
H(n) 1.441 log (n + 1) 2 log (n + 1) 2 log (n + 1)

IH(n) 1.441 log (n + 1) 2 log (n + 1) 1.441 log (n + 1)
IR(n) 1 1 1

DR(n) O(log n) 2 1

search time O(log n) O(log n) O(log n)
insertion time O(log n) O(log n) O(log n)
deletion time O(log n) O(log n) O(log n)

Table 4.18: Comparing the performance of an n-element AVL tree, red-black tree,

and wavl tree, respectively. Here, H(n) denotes the worst-case height of the tree,

IH(n) denotes the worst-case height of the tree if it is built by doing n inser-

tions (starting from an empty tree) and no deletions, IR(n) denotes the worst-case

number of trinode restructuring operations that are needed after an insertion, and

DR(n) denotes the worst-case number of trinode restructuring operations that are

needed after performing a deletion in order to restore balance. The space usage

is O(n) for all of these balanced binary search trees.

www.it-ebooks.info

http://www.it-ebooks.info/

136 Chapter 4. Balanced Binary Search Trees

(a)

(b)

Figure 4.15: Case 1 of rebalancing in a wavl tree after a deletion: node q has rank-

difference 3 (a violation) and its sibling, s, has rank-difference 2. To resolve the

rank-difference violation for node q, we demote p, the parent of q. (a) If p had

rank difference 1, we are done. (b) Else (p had rank-difference 2), we now have a

violation at p.

www.it-ebooks.info

http://www.it-ebooks.info/

4.4. Weak AVL Trees 137

(a)

(b)

Figure 4.16: Case 2.a of rebalancing in a wavl tree after a deletion: node q has rank-

difference 3 (a violation), its sibling, s, has rank-difference 1, and both children of

s have rank-difference 2. To resolve the rank-difference violation for node q, we

demote both s and p, the parent of q. (a) If p had rank difference 1, we are done.

(b) Else (p had rank-difference 2), we now have a violation at p.

www.it-ebooks.info

http://www.it-ebooks.info/

138 Chapter 4. Balanced Binary Search Trees

(a)

(b)

Figure 4.17: Case 2.b of rebalancing in a wavl tree after a deletion: node q has

rank-difference 3 (a violation), its sibling, s, has rank-difference 1, and a child, t,
of s has rank-difference 1. To resolve the violation for node q, we perform a trinode

restructuring operation at t.

www.it-ebooks.info

http://www.it-ebooks.info/

4.5. Splay Trees 139

4.5 Splay Trees
The final balanced binary search tree data structure we discuss in this chapter is the

splay tree. This structure is conceptually quite different from the previously dis-

cussed balanced search trees (AVL, red-black, and wavl trees), for a splay tree does

not use any explicit ranks or rules to enforce its balance. Instead, it applies a cer-

tain move-to-root operation, called splaying after every access, in order to keep the

search tree balanced in an amortized sense. The splaying operation is performed at

the bottommost node x reached during an insertion, deletion, or even a search. The

surprising thing about splaying is that it allows us to guarantee amortized running

times for insertions, deletions, and searches that are logarithmic. The structure of a

splay tree is simply a binary search tree T . In fact, there are no additional height,

balance, or color labels that we associate with the nodes of this tree.

Splaying

Given an internal node x of a binary search tree T , we splay x by moving x to

the root of T through a sequence of restructurings. The particular restructurings

we perform are important, for it is not sufficient to move x to the root of T by

just any sequence of restructurings. The specific operation we perform to move

x up depends upon the relative positions of x, its parent y, and (if it exists) x’s

grandparent z. There are three cases that we consider.

zig-zig: The node x and its parent y are both left or right children. (See Fig-

ure 4.19.) We replace z by x, making y a child of x and z a child of y,

while maintaining the inorder relationships of the nodes in T .

10

20

30

z

y

x

T 1

T 2

T 3 T 4

10

20

30

z

y

x

T 1 T 2

T 3

T 4

(a) (b)

Figure 4.19: Zig-zig: (a) before; (b) after. There is another symmetric configuration

where x and y are left children.

www.it-ebooks.info

http://www.it-ebooks.info/

140 Chapter 4. Balanced Binary Search Trees

zig-zag: One of x and y is a left child and the other is a right child. (See Fig-

ure 4.20.) In this case, we replace z by x and make x have as its children the

nodes y and z, while maintaining the inorder relationships of the nodes in T .

10

20

30

z

x

y

T 1

T 2 T 3

T 4

10

20

30

z

x

y

T 1 T 2 T 3 T 4

(a) (b)

Figure 4.20: Zig-zag: (a) before; (b) after. There is another symmetric configuration

where x is a right child and y is a left child.

zig: x does not have a grandparent (or we are not considering x’s grandparent for

some reason). (See Figure 4.21.) In this case, we rotate x over y, making x’s

children be the node y and one of x’s former children w, so as to maintain

the relative inorder relationships of the nodes in T .

10

20

30

y

x

w

T 1

T 2

T 3 T 4

10

20

30

y

x

w

T 1 T 2 T 3 T 4

(a) (b)

Figure 4.21: Zig: (a) before; (b) after. There is another symmetric configuration

where x and w are left children.

We perform a zig-zig or a zig-zag when x has a grandparent, and we perform a

zig when x has a parent but not a grandparent. A splaying step consists of repeating

these restructurings at x until x becomes the root of T . Note that this is not the

same as a sequence of simple rotations that brings x to the root. An example of the

splaying of a node is shown in Figures 4.22 and 4.23.

After a zig-zig or zig-zag, the depth of x decreases by two, and after a zig

the depth of x decreases by one. Thus, if x has depth d, splaying x consists of a

sequence of
d/2� zig-zigs and/or zig-zags, plus one final zig if d is odd. Since a

single zig-zig, zig-zag, or zig affects a constant number of nodes, it can be done

in O(1) time. Thus, splaying a node x in a binary search tree T takes time O(d),
where d is the depth of x in T . In other words, the time for performing a splaying

step for a node x is asymptotically the same as the time needed just to reach that

node in a top-down search from the root of T .

www.it-ebooks.info

http://www.it-ebooks.info/

4.5. Splay Trees 141

8

103

4

6

7

11

12

13

14

17

155

(a)

8

103

4

6

7

11

12

13

14

17

15

5

(b)

8

103

4

6

7

11

12

13

14

17

15

5

(c)

Figure 4.22: Example of splaying a node: (a) splaying the node storing 14 starts

with a zig-zag; (b) after the zig-zag; (c) the next step is a zig-zig.

www.it-ebooks.info

http://www.it-ebooks.info/

142 Chapter 4. Balanced Binary Search Trees

8

103

4

6

7 11

12

13

14

17

15

5

(d)

8

103

4

6

7 11

12

13

14

17

15

5

(e)

8

10

3

4

6

7

11

12

13

14

17

15

5

(f)

Figure 4.23: Example of splaying a node (continued from Figure 4.22): (d) after

the zig-zig; (e) the next step is again a zig-zig; (f) after the zig-zig.

www.it-ebooks.info

http://www.it-ebooks.info/

4.5. Splay Trees 143

When to Splay

The rules that dictate when splaying is performed are as follows:

• When searching for key k, if k is found at a node x, we splay x, else we splay

the parent of the external node at which the search terminates unsuccessfully.

For example, the splaying in Figures 4.22 and 4.23 would be performed after

searching successfully for key 14 or unsuccessfully for key 14.5.

• When inserting key k, we splay the newly created internal node where k
gets inserted. For example, the splaying in Figures 4.22 and 4.23 would

be performed if 14 were the newly inserted key. We show a sequence of

insertions in a splay tree in Figure 4.24.

1 1

2

2

1

(a) (b) (c)

2

1 3 2

1

3

2

1

3

4

(d) (e) (f)

2

1

3

4

(g)

Figure 4.24: A sequence of insertions in a splay tree: (a) initial tree; (b) after insert-

ing 2; (c) after splaying; (d) after inserting 3; (e) after splaying; (f) after inserting

4; (g) after splaying.

www.it-ebooks.info

http://www.it-ebooks.info/

144 Chapter 4. Balanced Binary Search Trees

103

4

6

11

5

8

7

7

103

4

6

11

5

(a) (b)

7

10

3

4

6

11

5

7

10

3

4

6

11

5

(c) (d)

7

103

4

6

11

5

(e)

Figure 4.25: Deletion from a splay tree: (a) the deletion of 8 from node r is per-

formed by moving to r the key of the right-most internal node v, in the left subtree

of r, deleting v, and splaying the parent u of v; (b) splaying u starts with a zig-zig;

(c) after the zig-zig; (d) the next step is a zig; (e) after the zig.

• When deleting a key k, we splay the parent of the node w that gets removed,

that is, w is either the node storing k or one of its descendants. (Recall

the deletion algorithm for binary search trees given in Section 3.1.4.) An

example of splaying following a deletion is shown in Figure 4.25.

In the worst case, the overall running time of a search, insertion, or deletion in a

splay tree of height h is O(h), since the node we splay might be the deepest node in

the tree. Moreover, it is possible for h to be Ω(n), as shown in Figure 4.24. Thus,

from a worst-case point of view, a splay tree is not an attractive data structure.

www.it-ebooks.info

http://www.it-ebooks.info/

4.5. Splay Trees 145

Amortized Analysis of Splaying

In spite of its poor worst-case performance, a splay tree performs well in an amor-

tized sense. That is, in a sequence of intermixed searches, insertions, and deletions,

each operation takes on average logarithmic time. We note that the time for per-

forming a search, insertion, or deletion is proportional to the time for the associated

splaying; hence, in our analysis, we consider only the splaying time.

Let T be a splay tree with n keys, and let v be a node of T . We define the

size n(v) of v as the number of nodes in the subtree rooted at v. Note that the size

of an internal node is one more than the sum of the sizes of its two children. We

define the rank r(v) of a node v as the logarithm in base 2 of the size of v, that

is, r(v) = log n(v). Clearly, the root of T has the maximum size 2n + 1 and the

maximum rank, log(2n + 1), while each external node has size 1 and rank 0.

We use cyber-dollars to pay for the work we perform in splaying a node x in

T , and we assume that one cyber-dollar pays for a zig, while two cyber-dollars pay

for a zig-zig or a zig-zag. Hence, the cost of splaying a node at depth d is d cyber-

dollars. We keep a virtual account, storing cyber-dollars, at each internal node of

T . Note that this account exists only for the purpose of our amortized analysis,

and does not need to be included in a data structure implementing the splay tree T .

When we perform a splaying, we pay a certain number of cyber-dollars (the exact

value will be determined later). We distinguish three cases:

• If the payment is equal to the splaying work, then we use it all to pay for the

splaying.

• If the payment is greater than the splaying work, we deposit the excess in the

accounts of several nodes.

• If the payment is less than the splaying work, we make withdrawals from the

accounts of several nodes to cover the deficiency.

We show that a payment of O(log n) cyber-dollars per operation is sufficient to

keep the system working, that is, to ensure that each node keeps a nonnegative ac-

count balance. We use a scheme in which transfers are made between the accounts

of the nodes to ensure that there will always be enough cyber-dollars to withdraw

for paying for splaying work when needed. We also maintain the following invari-

ant:

Before and after a splaying, each node v of T has r(v) cyber-dollars.

Note that the invariant does not require us to endow an empty tree with any cyber-

dollars. Let r(T) be the sum of the ranks of all the nodes of T . To preserve the

invariant after a splaying, we must make a payment equal to the splaying work plus

the total change in r(T). We refer to a single zig, zig-zig, or zig-zag operation in a

splaying as a splaying substep. Also, we denote the rank of a node v of T before and

after a splaying substep with r(v) and r ′(v), respectively. The following lemma

gives an upper bound on the change of r(T) caused by a single splaying substep.

www.it-ebooks.info

http://www.it-ebooks.info/

146 Chapter 4. Balanced Binary Search Trees

Lemma 4.10: Let δ be the variation of r(T) caused by a single splaying substep
(a zig, zig-zig, or zig-zag) for a node x in a splay tree T . We have the following:

• δ ≤ 3(r ′(x) − r(x)) − 2 if the substep is a zig-zig or zig-zag.
• δ ≤ 3(r ′(x) − r(x)) if the substep is a zig.

Proof: We shall make use of the following mathematical fact (see Appendix A):

If a > 0, b > 0, and c > a + b, then

log a + log b ≤ 2 log c − 2. (4.3)

Let us consider the change in r(T) caused by each type of splaying substep.

zig-zig: (Recall Figure 4.19.) Since the size of each node is one more than the

size of its two children, note that only the ranks of x, y, and z change in a

zig-zig operation, where y is the parent of x and z is the parent of y. Also,

r ′(x) = r(z), r ′(y) ≤ r ′(x), and r(y) ≥ r(x) . Thus,

δ = r ′(x) + r ′(y) + r ′(z) − r(x) − r(y) − r(z)
≤ r ′(y) + r ′(z) − r(x) − r(y)
≤ r ′(x) + r ′(z) − 2r(x). (4.4)

Also, n(x) + n ′(z) ≤ n ′(x). Thus, by 4.3, r(x) + r ′(z) ≤ 2r ′(x)− 2, and

r ′(z) ≤ 2r ′(x) − r(x) − 2.

This inequality and 4.4 imply

δ ≤ r ′(x) + (2r ′(x) − r(x) − 2) − 2r(x)
≤ 3(r ′(x) − r(x)) − 2.

zig-zag: (Recall Figure 4.20.) Again, by the definition of size and rank, only the

ranks of x, y, and z change, where y denotes the parent of x and z denotes

the parent of y. Also, r ′(x) = r(z) and r(x) ≤ r(y). Thus,

δ = r ′(x) + r ′(y) + r ′(z) − r(x) − r(y) − r(z)
≤ r ′(y) + r ′(z) − r(x) − r(y)
≤ r ′(y) + r ′(z) − 2r(x). (4.5)

Also, n ′(y) + n ′(z) ≤ n ′(x). Thus, by 4.3, r ′(y) + r ′(z) ≤ 2r ′(x) − 2.

This inequality and 4.5 imply

δ ≤ 2r ′(x) − 2 − 2r(x)
≤ 3(r ′(x) − r(x)) − 2.

zig: (Recall Figure 4.21.) In this case, only the ranks of x and y change, where y
denotes the parent of x. Also, r ′(y) ≤ r(y) and r ′(x) ≥ r(x). Thus,

δ = r ′(y) + r ′(x) − r(y) − r(x)
≤ r ′(x) − r(x)
≤ 3(r ′(x) − r(x)).

www.it-ebooks.info

http://www.it-ebooks.info/

4.5. Splay Trees 147

We can now bound the total variation of r(T) caused by splaying a node x.

Theorem 4.11: Let T be a splay tree with root t, and let Δ be the total variation
of r(T) caused by splaying a node x at depth d. We have

Δ ≤ 3(r(t) − r(x)) − d + 2.

Proof: Splaying node x consists of p = �d/2� splaying substeps, each of which

is a zig-zig or a zig-zag, except possibly the last one, which is a zig if d is odd. Let

r0(x) = r(x) be the initial rank of x, and for i = 1, . . . , p, let ri(x) be the rank of

x after the ith substep and δi be the variation of r(T) caused by the ith substep. By

Lemma 4.10, the total variation Δ of r(T) caused by splaying node x is given by

Δ =
p∑

i=1

δi

≤
p∑

i=1

(3(ri(x) − ri−1(x)) − 2) + 2

= 3(rp(x) − r0(x)) − 2p + 2
≤ 3(r(t) − r(x)) − d + 2.

By Theorem 4.11, if we make a payment of 3(r(t) − r(x)) + 2 cyber-dollars

toward the splaying of node x, we have enough cyber-dollars to maintain the in-

variant, keeping r(v) cyber-dollars at each node v in T , and pay for the entire

splaying work, which costs d dollars. Since the size of the root t is 2n + 1, its rank

r(t) = log(2n + 1). In addition, we have r(x) < r(t). Thus, the payment to be

made for splaying is O(log n) cyber-dollars. To complete our analysis, we have to

compute the cost for maintaining the invariant when a node is inserted or deleted.

When inserting a new node v into a splay tree with n keys, the ranks of all the

ancestors of v are increased. Namely, let v0, vi, . . . , vd be the ancestors of v, where

v0 = v, vi is the parent of vi−1, and vd is the root. For i = 1, . . . , d, let n ′(vi) and

n(vi) be the size of vi before and after the insertion, respectively, and let r ′(vi) and

r(vi) be the rank of vi before and after the insertion, respectively. We have

n ′(vi) = n(vi) + 1.

Also, since n(vi)+ 1 ≤ n(vi+1), for i = 0, 1, . . . , d− 1, we have the following for

each i in this range:

r ′(vi) = log(n ′(vi)) = log (n(vi) + 1) ≤ log (n(vi+1)) = r(vi+1).

Thus, the total variation of r(T) caused by the insertion is

d∑
i=1

(
r ′(vi) − r(vi)

) ≤ r ′(vd) +
d−1∑
i=1

(r(vi+1) − r(vi))

= r ′(vd) − r(v0)
≤ log (2n + 1).

www.it-ebooks.info

http://www.it-ebooks.info/

148 Chapter 4. Balanced Binary Search Trees

Thus, a payment of O(log n) cyber-dollars is sufficient to maintain the invariant

when a new node is inserted.

When deleting a node v from a splay tree with n keys, the ranks of all the an-

cestors of v are decreased. Thus, the total variation of r(T) caused by the deletion

is negative, and we do not need to make any payment to maintain the invariant.

Therefore, we may summarize our amortized analysis in the following theorem.

Theorem 4.12: Consider a sequence of m operations on a splay tree, each a
search, insertion, or deletion, starting from an empty splay tree with zero keys.
Also, let ni be the number of keys in the tree after operation i, and n be the to-
tal number of insertions. The total running time for performing the sequence of
operations is

O

(
m +

m∑
i=1

log ni

)
,

which is O(m log n).

In other words, the amortized running time of performing a search, insertion,

or deletion in a splay tree is O(log n), where n is the size of the splay tree at

the time. Thus, a splay tree can achieve logarithmic time amortized performance

for searching and updating. This amortized performance matches the worst-case

performance of AVL trees, red-black trees, and wavl trees, but it does so using a

simple binary tree that does not need any extra balance information stored at each

of its nodes. In addition, splay trees have a number of other interesting properties

that are not shared by these other balanced search trees. We explore one such

additional property in the following theorem (which is sometimes called the “Static

Optimality” theorem for splay trees).

Theorem 4.13: Consider a sequence of m operations on a splay tree, each a
search, insertion, or deletion, starting from a tree T with no keys. Also, let f(i)
denote the number of times the item i is accessed in the splay tree, that is, its fre-
quency, and let n be total number of items. Assuming that each item is accessed at
least once, then the total running time for performing the sequence of operations is

O

(
m +

n∑
i=1

f(i) log (m/f(i))

)
.

We leave the proof of this theorem as an exercise. The remarkable thing about

this theorem is that it states that the amortized running time of accessing an item i
is O(log (m/f(i))). For example, if a sequence of operations accesses some item i
as many as m/4 times, then the amortized running time of each of these accesses is

O(1) when we use a splay tree. Contrast this to the Ω(log n) time needed to access

this item in an AVL tree, red-black tree, or wavl tree. Thus, an additional nice

property of splay trees is that they can “adapt” to the ways in which items are being

accessed so as to achieve faster running times for the frequently accessed items.

www.it-ebooks.info

http://www.it-ebooks.info/

4.6. Exercises 149

4.6 Exercises

Reinforcement
R-4.1 Consider the insertion of items with the following keys (in the given order) into

an initially empty AVL tree: 30, 40, 24, 58, 48, 26, 11, 13. Draw the final tree
that results.

R-4.2 Consider the insertion of items with the following keys (in the given order) into
an initially empty wavl tree: 12, 44, 52, 58, 38, 27, 41, 11. Draw the final tree
that results.

R-4.3 Consider the insertion of items with the following keys (in the given order) into
an initially empty splay tree: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18. Draw the final tree
that results.

R-4.4 A certain Professor Amongus claims that the order in which a fixed set of ele-
ments is inserted into an AVL tree does not matter—the same tree results every
time. Give a small example that proves Professor Amongus wrong.

R-4.5 Professor Amongus claims he has a “patch” to his claim from the previous exer-
cise, namely, that the order in which a fixed set of elements is inserted into a wavl
tree does not matter—the same tree results every time. Give a small example that
proves that Professor Amongus is still wrong.

R-4.6 What is the minimum number of nodes in an AVL tree of height 7?

R-4.7 What is the minimum number of nodes in a red-black tree of height 8?

R-4.8 What is the minimum number of nodes in a wavl tree of height 7?

R-4.9 What is the minimum number of nodes in a splay tree of height 9?

R-4.10 Is the rotation done in Figure 4.5 a single or a double rotation? What about the
rotation in Figure 4.6?

R-4.11 Draw the AVL tree resulting from the insertion of an item with key 52 into the
AVL tree of Figure 4.6b.

R-4.12 Draw the AVL tree resulting from the removal of the item with key 62 from the
AVL tree of Figure 4.6b.

R-4.13 Draw the wavl tree resulting from the insertion of an item with key 52 into the
tree of Figure 4.6b.

R-4.14 Draw the wavl tree resulting from the removal of the item with key 62 from the
tree of Figure 4.6b.

R-4.15 Draw an example red-black tree that is not an AVL tree. Your tree should have at
least 6 nodes, but no more than 16.

R-4.16 Draw an example of a red-black tree that is not structurally equivalent to a wavl
tree.

www.it-ebooks.info

http://www.it-ebooks.info/

150 Chapter 4. Balanced Binary Search Trees

R-4.17 For each of the following statements about wavl trees, determine whether it is
true or false. If you think it is true, provide a justification. If you think it is false,
give a counterexample.

a. A subtree of a wavl tree is itself a wavl tree.

b. The sibling of an external node is either external or it has rank 1.

R-4.18 What does a splay tree look like if its items are accessed in increasing order by
their keys?

R-4.19 How many trinode restructuring operations are needed to perform the zig-zig,
zig-zag, and zig updates in splay trees? Use figures to explain your counting.

R-4.20 Describe how to implement the methods, insert(k, v) and remove(k), as well
methods, and min() and max(), which return the key-value pair with smallest and
largest key, respectively, in O(log n) time each using a balanced binary search
tree.

Creativity
C-4.1 Show that any n-node binary tree can be converted to any other n-node binary

tree using O(n) rotations.

Hint: Show that O(n) rotations suffice to convert any binary tree into a left
chain, where each internal node has an external right child.

C-4.2 The Fibonacci sequence is the sequence of numbers,

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . ,

defined by the base cases, F0 = 0 and F1 = 1, and the general-case recursive
definition, Fk = Fk−1 + Fk−2, for k ≥ 2. Show, by induction, that, for k ≥ 3,

Fk ≥ ϕk−2,

where ϕ = (1 +
√

5)/2 ≈ 1.618, which is the well-known golden ratio that
traces its history to the ancient Greeks.

Hint: Note that ϕ2 = ϕ + 1; hence, ϕk = ϕk−1 + ϕk−2, for k ≥ 3.

C-4.3 Show, by induction, that the minimum number, nh, of internal nodes in an AVL
tree of height h, as defined in the proof of Theorem 4.1, satisfies the following
identity, for h ≥ 1:

nh = Fh+2 − 1,

where Fk denotes the Fibonacci number of order k, as defined in the previous
exercise.

C-4.4 Use the facts given in the previous two exercises (and a scientific calculator) to
show that an AVL tree storing n items has height at most 1.441 log (n+1), where,
as is the custom in this book, we take the base of the “log” function to be 2.

www.it-ebooks.info

http://www.it-ebooks.info/

4.6. Exercises 151

C-4.5 Describe how to perform the operation findAllElements(k), which returns all the
items with keys equal to k in a balanced search tree, and show that it runs in time
O(log n + s), where n is the number of elements stored in the tree and s is the
number of items returned.

C-4.6 Describe how to perform the operation removeAllElements(k), which removes
all elements with keys equal to k, in a balanced search tree T , and show that this
method runs in time O(s log n), where n is the number of elements stored in the
tree and s is the number of elements with key k.

C-4.7 Draw an example of an AVL tree such that a single remove operation could re-
quire Θ(log n) trinode restructurings (or rotations) from a leaf to the root in order
to restore the height-balance property. (Use triangles to represent subtrees that
are not affected by this operation.)

C-4.8 Show that at most one node in an AVL tree becomes unbalanced after operation
removeAboveExternal is performed within the execution of a remove opera-
tion.

C-4.9 Show that at most one trinode restructure operation (which corresponds to one
single or double rotation) is needed to restore balance after any insertion in an
AVL tree.

C-4.10 Let T and U be wavl trees storing n and m items, respectively, such that all
the items in T have keys less than the keys of all the items in U . Describe an
O(log n + log m) time method for joining T and U into a single tree that stores
all the items in T and U (destroying the old versions of T and U).

C-4.11 Justify Theorem 20.1.

C-4.12 The Boolean used to mark nodes in a red-black tree as being “red” or “black”
is not strictly needed when storing a set of distinct keys. Describe a scheme for
implementing a red-black tree without adding any extra space to binary search
tree nodes in this case.

C-4.13 Let T be a wavl tree storing n items, and let k be the key of an item in T . Show
how to construct from T , in O(log n) time, two wavl trees T ′ and T ′′, such that
T ′ contains all the keys of T less than k, and T ′′ contains all the keys of T
greater than k. This operation destroys T .

C-4.14 Show that the nodes of any AVL tree T can be colored “red” and “black” so that
T becomes a red-black tree.

C-4.15 A mergeable heap supports operations insert(k, x), remove(k), unionWith(h),
and min(), where the unionWith(h) operation performs a union of the mergeable
heap h with the present one, destroying the old versions of both, and min() re-
turns the element with minimum key. Describe a implementation of a mergeable
heap that achieves O(log n) performance for all its operations. For simplicity,
you may assume that all keys in existing mergeable heaps are distinct, although
this is not strictly necessary.

C-4.16 Consider a variation of splay trees, called half-splay trees, where splaying a node
at depth d stops as soon as the node reaches depth
d/2�. Perform an amortized
analysis of half-splay trees.

www.it-ebooks.info

http://www.it-ebooks.info/

152 Chapter 4. Balanced Binary Search Trees

C-4.17 The standard splaying step requires two passes, one downward pass to find the
node x to splay, followed by an upward pass to splay the node x. Describe a
method for splaying and searching for x in one downward pass. Each substep
now requires that you consider the next two nodes in the path down to x, with
a possible zig substep performed at the end. Describe the details for performing
each of the zig-zig, zig-zag, and zig substeps.

C-4.18 Describe a sequence of accesses to an n-node splay tree T , where n is odd,
that results in T consisting of a single chain of internal nodes with external node
children, such that the internal-node path down T alternates between left children
and right children.

C-4.19 Justify Theorem 4.13. A way to establish this justification is to note that we can
redefine the “size” of a node as the sum of the access frequencies of its children
and show that the entire justification of Theorem 4.11 still goes through.

C-4.20 Suppose we are given a sorted sequence S of items (x0, x1, . . . , xn−1) such that
each item xi in S is given a positive integer weight ai. Let A denote the total
weight of all elements in S. Construct an O(n log n)-time algorithm that builds
a search tree T for S such that the depth of each item ai is O(log A/ai).

Hint: Find the item xj with largest j such that
∑j−1

i=0 ai < A/2. Consider putting
this item at the root and recursing on the two subsequences that this induces.

C-4.21 Design a linear-time algorithm for the previous problem.

Applications
A-4.1 Suppose you are working for a large dog adoption organization and are asked to

build a website showing all the dogs that your organization currently knows of
that are waiting to be placed in loving homes. You are being asked to create a
separate web page for each such dog, with these pages ordered by age, so that
the web page for a waiting dog, d, has a link to the dog just younger than d and
a link to the dog just older than d (with ties broken arbitrarily). Describe an
efficient scheme for designing an automated way to add and remove dogs from
this website (as they are respectively put up for adoption and placed in loving
homes). Sketch your methods for adding and removing dogs, and characterize
the running times of these methods in terms of n, the number of dogs currently
displayed on the website.

A-4.2 Suppose you are working for a fast-growing startup company, which we will call
“FastCo,” and it is your job to write a software package that can maintain the set,
E, of all the employees working for FastCo. In particular, your software has to
maintain, for each employee, x in E, the vital information about x, such as his
or her name and address, as well as the number of shares of stock in FastCo that
the CEO has promised to x. When an employee first joins FastCo they start out
with 0 shares of stock. Every Friday afternoon, the CEO hosts a party for all the
FastCo employees and kicks things off by promising every employee that they are
getting y more shares of stock, where the value of y tends to be different every
Friday. Describe how to implement this software so that it can simultaneously
achieve the following goals:

www.it-ebooks.info

http://www.it-ebooks.info/

4.6. Exercises 153

• The time to insert or remove an employee in E should be O(log n), where
n is the number of employees in E.

• Your system must be able to list all the employees in E in alphabetical
order in O(n) time, showing, for each x in E, the number of shares of
FastCo the CEO has promised to x.

• Your software must be able to process each Friday promise from the CEO
in O(1) time, to reflect the fact that everyone working for FastCo on that
day is being promised y more shares of stock. (Your system needs to be
this fast so that processing this update doesn’t make you miss too much of
the party.)

A-4.3 Suppose a used car dealer, Jalopy Joe, has asked you to build a website for his
car dealership. He wants this website to allow users to be able to search for a
set of cars on his lot that are in their price range. That is, viewed abstractly, he
would like you to build a system that can maintain an ordered collection, D, of
key-value pairs, such that, in addition to the standard insert and removal methods,
the implementation for D can support the following operation:

findAllInRange(k1, k2): Return all the elements in D with key k such that
k1 ≤ k ≤ k2.

In this case, of course, the keys are car prices. Describe an algorithm to imple-
ment this method in O(log n + s) time, where n is the number of cars in D and
s is the number of cars returned by an instance of this range query.

A-4.4 Suppose you are working for a victim-support group to build a website for main-
taining a set, S, containing the names of all the registered sex offenders in a given
area. The system should be able to list out the names of the people in S ordered
by their Zip codes, and, within each Zip code, ordered alphabetically. It should
also be able to list out the names of the people in S just for a given Zip code. The
running time for a full listing should be O(n), where n is the number of people in
S, and the running time for a listing for a given Zip code should be O(log n+ s),
where s is the number of names returned. Insertions and removals from S should
run in O(log n) time. Describe a scheme for achieving these bounds.

A-4.5 Suppose you are hired as a consultant to a professor, Dr. Bob Loblaw, from the
Sociology department. He is asking that you build him a software system that
can maintain a set, P , of people from a country, Phishnonia, that he is studying.
People in Phishnonia are free to come and go as they please, so Dr. Bob Loblaw
is asking that your system support fast insertions and deletions. In addition, he
is also interested in doing queries that respectively return the mean and median
ages of the people in P . His thesis is that if the median age is much smaller than
the mean, then the Phishnonia is ripe for revolution, for it implies that there are a
disproportionate number of young people. Describe a scheme for maintaining P
that can support median and mean age queries, subject to insertions and removals,
with each of these operations running in at most O(log n) time, where n is the
number of people in P .

A-4.6 Suppose your neighbor, sweet Mrs. McGregor, has invited you to her house to
help her with a computer problem. She has a huge collection of JPEG images
of bunny rabbits stored on her computer and a shoebox full of 1 gigabyte USB

www.it-ebooks.info

http://www.it-ebooks.info/

154 Chapter 4. Balanced Binary Search Trees

drives. She is asking that you help her copy her images onto the drives in a way
that minimizes the number of drives used. It is easy to determine the size of each
image, but finding the optimal way of storing images on the fewest number of
drives is an instance of the bin packing problem, which is a difficult problem
to solve in general. Nevertheless, Mrs. McGregor has suggested that you use
the first fit heuristic to solve this problem, which she recalls from her days as
a young computer scientist. In applying this heuristic here, you would consider
the images one at a time and, for each image, I , you would store it on the first
USB drive where it would fit, considering the drives in order by their remaining
storage capacity. Unfortunately, Mrs. McGregor’s way of doing this results in
an algorithm with a running time of O(mn), where m is the number of images
and n < m is the number of USB drives. Describe how to implement the first fit
algorithm here in O(m log n) time instead.

A-4.7 Suppose there is a computer game, Land-of-Candy (LoC), where a player moves
through a three-dimensional world defined by the cells in an n × n × n array,
C. Each cell, C[i, j, k], specifies the number of points that a player in LoC gets
when they are at position (i, j, k). At the start of a game in LoC, there are only
O(n) nonzero cells in C; all the other O(n3) cells in C are equal to 0. During
the course of the game, if a player moves to a position (i, j, k) such that C[i, j, k]
is nonzero, then all the points in C[i, j, k] are awarded to the player and the value
of C[i, j, k] is reduced to 0. Then the game picks another position, (i′, j′, k′), at
random and adds 100 points to C[i′, j′, k′]. The problem is that this game was
designed for playing on a large computer and now must be adapted to run on a
smartphone, which has much less memory. So you cannot afford to use O(n3)
space to represent C, as in the original version. Describe an efficient way to
represent C, which uses only O(n) space. Also describe how to lookup the value
of any cell, C[i, j, k], and how to add 100 points to any cell, C[i, j, k], efficiently
so that looking up the value of any cell, C[i, j, k], can be done in O(log n) worst-
case time or better.

Chapter Notes
AVL trees are due to Adel’son-Vel’skii and Landis [2]. Average-height analyses for binary

search trees can be found in the books by Aho, Hopcroft, and Ullman [9]. The handbook

by Gonnet and Baeza-Yates [85] contains a number of theoretical and experimental com-

parisons among search-tree implementations. Red-black trees were defined by Bayer [22],

and are discussed further by Guibas and Sedgewick [94]. Weak AVL trees were introduced

by Haeupler, Sen, and Tarjan [96]. Splay trees were invented by Sleator and Tarjan [197]

(see also [207]). Additional reading can be found in the books by Mehlhorn [157] and

Tarjan [207], and the chapter by Mehlhorn and Tsakalidis [160]. Knuth [131] provides

excellent additional reading that includes early approaches to balancing trees. Exercise C-

4.21 is inspired by a paper by Mehlhorn [156]. We are thankful to Siddhartha Sen and Bob

Tarjan for several helpful discussions regarding the topics of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

5 Priority Queues and Heaps

Wall Street during the Bankers Panic of 1907. From the New York
Public Library’s Digital Gallery, in the Irma and Paul Milstein Division
of United States History, Local History and Genealogy. 1907. Public
domain image.

Contents

5.1 Priority Queues . 157
5.2 PQ-Sort, Selection-Sort, and Insertion-Sort 158
5.3 Heaps . 163
5.4 Heap-Sort . 174
5.5 Extending Priority Queues 179
5.6 Exercises . 182

www.it-ebooks.info

http://www.it-ebooks.info/

156 Chapter 5. Priority Queues and Heaps

Instead of having people perform stock transactions by yelling at each other

on a trading floor, the NASDAQ uses a massive network of computers to process

the buying and selling of stocks of listed companies. At the heart of this network

are highly reliable systems known as matching engines, which match the trades of

buyers and sellers. A simplification of how such a system works is in terms of a

continuous limit order book, where buyers post bids to buy a number of shares in

a given stock at or below a specified price and sellers post offers to sell a number

of shares of a given stock at or above a specified price. For example, suppose a

company, Example.com, has a continuous limit order book that has the following

bids and offers currently open:

STOCK: EXAMPLE.COM

Buy Orders Sell Orders
Shares Price Time Shares Price Time

1000 4.05 20 s 500 4.06 13 s

100 4.05 6 s 2000 4.07 46 s

2100 4.03 20 s 400 4.07 22 s

1000 4.02 3 s 3000 4.10 54 s

2500 4.01 81 s 500 4.12 2 s

3000 4.20 58 s

800 4.25 33 s

100 4.50 92 s

Buy and sell orders are organized according to a price-time priority, meaning

that price has highest priority and if there are multiple orders for the same price,

then ones that have been in the order book the longest have higher priority. When a

new order is entered into the order book, the matching engine determines if a trade

can be immediately executed and if so, then it performs the appropriate matches

according to price-time priority. For example, if a new buy order for Example.com

came in for 1000 shares at a price of at most 4.10, then it would be matched with

the sell order for 500 shares at 4.06 and 500 shares of the sell order for 2000 shares

at 4.07. This transaction would reduce the latter sell order to 1500 shares at 4.07.

Similarly, if a new sell order came in for 100 shares at 4.00, it would be matched

with 100 shares of the buy order for 1000 shares at 4.05. Note in this case that

the new sell order would not be matched with the buy order for 100 shares at 4.05,

because the one for 1000 shares is older.

Such systems amount to two instances of the data structure we discuss in this

chapter—the priority queue—one for buy orders and one for sell orders. This data

structure performs element removals based on priorities assigned to elements when

they are inserted. Dealing with such priorities efficiently requires more effort than

is needed for simple stacks and queues, however, and we give an efficient priority

queue implementation in this chapter known as the heap. In addition, we show how

priority queues can be used for sorting purposes, giving rise to sorting algorithms

known as selection-sort, insertion-sort, and heap-sort.

www.it-ebooks.info

http://www.it-ebooks.info/

5.1. Priority Queues 157

5.1 Priority Queues
Applications, such as in a matching engine for performing stock trades, often re-

quire ranking objects according to parameters or properties, called “keys,” that are

assigned for each object in a collection. Formally, we define a key to be an object

that is assigned to an element as a specific attribute for that element, which can be

used to identify, rank, or weight that element. Note that the key is assigned to an

element, typically by a user or application.

Total Orders

The concept of a key as an arbitrary object type is therefore quite general. But, in

order to deal consistently with such a general definition for keys and still be able to

discuss when one key has priority over another, we need a way of robustly defining

a rule for comparing keys. That is, a priority queue needs a comparison rule that

will never contradict itself. In order for a comparison rule, denoted by ≤, to be

robust in this way, it must define a total order relation, which is to say that the

comparison rule is defined for every pair of keys and it must satisfy the following

properties:

• Reflexive property: k ≤ k.

• Antisymmetric property: if k1 ≤ k2 and k2 ≤ k1, then k1 = k2.

• Transitive property: if k1 ≤ k2 and k2 ≤ k3, then k1 ≤ k3.

Any comparison rule, ≤, that satisfies these three properties will never lead to a

comparison contradiction. In fact, such a rule defines a linear ordering relationship

among a set of keys. Thus, if a (finite) collection of elements has a total order

defined for it, then the notion of a smallest key, kmin, is well-defined. Namely, it is

a key in which kmin ≤ k, for any other key k in our collection.

Methods for Priority Queues

A priority queue is a container of elements, each having an associated key that is

provided at the time the element is inserted. The name “priority queue” is moti-

vated from the fact that keys determine the “priority” used to pick elements to be

removed. The two fundamental methods of a priority queue P are as follows:

insert(k, e): Insert an element e with key k into P .

removeMin(): Return and remove from P an element with the smallest

key, that is, an element whose key is less than or equal to

that of every other element in P .

www.it-ebooks.info

http://www.it-ebooks.info/

158 Chapter 5. Priority Queues and Heaps

5.2 PQ-Sort, Selection-Sort, and Insertion-Sort

In this section, we discuss how to use a priority queue to sort a set of elements.

PQ-Sort: Using a Priority Queue to Sort

In the sorting problem, we are given a collection C of n elements that can be

compared according to a total order relation, and we want to rearrange them in

increasing order (or at least in nondecreasing order if there are ties). The algorithm

for sorting C with a priority queue Q is quite simple and consists of the following

two phases:

1. In the first phase, we put the elements of C into an initially empty priority

queue P by means of a series of n insert operations, one for each element.

2. In the second phase, we extract the elements from P in nondecreasing order

by means of a series of n removeMin operations, putting them back into C
in order.

We give pseudocode for this algorithm in Algorithm 5.1, assuming that C is an

array of n elements. The algorithm works correctly for any priority queue P , no

matter how P is implemented. However, the running time of the algorithm is deter-

mined by the running times of operations insert and removeMin, which do depend

on how P is implemented. Indeed, PQ-Sort should be considered more a sorting

“scheme” than a sorting “algorithm,” because it does not specify how the priority

queue P is implemented. The PQ-Sort scheme is the paradigm of several popular

sorting algorithms, including selection-sort, insertion-sort, and heap-sort.

Algorithm PQ-Sort(C, P):
Input: An n-element array, C, index from 1 to n, and a priority queue P that

compares keys, which are elements of C, using a total order relation

Output: The array C sorted by the total order relation

for i ← 1 to n do
e ← C[i]
P.insert(e, e) // the key is the element itself

for i ← 1 to n do
e ← P.removeMin() // remove a smallest element from P
C[i] ← e

Algorithm 5.1: Algorithm PQ-Sort. Note that the elements of the input array C
serve both as keys and elements of the priority queue P .

www.it-ebooks.info

http://www.it-ebooks.info/

5.2. PQ-Sort, Selection-Sort, and Insertion-Sort 159

5.2.1 Selection-Sort
As our first implementation of a priority queue P , consider storing the elements

of P and their keys in an unordered list, S. Let us say that S is a general list

implemented with either an array or a doubly linked list (the choice of specific

implementation will not affect performance, as we will see). Thus, the elements

of S are pairs (k, e), where e is an element of P and k is its key. A simple way

of implementing method insert(k, e) of P is to add the new pair object p = (k, e)
at the end of the list S. This implementation of method insert takes O(1) time,

independent of whether the list is implemented using an array or a linked list (see

Section 2.2.2). This choice also means that S will be unsorted, for always inserting

items at the end of S does not take into account the ordering of the keys. As a

consequence, to perform the operation removeMin on P , we must inspect all the

elements of list S to find an element p = (k, e) of S with minimum k. Thus,

no matter how the list S is implemented, these search methods on P each take

O(n) time, where n is the number of elements in P at the time the method is

executed. Moreover, each search method runs in Ω(n) time even in the best case,

since each requires searching the entire list to find a minimum element. That is,

each such method runs in Θ(n) time. Thus, by using an unsorted list to implement

a priority queue, we achieve constant-time insertion, but the removeMin operation

takes linear time.

Analysis of PQ-Sort with an Unsorted List

If we implement the priority queue P with an unsorted list, as described above,

then the first phase of PQ-Sort takes O(n) time, for we can insert each element

in constant time. In the second phase, assuming we can compare two keys in con-

stant time, the running time of each removeMin operation is proportional to the

number of elements currently in P . Thus, the bottleneck computation in this im-

plementation is the repeated “selection” of the minimum element from an unsorted

list in phase 2. For this reason, this sorting algorithm is better known as selection-
sort. (See Figure 5.2 for an illustration of this algorithm and Algorithm 5.3 for a

pseudocode description.)

The size of P starts at n and incrementally decreases with each removeMin
until it becomes 0. Thus, the first removeMin operation takes time O(n), the second

one takes time O(n − 1), and so on, until the last (nth) operation takes time O(1).
Therefore, the total time needed for the second phase is proportional to the sum

n + (n − 1) + · · · + 2 + 1 =
n∑

i=1

i

By Theorem 1.13, we have
∑n

i=1 i = n(n+1)
2 . Thus, the second phase takes time

O(n2), as does the entire selection-sort algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

160 Chapter 5. Priority Queues and Heaps

List S Priority Queue P
Input (7, 4, 8, 2, 5, 3, 9) ()
Phase 1 (a) (4, 8, 2, 5, 3, 9) (7)

(b) (8, 2, 5, 3, 9) (7, 4)
...

...
...

(g) () (7, 4, 8, 2, 5, 3, 9)
Phase 2 (a) (2) (7, 4, 8, 5, 3, 9)

(b) (2, 3) (7, 4, 8, 5, 9)
(c) (2, 3, 4) (7, 8, 5, 9)
(d) (2, 3, 4, 5) (7, 8, 9)
(e) (2, 3, 4, 5, 7) (8, 9)
(f) (2, 3, 4, 5, 7, 8) (9)
(g) (2, 3, 4, 5, 7, 8, 9) ()

Figure 5.2: An illustration of selection-sort run on list S = (7, 4, 8, 2, 5, 3, 9). This

algorithm follows the two-phase PQ-Sort scheme and uses a priority queue P
implemented with an unsorted list. In the first phase, we repeatedly remove the first

element from S and insert it into P , as the last element of the list implementing P .

Note that at the end of the first phase, P is a copy of what was initially S. In the

second phase, we repeatedly perform removeMin operations on P , each of which

requires that we scan the entire list implementing P , and we add the elements

returned at the end of S.

Algorithm SelectionSort(A):
Input: An array A of n comparable elements, indexed from 1 to n
Output: An ordering of A so that its elements are in nondecreasing order

for i ← 1 to n − 1 do
// Find the index, s, of the smallest element in A[i..n].
s ← i
for j ← i + 1 to n do

if A[j] < A[s] then
s ← j

if i 	= s then
// Swap A[i] and A[s]
t ← A[s]; A[s] ← A[i]; A[i] ← t

return A

Algorithm 5.3: The selection-sort algorithm, described as an in-place algorithm,

where the input list, S, is given as an array, A, and only a constant amount of

memory is used in addition to that used by A. In each iteration, A[1..i − 1] is the

sorted portion and A[i..n] is the unsorted priority queue.

www.it-ebooks.info

http://www.it-ebooks.info/

5.2. PQ-Sort, Selection-Sort, and Insertion-Sort 161

5.2.2 Insertion-Sort
An alternative implementation of a priority queue P also uses a list S, except this

time let us store items ordered by key values. Thus, the first element in S is always

an element with smallest key in P . Therefore, we can implement the removeMin
method of P simply by removing the first element in S. Assuming that S is im-

plemented with a linked list or an array that supports constant-time front-element

removal (see Section 2.2.2), finding and removing the minimum in P in this case

takes O(1) time. Thus, using a sorted list allows for simple and fast implementa-

tions of priority queue access and removal methods.

This benefit comes at a cost, however, for now the insert method of P requires

that we scan through the list S to find the appropriate place to insert the new element

and key. Thus, implementing the insert method of P now requires O(n) time,

where n is the number of elements in P at the time the method is executed. In

summary, when using a sorted list to implement a priority queue, insertion runs in

linear time whereas finding and removing the minimum can be done in O(1) time.

Analysis of PQ-Sort with a Sorted List

If we implement the priority queue P using a sorted list, as described above, then

we improve the running time of the second phase of the PQ-Sort method to O(n),
for each operation removeMin on P now takes O(1) time. Unfortunately, the first

phase now becomes the bottleneck for the running time. Indeed, in the worst case,

the running time of each insert operation is proportional to the number of elements

that are currently in the priority queue, which starts out having size zero and in-

creases in size until it has size n. The first insert operation takes time O(1), the

second one takes time O(2), and so on, until the last (nth) operation takes time

O(n), in the worst case. Thus, if we use a sorted list to implement P , then the

first phase becomes the bottleneck phase. This sorting algorithm is therefore better

known as insertion-sort, for the bottleneck in this sorting algorithm involves the re-

peated “insertion” of a new element at the appropriate position in a sorted list. (See

Figure 5.4 for an illustration of this algorithm and Algorithm 5.5 for a pseudocode

description.)

Analyzing the running time of insertion-sort, we note that the first phase takes

O(
∑n

i=1 i) time in the worst case. Again, by recalling Theorem 1.13, the first

phase runs in O(n2) time, and hence so does the entire algorithm. Therefore, both

selection-sort and insertion-sort both have a running time that is O(n2).
Still, although selection-sort and insertion-sort are similar, they actually have

some interesting differences. For instance, note that selection-sort always takes

Ω(n2) time, for selecting the minimum in each step of the second phase requires

scanning the entire priority-queue sequence. The running time of insertion-sort, on

the other hand, varies depending on the input sequence. For example, if the input

sequence S is in reverse order, then insertion-sort runs in O(n) time.

www.it-ebooks.info

http://www.it-ebooks.info/

162 Chapter 5. Priority Queues and Heaps

list S priority queue P
Input (7, 4, 8, 2, 5, 3, 9) ()
Phase 1 (a) (4, 8, 2, 5, 3, 9) (7)

(b) (8, 2, 5, 3, 9) (4, 7)
(c) (2, 5, 3, 9) (4, 7, 8)
(d) (5, 3, 9) (2, 4, 7, 8)
(e) (3, 9) (2, 4, 5, 7, 8)
(f) (9) (2, 3, 4, 5, 7, 8)
(g) () (2, 3, 4, 5, 7, 8, 9)

Phase 2 (a) (2) (3, 4, 5, 7, 8, 9)
(b) (2, 3) (4, 5, 7, 8, 9)
...

...
...

(g) (2, 3, 4, 5, 7, 8, 9) ()

Figure 5.4: Schematic visualization of the execution of insertion-sort on list S =
(7, 4, 8, 2, 5, 3, 9). This algorithm follows the two-phase PQ-Sort scheme and uses

a priority queue P , implemented by means of a sorted list. In the first phase, we

repeatedly remove the first element of S and insert it into P , by scanning the list

implementing P , until we find the correct position for the element. In the second

phase, we repeatedly perform removeMin operations on P , each of which returns

the first element of the list implementing P , and we add the element at the end of S.

Algorithm InsertionSort(A):
Input: An array, A, of n comparable elements, indexed from 1 to n
Output: An ordering of A so that its elements are in nondecreasing order.

for i ← 2 to n do
x ← A[i]
// Put x in the right place in A[1..i], moving larger elements up as needed.

j ← i
while j > 1 and x < A[j − 1] do

A[j] ← A[j − 1] // move A[j − 1] up one cell

j ← j − 1
A[j] ← x

return A

Algorithm 5.5: The insertion-sort algorithm, described as an in-place algorithm,

where the input list, S, is given as an array, A, and only a constant amount of

memory is used in addition to that used by A. In each iteration, A[1..i − 1] is the

sorted priority queue and A[i..n] is the unsorted input list.

www.it-ebooks.info

http://www.it-ebooks.info/

5.3. Heaps 163

5.3 Heaps
An implementation of a priority queue that is efficient for both the insert(k, e) and

removeMin() operations is to use a heap. This data structure allows us to perform

both insertions and removals in logarithmic time. The fundamental way the heap

achieves this improvement is to abandon the idea of storing elements and keys in a

list and store elements and keys in a binary tree instead.

4

6

207

811

5

9

1214

15

2516

Figure 5.6: Example of a heap storing 13 integer keys. The last node is the one

storing key 8, and external nodes are empty.

A heap (see Figure 5.6) is a binary tree T that stores a collection of keys at

its internal nodes and that satisfies two additional properties: a relational property

defined in terms of the way keys are stored in T and a structural property defined in

terms of T itself. Also, in our definition of a heap, we assume the external nodes of

T do not store keys or elements and serve only as “place-holders.” The relational

property for T is the following:

Heap-Order Property: In a heap T , for every node v other than the root, the key

stored at v is greater than or equal to the key stored at v’s parent.

As a consequence of this property, the keys encountered on a path from the root to

an external node of T are in nondecreasing order. Also, a minimum key is always

stored at the root of T . For the sake of efficiency, we want the heap T to have

as small a height as possible. We enforce this desire by insisting that the heap T
satisfy an additional structural property:

Complete Binary Tree: A binary tree T with height h is complete if the levels

0, 1, 2, . . . , h− 1 have the maximum number of nodes possible (that is, level

i has 2i nodes, for 0 ≤ i ≤ h − 1) and in level h − 1 all the internal nodes

are to the left of the external nodes.

By saying that all the internal nodes on level h − 1 are “to the left” of the external

nodes, we mean that all the internal nodes on this level will be visited before any

external nodes on this level in an inorder traversal. (See Figure 5.6.) By insisting

that a heap T be complete, we identify another important node in a heap T , other

than the root—namely, the last node of T , which we define to be the right-most,

deepest internal node of T . (See Figure 5.6.)

www.it-ebooks.info

http://www.it-ebooks.info/

164 Chapter 5. Priority Queues and Heaps

Implementing a Priority Queue with a Heap

Our heap-based priority queue consists of the following (see Figure 5.7):

• heap: A complete binary tree T whose elements are stored at internal nodes

and have keys satisfying the heap-order property. For each internal node v of

T , we denote the key of the element stored at v as k(v).
• last: A reference to the last node of T .

• comp: A comparison rule that defines the total order relation among the keys.

Without loss of generality, we assume that comp maintains the minimum

element at the root. If instead we wish the maximum element to be at the

root, then we can redefine our comparison rule accordingly.

lastheap

(4,C)

(6,Z)

(20,B)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

comp

<
=
>

Figure 5.7: A heap-based priority queue storing integer keys and text elements.

The efficiency of this implementation is based on the following fact.

Theorem 5.1: A heap T storing n keys has height h = �log(n + 1)� .

Proof: Since T is complete, the number of internal nodes of T is at least

1 + 2 + 4 + · · · + 2h−2 + 1 = 2h−1 − 1 + 1 = 2h−1.

This lower bound is achieved when there is only one internal node on level h − 1.

Alternately, we observe that the number of internal nodes of T is at most

1 + 2 + 4 + · · · + 2h−1 = 2h − 1.

This upper bound is achieved when all the 2h−1 nodes on level h − 1 are internal.

Since the number of internal nodes is equal to the number n of keys, 2h−1 ≤ n and

n ≤ 2h − 1. Thus, by taking logarithms of both sides of these two inequalities, we

see that h ≤ log n+1 and log(n+1) ≤ h, which implies that h = �log(n+1)�.

Thus, if we can perform update operations on a heap in time proportional to its

height, then those operations will run in logarithmic time.

www.it-ebooks.info

http://www.it-ebooks.info/

5.3. Heaps 165

5.3.1 An Array-Based Structure for Binary Trees
A simple structure for representing a binary tree T , especially when it is complete,

is based on a straightforward way of numbering the nodes of T .

Level Numbering the Nodes of a Binary Tree

For every node v of T , let p(v) be the integer defined as follows:

• If v is the root of T , then p(v) = 1.

• If v is the left child of node u, then p(v) = 2p(u).

• If v is the right child of node u, then p(v) = 2p(u) + 1.

The numbering function p is known as a level numbering of the nodes in a binary

tree T , because it numbers the nodes on each level of T in increasing order from

left to right, although it may skip some numbers. (See Figure 5.8.)

... ...

1

2

5 6 7

3

4

8 9 10 11 12 13 14 15

(a)

3 1 9 5 47

3 2 3

6

/ +

+

+

1

654 7

2 3

8 9 10 11 12 13

16 17 20 21 26 27

–

– –

(b)

Figure 5.8: Example binary tree level numberings. (a) a complete binary tree; (b) a

binary expression tree that is not complete.

www.it-ebooks.info

http://www.it-ebooks.info/

166 Chapter 5. Priority Queues and Heaps

Using Level Numbers as Array Indices

The level numbering function p suggests a representation of a binary tree T using

an array, S, such that node v of T is associated with the element of S at index p(v).
(See Figure 5.9.) Alternatively, we could realize the S using an extendable array.

(See Section 1.4.2.)

3 1 9 5

+ 4 2−

× +

/

1 2 3 4 5 6 7 8 9 10 11 12 13

S

T

Figure 5.9: Representing a binary tree T using an array S.

Such an implementation is simple and fast, for we can use it to easily perform

the methods root, parent, leftChild, rightChild, sibling, isInternal, isExternal,
and isRoot by using simple arithmetic operations on the numbers p(v). (See Exer-

cise R-5.3.)

Let n be the number of nodes of T , let pM be the maximum value of p(v) for T ,

and note that the array S must have size N ≥ pM , since we need to store a value

in the array S for each node in T . Also, if T is not complete, then the array S may

have empty cells, for non-existing internal nodes of T . In fact, in the worst case,

N could be exponential in n, which makes this implementation a poor choice for

general binary trees. Nevertheless, if T is a heap, and, hence, T is complete and all

its external nodes are empty, then we can save additional space by restricting S to

exclude external nodes whose index is past that of the last internal node in the tree.

Thus, if T is a heap, then we can set N to be O(n).

www.it-ebooks.info

http://www.it-ebooks.info/

5.3. Heaps 167

An Array-Based Representation of a Heap

When a heap, T , is implemented with an array, as described above, the index of

the last node w is always equal to n, and the first empty external node z has index

equal to n + 1. (See Figure 5.10.) Note that this index for z is valid even for the

following cases:

• If the current last node w is the right-most node on its level, then z is the

left-most node of the bottommost level (see Figure 5.10b).

• If T has no internal nodes (that is, the priority queue is empty and the last

node in T is not defined), then z is the root of T .

w z w

z

(a) (b)

(c) (d)

Figure 5.10: Last node w and first external node z in a heap: (a) regular case where z
is right of w; (b) case where z is left-most on bottom level. The array representation

of (a) is shown in (c); the representation of (b) is shown in (d).

The simplifications that come from representing the heap T with an array aid

in our methods for implementing a priority queue. For example, adding a new node

in a heap implemented with an array can be done in O(1) time (assuming no array

expansion is necessary), for it simply involves assigning an element to a single cell

in the array. Likewise, removing a node in a heap implemented with an array just

involves clearing out a cell in the array, which also can be done in O(1) time. In

addition, finding the element with smallest key can easily be performed in O(1),
just by accessing the item stored at the root of the heap (which is at index 1 in the

array). Moreover, because T is a complete binary tree, the array associated with

heap T in an array-based implementation of a binary tree has 2n+1 elements, n+1
of which are place-holder external nodes by our convention. Indeed, since all the

external nodes have indices higher than any internal node, we don’t even have to

explicitly store all the external nodes. (See Figure 5.10.)

www.it-ebooks.info

http://www.it-ebooks.info/

168 Chapter 5. Priority Queues and Heaps

5.3.2 Insertion in a Heap

Let us consider how to perform the insert method for a priority queue implemented

with a heap, T . In order to store a new key-element pair (k, e) into T , we need

to add a new internal node to T . In order to keep T as a complete binary tree, we

must add this new node so that it becomes the new last node of T . That is, we must

identify the correct external node z where we can perform an expandExternal(z)
operation, which replaces z with an internal node (with empty external-node chil-

dren), and then insert the new element at z. (See Figure 5.11a–b.) Node z is called

the insertion position.

Usually, node z is the external node immediately to the right of the last node w.

(See Figure 5.10a.) In any case, by our array implementation of T , the insertion

position z is stored at index n + 1, where n is the current size of the heap. Thus,

we can identify the node z in constant time in the array implementing T . After

then performing expandExternal(z), node z becomes the last node, and we store

the new key-element pair (k, e) in it, so that k(z) = k.

Up-Heap Bubbling after an Insertion

After this action, the tree T is complete, but it may violate the heap-order property.

Hence, unless node z is the root of T (that is, the priority queue was empty before

the insertion), we compare key k(z) with the key k(u) stored at the parent u of z. If

k(u) > k(z), then we need to restore the heap-order property, which can be locally

achieved by swapping the key-element pairs stored at z and u. (See Figure 5.11c–

d.) This swap causes the new key-element pair (k, e) to move up one level. Again,

the heap-order property may be violated, and we continue swapping going up in T
until no violation of heap-order property occurs. (See Figure 5.11e–h.)

The upward movement by means of swaps is conventionally called up-heap
bubbling. A swap either resolves the violation of the heap-order property or propa-

gates it one level up in the heap. In the worst case, up-heap bubbling causes the new

key-element pair to move all the way up to the root of heap T . (See Figure 5.11.)

Thus, in the worst case, the running time of method insert is proportional to the

height of T , that is, it is O(log n) because T is complete.

If T is implemented with an array, then we can find the new last node z imme-

diately in O(1) time. For example, we could extend an array-based implementation

of a binary tree, so as to add a method that returns the node with index n + 1, that

is, with level number n + 1, as defined in Section 5.3.1. Alternately, we could even

define an add method, which adds a new element at the first external node z, at

rank n + 1 in the array. If, on the other hand, the heap T is implemented with a

linked structure, then finding the insertion position z is a little more involved. (See

Exercise C-5.4.)

www.it-ebooks.info

http://www.it-ebooks.info/

5.3. Heaps 169

(4,C)

(6,Z)

(20,B)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

(4,C)

(6,Z)

(20,B)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (2,T)

(a) (b)

(4,C)

(6,Z)

(20,B)

(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

(2,T)

(4,C)

(6,Z)

(2,T)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B)

(c) (d)

(4,C)

(6,Z)

(2,T)

(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B)

(4,C)

(2,T)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B)

(e) (f)

(4,C)

(2,T)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B)

(2,T)

(4,C)

(6,Z)(7,Q)

(8,W)(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X) (20,B)

(g) (h)

Figure 5.11: Insertion of a new element with key 2 into the heap of Figure 5.7:

(a) initial heap; (b) adding a new last node to the right of the old last node; (c)–(d)

swap to locally restore the partial order property; (e)–(f) another swap; (g)–(h) final

swap.

www.it-ebooks.info

http://www.it-ebooks.info/

170 Chapter 5. Priority Queues and Heaps

5.3.3 Removal in a Heap

The algorithm for performing method removeMin using heap T is illustrated in

Figure 5.12.

We know that an element with the smallest key is stored at the root r of the

heap T (even if there is more than one smallest key). However, unless r is the

only internal node of T , we cannot simply delete node r, because this action would

disrupt the binary tree structure. Instead, we access the last node w of T , copy

its key-element pair to the root r, and then delete the last node by performing the

update operation removeAboveExternal(u), where u = T.rightChild(w). This

operation removes the parent, w, of u, together with the node u itself, and replaces

w with its left child. (See Figure 5.12a–b.)

After this constant-time action, we need to update our reference to the last node,

which can be done simply by referencing the node at rank n (after the removal) in

the array implementing the tree T .

Down-Heap Bubbling after a Removal

We are not done, however, for, even though T is now complete, T may now violate

the heap-order property. To determine whether we need to restore the heap-order

property, we examine the root r of T . If both children of r are external nodes,

then the heap-order property is trivially satisfied and we are done. Otherwise, we

distinguish two cases:

• If the left child of r is internal and the right child is external, let s be the left

child of r.

• Otherwise (both children of r are internal), let s be a child of r with the

smallest key.

If the key k(r) stored at r is greater than the key k(s) stored at s, then we need

to restore the heap-order property, which can be locally achieved by swapping the

key-element pairs stored at r and s. (See Figure 5.12c–d.) Note that we shouldn’t

swap r with s’s sibling. The swap we perform restores the heap-order property for

node r and its children, but it may violate this property at s; hence, we may have

to continue swapping down T until no violation of the heap-order property occurs.

(See Figure 5.12e–h.)

This downward swapping process is called down-heap bubbling. A swap either

resolves the violation of the heap-order property or propagates it one level down in

the heap. In the worst case, a key-element pair moves all the way down to the level

immediately above the bottom level. (See Figure 5.12.) Thus, the running time of

method removeMin is, in the worst case, proportional to the height of heap T , that

is, it is O(log n).

www.it-ebooks.info

http://www.it-ebooks.info/

5.3. Heaps 171

(4,C)

(6,Z)

(20,B)(7,Q)

(13,W)

(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

(13,W)

(6,Z)

(20,B)(7,Q)

(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

(a) (b)

(13,W)

(6,Z)

(20,B)(7,Q)

(11,S)

(5,A)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

(5,A)

(6,Z)

(20,B)(7,Q)

(11,S)

(13,W)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

(c) (d)

(5,A)

(6,Z)

(20,B)(7,Q)

(11,S)

(13,W)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

(5,A)

(6,Z)

(20,B)(7,Q)

(11,S)

(9,F)

(12,H)(14,E)

(15,K)

(25,J)(16,X)

(13,W)

(e) (f)

(5,A)

(6,Z)

(20,B)(7,Q)

(11,S)

(9,F)

(12,H)

(14,E)

(15,K)

(25,J)(16,X)

(13,W)

(5,A)

(6,Z)

(20,B)(7,Q)

(11,S)

(9,F)

(12,H)

(14,E)

(15,K)

(25,J)(16,X) (13,W)

(g) (h)

Figure 5.12: Removal of the element with the smallest key from a heap: (a)–(b)

deletion of the last node, whose key-element pair gets stored into the root; (c)–(d)

swap to locally restore the heap-order property; (e)–(f) another swap; (g)–(h) final

swap.

www.it-ebooks.info

http://www.it-ebooks.info/

172 Chapter 5. Priority Queues and Heaps

Pseudo-code for the method for performing the insert(k, e) method in a heap

storing n items with an extendable array, A, is shown in Algorithm 5.13, and the

method for performing the removeMin() method is shown in Algorithm 5.13.

Algorithm HeapInsert(k, e):
Input: A key-element pair

Output: An update of the array, A, of n elements, for a heap, to add (k, e)
n ← n + 1
A[n] ← (k, e)
i ← n
while i > 1 and A[
i/2�] > A[i] do

Swap A[
i/2�] and A[i]
i ←
i/2�

Algorithm 5.13: Insertion in a heap represented with an array. We identify the parent

of i as the cell at index
i/2�. The while-loop implements up-heap bubbling.

Algorithm HeapRemoveMin():
Input: None

Output: An update of the array, A, of n elements, for a heap, to remove and

return an item with smallest key

temp ← A[1]
A[1] ← A[n]
n ← n − 1
i ← 1
while i < n do

if 2i + 1 ≤ n then // this node has two internal children

if A[i] ≤ A[2i] and A[i] ≤ A[2i + 1] then
return temp // we have restored the heap-order property

else
Let j be the index of the smaller of A[2i] and A[2i + 1]
Swap A[i] and A[j]
i ← j

else // this node has zero or one internal child

if 2i ≤ n then // this node has one internal child (the last node)

if A[i] > A[2i] then
Swap A[i] and A[2i]

return temp // we have restored the heap-order property

return temp // we reached the last node or an external node

Algorithm 5.13: Removing the minimum item in a heap represented with an array.

We identify the two children of i as the cells at indices 2i and 2i+1. The while-loop

implements down-heap bubbling.

www.it-ebooks.info

http://www.it-ebooks.info/

5.3. Heaps 173

Performance

Table 5.14 shows the running time of the priority queue methods for the heap im-

plementation of a priority queue, assuming that the heap T is itself implemented

with an array.

Operation Time
insert O(log n)

removeMin O(log n)

Table 5.14: Performance of a priority queue that is implemented with a heap, which

is in turn implemented with an array-based structure for a binary tree. We denote

with n the number of elements in the priority queue at the time a method is exe-

cuted. The space requirement is O(N), where N ≥ n is the size of the array used

to implement the heap.

In short, each of the fundamental priority queue methods can be performed

in O(log n) time, where n is the number of elements at the time the method is

executed. We can also implement a method for simply returning, but not removing

the minimum item, in O(1) time (just by returning the item stored at the root of the

heap).

The above analysis of the running time of the methods of a priority queue im-

plemented with a heap is based on the following facts:

• The height of heap T is O(log n), since T is complete.

• In the worst case, up-heap and down-heap bubbling take time proportional to

the height of T .

• Finding the insertion position in the execution of insert and updating the last

node position in the execution of removeMin takes constant time.

• The heap T has n internal nodes, each storing a reference to a key and a

reference to an element.

We conclude that the heap data structure is an efficient implementation of a

priority queue. The heap implementation achieves fast running times for both in-

sertion and removal, unlike the list-based priority queue implementations. Indeed,

an important consequence of the efficiency of the heap-based implementation is

that it can speed up priority-queue sorting to be much faster than the list-based

insertion-sort and selection-sort algorithms.

www.it-ebooks.info

http://www.it-ebooks.info/

174 Chapter 5. Priority Queues and Heaps

5.4 Heap-Sort

Let us consider again the PQ-Sort sorting scheme from Section 5.2, which uses a

priority queue P to sort a list S. If we implement the priority queue P with a heap,

then, during the first phase, each of the n insert operations takes time O(log k),
where k is the number of elements in the heap at the time. Likewise, during the

second phase, each of the n removeMin operations also runs in time O(log k),
where k is the number of elements in the heap at the time. Since we always have

k ≤ n, each such operation runs in O(log n) time in the worst case. Thus, each

phase takes O(n log n) time, so the entire priority-queue sorting algorithm runs in

O(n log n) time when we use a heap to implement the priority queue. This sorting

algorithm is better known as heap-sort, and its performance is summarized in the

following theorem.

Theorem 5.2: The heap-sort algorithm sorts a list S of n comparable elements in
O(n log n) time.

Recalling Table 1.7, we stress that the O(n log n) running time of heap-sort is

much better than the O(n2) running time for selection-sort and insertion-sort. In

addition, there are several modifications we can make to the heap-sort algorithm to

improve its performance in practice.

If the list S to be sorted is implemented with an array, we can speed up heap-

sort and reduce its space requirement by a constant factor using a portion of the list

S itself to store the heap, thus avoiding the use of an external heap data structure.

This is accomplished by modifying the algorithm as follows:

1. We use a maximum-based comparison rule, which corresponds to a heap

where the largest element is at the top. At any time during the execution

of the algorithm, we use the left portion of S, up to a certain rank i − 1,

to store the elements in the heap, and the right portion of S, from rank i to

n−1 to store the elements in the list. Thus, the first i elements of S (at ranks

0, . . . , i−1) provide the array representation of the heap (with modified level

numbers starting at 0 instead of 1), that is, the element at rank k is greater

than or equal to its “children” at ranks 2k + 1 and 2k + 2.

2. In the first phase of the algorithm, we start with an empty heap and move

the boundary between the heap and the list from left to right, one step at a

time. In step i (i = 1, . . . , n), we expand the heap by adding the element at

rank i − 1.

3. In the second phase of the algorithm, we start with an empty list and move

the boundary between the heap and the list from right to left, one step at a

time. At step i (i = 1, . . . , n), we remove a maximum element from the heap

and store it at rank n − i.

www.it-ebooks.info

http://www.it-ebooks.info/

5.4. Heap-Sort 175

The above variation of heap-sort is in-place, since we use only a constant

amount of space in addition to the list itself. Instead of transferring elements out of

the list and then back in, we simply rearrange them. We illustrate in-place heap-sort

in Figure 5.15. In general, we say that a sorting algorithm is in-place if it uses only

a constant amount of memory in addition to the memory needed for the objects be-

ing sorted themselves. The advantage of an in-place sorting algorithm in practice

is that such an algorithm can make the most efficient use of the main memory of

the computer it is running on.

(a) 7 2 1 34

4

(b) 2 1 34 7

(c) 1 37 4 2

(d) 1 37 4 2 4

7

2

7

4

4

7

Figure 5.15: First three steps of Phase 1 of in-place heap-sort. The heap portion of

the array is highlighted with thick lines. Next to the array, we draw a binary tree

view of the heap, even though this tree is not actually constructed by the in-place

algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

176 Chapter 5. Priority Queues and Heaps

Bottom-Up Heap Construction

The analysis of the heap-sort algorithm shows that we can construct a heap storing

n key-element pairs in O(n log n) time, by means of n successive insert operations,

and then use that heap to extract the elements in order. However, if all the keys

to be stored in the heap are given in advance, there is an alternative bottom-up
construction method that runs in O(n) time.

We describe this method here, observing that it could be used in the heap-sort

algorithm instead of filling up the heap using a series of n insert operations. For

simplicity of exposition, we describe this bottom-up heap construction assuming

the number n of keys is an integer of the type

n = 2h − 1.

That is, the heap is a complete binary tree with every level being full, so the heap

has height

h = log(n + 1).

We describe bottom-up heap construction as a recursive algorithm, as shown in

Algorithm 5.16, which we call by passing a list storing the keys for which we wish

to build a heap. We describe the construction algorithm as acting on keys, with the

understanding that their elements accompany them. That is, the items stored in the

tree T are key-element pairs.

Algorithm BottomUpHeap(S):
Input: A list S storing n = 2h − 1 keys

Output: A heap T storing the keys in S.

if S is empty then
return an empty heap (consisting of a single external node).

Remove the first key, k, from S.

Split S into two lists, S1 and S2, each of size (n − 1)/2.

T1 ← BottomUpHeap(S1)
T2 ← BottomUpHeap(S2)
Create binary tree T with root r storing k, left subtree T1, and right subtree T2.

Perform a down-heap bubbling from the root r of T , if necessary.

return T

Algorithm 5.16: Recursive bottom-up heap construction.

This construction algorithm is called “bottom-up” heap construction because

of the way each recursive call returns a subtree that is a heap for the elements it

stores. That is, the “heapification” of T begins at its external nodes and proceeds

up the tree as each recursive call returns. For this reason, some authors refer to the

bottom-up heap construction as the “heapify” operation.

We illustrate bottom-up heap construction in Figure 5.17 for h = 4.

www.it-ebooks.info

http://www.it-ebooks.info/

5.4. Heap-Sort 177

61216 23 204 715

27

612

25

16 23 204

5

7

11

15

(a) (b)

20

1112

15

2516 23 275

4

7

6 20

8

1112

15

2516 23 275

9

4

7

6

(c) (d)

6

207

81112

15

2516 23 27

5

9

4 6

207

81112

14

15

2516 23 27

5

9

4

(e) (f)

4

6

207

811

5

9

1214

15

2516 23 27

(g)

Figure 5.17: Bottom-up construction of a heap with 15 keys: (a) we begin by con-

structing 1-key heaps on the bottom level; (b)–(c) we combine these heaps into

3-key heaps and then (d)–(e) 7-key heaps, until (f)–(g) we create the final heap.

The paths of the down-heap bubblings are highlighted with thick lines.

www.it-ebooks.info

http://www.it-ebooks.info/

178 Chapter 5. Priority Queues and Heaps

4

6

207

811

5

9

1214

15

2516 23 27

Figure 5.18: Visual justification of the linear running time of bottom-up heap con-

struction, where the paths associated with the internal nodes have been highlighted

alternating gray and black. For example, the path associated with the root consists

of the internal nodes storing keys 4, 6, 7, and 11, plus an external node.

Bottom-up heap construction is asymptotically faster than incrementally insert-

ing n keys into an initially empty heap, as the following theorem shows.

Theorem 5.3: The bottom-up construction of a heap with n items takes O(n)
time.

Proof: We analyze bottom-up heap construction using a “visual” approach,

which is illustrated in Figure 5.18.

Let T be the final heap, let v be an internal node of T , and let T (v) denote the

subtree of T rooted at v. In the worst case, the time for forming T (v) from the

two recursively formed subtrees rooted at v’s children is proportional to the height

of T (v). The worst case occurs when down-heap bubbling from v traverses a path

from v all the way to a bottommost external node of T (v). Consider now the path

p(v) of T from node v to its inorder successor external node, that is, the path that

starts at v, goes to the right child of v, and then goes down leftward until it reaches

an external node. We say that path p(v) is associated with node v. Note that p(v)
is not necessarily the path followed by down-heap bubbling when forming T (v).
Clearly, the length (number of edges) of p(v) is equal to the height of T (v). Hence,

forming T (v) takes time proportional to the length of p(v), in the worst case. Thus,

the total running time of bottom-up heap construction is proportional to the sum of

the lengths of the paths associated with the internal nodes of T .

Note that for any two internal nodes u and v of T , paths p(u) and p(v) do not

share edges, although they may share nodes. (See Figure 5.18.) Therefore, the sum

of the lengths of the paths associated with the internal nodes of T is no more than

the number of edges of heap T , that is, no more than 2n. We conclude that the

bottom-up construction of heap T takes O(n) time.

To summarize, Theorem 5.3 says that the first phase of heap-sort can be imple-

mented to run in O(n) time. Unfortunately, the running time of the second phase

of heap-sort is Ω(n log n) in the worst case. We will not justify this lower bound

until Chapter 8, however.

www.it-ebooks.info

http://www.it-ebooks.info/

5.5. Extending Priority Queues 179

5.5 Extending Priority Queues

We can additionally augment the two fundamental methods for a priority queue

with supporting methods, such as size(), isEmpty(), and the following:

minElement(): Return (but do not remove) an element of P with the

smallest key.

minKey(): Return (but do not remove) the smallest key in P .

Both of these methods return error conditions if the priority queue is empty. If we

implement a priority queue using an ordered list or a heap, then we can perform

these operations in O(1) time each.

Comparators

In addition, we can augment a priority queue to support parameterizing the data

structure in the way it does comparisons, by using a concept known a comparator.

This pattern specifies the way in which we compare keys, and is designed to support

the most general and reusable form of a priority queue. For such a design, we

should not rely on the keys to provide their comparison rules, for such rules might

not be what a user desires (particularly for multidimensional data). Instead, we use

special comparator objects that are external to the keys to supply the comparison

rules. A comparator is an object that compares two keys. We assume that a priority

queue P is given a comparator when P is constructed, and we might also imagine

the ability of a priority queue to be given a new comparator if its old one ever

becomes “out of date.” When P needs to compare two keys, it uses the comparator

it was given to perform the comparison. Thus, a programmer can write a general

priority queue implementation that can work correctly in a wide variety of contexts.

Formally, a comparator object provides the following methods, each of which takes

two keys and compares them (or reports an error if the keys are incomparable). The

methods of a comparator include the following:

isLess(a, b): True if and only if a is less than b.

isLessOrEqualTo(a, b): True if and only if a is less than or equal to b.

isEqualTo(a, b): True if and only if a and b are equal.

isGreater(a, b): True if and only if a is greater than b.

isGreaterOrEqualTo(a, b): True if and only if a is greater than or equal to b.

isComparable(a): True if and only if a can be compared.

www.it-ebooks.info

http://www.it-ebooks.info/

180 Chapter 5. Priority Queues and Heaps

Locators

We conclude this section by discussing a concept that allows us to extend a priority

queue to have additional functionality, which will be useful, for example, in some

of the graph algorithms discussed later in this book. As we saw with lists and binary

trees, abstracting positional information in a container is a very powerful tool.

There are applications where we need to keep track of elements as they are

being moved around inside a container, however. A concept that fulfills this need

is the locator. A locator is a mechanism for maintaining the association between

an element and its current position in a container. A locator “sticks” with a specific

element, even if the element changes its position in the container.

A locator is like a coat check; we can give our coat to a coat-room attendant, and

we receive back a coat check, which is a “locator” for our coat. The position of our

coat relative to the other coats can change, as other coats are added and removed,

but our coat check can always be used to retrieve our coat. The important thing to

remember about a locator is that it follows its item, even if it changes position.

Like a coat check, we can now imagine getting something back when we insert

an element in a container—we can get back a locator for that element. This locator

in turn can be used later to refer to the element within the container, for example, to

specify that this element should be removed from the container. Viewed abstractly,

a locator � supports the following methods:

element(): Return the element of the item associated with �.

key(): Return the key of the item associated with �.

For the sake of concreteness, we next discuss how we can use locators to ex-

tend the repertoire of operations of a priority queue to include methods that return

locators and take locators as arguments.

Using Locators with a Priority Queue

We can use locators in a natural way in the context of a priority queue. A loca-

tor in such a scenario stays attached to an item inserted in the priority queue, and

allows us to access the item in a generic manner, independent of the specific im-

plementation of the priority queue. This ability is important for a priority queue

implementation, for there are no positions, per se, in a priority queue, since we do

not refer to items by any notions of “index” or “node,” and instead are based on the

use of keys.

www.it-ebooks.info

http://www.it-ebooks.info/

5.5. Extending Priority Queues 181

Locator-Based Priority Queue Methods

By using locators, we can extend a priority queue with the following methods that

access and modify a priority queue P :

min(): Return the locator to an item of P with smallest key.

insert(k, e): Insert a new item with element e and key k into P and

return a locator to the item.

remove(�): Remove from P the item with locator �.

replaceElement(�, e): Replace with e and return the element of the item of P
with locator �.

replaceKey(�, k): Replace with k and return the key of the item of P with

locator �.

Locator-based access runs in O(1) time, while a key-based access, which must

look for the element via a search in an entire list or heap, runs in O(n) time in

the worst case. In addition, some applications call for us to restrict the operation

replaceKey so that it only increases or decreases the key. This restriction can

be done by defining new methods increaseKey or decreaseKey, for example,

which would take a locator as an argument, which can be implemented to run in

amortized O(1) time using more sophisticated heap structures, such as Fibonacci

heaps, which we don’t discuss here. Further applications of such priority queue

methods are given in Chapter 14.

Comparison of Different Priority Queue Implementations

In Table 5.19, we compare running times of the priority queue methods defined in

this section for the unsorted-list, sorted-list, and heap implementations.

Unsorted Sorted
Method List List Heap

key, replaceElement O(1) O(1) O(1)
minElement, min, minKey O(n) O(1) O(1)

insert O(1) O(n) O(log n)
removeMin O(n) O(1) O(log n)

remove O(1) O(1) O(log n)
replaceKey O(1) O(n) O(log n)

Table 5.19: Comparison of the running times of the priority queue methods for the

unsorted-list, sorted-list, and heap implementations. We denote with n the number

of elements in the priority queue at the time a method is executed.

www.it-ebooks.info

http://www.it-ebooks.info/

182 Chapter 5. Priority Queues and Heaps

5.6 Exercises

Reinforcement
R-5.1 Give an in-place pseudocode description of selection-sort assuming that arrays

are indexed from 0 to n − 1, as they are in Java and C/C++, instead of from 1
to n, as given in Algorithm 5.3.

R-5.2 Give an in-place pseudocode description of insertion-sort assuming that arrays
are indexed from 0 to n − 1, as they are in Java and C/C++, instead of from 1
to n, as given in Algorithm 5.5.

R-5.3 Let T be a binary tree with n nodes that is realized with a array, S, and let p
be the level numbering of the nodes in T , as given in Section 5.3.1. Give pseu-
docode descriptions of each of the methods root, parent, leftChild, rightChild,
isInternal, isExternal, and isRoot.

R-5.4 Illustrate the performance of the selection-sort algorithm on the following input
sequence: (22, 15, 36, 44, 10, 3, 9, 13, 29, 25).

R-5.5 Illustrate the performance of the insertion-sort algorithm on the input sequence
of the previous problem.

R-5.6 Give an example of a worst-case list with n elements for insertion-sort, and show
that insertion-sort runs in Ω(n2) time on such a list.

R-5.7 Describe how to modify the pseudocode of Algorithm 5.13 so that it uses a stan-
dard array of size N instead of an extendable array.

R-5.8 Where may an item with largest key be stored in a heap?

R-5.9 Illustrate the performance of the heap-sort algorithm on the following input list:
(2, 5, 16, 4, 10, 23, 39, 18, 26, 15).

R-5.10 Suppose a binary tree T is implemented using a array S, as described in Sec-
tion 5.3.1. If n items are stored in S in sorted order, starting with index 1, is the
tree T a heap?

R-5.11 Is there a heap T storing seven distinct elements such that a preorder traversal
of T yields the elements of T in sorted order? How about an inorder traversal?
How about a postorder traversal?

R-5.12 Show that the sum
∑n

i=1 log i, which appears in the analysis of heap-sort, is
Ω(n log n).

R-5.13 Show the steps for removing key 16 from the heap of Figure 5.6.

R-5.14 Show the steps for replacing 5 with 18 in the heap of Figure 5.6.

R-5.15 Draw an example of a heap whose keys are all the odd numbers from 1 to 59
(with no repeats), such that the insertion of an item with key 32 would cause
up-heap bubbling to proceed all the way up to a child of the root (replacing that
child’s key with 32).

www.it-ebooks.info

http://www.it-ebooks.info/

5.6. Exercises 183

Creativity
C-5.1 Consider a modification of the selection-sort algorithm where instead of finding

the smallest element in the unsorted part of the array and swapping it to be in its
proper place, as given in Algorithm 5.3, we instead perform a sequence of swaps
to move the smallest element to its proper location, as shown in Algorithm 5.20.
Show that this algorithm, which is known as bubble-sort, runs in Θ(n2) time.

Algorithm BubbleSort(A):
Input: An array A of n comparable elements, indexed from 1 to n
Output: An ordering of A so that its elements are in nondecreasing order.
for i ← 1 to n − 1 do

// Move the smallest element in A[i + 1 .. n] to A[i] by swaps.

for j ← n down to i + 1 do
if A[j − 1] > A[j] then

Swap A[j − 1] and A[j]
return A

Algorithm 5.20: The bubble-sort algorithm.

C-5.2 Given an array, A, of elements that come from a total order, an inversion in A is
a pair of elements that are in the wrong order, that is, a pair (i, j) where i < j
and A[i] > A[j]. Show that the in-place version of insertion-sort, as given in
Algorithm 5.5, runs in O(n + I) time, where I is the number of inversions in the
array A.

C-5.3 Assuming the input to the sorting problem is given in an array A, give a pseu-
docode description of in-place heap-sort. That is, describe how to implement the
heap-sort algorithm using only the array A and at most six additional (base-type)
variables.

C-5.4 Suppose the binary tree T used to implement a heap can be accessed using only
the methods of a binary tree. That is, we cannot assume T is implemented as an
array. Given a reference to the current last node, v, describe an efficient algorithm
for finding the insertion point (that is, the new last node) using just the methods
of the binary tree interface. Be sure and handle all possible cases. What is the
running time of this method?

C-5.5 Show that, for any n, there is a sequence of insertions in a heap that requires
Ω(n log n) time to process.

C-5.6 We can represent a path from the root to a node of a binary tree by means of a
binary string, where 0 means “go to the left child” and 1 means “go to the right
child.” Design a logarithmic-time algorithm for finding the last node of a heap
holding n elements based on the this representation.

C-5.7 Show that the problem of finding the kth smallest element in a heap takes at least
Ω(k) time in the worst case.

www.it-ebooks.info

http://www.it-ebooks.info/

184 Chapter 5. Priority Queues and Heaps

C-5.8 Develop an algorithm that computes the kth smallest element of a set of n distinct
integers in O(n + k log n) time.

C-5.9 Let T be a heap storing n keys. Give an efficient algorithm for reporting all
the keys in T that are smaller than or equal to a given query key x (which is
not necessarily in T). For example, given the heap of Figure 5.6 and query key
x = 7, the algorithm should report 4, 5, 6, 7. Note that the keys do not need to be
reported in sorted order. Ideally, your algorithm should run in O(k) time, where
k is the number of keys reported.

C-5.10 Define a min-max stack to be a data structure that supports the stack operations of
push() and pop() for objects that come from a total order, as well as operations
min() and max(), which return, but do not delete the minimum or maximum
element in the min-max stack, respectively. Describe an implementation for a
min-max stack that can perform each of these operations in O(1) time.

C-5.11 Define a min-max queue to be a data structure that supports the queue operations
of enqueue() and dequeue() for objects that come from a total order, as well
as operations min() and max(), which return, but do not delete the minimum or
maximum element in the min-max queue, respectively. Describe an implementa-
tion for a min-max queue that can perform each of these operations in amortized
O(1) time.

Applications
A-5.1 In data smoothing applications, such as in visualizing trends in stock averages

over time, it is useful to keep track of the median of a set, S, of numbers as
values are inserted or removed from S. Describe a method for maintaining the
median of an initially empty set, S, subject to an operation, insert(x), which
inserts the value x, and an operation, median(), which returns the median in
S. Each of these methods should run in at most O(log n) time, where n is the
number of values in S.

A-5.2 In a discrete event simulation, a physical system, such as a galaxy or solar sys-
tem, is modeled as it changes over time based on simulated forces. The objects
being modeled define events that are scheduled to occur in the future. Each event,
e, is associated with a time, te, in the future. To move the simulation forward, the
event, e, that has smallest time, te, in the future needs to be processed. To process
such an event, e is removed from the set of pending events, and a set of physical
forces are calculated for this event, which can optionally create a constant num-
ber of new events for the future, each with its own event time. Describe a way to
support event processing in a discrete event simulation in O(log n) time, where
n is the number of events in the system.

A-5.3 Suppose you work for a major airline and are given the job of writing the algo-
rithm for processing upgrades into first class on various flights. Any frequent
flyer can request an upgrade for his or her up-coming flight using this online
system. Frequent flyers have different priorities, which are determined first by
frequent flyer status (which can be, in order, silver, gold, platinum, and super)
and then, if there are ties, by length of time in the waiting list. In addition, at

www.it-ebooks.info

http://www.it-ebooks.info/

5.6. Exercises 185

any time prior to the flight, a frequent flyer can cancel his or her upgrade request
(for instance, if he or she wants to take a different flight), using a confirmation
code they got when he or she made his or her upgrade request. When it is time
to determine upgrades for a flight that is about to depart, the gate agents inform
the system of the number, k, of seats available in first class, and it needs to match
those seats with the k highest-priority passengers on the waiting list. Describe a
system that can process upgrade requests and cancellations in O(log n) time and
can determine the k highest-priority flyers on the waiting list in O(k log n) time,
where n is the number of frequent flyers on the waiting list.

A-5.4 Suppose you are designing a system for buying and selling stocks using a con-
tinuous limit order book strategy, as described in the beginning of this chapter.
Describe how to use priority queues to process such buy and sell orders, includ-
ing those that can be processed immediately and those that have some or all of
their shares needing to wait until some future match to be processed. You don’t
need to list all pending buy and sell orders, but you do need to always display the
pending buy order(s) with the highest and lowest prices and the pending order(s)
with the highest and lowest prices. You may assume that buy and sell orders
are never cancelled and remain in the system until they are matched. Describe a
system that can process buy and sell orders in amortized O(log n) time, where n
is the number of orders in the system.

A-5.5 The problem of accurately summing a set S of n floating-point numbers, S =
{x1, x2, . . . , xn}, on a real-world computer is more challenging than might first
appear. For example, using the standard accumulating-sum algorithm to compute
the harmonic numbers,

Hn =
n∑

i=1

1
n

,

in floating-point produces a sequence that converges to a constant instead of
growing to infinity as a function close to lnn. This phenomenon is due to the
fact that floating-point addition can suffer from round-off errors, especially if the
two numbers being added differ greatly in magnitude. Fortunately, there are sev-
eral useful heuristic summation algorithms for dealing with this issue, with one
of them being the following. Let xi and xj be two numbers in S with smallest
magnitudes. Sum xi and xj and return the result to S. Repeat this process un-
til only one number remains in S, which is the sum. This algorithm will often
produce a more accurate sum than the straightforward summation algorithm, be-
cause it tends to minimize the round-off errors of each partial sum. Describe how
to implement this floating-point summation algorithm in O(n log n) time.

A-5.6 One of the oldest applications used on the Internet is FTP, the file transfer pro-
tocol. The definition for this protocol traces its roots back to 1971, before the
Internet even existed, and its formulation for the Internet was given in 1980. Its
primary purpose is for transferring files from one computer to another over the
Internet. Suppose you are writing an Internet file transfer application, similar
to FTP, and it is your job to write the code that takes a raw sequence of net-
work packets that were sent from one computer and reassembles that sequence
to reconstitute the file at the receiving computer. The n packets in the input are
numbered by their sequence numbers, which starts at some value, N , and goes

www.it-ebooks.info

http://www.it-ebooks.info/

186 Chapter 5. Priority Queues and Heaps

incrementally in order to N + n − 1. The packets are usually not received in
this order, however. Thus, to reconstruct the file at the receiving computer, your
method must re-order the packets so that they are sorted by their sequence num-
bers. In studying example inputs, you notice that the input sequence of packets
is usually not that far from being sorted. That is, you notice in the examples you
studied that each input packet is proximate to its output position, which means
that if a packet is at position i in the input sequence, then its position in the sorted
output sequence is somewhere in the range [i−50, i+50]. Describe a method for
sorting a sequence of n such packets by their sequence numbers in O(n) time,
assuming that every input packet is proximate to its output position.

Chapter Notes
Knuth’s book on sorting and searching [131] describes the motivation and history for the
selection-sort, insertion-sort, and heap-sort algorithms. The heap-sort algorithm is due to
Williams [216], and the linear-time heap construction algorithm is due to Floyd [73]. Ad-
ditional algorithms and analyses for heaps and heap-sort variations can be found in papers
by Bentley [29], Carlsson [41], Gonnet and Munro [86], McDiarmid and Reed [150], and
Schaffer and Sedgewick [185]. The locator pattern (also described in [89]) appears to be
new. Higham [97] studies the numerical stability of several floating-point summation algo-
rithms, including the one discussed in Exercise A-5.5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

6 Hash Tables

Operating a card sorter, 1920. U.S. Census Bureau.

Contents

6.1 Maps . 189
6.2 Hash Functions . 192
6.3 Handling Collisions and Rehashing 198
6.4 Cuckoo Hashing . 206
6.5 Universal Hashing . 212
6.6 Exercises . 215

www.it-ebooks.info

http://www.it-ebooks.info/

188 Chapter 6. Hash Tables

Dest ination:

128.34.62.105

Packet of

a video snippet

Sunflower

router

64 network

connections

Suppose you are working on a development team that is designing the next

generation of a network router for a major technology company. Such devices

processes information packets, allowing them to move through networks having

lots of interconnections. In this case, your team’s job is to design a router, code

named “Sunflower,” that can process 64 streams of high-definition video at a time.

When a packet is received from one of the 64 cables that connect to the Sun-

flower router, it must examine destination information stored in the beginning of

that packet and quickly decide along which of the 63 remaining cables to send

it. Indeed, to avoid introducing annoying pauses in a video stream, the Sunflower

router needs to process each such packet in at most 25 microseconds. Your job is

to write the software that processes the destination information for deciding where

to send each packet.

Viewed abstractly, each packet can be modeled as a pair, (k, x), where k is a

key indicating the destination for this packet and x is the data contained in this

packet, which would, in this case, be a snippet of some video stream. To process

such a packet, your software needs to maintain a collection of pairs, (k, c), each of

which indicates the cable, c, where the Sunflower router should send a packet with

the destination k. Your system must support an operation, put(k, c), which adds a

key-cable pair to the collection, and an operation, get(k), which returns the cable

number in the collection for a given destination key, k.

One possibility, of course, is to use a linked list to store (k, c) pairs. This

implementation choice would allow you to perform the put(k, c) operation in O(1)
time, since you could simply put each new pair at the beginning of the list. But

you have correctly realized that such a solution would take O(n) time to process a

single get(k) operation on a collection of n pairs, since you would, in general, have

to search through the entire list of n pairs to find a pair with the key k. Therefore,

such a solution would put your team significantly over the 25 microsecond time

limit if n is relatively large. Fortunately, there is a better choice, which is to use an

instance of the hash table data structure we discuss in this chapter.

This data structure is able to achieve O(1) expected time for both get and put
operations. Indeed, we describe variations of this data structure that can achieve

worst-case O(1) time performance for either get or put operations, with the other

operation still running in O(1) expected time. Because of such performance bounds,

hash tables are used in a host of different applications besides network routers, in-

cluding operating systems, computer games, and bioinformatics.

www.it-ebooks.info

http://www.it-ebooks.info/

6.1. Maps 189

6.1 Maps
The main idea at the heart of the hash table data structure is that it allows users to

assign keys to elements and then use those keys later to look up or remove elements.

(See Figure 6.1.) This functionality defines a data structure known as a dictionary
or map. That is, this structure supports methods for the insertion, removal, and

searching of values in terms of keys associated with those values.

Figure 6.1: A conceptual illustration of a map data structure. Keys are like labels

assigned to file folders, which serve as the values. The resulting item (labeled file

folders) is then inserted into the map (file cabinet) by a file clerk. The keys can

be used later to retrieve or remove the items. (Included image: LC-DIG-ppmsca-

03084, 1945. U.S. government image, U.S. Office of War Information.)

6.1.1 The Map Definition
A map stores a collection of key-value pairs, (k, v), which we call items, where k
is a key and v is a value that is associated with that key. For example, in a map

storing student records (such as the student’s name, address, and course grades),

the key might be the student’s ID number. That is, a key is an identifier that is

assigned by an application or user to an associated value, which we allow to be any

data element.

For the sake of generality, some definitions allow a map to associated multiple

values with the same key. Nevertheless, in most applications we would probably

want to disallow items with the same key (for example, in a map storing student

www.it-ebooks.info

http://www.it-ebooks.info/

190 Chapter 6. Hash Tables

records, we would probably want to disallow two students having the same ID).

In such cases when keys are unique, then the key associated with an object can be

viewed as an “address” for that object in memory. Indeed, such maps are sometimes

referred to as “associative stores,” because the key associated with an object deter-

mines its “location” in the map. Thus, we assume here that keys are unique and we

refer to a map that allows for multiple values for the same key as a multimap.

As map data structure, M , supports the following fundamental methods:

get(k): If M contains an item with key equal to k, then return

the value of such an item; else return a special element

NULL.

put(k, v): Insert an item with key k and value v; if there is already

an item with key k, then replace its value with v.

remove(k): Remove from M an item with key equal to k, and return

this item. If M has no such item, then return the special

element NULL.

Note that when operations get(k) and remove(k) are unsuccessful (that is, the map

M has no item with key equal to k), we use the convention of returning a special

element NULL. Such a special element is known as a sentinel. Alternatively, we

could have had these methods indicate an error or exception in such cases, but it

would not normally be considered an error to search for a key that happens not to

be present in a map.

In addition, a map can implement other supporting methods, such as size() and

isEmpty() methods for containers. Moreover, we could include methods for listing

out the items, values, or keys in M . Still, the above three methods are the essential

ones for a Map structure.

As mentioned above, the keys associated with values in a map are often meant

to be “addresses” for those values. In addition to their applications in Internet

routers, as in the Sunflower router mentioned above, another application of a map is

in a compiler’s symbol table, where each name in a program is a key associated with

a variable, function, or class. In this case, we would store name-value associations,

where each name serves as the “address” for properties about a variable’s type and

value.

6.1.2 Lookup Tables
In some cases, the universe of keys that will be used for a map is the set of integers

in the range [0, N − 1], for a reasonably small value of N . In such a scenario,

there is an almost trivial way of implementing a map—namely, we can allocate an

array, A, of size N , where each cell of A is thought of as a “bucket” that can hold

a single key-element pairs (or a pointer to such a pair). Since we assume that keys

are distinct, we can use A to store any key-value pair (k, v) by placing that pair in

www.it-ebooks.info

http://www.it-ebooks.info/

6.1. Maps 191

the cell A[k]. In this case, we refer to this implementation as a lookup table, since

the key k allows us to simply “look up” the item for k by a single array-indexing

operation.

Performing the essential operations for a map in this case is quite simple. We

begin by allocating the array A so that every cell is initially associated with the

special NULL object. Then, we perform the map operations as follows:

• To perform a put(k, v) operation, we assign (k, v) to A[k].
• To perform a get(k) operation, we return A[k].
• To perform a remove(k) operation, we return A[k] and then we assign the

NULL item to A[k].

(See Figure 6.2.)

1 10987654320

The bucket for items

with key = 6

Figure 6.2: How a lookup table works.

Analysis of a Lookup Table

The analysis of the performance of a lookup table is also simple. Each of the

essential map methods runs in O(1) time in worst case. Thus, in terms for time

performance, the lookup table is optimal.

There are some drawbacks with this implementation, however. In terms of

space usage, we note that the total amount of memory used for a lookup table is

Θ(N). In this case, we refer to the size, N , of the array A as being the capacity
of this map implementation. Such an amount of space is certainly reasonable if

the number of items, n, being stored in the map is close to N . But if N is large

relative to n, then one drawback of this implementation is that it is wasteful of

space. Another drawback with this implementation is that it requires keys be unique

integers in the range [0, N − 1], which is often not the case. Thus, it would be nice

to have a mechanism to overcome these drawbacks while still achieving simple and

fast methods for implementing the essential operations for a map.

www.it-ebooks.info

http://www.it-ebooks.info/

192 Chapter 6. Hash Tables

6.2 Hash Functions

If we cannot assume that keys are unique integers in the range [0, N − 1], but we

nevertheless still want to use something akin to a lookup table for storing key-value

pairs, then we need a good way of assigning keys to integers in this range. That is,

we need a function, h, called a hash function, that maps each key k in our map to

an integer in the range [0, N − 1], where N is the capacity of the underlying array

for this table. The use of such a function allows us to treat objects, such as strings,

as numbers.

Using a Hash Function with a Lookup Table

Equipped with such a function, h, we can apply the lookup table approach to ar-

bitrary keys. The main idea of this approach is to use the hash value, h(k), as an

index into our array, A, instead of the key k itself. That is, the idea is to try to store

the item (k, v) in the bucket A[h(k)]. (See Figure 6.3.)

1 10987654320

h

366 425106 1030

h(366)
h(425)

h(1030)

h(106)

Figure 6.3: How a hash function, h, works with a lookup table. For simplicity, we

only show keys, not values.

www.it-ebooks.info

http://www.it-ebooks.info/

6.2. Hash Functions 193

Collisions

One complication that we have to deal with when using this approach, however, is

that it is entirely possible that the hash function, h, could map two distinct keys to

the same location in A. That is, we could have h(k) = h(l), for k 	= l, for two

keys k and l in our map. We refer to such a pair of keys with the same hash value,

j, as causing a collision at j. Likewise, we say that a hash function is “good”

if it maps the keys in our map so as to minimize collisions as much as possible.

In other words, we would like the hash function h to look as random as possible,

since a truly random function would automatically minimize the expected number

of collisions for any given hash value, j. For practical reasons, we also would like

the evaluation of a given hash function to be fast and easy to compute.

Viewing Keys as Bit Strings, Tuples, or Integers

Any kind of key that is of interest in a computing application must be representable

as a binary string. Thus, without loss of generality, we can assume that any key

used with a map data structure is a binary string. Of course, any such binary string

can be interpreted as belonging to any one of a large number of different data types.

Nevertheless, the standard convention for hash functions is to view keys in one of

two ways:

• Each key, k, is a tuple of integers, (x1, x2, . . . , xd), with each xi being an

integer in the range [0, M − 1], for some M and d.

• Each key, k, is a nonnegative integer, which could possibly be very large.

For example, if our keys are character strings, such as in the case of the variable

names in a programming language or words taken from web pages, then it is prob-

ably most natural to view such keys as tuples. Alternatively, if our keys are fixed-

length IP addresses of destination domains on the Internet, then it is probably most

natural to view them as single integers.

Depending on which of these two viewpoints we take, there are a number of

different kinds of hash functions that we can consider. In fact, there are a large

number of different hash functions that have been published over the years, each

of which is based on the goal of minimizing collisions. Rather than survey all the

different existing hash functions, however, we restrict our discussion in this section

to some important representative hash functions. This collection is representative

of existing hash functions in that most of the existing functions contain elements

from the ones we discuss and assume that keys come in one of the above two forms.

In some cases, a hashing scheme might use both forms of keys, for instance, first

viewing an input key as a tuple and mapping that to some integer based on one hash

function, and then further mapping that single integer to some other value based on

yet another hash function.

www.it-ebooks.info

http://www.it-ebooks.info/

194 Chapter 6. Hash Tables

6.2.1 Summing Components

In the case when each of our keys, k, is a d-tuple, of the form

(x1, x2, . . . , xd),

where each xi is an integer, one possible hash function we could use is to sum up

the different components in each key. That is, we could compute h(k) as

h(k) =
d∑

i=1

xi,

where this sum is taken over either the integers or is done so that every addition is

modulo some integer, p, so that the result is in the range [0, p − 1].
A slight variation on this theme is to compute an exclusive-or of all the compo-

nents of a key, which could be written mathematically as

h(k) = ⊕d
i=1xi,

where ⊕ denotes the bitwise exclusive-or (XOR) operation. Using an XOR is

sometimes preferred over addition in that there are no extra complications regard-

ing carry bits when one is doing XORs and the XOR operation itself is often a

fast built-in operation for most CPUs. But there are some caveats, as the XOR

of a number and itself is always 0, so care should be taken if there are duplicate

components in a tuple.

How Symmetry Can Cause Collisions

Unfortunately, such hash functions, which consist of either summing or XORing

the components of each key, are actually not that good in most applications. In

particular, such a function is fairly poor at avoiding collisions for the case when

keys are character strings or other multiple-length objects that can be viewed as

tuples of the form (x1, x2, . . . , xk), as used above, where the order of the xi’s is

significant.

For example, consider such a hash function for a character string s that sums the

ASCII (or Unicode) values of the characters in s. This hash function produces lots

of unwanted collisions for common groups of strings. For instance, "temp01"
and "temp10" collide using this function, as do the four words,

"stop", "tops", "pots", and "spot".

A better hash code in such cases should somehow take into consideration the posi-

tions of the xi’s. That is, each index, i, should play a role in the hash function in

some way.

www.it-ebooks.info

http://www.it-ebooks.info/

6.2. Hash Functions 195

6.2.2 Polynomial-Evaluation Functions

An alternative hash code, which does a better job at factoring in the positional in-

formation of the components in a key k = (x1, x2, . . . , xd), is to choose a nonzero

constant, a 	= 1, and use as a hash function the following:

h(k) = x1a
d−1 + x2a

d−2 + · · · + xd−1a + xd,

which, by Horner’s rule (see Exercise C-1.14), can be rewritten as

h(k) = xd + a(xd−1 + a(xd−2 + · · · + a(x3 + a(x2 + ax1)) · · ·)).
Note that we can evaluate such a hash function in a simple for-loop, which has

d − 1 iterations; hence, this function can be evaluated using d − 1 additions and

d − 1 multiplications. Mathematically speaking, the hash function, h, in this case

is a (d − 1)-degree polynomial, which is being evaluated for the argument a, and

has the components (x1, x2, . . . , xd) as its coefficients. We therefore refer to this

hash function as a polynomial-evaluation hash function.

Intuitively, a polynomial-evaluation hash function uses multiplication by the

constant a as a way of “making room” for each component in a tuple of values

while also preserving a characterization of the previous components. Of course,

on a typical computer, evaluating a polynomial will be done using the finite bit

representation for a hash code; hence, the value will periodically overflow the bits

used for an integer. Since we are more interested in a good spread of the object x
with respect to other keys, we simply ignore such overflows or we assume that all

the arithmetic is being done modulo some prime number, p. In any case, one of

the critical design decisions in using this hash function is choosing the constant, a.

Intuitively, a should have some higher-order bits to “shift” over the running partial

sum to make room for the new term while also having some lower-order bits to

allow each new term to be factored in.

Special Values for English Words

We have done some experimental studies that suggest that 33, 37, 39, and 41 are

good choices for a when working with character strings that are English words. In

fact, in a list of over 50,000 English words formed as the union of the word lists

provided in two variants of Unix, we found that taking a to be 33, 37, 39, or 41

produced less than 7 collisions in each case. It should come as no surprise, then,

to learn that actual character string hash functions often choose the polynomial

hash function using one of these constants for a. For the sake of speed, however,

some implementations only apply the polynomial hash function to a fraction of the

characters in long strings, say, every eight characters.

www.it-ebooks.info

http://www.it-ebooks.info/

196 Chapter 6. Hash Tables

6.2.3 Tabulation-Based Hashing
For the case when each key can be viewed as a tuple, k = (x1, x2, . . . , xd), for a

fixed d, there is another class of hash functions we can use, which involve simple

table lookups. These are known as tabulation-based hash functions, and they can

be applied even for hashing on small devices, since they make no use of addition

or multiplication.

So, let us assume that all our keys are of the form k = (x1, x2, . . . , xd), for

a fixed d, and each xi is in the range [0, M − 1]. Then we can initialize d tables,

T1, T2, . . . , Td, of size M each, so that each Ti[j] is a uniformly chosen independent

random number in the range [0, N − 1]. We then can compute the hash function,

h(k), as

h(k) = T1[x1] ⊕ T2[x2] ⊕ · · · ⊕ Td[xd].

Note, in addition, that we might as well assume that N ≤ Md, for otherwise we

could simply use each key, k, as an integer index for hashing, as in the standard

lookup table implementation. Also, recall that the number of keys, n, may be

different than the capacity, N , of our hash table.

Because the values in the tables are themselves chosen at random, such a func-

tion is itself fairly random. For instance, it can be shown that such a function will

cause two distinct keys to collide at the same hash value with probability 1/N ,

which is what we would get from a perfectly random function. In addition, this

function only uses the XOR operation; hence, it can be evaluated without doing

any additions and multiplications, which may take more time than XOR operations

on some machines.

6.2.4 Modular Division
In the case that we can view the key k as a single integer, perhaps the simplest

hash function is to use modular division to compress k into the range [0, N − 1] as

follows:

h(k) = k mod N.

If we take N to be a prime number, then the division compression map helps

“spread out” the distribution of hashed values. Indeed, if N is not prime, there is

a higher likelihood that patterns in the distribution of keys will be repeated in the

distribution of hash codes, thereby causing collisions. For example, if we hash the

keys {200, 205, 210, 215, 220, . . . , 600} to a bucket array of size 100, then each

hash code will collide with three others. But if this same set of keys is hashed to

a bucket array of size 101, then there will be no collisions. If we can assume that

the set of keys is uniformly randomly distributed among an integer range much

larger than N , then the modular-division hash function should guarantee that the

probability of two different keys being hashed to the same value is at most 1/N .

www.it-ebooks.info

http://www.it-ebooks.info/

6.2. Hash Functions 197

Choosing N to be a prime number and having uniformly distributed keys is not

always enough to avoid such collisions, however, if the keys are not also random.

For example, if there is a repeated pattern of key values of the form iN + j for

several different i’s, then such a set of keys would be uniformly distributed but they

will all collide at the hash value j.

6.2.5 Random Linear and Polynomial Functions

A more sophisticated compression function, which helps mitigate repeated patterns

in a set of integer keys is to use a random linear hash function. In this case, we

define a random linear hash function, h, for an integer key, k, as

h(k) = (ak + b) mod N,

where N is a prime number, and 0 < a < N and 0 ≤ b < N are independent uni-

form random integers. This hash function is chosen in order to reduce the number

of collisions caused by repeated patterns in a set of hash values and thereby get us

closer to having a “good” hash function, that is, one where the probability any two

different keys collide is 1/N . In fact, we prove below, in Section 6.5, that a random

linear hash function can be used to guarantee such a probability bound on pairwise

collisions.

Random Polynomial Functions

In some cases, we may need a hash function that guarantees that the probabilities

that larger numbers of hash values collide is the same as what one would get with

a random function. One way to achieve such a result for an integer key, k, is to use

a random polynomial hash function, h, which is defined as

h(k) = ad + k(ad−1 + k(ad−2 + · · · + k(a3 + k(a2 + ka1)) · · ·)) mod N,

where N is prime and the ai’s are independent uniformly random integers in the

range [0, N − 1], such that at least one of the coefficients in {a1, a2, . . . , ad−1} is

nonzero. For such a hash function, although we don’t include a proof here, one can

show that the probability that any 2 ≤ c ≤ d distinct keys collide at the same hash

value is 1/N c−1.

Thus, adding this hash function to the bunch we have already discussed, we

clearly have a rich collection of hash functions, each of which is designed to min-

imize the number of collisions. Even so, it is not likely that we can completely

avoid collisions with any of these schemes. Therefore, in addition to choosing

a good hash function, we also need to come up with a graceful way of handling

collisions when they occur.

www.it-ebooks.info

http://www.it-ebooks.info/

198 Chapter 6. Hash Tables

6.3 Handling Collisions and Rehashing
Recall that the main idea of a hash table is to take a lookup table, A, and a hash

function, h, and use them to implement a map by storing each item (k, v) in the

“bucket” A[h(k)]. This simple idea is challenged, however, when we have two

distinct keys, k1 and k2, such that h(k1) = h(k2). The existence of such collisions
prevents us from simply inserting a new item (k, v) directly in the bucket A[h(k)].
They also complicate our procedure for performing the get(k) operation. Thus, we

need consistent strategies for resolving collisions.

6.3.1 Separate Chaining
A simple and efficient way for dealing with collisions is to have each bucket A[i]
store a reference to a set, Si, that stores all the items that our hash function has

mapped to the bucket A[i] in a linked list. The set Si can be viewed as a miniature

map, implemented using the underlying linked list, but restricted to only hold items

(k, v) such that h(k) = i. This collision resolution rule is known as separate
chaining. Assuming that we implement each nonempty bucket in this way, we can

perform the fundamental map operations as follows:

• get(k):
B ← A[h(k)]
if B = NULL then

return NULL
else

return B.get(k) // do a lookup in the list B

• put(k, v):
if A[h(k)] = NULL then

Create a new initially empty linked-list-based map, B
A[h(k)] ← B

else
B ← A[h(k)]

B.put(k, v) // put (k, v) at the end of the list B

• remove(k):
B ← A[h(k)]
if B = NULL then

return NULL
else

return B.remove(k) // remove the item with key k from the list B

www.it-ebooks.info

http://www.it-ebooks.info/

6.3. Handling Collisions and Rehashing 199

0

1

2

3

4

5

6

7

8

10

11

12

41 28 54

18

90 12 38

36 10

25

9

A

Figure 6.4: Example of a hash table of size 13, storing 10 integer keys, with

collisions resolved by the chaining method. The hash function in this case is

h(k) = k mod 13.

Thus, for each map operation involving a key k, we delegate the handling of this

operation to the miniature linked-list-based map stored at A[h(k)]. So, an insertion

will put the new item at the beginning of this list in O(1) time, a find will search

through this sequence until it reaches the end or finds an item with the desired

key, and a remove will additionally remove an item after it is found. We can “get

away” with using the simple linked-list implementation in these cases, because the

spreading properties of the hash function help keep each such list small. Indeed, a

good hash function will try to minimize collisions as much as possible, which will

imply that most of our buckets are either empty or store just a single item.

In Figure 6.4, we give an illustration of a simple hash table that uses the modular

division hash function and separate chaining to resolve collisions.

For the sake of analyzing separate chaining, let us assume that our hash func-

tion, h, maps keys to independent uniform random values in the range [0, N − 1].
Thus, if we let X be a random variable representing the number of items that map

to a bucket, i, in the array A, then the expected value of X ,

E(X) =
n

N
,

where n is the number of items in the map, since each of the N locations in A is

equally likely for each item to be placed. This parameter, n/N , which is the ratio

of the number of items in a hash table, n, and the capacity of the table, N , is called

the load factor of the hash table. If it is O(1), then the above analysis says that the

expected time for hash table operations is O(1) when collisions are handled with

separate chaining.

www.it-ebooks.info

http://www.it-ebooks.info/

200 Chapter 6. Hash Tables

6.3.2 Open Addressing

The separate chaining rule has many nice properties, such as allowing for simple

implementations of the fundamental map operations, but it nevertheless has one

disadvantage: it requires the use of auxiliary data structures—namely, the linked

lists that store the items for each index in the array. We can handle collisions in

other ways besides using the separate chaining rule, however. In particular, if space

is of a premium, then we can use the alternative approach of always storing each

item directly in a bucket, at most one item per bucket. This approach saves space

because no auxiliary structures are employed—it only uses the space in the bucket

array, A, itself—but it requires a bit more complexity to deal with collisions. There

are several methods for implementing this approach, which is referred to as open
addressing.

6.3.3 Linear Probing

One of the simplest open addressing collision-handling strategy is linear probing.

In this strategy, if we try to insert an item (k, v) into a bucket A[i] that is already

occupied, where i = h(k), then we try next at A[(i + 1) mod N]. If A[(i +
1) mod N] is occupied, then we try A[(i + 2) mod N], and so on, until we find

an empty bucket in A that can accept the new item. Once this bucket is located,

we simply insert the item (k, v) here. Of course, using this collision resolution

strategy requires that we change the implementation of the get(k) operation. In

particular, to perform such a search we must examine consecutive buckets, starting

from A[h(k)], until we either find an item with key equal to k or we find an empty

bucket (in which case the search is unsuccessful). (See Figure 6.5.)

21163752613

1 10987654320

New element with

key = 15 to be inserted

must probe 4 times

before finding empty slot

Figure 6.5: An insertion into a hash table using linear probing to resolve collisions.

Here we use the compression map h(k) = k mod 11.

The operation remove(k) is more complicated, however. In particular, to fully

implement this method, we should restore the contents of the bucket array to look

as though the item with key k was never inserted in its bucket A[i] in the first place.

The algorithms for the three fundamental map methods are as follows, where, for

the sake of simplicity, we assume that the table, A, is not completely full.

www.it-ebooks.info

http://www.it-ebooks.info/

6.3. Handling Collisions and Rehashing 201
• get(k):

i ← h(k)
while A[i] 	= NULL do

if A[i].key = k then
return A[i]

i ← (i + 1) mod N
return NULL

• put(k, v):
i ← h(k)
while A[i] 	= NULL do

if A[i].key = k then
A[i] ← (k, v) // replace the old (k, v′)

i ← (i + 1) mod N
A[i] ← (k, v)

• remove(k):
i ← h(k)
while A[i] 	= NULL do

if A[i].key = k then
temp ← A[i]
A[i] ← NULL
Call Shift(i) to restore A to a stable state without k
return temp

i ← (i + 1) mod N
return NULL

• Shift(i):
s ← 1 // the current shift amount

while A[(i + s) mod N] 	= NULL do
j ← h(A[(i + s) mod N].key) // preferred index for this item

if j 	∈ (i, i + s] mod N then
A[i] ← A[(i + s) mod N] // fill in the “hole”

A[(i + s) mod N] ← NULL // move the “hole”

i ← (i + s) mod N
s ← 1

else
s ← s + 1

One alternative to the shifting done above for remove(k) is to replace the

deleted item by a special “deactivated item” object. With this special marker possi-

bly occupying buckets in our hash table, we would then need to modify our search

algorithm for remove(k) or get(k), so that the search for a key k should skip over

deactivated items and continue probing until reaching the desired item or an empty

bucket. Likewise, the put(k, v) algorithm should stop at a deactivated item and

replace it with the new item to be inserted. (See Exercise C-6.1.)

www.it-ebooks.info

http://www.it-ebooks.info/

202 Chapter 6. Hash Tables

Analyzing Linear Probing

Recall that, in the linear-probing scheme for handling collisions, whenever an in-

sertion at a cell i would cause a collision, then we instead insert the new item in the

first cell of i+1, i+2, and so on, until we find an empty cell, wrapping our indices

to the beginning of the table if necessary. In order to analyze how long this takes

on average, we are going to use one of the Chernoff bounds, which we also discuss

in Sections 1.2.4 and 19.5.

Let X1, X2, . . . , Xn be a set of mutually independent indicator random vari-

ables, such that each Xi is 1 with some probability pi > 0 and 0 otherwise. Let

X =
∑n

i=1 Xi be the sum of these random variables, and let μ denote the mean of

X , that is, μ = E(X) =
∑n

i=1 pi. The following bound, which is due to Chernoff

(and which we derive in Section 19.5), establishes that, for δ > 0,

Pr(X > (1 + δ)μ) <

[
eδ

(1 + δ)(1+δ)

]μ
.

Having presented this Chernoff bound, we can now analyze the expected run-

ning time for doing a search or update in a hash table that is implemented using

the linear-probing collision-handling scheme. For this analysis, let us assume that

we are storing n items in a hash table of size N = 2n, that is, our hash table has

a load factor of 1/2. If our actual load factor is less than this, then this analysis

still applies, of course. If the load factor is much more than this, however, then the

performance of linear probing can degrade significantly.

Let X denote a random variable equal to the number of probes that we would

perform in doing a search or update operation in our hash table for some key, k.

Furthermore, let Xi be a 0/1 indicator random variable that is 1 if and only if

i = h(k), and let Yi be a random variable that is equal to the length of a run of

contiguous nonempty cells that begins at position i, wrapping around the end of the

table if necessary. By the way that linear probing works, and because we assume

that our hash function h(k) is random,

X =
N−1∑
i=0

Xi(Yi + 1),

which implies that

E(X) =
N−1∑
i=0

1
2n

E(Yi + 1)

= 1 + (1/2n)E

(
N−1∑
i=0

Yi

)
.

Thus, if we can bound the expected value of the sum of Yi’s, then we can bound the

expected time for a search or update operation in a linear-probing hashing scheme.

www.it-ebooks.info

http://www.it-ebooks.info/

6.3. Handling Collisions and Rehashing 203

Consider, then, a maximal contiguous sequence, S, of k nonempty table cells,

that is, a contiguous group of occupied cells that has empty cells next to its opposite

ends. Any search or update operation that lands in S will, in the worst case, march

all the way to the end of S. That is, if a search lands in the first cell of S, it would

make k wasted probes, if it lands in the second cell of S, it would make k − 1
wasted probes, and so on. So the total cost of all the searches that land in S can be

at most k2. Thus, if we let Zi,k be a 0/1 indicator random variable for the existence

of a maximal sequence of nonempty cells of length k, then

N−1∑
i=0

Yi ≤
N−1∑
i=0

2n∑
k=1

k2Zi,k.

Put another way, it is as if we are “charging” each maximal sequence of nonempty

cells for all the searches that land in that sequence.

So, to bound the expected value of the sum of the Yi’s, we need to bound

the probability that Zi,k is 1, which is something we can do using the Chernoff

bound given above. Let Zk denote the number of items that are mapped to a given

sequence of k cells in our table. Then,

Pr(Zi,k = 1) ≤ Pr(Zk ≥ k).

Because the load factor of our table is 1/2, E(Zk) = k/2. Thus, by the above

Chernoff bound,

Pr(Zk ≥ k) = Pr(Zk ≥ 2(k/2))

≤ (e/4)k/2

< 2−k/4.

Therefore, putting all the above pieces together,

E(X) = 1 + (1/2n)E

(
N−1∑
i=0

Yi

)

≤ 1 + (1/2n)
N−1∑
i=0

2n∑
k=1

k2 2−k/4

≤ 1 +
∞∑

k=1

k2 2−k/4

= O(1).

That is, the expected running time for doing a search or update operation with linear

probing is O(1), so long as the load factor in our hash table is at most 1/2.

Linear probing saves space, but it admittedly complicates removals. In addition,

if the load factor of the hash table goes too high, then the linear-probing collision-

handling strategy tends to cluster the items of the map into contiguous runs, which

causes searches to slow down.

www.it-ebooks.info

http://www.it-ebooks.info/

204 Chapter 6. Hash Tables

6.3.4 Quadratic Probing

Another open addressing strategy, known as quadratic probing, involves iteratively

trying the buckets A[(i+f(j)) mod N], for j = 0, 1, 2, . . ., where f(j) = j2, until

finding an empty bucket. As with linear probing, the quadratic probing strategy

complicates the removal operation, but it does avoid the kinds of clustering patterns

that occur with linear probing.

Secondary Clustering

Nevertheless, when the load factor approaches 1, it creates its own kind of clus-

tering, called secondary clustering, where the set of filled array cells “bounces”

around the array in a fixed pattern. If N is not chosen as a prime, then the quadratic

probing strategy may not find an empty bucket in A even if one exists. In fact, even

if N is prime, this strategy may not find an empty slot, if the bucket array is at least

half full.

6.3.5 Double Hashing

Another open addressing strategy that does not cause clustering of the kind pro-

duced by linear probing or the kind produced by quadratic probing is the double
hashing strategy. In this approach, we choose a secondary hash function, h′, and

if h maps some key k to a bucket A[i], with i = h(k), that is already occupied,

then we iteratively try the buckets A[(i + f(j)) mod N] next, for j = 1, 2, 3, . . .,
where f(j) = j · h′(k). In this scheme, the secondary hash function is not allowed

to evaluate to zero; a common choice is h′(k) = q − (k mod q), for some prime

number q < N . Also, N should be a prime.

Moreover, in using the double hashing technique, we should choose a sec-

ondary hash function that will attempt to minimize clustering as much as possi-

ble. If the functions h and f are assumed to be random functions, then it is fairly

straightforward to prove that the expected running time for a search is O(1), for

example, see Exercise C-6.3.

Trade-offs for Open Addressing

These open addressing schemes save some space over the separate chaining

method, but they are not necessarily faster. In experimental and theoretical anal-

yses, the chaining method is either competitive or faster than the other methods,

if the load factor is relatively close to 1, and open addressing tends to be faster

than separate chaining if the load factor is less than 1/2 (because it avoids an extra

pointer hop).

www.it-ebooks.info

http://www.it-ebooks.info/

6.3. Handling Collisions and Rehashing 205

6.3.6 Rehashing
As shown above, the load factor, n/N , which is the ratio of the number of items in a

hash table, n, and the capacity of the table, N , has a big impact on the performance

of a hash table. The load factor of a hash table correlates to the probability that a

newly inserted item will collide with an existing item, and, as discussed above, the

load factor impacts the running times for hash table operations for both separate

chaining and open addressing methods for handling collisions. For instance, given

a constant load factor, the above analysis for separate chaining implies that the ex-

pected running time of the operations get, put, and remove in a map implemented

with a hash table with separate chaining is O(�n/N�) = O(1). Thus, we can im-

plement the standard map operations to run in constant expected time, assuming we

can maintain our hash table to have a bounded load factor. Therefore, we should

always keep the load factor of our hash table below a small constant sufficiently

smaller than 1.

Keeping a hash table’s load factor below a constant (like 1/2 or 3/4) requires

additional work whenever we add an item that would cause us to exceed this bound.

In such cases, in order to keep the load factor below the specified constant, we need

to increase the size of our bucket array, A, and change our hash function to match

this new size. Moreover, we must then insert all the existing hash-table elements

into the new bucket array using the new hash function. Such a size increase and

hash table rebuild is called rehashing. Following the approach of the extendable

array (Section 1.4.2), a good choice is to rehash into an array roughly double the

size of the original array. Such a choice implies that the additional amortized cost

required for rehashing is O(1) per insertion operation. (See Figure 6.6.)

Figure 6.6: Rehashing a hash table with capacity 8 and load factor 7/8 into a hash

table with capacity 16 and load factor 7/16. Note that all the items are placed into

their new locations according to a new hash function, h′. So, for example, the item

with key 7 was placed in bucket 3 in the old table, since h(7) = 3, but is placed in

bucket 8 in the new table, since h′(7) = 8. (We only show keys, not values.)

www.it-ebooks.info

http://www.it-ebooks.info/

206 Chapter 6. Hash Tables

6.4 Cuckoo Hashing
In the separate chaining and open addressing hashing schemes, the running time

for doing a search is expected to be O(1), but it can be as bad as O(n) in the worst

case (albeit with very low probability). In the case of separate chaining, the running

time of the put(k, v) method runs in O(1) time in the worst case, however. In most

applications, we would expect to perform more searches than insertions, so it would

be nice to have a collision-handling scheme that can guarantee that searches run in

O(1) time in the worst case, while allowing for insertions to run in O(1) time as

an expected bound. Interestingly, the cuckoo hashing scheme we describe in this

section achieves this performance goal while still being an open addressing scheme,

like linear probing.

The Power of Two Choices

In the cuckoo hashing scheme, we use two lookup tables, T0 and T1, each of size

N , where N is greater than n, the number of items in the map, by at least a constant

factor, say, N ≥ 2n. In addition, we use a hash function, h0, for T0, and a different

hash function, h1, for T1. For any key, k, there are only two possible places where

we are allowed to store an item with key k, namely, either in T0[h0(k)] or T1[h1(k)].
(See Figure 6.7.)

The way we perform the get(k) method in this scheme is quite simple:

• get(k):
if T0[h0(k)] 	= NULL and T0[h0(k)].key = k then

return T0[h0(k)]
if T1[h1(k)] 	= NULL and T1[h1(k)].key = k then

return T1[h1(k)]
return NULL

This is clearly a constant-time operation, and performing the remove(k) operation

is similar:

• remove(k):
if T0[h0(k)] 	= NULL and T0[h0(k)].key = k then

temp ← T0[h0(k)]
T0[h0(k)] ← NULL
return temp

if T1[h1(k)] 	= NULL and T1[h1(k)].key = k then
temp ← T1[h1(k)]
T1[h1(k)] ← NULL
return temp

return NULL

www.it-ebooks.info

http://www.it-ebooks.info/

6.4. Cuckoo Hashing 207

Figure 6.7: Cuckoo hashing. Each of the keys in the set S = {2, 3, 5, 8, 9} has two

possible locations it can go, one in the table T1 and one in the table T2. Note that

there is a collision of 2 and 8 in T2, but that is okay, since there is no collision for

2 in its alternative location, in T1.

The name “cuckoo hashing” comes from the way the put(k, v) operation is

performed in this scheme, because it mimics the breeding habits of the Common

Cuckoo bird. The Common Cuckoo is a brood parasite—it lays its egg in the nest

of another bird after first evicting an egg out of that nest. Similarly, if a collision

occurs in the insertion operation in the cuckoo hashing scheme, then we evict the

previous item in that cell and insert the new one in its place. This forces the evicted

item to go to its alternate location in the other table and be inserted there, which may

repeat the eviction process with another item, and so on. Eventually, we either find

an empty cell and stop or we repeat a previous eviction, which indicates an eviction

cycle. If we discover an eviction cycle, then we stop the insertion process and

rehash all the items in the two tables using new, hopefully better, hash functions.

www.it-ebooks.info

http://www.it-ebooks.info/

208 Chapter 6. Hash Tables

Insertions

The pseudocode for the put(k, v) method is as follows. (See Figure 6.8.)

• put(k, v):
if T0[h0(k)] 	= NULL and T0[h0(k)].key = k then

T0[h0(k)] ← (k, v)
return

if T1[h1(k)] 	= NULL and T1[h1(k)].key = k then
T1[h1(k)] ← (k, v)
return

i ← 0
repeat

if Ti[hi(k)] = NULL then
Ti[hi(k)] ← (k, v)
return

temp ← Ti[hi(k)]
Ti[hi(k)] ← (k, v) // cuckoo eviction

(k, v) ← temp
i ← (i + 1) mod 2

until a cycle occurs

Rehash all the items, plus (k, v), using new hash functions, h0 and h1.

Note that the above pseudocode has a condition for detecting a cycle in the

sequence of insertions. There are several ways to formulate this condition. For

example, we could count the number of iterations for this loop and consider there

to be a cycle if we go over a certain threshold, like n or log n.

Analysis of Cuckoo Hashing

Let us analyze the expected running time for doing an insertion in the cuckoo hash-

ing scheme. Throughout this analysis, we assume N ≥ 2n, where N is the size of

each table and n is the number of items in our map. Central to this analysis is an

analysis of the possibility that a sequence of evictions could start at a cell, x1, and

evict an item that goes to a cell, x2, and evicts an item that goes to a cell, x3, and so

on. Ignoring the direction that such a sequence of evictions goes in, say that there

is a potential sequence of evictions of length 1 between x and y if there is an item

that maps to both x and y as its two possible locations. Likewise, say that there is

a potential sequence of evictions of length L between x and y if there is a possible

sequence of evictions of length L− 1 between x and some cell, z, and there is also

an item that maps to both z and y as its two possible locations. We begin our anal-

ysis with a useful fact about the probability that there will be a possible sequence

of evictions of length L between a cell, x, and a cell, y, in T0 ∪ T1.

www.it-ebooks.info

http://www.it-ebooks.info/

6.4. Cuckoo Hashing 209

Figure 6.8: An eviction sequence of length 3.

Bounding the Probability of Long Eviction Sequences

The following lemma gives us a way of bounding the probability that we might

have long eviction sequences for any put operation.

Lemma 6.1: The probability that there is a possible sequence of evictions of
length L between a cell, x, and a cell, y, in T0 ∪ T1, is at most 1/(2LN).

Proof: The proof is by induction. For the base case, L = 1, note that there is

a possible length-1 eviction sequence between x and y if and only if we choose

x and y as the two possible locations for some item. The hash functions h0 and

h1 effectively choose 1 cell each out of N possible cells in T0 and T1, respectively.

Thus, the probability that a particular item chooses both x and y as its two locations

is at most 1/N2, and the probability that any of the n items in our set, S, chooses

both x and y is at most ∑
(k,v)∈S

1
N2

=
n

N2

≤ 1
2
· 1
N

,

because of our assumption that N ≥ 2n. Note that the probability that there is a

possible eviction sequence of length 1 between x and y is 0 if both x and y are

in the same table, Ti, but this probability is clearly bounded by 1/(2N). So this

completes the proof for the base case, L = 1.

www.it-ebooks.info

http://www.it-ebooks.info/

210 Chapter 6. Hash Tables

For the inductive step, L ≥ 2, let us assume the claim is true for possible evic-

tion sequences of length (L−1). For there to be a length-L eviction sequence from

x to y, there has to be a possible length-(L − 1) eviction sequence between x and

some cell, z, and a possible length-1 eviction sequence between z and y. By induc-

tion, for a given cell, z, the probability there is a length-(L − 1) eviction sequence

between x and z is at most 1/(2L−1N). Likewise, from the above discussion for

the base case, there is a length-1 eviction sequence between z and y with probabil-

ity at most 1/(2N). Thus, the probability that there is a length-L eviction sequence

between x and y is at most∑
z

1
2L−1N

· 1
2N

=
∑

z

1
2LN2

≤ N

2LN2

=
1

2LN
,

since there are only N candidates for z, because it has to be in either T0 or T1,

depending, respectively, on whether y is in T1 or T0.

Counting the Expected Number of Possible Evictions

Say that two keys k and l are in the same “bucket” if there is a sequence of evictions

(of any length) between a possible cell for k and a possible cell for l. Thus, for k
and l to be in the same bucket, there has to be an eviction sequence between one of

the cells T0[h0(k)] or T1[h1(k)] and one of the cells T0[h0(l)] or T1[h1(l)]. Note

that there are 4 such possible sequences, depending on where we stop and end,

since we are ignoring the direction that a sequence of evictions can take. Then, by

Lemma 6.1, and summing across all possible lengths, the probability that k and l
are in the same bucket is bounded by

4
∞∑

L=1

1
2LN

=
4
N

∞∑
L=1

1
2L

=
4
N

.

Note that, by this notion of a “bucket,” the running time for performing an

insertion in a cuckoo table is certainly bounded by the number of items that map

to the same bucket as the item being inserted, so long as we don’t cause a rehash.

Thus, the expected time to insert an item with key k in this case is bounded by∑
keys in S

4
N

= 4n/N ≤ 2.

In other words, the expected running time for performing a put(k, v) operation for

a cuckoo table is O(1), assuming this insertion does not cause a rehash.

www.it-ebooks.info

http://www.it-ebooks.info/

6.4. Cuckoo Hashing 211

Allowing for Rehash Operations

So, let us consider the expected number of rehashes we may have to do. By the

description of the insertion algorithm, a rehash occurs if there is a cycle of evictions,

that is, a length-L sequence of evictions that starts and ends at the same cell. Then,

by Lemma 6.1, and the fact that we need only consider even-length sequences of

evictions (to form a cycle), the probability that there is a cycle of evictions that

starts and ends at some cell, x, is bounded by

∞∑
L=1

1
22LN

=
∞∑

L=1

1
4LN

=
1
N

∞∑
L=1

1
4L

=
1
N

· 1/4
1 − 1/4

=
1

3N
.

Therefore, the probability that there is a cycle anywhere can be bounded by sum-

ming this value over all 2N cells in the cuckoo tables. That is, the probability that

any of the n items in our cuckoo hash table forms a cycle of evictions is at most

2/3. In other words, with probability at most 2/3 we will have to do a rehash dur-

ing the insertion of these n items, and, with probability at most (2/3)2 we would

have to do 2 rehashes, and, with probability at most (2/3)3 we would have to do 3

rehashes, and so on. If the time to do a rehash is O(n), then the expected time to

perform n insertions and the rehashes they may cause is bounded by

O(n) + O(n) ·
∞∑
i=1

(2/3)i,

which is O(n). Thus, the expected amortized time to perform any single insertion

in a cuckoo table is O(1).

Summary

So, to sum up, a cuckoo hash table achieves worst-case constant time for lookups

and removals, and expected constant time for insertions. This is primarily because

there are exactly two possible places for any item to be in a cuckoo hash table,

which shows the power of two choices.

www.it-ebooks.info

http://www.it-ebooks.info/

212 Chapter 6. Hash Tables

6.5 Universal Hashing
In this section, we show how a random linear hash function can be probabilistically

shown to be good. Recall that in this case we assume that our set of keys are integers

in some range. Let [0, M −1] be this range. Thus, we can view a hash function h as

a mapping from integers in the range [0, M − 1] to integers in the range [0, N − 1],
and we can view the set of candidate hash functions we are considering as a family
H of hash functions. Such a family is universal if for any two integers j and k in

the range [0, M − 1] and for a hash function chosen uniformly at random from H ,

Pr(h(j) = h(k)) ≤ 1
N

.

Such a family is also known as a 2-universal family of hash functions. The goal of

choosing a good hash function can therefore be viewed as the problem of selecting

a small universal family H of hash functions that are easy to compute. The reason

universal families of hash functions are useful is that they result in a low expected

number of collisions.

Theorem 6.2: Let j be an integer in the range [0, M − 1], let S be a set of n inte-
gers in this same range, and let h be a hash function chosen uniformly, at random,
from a universal family of hash functions from integers in the range [0, M − 1] to
integers in the range [0, N − 1]. Then the expected number of collisions between j
and the integers in S is at most n/N .

Proof: Let ch(j, S) denote the number of collisions between j and integers in S
(that is, ch(j, S) = |{k ∈ S : h(j) = h(k)}|). The quantity we are interested in is

the expected value E(ch(j, S)). We can write ch(j, S) as

ch(j, S) =
∑
k∈S

Xj,k,

where Xj,k is a random variable that is 1 if h(j) = h(k) and is 0 otherwise (that

is, Xj,k is an indicator random variable for a collision between j and k). By the

linearity of expectation,

E(ch(j, S)) =
∑
s∈S

E(Xj,k).

Also, by the definition of a universal family, E(Xj,k) ≤ 1/N . Thus,

E(ch(j, S)) ≤
∑
s∈S

1
N

=
n

N
.

Put another way, this theorem states that the expected number of collisions

between a hash code j and the keys already in a hash table (using a hash function

chosen at random from a universal family H) is at most the current load factor of

www.it-ebooks.info

http://www.it-ebooks.info/

6.5. Universal Hashing 213

the hash table. Since the time to perform a search, insertion, or deletion for a key

j in a hash table that uses the chaining collision-resolution rule is proportional to

the number of collisions between j and the other keys in the table, this implies that

the expected running time of any such operation is proportional to the hash table’s

load factor. This is exactly what we want.

Let us turn our attention, then, to the problem of constructing a small universal

family of hash functions that are easy to compute. The set of hash functions we

construct is actually similar to the final family we considered at the end of the

previous section. Let p be a prime number greater than or equal to the number of

hash codes M but less than 2M (and there must always be such a prime number,

according to a mathematical fact known as Bertrand’s Postulate).

Define H as the set of hash functions of the form

ha,b(k) = (ak + b mod p) mod N.

The following theorem establishes that this family of hash functions is universal.

Theorem 6.3: The family H = {ha,b : 0 < a < p and 0 ≤ b < p} is universal.

Proof: Let Z denote the set of integers in the range [0, p − 1]. Let us separate

each hash function ha,b into the functions

fa,b(k) = (ak + b) mod p

and

g(k) = k mod N,

so that ha,b(k) = g(fa,b(k)). The set of functions fa,b defines a family of hash

functions F that map integers in Z to integers in Z. We claim that each function in

F causes no collisions at all. To justify this claim, consider fa,b(j) and fa,b(k) for

some pair of different integers j and k in Z. If fa,b(j) = fa,b(k), then we would

have a collision. But, recalling the definition of the modulo operation, this would

imply that

aj + b −
⌊

aj + b

p

⌋
p = ak + b −

⌊
ak + b

p

⌋
p.

Without loss of generality, we can assume that k < j, which implies that

a(j − k) =
(⌊

aj + b

p

⌋
−
⌊

ak + b

p

⌋)
p.

Since a 	= 0 and k < j, this in turn implies that a(j − k) is a multiple of p. But

a < p and j − k < p, so there is no way that a(j − k) can be a positive multiple

of p, because p is prime (remember that every positive integer can be factored into

a product of primes). So it is impossible for fa,b(j) = fa,b(k) if j 	= k. To put

this another way, each fa,b maps the integers in Z to the integers in Z in a way that

defines a one-to-one correspondence. Since the functions in F cause no collisions,

the only way that a function ha,b can cause a collision is for the function g to cause

a collision.

www.it-ebooks.info

http://www.it-ebooks.info/

214 Chapter 6. Hash Tables

Let j and k be two different integers in Z. Also, let c(j, k) denote the number

of functions in H that map j and k to the same integer (that is, that cause j and k
to collide). We can derive an upper bound for c(j, k) by using a simple counting

argument. If we consider any integer x in Z, there are p different functions fa,b

such that fa,b(j) = x (since we can choose a b for each choice of a to make this

so). Let us now fix x and note that each such function fa,b maps k to a unique

integer

y = fa,b(k)

in Z with x 	= y. Moreover, of the p different integers of the form y = fa,b(k),
there are at most

�p/N� − 1

such that g(y) = g(x) and x 	= y (by the definition of g). Thus, for any x in Z,

there are at most �p/N� − 1 functions ha,b in H such that

x = fa,b(j) and ha,b(j) = ha,b(k).

Since there are p choices for the integer x in Z, the above counting arguments

imply that

c(j, k) ≤ p
(⌈ p

N

⌉
− 1
)

≤ p(p − 1)
N

.

There are p(p− 1) functions in H , since each function ha,b is determined by a pair

(a, b) such that 0 < a < p and 0 ≤ b < p. Thus, picking a function uniformly at

random from H involves picking one of p(p− 1) functions. Therefore, for any two

different integers j and k in Z,

Pr(ha,b(j) = ha,b(k)) ≤ p(p − 1)/N
p(p − 1)

=
1
N

.

That is, the family H is universal.

In addition to being universal, the functions in H have a number of other nice

properties. Each function in H is easy to select, since doing so simply requires that

we select a pair of random integers a and b such that 0 < a < p and 0 ≤ b < p.

In addition, each function in H is easy to compute in O(1) time, requiring just one

multiplication, one addition, and two applications of the modulus function. Thus,

any hash function chosen uniformly at random in H will result in an implementa-

tion of a map so that the fundamental operations all have expected running times

that are O(�n/N�), since we are using the chaining rule for collision resolution.

www.it-ebooks.info

http://www.it-ebooks.info/

6.6. Exercises 215

6.6 Exercises

Reinforcement
R-6.1 Alice says that a hash table with collisions handled using separate chaining can

have a load factor greater than 1. Bob says that this is impossible. Who is right,
and why?

R-6.2 Bob says that a hash table with collisions handled using open addressing can have
a load factor greater than 1. Alice says that this is impossible. Who is right, and
why?

R-6.3 Describe the limitations of using a linked list to store a collection of key-value
pairs subject to put(k, v) and get(k).

R-6.4 Draw the 11-item hash table resulting from hashing the keys 12, 44, 13, 88, 23,
94, 11, 39, 20, 16, and 5, using the hash function h(i) = (2i + 5) mod 11 and
assuming collisions are handled by chaining.

R-6.5 What is the result of the previous exercise, assuming collisions are handled by
linear probing?

R-6.6 Show the result of Exercise R-6.4, assuming collisions are handled by quadratic
probing, up to the point where the method fails because no empty slot is found.

R-6.7 What is the result of Exercise R-6.4 assuming collisions are handled by double
hashing using a secondary hash function h′(k) = 7 − (k mod 7)?

R-6.8 Give a pseudocode description of an insertion into a hash table that uses quadratic
probing to resolve collisions, assuming we also use the trick of replacing deleted
items with a special “deactivated item” object.

R-6.9 Show the result of rehashing the hash table shown in Figure 6.4 into a table of
size 19 using the new hash function h(k) = 2k mod 19.

Creativity
C-6.1 Give the pseudocode description for performing insertion, searching, and re-

moval from a hash table that uses linear probing to resolve collisions where we
use a special marker to represent deleted elements.

C-6.2 In our description of hashing with the separate chaining rule, we assumed each
cell in the array, A, was a pointer to a linked list, which wastes space in the case
where the list holds only one item. Show how to modify our implementation so
that we don’t waste space on additional pointers to linked-list nodes for the cells
in A that hold only one item.

C-6.3 Suppose that both the hash function, h, and the hash function, f , used in the
double hashing open addressing scheme are random functions. Show that the
expected time to perform the get(k) operation is O(1).

www.it-ebooks.info

http://www.it-ebooks.info/

216 Chapter 6. Hash Tables

C-6.4 Dr. Wayne has a new way to do open addressing, where, for a key k, if the
cell h(k) is occupied, then he suggests trying (h(k) + i · f(k)) mod N , for
i = 1, 2, 3, . . ., until finding an empty cell, where f(k) is a random hash function
returning values from 1 to N − 1. Explain what can go wrong with Dr. Wayne’s
scheme if N is not prime.

C-6.5 Describe a different way of detecting an eviction cycle in the cuckoo hashing
scheme than in counting iterations.

Hint: You are allowed to use additional memory or to mark the cells of the two
tables.

C-6.6 A multimap is data structure that allows for multiple values to be associated with
the same key. It has a put(k, v) method, which inserts an item with key k and
value v even if there is already an item with key k (but not the same key-value
pair), and a FindAll(k) method, which returns all the values that have the key k.
Describe a scheme that implements a multimap so that the put(k, v) method runs
in O(1) expected time and the FindAll(k) method runs in O(1 + s) time, where
s is the number of values with key k.

C-6.7 Suppose you would like to build a hash table for images, where the key for each
image is a “thumbnail” image of 75×75 pixels, with each pixel being one of 256
possible colors. Describe a hash function for a set of such images. Your hash
function should be fast to compute and it should strive to map different images
to different hash values. In particular, reflections and 90◦ rotations of the same
image should, in general, map to different hash values.

Applications
A-6.1 Suppose you are working in the information technology department for a large

hospital. The people working at the front office are complaining that the soft-
ware to discharge patients is taking too long to run. Indeed, on most days around
noon there are long lines of people waiting to leave the hospital because of this
slow software. After you ask if there are similar long lines of people waiting to
be admitted to the hospital, you learn that the admissions process is quite fast in
comparison. After studying the software for admissions and discharges, you no-
tice that the set of patients currently admitted in the hospital is being maintained
as a linked list, with new patients simply being added to the end of this list when
they are admitted to the hospital. Describe a modification to this software that
can allow both admissions and discharges to go fast. Characterize the running
times of your solution for both admissions and discharges.

A-6.2 Perform a comparative analysis that studies the collision rates for various hash
functions for character strings, such as various polynomial hash codes for differ-
ent values of the parameter a. Use a hash table to determine collisions, but only
count collisions where different strings map to the same hash code (not if they
map to the same location in this hash table). Test these hash codes on text files
found on the Internet.

A-6.3 In a double-entry accounting system, every business transaction has to be en-
tered as two separate transactions, in different two accounts, once as a debit and

www.it-ebooks.info

http://www.it-ebooks.info/

6.6. Exercises 217

once as a credit. For example, if a business borrows $10,000 from a bank, the
business should enter a debit of $10,000 to its Cash account a credit of $10,000
to its Notes Payable account. In order to be in balance, every debit in such a
system must have a matching credit. Describe an efficient algorithm to test if a
double-entry accounting system is in balance. What is the running time of your
method in terms of n, the number of business transactions?

A-6.4 Sports announcers are expected to keep talking during a broadcast of a sporting
event even when there is nothing actually happening, such as during half-time.
One common way to fill empty time is with sports trivia. Suppose, then, that you
are going to be a sports announcer for the big game between the Bears and the
Anteaters. To fill the empty time during half-time, you would like to say that this
is the nth time that a game between the Bears and Anteaters has had a score of
i-versus-j at half-time. The problem is that you don’t know the values of i and j
yet, of course, because the game hasn’t happened yet, and, once half-time arrives
you won’t have time to look through the entire list of Bear-Anteater half-time
scores to count the number of times the pair (i, j) appears. Describe an efficient
scheme for processing the list of Bear-Anteater half-time scores before the game
so that you can quickly say, right at the start of half-time, how many times the
pair (i, j) has occurred at similar moments in the past. Ideally, you would like
the processing task to take time proportional to the number of previous games
and the querying task to take constant time.

A-6.5 Imagine that you are building an online plagiarism checker, which allows teach-
ers in the land of Edutopia to submit papers written by their students and check
if any of those students have copied whole sections from a set, D, of documents
written in the Edutopian language that you have collected from the Internet. You
have at your disposal a parser, P , that can take any document, d, and separate it
into a sequence of its n words in their given order (with duplicates included) in
O(n) time. You also have a perfect hash function, h, that maps any Edutopian
word to an integer in the range from 1 to 1,000,000, with no collisions, in con-
stant time. It is considered an act of plagiarism if any student uses a sequence
of m words (in their given order) from a document in D, where m is a parame-
ter set by parliament. Describe a system whereby you can read in an Edutopian
document, d, of n words, and test if it contains an act of plagiarism. Your system
should process the set of documents in D in expected time proportional to their
total length, which is done just once. Then, your system should be able to pro-
cess any given document, d, of n words, in expected O(n+m) time (not O(nm)
time!) to detect a possible act of plagiarism.

A-6.6 It is well known that in a room of n people, the probability that at least two of
them have the same birthday is over 1/2 if n > 23, which is a phenomenon
known as the birthday paradox. Suppose, then, that you have a list of n people
and their birthdays. Describe a way, in O(n) expected time, to test whether two
of the people on this list have the same birthday.

A-6.7 One way to measure the reading difficulty of a book is to count the number of
unique words it contains. For example, Green Eggs and Ham, by Dr. Seuss,
contains 50 unique words, whereas the book of Isaiah, from the Bible, contains
almost 2,000 unique (Hebrew) words. Suppose you have a book, B, containing
n total words (including duplicates). Describe an efficient scheme to count the

www.it-ebooks.info

http://www.it-ebooks.info/

218 Chapter 6. Hash Tables

number of unique words in B. You may assume that you have a parser that
returns the n words in B as a sequence of character strings in O(n) time. What
is the running time of your method?

A-6.8 Imagine that you work for an insurance company that is insuring people against
identity theft. You have just learned about a major security breach at a prominent
bank used by many of your customers. Through back channels, you have ob-
tained the list of Social Security numbers of the bank customers whose banking
records were stolen, and, of course, you know the Social Security numbers for
your own customers. Describe an efficient scheme for identifying which of your
customers were victims in this security breach. What is the running time of your
method in terms of n, the number of customers of your insurance company, and
m, the number of bank customers who were victims in this security breach?

A-6.9 A popular tool for visualizing the themes in a speech is to draw a word cluster
diagram, where the unique words from the speech are drawn in a group, with
each word’s size being in proportion to the number of times it is used in the
speech. Given a speech containing n total words, describe an efficient method
for counting the number of times each word is used in that speech. You may
assume that you have a parser that returns the n words in a given speech as a
sequence of character strings in O(n) time. What is the running time of your
method?

A-6.10 Most modern text processing systems have a built-in spelling checker, which
checks to make sure words are spelled correctly and offers suggested corrections
when words are misspelled. Suppose you have a dictionary, D, of n English
words and would like to build such a spelling checker for two common spelling
mistakes: transpositions, where two consecutive letters are swapped, and substi-
tutions, where a single letter is replaced with a different letter. Describe a scheme
to process the dictionary D in expected O(n) time and then process any m-letter
word, w, to see if w is spelled correctly, and, if not, to collect all the suggested
correct English words that differ from w in a single transposition or substitution.
The processing of any such w should take O(m + s) time, where s is the total
length of all the suggested alternatives to w.

Chapter Notes
Classic discussions of hashing can be found in well-known books by Knuth [131] and
Gonnet and Baeza-Yates [85], including descriptions of separate chaining and open ad-
dressing schemes for handling collisions. Vitter and Chen [212] discuss coalesced hashing,
which is a hybrid of these two collision-handling strategies. Discussions concerning re-
hashing can be found in works by Fagin et al. [69] and Litwin [145]. Eppstein [67] has a
simplified analysis of linear probing that avoids Chernoff bounds, which we have adapted
to an analysis based on Chernoff bounds in this chapter. A nice discussion of tabulation
hashing can be found in a paper by Patrascu and Thorup [171]. Cuckoo hashing is due
to Pagh and Rodler [167]. The analysis of cuckoo hashing given in this chapter is based
on an unpublished manuscript, “Cuckoo Hashing for Undergraduates,” by Pasmus Pagh.
Universal hashing is due to Carter and Wegman [42].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

7 Union-Find Structures

Merging galaxies, NGC 2207 and IC 2163. Combined image from NASA’s
Spitzer Space Telescope and Hubble Space Telescope. 2006. U.S. government
image. NASA/JPL-Caltech/STSci/Vassar.

Contents

7.1 Union-Find and Its Applications 221
7.2 A List-Based Implementation 225
7.3 A Tree-Based Implementation 228
7.4 Exercises . 236

www.it-ebooks.info

http://www.it-ebooks.info/

220 Chapter 7. Union-Find Structures

Social networking research studies how relationships between various people

can influence behavior. Thus, a critical part of this research involves understanding

how such relationships define groups or communities within a social network. For-

mally, given a set, S, of people, we can define a social network for S by creating

an element, x, for each person and then create a set, E, of edges or ties between

pairs of people that have a certain kind of relationship. For example, in a friendship

network, ties would be defined by pairs of friends, in a sexual-relations network,

ties would be defined by pairs of people who were physically intimate, and in an

enemies network, ties would be defined by pairs of enemies. For the sake of being

concrete, let us consider a friendship network.

Social networking researchers are often interested in identifying connected
components in a friendship network. A connected component is a subset, T , of

people from S that satisfies the following properties:

• Every person in T is related through friendship, that is, for any x and y in T ,

either x and y are friends or there is a chain of friendship, such as through a

friend of a friend of a friend, that connects x and y.

• No one in T is friends with anyone outside of T .

Such community identifications are useful, since they allow researchers to study the

degree to which being connected through friendship can influence behavior, such

as how people vote or shop or whether they are more likely to gain weight or lose

weight. Thus, from an algorithmic perspective, it is useful to have an efficient data

structure that can be used to identify the connected components in a social network.

The types of data structures we discuss in this chapter, union-find structures, fit

this bill perfectly.

In the context of a social network, a union-find structure gives us a way of

maintaining a collection of disjoint sets of people, so as to support the following

three operations:

• Make a set, which initially contains just a single person, x, and has that

person’s name, “X ,” as the name of the set

• Union two sets, A and B, together, naming the result as being one of “A” or

“B,” so that everyone that was in A or B is now identified as belonging to

this union

• Find the name of the set containing a particular person, x.

Given such a data structure, we can determine all the connected components in a

social network simply by making a set for each person in the network and doing a

union operation for every pair of friends, x and y, that belong to different sets at

the point we consider their edge, (x, y). As we study in this chapter, this algorithm

has a surprising “almost” linear-time behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

7.1. Union-Find and Its Applications 221

7.1 Union-Find and Its Applications
A partition or union-find structure is a data structure supporting a collection of

disjoint sets. We define the methods for this structure assuming we have a constant-

time way to access a node associated with an item, e. For instance, items could

themselves be nodes or we could maintain some kind of lookup table or map for

finding the node associated with an item, e, in constant time. Given such an ability,

the methods include the following:

makeSet(e): Create a singleton set containing the element e and name

this set “e”.

union(A, B): Update A and B to create A ∪ B, naming the result as

“A” or “B”.

find(e): Return the name of the set containing the element e.

We refer to an implementation supporting these methods as a union-find structure.

7.1.1 Connected Components
Consider again the connected components problem mentioned above. That is, sup-

pose we are given a social network, N , defined by a set, S, of people, and a set, E,

of edges defining relationships between pairs of people, in no particular order, and

we are asked to find all the connected components for N . (See Figure 7.1.)

Figure 7.1: Connected components in a friendship network of some of the key

figures in the American Revolutionary War. All images are in the public domain.

www.it-ebooks.info

http://www.it-ebooks.info/

222 Chapter 7. Union-Find Structures

A Connected Components Algorithm

We give a pseudocode description of an algorithm for solving the connected compo-

nents problem using a union-find structure in Algorithm 7.2. The output from this

algorithm is an identification, for each person x in S, of the connected component

to which x belongs. For instance, for the social network shown in Figure 7.1, the

output would identify Lafayette, Rochambeau, George Washington, John Adams,

and Abigail Adams as belonging to the “Washington” connected component, and

Charles Cornwallis and Benedict Arnold as belonging to the “Cornwallis” con-

nected component.

Algorithm UFConnectedComponents(S, E):
Input: A set, S, of n people and a set, E, of m pairs of people from S defining

pairwise relationships

Output: An identification, for each x in S, of the connected component con-

taining x

for each x in S do
makeSet(x)

for each (x, y) in E do
if find(x) 	= find(y) then

union(find(x), find(y))
for each x in S do

Output “Person x belongs to connected component” find(x)

Algorithm 7.2: A connected components algorithm using union and find.

This algorithm’s efficiency depends on how we implement the union-find struc-

ture, of course. If performing a sequence of m union and find operations, starting

with n singleton sets created with the makeSet method, takes O(t(n, m)) time,

then the running time of the UFConnectedComponents algorithm can be char-

acterized as being O(t(n, n + m)), since we do two find operations for each edge

in E and then one find operation for each of the n members of S. Using the imple-

mentations described in this chapter, we can achieve a running time that is either

O((n+m) log n), using a list-based implementation, or “almost” O(n+m), using

a tree-based implementation.

As we explore in Chapter 13, if we are given the set E in sorted order (say, ac-

cording to a lexicographic ordering), then we can actually design a connected com-

ponents algorithm that runs in O(n+m) time. But the UFConnectedComponents
algorithm is the fastest way we know of for solving the connected components

problem if we cannot make any assumptions about the ordering of E and we only

get to scan through it once.

www.it-ebooks.info

http://www.it-ebooks.info/

7.1. Union-Find and Its Applications 223

7.1.2 Maze Construction and Percolation Theory

Another application of union-find structures, which might at first seem to be purely

for entertainment purposes, is for constructing mazes. In this application, we con-

sider a maze to be a two-dimensional visual puzzle, defined by cells, which can be

traversed, and walls, which are barriers. The goal is to find a path from a start loca-

tion to a finish location that traverses connected cells in the maze without crossing

any walls. (See Figure 7.3.)

Figure 7.3: A maze defined from a 30 × 30 square grid.

One challenge for people who like mazes is to find interesting mazes to solve.

Thus, it is useful to have an automated way to construct mazes that have exactly

one solution such that finding that solution is nontrivial. There are several possi-

bilities for constructing such mazes, of course, but one that has turned out to be

able to consistently construct interesting, solvable mazes is the method given in

Algorithm 7.4.

www.it-ebooks.info

http://www.it-ebooks.info/

224 Chapter 7. Union-Find Structures

Algorithm MazeGenerator(G, E):
Input: A grid, G, consisting of n cells and a set, E, of m “walls,” each of

which divides two cells, x and y, such that the walls in E initially separate

and isolate all the cells in G
Output: A subset, R of E, such that removing the edges in R from E creates a

maze defined on G by the remaining walls

while R has fewer than n − 1 edges do
Choose an edge, (x, y), in E uniformly at random from among those pre-

viously unchosen

if find(x) 	= find(y) then
union(find(x), find(y))
Add the edge (x, y) to R

return R

Algorithm 7.4: A randomized algorithm for constructing mazes.

Given a grid, G, of n cells, and a set, E, of m walls separating pairs of cells

in G, this maze construction algorithm considers the walls in E in random order.

For each wall in this ordering that joins two previously separated connected com-

ponents of cells, we add that wall to the set we are going to remove and we union

the two connected components it separated. Since we repeat this step until the set

of removed walls is equal to n − 1, we guarantee that the final maze has a single

connected component. Thus, it has a solution and it is likely to have lots of pas-

sages where a puzzle solver will reach a dead end. Indeed, the maze in Figure 7.3

was constructed using this algorithm.

Given a random ordering of the edges in E, the running time of this algorithm

is O(t(n, m)), where O(t(n, m)) is the running time for performing m union and

find operations on an initial set of n singleton sets.

Although this problem is motivated by a recreation, it is related to the science

of percolation theory, which is the study of how liquids permeate porous materials.

For instance, a porous material might be modeled as a three-dimensional n×n×n
grid of cells. The barriers separating adjacent pairs of cells might then be removed

virtually with some probability p and remain with probability 1 − p. The scientific

question to answer for this virtual material would then be whether a liquid poured

on top of the grid will make it to the bottom—that is, whether any top cell is con-

nected to some bottom cell. Such a question can be answered by connecting every

top cell to a special “super-top” cell and connecting every bottom cell to a spe-

cial “super-bottom” cell, performing a union operation for every pair of connected

cells, and then asking if the super-top and super-bottom cell are in the same set.

Repeating this experiment for several instances of the three-dimensional grid and

for different values of p can then provide insights into how liquids permeate porous

materials. Thus, the same thinking behind maze construction can be used to answer

scientific questions, and both can be performed using union-find structures.

www.it-ebooks.info

http://www.it-ebooks.info/

7.2. A List-Based Implementation 225

7.2 A List-Based Implementation
A simple implementation of a union-find structure is to use a collection of linked

lists, one for each set, where the list for a set A contains a head node, which stores

• the size of A

• the name of A

• a pointer to the first and last nodes of a linked list containing pointers to all

the elements of A.

Each node of the linked list for A stores a pointer to an element belonging to that

set and a pointer to the head node for A. (See Figure 7.5.)

C

5 11 12 10 8

B

9 3 6 2

A

4 1 7

Figure 7.5: A list-based implementation of a union-find structure consisting of three

sets: A = {1, 4, 7}, B = {2, 3, 6, 9}, and C = {5, 8, 10, 11, 12}.

Thus, we can perform operation find(e) in O(1) time simply by following the

pointer from the node for e to the head node and returning the name of the set

identified by that node. Likewise, makeSet also takes O(1) time, since it involves

the creation of a new head node and a linked list containing a single element. The

operation union(A, B) is not a simple constant-time procedure, however, since it

requires that we join the two linked lists for A and B into one list and update the

head pointers for all the nodes in one of these two lists (to now point to the head
node of the other list). In order to save some time, let us choose to implement this

operation by always changing the head pointers for whichever list, for A or B,

has the smaller size (breaking ties arbitrarily). Hence, this implementation of the

operation union(A, B) takes time O(min(|A|, |B|)), which is O(n) in the worst-

case, because, in the worst case, |A| = |B| = n/2, where n is the number of

singleton sets we start with. Nevertheless, as we show below, an amortized analysis

reveals that this implementation is much better than first appears from this worst-

case analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

226 Chapter 7. Union-Find Structures

Details for a List-Based Implementation for Disjoint Sets

We give pseudocode descriptions for implementing the fundamental methods of the

disjoint sets data structures using linked lists in Algorithm 7.6.

Algorithm makeSet():

for each singleton element, x do
create a linked-list header node, u,

u.name ← “x”

add x to the list u
x.head ← u

Algorithm find(x):

return x.head

Algorithm union(u, v):

if the set u is smaller than v then
for each element, x, in the set u do

remove x from u and add it v
x.head ← v

else
for each element, x, in the set v do

remove x from v and add it u
x.head ← u

Algorithm 7.6: The fundamental disjoint-set methods for an implementation based

on linked lists.

Analysis of the List-Based Implementation

The above linked list implementation is simple, and it might at first appear to be

inefficient, but, as the following theorem shows, this implementation is actually not

that slow.

Theorem 7.1: Performing a sequence, σ, of m union and find operations, start-
ing from n singleton sets, using the above list-based implementation of a union-find
structure, takes O(n log n + m) time.

Proof: We use the accounting method to analyze the time for us to perform all

the operations in σ. We assume that 1 cyber-dollar can pay for the constant amount

www.it-ebooks.info

http://www.it-ebooks.info/

7.2. A List-Based Implementation 227

of time it takes to perform a find operation, or to update a head pointer during a

union operation.

In the case of a find operation, we charge the operation itself 1 cyber-dollar, and,

in the case of a union operation, we charge 1 cyber-dollar to each node for which

we change its head pointer. Note that we charge nothing to the union operations

themselves. Also, observe that there can be at most n − 1 union operations before

all the singleton sets have been merged into one. Finally, note that the total charges

to find operations can be at most O(m), since m is the number of operations in σ.

Consider, then, the number of charges made to nodes on behalf of union op-

erations. The important observation is that each time we update the head pointer

for some node, the size of the new set at least doubles. This property is due to the

fact that we always link the smaller set into the larger one, with ties broken arbitrar-

ily. Thus, any node can have its head pointer changed at most log n times; hence,

each such node can be charged at most O(log n) cyber-dollars, since we assume

that the partition starts with n singleton sets. Thus, the total amount of cyber-

dollars charged to all the nodes in this implementation of a union-find structure is

O(n log n).

The amortized running time of an operation in a series of makeSet, union,

and find operations, is the total time taken for the series divided by the number of

operations. Note, in addition, that, for the sake of analysis of a sequence of union,

find, and makeSet operations, we can assume without loss of generality that all

the makeSet operations come first. We conclude from the above theorem that, for

a list-based implementation of a union-find structure, as described above, the amor-

tized running time of each union operation is O(log n) and the amortized running

time for each makeSet and find operation is O(1). Thus, we can summarize the

performance of our simple list-based implementation as follows.

Theorem 7.2: Using a list-based implementation of a union-find structure, in a
series of makeSet, union, and find operations, involving a total of n initially sin-
gleton sets, the amortized running of each union operation is O(log n) and the
amortized running time for each makeSet and find operation is O(1).

We would like to stress that in this list-based implementation of a union-find

structure, the running time of the union operations is the computational bottleneck,

since the running time of this method is proportional to the size of the smaller set

involved in the union. In the next section, we describe a tree-based implementation

of a union-find structure where find operations are the bottleneck, but the amortized

time performance for each operation is much better than O(log n).

www.it-ebooks.info

http://www.it-ebooks.info/

228 Chapter 7. Union-Find Structures

7.3 A Tree-Based Implementation

An alternative data structure for implementing a union-find structure, starting from

n singleton sets, is to use a collection of trees to store the elements in sets, where

each tree is associated with a different set. In particular, we implement a tree T
with a linked data structure, where each node u of T stores an element of the set

associated with T , and a parent pointer to the parent node of u. If u is the root,

then its parent pointer points to itself. As in the list-based implementation, we

assume that either we have a constant-time way of accessing the node associated

with an element from the element itself or that the nodes of in our data structure

serve as the elements in our partition. Also, in this implementation, we identify

each set with the root of its associated tree. (See Figure 7.7.)

5

4 7 3 6 8 10

9 11

12

1 2

Figure 7.7: A tree-based implementation of a union-find structure for three disjoint

sets: A = {1, 4, 7}, B = {2, 3, 6, 9}, and C = {5, 8, 10, 11, 12}.

With this data structure, the operation union is performed by making one of

the two trees a subtree of the other (Figure 7.8a), which can be done in O(1) time

by setting the parent pointer of the root of one tree to point to the root of the other

tree. Operation find for an element e is performed by walking up to the root of the

tree containing e (Figure 7.8b), which takes O(n) time in the worst case.

Note that this representation of a tree is a specialized data structure used to

implement a union-find structure, and it is not meant to be a realization of a general

tree data structure. Indeed, this representation has only parent links, and does not

provide a way to access the children of a given node.

At first, this implementation may seem to be no better than the list-based im-

plementation of a union-find structure, but we add the following simple heuristics

to make it run faster.

www.it-ebooks.info

http://www.it-ebooks.info/

7.3. A Tree-Based Implementation 229

5

3 6

8 10

9

11

12

2

5

3 6

8 10

9

11

12

2

(a) (b)

Figure 7.8: Tree-based implementation of a partition: (a) operation union(A, B);
(b) operation find(�), where � denotes the node for element 12.

Union-by-Size: Store with each node v the size of the subtree rooted at v, denoted

by n(v). In a union, we now make the tree of the smaller set a subtree of the

other tree, and update the size field of the root of the resulting tree.

Path Compression: In a find operation, for each node v that the find visits, reset

the parent pointer from v to point to the root. (See Figure 7.9.)

These heuristics increase the running time of an operation by a constant factor, but

as we show in the section that follows, they significantly improve the amortized

running time for performing a sequence of union and find operations.

5

3 6

8 10

9

11

12

2

5

3 6

8 10

9

11

12

2

(a) (b)

Figure 7.9: Path-compression heuristic: (a) path traversed by operation find on

element 12; (b) restructured tree.

www.it-ebooks.info

http://www.it-ebooks.info/

230 Chapter 7. Union-Find Structures

We give pseudocode for implementing the fundamental methods of the disjoint

sets data structures using the tree-based implementation in Algorithm 7.10.

Algorithm makeSet():
for each singleton element, x do

x.parent ← x
x.size ← 1

Algorithm union(x, y):
if x.size < y.size then

x.parent ← y
y.size ← y.size + x.size

else
y.parent ← x
x.size ← x.size + y.size

Algorithm find(x):
r ← x
while r.parent 	= r do // find the root

r ← r.parent
z ← x
while z.parent 	= z do // path compression

w ← z
z ← z.parent
w.parent ← r

Algorithm 7.10: The fundamental disjoint-set methods for an implementation based

on trees defined by “parent” pointers for every element. Note: the x and y param-

eters for the union method must both be roots of their respective trees.

The above tree-based implementation has a very interesting analysis, which we

give in the next section. Before giving that analysis, however, let us first give a

simple analysis for the above implementation.

Theorem 7.3: Performing a sequence, σ, of m union and find operations, start-
ing from n singleton sets, using the above tree-based implementation of a union-
find structure, takes O(n + m log n) time.

Proof: There are at most O(n) union operations, and each runs in O(1) time;

hence, the total time for doing all the union operations is O(n). We only change a

node’s parent pointer when we union its set into a set that is at least as large as it.

Thus, each time we go from a node to its parent, in doing a find operation, the size

of the set rooted at that node must at least double. Therefore, the longest sequence

of parent pointers that we can march through in doing a find is O(log n).

www.it-ebooks.info

http://www.it-ebooks.info/

7.3. A Tree-Based Implementation 231

7.3.1 Analyzing the Tree-Based Implementation

Our analysis of the tree-based implementation of the union-find operations is based

on the use of a very slow-growing function, α(n), which is the inverse of a very

fast-growing function, known as the Ackermann function.

The Ackermann Function

The Ackermann function is named after Wilhelm Ackermann, a German mathe-

matician who was a student of the well-known mathematician David Hilbert. There

are actually several versions of the Ackermann function, including one originally

proposed by Wilhelm Ackermann, each of which is more or less equivalent with

the others. Each version of the Ackermann function defines a very fast-growing

function, which has the interesting property that it cannot be computed using only

Pascal-style for-loops (as it also requires the use of while-loops). We are not pri-

marily interested in this structural property of the Ackermann function, however,

which was Ackermann’s original motivation for proposing it. Instead, we are inter-

ested in the Ackermann function because it is useful for analyzing the tree-based

implementation of union-find operations.

The version of the Ackermann function we use is based on an indexed function,

Ai, which is defined as follows, for integers x ≥ 0 and i > 0:

A0(x) = x + 1

Ai+1(x) = A
(x)
i (x),

where f (k) denotes the k-fold composition of the function f with itself. That is,

f (0)(x) = x

f (k)(x) = f(f (k−1)(x)).

So, in other words, Ai+1(x) involves making x applications of the Ai function

on itself, starting with x. This indexed function actually defines a progression of

functions, with each function growing much faster than the previous one:

• A0(x) = x + 1, which is the increment-by-one function

• A1(x) = 2x, which is the multiply-by-two function

• A2(x) = x2x ≥ 2x, which is the power-of-two function

• A3(x) ≥ 22·
··2

(with x number of 2’s), which is the tower-of-twos function

• A4(x) is greater than or equal to the tower-of-tower-of-twos function

• and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

232 Chapter 7. Union-Find Structures

We then define the Ackermann function as

A(x) = Ax(2),

which is an incredibly fast-growing function. To get some perspective, note that

A(3) = 2048 and A(4) is greater than or equal to a tower of 2048 twos, which is

much larger than the number of subatomic particles in the universe. Likewise, its

inverse,

α(n) = min{x : A(x) ≥ n},
is an incredibly slow-growing function. Still, even though α(n) is indeed growing

as n goes to infinity, for all practical purposes, α(n) ≤ 4.

An Amortized Analysis

Let us use an amortization argument to analyze the running time of a sequence, σ,

of m union and find operations on a partition that initially consists of n single-

element sets.

Let U be the tree defined by all the union operations in σ without our having

performed any path compressions. For each node v, let n(v) denote the number of

nodes in the subtree of U rooted at v, and define the rank of v, which we denote as

r(v), as follows:

r(v) =
log n(v)� + 2.

Thus, we immediately get that n(v) ≥ 2r(v)−2. Also, since there are at most n
nodes in U , r(v) ≤
log n� + 2, for each node v.

Lemma 7.4: If node w is the parent of node v, then

r(v) < r(w).

Proof: We make v point to w only if the size of w before the union is at least as

large as the size of v. Let n(w) denote the size of w before the union and let n′(w)
denote the size of w after the union. Thus, after the union we get

r(v) =
log n(v)� + 2
<
log n(v) + 1� + 2
=
log 2n(v)� + 2
≤
log(n(v) + n(w))� + 2
=
log n′(w)� + 2
≤ r(w).

Put another way, this theorem states that ranks are strictly increasing as we

follow parent pointers up the union tree. It also implies the following.

www.it-ebooks.info

http://www.it-ebooks.info/

7.3. A Tree-Based Implementation 233

Lemma 7.5: The number of nodes of rank s, 0 ≤ s ≤
log n� + 2, is at most
n

2s−2
.

Proof: By the previous theorem, r(v) < r(w), for any node v with parent w,

and ranks are strictly increasing as we follow parent pointers up any tree. Thus,

if r(v) = r(w) for two nodes v and w, then the nodes counted in n(v) must be

separate and distinct from the nodes counted in n(w). By the definition of rank, if

a node v is of rank s, then n(v) ≥ 2s−2. Therefore, since there are at most n nodes

total, there can be at most n/2s−2 that are of rank s.

Let us now consider the time it takes to perform the m union and find op-

erations in the sequence σ. In particular, let us develop an amortized analysis,

assuming that it takes 1 cyber-dollar to perform O(1) amount of work during our

performance of σ. We have already observed that performing a union takes O(1)
time. We therefore charge each union operation 1 cyber-dollar to pay for this. This

implies that the total charges to all union operations is O(n), since there can be at

most n − 1 union operations in all.

Analyzing Path Compression

To characterize the performance of the other operations in σ, let us therefore con-

sider how path compression affects the performance of find operations. As we

perform path compressions, for each node v, we may be changing the parent, p(v),
of v. Note that, by Lemma 7.4, every time we change p(v) during the execution of

σ, we increase the value of r(p(v)), the rank of v’s parent.

For the sake of our amortized analysis, let us define a labeling function, L(v),
for each node v, which changes over the course of the execution of the operations

in σ. In particular, at each step t in the sequence σ, define L(v) as follows:

L(v) = the largest i for which r(p(v)) ≥ Ai(r(v)).

Note that if v has a parent, then L(v) is well-defined and is at least 0, since

r(p(v)) ≥ r(v) + 1 = A0(r(v)),

because ranks are strictly increasing as we go up the tree U . Also, for n ≥ 5, the

maximum value for L(v) is α(n) − 1, since, if L(v) = i, then

n >
log n� + 2
≥ r(p(v))
≥ Ai(r(v))
≥ Ai(2).

Or, put another way,

L(v) < α(n),

for all v and t.

www.it-ebooks.info

http://www.it-ebooks.info/

234 Chapter 7. Union-Find Structures

The main computational task in performing a find operation is in following

parent pointers along a path, P , from a some node u up to the root, z, of the tree

containing u at time t. We can account for all of this work by paying 1 cyber-dollar

for each parent pointer we traverse. Let v be some node along P . We use two rules

for charging a cyber-dollar for following the parent pointer for v:

• If v has an ancestor w in P such that L(v) = L(w), at this point in time, then

we charge 1 cyber-dollar to v itself.

• If v has no such ancestor, then we charge 1 cyber-dollar to this find operation.

Thus, the maximum number of cyber-dollars any find can get charged is bounded

by the number of distinct L(v) values for nodes on the path P , which is less than

α(n), as we observed above. The total amount of cyber-dollars charged to all the

find operations is therefore O(mα(n)).
Let us next consider all the charges that are made to a vertex v over the course

of performing the find operations in σ. For such a charge to occur at time t, then v
must have an ancestor w such that L(v) = L(w) = i, for some i. So, at time t,

r(p(v)) ≥ Ai(r(v))

and

r(p(w)) ≥ Ai(r(w)).

Suppose, in particular, that

r(p(v)) ≥ A
(k)
i (r(v)),

where k ≥ 1. Recall that z denotes the last vertex on the path P . Then at time t,

r(z) ≥ r(p(w))
≥ Ai(r(w))
≥ Ai(r(p(v)))

≥ Ai(A
(k)
i (r(v)))

≥ A
(k+1)
i (r(v)).

Therefore, since z becomes the new parent of v at time t + 1, because of path

compression, we have at time t + 1,

r(p(v)) ≥ A
(k+1)
i (r(v)).

This implies that at most r(v) charges can be made to v before

r(p(v)) ≥ A
(r(v))
i (r(v))

= Ai+1(r(v)),

at which point L(v) = i + 1. Thus, after at most r(v) cyber-dollars are charged

against v, L(v) increases by at least 1. Since L(v) can increase at most α(n) − 1
times, this means that there can be at most r(v) times α(n) cyber-dollars charged

www.it-ebooks.info

http://www.it-ebooks.info/

7.3. A Tree-Based Implementation 235

to v in total. Combining this fact with Lemma 7.5, there are at most

s α(n)
n

2s−2
= n α(n)

s

2s−2

cyber-dollars charged to all the vertices of rank s. Summing over all possible ranks,

the total number of cyber-dollars charged to all nodes is at most

�log n�+2∑
s=0

n α(n)
s

2s−2
≤

∞∑
s=0

n α(n)
s

2s−2

= n α(n)
∞∑

s=0

s

2s−2

≤ 8n α(n),

by a well-known summation bound (see Theorem A.15 in the appendix). That is,

the total charges made to all nodes is O(n α(n)), which gives us the following:

Theorem 7.6: In a sequence σ of m union and find operations performed using
union-by-size and path compression, starting with a collection of n single-element
sets, the total time to perform the operations in σ is O((n + m)α(n)).

www.it-ebooks.info

http://www.it-ebooks.info/

236 Chapter 7. Union-Find Structures

7.4 Exercises

Reinforcement
R-7.1 Suppose we have a social network with members A, B, C, D, E, F , and G, and

the set of friendship ties,

{(A,B), (B,C), (C,A), (D,E), (F,G)}.

What are the connected components?

R-7.2 Suppose a social network, N , contains n people, m edges, and c connected com-
ponents. What is the exact number of times that each of the methods, makeSet,
union, and find, are called in computing the connected components for N using
Algorithm 7.2?

R-7.3 How many walls were erased to construct the maze in Figure 7.3, not counting
the start and finish walls?

R-7.4 For the sake of analysis, if we have a sequence of union, find, and makeSet op-
erations, why can we can assume without loss of generality that all the makeSet
operations come first?

R-7.5 One additional feature of the list-based implementation of a union-find structure
is that it allows for the contents of any set in a partition to be listed in time
proportional to the size of the set. Describe how this can be done.

R-7.6 Suppose we have 20 singleton sets, numbered 0 through 19, and we call the
operation union(find(i),find(i + 5)), for i = 0, 1, 2, . . . , 14. Draw a picture of a
list-based representation of the sets that result.

R-7.7 Suppose we have 20 singleton sets, numbered 0 through 19, and we call the
operation union(find(i),find(i + 5)), for i = 0, 1, 2, . . . , 14. Draw a picture of
a tree-based representation of the sets that result, assuming we don’t implement
the union-by-size and path compression heuristics.

R-7.8 Answer the previous exercise assuming that we implement both the union-by-
size and path compression heuristics.

Creativity
C-7.1 Describe how to implement a union-find structure using extendable arrays, which

each contains the elements in a single set, instead of linked lists. Show how this
solution can be used to process a sequence of m union-find operations on an
initial collection of n singleton sets in O(n log n + m) time.

C-7.2 Consider a method, remove(e), which removes e from whichever list it belongs
to, in a list-based implementation of a union-find structure. Describe how to
modify the list-based implementation so that this method runs in time O(1).

www.it-ebooks.info

http://www.it-ebooks.info/

7.4. Exercises 237

C-7.3 Suppose that we implement a union-find structure by representing each set using
a balanced search tree. Describe and analyze algorithms for each of the methods
for a union-find structure so that every operation runs in at most O(log n) time
in the worst case.

C-7.4 Let A be a collection of objects. Describe an efficient method for converting A
into a set. That is, remove all duplicates from A. What is the running time of this
method?

C-7.5 Suppose we implement the tree-based union-find data structure using the union-
by-size heuristic and a partial path-compression heuristic. The partial path com-
pression in this case means that, after performing a sequence of pointer hops for
a find operation, we update the parent pointer for each node u along this path
to point to its grandparent. Show that the total running time for performing m
union and find operations, starting with n singleton sets, is still O((n+m)α(n))
in this case.

C-7.6 Suppose we implement the tree-based union-find data structure using the union-
by-size and path-compression heuristics. Show that the total running time for
performing a sequence of m union and find operations, starting with n singleton
sets, is O(n + m) if all the unions come before all the finds.

C-7.7 Suppose we implement the tree-based union-find data structure using the union-
by-size heuristic and path-compression heuristics. Show that the total running
time for performing a sequence of m union and find operations, starting with n
singleton sets, is O(m), if m ≥ n log n.

C-7.8 Suppose we implement the tree-based union-find data structure, but we don’t use
the union-by-size heuristic nor the path-compression heuristic. Show that the
total running time for performing a sequence of n union and find operations,
starting with n singleton sets, is Θ(n2) in this case. That is, provide a proof that
it is O(n2) and an example that requires Ω(n2) time.

Applications
A-7.1 Another problem of interest in percolation theory is to determine the threshold

probability where a liquid will permeate a porous material. One way to model
this is to consider the barriers between pairs of adjacent cells in some random
order and remove them in this order. At the point when the top and bottom
are connected, we would then take the ratio of r/s as an approximation to this
threshold probability, where r is the number of barriers considered up to this
point and s is the total number of barriers. Describe an algorithm for efficiently
computing this threshold value right at the moment it occurs, given a random
listing of the pairwise barriers in the porous material as input.

A-7.2 One of the tasks for an operating system is the job of scheduling computations
to be performed by the processor(s) that are part of that system. A subtask that
comes up in some processor scheduling problems is to solve a sequence σ of
O(n) priority queue operations, where each operation in σ is either an insert(i)
or removeMin(), such that i is a distinct integer in the range from 1 to n. This
problem is known as the offline-min problem, since the entire sequence, σ, is

www.it-ebooks.info

http://www.it-ebooks.info/

238 Chapter 7. Union-Find Structures

given in advance. Interestingly, the offline nature of this problem gives us a
faster way of answering the operations in σ than using a heap. Namely, if k
is the smallest integer inserted somewhere in σ, then we know the very next
removeMin() in σ will return k. Likewise, after we have matched up k and
this removeMin(), and deleted both from σ, then we can repeat this argument
on the operations that remain. Use this observation to design an algorithm for
answering all the operations in σ in O(nα(n)) time, and thereby solve the offline-
min problem.

A-7.3 In image-processing applications, such as for optical character recognition, it is
often useful to group together contiguous sets of similarly colored pixels in an
image. (See Figure 7.11.) For instance, in a black-and-white image, we might
say that a black pixel, p, is adjacent with another black pixel, q, if q shares a
boundary with p’s North, East, South, or West boundary. Typically, the way an
image is represented imposes constraints on an algorithm for finding the con-
tiguous parts of similarly colored pixels, and, as an image-processing algorithm
designer, we often don’t get to dictate the order in which pixels are presented.
Design an efficient algorithm that can take a sequence of black or white pixels,
given in an arbitrary order, taken from some image, and output all the contigu-
ous shapes in that image. You may assume that each time a pixel is given, you
are told its (x, y)-coordinates and the colors of its North, East, South, and West
neighbors.

Figure 7.11: Contiguous regions of similarly colored pixels in an image. This image

has 12 such regions.

A-7.4 The game of Hex is said to have, as one of its inventors, the mathematician John
Nash, who is the subject of the book and movie A Beautiful Mind. In this game,
two players, one playing black and the other playing white, take turns placing
stones of their respective colors on an n × n hexagonal grid. Once a stone is
placed, it cannot be moved. The black player’s goal is to connect the top and
bottom sides of the grid, and the white player’s goal is to connect the left and
right sides of the grid, using stones of their respective colors. Two cells are
considered connected if they share an edge and both have the same color stone.
(See Figure 7.12.) Describe an efficient scheme where you can determine after
each move whether black or white has just won a game of Hex.

A-7.5 Consider the game of Hex, as in the previous exercise, but now with a twist.
Suppose some number, k, of the cells in the game board are colored gold and
if the set of stones that connect the two sides of a winning player’s board are
also connected to k′ ≤ k of the gold cells, then that player gets k′ bonus points.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter Notes 239

Figure 7.12: An 11× 11 instance of the game of Hex. In this case, the white player

has just placed a stone to create a winning configuration. (Background Hex board

image is in the public domain; credit: Tiltec.)

Describe an efficient way to detect when a player wins and also, at that same
moment, determine how many bonus points they get. What is the running time
of your method over the course of a game consisting of n moves?

Chapter Notes
Tarjan [206] was the first to show that a sequence of n union and find operations, imple-
mented as described in this chapter, can be performed in O(nα(n)) time, and this bound
is tight in the worst case (see also [207, 209]). The analysis we give for the tree-based im-
plementation of the union-find operations is based on related discussions by Hopcroft and
Ullman [103] and Kozen [135]. Cormen et al. [51] provide an alternative analysis based
on a potential argument and another analysis can be found in a more recent paper by Seidel
and Sharir [192].

Kaplan et al. [116] and Alstrup et al. [11] study an efficient way to support deletions
as well as union-find operations. Agarwal et al. [5] study the union-find problem in the
external-memory model and explore several applications in terrain analysis. Gabow and
Tarjan [77] show that certain special cases of the union-find problem can be solved in linear
time, including instances that arise in the offline-min problem, and Frederickson [75] shows
a connection between processor scheduling and the offline-min problem. Dillencourt et
al. [57] study the problem of finding contiguous sets of similarly colored pixels in an image
and show that if an image is given in raster order, this problem can be solved in linear time
by exploiting special properties in the union-find problems that arise in this application.
For more algorithms for social networks, see the book by Easley and Kleinberg [60].

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

8 Merge-Sort and Quick-Sort

Separable Fastener, U.S. Patent 1,219,881, 1917.
Public domain image.

Contents

8.1 Merge-Sort . 243
8.2 Quick-Sort . 250
8.3 A Lower Bound on Comparison-Based Sorting 257
8.4 Exercises . 259

www.it-ebooks.info

http://www.it-ebooks.info/

242 Chapter 8. Merge-Sort and Quick-Sort

Recall that in the sorting problem, we are given a collection of n comparable

items and we are asked to place them in order.

Efficient sorting algorithms have a wide range of applications, including uses

in the underlying technologies behind Internet search engines Sorting arises, for

example, in the steps needed to build a data structure that allows a search engine

to quickly return a list of the documents that contain a given keyword. This data

structure is known as the inverted file.

Given a collection of documents (such as the web pages found by a search

engine when it was crawling the web), an inverted file is a lookup table that matches

words to the documents containing those words. It is indexed by keywords found in

the document collection and it includes, for each keyword, a list of the documents

where that keyword appears. This lookup table allows the search engine to quickly

return the documents containing a given keyword just by doing a lookup for that

keyword in the table.

The data is not given in this format, however. In fact, it starts out as just a

collection of documents. To construct an inverted file, we must first create a set

of keyword-document pairs, (k, d), where k is a keyword and d is the identifier

for a document where k appears. Fortunately, constructing such a set of keyword-

document pairs is fairly easy—we can simply scan the contents of each document,

d, and output a pair, (k, d), for each keyword, k, found in d. Thus, we can assume

that we can start with a set of keyword-document pairs, from which we then want

to build an inverted file.

Building an inverted file data structure from a set of keyword-document pairs

requires that we bring together, for each keyword, k, all the documents that con-

tain k. Bringing all such documents together can be done simply by sorting the set

of keyword-document pairs by keywords. This places all the (k, d) pairs with the

same keyword, k, right next to one another in the output list. From this sorted list, it

is then a simple computation to scan the list and build a lookup table of documents

for each keyword that appears in this sorted list.

In practice, most search engines go one step further, and not only sort the set

of keyword-document pairs by keywords, but break ties between (k, d) pairs with

the same keyword, k, by using a relevance (or ranking) score for the document, d,

as a secondary key (following a lexicographic ordering rule). Taking this approach

implies that the (k, d) pairs with the same keyword, k, will be ordered in the sorted

list according to the score of their document, d. Thus, having a fast algorithm

for sorting can be very helpful for a search engine, particularly if that algorithm

is designed to work quickly for large sets of input data. We study two sorting

algorithms in this chapter. The first algorithm, called merge-sort, is ideally suited

for very large data sets, which must be accessed on a hard drive or network storage

system. The second algorithm, called quick-sort, is very efficient for moderately

large data sets that fit in the computer’s main memory (RAM).

www.it-ebooks.info

http://www.it-ebooks.info/

8.1. Merge-Sort 243

8.1 Merge-Sort
In this section, we present a sorting technique, called merge-sort, that can be de-

scribed in a simple and compact way using recursion.

8.1.1 Divide-and-Conquer
Merge-sort is based on an algorithmic paradigm called divide-and-conquer. The

divide-and-conquer paradigm can be described in general terms as consisting of the

following three steps (see Figure 8.1):

1. Divide: If the input size is smaller than a certain threshold (say, 10 elements),

solve the problem directly using a straightforward method and return the so-

lution so obtained. Otherwise, divide the input data into two or more disjoint

subsets.

2. Recur: Recursively solve the subproblems associated with the subsets.

3. Conquer: Take the solutions to the subproblems and “merge” them into a

solution to the original problem.

Split list equally

S
1

S
2

2. Recur.

3. Merge.

1. Divide in half .

2. Recur.

Figure 8.1: A visual schematic of the divide-and-conquer paradigm, applied to a

problem involving a list that is divided equally in two in the divide step.

Merge-sort applies the divide-and-conquer technique to the sorting problem,

where, for the sake of generality, let us consider the sorting problem to take a

sequence, S, of objects as input, which could be represented with either a list or an

array, and returns S in sorted order.

www.it-ebooks.info

http://www.it-ebooks.info/

244 Chapter 8. Merge-Sort and Quick-Sort

For the problem of sorting a sequence S with n elements, the three divide-and-

conquer steps are as follows:

1. Divide: If S has zero or one element, return S immediately; it is already

sorted. Otherwise (S has at least two elements), put the elements of S into

two sequences, S1 and S2, each containing about half of the elements of

S; that is, S1 contains the first �n/2� elements of S, and S2 contains the

remaining
n/2� elements.

2. Recur: Recursively sort the sequences S1 and S2.

3. Conquer: Put back the elements into S by merging the sorted sequences S1

and S2 into a sorted sequence.

We can visualize an execution of the merge-sort algorithm using a binary tree

T , called the merge-sort tree. (See Figure 8.2.) Each node of the merge-sort tree, T ,

represents a recursive call of the merge-sort algorithm. We associate with each node

v of T the sequence S that is processed by the call associated with v. The children

of node v are associated with the recursive calls that process the subsequences S1

and S2 of S. The external nodes of T are associated with individual elements of S,

corresponding to instances of the algorithm that make no recursive calls.

Figure 8.2 summarizes an execution of the merge-sort algorithm by showing

the input and output sequences processed at each node of the merge-sort tree. This

algorithm visualization in terms of the merge-sort tree helps us analyze the running

time of the merge-sort algorithm. In particular, since the size of the input sequence

roughly halves at each recursive call of merge-sort, the height of the merge-sort tree

is about log n (recall that the base of log is 2 if omitted).

85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

85 24 63 45

85 24 63 45

17 31 96 50

17 31 96 50

17 24 31 45 50 63 85 96

24 45 63 85 17 31 50 96

24 85 45 63

85 24 63 45

17 31 50 96

17 31 96 50

(a) (b)

Figure 8.2: Merge-sort tree T for an execution of the merge-sort algorithm on a

sequence with eight elements: (a) input sequences processed at each node of T ;

(b) output sequences generated at each node of T .

www.it-ebooks.info

http://www.it-ebooks.info/

8.1. Merge-Sort 245

Having given an overview of merge-sort and an illustration of how it works,

let us consider each of the steps of this divide-and-conquer algorithm in more de-

tail. The divide and recur steps of the merge-sort algorithm are simple; dividing a

sequence of size n involves separating it at the element with rank �n/2�, and the

recursive calls simply involve passing these smaller sequences as parameters. The

difficult step is the conquer step, which merges two sorted sequences into a single

sorted sequence. We provide a pseudocode description of the method for merging

two sorted arrays in Algorithm 8.3. It merges two sorted arrays, S1 and S2, by

iteratively removing a smallest element from one of these two and adding it to the

end of an output array, S, until one of these two arrays is empty, at which point we

copy the remainder of the other array to the output array.

Algorithm merge(S1, S2, S):
Input: Two arrays, S1 and S2, of size n1 and n2, respectively, sorted in non-

decreasing order, and an empty array, S, of size at least n1 + n2

Output: S, containing the elements from S1 and S2 in sorted order

i ← 1
j ← 1
while i ≤ n and j ≤ n do

if S1[i] ≤ S2[j] then
S[i + j − 1] ← S1[i]
i ← i + 1

else
S[i + j − 1] ← S2[j]
j ← j + 1

while i ≤ n do
S[i + j − 1] ← S1[i]
i ← i + 1

while j ≤ n do
S[i + j − 1] ← S2[j]
j ← j + 1

Algorithm 8.3: Merging two sorted arrays, with indexing beginning at 1.

One of the nice properties of this merge algorithm is that the while loops involve

simple scans of the input arrays, S1 and S2. For large data sets, this kind of data

access is efficient, because of the sequential way that data is typically accessed in

external storage devices, like disk drives. The trade-off for this benefit, however,

is that we have to use an output array, S, rather than reusing the space in the input

arrays themselves.

If we want to merge two sorted sequences given as linked lists, instead of

arrays, then we would use a similar method to the array-based merge algorithm,

which would involve our comparing the front elements in the two lists, removing

www.it-ebooks.info

http://www.it-ebooks.info/

246 Chapter 8. Merge-Sort and Quick-Sort

the smaller one from its list, and adding that element to the end of an output linked

list. Once one of the lists is empty, we would then copy the remainder of the other

list to the output list.

We show an example execution of a list-based merge algorithm in Figure 8.4.

24 45 63 85

17 31 50 96

S

S2

S1 24 45 63 85S1

17

31 50 96

S

S2

24

45 63 85

17

31 50 96

S

S2

S1

(a) (b) (c)

24

45 63 85S1

17

50 96

S 31

S2

24

63 85S1

17

50 96S2

S 31 45 24

63 85

17

96

S 31 45 50

S2

S1

(d) (e) (f)

24

85

17

96

S 31 45 50 63

S1

S2

2417

96

S 31 45 50 63 85

S1

S2

(g) (h)

2417S 31 45 50 63 85 96

S1

S2

(i)

Figure 8.4: Example execution of a merge algorithm for sorted linked lists.

Analysis of the Merge-Sort Algorithm

Our analysis for the merge-sort algorithm begins with the merge algorithm. Let

n1 and n2 be the number of elements of S1 and S2, respectively. Algorithm merge
has three while loops. The operations performed inside each loop take O(1) time

each. The key observation is that during each iteration of any one of the loops,

one element is added to the output array S and is never considered again. This

observation implies that the overall number of iterations of the three loops is n1 +

www.it-ebooks.info

http://www.it-ebooks.info/

8.1. Merge-Sort 247

n2. Thus, the running time of algorithm merge is O(n1 + n2), as we summarize:

Theorem 8.1: Merging two sorted arrays S1 and S2 takes O(n1+n2) time, where
n1 is the size of S1 and n2 is the size of S2.

Having given the details of the merge algorithm, let us analyze the running

time of the entire merge-sort algorithm, assuming it is given an input sequence of

n elements. For simplicity, let us also assume n is a power of 2. We analyze the

merge-sort algorithm by referring to the merge-sort tree, T .

First, we analyze the height of the merge-sort tree, T , referring to Figure 8.5.

n

n/2

time per levelheight

O(n)

O(n)

O(n)

Total time:

O(log n)

O(n log n)

n/2

n/4 n/4 n/4 n/4

Figure 8.5: A visual analysis of the running time of merge-sort. Each node of the

merge-sort tree is labeled with the size of its subproblem.

We observe that the length of the subsequence stored at a node of T with depth

(distance from the root) i is n/2i since we halve the length of the sequence each

time we go down one level. Thus, a node at depth i = log n stores a single-element

subsequence and therefore is a leaf of the tree. We conclude that the height of the

merge-sort tree is log n.

We call the time spent at a node v of T the running time of the recursive call

associated with v, excluding the time taken waiting for the recursive calls associated

with the children of v to terminate. In other words, the time spent at node v includes

the running times of the divide and conquer steps, but excludes the running time

of the recur step. We have already observed that the details of the divide step are

straightforward; this step runs in time proportional to the size of the sequence for v.

Also, as shown in Theorem 8.1, the conquer step, which consists of merging two

www.it-ebooks.info

http://www.it-ebooks.info/

248 Chapter 8. Merge-Sort and Quick-Sort

sorted subsequences, also takes linear time. That is, letting i denote the depth of

node v, the time spent at node v is O(n/2i), since the size of the sequence handled

by the recursive call associated with v is equal to n/2i.

Looking at the tree T more globally, as shown in Figure 8.5, we see that, given

our definition of “time spent at a node,” the running time of merge-sort is equal to

the sum of the times spent at the nodes of T . Observe that T has exactly 2i nodes

at depth i. This simple observation has an important consequence, for it implies

that the overall time spent at all the nodes of T at depth i is O(2i · n/2i), which is

O(n). We have previously seen that the height of T is log n. Thus, since the time

spent at each of the log n + 1 levels of T is O(n), we have the following result:

Theorem 8.2: Merge-sort on sequence of n elements runs in O(n log n) time.

The above analysis was done under the simplifying assumption that n is a power

of 2. If this is not the case, the analysis becomes a bit more complicated.

Regarding the height of the merge-sort tree, we have:

Theorem 8.3: The merge-sort tree associated with an execution of merge-sort on
a sequence of size n has height �log n�.

The justification of Theorem 8.3 is left to a simple exercise (R-8.1).

Finally, we leave it to another exercise (R-8.3) how to extend the rest of the

analysis of the running time of merge-sort to the general case when n is not a

power of 2.

8.1.2 Merge-Sort and Recurrence Equations
There is another way to justify that the running time of the merge-sort algorithm is

O(n log n). Let the function t(n) denote the worst-case running time of merge-sort

on an input sequence of size n. Since merge-sort is recursive, we can characterize

function t(n) by means of the following equalities, where function t(n) is recur-

sively expressed in terms of itself, as follows:

t(n) =
{

b if n = 1 or n = 0
t(�n/2�) + t(
n/2�) + cn otherwise

where b > 0 and c > 0 are constants. A characterization of a function such as

the one above is called a recurrence equation (Sections 1.1.4 and 11.1), since the

function appears on both the left- and right-hand sides of the equal sign. Although

such a characterization is correct and accurate, what we really desire is a big-Oh

type of characterization of t(n) that does not involve the function t(n) itself (that

is, we want a closed-form characterization of t(n)).
In order to provide a closed-form characterization of t(n), let us restrict our

attention to the case when n is a power of 2. We leave the problem of showing

www.it-ebooks.info

http://www.it-ebooks.info/

8.1. Merge-Sort 249

that our asymptotic characterization still holds in the general case as an exercise

(R-8.3). In this case, we can simplify the definition of t(n) as follows:

t(n) =
{

b if n = 1
2t(n/2) + cn otherwise.

But, even so, we must still try to characterize this recurrence equation in a closed-

form way. One way to do this is to iteratively apply this equation, assuming n is

relatively large. For example, after one more application of this equation, we can

write a new recurrence for t(n) as follows:

t(n) = 2
(
2t
(
n/22

)
+ (cn/2)

)
+ cn

= 22t
(
n/22

)
+ 2cn.

If we apply the equation again, we get

t(n) = 23t
(
n/23

)
+ 3cn.

Applying the equation once again, we obtain

t(n) = 24t
(
n/24

)
+ 4cn.

Now, a clear pattern emerges, and we infer that after applying this equation i
times, we get

t(n) = 2it
(
n/2i

)
+ icn.

The issue that remains, then, is to determine when to stop this process. To see

when to stop, recall that we switch to the closed form t(n) = b when n = 1, which

occurs when 2i = n. In other words, this will occur when i = log n. Making this

substitution yields

t(n) = 2log nt
(
n/2log n

)
+ (log n)cn

= nt(1) + cn log n

= nb + cn log n.

That is, we get an alternative justification of the fact that t(n) is O(n log n).

www.it-ebooks.info

http://www.it-ebooks.info/

250 Chapter 8. Merge-Sort and Quick-Sort

8.2 Quick-Sort

The quick-sort algorithm sorts a sequence S using a simple divide-and-conquer

approach, whereby we divide S into subsequences, recur to sort each subsequence,

and then combine the sorted subsequences by a simple concatenation. In particular,

the quick-sort algorithm consists of the following three steps (see Figure 8.6):

1. Divide: If S has at least two elements (nothing needs to be done if S has

zero or one element), select a specific element x from S, which is called the

pivot. As is common practice, choose the pivot x to be the last element in S.

Remove all the elements from S and put them into three sequences:

• L, storing the elements in S less than x

• E, storing the elements in S equal to x

• G, storing the elements in S greater than x.

(If the elements of S are all distinct, E holds just one element—the pivot.)

2. Recur: Recursively sort sequences L and G.

3. Conquer: Put the elements back into S in order by first inserting the elements

of L, then those of E, and finally those of G.

L (< x)

E (= x)

2. Recur.

3. Concatenate.

1. Split using pivot x.

2. Recur.

G (> x)

Figure 8.6: A visual schematic of the quick-sort algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

8.2. Quick-Sort 251

Like merge-sort, we can visualize quick-sort using a binary recursion tree,

called the quick-sort tree. Figure 8.7 visualizes the quick-sort algorithm, show-

ing example input and output sequences for each node of the quick-sort tree.

85 63 96

24 17 45

24

85 63

85

85 24 63 45 17 31 96 50

24 45 17 31

(a)

63 85 96

17 24 45

24 85

17 24 31 45 50 63 85 96

17 24 31 45

63 85

(b)

Figure 8.7: Quick-sort tree T for an execution of the quick-sort algorithm on a

sequence with eight elements: (a) input sequences processed at each node of T ;

(b) output sequences generated at each node of T . The pivot used at each level of

the recursion is shown in bold.

Unlike merge-sort, however, the height of the quick-sort tree associated with an

execution of quick-sort is linear in the worst case. This happens, for example, if the

sequence consists of n distinct elements and is already sorted. Indeed, in this case,

the standard choice of the pivot as the largest element yields a subsequence L of

size n − 1, while subsequence E has size 1 and subsequence G has size 0. Hence,

the height of the quick-sort tree is n − 1 in the worst case.

www.it-ebooks.info

http://www.it-ebooks.info/

252 Chapter 8. Merge-Sort and Quick-Sort

Running Time of Quick-Sort

We can analyze the running time of quick-sort with the same technique used for

merge-sort in Section 8.1.1. Namely, we identify the time spent at each node of the

quick-sort tree T (Figure 8.7) and we sum up the running times for all the nodes.

The divide step and the conquer step of quick-sort are easy to implement in linear

time. Thus, the time spent at a node v of T is proportional to the input size s(v)
of v, defined as the size of the sequence handled by the invocation of quick-sort

associated with node v. Since subsequence E has at least one element (the pivot),

the sum of the input sizes of the children of v is at most s(v) − 1.

Given a quick-sort tree T , let si denote the sum of the input sizes of the nodes

at depth i in T . Clearly, s0 = n, since the root r of T is associated with the entire

sequence. Also, s1 ≤ n − 1, since the pivot is not propagated to the children of r.

Consider next s2. If both children of r have nonzero input size, then s2 = n − 3.

Otherwise (one child of the root has zero size, the other has size n−1), s2 = n−2.

Thus, s2 ≤ n − 2. Continuing this line of reasoning, we obtain that si ≤ n − i.
As observed in Section 8.2, the height of T is n − 1 in the worst case. Thus,

the worst-case running time of quick-sort is

O

(
n−1∑
i=0

si

)
, which is O

(
n−1∑
i=0

(n − i)

)
that is, O

(
n∑

i=1

i

)
.

By Theorem 1.13,
∑n

i=1 i is O(n2). Thus, quick-sort runs in O(n2) worst-case

time. Given its name, we would expect quick-sort to run quickly. However, the

above quadratic bound indicates that quick-sort is slow in the worst case. Paradoxi-

cally, this worst-case behavior occurs for problem instances when sorting should be

easy—if the sequence is already sorted. Still, note that the best case for quick-sort

on a sequence of distinct elements occurs when subsequences L and G happen to

have roughly the same size. Indeed, in this case we save one pivot at each internal

node and make two equal-sized calls for its children. Thus, we save 1 pivot at the

root, 2 at level 1, 22 at level 2, and so on. That is, in the best case, we have

s0 = n

s1 = n − 1
s2 = n − (1 + 2) = n − 3

...

si = n − (1 + 2 + 22 + · · · + 2i−1) = n − (2i − 1),

and so on. Thus, in the best case, T has height O(log n) and quick-sort runs in

O(n log n) time. We leave the justification of this fact as an exercise (R-8.6).

The informal intuition behind the expected behavior of quick-sort is that at each

invocation the pivot will probably divide the input sequence about equally. Thus,

we expect the average running time of quick-sort to be similar to the best-case

running time, that is, O(n log n). We will see in the next section that introducing

randomization makes quick-sort behave exactly as described above.

www.it-ebooks.info

http://www.it-ebooks.info/

8.2. Quick-Sort 253

8.2.1 Randomized Quick-Sort
One common method for analyzing quick-sort is to assume that the pivot will al-

ways divide the sequence almost equally. We feel such an assumption would pre-

suppose knowledge about the input distribution that is typically not available, how-

ever. For example, we would have to assume that we will rarely be given “almost”

sorted sequences to sort, which are actually common in many applications. For-

tunately, this assumption is not needed in order for us to match our intuition to

quick-sort’s behavior.

Since the goal of the partition step of the quick-sort method is to divide the

sequence S almost equally, let us use a new rule to pick the pivot—choose a ran-
dom element of the input sequence. As we show next, the resulting algorithm,

called randomized quick-sort, has an expected running time of O(n log n) given a

sequence with n elements.

Theorem 8.4: The expected running time of randomized quick-sort on a sequence
of size n is O(n log n).

Proof: We make use of a simple fact from probability theory:

The expected number of times that a fair coin must be flipped until it
shows “heads” k times is 2k.

Consider now a particular recursive invocation of randomized quick-sort, and let m
denote the size of the input sequence for this invocation. Say that this invocation is

“good” if the pivot chosen creates subsequences L and G that have size at least m/4
and at most 3m/4 each. Since the pivot is chosen uniformly at random and there

are m/2 pivots for which this invocation is good, the probability that an invocation

is good is 1/2 (the same as the probability a coin comes up heads).

If a node v of the quick-sort tree T , as shown in Figure 8.8, is associated with

a “good” recursive call, then the input sizes of the children of v are each at most

3s(v)/4 (which is the same as s(v)/(4/3)). If we take any path in T from the root to

an external node, then the length of this path is at most the number of invocations

that have to be made (at each node on this path) until achieving log4/3 n good

invocations. Applying the probabilistic fact reviewed above, the expected number

of invocations we must make until this occurs is 2 log4/3 n (if a path terminates

before this level, that is all the better). Thus, the expected length of any path from

the root to an external node in T is O(log n). Recalling that the time spent at

each level of T is O(n), the expected running time of randomized quick-sort is

O(n log n).

We note that the expectation in the running time is taken over all the possible

choices the algorithm makes, and is independent of any assumptions about the dis-

tribution of input sequences the algorithm is likely to encounter. Actually, by using

powerful facts from probability, we can show that the running time of randomized

quick-sort is O(n log n) with high probability. (See Exercise C-8.4.)

www.it-ebooks.info

http://www.it-ebooks.info/

254 Chapter 8. Merge-Sort and Quick-Sort

time per levelexpected height

total expected time:

O(n)

O(n)

O(n)
O(log n)

O(n log n)

s(a)

s(r)

s(b)

s(c) s(d) s(e) s(f)

Figure 8.8: A visual time analysis of the quick-sort tree T .

8.2.2 In-Place Quick-Sort

Recall from Section 5.4 that a sorting algorithm is in-place if it uses only a small

amount of memory in addition to that needed for the objects being sorted them-

selves. The merge-sort algorithm, as we have described it above, is not in-place,

and making it be in-place seems quite difficult. In-place sorting is not inherently

difficult, however. For, as with heap-sort, quick-sort can be adapted to be in-place.

Performing the quick-sort algorithm in-place requires a bit of ingenuity, how-

ever, for we must use an input array itself to store the subarrays for all the recursive

calls. We show algorithm inPlaceQuickSort, which performs in-place quick-sort,

in Algorithm 8.9. Algorithm inPlaceQuickSort assumes that the input array, S,

has distinct elements. The reason for this restriction is explored in Exercise R-8.7.

The extension to the general case is discussed in Exercise C-8.8.

In-place quick-sort modifies the input sequence using swapElements opera-

tions and does not explicitly create subsequences. Indeed, a subsequence of the

input sequence is implicitly represented by a range of positions specified by a left-

most rank l and a right-most rank r. The divide step is performed by scanning the

sequence simultaneously from l forward and from r backward, swapping pairs of

elements that are in reverse order, as shown in Figure 8.10. When these two in-

dices “meet,” subsequences L and G are on opposite sides of the meeting point.

The algorithm completes by recursing on these two subsequences. In-place quick-

sort reduces the running time, caused by the creation of new sequences and the

movement of elements between them, by a constant factor.

www.it-ebooks.info

http://www.it-ebooks.info/

8.2. Quick-Sort 255

Algorithm inPlacePartition(S, a, b):
Input: An array, S, of distinct elements; integers a and b such that a ≤ b
Output: An integer, l, such that the subarray S[a .. b] is partitioned into S[a..l−

1] and S[l..b] so that every element in S[a..l− 1] is less than each element in

S[l..b]
Let r be a random integer in the range [a, b]
Swap S[r] and S[b]
p ← S[b] // the pivot

l ← a // l will scan rightward

r ← b − 1 // r will scan leftward

while l ≤ r do // find an element larger than the pivot

while l ≤ r and S[l] ≤ p do
l ← l + 1

while r ≥ l and S[r] ≥ p do // find an element smaller than the pivot

r ← r − 1
if l < r then

Swap S[l] and S[r]
Swap S[l] and S[b] // put the pivot into its final place

return l

Algorithm inPlaceQuickSort(S, a, b):
Input: An array, S, of distinct elements; integers a and b
Output: The subarray S[a .. b] arranged in nondecreasing order

if a ≥ b then return // subrange with 0 or 1 elements

l ← inPlacePartition(S, a, b)
inPlaceQuickSort(S, a, l − 1)
inPlaceQuickSort(S, l + 1, b)

Algorithm 8.9: In-place randomized quick-sort for an array, S.

Dealing with the Recursion Stack

Actually, the above description of quick-sort is not quite in-place, as it could, in the

worst case, require a linear amount of additional space besides the input array. Of

course, we are using no additional space for the subsequences, and we are using

only a constant amount of additional space for local variables (such as l and r).

So, where does this additional space come from?

It comes from the recursion, since we need space for a stack proportional to the

depth of the recursion tree in order to keep track of the recursive calls for quick-

sort. This stack can become as deep as Θ(n), in fact, if we have a series of bad

pivots, since we need to have a method frame for every active call when we make

the call for the deepest node in the quick-sort tree.

www.it-ebooks.info

http://www.it-ebooks.info/

256 Chapter 8. Merge-Sort and Quick-Sort

85 24 63 45 17 31 96 50

rl

85 24 63 45 17 31 96 50

rl
(a) (b)

31 24 63 45 17 85 96 50

rl
31 24 63 45 17 85 96 50

rl

(c) (d)

31 24 17 45 63 85 96 50

rl

31 24 17 45 63 85 96 50

lr

(e) (f)

31 24 17 45 50 85 96 63

lr

(g)

Figure 8.10: An example execution of the inPlacePartition algorithm.

Fortunately, we can fix our quick-sort algorithm to actually be in-place, and use

only O(log n) additional space, by changing the way we do the recursive calls. The

key detail for such an implementation is that if we always do the recursive call for

the smaller subproblem first, then we can replace the second recursive call with a

loop, since it comes last. This ability to change a recursive call into an iteration if it

is the last operation in a recursive procedure is known as tail recursion. The details

are shown in Algorithm 8.11.

The depth of recursion and, hence, the amount of additional space used for

the method stack in Algorithm 8.11 is O(log n). To see this, note that by doing

a recursive call only for the smaller subproblem each time, we guarantee that the

size of any recursive subproblem is at most half the size of the subproblem that is

making that call. Thus, the depth of the recursion stack is never more than O(log n).

Algorithm CorrectInPlaceQuickSort(S, a, b):
Input: An array, S, of distinct elements; integers a and b
Output: The subarray S[a .. b] arranged in nondecreasing order

while a < b do
l ← inPlacePartition(S, a, b) // from Algorithm 8.9

if l − a < b − l then // first subarray is smaller

CorrectInPlaceQuickSort(S, a, l − 1)
a ← l + 1

else
CorrectInPlaceQuickSort(S, l + 1, b)
b ← l − 1

Algorithm 8.11: Correct version of in-place randomized quick-sort for an array, S.

www.it-ebooks.info

http://www.it-ebooks.info/

8.3. A Lower Bound on Comparison-Based Sorting 257

8.3 A Lower Bound on Comparison-Based Sorting
Recapping our discussions on sorting to this point, we have described several meth-

ods with either a worst-case or expected running time of O(n log n) on an input

sequence of size n. These methods include merge-sort and quick-sort, described in

this chapter, as well as heap-sort, described in Section 5.4. A natural question to

ask, then, is whether it is possible to sort any faster than in O(n log n) time.

In this section, we show that if the computational primitive used by a sort-

ing algorithm is the comparison of two elements, then this is the best we can

do—comparison-based sorting has an Ω(n log n) worst-case lower bound on its

running time. (Recall the notation Ω(·) from Section 1.1.5.) To focus on the main

cost of comparison-based sorting, let us only count the comparisons that a sorting

algorithm performs. Since we want to derive a lower bound, this will be sufficient.

Suppose we are given a sequence S = (x1, x2, . . . , xn) that we wish to sort, and

let us assume that all the elements of S are distinct (this is not a restriction since we

are deriving a lower bound). Each time a sorting algorithm compares two elements

xi and xj (that is, it asks, “is xi < xj?”), there are two outcomes: “yes” or “no.”

Based on the result of this comparison, the sorting algorithm may perform some

internal calculations (which we are not counting here) and will eventually perform

another comparison between two other elements of S, which again will have two

outcomes. Therefore, we can represent a comparison-based sorting algorithm with

a decision tree T . That is, each internal node v in T corresponds to a comparison

and the edges from node v ′ to its children correspond to the computations resulting

from either a “yes” or “no” answer (see Figure 8.12).

It is important to note that the hypothetical sorting algorithm in question prob-

ably has no explicit knowledge of the tree T . We simply use T to represent all the

possible sequences of comparisons that a sorting algorithm might make, starting

from the first comparison (associated with the root) and ending with the last com-

parison (associated with the parent of an external node) just before the algorithm

terminates its execution.

Each possible initial ordering, or permutation, of the elements in S will cause

our hypothetical sorting algorithm to execute a series of comparisons, traversing a

path in T from the root to some external node. Let us associate with each external

node v in T , then, the set of permutations of S that cause our sorting algorithm to

end up in v. The most important observation in our lower-bound argument is that

each external node v in T can represent the sequence of comparisons for at most

one permutation of S. The justification for this claim is simple: if two different

permutations P1 and P2 of S are associated with the same external node, then there

are at least two objects xi and xj , such that xi is before xj in P1 but xi is after xj

in P2. At the same time, the output associated with v must be a specific reordering

of S, with either xi or xj appearing before the other. But if P1 and P2 both cause

the sorting algorithm to output the elements of S in this order, then that implies

www.it-ebooks.info

http://www.it-ebooks.info/

258 Chapter 8. Merge-Sort and Quick-Sort

there is a way to trick the algorithm into outputting xi and xj in the wrong order.

Since this cannot be allowed by a correct sorting algorithm, each external node of

T must be associated with exactly one permutation of S. We use this property of

the decision tree associated with a sorting algorithm to prove the following result:

Theorem 8.5: The running time of any comparison-based algorithm for sorting
an n-element sequence is Ω(n log n) in the worst case.

Proof: The running time of a comparison-based sorting algorithm must be

greater than or equal to the height of the decision tree T associated with this al-

gorithm, as described above. (See Figure 8.12.) By the above argument, each

external node in T must be associated with one permutation of S. Moreover, each

permutation of S must result in a different external node of T . The number of

permutations of n objects is

n! = n(n − 1)(n − 2) · · · 2 · 1.

Thus, T must have at least n! external nodes. By Theorem 2.7, the height of T is

at least log(n!). This immediately justifies the theorem, because there are at least

n/2 terms that are greater than or equal to n/2 in the product n!; hence

log(n!) ≥ log
(n

2

)n
2 =

n

2
log

n

2
,

which is Ω(n log n).

minimum height (time)

log (n!)

n!

xi < xj ?

xa < xb ?

xe < xf ? xk < xl ? xm < xo ? xp < xq ?

xc < xd ?

Figure 8.12: Visualizing the lower bound for comparison-based sorting.

www.it-ebooks.info

http://www.it-ebooks.info/

8.4. Exercises 259

8.4 Exercises

Reinforcement
R-8.1 Give a complete justification of Theorem 8.3.

R-8.2 Give a pseudocode description of the merge-sort algorithm assuming the input is
given as a linked list.

R-8.3 Show that the running time of the merge-sort algorithm on an n-element sequence
is O(n log n), even when n is not a power of 2.

R-8.4 Suppose we modify the deterministic version of the quick-sort algorithm so that,
instead of selecting the last element in an n-element sequence as the pivot, we
choose the element at index
n/2�, that is, an element in the middle of the se-
quence. What is the running time of this version of quick-sort on a sequence that
is already sorted?

R-8.5 Consider again the modification of the deterministic version of the quick-sort al-
gorithm so that, instead of selecting the last element in an n-element sequence as
the pivot, we choose the element at index
n/2�. Describe the kind of sequence
that would cause this version of quick-sort to run in Θ(n2) time.

R-8.6 Show that the best-case running time of quick-sort on a sequence of size n with
distinct elements is O(n log n).

R-8.7 Suppose that algorithm inPlaceQuickSort (Algorithm 8.9) is executed on a se-
quence with duplicate elements. Show that, in this case, the algorithm correctly
sorts the input sequence, but the result of the divide step may differ from the
high-level description given in Section 8.2 and may result in inefficiencies. In
particular, what happens in the partition step when there are elements equal to
the pivot? What is the running time of the algorithm if all the elements of the
input sequence are equal?

Creativity
C-8.1 Describe a variation of the merge-sort algorithm that is given a single array, S,

as input, and uses only an additional array, T , as a workspace. No other memory
should be used other than a constant number of variables.

C-8.2 Let A be a collection of objects. Describe an efficient method for converting A
into a set. That is, remove all duplicates from A. What is the running time of this
method?

C-8.3 Suppose we are given two n-element sorted sequences A and B that should not
be viewed as sets (that is, A and B may contain duplicate entries). Describe an
O(n)-time method for computing a sequence representing the set A ∪ B (with
no duplicates).

www.it-ebooks.info

http://www.it-ebooks.info/

260 Chapter 8. Merge-Sort and Quick-Sort

C-8.4 Show that randomized quick-sort runs in O(n log n) time with probability 1 −
1/n2.

Hint: Use the Chernoff bound that states that if we flip a coin k times, then the
probability that we get fewer than k/16 heads is less than 2−k/8.

C-8.5 Suppose we are given a sequence S of n elements, each of which is colored
red or blue. Assuming S is represented as an array, give an in-place method for
ordering S so that all the blue elements are listed before all the red elements. Can
you extend your approach to three colors?

C-8.6 Suppose we are given two sequences A and B of n elements, possibly contain-
ing duplicates, on which a total order relation is defined. Describe an efficient
algorithm for determining if A and B contain the same set of elements (possibly
in different orders). What is the running time of this method?

C-8.7 Suppose we are given a sequence S of n elements, on which a total order relation
is defined. Describe an efficient method for determining whether there are two
equal elements in S. What is the running time of your method?

C-8.8 Modify Algorithm inPlaceQuickSort (Algorithm 8.9) to handle the general case
efficiently when the input array, S, may have duplicate keys.

C-8.9 Let S be an array of n elements on which a total order relation is defined. An
inversion in S is a pair of indices i and j such that i < j but S[i] > S[j].
Describe an algorithm running in O(n log n) time for determining the number
of inversions in S (which can be as large as O(n2)).
Hint: Try to modify the merge-sort algorithm to solve this problem.

C-8.10 Give an example of a sequence of n integers with Ω(n2) inversions. (Recall the
definition of inversion from Exercise C-8.9.)

C-8.11 Let A and B be two sequences of n integers each. Given an integer x, describe
an O(n log n)-time algorithm for determining if there is an integer a in A and an
integer b in B such that x = a + b.

C-8.12 Given a sequence of numbers, (x1, x2, . . . , xn), the mode is the value that ap-
pears the most number of times in this sequence. Give an efficient algorithm to
compute the mode for a sequence of n numbers. What is the running time of
your method?

C-8.13 Suppose you would like to sort n music files, but you only have an old, unreli-
able computer, which you have nicknamed “Rustbucket.” Every time Rustbucket
compares two music files, x and y, there is an independent 50-50 chance that it
has an internal disk fault and returns the value 0, instead of the correct result, 1,
for “true” or −1, for “false,” to the question, “x ≤ y?” That is, for each compar-
ison of music files that Rustbucket is asked to perform, it is as if it flips a fair coin
and answers the comparison correctly if the coin turns up “heads” and answers
with 0 if the coin turns up “tails.” Moreover, this behavior occurs independent
of previous comparison requests, even for the same pair of music files. Other-
wise, Rustbucket correctly performs every other kind of operation (not involving
the comparison of two music files), including if-statements, for-loops, and while-
loops based on comparisons of integers. Describe an efficient algorithm that can
use Rustbucket to sort n music files correctly and show that your algorithm has
an expected running time that is O(n log n).

www.it-ebooks.info

http://www.it-ebooks.info/

8.4. Exercises 261

Applications
A-8.1 Suppose you are given a new hardware device that can merge k > 2 different

sorted lists of total size n into a single sorted list in O(n) time, independent
of the value of k. Such a device could, for example, be based on a hardware
streaming system or could be based on a network protocol. Show that you can
use this device to sort n elements in O(n log n / log k) time. That is, if k is
Θ(

√
n), then you can use this device to sort in linear time.

A-8.2 Suppose we are given an n-element sequence S such that each element in S
represents a different vote in an election, where each vote is given as an inte-
ger representing the ID of the chosen candidate. Without making any assump-
tions about who is running or even how many candidates there are, design an
O(n log n)-time algorithm to see who wins the election S represents, assuming
the candidate with the most votes wins.

A-8.3 Consider the voting problem from the previous exercise, but now suppose that
we know the number k < n of candidates running. Describe an O(n log k)-time
algorithm for determining who wins the election.

A-8.4 Bob has a set, A, of n nuts and a set, B, of n bolts, such that each nut has a unique
matching bolt. Unfortunately, the nuts in A all look the same, and the bolts in
B all look the same as well. The only comparison that Bob can make is to take
a nut-bolt pair (a, b), such that a ∈ A and b ∈ B, and test if the threads of a
are larger, smaller, or a perfect match with the threads of b. Describe an efficient
algorithm for Bob to match up all of his nuts and bolts. What is the running time
of this algorithm?

A-8.5 As mentioned above, for each word, w, in a collection of documents, an inverted
file stores a list of documents that contain the word, w. In addition, search en-
gines typically order the list for each word by a ranking score. Modern search
engines must be able to answer more than just single-word queries, however. De-
scribe an efficient method for computing a list of the documents that contain two
words, w and u, ordered by the ranking scores assigned to the documents. What
is the running time of your method in terms of nw and nu, the respective sizes of
the lists for w and u?

A-8.6 In cloud computing, it is common for a client, “Alice,” to store her data on an
external server owned by a cloud storage provider, “Bob.” Because Bob is likely
to be honest, but curious, Alice wants to keep the contents of her data private
from Bob. Of course, she can encrypt her data using a secret key that only she
knows, but that is not enough, since she may reveal information about her data
simply based on the pattern in which she accesses her data. Since Bob can see
the access pattern for Alice’s data, even if she encrypts it, Alice should consider
using an algorithm that has a data access pattern that does not depend on any of
its input values. Such an algorithm is said to be data-oblivious. Suppose, then,
that Alice wants to sort an array, A, of elements stored on Bob’s computer, but do
so in a data-oblivious fashion, so that she sorts privately, even though each time
she accesses some item, A[i], in the array, A, Bob learns that she is accessing
the item at index i. She can use a constant amount of local private memory, e.g.,
to store indices, pointers, or to perform a comparison and swap, if the elements

www.it-ebooks.info

http://www.it-ebooks.info/

262 Chapter 8. Merge-Sort and Quick-Sort

Algorithm OddEvenMerge(A, B, C):
Input: Two sorted arrays, A = [a1, a2, . . . , an] and B = [b1, b2, . . . , bn], and an

empty array, C, of size 2n
Output: C, containing the elements from A and B in sorted order
Let O1 ← [a1, a3, a5, . . . , an−1]
Let O2 ← [b1, b3, b5, . . . , bn−1]
Let E1 ← [a2, a4, a6, . . . , an]
Let E2 ← [b2, b4, b6, . . . , bn]
Call OddEvenMerge(O1, O2, O), where O = [o1, o2, . . . , on]
Call OddEvenMerge(E1, E2, E), where E = [e1, e2, . . . , en]
Let C ← [o1, e1, o2, e2, . . . , on, en]
for i ← 1 to n do

Do a compare-exchange of C[2i − 1] and C[2i]
return C

Algorithm 8.13: Odd-even merge.

are out of order, as an atomic action called a compare-exchange. For example,
she could use bubble-sort (Algorithm 5.20) to sort A, since this algorithms is
data-oblivious when implemented using the compare-exchange primitive. But
this would require O(n2) time, which is quite inefficient for solving the sorting
problem. An alternative is to use the odd-even merge-sort algorithm, which is
the same as the merge-sort algorithm given above, except that the merge step is
replaced with the merge method shown in Algorithm 8.13. Argue why the odd-
even merge-sort algorithm is data-oblivious, and analyze the running time of the
resulting sorting algorithm.

A-8.7 In computer games and also in simulations of card-playing scenarios, we some-
times need to use a computer to simulate the way that person would shuffle a deck
of cards. Given two decks of n cards each, the riffle shuffle algorithm involves
repeatedly choosing one of the two decks at random and then removing the bot-
tom card from that deck and placing that card on the top of an output deck. This
card-choosing step is repeated until all the original cards are placed in the output
deck. Define a recursive-riffle algorithm, which cuts a deck of n cards into two
decks of n/2 each, where n is a power of 2, and then calls the recursive-riffle
algorithm on each half. When these recursive calls return, the recursive-riffle
algorithm then performs a riffle shuffle of the two decks to produce the shuffled
result. Show that every card in the original deck has an equal probability of be-
ing the top card after a recursive-riffle is performed on the deck, and analyze the
running time of the recursive-riffle algorithm using a recurrence equation.

A-8.8 Many states require that candidate names appear on a ballot in random order, so
as to minimize biases that can arise from the order in which candidate names
appear on a ballot for a given election. For instance, in the 2012 general election,
the Secretary of State of California performed a random drawing that determined
that candidate names for that election must appear in alphabetical order based on
the following ordering of letters:

(I,X,C,A,P,U,Z,S,W,H,K,T,D,F,Q,V,G,M,R,J,L,Y,E,B,P,N).

www.it-ebooks.info

http://www.it-ebooks.info/

8.4. Exercises 263

For example, if three candidates in that election had the last names, “BROWN,”
“BLACK,” and “WHITE,” then they would appear on the ballot in the order,
(WHITE, BROWN, BLACK). Describe an efficient algorithm that takes, as input,
an array, A, specifying an ordering of letters such as this, and a collection of
names, and sorts the collection of names using a lexicographic order based on
the alternative ordering of letters given in A. What is the running time of your
method in terms of m, the size of the array, A, and n, the number of names to be
sorted? (You may assume the length of each name is bounded by some constant,
but you may not assume that m or n is a constant.)

A-8.9 A floating-point number is a pair, (m, d), of integers, which represents the num-
ber m × bd, where b is either 2 or 10. In any real-world programming environ-
ment, the sizes of m and d are limited; hence, each arithmetic operation involving
two floating-point numbers may have some roundoff error. The traditional way
to account for this error is to introduce a machine precision parameter, ε < 1,
for the given programming environment, and bound roundoff errors in terms of
this parameter. For instance, in the case of floating-point addition, fl(x + y), for
summing two floating-point numbers, x and y, we can write

fl(x + y) = (x + y) · (1 + δx,y),

where |δx,y| ≤ ε. Consider, then, using an accumulation algorithm for summing
a sequence, (x1, x2, . . . , xn), of positive floating-point numbers, as shown in
Algorithm 8.14. Assuming that ε is small enough so that ε2 times any floating-
point number is negligibly small, then we can use a term, en, to estimate an upper
bound for the roundoff error for summing these numbers in this way as

en = ε
n∑

i=1

(n − i + 1)xi.

Prove that the optimal order for summing any set of n positive floating-point
number according to the standard accumulation algorithm, so as to minimize the
error term, en, is to sum them in nondecreasing order. Also, give an O(n log n)-
time method for arranging the numbers in the sequence (x1, x2, . . . , xn) so that
the standard accumulation summation algorithm minimizes the error term, en.

Algorithm FloatSum(x1, x2, . . . , xn):
Input: A sequence, (x1, x2 . . . , xn), of n positive floating-point numbers

Output: A floating-point representation of the sum of the n numbers
s ← 0.0
for i ← 1 to n do

s ← fl(s + xi)
return s

Algorithm 8.14: An accumulation algorithm for summing n floating-point numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

264 Chapter 8. Merge-Sort and Quick-Sort

Chapter Notes
Knuth’s classic text on Sorting and Searching [131] contains an extensive history of the
sorting problem and algorithms for solving it, starting with the census card sorting ma-
chines of the late 19th century. Huang and Langston [107] describe how to merge two
sorted lists in-place in linear time. The standard quick-sort algorithm is due to Hoare [100].
A tighter analysis of randomized quick-sort can be found in the book by Motwani and
Raghavan [162]. Gonnet and Baeza-Yates [85] provide experimental comparisons and the-
oretical analyses of a number of different sorting algorithms. Kao and Wang [115] study
the problem of minimizing the numerical error in summing n floating-point numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

9 Fast Sorting and Selection

Antarctica Gentoo Penguins. U.S. government image, 2010.
Credit: Lt. Elizabeth Crapo/NOAA.

Contents

9.1 Bucket-Sort and Radix-Sort 267
9.2 Selection . 270
9.3 Weighted Medians . 276
9.4 Exercises . 279

www.it-ebooks.info

http://www.it-ebooks.info/

266 Chapter 9. Fast Sorting and Selection

Most teachers keep grades recorded on computers these days. The analysis and

record-keeping functions that computers provide are simply no match for paper and

pencil. For instance, teachers can easily compute averages, minimums, maximums,

and other statistics using functions that involve fast computations. One common

computation in such applications, for instance, is bucketing or histogramming. In

this computation, n students are assigned integer scores in some range, such as

0 to 100, and are then sorted based on these scores. From this sorting step, the

teacher can then display a histogram that shows how many students have received

each possible score, which can then be used to determine cutoffs for various letter

grades. (See Figure 9.1.)

Figure 9.1: A histogram of scores from a recent Algorithms course taught by one

of the authors.

When we think about the algorithmic issues in performing such a computation,

it is easy to see that this is a type of sorting problem. But it is not the most gen-

eral kind of sorting problem, since the keys the teacher is using to sort is simply

integers in a given range. So a natural question to ask is whether we can sort n ele-

ments faster than in O(n log n) time for such specialized sorting problems; hence,

beating the lower-bound on the time to sort n elements using a comparison-based

algorithm, as was established in Section 8.3. Interestingly, as we explore in this

chapter, it is possible to sort n elements as fast as O(n) time, provided the keys

being used to sort these elements are integers in a reasonably small range.

Another common computation for teachers to perform is to compute a median

score, that is, a score from among n scores such that there are at most n/2 elements

larger than this score and at most n/2 elements smaller than this score. Of course,

such a number can be found easily if we were to sort the scores, but it would be

ideal if we could find medians in O(n) time without having to perform a sorting

operation. As we show in this chapter, even if elements simply have a pairwise

comparison rule that defines a total order, then we can find the kth smallest element

in O(n) time, for any value of k, including k = n/2. Thus, we can find medians in

O(n) time.

www.it-ebooks.info

http://www.it-ebooks.info/

9.1. Bucket-Sort and Radix-Sort 267

9.1 Bucket-Sort and Radix-Sort

In the previous chapter, we showed that Ω(n log n) time is necessary, in the worst

case, to sort an n-element sequence with a comparison-based sorting algorithm. A

natural question to ask, then, is whether there are other kinds of sorting algorithms

that can be designed to run asymptotically faster than O(n log n) time. Interest-

ingly, such algorithms exist, but they require special assumptions about the input

sequence to be sorted. Even so, such scenarios often arise in practice, so discussing

them is worthwhile. In this section, we consider the problem of sorting a sequence

of items, each a key-element pair.

9.1.1 Bucket-Sort

Consider a sequence, S, of n items whose keys are integers in the range [0, N − 1],
for some integer N ≥ 2, and suppose that S should be sorted according to the keys

of the items. In this case, it is possible to sort S in O(n + N) time. It might seem

surprising, but this implies, for example, that if N is O(n), then we can sort S in

O(n) time. Of course, the crucial point is that, because of the restrictive assumption

about the format of the elements, we can avoid using comparisons.

The main idea is to use an algorithm called bucket-sort, which is not based on

comparisons, but on using keys as indices into a bucket array, B, that has entries

from 0 to N − 1. An item with key k is placed in the “bucket” B[k], which itself

is a list (of items with key k). After inserting each item of the input sequence S
into its bucket, we can put the items back into S in sorted order by enumerating the

contents of the buckets B[0], B[1], . . . , B[N − 1] in order. We give a pseudocode

description of bucket-sort in Algorithm 9.2.

Algorithm bucketSort(S):
Input: Sequence S of items with integer keys in the range [0, N − 1]
Output: Sequence S sorted in nondecreasing order of the keys

let B be an array of N lists, each of which is initially empty

for each item x in S do
let k be the key of x
remove x from S and insert it at the end of bucket (list) B[k]

for i ← 0 to N − 1 do
for each item x in list B[i] do

remove x from B[i] and insert it at the end of S

Algorithm 9.2: Bucket-sort.

www.it-ebooks.info

http://www.it-ebooks.info/

268 Chapter 9. Fast Sorting and Selection

Analysis and the Property of Being a Stable Sorting Algorithm

It is easy to see that bucket-sort runs in O(n + N) time and uses O(n + N) space,

just by examining the two for loops. Namely, the first loop runs in time O(n) and

the second loop runs in time O(n + N). Also, sequence S uses O(n) space and

array B has size N . Thus, bucket-sort is efficient when the range N of values for the

keys is small compared to the sequence size n, say N = O(n) or N = O(n log n).
Still, the performance of bucket-sort deteriorates as N grows compared to n.

In addition, an important property of the bucket-sort algorithm is that it works

correctly even if there are many different elements with the same key. Indeed, we

described it in a way that anticipates such occurrences.

When sorting key-element items, an important issue is how equal keys are han-

dled. Let S = ((k0, e0), . . . , (kn−1, en−1)) be a sequence of items. We say that a

sorting algorithm is stable if, for any two items (ki, ei) and (kj , ej) of S such that

ki = kj and (ki, ei) precedes (kj , ej) in S before sorting (that is, i < j), we have

that item (ki, ei) also precedes item (kj , ej) after sorting. Stability is important for

a sorting algorithm because applications may want to preserve the initial ordering

of elements with the same key.

Our informal description of bucket-sort in Algorithm 9.2 does not guarantee

stability. This is not inherent in the bucket-sort method itself, however, for we can

easily modify our description to make bucket-sort stable, while still preserving its

O(n + N) running time. Indeed, we can obtain a stable bucket-sort algorithm by

always removing the first element from sequence S and from each list B[i] during

the execution of the algorithm.

9.1.2 Radix-Sort
One of the reasons that stable sorting is so important is that it allows the bucket-sort

approach to be applied to more general contexts than to sort integers. Suppose, for

example, that we want to sort items with keys that are pairs (k, l), where k and l
are integers in the range [0, N − 1], for some integer N ≥ 2. In a context such

as this, it is natural to define an ordering on these items using the lexicographical
(dictionary) convention, where (k1, l1) < (k2, l2) if

• k1 < k2 or

• k1 = k2 and l1 < l2.

This is a pair-wise version of the lexicographic comparison function, usually

applied to equal-length character strings (and it easily generalizes to tuples of d
numbers for d > 2).

The radix-sort algorithm sorts a sequence of pairs such as S, by applying a

stable bucket-sort on the sequence twice; first using one component of the pair as

the ordering key and then using the second component. But which order is correct?

Should we first sort on the k’s (the first component) and then on the l’s (the second

component), or should it be the other way around?

www.it-ebooks.info

http://www.it-ebooks.info/

9.1. Bucket-Sort and Radix-Sort 269

Before we answer this question, we consider the following example.

Example 9.1: Consider the following sequence S:

S = ((3, 3), (1, 5), (2, 5), (1, 2), (2, 3), (1, 7), (3, 2), (2, 2)).

If we stably sort S on the first component, then we get the sequence

S1 = ((1, 5), (1, 2), (1, 7), (2, 5), (2, 3), (2, 2), (3, 3), (3, 2)).

If we then stably sort this sequence S1 using the second component, then we get

the sequence

S1,2 = ((1, 2), (2, 2), (3, 2), (2, 3), (3, 3), (1, 5), (2, 5), (1, 7)),

which is not exactly a sorted sequence. On the other hand, if we first stably sort S

using the second component, then we get the sequence

S2 = ((1, 2), (3, 2), (2, 2), (3, 3), (2, 3), (1, 5), (2, 5), (1, 7)).

If we then stably sort sequence S2 using the first component, then we get the se-

quence

S2,1 = ((1, 2), (1, 5), (1, 7), (2, 2), (2, 3), (2, 5), (3, 2), (3, 3)),

which is indeed sequence S lexicographically ordered.

So, from this example, we are led to believe that we should first sort using

the second component and then again using the first component. This intuition is

exactly right. By first stably sorting by the second component and then again by

the first component, we guarantee that if two elements are equal in the second sort

(by the first component), then their relative order in the starting sequence (which

is sorted by the second component) is preserved. Thus, the resulting sequence is

guaranteed to be sorted lexicographically every time. We leave the determination

of how this approach can be extended to triples and other d-tuples of numbers to a

simple exercise (R-9.2). We can generalize the results of this section as follows:

Theorem 9.2: Let S be a sequence of n key-element items, each of which has a
key (k1, k2, . . . , kd), where ki is an integer in the range [0, N − 1] for some integer
N ≥ 2. We can sort S lexicographically in time O(d(n + N)) using radix-sort.

As important as it is, sorting is not the only interesting problem dealing with a

total order relation on a set of elements. There are some applications, for example,

that do not require an ordered listing of an entire set, but nevertheless call for some

amount of ordering information about the set.

www.it-ebooks.info

http://www.it-ebooks.info/

270 Chapter 9. Fast Sorting and Selection

9.2 Selection
There are a number of applications in which we are interested in identifying a sin-

gle element in terms of its rank relative to an ordering of the entire set. Examples

include identifying the minimum and maximum elements, but we may also be in-

terested in, say, identifying the median element, that is, the element such that half

of the other elements are smaller and the remaining half are larger. In general,

queries that ask for an element with a given rank are called order statistics.

In this section, we discuss the general order-statistic problem of selecting the

kth smallest element from an unsorted collection of n comparable elements. This

is known as the selection problem. Of course, we can solve this problem by sorting

the collection and then indexing into the sorted sequence at rank index k−1. Using

the best comparison-based sorting algorithms, this approach would take O(n log n)
time. Thus, a natural question to ask is whether we can achieve an O(n) running

time for all values of k, including the interesting case of finding the median, where

k = �n/2�.

Prune-and-Search

This may come as a small surprise, but we can indeed solve the selection problem

in O(n) time for any value of k. Moreover, the technique we use to achieve this

result involves an interesting algorithmic technique, which is known as prune-and-
search. In applying this technique, we solve a given problem that is defined on a

collection of n objects by pruning away a fraction of the n objects and recursively

solving the smaller problem. When we have finally reduced the problem to one

defined on a constant-sized collection of objects, then we solve the problem using

some brute-force method. Returning back from all the recursive calls completes

the construction. In some cases, we can avoid using recursion, in which case we

simply iterate the prune-and-search reduction step until we can apply a brute-force

method and stop.

9.2.1 Randomized Quick-Select
In applying the prune-and-search technique to the selection problem, we can design

a simple and practical method, called randomized quick-select, for finding the kth

smallest element in an unordered sequence of n elements on which a total order re-

lation is defined. Randomized quick-select runs in O(n) expected time, taken over

all possible random choices made by the algorithm, and this expectation does not

depend whatsoever on any randomness assumptions about the input distribution.

We note though that randomized quick-select runs in O(n2) time in the worst case,

the justification of which is left as an exercise (R-9.5).

www.it-ebooks.info

http://www.it-ebooks.info/

9.2. Selection 271

Suppose we are given an unsorted sequence S of n comparable elements to-

gether with an integer k ∈ [1, n]. At a high level, the quick-select algorithm for

finding the kth smallest element in S is similar in structure to the randomized quick-

sort algorithm described in Section 8.2.1. We pick an element x from S at random

and use this as a “pivot” to subdivide S into three subsequences L, E, and G, stor-

ing the elements of S less than x, equal to x, and greater than x, respectively. This

is the prune step. Then, based on the value of k, we determine which of these

sets should then be solved recursively. We describe randomized quick-select in

Algorithm 9.3, and we illustrate it in Figure 9.4.

Algorithm quickSelect(S, k):
Input: Sequence S of n comparable elements, and an integer k ∈ [1, n]
Output: The kth smallest element of S

if n = 1 then
return the (first) element of S

pick a random element x of S
remove all the elements from S and put them into three sequences:

• L, storing the elements in S less than x
• E, storing the elements in S equal to x
• G, storing the elements in S greater than x.

if k ≤ |L| then
quickSelect(L, k)

else if k ≤ |L| + |E| then
return x // each element in E is equal to x

else
quickSelect(G, k − |L| − |E|)

Algorithm 9.3: Randomized quick-select algorithm.

Figure 9.4: A schematic illustration of the quick-select algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

272 Chapter 9. Fast Sorting and Selection

Analyzing Randomized Quick-Select

We mentioned above that the randomized quick-select algorithm runs in expected

O(n) time. Fortunately, justifying this claim requires only the simplest of proba-

bilistic arguments. The main probabilistic fact that we use is the linearity of expec-
tation. Recall that this fact states that if X and Y are random variables and c is a

number, then E(X + Y) = E(X) + E(Y) and E(cX) = cE(X), where we use

E(Z) to denote the expected value of the expression Z .

Let t(n) denote the running time of randomized quick-select on a sequence

of size n. Since the randomized quick-select algorithm depends on the outcome

of random events, its running time, t(n), is a random variable. We are interested

in bounding E(t(n)), the expected value of t(n). Moreover, since quick-select is

a recursive algorithm that makes at most one additional recursive call with each

invocation, the recursion tree for quick-select is simply a path. (See Figure 9.5.)

Figure 9.5: An example recursion tree for the quick-select algorithm. For each

invocation, we show the integer, k, the list, S, and we underline the random pivot

that is chosen.

Say that a pivot used in an invocation of randomized quick-select is “good” if it

partitions S so that the size of L and G is at most 3n/4, and it is “bad” otherwise.

Clearly, a given pivot is good with probability 1/2. (See Figure 9.6.)

Figure 9.6: Good and bad pivots. We show an example list of 16 elements in sorted

order, even though the list, S, will usually be unsorted.

www.it-ebooks.info

http://www.it-ebooks.info/

9.2. Selection 273

Let g(n) denote the number of consecutive recursive invocations (including the

present one) before getting a good invocation. Then

t(n) ≤ bn · g(n) + t(3n/4),

where b > 0 is a constant (to account for the overhead of each call). We are, of

course, focusing on the case where n is larger than 1, for we can easily characterize

in a closed form that t(1) = b. Applying the linearity of expectation property to

the general case, then, we get

E (t(n)) ≤ E (bn · g(n) + t(3n/4)) = bn · E (g(n)) + E (t(3n/4)) .

Since a recursive call is good with probability 1/2, and whether a recursive call is

good or not is independent of its parent call being good, the expected value of g(n)
is the same as the expected number of times we must flip a fair coin before it comes

up “heads.” This implies that E(g(n)) = 2. Thus, if we let T (n) be a shorthand

notation for E(t(n)) (the expected running time of the randomized quick-select

algorithm), then we can write the case for n > 1 as

T (n) ≤ T (3n/4) + 2bn.

As with the merge-sort recurrence equation, we would like to convert this equation

into a closed form. To do this, let us again iteratively apply this equation assuming

n is large. So, for example, after two iterative applications, we get

T (n) ≤ T ((3/4)2n) + 2b(3/4)n + 2bn.

At this point, we see that the general case is

T (n) ≤ 2bn ·
�log4/3 n	∑

i=0

(3/4)i.

In other words, the expected running time of randomized quick-select is 2bn times

the sum of a geometric progression whose base is a positive number less than 1.

Thus, by Theorem 1.12 on geometric summations, we obtain the result that T (n)
is O(n).

To summarize, we have the following:

Theorem 9.3: The expected running time of randomized quick-select on a se-
quence of size n is O(n).

As we mentioned earlier, there is a variation of quick-select that does not use

randomization and runs in O(n) worst-case time, which we discuss next.

www.it-ebooks.info

http://www.it-ebooks.info/

274 Chapter 9. Fast Sorting and Selection

9.2.2 Deterministic Selection
In this section, we discuss how to modify the quick-select algorithm to make it

deterministic, yet still run in O(n) time on an n-element sequence. The main idea

is to modify the way we choose the pivot so that it is chosen deterministically, not

randomly, based on the following approach:

1. Partition the set S into �n/5� groups of size 5 each (except, possibly, for one

group).

2. Sort each group and identify its median element.

3. Apply the algorithm recursively on these �n/5� “baby medians” to find their

median.

4. Use this element (the median of the baby medians) as the pivot and proceed

as in the quick-select algorithm.

We give the details for this method in Algorithm 9.7.

Algorithm DeterministicSelect(S, k):
Input: Sequence S of n comparable elements, and an integer k ∈ [1, n]
Output: The kth smallest element of S

if n = 1 then
return the (first) element of S

Divide S into g = �n/5� groups, S1, . . . , Sg, such that each of groups

S1, . . . , Sg−1 has 5 elements and group Sg has at most 5 elements.

for i ← 1 to g do
Find the baby median, xi, in Si (using any method)

x ← DeterministicSelect({x1, . . . , xg}, �g/2�)
remove all the elements from S and put them into three sequences:

• L, storing the elements in S less than x
• E, storing the elements in S equal to x
• G, storing the elements in S greater than x.

if k ≤ |L| then
DeterministicSelect(L, k)

else if k ≤ |L| + |E| then
return x // each element in E is equal to x

else
DeterministicSelect(G, k − |L| − |E|)

Algorithm 9.7: The deterministic selection algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

9.2. Selection 275

Analysis of Deterministic Selection

We now show that the above deterministic selection algorithm runs in linear time.

The algorithm has two recursive calls. The first one is performed on the set of

baby medians, which has size

g = �n/5�.
The second recursive call is made on either set L (elements smaller than the pivot,

x) or set G (elements larger than the pivot, x). Recall that each group but one

contains 5 elements and our pivot, x, is the median of the baby medians from all

of these groups. Thus, we have that for �g/2� groups, at least half of the group

elements are less than or equal to x. Since group Sg could be part of this half, we

have that number of elements in S that are less than or equal to x is at least

3
(⌈g

2

⌉
− 1
)

+ 1 = 3
⌈

1
2
·
⌈n

5

⌉⌉
− 2 ≥ 3n

10
− 2.

With a similar argument, we obtain that the above value is also a lower bound on

the number of elements of S less than or equal to x.

We conclude that the second recursive call is performed on a set of size at most

n −
(

3n

10
− 2
)

=
7n

10
+ 2.

Overall, for a sufficiently large value of n, the running time for the determin-

istic selection algorithm, T (n), can be characterized by the following recurrence

relation:

T (n) ≤ T (n/5 + 1) + T (7n/10 + 2) + bn.

where b > 0 is a constant.

To solve the recurrence, we guess that T (n) ≤ cn, for some constant c > 0.

Expanding the recurrence, we have the following:

T (n) ≤ T (n/5 + 1) + T (7n/10 + 2) + bn

≤ cn/5 + c + 7cn/10 + 2c + bn

= 9cn/10 + bn + 3c.

Pick c = 11b. We obtain

T (n) ≤ 9cn/10 + bn + 3c ≤ 9cn/10 + cn/11 + 3c.

Thus, we have T (n) ≤ cn for n large enough such that

cn/11 + 3c ≤ cn/10,

that is, for n ≥ 330. Therefore, the running time of the deterministic selection

algorithm is O(n).
We summarize the above analysis with the following theorem.

Theorem 9.4: Given an input sequence with n elements, the deterministic selec-
tion algorithm runs in O(n) time.

www.it-ebooks.info

http://www.it-ebooks.info/

276 Chapter 9. Fast Sorting and Selection

Admittedly, the constant in the O(n) running time for deterministic selection,

as estimated by the analysis, is fairly high. Thus, in practice, it is probably more

efficient to use the randomized quick-select algorithm than this deterministic se-

lection algorithm. Still, it is useful to know that we can match the expected O(n)
running time for randomized quick-select with a deterministic algorithm.

9.3 Weighted Medians
In some applications, elements have weights and we wish to find a median of the

elements that respects these weights. For example, suppose we have a set of people

with distinct ages and weights, who want to cross a river, and we have a ship that

has capacity to support roughly half the total weight, W , of all the people. Suppose

further that these people are willing to admit to their ages, but not their weights.

Thus, we would like to announce to them that everyone who is younger than some

amount, x, can go on the first sailing and everyone else can go on the sailing after

that. That is, we are interested in finding the age, x, such that the total weight of

everyone younger than x is at most W/2, and the total weight of everyone older

than x is at most W/2.

Formal Definition of a Weighted Median

Formally, let us assume we are given a set,

X = {x1, x2, . . . , xn},
of n distinct elements taken from some total order, such that each element xi has a

positive weight wi. Suppose further that these weights sum up to

W =
n∑

i=1

wi.

We are interested in finding an element, xm in X , such that∑
xi<xm

wi ≤ W

2

and ∑
xi>xm

wi ≤ W

2
.

Note that these sums do not include the weight of the element, wm, itself. Note that

the above conditions imply that the smallest xm such that∑
xi≤xm

wi >
W

2
,

is a weighted median element.

www.it-ebooks.info

http://www.it-ebooks.info/

9.3. Weighted Medians 277

A Solution Based on Sorting

For a first cut at a solution, let us consider an algorithm based on sorting. Specifi-

cally, imagine that we sort the elements in X by their values (and not their weights).

Then we can scan this sorted sequence, from the beginning, while keeping a run-

ning total of the weights of the elements we have encountered so far. As soon as

this running total goes over W/2, then we will have found a weighted median, wm.

(See Algorithm 9.8.)

Algorithm SortedMedian(X):
Input: A set, X , of distinct elements, with each xi in X having a positive

weight, wi

Output: The weighted median for X

Let W be the sum of all the weights of the elements in X
Let the sequence (x1, x2, . . . , xn) be the result of sorting X
w ← 0
for i ← 1 to n do

w ← w + wi

if w > W/2 then
return xi

Algorithm 9.8: A sorting-based algorithm for the weighted median problem.

This algorithm is clearly correct, since it incrementally builds the set of ele-

ments less than the weighted median until it is found, based on the formal char-

acterization given above. The total running time of this method is dominated by

the running time for the sorting step, which takes O(n log n) time, since we are

assuming only that the elements in X come from some total order.

A Solution Based on Prune-and-Search

We can design a more efficient algorithm for the weighted median problem, how-

ever, by using the prune-and-search technique. The main idea is reminiscent of

binary search. Use the linear-time selection algorithm from the previous section to

find the median, y, in X , without taking weights into consideration. Then compute

the weight of every element less than y and the weight of every element less than

or equal to y. If the first of these is greater than W/2, then y is too large; hence,

we should recursively solve the problem on elements less than y. If the second of

these sums is less than W/2, then y is too small; hence, we should recursively solve

the problem on elements greater than y. Otherwise, y is the weighted median. The

method, PruneMedian, which is shown in Algorithm 9.9, performs this compu-

tation, where we initially pass in the set X and half its total weight, W/2, of the

elements in X .

www.it-ebooks.info

http://www.it-ebooks.info/

278 Chapter 9. Fast Sorting and Selection

Algorithm PruneMedian(X, W):
Input: A set, X , of distinct elements, {x1, . . . , xn}, with each xi in X having

a positive weight, wi; and a weight, W
Output: The element, y, in X , such that the total weight of the elements in X

less than y is at most W and the total weight of the elements in X less than

or equal to y is greater than or equal to W

if n = 1 then
return x1

Let y ← DeterministicSelect(X, �n/2�)
Let w1 ←∑xi<y wi

Let w2 ←∑xi≤y wi

if w1 > W then // y is too large

Let X ′ be the set of elements in X that are less than y
Call PruneMedian(X ′, W)

else if w2 < W then // y is too small

Let X ′ be the set of elements in X greater than y
Let W ′ be the sum of the weights of the elements in X − X ′
Call PruneMedian(X ′, W − W ′)

else
return y

Algorithm 9.9: A prune-and-search algorithm for the weighted median problem.

Analysis of the Prune-and-Search Weighted Median Algorithm

The running time, T (n), for this algorithm can be characterized by T (n) being at

most a constant if n = 1, and the following recurrence equation otherwise:

T (n) ≤ T (�n/2�) + bn,

where b > 0 is a constant. This gives us the following:

Theorem 9.5: The weighted median problem can be solved in O(n) time.

Proof: To see that the prune-and-search weighted median algorithm runs in

O(n) time, we will prove the claim that T (n) ≤ cn, for some constant c > 0 by

induction. For the case when n < 4, we take c larger than the constant time needed

for the algorithm when this is the input size. Otherwise, for n ≥ 4,

T (n) ≤ T (�n/2�) + bn

≤ T (n/2 + 1) + bn

≤ cn/2 + c + bn

≤ cn,

for c ≥ 4b, since, in this case, cn/4 ≥ bn and cn/4 ≥ c.

Therefore, we can solve the weighted median problem in linear time using the

prune-and-search technique.

www.it-ebooks.info

http://www.it-ebooks.info/

9.4. Exercises 279

9.4 Exercises

Reinforcement
R-9.1 Which, if any, of the algorithms bubble-sort, heap-sort, merge-sort, and quick-

sort are stable?

R-9.2 Describe a radix-sort method for lexicographically sorting a sequence S of triplets
(k, l,m), where k, l, and m are integers in the range [0, N −1], for some N ≥ 2.
How could this scheme be extended to sequences of d-tuples (k1, k2, . . . , kd),
where each ki is an integer in the range [0, N − 1]?

R-9.3 Is the bucket-sort algorithm in-place? Why or why not?

R-9.4 Give a pseudocode description of an in-place quick-select algorithm.

R-9.5 Show that the worst-case running time of quick-select on an n-element sequence
is Ω(n2).

R-9.6 Explain where the induction proof for showing that deterministic selection runs in
O(n) time would fail if we formed groups of size 3 instead of groups of size 5.

R-9.7 What does the weighted median algorithm return if the weights of all the elements
are equal?

Creativity
C-9.1 Show that any comparison-based sorting algorithm can be made to be stable,

without affecting the asymptotic running time of this algorithm.

Hint: Change the way elements are compared with each other.

C-9.2 Suppose we are given two sequences A and B of n integers, possibly contain-
ing duplicates, in the range from 1 to 2n. Describe a linear-time algorithm for
determining if A and B contain the same set of elements (possibly in different
orders).

C-9.3 Suppose we are given a sequence S of n elements, each of which is an integer in
the range [0, n2 − 1]. Describe a simple method for sorting S in O(n) time.

Hint: Think of alternate ways of viewing the elements.

C-9.4 Let S1, S2, . . . , Sk be k different sequences whose elements have integer keys in
the range [0, N − 1], for some parameter N ≥ 2. Describe an algorithm running
in O(n + N) time for sorting all the sequences (not as a union), where n denotes
the total size of all the sequences.

C-9.5 Suppose we are given a sequence, S, of n integers in the range from 1 to n3.
Give an O(n)-time method for determining whether there are two equal numbers
in S.

C-9.6 Let A and B be two sequences of n integers each, in the range [1, n4]. Given an
integer x, describe an O(n)-time algorithm for determining if there is an integer
a in A and an integer b in B such that x = a + b.

www.it-ebooks.info

http://www.it-ebooks.info/

280 Chapter 9. Fast Sorting and Selection

C-9.7 Given an unordered sequence S of n comparable elements, describe a linear-
time method for finding the �√n � items whose rank in an ordered version of S
is closest to that of the median.

C-9.8 Show how a deterministic O(n)-time selection algorithm can be used to design
a quick-sort-like sorting algorithm that runs in O(n log n) worst-case time on an
n-element sequence.

C-9.9 Given an unsorted sequence S of n comparable elements, and an integer k, give
an O(n log k) expected-time algorithm for finding the O(k) elements that have
rank �n/k�, 2�n/k�, 3�n/k�, and so on.

C-9.10 Suppose you are given two sorted lists, A and B, of n elements each, all of which
are distinct. Describe a method that runs in O(log n) time for finding the median
in the set defined by the union of A and B.

C-9.11 Given a set of n elements that come from a total order, show that you can find
the second smallest element in this set using n + �log n� − 2 comparisons.

C-9.12 Given an array, A, of n numbers in the range from 1 to n, describe an O(n)-time
method for finding the mode, that is, the number that occurs most frequently
in A.

C-9.13 Suppose instead of choosing a single pivot in the quick-select algorithm, we
chose log n pivots. Show that the probability that at least one of them is good
is at least 1 − 1/n.

Applications
A-9.1 Suppose you would like to find the most average kitten in your collection of n

kitten photographs, based on cuteness. So as to avoid your own personal biases,
any time you would need to compare two kitten photos, x and y, rather than doing
this yourself, you use an online crowdsourcing application, Decider, to decide
which kitten is cuter. You may assume that there is a total ordering of your kitten
photographs, based on cuteness, but, for any given time that you make a call to
Decider to compare two kittens, x and y, there is an independent 50-50 chance
that the people Decider picks to perform this comparison cannot agree on which
kitten is cuter. That is, for each comparison of two kittens that Decider is asked to
perform, it is as if it flips a fair coin and answers the comparison accurately if the
coin turns up “heads” and answers “cannot decide” if the coin turns up “tails.”
Moreover, this behavior occurs independent of previous comparison requests,
even for the same pair of kitten photographs. Describe an efficient algorithm
that can correctly use Decider to find the median kitten photograph, based on
cuteness, and show that your algorithm makes an expected number of calls to
Decider that is O(n).

A-9.2 Search engines often index their collections of documents so that they can easily
return an ordered set of documents that contain a given query word, w. Such a
data structure is known as an inverted file. In order to construct an inverted file,
we might start with a set of n triples of the form, (w, d, r), where w is a word,
d is an identifier for a document that contains the word w, and r is a rank score

www.it-ebooks.info

http://www.it-ebooks.info/

9.4. Exercises 281

for the popularity of the document d. Often, the next step is to sort these triples,
ordered first by w, then by r, and then by d. Assuming each of the values, w, d,
and r, are represented as integers in the range from 1 to 4n, describe a linear-time
algorithm for sorting a given set of n such triples.

A-9.3 Suppose you are the postmaster in charge of putting a new post office in a small
town, where all the houses are along one street, where the new post office should
go as well. Let us view this street as a line and the houses on it as a set of
real numbers, {x1, x2, . . . , xn}, corresponding to points on this line. To make
everyone in town as happy as possible, the location, p, for the new post office
should minimize the sum,

n∑
i=1

|p − xi|.

Describe an efficient algorithm for finding the optimal location for the new post
office, show that your algorithm is correct, and analyze its running time.

A-9.4 Suppose University High School (UHS) is electing its student-body president.
Suppose further that everyone at UHS is a candidate and voters write down the
student number of the person they are voting for, rather than checking a box. Let
A be an array containing n such votes, that is, student numbers for candidates
receiving votes, listed in no particular order. Your job is to determine if one of
the candidates got a majority of the votes, that is, more than n/2 votes. Describe
an O(n)-time algorithm for determining if there is a student number that appears
more than n/2 times in A.

A-9.5 Consider the election problem from the previous exercise, but now describe an
algorithm running in O(n) time to determine the student numbers of every can-
didate that received more than n/3 votes.

A-9.6 Computational metrology deals with algorithms for the science of measurement.
For instance, suppose we are given a set, S, of n points in 3-dimensional spaces,
which is defined by sampling the surface of a manufactured part with a laser
range-finding device. A possible problem in computational metrology is to pre-
cisely determine how flat the points in S are, based on some mathematical def-
inition of “flatness.” But in order to determine how flat a set of points is in
3-dimensional space, we must have some reference plane. Therefore, let us de-
fine the reference plane for S to be the plane, z = c, that minimizes the sum of
distances from points in S to this plane, that is, the plane that minimizes the sum

F (S) =
∑
p∈S

|z(p) − c|,

where z(p) denotes the z-coordinate of the point p. The flatness of S is then
defined as F (S). Describe an efficient algorithm for computing the flatness of S
defined in this way. What is the running time of your method?

A-9.7 Suppose you are the owner of a chain of premium coffee shops that sell high-
priced coffee with fancy Italian names to college students. You have learned
that there is a street in a large college town that is lined with n dormitories and
there currently is no coffee shop on this street. Your goal is to place a new
coffee shop on this street so as to optimize the distance from this shop to the

www.it-ebooks.info

http://www.it-ebooks.info/

282 Chapter 9. Fast Sorting and Selection

various dormitories. To simplify things, let us model the street as a line and each
dormitory as a point, di, which is a real number on this line. In addition, we know
the number of people, pi, who live in each dormitory, di. You are interested in
finding the location, x, that minimizes the cost function,

n∑
i=1

pi|di − x|.

Describe an efficient algorithm for finding the point, x, where to place your coffee
shop, that minimizes this cost. What is the running time of your algorithm?

Chapter Notes
Knuth’s classic text on Sorting and Searching [131] contains an extensive history of the
sorting problem and algorithms for solving it, starting with the census card sorting ma-
chines of the late 19th century. Gonnet and Baeza-Yates [85] provide experimental com-
parisons and theoretical analyses of a number of different sorting algorithms. The term
“prune-and-search” originally comes from the computational geometry literature (such as
in the work of Clarkson [45] and Megiddo [154, 155]).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

10 The Greedy Method

Civil War Knapsack. U.S. government image. Vicksburg
National Military Park. Public domain.

Contents

10.1 The Fractional Knapsack Problem 286
10.2 Task Scheduling . 289
10.3 Text Compression and Huffman Coding 292
10.4 Exercises . 298

www.it-ebooks.info

http://www.it-ebooks.info/

284 Chapter 10. The Greedy Method

Suppose you are designing a new online auction website that is intended to

process bids for multi-lot auctions. That is, this website should be able to handle

a single auction for 100 units of the same digital camera or 500 units of the same

smartphone, where bids could be of the form, “x units for $y,” meaning that the

bidder wants a quantity of x of the items being sold and is willing to pay $y for all

x of them. The challenge for your website is that it must allow for a large number

of bidders to place such multi-lot bids and it must decide which bidders to choose

as the winners.

Naturally, in order to maximize sales commissions, the website managers are

interested in you designing the website so that it always chooses a set of winning

bids that maximizes the total amount of money paid for the items being auctioned.

So how do you decide which bidders to choose as the winners?

One way is to use the technique we discuss in this chapter—the greedy method.

This algorithm design paradigm involves repeatedly making choices that optimize

some objective function, like repeatedly accepting the bid that maximizes the price-

per-unit. The trick in applying this technique is guaranteeing that such a local

“greedy” choice can always lead to an optimal solution.

Proving that the greedy method can indeed lead to an optimal solution can

often require deeper understanding of the problem being solved, though, so we

may need to make additional assumptions in order for it to work. For instance, for

the problem of deciding which bidders to accept, this greedy strategy can work only

if you are allowed to partially satisfy bids. That is, the greedy strategy works if you

can satisfy a bid to buy x units for $y by selling k < x units for $yk/x. In fact,

this problem is equivalent to a problem we study in more detail in this chapter—the

fractional knapsack problem.

In the knapsack problem, we are given a set of n items, each having a weight

and a benefit, and we are interested in choosing the set of items that maximize

our total benefit while not going over the weight capacity of the knapsack. So,

in this case, each bid is an item, with its “weight” being the number of units being

requested and its benefit being the amount of money being offered. In this particular

instance, where bids can be satisfied with a partial fulfillment, then it is an instance

of the fractional knapsack problem, for which the greedy method works to find

an optimal solution. Interestingly, for the “0-1” version of the problem, where

fractional choices are not allowed, then the greedy method may not work. In fact,

solving this problem for all possible inputs is quite difficult—it is discussed in

Section 17.5 in the context of NP-completeness.

Still, there are several other problems, which we discuss in this chapter, for

which the greedy methods works to find an optimal solution. These include prob-

lems for task scheduling and text compression. Incidentally, this technique is

also used in Chapter 14, to derive efficient algorithms for finding shortest paths

in weighted graphs, Chapter 15, to construct minimum spanning trees, and Sec-

tion 18.2.2, to find approximate solutions to the SET-COVER problem.

www.it-ebooks.info

http://www.it-ebooks.info/

285

The Greedy Method

The greedy method is applied to optimization problems—that is, problems that in-

volve searching through a set of configurations to find one that minimizes or max-

imizes an objective function defined on these configurations. The general formula

of the greedy method could not be simpler—in order to solve a given optimization

problem, we proceed by a sequence of choices. The sequence of choices starts from

some well-understood starting configuration, and then iteratively makes the deci-

sion that is best from all of those that are currently possible, in terms of improving

the objective function. (See Figure 10.1.)

Figure 10.1: An example of the greedy method. Each rectangle represents a con-

figuration whose score is the objective function. A configuration has three choices,

each of which provides a different incremental improvement to the score. The bold

choices are the ones that are picked in each step according to the greedy strategy.

This greedy approach does not always lead to an optimal solution, but there

are several problems that it does work optimally for, and such problems are said

to possess the greedy-choice property. This is the property that a global optimal

configuration can be reached by a series of locally optimal choices (that is, choices

that are the best from among the possibilities available at the time), starting from a

well-defined configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

286 Chapter 10. The Greedy Method

10.1 The Fractional Knapsack Problem

Consider the fractional knapsack problem, where we are given a set S of n items,

such that each item i has a positive benefit bi and a positive weight wi, and we wish

to find the maximum-benefit subset that does not exceed a given weight W . If we

are restricted to entirely accepting or rejecting each item, then we would have the

0-1 version of this problem (for which we give a dynamic programming solution

in Section 12.6). Let us now allow ourselves to take arbitrary fractions of some

elements, however. The motivation for this fractional knapsack problem is that we

are going on a trip and we have a single knapsack that can carry items that together

have weight at most W . In addition, we are allowed to break items into fractions

arbitrarily. That is, we can take an amount xi of each item i such that

0 ≤ xi ≤ wi for each i ∈ S and
∑
i∈S

xi ≤ W.

The total benefit of the items taken is determined by the objective function

∑
i∈S

bi(xi/wi).

(See Figure 10.2.)

Figure 10.2: The fractional knapsack problem.

Consider, for example, a student who is going to an outdoor sporting event and

must fill a knapsack full of foodstuffs to take along. As long as each candidate

foodstuff is something that can be easily divided into fractions, such as drinks,

potato chips, popcorn, and pizza, then this would be an instance of the fractional

knapsack problem.

www.it-ebooks.info

http://www.it-ebooks.info/

10.1. The Fractional Knapsack Problem 287

Using the Greedy Method to Solve the Fractional Knapsack Problem

When considering the fractional knapsack problem, this is one place where the

greedy method can be applied successfully, for we can solve the fractional knapsack

problem using the greedy approach.

In applying the greedy method, the most important decision is to determine

the objective function that we wish to optimize. For example, we could choose to

include items into our knapsack based on their weights, say, taking items in order

by increasing weights. The intuition behind this approach is that the lower-weight

items consume the least amount of the weight resource of the knapsack. Unfortu-

nately, this first idea doesn’t work. It is easy to construct examples where choosing

items in order by their weights leads to suboptimal solutions. For example, even

with just two items, with weight-benefit pairs of (1, 10) and (10, 200), this weight-

based greedy approach, with a knapsack of weight 10, chooses 1 unit of item 1 and

9 units of item 2, for a total benefit of 10 + 180 = 190, whereas just taking item 2
would get a benefit of 200.

Another possibility is to choose items in order based on their benefits, but again

it is easy to construct examples where this results in a suboptimal strategy (see

Exercise C-10.1). A much better approach is to rank the items by their value, which

we define to be the ratio of their benefits and weights. The intuition behind this is

that benefit-per-weight-unit is a natural measurement of the inherent value that each

item possesses. Indeed, this approach leads to an efficient algorithm that finds an

optimal solution to the fractional knapsack problem. We describe the details of this

approach in Algorithm 10.3.

Algorithm FractionalKnapsack(S, W):
Input: Set S of items, such that each item i ∈ S has a positive benefit bi and a

positive weight wi; positive maximum total weight W
Output: Amount xi of each item i ∈ S that maximizes the total benefit while

not exceeding the maximum total weight W

for each item i ∈ S do
xi ← 0
vi ← bi/wi // value index of item i

w ← 0 // total weight

while w < W and S 	= ∅ do
remove from S an item i with highest value index // greedy choice

a ← min{wi, W − w} // more than W − w causes a weight overflow

xi ← a
w ← w + a

Algorithm 10.3: A greedy algorithm for the fractional knapsack problem.

www.it-ebooks.info

http://www.it-ebooks.info/

288 Chapter 10. The Greedy Method

Analyzing the Greedy Algorithm for the Fractional Knapsack Problem

The above FractionalKnapsack algorithm can be implemented in O(n log n) time,

where n is the number of items in S. Specifically, we can use a heap-based priority

queue (Section 5.3) to store the items of S, where the key of each item is its value

index. With this data structure, each greedy choice, which removes the item with

greatest value index, takes O(log n) time.

Alternatively, we could even sort the items by their benefit-to-weight values,

and then process them in this order. This would require O(n log n) time to sort

the items and then O(n) time to process them in the while-loop of Algorithm 10.3.

Either way, we have that the greedy algorithm for solving the fractional knapsack

problem can be implemented in O(n log n) time. The following theorem summa-

rizes this fact and also shows that this algorithm is correct.

Theorem 10.1: Given a collection S of n items, such that each item i has a ben-
efit bi and weight wi, we can construct a maximum-benefit subset of S, allowing
for fractional amounts, that has a total weight W in O(n log n) time.

Proof: To see that our algorithm (10.3) for solving the fractional knapsack prob-

lem is correct, suppose, for the sake of contradiction, that there is an optimal solu-

tion better than the one chosen by this greedy algorithm. Then there must be two

items i and j such that

xi < wi, xj > 0, and vi > vj .

Let

y = min{wi − xi, xj}.
But then we could then replace an amount y of item j with an equal amount of

item i, thus increasing the total benefit without changing the total weight, which

contradicts the assumption that this non-greedy solution is optimal. Therefore, we

can correctly compute optimal amounts for the items by greedily choosing items

by increasing benefit-to-weight values.

The proof of this theorem uses an exchange argument to show that the greedy

method works to solve this problem optimally. The general structure of such an

argument is a proof by contradiction, where we assume, for the sake of reaching a

contradiction, that there is a better solution than one found by the greedy algorithm.

We then argue that there is an exchange that we could make among the components

of this solution that would lead to a better solution. In this case, this approach shows

that the greedy method can effectively be used to solve the fractional knapsack

problem. Incidentally, the all-or-nothing, or “0-1” version of the knapsack problem

does not have an efficient greedy solution, however, and solving this version of the

problem is much harder, as we explore in Sections 12.6 and 17.5.

www.it-ebooks.info

http://www.it-ebooks.info/

10.2. Task Scheduling 289

10.2 Task Scheduling

Suppose we are given a set T of n tasks such that each task i has a start time, si,

and a finish time, fi (where si < fi). Task i must start at time si and must finish by

time fi. Each task has to be performed on a machine and each machine can execute

only one task at a time. Two tasks i and j are said to be nonconflicting if they do

not overlap in time, i.e., fi ≤ sj or fj ≤ si. Clearly, two tasks can be scheduled to

be executed on the same machine only if they are nonconflicting.

The task scheduling problem we consider here is to schedule all the tasks in

T on the fewest machines possible in a nonconflicting way. Alternatively, we can

think of the tasks as meetings that we must schedule in as few conference rooms as

possible. (See Figure 10.4.)

1 98765432

Machine 1

Machine 3

Machine 2

Figure 10.4: An illustration of a solution to the task scheduling prob-

lem, for tasks whose collection of pairs of start times and finish times is

{(1, 3), (1, 4), (2, 5), (3, 7), (4, 7), (6, 9), (7, 8)}.

There are several ways we might wish to solve this problem using the greedy

method. As with any greedy strategy, the challenge is to find the right objective

function. For example, we might consider the tasks from longest to shortest, as-

signing them to machines based on the first one available, since the longest tasks

seem like they would be the hardest to schedule. Unfortunately, this approach does

not necessarily result in an optimal solution, as is shown in Figure 10.5.

Figure 10.5: Why the longest-first strategy doesn’t work, for the pairs of start and

finish times in the set {(1, 4), (5, 9), (3, 5), (4, 6)}; (a) the solution chosen by the

longest-first strategy; (b) the optimal solution. Note that the longest-first strategy

uses three machines, whereas the optimal strategy uses only two.

www.it-ebooks.info

http://www.it-ebooks.info/

290 Chapter 10. The Greedy Method

A Better Greedy Approach to Task Scheduling

Another greedy approach is to consider the tasks ordered by increasing start times.

In this case, we would consider each task by the order of its start time, and assign it

to the first machine that is available at that time. If there are no available machines,

however, then we would need to allocate a new machine and schedule this task on

that machine. The intuition behind this approach is that, by processing tasks by

their start times, when we process a task for a given start time we will have already

processed all the other tasks that would conflict with this starting time. We give the

details of this greedy algorithm in Algorithm 10.6.

Algorithm TaskSchedule(T):

Input: A set T of tasks, such that each task has a start time si and a finish

time fi

Output: A nonconflicting schedule of the tasks in T using a minimum number

of machines

m ← 0 // optimal number of machines

while T 	= ∅ do
remove from T the task i with smallest start time si

if there is a machine j with no task conflicting with task i then
schedule task i on machine j

else
m ← m + 1 // add a new machine

schedule task i on machine m

Algorithm 10.6: A greedy algorithm for the task scheduling problem.

We show an example solution produced by this algorithm in Figure 10.7, using

the same set of tasks used in Figure 10.4. Note that even though this is an optimal

solution, it is not the same as the optimal solution shown in Figure 10.4.

Figure 10.7: An example solution produced by the greedy algorithm based on con-

sidering tasks by increasing start times.

www.it-ebooks.info

http://www.it-ebooks.info/

10.2. Task Scheduling 291

Analysis of the Greedy Task Scheduling Algorithm

So, in words, in the above algorithm, TaskSchedule, we begin with no machines

and we consider the tasks in a greedy fashion, ordered by their start times. For

each task i, if we have a machine that can handle task i, then we schedule i on that

machine, say, choosing the first such available machine. Otherwise, we allocate a

new machine, schedule i on it, and repeat this greedy selection process until we

have considered all the tasks in T .

The following theorem states that greedy method TaskSchedule (Algo-

rithm 10.6) produces an optimal solution, because we are always considering a

task starting at a given time after we have already processed all the tasks that might

conflict with this start time.

Theorem 10.2: Given a set of n tasks specified by their start and finish times, the
Algorithm TaskSchedule produces, in O(n log n) time, a schedule for the tasks
using a minimum number of machines.

Proof: Let k be the last machine allocated by algorithm TaskSchedule, and

let i be the first task scheduled on k. When we scheduled i, each of the machines

1 through k − 1 contained tasks that conflict with i. Since they conflict with i
and because we consider tasks ordered by their start times, all the tasks currently

conflicting with task i must have start times less than or equal to si, the start time of

i, and have finish times after si. In other words, these tasks not only conflict with

task i, they all conflict with each other. But this means we have k tasks in our set

T that conflict with each other, which implies it is impossible for us to schedule all

the tasks in T using only k − 1 machines. Therefore, k is the minimum number of

machines needed to schedule all the tasks in T .

We leave as a simple exercise (R-10.2) the job of showing how to implement

the Algorithm TaskSchedule in O(n log n) time.

Note that the proof of this theorem does not use an exchange argument to prove

the correctness of the greedy algorithm we used in this case. Instead, the above

proof uses a lower-bound argument, which is another technique for proving greedy

algorithms are correct. In using this technique, we argue that any solution to our

problem will require a cost of at least some given parameter and we then show that

the greedy algorithm achieves this lower bound as an upper bound. In the above

proof, we used the parameter k for this purpose.

www.it-ebooks.info

http://www.it-ebooks.info/

292 Chapter 10. The Greedy Method

10.3 Text Compression and Huffman Coding

In this section, we consider another application of the greedy method—to text com-
pression. In this problem, we are given a string X defined over some alphabet, such

as the ASCII or Unicode character sets, and we want to efficiently encode X into

a small binary string Y (using only the characters 0 and 1). Text compression is

useful in any situation where we are communicating over a low-bandwidth channel,

such as a slow wireless or satellite connection, and we wish to minimize the time

needed to transmit our text. Likewise, text compression is also useful for storing

collections of large documents more efficiently, to allow a computational device

with a small amount of storage to contain as many documents as possible.

Standard encoding schemes, such as the ASCII and Unicode systems, use fixed-

length binary strings to encode characters, with 7 bits in the ASCII system and 16
in the Unicode system. So, for example, an English document whose length is 100

million characters would require at least 7 megabits to represent in ASCII and 16

megabits to represent in Unicode. This is a waste of bits, however, since there are

some characters that are hardly ever used and others, like the letters “e” and “t,”

that are used so often that it is shame to be using the same number of bits for them

as the seldomly used characters.

An alternative to such fixed-length encoding schemes, then, is a variable-length
encoding scheme, where the codes for various characters are allowed to have dif-

ferent lengths. Ideally, we would like the most-frequently used characters to use

the fewest number of bits, and the least-frequently used characters to use the most.

To encode a string X , we would then represent each character in X with its associ-

ated variable-length code word, and we concatenate all these code words in order

to produce a binary representation, Y , for X .

In order to avoid ambiguities in this approach, we insist that our encoding

scheme be a prefix code, that is, we insist that no code word in our scheme is a

prefix of any other code word in our scheme. The advantage of using such a prefix

code is that decoding can be accomplished by using the greedy strategy of pro-

cessing the bits of Y in order, repeatedly matching bits to the first code word they

represent. Moreover, the savings produced by a variable-length prefix code can be

significant, particularly if there is a wide variance in character frequencies (as is the

case for natural language text in almost every spoken language).

The challenge, of course, is that to get the maximum compression possible with

this approach we want to guarantee that high-frequency characters are assigned to

short code words and low-frequency characters are assigned to longer code words.

In other words, to get the maximum compression for X based on this approach, our

code words must be chosen based on the frequencies of how characters appear in

X . So, let us assume that we have, for each character, c, in X , a count, f(c), of the

number of times c appears in the string X .

www.it-ebooks.info

http://www.it-ebooks.info/

10.3. Text Compression and Huffman Coding 293

Huffman Coding

An interesting greedy approach to solving the text compression problem using this

approach is Huffman coding. This method produces a variable-length prefix code

for X based on the construction of a proper binary tree T that represents the code.

Each edge in T represents a bit in a code word, with each edge to a left child

representing a “0” and each edge to a right child representing a “1.” Each external

node v is associated with a specific character, and the code word for that character

is defined by the sequence of bits associated with the edges in the path from the

root of T to v.

Since characters are associated only with external nodes, and no internal node is

associated with any code word, such a scheme produces a prefix code. Put another

way, if we start matching bits in X based on the path that they trace out in T , then

the external node that we reach will correspond to the character represented by the

code word this string of bits is equal to. (See Figure 10.8.)

(a)
Character

Frequency

a b d e f h i k n o r s t u v

9 5 1 3 7 3 1 1 1 4 1 5 1 2 1 1

(b)

19

46

27

151210

87

4

5er

fd n

a

tb h

ki o s vu

2

42

2 2

1 1

11 1 1 1 1

2

5

3

7

3 4

5

9

Figure 10.8: An illustration of an example Huffman code for the input string

X = "a fast runner need never be afraid of the dark": (a)

frequency of each character of X; (b) Huffman tree T for string X . The code for a

character c is obtained by tracing the path from the root of T to the external node

where c is stored, and associating a left child with 0 and a right child with 1. For

example, the code for “a” is 010, and the code for “f” is 1100.

www.it-ebooks.info

http://www.it-ebooks.info/

294 Chapter 10. The Greedy Method

The Huffman Coding Algorithm

The critical part of the Huffman coding algorithm is to construct the tree, T , so

that it represents a good prefix code. We begin with a collection, C, of characters,

with each character c in C having a numeric weight, f(c), which we think of as its

frequency.

Each external node v in T is associated with a character and has a frequency,

f(v), which is the frequency in X of the character associated with v. For each

internal node, v, in T , we associate a total frequency, f(v), which is the sum of

the frequencies of all the external nodes in the subtree rooted at v. The remaining

optimization problem involves choosing how T is structured so as to determine an

optimal prefix code.

Let T be a binary tree, defined as above, with a numeric weight, f(v), assigned

to each external node, v in T , and a weight, f(v), assigned to each internal node,

v, that is the sum of the weights of its external-node descendants. Define the total
path weight, p(T), of T to be the sum of all the weights in T . That is, define p(T)
as follows:

p(T) =
∑
v∈T

f(v).

Note that this is equivalent to us summing, over all the external nodes of T , the

product of each external node’s weight and its depth. That is, given a set C of

characters, where each c in C is given a (frequency) weight, f(c), we can also

characterize the total path weight of T as

p(T) =
∑
c∈C

f(c) · d(vc),

where vc is the external node associated with the character c in C and d(vc) is the

depth of vc in T .

The goal is for us to construct T so that it has minimum total path weight over

all binary trees having external nodes associated with the characters in C, using

the frequency of each character in C as the weight of its associated external node.

(This property was true, for instance, in the tree shown in Figure 10.8b.) Thus, the

problem of constructing an optimal prefix code can be reduced to the problem of

constructing a binary tree with minimum total path weight.

The Huffman coding algorithm begins with a set, C, of characters that are the

d distinct characters from the string X , such that each such character is associated

with the root node of a single-node binary tree. The algorithm proceeds in a series

of rounds. In each round, the algorithm takes the two binary trees with the smallest

weight at their respective roots and merges them into a single binary tree, giving

the root of the new tree the sum of the roots of the two merged trees. The algorithm

then repeats this process until only one tree is left. (See Algorithm 10.9.)

www.it-ebooks.info

http://www.it-ebooks.info/

10.3. Text Compression and Huffman Coding 295

Algorithm Huffman(C):

Input: A set, C, of d characters, each with a given weight, f(c)
Output: A coding tree, T , for C, with minimum total path weight

Initialize a priority queue Q.

for each character c in C do
Create a single-node binary tree T storing c.

Insert T into Q with key f(c).
while Q.size() > 1 do

f1 ← Q.minKey()
T1 ← Q.removeMin()
f2 ← Q.minKey()
T2 ← Q.removeMin()
Create a new binary tree T with left subtree T1 and right subtree T2.

Insert T into Q with key f1 + f2.

return tree Q.removeMin()

Algorithm 10.9: Huffman coding algorithm.

Analysis of the Huffman Coding Algorithm

Each iteration of the while-loop in the Huffman coding algorithm can be imple-

mented in O(log d) time using a priority queue represented with a heap. In addi-

tion, each iteration takes two binary trees out of Q and adds one in, all of which

can be done in O(log d) time. This process is repeated d − 1 times before exactly

one node is left in Q. Thus, this algorithm runs in O(d log d) time, assuming we

are given the set, C, of d distinct characters in the string X as input. In addition,

we can construct C from X in O(n) time, including the calculation, for each c in

C, of the frequency, f(c), of how many times the character c appears in X , where

n is the length of X; see Exercise C-10.3.

The correctness argument for the Huffman coding algorithm begins with the

following lemma.

Lemma 10.3: If T is a binary tree, T , with minimum total path weight for a set,
C, of characters, with each c in C having a positive weight, f(c), then T is proper,
that is, each internal node in T has two children.

Proof: Suppose, for the sake of contradiction, that T has an internal node, v, with

only one child, w. Then we can replace v with w and T will have the same set of

external nodes as before, but each node in the subtree rooted at T will have its depth

reduced by 1. Since the weights for the characters in C are positive, this implies

that the total path weight for the new tree is less than T , which is impossible, since

T is a binary tree with minimum total path weight.

In addition, the following lemma is also important.

www.it-ebooks.info

http://www.it-ebooks.info/

296 Chapter 10. The Greedy Method

Lemma 10.4: Given a set, C, of characters, with a positive weight, f(c), defined
for each c in C, two characters, b and c, with the smallest two weights, are associ-
ated with nodes that have the maximum depth and are siblings in a binary tree, T ,
with minimum total path weight for C.

Proof: Let T be a binary tree with minimum total path weight for C. Suppose

that the node for one of b or c does not have maximum depth in T , and let v be

this node and, without loss of generality, let c be the associated character. Then

there must be another external node, w, associated with a character, e, such that

f(e) ≥ f(c) and d(w) > d(v). We can swap the characters for v and w, which will

cause a change in the total path weight of T by the amount

f(c)(d(w) − d(v)) − f(e)(d(w) − d(v)),

which cannot be positive. Thus, c can be associated with a maximum-depth node

without increasing the total weight of T ; hence, there is an optimal tree having a

maximum-depth node associated with c.

To see that b and c can be siblings, note that, since we have already shown that

b and c are at maximum depth in an optimal tree, T , and an optimal tree is proper,

by Lemma 10.3, we can swap a sibling of either b or c to make these two be siblings

without changing the total path weight of T .

We use this lemma to prove the following.

Theorem 10.5: The Huffman coding algorithm constructs an optimal prefix code
for a string of length n with d distinct characters in O(n + d log d) time.

Proof: We have already established the time bound for the Huffman coding

algorithm, as well as the fact that an optimal prefix code can be derived from a

binary tree, T , with minimum total path weight, p(T), for a set of characters and

weights associated with its external nodes.

We can prove the correctness of the Huffman coding algorithm by induction on

d, the number of characters in C. For the basis, note that for d = 1, the optimal tree

is a single (root) node, and that this is the tree constructed by the Huffman coding

algorithm.

Let T be a tree constructed by the Huffman coding algorithm for a set, C, of

d > 1 characters. After merging two lowest-frequency characters, b and c, in C into

a single tree having a root, r, which has the two associated nodes as its children,

note that the iterative structure of the algorithm is the same as if we had started

with d − 1 characters, including a character for r with frequency f(r). Thus, we

can assume inductively that the tree, T ′, constructed for this set of characters is

optimal. In addition, since b and c are associated with the children of r,

p(T) = p(T ′) + f(b) + f(c).

Now, let U be an optimal tree for the set C, where, by Lemma 10.4, the nodes

for b and c are siblings. Let U ′ be the tree derived from U by removing the nodes

www.it-ebooks.info

http://www.it-ebooks.info/

10.3. Text Compression and Huffman Coding 297

for b and c, but keeping their parent node, which has weight f(b) + f(c). That is,

U ′ is defined on the same set of characters and frequencies as T ′, and

p(U) = p(U ′) + f(b) + f(c).

In addition, since T ′ is optimal,

p(T ′) ≤ p(U ′).
Therefore,

p(T) = p(T ′) + f(b) + f(c)
≤ p(U ′) + f(b) + f(c)
= p(U).

In other words, T has weight less than or equal to U . But, since U is an optimal

tree, this means that T must be an optimal tree.

How the Huffman Coding Algorithm Uses the Greedy Method

The Huffman coding algorithm for building an optimal prefix code is another ap-

plication of the greedy method. As mentioned above, this technique is applied

to optimization problems, where we are trying to construct some structure while

minimizing or maximizing some property of that structure.

Indeed, the Huffman coding algorithm closely follows the general formula for

the greedy method. Namely, in order to solve the given optimization code problem

using the greedy method, we proceed by a sequence of choices. The sequence

starts from a well-understood starting condition, and computes the cost for that

initial condition. Finally, we iteratively make additional choices by identifying the

decision that achieves the best cost improvement from all of the choices that are

currently possible. This approach does not always lead to an optimal solution, but

it does indeed find the optimal prefix code when used according to the approach of

the Huffman coding algorithm.

This global optimality for the Huffman coding algorithm is due to the fact that

the optimal prefix coding problem possesses the greedy-choice property. This is

the property that a global optimal condition can be reached by a series of locally

optimal choices (that is, choices that are each the current best from among the

possibilities available at the time), starting from a well-defined starting condition.

In this case, the general condition is defined by a set of disjoint binary trees, each

with a given weight for its root, and the greedy choice is to combine two lowest-

weight trees into a single tree.

www.it-ebooks.info

http://www.it-ebooks.info/

298 Chapter 10. The Greedy Method

10.4 Exercises

Reinforcement
R-10.1 Let S = {a, b, c, d, e, f, g} be a collection of objects with benefit-weight val-

ues, a : (12, 4), b : (10, 6), c : (8, 5), d : (11, 7), e : (14, 3), f : (7, 1), g : (9, 6).
What is an optimal solution to the fractional knapsack problem for S assuming
we have a sack that can hold objects with total weight 18? Show your work.

R-10.2 Describe how to implement the TaskSchedule method to run in O(n log n)
time.

R-10.3 Suppose we are given a set of tasks specified by pairs of the start times and fin-
ish times as T = {(1, 2), (1, 3), (1, 4), (2, 5), (3, 7), (4, 9), (5, 6), (6, 8), (7, 9)}.
Solve the task scheduling problem for this set of tasks.

R-10.4 Draw the frequency table and Huffman tree for the following string:

"dogs do not spot hot pots or cats".

R-10.5 Give an example set of 10 characters and their associated frequencies so that, in
the Huffman tree for this set, every internal node has an external-node child.

R-10.6 Give an example set of 8 characters and their associated frequencies so that the
Huffman tree for this set is a complete binary tree.

R-10.7 Fred says that he ran the Huffman coding algorithm for the four characters, A,
C, G, and T, and it gave him the code words, 0, 10, 111, 110, respectively. Give
examples of four frequencies for these characters that could have resulted in these
code words or argue why these code words could not possibly have been output
by the Huffman coding algorithm.

R-10.8 Repeat the previous exercise for the code words, 0, 10, 101, 111.

R-10.9 Repeat the previous exercise for the code words, 00, 100, 101, 11.

R-10.10 Indicate for each of the lemmas used in the proof of correctness for the Huffman
coding algorithm whether the proof of that lemma uses an exchange argument or
a lower-bound argument?

Creativity
C-10.1 Provide an example instance of the fractional knapsack problem where a greedy

strategy based on repeatedly choosing as much of the highest-benefit item as
possible results in a suboptimal solution.

C-10.2 Suppose you are given an instance of the fractional knapsack problem in which
all the items have the same weight. Show that you can solve the fractional knap-
sack problem in this case in O(n) time.

www.it-ebooks.info

http://www.it-ebooks.info/

10.4. Exercises 299

C-10.3 Given a character string X of length n, describe an O(n)-time algorithm to con-
struct the set, C, of distinct characters that appear in C, along with a count, f(c),
for each c in C, of how many times the character c appears in X . You may as-
sume that the characters in X are encoded using a standard character indexing
scheme, like the ASCII system.

C-10.4 A native Australian named Anatjari wishes to cross a desert carrying only a sin-
gle water bottle. He has a map that marks all the watering holes along the way.
Assuming he can walk k miles on one bottle of water, design an efficient algo-
rithm for determining where Anatjari should refill his bottle in order to make as
few stops as possible. Argue why your algorithm is correct.

C-10.5 Describe an efficient greedy algorithm for making change for a specified value
using a minimum number of coins, assuming there are four denominations of
coins (called quarters, dimes, nickels, and pennies), with values 25, 10, 5, and 1,
respectively. Argue why your algorithm is correct.

C-10.6 Give an example set of denominations of coins so that a greedy change making
algorithm will not use the minimum number of coins.

C-10.7 Suppose T is a Huffman tree for a set of characters having frequencies equal
to the first n nonzero Fibonacci numbers, {1, 1, 2, 3, 5, 8, 13, 21, 34, . . .}, where
f0 = 1, f1 = 1, and fi = fi−1 + fi−2. Prove that every internal node in T has
an external-node child.

C-10.8 Suppose you’ve been sent back in time and have arrived at the scene of an ancient
Roman battle. Moreover, suppose you have just learned that it is your job to
assign n spears to n Roman soldiers, so that each man has a spear. You observe
that the men and spears are of various heights, and you have been told (in Latin)
that the army is at its best if you can minimize the total difference in heights
between each man and his spear. That is, if the ith man has height mi and his
spear has height si, then you want to minimize the sum,

n∑
i=1

|mi − si|.

Consider a greedy strategy of repeatedly matching the man and spear that min-
imizes the difference in heights between these two. Prove or disprove that this
greedy strategy results in the optimal assignment of spears to men.

C-10.9 Consider again the time-travel problem of the previous exercise, but now consider
a greedy algorithm that sorts the men by increasing heights and sorts the spears
by increasing heights, and then assigns the ith spear in the ordered list of spears
to the ith man in the ordered list of Roman soldiers. Prove or disprove that this
greedy strategy results in the optimal assignment of spears to men.

C-10.10 Suppose you are organizing a party for a large group of your friends. Your friends
are pretty opinionated, though, and you don’t want to invite two friends if they
don’t like each other. So you have asked each of your friends to give you an
“enemies” list, which identifies all the other people among your friends that they
dislike and for whom they know the feeling is mutual. Your goal is to invite
the largest set of friends possible such that no pair of invited friends dislike each

www.it-ebooks.info

http://www.it-ebooks.info/

300 Chapter 10. The Greedy Method

other. To solve this problem quickly, one of your relatives (who is not one of your
friends) has offered a simple greedy strategy, where you would repeatedly invite
the person with the fewest number of enemies from among your friends who is
not an enemy of someone you have already invited, until there is no one left who
can be invited. Show that your relative’s greedy algorithm may not always result
in the maximum number of friends being invited to your party.

Applications
A-10.1 In the art gallery guarding problem we are given a line L that represents a long

hallway in an art gallery. We are also given a set X = {x0, x1, . . . , xn−1} of
real numbers that specify the positions of paintings in this hallway. Suppose that
a single guard can protect all the paintings within distance at most 1 of his or her
position (on both sides). Design an algorithm for finding a placement of guards
that uses the minimum number of guards to guard all the paintings with positions
in X .

A-10.2 Consider a single machine scheduling problem, where we are given a set, T ,
of tasks specified by their start times and finish times, as in the task scheduling
problem, except now we have only one machine and we wish to maximize the
number of tasks that this single machine performs. Design a greedy algorithm
for this single machine scheduling problem and show that it is correct. What is
the running time of this algorithm?

A-10.3 A floating-point number is a pair, (m, d), of integers, which represents the num-
ber m × bd, where b is either 2 or 10. In any real-world programming environ-
ment, the sizes of m and d are limited; hence, each arithmetic operation involving
two floating-point numbers may have some roundoff error. The traditional way
to account for this error is to introduce a machine precision parameter, ε < 1,
for the given programming environment, and bound roundoff errors in terms of
this parameter. For instance, in the case of floating-point addition, fl(x + y), for
summing two floating-point numbers, x and y, we can write

fl(x + y) = (x + y) · (1 + δx,y),

where
|δx,y| ≤ ε.

Suppose we are given a set of positive floating-point numbers, {x1, x2, . . . , xn},
and we wish to sum up all these numbers. Any such summation algorithm can
be modeled with a binary expression tree, T , that has each xi associated with
one of its external nodes, with each internal node, v, representing the floating-
point sum of the floating point numbers computed by v’s children. Given the
machine-precision approach to bounding floating-point errors, and assuming that
ε is small enough so that ε2 times any floating-point number is negligibly small,
then we can use a term, en, to estimate an upper bound for the roundoff error for
summing these numbers using the tree T as

en = ε

n∑
i=1

xid(vxi
),

www.it-ebooks.info

http://www.it-ebooks.info/

10.4. Exercises 301

where vxi
is the external node associated with xi and d(vxi

) is the depth of this
node in T . Design an efficient algorithm for constructing the binary expression
tree, T , that minimizes en. What is the running time of your method?

A-10.4 Whenever a word processor or web browser displays a long passage of text, it
must be broken up into lines of text that are displayed one on top of the other.
Determining where to make these breaks is known as the line breaking problem.
The most natural place to make such breaks are between words. So, suppose you
are given a sequence, W , of n words, W = (w1, w2, . . . , wn), where each word,
wi in W , has a given length, li. Also, for the sake of simplicity, let us ignore
any spaces or punctuation that might come before or after any of these words.
Suppose further that you are given a line length, L, that is an upper bound on
the sum of the lengths of words that can fit on a single line. We specify how
to break W into lines, by a sequence of indices, (i1, i2, . . . , ik), where i1 = 1,
ik = n, to indicate that we should break W into the lines, wij

. . . wij+1−1), for
j = 1, 2, . . . , k − 1, subject to the constraints that ij < ij+1 and

ij+1−1∑
r=ij

lr ≤ L.

In addition, define the penalty for such a set of line breaks to be

k∑
j=1

∣∣∣∣∣∣L −
ij+1−1∑
r=ij

lr

∣∣∣∣∣∣ .
Describe an efficient greedy algorithm for breaking a sequence of words, W , into
lines and prove that your method minimizes this penalty. What is the running
time of your method?

A-10.5 Consider the line breaking problem from the previous exercise, but now consider
changing the penalty for line breaks, so that it is now

k∑
j=1

⎛
⎝L −

ij+1−1∑
r=ij

lr

⎞
⎠2

.

Show that a greedy strategy of scanning W from beginning to end and making
the choice that minimizes the term,⎛

⎝L −
ij+1−1∑
r=ij

lr

⎞
⎠2

,

based on previous choices, while maintaining each line to be of length at most L,
does not necessarily result in an optimal set of line breaks.

A-10.6 In the 2003 California gubernatorial recall election, the ballot contained 135 can-
didates, including people with various listings for their current job, including
“actor,” “comedian,” and even “adult film actress.” The winner was the actor-
businessman Arnold Schwarzenegger, who got over 48% of the vote. Suppose

www.it-ebooks.info

http://www.it-ebooks.info/

302 Chapter 10. The Greedy Method

we have the election results from such an election, with a large number, n, of
candidates, and the only tool we can use to determine the winner is to encode
the names of all the candidates using the Huffman coding algorithm, based on
the number of votes each candidate got in this election. Suppose further that a
friend of yours is guessing that if the winning candidate gets more than 40% of
the votes, then his or her name will be encoded with a single bit. Prove that this
conjecture is true and analyze the running time of this election-counting algo-
rithm.

A-10.7 When data is transmitted across a noisy channel, information can be lost during
the transmission. For example, a message that is sent through a noisy channel as

“WHO PARKED ON HARRY POTTER’S SPOT?′′

could be received as the message,

“HOP ON POP′′

That is, some characters could be lost during the transmission, so that only a
selected portion of the original message is received. We can model this phe-
nomenon using character strings, where, given a string X = x1x2 . . . xn, we say
that a string Y = y1y2 . . . ym is a subsequence of X if there are a set of indices
{i1, i2, . . . , ik}, such that y1 = xi1 , y2 = xi2 , . . ., yk = xik

, and ij < ij+1, for
j = 1, 2, . . . , k − 1. In a case of transmission along a noisy channel, it could be
useful to know if our transcription of a received message is indeed a subsequence
of the message sent. Therefore, describe an O(n + m)-time method for deter-
mining if a given string, Y , of length m is a subsequence of a given string, X , of
length n.

Chapter Notes
The term “greedy algorithm” was coined by Edmonds [63] in 1971, although the concept
existed before then. For more information about the greedy method and the theory that
supports it, which is known as matroid theory, please see the book by Papadimitriou and
Steiglitz [169]. The application of the greedy method we gave to the coding problem comes
from Huffman [108].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

11 Divide-and-Conquer

Grand Canyon from South Rim, 1941. Ansel Adams.
U.S. government image. U.S. National Archives and
Records Administration.

Contents

11.1 Recurrences and the Master Theorem 305
11.2 Integer Multiplication . 313
11.3 Matrix Multiplication . 315
11.4 The Maxima-Set Problem 317
11.5 Exercises . 319

www.it-ebooks.info

http://www.it-ebooks.info/

304 Chapter 11. Divide-and-Conquer

Imagine that you are getting ready to go on a vacation and are looking for a

hotel. Suppose that for you, the only criteria that matter when you judge a hotel are

the size of its pool and the quality of its restaurant, as measured by a well-known

restaurant guide. You have gone to the restaurant guide website and several hotel

websites and have discovered, for each of n hotels, the size of its pool and the

quality of its restaurant.

With so many hotels to choose from, it would be useful if you could rule out

some possibilities. For instance, if there is a hotel whose pool is smaller and restau-

rant is of lower quality than another hotel, then it can be eliminated as a possible

choice, as both of your criteria for the first hotel are dominated by the second hotel.

We can visualize the various trade-offs by plotting each hotel as a two-dimensional

point, (x, y), where x is the pool size and y is the restaurant quality score. We say

that such a point is a maximum point in a set if there is no other point, (x′, y′), in

that set such that x ≤ x′ and y ≤ y′. (See Figure 11.1.)

Figure 11.1: A set of hotels visualized as two-dimensional points, in terms of their

pool size and restaurant quality scores. The points that are maxima are shown with

dashed lines indicating the set of other points they dominate. For example, Hotel B

is dominated by Hotels G, H, and I. The maxima set is {A, D, G, H, I}.

Given such a set of points, then, we are interested in designing an efficient

algorithm that can identify the maxima set. The other points can be pruned from

consideration, since each of them is dominated by some other point. As we show

in Section 11.4, the algorithmic technique we discuss in this chapter, divide-and-
conquer, is well suited for solving this problem. In addition, in this chapter, we

discuss how to apply this technique to integer and matrix multiplication, and we

give a general way, called the master theorem, for analyzing divide-and-conquer

algorithms. Incidentally, we also discuss divide-and-conquer algorithms, merge-

sort and quick-sort, in Chapter 8, and the fast Fourier transform, in Chapter 25.

www.it-ebooks.info

http://www.it-ebooks.info/

11.1. Recurrences and the Master Theorem 305

11.1 Recurrences and the Master Theorem

The divide-and-conquer technique involves solving a particular computational prob-

lem by dividing it into one or more subproblems of smaller size, recursively solving

each subproblem, and then “merging” or “marrying” the solutions to the subprob-

lem(s) to produce a solution to the original problem.

We can model the divide-and-conquer approach by using a parameter n to de-

note the size of the original problem, and let S(n) denote this problem. We solve

the problem S(n) by solving a collection of k subproblems S(n1), S(n2), . . .,
S(nk), where ni < n for i = 1, . . . , k, and then merging the solutions to these

subproblems.

For example, in the classic merge-sort algorithm (Section 8.1), S(n) denotes

the problem of sorting a sequence of n numbers. Merge-sort solves problem S(n)
by dividing it into two subproblems S(
n/2�) and S(�n/2�), recursively solving

these two subproblems, and then merging the resulting sorted sequences into a

single sorted sequence that yields a solution to S(n). The merging step takes O(n)
time. Thus, the total running time of the merge-sort algorithm is O(n log n).

As with the merge-sort algorithm, the general divide-and-conquer technique

can be used to build algorithms that have fast running times.

To analyze the running time of a divide-and-conquer algorithm, we often use

a recurrence equation (Section 1.1.4). That is, we let a function T (n) denote the

running time of the algorithm on an input of size n, and we characterize T (n) using

an equation that relates T (n) to values of the function T for problem sizes smaller

than n. In the case of the merge-sort algorithm, we get the recurrence equation

T (n) =
{

b if n < 2
2T (n/2) + bn if n ≥ 2,

for some constant b ≥ 1, taking the simplifying assumption that n is a power of 2.

In fact, throughout this section, we take the simplifying assumption that n is an

appropriate power, so that we can avoid using floor and ceiling functions. Every

asymptotic statement we make about recurrence equations will still be true, even

if we relax this assumption (see Exercise C-11.5). As we observed in Chapter 8,

we can show that T (n) is O(n log n) in this case. In general, however, we may get

a recurrence equation that is more challenging to solve than this one. Thus, it is

useful to develop some general ways of solving the kinds of recurrence equations

that arise in the analysis of divide-and-conquer algorithms.

www.it-ebooks.info

http://www.it-ebooks.info/

306 Chapter 11. Divide-and-Conquer

The Iterative Substitution Method

One way to solve a divide-and-conquer recurrence equation is to use the iterative
substitution method, which is more colloquially known as the “plug-and-chug”

method. In using this method, we assume that the problem size n is fairly large

and we then substitute the general form of the recurrence for each occurrence of

the function T on the right-hand side. For example, performing such a substitution

with the merge-sort recurrence equation yields the equation

T (n) = 2(2T (n/22) + b(n/2)) + bn

= 22T (n/22) + 2bn.

Plugging the general equation for T in again yields the equation

T (n) = 22(2T (n/23) + b(n/22)) + 2bn
= 23T (n/23) + 3bn.

The hope in applying the iterative substitution method is that at some point we

will see a pattern that can be converted into a general closed-form equation (with

T only appearing on the left-hand side). In the case of the merge-sort recurrence

equation, the general form is

T (n) = 2iT (n/2i) + ibn.

Note that the general form of this equation shifts to the base case, T (n) = b, when

n = 2i, that is, when i = log n, which implies

T (n) = bn + bn log n.

In other words, T (n) is O(n log n). In a general application of the iterative sub-

stitution technique, we hope that we can determine a general pattern for T (n) and

that we can also figure out when the general form of T (n) shifts to the base case.

From a mathematical point of view, there is one point in the use of the iterative

substitution technique that involves a bit of a logical “jump.” This jump occurs at

the point where we try to characterize the general pattern emerging from a sequence

of substitutions. Often, as was the case with the merge-sort recurrence equation,

this jump is quite reasonable. Other times, however, it may not be so obvious what

a general form for the equation should look like. In these cases, the jump may

be more dangerous. To be completely safe in making such a jump, we must fully

justify the general form of the equation, possibly using induction. Combined with

such a justification, the iterative substitution method is completely correct and an

often useful way of characterizing recurrence equations. By the way, the colloqui-

alism “plug-and-chug,” used to describe the iterative substitution method, comes

from the way this method involves “plugging” in the recursive part of an equation

for T (n) and then often “chugging” through a considerable amount of algebra in

order to get this equation into a form where we can infer a general pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

11.1. Recurrences and the Master Theorem 307

The Recursion Tree

Another way of characterizing recurrence equations is to use the recursion tree
method. Like the iterative substitution method, this technique uses repeated sub-

stitution to solve a recurrence equation, but it differs from the iterative substitution

method in that, rather than being an algebraic approach, it is a visual approach. In

using the recursion tree method, we draw a tree R where each node represents a

different substitution of the recurrence equation. Thus, each node in R has a value

of the argument n of the function T (n) associated with it. In addition, we associate

an overhead with each node v in R, defined as the value of the nonrecursive part

of the recurrence equation for v. For divide-and-conquer recurrences, the overhead

corresponds to the running time needed to merge the subproblem solutions coming

from the children of v. The recurrence equation is then solved by summing the

overheads associated with all the nodes of R. This is commonly done by first sum-

ming values across the levels of R and then summing up these partial sums for all

the levels of R.

Example 11.1: Consider the following recurrence equation:

T (n) =
{

b if n < 3
3T (n/3) + bn if n ≥ 3.

This is the recurrence equation that we get, for example, by modifying the merge-
sort algorithm so that we divide an unsorted sequence into three equal-sized se-
quences, recursively sort each one, and then do a three-way merge of three sorted
sequences to produce a sorted version of the original sequence. In the recursion
tree R for this recurrence, each internal node v has three children and has a size
and an overhead associated with it, which corresponds to the time needed to merge
the subproblem solutions produced by v’s children. We illustrate the tree R in Fig-
ure 11.2. Note that the overheads of the nodes of each level sum to bn. Thus,
observing that the depth of R is log3 n, we have that T (n) is O(n log n).

Overhead

bn

bn

bn

Figure 11.2: The recursion tree R used in Example 11.1, where we show the cumu-

lative overhead of each level.

www.it-ebooks.info

http://www.it-ebooks.info/

308 Chapter 11. Divide-and-Conquer

The Guess-and-Test Method

Another method for solving recurrence equations is the guess-and-test technique.

This technique involves first making an educated guess as to what a closed-form

solution of the recurrence equation might look like and then justifying that guess,

usually by induction. For example, we can use the guess-and-test method as a kind

of “binary search” for finding good upper bounds on a given recurrence equation.

If the justification of our current guess fails, then it is possible that we need to use

a faster-growing function, and if our current guess is justified “too easily,” then it

is possible that we need to use a slower-growing function. However, using this

technique requires our being careful, in each mathematical step we take, in trying

to justify that a certain hypothesis holds with respect to our current “guess.” We

explore an application of the guess-and-test method in the examples that follow.

Example 11.2: Consider the following recurrence equation (assuming the base
case T (n) = b for n < 2):

T (n) = 2T (n/2) + bn log n.

This looks very similar to the recurrence equation for the merge-sort routine, so we
might make the following as our first guess:

First guess: T (n) ≤ cn log n,

for some constant c > 0. We can certainly choose c large enough to make this true
for the base case, so consider the case when n ≥ 2. If we assume our first guess is
an inductive hypothesis that is true for input sizes smaller than n, then we have

T (n) = 2T (n/2) + bn log n

≤ 2(c(n/2) log(n/2)) + bn log n

= cn(log n − log 2) + bn log n

= cn log n − cn + bn log n.

But there is no way that we can make this last line less than or equal to cn log n for
n ≥ 2. Thus, this first guess was not sufficient. Let us therefore try

Better guess: T (n) ≤ cn log2 n,

for some constant c > 0. We can again choose c large enough to make this true
for the base case, so consider the case when n ≥ 2. If we assume this guess as an
inductive hypothesis that is true for input sizes smaller than n, then we have

T (n) = 2T (n/2) + bn log n

≤ 2(c(n/2) log2(n/2)) + bn log n

= cn(log2 n − 2 log n + 1) + bn log n

= cn log2 n − 2cn log n + cn + bn log n

≤ cn log2 n,

www.it-ebooks.info

http://www.it-ebooks.info/

11.1. Recurrences and the Master Theorem 309

provided c ≥ b. Thus, we have shown that T (n) is indeed O(n log2 n) in this case.

We must take care in using this method. Just because one inductive hypothesis

for T (n) does not work, that does not necessarily imply that another one propor-

tional to this one will not work.

Example 11.3: Consider the following recurrence equation (assuming the base
case T (n) = b for n < 2):

T (n) = 2T (n/2) + log n.

This recurrence is the running time for the bottom-up heap construction discussed
in Section 5.4, which we have shown is O(n). Nevertheless, if we try to prove
this fact with the most straightforward inductive hypothesis, we will run into some
difficulties. In particular, consider the following:

First guess: T (n) ≤ cn,

for some constant c > 0. We can choose c large enough to make this true for the
base case, certainly, so consider the case when n ≥ 2. If we assume this guess as
an inductive hypothesis that is true for input sizes smaller than n, then we have

T (n) = 2T (n/2) + log n

≤ 2(c(n/2)) + log n

= cn + log n.

But there is no way that we can make this last line less than or equal to cn for
n ≥ 2. Thus, this first guess was not sufficient, even though T (n) is indeed O(n).
Still, we can show this fact is true by using

Better guess: T (n) ≤ c(n − log n),

for some constant c > 0. We can again choose c large enough to make this true for
the base case; in fact, we can show that it is true any time n < 8. So consider the
case when n ≥ 8. If we assume this guess as an inductive hypothesis that is true
for input sizes smaller than n, then we have

T (n) = 2T (n/2) + log n

≤ 2c((n/2) − log(n/2)) + log n

= cn − 2c log n + 2c + log n

= c(n − log n) − c log n + 2c + log n

≤ c(n − log n),

provided c ≥ 3 and n ≥ 8. Thus, we have shown that T (n) is indeed O(n) in this
case.

The guess-and-test method can be used to establish either an upper or lower

bound for the asymptotic complexity of a recurrence equation. Even so, as the

above example demonstrates, it requires that we have developed some skill with

mathematical induction.

www.it-ebooks.info

http://www.it-ebooks.info/

310 Chapter 11. Divide-and-Conquer

11.1.1 The Master Theorem

Each of the methods described above for solving recurrence equations is ad hoc

and requires mathematical sophistication in order to be used effectively. There is,

nevertheless, one method for solving divide-and-conquer recurrence equations that

is quite general and does not require explicit use of induction to apply correctly. It is

the master theorem. The master theorem is a “cookbook” method for determining

the asymptotic characterization of a wide variety of recurrence equations. Namely,

it is used for recurrence equations of the form

T (n) =
{

c if n < d
aT (n/b) + f(n) if n ≥ d,

where d ≥ 1 is an integer constant, a ≥ 1, c > 0, and b > 1 are real constants, and

f(n) is a function that is positive for n ≥ d. Such a recurrence equation would arise

in the analysis of a divide-and-conquer algorithm that divides a given problem into

a subproblems of size at most n/b each, solves each subproblem recursively, and

then “merges” the subproblem solutions into a solution to the entire problem. The

function f(n), in this equation, denotes the total additional time needed to divide

the problem into subproblems and merge the subproblem solutions into a solution to

the entire problem. Each of the recurrence equations given above uses this form, as

do each of the recurrence equations used to analyze divide-and-conquer algorithms

given earlier in this book. Thus, it is indeed a general form for divide-and-conquer

recurrence equations.

The master theorem for solving such recurrence equations involves simply writ-

ing down the answer based on whether one of the three cases applies. Each case is

distinguished by comparing f(n) to the special function nlogb a (we will show later

why this special function is so important).

Theorem 11.4 [The Master Theorem]: Let f(n) and T (n) be defined as above.

1. If there is a small constant ε > 0, such that f(n) is O(nlogb a−ε), then T (n)
is Θ(nlogb a).

2. If there is a constant k ≥ 0, such that f(n) is Θ(nlogb a logk n), then T (n) is
Θ(nlogb a logk+1 n).

3. If there are small constants ε > 0 and δ < 1, such that f(n) is Ω(nlogb a+ε)
and af(n/b) ≤ δf(n), for n ≥ d, then T (n) is Θ(f(n)).

Case 1 characterizes the situation where f(n) is polynomially smaller than the

special function, nlogb a. Case 2 characterizes the situation when f(n) is asymp-

totically close to the special function, and Case 3 characterizes the situation when

f(n) is polynomially larger than the special function.

www.it-ebooks.info

http://www.it-ebooks.info/

11.1. Recurrences and the Master Theorem 311

Some Example Applications of the Master Theorem

We illustrate the usage of the master theorem with a few examples (with each taking

the assumption that T (n) = c for n < d, for constants c ≥ 1 and d ≥ 1).

Example 11.5: Consider the recurrence

T (n) = 4T (n/2) + n.

In this case, nlogb a = nlog2 4 = n2. Thus, we are in Case 1, for f(n) is O(n2−ε)
for ε = 1. This means that T (n) is Θ(n2) by the master theorem.

Example 11.6: Consider the recurrence

T (n) = 2T (n/2) + n log n,

which is one of the recurrences given above. In this case, nlogb a = nlog2 2 = n.
Thus, we are in Case 2, with k = 1, for f(n) is Θ(n log n). This means that T (n)
is Θ(n log2 n) by the master theorem.

Example 11.7: Consider the recurrence

T (n) = T (n/3) + n,

which is the recurrence for a geometrically decreasing summation that starts with
n. In this case, nlogb a = nlog3 1 = n0 = 1. Thus, we are in Case 3, for f(n) is
Ω(n0+ε), for ε = 1, and af(n/b) = n/3 = (1/3)f(n). This means that T (n) is
Θ(n) by the master theorem.

Example 11.8: Consider the recurrence

T (n) = 9T (n/3) + n2.5.

In this case, nlogb a = nlog3 9 = n2. Thus, we are in Case 3, since f(n) is Ω(n2+ε)
(for ε = 1/2) and af(n/b) = 9(n/3)2.5 = (1/3)1/2f(n). This means that T (n) is
Θ(n2.5) by the master theorem.

Example 11.9: Finally, consider the recurrence

T (n) = 2T (n1/2) + log n.

Unfortunately, this equation is not in a form that allows us to use the master theo-
rem. We can put it into such a form, however, by introducing the variable k = log n,
which lets us write

T (n) = T (2k) = 2T (2k/2) + k.

Substituting into this the equation S(k) = T (2k), we get that

S(k) = 2S(k/2) + k.

Now, this recurrence equation allows us to use master theorem, which specifies that
S(k) is O(k log k). Substituting back for T (n) implies T (n) is O(log n log log n).

www.it-ebooks.info

http://www.it-ebooks.info/

312 Chapter 11. Divide-and-Conquer

High-Level Justification of the Master Theorem

Rather than rigorously prove Theorem 11.4, we instead discuss the justification

behind the master theorem at a high level.

If we apply the iterative substitution method to the general divide-and-conquer

recurrence equation, we get

T (n) = aT (n/b) + f(n)
= a(aT (n/b2) + f(n/b)) + f(n) = a2T (n/b2) + af(n/b) + f(n)
= a3T (n/b3) + a2f(n/b2) + af(n/b) + f(n)

...

= alogb nT (1) +
logb n−1∑

i=0

aif(n/bi)

= nlogb aT (1) +
logb n−1∑

i=0

aif(n/bi),

where the last substitution is based on the identity,

alogb n = nlogb a.

Indeed, this equation is where the special function comes from.

Given this closed-form characterization of T (n), we can intuitively see how

each of the three cases is derived:

• Case 1 comes from the situation when f(n) is small and the first term above

dominates.

• Case 2 denotes the situation when each of the terms in the above summation

is proportional to the others, so the characterization of T (n) is f(n) times a

logarithmic factor.

• Finally, Case 3 denotes the situation when the first term is smaller than the

second and the summation above is a sum of geometrically-decreasing terms

that start with f(n); hence, T (n) is itself proportional to f(n).

The proof of Theorem 11.4 formalizes this intuition, but instead of giving the

details of this proof, we present more applications of the master theorem in the

remainder of the chapter, for the analysis of various divide-and-conquer algorithms,

including integer and matrix multiplication and the maxima-set problem.

www.it-ebooks.info

http://www.it-ebooks.info/

11.2. Integer Multiplication 313

11.2 Integer Multiplication

We consider, in this subsection, the problem of multiplying big integers, that is,

integers represented by a large number of bits that cannot be handled directly by

the arithmetic unit of a single processor. Multiplying big integers has applications

to data security, where big integers are used in encryption schemes.

Given two big integers I and J represented with n bits each, we can easily

compute I + J and I − J in O(n) time. Efficiently computing the product I · J
using the common grade-school algorithm requires, however, O(n2) time. In the

rest of this section, we show that by using the divide-and-conquer technique, we

can design a subquadratic-time algorithm for multiplying two n-bit integers.

Let us assume that n is a power of two (if this is not the case, we can pad

I and J with 0’s). We can therefore divide the bit representations of I and J in

half, with one half representing the higher-order bits and the other representing

the lower-order bits. In particular, if we split I into Ih and Il and J into Jh and Jl,

then

I = Ih2n/2 + Il,

J = Jh2n/2 + Jl.

Also, observe that multiplying a binary number I by a power of two, 2k, is

trivial—it simply involves shifting left (that is, in the higher-order direction) the

number I by k bit positions. Thus, provided a left-shift operation takes constant

time, multiplying an integer by 2k takes O(k) time.

Let us focus on the problem of computing the product I ·J . Given the expansion

of I and J above, we can rewrite I · J as

I · J = (Ih2n/2 + Il) · (Jh2n/2 + Jl) = IhJh2n + IlJh2n/2 + IhJl2n/2 + IlJl.

Thus, we can compute I ·J by applying a divide-and-conquer algorithm that divides

the bit representations of I and J in half, recursively computes the product as four

products of n/2 bits each (as described above), and then merges the solutions to

these subproducts in O(n) time using addition and multiplication by powers of two.

We can terminate the recursion when we get down to the multiplication of two 1-bit

numbers, which is trivial. This divide-and-conquer algorithm has a running time

that can be characterized by the following recurrence:

T (n) =
{

c if n < 2
4T (n/2) + cn, if n ≥ 2,

for some constant c > 0. We can then apply the master theorem to note that the

special function nlogb a = nlog2 4 = n2 in this case; hence, we are in Case 1 and

T (n) is Θ(n2). Unfortunately, this is no better than the grade-school algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

314 Chapter 11. Divide-and-Conquer

A Better Algorithm

The master theorem gives us some insight into how we might improve this algo-

rithm. If we can reduce the number of recursive calls, then we will reduce the

complexity of the special function used in the master theorem, which is currently

the dominating factor in our running time. Fortunately, if we are a little more clever

in how we define subproblems to solve recursively, we can in fact reduce the num-

ber of recursive calls by one. In particular, consider the product

(Ih − Il) · (Jl − Jh) = IhJl − IlJl − IhJh + IlJh.

This is admittedly a strange product to consider, but it has an interesting property.

When expanded out, it contains two of the products we want to compute (namely,

IhJl and IlJh) and two products that can be computed recursively (namely, IhJh

and IlJl). Thus, we can compute I · J as follows:

I · J = IhJh2n + [(Ih − Il) · (Jl − Jh) + IhJh + IlJl]2n/2 + IlJl.

This computation requires the recursive computation of three products of n/2 bits

each, plus O(n) additional work. Thus, it results in a divide-and-conquer algorithm

with a running time characterized by the following recurrence equation (for n ≥ 2):

T (n) =
{

c if n < 2
3T (n/2) + cn, if n ≥ 2,

for some constant c > 0.

Theorem 11.10: We can multiply two n-bit integers in O(nlog2 3) time, which is
O(n1.585).

Proof: We apply the master theorem with the special function,

nlogb a = nlog2 3.

Thus, we are in Case 1, which implies that T (n) is Θ(nlog2 3), which is itself

O(n1.585).

Using divide-and-conquer, we have designed an algorithm for integer multipli-

cation that is asymptotically faster than the straightforward quadratic-time method.

We can actually do even better than this, achieving a running time that is “almost”

O(n log n), by using a more complex divide-and-conquer algorithm called the fast
Fourier transform, which we discuss in Chapter 25.

www.it-ebooks.info

http://www.it-ebooks.info/

11.3. Matrix Multiplication 315

11.3 Matrix Multiplication
Suppose we are given two n × n matrices X and Y , and we wish to compute their

product Z = XY , which is defined so that

Z[i, j] =
e−1∑
k=0

X[i, k] · Y [k, j],

which is an equation that immediately gives rise to a simple O(n3)-time algorithm.

Another way of viewing this product is in terms of submatrices. That is, let us

assume that n is a power of two and let us partition X , Y , and Z each into four

(n/2) × (n/2) matrices, so that we can rewrite Z = XY as(
I J
K L

)
=
(

A B
C D

)(
E F
G H

)
.

Thus,

I = AE + BG

J = AF + BH

K = CE + DG

L = CF + DH.

We can use this set of equations in a divide-and-conquer algorithm that com-

putes Z = XY by computing I , J , K, and L from the subarrays A through G.

By the above equations, we can compute I , J , K, and L from the eight recursively

computed matrix products on (n/2)× (n/2) subarrays, plus four additions that can

be done in O(n2) time. Thus, the above set of equations give rise to a divide-and-

conquer algorithm whose running time T (n) is characterized by the recurrence

T (n) = 8T (n/2) + bn2,

for some constant b > 0. Unfortunately, this equation implies that T (n) is O(n3)
by the master theorem; hence, it is no better than the straightforward matrix multi-

plication algorithm.

Interestingly, there is an algorithm known as Strassen’s Algorithm, which or-

ganizes arithmetic involving the subarrays A through G so that we can compute I ,

J , K, and L using just seven recursive matrix multiplications. We begin Strassen’s

algorithm with seven submatrix products:

S1 = A(F − H)
S2 = (A + B)H
S3 = (C + D)E
S4 = D(G − E)
S5 = (A + D)(E + H)
S6 = (B − D)(G + H)
S7 = (A − C)(E + F).

www.it-ebooks.info

http://www.it-ebooks.info/

316 Chapter 11. Divide-and-Conquer

Given these seven submatrix products, we can compute I as

I = S5 + S6 + S4 − S2

= (A + D)(E + H) + (B − D)(G + H) + D(G − E) − (A + B)H
= AE + BG.

We can compute J as

J = S1 + S2

= A(F − H) + (A + B)H
= AF − AH + AH + BH

= AF + BH.

We can compute K as

K = S3 + S4

= (C + D)E + D(G − E)
= CE + DE + DG − DE

= CE + DG.

Finally, we can compute L as

L = S1 − S7 − S3 + S5

= A(F − H) − (A − C)(E + F) − (C + D)E + (A + D)(E + H)
= CF + DH.

Thus, we can compute Z = XY using seven recursive multiplications of matrices

of size (n/2) × (n/2). Thus, we can characterize the running time T (n) as

T (n) = 7T (n/2) + bn2,

for some constant b > 0. Thus, by the master theorem, we have the following:

Theorem 11.11: We can multiply two n × n matrices in O(nlog 7) time.

Thus, with a fair bit of additional complication, we can perform the multi-

plication for n × n matrices in time O(n2.808), which is o(n3) time. As admit-

tedly complicated as Strassen’s matrix multiplication is, there are actually much

more complicated matrix multiplication algorithms, with running times as low as

O(n2.376).

www.it-ebooks.info

http://www.it-ebooks.info/

11.4. The Maxima-Set Problem 317

11.4 The Maxima-Set Problem

Let us now return to the problem of finding a maxima set for a set, S, of n points

in the plane. This problem is motivated from multi-objective optimization, where

we are interested in optimizing choices that depend on multiple variables. For

instance, in the introduction we used the example of someone wishing to optimize

hotels based on the two variables of pool size and restaurant quality. A point is a

maximum point in S if there is no other point, (x′, y′), in S such that x ≤ x′ and

y ≤ y′. Points that are not members of the maxima set can be eliminated from

consideration, since they are dominated by another point in S. Thus, finding the

maxima set of points can act as a kind of filter that selects out only those points

that should be candidates for optimal choices. Moreover, such a filter can be quite

effective, as we explore in Exercise A-11.4.

Given a set, S, of n points in the plane, there is a simple divide-and-conquer

algorithm for constructing the maxima set of points in S. If n ≤ 1, the maxima

set is just S itself. Otherwise, let p be the median point in S according to a lexi-

cographic ordering of the points in S, that is, where we order based primarily on

x-coordinates and then by y-coordinates if there are ties. If the points have distinct

x-coordinates, then we can imagine that we are dividing S using a vertical line

through p. Next, we recursively solve the maxima-set problem for the set of points

on the left of this line and also for the points on the right. Given these solutions,

the maxima set of points on the right are also maxima points for S. But some of

the maxima points for the left set might be dominated by a point from the right,

namely the point, q, that is leftmost. So then we do a scan of the left set of max-

ima, removing any points that are dominated by q, until reaching the point where

q’s dominance extends. (See Figure 11.3.) The union of remaining set of maxima

from the left and the maxima set from the right is the set of maxima for S. We give

the details in Algorithm 11.4.

Figure 11.3: The combine step for the divide-and-conquer maxima-set algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

318 Chapter 11. Divide-and-Conquer

Algorithm MaximaSet(S):

Input: A set, S, of n points in the plane

Output: The set, M , of maxima points in S

if n ≤ 1 then
return S

Let p be the median point in S, by lexicographic (x, y)-coordinates

Let L be the set of points lexicographically less than p in S
Let G be the set of points lexicographically greater than or equal to p in S
M1 ← MaximaSet(L)
M2 ← MaximaSet(G)
Let q be the lexicographically smallest point in M2

for each point, r, in M1 do
if x(r) ≤ x(q) and y(r) ≤ y(q) then

Remove r from M1

return M1 ∪ M2

Algorithm 11.4: A divide-and-conquer algorithm for the maxima-set problem.

Analysis of the Divide-and-Conquer Maxima-Set Algorithm

To analyze the divide-and-conquer maxima-set algorithm, there is a minor imple-

mentation detail in Algorithm 11.4 that we need to work out. Namely, there is the

issue of how to efficiently find the point, p, that is the median point in a lexico-

graphical ordering of the points in S according to their (x, y)-coordinates. There

are two immediate possibilities. One choice is to use a linear-time median-finding

algorithm, such as that given in Section 9.2. This achieves a good asymptotic run-

ning time, but adds some implementation complexity. Another choice is to sort the

points in S lexicographically by their (x, y)-coordinates as a preprocessing step,

prior to calling the MaxmaSet algorithm on S. Given this preprocessing step, the

median point is simply the point in the middle of the list. Moreover, each time we

perform a recursive call, we can be passing a sorted subset of S, which maintains

the ability to easily find the median point each time. In either case, the rest of

the nonrecursive steps can be performed in O(n) time, so this implies that, ignor-

ing floor and ceiling functions (as allowed by the analysis of Exercise C-11.5), the

running time for the divide-and-conquer maxima-set algorithm can be specified as

follows:

T (n) =
{

b if n < 2
2T (n/2) + bn if n ≥ 2,

for some constant b ≥ 1. As has now been observed several times in this chapter,

this implies that the running time for the divide-and-conquer maxima-set algorithm

is O(n log n).

www.it-ebooks.info

http://www.it-ebooks.info/

11.5. Exercises 319

11.5 Exercises

Reinforcement
R-11.1 Characterize each of the following recurrence equations using the master theorem

(assuming that T (n) = c for n < d, for constants c > 0 and d ≥ 1).

a. T (n) = 2T (n/2) + log n
b. T (n) = 8T (n/2) + n2

c. T (n) = 16T (n/2) + (n log n)4
d. T (n) = 7T (n/3) + n
e. T (n) = 9T (n/3) + n3 log n

R-11.2 Use the divide-and-conquer algorithm, from Section 11.2, to compute 10110011·
10111010 in binary. Show your work.

R-11.3 Use Strassen’s matrix multiplication algorithm to multiply the matrices

X =
(

3 2
4 8

)
and Y =

(
1 5
9 6

)
.

R-11.4 A complex number a + bi, where i =
√−1, can be represented by the pair

(a, b). Describe a method performing only three real-number multiplications to
compute the pair (e, f) representing the product of a + bi and c + di.

R-11.5 What is the maxima set from the following set of points:

{(7, 2), (3, 1), (9, 3), (4, 5), (1, 4), (6, 9), (2, 6), (5, 7), (8, 6)}?

R-11.6 Give an example of a set of n points in the plane such that every point is a
maximum point, that is, no point in this set is dominated by any other point
in this set.

Creativity
C-11.1 Consider the recurrence equation,

T (n) = 2T (n − 1) + 1,

for n > 1, where T (n) = 1 for n = 1. Prove that T (n) is O(2n).

C-11.2 There are several cases of divide-and-conquer recurrence relations that are not
covered in the master theorem. Nevertheless, the intuition for the master theo-
rem can still give us some guidance. Derive and prove a general solution, like
that given in the master theorem, to the following recurrence equation (assuming
T (n) is a constant for n less than or equal to a given constant, a ≥ 2):

T (n) = aT (n/a) + n log log n.

www.it-ebooks.info

http://www.it-ebooks.info/

320 Chapter 11. Divide-and-Conquer

C-11.3 There is a sorting algorithm, “Stooge-sort,” which is named after the comedy
team, “The Three Stooges.” if the input size, n, is 1 or 2, then the algorithm sorts
the input immediately. Otherwise, it recursively sorts the first 2n/3 elements,
then the last 2n/3 elements, and then the first 2n/3 elements again. The details
are shown in Algorithm 11.5. Show that Stooge-sort is correct and characterize
the running time, T (n), for Stooge-sort, using a recurrence equation, and use the
master theorem to determine an asymptotic bound for T (n).

Algorithm StoogeSort(A, i, j):
Input: An array, A, and two indices, i and j, such that 1 ≤ i ≤ j ≤ n
Output: Subarray, A[i..j], sorted in nondecreasing order
n ← j − i + 1 // The size of the subarray we are sorting

if n = 2 then
if A[i] > A[j] then

Swap A[i] and A[j]
else if n > 2 then

m ←
n/3�
StoogeSort(A, i, j − m) // Sort the first part

StoogeSort(A, i + m, j) // Sort the last part

StoogeSort(A, i, j − m) // Sort the first part again

return A
Algorithm 11.5: Stooge-sort.

C-11.4 Consider the Stooge-sort algorithm, shown in Algorithm 11.5, and suppose we
change the assignment statement for m (on line 6) to the following:

m ← max{1,
n/4�}
Characterize the running time, T (n), in this case, using a recurrence equation,
and use the master theorem to determine an asymptotic bound for T (n).

C-11.5 Consider a version of the divide-and-conquer recurrence equation based on use
of the ceiling function, as follows:

T (n) = aT (�n/b�) + f(n),

where a ≥ 1 and b > 1 are constants, and f(n) is Θ(nlogb a logk n), for some
integer constant, k ≥ 0. Show that, by using the inequality,

T (n) ≤ aT (n/b + 1) + f(n),

for sufficiently large n, T (n) is O(nlogb a logk+1 n).

Applications
A-11.1 A very common problem in computer graphics is to approximate a complex shape

with a bounding box. For a set, S, of n points in 2-dimensional space, the idea
is to find the smallest rectangle, R, with sides parallel to the coordinate axes that

www.it-ebooks.info

http://www.it-ebooks.info/

11.5. Exercises 321

contains all the points in S. Once S is approximated by such a bounding box,
we can often speed up lots of computations that involve S. For example, if R is
completely obscured some object in the foreground, then we don’t need to render
any of S. Likewise, if we shoot a virtual ray and it completely misses R, then it is
guarantee to completely miss S. So doing comparisons with R instead of S can
often save time. But this savings is wasted if we spend a lot of time constructing
R; hence, it would be ideal to have a fast way of computing a bounding box,
R, for a set, S, of n points in the plane. Note that the construction of R can be
reduced to two instances of the problem of simultaneously finding the minimum
and the maximum in a set of n numbers; namely, we need only do this for the x-
coordinates in S and then for the y-coordinates in S. Therefore, design a divide-
and-conquer algorithm for finding both the minimum and the maximum element
of n numbers using no more than 3n/2 comparisons.

A-11.2 Given a set, P , of n teams in some sport, a round-robin tournament is a col-
lection of games in which each team plays each other team exactly once. Such
round-robin tournaments are often used as the first round for establishing the
order of teams (and their seedings) for later single- or double-elimination tourna-
ments. Design an efficient algorithm for constructing a round-robin tournament
for a set, P , of n teams assuming n is a power of 2.

A-11.3 In some multi-objective optimization problems (such as that exemplified by the
choosing of hotels based on the sizes of their pools and quality scores of their
restaurants), we may have different kinds of constraints involving the variables
instead of the desire to avoid points dominated by others. Suppose, for example,
that we have a two-variable optimization problem where we have a set, C, of
constraints of the form,

y ≥ mix + bi,

for real numbers, mi and bi, for i = 1, 2, . . . , n. In such a case, we would like
to restrict our attention to points that satisfy all the linear inequality constraints
in C. One way to address this desire is to construct the upper envelope for C,
which is a representation of the function, f(x), defined as

f(x) = max
1≤i≤n

{mix + bi},

where the (mi, bi) pairs are from the inequalities in C. Equivalently, the upper
envelope is a representation of the part of the plane determined by the intersection
of all the halfplanes determined by the inequalities in C. If we consider how this
function behaves as x goes from −∞ to +∞, we note that each inequality in C
can appear at most once during this process. Thus, we can represent f in terms
of a set, S = {(a1, b1, i1), (a2, b2, i2), . . . , (ak, bk, ik)}, such that each triple,
(aj , bj , ij) in S, represents the fact that interval [aj , bj] is a maximal interval such
that f(x) = mij

x + bij
. Describe an O(n log n)-time algorithm for computing

such a representation, S, of the upper envelope of the linear inequalities in C.

A-11.4 Selecting out a maxima set of points from among a set of points in the plane
seems is intended to filter away a lot of points from consideration in a multi-
objective optimization problem. For example, if we grade hotels by the sizes of
their pools and the quality of their restaurants, then we would hope to have a small
set of hotels to choose from that are not dominated by any other hotel along these

www.it-ebooks.info

http://www.it-ebooks.info/

322 Chapter 11. Divide-and-Conquer

axes. So let us analyze the expected size of a maxima set of randomly chosen
points in the plane with distinct x- and y-coordinates. We can model such as set
by defining a random set of n points in the plane by first randomly permuting the
sequence of numbers, (1, 2, . . . , n), giving (y1, y2, . . . , yn). Let us then define a
set of two dimensional points as the set,

R = {(1, y1), (2, y2), . . . , (n, yn)}.
Since it is the relative order of points that determines whether a point is a max-
imum point or not, this set of points with integer coordinates fully captures all
the possibilities, with respect to the maxima-set problem, for any random set of
points in the plane with distinct x- and y-coordinates. So as to show just how
effective it is to select out the maxima set of points from such a set as a filtering
step (hence, it should be a good filter in practice), show that the expected size of
the maxima set for R is O(log n).

A-11.5 Suppose you have a high-performance computer, which has a CPU contain-
ing a dedicated bank of k > 2 optimization registers. This bank of regis-
ters supports the insertion of key-value pair, (x, y), into the bank of registers
in O(1) time, assuming that there are fewer than k numbers already stored in
the bank. In addition, this bank of registers allows you to remove and return a
key-value pair, (x, y), with smallest key, x, from the bank of registers in O(1)
time. Show that you can use this high-performance computer to sort n numbers
in O(n log n/ log k) time.

A-11.6 Suppose you have a geometric description of the buildings of Manhattan and you
would like to build a representation of the New York skyline. That is, suppose
you are given a description of a set of rectangles, all of which have one of their
sides on the x-axis, and you would like to build a representation of the union of
all these rectangles. Formally, since each rectangle has a side on the x-axis, you
can assume that you are given a set, S = {[a1, b1], [a2, b2], . . . , [an, bn]} of sub-
intervals in the interval [0, 1], with 0 ≤ ai < bi ≤ 1, for i = 1, 2, . . . , n, such that
there is an associated height, hi, for each interval [ai, bi] in S. The skyline of S is
defined to be a list of pairs [(x0, c0), (x1, c1), (x2, c2), . . . , (xm, cm), (xm+1, 0)],
with x0 = 0 and xm+1 = 1, and ordered by xi values, such that, each subinterval,
[xi, xi+1], is the maximal subinterval that has a single highest interval, which is at
height ci, in S, containing [xi, xi+1], for i = 0, 1, . . . ,m. Design an O(n log n)-
time algorithm for computing the skyline of S.

Chapter Notes
The master theorem for solving divide-and-conquer recurrences traces its origins to a paper
by Bentley, Haken, and Saxe [30]. The divide-and-conquer algorithm for multiplying two
large integers in O(n1.585) time is generally attributed to the Russians Karatsuba and Of-
man [117]. The matrix multiplication algorithm we present is due to Strassen [202]. Kung,
Luccio, and Preparata [138] present a divide-and-conquer algorithm for finding maxima
sets. The Stooge-sort algorithm was first given by Cormen et al. (e.g., see [51]).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

12 Dynamic Programming

Effects of radiation on DNA’s double helix, 2003. U.S. government
image. NASA-MSFC.

Contents

12.1 Matrix Chain-Products 325
12.2 The General Technique 329
12.3 Telescope Scheduling 331
12.4 Game Strategies . 334
12.5 The Longest Common Subsequence Problem 339
12.6 The 0-1 Knapsack Problem 343
12.7 Exercises . 346

www.it-ebooks.info

http://www.it-ebooks.info/

324 Chapter 12. Dynamic Programming

DNA sequences can be viewed as strings of A, C, G, and T characters, which

represent nucleotides, and finding the similarities between two DNA sequences is

an important computation performed in bioinformatics. For instance, when com-

paring the DNA of different organisms, such alignments can highlight the locations

where those organisms have identical DNA patterns. Similarly, places that don’t

match can show possible mutations between these organisms and a common an-

cestor, including mutations causing substitutions, insertions, and deletions of nu-

cleotides. Computing a best way to align to DNA strings, therefore, is useful for

identifying regions of similarity and difference. For instance, one simple way is to

identify a longest common subsequence of each string, that is, a longest string that

can be defined by selecting characters from each string in order in the respective

strings, but not necessarily in a way that is contiguous. (See Figure 12.1.)

From an algorithmic perspective, such similarity computations can appear quite

challenging at first. For instance, the most obvious solution for finding the best

match between two strings of length n is to try all possible ways of defining subse-

quences of each string, test if they are the same, and output the one that is longest.

Unfortunately, however, there are 2n possible subsequences of each string; hence,

this algorithm would run in O(n22n) time, which makes this algorithm impractical.

In this chapter, we discuss the dynamic programming technique, which is one

of the few algorithmic techniques that can take problems, such as this, that seem

to require exponential time and produce polynomial-time algorithms to solve them.

For example, we show how to solve this problem of finding a longest common sub-

sequence between two strings in time proportional to the product of their lengths,

rather than the exponential time of the straightforward method mentioned above.

Moreover, the algorithms that result from applications of the dynamic pro-

gramming technique are usually quite simple—often needing little more than a few

lines of code to describe some nested loops for filling in a table. We demonstrate

this effectiveness and simplicity by showing how the dynamic programming tech-

nique can be applied to several different types of problems, including matrix chain-

products, telescope scheduling, game strategies, the above-mentioned longest com-

mon subsequence problem, and the 0-1 knapsack problem. In addition to the topics

we discuss in this chapter, dynamic programming is also used for other problems

mentioned elsewhere, including maximum subarray-sum (Section 1.3), transitive

closure (Section 13.4.2), and all-pairs shortest paths (Section 14.5).

X: ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
| || || || | ||||||||||||
G TC GT CG G AAGCCGGCCGAA

GTCGT CGGAA GCCG GC C G AA
||||| ||||| |||| || | | ||

Y: GTCGTTCGGAATGCCGTTGCTCTGTAA

Figure 12.1: Two DNA sequences, X and Y, and their alignment in terms of a longest

subsequence, GTCGTCGGAAGCCGGCCGAA, that is common to these two strings.

www.it-ebooks.info

http://www.it-ebooks.info/

12.1. Matrix Chain-Products 325

12.1 Matrix Chain-Products
Rather than starting out with an explanation of the general components of the dy-

namic programming technique, we start out instead by giving a classic, concrete

example. Suppose we are given a collection of n two-dimensional matrices for

which we wish to compute the product

A0 · A1 · A2 · · ·An−1,

where Ai is a di × di+1 matrix, for i = 0, 1, 2, . . . , n − 1. In the standard matrix

multiplication algorithm (which is the one we will use), to multiply a d×e matrix A
times an e × f matrix B, we compute the (i, j) entry of the d × f matrix product,

C, as follows (see Figure 12.2):

C[i, j] =
e−1∑
k=0

A[i, k] · B[k, j].

Thus, the computation of a single entry of the product matrix B ·C takes e (scalar)

multiplications. Overall, the computation of all the entries takes def (scalar) mul-

tiplications.

Figure 12.2: Multiplication of a d × e matrix, A, and an e × f matrix, B, which

produces a d × f matrix, C.

This definition implies that matrix multiplication is associative, that is, it im-

plies that B · (C · D) = (B · C) · D. Thus, we can parenthesize the expression for

A any way we wish and we will end up with the same answer. We will not neces-

sarily perform the same number of scalar multiplications in each parenthesization,

however, as is illustrated in the following example.

www.it-ebooks.info

http://www.it-ebooks.info/

326 Chapter 12. Dynamic Programming

Example 12.1: Let B be a 2× 10 matrix, let C be a 10× 50 matrix, and let D be
a 50× 20 matrix. Computing B · (C ·D) requires 2 · 10 · 20 + 10 · 50 · 20 = 10400
multiplications, whereas computing (B ·C)·D requires 2·10·50+2·50·20 = 3000
multiplications.

The matrix chain-product problem is to determine the parenthesization of the

expression defining the product A that minimizes the total number of scalar multi-

plications performed. Of course, one way to solve this problem is to simply enu-

merate all the possible ways of parenthesizing the expression for A and determine

the number of multiplications performed by each one. Unfortunately, the set of all

different parenthesizations of the expression for A is equal in number to the set

of all different binary trees that have n external nodes. This number is exponen-

tial in n. Thus, this straightforward (“brute-force”) algorithm runs in exponential

time, for there are an exponential number of ways to parenthesize an associative

arithmetic expression (the number is equal to the nth Catalan number, which is

Ω(4n/n3/2)).

Defining Subproblems

We can improve the performance achieved by the brute-force algorithm signifi-

cantly, however, by making a few observations about the nature of the matrix chain-

product problem. The first observation is that the problem can be split into subprob-
lems. In this case, we can define a number of different subproblems, each of which

is to compute the best parenthesization for some subexpression Ai · Ai+1 · · ·Aj .

As a concise notation, we use Ni,j to denote the minimum number of multipli-

cations needed to compute this subexpression. Thus, the original matrix chain-

product problem can be characterized as that of computing the value of N0,n−1.

This observation is important, but we need one more in order to apply the dynamic

programming technique.

Characterizing Optimal Solutions

The other important observation we can make about the matrix chain-product prob-

lem is that it is possible to characterize an optimal solution to a particular subprob-

lem in terms of optimal solutions to its subproblems. We call this property the

subproblem optimality condition.

In the case of the matrix chain-product problem, we observe that, no mat-

ter how we parenthesize a subexpression, there has to be some final matrix mul-

tiplication that we perform. That is, a full parenthesization of a subexpression

Ai · Ai+1 · · ·Aj has to be of the form (Ai · · ·Ak) · (Ak+1 · · ·Aj), for some k ∈
{i, i + 1, . . . , j − 1}. Moreover, for whichever k is the right one, the products

(Ai · · ·Ak) and (Ak+1 · · ·Aj) must also be solved optimally. If this were not so,

then there would be a global optimal that had one of these subproblems solved

suboptimally. But this is impossible, since we could then reduce the total number

www.it-ebooks.info

http://www.it-ebooks.info/

12.1. Matrix Chain-Products 327

of multiplications by replacing the current subproblem solution by an optimal so-

lution for the subproblem. This observation implies a way of explicitly defining

the optimization problem for Ni,j in terms of other optimal subproblem solutions.

Namely, we can compute Ni,j by considering each place k where we could put the

final multiplication and taking the minimum over all such choices.

Designing a Dynamic Programming Algorithm

The above discussion implies that we can characterize the optimal subproblem so-

lution Ni,j as

Ni,j = min
i≤k<j

{Ni,k + Nk+1,j + didk+1dj+1},
where we recall that each Ai is a di × di+1 matrix. Also, note that Ni,i = 0, since

no work is needed for a subexpression comprising a single matrix. That is, Ni,j

is the minimum, taken over all possible places to perform the final multiplication,

of the number of multiplications needed to compute each subexpression plus the

number of multiplications needed to perform the final matrix multiplication.

The equation for Ni,j looks similar to the recurrence equations we derive for

divide-and-conquer algorithms, but this is only a superficial resemblance, for there

is an aspect of the equation for Ni,j that makes it difficult to use divide-and-conquer

to compute Ni,j . In particular, there is a sharing of subproblems going on that

prevents us from dividing the problem into completely independent subproblems

(as we would need to do to apply the divide-and-conquer technique). We can,

nevertheless, use the equation for Ni,j to derive an efficient algorithm by computing

Ni,j values in a bottom-up fashion, and storing intermediate values in a table of Ni,j

values. We can begin simply enough by assigning Ni,i = 0 for i = 0, 1, . . . , n− 1.

We can then apply the general equation for Ni,j to compute Ni,i+1 values, since

they depend only on Ni,i and Ni+1,i+1 values, which are available. Given the

Ni,i+1 values, we can then compute the Ni,i+2 values, and so on. Therefore, we can

build Ni,j values up from previously computed values until we can finally compute

the value of N0,n−1, which is the number that we are searching for. The details of

this dynamic programming solution are given in Algorithm 12.3.

Analyzing the Matrix Chain-Product Algorithm

Thus, we can compute N0,n−1 with an algorithm that consists primarily of three

nested for-loops. The outside loop is executed n times. The loop inside is exe-

cuted at most n times. And the inner-most loop is also executed at most n times.

Therefore, the total running time of this algorithm is O(n3).

Theorem 12.2: Given a chain-product of n two-dimensional matrices, we can
compute a parenthesization of this chain that achieves the minimum number of
scalar multiplications in O(n3) time.

www.it-ebooks.info

http://www.it-ebooks.info/

328 Chapter 12. Dynamic Programming

Algorithm MatrixChain(d0, . . . , dn):
Input: Sequence d0, . . . , dn of integers

Output: For i, j = 0, . . . , n − 1, the minimum number of multiplications Ni,j

needed to compute the product Ai · Ai+1 · · ·Aj , where Ak is a dk × dk+1

matrix

for i ← 0 to n − 1 do
Ni,i ← 0

for b ← 1 to n − 1 do
for i ← 0 to n − b − 1 do

j ← i + b
Ni,j ← +∞
for k ← i to j − 1 do

Ni,j ← min{Ni,j , Ni,k + Nk+1,j + didk+1dj+1}.

Algorithm 12.3: Dynamic programming algorithm for the matrix chain-product

problem.

Proof: We have shown above how we can compute the optimal number of scalar

multiplications. But how do we recover the actual parenthesization?

The method for computing the parenthesization itself is actually quite straight-

forward. We modify the algorithm for computing Ni,j values so that any time we

find a new minimum value for Ni,j , we store, with Ni,j , the index k that allowed

us to achieve this minimum.

In Figure 12.4, we illustrate the way the dynamic programming solution to the

matrix chain-product problem fills in the array N .

i

j

i,k

k+1,j

i,j

+ di dk+1dj+1

N

Figure 12.4: Illustration of the way the matrix chain-product dynamic-programming

algorithm fills in the array N .

Now that we have worked through a complete example of the use of the dy-

namic programming method, we discuss in the next section the general aspects of

the dynamic programming technique as it can be applied to other problems.

www.it-ebooks.info

http://www.it-ebooks.info/

12.2. The General Technique 329

12.2 The General Technique
The dynamic programming technique is used primarily for optimization problems,

where we wish to find a “best” way of doing something. Often the number of

different ways of doing that “something” is exponential, so a brute-force search

for the best is computationally infeasible for all but the smallest problem sizes.

We can apply the dynamic programming technique in such situations, however, if

the problem has a certain amount of structure that we can exploit. This structure

involves the following three components:

Simple Subproblems: There has to be some way of breaking the global optimiza-

tion problem into subproblems, each having a similar structure to the original

problem. Moreover, there should be a simple way of defining subproblems

with just a few indices, like i, j, k, and so on.

Subproblem Optimality: An optimal solution to the global problem must be a

composition of optimal subproblem solutions, using a relatively simple com-

bining operation. We should not be able to find a globally optimal solution

that contains suboptimal subproblems.

Subproblem Overlap: Optimal solutions to unrelated subproblems can contain

subproblems in common. Indeed, such overlap allows us to improve the

efficiency of a dynamic programming algorithm by storing solutions to sub-

problems.

This last property is particularly important for dynamic programming algo-

rithms, because it allows them to take advantage of memoization, which is an

optimization that allows us to avoid repeated recursive calls by storing interme-

diate values. Typically, these intermediate values are indexed by a small set of

parameters, and we can store them in an array and look them up as needed.

As an illustration of the power of memoization, consider the Fibonacci series,

f(n), defined as

f(0) = 0
f(1) = 1
f(n) = f(n − 1) + f(n − 2).

If we implement this equation literally, as a recursive program, then the running

time of our algorithm, T (n), as a function of n, has the following behavior:

T (0) = 1
T (1) = 1
T (n) = T (n − 1) + T (n − 2).

But this implies that, for n ≥ 2,

T (n) ≥ 2T (n − 2) = 2n/2.

www.it-ebooks.info

http://www.it-ebooks.info/

330 Chapter 12. Dynamic Programming

In other words, if we implement this equation recursively as written, then our run-

ning time is exponential in n. But if we store Fibonacci numbers in an array, F ,

then we can instead calculate the Fibonacci number, F [n], iteratively, as follows:

F [0] ← 0
F [1] ← 1
for i = 2 to n do

F [i] ← F [i − 1] + F [i − 2]

This algorithm clearly runs in O(n) time, and it illustrates the way memoization

can lead to improved performance when subproblems overlap and we use table

lookups to avoid repeating recursive calls. (See Figure 12.5.)

(a)

(b)

Figure 12.5: The power of memoization. (a) all the function calls needed for a

fully recursive definition of the Fibonacci function; (b) the data dependencies in an

iterative definition.

www.it-ebooks.info

http://www.it-ebooks.info/

12.3. Telescope Scheduling 331

12.3 Telescope Scheduling
Large, powerful telescopes are precious resources that are typically oversubscribed

by the astronomers who request times to use them. This high demand for observa-

tion times is especially true, for instance, for the Hubble Space Telescope, which

receives thousands of observation requests per month. In this section, we consider a

simplified version of the problem of scheduling observations on a telescope, which

factors out some details, such as the orientation of the telescope for an observation

and who is requesting that observation, but which nevertheless keeps some of the

more important aspects of this problem.

The input to this telescope scheduling problem is a list, L, of observation re-

quests, where each request, i, consists of the following elements:

• a requested start time, si, which is the moment when a requested observation

should begin

• a finish time, fi, which is the moment when the observation should finish

(assuming it begins at its start time)

• a positive numerical benefit, bi, which is an indicator of the scientific gain to

be had by performing this observation.

The start and finish times for an observation request are specified by the astronomer

requesting the observation; the benefit of a request is determined by an administra-

tor or a review committee for the telescope. To get the benefit, bi, for an observation

request, i, that observation must be performed by the telescope for the entire time

period from the start time, si, to the finish time, fi. Thus, two requests, i and j,

conflict if the time interval [si, fi], intersects the time interval, [sj , fj]. Given the

list, L, of observation requests, the optimization problem is to schedule observa-

tion requests in a nonconflicting way so as to maximize the total benefit of the

observations that are included in the schedule.

There is an obvious exponential-time algorithm for solving this problem, of

course, which is to consider all possible subsets of L and choose the one that has

the highest total benefit without causing any scheduling conflicts. We can do much

better than this, however, by using the dynamic programming technique.

As a first step towards a solution, we need to define subproblems. A natural way

to do this is to consider the observation requests according to some ordering, such

as ordered by start times, finish times, or benefits. Start times and finish times are

essentially symmetric, so we can immediately reduce the choice to that of picking

between ordering by finish times and ordering by benefits.

The greedy strategy would be to consider the observation requests ordered by

nonincreasing benefits, and include each request that doesn’t conflict with any cho-

sen before it. This strategy doesn’t lead to an optimal solution, however, which we

can see after considering a simple example. For instance, suppose we had a list con-

taining just 3 requests—one with benefit 100 that conflicts with two nonconflicting

www.it-ebooks.info

http://www.it-ebooks.info/

332 Chapter 12. Dynamic Programming

Figure 12.6: The telescope scheduling problem. The left and right boundary of each

rectangle represent the start and finish times for an observation request. The height

of each rectangle represents its benefit. We list each request’s benefit on the left

and its predecessor on the right. The requests are listed by increasing finish times.

The optimal solution has total benefit 17.

requests with benefit 75 each. The greedy algorithm would choose the observa-

tion with benefit 100, in this case, whereas we could achieve a total benefit of 150

by taking the two requests with benefit 75 each. So a greedy strategy based on

repeatedly choosing a nonconflicting request with maximum benefit won’t work.

Let us assume, therefore, that the observation requests in L are sorted by non-

decreasing finish times, as shown in Figure 12.6. The idea in this case would be

to consider each request according to this ordering. So let us define our set of

subproblems in terms of a parameter, Bi, which is defined as follows:

Bi = the maximum benefit that can be achieved with the first i requests in L.

So, as a boundary condition, we get that B0 = 0.

One nice observation that we can make for this ordering of L by nondecreasing

finish times is that, for any request i, the set of other requests that conflict with i
form a contiguous interval of requests in L. Define the predecessor, pred(i), for

each request, i, then, to be the largest index, j < i, such that requests i and j don’t

conflict. If there is no such index, then define the predecessor of i to be 0. (See

Figure 12.6.)

The definition of the predecessor of each request lets us easily reason about the

effect that including or not including an observation request, i, in a schedule that

includes the first i requests in L. That is, in a schedule that achieves the optimal

www.it-ebooks.info

http://www.it-ebooks.info/

12.3. Telescope Scheduling 333

value, Bi, for i ≥ 1, either it includes the observation i or it doesn’t; hence, we can

reason as follows:

• If the optimal schedule achieving the benefit Bi includes observation i, then

Bi = Bpred(i) + bi. If this were not the case, then we could get a better

benefit by substituting the schedule achieving Bpred(i) for the one we used

from among those with indices at most pred(i).
• On the other hand, if the optimal schedule achieving the benefit Bi does not

include observation i, then Bi = Bi−1. If this were not the case, then we

could get a better benefit by using the schedule that achieves Bi−1.

Therefore, we can make the following recursive definition:

Bi = max{Bi−1, Bpred(i) + bi}.
Notice that this definition exhibits subproblem overlap. Thus, it is most efficient

for us to use memoization when computing Bi values, by storing them in an array,

B, which is indexed from 0 to n. Given the ordering of requests by finish times

and an array, P , so that P [i] = pred(i), then we can fill in the array, B, using the

following simple algorithm:

B[0] ← 0
for i = 1 to n do

B[i] ← max{B[i − 1], B[P [i]] + bi}

After this algorithm completes, the benefit of the optimal solution will be B[n],
and, to recover an optimal schedule, we simply need to trace backward in B from

this point. During this trace, if B[i] = B[i − 1], then we can assume observa-

tion i is not included and move next to consider observation i − 1. Otherwise, if

B[i] = B[P [i]] + bi, then we can assume observation i is included and move next

to consider observation P [i].
It is easy to see that the running time of this algorithm is O(n), but it assumes

that we are given the list L ordered by finish times and that we are also given the

predecessor index for each request i. Of course, we can easily sort L by finish times

if it is not given to us already sorted according to this ordering. To compute the

predecessor of each request, note that it is sufficient that we also have the requests

in L sorted by start times. In particular, given a listing of L ordered by finish times

and another listing, L′, ordered by start times, then a merging of these two lists, as

in the merge-sort algorithm (Section 8.1), gives us what we want. The predecessor

of request i is literally the index of the predecessor in L of the value, si, in L′.
Therefore, we have the following:

Theorem 12.3: Given a list, L, of n observation requests, provided in two sorted
orders, one by nondecreasing finish times and one by nondecreasing start times, we
can solve the telescope scheduling problem for L in O(n) time.

www.it-ebooks.info

http://www.it-ebooks.info/

334 Chapter 12. Dynamic Programming

12.4 Game Strategies

There are many types of games, some that are completely random and others where

players benefit by employing various kinds of strategies. In this section, we con-

sider two simple games in which dynamic programming can be employed to come

up with optimal strategies for playing these games. These are not the only game

scenarios where dynamic programming applies, however, as it has been used to ana-

lyze strategies for many other games as well, including baseball, American football,

and cricket.

12.4.1 Coins in a Line

The first game we consider is reported to arise in a problem that is sometimes asked

during job interviews at major software and Internet companies (probably because

it is so tempting to apply a greedy strategy to this game, whereas the optimal strat-

egy uses dynamic programming).

In this game, which we will call the coins-in-a-line game, an even number, n,

of coins, of various denominations from various countries, are placed in a line. Two

players, who we will call Alice and Bob, take turns removing one of the coins from

either end of the remaining line of coins. That is, when it is a player’s turn, he or

she removes the coin at the left or right end of the line of coins and adds that coin to

his or her collection. The player who removes a set of coins with larger total value

than the other player wins, where we assume that both Alice and Bob know the

value of each coin in some common currency, such as dollars. (See Figure 12.7.)

Figure 12.7: The coins-in-a-line game. In this instance, Alice goes first and ul-

timately ends up with $18 worth of coins. U.S. government images. Credit:

U.S. Mint.

www.it-ebooks.info

http://www.it-ebooks.info/

12.4. Game Strategies 335

A Dynamic Programming Solution

It is tempting to start thinking of various greedy strategies, such as always choosing

the largest-valued coin, minimizing the two remaining choices for the opponent, or

even deciding in advance whether it is better to choose all the odd-numbered coins

or even-numbered coins. Unfortunately, none of these strategies will consistently

lead to an optimal strategy for Alice to play the coins-in-a-line game, assuming that

Bob follows an optimal strategy for him.

To design an optimal strategy, we apply the dynamic programming technique.

In this case, since Alice and Bob can remove coins from either end of the line,

the appropriate way to define subproblems is in terms of a range of indices for the

coins, assuming they are initially numbered from 1 to n, as in Figure 12.7. Thus,

let us define the following indexed parameter:

Mi,j =
{

the maximum value of coins taken by Alice, for coins

numbered i to j, assuming Bob plays optimally.

Therefore, the optimal value for Alice is determined by M1,n.

Let us assume that the values of the coins are stored in an array, V , so that coin

1 is of Value V [1], coin 2 is of Value V [2], and so on. To determine a recursive

definition for Mi,j , we note that, given the line of coins from coin i to coin j, the

choice for Alice at this point is either to take coin i or coin j and thereby gain

a coin of value V [i] or V [j]. Once that choice is made, play turns to Bob, who

we are assuming is playing optimally. Thus, he will make the choice among his

possibilities that minimizes the total amount that Alice can get from the coins that

remain. In other words, Alice must choose based on the following reasoning:

• If j = i + 1, then she should pick the larger of V [i] and V [j], and the game

is over.

• Otherwise, if Alice chooses coin i, then she gets a total value of

min{Mi+1,j−1, Mi+2,j} + V [i].

• Otherwise, if Alice chooses coin j, then she gets a total value of

min{Mi,j−2, Mi+1,j−1} + V [j].

Since these are all the choices that Alice has, and she is trying to maximize her

returns, then we get the following recurrence equation, for j > i+1, where j−i+1
is even:

Mi,j = max {min{Mi+1,j−1, Mi+2,j} + V [i], min{Mi,j−2, Mi+1,j−1} + V [j]} .

In addition, for i = 1, 2, . . . , n − 1, we have the initial conditions

www.it-ebooks.info

http://www.it-ebooks.info/

336 Chapter 12. Dynamic Programming

Mi,i+1 = max{V [i], V [i + 1]}.

We can compute the Mi,j values, then, using memoization, by starting with the

definitions for the above initial conditions and then computing all the Mi,j’s where

j − i + 1 is 4, then for all such values where j − i + 1 is 6, and so on. Since

there are O(n) iterations in this algorithm and each iteration runs in O(n) time, the

total time for this algorithm is O(n2). Of course, this algorithm simply computes

all the relevant Mi,j values, including the final value, M1,n. To recover the actual

game strategy for Alice (and Bob), we simply need to note for each Mi,j whether

Alice should choose coin i or coin j, which we can determine from the definition

of Mi,j . And given this choice, we then know the optimal choice for Bob, and that

determines if the next choice for Alice is based on Mi+2,j , Mi+1,j−1, or Mi,j−2.

Therefore, we have the following.

Theorem 12.4: Given an even number, n, of coins in a line, all of known values,
we can determine in O(n2) time the optimal strategy for the first player, Alice, to
maximize her returns in the coins-in-a-line game, assuming Bob plays optimally.

12.4.2 Probabilistic Game Strategies and Backward Induction
In addition to games, like chess and the coins-in-a-line game, which are purely

strategic, there are lots of games that involve some combination of strategy and

randomness (or events that can be modeled probabilistically), like backgammon

and sports. Another application of dynamic programming in the context of games

arises in these games, in a way that involves combining probability and optimiza-

tion. To illustrate this point, we consider in this section a strategic decision that

arises in the game of American football, which hereafter we refer to simply as

“football.”

Extra Points in Football

After a team scores a touchdown in football, they have a choice between kicking

an extra point, which involves kicking the ball through the goal posts to add 1 point

to their score if this is successful, or attempting a two-point conversion, which

involves lining up again and advancing the ball into the end zone to add 2 points to

their score if this is successful. In professional football teams, extra-point attempts

are successful with a probability of at least .98 and two-point conversion have a

success probability between .40 and .55, depending on the team.

In addition to these probabilistic considerations, the choice of whether it is

better to attempt a two-point conversion also depends on the difference in the scores

between the two teams and how many possessions are left in the game (a possession

is a sequence of plays where one team has control of the ball).

www.it-ebooks.info

http://www.it-ebooks.info/

12.4. Game Strategies 337

Developing a Recurrence Equation

Let us characterize the state of a football game in terms of a triple, (k, d, n), where

these parameters have the following meanings:

• k is the number of points scored at the end of a possession (0 for no score,

3 for a field goal, and 6 for a touchdown, as we are ignoring safeties and

we are counting the effects of extra points after a touchdown separately).

Possessions alternate between team A and team B.

• d is the difference in points between team A and team B (which is positive

when A is in the lead and negative when B is in the lead).

• n is the number of possessions remaining in the game.

For the sake of this analysis, let us assume that n is a potentially unbounded param-

eter that is known to the two teams, whereas k is always a constant and d can be

considered a constant as well, since no professional football team has come back

from a point deficit of −30 to win.

We can then define VA(k, d, n) to be the probability that team A wins the

game given that its possession ended with team A scoring k points to now have

a score deficit of d and n more possessions remaining in the game. Similarly, de-

fine VB(k, d, n) to be the probability that team A wins the game given that team

B’s possession ended with team B scoring k points to now cause team A to have a

score deficit of d with n more possessions remaining in the game. Thus, team A is

trying to maximize VA and team B is trying to minimize VB .

To derive recursive definitions for VA and VB , note that at the end of the game,

when n = 0, the outcome is determined. Thus, VA(k, d, 0) = 1 if and only if

d > 0, and similarly for VB(k, d, 0). We assume, based on past performance, that

we know the probability that team A or B will score a touchdown or field goal in

a possession, and that these probabilities are independent of k, d, or n. Thus, we

can determine V (k, d, n), the probability that A wins after completing a possession

with no score (k = 0) or a field goal (k = 3) as follows:

VA(0, d, n) = VA(3, d, n) = Pr(TD by B)VB(6, d − 6, n − 1)
+ Pr(FG by B)VB(3, d − 3, n − 1)
+ Pr(NS by B)VB(0, d, n − 1).

The first term quantifies the impact of team B scoring a touchdown (TD) on the

next possession, the second term quantifies the impact of team B scoring a field

goal (FG) on the next possession, and the third term quantifies the impact of team

B having no score (NS) at the end of the next possession. Similar equations hold for

VB , with the roles of A and B reversed. For professional football teams, the average

probability of a possession ending in a touchdown is .20, the average probability

of a possession ending in a field goal is .12; hence, for such an average team, we

would take the probability of a possession ending with no score for team B to be

.68. The main point of this exercise, however, is to characterize the case when

k = 6, that is, when a possession ends with a touchdown.

www.it-ebooks.info

http://www.it-ebooks.info/

338 Chapter 12. Dynamic Programming

Let p1 denote the probability of success for an extra-point attempt and p2 denote

the probability of success for a two-point conversion. Then we have

1. Pr(Team A wins if it makes an extra-point attempt in state (6, d, n))
= p1 [Pr(TD by B)VB(6, d − 5, n − 1)

+ Pr(FG by B)VB(3, d − 2, n − 1)
+ Pr(NS by B)VB(0, d + 1, n − 1)]

+ (1 − p1) [Pr(TD by B)VB(6, d − 6, n − 1)
+ Pr(FG by B)VB(3, d − 3, n − 1)
+ Pr(NS by B)VB(0, d, n − 1)] .

2. Pr(Team A wins if it tries a two-point conversion in state (6, d, n))
= p2 [Pr(TD by B)VB(6, d − 4, n − 1)

+ Pr(FG by B)VB(3, d − 1, n − 1)
+ Pr(NS by B)VB(0, d + 2, n − 1)]

+ (1 − p2) [Pr(TD by B)VB(6, d − 6, n − 1)
+ Pr(FG by B)VB(3, d − 3, n − 1)
+ Pr(NS by B)VB(0, d, n − 1)] .

The value of VA(6, d, n) is the maximum of the above two probabilities. Similar

bounds hold for VB , except that VB(6, d, n) is the minimum of the two similarly

defined probabilities. Given our assumptions about k and d, these equations imply

that we can compute V (k, d, n) in O(n) time, by incrementally increasing the value

of n in the above equations and applying memoization. Note that this amounts to

reasoning about the game backward, in that we start with an ending state and use

a recurrence equation to reason backward in time. For this reason, this analysis

technique is called backward induction.

In the case of the decision we are considering, given known statistics for an

average professional football team, the values of n for when it is better to attempt

a two-point conversion are shown in Table 12.8.

behind by (−d) 1 2 3 4 5 6 7 8 9 10

n range ∅ [0, 15] ∅ ∅ [2, 14] ∅ ∅ [2, 8] [4, 9] [2, 5]

ahead by (d) 0 1 2 3 4 5 6 7 8 9 10

n range ∅ [1, 7] [4, 10] ∅ ∅ [1, 15] ∅ ∅ ∅ ∅ ∅

Table 12.8: When it is preferential to attempt a two-point conversion after a touch-

down, based on n, the number of possessions remaining in a game. Each interval

indicates the range of values of n for which it is better to make such an attempt.

www.it-ebooks.info

http://www.it-ebooks.info/

12.5. The Longest Common Subsequence Problem 339

12.5 The Longest Common Subsequence Problem

A common text processing problem, which, as we mentioned in the introduction,

arises in genetics, is to test the similarity between two text strings. Recall that,

in the genetics application, the two strings correspond to two strands of DNA,

which could, for example, come from two individuals, who we will consider ge-

netically related if they have a long subsequence common to their respective DNA

sequences. There are other applications, as well, such as in software engineering,

where the two strings could come from two versions of source code for the same

program, and we may wish to determine which changes were made from one ver-

sion to the next. In addition, the data gathering systems of search engines, which

are called web crawlers, must be able to distinguish between similar web pages to

avoid needless web page requests. Indeed, determining the similarity between two

strings is considered such a common operation that Unix-like operating systems

come with a program, called “diff,” for comparing text files.

12.5.1 Problem Definition

There are several different ways we can define the similarity between two strings.

Even so, we can abstract a simple, yet common, version of this problem using

character strings and their subsequences. Given a string X of size n, a subsequence
of X is any string that is of the form

X[i1]X[i2] · · ·X[ik], ij < ij+1 for j = 1, . . . , k − 1;

that is, it is a sequence of characters that are not necessarily contiguous but are nev-

ertheless taken in order from X . For example, the string AAAG is a subsequence

of the string CGATAATTGAGA. Note that the concept of subsequence of a

string is different from the one of substring of a string.

The specific text similarity problem we address here is the longest common
subsequence (LCS) problem. In this problem, we are given two character strings,

X of size n and Y of size m, over some alphabet and are asked to find a longest

string S that is a subsequence of both X and Y .

One way to solve the longest common subsequence problem is to enumerate

all subsequences of X and take the largest one that is also a subsequence of Y .

Since each character of X is either in or not in a subsequence, there are potentially

2n different subsequences of X , each of which requires O(m) time to determine

whether it is a subsequence of Y . Thus, the brute-force approach yields an ex-

ponential algorithm that runs in O(2nm) time, which is very inefficient. In this

section, we discuss how to use dynamic programming to solve the longest com-

mon subsequence problem much more quickly than this.

www.it-ebooks.info

http://www.it-ebooks.info/

340 Chapter 12. Dynamic Programming

12.5.2 Applying Dynamic Programming to the LCS Problem

We can solve the LCS problem much more quickly than exponential time using

dynamic programming. As mentioned above, one of the key components of the dy-

namic programming technique is the definition of simple subproblems that satisfy

the subproblem optimization and subproblem overlap properties.

Recall that in the LCS problem, we are given two character strings, X and Y ,

of length n and m, respectively, and are asked to find a longest string S that is a

subsequence of both X and Y . Since X and Y are character strings, we have a

natural set of indices with which to define subproblems—indices into the strings X
and Y . Let us define a subproblem, therefore, as that of computing the length of

the longest common subsequence of X[0..i] and Y [0..j], denoted L[i, j].
This definition allows us to rewrite L[i, j] in terms of optimal subproblem so-

lutions. We consider the following two cases. (See Figure 12.9.)

Case 1: X[i] = Y [j]. Let c = X[i] = Y [j]. We claim that a longest common

subsequence of X[0..i] and Y [0..j] ends with c. To prove this claim, let us

suppose it is not true. There has to be some longest common subsequence

X[i1]X[i2] . . . X[ik] = Y [j1]Y [j2] . . . Y [jk]. If X[ik] = c or Y [jk] = c,

then we get the same sequence by setting ik = i and jk = j. Alternately, if

X[jk] 	= c, then we can get an even longer common subsequence by adding

c to the end. Thus, a longest common subsequence of X[0..i] and Y [0..j]
ends with c = X[i] = Y [j]. Therefore, we set

L[i, j] = L[i − 1, j − 1] + 1 if X[i] = Y [j]. (12.1)

Case 2: X[i] 	= Y [j]. In this case, we cannot have a common subsequence that

includes both X[i] and Y [j]. That is, a common subsequence can end with

X[i], Y [j], or neither, but not both. Therefore, we set

L[i, j] = max{L[i − 1, j] , L[i, j − 1]} if X[i] 	= Y [j]. (12.2)

In order to make Equations 12.1 and 12.2 make sense in the boundary cases when

i = 0 or j = 0, we define L[i,−1] = 0 for i = −1, 0, 1, . . . , n−1 and L[−1, j] = 0
for j = −1, 0, 1, . . . , m − 1.

Y=CGATAATTGAG

X=GTTCCTAATA

Y=CGATAATTGAGA

X=GTTCCTAATA

(a) (b)

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10

L[8,10]=5 L[8,10]=5

L[9,9]=6

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Figure 12.9: The two cases for L[i, j]: (a) X[i] = Y [j]; (b) X[i] 	= Y [j].

www.it-ebooks.info

http://www.it-ebooks.info/

12.5. The Longest Common Subsequence Problem 341

The LCS Algorithm

The above definition of L[i, j] satisfies subproblem optimization, for we cannot

have a longest common subsequence without also having longest common subse-

quences for the subproblems. Also, it uses subproblem overlap, because a subprob-

lem solution L[i, j] can be used in several other problems (namely, the problems

L[i + 1, j], L[i, j + 1], and L[i + 1, j + 1]).
Turning this definition of L[i, j] into an algorithm is actually quite straightfor-

ward. We initialize an (n + 1) × (m + 1) array, L, for the boundary cases when

i = 0 or j = 0. Namely, we initialize L[i,−1] = 0 for i = −1, 0, 1, . . . , n − 1
and L[−1, j] = 0 for j = −1, 0, 1, . . . , m − 1. (This is a slight abuse of notation,

since in reality, we would have to index the rows and columns of L starting with 0.)

Then, we iteratively build up values in L until we have L[n− 1, m− 1], the length

of a longest common subsequence of X and Y . We give a pseudocode descrip-

tion of how this approach results in a dynamic programming solution to the longest

common subsequence (LCS) problem in Algorithm 12.10. Note that the algorithm

stores only the L[i, j] values, not the matches.

Algorithm LCS(X, Y):
Input: Strings X and Y with n and m elements, respectively

Output: For i = 0, . . . , n− 1, j = 0, . . . , m− 1, the length L[i, j] of a longest

common subsequence of X[0..i] and Y [0..j]
for i ← −1 to n − 1 do

L[i,−1] ← 0
for j ← 0 to m − 1 do

L[−1, j] ← 0
for i ← 0 to n − 1 do

for j ← 0 to m − 1 do
if X[i] = Y [j] then

L[i, j] ← L[i − 1, j − 1] + 1
else

L[i, j] ← max{L[i − 1, j] , L[i, j − 1]}
return array L

Algorithm 12.10: Dynamic programming algorithm for the LCS problem.

Performance

The running time of Algorithm 12.10 is easy to analyze, for it is dominated by two

nested for-loops, with the outer one iterating n times and the inner one iterating m
times. Since the if-statement and assignment inside the loop each requires O(1)
primitive operations, this algorithm runs in O(nm) time. Thus, the dynamic pro-

www.it-ebooks.info

http://www.it-ebooks.info/

342 Chapter 12. Dynamic Programming

gramming technique can be applied to the longest common subsequence problem

to improve significantly over the exponential-time brute-force solution to the LCS

problem.

Algorithm 12.10 (LCS) computes the length of the longest common subse-

quence (stored in L[n− 1, m− 1]), but not the subsequence itself. As shown in the

following theorem, a simple postprocessing step can extract the longest common

subsequence from the array L returned by the algorithm.

Theorem 12.5: Given a string X of n characters and a string Y of m characters,
we can find the longest common subsequence of X and Y in O(nm) time.

Proof: We have already observed that Algorithm LCS computes the length
of a longest common subsequence of the input strings X and Y in O(nm) time.

Given the table of L[i, j] values, constructing a longest common subsequence is

straightforward. One method is to start from L[n−1, m−1] and work back through

the table, reconstructing a longest common subsequence from back to front. At

any position L[i, j], we determine whether X[i] = Y [j]. If this is true, then we

take X[i] as the next character of the subsequence (noting that X[i] is before the

previous character we found, if any), moving next to L[i−1, j−1]. If X[i] 	= Y [j],
then we move to the larger of L[i, j − 1] and L[i − 1, j]. (See Figure 12.11.) We

stop when we reach a boundary entry (with i = −1 or j = −1). This method

constructs a longest common subsequence in O(n + m) additional time.

Y=CGATAATTGAGA

X=GTTCCTAATA

L -1 0 1 2 3 4 5 6 7 8 9 10 11

-1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 1 2 2 2 2 2 2 2 2 2

2 0 0 1 1 2 2 2 3 3 3 3 3 3

3 0 1 1 1 2 2 2 3 3 3 3 3 3

4 0 1 1 1 2 2 2 3 3 3 3 3 3

5 0 1 1 1 2 2 2 3 4 4 4 4 4

6 0 1 1 2 2 3 3 3 4 4 5 5 5

7 0 1 1 2 2 3 4 4 4 4 5 5 6

8 0 1 1 2 3 3 4 5 5 5 5 5 6

9 0 1 1 2 3 4 4 5 5 5 6 6 6

0 1 2 3 4 5 6 7 8 91011

0 1 2 3 4 5 6 7 8 9

Figure 12.11: Illustration of the algorithm for constructing a longest common sub-

sequence from the array L.

www.it-ebooks.info

http://www.it-ebooks.info/

12.6. The 0-1 Knapsack Problem 343

12.6 The 0-1 Knapsack Problem

Suppose a hiker is about to go on a trek through a rainforest carrying a single

knapsack. Suppose further that she knows the maximum total weight W that she

can carry, and she has a set S of n different useful items that she can potentially

take with her, such as a folding chair, a tent, and a copy of this book. Let us assume

that each item i has an integer weight wi and a benefit value bi, which is the utility

value that our hiker assigns to item i. Her problem, of course, is to optimize the

total value of the set T of items that she takes with her, without going over the

weight limit W . That is, she has the following objective:

maximize
∑
i∈T

bi subject to
∑
i∈T

wi ≤ W.

Her problem is an instance of the 0-1 knapsack problem. This problem is called

a “0-1” problem, because each item must be entirely accepted or rejected. We

consider the fractional version of this problem in Section 10.1, and we study how

knapsack problems arise in the context of Internet auctions in Exercise R-12.9.

A Pseudo-Polynomial Time Dynamic Programming Algorithm

We can easily solve the 0-1 knapsack problem in Θ(2n) time, of course, by enu-

merating all subsets of S and selecting the one that has highest total benefit from

among all those with total weight not exceeding W . This would be an inefficient

algorithm, however. Fortunately, we can derive a dynamic programming algorithm

for the 0-1 knapsack problem that runs much faster than this in most cases.

As with many dynamic programming problems, one of the hardest parts of

designing such an algorithm for the 0-1 knapsack problem is to find a nice char-

acterization for subproblems (so that we satisfy the three properties of a dynamic

programming algorithm). To simplify the discussion, number the items in S as

1, 2, . . . , n and define, for each k ∈ {1, 2, . . . , n}, the subset

Sk = {items in S labeled 1, 2, . . . , k}.
One possibility is for us to define subproblems by using a parameter k so that

subproblem k is the best way to fill the knapsack using only items from the set Sk.

This is a valid subproblem definition, but it is not at all clear how to define an

optimal solution for index k in terms of optimal subproblem solutions. Our hope

would be that we would be able to derive an equation that takes the best solution

using items from Sk−1 and considers how to add the item k to that. Unfortunately,

if we stick with this definition for subproblems, then this approach is fatally flawed.

For, as we show in Figure 12.12, if we use this characterization for subproblems,

then an optimal solution to the global problem may actually contain a suboptimal

subproblem.

www.it-ebooks.info

http://www.it-ebooks.info/

344 Chapter 12. Dynamic Programming

(3,2) (5,4) (8,5) (10,9)

(8,5)(5,4) (4,3)(a)

(b)

(3,2)

20

Figure 12.12: An example showing that our first approach to defining a knapsack

subproblem does not work. The set S consists of five items denoted by the (weight,
benefit) pairs (3, 2), (5, 4), (8, 5), (4, 3), and (10, 9). The maximum total weight

is W = 20: (a) best solution with the first four items; (b) best solution with the first

five items. We shade each item in proportion to its benefit.

One of the reasons that defining subproblems only in terms of an index k is

fatally flawed is that there is not enough information represented in a subproblem

to provide much help for solving the global optimization problem. We can correct

this difficulty, however, by adding a second parameter w. Let us therefore formulate

each subproblem as that of computing B[k, w], which is defined as the maximum

total value of a subset of Sk from among all those subsets having total weight at
most w. We have B[0, w] = 0 for each w ≤ W , and we derive the following

relationship for the general case

B[k, w] =
{

B[k − 1, w] if wk > w
max{B[k − 1, w], B[k − 1, w − wk] + bk} else.

That is, the best subset of Sk that has total weight at most w is either the best

subset of Sk−1 that has total weight at most w or the best subset of Sk−1 that has

total weight at most w − wk plus item k. Since the best subset of Sk that has

total weight w must either contain item k or not, one of these two choices must be

the right choice. Thus, we have a subproblem definition that is simple (it involves

just two parameters, k and w) and satisfies the subproblem optimization condition.

Moreover, it has subproblem overlap, for an optimal subset of total weight at most

w may be used by many future subproblems.

In deriving an algorithm from this definition, we can make one additional obser-

vation, namely, that the definition of B[k, w] is built from B[k−1, w] and possibly

B[k−1, w−wk]. Thus, we can implement this algorithm using only a single array

B, which we update in each of a series of iterations indexed by a parameter k so

that, at the end of iteration k, B[w] = B[k, w]. This gives us Algorithm 12.13.

www.it-ebooks.info

http://www.it-ebooks.info/

12.6. The 0-1 Knapsack Problem 345

Algorithm 01Knapsack(S, W):
Input: Set S of n items, such that item i has positive benefit bi and positive

integer weight wi; positive integer maximum total weight W
Output: For w = 0, . . . , W , maximum benefit B[w] of a subset of S with total

weight at most w

for w ← 0 to W do
B[w] ← 0

for k ← 1 to n do
for w ← W downto wk do

if B[w − wk] + bk > B[w] then
B[w] ← B[w − wk] + bk

Algorithm 12.13: Dynamic programming algorithm for the 0-1 knapsack problem.

The running time of the 01Knapsack algorithm is dominated by the two nested

for-loops, where the outer one iterates n times and the inner one iterates at most W
times. After it completes we can find the optimal value by locating the value B[w]
that is greatest among all w ≤ W . Thus, we have the following:

Theorem 12.6: Given an integer W and a set S of n items, each of which has a
positive benefit and a positive integer weight, we can find the highest benefit subset
of S with total weight at most W in O(nW) time.

Proof: We have given Algorithm 12.13 (01Knapsack) for constructing the

value of the maximum-benefit subset of S that has total weight at most W us-

ing an array B of benefit values. We can easily convert our algorithm into one that

outputs the items in a best subset, however. We leave the details of this conversion

as an exercise.

In addition to being another useful application of the dynamic programming

technique, Theorem 12.6 states something very interesting. Namely, it states that

the running time of our algorithm depends on a parameter W that strictly speaking

is not proportional to the size of the input (the n items, together with their weights

and benefits, plus the number W). Assuming that W is encoded in some standard

way (such as a binary number), then it takes only O(log W) bits to encode W .

Moreover, if W is very large (say W = 2n), then this dynamic programming algo-

rithm would actually be asymptotically slower than the brute-force method. Thus,

technically speaking, this algorithm is not a polynomial-time algorithm, for its run-

ning time is not actually a polynomial function of the size of the input. It is common

to refer to an algorithm such as our knapsack dynamic programming algorithm as

being a pseudo-polynomial-time algorithm, for its running time depends polyno-

mially on the magnitude of a number given in the input, not its encoding size.

www.it-ebooks.info

http://www.it-ebooks.info/

346 Chapter 12. Dynamic Programming

12.7 Exercises

Reinforcement
R-12.1 What is the best way to multiply a chain of matrices with dimensions that are

10 × 5, 5 × 2, 2 × 20, 20 × 12, 12 × 4, and 4 × 60? Show your work.

R-12.2 Design an efficient algorithm for the matrix chain multiplication problem that
outputs a fully parenthesized expression for how to multiply the matrices in the
chain using the minimum number of operations.

R-12.3 Suppose that during the playing of the coins-in-a-line game that Alice’s oppo-
nent, Bob, makes a choice that is suboptimal for him. Does this require that
Alice recompute her table of remaining Mi,j values to plan her optimal strategy
from this point on?

R-12.4 Suppose that in an instance of the coins-in-a-line game the coins have the follow-
ing values in the line:

(9, 1, 7, 3, 2, 8, 9, 3).

What is the maximum that the first player, Alice, can win, assuming that the
second player, Bob, plays optimally?

R-12.5 Let S = {a, b, c, d, e, f, g} be a collection of objects with benefit-weight val-
ues, a : (12, 4), b : (10, 6), c : (8, 5), d : (11, 7), e : (14, 3), f : (7, 1), g : (9, 6).
What is an optimal solution to the 0-1 knapsack problem for S assuming we have
a sack that can hold objects with total weight 18? Show your work.

R-12.6 Suppose we are given a set of telescope observation requests, specified by triples
of (si, fi, bi), defining the start times, finish times, and benefits of each observa-
tion request as

L = {(1, 2, 5), (1, 3, 4), (2, 4, 7), (3, 5, 2), (1, 6, 3), (4, 7, 5), (6, 8, 7), (7, 9, 4)}.
Solve the telescope scheduling problem for this set of observation requests.

R-12.7 Suppose we define a probabilistic event so that V (i, 0) = 1 and V (0, j) = 0, for
all i and j, and V (i, j), for i, j ≥ 1, is defined as

V (i, j) = 0.5V (i − 1, j) + 0.5V (i, j − 1).

What is the probability of the event, V (2, 2)?

R-12.8 Show the longest common subsequence table, L, for the following two strings:

X = "skullandbones"

Y = "lullabybabies".

What is a longest common subsequence between these strings?

R-12.9 Sally is hosting an Internet auction to sell n widgets. She receives m bids, each
of the form “I want ki widgets for di dollars,” for i = 1, 2, . . . ,m. Characterize
her optimization problem as a knapsack problem. Under what conditions is this
a 0-1 versus fractional problem?

www.it-ebooks.info

http://www.it-ebooks.info/

12.7. Exercises 347

Creativity
C-12.1 Binomial coefficients are a family of positive integers that have a number of

useful properties and they can be defined in several ways. One way to define them
is as an indexed recursive function, C(n, k), where the “C” stands for “choice”
or “combinations.” In this case, the definition is as follows:

C(n, 0) = 1,

C(n, n) = 1,

and, for 0 < k < n,

C(n, k) = C(n − 1, k − 1) + C(n − 1, k).

(a) Show that, if we don’t use memoization, and n is even, then the running time
for computing C(n, n/2) is at least 2n/2.

(b) Describe a scheme for computing C(n, k) using memoization. Give a big-
oh characterization of the number of arithmetic operations needed for computing
C(n, �n/2�) in this case.

C-12.2 Show that, in the coins-in-a-line game, a greedy strategy of having the first player,
Alice, always choose the available coin with highest value will not necessarily
result in an optimal solution (or even a winning solution) for her.

C-12.3 Show that, in the coins-in-a-line game, a greedy-denial strategy of having the
first player, Alice, always choose the available coin that minimizes the maximum
value of the coin available to Bob will not necessarily result in an optimal solution
for her.

C-12.4 Design an O(n)-time non-losing strategy for the first player, Alice, in the coins-
in-a-line game. Your strategy does not have to be optimal, but it should be guar-
anteed to end in a tie or better for Alice.

C-12.5 Show that we can solve the telescope scheduling problem in O(n) time even if
the list of n observation requests is not given to us in sorted order, provided that
start and finish times are given as integer indices in the range from 1 to n2.

C-12.6 Given a sequence S = (x0, x1, x2, . . . , xn−1) of numbers, describe an O(n2)-
time algorithm for finding a longest subsequence T = (xi0 , xi1 , xi2 , . . . , xik−1)
of numbers, such that ij < ij+1 and xij

> xij+1 . That is, T is a longest decreas-
ing subsequence of S.

C-12.7 Describe an O(n log n)-time algorithm for the previous problem.

C-12.8 Show that a sequence of n distinct numbers contains a decreasing or increasing
subsequence of size at least
√n�.

C-12.9 Define the edit distance between two strings X and Y of length n and m, respec-
tively, to be the number of edits that it takes to change X into Y . An edit consists
of a character insertion, a character deletion, or a character replacement. For ex-
ample, the strings "algorithm" and "rhythm" have edit distance 6. Design
an O(nm)-time algorithm for computing the edit distance between X and Y .

www.it-ebooks.info

http://www.it-ebooks.info/

348 Chapter 12. Dynamic Programming

C-12.10 A substring of some character string is a contiguous sequence of characters in
that string (which is different than a subsequence, of course). Suppose you are
given two character strings, X and Y , with respective lengths n and m. Describe
an efficient algorithm for finding a longest common substring of X and Y .

C-12.11 Let A, B, and C be three length-n character strings taken over the same constant-
sized alphabet Σ. Design an O(n3)-time algorithm for finding a longest substring
that is common to all three of A, B, and C.

C-12.12 How can we modify the dynamic programming algorithm from simply comput-
ing the best benefit value for the 0-1 knapsack problem to computing the assign-
ment that gives this benefit?

C-12.13 Suppose we are given a collection A = {a1, a2, . . . , an} of n positive integers
that add up to N . Design an O(nN)-time algorithm for determining whether
there is a subset B ⊂ A such that

∑
ai∈B ai =

∑
ai∈A−B ai.

C-12.14 Let P be a convex polygon (Section 22.1). A triangulation of P is an addition of
diagonals connecting the vertices of P so that each interior face is a triangle. The
weight of a triangulation is the sum of the lengths of the diagonals. Assuming
that we can compute lengths and add and compare them in constant time, give an
efficient algorithm for computing a minimum-weight triangulation of P .

C-12.15 A grammar G is a way of generating strings of “terminal” characters from a
nonterminal symbol S, by applying simple substitution rules, called productions.
If B → β is a production, then we can convert a string of the form αBγ into the
string αβγ. A grammar is in Chomsky normal form if every production is of the
form “A → BC” or “A → a,” where A, B, and C are nonterminal characters and
a is a terminal character. Design an O(n3)-time dynamic programming algorithm
for determining if string x = x0x1 · · ·xn−1 can be generated from the start
symbol S.

C-12.16 Suppose we are given an n-node rooted tree T , such that each node v in T is given
a weight w(v). An independent set of T is a subset S of the nodes of T such
that no node in S is a child or parent of any other node in S. Design an efficient
dynamic programming algorithm to find the maximum-weight independent set
of the nodes in T , where the weight of a set of nodes is simply the sum of the
weights of the nodes in that set. What is the running time of your algorithm?

C-12.17 Suppose you are given an ordered set, K, of n keys, k1 < k2 < · · · < kn. In
addition, for each key, ki, suppose you know the probability, pi, that any given
query will be for the key ki. The cost of a binary search tree, T , for K, is defined
as

C(T) =
n∑

i=1

(dT (ki) + 1)pi,

where dT (ki) denotes the depth of ki in T . Describe an algorithm to find an
optimal binary search tree, for K, that is, a binary search tree, T , that minimizes
C(T). What is the running time of your algorithm?

Hint: First, define P (i, j) =
∑j

k=i pk, for 1 ≤ i ≤ j ≤ n. Then, consider how
to compute C(i, j), the cost of an optimal binary search tree for the keys that
range from ki to kj .

www.it-ebooks.info

http://www.it-ebooks.info/

12.7. Exercises 349

Applications
A-12.1 Suppose that the coins of the fictional country of Combinatoria come in the de-

nominations, d1, d2, . . . , dk, where d1 = 1 and the other di values form a set of
distinct integers greater than 1. Given an integer, n > 0, the problem of making
change is to find the fewest number of Combinatorian coins whose values sum
to n.

(a) Give an instance of the making-change problem for which it is suboptimal
to use the standard greedy algorithm, which repeatedly chooses a highest-valued
coin whose value is at most n until the sum of chosen coins equals n.

(b) Describe an efficient algorithm for solving the problem of making change.
What is the running time of your algorithm?

A-12.2 Every web browser and word processor needs a way of breaking English para-
graphs into lines at word boundaries that is both fast and looks good. Some
systems even have ways of hyphenating words to make good line breaks, but let
us ignore that complication here. Say that the width of each line on a computer
screen or browser window is M characters, and we are given a list,

W = (W1,W2, . . . , Wn),

of n words forming a paragraph that we wish to display, where the word, Wi, has
length, Li. The word wrapping problem is to break W into lines of length at most
M in a way that minimizes a total cost penalizing the wasted space. The cost of
breaking a single line to hold the words Wi,Wi+1, . . . , Wj , has the following
cost:

C(i, j) =

(
M − (j − i) −

j∑
k=i

Lk

)3

,

assuming this cost is nonnegative. If this cost is negative, then we instead set
C(i, j) = +∞, to show that the set of words from Wi to Wj doesn’t fit on a
single line. In addition, if this cost is positive, but j = n, then we set C(i, j) = 0,
to show that there is no wasted space in the last line of the paragraph. Describe
an efficient algorithm for solving the word wrapping problem, so as to minimize
the total cost of all the lines used to display the paragraph formed by the words
W1, . . . , Wn. What is the running time of your algorithm?

A-12.3 An American spy is deep undercover in the hostile country of Phonemia. In order
not to waste scarce resources, any time he wants to send a message back home,
he removes all the punctuation from his message and converts all the letters to
uppercase. So, for example, to send the message,

“Abort the plan! Meet at the Dark Cabin.”

he would transmit

ABORTTHEPLANMEETATTHEDARKCABIN

Given such a string, S, of n uppercase letters, describe an efficient way of break-
ing it into a sequence of valid English words. You may assume that you have

www.it-ebooks.info

http://www.it-ebooks.info/

350 Chapter 12. Dynamic Programming

a function, valid(s), which can take a character string, s, and return true if and
only if s is a valid English word. What is the running time of your algorithm,
assuming each call to the function, valid, runs in O(1) time?

A-12.4 The comedian, Demetri Martin, is the author of a 224-word palindrome poem.
That is, like any palindrome, the letters of this poem are the same whether they
are read forward or backward. At some level, this is no great achievement, be-
cause there is a palindrome inside every poem, which we explore in this exercise.
Describe an efficient algorithm for taking any character string, S, of length n,
and finding the longest subsequence of S that is a palindrome. For instance, the
string, “I EAT GUITAR MAGAZINES” has “EATITAE” and “IAGAGAI” as
palindrome subsequences. Your algorithm should run in time O(n2).

A-12.5 Scientists performing DNA sequence alignment often desire a more parametrized
way of aligning two strings than simply computing a longest common subse-
quence between these two strings. One way to achieve such flexibility is to use
the Smith-Waterman algorithm, which is generalization of the dynamic pro-
gramming algorithm for computing a longest common subsequence so that it can
handle weighted scoring functions. In particular, for two strings, X and Y , sup-
pose we are given functions, defined on characters, a, from X , and b from Y , as
follows:

M(a, b) = the positive benefit for a match, if a = b

M(a, b) = the negative cost for a mismatch, if a 	= b

I(a) = the negative cost for inserting a at a position in X

D(b) = the negative cost of deleting b from some position in Y .

Given a string, X , of length n and a string, Y , of length m, describe an algorithm
running in O(nm) time for finding the maximum-weight way of transforming X
into Y , according to the above weight functions, using the operations of match-
ing, substitution, insertion in X , and deletion from Y .

A-12.6 The pointy-haired boss (PHB) of an office in a major technology company would
like to throw a party. Based on the performance reviews he has done, the PHB
has assigned an integer “fun factor” score, F (x), for each employee, x, in his
office. In order for the party to be as crazy as possible, the PHB has one rule: an
employee, x, may be invited to the party only if x’s immediate supervisor is not
invited. Suppose you are the PHB’s administrative assistant, and it is your job
to figure out who to invite, subject to this rule, given the list of F (x) values and
the office organizational chart, which is a tree, T , rooted at the PHB, containing
the n employees as nodes, so that each employee’s parent in T is the immediate
supervisor of that employee. Describe an algorithm for solving this office party
problem, by choosing a group of employees to invite to the party such that this
group has the largest total fun factor while satisfying the PHB’s rule and also
guaranteeing that you are invited, which, of course, means that the PHB is not.
What is the running time of your algorithm?

A-12.7 Consider a variant of the telescope scheduling problem, where we are given a
list, L, of n observational requests for a large telescope, but now these requests
are specified differently. Instead of having a start time, finish time, and bene-
fit, each request i is now specified by a deadline, di, by when the observation

www.it-ebooks.info

http://www.it-ebooks.info/

12.7. Exercises 351

must be completed, an exposure time, ti, which is the length of uninterrupted
telescope time this observation needs once it begins, and a benefit, bi, which, as
before, is a positive integer indicating the benefit to science for performing this
observation. Assume that time is broken up into discrete units, such as seconds,
so that all di’s are integers, and observation times have an upper limit, so that all
ti’s are integers in the range from 1 to n. Describe an algorithm for solving this
version of the telescope scheduling problem, to maximize the total benefit of the
included observations so that all the included observations are completed by their
deadlines. Characterize the running time of your algorithm in terms of n.

A-12.8 Speech recognition systems need to match audio streams that represent the same
words spoken at different speeds. Suppose, therefore, that you are given two
sequences of numbers, X = (x1, x2, . . . , xn), and Y = (y1, y2, . . . , ym), repre-
senting two different audio streams that need to be matched. A mapping between
X and Y is a list, M , of distinct pairs, (i, j), that is ordered lexicographically,
such that, for each i ∈ [1, n], there is at least one pair, (i, j), in M , and for each
j ∈ [1,m], there is at least one pair, (i, j), in M . Such a mapping is monotonic
if, for any (i, j) and (k, l) in M , with (i, j) coming before (k, l) in M , we have
i ≤ k and j ≤ l. For example, given

X = (3, 9, 9, 5) and Y = (3, 3, 9, 5, 5),

one possible monotonic mapping between X and Y would be

M = [(1, 1), (1, 2), (2, 3), (3, 3), (4, 4), (4, 5)].

The dynamic time warping problem is to find a monotonic mapping, M , between
X and Y , that minimizes the distance, D(X,Y), between X and Y , subject to
M , which is defined as

D(X,Y) =
∑

(i,j)∈M

|xi − yj |,

where this minimization is taken over all possible monotonic mappings between
X and Y . For instance, in the example X , Y , and M , given above, we have
D(X,Y) = 0. Describe an efficient algorithm for solving the dynamic time
warping problem. What is the running time of your algorithm?

A-12.9 Consider a variant of the coins-in-a-line game, which we are calling houses-in-
a-row. In this game, two real estate moguls, Alice and Bob, take turns divvying
up n houses that are lined up in a row, with Alice going first. When it is a player’s
turn, he or she must choose one or more of the remaining houses, starting from
either the left end of the row or the right, with the set of houses he or she picks
in this turn being consecutive. For example, in a row of houses numbered 1
to 100, Alice could choose houses numbered 1, 2, and 3 in her first turn, and,
following that, Bob could choose houses numbered 100 and 99 in his first turn,
which could be then followed by Alice choosing house number 98, and so on,
until all the houses are chosen. There is no limit on the number of houses that
Alice or Bob can choose during a turn, but the values of the houses can be either
positive or negative. For instance, a house could have a negative value if it is
contains a hazardous waste site that costs more to clean up than the house is

www.it-ebooks.info

http://www.it-ebooks.info/

352 Chapter 12. Dynamic Programming

worth. Describe an efficient algorithm for determining how Alice can maximize
the total net value of all the houses she chooses, assuming Bob plays optimally
as well. What is the running time of your algorithm?

A-12.10 Suppose, at some distance point in the future, the World Series in major league
baseball becomes a best-of-n series, where n is an arbitrary odd number set
by the Commissioner of Baseball in that year, based on advertising revenue.
Suppose the Anteaters and the Bears are meeting in the World Series in that
year, and, based on past experience, we know that in each game they play, the
Anteaters have a probability p of winning; hence, the Bears have a probability
of 1 − p of winning, with all games being independent. Consider a parameter,
V (i, j), which is the probability that the Anteaters will have won i games and the
Bears will have won j games after the two teams have played i + j against each
other. Give an equation for defining V (i, j), including the special cases, V (i, 0),
V (0, j), V (�n/2�, j) and V (i, �n/2�), and describe an algorithm for determin-
ing the overall probability that the Anteaters will win the World Series.

A-12.11 Suppose n computers in a wired local-area network are arranged in a tree, T ,
which is rooted at one of these computers (say, one that is connected to the Inter-
net). That is, the computers in this network form the nodes of T , and the edges of
T are determined by the pairs of computers that have cables connecting them to
each other. The administrator of this network is concerned about reliability and
wants to buy some network monitoring devices to continuously check the quality
of the connections in T . If such a monitoring device is installed on a computer, x,
then x is able to continuously monitor all the direct connections that x has with
other computers. To save money, he is asking that you determine the fewest num-
ber of monitoring devices needed in order to have at least one device monitoring
every connection in T . For example, if every computer in T other than the root
were a child of the root, then the administrator would need only one monitoring
device (placed at the root). Describe an efficient algorithm for solving this prob-
lem, which is known as the vertex-cover problem, for T . What is the running
time of your algorithm?

Chapter Notes
Dynamic programming was developed in the operations research community and formal-
ized by Bellman [25]. The matrix chain-product solution we described is due to God-
bole [82]. The asymptotically fastest method is due to Hu and Shing [105, 106]. Our
presentation of the analysis of when it is better to attempt a two-point conversion af-
ter a touchdown in American football is based on an analysis by Sackrowitz [180] (see
also [198, 201]). The dynamic programming algorithm for the knapsack problem is found
in the book by Hu [104]. Hirschberg [99] shows how to solve the longest common substring
problem with the same running time as given above but with linear space (see also [52]).
More information about dynamic time warping and sequence comparison algorithms can
be found in an edited book by Sankoff and Kruskal [183]. Additional information about
telescope scheduling can be found in a paper by Johnston [113].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

13 Graphs and Traversals

The metropolitan area of Milan, Italy at night. Astronaut photograph ISS026-
E-28829, 2011. U.S. government image. NASA-JSC.

Contents

13.1 Graph Terminology and Representations 355
13.2 Depth-First Search . 365
13.3 Breadth-First Search . 370
13.4 Directed Graphs . 373
13.5 Biconnected Components 386
13.6 Exercises . 392

www.it-ebooks.info

http://www.it-ebooks.info/

354 Chapter 13. Graphs and Traversals

Connectivity information is present in a multitude of different applications, in-

cluding social networks, road networks, computer games and puzzles, and com-

puter networks. In computer networks, for instance, computers are connected to-

gether using routers, switches, and (wired or radio) communication links. Infor-

mation flows in the form of individual packets, from one computer to another, by

tracing out paths that hop through intermediate connections. Alternatively, in com-

puter puzzle and game applications, game positions are connected by the transitions

that are allowed between them. In either case, however, we might be interested in

paths that can be mapped out in the connectivity structures that are represented in

these applications. For instance, a path in a puzzle application could be a solution

that starts from an initial game position and leads to a goal position.

In some applications, we might not really care whether we find a shortest path

from a source to a destination, whereas in others we might be interested in finding

the shortest paths possible. For example, in interactive applications, such as in

online games or video chat sessions, we would naturally want packets to flow in

our computer network along shortest paths, since we want to minimize any delays

that occur between one person’s action and the reaction of communicating partner.

In other applications, such as in solving a maze puzzle, there may be only a single

path between a source and destination, with several dead ends that need to be ruled

out in order find this path. Thus, we would like to design algorithms that can

efficiently identify paths in connectivity structures.

In addition to these motivating applications, connectivity information can be

defined by all kinds of relationships that exist between pairs of objects. Additional

examples include mapping (in geographic information systems), transportation (in

road and flight networks), and electrical engineering (in circuits). The topic we

study in this chapter—graphs—is therefore focused on representations and algo-

rithms for dealing efficiently with such relationships. That is, a graph is a set of

objects, called “vertices,” together with a collection of pairwise connections be-

tween them, which define “edges.”

Because applications for graphs are so widespread and diverse, people have de-

veloped a great deal of terminology to describe different components and properties

of graphs, which we also explore in this chapter. Fortunately, since most graph ap-

plications are relatively recent developments, this terminology is fairly intuitive.

We begin this chapter by discussing much of this terminology and some el-

ementary properties of graphs. We also present ways of representing graphs. As

highlighted above, traversals are important computations for graphs, both for short-

est paths and for arbitrary paths, and we discuss in Section 13.2. We discuss di-

rected graphs in Section 13.4, where pairwise relationships have a given direction,

and connectivity problems become more complicated.

www.it-ebooks.info

http://www.it-ebooks.info/

13.1. Graph Terminology and Representations 355

13.1 Graph Terminology and Representations

A graph G is a set, V , of vertices and a collection, E, of pairs of vertices from

V , which are called edges. Thus, a graph is a way of representing connections or

relationships between pairs of objects from some set V . Incidentally, some people

use different terminology for graphs and refer to what we call vertices as “nodes”

and what we call edges as “arcs” or “ties.”

Edges in a graph are either directed or undirected. An edge (u, v) is said to

be directed from u to v if the pair (u, v) is ordered, with u preceding v. An edge

(u, v) is said to be undirected if the pair (u, v) is not ordered. Undirected edges

are sometimes denoted with set notation, as {u, v}, but for simplicity we use the

pair notation (u, v), noting that in the undirected case (u, v) is the same as (v, u).
Graphs are typically visualized by drawing the vertices as circles or rectangles and

the edges as segments or curves connecting pairs of these circles or rectangles.

Example 13.1: We can visualize collaborations among the researchers of a cer-
tain discipline by constructing a graph whose vertices are associated with the re-
searchers themselves, and whose edges connect pairs of vertices associated with
researchers who have coauthored a paper or book. (See Figure 13.1.) Such edges
are undirected because coauthorship is a symmetric relation; that is, if A has coau-
thored something with B, then B necessarily has coauthored something with A.

Goodrich Tamassia

Vitter

Chiang

Garg

Preparata

TollisSnoeyink

Di Battista

Figure 13.1: Graph of coauthorships among some authors.

www.it-ebooks.info

http://www.it-ebooks.info/

356 Chapter 13. Graphs and Traversals

13.1.1 Some Graph Terminology
If all the edges in a graph are undirected, then we say the graph is an undirected
graph. Likewise, a directed graph, also called a digraph, is a graph whose edges

are all directed. A graph that has both directed and undirected edges is often called

a mixed graph. Note that an undirected or mixed graph can be converted into a

directed graph by replacing every undirected edge (u, v) by the pair of directed

edges (u, v) and (v, u). It is often useful, however, to keep undirected and mixed

graphs represented as they are, for such graphs have several applications.

Example 13.2: We can associate with an object-oriented program a graph whose
vertices represent the classes defined in the program, and whose edges indicate
inheritance between classes. There is an edge from a vertex v to a vertex u if the
class for v extends the class for u. Such edges are directed because the inheritance
relation only goes in one direction (that is, it is asymmetric).

Example 13.3: A city map can be modeled by a graph whose vertices are inter-
sections or dead ends, and whose edges are stretches of streets without intersec-
tions. This graph has both undirected edges, which correspond to stretches of two-
way streets, and directed edges, which correspond to stretches of one-way streets.
Thus, a graph modeling a city map is a mixed graph.

Example 13.4: Physical examples of graphs are present in the electrical wiring
and plumbing networks of a building. Such networks can be modeled as graphs,
where each connector, fixture, or outlet is viewed as a vertex, and each uninter-
rupted stretch of wire or pipe is viewed as an edge. Such graphs are actually com-
ponents of much larger graphs, namely the local power and water distribution net-
works. Depending on the specific aspects of these graphs that we are interested in,
we may consider their edges as undirected or directed, for, in principle, water can
flow in a pipe and current can flow in a wire in either direction.

The two vertices joined by an edge are called the end vertices of the edge. The

end vertices of an edge are also known as the endpoints of that edge. If an edge is

directed, its first endpoint is its origin and the other is the destination of the edge.

Two vertices are said to be adjacent if they are endpoints of the same edge. An

edge is said to be incident on a vertex if the vertex is one of the edge’s endpoints.

The outgoing edges of a vertex are the directed edges whose origin is that vertex.

The incoming edges of a vertex are the directed edges whose destination is that

vertex. The degree of a vertex v, denoted deg(v), is the number of incident edges

of v. The in-degree and out-degree of a vertex v are the number of the incoming

and outgoing edges of v, and are denoted indeg(v) and outdeg(v), respectively.

Example 13.5: We can study air transportation by constructing a graph G, called
a flight network, whose vertices are associated with airports, and whose edges
are associated with flights. (See Figure 13.2.) In graph G, the edges are directed
because a given flight has a specific travel direction (from the origin airport to the

www.it-ebooks.info

http://www.it-ebooks.info/

13.1. Graph Terminology and Representations 357

destination airport). The endpoints of an edge e in G correspond respectively to the
origin and destination for the flight corresponding to e. Two airports are adjacent
in G if there is a flight that flies between them, and an edge e is incident upon a
vertex v in G if the flight for e flies to or from the airport for v. The outgoing edges
of a vertex v correspond to the out-bound flights from v’s airport, and the incoming
edges correspond to the in-bound flights to v’s airport. Finally, the in-degree of a
vertex v of G corresponds to the number of in-bound flights to v’s airport, and the
out-degree of a vertex v in G corresponds to the number of out-bound flights.

JFK

BOS

MIA

ORD

LAX
DFW

SFO

TW 45

AA 411

AA 1387

A
A

 9
03

D
L

 2
47

AA 523

N
W

 3
5

U
A

 8
77

D
L

 3
35

AA 49

UA 12
0

Figure 13.2: Example of a directed graph representing a flight network. The end-

points of edge UA 120 are LAX and ORD; hence, LAX and ORD are adjacent.

The in-degree of DFW is 3, and the out-degree of DFW is 2.

The definition of a graph groups edges in a collection, not a set, thus allowing

for two undirected edges to have the same end vertices, and for two directed edges

to have the same origin and destination. Such edges are called parallel edges or

multiple edges. Parallel edges may exist in a flight network (Example 13.5), in

which case multiple edges between the same pair of vertices could indicate different

flights operating on the same route at different times of the day. Another special

type of edge is one that connects a vertex to itself. In this case, we say that an edge

(undirected or directed) is a self-loop if its two endpoints coincide. A self-loop

may occur in a graph associated with a city map (Example 13.3), where it would

correspond to a “circle” (a curving street that returns to its starting point).

With few exceptions, like those mentioned above, graphs do not have parallel

edges or self-loops. Such graphs are said to be simple. Thus, we can usually say

that the edges of a simple graph are a set of vertex pairs (and not just a collection).

Throughout this chapter, we shall assume that a graph is simple unless otherwise

specified. This assumption simplifies the presentation of data structures and al-

gorithms for graphs. Extending the results of this chapter to general graphs, with

self-loops and/or parallel edges, is straightforward but tedious.

www.it-ebooks.info

http://www.it-ebooks.info/

358 Chapter 13. Graphs and Traversals

In the theorems that follow, we explore a few important properties of degrees

and the number of edges in a graph. These properties relate the number of vertices

and edges to each other and to the degrees of the vertices in a graph.

Theorem 13.6: If G is a graph with m edges, then∑
v ∈ G

deg(v) = 2m.

Proof: An edge (u, v) is counted twice in the above summation: once by its

endpoint u and once by its endpoint v. Thus, the total contribution of the edges to

the degrees of the vertices is twice the number of edges.

Theorem 13.7: If G is a directed graph with m edges, then∑
v ∈ G

indeg(v) =
∑

v ∈ G

outdeg(v) = m.

Proof: In a directed graph, an edge (u, v) contributes one unit to the out-degree

of its origin u and one unit to the in-degree of its destination v. Thus, the total

contribution of the edges to the out-degrees of the vertices is equal to the number

of edges, and similarly for the in-degrees.

Theorem 13.8: Let G be a simple graph with n vertices and m edges. If G is
undirected, then m ≤ n(n − 1)/2, and if G is directed, then m ≤ n(n − 1).

Proof: Suppose that G is undirected. Since no two edges can have the same

endpoints and there are no self-loops, the maximum degree of a vertex in G is

n − 1 in this case. Thus, by Theorem 13.6, 2m ≤ n(n − 1). Now suppose that G
is directed. Since no two edges can have the same origin and destination, and there

are no self-loops, the maximum in-degree of a vertex in G is n − 1 in this case.

Thus, by Theorem 13.7, m ≤ n(n − 1).

Put another way, Theorem 13.8 states that a simple graph with n vertices has

O(n2) edges.

A path in a graph is a sequence of alternating vertices and edges that starts at

a vertex and ends at a vertex, such that each edge is incident to its predecessor and

successor vertex. A cycle is a path with the same start and end vertices. We say

that a path is simple if each vertex in the path is distinct, and we say that a cycle

is simple if each vertex in the cycle is distinct, except for the first and last one. A

directed path is a path such that all the edges are directed and are traversed along

their direction. A directed cycle is defined similarly.

Example 13.9: Given a graph G representing a city map (see Example 13.3), we
can model a couple driving from their home to dinner at a recommended restaurant
as traversing a path though G. If they know the way, and don’t accidentally go

www.it-ebooks.info

http://www.it-ebooks.info/

13.1. Graph Terminology and Representations 359

through the same intersection twice, then they traverse a simple path in G. Like-
wise, we can model the entire trip the couple takes, from their home to the restau-
rant and back, as a cycle. If they go home from the restaurant in a completely
different way than how they went, not even going through the same intersection
twice, then their entire round trip is a simple cycle. Finally, if they travel along
one-way streets for their entire trip, then we can model their night out as a directed
cycle.

A subgraph of a graph G is a graph H whose vertices and edges are subsets of

the vertices and edges of G, respectively. A spanning subgraph of G is a subgraph

of G that contains all the vertices of the graph G. A graph is connected if, for

any two vertices, there is a path between them. If a graph G is not connected, its

maximal connected subgraphs are called the connected components of G. A forest
is a graph without cycles. A tree is a connected forest, that is, a connected graph

without cycles.

Note that this definition of a tree is somewhat different from the one given in

Section 2.3. Namely, in the context of graphs, a tree has no root. Whenever there is

ambiguity, the trees of Section 2.3 should be called rooted trees, while the trees of

this chapter should be called free trees. The connected components of a forest are

(free) trees. A spanning tree of a graph is a spanning subgraph that is a (free) tree.

Example 13.10: Perhaps the most talked about graph today is the Internet, which
can be viewed as a graph whose vertices are computers and whose (undirected)
edges are communication connections between pairs of computers on the Inter-
net. The computers and the connections between them in a single domain, like
wiley.com, form a subgraph of the Internet. If this subgraph is connected, then
two users on computers in this domain can send e-mail to one another without hav-
ing their information packets ever leave their domain. Suppose the edges of this
subgraph form a spanning tree. This implies that, even if a single connection goes
down (for example, because someone pulls a communication cable out of the back
of a computer in this domain), then this subgraph will no longer be connected.

There are a number of simple properties of trees, forests, and connected graphs.

Theorem 13.11: Let G be an undirected graph with n vertices and m edges.
Then we have the following:

• If G is connected, then m ≥ n − 1.

• If G is a tree, then m = n − 1.

• If G is a forest, then m ≤ n − 1.

We leave the justification of this theorem as an exercise (C-13.1).

www.it-ebooks.info

http://www.it-ebooks.info/

360 Chapter 13. Graphs and Traversals

13.1.2 Operations on Graphs
In spite of their simplicity, graphs are a rich abstraction. This richness derives partly

from the fact that graphs contain two kinds of objects—vertices and edges—and

also because edges can be directed or undirected. There are, therefore, a number of

operations that we can consider performing for a graph, G, including the following:

• Return the number, n, of vertices in G.

• Return the number, m, of edges in G.

• Return a set or list containing all n vertices in G.

• Return a set or list containing all m edges in G.

• Return some vertex, v, in G.

• Return the degree, deg(v), of a given vertex, v, in G.

• Return a set or list containing all the edges incident upon a given vertex, v,

in G.

• Return a set or list containing all the vertices adjacent to a given vertex, v,

in G.

• Return the two end vertices of an edge, e, in G; if e is directed, indicate

which vertex is the origin of e and which is the destination of e.

• Return whether two given vertices, v and w, are adjacent in G.

When we allow for some or all the edges in a graph to be directed, then there

are several additional methods we should consider including in the set of operations

that could be supported by a graph, such as the following:

• Indicate whether a given edge, e, is directed in G.

• Return the in-degree of v, inDegree(v).

• Return a set or list containing all the incoming (or outgoing) edges incident

upon a given vertex, v, in G.

• Return a set or list containing all the vertices adjacent to a given vertex, v,

along incoming (or outgoing) edges in G.

We can also allow for update methods that add or delete edges and vertices,

such as the following:

• Insert a new directed (or undirected) edge, e, between two given vertices, v
and w, in G.

• Insert a new (isolated) vertex, v, in G.

• Remove a given edge, e, from G.

• Remove a given vertex, v, and all its incident edges from G.

In addition, we can allow any edge or vertex to store additional information,

including numeric weights, Boolean values, or even pointers to general objects.

There are admittedly a lot of operations than one can perform with a graph, and

the above list is not even exhaustive. The number of operations is to a certain extent

unavoidable, however, since graphs are such rich structures.

www.it-ebooks.info

http://www.it-ebooks.info/

13.1. Graph Terminology and Representations 361

13.1.3 Data Structures for Representing Graphs

There are two data structures that people often use to represent graphs, the adja-
cency list and the adjacency matrix. In both of these representations, if vertices or

edges are used to store data, then we assume there is some way of mapping vertices

and edges to data that is associated with them. For example, we may use a lookup

structure to store objects using vertex or edge names as keys, or we may represent

edges or vertices as multiple-field objects and store the data associated with the

edges or vertices in these fields. As we explain below, the main difference between

these two graph representations are that we may get different time performances

for various graph operations depending on how our graph is represented. Also,

for a graph G with n vertices and m edges, an adjacency list representation uses

O(n + m) space, whereas an adjacency matrix representation uses O(n2) space.

The Adjacency List Structure

The adjacency list structure for a graph, G, includes the following components:

• A collection, V , of n vertices. This collection could be a set, list, or array,

or it could even be defined implicitly as simply the integers from 1 to n. If

vertices can “store” data, there also needs to be some way to map each vertex,

v, to the data associated with v.

• A collection, E, of m edges, that is, pairs of vertices. This collection could

be a set, list, or array, or it could even be defined implicitly by the pairs of

vertices that are determined by adjacency lists. If edges can “store” data,

there also needs to be some way to map each edge, e, to the data associated

with e.

• For each vertex, v, in V , we store a list, called the adjacency list for v, that

represents all the edges incident on v. This is implemented either as a list

of references to each vertex, w, such that (v, w) is an edge in E, or it is

implemented as a list of references to each edge, e, that is incident on v. If

G is a directed graph, then the adjacency list for v is typically divided into

two parts—one representing the incoming edges for v and one representing

the outgoing edges for v.

We illustrate the adjacency list structure of a directed graph in Figure 13.3. For

a vertex v, the space used by the adjacency list for v is proportional to the degree

of v, that is, it is O(deg(v)). Thus, by Theorem 13.6, the space requirement of the

adjacency list structure for a graph, G, of n vertices and m edges is O(n + m).

www.it-ebooks.info

http://www.it-ebooks.info/

362 Chapter 13. Graphs and Traversals

JFK

BOS

MIA

ORD

LAX
DFW

SFO

TW 45

AA 411

AA 1387

A
A

 9
03

D
L

 2
47

AA 523

N
W

 3
5

U
A

 8
77

D
L

 3
35

AA 49

UA 12
0

(a)

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 411 TW 45UA 120AA 49 AA 903AA 1387

E:

V:

in out in out in out in out in out in out in out

NW 35

DL 247

AA 49

AA 411

UA 120 AA1387

AA 523

UA 877

DL335

AA 49

NW 35 AA1387

AA 903

TW 45

DL 247

AA 903

AA523

AA 411

UA 120

DL 335

UA 877 TW 45

(b)

Figure 13.3: (a) A directed graph G; (b) a schematic representation of the adjacency

list structure of G. In this example, we have a set of vertex objects and set of edge

objects. Each edge object has pointers to its two end vertices and each vertex object

has pointers to the two parts of its adjacency list, which store references to incident

edges, one part for incoming edges and one for outgoing edges.

In addition, the adjacency list structure has the following performance proper-

ties:

• Returning the incident edges or adjacent vertices for a vertex, v, run in

O(deg(v)) time.

• Determining whether two vertices, u and v, are adjacent can be performed by

inspecting either the adjacency list for u or that of v. By choosing the smaller

of the two, we get O(min{deg(u), deg(v)}) running time for this operation.

www.it-ebooks.info

http://www.it-ebooks.info/

13.1. Graph Terminology and Representations 363

The Adjacency Matrix Structure

In the adjacency matrix representation of a graph, G, we represent the edges in G
using (a two-dimensional array) matrix, A. This representation allows us to deter-

mine adjacencies between pairs of vertices in constant time. As we shall see, the

trade-off in achieving this speedup is that the space usage for representing a graph

of n vertices is O(n2), even if the graph has few edges.

In the adjacency matrix representation, we number the vertices, 1, 2, . . . , n,

and we view the edges as being pairs of such integers. Historically, the adjacency

matrix was the first representation used for graphs, with the adjacency matrix being

a Boolean n × n matrix, A, defined as follows:

A[i, j] =
{

1 if (i, j) is an edge in G
0 otherwise.

Thus, the adjacency matrix has a natural appeal as a mathematical structure (for

example, an undirected graph has a symmetric adjacency matrix).

Modern instances of an adjacency matrix representation often update this his-

torical perspective slightly to follow an object-oriented framework. In this case, we

represent a graph, G, with an n × n array, A, such that A[i, j] stores a reference to

an edge object, e, if there is an edge e = (i, j) in G. If there is no edge, (i, j) in

G, then A[i, j] is null.

In addition, if vertices or edges have some kind of data that is associated with

them, then we would also need some way of mapping vertex numbers to vertex data

and vertex pairs, (i, j), to associated edge data.

Using an adjacency matrix A, we can determine whether two vertices, v and

w, are adjacent in O(1) time. We can achieve this performance by accessing the

vertices v and w to determine their respective indices i and j, and then testing

whether the cell A[i, j] is null or not. This performance achievement is traded off

by an increase in the space usage, however, which is now O(n2), and in the running

time of some other graph operations as well. For example, listing out the incident

edges or adjacent vertices for a vertex v now requires that we examine an entire

row or column of the array, A, representing the graph, which takes O(n) time.

Deciding which representation to use for a particular graph, G, typically boils

down to determining how dense G is. For instance, if G has close to a quadratic

number of edges, then the adjacency matrix is often a good choice for representing

G, but if G has close to a linear number of edges, then the adjacency list repre-

sentation is probably superior. The graph algorithms we examine in this chapter

tend to run most efficiently when acting upon a graph stored using an adjacency list

representation.

We illustrate an example adjacency matrix in Figure 13.4.

www.it-ebooks.info

http://www.it-ebooks.info/

364 Chapter 13. Graphs and Traversals

JFK

BOS

MIA

ORD

LAX
DFW

SFO

TW 45

AA 411

AA 1387

A
A

 9
03

D
L

 2
47

AA 523

N
W

 3
5

U
A

 8
77

D
L

 3
35

AA 49

UA 12
0

(a)

0 1 2 3 4 5 6

BOS DFW JFK LAX MIA ORD SFO

(b)

0 1 2 3 4 5 6

0 Ø Ø NW

35

Ø DL

247

Ø Ø

1 Ø Ø Ø AA

49

Ø DL

335

Ø

2 Ø AA

1387

Ø Ø AA

903

Ø TW

45

3 Ø Ø Ø Ø Ø UA

120

Ø

4 Ø AA

523

Ø AA

411

Ø Ø Ø

5 Ø UA

877

Ø Ø Ø Ø Ø

6 Ø Ø Ø Ø Ø Ø Ø

(c)

Figure 13.4: Schematic representation of an adjacency matrix structure. (a) A di-

rected graph G; (b) a numbering of its vertices; (c) the adjacency matrix A for G,

using a modern object-oriented viewpoint, where each cell, A[i, j], holds a pointer

to the edge object, e = (i, j), or is null if there is no such edge in G.

www.it-ebooks.info

http://www.it-ebooks.info/

13.2. Depth-First Search 365

13.2 Depth-First Search

In this section, we explore a fundamental kind of algorithmic operation that we

might wish to perform on a graph—traversing the edges and the vertices of that

graph. Specifically, a traversal is a systematic procedure for exploring a graph by

examining all of its vertices and edges. For example, a web spider, or crawler,

which is the data collecting part of a search engine, must explore a graph of hyper-

text documents by examining its vertices, which are the documents, and its edges,

which are the hyperlinks between documents. A traversal is efficient if it visits all

the vertices and edges in time proportional to their number, that is, in linear time.

The first traversal algorithm we consider is depth-first search (DFS) in an undi-

rected graph. Depth-first search is useful for performing a number of computations

on graphs, including finding a path from one vertex to another, determining whether

a graph is connected, and computing a spanning tree of a connected graph.

Traversing a Graph Using the Backtracking Technique

Depth-first search in an undirected graph G applies the backtracking technique and

is analogous to wandering in a labyrinth with a string and a can of paint without

getting lost. We begin at a specific starting vertex s in G, which we initialize by

fixing one end of our string to s and painting s as “explored.” The vertex s is now

our “current” vertex—call our current vertex v. We then traverse G by considering

an (arbitrary) edge (v, w) incident to the current vertex, v. If the edge (v, w) leads

us to an already explored (that is, painted) vertex w, then we immediately backtrack

to vertex v. If, on the other hand, (v, w) leads to an unexplored vertex, w, then

we unroll our string, and go to w. We then paint w as “explored” and make it

the current vertex, repeating the above computation. Eventually, we will get to a

“dead end,” that is, a current vertex, v, such that all the edges incident on v lead to

vertices already explored. To get out of this impasse, we roll our string back up,

backtracking along the edge that brought us to v, going back to a previously visited

vertex, u. We then make u our current vertex and repeat the above computation for

any edges incident upon u that we have not looked at before. If all of u’s incident

edges lead to visited vertices, then we again roll up our string and backtrack to the

vertex we came from to get to u, and repeat the procedure at that vertex. Thus, we

continue to backtrack along the path that we have traced so far until we find a vertex

that has yet unexplored edges, at which point we take one such edge and continue

the traversal. The process terminates when our backtracking leads us back to the

start vertex, s, and there are no more unexplored edges incident on s. This simple

process traverses the edges of G in an elegant, systematic way. (See Figure 13.5.)

www.it-ebooks.info

http://www.it-ebooks.info/

366 Chapter 13. Graphs and Traversals

M N O P

I J K L

E F G H

A B C D

M N O P

I J K L

E F G H

A B C D

(a) (b)

M N O P

I J K L

E F G H

A B C D

M N O P

I J K L

E F G H

A B C D

(c) (d)

M N O P

I J K L

E F G H

A B C D

M N O P

I J K L

E F G H

A B C D

(e) (f)

Figure 13.5: Example of depth-first search traversal on a graph starting at vertex A.

Discovery edges are drawn with solid lines and back edges are drawn with dashed

lines. The current vertex is drawn with a thick line: (a) input graph; (b) path of

discovery edges traced from A until back edge (B,A) is hit; (c) reaching F, which

is a dead end; (d) after backtracking to C, resuming with edge (C,G), and hitting

another dead end, J; (e) after backtracking to G; (f) after backtracking to N.

www.it-ebooks.info

http://www.it-ebooks.info/

13.2. Depth-First Search 367

Visualizing Depth-First Search

We can visualize a DFS traversal by orienting the edges along the direction in which

they are explored during the traversal, distinguishing the edges used to discover

new vertices, called discovery edges, or tree edges, from those that lead to already

explored vertices, called back edges. (See Figure 13.5f.) In the analogy above,

discovery edges are the edges where we unroll our string when we traverse them,

and back edges are the edges where we immediately return without unrolling any

string. The discovery edges form a spanning tree of the connected component of

the starting vertex s, called DFS tree. We call the edges not in the DFS tree “back

edges,” because, assuming that the DFS tree is rooted at the start vertex, each such

edge leads back from a vertex in this tree to one of its ancestors in the tree.

Recursive Depth-First Search

The pseudocode for a DFS traversal starting at a vertex v follows our analogy with

string and paint based on the backtracking technique. We use recursion to imple-

ment this approach. We assume that we have a mechanism (similar to the painting

analogy) to determine if a vertex or edge has been explored or not, and to label the

edges as discovery edges or back edges.

A pseudocode description of recursive DFS is given in Algorithm 13.6.

Algorithm DFS(G, v):
Input: A graph G and a vertex v in G
Output: A labeling of the edges in the connected component of v as discovery

edges and back edges, and the vertices in the connected component of v as

explored

Label v as explored

for each edge, e, that is incident to v in G do
if e is unexplored then

Let w be the end vertex of e opposite from v
if w is unexplored then

Label e as a discovery edge

DFS(G, w)
else

Label e as a back edge

Algorithm 13.6: A recursive description of the DFS algorithm for searching from a

vertex, v.

www.it-ebooks.info

http://www.it-ebooks.info/

368 Chapter 13. Graphs and Traversals

Properties of the Depth-First Search Algorithm

There are a number of observations that we can make about the depth-first search

algorithm, many of which derive from the way the DFS algorithm partitions the

edges of the undirected graph G into two groups, the discovery edges and the back

edges. For example, since back edges always connect a vertex v to a previously

visited vertex u, each back edge implies a cycle in G, consisting of the discovery

edges from u to v plus the back edge (v, u).
Theorem 13.12, which follows, identifies some other important properties of

the depth-first search traversal method.

Theorem 13.12: Let G be an undirected graph on which a DFS traversal starting
at a vertex s has been performed. Then the traversal visits all the vertices in the
connected component of s, and the discovery edges form a spanning tree of the
connected component of s.

Proof: Suppose, for the sake of a contradiction, there is at least one vertex v in

s’s connected component not visited. Let w be the first unvisited vertex on some

path from s to v (we may have v = w). Since w is the first unvisited vertex on

this path, it has a neighbor u that was visited. But when we visited u, we must

have considered the edge (u, w); hence, it cannot be correct that w is unvisited.

Therefore, there are no unvisited vertices in s’s connected component. Since we

only mark edges when we go to unvisited vertices, we will never form a cycle

with discovery edges, that is, the discovery edges form a tree. Moreover, this is

a spanning tree because the depth-first search visits each vertex in the connected

component of s.

The depth-first search algorithm for searching all the vertices in a graph, G, is

shown in Algorithm 13.7.

Algorithm DFS(G):
Input: A graph G
Output: A labeling of the vertices in each connected component of G as ex-

plored

Initially label each vertex in v as unexplored

for each vertex, v, in G do
if v is unexplored then

DFS(G, v)

Algorithm 13.7: The DFS algorithm for searching an entire graph, G. Each time we

make a call, DFS(G, v), to the recursive depth-first algorithm for searching from a

vertex, v, we traverse a different connected component of G.

www.it-ebooks.info

http://www.it-ebooks.info/

13.2. Depth-First Search 369

Analyzing Depth-First Search

In terms of its running time, depth-first search is an efficient method for traversing

a graph. Note that DFS is called exactly once on each vertex, and that every edge

is examined exactly twice, once from each of its end vertices. Let ms denote the

number of edges in the connected component of vertex s. A DFS starting at s runs

in O(ms) time provided the following conditions are satisfied:

• The graph is represented by a data structure that allows us to find all the

incident edges for a vertex, v, in O(degree(v)) time. Note that the adjacency

list structure satisfies this property, the adjacency matrix structure does not.

• We need to have a way to “mark” a vertex or edge as explored, and to test if a

vertex or edge has been explored in O(1) time. One way to do such marking

is to design vertex objects and edge objects so that they each contain a visited
flag. Another way is to use an auxiliary hash table to store the explored

vertices and edges, and have a Boolean explored value associated with the

vertex and edge keys in this hash table. Yet another way is to design vertex

and edge objects so that they each have a small hash table associated with

them that can be used to add “decorator” fields to these objects.

By Theorem 13.12, we can use DFS to solve a number of interesting problems

for an undirected graph, as shown in the following theorem.

Theorem 13.13: Let G be a graph with n vertices and m edges represented with
the adjacency list structure. A DFS traversal of G can be performed in O(n + m)
time. Also, there exist O(n + m)-time algorithms based on DFS for the following
problems:

• Testing whether G is connected

• Computing a spanning forest of G

• Computing the connected components of G

• Computing a path between two vertices of G, or reporting that no such path
exists

• Computing a cycle in G, or reporting that G has no cycles.

The justification of Theorem 13.13 is based on algorithms that use the depth-

first search algorithm or a slightly modified versions of the DFS algorithm. We

explore the details of the proof of this theorem in several exercises.

www.it-ebooks.info

http://www.it-ebooks.info/

370 Chapter 13. Graphs and Traversals

13.3 Breadth-First Search

In this section, we consider the breadth-first search (BFS) traversal algorithm. Like

DFS, BFS traverses a connected component of a graph, and in so doing, defines

a useful spanning tree. Instead of searching recursively, however, BFS proceeds

in rounds and subdivides the vertices into levels, which represent the minimum

number of edges from the start vertex to each vertex.

BFS starts at a given start vertex, s, which is at level 0 and defines the “anchor”

for our string. In the first round, we explore all the vertices we can reach in one

edge, marking each as explored. These vertices are placed into level 1. In the

second round, we explore all the vertices that can be reached in two edges from

the start vertex. These new vertices, which are adjacent to level 1 vertices and not

previously assigned to a level, are placed into level 2, and so on. The BFS traversal

terminates when every vertex has been visited. Pseudo-code for a BFS traversal

starting at a vertex s is shown in Algorithm 13.8. We use auxiliary space to label

edges, mark visited vertices, and store lists associated with levels. That is, the lists

L0, L1, L2, and so on, store the nodes that are in level 0, level 1, level 2, and so on.

Algorithm BFS(G, s):
Input: A graph G and a vertex s of G
Output: A labeling of the edges in the connected component of s as discovery

edges and cross edges

Create an empty list, L0

Mark s as explored and insert s into L0

i ← 0
while Li is not empty do

create an empty list, Li+1

for each vertex, v, in Li do
for each edge, e = (v, w), incident on v in G do

if edge e is unexplored then
if vertex w is unexplored then

Label e as a discovery edge

Mark w as explored and insert w into Li+1

else
Label e as a cross edge

i ← i + 1

Algorithm 13.8: BFS traversal of a graph.

We illustrate a BFS traversal in Figure 13.9.

www.it-ebooks.info

http://www.it-ebooks.info/

13.3. Breadth-First Search 371

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

(a) (b)

M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

(c) (d)

M N O P

I J K L

E F G H

A B C D

4

0 1 2 3

M N O P

I J K L

E F G H

A B C D

4

5

0 1 2 3

(e) (f)

Figure 13.9: Example of breadth-first search traversal. The discovery edges are

shown with solid lines and the cross edges are shown with dashed lines: (a) graph

before the traversal; (b) discovery of level 1; (c) discovery of level 2; (d) discovery

of level 3; (e) discovery of level 4; (f) discovery of level 5.

www.it-ebooks.info

http://www.it-ebooks.info/

372 Chapter 13. Graphs and Traversals

One of the nice properties of the BFS approach is that, in performing the BFS

traversal, we can label each vertex by the length of a shortest path (in terms of the

number of edges) from the start vertex s. In particular, if vertex v is placed into

level i by a BFS starting at vertex s, then the length of a shortest path from s to v
is i.

As with DFS, we can visualize the BFS traversal by orienting the edges along

the direction in which they are explored during the traversal, and by distinguishing

the edges used to discover new vertices, called discovery edges, from those that

lead to already visited vertices, called cross edges. (See Figure 13.9f.) As with the

DFS, the discovery edges form a spanning tree, which in this case we call the BFS
tree. We do not call the nontree edges “back edges” in this case, however, for none

of them connects a vertex to one of its ancestors. Every nontree edge connects a

vertex v to another vertex that is neither v’s ancestor nor its descendant.

The BFS traversal algorithm has a number of interesting properties, some of

which we state in the theorem that follows.

Theorem 13.14: Let G be an undirected graph on which a BFS traversal starting
at vertex s has been performed. Then we have the following:

• The traversal visits all the vertices in the connected component of s.

• The discovery edges form a spanning tree T of the connected component
of s.

• For each vertex v at level i, the path of tree T between s and v has i edges,
and any other path of G between s and v has at least i edges.

• If (u, v) is a cross edge, then the level numbers of u and v differ by at most 1.

We leave the justification of this theorem as an exercise (C-13.17). The analysis

of the running time of BFS is similar to the one of DFS.

Theorem 13.15: Let G be a graph with n vertices and m edges represented with
the adjacency list structure. A BFS traversal of G takes O(n+m) time. Also, there
exist O(n + m)-time algorithms based on BFS for the following problems:

• Testing whether G is connected

• Computing a spanning forest of G

• Computing the connected components of G

• Given a start vertex s of G, computing, for every vertex v of G, a path with
the minimum number of edges between s and v, or reporting that no such
path exists

• Computing a cycle in G, or reporting that G has no cycles.

www.it-ebooks.info

http://www.it-ebooks.info/

13.4. Directed Graphs 373

13.4 Directed Graphs

In this section, we consider issues that are specific to directed graphs. Recall that a

directed graph, or digraph, is a graph that has only directed edges.

A fundamental issue with directed graphs is the notion of reachability, which

deals with determining where we can get to in a directed graph. For example, in a

graph whose vertices represent college courses and whose directed edges represent

prerequisites, it is important to know which courses depend on a given other course

as an explicit or implicit prerequisite. A traversal in a directed graph always goes

along directed paths, that is, paths where all the edges are traversed according to

their respective directions. Given vertices u and v of a digraph �G, we say that u
reaches v (and v is reachable from u) if �G has a directed path from u to v.

A digraph �G is strongly connected if, for any two vertices u and v of �G, u
reaches v and v reaches u. A directed cycle of �G is a cycle where all the edges are

traversed according to their respective directions. (Note that �G may have a cycle

consisting of two edges with opposite direction between the same pair of vertices.)

A digraph �G is acyclic if it has no directed cycles. (See Figure 13.10 for examples.)

JFK

BOS

MIA

ORD

LAX
DFW

SFO

JFK

BOS

MIA

ORD

LAX
DFW

SFO

(a) (b)

JFK

BOS

MIA

ORD

LAX
DFW

SFO

JFK

BOS

MIA

ORD

LAX
DFW

SFO

(c) (d)

Figure 13.10: Examples of reachability in a digraph: (a) a directed path from BOS

to LAX is drawn with thick lines; (b) a directed cycle (ORD, MIA, DFW, LAX,

ORD) is drawn with thick lines; its vertices induce a strongly connected subgraph;

(c) the subgraph of the vertices and edges reachable from ORD is shown with thick

lines; (d) removing the dashed edges gives an acyclic digraph.

www.it-ebooks.info

http://www.it-ebooks.info/

374 Chapter 13. Graphs and Traversals

The transitive closure of a digraph, �G, is the digraph �G∗ such that the vertices

of �G∗ are the same as the vertices of �G, and �G∗ has an edge (u, v), whenever �G has

a directed path from u to v. That is, we define �G∗ by starting with the digraph, �G,

and adding in an extra edge (u, v), for each u and v such that v is reachable from u

(and there isn’t already an edge (u, v) in �G).

Interesting problems that deal with reachability in a digraph, �G, include finding

all the vertices of �G that are reachable from a given vertex s, determining whether
�G is strongly connected, determining whether �G is acyclic, and computing the

transitive closure �G∗ of �G.

13.4.1 Traversing a Digraph

As with undirected graphs, we can explore a digraph in a systematic way with

slight modifications to the depth-first search (DFS) and breadth-first search (BFS)

algorithms defined previously for undirected graphs (Sections 13.2 and 13.3). Such

explorations can be used, for example, to answer reachability questions. The di-

rected depth-first search and breadth-first search methods we develop in this section

for performing such explorations are very similar to their undirected counterparts.

In fact, the main difference is that the directed depth-first search and breadth-first

search methods only traverse edges according to their respective directions. For

instance, see Algorithm 13.11 for a possible extension of DFS to directed graphs

(and see Exercise C-13.13 for another).

Algorithm DirectedDFS(G, v):
Label v as active // Every vertex is initially unexplored

for each outgoing edge, e, that is incident to v in G do
if e is unexplored then

Let w be the destination vertex for e
if w is unexplored and not active then

Label e as a discovery edge

DirectedDFS(G, w)
else if w is active then

Label e as a back edge

else
Label e as a forward/cross edge

Label v as explored

Algorithm 13.11: A recursive description of the DirectedDFS algorithm for search-

ing from a vertex, v.

We illustrate a directed version of DFS starting at a vertex, BOS, in Fig-

ure 13.12.

www.it-ebooks.info

http://www.it-ebooks.info/

13.4. Directed Graphs 375

JFK

BOS

MIA

ORD

LAX
DFW

SFO

1

2

4
3

5
JFK

BOS

MIA

ORD

LAX
DFW

SFO

1

2

4
3

6

5

7

(a) (b)

Figure 13.12: An example of a DFS in a digraph: (a) intermediate step, where,

for the first time, an already visited vertex (DFW) is reached; (b) the completed

DFS. The order in which the vertices are visited is indicated by a label next to each

vertex. Discovery edges are shown with thick solid lines, back edges are shown

with thick dashed lines, and forward edges are shown with thin dashed lines. For

instance, (ORD,DFW) is a back edge and (DFW,ORD) is a forward edge. If there

were an edge (SFO,LAX), it would be a cross edge.

A directed DFS on a digraph, �G, partitions the edges of �G reachable from

the starting vertex into discovery edges or tree edges, which lead us to discover a

new vertex, and nontree edges, which take us to a previously visited vertex. The

discovery edges form a tree rooted at the starting vertex, called the directed DFS
tree. Also, we can distinguish three kinds of nontree edges (see Figure 13.12b):

• back edges, which connect a vertex to an ancestor in the DFS tree

• forward edges, which connect a vertex to a descendant in the DFS tree

• cross edges, which connect a vertex to a vertex that is neither its ancestor nor

its descendant.

Theorem 13.16: Let �G be a digraph. Depth-first search on �G, starting at a vertex
s, visits all the vertices of �G that are reachable from s. Also, the DFS tree contains
directed paths from s to every vertex reachable from s.

Proof: Let Vs be the subset of vertices of �G visited by DFS starting at vertex

s. We want to show that Vs contains s and every vertex reachable from s belongs

to Vs. Suppose, for the sake of a contradiction, that there is a vertex w reachable

from s that is not in Vs. Consider a directed path from s to w, and let (u, v) be the

first edge on such a path taking us out of Vs, that is, u is in Vs but v is not in Vs.

When DFS reaches u, it explores all the outgoing edges of u, and thus must also

reach vertex v via edge (u, v). Hence, v should be in Vs, and we have obtained a

contradiction. Therefore, Vs must contain every vertex reachable from s.

www.it-ebooks.info

http://www.it-ebooks.info/

376 Chapter 13. Graphs and Traversals

Analyzing the running time of the directed DFS method is analogous to that

for its undirected counterpart. A recursive call is made for each vertex exactly

once, and each edge is traversed exactly once (along its direction). Hence, if the

subgraph reachable from a vertex s has ms edges, a directed DFS starting at s runs

in O(ns + ms) time, provided the digraph is represented with an adjacency list.

By Theorem 13.16, we can use DFS to find all the vertices reachable from a

given vertex, and hence to find the transitive closure of �G. That is, we can perform

a DFS, starting from each vertex v of �G, to see which vertices w are reachable

from v, adding an edge (v, w) to the transitive closure for each such w. Likewise,

by repeatedly traversing digraph �G with a DFS, starting in turn at each vertex, we

can easily test whether �G is strongly connected. Therefore, �G is strongly connected

if each DFS visits all the vertices of �G.

Theorem 13.17: Let �G be a digraph with n vertices and m edges. The following
problems can be solved by an algorithm that runs in O(n(n + m)) time:

• Computing, for each vertex v of �G, the subgraph reachable from v
• Testing whether �G is strongly connected
• Computing the transitive closure �G∗ of �G.

Testing for Strong Connectivity

Actually, we can determine if a directed graph �G is strongly connected much faster

than O(n(n + m)) time, just using two depth-first searches. We begin by perform-

ing a DFS of our directed graph �G starting at an arbitrary vertex s. If there is any

vertex of �G that is not visited by this DFS, and is not reachable from s, then the

graph is not strongly connected. So, if this first DFS visits each vertex of �G, then

we reverse all the edges of �G (using the reverseDirection method) and perform

another DFS starting at s in this “reverse” graph. If every vertex of �G is visited

by this second DFS, then the graph is strongly connected, for each of the vertices

visited in this DFS can reach s. Since this algorithm makes just two DFS traversals

of �G, it runs in O(n + m) time.

Directed Breadth-First Search

As with DFS, we can extend breadth-first search (BFS) to work for directed graphs.

A pseudocode description is essentially the same as that shown in Algorithm 13.8.

The algorithm still visits vertices level by level and partitions the set of edges into

tree edges (or discovery edges), which together form a directed breadth-first search
tree rooted at the start vertex, and nontree edges. Unlike the directed DFS method,

however, the directed BFS method only leaves two kinds of nontree edges:

• back edges, which connect a vertex to one of its ancestors

• cross edges, which connect a vertex to another vertex that is neither its an-

cestor nor its descendant.

www.it-ebooks.info

http://www.it-ebooks.info/

13.4. Directed Graphs 377

Modifying BFS for Directed Graphs

Thus, the only change needed in order to modify the pseudocode description of

BFS shown in Algorithm 13.8 to work for directed graphs is to label each nontree

edge as a back/cross edge. We explore how to distinguish between back and cross

nontree edges with respect to a directed BFS tree in Exercise C-13.11. There are

no forward edges, which is a fact we explore in an exercise (C-13.12).

13.4.2 Transitive Closure

In this section, we explore an alternative technique for computing the transitive clo-

sure of a digraph. That is, we describe a direct method for determining all pairs of

vertices (v, w) in a directed graph such that w is reachable from v. Such informa-

tion is useful, for example, in computer networks, for it allows us to immediately

know if we can route a message from a node v to a node w, or whether it is appro-

priate to say “you can’t get there from here” with respect to this message.

The Floyd-Warshall Algorithm

Let �G be a digraph with n vertices and m edges. We compute the transitive closure

of �G in a series of rounds. We initialize �G0 = �G. We also arbitrarily number the

vertices of �G as

v1, v2, . . . , vn.

We then begin the computation of the rounds, beginning with round 1. In a generic

round k, we construct digraph �Gk starting with �Gk = �Gk−1 and adding to �Gk the

directed edge (vi, vj) if digraph �Gk−1 contains both the edges (vi, vk) and (vk, vj).
In this way, we will enforce a simple rule embodied in the lemma that follows.

Lemma 13.18: For i = 1, . . . , n, digraph �Gk has an edge (vi, vj) if and only if

digraph �G has a directed path from vi to vj , whose intermediate vertices (if any)

are in the set {v1, . . . , vk}. In particular, �Gn is equal to �G∗, the transitive closure

of �G.

This lemma suggests a simple dynamic programming algorithm (Chapter 12)

for computing the transitive closure of �G, which is known as the Floyd-Warshall
algorithm. Pseudo-code for this method is given in Algorithm 13.13.

www.it-ebooks.info

http://www.it-ebooks.info/

378 Chapter 13. Graphs and Traversals

Algorithm FloydWarshall(�G):
Input: A digraph �G with n vertices

Output: The transitive closure �G∗ of �G

Let v1, v2, . . . , vn be an arbitrary numbering of the vertices of �G
�G0 ← �G
for k ← 1 to n do

�Gk ← �Gk−1

for i ← 1 to n, i 	= k do
for j ← 1 to n, j 	= i, k do

if both edges (vi, vk) and (vk, vj) are in �Gk−1 then
if �Gk does not contain directed edge (vi, vj) then

add directed edge (vi, vj) to �Gk

return �Gn

Algorithm 13.13: The Floyd-Warshall algorithm. This dynamic programming algo-

rithm computes the transitive closure �G∗ of G by incrementally computing a series

of digraphs �G0, �G1, . . . , �Gn, for k = 1, . . . , n.

Analysis of the Floyd-Warshall Algorithm

The running time of the Floyd-Warshall algorithm is easy to analyze. The main

loop is executed n times and the inner loop considers each of O(n2) pairs of

vertices, performing a constant-time computation for each pair. If we use a data

structure, such as the adjacency matrix structure, that supports methods areAdja-
cent and insertDirectedEdge in O(1) time, we have that the total running time

is O(n3). Thus, we have the following.

Theorem 13.19: Let �G be a digraph with n vertices represented by the adjacency
matrix structure. The Floyd-Warshall algorithm computes the transitive closure �G∗
of �G in O(n3) time.

Let us now compare the running time of the Floyd-Warshall algorithm with that

of the more complicated algorithm of Theorem 13.17, which repeatedly performs a

DFS n times, starting at each vertex. If the digraph is represented by an adjacency

matrix structure, then a DFS traversal takes O(n2) time (we explore the reason for

this in an exercise). Thus, running DFS n times takes O(n3) time, which is no

better than a single execution of the Floyd-Warshall algorithm.

If the digraph is represented by an adjacency list structure, then running the

DFS algorithm n times would take O(n(n + m)) time. Even so, if the graph is

dense, that is, if it has Θ(n2) edges, then this approach still runs in O(n3) time.

Thus, the only case where the algorithm of Theorem 13.17 is better than the

Floyd-Warshall algorithm is when the graph is not dense and is represented using

an adjacency list structure.

We illustrate an example run of the Floyd-Warshall algorithm in Figure 13.14.

www.it-ebooks.info

http://www.it-ebooks.info/

13.4. Directed Graphs 379

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v5

v6

v7

v4

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v5

v6

v7

v4

(a) (b)

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v5

v6

v7

v4 v4

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1

v3

v5

v6

v7

JFK

(c) (d)

BOS

MIA

DFW

SFO

v2

v1

v3

v5

v6

v7

LAX

JFK

ORD

v4

JFK

BOS

MIA

ORD

DFW

SFO

v2

v1

v3

v4

v5

v6

v7

LAX

(e) (f)

Figure 13.14: Sequence of digraphs computed by the Floyd-Warshall algorithm: (a)

initial digraph �G = �G0 and numbering of the vertices; (b) digraph �G1; (c) �G2; (d)
�G3; (e) �G4; (f) �G5. Note that �G5 = �G6 = �G7. If digraph �Gk−1 has the edges

(vi, vk) and (vk, vj), but not the edge (vi, vj), in the drawing of digraph �Gk, we

show edges (vi, vk) and (vk, vj) with dashed thin lines, and edge (vi, vj) with a

solid thick line.

www.it-ebooks.info

http://www.it-ebooks.info/

380 Chapter 13. Graphs and Traversals

13.4.3 Directed DFS and Garbage Collection
In some languages, like C and C++, the memory space for objects must be explicitly

allocated and deallocated by the programmer. This memory-allocation duty is often

overlooked by beginning programmers, and, when done incorrectly, it can even be

the source of frustrating programming errors for experienced programmers. Thus,

the designers of other languages, like Java, place the burden of memory manage-

ment on the runtime environment. A Java programmer does not have to explicitly

deallocate the memory for some object when its life is over. Instead, a garbage
collector mechanism deallocates the memory for such objects.

In Java, memory for most objects is allocated from a pool of memory called

the “memory heap” (not to be confused with the heap data structure). In addition,

a running program stores the space for its instance variables in its method stack

(Section 2.1.1). Since instance variables in a method stack can refer to objects in the

memory heap, all the variables and objects in a method stack is called a root object.
All those objects that can be reached by following object references that start from

a root object are called live objects. The live objects are the active objects currently

being used by the running program; these objects should not be deallocated. For

example, a running Java program may store, in a variable, a reference to a sequence

S that is implemented using a doubly linked list. The reference variable to S is a

root object, while the object for S is a live object, as are all the node objects that

are referenced from this object and all the elements that are referenced from these

node objects.

From time to time, the Java virtual machine (JVM) may notice that available

space in the memory heap is becoming scarce. At such times, the JVM can elect to

reclaim the space that is being used for objects that are no longer live. This reclama-

tion process is known as garbage collection. There are several different algorithms

for garbage collection, but one of the most used is the mark-sweep algorithm.

The Mark-Sweep Algorithm

In the mark-sweep garbage collection algorithm, we associate a “mark” bit with

each object that identifies if that object is live or not. When we determine at some

point that garbage collection is needed, we suspend all other running threads and

clear all of the mark bits of objects currently allocated in the memory heap. We then

trace through the Java stacks of the currently running threads and we mark all of the

(root) objects in these stacks as “live.” We must then determine all of the other live

objects—the ones that are reachable from the root objects. To do this efficiently,

we should use the directed-graph version of the depth-first search traversal. In this

case, each object in the memory heap is viewed as a vertex in a directed graph,

and the reference from one object to another is viewed as an edge. By performing

a directed DFS from each root object, we can correctly identify and mark each

live object. This process is known as the “mark” phase. Once this process has

www.it-ebooks.info

http://www.it-ebooks.info/

13.4. Directed Graphs 381

completed, we then scan through the memory heap and reclaim any space that is

being used for an object that has not been marked. This scanning process is known

as the “sweep” phase, and when it completes, we resume running the suspended

threads. Thus, the mark-sweep garbage collection algorithm will reclaim unused

space in time proportional to the number of live objects and their references plus

the size of the memory heap.

Performing DFS In-place

The mark-sweep algorithm correctly reclaims unused space in the memory heap,

but there is an important issue we must face during the mark phase. Since we are

reclaiming memory space at a time when available memory is scarce, we must take

care not to use extra space during the garbage collection itself. The trouble is that

the DFS algorithm, in the recursive way we have described it, can use space pro-

portional to the number of vertices in the graph. In the case of garbage collection,

the vertices in our graph are the objects in the memory heap; hence, we don’t have

this much memory to use. So our only alternative is to find a way to perform DFS

in-place rather than recursively, that is, we must perform DFS using only a constant

amount of additional storage.

The main idea for performing DFS in-place is to simulate the recursion stack

using the edges of the graph (which in the case of garbage collection correspond to

object references). Whenever we traverse an edge from a visited vertex v to a new

vertex w, we change the edge (v, w) stored in v’s adjacency list to point back to v’s

parent in the DFS tree. When we return back to v (simulating the return from the

“recursive” call at w), we can now switch the edge we modified to point back to w.

Of course, we need to have some way of identifying which edge we need to change

back. One possibility is to number the references going out of v as 1, 2, and so on,

and store, in addition to the mark bit (which we are using for the “visited” tag in

our DFS), a count identifier that tells us which edges we have modified.

Using a count identifier of course requires an extra word of storage per object.

This extra word can be avoided in some implementations, however. For example,

many implementations of the Java virtual machine represent an object as a com-

position of a reference with a type identifier (which indicates if this object is an

Integer or some other type) and as a reference to the other objects or data fields for

this object. Since the type reference is always supposed to be the first element of

the composition in such implementations, we can use this reference to “mark” the

edge we changed when leaving an object v and going to some object w. We simply

swap the reference at v that refers to the type of v with the reference at v that refers

to w. When we return to v, we can quickly identify the edge (v, w) we changed,

because it will be the first reference in the composition for v, and the position of the

reference to v’s type will tell us the place where this edge belongs in v’s adjacency

list. Thus, whether we use this edge-swapping trick or a count identifier, we can

implement DFS in-place without affecting its asymptotic running time.

www.it-ebooks.info

http://www.it-ebooks.info/

382 Chapter 13. Graphs and Traversals

13.4.4 Directed Acyclic Graphs
A directed graph without cycles is referred to as a directed acyclic graph, or dag,

for short. Applications of such graphs include the following:

• Inheritance between C++ classes or Java interfaces

• Prerequisites between courses of a degree program

• Scheduling constraints between the tasks of a project.

Example 13.20: In order to manage a large project, it is convenient to break it up
into a collection of smaller tasks. The tasks, however, are rarely independent, be-
cause scheduling constraints exist between them. (For example, in a house building
project, the task of ordering nails obviously precedes the task of nailing shingles to
the roof deck.) Clearly, scheduling constraints cannot have circularities, because a
circularity would make the project impossible. (For example, in order to get a job
you need to have work experience, but in order to get work experience you need to
have a job.) The scheduling constraints impose restrictions on the order in which
the tasks can be executed. Namely, if a constraint says that task a must be com-
pleted before task b is started, then a must precede b in the order of execution of
the tasks. Thus, if we model a feasible set of tasks as vertices of a directed graph,
and we place a directed edge from v to w whenever the task for v must be executed
before the task for w, then we define a directed acyclic graph.

The above example motivates the following definition. Let �G be a digraph with

n vertices. A topological ordering of �G is an ordering (v1, v2, . . . , vn) of the ver-

tices of �G such that for every edge (vi, vj) of �G, i < j. That is, a topological

ordering is an ordering such that any directed path in �G traverses vertices in in-

creasing order. (See Figure 13.15.) Note that a digraph may have more than one

topological ordering.

A

C

E

H

G

D

F

I

B
1 2

4

3

6

8

5

9

7

A

C

E

H

G

D

F

I

B
1 4

5

2

3

7

6

9

8

(a) (b)

Figure 13.15: Two topological orderings of the same acyclic digraph.

www.it-ebooks.info

http://www.it-ebooks.info/

13.4. Directed Graphs 383

Theorem 13.21: A digraph has a topological ordering if and only if it is acyclic.

Proof: The necessity (the “only if” part of the statement) is easy to demonstrate.

Suppose �G is topologically ordered. Assume, for the sake of a contradiction, that
�G has a cycle consisting of edges (vi0 , vi1), (vi1 , vi2), . . . , (vik−1

, vi0). Because of

the topological ordering, we must have i0 < i1 < · · · < ik−1 < i0, which is clearly

impossible. Thus, �G must be acyclic.

We now argue sufficiency (the “if” part). Suppose �G is acyclic. We describe an

algorithm to build a topological ordering for �G. Since �G is acyclic, �G must have a

vertex with no incoming edges (that is, with in-degree 0). Let v1 be such a vertex.

Indeed, if v1 did not exist, then in tracing a directed path from an arbitrary start ver-

tex we would eventually encounter a previously visited vertex, thus contradicting

the acyclicity of �G. If we remove v1 from �G, together with its outgoing edges, the

resulting digraph is still acyclic. Hence, the resulting digraph also has a vertex with

no incoming edges, and we let v2 be such a vertex. By repeating this process until
�G becomes empty, we obtain an ordering v1, . . . ,vn of the vertices of �G. Because

of the above construction, if (vi, vj) is an edge of �G, then vi must be deleted before

vj can be deleted, and thus i < j. Thus, v1, . . . , vn is a topological ordering.

The above proof suggests Algorithm 13.16, called topological sorting.

Algorithm TopologicalSort(�G):
Input: A digraph �G with n vertices.

Output: A topological ordering v1, . . . ,vn of �G or �G has a cycle.

Let S be an initially empty stack

for each vertex u of �G do
incounter(u) ← indeg(u)
if incounter(u) = 0 then

S.push(u)
i ← 1
while S is not empty do

u ← S.pop()
number u as the i-th vertex vi

i ← i + 1
for each edge e ∈ �G.outIncidentEdges(u) do

w ← �G.opposite(u, e)
incounter(w) ← incounter(w) − 1
if incounter(w) = 0 then

S.push(w)
if i > n then

return v1, · · · , vn

return “digraph �G has a directed cycle”

Algorithm 13.16: Topological sorting algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

384 Chapter 13. Graphs and Traversals

Theorem 13.22: Let �G be a digraph with n vertices and m edges. The topo-
logical sorting algorithm runs in O(n + m) time using O(n) auxiliary space, and

either computes a topological ordering of �G or fails to number some vertices, which
indicates that �G has a directed cycle.

Proof: The initial computation of in-degrees and setup of the incounter variables

can be done with a simple traversal of the graph, which takes O(n + m) time. We

use an extra field in graph nodes or we use the decorator pattern, described in the

next section, to associate counter attributes with the vertices. Say that a vertex u is

visited by the topological sorting algorithm when u is removed from the stack S.

A vertex u can be visited only when incounter(u) = 0, which implies that all its

predecessors (vertices with outgoing edges into u) were previously visited. As a

consequence, any vertex that is on a directed cycle will never be visited, and any

other vertex will be visited exactly once. The algorithm traverses all the outgoing

edges of each visited vertex once, so its running time is proportional to the number

of outgoing edges of the visited vertices. Therefore, the algorithm runs in O(n +
m) time. Regarding the space usage, observe that the stack S and the incounter

variables attached to the vertices use O(n) space.

As a side effect, the algorithm also tests whether the input digraph �G is acyclic.

Indeed, if the algorithm terminates without ordering all the vertices, then the sub-

graph of the vertices that have not been ordered must contain a directed cycle. (See

Figure 13.17.)

(a) (b)

Figure 13.17: Detecting a directed cycle: (a) input digraph; (b) after algorithm

TopologicalSort (Algorithm 13.16) terminates, the subgraph of the vertices with

undefined number contains a directed cycle.

We visualize the topological sorting algorithm in Figure 13.18.

www.it-ebooks.info

http://www.it-ebooks.info/

13.4. Directed Graphs 385

A

C

E

G

D

F

H

B
? 0 ? 0

? 1

? 3

? 1

? 2

? 2

? 3

A

C

E

G

D

F

H

B
1 0 ? 0

? 0

? 2

? 1

? 2

? 2

? 3

A

C

E

G

D

F

H

B
1 0 ? 0

2 0

? 1

? 0

? 2

? 2

? 2

(a) (b) (c)

A

C

E

G

D

F

H

B
1 0 ? 0

2 0

? 1

3 0

? 2

? 1

? 2

A

C

E

G

D

F

H

B
1 0 4 0

2 0

? 0

3 0

? 1

? 1

? 2

A

C

E

G

D

F

H

B
1 0 4 0

2 0

5 0

3 0

? 0

? 1

? 2

(d) (e) (f)

A

C

E

G

D

F

H

B
1 0 4 0

2 0

5 0

3 0

6 0

? 0

? 1

A

C

E

G

D

F

H

B
1 0 4 0

2 0

5 0

3 0

6 0

7 0

? 0

A

C

E

G

D

F

H

B
1 0 4 0

2 0

5 0

3 0

6 0

7 0

8 0

(g) (h) (i)

Figure 13.18: Example of a run of algorithm TopologicalSort (Algorithm 13.16):

(a) initial configuration; (b–i) after each while-loop iteration. The vertex labels

give the vertex number and the current incounter value. The edges traversed in

previous iterations are drawn with thick solid lines. The edges traversed in the

current iteration are drawn with thick dashed lines.

www.it-ebooks.info

http://www.it-ebooks.info/

386 Chapter 13. Graphs and Traversals

13.5 Biconnected Components
Let G be a connected undirected graph. A separation edge of G is an edge whose

removal disconnects G. A separation vertex is a vertex whose removal discon-

nects G. Separation edges and vertices correspond to single points of failure in a

network; hence, we often wish to identify them. A connected graph G is bicon-
nected if, for any two vertices u and v of G, there are two disjoint paths between

u and v, that is, two paths sharing no common edges or vertices, except u and v.

A biconnected component of G is a subgraph satisfying one of the following (see

Figure 13.19):

• A subgraph of G that is biconnected and for which adding any additional

vertices or edges of G would force it to stop being biconnected

• A single edge of G consisting of a separation edge and its endpoints.

If G is biconnected, it has one biconnected component: G itself. If G has no cycles,

on the other hand, then each edge of G is a biconnected component. Biconnected

components are important in computer networks, where vertices represent routers

and edges represent connections, for even if a router in a biconnected component

fails, messages can still be routed in that component using the remaining routers.

As stated in the following lemma, whose proof is left as an exercise (C-13.5),

biconnectivity is equivalent to the absence of separation vertices and edges.

Lemma 13.23: Let G be a connected graph. The following are equivalent:

1. G is biconnected.
2. For any two vertices of G, there is a simple cycle containing them.
3. G does not have separation vertices or separation edges.

A

B

C

KM

D

E

G

F I

H

J

L

Figure 13.19: Biconnected components, shown circled with dashed lines. C, F ,

and K are separation vertices; (C, F) and (K, L) are separation edges.

www.it-ebooks.info

http://www.it-ebooks.info/

13.5. Biconnected Components 387

Equivalence Classes and the Linked Relation

Any time we have a collection C of objects, we can define a Boolean relation,

R(x, y), for each pair x and y in C. That is, R(x, y) is defined for each x and y in

C as being either true or false. The relation R is an equivalence relation if it has

the following properties:

• Reflexive Property: R(x, x) is true for each x in C.

• Symmetric Property: R(x, y) = R(y, x), for each pair x and y in C.

• Transitive Property: If R(x, y) is true and R(y, z) is true, then R(x, z) is

true, for every x, y, and z in C.

For example, the usual “equals” operator (=) is an equivalence relation for any set

of numbers. The equivalence class for any object x in C is the set of all objects y,

such that R(x, y) is true. Note that any equivalence relation R for a set C partitions

the set C into disjoint subsets that consist of the equivalence classes of the objects

in C.

We can define an interesting link relation on the edges of a graph G. We say

two edges e and f of G are linked if e = f or G has a simple cycle containing both

e and f . The following lemma gives fundamental properties of the link relation.

Lemma 13.24: Let G be a connected graph. Then,

1. The link relation forms an equivalence relation on the edges of G.

2. A biconnected component of G is the subgraph induced by an equivalence
class of linked edges.

3. An edge e of G is a separation edge if and only if e forms a single-element
equivalence class of linked edges.

4. A vertex v of G is a separation vertex if and only if v has incident edges in
at least two distinct equivalence classes of linked edges.

Proof: It is readily seen that the link relation is reflexive and symmetric. To

show that it is transitive, suppose that edges f and g are linked, and edges g and h
are linked. If f = g or g = h, then f = h or there is a simple cycle containing

f and h; hence, f and h are linked. Suppose, then, that f , g, and h are distinct.

That is, there is a simple cycle Cfg through f and g, and there is a simple cycle

Cgh through g and h. Consider the graph obtained by the union of cycles Cfg and

Cgh. While this graph may not be a simple cycle itself (although we could have

Cfg = Cgh), it contains a simple cycle Cfh through f and h. Thus, f and h are

linked. Therefore, the link relation is an equivalence relation.

The correspondence between equivalence classes of the link relation and bicon-

nected components of G is a consequence of Lemma 13.23.

www.it-ebooks.info

http://www.it-ebooks.info/

388 Chapter 13. Graphs and Traversals

A Linked Approach to Computing Biconnected Components via DFS

Since the equivalence classes of the link relation on the edges of G are the same

as the biconnected components, by Lemma 13.24, to construct the biconnected

components of G we need only compute the equivalence classes of the link relation

among G’s edges. To perform this computation, let us begin with a DFS traversal

of G, and construct an auxiliary graph B as follows (see Figure 13.20):

• The vertices of B are the edges of G.

• For every back edge e of G, let f1, . . . , fk be the discovery edges of G that

form a cycle with e. Graph B contains the edges (e, f1), . . . , (e, fk).
Since there are m − n + 1 back edges and each cycle induced by a back edge has

at most O(n) edges, the graph B has at most O(nm) edges.

(a)
A

B

C

KM

D

E

G

F I

H

J

L

(b)

AB

BCMB

MACM

CKKA

KL

EC

CD

DE

CF

FG

GHJG

JFHJ

HIIF

Figure 13.20: Auxiliary graph used to compute link components: (a) graph G on

which a DFS traversal has been performed (the back edges are drawn with dashed

lines); (b) auxiliary graph associated with G and its DFS traversal.

www.it-ebooks.info

http://www.it-ebooks.info/

13.5. Biconnected Components 389

An O(nm)-Time Algorithm

From Figure 13.20, it appears that each connected component in B corresponds to

an equivalence class in the link relation for the graph G. After all, we included an

edge (e, f) in B for each back edge e found on the cycle containing f that was

induced by e and the DFS spanning tree.

The following lemma, whose proof is left as an exercise (C-13.7), establishes

a strong relationship between the graph B and the equivalence classes in the link

relation on G’s components of G, where, for brevity, we call the equivalence classes

in the link relation the link components of G.

Lemma 13.25: The connected components of the auxiliary graph B correspond
to the link components of the graph G that induced B.

Lemma 13.25 yields the following O(nm)-time algorithm for computing all

the link components of a graph G with n vertices and m edges:

1. Perform a DFS traversal T on G.

2. Compute the auxiliary graph B by identifying the cycles of G induced by

each back edge with respect to T .

3. Compute the connected components of B, for example, by performing a DFS

traversal of the auxiliary graph B.

4. For each connected component of B, output the vertices of B (which are

edges of G) as a link component of G.

From the identification of the link components in G, we can then determine the

biconnected components, separation vertices, and separation edges of the graph G
in linear time. Namely, after the edges of G have been partitioned into equivalence

classes with respect to the link relation, the biconnected components, separation

vertices, and separation edges of G can be identified in O(n + m) time, using

the simple rules listed in Lemma 13.24. Unfortunately, constructing the auxiliary

graph B can take as much as O(nm) time; hence, the bottleneck computation in

this algorithm is the construction of B.

But note that we don’t actually need all of the auxiliary graph B in order to find

the biconnected components of G. We only need to identify the connected compo-

nents in B. Thus, it would actually be sufficient if we were to simply compute a

spanning tree for each connected component in B, that is, a spanning forest for B.

Since the connected components in a spanning forest for B are the same as in the

graph B itself, we don’t actually need all the edges of B—just enough of them to

construct a spanning forest of B.

Therefore, let us concentrate on how we can apply this more efficient spanning-

forest approach to compute the equivalence classes of the edges of G with respect

to the link relation.

www.it-ebooks.info

http://www.it-ebooks.info/

390 Chapter 13. Graphs and Traversals

A Linear-Time Algorithm

As outlined above, we can reduce the time required to compute the link components

of G to O(m) time by using an auxiliary graph of smaller size, which is a spanning

forest of B. The algorithm is described in Algorithm 13.21.

Algorithm LinkComponents(G):
Input: A connected graph G
Output: The link components of G

Let F be an initially empty auxiliary graph.

Perform a DFS traversal of G starting at an arbitrary vertex s.

Add each DFS discovery edge f as a vertex in F and mark f “unlinked.”

For each vertex v of G, let p(v) be the parent of v in the DFS spanning tree.

for each vertex v, in increasing rank order as visited in the DFS traversal do
for each back edge e = (u, v) with destination v do

Add e as a vertex of the graph F .

// March up from u to s adding edges to F only as necessary.

while u 	= v do
Let f be the vertex in F corresponding to the discovery edge

(u, p(u)).
Add the edge (e, f) to F .

if f is marked “unlinked” then
Mark f as “linked.”

u ← p(u)
else

u ← v // shortcut to the end of the while loop

Compute the connected components of the graph F .

Algorithm 13.21: A linear-time algorithm for computing the link components. Note

that a connected component in F consisting of an individual “unlinked” vertex

corresponds to a separation edge (related only to itself in the link relation).

Let us analyze the running time of LinkComponents, from Algorithm 13.21.

The initial DFS traversal of G takes O(m) time. The main computation, however,

is the construction of the auxiliary graph F , which takes time proportional to the

number of vertices and edges of F . Note that at some point in the execution of

the algorithm, each edge of G is added as a vertex of F . We use an accounting

charge method to account for the edges of F . Namely, each time we add to F an

edge (e, f), from a newly encountered back edge e to a discover edge f , let us

charge this operation to f if f is marked “unlinked” and to e otherwise. From the

construction of the inner while-loop, we see that we charge each vertex of F at most

once during the algorithm using this scheme. We conclude that the construction of

F takes O(m) time. Finally, the computation of the connected components of F ,

which correspond to the link components of G, takes O(m) time.

www.it-ebooks.info

http://www.it-ebooks.info/

13.5. Biconnected Components 391

The correctness of the above algorithm follows from the fact that the graph F in

LinkComponents is a spanning forest of the graph B mentioned in Lemma 13.25.

For details, see Exercise C-13.8. Therefore, we summarize with the following the-

orem and give an example of LinkComponents in Figure 13.22.

Theorem 13.26: Given a connected graph G with m edges, we can compute G’s
biconnected components, separation vertices, and separation edges in O(m) time.

A

B

C

KM

D

E

G

F I

H

J

L

0

1

23

4
5

6 7

8

9

11

10

12

ABBC

KA

CK

ABBC

KA

CK

CM

MA

(a) (b) (c)

ABBC

MB

KA

CK

CM

MA

ABBC

MB

KA

CK

CM

MA

KL

EC

CDDE CF FGGH

JG

JF

HJ

HI

IF

(d) (e)

Figure 13.22: Sample execution of algorithm LinkComponents (Algorithm 13.21):

(a) input graph G after a DFS traversal (the vertices are labeled by their rank in the

visit order, and the back edges are drawn with dashed lines); auxiliary graph F after

processing (b) back edge (K, A), (c) back edge (M, A), and (d) back edge (M.B);
(e) graph F at the end of the algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

392 Chapter 13. Graphs and Traversals

13.6 Exercises

Reinforcement
R-13.1 Draw a simple undirected graph G that has 12 vertices, 18 edges, and 3 con-

nected components. Why would it be impossible to draw G with 3 connected
components if G had 66 edges?

R-13.2 Let G be a simple connected graph with n vertices and m edges. Explain why
O(log m) is O(log n).

R-13.3 Draw a simple connected directed graph with 8 vertices and 16 edges, such that
the in-degree and out-degree of each vertex is 2. Show that there is a single
cycle (which may not necessarily be simple) that includes all the edges of your
graph, that is, you can trace all the edges in their respective directions without
ever lifting your pencil. (Such a cycle is called an Euler tour.)

R-13.4 Bob loves foreign languages and wants to plan his course schedule to take the
following nine language courses: LA15, LA16, LA22, LA31, LA32, LA126,
LA127, LA141, and LA169. The course prerequisites are:

• LA15: (none)
• LA16: LA15
• LA22: (none)
• LA31: LA15
• LA32: LA16, LA31

• LA126: LA22, LA32
• LA127: LA16
• LA141: LA22, LA16
• LA169: LA32.

Find a sequence of courses that allows Bob to satisfy all the prerequisites.

R-13.5 Suppose we represent a graph G having n vertices with an adjacency matrix.
Why, in this case, would inserting an undirected edge in G run in O(1) time
while inserting a new vertex would take O(n2) time?

R-13.6 Let G be a graph whose vertices are the integers 1 through 8, and let the adjacent
vertices of each vertex be given by the table below:

vertex adjacent vertices
1 (2, 3, 4)
2 (1, 3, 4)
3 (1, 2, 4)
4 (1, 2, 3, 6)
5 (6, 7, 8)
6 (4, 5, 7)
7 (5, 6, 8)
8 (5, 7)

Assume that, in a traversal of G, the adjacent vertices of a given vertex are re-
turned in the same order as they are listed in the above table.

a. Draw G.
b. Order the vertices as they are visited in a DFS traversal starting at vertex 1.
c. Order the vertices as they are visited in a BFS traversal starting at vertex 1.

www.it-ebooks.info

http://www.it-ebooks.info/

13.6. Exercises 393

R-13.7 Would you use the adjacency list structure or the adjacency matrix structure in
each of the following cases? Justify your choice.

a. The graph has 10,000 vertices and 20,000 edges, and it is important to use
as little space as possible.

b. The graph has 10,000 vertices and 20,000,000 edges, and it is important to
use as little space as possible.

c. You need to answer the query areAdjacent as fast as possible, no matter
how much space you use.

R-13.8 Explain why the DFS traversal runs in Θ(n2) time on an n-vertex simple graph
that is represented with the adjacency matrix structure.

R-13.9 Draw the transitive closure of the directed graph shown in Figure 13.2.

R-13.10 Compute a topological ordering for the vertices in the directed graph drawn with
solid edges in Figure 13.10d.

R-13.11 Can we use a queue instead of a stack as an auxiliary data structure in the topo-
logical sorting algorithm shown in Algorithm 13.16?

R-13.12 Give the order in which the edges are labeled by the DFS traversal shown in
Figure 13.5.

R-13.13 Give the order in which the edges are labeled by the BFS traversal shown in
Figure 13.9.

R-13.14 Give the order in which the edges are labeled by the DFS traversal shown in
Figure 13.12.

R-13.15 How many biconnected components would be in the graph shown in Figure 13.5a
if we were to remove the edge (B,C) and the edge (N,K)?

Creativity
C-13.1 Justify Theorem 13.11.

C-13.2 Describe the details of an O(n + m)-time algorithm for computing all the con-
nected components of an undirected graph G with n vertices and m edges.

C-13.3 Let T be the spanning tree rooted at the start vertex produced by the depth-first
search of a connected, undirected graph, G. Argue why every edge of G, not in
T , goes from a vertex in T to one of its ancestors, that is, it is a back edge.

Hint: Suppose that such a nontree edge is a cross edge, and argue based upon the
order the DFS visits the end vertices of this edge how this leads to a contradiction.

C-13.4 Suppose G is a graph with n vertices and m edges. Describe a way to represent
G using O(n + m) space so as to support in O(log n) time an operation that can
test, for any two vertices v and w, whether v and w are adjacent.

C-13.5 Give a proof of Lemma 13.23.

C-13.6 Show that if a graph G has at least three vertices, then it has a separation edge
only if it has a separation vertex.

www.it-ebooks.info

http://www.it-ebooks.info/

394 Chapter 13. Graphs and Traversals

C-13.7 Give a proof of Lemma 13.25.

C-13.8 Supply the details of the proof of correctness of the LinkComponents algorithm
(Algorithm 13.21).

C-13.9 Show how to perform a BFS traversal using, as an auxiliary data structure, a
single queue instead of the level containers L0, L1,

C-13.10 Show that, if T is a BFS tree produced for a connected graph G, then, for each
vertex v at level i, the path of T between s and v has i edges, and any other path
of G between s and v has at least i edges.

C-13.11 The directed version of the BFS algorithm classifies nontree edges as being either
back edges or cross edges, but it does not distinguish between these two types.

Given a BFS spanning tree, T , for a directed graph, �G, and a set of nontree edges,
E′, describe an algorithm that can correctly label each edge in E′ as being either
a back edge or cross edge. Your algorithm should run in O(n + m) time, where
n is the number of vertices and m is the number of edges.

Hint: Consider first constructing an Euler tour traversal of the tree T .

C-13.12 Explain why there are no forward nontree edges with respect to a BFS tree con-
structed for a directed graph.

C-13.13 In the pseudocode description of the directed DFS traversal algorithm we did
not distinguish the labeling of cross edges and forward edges. Describe how to
modify the directed DFS algorithm so that it correctly labels each nontree edge
as a back edge, forward edge, or cross edge.

C-13.14 Explain why the strong connectivity testing algorithm given in Section 13.4.1 is
correct.

C-13.15 Let G be an undirected graph with n vertices and m edges. Describe an O(n +
m)-time algorithm to determine whether G contains at least two cycles.

C-13.16 Let G be an undirected graph with n vertices and m edges. Describe an algorithm
running in O(n + m) time that can determine whether G contains exactly two
cycles that have no edges in common.

C-13.17 Justify Theorem 13.14.

C-13.18 Show that it is possible to count the total number of paths in a directed acyclic

graph, �G, with n vertices and m edges using O(n + m) additions. Also, show

that there is a graph, �G, where this number is at least 2n/2.

Applications
A-13.1 A road network is a mixed graph defined by the roads in a geographic region.

Vertices in this graph are defined by road intersections and dead ends, and edges
are defined by the portions of roads that connect such vertices. An edge is di-
rected if its associated road is a one-way street; otherwise, an edge is undirected.
Imagine that you are the manager of a post office delivery system, and that you
need to map out the route that a postal worker should drive to deliver mail to all
the houses on the roads in a given geographic region. Furthermore, suppose that

www.it-ebooks.info

http://www.it-ebooks.info/

13.6. Exercises 395

all the streets in this region are one-way, so the road network for this region is a

directed graph, �G. An Euler tour of such a directed graph, �G, is a cycle that tra-

verses each edge of �G exactly once according to its direction. Note that an Euler
tour is necessarily the shortest route that starts at the post office (assuming it is

one of the vertices in �G) and visits every street in the road network represented

by �G in the appropriate direction (where u-turns are allowed at a vertex with an
outgoing edge going back to the origin of an incoming edge). Such a tour always

exists if �G is connected and the in-degree equals the out-degree of each vertex

in �G. Describe an O(n + m)-time algorithm for finding an Euler tour of such

a digraph, �G, if such a tour exists, starting from some vertex, v, where n is the

number of vertices in �G and m is the number of edges in �G.

A-13.2 Suppose you are given a connected road network, G, as described in the previous
exercise, except that none of the edges in G are directed. Describe an efficient
method for designing a tour of G that starts at some vertex, v, and traverses each
edge of G exactly once in each direction (with u-turns allowed). What is the
running time of your algorithm?

A-13.3 Suppose you work for a company that is giving a smartphone to each of its em-
ployees. Unfortunately, the companies that make apps for these smartphones are
constantly suing each other over their respective intellectual property. Say that
two apps, A and B, are litigation-conflicting if A contains some disputed tech-
nology that is also contained in B. Your job is to pre-install a set of apps on the
company smartphones, but you have been asked by the company lawyers to avoid
installing any litigation-conflicting apps. To make your job a little easier, these
lawyers have given you a graph, G, whose vertices consist of all the possible apps
you might want to install and whose edges consist of all the pairs of litigation-
conflicting apps. An independent set of such an undirected graph, G = (V,E), is
a subset, I , of V , such that no two vertices in I are adjacent. That is, if u, v ∈ I ,
then (u, v) 	∈ E. A maximal independent set M is an independent set such that,
if we were to add any additional vertex to M , then it would not be independent
any longer. In the case of the graph, G, of litigation-conflicting apps, a maximal
independent set in G corresponds to a set of nonconflicting apps such that if we
were to add any other app to this set, it would conflict with at least one of the
apps in the set. Give an efficient algorithm that computes a maximal independent
set for a such a graph, G. What is the running time of your algorithm?

A-13.4 Tamarindo University and many other schools worldwide are doing a joint project
on multimedia. A computer network is built to connect these schools using com-
munication links that form a free tree. The schools decide to install a file server
at one of the schools to share data among all the schools. Since the transmission
time on a link is dominated by the link setup and synchronization, the cost of a
data transfer is proportional to the number of links used. Hence, it is desirable to
choose a “central” location for the file server. Given a free tree T and a node v of
T , the eccentricity of v is the length of a longest path from v to any other node
of T . A node of T with minimum eccentricity is called a center of T .

a. Design an efficient algorithm that, given an n-node free tree T , computes
a center of T .

b. Is the center unique? If not, how many distinct centers can a free tree have?

www.it-ebooks.info

http://www.it-ebooks.info/

396 Chapter 13. Graphs and Traversals

A-13.5 The time delay of a long-distance call can be determined by multiplying a small
fixed constant by the number of communication links on the telephone network
between the caller and callee. Suppose the telephone network of a company
named RT&T is a free tree. The engineers of RT&T want to compute the maxi-
mum possible time delay that may be experienced in a long-distance call. Given
a free tree T , the diameter of T is the length of a longest path between two nodes
of T . Give an efficient algorithm for computing the diameter of T .

A-13.6 A company named RT&T has a network of n stations connected by m high-speed
communication links. Each customer’s phone is connected to one station in his
or her area. The engineers of RT&T have developed a prototype video-phone
system that allows two customers to see each other during a phone call. In order
to have acceptable image quality, however, the number of links used to transmit
video signals between the two parties cannot exceed 4. Suppose that RT&T’s
network is represented by a graph. Design an efficient algorithm that computes,
for each station, the set of stations it can reach using no more than 4 links.

A-13.7 Imagine that you are a medical practitioner for a developing country, Strategia,
and it is your job to inoculate people in each village in Strategia so as to limit the
ability of the Kissoba virus to spread in Strategia. The Kissoba virus can only be
spread between two people if they kiss. For each village, you are given a kissing
graph, G, whose vertices are the people in that village and whose edges are pairs
of people who regularly kiss. Unfortunately, you don’t have an unlimited supply
of the Kissoba vaccine, and each shot is expensive. So the president of Strategia
has asked that you limit the people you vaccinate to those who are central kissers,
where a central kisser is a person, p, such that there are no two people, r and q,
who are kissed by p such that there is a sequence of kissing pairs of people that
starts with r and leads to q while avoiding p. Given a graph, G, representing
the kissing graph for a village in Strategia, describe an efficient algorithm for
identifying all the central kissers in G, and analyze its running time.

Chapter Notes
DFS is a part of the “folklore” of computer science, but Hopcroft and Tarjan [102, 205]
showed how useful this algorithm is for solving several different graph problems.
Knuth [129] discusses the topological sorting problem. The simple linear-time algorithm in
Section 13.4.1 for determining if a directed graph is strongly connected is due to Kosaraju.
The Floyd-Warshall algorithm appears in a paper by Floyd [72] and is based upon a the-
orem of Warshall [214]. The mark-sweep garbage collection method we describe is one
of many different algorithms for performing garbage collection. We encourage the reader
interested in further study of garbage collection to examine the book by Jones [114]. To
learn about algorithms for drawing graphs, see the book by Di Battista et al. [55] and
the handbook edited by Tamassia [203]. The reader interested in further study of graph
algorithms is referred to the books by Ahuja, Magnanti, and Orlin [10], Cormen, Leiser-
son, and Rivest [50], Even [68], Gibbons [81], Mehlhorn [158], and Tarjan [207], and the
book chapter by van Leeuwen [210]. For more applications of graph algorithms to social
networks, see the book by Easley and Kleinberg [60].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

14 Shortest Paths

Lightning strike, 2009. U.S. government image. NOAA.

Contents

14.1 Single-Source Shortest Paths 399

14.2 Dijkstra’s Algorithm . 400

14.3 The Bellman-Ford Algorithm 407

14.4 Shortest Paths in Directed Acyclic Graphs 410

14.5 All-Pairs Shortest Paths 412

14.6 Exercises . 418

www.it-ebooks.info

http://www.it-ebooks.info/

398 Chapter 14. Shortest Paths

In a road network, the interconnection structure of a set of roads is modeled

as a graph whose vertices are intersections and dead ends in the set of roads, and

edges are defined by segments of road that exists between pairs of such vertices. In

such contexts, we often would like to find the shortest path that exists between two

vertices in the road network. For example, such problems arise in GPS mapping

contexts where we are interested in minimizing the driving distance between two

points. Here, it typically would be inappropriate to consider one path shorter than

another simply because it uses a fewer number of edges. Edges in a road network

usually have varying lengths, and it can take longer to traverse some edges than

it does others. Thus, edges in road networks have lengths, which represent some

notion of distance for the edges, such as driving distance or driving time. Therefore,

the length of a path in a road network is the sum of the lengths of the edges in that

path, not the number of edges in the path.

In general, a weighted graph is a graph that has a numeric label, w(e), associ-

ated with each edge, e, called the weight of edge e. Edge weights can be integers,

rational numbers, or real numbers, which represent a concept such as distance,

connection costs, or affinity. We explore in this chapter how to solve shortest path

problems for weighted graphs, so as to solve such problems as finding optimal

driving directions in road networks. We show an example of a weighted graph in

Figure 14.1.

BOS

JFK

MIA

ORD

DFW

SFO

LAX

2704

1846 867

740

1258

1090

802
1464

337

2342

1235
1121

187

Figure 14.1: A weighted graph whose vertices represent major U.S. airports and

whose edge weights represent distances in miles. This graph has a path from JFK

to LAX of total weight 2,777 (going through ORD and DFW). This is the shortest

path in the graph from JFK to LAX.

www.it-ebooks.info

http://www.it-ebooks.info/

14.1. Single-Source Shortest Paths 399

14.1 Single-Source Shortest Paths

Let G be a weighted graph. The length (or weight) of a path, P , in G, is the sum

of the weights of the edges of P . That is, if P consists of edges, e0, e1, . . . , ek−1,

then the length of P , denoted w(P), is defined as

w(P) =
k−1∑
i=0

w(ei).

The distance from a vertex v to a vertex u in G, denoted d(v, u), is the length of a

minimum length path (also called shortest path) from v to u, if such a path exists.

People often use the convention that d(v, u) = +∞ if there is no path at all

from v to u in G. Even if there is a path from v to u in G, the distance from v to u
may not be defined, however, if there is a cycle in G whose total weight is negative.

For example, suppose vertices in G represent cities, and the weights of edges in

G represent how much money it costs to go from one city to another. If someone

were willing to actually pay us to go from, say, JFK to ORD, then the “cost” of the

edge (JFK,ORD) would be negative. If someone else were willing to pay us to go

from ORD to JFK, then there would be a negative-weight cycle in G and distances

would no longer be defined. That is, anyone can now build a path (with cycles) in

G from any city A to another city B that first goes to JFK and then cycles as many

times as he or she likes from JFK to ORD and back, before going on to B. The

existence of such paths allows us to build arbitrarily low negative-cost paths (and

in this case make a fortune in the process). But distances cannot be arbitrarily low

negative numbers. Thus, any time we use edge weights to represent distances, we

must be careful not to introduce any negative-weight cycles.

Suppose we are given a weighted graph G, and we are asked to find a shortest

path from some vertex v to each other vertex in G, viewing the weights on the edges

as distances. In the next few sections, we explore efficient ways of finding all such

single-source shortest paths, if they exist.

The first algorithm we discuss is for the simple, yet common, case when all the

edge weights in G are nonnegative (that is, w(e) ≥ 0 for each edge e of G); hence,

we know in advance that there are no negative-weight cycles in G. Recall that the

special case of computing a shortest path when all weights are 1 was solved with

the BFS traversal algorithm presented in Section 13.3. There is an interesting ap-

proach for solving this single-source shortest problem based on the greedy method
(Chapter 10), which is known as Dijkstra’s algorithm.

The second single-source algorithm we discuss, the Bellman-Ford algorithm,

is for the case where edges can have negative weights, and it does not use a greedy

strategy. The next single-source algorithm we consider also allows for negative-

weight edges, but it is specialized for directed acyclic graphs and it is instead based

on a greedy strategy.

www.it-ebooks.info

http://www.it-ebooks.info/

400 Chapter 14. Shortest Paths

14.2 Dijkstra’s Algorithm
A productive approach for applying the greedy method pattern to the single-source

shortest-path problem is to perform a “weighted” breadth-first search starting at v.

In particular, we can use the greedy method to develop an algorithm that iteratively

grows a “cloud” of vertices out of v, with the vertices entering the cloud in order

of their distances from v. Thus, in each iteration, the next vertex chosen is the

vertex outside the cloud that is closest to v. The algorithm terminates when no

more vertices are outside the cloud, at which point we have a shortest path from v
to every other vertex of G. This approach is a simple, but nevertheless powerful,

example of the greedy method.

A Greedy Method for Finding Shortest Paths

Applying the greedy method to the single-source shortest-path problem in this way

results in an algorithm known as Dijkstra’s algorithm. In order to simplify our

description of Dijkstra’s algorithm, we assume in the following that the input graph

G is undirected (that is, all its edges are undirected) and simple (that is, it has no

self-loops and no parallel edges). Hence, we denote the edges of G as unordered

vertex pairs (u, z). We leave the description of Dijkstra’s algorithm so that it works

for a weighted directed graph as an exercise (R-14.2).

In Dijkstra’s algorithm, the cost function we are trying to optimize in our appli-

cation of the greedy method is also the function that we are trying to compute—the

shortest-path distance. This may at first seem like circular reasoning until we real-

ize that we can actually implement this approach by using a “bootstrapping” trick,

consisting of using an approximation to the distance function we are trying to com-

pute, which in the end will be equal to the true distance.

Edge Relaxation

Let us define a label, D[u], for each vertex u of G, which we use to approximate the

distance in G from v to u. The meaning of these labels is that D[u] will always store

the length of the best path we have found so far from v to u. Initially, D[v] = 0
and D[u] = +∞ for each u 	= v, and we define the set C, which is our “cloud” of

vertices, to initially be the empty set ∅. At each iteration of the algorithm, we select

a vertex u not in C with smallest D[u] label, and we pull u into C. In the very first

iteration we will, of course, pull v into C. Once a new vertex u is pulled into C, we

then update the label D[z] of each vertex z that is adjacent to u and is outside of

C, to reflect the fact that there may be a new and better way to get to z via u. This

update operation is known as a relaxation procedure, for it takes an old estimate

and checks whether it can be improved to get closer to its true value. (A metaphor

for why we call this a relaxation comes from a spring that is stretched out and then

www.it-ebooks.info

http://www.it-ebooks.info/

14.2. Dijkstra’s Algorithm 401

“relaxed” back to its true resting shape.) In the case of Dijkstra’s algorithm, the

relaxation is performed for an edge (u, z), such that we have computed a new value

of D[u] and wish to see if there is a better value for D[z] using the edge (u, z). The

specific edge relaxation operation is as follows:

Edge Relaxation:

if D[u] + w((u, z)) < D[z] then
D[z] ← D[u] + w((u, z)).

Note that if the newly discovered path to z is no better than the old way, then we

do not change D[z].

The Details of Dijkstra’s Algorithm

We give the pseudocode for Dijkstra’s algorithm in Algorithm 14.2. Note that we

use a priority queue Q to store the vertices outside of the cloud C.

Algorithm DijkstraShortestPaths(G, v):
Input: A simple undirected weighted graph G with nonnegative edge weights,

and a distinguished vertex v of G
Output: A label, D[u], for each vertex u of G, such that D[u] is the distance

from v to u in G

D[v] ← 0
for each vertex u 	= v of G do

D[u] ← +∞
Let a priority queue, Q, contain all the vertices of G using the D labels as keys.

while Q is not empty do
// pull a new vertex u into the cloud

u ← Q.removeMin()
for each vertex z adjacent to u such that z is in Q do

// perform the relaxation procedure on edge (u, z)
if D[u] + w((u, z)) < D[z] then

D[z] ← D[u] + w((u, z))
Change the key for vertex z in Q to D[z]

return the label D[u] of each vertex u

Algorithm 14.2: Dijkstra’s algorithm for the single-source shortest path problem for

a graph G, starting from a vertex v.

We illustrate several iterations of Dijkstra’s algorithm in Figures 14.3 and 14.4.

www.it-ebooks.info

http://www.it-ebooks.info/

402 Chapter 14. Shortest Paths

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

•

•

•

• •

•

•

0

•

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

•

•

•

•

•

184

0

946

621

(a) (b)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

•

•

1575

328

371

184

0

946

621

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

•

•

1575

328

371

184

0

946

621

(c) (d)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

•

3075

1575

328

371

184

0

946

621

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

•

2467

1423

328

371

184

0

946

621

(e) (f)

Figure 14.3: An execution of Dijkstra’s algorithm on a weighted graph. The start

vertex is BWI. A box next to each vertex u stores the label D[u]. The symbol • is

used instead of +∞. The edges of the shortest-path tree are drawn as thick arrows,

and for each vertex u outside the “cloud” we show the current best edge for pulling

in u with a solid line. (Continued in Figure 14.4.)

www.it-ebooks.info

http://www.it-ebooks.info/

14.2. Dijkstra’s Algorithm 403

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

3288

2467

1423

328

371

184

0

946

621

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

2658

2467

1423

328

371

184

0

946

621

(g) (h)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

2658

2467

1423

328

371

184

0

946

621

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

2658

2467

1423

328

371

184

0

946

621

(i) (j)

Figure 14.4: Visualization of Dijkstra’s algorithm. (Continued from Figure 14.3.)

Why It Works

The interesting, and possibly even a little surprising, aspect of the Dijkstra algo-

rithm is that, at the moment a vertex u is pulled into C, its label D[u] stores the

correct length of a shortest path from v to u. Thus, when the algorithm terminates,

it will have computed the shortest-path distance from v to every vertex of G. That

is, it will have solved the single-source shortest path problem.

It is probably not immediately clear why Dijkstra’s algorithm correctly finds

the shortest path from the start vertex v to each other vertex u in the graph. Why

is it that the distance from v to u is equal to the value of the label D[u] at the time

vertex u is pulled into the cloud C (which is also the time u is removed from the

priority queue Q)? The answer to this question depends on there being no negative-

weight edges in the graph, for it allows the greedy method to work correctly, as we

show in the lemma that follows.

www.it-ebooks.info

http://www.it-ebooks.info/

404 Chapter 14. Shortest Paths

Lemma 14.1: In Dijkstra’s algorithm, whenever a vertex u is pulled into the
cloud, the label D[u] is equal to d(v, u), the length of a shortest path from v to u.

Proof: Suppose that D[t] > d(v, t) for some vertex t in V , and let u be the first
vertex the algorithm pulled into the cloud C (that is, removed from Q), such that

D[u] > d(v, u). There is a shortest path P from v to u (for otherwise d(v, u) =
+∞ = D[u]). Therefore, let us consider the moment when u is pulled into C,

and let z be the first vertex of P (when going from v to u) that is not in C at this

moment. Let y be the predecessor of z in path P (note that we could have y = v).

(See Figure 14.5.) We know, by our choice of z, that y is already in C at this point.

Moreover, D[y] = d(v, y), since u is the first incorrect vertex. When y was pulled

into C, we tested (and possibly updated) D[z] so that we had at that point

D[z] ≤ D[y] + w((y, z)) = d(v, y) + w((y, z)).

But since z is the next vertex on the shortest path from v to u, this implies that

D[z] = d(v, z).

But we are now at the moment when we are picking u, not z, to join C; hence,

D[u] ≤ D[z].

It should be clear that a subpath of a shortest path is itself a shortest path. Hence,

since z is on the shortest path from v to u,

d(v, z) + d(z, u) = d(v, u).

Moreover, d(z, u) ≥ 0 because there are no negative-weight edges. Therefore,

D[u] ≤ D[z] = d(v, z) ≤ d(v, z) + d(z, u) = d(v, u).

But this contradicts the definition of u; hence, there can be no such vertex u.

C

v

u

z
y

P
D[y] = d(v,y)

D[z] = d(v,z)

the first “wrong” vertex

u picked next

D[u] > d(v,u)

so D[u] < D[z]

Figure 14.5: A schematic illustration for the justification of Lemma 14.1.

www.it-ebooks.info

http://www.it-ebooks.info/

14.2. Dijkstra’s Algorithm 405

The Running Time of Dijkstra’s Algorithm

Let us analyze the time complexity of Dijkstra’s algorithm, where we use n and

m to denote the number of vertices and edges of the input graph G, respectively.

We assume that the edge weights can be added and compared in constant time.

Because of the high level of the description we gave for Dijkstra’s algorithm in

Algorithm 14.2, analyzing its running time requires that we give more details on its

implementation. Specifically, we should indicate the data structures used and how

they are implemented.

Let us first assume that we are representing the graph G using an adjacency

list structure. This data structure allows us to step through the vertices adjacent to

u during the relaxation step in time proportional to their number. It still does not

settle all the details for the algorithm, however, for we must say more about how to

implement the other main data structure in the algorithm—the priority queue Q.

An efficient implementation of the priority queue Q uses a heap (see Sec-

tion 5.3). This allows us to extract the vertex u with smallest D label, by calling

the removeMin method, in O(log n) time. As noted in the pseudocode, each time

we update a D[z] label we need to update the key of z in the priority queue. If

Q is implemented as a heap, then this key update can, for example, be done by

first removing and then inserting z with its new key. The standard heap data struc-

ture doesn’t normally support a removal method for arbitrary elements, however.

Instead, it supports insertion of items given as key-value pairs and the repeated

removal of an item with smallest key. We can extend our priority queue imple-

mentation to support a removal operation, however, by using the locator concept

described in Section 5.5. In Dijkstra’s algorithm, this approach is roughly equiv-

alent to our maintaining a pointer with each vertex, v, that supports constant-time

access to the node in our heap that is holding v. Given a pointer to this node, we

can remove v or update its key and perform the associated up-heap or down-heap

bubbling as needed in O(log n) time.

Assuming this implementation of Q, implies that Dijkstra’s algorithm runs in

O((n + m) log n) time. Referring back to Algorithm 14.2, the details of this anal-

ysis are as follows:

• Inserting all the vertices in Q with their initial key value can be done in

O(n log n) time by repeated insertions, or in O(n) time using bottom-up

heap construction (see Section 5.4).

• At each iteration of the while loop, we spend O(log n) time to remove vertex

u from Q, and O(deg(v) log n) time to perform the relaxation procedure on

the edges incident on u.

• The overall running time of the while loop is∑
v∈G

(1 + deg(v)) log n,

which is O((n + m) log n) by Theorem 13.6.

www.it-ebooks.info

http://www.it-ebooks.info/

406 Chapter 14. Shortest Paths

Thus, we can implement Dijkstra’s algorithm in O(m log n) time, but this is

not the only way to implement this algorithm. There is an alternative implemen-

tation of Dijkstra’s algorithm based on implementing the priority queue, Q, using

an unsorted doubly linked list. This, of course, requires that we spend O(n) time

to remove the item with minimum key, but it allows for very fast key updates, pro-

vided Q supports use of the locator pattern or something like it. That is, we would

need to support constant-time access from any vertex, v, to the node in the linked

list for Q that is holding v. For example, maintaining a pointer for each vertex, v,

to the node in Q that is holding v would suffice for this purpose.

This approach would allow us to implement each key update done in a relax-

ation step in O(1) time, since we could simply change the key value once we locate

the item in Q to update. Hence, this implementation results in a running time that

is O(n2 + m), which can be simplified to O(n2), since G is simple.

Thus, we have at least two choices for implementing the priority queue in

Dijkstra’s algorithm. The two implementations we explored above are a locator-

based heap implementation, which yields an algorithm with an O(m log n) run-

ning time, and a locator-based unsorted sequence implementation, which yields an

O(n2)-time algorithm. (In addition, we explore yet another way of implementing

Dijkstra’s algorithm in Exercise C-14.3, which avoids the use of locators.) Thus,

we have the following.

Theorem 14.2: Given a simple weighted graph G with n vertices and m edges,
such that the weight of each edge is nonnegative, and a vertex v of G, Dijkstra’s
algorithm computes the distance from v to all other vertices of G in O(m log n)
time, or, alternatively, in O(n2) time.

In Exercise R-14.3, we explore how to modify Dijkstra’s algorithm to output a

tree T rooted at v, such that the path in T from v to a vertex u is a shortest path

in G from v to u. In addition, extending Dijkstra’s algorithm for directed graphs

is fairly straightforward. We cannot extend Dijkstra’s algorithm to work on graphs

with negative-weight edges, however, as Figure 14.6 illustrates.

C

120

- 8

124

10 D[z]=130

z

y

x

v

Figure 14.6: An illustration of why Dijkstra’s algorithm fails for graphs with

negative-weight edges. Bringing z into C and performing edge relaxations will

invalidate the previously computed shortest-path distance (124) to x.

www.it-ebooks.info

http://www.it-ebooks.info/

14.3. The Bellman-Ford Algorithm 407

14.3 The Bellman-Ford Algorithm
There is another algorithm, which is due to Bellman and Ford, that can find shortest

paths in graphs that have negative-weight edges. We must, in this case, insist that

the graph be directed, for otherwise any negative-weight undirected edge would

immediately imply a negative-weight cycle, where we traverse this edge back and

forth in each direction. We cannot allow such edges, since a negative cycle invali-

dates the notion of distance based on edge weights.

Let �G be a weighted directed graph, possibly with some negative-weight edges.

The Bellman-Ford algorithm for computing the shortest-path distance from some

vertex v in �G to every other vertex in �G is very simple. It shares the notion of

edge relaxation from Dijkstra’s algorithm, but does not use it in conjunction with

the greedy method (which would not work in this context; see Exercise C-14.2).

That is, as in Dijkstra’s algorithm, the Bellman-Ford algorithm uses a label D[u]
that is always an upper bound on the distance d(v, u) from v to u, and is iteratively

“relaxed” until it exactly equals this distance.

The Bellman-Ford method is shown in Algorithm 14.7. It performs n−1 times

a relaxation of every edge in the digraph. We illustrate an execution of the Bellman-

Ford algorithm in Figure 14.8.

Algorithm BellmanFordShortestPaths(�G, v):
Input: A weighted directed graph �G with n vertices, and a vertex v of �G
Output: A label D[u], for each vertex u of �G, such that D[u] is the distance

from v to u in �G, or an indication that �G has a negative-weight cycle

D[v] ← 0
for each vertex u 	= v of �G do

D[u] ← +∞
for i ← 1 to n − 1 do

for each (directed) edge (u, z) outgoing from u do
// Perform the relaxation operation on (u, z)
if D[u] + w((u, z)) < D[z] then

D[z] ← D[u] + w((u, z))
if there are no edges left with potential relaxation operations then

return the label D[u] of each vertex u
else

return “ �G contains a negative-weight cycle”

Algorithm 14.7: The Bellman-Ford single-source shortest-path algorithm.

Lemma 14.3: If, at the end of the execution of Algorithm 14.7, there is an edge
(u, z) such that D[u] + w((u, z)) < D[z], then the input digraph, �G, contains a

negative-weight cycle. Otherwise, D[u] = d(v, u) for each vertex u in �G.

www.it-ebooks.info

http://www.it-ebooks.info/

408 Chapter 14. Shortest Paths

JFK

MIA

ORD

LAX
DFW

BWI

-8

-10

10

20

-15

-25

30

3
20

-10

12

•

0

•

•

•

•

•

JFK

MIA

ORD

LAX
DFW

BWI

-8

-10

10

20
-15

-25

30

3
20

-10

12

0

20

•
10

•

•

•

(a) (b)

•

•

•

JFK

MIA

ORD

LAX
DFW

BWI

-8

-10

10

20
-15

-25

30

3
20

-10

12

0

20

10
5

-5

2

50
50

2

-5

JFK

MIA

ORD

LAX
DFW

BWI

-8

-10

10

20
-15

-25

30

3
20

-10

12

0

20

5

-8

-3

5

(c) (d)

5

-8

JFK

MIA

ORD

LAX
DFW

BWI

-8

-10

10

20
-15

-25

30

3
20

-10

12

0

20

5

-13

-3

4
4

JFK

MIA

ORD

LAX
DFW

BWI

-8

-10

10

20
-15

-25

30

3
20

-10

12

0

20

5

-13

-3

-1

(e) (f)

Figure 14.8: An illustration of an application of the Bellman-Ford algorithm. The start

vertex is BWI. A box next to each vertex u stores the label D[u], with “shadows” showing

values revised during relaxations; the thick edges are causing such relaxations.

www.it-ebooks.info

http://www.it-ebooks.info/

14.3. The Bellman-Ford Algorithm 409

Proof: For the sake of this proof, let us introduce a new notion of distance in

a digraph. Specifically, let di(v, u) denote the length of a path from v to u that is

shortest among all paths from v to u that contain at most i edges. We call di(v, u)
the i-edge distance from v to u. We claim that after iteration i of the main for-

loop in the Bellman-Ford algorithm D[u] = di(v, u) for each vertex in �G. This is

certainly true before we even begin the first iteration, for D[v] = 0 = d0(v, v) and,

for u 	= v, D[u] = +∞ = d0(v, u). Suppose this claim is true before iteration i
(we will now show that if this is the case, then this claim will be true after iteration

i as well). In iteration i, we perform a relaxation step for every edge in the digraph.

The i-edge distance di(v, u), from v to a vertex u, is determined in one of two

ways. Either di(v, u) = di−1(v, u) or di(v, u) = di−1(v, z) + w((z, u)) for some

vertex z in �G. Because we do a relaxation for every edge of �G in iteration i, if it is

the former case, then after iteration i we have D[u] = di−1(v, u) = di(v, u), and

if it is the latter case, then after iteration i we have D[u] = D[z] + w((z, u)) =
di−1(v, z) + w((z, u)) = di(v, u). Thus, if D[u] = di−1(v, u) for each vertex u
before iteration i, then D[u] = di(v, u) for each vertex u after iteration i.

Therefore, after n − 1 iterations, D[u] = dn−1(v, u) for each vertex u in �G.

Now observe that if there is still an edge in �G that can be relaxed, then there is

some vertex u in �G, such that the n-edge distance from v to u is less than the

(n − 1)-edge distance from v to u, that is, dn(v, u) < dn−1(v, u). But there are

only n vertices in �G; hence, if there is a shortest n-edge path from v to u, it must

repeat some vertex z in �G twice. That is, it must contain a cycle. Moreover, since

the distance from a vertex to itself using zero edges is 0 (that is, d0(z, z) = 0),

this cycle must be a negative-weight cycle. Thus, if there is an edge in �G that

can still be relaxed after running the Bellman-Ford algorithm, then �G contains a

negative-weight cycle. If, on the other hand, there is no edge in �G that can still

be relaxed after running the Bellman-Ford algorithm, then �G does not contain a

negative-weight cycle. Moreover, in this case, every shortest path between two

vertices will have at most n − 1 edges; hence, for each vertex u in �G, D[u] =
dn−1(v, u) = d(v, u).

Thus, the Bellman-Ford algorithm is correct and even gives us a way of telling

when a digraph contains a negative-weight cycle. The running time of the Bellman-

Ford algorithm is easy to analyze. We perform the main for-loop n − 1 times, and

each such loop involves spending O(1) time for each edge in �G. Therefore, the

running time for this algorithm is O(nm). We summarize as follows:

Theorem 14.4: Given a weighted directed graph �G with n vertices and m edges,
and a vertex v of �G, the Bellman-Ford algorithm computes the distance from v to
all other vertices of G or determines that �G contains a negative-weight cycle in
O(nm) time.

www.it-ebooks.info

http://www.it-ebooks.info/

410 Chapter 14. Shortest Paths

14.4 Shortest Paths in Directed Acyclic Graphs

As mentioned above, both Dijkstra’s algorithm and the Bellman-Ford algorithm

work for directed graphs. We can solve the single-source shortest paths problem

faster than these algorithms can, however, if the digraph has no directed cycles, that

is, it is a weighted directed acyclic graph (DAG).

Recall from Section 13.4.4 that a topological ordering of a DAG �G is a listing

of its vertices (v1, v2, . . . , vn), such that if (vi, vj) is an edge in �G, then i < j.

Also, recall that we can use the depth-first search algorithm to compute a topologi-

cal ordering of the n vertices in an m-edge DAG �G in O(n+m) time. Interestingly,

given a topological ordering of such a weighted DAG �G, we can compute all short-

est paths from a given vertex v in O(n + m) time.

The method, which is given in Algorithm 14.9, involves visiting the vertices

of �G according to the topological ordering, relaxing the outgoing edges with each

visit.

Algorithm DAGShortestPaths(�G, s):
Input: A weighted directed acyclic graph (DAG) �G with n vertices and m

edges, and a distinguished vertex s in �G
Output: A label D[u], for each vertex u of �G, such that D[u] is the distance

from v to u in �G

Compute a topological ordering (v1, v2, . . . , vn) for �G
D[s] ← 0
for each vertex u 	= s of �G do

D[u] ← +∞
for i ← 1 to n − 1 do

// Relax each outgoing edge from vi

for each edge (vi, u) outgoing from vi do
if D[vi] + w((vi, u)) < D[u] then

D[u] ← D[vi] + w((vi, u))
Output the distance labels D as the distances from s.

Algorithm 14.9: Shortest-path algorithm for a directed acyclic graph.

The running time of the shortest-path algorithm for a DAG is easy to analyze.

Assuming the digraph is represented using an adjacency list, we can process each

vertex in constant time plus an additional time proportional to the number of its

outgoing edges. In addition, we have already observed that computing the topolog-

ical ordering of the vertices in �G can be done in O(n + m) time. Thus, the entire

algorithm runs in O(n + m) time. We illustrate this algorithm in Figure 14.10.

www.it-ebooks.info

http://www.it-ebooks.info/

14.4. Shortest Paths in Directed Acyclic Graphs 411

0

(a)

(f)(e)

(d)(c)

(b)

22

6
4

- 2

+ 8

1

5

4

3

2
12

14 - 3

4

6

5

10

+ 8

+ 8

+ 8

+ 8

6
4

- 2

+ 8

1

5

4

3

2
12

14 - 3

4

6

5

10

+ 8

+ 8

12

14

6
4

- 2

+ 8

1

5

4

3

2
12

14 - 3

4

6

5

10

12

14

9

1

5

4

3

2
12

14 - 3

4

6

5

10

12

14

9

18

6
4

- 2

+ 8

1

5

4

3

2
12

14 - 3

4

6

5

10

12

14

9

14

12

6
4

- 2

13

6
4

- 2

1

5

4

3

2
12

14 - 3

4

6

5

10

12

14

9

14

0

0 0

00

Figure 14.10: An illustration of the shortest-path algorithm for a DAG.

Theorem 14.5: DAGShortestPaths computes the distance from a start vertex s
to each other vertex in a directed n-vertex graph �G with m edges in O(n+m) time.

Proof: Suppose, for the sake of a contradiction, that vi is the first vertex in the

topological ordering such that D[vi] is not the distance from s to vi. First, note

that D[vi] < +∞, for the initial D value for each vertex other than s is +∞
and the value of a D label is only ever lowered if a path from s is discovered.

Thus, if D[vj] = +∞, then vj is unreachable from s. Therefore, vi is reachable

from s, so there is a shortest path from s to vi. Let vk be the penultimate vertex

on a shortest path from s to vi. Since the vertices are numbered according to a

topological ordering, we have that k < i. Thus, D[vk] is correct (we may possibly

have vk = s). But when vk is processed, we relax each outgoing edge from vk,

including the edge on the shortest path from vk to vi. Thus, D[vi] is assigned the

distance from s to vi. But this contradicts the definition of vi; hence, no such vertex

vi can exist.

www.it-ebooks.info

http://www.it-ebooks.info/

412 Chapter 14. Shortest Paths

14.5 All-Pairs Shortest Paths

Suppose we wish to compute the shortest-path distance between every pair of ver-

tices in a directed graph �G with n vertices and m edges. Of course, if �G has no

negative-weight edges, then we could run Dijkstra’s algorithm from each vertex in
�G in turn. This approach would take O(n(n + m) log n) time, assuming �G is rep-

resented using an adjacency list structure. In the worst case, this bound could be as

large as O(n3 log n). Likewise, if �G contains no negative-weight cycles, then we

could run the Bellman-Ford algorithm starting from each vertex in �G in turn. This

approach would run in O(n2m) time, which, in the worst case, could be as large

as O(n4). In this section, we consider algorithms for solving the all-pairs shortest

path problem in O(n3) time, even if the digraph contains negative-weight edges

(but not negative-weight cycles).

14.5.1 A Dynamic Programming Shortest-Path Algorithm

The first all-pairs shortest-path algorithm we discuss is a variation on an algorithm

we have given earlier in this book, namely, the Floyd-Warshall algorithm for com-

puting the transitive closure of a directed graph (Algorithm 13.13).

Let �G be a given weighted directed graph. We number the vertices of �G arbitrar-

ily as (v1, v2, . . . , vn). As in any dynamic programming algorithm (Chapter 12),

the key construct in the algorithm is to define a parametrized cost function that is

easy to compute and also allows us to ultimately compute a final solution. In this

case, we use the cost function, Dk
i,j , which is defined as the distance from vi to vj

using only intermediate vertices in the set {v1, v2, . . . , vk}. Initially,

D0
i,j =

⎧⎨
⎩

0 if i = j

w((vi, vj)) if (vi, vj) is an edge in �G
+∞ otherwise.

Given this parametrized cost function Dk
i,j , and its initial value D0

i,j , we can then

easily define the value for an arbitrary k > 0 as

Dk
i,j = min{Dk−1

i,j , Dk−1
i,k + Dk−1

k,j }.
In other words, the cost for going from vi to vj using vertices numbered 1 through

k is equal to the shorter of two possible paths. The first path is simply the shortest

path from vi to vj using vertices numbered 1 through k − 1. The second path is

the sum of the costs of the shortest path from vi to vk using vertices numbered

1 through k − 1 and the shortest path from vk to vj using vertices numbered 1
through k − 1. Moreover, there is no other shorter path from vi to vj using vertices

of {v1, v2, . . . , vk} than these two. If there was such a shorter path and it excluded

vk, then it would violate the definition of Dk−1
i,j , and if there was such a shorter

www.it-ebooks.info

http://www.it-ebooks.info/

14.5. All-Pairs Shortest Paths 413

Algorithm AllPairsShortestPaths(�G):
Input: A simple weighted directed graph �G without negative-weight cycles

Output: A numbering v1, v2, . . . , vn of the vertices of �G and a matrix D, such

that D[i, j] is the distance from vi to vj in �G

let v1, v2, . . . , vn be an arbitrary numbering of the vertices of �G
for i ← 1 to n do

for j ← 1 to n do
if i = j then

D0[i, i] ← 0
if (vi, vj) is an edge in �G then

D0[i, j] ← w((vi, vj))
else

D0[i, j] ← +∞
for k ← 1 to n do

for i ← 1 to n do
for j ← 1 to n do

Dk[i, j] ← min{Dk−1[i, j], Dk−1[i, k] + Dk−1[k, j]}
return matrix Dn

Algorithm 14.11: A dynamic programming algorithm to compute all-pairs shortest-

path distances in a digraph without negative cycles.

path and it included vk, then it would violate the definition of Dk−1
i,k or Dk−1

k,j . In

fact, note that this argument still holds even if there are negative cost edges in �G,

just so long as there are no negative cost cycles. In Algorithm 14.11, we show how

this cost-function definition allows us to build an efficient solution to the all-pairs

shortest path problem. The running time for this dynamic programming algorithm

is clearly O(n3), which implies the following.

Theorem 14.6: Given a simple weighted directed graph �G with n vertices and
no negative-weight cycles, Algorithm 14.11 (AllPairsShortestPaths) computes
the shortest-path distances between each pair of vertices of �G in O(n3) time.

14.5.2 Computing Shortest Paths via Matrix Multiplication
We can view the problem of computing the shortest-path distances for all pairs of

vertices in a directed graph �G as a matrix problem. In this subsection, we describe

how to solve the all-pairs shortest-path problem in O(n3) time using this approach.

We first describe how to use this approach to solve the all-pairs problem in O(n4)
time, and then we show how this can be improved to O(n3) time by studying the

problem in more depth. This matrix-multiplication approach to shortest paths is

especially useful in contexts where we represent graphs using the adjacency matrix

data structure.

www.it-ebooks.info

http://www.it-ebooks.info/

414 Chapter 14. Shortest Paths

The Weighted Adjacency Matrix Representation

Let us number the vertices of �G as (v0, v1, . . . , vn−1), returning to the convention

of numbering the vertices starting at index 0. Given this numbering of the vertices

of �G, there is a natural weighted view of the adjacency matrix representation for a

graph, where we define A[i, j] as follows:

A[i, j] =

⎧⎨
⎩

0 if i = j

w((vi, vj)) if (vi, vj) is an edge in �G
+∞ otherwise.

(Note that this is the same definition used for the cost function D0
i,j from the previ-

ous subsection.)

Shortest Paths and Matrix Multiplication

In other words, A[i, j] stores the shortest-path distance from vi to vj using one or

fewer edges in the path. Let us therefore use the matrix A to define another matrix

A2, such that A2[i, j] stores the shortest-path distance from vi to vj using at most

two edges. A path with at most two edges is either empty (a zero-edge path) or

it adds an extra edge to a zero-edge or one-edge path. Therefore, we can define

A2[i, j] as

A2[i, j] = min
l=0,1,...,n−1

{A[i, l] + A[l, j]}.

Thus, given A, we can compute the matrix A2 in O(n3) time, by using an algorithm

very similar to the standard matrix multiplication algorithm.

In fact, we can view this computation as a matrix multiplication in which we

have simply redefined what the operators “plus” and “times” mean in the matrix

multiplication algorithm (the programming language C++ specifically allows for

such operator overloading). If we let “plus” be redefined to mean “min” and we

let “times” be redefined to mean “+,” then we can write A2[i, j] as a true matrix

multiplication:

A2[i, j] =
∑

l=0,1,...,n−1

A[i, l] · A[l, j].

Indeed, this matrix-multiplication viewpoint is the reason why we have written this

matrix as “A2,” for it is the square of the matrix A.

Let us continue this approach to define a matrix Ak, so that Ak[i, j] is the

shortest-path distance from vi to vj using at most k edges. Since a path with at

most k edges is equivalent to a path with at most k − 1 edges plus possibly one

additional edge, we can define Ak so that

Ak[i, j] =
∑

l=0,1,...,n−1

Ak−1[i, l] · A[l, j],

with the operators redefined so that “+” stands for “min” and “·” stands for “+.”

www.it-ebooks.info

http://www.it-ebooks.info/

14.5. All-Pairs Shortest Paths 415

The crucial observation is that if �G contains no negative-weight cycles, then

An−1 stores the shortest-path distance between each pair of vertices in �G. This

observation follows from the fact that any well-defined shortest path contains at

most n− 1 edges. If a path has more than n− 1 edges, it must repeat some vertex;

hence, it must contain a cycle. But a shortest path will never contain a cycle (unless

there is a negative-weight cycle in �G). Thus, to solve the all-pairs shortest-path

problem, all we need to do is to multiply A times itself n − 1 times. Since each

such multiplication can be done in O(n3) time, this approach immediately gives us

the following.

Theorem 14.7: Given a weighted directed n-vertex graph �G containing no
negative-weight cycles, and the weighted adjacency matrix A for �G, the all-pairs
shortest path problem for �G can be solved by computing An−1, which can be per-
formed in O(n4) time.

In Section 24.2.1, we discuss an exponentiation algorithm for numbers, which

can be applied in the present context of matrix multiplication to compute An−1 in

O(n3 log n) time. We can actually compute An−1 in O(n3) time, however, by tak-

ing advantage of additional structure present in the all-pairs shortest-path problem.

Matrix Closure

As observed above, if �G contains no negative-weight cycles, then An−1 encodes all

the shortest-path distances between pairs of vertices in �G. A well-defined shortest

path can contain no cycles; hence, a shortest path restricted to contain at most n−1
edges must be a true shortest path. Likewise, a shortest path containing at most n
edges is a true shortest path, as is a shortest path containing at most n + 1 edges,

n + 2 edges, and so on. Therefore, if �G contains no negative-weight cycles, then

An−1 = An = An+1 = An+2 = · · · .

The closure of a matrix A is defined as

A∗ =
∞∑
l=0

Al,

if such a matrix exists. If A is a weighted adjacency matrix, then A∗[i, j] is the sum

of all possible paths from vi to vj . In our case, A is the weighted adjacency matrix

for a directed graph �G and we have redefined “+” as “min.” Thus, we can write

A∗ = min
i=0,...,∞

{Ai}.

Moreover, since we are computing shortest-path distances, the entries in Ai+1 are

never larger than the entries in Ai. Therefore, for the weighted adjacency matrix of

an n-vertex digraph �G with no negative-weight cycles,

A∗ = An−1 = An = An+1 = An+2 = · · · .

That is, A∗[i, j] stores the length of the shortest path from vi to vj .

www.it-ebooks.info

http://www.it-ebooks.info/

416 Chapter 14. Shortest Paths

Computing the Closure of a Weighted Adjacency Matrix

We can compute the closure A∗ by divide-and-conquer in O(n3) time. Without loss

of generality, we may assume that n is a power of two (if not, then pad the digraph
�G with extra vertices that have no incoming or outgoing edges). Let us divide

the set V of vertices in �G into two equal-sized sets V1 = {v0, . . . , vn/2−1} and

V2 = {vn/2, . . . , vn−1}. Given this division, we can likewise divide the adjacency

matrix A into four blocks, B, C, D, and E, each with n/2 rows and columns,

defined as follows:

• B: weights of edges from V1 to V1

• C: weights of edges from V1 to V2

• D: weights of edges from V2 to V1

• E: weights of edges from V2 to V2.

That is,

A =
(

B C
D E

)
.

We illustrate these four sets of edges in Figure 14.12.

Likewise, we can partition A∗ into four blocks W , X , Y , and Z, as well, which

are similarly defined.

• W : weights of shortest paths from V1 to V1

• X: weights of shortest paths from V1 to V2

• Y : weights of shortest paths from V2 to V1

• Z: weights of shortest paths from V2 to V2.

That is,

A∗ =
(

W X
Y Z

)
.

V
1

V
2

B

D

C
E

Figure 14.12: An illustration of the four sets of edges used to partition the adjacency

matrix A in the divide-and-conquer algorithm for computing A∗.

www.it-ebooks.info

http://www.it-ebooks.info/

14.5. All-Pairs Shortest Paths 417

Submatrix Equations

By these definitions and those above, we can derive simple equations to define W ,

X , Y , and Z directly from the submatrices B, C, D, and E.

• W = (B + C · E∗ · D)∗, for paths in W consist of the closure of subpaths

that either stay in V1 or jump to V2, travel in V2 for a while, and then jump

back to V1.

• X = W · C · E∗, for paths in X consist of the closure of subpaths that start

and end in V1 (with possible jumps to V2 and back), followed by a jump to

V2 and the closure of subpaths that stay in V2.

• Y = E∗ ·D ·W , for paths in Y consist of the closure of subpaths that stay in

V2, followed by a jump to V1 and the closure of subpaths that start and end

in V1 (with possible jumps to V2 and back).

• Z = E∗ + E∗ ·D ·W ·C ·E∗, for paths in Z consist of paths that stay in V2

or paths that travel in V2, jump to V1, travel in V1 for a while (with possible

jumps to V2 and back), jump back to V2, and then stay in V2.

Given these equations, it is a simple matter to then construct a recursive algo-

rithm to compute A∗. In this algorithm, we divide A into the blocks B, C, D, and

E, as described above. We then recursively compute the closure E∗. Given E∗, we

can then recursively compute the closure (B + C · E∗ · D)∗, which is W .

Note that no other recursive closure computations are then needed to compute

X , Y , and Z. Thus, after a constant number of matrix additions and multiplications,

we can compute all the blocks in A∗. This gives us the following theorem.

Theorem 14.8: Given a weighted directed n-vertex graph �G containing no
negative-weight cycles, and the weighted adjacency matrix A for �G, the all-pairs
shortest-path problem for �G can be solved by computing A∗, which can be per-
formed in O(n3) time.

Proof: We have already argued why the computation of A∗ solves the all-pairs

shortest-path problem. Consider, then, the running time of the divide-and-conquer

algorithm for computing A∗, the closure of the n × n adjacency matrix A. This

algorithm consists of two recursive calls to compute the closure of (n/2) × (n/2)
submatrices, plus a constant number of matrix additions and multiplications (using

“min” for “+” and “+” for “·”). Thus, assuming we use the straightforward O(n3)-
time matrix multiplication algorithm, we can characterize the running time, T (n),
for computing A∗ as

T (n) =
{

b if n = 1
2T (n/2) + cn3 if n > 1,

where b > 0 and c > 0 are constants. Therefore, by the Master Theorem (11.4),

we can compute A∗ in O(n3) time.

www.it-ebooks.info

http://www.it-ebooks.info/

418 Chapter 14. Shortest Paths

14.6 Exercises

Reinforcement
R-14.1 Draw a simple, connected, weighted, undirected graph with 8 vertices and 16

edges, and with distinct edge weights. Identify one vertex as a “start” vertex and
illustrate a running of Dijkstra’s algorithm on this graph.

R-14.2 Show how to modify Dijkstra’s algorithm for the case when the graph is directed
and we want to compute shortest directed paths from the source vertex to all the
other vertices.

R-14.3 Show how to modify Dijkstra’s algorithm to not only output the distance from v
to each vertex in G, but also to output a tree T rooted at v, such that the path in
T from v to a vertex u is actually a shortest path in G from v to u.

R-14.4 Draw a (simple) directed weighted graph G with 10 vertices and 18 edges, such
that G contains a minimum-weight cycle with at least 4 edges. Show that the
Bellman-Ford algorithm will find this cycle.

R-14.5 The dynamic programming algorithm of Algorithm 14.11 uses O(n3) space. De-
scribe a version of this algorithm that uses O(n2) space.

R-14.6 The dynamic programming algorithm of Algorithm 14.11 computes only
shortest-path distances, not actual paths. Describe a version of this algorithm
that outputs the set of all shortest paths between each pair of vertices in a di-
rected graph. Your algorithm should still run in O(n3) time.

R-14.7 Consider the unsorted sequence implementation of the priority queue Q used in
Dijkstra’s algorithm. In this case, why is the best-case running time of Dijkstra’s
algorithm Ω(n2) on an n-vertex graph?

Hint: Consider the size of Q each time the minimum element is extracted.

R-14.8 Describe the meaning of the graphical conventions used in Figures 14.3 and 14.4
illustrating Dijkstra’s algorithm. What do the arrows signify? How about thick
lines and dashed lines?

Creativity
C-14.1 Give an example of an n-vertex simple graph, G, that causes Dijkstra’s algorithm

to run in Ω(n2 log n) time when its implemented with a heap for the priority
queue.

C-14.2 Give an example of a weighted directed graph, �G, with negative-weight edges,
but no negative-weight cycle, such that Dijkstra’s algorithm incorrectly computes
the shortest-path distances from some start vertex v.

C-14.3 There is an alternative way of implementing Dijkstra’s algorithm that avoids use
of the locator pattern but increases the space used for the priority queue, Q, from
O(n) to O(m) for a weighted graph, G, with n vertices and m edges. The main

www.it-ebooks.info

http://www.it-ebooks.info/

14.6. Exercises 419

idea of this approach is simply to insert a new key-value pair, (D[v], v), each time
the D[v] value for a vertex, v, changes, without ever removing the old key-value
pair for v. This approach still works, even with multiple copies of each vertex
being stored in Q, since the first copy of a vertex that is removed from Q is the
copy with the smallest key. Describe the other changes that would be needed
to the description of Dijsktra’s algorithm for this approach to work. Also, what
is the running time of Dijkstra’s algorithm in this approach if we implement the
priority queue, Q, with a heap?

C-14.4 Consider the following greedy strategy for finding a shortest path from vertex
start to vertex goal in a given connected graph.

1: Initialize path to start.
2: Initialize VisitedVertices to {start}.
3: If start=goal, return path and exit. Otherwise, continue.
4: Find the edge (start,v) of minimum weight such that v is adjacent to start

and v is not in VisitedVertices.
5: Add v to path.
6: Add v to VisitedVertices.
7: Set start equal to v and go to step 3.

Does this greedy strategy always find a shortest path from start to goal? Either
explain intuitively why it works, or give a counterexample.

C-14.5 Design an efficient algorithm for finding a longest directed path from a vertex s

to a vertex t of an acyclic weighted digraph �G. Specify the graph representation
used and any auxiliary data structures used. Also, analyze the time complexity
of your algorithm.

C-14.6 Suppose we are given a directed graph �G with n vertices, and let M be the n×n

adjacency matrix corresponding to �G.

a. Let the product of M with itself (M2) be defined, for 1 ≤ i, j ≤ n, as
follows:

M2(i, j) = M(i, 1) � M(1, j) ⊕ · · · ⊕ M(i, n) � M(n, j),

where “⊕” is the Boolean or operator and “�” is Boolean and. Given this
definition, what does M2(i, j) = 1 imply about the vertices i and j? What
if M2(i, j) = 0?

b. Suppose M4 is the product of M2 with itself. What do the entries of M4

signify? How about the entries of M5 = (M4)(M)? In general, what
information is contained in the matrix Mp?

c. Now suppose that �G is weighted and assume the following:

1: for 1 ≤ i ≤ n, M(i, i) = 0.
2: for 1 ≤ i, j ≤ n, M(i, j) = weight(i, j) if (i, j) ∈ E.
3: for 1 ≤ i, j ≤ n, M(i, j) = ∞ if (i, j) 	∈ E.

Also, let M2 be defined, for 1 ≤ i, j ≤ n, as follows:

M2(i, j) = min{M(i, 1) + M(1, j), . . . ,M(i, n) + M(n, j)}.
If M2(i, j) = k, what may we conclude about the relationship between
vertices i and j?

www.it-ebooks.info

http://www.it-ebooks.info/

420 Chapter 14. Shortest Paths

C-14.7 Suppose you are given a connected weighted undirected graph, G, with n vertices
and m edges, such that the weight of each edge in G is an integer in the interval
[1, c], for a fixed constant c > 0. Show how to solve the single-source shortest-
paths problem, for any given vertex v, in G, in time O(n + m).
Hint: Think about how to exploit the fact that the distance from v to any other
vertex in G can be at most O(cn) = O(n).

C-14.8 Suppose that every shortest path from some vertex, v, in an n-vertex weighted
graph, G, to any other vertex in G has at most k < n − 1 edges. Show that it
is sufficient to run the Bellman-Ford algorithm for only k iterations, instead of
n − 1, to solve the single-source shortest-paths problem for v in G.

Applications
A-14.1 In a side-scrolling video game, a character moves through an environment from,

say, left-to-right, while encountering obstacles, attackers, and prizes. The goal
is to avoid or destroy the obstacles, defeat or avoid the attackers, and collect
as many prizes as possible while moving from a starting position to an ending
position. We can model such a game with a graph, G, where each vertex is a
game position, given as an (x, y) point in the plane, and two such vertices, v and
w, are connected by an edge, given as a straight line segment, if there is a single
movement that connects v and w. Furthermore, we can define the cost, c(e), of an
edge to be a combination of the time, health points, prizes, etc., that it costs our
character to move along the edge e (where earning a prize on this edge would be
modeled as a negative term in this cost). A path, P , in G is monotone if traversing
P involves a continuous sequence of left-to-right movements, with no right-to-
left moves. Thus, we can model an optimal solution to such a side-scrolling
computer game in terms of finding a minimum-cost monotone path in the graph,
G, that represents this game. Describe and analyze an efficient algorithm for
finding a minimum-cost monotone path in such a graph, G.

A-14.2 Suppose that CONTROL, a secret U.S. government counterintelligence agency
based in Washington, D.C., has build a communication network that links n sta-
tions spread across the world using m communication channels between pairs of
stations. Suppose further that the evil spy agency, KAOS, is able to eavesdrop
on some number, k, of these channels and that CONTROL knows the k channels
that have been compromised. Now, CONTROL has a message, M , that it wants
to send from its headquarters station, s, to one of its field stations, t. The problem
is that the message is super secret and should traverse a path that minimizes the
number of compromised edges that occur along this path. Explain how to model
this problem as a shortest-path problem, and describe and analyze an efficient
algorithm to solve it.

A-14.3 Suppose you live far from work and are trying to determine the best route to
drive from your home to your workplace. In order to solve this problem, suppose
further that you have downloaded, from a government website, a weighted graph,
G, representing the entire road network for your state. Although the edges in G
are labeled with their lengths, you are more interested in the amount of time that
it takes to traverse each edge. So you have found another website that has a

www.it-ebooks.info

http://www.it-ebooks.info/

14.6. Exercises 421

function, fi,j , defined for each edge, e = (i, j), in G, such that each fi,j maps
a time of day, t, to the amount of time it takes to go from i to j along the edge,
e = (i, j), if you enter that edge at time t. Here, time is measured in minutes
and times of day are measured in terms of minutes since midnight. In addition,
we assume that you will be leaving for work in the morning and you live close
enough to your workplace so that you can get there before midnight. Moreover,
the fi,j functions are defined to satisfy the normal rules of traffic flow, so that it
is never possible to get to the end of an edge, (i, j), sooner than someone who
entered that edge before you. That is, if t1 < t2, then

fi,j(t2) + t2 − t1 > fi,j(t1).

Describe an efficient algorithm that, given G and the fi,j functions for its edges,
can determine, for any given time, t0, that you might leave your home in the
morning, the amount of time required for you to drive to work. What is the
running time of your algorithm?

A-14.4 Suppose you are given a timetable, which consists of the following:

• A set A of n airports, and for each airport a ∈ A, a minimum connecting
time c(a)

• A set F of m flights, and the following, for each flight f ∈ F :

◦ Origin airport a1(f) ∈ A
◦ Destination airport a2(f) ∈ A
◦ Departure time t1(f)
◦ Arrival time t2(f).

Describe an efficient algorithm for the flight scheduling problem. In this problem,
we are given airports a and b, and a time t, and we wish to compute a sequence of
flights that allows one to arrive at the earliest possible time in b when departing
from a at or after time t. Minimum connecting times at intermediate airports
should be observed. What is the running time of your algorithm as a function of
n and m?

A-14.5 As your reward for saving the Kingdom of Bigfunnia from the evil monster “Ex-
ponential Asymptotic,” the king has given you the opportunity to earn a big re-
ward. Behind the castle there is a maze, and along each corridor of the maze there
is a bag of gold coins. The amount of gold in each bag varies. You will be given
the opportunity to walk through the maze, picking up bags of gold. You may
enter only through the door marked “ENTER” and exit through the door marked
“EXIT.” (These are distinct doors.) While in the maze you may not retrace your
steps. Each corridor of the maze has an arrow painted on the wall. You may only
go down the corridor in the direction of the arrow. There is no way to traverse a
“loop” in the maze. You will receive a map of the maze, including the amount
of gold in and the direction of each corridor. Describe and analyze an efficient
algorithm to help you pick up the most gold in this maze while traversing a path
from the start to the finish.

A-14.6 A part of doing business internationally involves the trading of different curren-
cies, and the markets that facilitate such trades can fluctuate during a trading day
in ways that create profit opportunities. For example, at a given moment during

www.it-ebooks.info

http://www.it-ebooks.info/

422 Chapter 14. Shortest Paths

a trading day, 1 U.S. dollar might be worth 0.98 Canadian dollar, 1 Canadian
dollar might be worth 0.81 euros, and 1 euro might be worth 1.32 U.S. dollars.
Sometimes, as in this example, it is possible for us to perform a cyclic sequence
of currency exchanges, all at the same time, and end up with more money than
we started with, which is an action known as currency arbitrage. For instance,
with the above exchange rates, we could perform a cyclic sequence of trades from
U.S. dollars, to Canadian dollars, to euros, and back to U.S. dollars, which could
turn $1,000,000 into $1,047,816, ignoring the commissions and other overhead
costs for performing currency exchanges (which we will indeed be ignoring in

this exercise). Suppose you are given a complete directed graph, �G, that rep-
resents the currency exchange rates that exist at a given moment in time on a

trading day. Each vertex in �G is a currency, and each directed edge, (v, w), in �G,
is labeled with an exchange rate, r(v, w), which is the amount of currency w that
would be exchanged for 1 unit of currency v. In order to profit from this infor-
mation, you need to find, as quickly as possible, a cycle, (v1, v2, . . . , vk, v1), that
maximizes the product,

r(v1, v2) · r(v2, v3) · · · · · r(vk, v1),

such that this product is strictly greater than 1. Describe and analyze an efficient
dynamic programming algorithm for finding such a cycle, if it exists.

Chapter Notes
Dijkstra [56] published his single-source shortest-path algorithm in 1959. The Bellman-
Ford algorithm is derived from separate publications of Bellman [24] and Ford [74].

Incidentally, the running time for Dijkstra’s algorithm can actually be improved to be
O(n log n + m) by implementing the queue Q with either of two more sophisticated data
structures, the “Fibonacci Heap” [76] or the “Relaxed Heap” [58].

The reader interested in further study of graph algorithms is referred to the books
by Ahuja, Magnanti, and Orlin [10], Even [68], Gibbons [81], Mehlhorn [158], and Tar-
jan [207], and the book chapter by van Leeuwen [210]. For applications of shortest paths
to social networks, see the book by Easley and Kleinberg [60].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

15 Minimum Spanning Trees

Saguaros, Saguaro National Monument, 1941.
Ansel Adams. U.S. government image. U.S. Na-
tional Archives and Records Administration.

Contents

15.1 Properties of Minimum Spanning Trees 425
15.2 Kruskal’s Algorithm . 428
15.3 The Prim-Jarńık Algorithm 433
15.4 Barůvka’s Algorithm . 436
15.5 Exercises . 439

www.it-ebooks.info

http://www.it-ebooks.info/

424 Chapter 15. Minimum Spanning Trees

Suppose the remote mountain country of Vectoria has been given a major grant

to install a large Wi-Fi the center of each of its mountain villages. The grant pays

for the installation and maintenance of the towers, but it doesn’t pay the cost for

running the cables that would be connecting all the towers to the Internet. Commu-

nication cables can run from the main Internet access point to a village tower and

cables can also run between pairs of towers. The challenge is to interconnect all the

towers and the Internet access point as cheaply as possible.

We can model this problem using a graph, G, where each vertex in G is the

location of a Wi-Fi the Internet access point, and an edge in G is a possible cable

we could run between two such vertices. Each edge in G could then be given a

weight that is equal to the cost of running the cable that that edge represents. Thus,

we are interested in finding a connected acyclic subgraph of G that includes all the

vertices of G and has minimum total cost. That is, using the language of graph

theory, we are interested in finding a minimum spanning tree of G, which is the

topic we explore in this chapter. (See Figure 15.1.)

Figure 15.1: Connecting Wi-Fi Vectoria as cheaply as possible. Each edge is labeled

with the cost, in millions of Vectoria dollars, of running a cable between its two

endpoints. The edges that belong to the cheapest way to connect all the villages

and the Internet access point are shown in bold. Note that this spanning tree is not

the same as a shortest-path tree rooted at the Internet access point. For example,

the shortest-path distance to Bolt is 35, but this edge is not included, since we can

connect Bolt to Dott with an edge of cost 13. Background image is a Kashmir

elevation map, 2005. U.S. government image. Credit: NASA.

www.it-ebooks.info

http://www.it-ebooks.info/

15.1. Properties of Minimum Spanning Trees 425

15.1 Properties of Minimum Spanning Trees

As in the tower-connecting problem in Vectoria mentioned above, suppose we wish

to connect all the computers in a new office building using the least amount of cable

or suppose we have an undirected computer network in which each connection

between two routers has a cost for usage and we want to connect all our routers at

the minimum cost possible. As in the example of connecting villages in Vectoria,

we can model these problems using a weighted graph, G, whose vertices represent

the computers or routers, and whose edges represent all the possible pairs (u, v)
of computers, where the weight w((v, u)) of edge (v, u) is equal to the amount of

cable or network cost needed to connect computer v to computer u. Rather than

computing a shortest-path tree from some particular vertex v, we are interested

instead in finding a (free) tree T that contains all the vertices of G and has the

minimum total weight over all such trees.

Given a weighted undirected graph G, we are interested in finding a tree T that

contains all the vertices in G and minimizes the sum of the weights of the edges

of T , that is,

w(T) =
∑
e∈T

w(e).

Recall that a tree such as this, which contains every vertex of a connected graph

G is a spanning tree. Computing a spanning tree T with smallest total weight is

the problem of constructing a minimum spanning tree (or MST).

All the well-known efficient algorithms for finding minimum spanning trees are

applications of the greedy method. As was discussed in Section 10, we apply the

greedy method by iteratively choosing objects to join a growing collection, by in-

crementally picking an object that minimizes or maximizes the change in some ob-

jective function. Thus, algorithms for constructing minimum spanning trees based

on this approach must define some kind of greedy ordering and some kind of ob-

jective function to optimize with each greedy step. The details for these definitions

differ among the various well-known MST algorithms, however.

The first MST algorithm we discuss is Kruskal’s algorithm, which “grows”

the MST in clusters by considering edges in order of their weights. The second

algorithm we discuss is the Prim-Jarńık algorithm, which grows the MST from

a single root vertex, much in the same way as Dijkstra’s shortest-path algorithm.

We conclude this chapter by discussing a third algorithm, due to Barůvka, which

applies the greedy approach in a parallel way.

In order to simplify the description of the algorithms, we assume, in the follow-

ing, that the input graph G is undirected (that is, all its edges are undirected) and

simple (that is, it has no self-loops and no parallel edges). Hence, we denote the

edges of G as unordered vertex pairs (u, z).

www.it-ebooks.info

http://www.it-ebooks.info/

426 Chapter 15. Minimum Spanning Trees

Crucial Facts about Minimum Spanning Trees

Before we discuss the details of efficient MST algorithms, however, let us give

some crucial facts about minimum spanning trees that form the basis of these algo-

rithms.

Lemma 15.1: Let G be a weighted connected graph, and let T be a minimum
spanning tree for T . If e is an edge of G that is not in T , then the weight of e is at
least as great as any edge in the cycle created by adding e to T .

Proof: Since T is a spanning tree (that is, a connected acyclic subgraph of G
that contains all the vertices of G), adding e to T creates a cycle, C. Suppose, for

the sake of contradiction, that there is an edge, f , whose weight is more than e’s

weight, that is, w(e) < w(f). Then we can remove f from T and replace it with e,

and this will result in a spanning tree, T ′, whose total weight is less than the total

weight of T . But the existence of such a tree, T ′, would contradict the fact that T
is a minimum spanning tree. So no such edge, f , can exist. (See Figure 15.2.)

e e

(a) (b)

f f

Figure 15.2: Any nontree edge must have weight that is at least as great as every

edge in the cycle created by that edge and a minimum spanning tree. (a) Suppose

a nontree edge, e, has lower weight than an edge, f , in the cycle created by e and a

minimum spanning tree (shown with bold edges). (b) Then we could replace f by

e and get a spanning tree with lower total weight, which would contradict the fact

that we started with a minimum spanning tree.

www.it-ebooks.info

http://www.it-ebooks.info/

15.1. Properties of Minimum Spanning Trees 427

In addition, all the MST algorithms we discuss in this chapter are based cru-

cially on the following fact. (See Figure 15.3.)

V1 V2

e

min-weight
“bridge” edge

e Belongs to a Minimum Spanning Tree

Figure 15.3: An illustration of a crucial fact about minimum spanning trees.

Theorem 15.2: Let G be a weighted connected graph, and let V1 and V2 be a
partition of the vertices of G into two disjoint nonempty sets. Furthermore, let e be
an edge in G with minimum weight from among those with one endpoint in V1 and
the other in V2. There is a minimum spanning tree T that has e as one of its edges.

Proof: The proof is similar to that of Lemma 15.1. Let T be a minimum spanning

tree of G. If T does not contain edge e, the addition of e to T must create a cycle.

Therefore, there is some edge, f , of this cycle that has one endpoint in V1 and

the other in V2. Moreover, by the choice of e, w(e) ≤ w(f). If we remove f from

T ∪{e}, we obtain a spanning tree whose total weight is no more than before. Since

T was a minimum spanning tree, this new tree must also be a minimum spanning

tree.

In fact, if the weights in G are distinct, then the minimum spanning tree is

unique; we leave the justification of this less crucial fact as an exercise (C-15.3).

Also, note that Theorem 15.2 remains valid even if the graph G contains negative-

weight edges or negative-weight cycles, unlike the algorithms we presented for

shortest paths.

www.it-ebooks.info

http://www.it-ebooks.info/

428 Chapter 15. Minimum Spanning Trees

15.2 Kruskal’s Algorithm

The reason Theorem 15.2 is so important is that it can be used as the basis for

building a minimum spanning tree. In Kruskal’s algorithm, it is used to build the

minimum spanning tree in clusters. Initially, each vertex is in its own cluster all

by itself. The algorithm then considers each edge in turn, ordered by increasing

weight. If an edge e connects two different clusters, then e is added to the set

of edges of the minimum spanning tree, and the two clusters connected by e are

merged into a single cluster. If, on the other hand, e connects two vertices that

are already in the same cluster, then e is discarded. Once the algorithm has added

enough edges to form a spanning tree, it terminates and outputs this tree as the

minimum spanning tree.

We give pseudocode for Kruskal’s method for solving the MST problem in

Algorithm 15.4, and we illustrate this algorithm in Figures 15.5, 15.6, and 15.7.

Algorithm KruskalMST(G):
Input: A simple connected weighted graph G with n vertices and m edges

Output: A minimum spanning tree T for G

for each vertex v in G do
Define an elementary cluster C(v) ← {v}.

Let Q be a priority queue storing the edges in G, using edge weights as keys

T ← ∅ // T will ultimately contain the edges of the MST

while T has fewer than n − 1 edges do
(u, v) ← Q.removeMin()
Let C(v) be the cluster containing v
Let C(u) be the cluster containing u
if C(v) 	= C(u) then

Add edge (v, u) to T
Merge C(v) and C(u) into one cluster, that is, union C(v) and C(u)

return tree T
Algorithm 15.4: Kruskal’s algorithm for the MST problem.

As mentioned before, the correctness of Kruskal’s algorithm follows from the

crucial fact about minimum spanning trees from Theorem 15.2. Each time Kruskal’s

algorithm adds an edge (v, u) to the minimum spanning tree T , we can define a

partitioning of the set of vertices V (as in the theorem) by letting V1 be the cluster

containing v and letting V2 contain the rest of the vertices in V . This clearly de-

fines a disjoint partitioning of the vertices of V and, more importantly, since we are

extracting edges from Q in order by their weights, e must be a minimum-weight

edge with one vertex in V1 and the other in V2. Thus, Kruskal’s algorithm always

adds a valid minimum spanning tree edge.

www.it-ebooks.info

http://www.it-ebooks.info/

15.2. Kruskal’s Algorithm 429

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(a) (b)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(c) (d)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(e) (f)

Figure 15.5: Example of an execution of Kruskal’s MST algorithm on a graph with

integer weights. We show the clusters as shaded regions, and we highlight the edge

being considered in each iteration (continued in Figure 15.6).

www.it-ebooks.info

http://www.it-ebooks.info/

430 Chapter 15. Minimum Spanning Trees

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(g) (h)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(i) (j)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(k) (l)

Figure 15.6: An example of an execution of Kruskal’s MST algorithm (continued).

Rejected edges are shown dashed (continued in Figure 15.7).

www.it-ebooks.info

http://www.it-ebooks.info/

15.2. Kruskal’s Algorithm 431

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(m) (n)

Figure 15.7: Example of an execution of Kruskal’s MST algorithm (continued from

Figures 15.5 and 15.6). The edge considered in (n) merges the last two clusters,

which concludes this execution of Kruskal’s algorithm.

Analyzing Kruskal’s Algorithm

Suppose G is a connected, weighted, undirected graph with n vertices and m edges.

We assume that the edge weights can be compared in constant time. Because of the

high level of the description we gave for Kruskal’s algorithm in Algorithm 15.4,

analyzing its running time requires that we give more details on its implementa-

tion. Specifically, we should indicate the data structures used and how they are

implemented.

We implement the priority queue Q using a heap. Thus, we can initialize Q in

O(m log m) time by repeated insertions, or in O(m) time using bottom-up heap

construction (see Section 5.4). In addition, at each iteration of the while loop, we

can remove a minimum-weight edge in O(log m) time, which actually is O(log n),
since G is simple.

We can use a list-based implementation of a partition (Section 7.1) for the clus-

ters. Namely, let us represent each cluster C with an unordered linked list of ver-

tices, storing, with each vertex v, a reference to its cluster C(v). With this represen-

tation, testing whether C(u) 	= C(v) takes O(1) time. When we need to merge two

clusters, C(u) and C(v), we move the elements of the smaller cluster into the larger

one and update the cluster references of the vertices in the smaller cluster. Since we

can simply add the elements of the smaller cluster at the end of the list for the larger

cluster, merging two clusters takes time proportional to the size of the smaller clus-

ter. That is, merging clusters C(u) and C(v) takes O(min{|C(u)|, |C(v)|}) time.

There are other, more efficient, methods for merging clusters (see Section 7.1), but

this simple approach will be sufficient.

www.it-ebooks.info

http://www.it-ebooks.info/

432 Chapter 15. Minimum Spanning Trees

Lemma 15.3: Consider an execution of Kruskal’s algorithm on a graph with n
vertices, where clusters are represented with sequences and with cluster references
at each vertex. The total time spent merging clusters is O(n log n).

Proof: We observe that each time a vertex is moved to a new cluster, the size of

the cluster containing the vertex at least doubles. Let t(v) be the number of times

that vertex v is moved to a new cluster. Since the maximum cluster size is n,

t(v) ≤ log n.

The total time spent merging clusters in Kruskal’s algorithm can be obtained by

summing up the work done on each vertex, which is proportional to∑
v∈G

t(v) ≤ n log n.

Using Lemma 15.3 and arguments similar to those used in the analysis of

Dijkstra’s algorithm, we conclude that the total running time of Kruskal’s algorithm

is O((n + m) log n), which can be simplified as O(m log n) since G is simple and

connected.

Theorem 15.4: Given a simple connected weighted graph G with n vertices
and m edges, Kruskal’s algorithm constructs a minimum spanning tree for G in
O(m log n) time.

An Alternative Implementation

In some applications, we may be given the edges in sorted order by their weights.

In such cases, we can implement Kruskal’s algorithm faster than the analysis given

above. Specifically, we can implement the priority queue, Q, in this case, simply as

an ordered list. This approach allows us to perform all the removeMin operations

in constant time.

Then, instead of using a simple list-based partition data structure, we can use

the tree-based union-find structure given in Chapter 7. This implies that the se-

quence of O(m) union-find operations runs in O(mα(n)) time, where α(n) is the

slow-growing inverse of the Ackermann function. Thus, we have the following.

Theorem 15.5: Given a simple connected weighted graph G with n vertices and
m edges, with the edges ordered by their weights, we can implement Kruskal’s
algorithm to construct a minimum spanning tree for G in O(mα(n)) time.

www.it-ebooks.info

http://www.it-ebooks.info/

15.3. The Prim-Jarńık Algorithm 433

15.3 The Prim-Jarńık Algorithm

In the Prim-Jarńık algorithm, we grow a minimum spanning tree from a single

cluster starting from some “root” vertex v. The main idea is similar to that of

Dijkstra’s algorithm. We begin with some vertex v, defining the initial “cloud” of

vertices C. Then, in each iteration, we choose a minimum-weight edge e = (v, u),
connecting a vertex v in the cloud C to a vertex u outside of C. The vertex u is then

brought into the cloud C and the process is repeated until a spanning tree is formed.

Again, the crucial fact about minimum spanning trees from Theorem 15.2 is used

here, for by always choosing the smallest-weight edge joining a vertex inside C to

one outside C, we are assured of always adding a valid edge to the MST.

To efficiently implement this approach, we can take another cue from Dijkstra’s

algorithm. We maintain a label D[u] for each vertex u outside the cloud C, so that

D[u] stores the weight of the best current edge for joining u to the cloud C. These

labels allow us to reduce the number of edges that we must consider in deciding

which vertex is next to join the cloud. We give the pseudocode in Algorithm 15.8.

Algorithm PrimJarńıkMST(G):
Input: A weighted connected graph G with n vertices and m edges

Output: A minimum spanning tree T for G

Pick any vertex v of G
D[v] ← 0
for each vertex u 	= v do

D[u] ← +∞
Initialize T ← ∅.

Initialize a priority queue Q with an item ((u, null), D[u]) for each vertex u,

where (u, null) is the element and D[u] is the key.

while Q is not empty do
(u, e) ← Q.removeMin()
Add vertex u and edge e to T .

for each vertex z adjacent to u such that z is in Q do
// perform the relaxation procedure on edge (u, z)
if w((u, z)) < D[z] then

D[z] ← w((u, z))
Change to (z, (u, z)) the element of vertex z in Q.

Change to D[z] the key of vertex z in Q.

return the tree T

Algorithm 15.8: The Prim-Jarńık algorithm for the MST problem.

www.it-ebooks.info

http://www.it-ebooks.info/

434 Chapter 15. Minimum Spanning Trees

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(a) (b)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(c) (d)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(e) (f)

Figure 15.9: Visualizing the Prim-Jarńık algorithm (continued in Figure 15.10).

www.it-ebooks.info

http://www.it-ebooks.info/

15.3. The Prim-Jarńık Algorithm 435

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(g) (h)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(i) (j)

Figure 15.10: Visualizing the Prim-Jarńık algorithm (continued from Figure 15.9).

Analyzing the Prim-Jarńık Algorithm

Let n and m denote the number of vertices and edges of the input graph G, re-

spectively. The implementation issues for the Prim-Jarńık algorithm are similar to

those for Dijkstra’s algorithm. If we implement the priority queue Q as a heap that

supports the locator-based priority queue methods (see Section 5.5), we can extract

the vertex u in each iteration in O(log n) time.

In addition, we can update each D[z] value in O(log n) time, as well, which

is a computation considered at most once for each edge (u, z). The other steps in

each iteration can be implemented in constant time. Thus, the total running time is

O((n + m) log n), which is O(m log n). Hence, we can summarize as follows:

Theorem 15.6: Given a simple connected weighted graph G with n vertices and
m edges, the Prim-Jarńık algorithm constructs a minimum spanning tree for G in
O(m log n) time.

We illustrate the Prim-Jarńık algorithm in Figures 15.9 and 15.10.

www.it-ebooks.info

http://www.it-ebooks.info/

436 Chapter 15. Minimum Spanning Trees

15.4 Barůvka’s Algorithm

Each of the two minimum spanning tree algorithms we have described previously

has achieved its efficient running time by utilizing a priority queue Q, which could

be implemented using a heap (or even a more sophisticated data structure). This

usage should seem natural, for minimum spanning tree algorithms involve applica-

tions of the greedy method—and, in this case, the greedy method must explicitly

be optimizing certain priorities among the vertices of the graph in question. It may

be a bit surprising, but as we show in this section, we can actually design an effi-

cient minimum spanning tree algorithm without using a priority queue. Moreover,

what may be even more surprising is that the insight behind this simplification

comes from the oldest known minimum spanning tree algorithm—the algorithm of

Barůvka.

We present a pseudocode description of Barůvka’s minimum spanning tree al-

gorithm in Algorithm 15.11, and we illustrate this algorithm in Figure 15.12.

Algorithm BarůvkaMST(G):
Input: A weighted connected graph G = (V, E) with unique edge weights

Output: The minimum spanning tree T for G.

Let T be a subgraph of G initially containing just the vertices in V
while T has fewer than |V | − 1 edges do // T is not yet an MST

for each connected component, Ci, of T do
// Perform the MST edge addition procedure for cluster Ci

Let e = (v, u) be a smallest-weight edge in E with v ∈ Ci and u 	∈ Ci

Add e to T (unless e is already in T)

return T
Algorithm 15.11: Pseudo-code for Barůvka’s algorithm.

Implementing Barůvka’s algorithm to be efficient for a graph with n vertices

and m edges is quite simple, requiring only that we be able to do the following:

• Maintain the forest T subject to edge insertion, which we can easily support

in O(1) time each using an adjacency list for T

• Traverse the forest T to identify connected components (clusters), which we

can easily do in O(n) time using a depth-first search of T

• Mark vertices with the name of the cluster they belong to, which we can do

with an extra instance variable for each vertex

• Identify a smallest-weight edge in E incident upon a cluster Ci, which we

can do by scanning the adjacency lists in G for the vertices in Ci.

www.it-ebooks.info

http://www.it-ebooks.info/

15.4. Barůvka’s Algorithm 437

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846
621

802

1464

1235

337

(a)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846
621

802

1464

1235

337

(b)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846
621

802

1464

1235

337

(c)

Figure 15.12: Example of an execution of Barůvka’s algorithm. We show clusters

as shaded regions. We highlight the edge chosen by each cluster with an arrow and

we draw each such MST edge as a thick line. Edges determined not to be in the

MST are shown dashed.

www.it-ebooks.info

http://www.it-ebooks.info/

438 Chapter 15. Minimum Spanning Trees

Why Is This Algorithm Correct?

Like Kruskal’s algorithm, Barůvka’s algorithm builds the minimum spanning tree

by growing a number of clusters of vertices in a series of rounds, not just one

cluster, as was done by the Prim-Jarńık algorithm. But in Barůvka’s algorithm, the

clusters are grown by applying the crucial fact about minimum spanning trees from

Theorem 15.2 to each cluster simultaneously. This approach adds many edges in

each round.

In each iteration of Barůvka’s algorithm, we choose the smallest-weight edge

coming out of each connected component Ci of the current set T of minimum

spanning tree edges. In each case, this edge is a valid choice, for if we consider a

partitioning of V into the vertices in Ci and those outside of Ci, then the chosen

edge e for Ci satisfies the condition of the crucial fact about minimum spanning

trees from Theorem 15.2 for guaranteeing that e belongs to a minimum spanning

tree. Moreover, because of our assumption that edge weights are unique, there

will be just one such edge per cluster, and if two clusters are joined by the same

minimum-weight edge, then they will both choose that edge.

Incidentally, if the edge weights in G are not initially unique, we can impose

uniqueness by numbering the vertices 1 to n and taking the new weight of each

edge e = (u, v), written so that u < v, to be (w(e), u, v), where w(e) is the old

weight of e and we use a lexicographic comparison rule for the new weights.

Analyzing Barůvka’s Algorithm

Let us analyze the running time of Barůvka’s algorithm (Algorithm 15.11). We can

implement each round performing the searches to find the minimum-weight edge

going out of each cluster by an exhaustive search through the adjacency lists of each

vertex in each cluster. Thus, the total running time spent in searching for minimum-

weight edges can be made to be O(m), for it involves examining each edge (v, u)
in G twice: once for v and once for u (since vertices are labeled with the number of

the cluster they are in). The remaining computations in the main while-loop involve

relabeling all the vertices, which takes O(n) time, and traversing all the edges in T ,

which takes O(n) time. Thus, each round in Barůvka’s algorithm takes O(m) time

(since n ≤ m). In each round of the algorithm, we choose one edge coming out of

each cluster, and we then merge each new connected component of T into a new

cluster. Thus, each old cluster of T must merge with at least one other old cluster

of T . That is, in each round of Barůvka’s algorithm, the total number of clusters is

reduced by half. Therefore, the total number of rounds is O(log n); hence, the total

running time of Barůvka’s algorithm is O(m log n). We summarize:

Theorem 15.7: Barůvka’s algorithm computes a minimum spanning tree for a
connected weighted graph G with n vertices and m edges in O(m log n) time.

www.it-ebooks.info

http://www.it-ebooks.info/

15.5. Exercises 439

15.5 Exercises

Reinforcement
R-15.1 Draw a simple, connected, undirected, weighted graph with 8 vertices and 16

edges, each with unique edge weights. Illustrate the execution of Kruskal’s algo-
rithm on this graph. (Note that there is only one minimum spanning tree for this
graph.)

R-15.2 Repeat the previous problem for the Prim-Jarńık algorithm.

R-15.3 Repeat the previous problem for Barůvka’s algorithm.

R-15.4 Describe the meaning of the graphical conventions used in Figures 15.5 through
15.7, illustrating Kruskal’s algorithm. What do thick lines and dashed lines sig-
nify?

R-15.5 Repeat Exercise R-15.4 for Figures 15.9 and 15.10, illustrating the Prim-Jarńık
algorithm.

R-15.6 Repeat Exercise R-15.4 for Figure 15.12, illustrating Barůvka’s algorithm.

R-15.7 Give an alternative pseudocode description of Kruskal’s algorithm that makes
explicit use of the union and find operations.

R-15.8 Why do all the MST algorithms discussed in this chapter still work correctly even
if the graph has negative-weight edges, and even negative-weight cycles?

R-15.9 Give an example of weighted, connected, undirected graph, G, such that the
minimum spanning tree for G is different from every shortest-path tree rooted at
a vertex of G.

R-15.10 Let G be a weighted, connected, undirected graph, and let V1 and V2 be a partition
of the vertices of G into two disjoint nonempty sets. Furthermore, let e be an edge
in the minimum spanning tree for G such that e has one endpoint in V1 and the
other in V2. Give an example that shows that e is not necessarily the smallest-
weight edge that has one endpoint in V1 and the other in V2.

Creativity
C-15.1 Suppose G is a weighted, connected, undirected graph and e is a smallest-weight

edge in G. Show that there is a minimum spanning tree of G that contains e.

C-15.2 Suppose G is a weighted, connected, undirected, simple graph and e is a largest-
weight edge in G. Prove or disprove the claim that there is no minimum spanning
tree of G that contains e.

C-15.3 Suppose G is an undirected, connected, weighted graph such that the edges in
G have distinct edge weights. Show that the minimum spanning tree for G is
unique.

www.it-ebooks.info

http://www.it-ebooks.info/

440 Chapter 15. Minimum Spanning Trees

C-15.4 Suppose G is an undirected, connected, weighted graph such that the edges in G
have distinct positive edge weights. Show that the minimum spanning tree for G
is unchanged even if we square all the edge weights in G, that is, G has the same
set of edges in its minimum spanning tree even if we replace the weight, w(e),
of each edge e in G, with w(e)2.

C-15.5 Suppose G is an undirected, connected, weighted graph such that the edges in
G have distinct edge weights, which may be positive or negative. Show that the
minimum spanning tree for G may be changed if we square all the edge weights
in G, that is, G may have a different set of edges in its minimum spanning tree if
we replace the weight, w(e), of each edge e in G, with w(e)2.

C-15.6 Show how to modify the Prim-Jarńık algorithm to run in O(n2) time.

C-15.7 Show how to modify Barůvka’s algorithm so that it runs in O(n2) time.

Hint: Consider contracting the representation of the graph so that each connected
component “cluster” is reduced to a single “super” vertex, with self-loops and
parallel edges removed with each iteration. Then characterize the running time
using a recurrence relation involving only n and show that this running time is
O(n2).

C-15.8 Suppose you are given a weighted graph, G, with n vertices and m edges, such
that the weight of each edge in G is a real number chosen independently at ran-
dom from the interval [0, 1]. Show that the expected running time of the Prim-
Jarńık algorithm on G is O(n log2 n + m), assuming the priority queue, Q, is
implemented with a heap, as described in the chapter.

Hint: Think about first bounding the expected number of times the Prim-Jarńık
algorithm would change the value of D[v] for any given vertex, v, in G.

C-15.9 Suppose G is a weighted, connected, undirected graph with each edge having a
unique integer weight, which may be either positive or negative. Let G′ be the
same graph as G, but with each edge, e, in G′ having weight that is 1 greater than
e’s weight in G. Show that G and G′ have the same minimum spanning tree.

C-15.10 Suppose Joseph Kruskal had an evil twin, named Peter, who designed an algo-
rithm that takes the exact opposite approach from his brother’s algorithm for find-
ing an MST in an undirected, weighted, connected graph, G. Also, for the sake
of simplicity, suppose the edges of G have distinct weights. Peter’s algorithm is
as follows: consider the edges of G by decreasing weights. For each edge, e, in
this order, if the removal of e from G would not disconnect G, then remove e
from G. Peter claims that the graph that remains at the end of his algorithm is a
minimum spanning tree. Prove or disprove Peter’s claim.

C-15.11 Suppose Vojtěch Jarńık had an evil twin, named Stanislaw, who designed a divide-
and-conquer algorithm for finding minimum spanning trees. Suppose G is an
undirected, connected, weighted graph, and, for the sake of simplicity, let us
further suppose that the weights of the edges in G are distinct. Stanislaw’s al-
gorithm, MinTree(G), is as follows: If G is a single vertex, then it just returns,
outputting nothing. Otherwise, it divides the set of vertices of G into two sets, V1

and V2, of equal size (plus or minus one vertex). Let e be the minimum-weight
edge in G that connects V1 and V2. Output e as belonging to the minimum span-
ning tree. Let G1 be the subgraph of G induced by V1 (that is, G1 consists of the

www.it-ebooks.info

http://www.it-ebooks.info/

15.5. Exercises 441

vertices in V1 plus all the edges of G that connect pairs of vertices in V1). Simi-
larly, let G2 be the subgraph of G induced by V2. The algorithm then recursively
calls MinTree(G1) and MinTree(G2). Stanislaw claims that the edges output by
his algorithm are exactly the edges of the minimum spanning tree of G. Prove or
disprove Stanislaw’s claim.

Applications
A-15.1 Suppose you are a manager in the IT department for the government of a corrupt

dictator, who has a collection of computers that need to be connected together to
create a communication network for his spies. You are given a weighted graph,
G, such that each vertex in G is one of these computers and each edge in G is
a pair of computers that could be connected with a communication line. It is
your job to decide how to connect the computers. Suppose now that the CIA has
approached you and is willing to pay you various amounts of money for you to
choose some of these edges to belong to this network (presumably so that they
can spy on the dictator). Thus, for you, the weight of each edge in G is the
amount of money, in U.S. dollars, that the CIA will pay you for using that edge
in the communication network. Describe an efficient algorithm, therefore, for
finding a maximum spanning tree in G, which would maximize the money you
can get from the CIA for connecting the dictator’s computers in a spanning tree.
What is the running time of your algorithm?

A-15.2 Suppose you are given a diagram of a telephone network, which is a graph G
whose vertices represent switching centers, and whose edges represent commu-
nication lines between two centers. The edges are marked by their bandwidth,
that is, the maximum speed, in bits per second, that information can be transmit-
ted along that communication line. The bandwidth of a path in G is the bandwidth
of its lowest-bandwidth edge. Give an algorithm that, given a diagram and two
switching centers a and b, will output the maximum bandwidth of a path between
a and b. What is the running time of your algorithm?

A-15.3 Suppose NASA wants to link n stations spread out over the solar system using
free-space optical communication, which is a technology that involves shoot-
ing lasers through space between pairs of stations to facilitate communication.
Naturally, the energy needed to connect two stations in this way depends on the
distance between them, with some connections requiring more energy than oth-
ers. Therefore, each pair of stations has a different known energy that is needed
to allow this pair of stations to communicate. NASA wants to connect all these
stations together using the minimum amount of energy possible. Describe an
algorithm for constructing such a communication network in O(n2) time.

A-15.4 Imagine that you just joined a company, GT&T, which set up its computer net-
work a year ago for linking together its n offices spread across the globe. You
have reviewed the work done at that time, and you note that they modeled their
network as a connected, undirected graph, G, with n vertices, one for each office,
and m edges, one for each possible connection. Furthermore, you note that they
gave a weight, w(e), for each edge in G that was equal to the annual rent that
it costs to use that edge for communication purposes, and then they computed a

www.it-ebooks.info

http://www.it-ebooks.info/

442 Chapter 15. Minimum Spanning Trees

minimum spanning tree, T , for G, to decide which of the m edges in G to lease.
Suppose now that it is time renew the leases for connecting the vertices in G and
you notice that the rent for one of the connections not used in T has gone down.
That is, the weight, w(e), of an edge in G that is not in T has been reduced. De-
scribe an O(n+m)-time algorithm to update T to find a new minimum spanning,
T ′, for G given the change in weight for the edge e.

A-15.5 Consider a scenario where you have a set of n players in a multiplayer game that
we would like to connect to form a team. You are given a connected, weighted,
undirected graph, G, with n vertices and m edges, which represents the n players
and the m possible connections that can be made to link them together in a com-
municating team (that is, a connected subgraph of G). In this case, the weight on
each edge, e, in G is an integer in the range [1, n2], which represents the amount
of game points required to use the edge e for communication. Describe how
to find a minimum spanning tree for G and thereby form this team with mini-
mum cost, using an algorithm that runs in O(mα(n)) time, where α(n) is the
slow-growing inverse of the Ackermann function.

A-15.6 Suppose you have n rooms that you would like to connect in a communication
network in one of the dormitories of Flash University. You have modeled the
problem using a connected, undirected graph, G, where each of the n vertices
in G is a room and each of the m edges in G is a possible connection that you
can form by running a cable between the rooms represented by the end vertices
of that edge. In this case, however, there are only two kinds of cables that you
may possibly use, a 12-foot cable, which costs $10 and is sufficient to connect
some pairs of rooms, and a 50-foot cable, which costs $30 and can be used to
connect pairs of rooms that are farther apart. Describe an algorithm for finding a
minimum-cost spanning tree for G in O(n + m) time.

A-15.7 Suppose, for a data approximation application, you are given a set of n points
in the plane and you would like to partition these points into two sets, A and B,
such that each point in A is as close or closer to another point in A than it is to
any point in B, and vice versa. Describe an efficient algorithm for doing this
partitioning.

Chapter Notes
The first known minimum spanning tree algorithm is due to Barůvka [21], and was pub-
lished in 1926. The Prim-Jarńık algorithm was first published in Czech by Jarńık [111]
in 1930 and in English in 1957 by Prim [174]. Kruskal published his minimum spanning
tree algorithm in 1956 [137]. The reader interested in further study of the history of the
minimum spanning tree problem is referred to the paper by Graham and Hell [92]. The
current asymptotically fastest minimum spanning tree algorithm is a randomized method
of Karger, Klein, and Tarjan [119] that runs in O(m) expected time.

Incidentally, the running time for the Prim-Jarńık algorithm can be improved to be
O(n log n + m) by implementing the queue Q with either of two more sophisticated data
structures, the “Fibonacci Heap” [76] or the “Relaxed Heap” [58]. The reader interested in
these implementations is referred to the papers that describe the implementation of these
structures, and how they can be applied to minimum spanning tree problems.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

16 Network Flow and Matching

Yellowstone Falls, 1941. Ansel Adams. U.S. gov-
ernment image. U.S. National Archives and
Records Administration.

Contents

16.1 Flows and Cuts . 445
16.2 Maximum Flow Algorithms 452
16.3 Maximum Bipartite Matching 458
16.4 Baseball Elimination . 460
16.5 Minimum-Cost Flow . 462
16.6 Exercises . 469

www.it-ebooks.info

http://www.it-ebooks.info/

444 Chapter 16. Network Flow and Matching

Consider a computer network modeled by a directed graph G in which each

vertex represents a computer, each edge (u, v) represents a one-way communica-

tion channel from computer u to computer v, and the weight of each edge (u, v)
represents the bandwidth of the channel, that is, the maximum number of bytes

that can be sent from u to v in one second. Suppose that we would like to send a

high-bandwidth streaming media connection from some computer s in G to some

computer t in G, with as high a bandwidth as possible, possibly even higher than

the maximum bandwidth of any single link in our network. This might seem im-

possible at first, but it might actually be possible if we can divide this media stream

into lots of packets and route these packets through multiple paths in the network.

We can formulate this problem by imagining that each edge in G represents

a “pipe” that can transport some commodity, with the weight of that edge repre-

senting the maximum amount it can transport per unit time interval. The optimiza-

tion problem is then known as the maximum flow problem, where we are given

a weighted directed graph and asked to find a way of transporting the maximum

amount of the given commodity from some vertex s, called the source, to some

vertex t, called the sink. (See Figure 16.1.)

Incidentally, the maximum flow problem is closely related to the problem of

finding the maximum way of matching vertices of one type in a graph with vertices

of another type. We therefore also study the maximum matching problem, showing

how the maximum flow problem can be used to solve it efficiently.

Sometimes we have many different maximum flows. Although all are maxi-

mum in terms of how much flow they produce, these flows may in fact be different

in how much they cost. Thus, in this chapter, we also study methods for computing

maximum flows that are of minimum cost, when there are many different maximum

flows and we have some way of measuring their relative costs.

source

sink

alpha
beta

gamma

delta

theta
omega

Figure 16.1: A flow in a graph representing a computer network, with the bandwidth

of thick edges being 4 MB/s, medium edges being 2 MB/s, and thin edges being

1 MB/s. We indicate the flow using icons, where each folder corresponds to one

MB/s going through the channel. Note that the total amount of flow sent from the

source to the sink (6 MB/s) is not maximum. Indeed, one additional MB/s can be

pushed from the source to gamma, from gamma to delta, and from delta to the sink.

After this extra flow is added, the total flow will be maximum.

www.it-ebooks.info

http://www.it-ebooks.info/

16.1. Flows and Cuts 445

16.1 Flows and Cuts
The above example illustrates the rules that a legal flow must obey. In order to

precisely say what these rules are, let us carefully define what we mean by a flow.

Flow Networks

A flow network N consists of the following:

• A connected directed graph G with nonnegative integer weights on the edges,

where the weight of an edge e is called the capacity c(e) of e
• Two distinguished vertices, s and t, of G, called the source and sink, respec-

tively, such that s has no incoming edges and t has no outgoing edges.

Given such a labeled graph, the challenge is to determine the maximum amount

of some commodity that can be pushed from s to t under the constraint that the

capacity of an edge determines the maximum flow that can go along that edge.

(See Figure 16.2.)

7

s

v
1

v
2

v
3

v
4

t

v
5

2

6

8
6

9

3

3

51

5

Figure 16.2: A flow network, N . Each edge e of N is labeled with its capacity,

c(e).

Of course, if we wish some commodity to flow from s to t, we need to be more

precise about what we mean by a “flow.” A flow for network N is an assignment of

an integer value f(e) to each edge e of G that satisfies the following properties:

• For each edge e of G,

0 ≤ f(e) ≤ c(e) (capacity rule).

• For each vertex v of G distinct from the source s and the sink t∑
e∈E−(v)

f(e) =
∑

e∈E+(v)

f(e) (conservation rule),

where E−(v) and E+(v) denote the sets of incoming and outgoing edges

of v, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

446 Chapter 16. Network Flow and Matching

In other words, a flow must satisfy the edge capacity constraints and must, for

every vertex v other than s and t, have the total amount of flow going out of v equal

to the total amount of flow coming into v. Each of the above rules is satisfied, for

example, by the flow illustrated in Figure 16.3.

3/7

s

v
1

v
2

v
3

v
4

t

v
5

2/2

4/6

4/85/6

4/9

1/3

2/3

2/51/1

2/5

Figure 16.3: A flow, f (of value |f | = 10), for the flow network N of Figure 16.2.

The quantity f(e) is called the flow of edge e. The value of a flow f , which we

denote by |f |, is equal to the total amount of flow coming out from the source s:

|f | =
∑

e∈E+(s)

f(e).

It is easy to show that the flow value is also equal to the total amount of flow going

into the sink t (see Exercise R-16.1):

|f | =
∑

e∈E−(t)

f(e).

That is, a flow specifies how some commodity is pushed out from s, through the

network N , and finally into the sink t. A maximum flow for flow network N is a

flow with maximum value over all flows for N (see Figure 16.4). Since a maximum

flow is using a flow network most efficiently, we are most interested in methods for

computing maximum flows.

3/7

s

v
1

v
2

v
3

v
4

t

v
5

2/2

6/6

6/86/6

6/9

0/3

2/3

4/51/1

5/5

Figure 16.4: A maximum flow f∗ (of value |f∗| = 14) for the flow network N of

Figure 16.2.

www.it-ebooks.info

http://www.it-ebooks.info/

16.1. Flows and Cuts 447

16.1.1 Cuts

It turns out that flows are closely related to another concept, known as cuts. Intu-

itively, a cut is a division of the vertices of a flow network N into two sets, with s
on one side and t on the other. Formally, a cut of N is a partition χ = (Vs, Vt) of

the vertices of N such that s ∈ Vs and t ∈ Vt. An edge e of N with origin u ∈ Vs

and destination v ∈ Vt is said to be a forward edge of cut χ. An edge with origin

in Vt and destination in Vs is said to be a backward edge. We envision a cut as a

separation of s and t in N done by cutting across edges of N , with forward edges

going from s’s side to t’s side and backward edges going in the opposite direction.

(See Figure 16.5.)

7

s

v
1

v
2

v
3

v
4

t

v
5

2

6

86

9

3

3

51

5

χ
1

χ
2

(a)

7

s

v
1

v
2

v
3

v
4

t

v
5

2

6

86

9

3

3

51

5

χ

(b)

Figure 16.5: (a) Two cuts, χ1 (on the left) and χ2 (on the right), in the flow network

N of Figure 16.2. These cuts have only forward edges and their capacities are

c(χ1) = 14 and c(χ2) = 18. Cut χ1 is a minimum cut for N . (b) A cut χ in N
with both forward and backward edges. Its capacity is c(χ) = 22.

www.it-ebooks.info

http://www.it-ebooks.info/

448 Chapter 16. Network Flow and Matching

Given a flow f for N , the flow across cut χ, denoted f(χ), is equal to the sum

of the flows in the forward edges of χ minus the sum of the flows in the backward

edges of χ. That is, f(χ) is the net amount of commodity that flows from s’s side

of χ to t’s side of χ. The following lemma shows an interesting property of f(χ).

Lemma 16.1: Let N be a flow network, and let f be a flow for N . For any cut χ
of N , the value of f is equal to the flow across cut χ, that is, |f | = f(χ).

Proof: Consider the sum

F =
∑
v∈Vs

⎛
⎝ ∑

e∈E+(v)

f(e) −
∑

e∈E−(v)

f(e)

⎞
⎠ .

By the conservation rule, for each vertex v of Vs distinct from s, we have that∑
e∈E+(v) f(e) −∑e∈E−(v) f(e) = 0. Thus, F = |f |.
On the other hand, for each edge e that is not a forward or a backward edge of

cut χ, the sum F contains both the term f(e) and the term −f(e), which cancel

each other, or neither the term f(e) nor the term −f(e). Thus, F = f(χ).

The above theorem shows that no matter where we cut a flow network to sepa-

rate s and t, the flow across that cut is equal to the flow for the entire network. The

capacity of cut χ, denoted c(χ), is the sum of the capacities of the forward edges

of χ (note that we do not include the backward edges). The next lemma shows that

a cut capacity c(χ) is an upper bound on any flow across χ.

Lemma 16.2: Let N be a flow network, and let χ be a cut of N . Given any flow f
for N , the flow across cut χ does not exceed the capacity of χ, that is, f(χ) ≤ c(χ).

Proof: Denote with E+(χ) the forward edges of χ, and with E−(χ) the back-

ward edges of χ. By the definition of f(χ), we have

f(χ) =
∑

e∈E+(χ)

f(e) −
∑

e∈E−(χ)

f(e).

Dropping nonpositive terms from the above sum, we obtain the simplified condi-

tion, f(χ) ≤ ∑e∈E+(χ) f(e). By the capacity rule, for each edge e, f(e) ≤ c(e).
Thus, we have

f(χ) ≤
∑

e∈E+(χ)

c(e) = c(χ).

By combining Lemmas 16.1 and 16.2, we obtain the following important result

relating flows and cuts.

Theorem 16.3: Let N be a flow network. Given any flow f for N and any cut χ
of N , the value of f does not exceed the capacity of χ, that is, |f | ≤ c(χ).

In other words, given any cut χ for a flow network N , the capacity of χ is an

upper bound on any flow for N . This upper bound holds even for a minimum cut of

www.it-ebooks.info

http://www.it-ebooks.info/

16.1. Flows and Cuts 449

N , which is a cut with minimum capacity, taken over all cuts of N . In the example

of Figure 16.5, χ1 is a minimum cut.

16.1.2 Residual Capacity and Augmenting Paths
Theorem 16.3 implies that the value of a maximum flow is no more than the ca-

pacity of a minimum cut. We will show in this section that these two quantities

are actually equal. In the process, we will outline an approach for constructing a

maximum flow.

Residual Capacity

In order to prove that a certain flow f is maximum, we need some way of showing

that there is absolutely no more flow that can possibly be “squeezed” into f . Using

the related concepts of residual capacity and augmenting paths, discussed next, we

can provide just such a proof for when a flow f is maximum.

Let N be a flow network, which is specified by a graph G, capacity function

c, source s, and sink t. Furthermore, let f be a flow for N . Given an edge e of G
directed from vertex u to vertex v, the residual capacity from u to v with respect

to the flow f , denoted Δf (u, v), is defined as

Δf (u, v) = c(e) − f(e),

and the residual capacity from v to u is defined as

Δf (v, u) = f(e).

Intuitively, the residual capacity defined by a flow f is any additional capacity that

f has not fully taken advantage of in “pushing” its flow from s to t.
Let π be a path from s to t that is allowed to traverse edges in either the forward

or backward direction, that is, we can traverse the edge e = (u, v) from its origin

u to its destination v or from its destination v to its origin u. Formally, a forward
edge of π is an edge e of π such that, in going from s to t along path π, the origin

of e is encountered before the destination of e. An edge of π that is not forward is

said to be a backward edge. Let us extend our definition of residual capacity to an

edge e in π traversed from u to v, so that Δf (e) = Δf (u, v). In other words,

Δf (e) =
{

c(e) − f(e) if e is a forward edge

f(e) if e is a backward edge.

That is, the residual capacity of an edge e going in the forward direction is the

additional capacity of e that f has yet to consume, but the residual capacity in the

opposite direction is the flow that f has consumed (and could potentially “give

back” if that allows for another flow of higher value).

www.it-ebooks.info

http://www.it-ebooks.info/

450 Chapter 16. Network Flow and Matching

Augmenting Paths

The residual capacity, Δf (π), of a path π is the minimum residual capacity of its

edges. That is,

Δf (π) = min
e∈π

Δf (e).

This value is the maximum amount of additional flow that we can possibly “push”

down the path π without violating a capacity constraint. An augmenting path for

flow f is a path π from the source s to the sink t with nonzero residual capacity,

that is, for each edge e of π,

• f(e) < c(e) if e is a forward edge

• f(e) > 0 if e is a backward edge.

We show in Figure 16.6 an example of an augmenting path.

5/8

s

v
1

v
2

v
3

v
4

t

v
5

2/4

4/9

3/83/7

3/3

0/3

3/3

2/53/6

2/3

(a)

5/8

s

v
1

v
2

v
3

v
4

t

v
5

4/4

6/9

3/85/7

3/3

2/3

3/3

2/51/6

2/3

(b)

Figure 16.6: Example of an augmenting path: (a) network N , flow f , and an aug-

menting path π drawn with thick edges ((v1, v3) is a backward edge); (b) flow f ′
obtained from f by pushing Δf (π) = 2 units of flow from s to t along path π.

www.it-ebooks.info

http://www.it-ebooks.info/

16.1. Flows and Cuts 451

As shown by the following lemma, we can always add the residual capacity of

an augmenting path to an existing flow and get another valid flow.

Lemma 16.4: Let π be an augmenting path for flow f in network N . There exists
a flow f ′ for N of value |f ′| = |f | + Δf (π).

Proof: We compute the flow f ′ by modifying the flow of the edges of π:

f ′(e) =
{

f(e) + Δf (π) if e is a forward edge

f(e) − Δf (π) if e is a backward edge.

Note that we subtract Δf (π) if e is a backward edge, for we are subtracting flow on

e already taken by f in this case. In any case, because Δf (π) ≥ 0 is the minimum

residual capacity of any edge in π, we will violate no capacity constraint on a

forward edge by adding Δf (π) nor will we go below zero flow on any backward

edge by subtracting Δf (π). Thus, f ′ is a valid flow for N , and the value of f ′
is |f | + Δf (π).

By Lemma 16.4, the existence of an augmenting path π for a flow f implies that

f is not maximum. Also, given an augmenting path π, we can modify f to increase

its value by pushing Δf (π) units of flow from s to t along path π, as shown in the

proof of Lemma 16.4.

What if there is no augmenting path for a flow f in network N? In this case,

we have that f is a maximum flow, as stated by the following lemma.

Lemma 16.5: If a network N does not have an augmenting path with respect to a
flow f , then f is a maximum flow. Also, there is a cut χ of N such that |f | = c(χ).

Proof: Let f be a flow for N , and suppose there is no augmenting path in N
with respect to f . We construct from f a cut χ = (Vs, Vt) by placing in set Vs all

the vertices v, such that there is a path from the source s to vertex v consisting of

edges of nonzero residual capacity. Such a path is called an augmenting path from

s to v. Set Vt contains the remaining vertices of N . Since there is no augmenting

path for flow f , the sink t of N is in Vt. Thus, χ = (Vs, Vt) satisfies the definition

of a cut.

By the definition of χ, each forward edge and backward edge of cut χ has zero

residual capacity, that is,

f(e) =
{

c(e) if e is a forward edge of χ
0 if e is a backward edge of χ.

Thus, the capacity of χ is equal to the value of f . That is,

|f | = c(χ).

By Theorem 16.3, we have that f is a maximum flow.

As a consequence of Theorem 16.3 and Lemma 16.5, we have the following:

Theorem 16.6 (The Max-Flow, Min-Cut Theorem): The value of a maximum
flow is equal to the capacity of a minimum cut.

www.it-ebooks.info

http://www.it-ebooks.info/

452 Chapter 16. Network Flow and Matching

16.2 Maximum Flow Algorithms
In this section, we discuss two maximum flow algorithms in this section, starting

with a classic algorithm, due to Ford and Fulkerson.

16.2.1 The Ford-Fulkerson Algorithm
The main idea of the Ford-Fulkerson algorithm is to incrementally increase the

value of a flow in stages, where at each stage some amount of flow is pushed along

an augmenting path from the source to the sink. Initially, the flow of each edge

is equal to 0. At each stage, an augmenting path π is computed and an amount

of flow equal to the residual capacity of π is pushed along π, as in the proof of

Lemma 16.4. The algorithm terminates when the current flow f does not admit an

augmenting path. Lemma 16.5 guarantees that f is a maximum flow in this case.

We provide a pseudocode description of the Ford-Fulkerson solution to the

problem of finding a maximum flow in Algorithm 16.7.

Algorithm MaxFlowFordFulkerson(N):
Input: Flow network N = (G, c, s, t)
Output: A maximum flow f for N

for each edge e ∈ N do
f(e) ← 0

stop ← false
repeat

traverse G starting at s to find an augmenting path for f
if an augmenting path π exists then

// Compute the residual capacity Δf (π) of π
Δ ← +∞
for each edge e ∈ π do

if Δf (e) < Δ then
Δ ← Δf (e)

for each edge e ∈ π do // push Δ = Δf (π) units along π
if e is a forward edge then

f(e) ← f(e) + Δ
else

f(e) ← f(e) − Δ // e is a backward edge

else
stop ← true // f is a maximum flow

until stop
Algorithm 16.7: The Ford-Fulkerson algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

16.2. Maximum Flow Algorithms 453

We visualize the Ford-Fulkerson algorithm in Figure 16.8.

source

sink

alpha

gamma delta

thetaomega

0/1

0/1

0/2

0/4

0/2

0/4

0/2 0/1

0/1

0/4

0/1

0/2

beta

0/2
source

sink

alpha

gamma delta

thetaomega

0/1

0/1

0/2

1/4

1/2

0/4

1/2 0/1

1/1

0/4

0/1

0/2

beta

0/2

(a) (b)

source

sink

alpha

gamma delta

thetaomega

0/1

0/1

0/2

2/4

2/2

1/4

1/2 0/1

1/1

0/4

0/1

0/2

beta

1/2
source

sink

alpha

gamma delta

thetaomega

0/1

0/1

2/2

2/4

0/2

3/4

1/2 0/1

1/1

2/4

0/1

2/2

beta

1/2

(c) (d)

source

sink

alpha

gamma delta

thetaomega

1/1

1/1

2/2

3/4

0/2

3/4

1/2 1/1

0/1

2/4

0/1

2/2

beta

1/2
source

sink

alpha

gamma delta

thetaomega

1/1

1/1

2/2

3/4

1/2

4/4

1/2 1/1

0/1

1/4

1/1

2/2

beta

2/2

(e) (f)

source

sink

alpha

gamma delta

thetaomega

1/1

1/1

2/2

4/4

2/2

4/4

2/2 1/1

1/1

1/4

1/1

2/2

beta

2/2
source

sink

alpha

gamma delta

thetaomega

1/1

1/1

2/2

4/4

2/2

4/4

2/2 1/1

1/1

1/4

1/1

2/2

beta

2/2

(g) (h)

Figure 16.8: Example execution of the Ford-Fulkerson algorithm on the flow net-

work of Figure 16.1. Augmenting paths are drawn with thick lines.

www.it-ebooks.info

http://www.it-ebooks.info/

454 Chapter 16. Network Flow and Matching

Implementation Details

There are important implementation details for the Ford-Fulkerson algorithm that

impact how we represent a flow and how we compute augmenting paths. Repre-

senting a flow is actually quite easy. We can label each edge of the network with

an attribute representing the flow along that edge. To compute an augmenting path,

we use a specialized traversal of the graph G underlying the flow network. Such a

traversal is a simple modification of either a DFS traversal (Section 13.2) or a BFS

traversal (Section 13.3), where instead of considering all the edges incident on the

current vertex v, we consider only the following edges:

• Outgoing edges of v with flow less than the capacity

• Incoming edges of v with nonzero flow.

Alternatively, the computation of an augmenting path with respect to the current

flow f can be reduced to a simple path-finding problem in a new directed graph Rf

derived from G. The vertices of Rf are the same as the vertices of G. For each

ordered pair of adjacent vertices u and v of G, we add a directed edge from u to

v if Δf (u, v) > 0. Graph Rf is called the residual graph with respect to flow f .

An augmenting path with respect to flow f corresponds to a directed path from s
to t in the residual graph Rf . This path can be computed by a DFS traversal of Rf

starting at the source.

Analyzing the Ford-Fulkerson Algorithm

The analysis of the running time of the Ford-Fulkerson algorithm is a little tricky.

This is because the algorithm does not specify the exact way to find augmenting

paths and, as we shall see, the choice of augmenting path has a major impact on the

algorithm’s running time.

Let n and m be the number of vertices and edges of the flow network, respec-

tively, and let f∗ be a maximum flow. Since the graph underlying the network is

connected, we have that n ≤ m + 1. Note that each time we find an augment-

ing path we increase the value of the flow by at least 1, since edge capacities and

flows are integers. Thus, |f∗|, the value of a maximum flow, is an upper bound

on the number of times the algorithm searches for an augmenting path. Also note

that we can find an augmenting path by a simple graph traversal, such as a DFS or

BFS traversal, which takes O(m) time (see Theorems 13.13 and 13.15, and recall

that n ≤ m + 1). Thus, we can bound the running time of the Ford-Fulkerson

algorithm as being at most O(|f∗|m). As illustrated in Figure 16.9, this bound can

actually be attained for some choices of augmenting paths. We conclude that the

Ford-Fulkerson algorithm is a pseudo-polynomial-time algorithm (Section 12.6),

since its running time depends on both the size of the input and also the value of a

numeric parameter. Thus, the time bound of the Ford-Fulkerson algorithm can be

quite slow if |f∗| is large and augmenting paths are chosen poorly.

www.it-ebooks.info

http://www.it-ebooks.info/

16.2. Maximum Flow Algorithms 455

s t

x

y

0/1,000,000

0/1

0/1,000,000

0/1,000,000

0/1,000,000

ts

x

y

0/1,000,000

1/1

0/1,000,000

1/1,000,000

1/1,000,000

Finding an augmenting path Augmenting the flow

(2,000,000 iterations total)

s t

x

y

0/1,000,000

1/1

0/1,000,000

1/1,000,000

1/1,000,000

ts

x

y

1/1,000,000

0/1

1/1,000,000

1/1,000,000

1/1,000,000

Figure 16.9: An example of a network for which the standard Ford-Fulkerson algo-

rithm runs slowly. If the augmenting paths chosen by the algorithm alternate be-

tween (s, x, y, t) and (s, y, x, t), then the algorithm will make a total of 2, 000, 000
iterations, even though two iterations would have sufficed.

16.2.2 The Edmonds-Karp Algorithm

The Edmonds-Karp algorithm is a variation of the Ford-Fulkerson algorithm. It

uses a simple technique for finding good augmenting paths that results in a faster

running time. This technique is based on the notion of being “more greedy” in our

application of the greedy method to the maximum flow problem. Namely, at each

iteration, we choose an augmenting path with the smallest number of edges, which

can be easily done in O(m) time by a modified BFS traversal. We will show that

with these Edmonds-Karp augmentations, the number of iterations is no more than

nm, which implies an O(nm2) running time for the Edmonds-Karp algorithm.

We begin by introducing some notation. We call the length of a path π the

number of edges in π. Let f be a flow for network N . Given a vertex v, we denote

with df (v) the minimum length of an augmenting path with respect to f from the

source s to vertex v, and call this quantity the residual distance of v with respect

to flow f . The following discussion shows how residual distance of each vertex

impacts the running time of the Edmonds-Karp algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

456 Chapter 16. Network Flow and Matching

Performance of the Edmonds-Karp Algorithm

We begin our analysis by noting that residual distance is nondecreasing over a

sequence of Edmonds-Karp augmentations.

Lemma 16.7: Let g be the flow obtained from flow f with an augmentation along
a path π of minimum length. Then, for each vertex v,

df (v) ≤ dg(v).

Proof: Suppose there is a vertex violating the above inequality. Let v be such a

vertex with smallest residual distance with respect to g. That is,

df (v) > dg(v) (16.1)

and

dg(v) ≤ dg(u), for each u such that df (u) > dg(u). (16.2)

Consider an augmenting path γ of minimum length from s to v with respect to

flow g. Let u be the vertex immediately preceding v on γ, and let e be the edge of

γ with endpoints u and v (see Figure 16.10). By the above definition, we have

Δg(u, v) > 0. (16.3)

Also, since u immediately precedes v in shortest path, γ, we have

dg(v) = dg(u) + 1. (16.4)

Finally, by (16.2) and (16.4), we have

df (u) ≤ dg(u). (16.5)

We now show that Δf (u, v) = 0. Indeed, if we had Δf (u, v) > 0, we could

go from u to v along an augmenting path with respect to flow f . This would imply

df (v) ≤ df (u) + 1
≤ dg(u) + 1 by (16.5)

= dg(v) by (16.4),

thus contradicting (16.1).

Since Δf (u, v) = 0 and, by (16.3), Δg(u, v) > 0, the augmenting path π,

which produces g from f , must traverse the edge e from v to u (see Figure 16.10).

Hence,

df (v) = df (u) − 1 because π is a shortest path

≤ dg(u) − 1 by (16.5)

≤ dg(v) − 2 by (16.4)

< dg(v).

Thus, we have obtained a contradiction with (16.1), which completes the proof.

Intuitively, Lemma 16.7 implies that each time we do an Edmonds-Karp aug-

mentation, the residual distance from s to any vertex v can only increase or stay the

same. This fact gives us the following.

www.it-ebooks.info

http://www.it-ebooks.info/

16.2. Maximum Flow Algorithms 457

es

u

t

v

Figure 16.10: Illustration of the proof of Lemma 16.7.

Lemma 16.8: When executing the Edmonds-Karp algorithm on a network with
n vertices and m edges, the number of flow augmentations is no more than nm.

Proof: Let fi be the flow in the network before the ith augmentation, and let πi be

the path used in such augmentation. We say that an edge e of πi is a bottleneck for

πi if the residual capacity of e is equal to the residual capacity of πi. Clearly, every

augmenting path used by the Edmonds-Karp algorithm has at least one bottleneck.

Consider a pair of vertices u and v joined by an edge e, and suppose that edge

e is a bottleneck for two augmenting paths πi and πk, with i < k, that traverse e
from u to v. The above assumptions imply each of the following:

• Δfi(u, v) > 0
• Δfi+1(u, v) = 0
• Δfk

(u, v) > 0.

Thus, there must be an intermediate jth augmentation, with i < j < k whose

augmenting path πj traverses edge e from v to u. We therefore obtain

dfj (u) = dfj (v) + 1 (because πj is a shortest path)

≥ dfi(v) + 1 (by Lemma 16.7)

≥ dfi(u) + 2 (because πi is a shortest path).

Since the residual distance of a vertex is always less than the number of ver-

tices n, each edge can be a bottleneck at most n times during the execution of the

Edmonds-Karp algorithm (n/2 times for each of the two directions in which it can

be traversed by an augmenting path). Hence, the overall number of augmentations

is no more than nm.

Since a single flow augmentation can be done in O(m) time using a modified

BFS strategy, we can summarize the above discussion as follows.

Theorem 16.9: Given a flow network with n vertices and m edges, the Edmonds-
Karp algorithm computes a maximum flow in O(nm2) time.

www.it-ebooks.info

http://www.it-ebooks.info/

458 Chapter 16. Network Flow and Matching

16.3 Maximum Bipartite Matching
A problem that arises in a number of important applications is the maximum bi-
partite matching problem. In this problem, we are given a connected undirected

graph with the following properties:

• The vertices of G are partitioned into two sets, X and Y .

• Every edge of G has one endpoint in X and the other endpoint in Y .

Such a graph is called a bipartite graph. A matching in G is a set of edges that

have no endpoints in common—such a set “pairs” up vertices in X with vertices

in Y so that each vertex has at most one “partner” in the other set. The maximum

bipartite matching problem is to find a matching with the greatest number of edges

(over all matchings).

Example 16.10: Let G be a bipartite graph where the set X represents a group of
young men and the set Y represents a group of young women, who are all together
at a community dance. Let there be an edge joining x in X and y in Y if x and y
are willing to dance with one another. A maximum matching in G corresponds to a
largest set of compatible pairs of men and women who can all be happily dancing
at the same time.

Example 16.11: Let G be a bipartite graph where the set X represents a group of
college courses and the set Y represents a group of classrooms. Let there be an edge
joining x in X and y in Y if, based on its enrollment and audiovisual needs, the
course x can be taught in classroom y. A maximum matching in G corresponds to a
largest set of college courses that can be taught simultaneously without conflicting.

These two examples provide a small sample of the kinds of applications that

the maximum bipartite matching problem can be used to solve. Fortunately, there

is a simple way of solving the maximum bipartite matching problem.

Reduction to the Maximum Flow Problem

Let G be a bipartite graph whose vertices are partitioned into sets X and Y . We

create a flow network H such that a maximum flow in H can be immediately con-

verted into a maximum matching in G:

• We begin by including all the vertices of G in H , plus a new source vertex s
and a new sink vertex t.

• Next, we add every edge of G to H , but direct each such edge so that it is

oriented from the endpoint in X to the endpoint in Y . In addition, we insert

a directed edge from s to each vertex in X , and a directed edge from each

vertex in Y to t. Finally, we assign to each edge of H a capacity of 1.

www.it-ebooks.info

http://www.it-ebooks.info/

16.3. Maximum Bipartite Matching 459

Given a flow f for H , we use f to define a set M of edges of G using the rule

that an edge e is in M whenever f(e) = 1. (See Figure 16.11.) We now show

that the set M is a matching. Since the capacities in H are all 1, the flow through

each edge of H is either 0 or 1. Moreover, since each vertex x in X has exactly

one incoming edge, the conservation rule implies that at most one outgoing edge of

x has nonzero flow. Similarly, since each vertex y in Y has exactly one outgoing

edge, at most one incoming edge of y has nonzero flow. Thus, each vertex in X
will be paired by M with at most one vertex in Y , that is, set M is a matching.

Also, we can easily see that the size of M is equal to |f |, the value of flow f .

A reverse transformation can also be defined. Namely, given a matching M in

graph G, we can use M to define a flow f for H using the following rules:

• For each edge e of H that is also in G, f(e) = 1 if e ∈ M and f(e) = 0
otherwise.

• For each edge e of H incident to s or t, f(e) = 1 if v is an endpoint of some

edge of M and f(e) = 0 otherwise, where v denotes the other endpoint of e.

It is easy to verify that f is a flow for H and the value of f is equal to the size of M .

Therefore, any maximum flow algorithm can be used to solve the maximum

bipartite matching problem on a graph G with n vertices and m edges. Namely,

1. We construct network H from the bipartite graph G. This step takes O(n +
m) time. Network H has n + 2 vertices and n + m edges.

2. We compute a maximum flow for H using the standard Ford-Fulkerson al-

gorithm. Since the value of the maximum flow is equal to |M |, the size of

the maximum matching, and |M | ≤ n/2, this step takes O(n(n + m)) time,

which is O(nm) because G is connected.

Theorem 16.12: Let G be a bipartite graph with n vertices and m edges. A
maximum matching in G can be computed in O(nm) time.

X Y X Y

s t

H:G:

Figure 16.11: (a) A bipartite graph G. (b) Flow network H derived from G and a

maximum flow in H; thick edges have unit flow and other edges have zero flow.

www.it-ebooks.info

http://www.it-ebooks.info/

460 Chapter 16. Network Flow and Matching

16.4 Baseball Elimination
Network flow has a lot of applications, with one of the more surprising being to

a problem that arises in professional sports. Let T be a set of teams in a sports

league, which, for historical reasons, let us assume is baseball. At any point during

the season, each team, i, in T , will have some number, wi, of wins, and will have

some number, gi, of games left to play. The baseball elimination problem is to

determine whether it is possible for team i to finish the season in first place, given

the games it has already won and the games it has left to play. Note that this depends

on more than just the number of games left for team i, however; it also depends on

the respective schedules of team i and the other teams. So let gi,j denote the number

of games remaining between team i and team j, so that

gi =
∑
j∈T

gi,j .

For example, see Table 16.12.

Team Wins Games Left Schedule (gi,j)
i wi gi LA Oak Sea Tex

Los Angeles 81 8 - 1 6 1

Oakland 77 4 1 - 0 3

Seattle 76 7 6 0 - 1

Texas 74 5 1 3 1 -

Table 16.12: A set of teams, their standings, and their remaining schedule. Clearly,

Texas is eliminated from finishing in first place, since it can win at most 79 games.

In addition, even though it is currently in second place, Oakland is also eliminated,

because it can win at most 81 games, but in the remaining games between LA and

Seattle, either LA wins at least 1 game and finishes with at least 82 wins or Seattle

wins 6 games and finishes with at least 82 wins.

With all the different ways for a team, k, to be eliminated, it might at first seem

like it is computationally infeasible to determine whether team k is eliminated.

Still, we can solve this problem by a reduction to a network flow problem. Let T ′
denote the set of teams other than k, that is, T ′ = T − {k}. Also, let L denote the

set of games that are left to play among teams in T ′, that is,

L = {{i, j} : i, j ∈ T ′ and gi,j > 0}.
Finally, let W denote the largest number of wins that are possible for team k given

the current standings, that is, W = wk + gk.

If W < wi, for some team i, then k is eliminated directly by team i. So, let us

assume that no single team eliminates team k. To consider how a combination of

teams and game outcomes might eliminate team k, we create a graph, G, that has

www.it-ebooks.info

http://www.it-ebooks.info/

16.4. Baseball Elimination 461

as its vertices a source, s, a sink, t, and the sets T ′ and L. Then, let us include the

following edges in G (see Figure 16.13):

• For each game pair, {i, j}, in L, add an edge (s, {i, j}), and give it capac-

ity gi,j .

• For each game pair, {i, j}, in L, add edges ({i, j}, i) and ({i, j}, j), and

give these edges capacity +∞.

• For each team, i, add an edge (i, t) and give it capacity W−wi, which cannot

be negative in this case, since we ruled out the case when W < wi.

s t

i

j

{i,j}

Game nodes Team nodes

gi,j

+∞ +∞

+∞

+∞

+∞

+∞

W wi

W wj

Figure 16.13: The network, G, to determine whether team k is eliminated.

The intuition behind the construction for G is that wins flow out from the

source, s, are split at each game node, {i, j}, to allocate wins between each pair

of teams, i and j, and then are absorbed by the sink, t. The flow on each edge,

({i, j}, i), represents the number of games in which team i beats j, and the flow on

each edge, (i, t), represents the number of remaining games that could be won by

team i. Thus, maximizing the flow in G is equivalent to testing if it is possible to

allocate wins among all the remaining games not involving team k so that no team

goes above W wins. So we compute a maximum flow for G.

Suppose that the value of this maximum flow is

g(T ′) =
∑

{i,j}⊆T ′
gi,j ,

which is the total number of games to be played by teams in T ′. This implies that

it is possible to allocate wins to all the remaining games so that no team has its win

count go above W , that is, team k is not eliminated. If, on the other hand, the value

of the maximum flow is strictly less than g(T ′), then team k is eliminated, since it

is not possible to allocate wins to all the remaining games with every team having

a win count of at most W . Thus, we have the following:

Theorem 16.13: We can solve the baseball elimination problem for any team in
a set of n teams by solving a single maximum flow problem on a network with at
most O(n2) vertices and edges.

www.it-ebooks.info

http://www.it-ebooks.info/

462 Chapter 16. Network Flow and Matching

16.5 Minimum-Cost Flow

There is another variant of the maximum flow problem that applies in situations

where there is a cost associated with sending a unit of flow through an edge. In this

section, we extend the definition of a network by specifying a second nonnegative

integer weight w(e) for each edge e, representing the cost of edge e.

Given a flow f , we define the cost of f as

w(f) =
∑
e∈E

w(e)f(e),

where E denotes the set of edges in the network. Flow f is said to be a minimum-
cost flow if f has minimum cost among all flows of value |f |. The minimum-cost
flow problem consists of finding a maximum flow that has the lowest cost over

all maximum flows. A variation of the minimum-cost flow problem asks to find

a minimum-cost flow with a given flow value. Given an augmenting path π with

respect to a flow f , we define the cost of π, denoted w(π), as the sum of the costs

of the forward edges of π minus the sum of the costs of the backward edges of π.

An augmenting cycle with respect to flow f is an augmenting path whose first

and last vertices are the same. In more mathematical terms, it is a directed cy-

cle γ with vertices v0, v1, . . . , v(k − 1), vk = v0, such that Δf (vi, vi+1) > 0 for

i = 0, . . . ,k − 1 (see Figure 16.14). The definitions of residual capacity (given

in Section 16.1.2) and cost (given above) also apply to an augmenting cycle. In

addition, note that since it is a cycle, we can add the flow of an augmenting cycle

to an existing flow without changing its flow value.

1/1, 3

s

u

v

t

1/2, 1

1/2, 1

0/3, 1

1/1, 3

0/1, 3

s

u

v

t

1/2, 1

2/2, 1

1/3, 1

1/1, 3

(a) (b)

Figure 16.14: (a) Network with flow f , where each edge e is labeled with

f(e)/c(e), w(e). We have |f | = 2 and w(f) = 8. Augmenting cycle γ =
(s, v, u, s), drawn with thick edges. The residual capacity of γ is Δf (γ) = 1.

The cost of γ is w(γ) = −1. (b) Flow f ′ obtained from f by pushing one unit

of flow along cycle γ. We have |f ′| = |f | and w(f ′) = w(f) + w(γ)Δf (γ) =
8 + (−1) · 1 = 7.

www.it-ebooks.info

http://www.it-ebooks.info/

16.5. Minimum-Cost Flow 463

Adding the Flow from an Augmenting Cycle

The following lemma is analogous to Lemma 16.4, as it shows that a maximum

flow can be changed into another maximum flow using an augmenting cycle.

Lemma 16.14: Let γ be an augmenting cycle for flow f in network N . There
exists a flow f ′ for N of value |f ′| = |f | and cost

w(f ′) = w(f) + w(γ)Δf (γ).

We leave the proof of Lemma 16.14 as an exercise (R-16.13).

A Condition for Minimum-Cost Flows

Note that Lemma 16.14 implies that if a flow f has an augmenting cycle of negative

cost, then f does not have minimum cost. The following theorem shows that the

converse is also true, giving us a condition for testing when a flow is in fact a

minimum-cost flow.

Theorem 16.15: A flow f has minimum cost among all flows of value |f | if and
only if there is no augmenting cycle of negative cost with respect to f .

Proof: The “only-if” part follows immediately from Lemma 16.14. To prove

the “if” part, suppose that flow f does not have minimum cost, and let g be a flow

of value f with minimum cost. Flow g can be obtained from f by a series of

augmentations along augmenting cycles. Since the cost of g is less than the cost of

f , at least one of these cycles must have negative cost.

An Algorithmic Approach for Finding Minimum-Cost Flows

Theorem 16.15 suggests an algorithm for the minimum-cost flow problem based

on repeatedly augmenting flow along negative-cost cycles. We first find a maxi-

mum flow f∗ using the Ford-Fulkerson algorithm or the Edmonds-Karp algorithm.

Next, we determine whether flow f∗ admits a negative-cost augmenting cycle. The

Bellman-Ford algorithm (Section 14.3) can be used to find a negative cycle in time

O(nm). Let w∗ denote the total cost of the initial maximum flow f∗. After each

execution of the Bellman-Ford algorithm, the cost of the flow decreases by at least

one unit. Hence, starting from maximum flow f∗, we can compute a maximum

flow of minimum cost in time O(w∗nm). Therefore, we have the following:

Theorem 16.16: Given an n-vertex flow network N with costs associated with
its m edges, together with a maximum flow f∗, we can compute a maximum flow
of minimum cost in O(w∗nm) time, where w∗ is the total cost of f∗.

We can do much better than this, however, by being more careful in how we

compute augmenting cycles, as we show in the remainder of this section.

www.it-ebooks.info

http://www.it-ebooks.info/

464 Chapter 16. Network Flow and Matching

Successive Shortest Paths

In this section, we present an alternative method for computing a minimum-cost

flow. The idea is to start from an empty flow and build up to a maximum flow

by a series of augmentations along minimum-cost paths. The following theorem

provides the foundation of this approach.

Theorem 16.17: Let f be a minimum-cost flow, and let f ′ be a the flow obtained
by augmenting f along an augmenting path π of minimum cost. Flow f ′ is a
minimum-cost flow.

Proof: The proof is illustrated in Figure 16.15.

e
s t

γ

π π

Figure 16.15: Illustrating the proof of Theorem 16.17.

Suppose, for the sake of a contradiction, that f ′ does not have minimum cost.

By Theorem 16.15, f ′ has an augmenting cycle γ of negative cost. Cycle γ must

have at least one edge e in common with path π and traverse e in the direction

opposite to that of π, since otherwise γ would be an augmenting cycle of negative

cost with respect to flow f , which is impossible, since f has minimum cost. Con-

sider the path π̂ obtained from π by replacing edge e with γ − e. The path π̂ is an

augmenting path with respect to flow f . Also path π̂ has cost

w(π̂) = w(π) + w(γ) < w(π).

This contradicts the assumption that π is an augmenting path of minimum cost with

respect to flow f .

Starting from an initial null flow, we can compute a maximum flow of mini-

mum cost by a repeated application of Theorem 16.17 (see Figure 16.16). Given

the current flow f , we assign a weight to the edges of the residual graph Rf as

follows (recall the definition of residual graph from Section 16.2). For each edge

e, directed from u to v, of the original network, the edge of Rf from u to v, de-

noted (u, v), has weight w(u, v) = w(e), while the edge (v, u) from v to u has

weight w(v, u) = −w(e). The computation of a shortest path in Rf can be done

by using the Bellman-Ford algorithm (see Section 14.3) since, by Theorem 16.15,

Rf does not have negative-cost cycles. Thus, we obtain a pseudo-polynomial-time

algorithm (Section 12.6) that computes a maximum flow of minimum cost f∗ in

time O(|f∗|nm).

www.it-ebooks.info

http://www.it-ebooks.info/

16.5. Minimum-Cost Flow 465

An example execution of the above algorithm is shown in Figure 16.16.

0/1, 3

s

u

v

t

0/2, 1

0/2, 1

0/3, 1

0/1, 3

2

0

1

3

1, 3

s

u

v

t

2, 1

2, 1

3, 1

1, 3

2

0

1

3

(a) (b)

0/1, 3

s

u

v

t

2/2, 1

2/2, 1

2/3, 1

0/1, 3

3

0

2

5 2, –1s

u

v

t1, 1

1, 3

2, –1

1, 3

2, –1

3

0

2

5

(c) (d)

1/1, 3

s

u

v

t

2/2, 1

2/2, 1

1/3, 1

1/1, 3

1, ±1s

u

v

t2, 1

1, 3

2, ±11, ±3

2, ±1

(e) (f)

Figure 16.16: Example of computation of a minimum-cost flow by successive

shortest-path augmentations. At each step, we show the network on the left and

the residual network on the right. Vertices are labeled with their distance from

the source. In the network, each edge e is labeled with f(e)/c(e), w(e). In the

residual network, each edge is labeled with its residual capacity and cost (edges

with zero residual capacity are omitted). Augmenting paths are drawn with thick

lines. A minimum-cost flow is computed with two augmentations. In the first

augmentation, two units of flow are pushed along path (s, v, u, t). In the second

augmentation, one unit of flow is pushed along path (s, u, v, t).

www.it-ebooks.info

http://www.it-ebooks.info/

466 Chapter 16. Network Flow and Matching

Modified Weights

We can reduce the time for the shortest-path computations by changing the weights

in the residual graph Rf so that they are all nonnegative. After the modification,

we can use Dijkstra’s algorithm, which runs in O(m log n) time, instead of the

Bellman-Ford algorithm, which runs in O(nm) time.

We describe now the modification of the edge weights. Let f be the current

minimum-cost flow. We denote with df (v) the distance of vertex v from the source

s in Rf , defined as the minimum weight of a path from s to v in Rf (the cost of an

augmenting path from the source s to vertex v). Note that this definition of distance

is different from the one used in Section 16.2.2 for the Edmonds-Karp algorithm.

Let g be the flow obtained from v by augmenting f along a minimum-cost path.

We define a new set of edge weights w ′ for Rg, as follows (see Figure 16.17):

w ′(u, v) = w(u, v) + df (u) − df (v).

Lemma 16.18: For each edge (u, v) of residual network Rg, we have

w ′(u, v) ≥ 0.

Also, a shortest path in Rg with the modified edge weights w ′ is also a shortest
path with the original edge weights w.

Proof: We distinguish two cases.

Case 1: The edge (u, v) exists in Rf .

In this case, the distance df (v) of v from s is no more than the distance df (u)
of u from s plus the weight w(u, v) of edge (u, v), that is,

df (v) ≤ df (u) + w(u, v).

Thus, we have

w ′(u, v) ≥ 0.

Case 2: The edge (u, v) does not exist in Rf .

In this case, (v, u) must be an edge of the augmenting path used to obtained

flow g from flow f and we have

df (u) = df (v) + w(v, u).

Since w(v, u) = −w(u, v), we have

w ′(u, v) = 0.

Given a path π of Rg from s to t, the cost w ′(π) of π with respect to the modified

edge weights differs from the cost c(π) of π by a constant:

w ′(π) = w(π) + df (s) − df (t) = w(π) − df (t).

Thus, a shortest path in Rg with respect to the original weights is also a shortest

path with respect to the modified weights.

www.it-ebooks.info

http://www.it-ebooks.info/

16.5. Minimum-Cost Flow 467

0/1, 3

s

u

v

t

0/2, 1

0/2, 1

0/3, 1

0/1, 3

2

0

1

3

(a)

2, –1s

u

v

t1, 1

1, 3

2, –1

1, 3

2, –1

3

0

2

5

(b)

2, 0s

u

v

t1, 0

1, 1

2, 0

1, 1

2, 0

1

0

1

2

(c)

Figure 16.17: Modification of the edge costs in the computation of a minimum-

cost flow by successive shortest-path augmentations. (a) Flow network Nf with

initial null flow f and shortest augmenting path π1 = (s, v, u, t) with cost w1 =
w(π1) = 3. Each vertex is labeled with its distance df from the source. (Same

as Figure 16.16.b.) (b) Residual network Rg after augmenting flow f by two units

along path π and shortest path π2 = (s, u, v, t) with cost w(π2) = 5. (Same as

Figure 16.16.d.) (c) Residual network Rg with modified edge weights. Path π2 is

still a shortest path. However, its cost is decreased by w1.

www.it-ebooks.info

http://www.it-ebooks.info/

468 Chapter 16. Network Flow and Matching

The complete algorithm for computing a minimum-cost flow using the succes-

sive shortest-path method is given in Algorithm 16.18 (MinCostFlow).

Algorithm MinCostFlow(N):
Input: Weighted flow network N = (G, c, w, s, t)
Output: A maximum flow with minimum cost f for N

for each edge e ∈ N do
f(e) ← 0

for each vertex v ∈ N do
d(v) ← 0

stop ← false
repeat

compute the weighted residual network Rf

for each edge (u, v) ∈ Rf do
w ′(u, v) ← w(u, v) + d(u) − d(v)

run Dijkstra’s algorithm on Rf using the weights w ′
for each vertex v ∈ N do

d(v) ← distance of v from s in Rf

if d(t) < +∞ then
// π is an augmenting path with respect to f
// Compute the residual capacity Δf (π) of π
Δ ← +∞
for each edge e ∈ π do

if Δf (e) < Δ then
Δ ← Δf (e)

// Push Δ = Δf (π) units of flow along path π
for each edge e ∈ π do

if e is a forward edge then
f(e) ← f(e) + Δ

else
f(e) ← f(e) − Δ // e is a backward edge

else
stop ← true // f is a maximum flow of minimum cost

until stop

Algorithm 16.18: Successive shortest-path algorithm for computing a minimum-

cost flow.

We summarize this section in the following theorem:

Theorem 16.19: A minimum-cost maximum flow f for a network with n ver-
tices and m edges can be computed in O(|f |m log n) time.

www.it-ebooks.info

http://www.it-ebooks.info/

16.6. Exercises 469

16.6 Exercises

Reinforcement
R-16.1 Show that for a flow f , the total flow out of the source is equal to the total flow

into the sink, that is, ∑
e∈E+(s)

f(e) =
∑

e∈E−(t)

f(e).

R-16.2 Answer the following questions on the flow network N and flow f shown in
Figure 16.6a:

• What are the forward and backward edges of augmenting path π?
• How many augmenting paths are there with respect to flow f? For each

such path, list the sequence of vertices of the path and the residual capacity
of the path.

• What is the value of a maximum flow in N?

R-16.3 Construct a minimum cut for the network shown in Figure 16.4 using the method
in the proof of Lemma 16.5.

R-16.4 Illustrate the execution of the Ford-Fulkerson algorithm in the flow network of
Figure 16.2.

R-16.5 Draw a flow network with 9 vertices and 12 edges. Illustrate an execution of the
Ford-Fulkerson algorithm on it.

R-16.6 Find a minimum cut in the flow network of Figure 16.8a.

R-16.7 Show that, given a maximum flow in a network with m edges, a minimum cut of
N can be computed in O(m) time.

R-16.8 Find two maximum matchings for the bipartite graph of Figure 16.11a that are
different from the maximum matching of Figure 16.11b.

R-16.9 Let G be a complete bipartite graph such that |X| = |Y | = n and for each pair
of vertices x ∈ X and y ∈ Y , there is an edge joining x and y. Show that G has
n! distinct maximum matchings.

R-16.10 Illustrate the execution of the Ford-Fulkerson algorithm in the flow network of
Figure 16.11b.

R-16.11 Illustrate the execution of the Edmonds-Karp algorithm in the flow network of
Figure 16.8a.

R-16.12 Illustrate the execution of the Edmonds-Karp algorithm in the flow network of
Figure 16.2.

R-16.13 Give a proof of Lemma 16.14.

R-16.14 Illustrate the execution of the minimum-cost flow algorithm based on successive
augmentations along negative-cost cycles for the flow network of Figure 16.16a.

www.it-ebooks.info

http://www.it-ebooks.info/

470 Chapter 16. Network Flow and Matching

R-16.15 Illustrate the execution of the minimum-cost flow algorithm based on successive
augmentations along minimum-cost paths for the flow network of Figure 16.2,
where the cost of an edge (u, v) is given by |deg(u) − deg(v)|.

R-16.16 Is Algorithm 16.18 (MinCostFlow) a pseudo-polynomial-time algorithm?

Creativity
C-16.1 What is the worst-case running time of the Ford-Fulkerson algorithm if all edge

capacities are bounded by a constant?

C-16.2 Improve the bound of Lemma 16.8 by showing that there are at most nm/4
augmentations in the Edmonds-Karp algorithm.

Hint: Use df (u, t) in addition to df (s, v).

C-16.3 Let N be a flow network with n vertices and m edges. Show how to compute an
augmenting path with the largest residual capacity in O((n + m) log n) time.

C-16.4 Show that the Ford-Fulkerson algorithm runs in time O(m2 log n log |f∗|) when,
at each iteration, the augmenting path with the largest residual capacity is cho-
sen.

C-16.5 You want to increase the maximum flow of a network as much as possible, but
you are only allowed to increase the capacity of one edge.

a. How do you find such an edge? (Give pseudocode.) You may assume
the existence of algorithms to compute max flow and min cut. What’s the
running time of your algorithm?

b. Is it always possible to find such an edge? Justify your answer.

C-16.6 Given a flow network N and a maximum flow f for N , suppose that the capacity
of an edge e of N is decreased by one, and let N ′ be the resulting network. Give
an algorithm for computing a maximum flow in network N ′ by modifying f .

C-16.7 Give an algorithm that determines, in O(n + m) time, whether a graph with n
vertices and m edges is bipartite.

C-16.8 Give an algorithm for computing a flow of maximum value subject to the follow-
ing two additional constraints:

a. Each edge e has a lower bound �(e) on the flow through it.

b. There are multiple sources and sinks, and the value of the flow is computed
as the total flow out of all the sources (equal to the total flow into all the
sinks).

C-16.9 Show that in a flow network with noninteger capacities, the Ford-Fulkerson al-
gorithm may not terminate.

C-16.10 In the context of the baseball elimination problem, one can show that if wi+gi ≤
wk + gk and team k is eliminated, then team i is also eliminated. Use this fact to
show that among a set of n teams, one can determine all the eliminated teams by
solving O(log n) maximum flow problems.

www.it-ebooks.info

http://www.it-ebooks.info/

16.6. Exercises 471

C-16.11 A vertex cover for a graph, G, is a set of vertices, C, such that every edge in G
is incident to one of the vertices in C. The problem of finding a smallest vertex
cover is useful in network monitoring and other applications, but it is a difficult
problem for general graphs. Show that the problem of finding a smallest vertex
cover in a bipartite graph can be solved in polynomial time.

Hint: Use the max-flow, min-cut theorem, and the reduction of Section 16.3,
to prove that, for any bipartite graph, G, the number of vertices in a minimum
vertex cover for G equals the number of edges in a maximum matching in G.

Applications
A-16.1 In 2006, the city of Beijing, China, instituted a policy that limits residents to own

at most one dog per household. Imagine you are running an online pet adoption
website for the city. Your website contains pictures of adorable puppies that are
available for adoption, and it allows for dogless Beijing residents to click on as
many puppies as they like, with the understanding that they can adopt at most
one. Suppose now that you have collected the puppy preferences from among
n Beijing residents for your m puppies. Describe an efficient algorithm for as-
signing puppies to residents that provides for the maximum number of puppy
adoptions possible while satisfying the constraints that each resident will only
adopt a puppy that he or she likes and that no resident can adopt more than one
puppy.

A-16.2 The city of Irvine, California, allows for residents to own a maximum of three
dogs per household without a breeder’s license. Imagine you are running an
online pet adoption website for the city, as in the previous exercise, but now
for n Irvine residents and m puppies. Describe an efficient algorithm for as-
signing puppies to residents that provides for the maximum number of puppy
adoptions possible while satisfying the constraints that each resident will only
adopt puppies that he or she likes and that no resident can adopt more than three
puppies.

A-16.3 Consider the previous exercise, but suppose the city of Irvine, California, changed
its dog-owning ordinance so that it still allows for residents to own a maximum
of three dogs per household, but now restricts each resident to own at most one
dog of any given breed, such as poodle, terrier, or golden retriever. Describe an
efficient algorithm for assigning puppies to residents that provides for the max-
imum number of puppy adoptions possible while satisfying the constraints that
each resident will only adopt puppies that he or she likes, that no resident can
adopt more than three puppies, and that no resident will adopt more than one dog
of any given breed.

A-16.4 Imagine that you are working on creating a flow for a set of packets in a me-
dia stream, as described in the introduction to this chapter. So you are given a
network, G, with a source, s, and sink, t, together with bandwidth constraints
on each edge, which indicate the maximum speed that the communication link
represented by that edge can support. As mentioned before, your goal is to pro-
duce a maximum flow from s to t, respecting the bandwidth constraints on the
edges. Suppose now, however, that you also have a bandwidth constraint on each

www.it-ebooks.info

http://www.it-ebooks.info/

472 Chapter 16. Network Flow and Matching

router in the network, which specifies the maximum amount of information, in
bits per second, that can pass through that node. Describe an efficient algorithm
for finding a maximum flow in the network, G, that satisfies the bandwidth ca-
pacity constraints on the edges as well as the vertices. What is the running time
of your algorithm?

A-16.5 Suppose, as an interview question, you are told that you have a goat and a wolf
that need to go from a node, s, to a node, t, in a directed acyclic graph, G. To
avoid the wolf eating the goat, their paths must never share an edge. Describe a
polynomial-time algorithm for finding two edge-disjoint paths in G, if such paths
exist, to provide a way for the goat and the wolf to go from s to t without risk to
the goat.

A-16.6 Suppose a friend of yours has created a simulation game based on J.R.R. Tolkien’s
epic The Lord of the Rings. The game environment is Middle Earth, which is
populated by various noble creatures, including hobbits, humans, dwarves, and
elves. Unfortunately, these noble creatures are under attack and need to get to
safe havens, known as “strongholds.” Some strongholds are larger than others,
of course, and each stronghold, s, can only hold some number, Ns, of these crea-
tures. Initially, let us assume each stronghold is empty, and the noble creatures
are living in various regions, with each region, r, containing some number, Nr,
of noble creatures. Moreover, we know, for each region, r, the set of strongholds,
Sr, that can be reached from r in at most three days’ travel. Your job is to fig-
ure out how to move the maximum number of noble creatures possible from the
regions where they currently live to the various strongholds in three days’ time
while not overcrowding any stronghold. Describe and analyze an efficient algo-
rithm to solve this game.

A-16.7 A limousine company must process pickup requests every day, for taking cus-
tomers from their various homes to the local airport. Suppose this company re-
ceives pickup requests from n locations and there are n limos available, where
the distance of limo i to location j is given by a number, dij . Describe an efficient
algorithm for computing a dispatchment of the n limos to the n pickup locations
that minimizes the total distance traveled by all the limos.

Chapter Notes
Ford and Fulkerson’s network flow algorithm (16.2) is described in their book [74]. Ed-
monds and Karp [64] describe two methods for computing augmenting paths that cause the
Ford-Fulkerson algorithm to run faster: shortest augmenting path (Section 16.2.2) and aug-
menting paths with maximum residual capacity (Exercise C-16.4). The minimum-cost flow
algorithm based on successive augmentations along minimum-cost paths (Section 16.5) is
also due to Edmonds and Karp [64].

The reader interested in further study of graph algorithms and flow networks is referred
to the books by Ahuja, Magnanti, and Orlin [10], Even [68], Gibbons [81], Mehlhorn [158],
and Tarjan [207], and the book chapter by van Leeuwen [210]. Schwartz [187] was the first
to show that the baseball elimination problem could be reduced to a maximum flow prob-
lem. Our formulation of the baseball elimination problem follows that of Wayne [215]. For
applications of network flow to social networks, see the book by Easley and Kleinberg [60].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

17 NP-Completeness

Composite satellite image of the United States at night, 1996. U.S. government
image. NOAA/NGDC DMSP.

Contents

17.1 P and NP . 476
17.2 NP-Completeness . 483
17.3 CNF-SAT and 3SAT . 489
17.4 VERTEX-COVER, CLIQUE, and SET-COVER 492
17.5 SUBSET-SUM and KNAPSACK 496
17.6 HAMILTONIAN-CYCLE and TSP 499
17.7 Exercises . 502

www.it-ebooks.info

http://www.it-ebooks.info/

474 Chapter 17. NP-Completeness

Printed circuit boards connect electronic components, with the motherboard

in a personal computer being a well-known example that connects memory chips,

input/output ports, and a computer’s CPU. The connections in a circuit board are

made by an etching process that creates wires on its surface. Then holes are drilled

into the board, allowing for the insertion of electronic components, which are sub-

sequently soldered into the holes. Drilling all of the holes in such a board is a

relatively slow step in this manufacturing process, and drilling time is wasted dur-

ing the time the drill must move from one hole to the next. Thus, in order to

manufacture a large number of identical printed circuit boards, it is worthwhile to

minimize the total amount of time that a drill travels in order to drill all of the holes

in a board.

Looking at this process as a computational problem, we can see that this man-

ufacturing problem is actually an instance of a classic algorithmic problem—the

traveling salesperson problem (TSP). In the traveling salesperson problem, we

are given a set of “cities” that a traveling salesperson needs to visit. In addition,

between every pair of cities, v and w, we are given “distance,” d(v, w), that is a

number representing the cost (in time, miles, money, etc.) for traveling between

city v and city w. The TSP objective is to find a tour that visits all of the cities

and minimizes the total cost of all the traveling the salesperson needs to do. The

problem of drilling all the holes in a printed circuit board is an instance of the trav-

eling salesperson problem. Each of the holes represents a “city” and the distance

between two of these cities is the time it would take to move a robotic drill from

one hole to another, including the time it would take to change drill bits if the two

holes are of different sizes. (See Figure 17.1.)

In addition to the example of optimizing the process of drilling holes in a

printed circuit board, there are many other applications of the traveling salesper-

son problem. For instance, optimizing the delivery of packages in a UPS or FedEx

truck, or the route that one should take to see all the points of interest on a vacation,

are also traveling salesperson problems. Thus, it would be useful if we had a fast

and simple algorithm for computing an optimal solution to any instance of the trav-

eling salesperson problem. Unfortunately, this is a very difficult problem to always

solve optimally.

Some computational problems, like the traveling salesperson problem, are hard.

Moreover, even after lots of different researchers have worked on designing ef-

ficient algorithms for solving them, we may still not have a method that runs in

polynomial time. Ideally, in such cases, we would like to prove that it is impossible

to find a polynomial-time solution, so that we can clearly establish the difficulty of

such a problem. Such a proof would be a great relief when an efficient algorithm

evades us, for then we could take comfort from the fact that no efficient algorithm

exists for this problem. Unfortunately, such proofs are typically also very difficult

to discover.

Still, we can prove that certain problems are computationally as difficult as

other problems, which is an indirect way of showing a problem is computationally

www.it-ebooks.info

http://www.it-ebooks.info/

475

difficult. In particular, the concept of NP-completeness allows us to rigorously

show that finding an efficient algorithm for a certain problem is at least as hard

as finding efficient algorithms for all the problems in a large class of problems

called “NP.” The formal notion of “efficient” we use here is that a problem has an

algorithm running in time proportional to a polynomial function of its input size, n.

(Recall that this notion of efficiency was already mentioned in Section 1.1.5.) That

is, we consider an algorithm “efficient,” for the discussion in this chapter, if it runs

in time O(nk) on any input of size n, for some constant k > 0. The class NP
contains some extremely difficult problems, for which polynomial-time solutions

have eluded researchers for decades. Therefore, while showing that a problem

is NP-complete is admittedly not the same as proving that an efficient algorithm

for the problem is impossible, it is nevertheless a powerful statement. Basically,

showing that a problem L is NP-complete says that, although we have been unable

to find an efficient algorithm for L, neither has any computer scientist who has ever

lived! Indeed, most computer scientists strongly believe it is impossible to solve

any NP-complete problem in polynomial time.

In this chapter, we formally define the class NP and its related class P, and we

show how to prove that some problems are NP-complete. We also discuss some of

the best-known NP-complete problems, showing that each one is at least as hard

as every other problem in NP. These problems include satisfiability, vertex cover,

knapsack, and traveling salesperson.

Figure 17.1: Artwork for a printed circuit board. Each circle in this diagram repre-

sents a hole that needs to be drilled. Optimizing the route that a drill should take to

make these holes is an instance of the traveling salesperson problem (TSP). 8051

Development System Circuit Board, Paul Stoffregen, 2005, public domain image.

www.it-ebooks.info

http://www.it-ebooks.info/

476 Chapter 17. NP-Completeness

17.1 P and NP

In this section, we define P and NP, which give us the basic tools for formally

saying a problem is computationally difficult. But before we discuss the issue of

intractability of computational problems, like the traveling salesperson problem,

we need to revisit the definition of the running time of an algorithm.

In order to study NP-completeness, we need to be more precise about running

time. Namely, instead of the informal notion of input size as the number of “items”

that form the input (see Chapter 1), we define the input size, n, of a problem to be

the number of bits used to encode an input instance. We also assume that characters

and numbers in the input are encoded using a reasonable binary encoding scheme,

so that each character uses a constant number of bits and each integer M > 0 is

represented with at most c log M bits, for some constant c > 0. In particular, we

disallow inputs that are specified using a unary encoding, where an integer M is

represented with M 1’s.

Recall that we have, for most of the other chapters of this book, defined the

input size, n, to be the number of “items” or “elements” in an input. In this chapter,

however, we take n to be the number of bits used to represent an input, as mentioned

above. Formally, we define the worst-case running time of an algorithm A to be

the worst-case time taken by A as a function of n, taken over all inputs (with valid

encodings) having n bits.

From the standpoint of polynomial-time algorithms, we don’t actually lose

much by focusing on bit-length as our definition of input size. For instance, if

an algorithm has a running time that is polynomial in the number of input bits,

n, then it also runs in polynomial time in the number of “items,” N , in that same

input, for
√

n ≤ N ≤ n. Likewise, any “reasonable” algorithm that runs in poly-

nomial time in terms of the number of input items, N , will also run in polynomial

time in terms of the number of input bits, n, where by “reasonable” we mean that

numbers used by the algorithm can be represented using O(log N) bits or arrays

of O(log N)-bit numbers. Thus, under this restriction, n is O(N log N); hence, a

reasonable algorithm with a running time that is polynomial in N will also have a

running time that is polynomial in n. (See Figure 17.2 and also Exercise C-17.2.)

Figure 17.2: Viewing input size in terms of bits.

www.it-ebooks.info

http://www.it-ebooks.info/

17.1. P and NP 477

17.1.1 Defining the Complexity Classes P and NP
By the notion of a “reasonable” algorithm described above, we can easily show

that, for the problems discussed elsewhere in this book, such as graph problems,

text processing, or sorting, the polynomial-time algorithms given in those other

chapters translate into polynomial-time algorithms using the notion of running time

considered in this chapter.

Moreover, the class of polynomials is closed under addition, multiplication, and

composition. That is, if p(n) and q(n) are polynomials, then so are p(n) + q(n),
p(n) · q(n), and p(q(n)). Thus, we can combine or compose polynomial-time

algorithms to construct new polynomial-time algorithms. For example, if an algo-

rithm, A, takes an input of size n and produces an output of size q(n) in O(q(n))
time, and then an algorithm, B, takes the output of A as its input, where B runs

in O(p(m)) time on inputs of size m, then this combined algorithm runs in time

O(q(n) + p(q(n))), which is polynomial if p and q are polynomials.

Decision Problems and Languages

To simplify our discussion, let us restrict our attention for the time being to decision
problems, that is, to computational problems for which the intended output is either

“yes” or “no.” In other words, a decision problem’s output is a single bit, which is

either 0 or 1. For example, each of the following are decision problems:

• Given a string T and a string P , does P appear as a substring of T ?

• Given two sets S and T , do S and T contain the same set of elements?

• Given a graph G with integer weights on its edges, and an integer k, does G
have a minimum spanning tree of weight at most k?

As last problem illustrates, we can often turn an optimization problem, where we

are trying to minimize or maximize some value, into a decision problem. We can

introduce a parameter k and ask if the optimal value for the optimization problem

is at most or at least k. Note that if we can show that a decision problem is hard,

then its related optimization version must also be hard.

We say that an algorithm A accepts an input string x if A outputs “yes” on

input x, and A rejects x if A outputs “no” on input x. Thus, we can view a decision
problem as actually being just a set L of strings—the strings that should be accepted

by an algorithm that correctly solves the problem. Indeed, we often use the letter

“L” to denote such a decision problem, because a set of strings is often referred to

as a language. We can extend this language-based viewpoint further to say that an

algorithm A decides a language L if, for each string x, A outputs “yes” if x is in L
and “no” otherwise. Throughout this chapter, we assume that if x is in an improper

syntax, then an algorithm given x will output “no.” In addition, we restrict our

attention to algorithms, that is, computations that terminate on every input after a

finite number of steps.

www.it-ebooks.info

http://www.it-ebooks.info/

478 Chapter 17. NP-Completeness

The Million-Dollar P = NP Question

The complexity class P is the set of all decision problems (or languages) L that can

be decided in worst-case polynomial time. That is, there is an algorithm A that, on

input x, runs in p(n) time, where n is the size of x and p(n) is a polynomial, and, if

x ∈ L, then A outputs “yes,” and otherwise A outputs “no.” The latter case refers

to the complement of a language L, which consists of all binary strings that are not

in L. Given an algorithm A that decides a language L in polynomial time, p(n),
we can easily construct a polynomial-time algorithm that decides the complement

of L. In particular, given an input x, we can construct a complement algorithm B
that simply runs A for p(n) steps, where n is the size of x. If A outputs “yes,” then

B outputs “no,” and if A outputs “no,” then B outputs “yes.” In either case, the

complement algorithm, B, runs in polynomial time. Therefore, if a language L,

representing some decision problem, is in P, then the complement of L is also in P.

The complexity class NP is defined to include the complexity class P but allow

for the inclusion of languages that may not be in P. Specifically, with NP problems,

we allow algorithms to perform an additional operation:

• choose(b): this operation chooses in a nondeterministic way a bit (that is, a

value that is either 0 or 1) and assigns it to b.

When an algorithm A uses the choose primitive operation, then we say A is non-
deterministic. We state that an algorithm A nondeterministically accepts a string

x if there exists a set of outcomes to the choose calls that A could make on input

x such that A would ultimately output “yes.” In other words, it is as if we consider

all possible outcomes to choose calls and only select those that lead to acceptance

if there is such a set of outcomes.

The complexity class NP is the set of every decision problem (or language),

L, that can be nondeterministically accepted in polynomial time, where we define

the running time, p(n), of a nondeterministic algorithm to be the maximum running

time for A taken over all possible outcomes to its choose calls on an input of size n.

That is, L is in NP if there is a nondeterministic algorithm A and polynomial p(n)
such that, on an input x of size n, if x ∈ L, then there is a set of outcomes to the

choose calls in A so that it outputs “yes” and A runs in p(n) time. If x is not in L,

then every possible outcome to the choose calls in A results in A outputting “no.”

Interestingly, unlike as was the case with P, just because a language L is in NP
does not necessarily imply that the complement of L is also in NP. Indeed, there is

a complexity class, called co-NP, that consists of all languages whose complement

is in NP, and many researchers believe co-NP 	= NP.

The Clay Mathematics Institute has offered $1 million to the first person who

proves whether P = NP. Although no one has, as of this writing, succeeded in

claiming this prize, the majority of computer scientists believe that P is different

than NP. That is, most computer scientists believe that the answer to the “P = NP?”

question is “no.”

www.it-ebooks.info

http://www.it-ebooks.info/

17.1. P and NP 479

An Alternative Definition of NP

There is actually another way to define the complexity class NP, which might be

more intuitive for some readers. This alternative definition of NP is based on de-

terministic verification, instead of nondeterministic acceptance. We say that a lan-

guage L can be verified by an algorithm A if, given any string x in L as input,

there is another string y such that A outputs “yes” on input z = x + y, where we

use the symbol “+” to denote concatenation. The string y is called a certificate for

membership in L, for it helps us certify that x is indeed in L. Note that we make

no claims about verifying when a string is not in L.

This notion of verification allows us to give an alternative definition of the

complexity class NP. Namely, we can define NP to be the set of all languages

L, defining decision problems, such that L can be verified in polynomial time.

That is, there is a (deterministic) algorithm A that, for any x in L, verifies using

some certificate y that x is indeed in L in polynomial time, p(n), including the

time A takes to read its input z = x + y, where n is the size of x. Note that

this definition implies that the size of y is less than p(n). As the following theorem

shows, this verification-based definition of NP is equivalent to the nondeterminism-

based definition given above.

Theorem 17.1: A language L can be (deterministically) verified in polynomial
time if and only if L can be nondeterministically accepted in polynomial time.

Proof: Suppose there is a deterministic algorithm A that can verify in polynomial

time, p(n), that a string x is in L when given a polynomial-length certificate y.

We can construct a nondeterministic algorithm B that takes the string x as input

and calls the choose method to assign the value of each bit in y. After B has

constructed a string z = x + y, it then calls A to verify that x ∈ L given the

certificate y. If there exists a certificate y such that A accepts z, then there is

clearly a set of nondeterministic choices for B that result in B outputting “yes”

itself. In addition, B will run in O(p(n)) steps.

Next, suppose that there is a nondeterministic algorithm A that, given a string

x in L, performs p(n) steps, which may include choose steps, such that, for some

sequence of outcomes to these choose steps, A will output “yes.” There is a de-

terministic verification algorithm B that, given x in L, uses as its certificate y the

ordered concatenation of all the outcomes to choose calls that A makes on input x
in order to ultimately output “yes.” Since A runs in p(n) steps, where n is the size

of x, the algorithm B will also run in O(p(n)) steps given input z = x + y.

The practical implication of this theorem is that, since both definitions of NP
are equivalent, we can use either one for showing that a problem is in NP. That

is, Theorem 17.1 implies that we can structure a nondeterministic algorithm so

that all of its choose steps are performed first and the rest of the algorithm is just

a verification. We illustrate this approach by showing some interesting decision

problems to be in NP in the next subsection.

www.it-ebooks.info

http://www.it-ebooks.info/

480 Chapter 17. NP-Completeness

17.1.2 Some Interesting Problems in NP
Our first example problem in NP is the traveling salesperson problem, which we

discussed above. Recall that in this problem we are given a set of N “cities” to-

gether with a distance function, d(v, w), which assigns an integer cost to each pair

of cities (so that d(v, w) = d(w, v)), and we are asked to find a tour of all the cities

that has minimum total cost. Viewing this as a decision problem, or language TSP,

we assume we are also given an integer k, and we are asked whether there is a cycle

that visits each city exactly once, returning to the starting city, such that the total

cost of the tour is at most k. (See Figure 17.3.)

1

3

7

2

2

4 1

2

7

1

8

9 6

5

6

7

Figure 17.3: An example instance of the TSP decision problem, where k = 18 and

the answer is “yes.” City pairs with a finite cost between them are drawn as an

edge along with its integer cost; missing edges are for city pairs with infinite cost

between them. A tour with total cost at most k is drawn with bold edges.

Lemma 17.2: TSP is in NP.

Proof: Let us define a nondeterministic algorithm that accepts instances of TSP.

Assume that the cities are numbered 1 to N . We iteratively call the choose method

to determine a sequence S of N + 1 numbers from 1 to N . Then, we check that

each number from 1 to N appears exactly once in S (for example, by sorting S),

except for the first and last numbers in S, which should be the same. Then, we

verify that the sequence S defines a cycle of cities and that the total cost of the tour

defined by S is at most k. This algorithm clearly runs in polynomial time.

Observe that if there is a tour that visits each city exactly once, returning to

the starting city, with total cost at most k, then our nondeterministic algorithm will

output “yes.” Likewise, if our algorithm outputs “yes,” then it has found a tour

visiting each city exactly once, returning to the starting city, with total cost at most

k. Since this algorithm runs in polynomial time, this implies that TSP is in NP.

www.it-ebooks.info

http://www.it-ebooks.info/

17.1. P and NP 481

Our next example is a problem related to circuit design testing. A Boolean
circuit is a directed graph where each node, called a logic gate, corresponds to a

simple Boolean function, AND, OR, or NOT. The incoming edges for a logic gate

correspond to inputs for its Boolean function and the outgoing edges correspond to

outputs, which will all be the same value, of course, for that gate. (See Figure 17.4.)

Vertices with no incoming edges are input nodes, and a vertex with no outgoing

edges is an output node.

NOT

OR

AND

Logic Gates:

Inputs:

0

1

0

1

1
1

1

1

Output:

0

1

0
0 1

Figure 17.4: An example Boolean circuit.

CIRCUIT-SAT is the problem that takes as input a Boolean circuit with a single

output node, and asks whether there is an assignment of values to the circuit’s inputs

so that its output value is “1.” Such an assignment of values is called a satisfying
assignment.

Lemma 17.3: CIRCUIT-SAT is in NP.

Proof: We construct a nondeterministic algorithm for accepting CIRCUIT-SAT in

polynomial time. We first use the choose method to “guess” the values of the input

nodes as well as the output value of each logic gate. Then, we simply visit each

logic gate g in C, that is, each vertex with at least one incoming edge. We then

check that the “guessed” value for the output of g is in fact the correct value for

g’s Boolean function, be it an AND, OR, or NOT, based on the given values for the

inputs for g. This evaluation process can easily be performed in polynomial time.

If any check for a gate fails, or if the “guessed” value for the output is 0, then we

output “no.” If, on the other hand, the check for every gate succeeds and the output

is 1, the algorithm outputs “yes.” Thus, if there is indeed a satisfying assignment

of input values for C, then there is a possible collection of outcomes to the choose
statements so that the algorithm will output “yes” in polynomial time. Likewise,

if there is a collection of outcomes to the choose statements so that the algorithm

outputs “yes” in polynomial-time algorithm, there must be a satisfying assignment

of input values for C. Therefore, CIRCUIT-SAT is in NP.

www.it-ebooks.info

http://www.it-ebooks.info/

482 Chapter 17. NP-Completeness

The next example problem is for a network monitoring problem. Suppose we

are given a computer network, which is modeled using a graph G such that each

vertex in G is a computer and each edge in G is a network connection between a

pair of computers. We would like to monitor all of these connections by installing

special monitoring devices on some of the computers, where a monitoring device

placed on a computer can continuously check if all the network connections to that

computer are working correctly. But these devices are relatively expensive, so we

would like to minimize the number of such devices that we need to deploy. Viewed

as a decision problem, which is known as VERTEX-COVER, we are given a graph G
and an integer k, and we are asked whether there is a subset C of k vertices such

that, for every edge (v, w) of G, v ∈ C or w ∈ C (possibly both). Such a subset is

known as a vertex cover. In other words, VERTEX-COVER is the decision problem

that takes a graph G and an integer k as input, and asks whether there is a vertex

cover for G containing at most k vertices. (See Figure 17.5.)

Figure 17.5: An instance of the VERTEX-COVER decision problem, where k = 4
and the answer is “yes.” The vertices in the vertex cover are drawn as large disks.

Lemma 17.4: VERTEX-COVER is in NP.

Proof: Suppose we are given an integer k and a graph G, with its vertices num-

bered 1 to N . We use repeated calls to the choose method to form a collection C
of k numbers that range from 1 to N . As a verification, we insert all the numbers

of C into a dictionary, and then we examine each of the edges in G to make sure

that, for each edge (v, w) in G, v is in C or w is in C. If we ever find an edge

with neither of its end-vertices in G, then we output “no.” If we run through all

the edges of G so that each has an end-vertex in C, then we output “yes.” Such a

computation clearly runs in polynomial time. Note that if G has a vertex cover of

size at most k, then there is an assignment of numbers to define the collection C so

that each edge of G passes our test and our algorithm outputs “yes.” Likewise, if

our algorithm outputs “yes,” then there must be a subset C of the vertices of size at

most k, such that C is a vertex cover. Thus, VERTEX-COVER is in NP.

www.it-ebooks.info

http://www.it-ebooks.info/

17.2. NP-Completeness 483

17.2 NP-Completeness

The notion of nondeterministic acceptance of a decision problem (or language) is

admittedly strange. There is, after all, no conventional computer that can efficiently

perform a nondeterministic algorithm with many calls to the choose method. In-

deed, to date no one has shown how even an unconventional computer, such as a

quantum computer or DNA computer, can efficiently simulate any nondeterminis-

tic polynomial-time algorithm using a polynomial amount of resources. Certainly,

we can deterministically simulate a nondeterministic algorithm by trying out, one

by one, all possible outcomes to the choose statements that the algorithm makes.

But this simulation becomes an exponential-time computation for any nondeter-

ministic algorithm that makes at least nε calls to the choose method, for any fixed

constant ε > 0. Indeed, there are hundreds of problems in the complexity class

NP for which most computer scientists strongly believe there is no conventional

deterministic method for solving them in polynomial time.

The usefulness of the complexity class NP, therefore, is that it formally captures

a host of problems that many believe to be computationally difficult. In fact, there

are some problems that are provably at least as hard as every other problem in NP,

as far as polynomial-time solutions are concerned. This notion of hardness is based

on the concept of polynomial-time reducibility, which we now discuss.

17.2.1 Polynomial-Time Reducibility and NP-Hardness

We say that a language L, defining some decision problem, is polynomial-time
reducible to a language M , if there is a function f computable in polynomial time,

that takes an input x to L, and transforms it to an input f(x) of M , such that x ∈ L
if and only if f(x) ∈ M . In addition, we use a shorthand notation, saying L poly−→ M
to signify that language L is polynomial-time reducible to language M .

We say that a language M , defining some decision problem, is NP-hard if every

other language L in NP is polynomial-time reducible to M . In more mathematical

notation, M is NP-hard, if, for every L ∈ NP, L poly−→ M . If a language M is

NP-hard and it is also in the class NP itself, then M is NP-complete. Thus, an NP-

complete problem is, in a very formal sense, one of the hardest problems in NP, as

far as polynomial-time computability is concerned. For, if anyone ever shows that

an NP-complete problem L is solvable in polynomial time, then that immediately

implies that every other problem in the entire class NP is solvable in polynomial

time. For, in this case, we could accept any other NP language M by reducing

it to L and then running the algorithm for L. In other words, if anyone finds a

deterministic polynomial-time algorithm for even one NP-complete problem, then

P = NP.

www.it-ebooks.info

http://www.it-ebooks.info/

484 Chapter 17. NP-Completeness

17.2.2 The Cook-Levin Theorem

At first, it might appear that the definition of NP-completeness is too strong. Still,

as the following theorem shows, there is at least one NP-complete problem.

Theorem 17.5 (The Cook-Levin Theorem): CIRCUIT-SAT is NP-complete.

Rather than give a formal proof of this theorem, which is somewhat cumber-

some, let us instead provide a sketch of this proof, which highlights the main ideas.

To begin, note that Lemma 17.3 shows that CIRCUIT-SAT is in NP. Thus, we have

yet to show this problem is NP-hard. That is, we need to show that every problem

in NP is polynomial-time reducible to CIRCUIT-SAT.

So, consider a language L, representing some decision problem that is in NP.

Since L is in NP, there is a deterministic algorithm D that accepts any x in L in

polynomial-time p(n), given a polynomial-sized certificate y, where n is the size

of x. The main idea of the proof is to build a large, but polynomial-sized, circuit

C that simulates the algorithm D on an input x in such a way that C is satisfiable

if and only if there is a certificate y such that D outputs “yes” on input z = x + y,

where “+” denotes concatenation.

Configurations of a Computation

Recall (from Section 1.1.2) that any deterministic algorithm, such as D, can be

implemented on a simple computational model (called the Random Access Ma-

chine, or RAM) that consists of a CPU and a bank M of addressable memory cells.

In our case, the memory M contains the input, x, the certificate, y, the working

storage, W , that D needs to perform its computations, and the code for the algo-

rithm D itself. The working storage W for D includes all the registers used for

temporary calculations and the stack frames for the procedures that D calls during

its execution. The topmost such stack frame in W contains the program counter

(PC) that identifies where D currently is in its program execution. Thus, there are

no memory cells in the CPU itself. In performing each step of D, the CPU reads

the next instruction i, which is pointed to by the PC, and performs the calculation

indicated by i, be it a comparison, arithmetic operation, a conditional jump, a step

in procedure call, etc., and then updates the PC to point to the next instruction to be

performed. Thus, the current state of D is completely characterized by the contents

of its memory cells. Moreover, since D accepts an x in L in a polynomial p(n)
number of steps, where n is the size of x, then the entire effective collection of its

memory cells can be assumed to consist of just p(n) bits. For in p(n) steps, D can

access at most p(n) memory cells. Note also that the size of D’s code is constant

with respect to the sizes of x, y, and even W . We refer to the p(n)-sized collection

M of memory cells for an execution of D as the configuration of the algorithm D.

www.it-ebooks.info

http://www.it-ebooks.info/

17.2. NP-Completeness 485

Boolean Circuits Can Perform Computations

The heart of the reduction of L to CIRCUIT-SAT depends on our constructing a

Boolean circuit that simulates the workings of the CPU in our computational model.

We omit the details of such a construction in this proof sketch, but it is well known

that a CPU can be designed as a Boolean circuit consisting of AND, OR, and NOT

gates. For example, such constructions are studied in depth in courses on computer

architecture. Moreover, let us further take for granted that this circuit, including

its address unit for connecting to a memory of p(n) bits, can be designed to take a

configuration of D as input and provide as output the configuration resulting from

processing the next computational step. In addition, let us assume that this simula-

tion circuit, which we will call S, can be constructed to consist of at most cp(n)2

AND, OR, and NOT gates, for some constant c > 0. We are admittedly making

an important assumption here, which would be established formally in an actual

proof of the Cook-Levin Theorem, but this assumption should at least be intuitive,

for if it were not the case, then the CPUs that come inside modern computers and

smartphones would not be as small as they are.

The Simulation

To then simulate the entire p(n) steps of D, we make p(n) copies of S, with the

output from one copy serving as the input for the next. (See Figure 17.6.) Part of

the input for the first copy of S consists of “hard-wired” values for the program for

D, the value of x, the initial stack frame (complete with PC pointing to the first

instruction of D), and the remaining working storage (initialized to all 0’s). The

only unspecified true inputs to the first copy of S are the cells of D’s configuration

for the certificate y. These are the true inputs to our circuit. Likewise, we ignore

all the outputs from the final copy of S, except the single output that indicates the

answer from D, with “1” for “yes” and “0” for “no.” The total size of the circuit C
is O(p(n)3), which of course is still polynomial in the size of x.

Completing the Proof Sketch

Consider an input x that D accepts for some certificate y after p(n) steps. Then

there is an assignment of values to the input to C corresponding to y, such that, by

having C simulate D on this input and the hard-wired values for x, we will ulti-

mately have C output a 1. Thus, C is satisfiable in this case. Conversely, consider

a case when C is satisfiable. Then there is a set of inputs, which correspond to the

certificate y, such that C outputs a 1. But, since C exactly simulates the algorithm

D, this implies that there is an assignment of values to the certificate y, such that

D outputs “yes.” Thus, D will verify x in this case. Therefore, D accepts x with

certificate y if and only if C is satisfiable.

www.it-ebooks.info

http://www.it-ebooks.info/

486 Chapter 17. NP-Completeness

p(n)

memory

cells

S

x

D

W

y

x

D

W

y

S S

x

D

W

y

Output

0/1

from D

p(n)
steps

In
p

u
ts

n

Figure 17.6: An illustration of the circuit used to prove that CIRCUIT-SAT is NP-

hard. The only true inputs correspond to the certificate, y. The problem instance,

x, the working storage, W , and the program code, D, are initially “hard-wired”

values. The only output is the bit that determines whether the algorithm accepts x.

www.it-ebooks.info

http://www.it-ebooks.info/

17.2. NP-Completeness 487

17.2.3 How to Prove Problems to be NP-Complete
Now that we are armed with one NP-complete problem, we can prove other prob-

lems are NP-complete using simple polynomial-time reductions. We explore a

number of such reductions in the remainder of this chapter.

Given just a single NP-complete problem, we can now use polynomial-time

reducibility to show other problems to be NP-complete. We will make repeated

use of the following important lemma about polynomial-time reducibility.

Lemma 17.6: If L1
poly−→ L2 and L2

poly−→ L3, then L1
poly−→ L3.

Proof: Since L1
poly−→ L2, any instance, x, of size n, for L1, can be converted in

polynomial-time, p(n), into an instance f(x) for L2, such that x ∈ L1 if and only

if f(x) ∈ L2. Likewise, since L2
poly−→ L3, any instance, y, of size m, for L2, can be

converted in polynomial-time, q(m), into an instance g(y) for L3, such that y ∈ L2

if and only if g(y) ∈ L3. Combining these two constructions, any instance, x, of

size n, for L1 can be converted in time, p(n) + q(k), into an instance, g(f(x)), for

L3, such that x ∈ L1 if and only if g(f(x)) ∈ L3, where k is the size of f(x).
But, k ≤ p(n), since f(x) is constructed in p(n) steps. Thus, q(k) ≤ q(p(n)).
Since the composition of two polynomials always results in another polynomial,

this inequality implies that L1
poly−→ L3.

In this section we establish several important problems to be NP-complete,

using this lemma. All of the proofs have the same general structure. Given a new

problem L, we first prove that L is in NP. Then, we reduce a known NP-complete

problem to L in polynomial time, showing L to be NP-hard. Thus, we show L to

be in NP and also NP-hard; hence, L has been shown to be NP-complete. (Why

not do the reduction in the other direction?) These reductions generally take one of

three forms:

• Restriction: This form shows a problem L is NP-hard by noting that a known

NP-complete problem M is actually just a special case of L.

• Local replacement: This forms reduces a known NP-complete problem M
to L by dividing instances of M and L into “basic units,” and then showing

how each basic unit of M can be locally converted into a basic unit of L.

• Component design: This form reduces a known NP-complete problem M
to L by building components for an instance of L that will enforce impor-

tant structural functions for instances of M . For example, some components

might enforce a “choice” while others enforce an “evaluation” function.

The last of the three above forms tends to be the most difficult to construct; it is the

form used, for example, by the proof of the Cook-Levin Theorem (17.5).

In Figure 17.7, we illustrate the problems we prove are NP-complete, together

with the problems they are reduced from and the technique used in each polynomial-

time reduction.

www.it-ebooks.info

http://www.it-ebooks.info/

488 Chapter 17. NP-Completeness

In the remainder of this chapter we study some important NP-complete prob-

lems. We treat most of them in pairs, with each pair addressing an important class

of problems, including problems involving Boolean formulas, graphs, sets, and

numbers. We begin with two problems involving Boolean formulas.

Figure 17.7: Illustration of the reductions used in some fundamental NP-

completeness proofs. Each directed edge denotes a polynomial-time reduction,

with the label on the edge indicating the primary form of that reduction. The top-

most reduction is the Cook-Levin Theorem.

www.it-ebooks.info

http://www.it-ebooks.info/

17.3. CNF-SAT and 3SAT 489

17.3 CNF-SAT and 3SAT

The first reductions we present are for problems involving Boolean formulas. A

Boolean formula is a parenthesized expression that is formed from Boolean vari-

ables using Boolean operations, such as OR (+), AND (·), NOT (drawn as a bar

over the negated subexpression), IMPLIES (→), and IF-AND-ONLY-IF (↔). A

Boolean formula is in conjunctive normal form (CNF) if it is formed as a collec-

tion of subexpressions, called clauses, that are combined using AND, with each

clause formed as the OR of Boolean variables or their negation, called literals. For

example, the following Boolean formula is in CNF:

(x1 + x2 + x4 + x7)(x3 + x5)(x2 + x4 + x6 + x8)(x1 + x3 + x5 + x8).

This formula evaluates to 1 if x2, x3, and x4 are 1, where we use 0 for false and

1 for true. CNF is called a “normal” form, because any Boolean formula can be

converted into this form.

CNF-SAT

Problem CNF-SAT takes a Boolean formula in CNF form as input and asks whether

there is an assignment of Boolean values to its variables so that the formula evalu-

ates to 1. It is easy to show that CNF-SAT is in NP, for, given a Boolean formula

S, we can construct a simple nondeterministic algorithm that first “guesses” an as-

signment of Boolean values for the variables in S and then evaluates each clause

of S in turn. If all the clauses of S evaluate to 1, then S is satisfied; otherwise, it is

not.

To show that CNF-SAT is NP-hard, we will reduce the Circuit-SAT problem to

it in polynomial time. So, suppose we are given a Boolean circuit, C. Without loss

of generality, we assume that each AND and OR gate has two inputs and each NOT

gate has one input. To begin the construction of a formula S equivalent to C, we

create a variable xi for each input for the entire circuit C. One might be tempted

to limit the set of variables to just these xi’s and immediately start constructing a

formula for C by combining subexpressions for inputs, but it is not clear that this

approach would take polynomial time. (See Exercise C-17.5.) Instead, we create a

variable yi for each output of a gate in C. Then we create a short formula Bg that

corresponds to each gate g in C as follows:

• If g is an AND gate with inputs a and b (which could be either xi’s or yi’s)

and output c, then Bg = (c ↔ (a · b)).
• If g is an OR gate with inputs a and b and output c, then Bg = (c ↔ (a+b)).
• If g is a NOT gate with input a and output b, then Bg = (b ↔ a).

We wish to create our formula S by taking the AND of all of these Bg’s, but such

a formula would not be in CNF. So our method is to first convert each Bg to be in

www.it-ebooks.info

http://www.it-ebooks.info/

490 Chapter 17. NP-Completeness

a b c B = (c ↔ (a · b))
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 1 1
0 0 1 0
0 0 0 1

DNF formula for B = a · b · c + a · b · c + a · b · c + a · b · c
CNF formula for B = (a + b + c) · (a + b + c) · (a + b + c) · (a + b + c).

Figure 17.8: A truth table for a Boolean formula B over variables a, b, and c. The

equivalent formula for B in DNF, and equivalent formula for B in CNF.

CNF, and then combine all of these transformed Bg’s by AND operations to define

the CNF formula S.

To convert a Boolean formula B into CNF, we construct a truth table for B, as

shown in Figure 17.8. We then construct a short formula Di for each table row that

evaluates to 0. Each Di consists of the AND of the variables for the table, with the

variable negated if and only if its value in that row is 0. We create a formula D by

taking the OR of all the Di’s. Such a formula, which is the OR of formulas that are

the AND of variables or their negation, is said to be in disjunctive normal form,

or DNF. In this case, we have a DNF formula D that is equivalent to B, since it

evaluates to 1 if and only if B evaluates to 0. To convert D into a CNF formula for

B, we apply, to each Di, De Morgan’s laws, which establish that

(a + b) = a · b and (a · b) = a + b.

From Figure 17.8, we can replace each Bg that is of the form (c ↔ (a · b)), by

(a + b + c)(a + b + c)(a + b + c)(a + b + c),

which is in CNF. Likewise, for each Bg that is of the form (b ↔ a), we can replace

Bg by the equivalent CNF formula

(a + b)(a + b).

We leave the CNF substitution for a Bg of the form (c ↔ (a + b)) as an exercise

(R-17.2). Substituting each Bg in this way results in a CNF formula S ′ that cor-

responds exactly to each input and logic gate of the circuit, C. To construct the

final Boolean formula S, then, we define S = S ′ · y, where y is the variable that

is associated with the output of the gate that defines the value of C itself. Thus, C
is satisfiable if and only if S is satisfiable. Moreover, the construction from C to

S builds a constant-sized subexpression for each input and gate of C; hence, this

construction runs in polynomial time. Therefore, this local-replacement reduction

gives us the following.

Theorem 17.7: CNF-SAT is NP-complete.

www.it-ebooks.info

http://www.it-ebooks.info/

17.3. CNF-SAT and 3SAT 491

3SAT

Consider the 3SAT problem, which takes a Boolean formula S that is in conjunctive

normal form (CNF) with each clause in S having exactly three literals, and asks

whether S is satisfiable. Recall that a Boolean formula is in CNF if it is formed by

the AND of a collection of clauses, each of which is the OR of a set of literals. For

example, the following formula could be an instance of 3SAT:

(x1 + x2 + x7)(x3 + x5 + x6)(x2 + x4 + x6)(x1 + x5 + x8).

Thus, the 3SAT problem is a restricted version of the CNF-SAT problem. (Note

that we cannot use the restriction form of NP-hardness proof, however, for this

proof form only works for reducing a restricted version to its more general form.)

In this subsection, we show that 3SAT is NP-complete, using the local-replacement

form of proof. Interestingly, the 2SAT problem, in which every clause has exactly

two literals, can be solved in polynomial time. (See Exercises C-17.6 and C-17.7.)

Note that 3SAT is in NP, for we can construct a nondeterministic polynomial-

time algorithm that takes a CNF formula S with 3-literals per clause, guesses an

assignment of Boolean values for S, and then evaluates S to see if it is equal to 1.

To prove that 3SAT is NP-hard, we reduce the CNF-SAT problem to it in poly-

nomial time. Let C be a given Boolean formula in CNF. We perform the following

local replacement for each clause Ci in C:

• If Ci = (a), that is, it has one term, which may be a negated variable, then

we replace Ci with Si = (a + b + c) · (a + b + c) · (a + b + c) · (a + b + c),
where b and c are new variables not used anywhere else.

• If Ci = (a + b), that is, it has two terms, then we replace Ci with the sub-

formula Si = (a + b + c) · (a + b + c), where c is a new variable not used

anywhere else.

• If Ci = (a + b + c), that is, it has three terms, then we set Si = Ci.

• If Ci = (a1 +a2 +a3 + · · ·+ak), that is, it has k > 3 terms, then we replace

Ci with Si = (a1+a2+b1)·(b1+a3+b2)·(b2+a4+b3) · · · (bk−3+ak−1+ak),
where b1, b2, . . . , bk−1 are new variables not used anywhere else.

Notice that the value assigned to the newly introduced variables is completely ir-

relevant. No matter what we assign them, the clause Ci is 1 if and only if the small

formula Si is also 1. Thus, the original clause C is 1 if and only if S is 1. More-

over, note that each clause increases in size by at most a constant factor and that the

computations involved are simple substitutions. Therefore, we have shown how to

reduce an instance of the CNF-SAT problem to an equivalent instance of the 3SAT

problem in polynomial time. This, together with the earlier observation about 3SAT

belonging to NP, gives us the following theorem.

Theorem 17.8: 3SAT is NP-complete.

www.it-ebooks.info

http://www.it-ebooks.info/

492 Chapter 17. NP-Completeness

17.4 VERTEX-COVER, CLIQUE, and SET-COVER

In the VERTEX-COVER problem, we are given a graph G and an integer k and

asked whether there is a vertex cover for G containing at most k vertices. That is,

VERTEX-COVER asks whether there is a subset C of vertices of size at most k, such

that for each edge (v, w), we have v ∈ C or w ∈ C. We showed, in Lemma 17.4,

that VERTEX-COVER is in NP.

VERTEX-COVER is NP-Complete

Given that VERTEX-COVER is in NP, to show that VERTEX-COVER is NP-complete,

we will show that VERTEX-COVER is NP-hard, by reducing the 3SAT problem to it

in polynomial time. This reduction is interesting in two respects. First, it shows an

example of reducing a logic problem to a graph problem. Second, it illustrates an

application of the component-design proof technique.

Let S be a given instance of the 3SAT problem, that is, a CNF formula such that

each clause has exactly three literals. We construct a graph G and an integer k such

that G has a vertex cover of size at most k if and only if S is satisfiable. We begin

our construction by adding the following:

• For each variable xi used in the formula S, we add two vertices in G, one

that we label with xi and the other we label with xi. We also add the edge

(xi, xi) to G. (Note: These labels are for our own benefit; after we construct

the graph G, we can always relabel vertices with integers if that is what an

instance of the VERTEX-COVER problem should look like.)

Each edge (xi, xi) is a “truth-setting” component, for, with this edge in G, a vertex

cover must include at least one of xi or xi. In addition, we add the following:

• For each clause Ci = (a + b + c) in S, we form a triangle consisting of three

vertices, i1, i2, and i3, and three edges, (i1, i2), (i2, i3), and (i3, i1).

Note that any vertex cover will have to include at least two of the vertices in

{i1, i2, i3} for each such triangle. Each such triangle is a “satisfaction-enforcing”

component. We then connect these two types of components, by adding, for each

clause Ci = (a + b + c), the edges (i1, a), (i2, b), and (i3, c). (See Figure 17.9.)

Finally, we set the integer parameter k = n + 2m, where n is the number of vari-

ables in S and m is the number of clauses. Thus, if there is a vertex cover of size at

most k, it must have size exactly k. This completes the construction of an instance

of the VERTEX-COVER problem. This construction clearly runs in polynomial time,

so let us consider its correctness.

www.it-ebooks.info

http://www.it-ebooks.info/

17.4. VERTEX-COVER, CLIQUE, and SET-COVER 493

x
1

x
3

x
2

x
1

x
4

x
3

x
2

x
4

11

12

13 21

22

23 31

32

33

Figure 17.9: Example graph G as an instance of the VERTEX-COVER problem con-

structed from the formula S = (x1 + x2 + x3) · (x1 + x2 + x3) · (x2 + x3 + x4).

Suppose there is an assignment of Boolean values to variables in S so that S is

satisfied. From the graph G constructed from S, we can build a subset of vertices C
that contains each literal a (in a truth-setting component) that is assigned 1 by the

satisfying assignment. Likewise, for each clause Ci = (a + b + c), the satisfying

assignment sets at least one of a, b, or c to 1. Whichever one of a, b, or c is 1
(picking arbitrarily if there are ties), we include the other two in our subset C. This

C is of size n + 2m. Moreover, notice that each edge in a truth-setting component

and clause-satisfying component is covered, and two of every three edges incident

on a clause-satisfying component are also covered. In addition, notice that an edge

incident to a component associated clause Ci that is not covered by a vertex in

the component must be covered by the node in C labeled with a literal, for the

corresponding literal in Ci is 1.

Suppose then the converse, namely, that there is a vertex cover C of size at most

n+2m. By construction, this set must have size exactly n+2m, for it must contain

one vertex from each truth-setting component and two vertices from each clause-

satisfying component. This leaves one edge incident to a clause-satisfying compo-

nent that is not covered by a vertex in the clause-satisfying component; hence, this

edge must be covered by the other endpoint, which is labeled with a literal. Thus,

we can assign the literal in S associated with this node 1 and each clause in S is

satisfied; hence, all of S is satisfied. Therefore, S is satisfiable if and only if G has

a vertex cover of size at most k. This gives us the following.

Theorem 17.9: VERTEX-COVER is NP-complete.

As mentioned before, the above reduction illustrates the component-design

technique. We constructed truth-setting and clause-satisfying components in our

graph G to enforce important properties in the clause S.

www.it-ebooks.info

http://www.it-ebooks.info/

494 Chapter 17. NP-Completeness

CLIQUE

As with the VERTEX-COVER problem, there are several other problems that involve

selecting a subset of objects from a larger set so as to optimize the size the subset

can have while still satisfying an important property. The next such problem we

consider is the CLIQUE problem.

A clique in a graph G is a subset C of vertices such that, for each v and w in

C, with v 	= w, (v, w) is an edge. That is, there is an edge between every pair of

distinct vertices in C. Problem CLIQUE takes a graph G and an integer k as input

and asks whether there is a clique in G of size at least k.

We leave as a simple exercise (R-17.7) to show that CLIQUE is in NP. To show

CLIQUE is NP-hard, we reduce the VERTEX-COVER problem to it. Therefore, let

(G, k) be an instance of the VERTEX-COVER problem. For the CLIQUE problem, we

construct the complement graph Gc, which has the same vertex set as G, but has

the edge (v, w), with v 	= w, if and only if (v, w) is not in G. We define the integer

parameter for CLIQUE as n−k, where k is the integer parameter for VERTEX-COVER.

This construction runs in polynomial time and serves as a reduction, for Gc has a

clique of size at least n − k if and only if G has a vertex cover of size at most k.

(See Figure 17.10.)

(a) (b)

Figure 17.10: A graph G illustrating the proof that CLIQUE is NP-hard. (a) Shows

the graph G with the nodes of a clique of size 5 shaded in gray. (b) Shows the graph

Gc with the nodes of a vertex cover of size 3 shaded in gray.

Therefore, we have the following.

Theorem 17.10: CLIQUE is NP-complete.

Note how simple the above proof by local replacement is. Interestingly, the next

reduction, which is also based on the local-replacement technique, is even simpler.

SET-COVER

Problem SET-COVER takes a collection of m sets S1, S2, . . ., Sm and an integer

parameter k as input and asks whether there is a subcollection of k sets Si1 , Si2 ,

www.it-ebooks.info

http://www.it-ebooks.info/

17.4. VERTEX-COVER, CLIQUE, and SET-COVER 495

. . ., Sik , such that

m⋃
i=1

Si =
k⋃

j=1

Sij .

That is, the union of the subcollection of k sets includes every element in the union

of the original m sets.

We leave it to an exercise (R-17.14) to show SET-COVER is in NP. As to the

reduction, we note that we can define an instance of SET-COVER from an instance

G and k of VERTEX-COVER. Namely, for each vertex v of G, there is set Sv, which

contains the edges of G incident on v. Clearly, there is a set cover among these sets

Sv’s of size k if and only if there is a vertex cover of size k in G. (See Figure 17.11.)

a

b

c

d

e

f

g

h

i
j

l

m

o

k

n

1

2

3

4

5 6

7

8

S1 = {a, b, c, m, d, e}
S2 = {e, h, o, n, i}
S3 = {a, f}
S4 = {j, m}
S5 = {b, j, l, n, k, g}
S6 = {g, c, i}
S7 = {k, m}
S8 = {d, o, l}

(a) (b)

Figure 17.11: A graph G illustrating the proof that SET-COVER is NP-hard. The

vertices are numbered 1 through 8 and the edges are given letter labels a through

o. (a) Shows the graph G with the nodes of a vertex cover of size 3 shaded in gray.

(b) Shows the sets associated with each vertex in G, with the subscript of each set

identifying the associated vertex. Note that S1 ∪ S2 ∪ S5 contains all the edges of

G.

Thus we have the following.

Theorem 17.11: SET-COVER is NP-complete.

This reduction illustrates how easily we can covert a graph problem into a set

problem. In the next subsection, we show how we can actually reduce graph prob-

lems to number problems.

www.it-ebooks.info

http://www.it-ebooks.info/

496 Chapter 17. NP-Completeness

17.5 SUBSET-SUM and KNAPSACK

Some hard problems involve only numbers. In such cases, we must take extra care

to use the size of the input in bits, for some numbers can be very large. To clarify

the role that the size of numbers can make, researchers say that a problem L is

strongly NP-hard if L remains NP-hard even when we restrict the value of each

number in the input to be bounded by a polynomial in the size (in bits) of the input.

An input x of size n would satisfy this condition, for example, if each number i in x
was represented using O(log n) bits. Interestingly, the number problems we study

in this section are not strongly NP-hard. (See Exercises C-17.14 and C-17.15.)

In the SUBSET-SUM problem, we are given a set S of n integers and an integer

k, and we are asked whether there is a subset of integers in S that sum to k. This

problem could arise, for example, as in the following.

Example 17.12: Suppose we have an Internet web server, and we are presented
with a collection of download requests. For each download request we can easily
determine the size of the requested file. Thus, we can abstract each web request
simply as an integer—the size of the requested file. Given this set of integers,
we might be interested in determining a subset of them that exactly sums to the
bandwidth our server can accommodate in one minute. Unfortunately, this problem
is an instance of SUBSET-SUM. Moreover, because it is NP-complete, this problem
will actually become harder to solve as our web server’s bandwidth and request-
handling ability improves.

SUBSET-SUM might at first seem easy, and indeed showing that it belongs to NP
is straightforward. (See Exercise R-17.15.) Unfortunately, it is NP-complete, as we

now show. Let G and k be given as an instance of the VERTEX-COVER problem.

Number the vertices of G from 1 to n and the edges G from 1 to m, and construct

the incidence matrix H for G, defined so that H[i, j] = 1 if and only if the edge

numbered j is incident on the vertex numbered i; otherwise, H[i, j] = 0. (See

Figure 17.12.)

We use H to define some admittedly large (but still polynomial-sized) numbers

to use as inputs to the SUBSET-SUM problem. Namely, for each row i of H , which

encodes all the edges incident on vertex i, we construct the number

ai = 4m+1 +
m∑

j=1

H[i, j]4j .

Note that this number adds in a different power of 4 for each 1-entry in the ith row

of H[i, j], plus a larger power of 4 for good measure. The collection of ai’s defines

an “incidence component” to our reduction, for each power of 4 in an ai, except for

the largest, corresponds to a possible incidence between vertex i and some edge.

In addition to the above incidence component, we also define an “edge-covering

www.it-ebooks.info

http://www.it-ebooks.info/

17.5. SUBSET-SUM and KNAPSACK 497

a

b

c

d

e

f

g

h

i
j

l

m

o

k

n

1

2

3

4

5 6

7

8

H 1 2 3 4 5 6 7 8

a 1 0 1 0 0 0 0 0
b 1 0 0 0 1 0 0 0
c 1 0 0 0 0 1 0 0
d 1 0 0 0 0 0 0 1
e 1 1 0 0 0 0 0 0
f 0 1 1 0 0 0 0 0
g 0 0 0 0 1 1 0 0
h 0 1 0 1 0 0 0 0
i 0 1 0 0 0 1 0 0
j 0 0 0 1 1 0 0 0
k 0 0 0 0 1 0 1 0
l 0 0 0 0 1 0 0 1
m 0 1 0 1 0 0 0 0
n 0 1 0 0 1 0 0 0
o 0 1 0 0 0 0 0 1

(a) (b)

Figure 17.12: A graph G illustrating the proof that SUBSET-SUM is NP-hard. The

vertices are numbered 1 through 8 and the edges are given letter labels a through o.

(a) Shows the graph G; (b) shows the incidence matrix H for G. Note that there is

a 1 for each edge in one or more of the columns for vertices 1, 2, and 5.

component,” where, for each edge j, we define a number

bj = 4j .

We then set the sum we wish to attain with a subset of these numbers as

k ′ = k4m+1 +
m∑

j=1

2 · 4j ,

where k is the integer parameter for the VERTEX-COVER instance.

Let us consider how this reduction, which clearly runs in polynomial time,

actually works. Suppose graph G has a vertex cover C = {i1, i2, . . . , ik}, of size

k. Then we can construct a set of values adding to k ′ by taking every ai with an

index in C, that is, each air for r = 1, 2, . . . , k. In addition, for each edge numbered

j in G, if only one of j’s endpoints is included in C, then we also include bj in our

subset. This set of numbers sums to k ′, for it includes k values of 4m+1 plus 2
values of each 4j (either from two air ’s such that this edge has both endpoints in C
or from one air and one bj if C contains just one endpoint of edge j).

Suppose there is a subset of numbers suming to k ′. Since k ′ contains k values

of 4m+1, it must include exactly k ai’s. Let us include vertex i in our cover for

each such ai. Such a set is a cover, for each edge j, which corresponds to a power

4j , must contribute two values to this sum. Since only one value can come from

a bj , one must have come from at least one of the chosen ai’s. Thus we have the

following:

Theorem 17.13: SUBSET-SUM is NP-complete.

www.it-ebooks.info

http://www.it-ebooks.info/

498 Chapter 17. NP-Completeness

KNAPSACK

In the KNAPSACK problem, illustrated in Figure 17.13, we are given a set S of items,

numbered 1 to n. Each item i has an integer size, si, and worth, wi. We are also

given two integer parameters, s, and w, and are asked whether there is a subset, T ,

of S such that ∑
i∈T

si ≤ s, and
∑
i∈T

wi ≥ w.

Problem KNAPSACK defined above is the decision version of the optimization prob-

lem “0-1 knapsack” discussed in Section 12.6.

We can motivate the KNAPSACK problem with the following Internet applica-

tion.

Example 17.14: Suppose we have s widgets that we are interested in selling at
an Internet auction website. A prospective buyer i can bid on multiple lots by
saying that he or she is interested in buying si widgets at a total price of wi dollars.
If multiple-lot requests, such as this, cannot be broken up (that is, buyer i wants
exactly si widgets), then determining if we can earn w dollars from this auction
gives rise to the KNAPSACK problem. (If lots can be broken up, then our auction
optimization problem gives rise to the fractional knapsack problem, which can be
solved efficiently using the greedy method of Section 10.1.)

The KNAPSACK problem is in NP, for we can construct a nondeterministic

polynomial-time algorithm that guesses the items to place in our subset T and then

verifies that they do not violate the s and w constraints, respectively.

KNAPSACK is also NP-hard, as it actually contains the SUBSET-SUM problem

as a special case. In particular, any instance of numbers given for the SUBSET-

SUM problem can correspond to the items for an instance of KNAPSACK with each

wi = si set to a value in the SUBSET-SUM instance and the targets for the size s and

worth w both equal to k, where k is the integer we wish to sum to for the SUBSET-

SUM problem. Thus, by the restriction proof technique, we have the following.

Theorem 17.15: KNAPSACK is NP-complete.

7

6

1

2

3

5

4

 s

L

Figure 17.13: A geometric view of the KNAPSACK problem. Given a line L of length

s, and a collection of n rectangles, can we translate a subset of the rectangles to have

their bottom edge on L so that the total area of the rectangles touching L is at least

w? Here, the width of rectangle i is si and its area is wi.

www.it-ebooks.info

http://www.it-ebooks.info/

17.6. HAMILTONIAN-CYCLE and TSP 499

17.6 HAMILTONIAN-CYCLE and TSP
The last two NP-complete problems we consider ask about the existence of certain

kinds of cycles in a graph. Such problems are useful for optimizing the travel of

robots and circuit-board drills, as discussed at the start of this chapter.

HAMILTONIAN-CYCLE

HAMILTONIAN-CYCLE is the problem that takes a graph G and asks whether there

is a cycle in G that visits each vertex in G exactly once, returning to its starting

vertex. (See Figure 17.14a.) It is relatively easy to show that HAMILTONIAN-CYCLE

is in NP—guess a sequence of vertices and verify that each consecutive pair of

vertices in this sequence is connected by an edge and that every vertex (other than

the starting and ending vertex) is visited exactly once. To show that this problem is

NP-complete, we will reduce VERTEX-COVER to it, using a component-design type

of reduction.

ve,bot

ve,top

we,bot

we,top

(a) (b)

Figure 17.14: Illustrating the HAMILTONIAN-CYCLE problem and its NP-

completeness proof. (a) Shows an example graph with a Hamiltonian cycle

shown in bold. (b) Illustrates a cover-enforcer subgraph He used to show that

HAMILTONIAN-CYCLE is NP-hard.

Let G and k be a given instance of the VERTEX-COVER problem. We will

construct a graph H that has a Hamiltonian cycle if and only if G has a vertex

cover of size k. We begin by including a set of k initially disconnected vertices

X = {x1, x2, . . . , xk} to H . This set of vertices will serve as a “cover-choosing”

component, for they will serve to identify which nodes of G should be included

in a vertex cover. In addition, for each edge e = (v, w) in G we create a “cover-

enforcer” subgraph He in H . This subgraph He has 12 vertices and 14 edges as

shown in Figure 17.14b.

Six of the vertices in the cover-enforcer He for e = (v, w) correspond to v and

the other six correspond to w. Moreover, we label two vertices in cover-enforcer

www.it-ebooks.info

http://www.it-ebooks.info/

500 Chapter 17. NP-Completeness

(a) (c)(b)

Figure 17.15: The three possible ways that a Hamiltonian cycle can visit the edges

in a cover-enforcer He.

He that correspond to v as ve,top and ve,bot, and we label two vertices in He that

correspond to w as we,top and we,bot. These are the only vertices in He that will be

connected to any other vertices in H outside of He. Thus, a Hamiltonian cycle can

visit the nodes of He in only one of three possible ways, as shown in Figure 17.15.

We join the important vertices in each cover-enforcer He to other vertices in H
in two ways, one that corresponds to the cover-choosing component and one that

corresponds to the cover-enforcing component. For the cover-choosing component,

we add an edge from each vertex in X to every vertex ve,top and every vertex ve,bot.

That is, we add 2kn edges to H , where n is the number of vertices in G.

For the cover-enforcing component, we consider each vertex v in G in turn. For

each such v, let {e1, e2, . . . , ed(v)} be a listing of the edges of G that are incident

upon v. We use this listing to create edges in H by joining vei,bot in Hei to vei+1,top

in Hei+1 , for i = 1, 2, . . . , d − 1. (See Figure 17.16.) We refer to the Hei compo-

nents joined in this way as belonging to the covering thread for v. This completes

the construction of the graph H . Note that this computation runs in polynomial

time in the size of G.

We claim that G has a vertex cover of size k if and only if H has a Hamil-

tonian cycle. Suppose, first, that G has a vertex cover of size k. Let C =
{vi1 , vi2 , . . . , vik} be such a cover. We construct a Hamiltonian cycle in H , by

connecting a series of paths Pj , where each Pj starts at xj and ends at xj+1, for

j = 1, 2, . . . , k − 1, except for the last path Pk, which starts at xk and ends at x1.

We form such a path Pj as follows. Start with xj , and then visit the entire covering

thread for vij in H , returning to xj+1 (or x1 if j = k). For each cover-enforcer

subgraph He in the covering thread for vij , which is visited in this Pj , we write,

without loss of generality, e as (vij , w). If w is not also in C, then we visit this He

as in Figure 17.15a or Figure 17.15c (with respect to vij). Instead, if w is also in

C, then we visit this He as in Figure 17.15b. In this way we will visit each vertex

in H exactly once, since C is a vertex cover for G. Thus, this cycle is in fact a

Hamiltonian cycle.

www.it-ebooks.info

http://www.it-ebooks.info/

17.6. HAMILTONIAN-CYCLE and TSP 501

ed(v)

v

e
1

e
2

e
3

(a) (b)

v
ed(v)

,bot

v
ed(v)

,top

ve
1
,top

ve
1
,bot

ve
2
,top

ve
2
,bot

ve
3
,bot

Figure 17.16: Connecting the cover-enforcers. (a) A vertex v in G and its set of

incident edges {e1, e2, . . . , ed(v)}. (b) The connections made between the Hei’s in

H for the edges incident upon v.

Suppose, conversely, that H has a Hamiltonian cycle. Since this cycle must

visit all the vertices in X , we break this cycle up into k paths, P1, P2, . . ., Pk, each

of which starts and ends at a vertex in X . Moreover, by the structure of the cover-

enforcer subgraphs He and the way that we connected them, each Pj must traverse

a portion (possibly all) of a covering thread for a vertex v in G. Let C be the set of

all such vertices in G. Since the Hamiltonian cycle must include the vertices from

every cover-enforcer He and every such subgraph must be traversed in a way that

corresponds to one (or both) of e’s endpoints, C must be a vertex cover in G.

Therefore, G has a vertex cover of size k if and only if H has a Hamiltonian

cycle. This gives us the following.

Theorem 17.16: H AMILTONIAN-CYCLE is NP-complete.

TSP

In the traveling salesperson problem, or TSP, we are given an integer parameter

k and a graph G, such that each edge e in G is assigned an integer cost c(e), and

we are asked whether there is a cycle in G that visits all the vertices in G (possibly

more than once) and has total cost at most k. We have already established that TSP

is in NP, in Lemma 17.2. Given this fact, showing that TSP is NP-complete is easy,

as the TSP problem contains the HAMILTONIAN-CYCLE problem as a special case.

Namely, given an instance G of the HAMILTONIAN-CYCLE problem, we can create

an instance of TSP by assigning each edge in G the cost c(e) = 1 and setting the

integer parameter k = n, where n is the number of vertices in G. Therefore, using

the restriction form of reduction, we get the following.

Theorem 17.17: TSP is NP-complete.

www.it-ebooks.info

http://www.it-ebooks.info/

502 Chapter 17. NP-Completeness

17.7 Exercises

Reinforcement
R-17.1 Professor Amongus has shown that a decision problem L is polynomial-time

reducible to an NP-complete problem M . Moreover, after 80 pages of dense
mathematics, he has also just proven that L can be solved in polynomial time.
Has he just proven that P = NP ? Why, or why not?

R-17.2 Use a truth table to convert the Boolean formula B = (a ↔ (b + c)) into an
equivalent formula in CNF. Show the truth table and the intermediate DNF for-
mula for B.

R-17.3 Show that the problem SAT, which takes an arbitrary Boolean formula S as input
and asks whether S is satisfiable, is NP-complete.

R-17.4 Consider the problem DNF-SAT, which takes a Boolean formula S in disjunc-
tive normal form (DNF) as input and asks whether S is satisfiable. Describe a
deterministic polynomial-time algorithm for DNF-SAT.

R-17.5 Consider the problem DNF-DISSAT, which takes a Boolean formula S in dis-
junctive normal form (DNF) as input and asks whether S is dissatisfiable, that is,
there is an assignment of Boolean values to the variables of S so that it evaluates
to 0. Show that DNF-DISSAT is NP-complete.

R-17.6 Convert the Boolean formula B = (x1 ↔ x2) · (x3 +x4x5) · (x1x2 +x3x4) into
CNF.

R-17.7 Show that the CLIQUE problem is in NP.

R-17.8 Given the CNF formula B = (x1) · (x2 + x3 + x5 + x6) · (x1 + x4) · (x3 + x5),
show the reduction of B into an equivalent input for the 3SAT problem.

R-17.9 Given B = (x1 + x2 + x3) · (x4 + x5 + x6) · (x1 + x4 + x5) · (x3 + x4 + x6),
draw the instance of VERTEX-COVER that is constructed by the reduction from
3SAT of the Boolean formula B.

R-17.10 Draw an example of a graph with 10 vertices and 15 edges that has a vertex cover
of size 2.

R-17.11 Draw an example of a graph with 10 vertices and 15 edges that has a clique of
size 6.

R-17.12 Professor Amongus has just designed an algorithm that can take any graph G
with n vertices and determine in O(nk) time whether G contains a clique of size
k. Does Professor Amongus deserve the Turing Award for having just shown that
P = NP? Why or why not?

R-17.13 Is there a subset of the numbers in {23, 59, 17, 47, 14, 40, 22, 8} that sums to
100? What about 130? Show your work.

R-17.14 Show that the SET-COVER problem is in NP.

R-17.15 Show that the SUBSET-SUM problem is in NP.

www.it-ebooks.info

http://www.it-ebooks.info/

17.7. Exercises 503

R-17.16 Draw an example of a graph with 10 vertices and 20 edges that has a Hamiltonian
cycle. Also, draw an example of a graph with 10 vertices and 20 edges that does
not have a Hamiltonian cycle.

R-17.17 The Manhattan distance between two points (a, b) and (c, d) in the plane is
|a − c| + |b − d|. Using Manhattan distance to define the cost between every
pair of points, find an optimal traveling salesperson tour of the following set of
points: {(1, 1), (2, 8), (1, 5), (3,−4), (5, 6), (−2,−6)}.

Creativity
C-17.1 Let n denote the size of an input in bits and N denote the size in a number of

items. Define an algorithm to be c-incremental if any primitive operation involv-
ing one or two objects represented with b bits results in an object represented
with at most b + c bits, for c ≥ 0. Show that an algorithm using multiplication as
a primitive operation may not be c-incremental for any constant c.

C-17.2 Using the definition of a c-incremental algorithm from the previous exercise,
show that, if a c-incremental algorithm A has a worst-case running time t(N) in
the RAM model, as a function of the number of input items, N , for some constant
c > 0, then A has running time O(n2t(n)), in terms of the number, n, of bits in
a standard binary encoding of the input.

C-17.3 Show that we can deterministically simulate in polynomial time any nondeter-
ministic algorithm A that runs in polynomial time and makes at most O(log n)
calls to the choose method, where n is the size of the input to A.

C-17.4 Show that every language L in P is polynomial-time reducible to the language
M = {5}, that is, the language that simply asks whether the binary encoding of
the input is equal to 5.

C-17.5 Show how to construct a Boolean circuit C such that, if we create variables only
for the inputs of C and then try to build a Boolean formula that is equivalent to
C, then we will create a formula exponentially larger than an encoding of C.

Hint: Use recursion to repeat subexpressions in a way that doubles their size
each time they are used.

C-17.6 Show that the backtracking algorithm given in Section 18.4.1 for the CNF-SAT

problem runs in polynomial time if every clause in the given Boolean formula
has at most two literals. That is, it solves 2SAT in polynomial time.

C-17.7 Consider the 2SAT version of the CNF-SAT problem, in which every clause in
the given formula S has exactly two literals. Note that any clause of the form
(a + b) can be thought of as two implications, (a → b) and (b → a). Consider
a graph G from S, such that each vertex in G is associated with a variable, x,
in S, or its negation, x. Let there be a directed edge in G from a to b for each
clause equivalent to (a → b). Show that S is not satisfiable if and only if there
is a variable x such that there is a path in G from x to x and a path from x to x.
Derive from this rule a polynomial-time algorithm for solving this special case
of the CNF-SAT problem. What is the running time of your algorithm?

www.it-ebooks.info

http://www.it-ebooks.info/

504 Chapter 17. NP-Completeness

C-17.8 Suppose an oracle has given you a magic computer, C, that when given any
Boolean formula B in CNF will tell you in one step whether B is satisfiable.
Show how to use C to construct an actual assignment of satisfying Boolean val-
ues to the variables in any satisfiable formula B. How many calls do you need to
make to C in the worst case in order to do this?

C-17.9 Define SUBGRAPH-ISOMORPHISM as the problem that takes a graph, G, and
another graph, H , and determines if H is isomorphic to a subgraph of G. That
is, the problem is to determine whether there is a one-to-one mapping, f , of the
vertices in H to a subset of the vertices in G such that, if (v, w) is an edge in
H , then (f(v), f(w)) is an edge in G. Show that SUBGRAPH-ISOMORPHISM is
NP-complete.

C-17.10 Define INDEPENDENT-SET as the problem that takes a graph G and an integer k
and asks whether G contains an independent set of vertices of size k. That is, G
contains a set I of vertices of size k such that, for any v and w in I , there is no
edge (v, w) in G. Show that INDEPENDENT-SET is NP-complete.

C-17.11 Define HYPER-COMMUNITY to be the problem that takes a collection of n web
pages and an integer k, and determines if there are k web pages that all contain
hyperlinks to each other. Show that HYPER-COMMUNITY is NP-complete.

C-17.12 Define PARTITION as the problem that takes a set S = {s1, s2, . . . , sn} of num-
bers and asks whether there is a subset T of S such that∑

si∈T

si =
∑

si∈S−T

si.

That is, it asks whether there is a partition of the numbers into two groups that
sum to the same value. Show that PARTITION is NP-complete.

C-17.13 Show that the HAMILTONIAN-CYCLE problem on directed graphs is NP-complete.

C-17.14 Show that the SUBSET-SUM problem is solvable in polynomial time if the input
is given in a unary encoding. That is, show that SUBSET-SUM is not strongly
NP-hard. What is the running time of your algorithm?

C-17.15 Show that the KNAPSACK problem is solvable in polynomial time if the input is
given in a unary encoding. That is, show that KNAPSACK is not strongly NP-
hard. What is the running time of your algorithm?

C-17.16 Consider the special case of TSP where the vertices correspond to points in the
plane, with the cost defined on an edge for every pair (p, q) being the usual Eu-
clidean distance between p and q. Show that an optimal tour will not have any
pair of crossing edges.

C-17.17 Given a graph G and two distinct vertices, v and w in G, define HAMILTONIAN-
PATH to be the problem of determining whether there is a path that starts at
v and ends at w and visits all the vertices of G exactly once. Show that the
HAMILTONIAN-PATH problem is NP-complete.

www.it-ebooks.info

http://www.it-ebooks.info/

17.7. Exercises 505

Applications
A-17.1 Imagine that the annual university job fair is scheduled for next month and it is

your job to book companies to host booths in the large Truman Auditorium dur-
ing the fair. Unfortunately, at last year’s job fair, a fight broke out between some
people from competing companies, so the university president, Dr. Noah Drama,
has issued a rule that prohibits any pair of competing companies from both being
invited to this year’s event. In addition, he has shown you a website that lists the
competitors for every company that might be invited to this year’s job fair and
he has asked you to invite the maximum number of noncompeting companies as
possible. Show that the decision version of the problem Dr. Drama has asked you
to solve is NP-complete.

A-17.2 Suppose the football coach for the Anteaters has heard about your abilities to
solve challenging problems and has hired you to write a computer program that
can decide which of their many trophies to feature on their prized trophy shelf.
He is asking that you do this as a computer program, rather than just coming
up with a single decision, because the Anteaters are getting new trophies every
year. The trophies come in all different shapes and sizes, and the ones on the
prized trophy shelf have to be lined up next to one another. So the dimension
that matters most is a trophy’s width in centimeters, which is given as an integer.
In addition, the coach has assigned an integer score to each trophy, so that a
very prestigious trophy, like the one for winning the championship, would have a
high score, whereas a less prestigious trophy, like the one for having the funniest
uniforms, would have a low score. Moreover, given his eccentric nature, these
scores can be arbitrarily large. He has asked that, given a listing of all the team’s
trophies along with their widths and prestige scores, your program should choose
the set that maximizes the total prestige score and fits on the team’s trophy shelf.
Show that the decision version of the problem the coach has given you is NP-
complete.

A-17.3 Consider the trophy-choosing problem from the previous exercise, but now sup-
pose that each of the prestige scores is an integer in the range from 1 to 10.
Describe how you can solve this version of the problem in polynomial time.

A-17.4 Suppose a friend of yours is rushing for one of the university fraternities, Tau Nu
Tau (TNT). His job for this week is to arrange all the bottles in the TNT beer-
bottle collection in a circle, subject to the constraint that each pair of consecutive
bottles must be for beers that were both drunk in some TNT party. He has been
given a listing of the beers in the TNT beer-bottle collection, and, for each beer on
the list, he is told which other beers were drunk along with this one at some TNT
party. Politely show that your friend has been asked to solve an NP-complete
problem.

A-17.5 Suppose you are computer security expert working for a major company, Cable-
Clock, any you have just discovered that many of the computers at CableClock
are infected with malware that must have come from users visiting unsafe web-
sites. For each infected computer, you are given a log file that lists all websites it
has visited since the last time it was scanned for malware. Unfortunately, as you
look over these log files, you notice that there isn’t a single website that they all

www.it-ebooks.info

http://www.it-ebooks.info/

506 Chapter 17. NP-Completeness

visited. You conclude, therefore, that there must be a number of websites that are
able to inject this malware, and the most likely candidates would be in a smallest
collection that is visited by all the infected computers. Show that the decision
version of the problem of determining such a collection is NP-complete.

A-17.6 Imagine that you are a Hollywood movie producer who is trying to decide how
your new movie should end. To help you make this decision, you would like to
assemble a group of movie-goers together to do a focus group. To avoid biases,
you have asked that the group be selected so that no two people in the group
has previously seen the same movie. So, among the set of possible focus-group
members, you have asked that each one fill out a list of all the movies they have
seen, and you will be using these lists to make your decision about who to invite
to the focus group. Show that the decision version of the problem of finding the
largest set of movie-goers for this focus group such that no two people in the
group has previously seen the same movie is NP-complete.

A-17.7 Suppose that you and a friend are both taking a Russian literature course and
have agreed to buy all of your books together “fifty-fifty,” so that for each book
purchased, you paid half and your friend paid half. Suppose now that the course
has ended and it is time to sell these books to the used-book buyer, who has
posted the used-book values of all of your books on her website. Unfortunately,
with your differing social calendars, there is no good time for you and your friend
to go to the bookstore together to return your shared books. So you need to divide
up the books between the two of you so that the total used-book value of the two
sets is the same. Show that determining whether such a division of the books is
possible, where there is an arbitrary number of books having arbitrary values, is
NP-complete.

Chapter Notes
Computing models are discussed in the textbooks by Lewis and Papadimitriou [143], Sav-
age [184] and Sipser [195].

The proof sketch of the Cook-Levin Theorem (17.5) given in this chapter is an adapta-
tion of a proof sketch of Cormen, Leiserson, and Rivest [50]. Cook’s original theorem [48]
showed that CNF-SAT was NP-complete, and Levin’s original theorem [141] was for a
tiling problem. We refer to Theorem 17.5 as the “Cook-Levin” Theorem in honor of these
two seminal papers, for their proofs were along the same lines as the proof sketch given for
Theorem 17.5. Karp [122] demonstrated several more problems to be NP-complete, and
subsequently hundreds of other problems have been shown to be NP-complete. Garey and
Johnson [80] give a very nice discussion of NP-completeness as well as a catalog of many
important NP-complete and NP-hard problems.

The reductions given in this chapter that use local replacement and restriction are well
known in the computer science literature; for example, see Garey and Johnson [80] or
Aho, Hopcroft, and Ullman [8]. The component-design proof that VERTEX-COVER is
NP-complete is an adaptation of a proof of Garey and Johnson [80], as is the component-
design proof that HAMILTONIAN-CYCLE is NP-complete, which itself is a combination
of two reductions by Karp [122]. The component-design proof that SUBSET-SUM is NP-
complete is an adaptation of a proof of Cormen, Leiserson, and Rivest [50].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

18 Approximation Algorithms

Lily pads, 2006. Michael T. Goodrich. Used with permission.

Contents

18.1 The Metric Traveling Salesperson Problem 511
18.2 Approximations for Covering Problems 515
18.3 Polynomial-Time Approximation Schemes 518
18.4 Backtracking and Branch-and-Bound 521
18.5 Exercises . 525

www.it-ebooks.info

http://www.it-ebooks.info/

508 Chapter 18. Approximation Algorithms

Astronomers can determine the composition and distance of galaxies and stars

by performing a spectrographic analysis of the light coming from these objects.

Doing such an analysis involves collecting light from one of these objects over

a relatively long period of time, and transmitting this light through a fiber-optic

cable to a spectroscope. The spectrograph then splits this light into its various fre-

quencies and measures the intensities of these light frequencies. By matching the

patterns of high and low light frequencies coming from such an astronomical ob-

ject to known patterns for the light emitted when various elements are burned, the

astronomers can determine the elements that are present in the object. In addition,

by observing the amount that these patterns are shifted to the red end of the spec-

trum, astronomers can also determine the distance of this object from earth. This

distance can be determined using estimates for the speed at which the universe is

expanding, because of the Doppler effect, where light wavelengths increase as an

object is moving away from us.

As an optimization problem, one of the most time-consuming parts of this pro-

cess is the first step—collecting the light from the galaxy or star over a given period

of time. To do this with a telescope, a large aluminum disk the size of the diameter

of the telescope is used. This disk is placed in the focal plane of the telescope,

so that the light from each stellar objects in an observation falls in a specific spot

on the disk. The astronomers know where these spots are located and, before the

disk is placed in the focal plane, they use robotic drilling equipment to drill a hole

in each spot of interest and they insert a fiber-optic cable into each such hole and

connect it to a spectrograph. (See Figure 18.1.)

Aluminum Plug Plate

Fiber Optic Cables

Spectrograph

Sensors

Target object illumination point

Figure 18.1: Aparatus for spectrographic analysis of stellar objects using an alu-

minum plug plate and fiber-optic cables. The aluminum plug plate is placed in the

focal plane of a telescope.

www.it-ebooks.info

http://www.it-ebooks.info/

509

As discussed at the beginning of Chapter 17, the problem of finding a fastest

way to drill all these holes is an instance of the traveling salesperson problem (TSP).

According to the abstract formulation of TSP, each of the hole locations is a “city”

and the time it takes to move a robot drill from one hole to another corresponds to

the distance between the cities corresponding to these two holes. Thus, a minimum-

distance tour of the cities that starts and ends at the resting position for the robot

drill is one that will drill the holes the fastest. Unfortunately, as we discuss in the

previous chapter, the decision version of this optimization problem is NP-complete.

Nevertheless, even though this is a difficult problem, it still needs to be solved in

order to do the spectrographic analysis. The astronomers doing spectrographic

analyses might not require the absolutely best solution, however. They might be

happy with a solution that comes close to the optimum, especially if one can prove

that it won’t be too far from this optimum.

In addition to the problem of quickly drilling the holes in a plug plate for a

spectrographic analysis, another optimization problem arises in this application as

well. This problem is to minimize the number of observations needed in order to

collect the spectra of all the stellar objects of interest. In this case, the astronomers

have a map of all the stellar objects of interest and they want to cover it with the

minimum number of disks having the same diameter as the telescope. (See Fig-

ure 18.2.) This optimization problem is an instance of the set cover problem. Each

of the distinct sets of objects that can be included in a single observation is given as

an input set and the optimization problem is to minimize the number of sets whose

union includes all the objects of interest. As with TSP, the decision version of this

problem is also NP-complete, but it is a problem for which an approximation to the

optimum might be sufficient.

Approximation Ratios

In general, many optimization problems whose decision versions are NP-complete

correspond to problems whose solution in the real world can oftentimes save money,

time, or other resources. Thus, the main topic of this chapter is on approximate

ways of dealing with NP-completeness. One of the most effective methods is to

construct polynomial-time algorithms that come close to solving difficult problems.

Although such algorithms do not always produce optimal solutions, in some cases

we can guarantee how close such an approximation algorithm will come to an op-

timal solution. Indeed, we explore several such approximations in this chapter,

including algorithms for the knapsack, vertex cover, traveling salesperson, and set

cover problems.

The general situation is that we have some problem instance x, which could be

an encoding of a set of numbers, a graph, etc. In addition, for the problem we are

interested in solving for x, there will often be a large set, F , of feasible solutions

for x. We also have a cost function, c, that determines a numeric cost c(S) for any

solution S ∈ F . In the general optimization problem, we are interested in finding

www.it-ebooks.info

http://www.it-ebooks.info/

510 Chapter 18. Approximation Algorithms

Figure 18.2: An example disk cover for a set of significant stellar objects (smaller

objects are not included). Background image is from Omega Centauri, 2009. U.S.

government image. Credit: NASA, ESA, and the Hubble SM4 ERO team.

a solution S in F , such that

c(S) = OPT = min{c(T) : T ∈ F}.
That is, we want a solution with minimum cost. We could also formulate a maxi-

mization version of the optimization problem, as well, which would simply involve

replacing the above “min” with “max.” To keep the discussion in this section

simple, however, we will typically take the view that, unless otherwise stated, our

optimization goal is minimization.

The goal of an approximation algorithm is to come as close to the optimum

value as possible in a reasonable amount of time. As we have been doing for this

entire chapter, we take the view in this section that a reasonable amount of time is

at most polynomial time.

Ideally, we would like to provide a guarantee of how close an approximation

algorithm comes to the optimal value, OPT . We say that a δ-approximation algo-

rithm for a particular optimization problem is an algorithm that returns a feasible

solution S (that is, S ∈ F), such that

c(S) ≤ δ OPT,

for a minimization problem. For a maximization problem, a δ-approximation algo-

rithm would guarantee OPT ≤ δ c(S). Or, in general, we have

δ ≥ max{c(S)/OPT, OPT/c(S)}.
In this chapter, we study problems for which we can construct δ-approximation

algorithms for various values of δ.

www.it-ebooks.info

http://www.it-ebooks.info/

18.1. The Metric Traveling Salesperson Problem 511

18.1 The Metric Traveling Salesperson Problem
In the optimization version of the traveling salesperson problem, or TSP, we are

given a weighted graph, G, such that each edge e in G has an integer weight c(e),
and we are asked to find a minimum-weight cycle in G that visits all the vertices in

G. In this section we study approximation algorithms for a special case of TSP.

Consider a metric version of TSP such that the edge weights satisfy the triangle
inequality. That is, for any three edges (u, v), (v, w), and (u, w) in G,

c((u, v)) + c((v, w)) ≥ c((u, w)).

Also, suppose that every pair of vertices in G is connected by an edge, that is, G is a

complete graph. This instance of TSP is called METRIC-TSP. The above properties,

which hold for any distance metric, and which arise in lots of TSP applications,

imply that the optimal tour of G will visit each vertex exactly once.

18.1.1 A 2-Approximation for METRIC-TSP
Our first approximation algorithm takes advantage of the above properties of G to

design a very simple 2-approximation algorithm for METRIC-TSP. The algorithm

has three steps. In the first step we construct a minimum spanning tree, M , of

G (Section 15.1). In the second step we construct an Euler-tour traversal, E, of

M , that is, a traversal of M that starts and ends at the same vertex and traverses

each edge of M exactly once in each direction (Section 2.3.3). In the third step

we construct a tour T from E by marching through the edges of E, but each time

we have two edges (u, v) and (v, w) in E, such that v has already been visited,

we replace these two edges by the edge (u, w) and continue. In essence, we are

constructing T as a preorder traversal of M . This three-step algorithm clearly runs

in polynomial time. (See Figure 18.3.)

(a) (b) (c) (d)

Figure 18.3: Example run of the 2-approximation algorithm for METRIC-TSP: (a) a

set S of points in the plane, with Euclidean distance defining the costs of the edges

(not shown); (b) the minimum spanning tree, M , for S; (c) an Euler tour, E, of M ;

(d) the approximate TSP tour, T .

www.it-ebooks.info

http://www.it-ebooks.info/

512 Chapter 18. Approximation Algorithms

Analysis of the 2-Approximation METRIC-TSP Algorithm

The analysis of why this algorithm achieves an approximation factor of 2 is also

simple. Let us extend our notation so that c(H) denotes the total weight of the edges

in a subgraph H of G. Let S be a solution to METRIC-TSP, that is, an optimal TSP

tour for the graph G. If we delete any edge from S, we get a path, which is, of

course, also a spanning tree. Thus,

c(M) ≤ c(S).

We can also easily relate the cost of E to that of M , as

c(E) = 2c(M),

since the Euler tour E visits each edge of M exactly once in each direction. Finally,

note that, by the triangle inequality, when we construct our tour T , each time we

replace two edges (u, v) and (v, w) with the edge (u, w), we do not increase the

cost of the tour. That is,

c(T) ≤ c(E).

Therefore, we have

c(T) ≤ 2c(S).

(See Figure 18.4.)

Euler tour E of MST M
(twice the cost of M)

Output tour T
(at most the cost of E)

Optimal tour S
(at least the cost of MST M)

Figure 18.4: Illustrating the proof that MST-based algorithm is a 2-approximation

for the TSP optimization problem.

We may summarize this discussion as follows.

Theorem 18.1: There is a 2-approximation algorithm for the METRIC-TSP opti-
mization problem that runs in polynomial time.

This theorem depends heavily on the fact that the cost function on the graph G
satisfies the triangle inequality. In fact, without this assumption, no constant-factor

approximation algorithm for the optimization version of TSP exists that runs in

polynomial time, unless P = NP. (See Exercise C-18.1.)

www.it-ebooks.info

http://www.it-ebooks.info/

18.1. The Metric Traveling Salesperson Problem 513

18.1.2 The Christofides Approximation Algorithm
There is a somewhat more complex algorithm, which is known as the Christofides
approximation algorithm, that can achieve an even better approximation ratio than

the above method. Like the above 2-approximation algorithm, the Christofides ap-

proximation algorithm has just a few steps that are applications of other algorithms.

The most difficult step involves computing a minimum-cost perfect matching in an

undirected weighted graph, H , having 2N vertices, that is, a set of N edges in H
that has minimum total weight and such that no two edges are incident on the same

vertex. This is a problem that can be solved in polynomial time, albeit using an

algorithm that is somewhat complicated and thus not included in this book.

Suppose we are given an instance of METRIC-TSP specified as a complete graph

G with weights on its edges satisfying the triangle inequality. The Christofides

approximation algorithm is as follows (See Figure 18.5):

1. Construct a minimum spanning tree, M , for G.

2. Let W be the set of vertices of G that have odd degree in M and let H be

the subgraph of G induced by the vertices in W . That is, H is the graph that

has W as its vertices and all the edges from G that join such vertices. By a

simple argument, we can show that the number of vertices in W is even (see

Exercise R-18.12). Compute a minimum-cost perfect matching, P , in H .

3. Combine the graphs M and P to create a graph, G′, but don’t combine par-

allel edges into single edges. That is, if an edge e is in both M and P , then

we create two copies of e in the combined graph, G′.
4. Create an Eulerian circuit, C, in G′, which visits each edge exactly once (un-

like in the 2-approximation algorithm, here the edges of G′ are undirected).

5. Convert C into a tour, T , by skipping over previously visited vertices.

The running time of this algorithm is dominated by Step 2, which takes O(n3)
time. Thus, although it is not as fast as the above 2-approximation algorithm, the

Christofides approximation algorithm achieves a better approximation ratio.

Figure 18.5: Illustrating the Christofides approximation algorithm: (a) a minimum

spanning tree, M , for G; (b) a minimum-cost perfect matching P on the vertices

in W (the vertices in W are shown solid and the edges in P are shown as curved

arcs); (c) an Eulerian circuit, C, of G′; (d) the approximate TSP tour, T .

www.it-ebooks.info

http://www.it-ebooks.info/

514 Chapter 18. Approximation Algorithms

Analyzing the Christofides Approximation Algorithm

To begin our analysis of the Christofides approximation algorithm, let S be an opti-

mal solution to this instance of METRIC-TSP and let T be the tour that is produced

by the Christofides approximation algorithm. Because S includes a spanning tree

and M is a minimum spanning tree in G,

c(M) ≤ c(S).

In addition, let R denote a solution to the traveling salesperson problem on H .

Since the edges in G (and, hence, H) satisfy the triangle inequality, and all the

edges of H are also in G,

c(R) ≤ c(S).

That is, visiting more vertices than in the tour R cannot reduce its total cost. Con-

sider now the cost of a perfect matching, P , of H , and how it relates to R, an

optimal traveling salesperson tour of H . Number the edges of R, and ignore the

last edge (which returns to the start vertex). Note that the costs of the set of odd-

numbered edges and the set of even-numbered edges in R sum to c(R); hence,

one of these two sets has total cost at most half of that of R, that is, cost at most

c(R)/2. In addition, the set of odd-numbered edges and the set of even-numbered

edges in R are both perfect matchings; hence, the cost of P , a minimum-weight

perfect matching on the edges of H , will be at most the smaller of these two. That

is,

c(P) ≤ c(R)/2.

Therefore,

c(M) + c(P) ≤ c(S) + c(R)/2 ≤ 3c(S)/2.

Since the edges in G satisfy the triangle inequality, we can only improve the cost

of a tour by making shortcuts that avoid previously visited vertices. Thus,

c(T) ≤ c(M) + c(P),

which implies that

c(T) ≤ 3c(S)/2.

In other words, the Christofides approximation algorithm gives us the following.

Theorem 18.2: There is a (3/2)-approximation algorithm for the METRIC-TSP

optimization problem that runs in polynomial time.

www.it-ebooks.info

http://www.it-ebooks.info/

18.2. Approximations for Covering Problems 515

18.2 Approximations for Covering Problems
In this section, we describe greedy approximation algorithms for the VERTEX-

COVER and SET-COVER problems (Section 17.4).

18.2.1 A 2-Approximation for VERTEX-COVER

We begin with a 2-approximation for the VERTEX-COVER problem. In the optimiza-

tion version of this problem, we are given a graph G and we are asked to produce

the smallest set C that is a vertex cover for G, that is, every edge in G is incident

on some vertex in C.

This approximation algorithm is based on the greedy method, as mentioned

above, and is rather simple. It involves picking an edge in the graph, adding both

its endpoints to the cover, and then deleting this edge and its incident edges from

the graph. The algorithm repeats this process until no edges are left. We give the

details for this approach in Algorithm 18.6.

Algorithm VertexCoverApprox(G):
Input: A graph G
Output: A small vertex cover C for G

C ← ∅
while G still has edges do

select an edge e = (v, w) of G
add vertices v and w to C
for each edge f incident to v or w do

remove f from G
return C

Algorithm 18.6: A 2-approximation algorithm for VERTEX-COVER.

We leave the details of how to perform this algorithm in O(n + m) time as a

simple exercise (R-18.1). For the analysis, first observe that each edge e = (v, w)
selected by the algorithm, and used to add v and w to C, must be covered in any

vertex cover. That is, any vertex cover for G must contain v or w (possibly both).

The approximation algorithm adds both v and w to C in such a case. When the

approximation algorithm completes, there are no uncovered edges left in G, for

we remove all the edges covered by the vertices v and w when we add them to C.

Thus, C forms a vertex cover of G. Moreover, the size of C is at most twice that

of an optimal vertex cover for G, since, for every two vertices we add to C, one of

these vertices must belong to the optimal cover. Therefore, we have the following.

Theorem 18.3: There is a 2-approximation algorithm for the VERTEX-COVER

problem that runs in O(n + m) time on a graph with n vertices and m edges.

www.it-ebooks.info

http://www.it-ebooks.info/

516 Chapter 18. Approximation Algorithms

18.2.2 A Logarithmic Approximation for SET-COVER

There are some cases when achieving even a constant-factor approximation in poly-

nomial time is difficult. In this section, we study one of the best known of such

problems, the SET-COVER problem (Section 17.4). In the optimization version of

this problem, we are given a collection of sets S1, S2, . . . , Sm, whose union is a

universe U of size n, and we are asked to find the smallest integer k, such that there

is a subcollection of k sets Si1 , Si2 , . . . , Sik with

U =
m⋃

i=1

Si =
k⋃

j=1

Sij .

Although it is difficult to find a constant-factor approximation algorithm that runs in

polynomial time for this problem, we can design an efficient algorithm that has an

approximation factor of O(log n). As with several other approximation algorithms

for hard problems, this algorithm is based on the greedy method (Section 10).

A Greedy Approach

Our algorithm selects sets one at a time, each time selecting the set that has the

most uncovered elements. When every element in U is covered, we are done. We

give a simple pseudocode description in Algorithm 18.7.

Algorithm SetCoverApprox(S):
Input: A collection S of sets S1, S2, . . . , Sm whose union is U
Output: A small set cover C for S

C ← ∅ // The set cover built so far

E ← ∅ // The elements from U currently covered by C
while E 	= U do

select a set Si that has the maximum number of uncovered elements

add Si to C
E ← E ∪ Si

Return C.

Algorithm 18.7: An approximation algorithm for SET-COVER.

This algorithm runs in polynomial time. (See Exercise R-18.2.)

To analyze the approximation factor of the above greedy SET-COVER algorithm,

we will use an amortization argument based on a charging scheme (Section 1.4).

Namely, each time our approximation algorithm selects a set Sj , we will charge the

elements of Sj for its selection.

www.it-ebooks.info

http://www.it-ebooks.info/

18.2. Approximations for Covering Problems 517

Specifically, consider the moment in our algorithm when a set Sj is added to

C, and let k be the number of previously uncovered elements in Sj . We must pay

a total charge of 1 to add this set to C, so we charge each previously uncovered

element i of Sj a charge of

c(i) = 1/k.

Thus, the total size of our cover is equal to the total charges made. That is,

|C| =
∑
i∈U

c(i).

To prove an approximation bound, we will consider the charges made to the

elements in each subset Sj that belongs to an optimal cover, C ′. So, suppose that Sj

belongs to C ′. Let us write Sj = {x1, x2, . . . , xnj} so that Sj’s elements are listed

in the order in which they are covered by our algorithm (we break ties arbitrarily).

Now, consider the iteration in which x1 is first covered. At that moment, Sj has not

yet been selected; hence, whichever set is selected must have at least nj uncovered

elements. Thus, x1 is charged at most 1/nj . So let us consider, then, the moment

our algorithm charges an element xl of Sj . In the worst case, we will have not

yet chosen Sj (indeed, our algorithm may never choose this Sj). Whichever set is

chosen in this iteration has, in the worst case, at least nj−l+1 uncovered elements;

hence, xl is charged at most 1/(nj − l + 1). Therefore, the total amount charged to

all the elements of Sj is at most
nj∑
l=1

1
nl − l + 1

=
nj∑
l=1

1
l
,

which is the familiar harmonic number, Hni . It is well known (for example, see

the Appendix) that Hnj is O(log nj). Let c(Sj) denote the total charges given to all

the elements of a set Sj that belongs to the optimal cover C ′. Our charging scheme

implies that c(Sj) is O(log nj). Thus, summing over the sets of C ′, we obtain∑
Sj∈C ′

c(Sj) ≤
∑

Sj∈C ′
b log nj

≤ b|C ′| log n,

for some constant b ≥ 1. But, since C ′ is a set cover,∑
i∈U

c(i) ≤
∑

Sj∈C ′
c(Sj).

Therefore,

|C| ≤ b|C ′| log n.

This fact gives us the following result.

Theorem 18.4: The optimization version of the SET-COVER problem has an O(log n)-
approximation polynomial-time algorithm for finding a cover of a collection of sets
whose union is a universe of size n.

www.it-ebooks.info

http://www.it-ebooks.info/

518 Chapter 18. Approximation Algorithms

18.3 Polynomial-Time Approximation Schemes

There are some problems for which we can construct δ-approximation algorithms

that run in polynomial time with δ = 1 + ε, for any fixed value ε > 0. The running

time of such a collection of algorithms depends both on n, the size of the input,

and also on the fixed value ε. We refer to such a collection of algorithms as a

polynomial-time approximation scheme, or PTAS. When we have a polynomial-

time approximation scheme for a given optimization problem, we can tune our

performance guarantee based on how much time we can afford to spend. Ideally,

the running time is polynomial in both n and 1/ε, in which case we have a fully
polynomial-time approximation scheme.

Polynomial-time approximation schemes take advantage of a property that some

hard problems possess, namely, that they are rescalable. A problem is said to be

rescalable if an instance x of the problem can be transformed into an equivalent in-

stance x ′ (that is, one with the same optimal solution) by scaling the cost function,

c. For example, TSP is rescalable. Given an instance G of TSP, we can construct an

equivalent instance G ′ by multiplying the distance between every pair of vertices

by a scaling factor s. The traveling salesperson tour in G ′ will be the same as in G,

although its cost will now be multiplied by s.

A Fully Polynomial-Time Approximation Scheme for KNAPSACK

To be more concrete, let us give a fully polynomial approximation scheme for

the optimization version of a well-known problem, KNAPSACK (Sections 10.1 and

17.5). In the optimization version of this problem, we are given a set S of items,

numbered 1 to n, together with a size constraint, s. Each item i in S is given an

integer size, si, and worth, wi, and we are asked to find a subset, T , of S, such that

T maximizes the worth

w =
∑
i∈T

wi while satisfying
∑
i∈T

si ≤ s.

We desire a PTAS that produces a (1 + ε)-approximation, for any given fixed con-

stant ε. That is, such an algorithm should find a subset T ′ satisfying the size con-

straint such that if we define w ′ =
∑

i∈T ′ wi, then

OPT ≤ (1 + ε)w ′,

where OPT is the optimal worth summation, taken over all possible subsets satis-

fying the total size constraint. To prove that this inequality holds, we will actually

prove that

w ′ ≥ (1 − ε/2)OPT,

www.it-ebooks.info

http://www.it-ebooks.info/

18.3. Polynomial-Time Approximation Schemes 519

for 0 < ε < 1. This will be sufficient, however, since, for any fixed 0 < ε < 1,

1
1 − ε/2

< 1 + ε.

To derive a PTAS for KNAPSACK, we take advantage of the fact that this prob-

lem is rescalable. Suppose we are given a value of ε with 0 < ε < 1. Let wmax

denote the maximum worth of any item in S. Without loss of generality, we assume

that the size of each item is at most s (for an item larger than this could not fit in the

knapsack). Thus, the item with worth wmax defines a lower bound for the optimal

value. That is, wmax ≤ OPT . Likewise, we can define an upper bound on the

optimal solution by noting that the knapsack can at most contain all n items in S,

each of which has worth at most wmax. Thus, OPT ≤ n wmax. To take advantage

of the rescalability of KNAPSACK, we round each worth value wi to wi
′, the nearest

smaller multiple of M = εwmax/2n. Let us denote the rounded version of S as S ′,
and let us also use OPT ′ to denote the solution for this rounded version S ′. Note

that, by simple substitution, OPT ≤ 2n2M/ε. Moreover, OPT ′ ≤ OPT , since we

rounded every worth value in S down to form S ′. Thus, OPT ′ ≤ 2n2M/ε.

Therefore, let us turn to our solution for the rounded version S ′ of the KNAPSACK

problem for S. Since every worth value in S ′ is a multiple of M , any achievable

worth of a collection of items taken from S ′ is also a multiple of M . Moreover,

there are just N = �2n2/ε� such multiples that need to be considered, because

of the upper bound on OPT ′. We can use dynamic programming to construct an

efficient algorithm for finding the optimal worth for S ′. In particular, let us define

the parameter

s[i, j] = the size of the smallest set of items in {1, 2, . . . , j} with worth iM.

The key insight to the design of a dynamic programming algorithm for solving the

rounded KNAPSACK problem is the observation that we can write

s[i, j] = min{s[i, j − 1], sj + s[i − (wj
′/M), j − 1]},

for i = 1, 2, . . . , N , and j = 1, 2, . . . , n. (See Figure 18.8.)

The above equation for s[i, j] follows from the fact that item j will either con-

tribute or not contribute to the smallest way of achieving worth iM from the items

in {1, 2, . . . , j}. In addition, note that for the base case, j = 0, when no items at

all are included in the knapsack, then

s[i, 0] = +∞,

for i = 1, 2, . . . , N . That is, such a size is undefined. In addition,

s[0, j] = 0,

for j = 1, 2, . . . , n, since we can always achieve worth 0 by including no items in

the knapsack. The optimal value is defined by

OPT ′ = max{iM : s[i, n] ≤ s}.
This is the value that is output by our PTAS algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

520 Chapter 18. Approximation Algorithms

Analysis of the PTAS for KNAPSACK

We can easily convert the above description into a dynamic programming algorithm

that computes OPT ′ in O(n3/ε) time. Such an algorithm gives us the value of an

optimal solution, but we can easily translate the dynamic programming algorithm

for computing the size into one for the actual set of items.

Let us consider, then, how good an approximation OPT ′ is for OPT . Recall

that we reduced the worth wi of each item i by at most M = εwmax/2n. Thus,

OPT ′ ≥ OPT − εwmax/2,

since the optimal solution can contain at most n items. Since OPT ≥ wmax, this in

turn implies that

OPT ′ ≥ OPT − εOPT/2 = (1 − ε/2)OPT.

Thus, OPT ≤ (1 + ε)OPT ′, which was what we wished to prove. The running

time of our approximation algorithm is O(n3/ε). Our scheme of designing an effi-

cient algorithm for any given ε > 0 gives rise to a fully polynomial approximation

scheme, since the running time is polynomial in both n and 1/ε. This fact gives us

the following.

Theorem 18.5: The KNAPSACK optimization problem has a fully polynomial ap-
proximation scheme that achieves a (1 + ε)-approximation factor in O(n3/ε) time,
where n is the number of items in the KNAPSACK instance and 0 < ε < 1 is a given
fixed constant.

i

j

+ sj

s

min

j - 1

i - (w'j /M)

Figure 18.8: Illustration of the equation for s[i, j] used in the dynamic program for

the scaled version of KNAPSACK.

www.it-ebooks.info

http://www.it-ebooks.info/

18.4. Backtracking and Branch-and-Bound 521

18.4 Backtracking and Branch-and-Bound

At this point, we know that there are many problems to be NP-complete. Thus,

unless P = NP, which the majority of computer scientists believes is not true, it is

impossible to solve any of these problems in polynomial time. Nevertheless, many

of these problems arise in real-life applications where solutions to them need to be

found, even if finding these solutions may take a long time. Thus, in this section,

we address techniques for dealing with NP-completeness that have shown much

promise in practice. These techniques allow us to design algorithms that can find

solutions to hard problems, often in a reasonable amount of time. In this section,

we study the methods of backtracking and branch-and-bound.

18.4.1 Backtracking

The backtracking technique is a way to build an algorithm for some hard problem

L. Such an algorithm searches through a large, possibly even exponential-size, set

of possibilities in a systematic way. The search strategy is typically optimized to

avoid symmetries in problem instances for L and to traverse the search space so as

to find an “easy” solution for L if such a solution exists.

The backtracking technique takes advantage of the inherent structure that many

NP-complete problems possess. Recall that acceptance for an instance x in a prob-

lem in NP can be verified in polynomial time given a polynomial-sized certificate.

Oftentimes, this certificate consists of a set of “choices,” such as the values assigned

to a collection of Boolean variables, a subset of vertices in a graph to include in a

special set, or a set of objects to include in a knapsack. Likewise, the verification

for a certificate often involves a simple test of whether the certificate demonstrates

a successful configuration for x, such as satisfying a formula, covering all the edges

in a graph, or conforming to certain performance criteria. In such cases, we can use

the backtracking algorithm, given in Algorithm 18.9, to systematically search for

a solution to our problem, if such a problem exists.

The backtracking algorithm traverses through possible “search paths” to locate

solutions or “dead ends.” The configuration at the end of such a path consists of a

pair (x, y), where x is the remaining subproblem to be solved and y is the set of

choices that have been made to get to this subproblem from the original problem

instance. Initially, we give the backtracking algorithm the pair (x, ∅), where x
is our original problem instance. Anytime the backtracking algorithm discovers

that a configuration (x, y) cannot lead to a valid solution no matter how additional

choices are made, then it cuts off all future searches from this configuration and

“backtracks” to another configuration. In fact, this approach gives the backtracking

algorithm its name.

www.it-ebooks.info

http://www.it-ebooks.info/

522 Chapter 18. Approximation Algorithms

Algorithm Backtrack(x):
Input: A problem instance x for a hard problem

Output: A solution for x or “no solution” if none exists

F ← {(x, ∅)}. // F is the “frontier” set of subproblem configurations

while F 	= ∅ do
Select from F the most “promising” configuration (x, y).
Expand (x, y) by making a small set of additional choices.

Let (x1, y1), (x2, y2), . . ., (xk, yk) be the set of new configurations.

for each new configuration (xi, yi) do
Perform a simple consistency check on (xi, yi).
if the check returns “solution found” then

return the solution derived from (xi, yi)
if the check returns “dead end” then

Discard the configuration (xi, yi). // Backtrack

else
F ← F ∪ {(xi, yi)} // (xi, yi) starts a promising search path

return “no solution”

Algorithm 18.9: The template for a backtracking algorithm.

Filling in the Details

In order to turn the backtracking strategy into an actual algorithm, we need only fill

in the following details:

1. Define a way of selecting the most “promising” candidate configuration from

the frontier set F .

2. Specify the way of expanding a configuration (x, y) into subproblem config-

urations. This expansion process should, in principle, be able to generate all

feasible configurations, starting from the initial configuration, (x, ∅).
3. Describe how to perform a simple consistency check for a configuration

(x, y) that returns “solution found,” “dead end,” or “continue.”

If F is a stack, then we get a depth-first search of the configuration space. In

fact, in this case we could even use recursion to implement F automatically as

a stack. Alternatively, if F is a queue, then we get a breadth-first search of the

configuration space. We can also imagine other data structures to implement F ,

but as long as we have an intuitive notion of how to select the most “promising”

configuration from F with each iteration, then we have a backtracking algorithm.

So as to make this approach more concrete, let us work through an application

of the backtracking technique to the CNF-SAT problem.

www.it-ebooks.info

http://www.it-ebooks.info/

18.4. Backtracking and Branch-and-Bound 523

A Backtracking Algorithm for CNF-SAT

Recall that in the CNF-SAT problem we are given a Boolean formula S in con-

junctive normal form (CNF) and are asked whether S is satisfiable. To design

a backtracking algorithm for CNF-SAT, we will systematically make tentative as-

signments to the variables in S and see if such assignments make S evaluate imme-

diately to 1 or 0, or yield a new formula S ′ for which we could continue making

tentative value assignments. Thus, a configuration in our algorithm will consist

of a pair (S ′, y), where S ′ is a Boolean formula in CNF, and y is an assignment

of values to Boolean variables not in S ′ such that making these assignments in S
results in the formula S ′.

To formulate our backtracking algorithm, then, we need to give the details of

each of the three components to the backtracking algorithm. Given a frontier F of

configurations, we make our most “promising” choice, which is the subformula S ′
with the smallest clause. Such a formula is the most constrained of all the formulas

in F ; hence, we would expect it to hit a dead end most quickly if that is indeed its

destiny.

Let us consider, then, how to generate subproblems from a subformula S ′. We

do this by locating a smallest clause C in S ′, and picking a variable xi that appears

in C. We then create two new subproblems that are associated with our assigning

xi = 1 and xi = 0, respectively.

Finally, we must say how to process S ′ to perform a consistency check for an

assignment of a variable xi in S ′. We begin this processing by reducing any clauses

containing xi based on the assigned 0 or 1 value of xi (depending on the choice we

made). If this reduction results in a new clause with a single literal, xj or xj ,

we also perform the appropriate value assignment to xj to make this single-literal

clause satisfied. We then process the resulting formula to propagate the assigned

value of xj . If this new assignment in turn results in a new single-literal clause, we

repeat this process until we have no more single-literal clauses. If at any point we

discover a contradiction (that is, clauses xi and xi, or an empty clause), then we

return “dead end.” If we reduce the subformula S ′ all the way to the constant 1,

then we return “solution found,” along with all the variable assignments we made to

reach this point. Otherwise, we derive a new subformula, S ′′, such that each clause

has at least two literals, along with the value assignments that lead from the original

formula S to S ′′. We call this operation the reduce operation for propagating an

assignment of value to xi in S ′.
Fitting all of these pieces into the template for the backtracking algorithm re-

sults in an algorithm that solves the CNF-SAT problem in about as fast a time as

we can expect. In general, the worst-case running time for this algorithm is still

exponential, but the backtracking can often speed things up. Indeed, if every clause

in the given formula has at most two literals, then this algorithm runs in polynomial

time. (See Exercise C-17.6.)

www.it-ebooks.info

http://www.it-ebooks.info/

524 Chapter 18. Approximation Algorithms

18.4.2 Branch-and-Bound
The backtracking algorithm works for decision problems, but it is not designed

for optimization problems, where, in addition to having some feasibility condition

be satisfied for a certificate y associated with an instance x, we also have a cost

function f(x) that we wish to minimize or maximize (without loss of generality, let

us assume the cost function should be minimized). Nevertheless, we can extend the

backtracking algorithm to work for such optimization problems, and in so doing

derive the algorithmic technique known as branch-and-bound.

The branch-and-bound technique has all the elements of backtracking, except

that rather than simply stopping the entire search process any time a solution is

found, we continue processing until the best solution is found. In addition, the

algorithm has a scoring mechanism to always choose the most promising configu-

ration to explore in each iteration.

To provide for the optimization criterion of always selecting the “most promis-

ing” configuration, we extend the three assumptions for a backtracking algorithm

to add one more condition:

• For any configuration, (x, y), we assume we have a function, lb(x, y), which

is a lower bound on the cost of any solution derived from (x, y).

To make the branch-and-bound approach more concrete, let us consider how it

can be applied to solve the optimization version of the traveling salesperson (TSP)

problem. In the optimization version of this problem, we are given a graph G with

a cost function c(e) defined for each edge e in G, and we wish to find the smallest

total-cost tour that visits every vertex in G, returning back to its starting vertex.

We can design an algorithm for TSP by computing for each edge e = (v, w), the

minimum-cost path that begins at v and ends at w while visiting all other vertices

in G along the way. To find such a path, we apply the branch-and-bound technique.

We generate the path from v to w in G − {e} by augmenting a current path by one

vertex in each loop of the branch-and-bound algorithm.

• After we have built a partial path P , starting, say, at v, we only consider

augmenting P with vertices in not in P .

• We can classify a partial path P as a “dead end” if the vertices not in P are

disconnected in G − {e}.

• To define the lower-bound function, lb, we can use the total cost of the edges

in P plus c(e). This will certainly be a lower bound for any tour that will be

built from e and P .

In addition, after we have run the algorithm to completion for one edge e in G, we

can use the best path found so far over all tested edges, rather than restarting the

current best solution b at +∞. The running time of the resulting algorithm will

still be exponential in the worst case, but it will avoid a considerable amount of

unnecessary computation in practice.

www.it-ebooks.info

http://www.it-ebooks.info/

18.5. Exercises 525

18.5 Exercises

Reinforcement
R-18.1 Describe in detail how to implement Algorithm 18.6 in O(n + m) time on an n-

vertex graph with m edges. You may use the traditional operation-count measure
of running time in this case.

R-18.2 Describe the details of an efficient implementation of Algorithm 18.7 and analyze
its running time.

R-18.3 Give an example of a graph G with at least 10 vertices such that the greedy 2-
approximation algorithm for VERTEX-COVER given above is guaranteed to pro-
duce a suboptimal vertex cover.

R-18.4 Give a complete, weighted graph G, such that its edge weights satisfy the triangle
inequality but the MST-based approximation algorithm for TSP does not find an
optimal solution.

R-18.5 Give a pseudocode description of the backtracking algorithm for CNF-SAT.

R-18.6 Give a recursive pseudocode description of the backtracking algorithm, assuming
the search strategy should visit configurations in a depth-first fashion.

R-18.7 Give a pseudocode description of the branch-and-bound algorithm for TSP.

R-18.8 The branch-and-bound program in Section 18.4.2, for solving the KNAPSACK

problem, uses a Boolean flag to determine when an item is included in a solution
or not. Show that this flag is redundant. That is, even if we remove this field, there
is a way (using no additional fields) to tell if an item is included in a solution or
not.

R-18.9 Suppose G is a complete undirected graph such that every edge has weight 1 or
2. Show that the weights in G satisfy the triangle inequality.

R-18.10 Suppose G is an undirected weighted graph such that G is not the complete graph
but every edge in G has positive weight. Create a complete graph, H , having the
same vertex set as G, such that if (v, u) is an edge in G, then (v, u) has the same
weight in H as in G, and if (v, u) is not an edge in G, then (v, u) has weight in
H equal to the length of a shortest path from v to u in G. Show that the edge
weights in H satisfy the triangle inequality.

R-18.11 Suppose we are given the following collection of sets:

S1 = {1, 2, 3, 4, 5, 6}, S2 = {5, 6, 8, 9}, S3 = {1, 4, 7, 10},

S4 = {2, 5, 7, 8, 11}, S5 = {3, 6, 9, 12}, S6 = {10, 11}.
What is the optimal solution to this instance of the SET-COVER problem and
what is the solution produced by the greedy algorithm?

R-18.12 Show that the number of vertices of odd degree in a tree is even.

www.it-ebooks.info

http://www.it-ebooks.info/

526 Chapter 18. Approximation Algorithms

Creativity
C-18.1 Consider the general optimization version of the TSP problem, where the un-

derlying graph need not satisfy the triangle inequality. Show that, for any fixed
value δ ≥ 1, there is no polynomial-time δ-approximation algorithm for the gen-
eral TSP problem unless P = NP.

Hint: Reduce HAMILTONIAN-CYCLE to this problem by defining a cost function
for a complete graph H for the n-vertex input graph G so that edges of H also in
G have cost 1 but edges of H not in G have cost δn more than 1.

C-18.2 Derive an efficient backtracking algorithm for the HAMILTONIAN-CYCLE prob-
lem.

C-18.3 Derive an efficient backtracking algorithm for the KNAPSACK decision problem.

C-18.4 Derive an efficient branch-and-bound algorithm for the KNAPSACK optimization
problem.

C-18.5 Derive a new lower-bound function, lb, for a branch-and-bound algorithm for
solving the TSP optimization problem. Your function should always be greater
than or equal to the lb function used in Section 18.4.2, but still be a valid lower-
bound function. Describe an example where your lb is strictly greater than the lb
function used in Section 18.4.2.

C-18.6 In the bottleneck traveling salesperson problem (TSP), we are given an undi-
rected graph G with weights on its edges and asked to find a tour that visits the
vertices of G exactly once and returns to the start so as to minimize the cost of
the maximum-weight edge in the tour. Assuming that the weights in G satisfy
the triangle inequality, design a polynomial-time 3-approximation algorithm for
bottleneck TSP.

Hint: Show that it is possible to turn an Euler-tour traversal, E, of an MST for G
into a tour visiting each vertex exactly once such that each edge of the tour skips
at most two vertices of E.

C-18.7 In the Euclidean traveling salesperson problem, cities are points in the plane and
the distance between two cities is the Euclidean distance between the points for
these cities, that is, the length of the straight line joining these points. Show that
an optimal solution to the Euclidean TSP is a simple polygon, that is, a connected
sequence of line segments such that no two ever cross.

C-18.8 Consider the KNAPSACK problem, but now instead of implementing the PTAS
algorithm given in the book, we use a greedy approach of always picking the next
item that maximizes the ratio of value over weight (as in the optimal way to solve
the fractional version of the KNAPSACK problem). Show that this approach does
not produce a c-approximation algorithm, for any fixed value of c.

C-18.9 Consider a greedy algorithm for the VERTEX-COVER problem, where we repeat-
edly choose a vertex with maximum degree, add it to our cover, and then remove
it and all its incident edges. Show that this algorithm does not, in general, pro-
duce a 2-approximation.

Hint: Use a bipartite graph where all the vertices on one side have the same
degree.

www.it-ebooks.info

http://www.it-ebooks.info/

18.5. Exercises 527

C-18.10 In the HITTING-SET problem, we are given a set U of items, and a collection of
subsets of U , S1, S2, . . . , Sm. The problem is to find a smallest subset T of U
such that T “hits” every subset Si, that is, T ∩ Si 	= ∅, for i = 1, . . . , m. Design
a polynomial-time O(log n)-approximation algorithm for HITTING-SET.

Applications
A-18.1 Suppose you are working for a cartography company, that is, a company that

makes maps. Your job is to design a software package that can take as input the
map of some region, R, and label as many of the cities of R as possible. Each
of the n cities in such a region, R, is given by an (x, y) coordinate for the center
of that city. Assume, for the sake of simplifying the problem, that the label, Lc,
for each city, c, is a rectangle (which will contain the name of the city, c) whose
lower-right corner is the (x, y)-location for c. The labels for two cities, c and
d, conflict if Lc intersects Ld. Given your extensive algorithmic background,
you realize that you can model this problem with a graph, G, where you create
a vertex in G for each city and connect cities c and d with an edge if their labels
conflict. Let d = 2m/n be the average degree of the vertices in G, where m
is the number of edges in G. Describe an O(d)-approximation algorithm for
finding the largest number of mutually nonconflicting labels for the cities in a
given region R.

A-18.2 In a synchronous optical network (SONET) ring, a collection of routers are con-
nected with fiber-optic cables to form a single, simple cycle. A message be-
tween two routers, x and y, can then be transmitted by routing it clockwise or
counter-clockwise around the ring. Given a set, M , of messages to transmit,
each specified by a pair of routers (x, y), the ring-loading problem is to route
all the messages in M so as to minimize the maximum load on any link in the
ring (that joins two adjacent routers). Solving such an optimization problem is
useful, since such a solution minimizes the bandwidth needed to transmit all the
messages in M . Describe a 2-approximation for solving the ring-loading prob-
lem.

A-18.3 Suppose you work for a major package shipping company, FedUP, and it is your
job to ship a set of n boxes from Rhode Island to California using a given col-
lection of trucks. You know that these trucks will be weighed at various points
along this route and FedUP will have to pay a penalty if any of these trucks are
overweight. Thus, you would like to minimize the weight of the most heavily
loaded truck. Assuming you know the integer weight of each of the n boxes, de-
scribe a simple greedy algorithm for assigning boxes to trucks and show that this
algorithm has an approximation ratio of at most 2 for the problem of minimizing
the weight of the most heavily loaded truck.

A-18.4 Suppose you work for a major package shipping company, FedUP, as in the pre-
vious exercise, but suppose there is a new law that requires every truck to carry
no more than M pounds, even if it has room for more boxes. Now the optimiza-
tion problem is to use the fewest number of trucks possible to carry the n boxes
across the country such that each truck is carrying at most M pounds. Describe

www.it-ebooks.info

http://www.it-ebooks.info/

528 Chapter 18. Approximation Algorithms

a simple greedy algorithm for assigning boxes to trucks and show that your algo-
rithm uses a number of trucks that is within a factor of 2 of the optimal number
of trucks. You may assume that no box weighs more than M pounds.

A-18.5 Suppose you are preparing an algorithm for the problem of optimally drilling the
holes in an aluminum plug plate to allow it to do a spectrographic analysis of
a set of galaxies. Based on your analysis of the robot drill device, you notice
that the various amounts of time it takes to move between drilling holes satisfies
the triangle inequality. Nevertheless, your supervisor does not want you to use
the MST approximation algorithm or the Christofides approximation algorithm.
Instead, your supervisor wants you to use a nearest-neighbor greedy algorithm for
solving this instance of METRIC-TSP. In this greedy algorithm, one starts with
city number 1 as the “current” city, and then repeatedly chooses the next city to
add to the tour to be the one that is closest to the current city (then making the
added city to be the “current” one). Show that your supervisor’s nearest-neighbor
greedy algorithm does not, in general, result in a 2-approximation algorithm for
METRIC-TSP.

A-18.6 Consider the astronomy application of METRIC-TSP, as in the previous exercise,
but now suppose that you have an improvement to your supervisor’s nearest-
neighbor idea. Your nearest-neighbor greedy algorithm works like this: you start
with city number 1 and add cities one at time, always maintaining a tour, T , of
the cities added so far. Given the current set of cities, C, you find the city, c,
not in C that minimizes the distance to a city, d, that is in C. Then you add d to
T immediately after c, add d to C, and repeat until T is a tour for all the cities.
Show that your nearest-neighbor greedy approach results in a 2-approximation
algorithm for METRIC-TSP.

Chapter Notes
General discussions of approximation algorithms can be found in several other books, in-
cluding those by Hochbaum [101] and Papadimitriou and Steiglitz [170], as well as the
chapter by Klein and Young [127]. The PTAS for KNAPSACK is modeled after a result
of Ibarra and Kim [109], as presented by Klein and Young [127]. Papadimitriou and Stei-
glitz attribute the 2-approximation for VERTEX-COVER to Gavril and Yannakakis. The
2-approximation algorithm for the special case of TSP is due to Rosenkrantz, Stearns, and
Lewis [179]. The O(log n)-approximation for SET-COVER, and its proof, follow from
work of Chvátal [44], Johnson [112], and Lovász [146]. The Christofides approximation
algorithm is due to Nicos Christofides [43].

The discussion of backtracking and branch-and-bound is modeled after discussions
by Lewis and Papadimitriou [143] and Brassard and Bratley [37], where backtracking is
intended for decision problems and branch-and-bound is for optimization problems. Nev-
ertheless, our discussion is also influenced by Neapolitan and Naimipour [164], who alter-
natively view backtracking as a heuristic search that uses a depth-first search of a configu-
ration space and branch-and-bound as a heuristic search that uses breadth-first or best-first
search with a lower-bound function to perform pruning. The technique of backtracking
itself dates to early work of Golomb and Baumert [84].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

19 Randomized Algorithms

Trees with snow on branches, “Half Dome, Apple Orchard, Yosemite,” 1933.
Ansel Adams. U.S. government image. U.S. National Archives and Records
Administration.

Contents

19.1 Generating Random Permutations 531
19.2 Stable Marriages and Coupon Collecting 534
19.3 Minimum Cuts . 539
19.4 Finding Prime Numbers 546
19.5 Chernoff Bounds . 551
19.6 Skip Lists . 557
19.7 Exercises . 563

www.it-ebooks.info

http://www.it-ebooks.info/

530 Chapter 19. Randomized Algorithms

An important feature of any single-person computer game is that it shouldn’t

be boring. That is, the user should have a new and distinct experience each time

he or she plays the game. One way to achieve such a goal, of course, is to use

randomization. That is, the execution of the algorithm shouldn’t depend only on

its inputs, but also on the use of a random-number generator to produce random

numbers that are used to guide the execution of the algorithm. Thus, the structure

of such algorithms depend on the outcomes of random events. In this context, the

running time or correctness of an algorithm then becomes a random variable, which

is averaged over the values of the random numbers the algorithm uses.

Because they are used extensively in computer games, cryptography, and com-

puter simulations, methods that generate random numbers are built into most mod-

ern computers. Some methods, called pseudo-random-number generators, gener-

ate random-like numbers deterministically, starting with an initial number called a

seed. Other methods use hardware devices to extract “true” random numbers from

nature. In any case, we assume that our computer has access to numbers that are

sufficiently random for our analysis, and we explore in this chapter some of the

algorithms that can be designed using these tools.

A randomized algorithm is an algorithm whose behavior depends, in part, on

the outcomes of random choices or the values of random bits. The main advantage

of using randomization in algorithm design is that the results are often simple and

efficient. In addition, there are some problems that need randomization for them to

work effectively. For instance, consider the problem common in computer games

involving playing cards—that of randomly shuffling a deck of cards so that all pos-

sible orderings are equally likely. This problem is surprisingly subtle, and there are

even published stories of people who have been able to defeat online poker sys-

tems by exploiting the fact that those systems were not using a good card shuffling

algorithm. So one of the problems that we address in this chapter on randomized

algorithms is how to efficiently shuffle a deck of virtual cards. For example, an

algorithm that doesn’t generate all possible permutations with equal probability is

to take an approach based on the riffle shuffle used by humans to shuffle cards.

Thus, the shuffling methods we discuss in this chapter are quite different than this

approach, but are just as fast.

We study a number of other interesting randomized algorithms in this chap-

ter, as well, including finding prime numbers, which is important in cryptography,

the coupon collector problem, which has applications to biodiversity studies, and

methods for building search structures known as skip lists, using randomization.

We assume throughout this chapter that the reader is familiar with the principles of

basic probability covered in Section 1.2.4.

This is not the only place where we discuss randomized algorithms, however.

We also have discussions of randimized algorithms in the context of hash tables in

Chapter 6, random construction of binary search trees in Section 3.4, the random-

ized quick-sort algorithm in Section 8.2, the quick-select algorithm in Chapter 9,

and a page-caching algorithm in Section 20.4.

www.it-ebooks.info

http://www.it-ebooks.info/

19.1. Generating Random Permutations 531

19.1 Generating Random Permutations

As mentioned above, randomly shuffling cards is an important part of any computer

gaming system that deals virtual cards. The problem of computing random permu-

tations has many more applications than just computerized card games, however,

including a host of other randomized algorithms, often as the very first step. In

this section, we explore two random permutation algorithms, both of which run in

linear time.

The input to the random permutation problem is a list, X = (x1, x2, . . . , xn),
of n elements, which could stand for playing cards or any other objects we want to

randomly permute. The output is a reordering of the elements of X , done in a way

so that all permutations of X are equally likely.

Both of the algorithms we discuss make use of a function, random(k), which

returns an integer in the range [0, k − 1] chosen uniformly and independently at

random. This function is based on the use of some source of random bits. So if k is

a power of 2, then we simply take log k random bits from this source and interpret

them as a number in the range from 0 to k − 1, inclusive. Every number in this

range is equally likely. If, on the other hand, k is not a power of 2, then we let

K be the smallest power of 2 greater than k and we take log K random bits from

this source. If interpreting these bits as a number gives us an integer in the range

[0, k − 1], then we take this as our output to the random(k) method. Otherwise, if

we get a number that is k or larger, then we discard these bits and try again. Thus,

if k is not a power of 2, then the running time of the random(k) method is itself a

random variable with expected value O(1). If k is a power of 2, however, then this

method always runs in O(1) time.

We give our first random permutation method in Algorithm 19.2. This algo-

rithm simply chooses a random number for each element in X and sorts the ele-

ments using these values as keys. (See Figure 19.1.) If all the keys are distinct,

then the resulting permutation is generated uniformly, as we show below.

Figure 19.1: A random permutation algorithm based on sorting random numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

532 Chapter 19. Randomized Algorithms

Algorithm randomSort(X):
Input: A list, X , of n elements

Output: A permutation of X so that all permutations are equally likely

Let K be the smallest power of 2 greater than or equal to n3

for each element, xi, in X do
Choose a random value, ri, in the range [0, K − 1] and associate it with xi

Sort X using the ri values as keys via radix-sort

if all the ri values are distinct then
return X according to this sorted order

else
Call randomSort(X)

Algorithm 19.2: A sorting-based algorithm for generating a random permutation.

Analyzing the Sorting-Based Random Permutation Algorithm

To see that every permutation is equally likely to be output by the randomSort
method, note that each element, xi, in X has an equal probability, 1/n, of having

its ri value be the smallest. Thus, each element in X has equal probability of

1/n of being the first element in the permutation. Note, in addition, that because

the algorithm will only terminate when all the elements are distinct, then there is

exactly one element with smallest ri value. Moreover, once we have removed this

value, each remaining value, xi, has equal probability of 1/(n − 1) of holding the

minimum ri value. Thus, the probability that any element from this group will be

chosen second is 1/(n− 1). Following this reasoning to its logical conclusion, this

approach implies that the permutation that is output had a probability of

(
1
n

)
·
(

1
n − 1

)
· · ·
(

1
2

)
·
(

1
1

)
=

1
n!

of being chosen. That is, all permutations are equally likely.

In addition, because we use radix sort to sort X by ri values, and K is O(n3),
each call to the randomSort method runs in O(n) time, not counting any recursive

calls that are made because a duplicate ri value is found. In any call to this method,

we choose n of the ri values, so the probability that any one of these is the same

as any other is at most n/n3 = 1/n2. Therefore, since there are n values chosen,

the probability that there is a duplicate found is at most n/n2 = 1/n. That is,

this algorithm runs in O(n) time, without any retries, with probability 1 − 1/n.

In general, we say that an event involving n items holds with high probability
if it occurs with probability at least 1 − 1/n. So the sorting-based permutation

algorithms runs in O(n) time with high probability.

www.it-ebooks.info

http://www.it-ebooks.info/

19.1. Generating Random Permutations 533

The Fisher-Yates Shuffling Algorithm

There is another shuffling algorithm, which reduces all the uncertainty in its run-

ning time to calls of the random(k) method. Thus, if we had a way of implement-

ing this method so that it always ran in constant time, then this second algorithm

would be “almost deterministic,” in that it would always succeed and it would al-

ways run in O(n) time. This algorithm, which is known as the Fisher-Yates al-
gorithm, assumes that the input list is given as an array; the details are given in

Algorithm 19.3. (See Figure 19.4.)

Algorithm FisherYates(X):
Input: An array, X , of n elements, indexed from position 0 to n − 1
Output: A permutation of X so that all permutations are equally likely

for k = n − 1 downto 1 do
Let j ← random(k + 1) // j is a random integer in [0, k]
Swap X[k] and X[j] // This may “swap” X[k] with itself, if j = k

return X

Algorithm 19.3: The Fisher-Yates algorithm for generating a random permutation.

This algorithm considers the items in the array one at time from the end and

swaps each element with an element in the array from that point to the beginning.

Notice that each element has an equal probability, of 1/n, of being chosen as the

last element in the array X (including the element that starts out in that position).

Likewise, for the elements that remain in the first n− 1 positions, each of them has

an equal probability, of 1/(n−1), of being the last element in that range. Following

this reasoning to its logical conclusion implies that the permutation that is actually

output by the Fisher-Yates algorithm had a probability of(
1
n

)
·
(

1
n − 1

)
· · ·
(

1
2

)
·
(

1
1

)
=

1
n!

of being the one output. That is, all permutations are equally likely. In addition, if

the random(k) method runs in O(1) time, then this algorithm runs in O(n) time.

(We revisit this issue in Section 19.5.3.)

Figure 19.4: The Fisher-Yates random permutation algorithm. The arcs represent

swaps, which start from 9 and go down to 1. Here, position 1 swaps with itself.

www.it-ebooks.info

http://www.it-ebooks.info/

534 Chapter 19. Randomized Algorithms

19.2 Stable Marriages and Coupon Collecting
A common question biologists often ask with respect to a given ecosystem is to

determine the number of species that occupy that ecosystem. In order to get a

handle on such biodiversity questions, biologists have developed various tools for

sampling species. For instance, one tool that is used for this purpose is random

sampling, where an ecosystem is divided into a grid, like a checkerboard, and then

a careful census is prepared for a random subset of the squares in this grid. A

natural issue that arises in this application, then, is to determine the right number of

squares to sample in order to have a good chance of finding at least one individual

from every species in the ecosystem.

One way to get a handle on this estimate is to model it as a coupon collector
problem, which abstracts the essence of this estimation. We imagine that there is

a set, C, of n coupons and we are interested in collecting at least one of every

coupon in C. We can go a ticket window once a day and request a coupon, and

a clerk will choose one of the n coupons at random and give it to us. We cannot

expect the clerk to remember which coupons he has given us in the past, however,

so, each time he gives us a coupon, it is chosen uniformly and independently at

random from among the n coupons in C. The coupon collector problem, then, is

to determine the number of times we need to go to the ticket window before we

have collected all n coupons. So, for instance, in the application to biodiversity

estimation, each time a plant or animal is detected in a random sample is like a trip

to the ticket window in the coupon collector problem.

19.2.1 Analyzing the Coupon Collector Problem
Let X be a random variable representing the number of times that we need to visit

the ticket window before we get all n coupons. We can write X as

X = X1 + X2 + · · · + Xn,

where Xi is the number of trips we have to make to the ticket window in order to go

from having i − 1 distinct coupons to having i distinct coupons. So, for example,

X1 = 1, since we are guaranteed to get a distinct coupon in our first trip to the

ticket window, and X2 is the number of additional trips we must make to get our

second distinct coupon. After we have gotten i− 1 distinct coupons, our chance of

getting a new one in any trip to the window is

pi =
n − (i − 1)

n
,

since there are n coupons, but only n−(i−1) that we don’t already have at this point

in time. This implies that each Xi a geometric random variable with parameter,

pi. That is, if we imagine that we have a biased coin that only comes up heads with

www.it-ebooks.info

http://www.it-ebooks.info/

19.2. Stable Marriages and Coupon Collecting 535

probability pi, then Xi is the number of times we have to flip this coin until we get

it to come up heads. The expected value, E[Xi], of Xi is therefore 1/pi.

By the linearity of expectation,

E[X] = E[X1] + E[X2] + · · · + E[Xn]

=
1
p1

+
1
p2

+ · · · + 1
pn

=
n

n
+

n

n − 1
+ · · · + n

1

= n
n∑

i=1

1
i

= n Hn,

where Hn is the nth harmonic number, which, as we have observed elsewhere, can

be approximated as lnn ≤ Hn ≤ lnn + 1. In other words, the expected number of

times that we need to visit the ticket window in order to get at least one instance of

each of n coupons is nHn, which is approximately n lnn.

In some cases, such as in the biodiversity application discussed above, we

would like to bound the probability that we need to make significantly more than

n lnn trips to the ticket window to get all n coupons. Such a bound is known as a

tail estimate, since it involves bounding the end or “tail” of a probability distribu-

tion. Fortunately, in the case of the coupon collector problem, coming up with such

a tail bound is not that difficult.

Let us now consider that the coupons are numbered 1, 2, . . . , n and let Yi,t be a

random variable indicating the event that coupon number i was not collected even

after we have made t trips to the ticket window. Thus,

Pr(Yi,t = 1) =
(

1 − 1
n

)t

≤ e−t/n,

since 1 − x ≤ e−x, for 0 < x < 1 (see Theorem A.4). We can then bound the

probability that X is more than T = cn lnn, for some constant c ≥ 2, as follows:

Pr(X > T) ≤ Pr

(
n∑

i=1

Yi,T ≥ 1

)

≤ n · Pr(Y1,T = 1)

≤ n · e−T/n

= n · e−c ln n

= n · n−c

= n−c+1.

Thus, with high probability, we will collect all n coupons after making cn lnn trips

to the ticket window, for c ≥ 2.

www.it-ebooks.info

http://www.it-ebooks.info/

536 Chapter 19. Randomized Algorithms

19.2.2 The Stable Marriage Problem
Imagine a village consisting of n men and n women, all of whom are single, het-

erosexual, and interested in getting married. Every man has a list of the women

ordered by his preferences, and, likewise, every woman has a list of the men or-

dered by her preferences. The stable marriage problem is to match up the men and

women in a way that is stable. Such a matching is stable if there is no unmatched

man-woman pair, (x, y), such that x and y would prefer to be married to each other

than to their spouses. That is, it would be unstable if x preferred y over his wife

and y preferred x over her husband. (See Figure 19.5.)

Figure 19.5: An instance of the stable marriage problem. Each man and woman is

listed with his or her preference list, and the matching shown is stable. Note that

even though female 2 is married to her last choice, there is no man who prefers her

over his current wife.

In real life, this problem arises in the annual placement of residents in hospitals.

Residents rank order the hospitals that they would like to work in, and hospitals

rank the set of available residents for each of their available open slots. Then a

stable “marriage” is computed between residents and available slots in hospitals.

www.it-ebooks.info

http://www.it-ebooks.info/

19.2. Stable Marriages and Coupon Collecting 537

The Proposal Algorithm

There is a simple algorithm for solving the stable marriage problem, which involves

men making proposals to women in a series of rounds.

A round begins with an unmatched man making a proposal to the female highest-

ranked on his list. If she is unmatched, then she accepts his proposal and the round

ends. If, on the other hand, she is matched, then she accepts his proposal only if

she ranks him higher than her current partner. In the case when the woman receiv-

ing the proposal is already matched, then whichever man she rejects repeats the

computation for this round, making a proposal to the next woman on his list (his

highest-ranked woman that he has not previously proposed to). Thus, a round con-

tinues in this way, consisting of a series of proposals and it ends when a previously

unmatched woman accepts a proposal. This proposal algorithm continues perform-

ing such rounds until all the men and women are matched. (See Algorithm 19.6.)

Algorithm StableMarriage(X, Y):

Input: A set, X , of n men and their prioritized lists of women in Y , and a set,

Y , of n women and their prioritized lists of men in X
Output: A stable marriage for X and Y

for each man, x, in X do
Let y be x’s highest-ranked woman

Have x propose to y
while y is matched to some man, z, such that z 	= x do

if y prefers x over z then
Match x and y
Unmatch z
Let x ← z

Let y be x’s highest-ranked woman he has not proposed to yet

Have x propose to y
Match x and y

Algorithm 19.6: The proposal algorithm for the stable marriage problem.

To see that the matching resulting from this proposal algorithm is stable, sup-

pose there is an unstable pair, (x, y), that are not matched by the algorithm, that is,

both x and y prefer each other to the partners they end up with by following the

proposal algorithm. Note that at the time x made his last proposal, to his current

partner, w, he had made a proposal to every woman that he ranked higher than w.

But this means that he would have made a proposal to y, which she would have

accepted, because she ranks x higher than the man she ended up with. Thus, such

a pair, (x, y), cannot exist.

www.it-ebooks.info

http://www.it-ebooks.info/

538 Chapter 19. Randomized Algorithms

A Worst-Case Amortized Analysis

The worst-case running time of this algorithm is O(n2). To see this fact, note that

at the beginning of the algorithm, the total length of the lists of all n men is O(n2),
and at each step of the algorithm, some man is using up a proposal to a woman on

his list to whom he will never again propose. Thus, if we charge each entry in the

list of preferences by the men 1 cyber-dollar for the work we do in having a man

make a proposal, then we can pay for all the proposals using O(n2) cyber-dollars.

An Average-Case Analysis Based on Coupon Collecting

We can perform an average-case analysis of Algorithm 19.6, which has a much bet-

ter performance than the worst-case bound. For the sake of this analysis, suppose

the preference list for every man is an independent random permutation of the list

of women. Then, each time it is a man’s turn to make a proposal, he is making that

proposal to a random woman he has not proposed to before.

In fact, we can simplify this analysis even further to consider a version of the

algorithm where each time it is a man’s turn to make a proposal, he makes his pro-

posal to a random woman without consideration of his previous proposals. Such an

algorithm is memoryless, in the sense that each proposal a man makes is indepen-

dent of any proposal he made earlier. Still, note that in this memoryless proposal

algorithm if a man makes a proposal to a woman he has previously proposed to, she

will reject his proposal, since at that point in time she will be matched to someone

she prefers more than him. Thus, a bound on the running time of this memoryless

algorithm gives us a bound on the original algorithm with randomly ordered prefer-

ence lists, since the original version makes no more proposals than the memoryless

version.

The key observation to analyze the memoryless algorithm is to focus on the

women and realize that each round in this algorithm consists of a sequence of pro-

posals to independently chosen random women until a proposal is made to an un-

matched woman. That is, the memoryless algorithm is an instance of the coupon

collector problem where the names of the women are the coupons. Thus, by the

analysis of the coupon collector problem, the expected running time of the mem-

oryless stable marriage algorithm is O(n log n). Therefore, we have the following

theorem.

Theorem 19.1: The expected number of proposals made in the proposal algo-
rithm, for a set of n men and n women, is at most nHn, assuming the preference
list of each man is an independent random permutation of the list of women.

That is, the average-case running time of the proposal algorithm for the stable

marriage problem is O(n log n).

www.it-ebooks.info

http://www.it-ebooks.info/

19.3. Minimum Cuts 539

19.3 Minimum Cuts

A cut, C, of a connected graph, G, is a subset of the edges of G whose removal

disconnects G. That is, after removing all the edges of C, we can partition the

vertices of G into two subsets, A, and B such that there are no edges between a

vertex in A and a vertex in B. (See Figure 19.7.) A minimum cut of G is a cut of

smallest size among all cuts of G.

f

e v1

v2

v3

v5

v4

v6

v7

v8

v9

Figure 19.7: Example of a cut of a graph. The set of edges C = {e, f}, drawn with

thick lines, is a cut, since removing e and f partitions the graph into two connected

components. This cut is of minimum size.

In several applications, it is important to determine the size of a smallest cut

of a graph. For example, in a communications network, the failures of the edges

of a cut prevents the communication between the nodes on the two sides of a cut.

Thus, the size of a minimum cut and the number of such cuts give an idea of the

vulnerability of the network to edge failures. Small cuts are also important for

the automatic classification of web content. Namely, consider a collection of web

pages and model them as a graph, where vertices correspond to pages and edges to

links between pages. The size of a minimum cut provides a measure of how much

groups of pages have related content. Also, we can use minimum cuts to recursively

partition the collection into clusters of related documents. Similar considerations

can be made for minimum cuts in a social network.

As a starting point for computing minimum cuts, note that, for each vertex,

v, the edges incident on v form a cut, whose size is the degree of v, deg(v), since

removing all these edges separates v from the rest of the graph. Thus, the minimum

degree of the vertices of a graph is an upper bound on the size of its minimum cut.

www.it-ebooks.info

http://www.it-ebooks.info/

540 Chapter 19. Randomized Algorithms

Also, recalling the notion of a biconnected graph, defined in Section 13.5, we have

that a minimum cut of a biconnected graph has size at least 2.

In Section 16.1, we present a related definition of a cut in a flow network with

respect to given pair of vertices, s, and t. The partition induced by such a cut has

vertex s on one side and vertex t on the other size. As explored in Exercise C-19.9,

one can compute a minimum cut of a graph by repeated applications of a maximum

flow algorithm to a flow network derived from G.

19.3.1 Contracting Edges
In the rest of this section, we show how to compute a minimum cut by means of a

randomized algorithm that is simple to implement. This algorithm repeatedly per-

forms contraction operations on the graph. Let G be a graph with n vertices, where

we allow G to have parallel edges. We denote with (v, w) any edge with endpoints

v and w. The contraction of an edge e of G with endpoints u and v consists of the

following steps that yield a new graph with n − 1 vertices, denoted G/e:

1. Remove edge e and any other edge between its endpoints, u and v.

2. Create a new vertex, w.

3. For every edge, f , incident on u, detach f from u and attach it to w. Formally

speaking, let z be the other endpoint of f . Change the endpoints of f to be z
and w.

4. For every edge, f , incident on v, detach f from v and attach it to w.

A series of contraction operations is shown in Figure 19.8. Note that a contraction

may create parallel edges. Specifically, if vertices u and v have a common neighbor,

z, the edges connecting z to u and v become parallel edges connecting z and w.

A contraction operation for an edge (u, v) has the important property of pre-

serving the set of cuts that do not include any edge (u, v). This property is formally

expressed by the following lemma.

Lemma 19.2: Let G be a graph that may have parallel edges and let G/e be the
graph resulting from G after contracting an edge, e, with endpoints u and v. A set,
C, of edges is a cut of G/e if and only if C is a cut of G that does not contain any
edge with endpoints u and v.

Lemma 19.2 implies that the set of cuts of G/e is the same as the set of cuts of

G that exclude any edge (u, v).
By Lemma 19.2, if we perform a series of contraction operations, we obtain a

graph whose cuts are a subset of the cuts of the original graph. In particular, if we

contract n − 2 edges, where n is the number of vertices of the graph, we obtain a

graph with two vertices connected by parallel edges that form one of the cuts of the

original graph. (See Figure 19.8.)

www.it-ebooks.info

http://www.it-ebooks.info/

19.3. Minimum Cuts 541

v1

v2

v3

v5

v4

v6

v7

v8

v9

v1

v2

v3

v5

v4

w1

v9

v7

(a) (b)

v1

w2

v5

v4

w1

v9

v7

w3

v1

w2

v5

v4

w1

(c) (d)

w3

w4

v5

v4

w1

w7

w6

(e) (f)

Figure 19.8: Sequence of contraction operations on a graph. (a–b) Contraction of

(v6, v8). (b–c) Contraction of (v2, v3). (c–d) Contraction of (v7, v9). (d–e) Con-

traction of (v1, w2). (f) Final graph obtained after contracting (v4, v5), yielding

vertex w5, (w4, w5), yielding vertex w6, and (w1, w2), yielding vertex w7. The

final graph has the same minimum cut as the original graph since each contraction

preserves the edges of this cut.

www.it-ebooks.info

http://www.it-ebooks.info/

542 Chapter 19. Randomized Algorithms

19.3.2 Computing a Minimum Cut

Karger’s algorithm for computing a minimum cut is very simple. It performs a

sequence of edge contractions, selecting each time a random edge. The algorithm

stops when the graph has two vertices and returns the set of edges between them.

This method is summarized in Algorithm 19.9. Admittedly, the algorithm may not

return a minimum cut, since, for each such cut, the algorithm may have contracted

one of its edges. Nevertheless, Karger’s algorithm succeeds with high probability.

Algorithm ContractGraph(G):
Input: An undirected graph, G, with n vertices

Output: A cut of G that has minimum size with probability at least 2
n(n−1)

while G has more than 2 edges do
pick a random edge, e, of G
contract edge e
G ← G/e

return the edges of G

Algorithm 19.9: Single iteration of Karger’s randomized algorithm for finding a

minimum cut of a graph.

Let us evaluate the success probability of Algorithm 19.9, that is, the probability

that the algorithm returns a minimum cut. Let G be a graph with n vertices and m
edges, and let C be a given minimum cut of G. We will evaluate the probability

that the algorithm returns the cut C. Since G may have other minimum cuts, this

probability is a lower bound on the success probability of the algorithm.

Let Gi be the graph obtained after i contractions performed by the algorithm

and let mi be the number of edges of Gi. Assume that Gi−1 contains all the edges

of C. The probability that Gi also contains all the edges of C is equal to

1 − k

mi−1
,

since we contract any given edge of C with probability 1/mi−1 and C has k edges.

Thus, the probability, P , that the algorithm returns cut C is given by

P =
∏

i=0,...,n−3

(
1 − k

mi

)
.

Since k is the size of the minimum cut of each graph Gi, we have that each vertex

of Gi has degree at least k. Thus, we obtain the following lower bound on mi, the

number of edges of Gi:

mi ≥ k(n − i)
2

, for i = 0, 1, . . . , n − 3 .

www.it-ebooks.info

http://www.it-ebooks.info/

19.3. Minimum Cuts 543

We can use the above inequality to derive a lower bound on P , as follows:

P =
n−3∏
i=0

(
1 − k

mi

)
(19.1)

≥
n−3∏
i=0

(
1 − 2k

k(n − i)

)
(19.2)

=
n−3∏
i=0

(
n − i − 2

n − i

)
(19.3)

=
(

n − 2
n

)(
n − 3
n − 1

)(
n − 4
n − 2

)(
n − 5
n − 3

)
. . .

(
2
4

)(
1
3

)
(19.4)

=
2

n(n − 1)
(19.5)

=
1(
n
2

) (19.6)

The above analysis shows that probability that Algorithm 19.9 returns cut C is

Ω
(

1
n2

)
, a decreasing function that tends to 0 as n grows. However, we can boost

the probability by running the algorithm multiple times. In particular, if we run the

algorithm for t
(
n
2

)
rounds, where t is a positive integer, we have that at least one

round returns cut C with probability

P (t) = 1 −
(

1 − 1(
n
2

))t(n
2)

.

By a well-known property (Theorem A.4) of the mathematical constant e, the base

of the natural logarithm, ln, we obtain

P (t) ≥ 1 − 1
et

.

In particular, if we choose t = c lnn, where c is a constant, then we get a success

probability, 1 − 1/nc, to obtain the cut C.

We turn now to the analysis of the running time of the algorithm. A contraction

operation can be executed in O(n) time. Thus, Algorithm 19.9 (ContractGraph)

takes O(n2) time. We summarize our findings with the following theorem.

Theorem 19.3: Let G be a graph with n vertices. For any positive integer con-
stant c, we can compute a minimum cut of G with a randomized algorithm that runs
in time O(n4 log n) and has success probability 1 − 1/nc.

Proof: The algorithm consists of executing Algorithm 19.9 (ContractGraph)

c
(
n
2

)
lnn times and returning the smallest of the cuts obtained.

www.it-ebooks.info

http://www.it-ebooks.info/

544 Chapter 19. Randomized Algorithms

19.3.3 A Faster Algorithm

We now show how to improve the running time of the above contraction approach

for finding minimum cuts. By inspecting Equation 19.4, we note that the proba-

bility of avoiding cut C is at least 1
2 when the algorithm has contracted the graph

down to about n√
2

vertices. This observation and the use of recursion leads to Al-

gorithm 19.10, due to Karger and Stein.

Algorithm RecursiveContractGraph(G, n):
Input: An undirected graph, G, with n vertices

Output: A cut of G that has minimum size with probability at least 1
log n

if G has at most 6 vertices then
return ContractGraph(G, 2)

else
G1 ← ContractGraph

(
G, n√

2

)
C1 ← RecursiveContractGraph

(
G1,

n√
2

)
G2 ← ContractGraph

(
G, n√

2

)
C2 ← RecursiveContractGraph

(
G2,

n√
2

)
if |C1| ≤ |C2| then

return C1

else
return C2

Algorithm 19.10: Single iteration of the randomized algorithm by Karger

and Stein for finding a minimum cut of a graph. The algorithms in-

vokes ContractGraph(G, r), a variation of method ContractGraph(G) (Algo-

rithm 19.9) that performs n− r contractions and returns the resulting graph, which

has r vertices.

Algorithm 19.10 (RecursiveContractGraph) makes two recursive calls. Also,

after each call, the size of the input graph is a constant fraction, 1√
2
, of the size

before the call. Thus, the execution of the algorithm can be modeled by a binary

recursion tree with depth 2 log n.

The number of contractions performed in a call, excluding those within its re-

cursive calls, is proportional to the number of vertices of the graph. Since each

contraction takes linear time in the number of vertices, the work done within a call,

excluding its recursive calls, is quadratic in the number of vertices. Hence, the total

www.it-ebooks.info

http://www.it-ebooks.info/

19.3. Minimum Cuts 545

amount of work performed at level i of the recursion tree is proportional to

2i

(
n√
2

i

)2

= n2.

We conclude that RecursiveContractGraph(G, n) runs in O(n2 log n) time.

Let us analyze the probability that RecursiveContractGraph (Algorithm 19.10)

returns a given minimum cut, C. Referring to the recursion tree, we say that a node

is safe if its associated graph contains cut C. The recursive call at a safe node

succeeds in returning C if one of the following events occurs:

• graph G1 obtained from ContractGraph contains cut C and the recursive

call returns C;

• graph G2 obtained from ContractGraph contains cut C and the recursive

call returns C.

Clearly, each of the above events has the same probability. However, the events are

not mutually exclusive.

Recall that the height of a node of a tree is the length of the longest path from

the node to a leaf. Define P (i) as the probability that a safe node at height i of the

recursion tree has a safe leaf in its subtree. Thus, P (2 log n) denotes the probability

that algorithm RecursiveContractGraph succeeds in returning C. We know that

each of graphs G1 and G2 returned by ContractGraph contains C with probabil-

ity 1
2 . Thus, we can write the following recurrence relation:

P (i + 1) ≥ 1
2
P (i) +

1
2
P (i) −

(
1
2
P (i)

)2

= P (i) − 1
4
P (i)2.

The base case of the recurrence is for a leaf, which has height 0 and is associated

with a graph with at most 6 vertices:

P (0) ≥ 1(
6
2

) =
1
15

.

Analyzing the recurrence relation, one can show that P (2 log n), the success prob-

ability of the algorithm, is Ω
(

1
log n

)
. (See Exercise C-19.10.) Thus, we obtain the

following theorem.

Theorem 19.4: Let G be a graph with n vertices. For any positive integer con-
stant c, we can compute a minimum cut of G with a randomized algorithm that runs
in time O(n2 log3 n) and has success probability 1 − 1/nc.

Proof: The algorithm consists of executing c log2 n times Algorithm 19.10

(RecursiveContractGraph) and returning the smallest of the cuts obtained.

www.it-ebooks.info

http://www.it-ebooks.info/

546 Chapter 19. Randomized Algorithms

19.4 Finding Prime Numbers
An integer p is prime if p ≥ 2 and its only divisors are the trivial divisors 1 and

p. An integer greater than 2 that is not prime is composite. So, for example, 5,

11, and 101 are prime, whereas 25 and 713 (= 23 · 31) are composite. In this

section, we discuss randomized ways of testing for primality and for then using

these methods to find prime numbers. Such computations are useful, for example,

in cryptography, which is discussed in Chapter 24.

In order to lay the groundwork for finding primes, a few words about the mod-
ulo operator (mod) are in order. Recall that a mod n is the remainder of a when

divided by n. That is,

r = a mod n

means that r = a −
a/n�n. In other words, there is some integer q, such that

a = qn + r. Note, in addition, that a mod n is always an integer in the set

{0, 1, 2, . . . , n − 1}.

It is sometimes convenient to talk about congruence modulo n. If

a mod n = b mod n,

we say that a is congruent to b modulo n, which we call the modulus, and we write

a ≡ b (mod n).

Therefore, if a ≡ b mod n, then a − b = kn for some integer k.

Having laid this groundwork, we are now ready for the first theorem of this

chapter, which is known as Fermat’s Little Theorem.

Theorem 19.5 (Fermat’s Little Theorem): Let p be a prime, and let x be an
integer such that x mod p 	= 0 and 0 < x < p. Then

xp−1 ≡ 1 (mod p).

Proof: We know that, for 0 < x < p, the set {1, 2, . . . , p − 1} and the set

{x · 1, x · 2, . . . , x · (p − 1)} contain exactly the same elements, when we do all

arithmetic modulo p (see Exercise C-19.8). So when we multiply the elements of

the sets together, we get the same value, namely,

1 · 2 · · · (p − 1) = (p − 1)!.

In other words,

(x · 1) · (x · 2) · · · (x · (p − 1)) ≡ (p − 1)! (mod p).

If we factor out the x terms, we get

xp−1(p − 1)! ≡ (p − 1)! (mod p).

Thus, because p is prime, we can cancel the term (p− 1)! from both sides, yielding

xp−1 ≡ 1 mod p, which is the desired result.

www.it-ebooks.info

http://www.it-ebooks.info/

19.4. Finding Prime Numbers 547

19.4.1 Primality Testing
Prime numbers play an important role in computations involving numbers, such

as cryptographic computations, as we noted above. But how do we test whether a

number is prime, particularly if it is large?

Testing all possible divisors of a number takes exponential time, so we need

an alternative to the method many of us used to test for primality on grade-school

Math assignments. Alternatively, Fermat’s Little Theorem (Theorem 19.5) seems

to suggest an efficient solution. Perhaps we can somehow use the equation

ap−1 ≡ 1 mod p

to form a test for p. That is, let us pick a number a, and raise it to the power p − 1.

If the result is not 1, then the number p is definitely not prime. Otherwise, there’s a

chance it is. Would repeating this test for various values of a prove that p is prime?

Unfortunately, the answer is “no.” There is a class of numbers, called Carmichael
numbers, that have the property that an−1 ≡ 1 mod n for all 1 ≤ a ≤ n − 1, but

n is composite. The existence of these numbers ruins such a simple way to test for

primality. Example Carmichael numbers are 561 and 1105.

Independent Repetitions: A Template for Primality Testing

While the above simple test won’t work, there is a related approach that will work,

by making more sophisticated use of Fermat’s Little Theorem. Such a probabilistic

test of primality is based on the following general approach. Let n be an odd integer

that we want to test for primality, and let witness(x, n) be a Boolean function of a

random variable x and n with the following properties:

1. If n is prime, then witness(x, n) is always false. So if witness(x, n) is true,

then n is definitely composite.

2. If n is composite, then witness(x, n) is false with probability q < 1.

The function witness is said to be a compositeness witness function with error

probability q, for q bounds the probability that witness will incorrectly identify

a composite number as possibly prime. By repeatedly computing witness(x, n)
for independent random values of the parameter x, we can determine whether n is

prime with an arbitrarily small error probability. The probability that witness(x, n)
would incorrectly return “false” for k independent random x’s, when n is a com-

posite number, is qk. A template for a probabilistic primality testing algorithm

based on this observation is shown in Algorithm 19.11. This algorithm assumes we

have a compositeness witness function, witness, that satisfies the two conditions

above. In order to turn this template into a full-blown algorithm, we need only

specify the details of how to pick random numbers, x, and compute witness(x, n),
the composite witness function.

www.it-ebooks.info

http://www.it-ebooks.info/

548 Chapter 19. Randomized Algorithms

Algorithm RandomizedPrimalityTesting(n, k):
Input: Odd integer n ≥ 2 and confidence parameter k
Output: An indication of whether n is composite (which is always correct) or

prime (which is incorrect with error probability 2−k)

// This method assumes we have a compositeness witness function witness(x, n)
with error probability q < 1.

t ← �k/ log2(1/q)�
for i ← 1 to t do

x ← random()
if witness(x, n) then

return “composite”

return “prime”

Algorithm 19.11: A template for a probabilistic primality testing algorithm based

on a compositeness witness function witness(x, n). We assume that the method

random() picks a value at random from the domain of the variable x.

If the method RandomizedPrimalityTesting(n, k, witness) returns “compos-

ite,” we know with certainty that n is composite. However, if the method returns

“prime,” the probability that n is actually composite is no more than 2−k. Indeed,

suppose that n is composite but the method returns “prime.” We have that the wit-

ness function witness(x, n) has evaluated to true for t random values of x. The

probability of this event is qt. From the relation between the confidence parameter

k, the number of iterations t, and the error probability q of the witness function

established by the first statement of the method, we have that qt ≤ 2−k.

Given the parameter k, which is known as a confidence parameter, we can

make t = �k/ log2(1/q)� independent repetitions of our test to get force our prob-

ability of failure to be at most 2−k. For instance, taking k = 30, forces this failure

probability to be lower than the probability that the average person will, in their

lifetime, be hit by lightning. This approach of repeating independent trials of a

randomized algorithm to force a failure probability down below a probability de-

termined by a specified confidence parameter is a common pattern in the design of

randomized algorithms.

The Rabin-Miller Primality Testing Algorithm

We now describe the Rabin-Miller algorithm for primality testing. It is based on

Fermat’s Little Theorem (Theorem 19.5) and on the following lemma.

Lemma 19.6: Let p be a prime number greater than 2. If x is an element of Zp

such that

x2 ≡ 1 (mod p),

then either x ≡ 1 (mod p) or x ≡ −1 (mod p).

www.it-ebooks.info

http://www.it-ebooks.info/

19.4. Finding Prime Numbers 549

A nontrivial square root of the unity in Zn is an integer 1 < x < n − 1 such

that x2 ≡ 1 (modn). Lemma 19.6 states that if n is prime, there are no nontrivial

square roots of the unity in Zn. The Rabin-Miller algorithm uses this fact to define

the witness(x, n) function as shown below:

Algorithm witness(x, n):
Write n − 1 as 2km, where m is odd.

Compute y ← xm mod n
if y ≡ 1 (modn) then

return false // n is probably prime

for i ← 1 to k − 1 do
if y ≡ −1 (modn) then

return false // n is probably prime

y ← y2 mod n
return true // n is definitely composite

As we explore in an exercise (C-19.12), if the Rabin-Miller composite witness

function returns true, then n is definitely composite. The error probability of the

cases when Rabin-Miller composite witness algorithm returns false is provided by

the following lemma, stated without proof.

Lemma 19.7: Let n be a composite number. There are at most (n − 1)/4 posi-
tive values of x in Zn such that the Rabin-Miller compositeness witness function
witness(x, n) returns true.

We conclude as follows:

Theorem 19.8: Given an odd positive integer n and a parameter k > 0, the
Rabin-Miller algorithm determines whether n is prime, with error probability 2−k,
by performing O(k log n) arithmetic operations.

Finding Prime Numbers

A primality testing algorithm can be used to select a random prime in a given range,

or with a prespecified number of bits. We exploit the following result from number

theory, stated without proof.

Theorem 19.9: The number, π(n), of primes that are less than or equal to n is
Θ(n/ lnn). In fact, if n ≥ 17, then n/ lnn < π(n) < 1.26n/ lnn.

A consequence of Theorem 19.9 is that a random integer n is prime with prob-

ability 1/ lnn. Thus, to find a prime with a given number b of bits, we can again

use the pattern of repeated independent trials. In particular, note that if we generate

a random b-bit odd number, n, then it has �log n� ≥ �lnn� bits. So n is prime with

probability at least 1/b; hence, repeating a primality test for kb such numbers gives

us the following.

www.it-ebooks.info

http://www.it-ebooks.info/

550 Chapter 19. Randomized Algorithms

Theorem 19.10: Given an integer b and a confidence parameter k, a random
prime with b bits can be generated by performing O(kb) primality tests, with prob-
ability at least 1 − 2−k.

Las Vegas and Monte Carlo Algorithms

Note that in Theorem 19.10 the confidence parameter is bounding a probability

that the algorithm takes longer than the stated time to run, whereas the confidence

parameter in the Rabin-Miller algorithm is bounding the probability that the algo-

rithm produces a wrong answer. These two scenarios arise so often in the context of

randomized algorithms that they have names. A randomized algorithm that always

succeeds in producing a correct output, but whose running time depends on random

events is known as a Las Vegas algorithm. A randomized algorithm that always

has a deterministic running time, but whose output may be incorrect, with some

probability, is known as a Monte Carlo algorithm. We summarize the distinction

between these two categories of randomized algorithms in Table 19.12.

Running Time Correctness

Las Vegas Algorithm probabilistic certain

Monte Carlo Algorithm certain probabilistic

Table 19.12: The difference between Las Vegas and Monte Carlo algorithms.

Note that if we have a deterministic way to test for correctness, we can always

turn a Monte Carlo algorithm into a Las Vegas algorithm, as we explore in Exer-

cise C-19.13. But without such a testing algorithm, we have no easy way of turning

a Monte Carlo algorithm into a Las Vegas algorithm. Nevertheless, we do have

an easy way to turn any Las Vegas algorithm into a Monte Carlo algorithm, sim-

ply by running the Las Vegas algorithm for an amount of time determined by its

confidence parameter and either outputting the correct answer, if the algorithm has

terminated in that time, or outputting “sorry” if it has not. Moreover, if we use a

Monte Carlo algorithm as a subroutine in what would otherwise be a Las Vegas

algorithm, then the resulting algorithm is Monte Carlo, using this same argument.

Such is the case if we combine Theorems 19.8 and 19.10.

In addition, we say that a Monte Carlo algorithm that outputs yes-no answers

has a one-sided error if, as in the Rabin-Miller algorithm, one of its outputs, “yes”

or “no,” is always correct. Otherwise, it has a two-sided error.

www.it-ebooks.info

http://www.it-ebooks.info/

19.5. Chernoff Bounds 551

19.5 Chernoff Bounds
Quite often in the analysis of randomized algorithms we are interested in proving a

bound on a running time with high probability. A useful collection of tools that are

frequently used to perform such analyses are the Chernoff bounds we discuss in

this section. For instance, we use one in Section 6.3.3 to analyze the performance

of a hash table that uses linear probing to resolve collisions.

19.5.1 Markov’s Inequality
Any discussion of Chernoff bounds begins with a foundational fact of probability

known as Markov’s inequality, which can be stated as follows.

Theorem 19.11: Let X be a random variable such that X ≥ 0. Then, for all
a > 0,

Pr(X ≥ a) ≤ E[X]
a

.

Proof: Let Y be a 0-1 indicator random variable that is 1 if X ≥ a. Then, since

X ≥ 0,

Y ≤ X

a
.

Taking expectations of both sides, we get

E[Y] ≤ E[X]
a

,

by the linearity of expectation. The theorem follows, then, by observing that

E[Y] = Pr(Y = 1) = Pr(X ≥ a).

An example application of Markov’s inequality is to note that at most 10%

of the U.S. population can have more than 10 times the average net worth of any

American.

The bounds that can be derived directly from using Markov’s inequality are not

always the tightest, but they are usually simple. Moreover, another nice feature of

Markov’s inequality is that we don’t have to know anything more about X than the

fact that it is nonnegative and has expected value E[X]. In fact, it is sufficient for

us simply to have an upper bound on E[X] in order to apply Markov’s inequality.

For example, using Markov’s inequality and Theorem 19.1, we can conclude that

there is at most a 10% chance that the proposal algorithm for the stable marriage

problem will make more than 10nHn proposals, assuming the preference list of

each man is an independent random permutation of the list of women.

www.it-ebooks.info

http://www.it-ebooks.info/

552 Chapter 19. Randomized Algorithms

19.5.2 Sums of Indicator Random Variables

Let X = X1 + X2 + · · · + Xn be the sum of n independent 0-1 indicator random

variables, such that Xi = 1 with probability pi. Using the language of probability

theory, X is a random variable from the binomial distribution. Intuitively, X is

equal to the number of heads one gets by flipping n coins such that the ith coin

comes up heads with probability pi. Define the mean, or expected value of X , as

μ = E[X] =
n∑

i=1

pi.

Then we have the following Chernoff bound.

Theorem 19.12: For δ > 0,

Pr(X > (1 + δ)X) ≤
[

eδ

(1 + δ)(1+δ)

]μ
.

Proof: Applying Markov’s inequality, after raising both sides of the probabilistic

inequality to the power eλ, for λ > 0, we get

Pr(X > (1 + δ)μ) = Pr(eλX > eλ(1+δ)μ)

≤ E[eλX]
eλ(1+δ)μ

=
∏n

i=1 E[eλXi]
eλ(1+δ)μ

,

because the Xi’s are mutually independent. Note that random variable eλXi takes

on the value eλ with probability pi, and the value 1 with probability 1 − pi. Thus,

E[eλXi] = eλ + 1 − pi. So we have

Pr(X > (1 + δ)μ) ≤
∏n

i=1(e
λ + 1 − pi)

eλ(1+δ)μ

=
∏n

i=1(1 + pi(eλ − 1))
eλ(1+δ)μ

.

We can use the inequality 1 + x < ex for x = pi(eλ − 1), to show

Pr(X > (1 + δ)μ) ≤
∏n

i=1 epi(e
λ−1)

eλ(1+δ)μ

=
e(
∑n

i=1 pi(e
λ−1))

eλ(1+δ)μ

=
e(eλ−1)μ

eλ(1+δ)μ
.

Taking λ = ln(1 + δ), which is positive for δ > 0, completes the theorem.

www.it-ebooks.info

http://www.it-ebooks.info/

19.5. Chernoff Bounds 553

We have the following Chernoff bound as well.

Theorem 19.13: For 0 < δ < 1,

Pr(X < (1 − δ)X) ≤
[

e−δ

(1 − δ)(1−δ)

]μ
.

Proof: The proof is similar to that of Theorem 19.12, except that we rewrite the

probability as Pr(e−λX > e−λ(1−δ)μ) and let λ = ln(1/(1 − δ)).

Application: Processor Load Balancing

Suppose we have a set of n processors and a set of n jobs for them to perform, but

no good way of assigning jobs to processors. So we just assign jobs to processors

at random. What is a good high-probability upper bound on the number of jobs

assigned to any processor?

We can answer this question using a Chernoff bound. Let X be a random

variable representing the number of jobs assigned to processor 1. Then X can be

written as

X = X1 + X2 + · · ·Xn,

where Xi is the 0-1 indicator random variable that job i is assigned to processor

1. Thus, Pr(Xi = 1) = 1/n and μ = E[X] = 1. Since the Xi’s are clearly

independent, we can apply the Chernoff bound from Theorem 19.12 to get, for any

integer m > 1,

Pr(X > m) ≤ em−1

mm
.

After a bit of algebra, one can show, for

m ≥ 3 lnn

ln lnn
,

and n ≥ 28, that

em−1

mm
≤ 1

n2
.

Thus, the probability that processor 1 has more than m jobs assigned to it by this

random assignment is at most 1/n2. Therefore, the probability that any processor

is assigned more than m jobs is at most n/n2 = 1/n. In other words, the number of

processors assigned to any processor is O(log n/ log log n) with high probability.

www.it-ebooks.info

http://www.it-ebooks.info/

554 Chapter 19. Randomized Algorithms

19.5.3 Sums of Geometric Random Variables

Let Y be a random variable that is the sum of n independent geometric random

variables with parameter p. That is,

Y = Y1 + Y2 + · · · + Yn,

where each Yi is a number of times to flip a coin, which comes up heads with

probability p, until getting an outcome of heads. Using the language of probability

theory, Y is a random variable from the negative binomial distribution. In this

case,

E[Yi] = 1/p, for each i = 1, 2, . . . , n;

hence, E[Y] = αn, where α = 1/p.

The Chernoff bound for Y that we derive in this section concerns the characteri-

zation of the probability that Y exceeds its mean, which is αn = n/p. In particular,

we are interested in the probability,

Pr(Y > (α + t)n),

where t > 0. That is, using the coin flipping metaphor, we are interested in the

probability that we have to flip a coin more than (α + t)n times to get n heads.

Relating the Binomial and Negative Binomial Distributions

In order to bound this probability, let us consider another random variable, X ,

which is the sum of (α + t)n independent indicator random variables, each of

which is 1 with probability p. That is, X is the number of heads we get from

flipping (α + t)n coins, each of which comes up heads with probability p. This

random variable, which comes from the binomial distribution, can help us bound

the above probability for Y , which comes from the negative binomial distribution,

because

Pr(Y > (α + t)n) = Pr(X < n).

In other words, the probability that it takes more than (α + t)n coin tosses to get n
heads is equal to the probability that we get fewer than n heads in exactly (α + t)n
coin tosses.

Note that X is the same kind of random variable we discussed in the previous

subsection. Thus, we can use Theorem 19.13 to analyze it. In this case, note that if

we let μ = E[X], then

μ = p(α + t)n
= p((1/p) + t)n
= (1 + tp)n.

www.it-ebooks.info

http://www.it-ebooks.info/

19.5. Chernoff Bounds 555

We use the above fact in the following application of Theorem 19.13.

Lemma 19.14: For t > 0,

Pr(Y > (α + t)n) ≤ e−tpn(1 + tp)n.

Proof: We already observed that Pr(Y > (α + t)n) = Pr(X < n), so, in

order to apply Theorem 19.13, we need to bound the probability that X is less than

(1 − δ)μ, where this quantity is equal to n. That is, we have

(1 − δ)μ = (1 − δ)(1 + tp)n = n.

Hence,

1 − δ =
1

1 + tp
and − δ =

−tp

1 + tp
.

Thus, by Theorem 19.13,

Pr(X < (1 − δ)μ) <

[
e−tp/(1+tp)

[1/(1 + tp)]1/(1+tp)

](1+tp)n

= e−tpn(1 + tp)n.

This lemma allows us to then derive the following Chernoff bound, in the spirit

of Theorem 19.12.

Theorem 19.15: Let Y = Y1 + Y2 + · · · + Yn be the sum of n independent
geometric random variables with parameter p. Then, for α = 1/p and t ≥ α,

Pr(Y > (α + t)n) ≤ e−tpn/5.

Proof: By Lemma 19.14,

Pr(Y > (α + t)n) ≤ e−tpn (1 + tp)n .

Unfortunately, if we use the inequality, 1 + x ≤ ex, with x = tp, to bound the

righthand term in the above equation, then we get a useless result. So, instead, we

use a better approximation, namely, that, if x ≥ 1, then 1 + x < ex/(1+1/4). Thus,

for t ≥ α,

Pr(Y > (α + t)n) ≤ e−tpn · e4tpn/5

= e−tpn/5.

www.it-ebooks.info

http://www.it-ebooks.info/

556 Chapter 19. Randomized Algorithms

A More Realistic Analysis of Fisher-Yates Random Shuffling

In the analysis given earlier for the Fisher-Yates shuffling algorithm to generate

a random permutation, we assumed that the random(k) method, which returns a

random integer in the range [0, k − 1], always runs in O(1) time. If we are using a

random-number generator based on the use of unbiased random bits, however, this

is not a realistic assumption.

In a system based on using random bits, we would most naturally implement

the random(k) method by generating �log k� random bits, interpreting these bits as

an unsigned integer, and then repeating this operation until we got an integer in the

range [0, k − 1]. Thus, counting each iteration in such an algorithm as a “step,” we

could conservatively say that the random(k) method runs in 1 step with probability

1/2, 2 steps with probability 1/22, and, in general, in i steps with probability 1/2i.

That is, its running time is a geometric random variable with parameter

p =
1
2
.

Under this more realistic assumption, the running time of the Fisher-Yates ran-

dom permutation algorithm is proportional to the sum,

Y = Y1 + Y2 + · · ·Yn−1,

where each Yi is the number of steps performed in the ith call to the random
method. In other words, Y is the sum of n − 1 independent geometric random

variables with parameter p = 1/2, since the running times of the calls to the

random(k) method are independent. Thus, focusing on the steps used in calls

to this method, the expected running time of the Fisher-Yates algorithm is

E[Y] = 2(n − 1).

Given this information, we can use the Chernoff bound for a sum of independent

geometric random variables given in Theorem 19.15, with α = 2, to bound the

probability that the Fisher-Yates algorithm takes more than 4n steps as follows:

Pr(Y > 4n) ≤ e−n/5.

Therefore, under this more realistic analysis, the Fisher-Yates algorithm runs in

O(n) time with high probability.

www.it-ebooks.info

http://www.it-ebooks.info/

19.6. Skip Lists 557

19.6 Skip Lists

An interesting data structure for efficiently realizing the ordered set of items is

the skip list. This data structure makes random choices in arranging the items

in such a way that search and update times are logarithmic on average. A skip
list S for an ordered dictionary, D, of key-value pairs consists of a series of lists

{S0, S1, . . . , Sh}. Each list Si stores a subset of the items of D sorted by a nonde-

creasing key plus items with two special keys, denoted −∞ and +∞, where −∞
is smaller than every possible key that can be inserted in D and +∞ is larger than

every possible key that can be inserted in D. In addition, the lists in S satisfy the

following (see Figure 19.13):

• S0 contains every item in D (plus special items with keys −∞ and +∞).

• For i = 1, . . . , h−1, list Si contains (in addition to −∞ and +∞) a randomly

generated subset of the items in list Si−1.

• Sh contains only −∞ and +∞.

It is customary to visualize a skip list S with list S0 at the bottom and lists S1, . . . , Sh

above it. Also, we refer to h as the height of skip list S.

Intuitively, the lists are set up so that Si+1 contains essentially every other item

in Si. The items in Si+1 are chosen at random from the items in Si by picking each

item from Si to also be in Si+1 with probability 1/2. That is, in essence, we “flip a

coin” for each item in Si and place that item in Si+1 if the coin comes up “heads.”

Thus, we expect S1 to have about n/2 items, S2 to have about n/4 items, and, in

general, Si to have about n/2i items. In other words, we expect the height h of

S to be about log n. We view a skip list as a two-dimensional collection of nodes

arranged horizontally into levels and vertically into towers. Each level is a list Si

and each tower contains nodes storing the same item across consecutive lists.

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S5

S4

S3

S2

S1

S0 8-

8-

8-

8-

8-

8- 8+

8+
8+

8+

8+

8+

Figure 19.13: Example of a skip list.

www.it-ebooks.info

http://www.it-ebooks.info/

558 Chapter 19. Randomized Algorithms

19.6.1 Searching
The nodes in a skip list can be traversed using the following operations:

after(p): Return the node following p on the same level.
before(p): Return the node preceding p on the same level.
below(p): Return the node below p in the same tower.
above(p): Return the node above p in the same tower.

We assume that the above operations return null if the node requested does not

exist. Searching in a skip list is based on the method shown in Algorithm 19.14.

Algorithm SkipSearch(k):
Input: A search key k
Output: Node in S whose item has the largest key less than or equal to k

Let p be the topmost, left node of S (which should have at least 2 levels).

while below(p) 	= null do
p ← below(p) // drop down

while key(after(p)) ≤ k do
Let p ← after(p) // scan forward

return p.

Algorithm 19.14: Algorithm for searching in a skip list S.

Note that we begin the SkipSearch method by setting p to the topmost, left

node in the skip list S, and repeating the following steps (see Figure 19.15):

1. If S.below(p) is null, then the search terminates—we are at the bottom and

have located the largest item in S with key less than or equal to the search

key k. Otherwise, we drop down to the next lower level in the present tower.

2. Starting at node p, we move p forward until it is at the right-most node on

the present level such that key(p) ≤ k. We call this the scan forward step.

Note that such a node always exists, since each level contains the special

keys +∞ and −∞. In fact, after we perform the scan forward for this level,

p may remain where it started. In any case, we then repeat the previous step.

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S5

S4

S3

S2

S1

S0 8-

8-

8-

8-

8-

8- 8+

8+

8+

8+

8+

8+

Figure 19.15: Example of a search in a skip list. The positions visited and the links

traversed when searching (unsuccessfully) for key 52 are drawn with thick lines.

www.it-ebooks.info

http://www.it-ebooks.info/

19.6. Skip Lists 559

19.6.2 Update Operations
Given the SkipSearch method, it is easy to implement find(k)—we simply per-

form p ← SkipSearch(k) and test whether key(p) = k. As it turns out, the expected

running time of the SkipSearch algorithm is O(log n). We postpone this analysis,

however, until after we discuss the update methods for skip lists.

Insertion

The insertion algorithm for skip lists uses randomization to decide how many nodes

for the new item (k, e) should be added to the skip list. We begin the insertion of

a new item (k, e) into a skip list by performing a SkipSearch(k) operation. This

gives us the position p of the bottom-level item with the largest key less than or

equal to k (note that p may be the node of the special item with key −∞). We

then insert (k, e) in this bottom-level list immediately after p. After inserting the

new item at this level, we call a method random() that returns a random bit that is

1 (which stands for “heads”) or 0 (which stands for “tails”), each with probability

1/2. If the bit comes up tails, then we stop here. If the bit comes up heads, on the

other hand, then we backtrack to the previous (next higher) level and insert (k, e)
in this level at the appropriate position. We again generate a random bit, and if it

comes up heads, we go to the next higher level and repeat. Thus, we continue to

insert the new item (k, e) in lists until we finally get a flip that comes up tails. We

link together all the nodes for the new item, (k, e), created in this process to create

the tower for (k, e). We give the pseudocode for this insertion algorithm for a skip

list S in Algorithm 19.16 and we illustrate this algorithm in Figure 19.17. Our

insertion algorithm uses an operation insertAfterAbove(p, q, (k, e)) that inserts a

node storing the item (k, e) after p (on the same level as p) and above the node q,

returning the node r for the new item (and setting internal references so that after,
before, above, and below methods will work correctly for p, q, and r).

Algorithm SkipInsert(k, e):
Input: Item (k, e)
Output: None

p ← SkipSearch(k)
q ← insertAfterAbove(p,null, (k, e)) // we are at the bottom level

while random() = 1 do
while above(p) = null do

p ← before(p) // scan backward

p ← above(p) // jump up to higher level

q ← insertAfterAbove(p, q, (k, e)) // insert new item

Algorithm 19.16: Insertion in a skip list, assuming random() returns a random

number between 0 and 1, and we never insert past the top level.

www.it-ebooks.info

http://www.it-ebooks.info/

560 Chapter 19. Randomized Algorithms

17 31

555012 17 20 25 31 38 39

4412

17 55

17

17

55

25

25

S0

S5

S4

S3

S2

S1

25 55

44

8-

8-

8-

8-

8-

8-

8+

8+

8+

8+

8+

8+

31

38

42

42

42

42

Figure 19.17: Insertion of an element with key 42 into the skip list of Figure 19.13.

The nodes visited and the links traversed are drawn with thick lines. The nodes

inserted to hold the new item are drawn with dashed lines.

Removal

Like the search and insertion algorithms, the removal algorithm for a skip list S is

quite simple. In fact, it is even easier than the insertion algorithm. Namely, to per-

form a remove(k) operation, we begin by performing a search for the given key k.

If a node p with key k is not found, then we return the null element. Otherwise, if

a node p with key k is found (on the bottom level), then we remove all the nodes

above p, which are easily accessed by using above operations to climb up the tower

of this item in S starting at p. The removal algorithm is illustrated in Figure 19.18

and a detailed description of it is left as an exercise (R-19.14). As we show in

the next subsection, the running time for removal in a skip list is expected to be

O(log n).
Before we give this analysis, however, there are some minor improvements to

the skip list data structure we would like to discuss. First, we don’t need to store

references to items at the levels above 0, because all that is needed at these levels are

references to keys. Second, we don’t actually need the above method. In fact, we

don’t need the before method either. We can perform item insertion and removal

in strictly a top-down, scan-forward fashion, thus saving space for “up” and “prev”

references. We explore the details of this optimization in an exercise (C-19.17).

38

555012 17 38 39 44

4412

17 55

17

55

55

S0

S5

S4

S3

S2

S1

42

42

42

42

31

31

31

25

25

25

2520

17

8-

8-

8-

8-

8-

8-

17

8+
8+

8+

8+

8+

8+

Figure 19.18: Removal of the item with key 25 from the skip list of Figure 19.17.

The positions visited and the links traversed after the initial search are drawn with

thick lines. The positions removed are drawn with dashed lines.

www.it-ebooks.info

http://www.it-ebooks.info/

19.6. Skip Lists 561

Maintaining the Topmost Level

A skip list S must maintain a reference to the topmost, left position in S as an

instance variable, and must have a policy for any insertion that wishes to continue

inserting a new item past the top level of S. There are two possible courses of

action we can take, both of which have their merits.

One possibility is to restrict the top level, h, to be kept at some fixed value

that is a function of n, the number of elements currently in the dictionary (from

the analysis we will see that h = max{10, 2�log n�} is a reasonable choice, and

picking h = 3�log n� is even safer). Implementing this choice means that we

must modify the insertion algorithm to stop inserting a new item once we reach the

topmost level (unless �log n� < �log(n+1)�, in which case we can now go at least

one more level, since the bound on the height is increasing).

The other possibility is to let an insertion continue inserting a new element as

long it keeps returning heads from the random-number generator. As we show in

the analysis of skip lists, the probability that an insertion will go to a level that is

more than O(log n) is very low, so this design choice should also work.

However, either choice will still result in our being able to perform element

search, insertion, and removal in expected O(log n) time, which we will show in

the next section.

19.6.3 A Probabilistic Analysis of Skip Lists

As we have shown above, skip lists provide a simple implementation of an or-

dered dictionary. In terms of worst-case performance, however, skip lists are not

a superior data structure. In fact, if we don’t officially prevent an insertion from

continuing significantly past the current highest level, then the insertion algorithm

can go into what is almost an infinite loop (it is not actually an infinite loop, how-

ever, since the probability of having a fair coin repeatedly come up heads forever

is 0). Moreover, we cannot infinitely add elements to a list without eventually run-

ning out of memory. In any case, if we terminate item insertion at the highest level

h, then the worst-case running time for performing the find, insert, and remove
operations in a skip list S with n items and height h is O(n + h). This worst-case

performance occurs when the tower of every item reaches level h−1, where h is the

height of S. However, this event has very low probability. Judging from this worst

case, we might conclude that the skip list structure is strictly inferior to the other

dictionary implementations discussed earlier in this chapter. But this would not be

a fair analysis, for this worst-case behavior is a gross overestimate. Because the

insertion step involves randomization, a more honest analysis of skip lists involves

a bit of probability.

www.it-ebooks.info

http://www.it-ebooks.info/

562 Chapter 19. Randomized Algorithms

Let us begin with the expected value of the height h of S (assuming that we

do not terminate insertions early). The probability that a given item is stored in a

position at level i is equal to the probability of getting i consecutive heads when

flipping a coin, that is, this probability is 1/2i. Hence, the probability, Pi, that level

i has at least one item is at most Pi ≤ n/2i, for the probability that any one of n
different events occurs is, at most, the sum of the probabilities that each occurs.

The probability that the height h of S is larger than i is equal to the probability

that level i has at least one item, that is, it is no more than Pi. This means that h is

larger than, say, 3 log n with probability at most

P3 log n ≤ n

23 log n
=

n

n3
=

1
n2

.

More generally, given a constant c > 1, h is larger than c log n with probability at

most 1/nc−1. That is, the probability that h is smaller than or equal to c log n is at

least 1 − 1/nc−1. Thus, with high probability, the height h of S is O(log n).
Consider the running time of a search in skip list S, and recall that such a search

involves two nested while-loops. The inner loop performs a scan forward on a level

of S as long as the next key is no greater than the search key k, and the outer

loop drops down to the next level and repeats the scan forward iteration. Since the

height h of S is O(log n) with high probability, the number of drop-down steps is

O(log n) with high probability.

So we have yet to bound the number of scan-forward steps we make. Let ni be

the number of keys examined while scanning forward at level i. Observe that, after

the key at the starting position, each additional key examined in a scan-forward

at level i cannot also belong to level i + 1. If any of these items were on the

previous level, we would have encountered them in the previous scan-forward step.

Thus, the probability that any key is counted in ni is 1/2. Therefore, the expected

value of ni is exactly equal to the expected number of times we must flip a fair

coin before it comes up heads. That is, each ni is a geometric random variable

with parameter 1/2. Thus, E[ni] = 2; hence, the expected amount of time spent

scanning forward at any level i is O(1). Since S has O(log n) levels with high

probability, a search in S takes expected time O(log n). By a similar analysis, we

can show that the expected running time of an insertion or a removal is O(log n).
Moreover, by applying the Chernoff bound for a sum of independent geometric

random variables, given in Theorem 19.15, we can show that searches and updates

in a skip list run in O(log n) time with high probability.

Finally, let us turn to the space requirement of a skip list S. As we observed

above, the expected number of items at level i is n/2i, which means that the ex-

pected total number of items in S is

h∑
i=0

n

2i
= n

h∑
i=0

1
2i

< 2n.

Hence, the expected space requirement of S is O(n).

www.it-ebooks.info

http://www.it-ebooks.info/

19.7. Exercises 563

19.7 Exercises

Reinforcement
R-19.1 Give a variation of Algorithm 19.2 (randomSort) that runs in O(n) time with

probability 1 − 1/n4.

R-19.2 Suppose two teams, the Anteaters and the Bears, have a long rivalry in basketball.
Suppose further that in any given game, the Anteaters will beat the Bears with
probability 2/3, independent of any other games that they play. Give a bound on
the probability that, in spite of this, the Bears will win a majority of n games that
they play.

R-19.3 Suppose a certain birth defect occurs independently at random with probability
p = 0.02 in any live birth. Use a Chernoff bound to bound the probability that
more than 4% of the 1 million children born in a given large city have this birth
defect.

R-19.4 Suppose a builder, named Bob, wants to hammer in 20 nails into a piece of wood.
Bob is very strong and can hammer down a nail in a single blow if he hits the nail
square on its head. But Bob is also a little near-sighted and, in any given swing
of his hammer, he only hits any given nail square on its head with probability
p = 1/3 and misses it completely with probability 1 − p. Derive a bound on
the probability that it takes Bob more than 120 swings to hammer down all 20
nails.

R-19.5 Suppose A is an array of n bits, half of which are 0’s and half of which are 1’s.
But the bits in A can be in any order, so that the worst-case performance of any
deterministic algorithm for finding a 1 in A is Θ(n). Give a Las Vegas algorithm
that finds a 1 in A in O(log n) time with high probability.

R-19.6 Give a Monte Carlo algorithm for the previous problem that examines at most
�log n� entries in A and succeeds in finding a 1 in A with high probability.

R-19.7 Suppose that a well-known collector, Kivas Fajo, is trying to collect each of
50 coupons, as in the coupon collector problem. Derive good upper and lower
bounds on the expected number of times that Kivas has to visit the ticket window
to get all 50 coupons.

R-19.8 Consider the cycle graph, Cn, consisting of vertices v0, v1, . . . , vn−1 and edges
(vi, vi+1 mod n), for i = 0, . . . , n − 1. Clearly, the size of a minimum cut of Cn

is 2. Determine the number of minimum cuts of Cn.

R-19.9 Derive the running time of Algorithm 19.10 (RecursiveContractGraph) using
a recurrence relation.

R-19.10 Show that a graph with n vertices has at most
(
n
2

)
minimum cuts.

R-19.11 Given a parameter, k, suppose we wish to find a number, p, that is prime with
probability 2−k. What is the asymptotic number of arithmetic operations needed?

www.it-ebooks.info

http://www.it-ebooks.info/

564 Chapter 19. Randomized Algorithms

R-19.12 Suppose we have a six-sided die, which we roll n times, and let X denote the
number of times we role a 1.

(a) What is E[X]?
(b) Show that X < n/3 with high probability.

R-19.13 Draw an example skip list resulting from performing the following sequence of
operations on the skip list in Figure 19.18: remove(38), insert(8,x), insert(24,y),
remove(55). Assume the coin flips for the first insertion yield two heads fol-
lowed by tails, and those for the second insertion yield three heads followed by
tails.

R-19.14 Give a pseudocode description of the remove dictionary operation, assuming the
dictionary is implemented by a skip-list structure.

Creativity
C-19.1 Suppose that Bob wants a constant-time method for implementing the random(k)

method, which returns a random integer in the range [0, k − 1]. Bob has a source
of unbiased bits, so to implement random(k), he samples �log k� of these bits,
interprets them as an unsigned integer, K, and returns the value K mod k. Show
that Bob’s algorithm does not return every integer in the range [0, k − 1] with
equal probability.

C-19.2 Design a variation of Algorithm 19.2 (randomSort) that inserts the pairs (ri, xi)
into a balanced tree and calls itself recursively when ri is found to be equal to one
of the previously generated random values. Give pseudocode for this variation
of the algorithm and analyze its running time. Also, discuss its advantages and
disadvantages with respect to the original algorithm.

C-19.3 Design a variation of Algorithm 19.2 (randomSort) that begins by generating
distinct random values, ri (i = 1, · · · , n) and then sorts the pairs (ri, xi) .
Give pseudocode for this variation of the algorithm and analyze its running time.
Also, discuss its advantages and disadvantages with respect to the original algo-
rithm.

C-19.4 Consider a modification of the Fisher-Yates random shuffling algorithm where
we replace the call to random(k + 1) with random(n), and take the for-loop
down to 0, so that the algorithm now swaps each element with another element
in the array, with each cell in the array having an equal likelihood of being the
swap location. Show that this algorithm does not generate every permutation
with equal probability.

Hint: Consider the case when n = 3.

C-19.5 Suppose you have a collection, S, of n distinct items and you wish to select a ran-
dom sample of these items of size exactly �n1/2�. Describe an efficient method
for selecting such a sample so that each element in S has an equal probability of
being included in the sample.

www.it-ebooks.info

http://www.it-ebooks.info/

19.7. Exercises 565

C-19.6 Suppose you have a collection, S, of n distinct items and you create a random
sample, R, of S, as follows: For each x in S, select it to belong to R indepen-
dently with probability 1/n1/2. Derive bounds on the probability that the number
of items in R is more than 2n1/2 or less than n1/2/2.

C-19.7 Suppose that there is a collection of 3n distinct coupons, n of which are colored
red and 2n of which are colored blue. Suppose that each time you go to a ticket
window to get a coupon, the clerk first randomly decides, with probability 1/2,
whether he will give you a red coupon or blue coupon and then he chooses a
coupon uniformly at random from among the coupons that are that color. What
is the expected number of times that you must visit the ticket window to get all
3n coupons?

C-19.8 Show that if we do all arithmetic modulo a prime number, p, then, for any integer
x > 0,

{ix mod p : i = 0, 1, . . . , p − 1} = {i : i = 0, 1, . . . , p − 1}.

Hint: Use the fact that if p is prime, then every nonzero integer less than p has a
multiplicative inverse when we do arithmetic modulo p.

C-19.9 Give an algorithm that computes a minimum cut of a graph with n vertices
by O(n) applications of a maximum flow algorithm to a flow network derived
from G.

C-19.10 Let P (x) be a probability function that satisfies the recurrence P (i+1) ≥ P (i)−
1
4P (i)2, with P (0) a constant. Show that P (2 log n) is Ω

(
1

log n

)
.

C-19.11 Give a randomized algorithm that computes all minimum cuts of a graph with
high probability.

C-19.12 Show that if the compositeness witness function, witness(x, n), of the Rabin-
Miller algorithm returns true, then the number n is composite.

C-19.13 Suppose we have a Monte Carlo algorithm, A, and a deterministic algorithm, B,
for testing if the output of A is correct. How can we use A and B to construct
a Las Vegas algorithm? Also, if A succeeds with probability 1/2, and both A
and B run in O(n) time, what is the expected running time of the Las Vegas
algorithm that is produced?

C-19.14 Suppose X1, X2, . . . , Xn is a set of mutually independent indicator random vari-
ables, such that each Xi is 1 with some probability pi > 0 and 0 otherwise. Let
X =

∑n
i=1 Xi be the sum of these random variables, and let μ′ denote an upper

bound on the mean of X , that is, E[X] = μ ≤ μ′. Show that, for δ > 0,

Pr(X > (1 + δ)μ′) <

[
eδ

(1 + δ)(1+δ)

]μ′

.

www.it-ebooks.info

http://www.it-ebooks.info/

566 Chapter 19. Randomized Algorithms

C-19.15 Let Y = Y1 + Y2 + · · · + Yn be the sum of n independent geometric random
variables with parameter p. Show that, for α = 1/p,

Pr(Y < 0.25α n) ≤ 0.75n.

C-19.16 Describe how to perform an operation, RangeSearch(k1, k2), which returns all
the items with keys in the range [k1, k2], in an ordered dictionary implemented
with a skip list, and show that it runs in expected time O(log n + s), where n is
the number of elements in the skip list and s is the number of items returned.

C-19.17 Show that the methods above(p) and before(p) are not actually needed to ef-
ficiently implement a dictionary using a skip list. That is, we can implement
item insertion and removal in a skip list using a strictly top-down, scan-forward
approach, without ever using the above or before methods.

C-19.18 Show that the randomized quick-sort algorithm runs in O(n log n) time with high
probability.

Applications
A-19.1 A renowned food critic, Anton Ego, will enjoy a meal only if it is the highest-

quality meal he has ever eaten up to that point in his life. Assuming that the
qualities of the n meals he eats in his life are distinct and come in a random order
over the course of his life, what is the expected number of times that Anton Ego
will enjoy a meal in his life?

A-19.2 In the Mega Millions lottery game, a player picks five lucky numbers, in the range
from 1 to 56, and one additional Mega number, in the range from 1 to 46. In order
to win the jackpot, a player must match all six numbers. If there is no jackpot
winner for a given drawing, then the jackpot is rolled into the next drawing.
Suppose that every time a lottery ticket is sold it is chosen as an independent
random pick of five lucky numbers and a Mega number. What is the expected
number of Mega Millions lottery tickets that must be sold for a given drawing to
guarantee with 100% certainty that there is a winner?

A-19.3 In a famous experiment, Stanley Milgram told a group of people in Kansas and
Nebraska to each send a postcard to a lawyer in Boston, but they had to do it by
forwarding it to someone that they knew, who had to forward it to someone that
they knew, and so on. Most of the postcards that were successfully forwarded
made it in 6 hops, which gave rise to the saying that everyone in America is
separated by “six degrees of separation.” The idea behind this experiment is also
behind a technique, called probabilistic packet marking, for doing traceback
during a distributed denial-of-service attack, where a website is bombarded by
connection requests. In implementing the probabilistic packet marking strategy,
a router, R, will, with some probability, p ≤ 1/2, replace some seldom-used parts
of a packet it is processing with the IP address for R, to enable tracing back the
attack to the sender. It is as if, in the Milgram experiment, there is just one sender,
who is mailing multiple postcards, and each person forwarding a postcard would,
with probability, p, erase the return address and replace it with his own. Suppose

www.it-ebooks.info

http://www.it-ebooks.info/

19.7. Exercises 567

that an attacker is sending a large number of packets in a denial-of-service attack
to some recipient, and every one of the d routers in the path from the sender to
the recipient is performing probabilistic packet marking.

(a) What is the probability that the router farthest from the recipient will mark a
packet and this mark will survive all the way to the recipient?

(b) Derive a good upper bound on the expected number of packets that the recip-
ient needs to collect to identify all the routers along the path from the sender to
the recipient.

A-19.4 The Massachusetts state lottery game, Cash WinFall, used to have a way that
anyone with enough money and time could stand a good chance of getting rich,
and it is reported that an MIT computer scientist did just that. In this game, a
player picks 6 numbers from the range from 1 to 46. If he matches all 6, then
he could win as much as $2 million, but the odds of that payout don’t justify a
bet, so let us ignore the possibility of winning this jackpot. Nevertheless, there
were times when matching just 5 of the 6 numbers in a $2 lottery ticket would
pay $100,000. Suppose in this scenario that you were able to bet $600,000.

(a) What is the expected amount that you would win?

(b) Derive a bound on the probability that you would lose $300,000 or more in
this scenario, that is, that you would have 3 or fewer of the 5 of the 6 winning
tickets.

A-19.5 There is a probabilistic data structure often used for representing sets in network-
ing and computer security applications, which is known as the Bloom filter. This
data structure represents a set, S, using of an array, A, of m bits and a collection
of k hash functions, h1, . . . , hk. Initially, all the bits in A are 0. To add an ele-
ment, x, to the set, S, we assign each of the bits, A[h1(x)], A[h2(x)], . . . , A[hk(x)],
to 1. To test if an element belongs to S, we check if all these bits are equal to
1. If so, then we say that x is a member of S and, if not, then we say that x
is not a member of S. Note that this algorithm has a one-sided error, since it is
always correct when it says that x is not in S, but there is a chance that has a
false positive, saying that x belongs to S when really it doesn’t. Assuming that
each hash function maps any element, x, to k distinct random locations in A, and
we have inserted n < kn/2 elements into S, derive a bound on the probability
that a Bloom filter returns a false positive response.

A-19.6 There is a classic surprising fact from probability, known as the birthday para-
dox, which states that in a room of at least 23 people there is better than a 50-50
chance that two of them have the same birthday. This fact is surprising to some,
because there are 366 possible birthdays, which is much larger than 23. While
this is surprising, there is an interesting security application of the analysis that
goes into the birthday paradox. Suppose a company is installing a keypad on its
entry door and will be assigning each employee with an independently chosen 8-
digit PIN to use when they enter the building. So there are 100 million possible
PINs, but let us use n to denote this number of possible PINs and m to denote
the number of employees.

(a) Imagine that we assign PINs to employees sequentially, one employee at a
time. What is the probability, pi, that the ith employee has a distinct PIN given
that the i − 1 PINs given before are distinct?

www.it-ebooks.info

http://www.it-ebooks.info/

568 Chapter 19. Randomized Algorithms

(b) Note that the probability the PINs are all distinct is the product of the pi’s, for
i = 1, 2, . . . ,m. Use the fact that 1 − x ≤ e−x, for 0 < x < 1, to show that this

product is bounded by e−m2/2n.

(c) Given the above bound, how many PINs does the system need to produce so
that the probability that two employees have the same PIN is at least 1/2?

Chapter Notes
The Rabin-Miller primality testing algorithm is presented in [177]. Random shuffling is

discussed by Fisher and Yates [71], Durstenfeld [59], and Knuth [131]. Arkin et al. [13]

describe how they were able to exploit a poorly designed random shuffling algorithm to

defeat online poker systems. The stable marriage problem was first studied by Gale and

Shapley [78], and they present a proposal-based algorithm for solving it. Our analysis of

the stable marriage problem is based on unpublished course notes by John Canny. The

randomized processor load balancing application we mention for Chernoff bounds is from

in a paper by Raab and Steger [176]. The randomized minimum cut algorithm based on

contractions was introduced by Karger [118] and improved by Karger and Stein [120].

Skip lists were introduced by Pugh [175]. Our analysis of skip lists is a simplification of a

presentation given in the book by Motwani and Raghavan [162]. In addition, there are also

other more in-depth analyses of skip lists [126, 168, 172], as well as a binary-tree analogue

due to Seidel and Aragon [191].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

20 B-Trees and External Memory

Columbia Supercomputer at NASA’s Advanced Supercomputing Facility at
Ames Research Center, 2006. U.S. government image. Credit: Trower, NASA.

Contents

20.1 External Memory . 571
20.2 (2,4) Trees and B-Trees 574
20.3 External-Memory Sorting 590
20.4 Online Caching Algorithms 593
20.5 Exercises . 600

www.it-ebooks.info

http://www.it-ebooks.info/

570 Chapter 20. B-Trees and External Memory

There are several computer applications that must deal with a large amount

of data. Examples include the analysis of scientific data sets, the processing of

financial transactions, and the organization and maintenance of databases (such as

telephone directories). In fact, the amount of data that must be dealt with is often

too large to fit entirely in the internal memory of a computer.

In order to accommodate large data sets, computers have a hierarchy of dif-

ferent kinds of memories, which vary in terms of their size and distance from the

CPU. Closest to the CPU are the internal registers that the CPU itself uses. Access

to such locations is very fast, but there are relatively few such locations. At the

second level in the hierarchy is the cache memory. This memory is considerably

larger than the register set of a CPU, but accessing it takes longer (and there may

even be multiple caches with progressively slower access times). At the third level

in the hierarchy is the internal memory, which is also known as main memory, core
memory, or random access memory. The internal memory is considerably larger

than the cache memory, but also requires more time to access. Finally, at the high-

est level in the hierarchy is the external memory, which usually consists of disks,

CDs, DVDs, or tapes. This memory is very large, but it is also very slow. Thus, the

memory hierarchy for computers can be viewed as consisting of four levels, each

of which is larger and slower than the previous level. (See Figure 20.1.)

Bigger

Faster

Registers

Cache

Internal Memory

External Memory

CPU

Figure 20.1: The memory hierarchy.

In most applications, however, only two levels really matter—the one that can

hold all the data items in our problem and the level just below that one. Bring-

ing data items in and out of the higher memory that can hold all items will typ-

ically be the computational bottleneck in this case. In this chapter, we focus on

algorithms that accommodate this phenomenon or facilitate it, including B-trees,

external-memory sorting, and online caching algorithms.

www.it-ebooks.info

http://www.it-ebooks.info/

20.1. External Memory 571

20.1 External Memory

Which two levels matter most to solving a particular problem depends on the size

of that problem. For a problem that can fit entirely in main memory, the important

two levels are the cache memory and the internal memory. Access times for internal

memory can be as much as 10 to 100 times longer than those for cache memory. It is

desirable, therefore, to be able to perform most memory accesses in cache memory.

For a problem that does not fit entirely in main memory, on the other hand, the

important two levels are the internal memory and the external memory. Here the

differences are even more dramatic, for access times for disks, the usual general-

purpose external-memory device, are typically as much as 100,000 to 1,000,000

times longer than those for internal memory.

To put this latter figure into perspective, imagine there is a student in Baltimore

who wants to send a request-for-money message to his parents in Chicago. If the

student sends his parents an email message, it can arrive at their home computer in

about five seconds. Think of this mode of communication as corresponding to an

internal-memory access by a CPU. A mode of communication, corresponding to

an external-memory access that is 500,000 times slower, would be for the student

to walk to Chicago and deliver his message in person, which would take about a

month if he can average 20 miles per day. Thus, we should make as few accesses

to external memory as possible.

Hierarchical Memory Management

Most algorithms are not designed with the memory hierarchy in mind, in spite of

the great variance between access times for the different levels. Indeed, all of the

algorithm analysis described in this book so far have assumed that all memory ac-

cesses are equal. This assumption might seem, at first, to be a great oversight—and

one we are only addressing now in this chapter—but there are two fundamental

justifications for why it is actually a reasonable assumption to make.

The first justification is that it is often necessary to assume that all memory ac-

cesses take the same amount of time, since specific device-dependent information

about memory sizes is often hard to come by. In fact, information about memory

size may be impossible to get. For example, a Java program that is designed to

run on many different computer platforms cannot be defined in terms of a specific

computer architecture configuration. We can certainly use architecture-specific in-

formation, if we have it (and we will show how to exploit such information later

in this chapter). But once we have optimized our software for a certain architec-

ture configuration, our software will no longer be device-independent. Fortunately,

such optimizations are not always necessary, primarily because of the second justi-

fication for the equal-time, memory-access assumption.

www.it-ebooks.info

http://www.it-ebooks.info/

572 Chapter 20. B-Trees and External Memory

The second justification for the memory-access equality assumption is that op-

erating system designers have developed general mechanisms that allow for most

memory accesses to be fast. These mechanisms are based on two important locality-
of-reference properties that most software possesses:

• Temporal locality: If a program accesses a certain memory location, then

it is likely to access this location again in the near future. For example, it is

quite common to use the value of a counter variable in several different ex-

pressions, including one to increment the counter’s value. In fact, a common

adage among computer architects is that “a program spends 90 percent of its

time in 10 percent of its code.”

• Spatial locality: If a program accesses a certain memory location, then it is

likely to access other locations that are near this one. For example, a program

using an array is likely to access the locations of this array in a sequential or

near-sequential manner.

Computer scientists and engineers have performed extensive software profiling ex-

periments to justify the claim that most software possesses both of these kinds of

locality-of-reference. For example, a for-loop used to scan through an array will

exhibit both kinds of locality.

Caching and Blocking

Temporal and spatial localities have, in turn, given rise to two fundamental design

choices for two-level computer memory systems (which are present in the interface

between cache memory and internal memory, and also in the interface between

internal memory and external memory).

The first design choice is called virtual memory. This concept consists of pro-

viding an address space as large as the capacity of the secondary-level memory, and

of transferring into the primary-level memory, data located in the secondary level,

when they are addressed. Virtual memory does not limit the programmer to the

constraint of the internal memory size. The concept of bringing data into primary

memory is called caching, and it is motivated by temporal locality. For, by bring-

ing data into primary memory, we are hoping that it will be accessed again soon,

and we will be able to quickly respond to all the requests for this data that come in

the near future.

The second design choice is motivated by spatial locality. Specifically, if data

stored at a secondary-level memory location l is accessed, then we bring into

primary-level memory a large block of contiguous locations that include the lo-

cation l. (See Figure 20.2.) This concept is known as blocking, and it is motivated

by the expectation that other secondary-level memory locations close to l will soon

be accessed. In the interface between cache memory and internal memory, such

blocks are often called cache lines, and in the interface between internal memory

and external memory, such blocks are often called pages.

www.it-ebooks.info

http://www.it-ebooks.info/

20.1. External Memory 573

A block in the external memory address space

A block on disk

0 1 2 3 ... 1024 ... 2048 ...

Figure 20.2: Blocks in external memory.

Incidentally, blocking for disk and CD/DVD-ROM drives is also motivated

by the properties of these hardware technologies. A reading arm on a disk or

CD/DVD-ROM takes a relatively long time to position itself for reading a cer-

tain location, but, once the arm is positioned, it can quickly read many contiguous

locations, because the medium it is reading is spinning very fast. (See Figure 20.2.)

Even without this motivation, however, blocking is fully justified by the spatial

locality property that most programs have.

Thus, when implemented with caching and blocking, virtual memory often al-

lows us to perceive secondary-level memory as being faster than it really is. There

is still a problem, however. Primary-level memory is much smaller than secondary-

level memory. Moreover, because memory systems use blocking, any program

of substance will likely reach a point where it requests data from secondary-level

memory, but the primary memory is already full of blocks. In order to fulfill the

request and maintain our use of caching and blocking, we must remove some block

from primary memory to make room for a new block from secondary memory in

this case. Deciding how to do this eviction brings up a number of interesting data

structure and algorithm design issues that we discuss in the remainder of this sec-

tion.

A Model for External Searching

The first problem we address is that of implementing a dictionary for a large col-

lection of items that do not fit in primary memory. Recall that a dictionary stores

key-element pairs (items) subject to insertions, removals, and key-based searches.

Since one of the main applications of large dictionaries is in database systems,

we refer to the secondary-memory blocks as disk blocks. Likewise, we refer to

the transfer of a block between secondary memory and primary memory as a disk
transfer. Even though we use this terminology, the search techniques we discuss

in this section apply also when the primary memory is the CPU cache and the sec-

ondary memory is the main (internal) memory. We use the disk-based viewpoint

because it is concrete and also because it is more prevalent.

www.it-ebooks.info

http://www.it-ebooks.info/

574 Chapter 20. B-Trees and External Memory

20.2 (2,4) Trees and B-Trees
Some search trees base their efficiency on rules that explicitly bound their depth.

In fact, such trees typically define a depth function, or a “pseudo-depth” function

closely related to depth, so that every external node is at the same depth or pseudo-

depth. In so doing, they maintain every external node to be at depth O(log n) in

a tree storing n elements. These trees are not ideally suited for external memory,

however, and in such scenarios another approach is better.

20.2.1 Multi-Way Search Trees
Some bounded-depth search trees are multi-way trees, that is, trees with internal

nodes that have two or more children. In this section, we describe how multi-way

trees can be used as search trees, including how multi-way trees store items and

how we can perform search operations in multi-way search trees. Recall that the

items that we store in a search tree are pairs of the form (k, x), where k is the key
and x is the element associated with the key.

Let v be a node of an ordered tree. We say that v is a d-node if v has d children.

We define a multi-way search tree to be an ordered tree T that has the following

properties (which are illustrated in Figure 20.3a):

• Each internal node of T has at least two children. That is, each internal node

is a d-node, where d ≥ 2.

• Each internal node of T stores a collection of items of the form (k, x), where

k is a key and x is an element.

• Each d-node v of T , with children v1, . . . , vd, stores d−1 items (k1, x1), . . .,
(kd−1, xd−1), where k1 ≤ · · · ≤ kd−1.

• Let us define k0 = −∞ and kd = +∞. For each item (k, x) stored at a node

in the subtree of v rooted at vi, i = 1, . . . , d, we have ki−1 ≤ k ≤ ki.

That is, if we think of the set of keys stored at v as including the special fictitious

keys k0 = −∞ and kd = +∞, then a key k stored in the subtree of T rooted at

a child node vi must be “in between” two keys stored at v. This simple viewpoint

gives rise to the rule that a node with d children stores d − 1 regular keys, and it

also forms the basis of the algorithm for searching in a multi-way search tree.

By the above definition, the external nodes of a multi-way search do not store

any items and serve only as “placeholders.” Thus, we can view a binary search

tree (Section 3.1.1) as a special case of a multi-way search tree. At the other ex-

treme, a multi-way search tree may have only a single internal node storing all the

items. In addition, while the external nodes could be null, we make the simplifying

assumption here that they are actual nodes that don’t store anything.

www.it-ebooks.info

http://www.it-ebooks.info/

20.2. (2,4) Trees and B-Trees 575

3 4 6 8 23 24 27

22

5 10 25

11 13 17

14

(a)

3 4 6 8 23 24 27

22

5 10 25

11 13 17

14

(b)

3 4 6 8 23 24 27

22

5 10 25

11 13 17

14

(c)

Figure 20.3: (a) A multi-way search tree T ; (b) search path in T for key 12 (unsuc-

cessful search); (c) search path in T for key 24 (successful search).

www.it-ebooks.info

http://www.it-ebooks.info/

576 Chapter 20. B-Trees and External Memory

Whether internal nodes of a multi-way tree have two children or many, however,

there is an interesting relationship between the number of items and the number of

external nodes.

Theorem 20.1: A multi-way search tree storing n items has n+1 external nodes.

We leave the justification of this theorem as an exercise (C-4.11).

Searching in a Multi-Way Tree

Given a multi-way search tree T , searching for an element with key k is simple. We

perform such a search by tracing a path in T starting at the root. (See Figure 20.3b

and c.) When we are at a d-node v during this search, we compare the key k with

the keys k1, . . . , kd−1 stored at v. If k = ki for some i, the search is successfully

completed. Otherwise, we continue the search in the child vi of v such that ki−1 <
k < ki. (Recall that we consider k0 = −∞ and kd = +∞.) If we reach an external

node, then we know that there is no item with key k in T , and the search terminates

unsuccessfully.

Data Structures for Multi-Way Search Trees

In Section 2.3.4, we discussed different ways of representing general trees. Each of

these representations can also be used for multi-way search trees. In fact, in using

a general multi-way tree to implement a multi-way search tree, the only additional

information that we need to store at each node is the set of items (including keys)

associated with that node. That is, we need to store with v a reference to some

container or collection object that stores the items for v.

Recall that when we use a binary tree to represent an ordered dictionary D, we

simply store a reference to a single item at each internal node. In using a multi-way

search tree T to represent D, we must store a reference to the ordered set of items

associated with v at each internal node v of T . This reasoning may at first seem

like a circular argument, since we need a representation of an ordered dictionary

to represent an ordered dictionary. We can avoid any circular arguments, however,

by using the bootstrapping technique, where we use a previous (less-advanced)

solution to a problem to create a new (more-advanced) solution. In this case, boot-

strapping consists of representing the ordered set associated with each internal node

using a dictionary data structure that we have previously constructed (for example,

a lookup table based on an ordered vector, as shown in Section 3.1). In particu-

lar, assuming we already have a way of implementing ordered dictionaries, we can

realize a multi-way search tree by taking a tree T and storing such a dictionary at

each d-node v of T .

The dictionary we store at each node v is known as a secondary or auxil-
iary data structure, for we are using it to support the bigger, primary data struc-

ture. We denote the dictionary stored at a node v of T as D(v). The items we

www.it-ebooks.info

http://www.it-ebooks.info/

20.2. (2,4) Trees and B-Trees 577

store in D(v) will allow us to find which child node to move to next during a

search operation. Specifically, for each node v of T , with children v1, . . . , vd and

set of items, {(k1, x1), . . . , (kd−1, xd−1)}, we store in the dictionary D(v) the

items (k1, x1, v1), (k2, x2, v2), . . . , (kd−1, xd−1, vd−1), (+∞, null, vd). That is,

an item (ki, xi, vi) of dictionary D(v) has key ki and element (xi, vi). Note that

the last item stores the special key +∞.

With the above realization of a multi-way search tree T , processing a d-node

v while searching for an element of T with key k can be done by performing a

search operation to find the item (ki, xi, vi) in D(v) with smallest key greater than

or equal to k, such as in the closestElemAfter(k) operation. We distinguish two

cases:

• If k < ki, then we continue the search by processing child vi. (Note that

if the special key kd = +∞ is returned, then k is greater than all the keys

stored at node v, and we continue the search by processing child vd.)

• Otherwise (k = ki), then the search terminates successfully.

Performance Issues for Multi-Way Search Trees

Consider the space requirement for the above realization of a multi-way search tree

T storing n items. By Theorem 20.1, using any of the common realizations of

ordered dictionaries (Section 6.1) for the secondary structures of the nodes of T ,

the overall space requirement for T is O(n).
Consider next the time spent answering a search in T . The time spent at a

d-node v of T during a search depends on how we realize the secondary data struc-

ture D(v). If D(v) is realized with a vector-based sorted sequence (that is, a lookup

table), then we can process v in O(log d) time. If instead D(v) is realized using

an unsorted sequence (that is, a log file), then processing v takes O(d) time. Let

dmax denote the maximum number of children of any node of T , and let h denote

the height of T . The search time in a multi-way search tree is either O(hdmax) or

O(h log dmax), depending on the specific implementation of the secondary struc-

tures at the nodes of T (the dictionaries D(v)). If dmax is a constant, the running

time for performing a search is O(h), irrespective of the implementation of the

secondary structures.

Thus, the prime efficiency goal for a multi-way search tree is to keep the height

as small as possible, that is, we want h to be a logarithmic function of n, the number

of total items stored in the dictionary. A search tree with logarithmic height, such

as this, is called a balanced search tree. Bounded-depth search trees satisfy this

goal by keeping each external node at exactly the same depth level in the tree.

Next, we discuss a bounded-depth search tree that is a multi-way search tree

that caps dmax at 4. In Section 20.2.3, we discuss a more general kind of multi-way

search tree that has applications where our search tree is too large to completely fit

into the internal memory of our computer.

www.it-ebooks.info

http://www.it-ebooks.info/

578 Chapter 20. B-Trees and External Memory

20.2.2 (2,4) Trees
In using a multi-way search tree in practice, we desire that it be balanced, that is,

have logarithmic height. The multi-way search tree we study next is fairly easy

to keep balanced. It is the (2, 4) tree, which is sometimes also called the 2-4 tree

or 2-3-4 tree. In fact, we can maintain balance in a (2, 4) tree by maintaining two

simple properties (see Figure 20.4):

Size Property: Every node has at most four children.

Depth Property: All the external nodes have the same depth.

Enforcing the size property for (2, 4) trees keeps the size of the nodes in the

multi-way search tree constant, for it allows us to represent the dictionary D(v)
stored at each internal node v using a constant-sized array. The depth property, on

the other hand, maintains the balance in a (2, 4) tree, by forcing it to be a bounded-

depth structure.

Theorem 20.2: The height of a (2, 4) tree storing n items is Θ(log n).

Proof: Let h be the height of a (2, 4) tree T storing n items. Note that, by the

size property, we can have at most 4 nodes at depth 1, at most 42 nodes at depth 2,

and so on. Thus, the number of external nodes in T is at most 4h. Likewise, by the

depth property and the definition of a (2, 4) tree, we must have at least 2 nodes at

depth 1, at least 22 nodes at depth 2, and so on. Thus, the number of external nodes

in T is at least 2h. In addition, by Theorem 20.1, the number of external nodes in

T is n + 1. Therefore, we obtain

2h ≤ n + 1 and n + 1 ≤ 4h.

Taking the logarithm in base 2 of each of the above terms, we get that

h ≤ log(n + 1) and log(n + 1) ≤ 2h,

which justifies our theorem.

3 4 117 8 13 14 17

12

5 10 15

6

Figure 20.4: A (2, 4) tree.

www.it-ebooks.info

http://www.it-ebooks.info/

20.2. (2,4) Trees and B-Trees 579

Insertion in a (2, 4) Tree

Theorem 20.2 states that the size and depth properties are sufficient for keeping a

multi-way tree balanced. Maintaining these properties requires some effort after

performing insertions and removals in a (2, 4) tree, however. In particular, to insert

a new item (k, x), with key k, into a (2, 4) tree T , we first perform a search for k.

Assuming that T has no element with key k, this search terminates unsuccessfully

at an external node z. Let v be the parent of z. We insert the new item into node v
and add a new child w (an external node) to v on the left of z. That is, we add item

(k, x, w) to the dictionary D(v).
Our insertion method preserves the depth property, since we add a new external

node at the same level as existing external nodes. Nevertheless, it may violate the

size property. Indeed, if a node v was previously a 4-node, then it may become

a 5-node after the insertion, which causes the tree T to no longer be a (2, 4) tree.

This type of violation of the size property is called an overflow at node v, and it

must be resolved in order to restore the properties of a (2, 4) tree. Let v1, . . . , v5 be

the children of v, and let k1, . . . , k4 be the keys stored at v. To remedy the overflow

at node v, we perform a split operation on v as follows (see Figure 20.5):

• Replace v with two nodes v ′ and v ′′, where

◦ v ′ is a 3-node with children v1, v2, v3 storing keys k1 and k2

◦ v ′′ is a 2-node with children v4, v5 storing key k4.

• If v was the root of T , create a new root node u; else, let u be the parent of v.

• Insert key k3 into u and make v ′ and v ′′ children of u, so that if v was child

i of u, then v ′ and v ′′ become children i and i + 1 of u, respectively.

We show a sequence of insertions in a (2, 4) tree in Figure 20.6.

k1

v1

k2 k3 k4

v2 v3 v4 v5

u

u1 v=u2 u3

h1 h2

k1

v1

k2 k4

v2 v3 v4 v5

u

u1 v=u2 u3

h1 h2

k3

v1 v2 v3 v4 v5

u

u1 v' u3

h1 h2k3

k4k1 k2

v"

(a) (b) (c)

Figure 20.5: A node split: (a) overflow at a 5-node v; (b) the third key of v inserted

into the parent u of v; (c) node v replaced with a 3-node v ′ and a 2-node v ′′.

A split operation affects a constant number of nodes of the tree and O(1) items

stored at such nodes. Thus, it can be implemented to run in O(1) time.

www.it-ebooks.info

http://www.it-ebooks.info/

580 Chapter 20. B-Trees and External Memory

4 4 6 4 6 12 154 126

(a) (b) (c) (d)

154 6

12

4 6 15

12

(e) (f)

3 4 6 15

12

63 54 15

12

(g) (h)

5

63 4

12

15

5 12

153 4 6

(i) (j)

6 10 153 4

5 12

v

z

6 8 10 153 4

5 12

v

(k) (l)

Figure 20.6: A sequence of insertions into a (2, 4) tree: (a) initial tree with one

item; (b) insertion of 6; (c) insertion of 12; (d) insertion of 15, which causes an

overflow; (e) split, which causes the creation of a new root node; (f) after the split;

(g) insertion of 3; (h) insertion of 5, which causes an overflow; (i) split; (j) after the

split; (k) insertion of 10; (l) insertion of 8.

www.it-ebooks.info

http://www.it-ebooks.info/

20.2. (2,4) Trees and B-Trees 581

Performance of (2, 4) Tree Insertion

As a consequence of a split operation on node v, a new overflow may occur at the

parent u of v. If such an overflow occurs, it triggers, in turn, a split at node u. (See

Figure 20.7.) A split operation either eliminates the overflow or propagates it into

the parent of the current node. Indeed, this propagation can continue all the way up

to the root of the search tree. But if it does propagate all the way to the root, it will

finally be resolved at that point. We show such a sequence of splitting propagations

in Figure 20.7.

Thus, the number of split operations is bounded by the height of the tree, which

is O(log n) by Theorem 20.2. Therefore, the total time to perform an insertion in a

(2, 4) tree is O(log n).

3 4

5 1210

116 8 13 1514 3 4

5 1210

116 8 13 1514 17

(a) (b)

15

3 4 116 8 13 14 17

5 1210

3 4

5 1210

116 8

15

13 14 17

(c) (d)

12

3 4

5 10

116 8

15

13 14 17 3 4 116 8 13 14 17

12

5 10 15

(e) (f)

Figure 20.7: An insertion in a (2, 4) tree that causes a cascading split: (a) before

the insertion; (b) insertion of 17, causing an overflow; (c) a split; (d) after the split

a new overflow occurs; (e) another split, creating a new root node; (f) final tree.

www.it-ebooks.info

http://www.it-ebooks.info/

582 Chapter 20. B-Trees and External Memory

Removal in a (2, 4) Tree

Let us now consider the removal of an item with key k from a (2, 4) tree T . We

begin such an operation by performing a search in T for an item with key k. Re-

moving such an item from a (2, 4) tree can always be reduced to the case where

the item to be removed is stored at a node v whose children are external nodes.

Suppose, for instance, that the item with key k that we wish to remove is stored in

the ith item (ki, xi) at a node z that has only internal-node children. In this case,

we swap the item (ki, xi) with an appropriate item that is stored at a node v with

external-node children as follows (Figure 20.8d):

1. We find the right-most internal node v in the subtree rooted at the ith child

of z, noting that the children of node v are all external nodes.

2. We swap the item (ki, xi) at z with the last item of v.

Once we ensure that the item to remove is stored at a node v with only external-

node children (because either it was already at v or we swapped it into v), we

simply remove the item from v (that is, from the dictionary D(v)) and remove the

ith external node of v.

Removing an item (and a child) from a node v as described above preserves the

depth property, for we always remove an external-node child from a node v with

only external-node children. However, in removing such an external node we may

violate the size property at v. Indeed, if v was previously a 2-node, then it becomes

a 1-node with no items after the removal (Figure 20.8d and e), which is not allowed

in a (2, 4) tree. This type of violation of the size property is called an underflow
at node v. To remedy an underflow, we check whether an immediate sibling of v
is a 3-node or a 4-node. If we find such a sibling w, then we perform a transfer
operation, in which we move a child of w to be a child of v, a key of w to the parent

u of v and w, and a key of u to v. (See Figure 20.8b and c.) If v has only one sibling

that is a 2-node, or if both immediate siblings of v are 2-nodes, then we perform a

fusion operation, in which we merge v with a sibling, creating a new node v ′, and

move a key from the parent u of v to v ′. (See Figure 20.9e and f.)

A fusion operation at node v may cause a new underflow to occur at the parent

u of v, which in turn triggers a transfer or fusion at u. (See Figure 20.9.) Hence, the

number of fusion operations is bounded by the height of the tree, which is O(log n)
by Theorem 20.2. If an underflow propagates all the way up to the root, then the

root is simply deleted. (See Figure 20.9c and d.) We show a sequence of removals

from a (2, 4) tree in Figures 20.8 and 20.9.

www.it-ebooks.info

http://www.it-ebooks.info/

20.2. (2,4) Trees and B-Trees 583

116 8 13 14 17

12

5 10 15

4

11 13 14 17

12

10 15

8

5
6

u

v w

(a) (b)

11 13 14 17

12

10 15

5

6

8

u

v w
11

13 14 17

12

10 15

5

6

8

(c) (d)

13 14 17

15

5

6

8

11

10

u

v
13 14 17

15

5

11

6

8 10

u

(e) (f)

14 17

15

5

11

6

8 10

13

17

15

5

11

6

8 10 14

(g) (h)

Figure 20.8: A sequence of removals from a (2, 4) tree: (a) removal of 4, causing

an underflow; (b) a transfer operation; (c) after the transfer operation; (d) removal

of 12, causing an underflow; (e) a fusion operation; (f) after the fusion operation;

(g) removal of 13; (h) after removing 13.

www.it-ebooks.info

http://www.it-ebooks.info/

584 Chapter 20. B-Trees and External Memory

17

15

5

11

6

8 10

14

175

11

6

8 10

15

u

v

(a) (b)

5 8 10

11

15 17

6

u

5

6 11

15 178 10

(c) (d)
Figure 20.9: A propagating sequence of fusions in a (2, 4) tree: (a) removal of 14,

which causes an underflow; (b) fusion, which causes another underflow; (c) second

fusion operation, which causes the root to be removed; (d) final tree.

Analysis of (2, 4) Trees

The following theorem summarizes the running times of the main operations of a

dictionary realized with a (2, 4) tree.

Theorem 20.3: A (2, 4) tree for n key-element items uses O(n) space and im-
plements the operations of a dictionary data structure with the following running
times. Finding an item, inserting an item, and removing an item each take time
O(log n).

The time complexity analysis is based on the following:

• The height of a (2, 4) tree storing n items is O(log n), by Theorem 20.2.

• A split, transfer, or fusion operation takes O(1) time.

• A search, insertion, or removal of an item visits O(log n) nodes.

Thus, (2, 4) trees provide for fast dictionary search and update operations.

(2, 4) trees also have an interesting relationship to the data structure we discuss

next, which is better suited for external memory.

www.it-ebooks.info

http://www.it-ebooks.info/

20.2. (2,4) Trees and B-Trees 585

20.2.3 (a, b) Trees and B-Trees

Recalling the great time difference that exists between main memory accesses and

disk accesses, the main goal of maintaining a dictionary in external memory is to

minimize the number of disk transfers needed to perform a query or update. In fact,

the difference in speed between disk and internal memory is so great that we should

be willing to perform a considerable number of internal-memory accesses if they

allow us to avoid a few disk transfers. Let us, therefore, analyze the performance

of dictionary implementations by counting the number of disk transfers each would

require to perform the standard dictionary search and update operations.

Let us first consider some external-memory inefficient dictionary implementa-

tions based on sequences. If the sequence representing a dictionary is implemented

as an unsorted, doubly linked list, then insert and remove can be performed with

O(1) transfers each, assuming we know which block holds an item to be removed.

But, in this case, searching requires Θ(n) transfers in the worst case, since each

link hop we perform could access a different block. This search time can be im-

proved to O(n/B) transfers (see Exercise C-20.1), where B denotes the number

of nodes of the list that can fit into a block, but this is still poor performance. We

could alternately implement the sequence using a sorted array. In this case, a search

performs O(log2 n) transfers, via binary search, which is a nice improvement. But

this solution requires Θ(n/B) transfers to implement an insert or remove opera-

tion in the worst case, for we may have to access all blocks to move elements up

or down. Thus, sequence dictionary implementations are not efficient for external

memory.

If sequence implementations are inefficient, then perhaps we should consider

the logarithmic-time, internal-memory strategies that use balanced binary trees (for

example, AVL trees or red-black trees) or other search structures with logarithmic

average-case query and update times (for example, skip lists or splay trees). These

methods store the dictionary items at the nodes of a binary tree or of a graph. In

the worst case, each node accessed for a query or update in one of these structures

will be in a different block. Thus, these methods all require O(log2 n) transfers in

the worst case to perform a query or update operation. This is good, but we can

do better. In particular, we can perform dictionary queries and updates using only

O(logB n) = O(log n/ log B) transfers.

The main idea for improving the external-memory performance of the dictio-

nary implementations discussed above is that we should be willing to perform up

to O(B) internal-memory accesses to avoid a single disk transfer, where B denotes

the size of a block. The hardware and software that drives the disk performs this

many internal-memory accesses just to bring a block into internal memory, and

this is only a small part of the cost of a disk transfer. Thus, O(B) high-speed,

internal-memory accesses are a small price to pay to avoid a time-consuming disk

transfer.

www.it-ebooks.info

http://www.it-ebooks.info/

586 Chapter 20. B-Trees and External Memory

(a, b) Trees

To reduce the importance of the performance difference between internal-memory

accesses and external-memory accesses for searching, we can represent our dictio-

nary using a multi-way search tree, which is a generalization of the (2, 4) tree data

structure to a structure known as an (a, b) tree.

Formally, an (a, b) tree is a multi-way search tree such that each node has be-

tween a and b children and stores between a − 1 and b − 1 items. The algorithms

for searching, inserting, and removing elements in an (a, b) tree are straightforward

generalizations of the corresponding ones for (2, 4) trees. The advantage of gen-

eralizing (2, 4) trees to (a, b) trees is that a generalized class of trees provides a

flexible search structure, where the size of the nodes and the running time of the

various dictionary operations depends on the parameters a and b. By setting the

parameters a and b appropriately with respect to the size of disk blocks, we can

derive a data structure that achieves good performance for external memory.

An (a, b) tree, where a and b are integers, such that 2 ≤ a ≤ (b + 1)/2, is a

multi-way search tree T with the following additional restrictions:

Size Property: Each internal node has at least a children, unless it is the root, and

has at most b children.

Depth Property: All the external nodes have the same depth.

Theorem 20.4: The height of an (a, b) tree storing n items is Ω(log n/ log b) and
O(log n/ log a).

Proof: Let T be an (a, b) tree storing n elements, and let h be the height of T .

We justify the theorem by establishing the following bounds on h:

1
log b

log(n + 1) ≤ h ≤ 1
log a

log
n + 1

2
+ 1.

By the size and depth properties, the number n ′′ of external nodes of T is at least

2ah−1 and at most bh. By Theorem 20.1, n ′′ = n + 1. Thus,

2ah−1 ≤ n + 1 ≤ bh.

Taking the logarithm in base 2 of each term, we get

(h − 1) log a + 1 ≤ log(n + 1) ≤ h log b.

We recall that in a multi-way search tree T , each node v of T holds a secondary

structure D(v), which is itself a dictionary (Section 20.2.1). If T is an (a, b) tree,

then D(v) stores at most b items. Let f(b) denote the time for performing a search

in a D(v) dictionary. The search algorithm in an (a, b) tree is exactly like the one

for multi-way search trees given in Section 20.2.1. Hence, searching in an (a, b)
tree T with n items takes O(f(b)

log a log n). Note that if b is a constant (and thus a is

www.it-ebooks.info

http://www.it-ebooks.info/

20.2. (2,4) Trees and B-Trees 587

also), then the search time is O(log n), independent of the specific implementation

of the secondary structures.

The main application of (a, b) trees is for dictionaries stored in external memory

(for example, on a disk or CD/DVD-ROM). Namely, to minimize disk accesses, we

select the parameters a and b so that each tree node occupies a single disk block

(so that f(b) = 1 if we wish to simply count block transfers). Providing the right a
and b values in this context gives rise to a data structure known as the B-tree, which

we will describe shortly. Before we describe this structure, however, let us discuss

how insertions and removals are handled in (a, b) trees.

Insertion and Removal in an (a, b) Tree

The insertion algorithm for an (a, b) tree is similar to that for a (2, 4) tree. An

overflow occurs when an item is inserted into a b-node v, which becomes an illegal

(b+1)-node. (Recall that a node in a multi-way tree is a d-node if it has d children.)

To remedy an overflow, we split node v by moving the median item of v into the

parent of v and replacing v with a �(b+1)/2�-node v ′ and a
(b+1)/2�-node v ′′.
We can now see the reason for requiring a ≤ (b + 1)/2 in the definition of an

(a, b) tree. Note that as a consequence of the split, we need to build the secondary

structures D(v ′) and D(v ′′).
Removing an element from an (a, b) tree is also similar to what was done for

(2, 4) trees. An underflow occurs when a key is removed from an a-node v, distinct

from the root, which causes v to become an illegal (a − 1)-node. To remedy an

underflow, we either perform a transfer with a sibling of v that is not an a-node or

we perform a fusion of v with a sibling that is an a-node. The new node w resulting

from the fusion is a (2a − 1)-node. Here, we see another reason for requiring

a ≤ (b + 1)/2. Note that as a consequence of the fusion, we need to build the

secondary structure D(w).
Table 20.10 shows the running time of the main operations of a dictionary real-

ized by means of an (a, b) tree T .

Method Time
find O

(
f(b)
log a log n

)
insert O

(
g(b)
log a log n

)
remove O

(
g(b)
log a log n

)

Table 20.10: Time complexity of the main methods of a dictionary realized by an

(a, b) tree. We let f(b) denote the time to search a b-node and g(b) the time to split

or fuse a b-node. We also denote the number of elements in the dictionary with n.

The space complexity is O(n).

www.it-ebooks.info

http://www.it-ebooks.info/

588 Chapter 20. B-Trees and External Memory

The bounds in Table 20.10 are based on the following assumptions and facts:

• The (a, b) tree T is represented using the data structure described in Sec-

tion 20.2.1, and the secondary structure of the nodes of T support search in

f(b) time, and split and fusion operations in g(b) time, for some functions

f(b) and g(b), which can be made to be O(1) in the context where we are

only counting disk transfers.

• The height of an (a, b) tree storing n elements is at most O((log n)/(log a))
(Theorem 20.4).

• A search visits O((log n)/(log a)) nodes on a path between the root and an

external node, and spends f(b) time per node.

• A transfer operation takes f(b) time.

• A split or fusion operation takes g(b) time and builds a secondary structure

of size O(b) for the new node(s) created.

• An insertion or removal of an element visits O((log n)/(log a)) nodes on a

path between the root and an external node, and spends g(b) time per node.

Thus, we may summarize as follows.

Theorem 20.5: An (a, b) tree implements an n-item dictionary to support per-
forming insertions and removals in O((g(b)/ log a) log n) time, and performing
find queries in O((f(b)/ log a) log n) time.

B-Trees

A specialized version of the (a, b) tree data structure, which is an efficient method

for maintaining a dictionary in external memory, is the data structure known as

the “B-tree.” (See Figure 20.11.) A B-tree of order d is simply an (a, b) tree with

a = �d/2� and b = d. Since we discussed the standard dictionary query and update

methods for (a, b) trees above, we restrict our discussion here to the analysis of the

input/output (I/O) performance of B-trees.

7066 989575744543 635929241211 8583 864038 41 5048 51 53 56

3722 5846 8072 93

6542

Figure 20.11: A B-tree of order 6.

www.it-ebooks.info

http://www.it-ebooks.info/

20.2. (2,4) Trees and B-Trees 589

Parameterizing B-trees for External Memory

The most important observation about B-trees is that we can choose d so that the d
children references and the d − 1 keys stored at a node can all fit into a single disk

block. That is, we choose d so that

d is Θ(B).

This choice also implies that we may assume that a and b are Θ(B) in the anal-

ysis of the search and update operations on (a, b) trees. Also, recall that we are

interested primarily in the number of disk transfers needed to perform various op-

erations. Thus, the choice for d also implies that

f(b) = c,

and

g(b) = c,

for some constant c ≥ 1, for each time we access a node to perform a search or

an update operation, we need only perform a single disk transfer. That is, f(b) and

g(b) are both O(1). As we have already observed above, each search or update

requires that we examine at most O(1) nodes for each level of the tree. Therefore,

any dictionary search or update operation on a B-tree requires only

O(log�d/2	 n) = O(log n/ log B)
= O(logB n)

disk transfers. For example, an insert operation proceeds down the B-tree to locate

the node in which to insert the new item. If the node would overflow (to have d + 1
children) because of this addition, then this node is split into two nodes that have

(d + 1)/2� and �(d + 1)/2� children, respectively. This process is then repeated

at the next level up, and will continue for at most O(logB n) levels. Likewise,

in a remove operation, we remove an item from a node, and, if this results in a

node underflow (to have �d/2�− 1 children), then we either move references from

a sibling node with at least �d/2� + 1 children or we need to perform a fusion
operation of this node with its sibling (and repeat this computation at the parent).

As with the insert operation, this will continue up the B-tree for at most O(logB n)
levels. Thus, we have the following:

Theorem 20.6: A B-tree with n items executes O(logB n) disk transfers in a
search or update operation, where B is the number of items that can fit in one
block.

The requirement that each internal node have at least �d/2� children implies

that each disk block used to support a B-tree is at least half full. Analytical and

experimental study of the average block usage in a B-tree is that it is closer to 67%,

which is quite good.

www.it-ebooks.info

http://www.it-ebooks.info/

590 Chapter 20. B-Trees and External Memory

20.3 External-Memory Sorting
In addition to data structures, such as dictionaries, that need to be implemented in

external memory, there are many algorithms that must also operate on input sets

that are too large to fit entirely into internal memory. In this case, the objective is to

solve the algorithmic problem using as few block transfers as possible. The most

classic domain for such external-memory algorithms is the sorting problem.

A Lower Bound for External-Memory Sorting

As we discussed above, there can be a big difference between an algorithm’s per-

formance in internal memory and its performance in external memory. For ex-

ample, the performance of the radix-sorting algorithm is bad in external memory,

yet good in internal memory. Other algorithms, such as the merge-sort algorithm,

are reasonably good in both internal memory and external memory, however. The

number of block transfers performed by the traditional merge-sorting algorithm is

O((n/B) log2 n), where B is the size of disk blocks. While this is much better

than the O(n) block transfers performed by an external version of radix sort, it is,

nevertheless, not the best that is achievable for the sorting problem. In fact, we can

show the following lower bound, whose proof is beyond the scope of this book.

Theorem 20.7: Sorting n elements stored in external memory requires

Ω
(

n

B
· log(n/B)
log(M/B)

)
block transfers, where M is the size of the internal memory.

The ratio M/B is the number of external-memory blocks that can fit into inter-

nal memory. Thus, this theorem is saying that the best performance we can achieve

for the sorting problem is equivalent to the work of scanning through the input set

(which takes Θ(n/B) transfers) at least a logarithmic number of times, where the

base of this logarithm is the number of blocks that fit into internal memory. We

will not formally justify this theorem, but we will show how to design an external-

memory sorting algorithm whose running time comes within a constant factor of

this lower bound.

Multi-way Merge-Sort

An efficient way to sort a set S of n objects in external memory amounts to a

simple external-memory variation on the familiar merge-sort algorithm. The main

idea behind this variation is to merge many recursively sorted lists at a time, thereby

reducing the number of levels of recursion. Specifically, a high-level description of

this multi-way merge-sort method is to divide S into d subsets S1, S2, . . ., Sd

of roughly equal size, recursively sort each subset Si, and then simultaneously

www.it-ebooks.info

http://www.it-ebooks.info/

20.3. External-Memory Sorting 591

merge all d sorted lists into a sorted representation of S. If we can perform the

merge process using only O(n/B) disk transfers, then, for large enough values of

n, the total number of transfers performed by this algorithm satisfies the following

recurrence:

t(n) = d · t(n/d) + cn/B,

for some constant c ≥ 1. We can stop the recursion when n ≤ B, since we can

perform a single block transfer at this point, getting all of the objects into internal

memory, and then sort the set with an efficient internal-memory algorithm. Thus,

the stopping criterion for t(n) is

t(n) = 1 if n/B ≤ 1.

This implies a closed-form solution that t(n) is O((n/B) logd(n/B)), which is

O((n/B) log(n/B)/ log d).

Thus, if we can choose d to be Θ(M/B), then the worst-case number of block

transfers performed by this multi-way merge-sort algorithm will be within a con-

stant factor of the lower bound given in Theorem 20.7. We choose

d = (1/2)M/B.

The only aspect of this algorithm left to specify, then, is how to perform the d-way

merge using only O(n/B) block transfers.

We perform the d-way merge by running a “tournament.” We let T be a com-

plete binary tree with d external nodes, and we keep T entirely in internal memory.

We associate each external node i of T with a different sorted list Si. We initialize

T by reading into each external node i, the first object in Si. This has the effect

of reading into internal memory the first block of each sorted list Si. For each

internal-node parent v of two external nodes, we then compare the objects stored

at v’s children and we associate the smaller of the two with v. We then repeat this

comparison test at the next level up in T , and the next, and so on. When we reach

the root r of T , we will associate the smallest object from among all the lists with

r. This completes the initialization for the d-way merge. (See Figure 20.12.)

26

85

72

114

59352917 88785118

75463719

48

66583316

654230

5213

546539

80767463565343402725 44

6057504941342412

Figure 20.12: A d-way merge. We show a five-way merge with B = 4.

www.it-ebooks.info

http://www.it-ebooks.info/

592 Chapter 20. B-Trees and External Memory

In a general step of the d-way merge, we move the object o associated with the

root r of T into an array we are building for the merged list S ′. We then trace down

T , following the path to the external node i that o came from. We then read into i
the next object in the list Si. If o was not the last element in its block, then this next

object is already in internal memory. Otherwise, we read in the next block of Si to

access this new object (if Si is now empty, associate with the node i a pseudo-object

with key +∞). We then repeat the minimum computations for each of the internal

nodes from i to the root of T . This again gives us the complete tree T . We then

repeat this process of moving the object from the root of T to the merged list S ′,
and rebuilding T until T is empty of objects. Each step in the merge takes O(log d)
time; hence, the internal time for the d-way merge is O(n log d). The number of

transfers performed in a merge is O(n/B), since we scan each list Si in order once

and we write out the merged list S ′ once. Thus, we have the following:

Theorem 20.8: Given an array, S, of n elements stored in external memory,
we can sort S using O((n/B) log(n/B)/ log(M/B)) block transfers (I/Os) and
O(n log n) internal CPU time, where M is the size of the internal memory and B
is the size of a block.

Achieving “Near” Machine Independence

Using B-trees and external sorting algorithms can produce significant reductions in

the number of block transfers. The most important piece of information that made

such reductions possible was knowing the value of B, the size of a disk block (or

cache line). This information is, of course, machine-dependent, but it is one of the

few truly machine-dependent pieces of information that are needed, with one of the

others being the ability to store keys continuously in arrays.

From our description of B-trees and external sorting, we might think that we

also require low-level access to the external-memory device driver, but this is not

strictly needed in order to achieve the claimed results to within a constant factor.

In particular, in addition to knowing the block size, the only other thing we need

to know is that large arrays of keys are partitioned into blocks of continuous cells.

This allows us to implement the “blocks” in B-trees and our external-memory sort-

ing algorithm as separate B-sized arrays, which we call pseudo-blocks. If arrays

are allocated to blocks in the natural way, any such pseudo-block will be allocated

to at most two real blocks. Thus, even if we are relying on the operating system to

perform block replacement (for example, using FIFO, LRU, or the Marker policy

discussed later in Section 20.4), we can be sure that accessing any pseudo-block

takes at most two, that is, O(1), real block transfers. By using pseudo-blocks, then,

instead of real blocks, we can implement a dictionary to achieve search and up-

date operations that use only O(logB n) block transfers. We can, therefore, design

external-memory data structures and algorithms without taking complete control of

the memory hierarchy from the operating system.

www.it-ebooks.info

http://www.it-ebooks.info/

20.4. Online Caching Algorithms 593

20.4 Online Caching Algorithms

An online algorithm responds to a sequence of service requests, each an associ-

ated cost. For example, a web page replacement policy maintains pages in a cache,

subject to a sequence of access requests, with the cost of a web page request be-

ing zero if the page is in the cache and one if the page is outside the cache. In

an online setting, the algorithm must completely finish responding to a service re-

quest before it can receive the next request in the sequence. If an algorithm is given

the entire sequence of service requests in advance, it is said to be an offline algo-

rithm. To analyze an online algorithm, we often employ a competitive analysis,

where we compare a particular online algorithm A to an optimal offline algorithm,

OPT . Given a particular sequence P = (p1, p2, . . . , pn) of service requests, let

cost(A, P) denote the cost of A on P and let cost(OPT, P) denote the cost of the

optimal algorithm on P . The algorithm A is said to be c-competitive for P if

cost(A, P) ≤ c · cost(OPT, P) + b,

for some constant b ≥ 0. If A is c-competitive for every sequence P , then we

simply say that A is c-competitive, and we call c the competitive ratio of A. If

b = 0, then we say that the algorithm A has a strict competitive ratio of c.

A well-known online problem, explained with a story, is the ski rental problem.

Alice has decided to try out skiing, but is uncertain whether she will like it or

whether she will be injured and have to stop. Each time Alice goes skiing, it costs

her x dollars to “rent” the necessary skiing equipment. Suppose it costs y dollars

to buy skis and the equipment that goes with them. Let us say, for the sake of the

story, that y is 10 times larger than x, that is, y = 10x. The dilemma for Alice

is to decide if and when she should buy the skiing equipment instead of renting

this equipment each time she goes skiing. For example, if she buys before her first

skiing trip and then decides she doesn’t like skiing, then she has spent 10 times

more than she should. But if she skis many times and never buys the equipment,

then she will spend potentially even more than 10 times more than she should. In

fact, if she skis n times, then this strategy of always “renting” will cause her to

spend n/10 times as many dollars as she should. That is, a strategy of buying the

first time has a worst-case competitive ratio of 10 and the always-rent strategy has

a worst-case competitive ratio of n/10. Neither of these choices is good.

Fortunately, Alice has a strategy with a competitive ratio of 2. Namely, she can

rent for 9 times and then buy the skiing equipment on the 10th day she skis. The

worst-case scenario is that she never uses the skis she just bought. So, in this case,

she spends 9x + y = 1.9y dollars, when she should have spent y = 10x; hence,

this strategy has a competitive ratio of 1.9. In fact, no matter how much bigger y
is than x, if Alice buys on day �y/x�, and then buys, she will have a competitive

ratio of at most 2.

www.it-ebooks.info

http://www.it-ebooks.info/

594 Chapter 20. B-Trees and External Memory

20.4.1 Caching Algorithms
There are several applications that must deal with revisiting information presented

in pages. For instance, web page revisits have been shown to exhibit localities of

reference, both in time and in space. Similarly, the way in which a CPU access

disk pages tends to exhibit such localities as well. To exploit these localities of

reference, it is often advantageous to store copies of such pages in a cache memory,

so these pages can be quickly retrieved when requested again. In particular, suppose

we have a cache memory that has m “slots,” each of which can contain a web or

disk page, depending on the application. We assume that a page can be placed in

any slot of the cache. This is known as a fully associative cache.

As a browser executes, it requests different pages. Each time its requests such

a web page l, it must determine (using a quick test) whether l is unchanged and

currently contained in the cache. If l is contained in the cache, then the request

can be satisfied using the cached copy. If l is not in the cache, however, the page

for l is requested and transferred into the cache. If one of the m slots in the cache

is available, then the new page, l is assigned to one of the empty slots. But if all

the m cells of the cache are occupied, then the computer must determine which

previously loaded page to evict before bringing in l to take its place. There are,

of course, many different policies that can be used to determine the page to evict.

Some of the better-known page replacement policies include the following (see

Figure 20.13):

• First-in, First-out (FIFO): Evict the page that has been in the cache the

longest, that is, the page that was transferred to the cache furthest in the past.

• Least recently used (LRU): Evict the page whose last request occurred fur-

thest in the past.

In addition, we can consider a simple and purely random strategy:

• Random: Choose a page at random to evict from the cache.

The Random strategy is easy to implement, for it only requires a random or

pseudo-random number generator. The overhead involved in implementing this

policy is an O(1) additional amount of work per page replacement. Moreover, there

is no additional overhead for each page request, other than to determine whether

a page request is in the cache or not. Still, this policy makes no attempt to take

advantage of any temporal or spatial localities that a user’s browsing exhibits.

The FIFO strategy is quite simple to implement, as it only requires a queue

Q to store references to the pages in the cache. Pages are enqueued in Q when

they are referenced by a browser, and then are brought into the cache. When a

page needs to be evicted, the computer simply performs a dequeue operation on Q
to determine which page to evict. Thus, this policy also requires O(1) additional

work per page replacement. Also, the FIFO policy incurs no additional overhead

for page requests. Moreover, it tries to take some advantage of temporal locality.

www.it-ebooks.info

http://www.it-ebooks.info/

20.4. Online Caching Algorithms 595

New block Old block (chosen at random)

Random policy:

New block Old block (present longest)

FIFO policy:

New block Old block (least recently used)

LRU policy:

insert time: 8:00am 9:05am 7:10am 7:30am 10:10am 8:45am7:48am

last used: 7:25am 9:22am 6:50am 8:20am 10:02am 9:50am8:12am

Figure 20.13: The Random, FIFO, and LRU page replacement policies.

The LRU strategy goes a step further than the FIFO strategy, which assumes

that the page that has been in the cache the longest among all those present is the

least likely to be requested in the near future. The LRU strategy explicitly takes

advantage of temporal locality, by always evicting the page that was least recently

used. From a policy point of view, this strategy is an excellent approach, but it is

costly from an implementation point of view. That is, its way of optimizing tempo-

ral and spatial locality is fairly costly. Implementing the LRU strategy requires the

use of a priority queue Q that supports searching for existing pages, for example,

using special pointers or “locators.” If Q is implemented with a sorted sequence

based on a linked list, then the overhead for each page request and page replacement

is O(1). Whenever we insert a page in Q or update its key, the page is assigned

the highest key in Q and is placed at the end of the list, which can also be done

in O(1) time. Even though the LRU strategy has constant-time overhead, using

the above implementation, the constant factors involved, in terms of the additional

time overhead and the extra space for the priority queue Q, make this policy less

attractive from a practical point of view.

Since these different page replacement policies have different trade-offs be-

tween implementation difficulty and the degree to which they seem to take advan-

tage of localities, it is natural for us to ask for some kind of comparative analysis

of these methods to see which one, if any, is the best.

www.it-ebooks.info

http://www.it-ebooks.info/

596 Chapter 20. B-Trees and External Memory

From a worst-case point of view, the FIFO and LRU strategies have fairly

unattractive competitive behavior. For example, suppose we have a cache con-

taining m pages, and consider the FIFO and LRU methods performing page re-

placement for a program that has a loop that repeatedly requests m + 1 pages in a

cyclic order. Both the FIFO and LRU policies perform badly on such a sequence

of page requests, because they perform a page replacement on every page request.

Thus, from a worst-case point of view, these policies are almost the worst we can

imagine—they require a page replacement on every page request.

This worst-case analysis is a little too pessimistic, however, for it focuses on

each protocol’s behavior for one bad sequence of page requests. An ideal analysis

would be to compare these methods over all possible page-request sequences. Of

course, this is impossible to do exhaustively, but there have been a great number of

experimental simulations done on page-request sequences derived from real pro-

grams. The experiments have focused primarily on the Random, FIFO, and LRU

policies. Based on these experimental comparisons, the ordering of policies, from

best to worst, is as follows: (1) LRU, (2) FIFO, and (3) Random. In fact, LRU is

significantly better than the others on typical request sequences, but it still has poor

performance in the worst case, as the following theorem shows.

Theorem 20.9: The FIFO and LRU page replacement policies for a cache with
m pages have competitive ratio at least m.

Proof: We observed above that there is a sequence P = (p1, p2, . . . , pn) of

page requests causing FIFO and LRU to perform a page replacement with each

request—the loop of m + 1 requests. We compare this performance with that of

the optimal offline algorithm, OPT , which, in the case of the page replacement

problem, is to evict from the cache the page that is requested the furthest into the

future. This strategy can only be implemented, of course, in the offline case, when

we are given the entire sequence P in advance, unless the algorithm is “prophetic.”

When applied to the loop sequence, the OPT policy will perform a page replace-

ment once every m requests (for it evicts the most recently referenced page each

time, as this one is referenced furthest in the future). Thus, both FIFO and LRU are

c-competitive on this sequence P , where

c =
n

n/m
= m.

Observe that if any portion P ′ = (pi, pi+1, . . . , pj) of P makes requests to m
different pages (with pi−1 and/or pj+1 not being one of them), then even the optimal

algorithm must evict one page. In addition, the most number of pages the FIFO and

LRU policies evict for such a portion P ′ is m, each time evicting a page that was

referenced prior to pi. Therefore, FIFO and LRU have a competitive ratio of m,

and this is the best possible competitive ratio for these strategies in the worst case.

www.it-ebooks.info

http://www.it-ebooks.info/

20.4. Online Caching Algorithms 597

The Randomized Marker Algorithm

Even though the deterministic FIFO and LRU policies can have poor worst-case

competitive ratios compared to the “prophetic” optimal algorithm, we can show

that a randomized policy that attempts to simulate LRU has a good competitive

ratio. Specifically, let us study the competitive ratio of a randomized strategy that

tries to emulate the LRU policy. From a strategic viewpoint, this policy, which is

known as the Marker strategy, emulates the best aspects of the deterministic LRU

policy, while using randomization to avoid the worst-case situations that are bad

for the LRU strategy. The policy for Marker is as follows:

• Marker: Associate, with each page in the cache, a Boolean variable “marked,”

which is initially set to “false” for every page in the cache. If a browser re-

quests a page that is already in the cache, that page’s marked variable is set

to “true.” Otherwise, if a browser requests a page that is not in the cache, a

random page whose marked variable is “false” is evicted and replaced with

the new page, whose marked variable is immediately set to “true.” If all the

pages in the cache have marked variables set to “true,” then all of them are

reset to “false.” (See Figure 20.14.)

Competitive Analysis for a Randomized Online Algorithm

Armed with the above policy definition, we would now like to perform a compet-

itive analysis of the Marker strategy. Before we can do this analysis, however, we

must first define what we mean by the competitive ratio of a randomized online

algorithm. Since a randomized algorithm A, like the Marker policy, can have many

different possible runs, depending upon the random choices it makes, we define

such an algorithm to be c-competitive for a sequence of requests P if

E(cost(A, P)) ≤ c · cost(OPT, P) + b,

for some constant b ≥ 0, where E(cost(A, P)) denotes the expected cost of algo-

rithm A on the sequence P (with this expectation taken over all possible random

choices for the algorithm A). If A is c-competitive for every sequence P , then we

simply say that A is c-competitive, and we call c the competitive ratio for A.

New block Old block (unmarked)

Marker policy:

marked:

Figure 20.14: The Marker page replacement policy.

www.it-ebooks.info

http://www.it-ebooks.info/

598 Chapter 20. B-Trees and External Memory

Theorem 20.10: The Marker page policy for a cache with m pages has compet-
itive ratio 2 log m.

Proof: Let P = (p1, p2, . . . , pn) be a sufficiently long sequence of page requests.

The Marker policy implicitly partitions the requests in P into rounds. Each round

begins with all the pages in the cache having “false” marked labels, and a round

ends when all the pages in the cache have “true” marked labels (with the next

request beginning the next round, since the policy then resets each such label to

“false”). Consider the ith round in P , and call a page requested in round i fresh
if it is not in the Marker policy’s cache at the beginning of round i. Also, we

refer to a page in the Marker’s cache that has a false marked label stale. Thus,

at the beginning of a round i, all the pages in the Marker policy’s cache are stale.

Let mi denote the number of fresh pages referenced in the ith round, and let bi

denote the number of pages that are in the cache for the OPT algorithm at the

beginning of round i and are not in the cache for the Marker policy at this time.

Since the Marker policy has to perform a page replacement for each of the mi

requests, algorithm OPT must perform at least mi−bi page replacements in round i.
(See Figure 20.15.) In addition, since each of the pages in the Marker policy’s cache

at the end of round i are requested in round i, algorithm OPT must perform at least

bi+1 page replacements in round i. Thus, the algorithm OPT must perform at least

max{mi − bi, bi+1} ≥ mi − bi + bi+1

2
page replacements in round i. Summing over all k rounds in P then, we see that

algorithm OPT must perform at least the following number of page replacements:

L =
k∑

i=1

mi − bi + bi+1

2
= (bk+1 − b1)/2 +

1
2

k∑
i=1

mi.

Next, let us consider the expected number of page replacements performed by

the Marker policy.

We have already observed that the Marker policy has to perform at least mi

page replacements in round i. It may actually perform more than this, however, if

it evicts stale pages that are then requested later in the round. Thus, the expected

number of page replacements performed by the Marker policy is mi + ni, where

ni is the expected number of stale pages that are referenced in round i after having

been evicted from the cache. The value ni is equal to the sum, over all stale pages

referenced in round i, of the probability that these pages are outside of the cache

when referenced. At the point in round i when a stale page v is referenced, the

probability that v is out of the cache is at most f/g, where f is the number of fresh

pages referenced before page v and g is the number of stale pages that have not

yet been referenced. This is because each reference to a fresh page evicts some

unmarked stale page at random. The cost to the Marker policy will be highest then,

if all mi requests to fresh pages are made before any requests to stale pages. So,

assuming this worst-case viewpoint, the expected number of evicted stale pages

www.it-ebooks.info

http://www.it-ebooks.info/

20.4. Online Caching Algorithms 599

marked:

all stale

mi fresh blocks to be referenced in round i

Marker’s cache:

OPT’s cache:

bi blocks not in Marker’s cache blocks also in Marker’s cache

Figure 20.15: The state of Marker’s cache and OPT’s cache at the beginning of

round i.

referenced in round i can be bounded as follows:

ni ≤ mi

m
+

mi

m − 1
+

mi

m − 2
+ · · · + mi

mi + 1

≤ mi

m∑
j=1

1
j
,

since there are m − mi references to stale pages in round i. Noting that this sum-

mation is known as the mth harmonic number, which is denoted Hm, we have

ni ≤ miHm.

Thus, the expected number of page replacements performed by the Marker policy

is at most

U =
k∑

i=1

mi(Hm + 1) = (Hm + 1)
k∑

i=1

mi.

Therefore, the competitive ratio for the Marker policy is at most

U

L
=

(Hm + 1)
∑k

i=1 mi

(1/2)
∑k

i=1 mi

= 2(Hm + 1).

Using an approximation for Hm, namely that Hm ≤ log m, the competitive ratio

for the Marker policy is at most 2 log m.

Thus, the competitive analysis shows that the Marker policy is fairly efficient.

www.it-ebooks.info

http://www.it-ebooks.info/

600 Chapter 20. B-Trees and External Memory

20.5 Exercises

Reinforcement
R-20.1 Describe, in detail, the insertion and removal algorithms for an (a, b) tree.

R-20.2 Suppose T is a multi-way tree in which each internal node has at least five and at
most eight children. For what values of a and b is T a valid (a, b) tree?

R-20.3 For what values of d is the tree T of the previous exercise an order-d B-tree?

R-20.4 Draw the order-7 B-tree resulting from inserting the following keys (in this order)
into an initially empty tree T :

(4, 40, 23, 50, 11, 34, 62, 78, 66, 22, 90, 59, 25, 72, 64, 77, 39, 12).

R-20.5 Show each level of recursion in performing a four-way, external-memory merge-
sort of the sequence given in the previous exercise.

R-20.6 Consider the generalization of the renter’s dilemma where Alice can buy or rent
her skis separate from her boots. Say that renting skis costs a dollars, whereas
buying skis costs b dollars. Likewise, say that renting boots costs c dollars,
whereas buying boots costs b dollars. Describe a 2-competitive online algorithm
for Alice to try to minimize the costs for going skiing subject to the uncertainty
of her not knowing how many times she will continue to go skiing in the future.

R-20.7 Consider an initially empty memory cache consisting of four pages. How many
page misses does the LRU algorithm incur on the following page-request se-
quence?

(2, 3, 4, 1, 2, 5, 1, 3, 5, 4, 1, 2, 3)

R-20.8 Consider an initially empty memory cache consisting of four pages. How many
page misses does the FIFO algorithm incur on the following page-request se-
quence?

(2, 3, 4, 1, 2, 5, 1, 3, 5, 4, 1, 2, 3)

R-20.9 Consider an initially empty memory cache consisting of four pages. How many
page misses does the marker algorithm incur on the following page-request se-
quence: (2, 3, 4, 1, 2, 5, 1, 3, 5, 4, 1, 2, 3)? Show the random choices your algo-
rithm made.

R-20.10 Consider an initially empty memory cache consisting of four pages. Construct
a sequence of memory requests that would cause the marker algorithm to go
through four rounds.

www.it-ebooks.info

http://www.it-ebooks.info/

20.5. Exercises 601

Creativity
C-20.1 Show how to implement a dictionary in external memory, using an unordered se-

quence so that insertions require only O(1) transfers and searches require O(n/B)
transfers in the worst case, where n is the number of elements and B is the num-
ber of list nodes that can fit into a disk block.

C-20.2 Describe a modified version of the B-tree insertion algorithm so that each time
we create an overflow because of a split of a node v, we redistribute keys among
all of v’s siblings, so that each sibling holds roughly the same number of keys
(possibly cascading the split up to the parent of v). What is the minimum fraction
of each block that will always be filled using this scheme?

C-20.3 Another possible external-memory dictionary implementation is to use a skip
list, but to collect consecutive groups of O(B) nodes, in individual blocks, on
any level in the skip list. In particular, we define an order-d B-skip list to be
such a representation of a skip-list structure, where each block contains at least
�d/2� list nodes and at most d list nodes. Let us also choose d in this case
to be the maximum number of list nodes from a level of a skip list that can
fit into one block. Describe how we should modify the skip-list insertion and
removal algorithms for a B-skip list so that the expected height of the structure
is O(log n/ log B).

C-20.4 Suppose that instead of having the node-search function f(d) = 1 in an order-d
B-tree T , we instead have f(d) = log d. What does the asymptotic running time
of performing a search in T now become?

C-20.5 Consider the page caching problem where the memory cache can hold m pages,
and we are given a sequence P of n requests taken from a pool of m+1 possible
pages. Describe the optimal strategy for the offline algorithm and show that it
causes at most m + n/m page misses in total, starting from an empty cache.

C-20.6 Consider the page caching strategy based on the least frequently used (LFU)
rule, where the page in the cache that has been accessed the least often is the one
that is evicted when a new page is requested. If there are ties, LFU evicts the
least frequently used page that has been in the cache the longest. Show that there
is a sequence P of n requests that causes LFU to miss Ω(n) times for a cache of
m pages, whereas the optimal algorithm will miss only O(m) times.

C-20.7 Show that LRU is m-competitive for any sequence of n page requests, where m
is the size of the memory cache.

C-20.8 Show that FIFO is m-competitive for any sequence of n page requests, where m
is the size of the memory cache.

C-20.9 What is the expected number of block replacements performed by the Random
policy on a cache of size m, for an access sequence of length n, that iteratively
accesses m + 1 blocks in a cyclic fashion (assuming n is much larger than m)?

C-20.10 Show that the Marker algorithm is Hm-competitive when the size of the cache is
m and there are m + 1 possible pages that can be accessed, where Hm denotes
the mth Harmonic number.

www.it-ebooks.info

http://www.it-ebooks.info/

602 Chapter 20. B-Trees and External Memory

Applications
A-20.1 Suppose you are processing a large number of operations in a consumer-producer

process, such as a buffer for a large media stream. Describe an external-memory
data structure to implement a queue so that the total number of disk transfers
needed to process a sequence of n enqueue and dequeue operations is O(n/B).

A-20.2 Imagine that you are trying to construct a minimum spanning tree for a large net-
work, such as is defined by a popular social networking website. Based on using
Kruskal’s algorithm, the bottleneck is the maintenance of a union-find data struc-
ture. Describe how to use a B-tree to implement a union-find data structure (from
Section 7.1) so that union and find operations each use at most O(log n/ log B)
disk transfers each.

A-20.3 Suppose you are processing an automated course registration program. The data
set in this case is a large file of N course numbers, one for each course request
made by a student. Show that you can count the number of requests made for
each course, using O((N/B) log(N/B)/ log(M/B)) I/Os.

A-20.4 In the MapReduce framework, for performing a parallel computation, a crucial
step involves an input that consists of a set of n key-value pairs, (k, v), for which
we need to collect each subset of key-value pairs that have the same key, k, into a
single file. Describe an efficient external-memory algorithm for constructing all
such files. How many disk transfers does your algorithm perform?

A-20.5 Suppose Alice is faced with the ski rental problem, where buying skis is 20 times
more expensive than renting. In this case, however, Alice notices that she has a
fair coin in her pocket and is willing to consider a randomized strategy. Show
that she can use her coin to come up with a strategy with an expected competitive
ratio of 1.8 or better.

Chapter Notes
B-trees were invented by Bayer and McCreight [23] and Comer [47] provides a very nice
overview of this structure. The books by Mehlhorn [157] and Samet [182] also discuss
B-trees and their variants. Aho, Hopcroft, and Ullman [8] discuss (2, 3) trees, which are
similar to (2, 4) trees. Arge and Vitter [12] present a weight-balanced B-tree, which has a
number of nice properties. Knuth [131] has very nice discussions about external-memory
sorting and searching. Aggarwal and Vitter [6] study the I/O complexity of sorting and
related problems, establishing upper and lower bounds. Goodrich et al. [90] study the I/O
complexity of several computational geometry problems. The reader interested in further
study of I/O-efficient algorithms is encouraged to examine the book by Vitter [211].

The reader interested in further study of online algorithms is referred to the book by
Borodin and El-Yaniv [34] or the paper by Koutsoupias and Papadimitriou [134]. The
marker caching algorithm is discussed in the book by Borodin and El-Yaniv; our discussion
is modeled after a similar discussion in by Motwani and Raghavan [162]. Exercises C-20.7
and C-20.8 come from Sleator and Tarjan [196].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

21 Multidimensional Searching

A point quadtree, 2005. Credit: David Eppstein. Public domain image.

Contents

21.1 Range Trees . 605
21.2 Priority Search Trees . 609
21.3 Quadtrees and k-d Trees 614
21.4 Exercises . 618

www.it-ebooks.info

http://www.it-ebooks.info/

604 Chapter 21. Multidimensional Searching

We live in a multidimensional geometric world. Physical space itself is three-

dimensional, for we can use three coordinates, x, y, and z, to describe points in

space. Completely describing the orientation of the tip of a robot arm actually re-

quires six dimensions, for we use three dimensions to describe the position of the

tip in space, plus three more dimensions to describe the angles the tip is in (which

are typically called pitch, roll, and yaw). Describing the state of an airplane in flight

takes at least nine dimensions, for we need six to describe its orientation in the same

manner as for the tip of a robot arm, and we need three more to describe the plane’s

velocity. In fact, these physical representations are considered “low-dimensional,”

particularly in applications in machine learning or computational biology, where

100- and 1000-dimensional spaces are not unusual. For instance, a vector describ-

ing a collection of genes or movie ratings could easily have dimensionality in this

range. This chapter is therefore directed at multidimensional searching, which

studies data structures for storing and querying multidimensional data sets.

Multi-dimensional data arise in a variety of applications, including statistics

and robotics. The simplest type of multidimensional data are d-dimensional points,

which can be represented by a sequence,

(x0, x1, . . . , xd−1),

of d numeric coordinates. In business applications, a d-dimensional point may rep-

resent the various attributes of a product or an employee in a database. For example,

televisions in an electronics catalog would probably have different attribute values

for price, screen size, weight, height, width, and depth. Multi-dimensional data

can also come from scientific applications, where each point represents attributes

of individual experiments or observations. For example, heavenly objects in an as-

tronomy sky survey would probably have different attribute values for brightness

(or apparent magnitude), diameter, distance, and position in the sky (which is itself

two-dimensional). Thus, these applications can benefit from efficient methods for

storing and searching in multidimensional data sets.

There are actually a great number of different data structures and algorithms

for processing multidimensional data, and it is beyond the scope of this chapter to

discuss all of them. We provide instead an introduction to some of the more inter-

esting ones in this chapter. We begin with a discussion of range trees, which can

store multidimensional points so as to support a special kind of query operation,

called a range-searching query, and we also include an interesting variant of the

range tree called the priority search tree. Finally, we discuss a class of data struc-

tures, called partition trees, which partition space into cells, and focus on variants

known as quadtrees and k-d trees. These data structures are used, for instance, in

computer graphics and computer gaming applications, where we need to find near-

est neighbors to a query point or map out the trajectory of a ray through a virtual

environment.

www.it-ebooks.info

http://www.it-ebooks.info/

21.1. Range Trees 605

21.1 Range Trees
A natural query operation to perform on a set of multidimensional points is a range-
search query, which is a request to retrieve all points in a multidimensional collec-

tion whose coordinates fall within given ranges. For example, a consumer wishing

to buy a new television may request, from an electronic store’s catalog, all units

that have a screensize between 24 and 27 inches, and have a price between $200

and $400. Alternately, an astronomer interested in studying asteroids may request

all heavenly objects that are at a distance between 1.5 and 10 astronomical units,

have an apparent magnitude between +1 and +15, and have a diameter between

0.5 and 1, 000 kilometers. The range tree data structure, which we discuss in this

section, can be used to answer such queries.

Two-Dimensional Range-Search Queries

To keep the discussion simple, let us focus on two-dimensional range-searching

queries. Exercise C-21.7 addresses how the corresponding two-dimensional range

tree data structure can be extended to higher dimensions. A two-dimensional dic-
tionary is a data structure for storing key-element items such that the key is a pair

(x, y) of numbers, called the coordinates of the element. A two-dimensional dic-

tionary D supports the following fundamental query operation:

findAllInRange(x1, x2, y1, y2): Return all the elements of D with coordinates (x, y)
such that x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2.

Operation findAllInRange is the reporting version of the range-searching query,

because it asks for all the items satisfying the range constraints. There is also

a counting version of the range query, in which we are simply interested in the

number of items in that range. We present data structures for answering two-

dimensional range queries in the remainder of this section.

Note that a two-dimensional range-search operation is directly analogous to a

one-dimensional range search, which is discussed in Section 3.2. The main ideas

from one-dimensional searching can inform our thoughts about how to answer a

two-dimensional range-search query, but more work is needed. For instance, one

way to answer is a one-dimensional range search is to use a balanced binary tree,

with the keys stored in sorted order. Then we can search for the lower end of a

range, x1, and the upper end of a range, x2, and answer the query by reporting or

counting all the elements in the search tree that are between these two locations

using the in-order ordering. If the points are two-dimensional, though, then this

approach can only be used to report or count points in the vertical strip between the

lines x = x1 and x = x2. Thus, for two-dimensional range searching, something

more is needed.

www.it-ebooks.info

http://www.it-ebooks.info/

606 Chapter 21. Multidimensional Searching

21.1.1 Two-Dimensional Range Searching
The two-dimensional range tree is a data structure that can implement a two-

dimensional dictionary. It consists of a primary structure, which is a balanced

binary search tree T , together with a number of auxiliary structures. (See Fig-

ure 21.1.)

v

b

c

d

u

a e

Figure 21.1: A set of items with two-dimensional keys represented by a two-

dimensional range tree, and a range search on it. The primary structure T is shown.

The nodes of T visited by the search algorithm are drawn with thick lines. The

boundary nodes are white-filled, and the allocation nodes are gray-filled. Point a,

stored at boundary node u, is outside the search range. The gray vertical strips cover

the points stored at the auxiliary structures of the allocation nodes. For example,

the auxiliary structure of node v stores points b, c, d, and e.

Specifically, each internal node in the primary structure T stores a reference

to a related auxiliary structure. The function of the primary structure, T , is to

support searching based on x-coordinates. To also support searching in terms of

the y-coordinates, we use a collection of auxiliary data structures, each of which

is a one-dimensional range tree that uses y-coordinates as its keys. The primary

structure of T is a balanced binary search tree built using the x-coordinates of the

items as the keys. An internal node v of T stores the following data:

• An item, whose coordinates are denoted by x(v) and y(v), and whose ele-

ment is denoted by element(v).
• A one-dimensional range tree T (v) that stores the same set of items as the

subtree rooted at v in T (including v), but using the y-coordinates as keys.

www.it-ebooks.info

http://www.it-ebooks.info/

21.1. Range Trees 607

We give the details of answering a two-dimensional range search with a range

tree in Algorithm 21.2 (see also Figure 21.1).

Algorithm 2DTreeRangeSearch(x1, x2, y1, y2, v, t):
Input: Search keys x1, x2, y1, and y2; node v in the primary structure T of a

two-dimensional range tree; type t of node v
Output: The items in the subtree rooted at v whose coordinates are in the x-

range [x1, x2] and in the y-range [y1, y2]
if T.isExternal(v) then

return ∅
if x1 ≤ x(v) ≤ x2 then

if y1 ≤ y(v) ≤ y2 then
M ← {element(v)}

else
M ← ∅

if t = “left” then
L ← 2DTreeRangeSearch(x1, x2, y1, y2, T.leftChild(v), “left”)
R ← 1DTreeRangeSearch(y1, y2, T.rightChild(v))

else if t = “right” then
L ← 1DTreeRangeSearch(y1, y2, T.leftChild(v))
R ← 2DTreeRangeSearch(x1, x2, y1, y2, T.rightChild(v), “right”)

else
// t = “middle”

L ← 2DTreeRangeSearch(x1, x2, y1, y2, T.leftChild(v), “left”)
R ← 2DTreeRangeSearch(x1, x2, y1, y2, T.rightChild(v), “right”)

else
M ← ∅
if x(v) < x1 then

L ← ∅
R ← 2DTreeRangeSearch(x1, x2, y1, y2, T.rightChild(v), t)

else
// x(v) > x2

L ← 2DTreeRangeSearch(x1, x2, y1, y2, T.leftChild(v), t)
R ← ∅

return L ∪ M ∪ R

Algorithm 21.2: A recursive method for performing a two-dimensional

range search in a two-dimensional range tree. The initial method call is

2DTreeRangeSearch(x1, x2, y1, y2, T.root(), “middle”). The algorithm is called

recursively on all the boundary nodes with respect to the x-range [x1, x2]. Param-

eter t indicates whether v is a left, middle, or right boundary node. The method,

1DTreeRangeSearch, is the same as the method, RangeQuery, given in Algo-

rithm 3.11.

www.it-ebooks.info

http://www.it-ebooks.info/

608 Chapter 21. Multidimensional Searching

Lemma 21.1: A two-dimensional range tree storing n items uses O(n log n) space
and can be constructed in O(n log n) time.

Proof: The primary structure uses O(n) space. There are n secondary structures.

The size of an auxiliary structure is proportional to the number of items stored in it.

An item stored at node v of the primary structure T is also stored at each auxiliary

structure T (u) such that u is an ancestor of v. Since tree T is balanced, node v has

O(log n) ancestors. Hence, there are O(log n) copies of the item in the auxiliary

structures. Thus, the total space used is O(n log n). The construction algorithm is

left as an exercise (C-21.3).

The algorithm for operation findAllInRange(x1, x2, y1, y2) begins by perform-

ing what is essentially a one-dimensional range search on the primary structure T
for the range [x1, x2]. Namely, we traverse down tree T in search of inside nodes.

We make one important modification, however: when we reach an inside node v, in-

stead of recursively visiting the subtree rooted at v, we perform a one-dimensional

range search for the interval [y1, y2] in the auxiliary structure of v.

We call allocation nodes the inside nodes of T that are children of boundary

nodes. The algorithm visits the boundary nodes and the allocation nodes of T , but

not the other inside nodes. Each boundary node v is classified by the algorithm as

a left node, middle node, or right node. A middle node is in the intersection of the

search paths P1 for x1 and P2 for x2. A left node is in P1 but not in P2. A right

node is in P2 but not in P1. At each allocation node v, the algorithm executes a one-

dimensional range search on the auxiliary structure T (v) for the y-range [y1, y2].

Theorem 21.2: A two-dimensional range tree T for a set of n items with two-
dimensional keys uses O(n log n) space and can be constructed in O(n log n) time.
Using T , a two-dimensional range-search query takes time O(log2 n + s), where s
is the number of elements reported.

Proof: The space requirement and construction time follow from Lemma 21.1.

We now analyze the running time of a range-search query performed with Algo-

rithm 21.2 (2DTreeRangeSearch). We account for the time spent at each bound-

ary node and allocation node of the primary structure T . The algorithm spends a

constant amount of time at each boundary node. Since there are O(log n) boundary

nodes, the overall time spent at the boundary nodes is O(log n). For each alloca-

tion node v, the algorithm spends O(log nv + sv) time doing a one-dimensional

range search in auxiliary structure T (v), where nv is the number of items stored

in T (v) and sv is the number of elements returned by the range search in T (v).
Denoting with A the set of allocation nodes, we have that the total time spent at

the allocation nodes is proportional to
∑

v∈A(log nv + sv). Since |A| is O(log n),
nv ≤ n and

∑
v∈A ≤ s, we have that the overall time spent at the allocation

nodes is O(log2 n + s). We conclude that a two-dimensional range search takes

O(log2 n + s) time.

www.it-ebooks.info

http://www.it-ebooks.info/

21.2. Priority Search Trees 609

21.2 Priority Search Trees
In this section, we present the priority search tree structure, which can answer

three-sided range queries on a set S of items with two-dimensional keys:

findAllInRange(x1, x2, y1): Return all the items of S with coordinates (x, y) such

that x1 ≤ x ≤ x2 and y1 ≤ y.

Geometrically, this query asks us to return all points between two vertical lines

(x = x1 and x = x2) and above a horizontal line (y = y1).

A priority search tree for set S is a binary tree storing the items of S that

behaves like a binary search tree with respect to the x-coordinates, and like a heap

with respect to the y-coordinates. For simplicity, let us assume that all the items

of S have distinct x and y-coordinates. If set S is empty, T consists of a single

external node. Otherwise, let p̄ be the topmost item of S, that is, the item with

maximum y-coordinate. We denote with x̂ the median x-coordinate of the items in

S−{p̄}, and with SL and SR the subsets of S−{p̄} with items having x-coordinate

less than or equal to x̂ and greater than x̂, respectively. We recursively define the

priority search tree T for S as follows:

• The root T stores item p̄ and the median x-coordinate x̂.

• The left subtree of T is a priority search tree for SL.

• The right subtree of T is a priority search tree for SR.

For each internal node v of T , we denote with p̄(v), x̄(v), and ȳ(v) the topmost item

stored at v and its coordinates. Also, we denote with x̂(v) the median x-coordinate

stored at v. An example of a priority search tree is shown in Figure 21.3.

Figure 21.3: A set S of items with two-dimensional keys and a priority search tree T
for S. Each internal node v of T is drawn as a circle around point p̄(v). The median

x-coordinate x̂(v) is represented by a dashed line below node v that separates the

items stored in the left subtree of v from those stored in the right subtree.

www.it-ebooks.info

http://www.it-ebooks.info/

610 Chapter 21. Multidimensional Searching

21.2.1 Constructing a Priority Search Tree

The y-coordinates of the items stored at the nodes of a priority search tree T satisfy

the heap-order property (Section 5.3). That is, if u is the parent of v, then ȳ(u) >
ȳ(v). Also, the median x-coordinates stored at the nodes of T define a binary search

tree (Section 3.1.1). These two facts motivate the term “priority search tree.” Let

us therefore explain how to construct a priority search tree from a set S of n two-

dimensional items. We begin by sorting S by increasing x-coordinate, and then call

the recursive method buildPST(S) shown in Algorithm 21.4.

Algorithm buildPST(S):
Input: A sequence S of n two-dimensional items, sorted by x-coordinate

Output: A priority search tree T for S

Create an elementary binary tree T consisting of single external node v
if !S.isEmpty() then

Traverse sequence S to find the item p̄ of S with highest y-coordinate

Remove p̄ from S
p̄(v) ← p̄
p̂ ← S.get(�S.size()/2�)
x̂(v) ← x(p̂)
Split S into two subsequences, SL and SR, where SL contains the items up

to p̂ (included), and SR contains the remaining items

TL ← buildPST(SL)
TR ← buildPST(SR)
T.expandExternal(v)
Replace the left child of v with TL

Replace the right child of v with TR

return T
Algorithm 21.4: Recursive construction of a priority search tree.

Lemma 21.3: Given a set S of n two-dimensional items, a priority search tree for
S uses O(n) space, has height O(log n), and can be built in O(n log n) time.

Proof: The O(n) space requirement follows from the fact that every internal

node of the priority search tree T stores a distinct item of S. The height of T
follows from the halving of the number of nodes at each level. The preliminary

sorting of the items of S by x-coordinate can be done in O(n log n) time using

an asymptotically optimal sorting algorithm, such as heap sort or merge sort. The

running time T (n) of method buildPST (Algorithm 21.4) is characterized by the

recurrence, T (n) = 2T (n/2) + bn, for some constant b > 0. Therefore, by the

Master Theorem (11.4), T (n) is O(n log n).

www.it-ebooks.info

http://www.it-ebooks.info/

21.2. Priority Search Trees 611

21.2.2 Searching in a Priority Search Tree

We now show how to perform a three-sided range query findAllInRange(x1, x2, y1)
on a priority search tree T . We traverse down T in a fashion similar to that of a one-

dimensional range search for the range [x1, x2]. One important difference, however,

is that we only continue searching in the subtree of a node v if y(v) ≥ y1. We

give the details of the algorithm for three-sided range searching in Algorithm 21.5

(PSTSearch) and we illustrate the execution of the algorithm in Figure 21.6.

Algorithm PSTSearch(x1, x2, y1, v):
Input: Three-sided range, defined by x1, x2, and y1, and a node v of a priority

search tree T
Output: The items stored in the subtree rooted at v with coordinates (x, y),

such that x1 ≤ x ≤ x2 and y1 ≤ y

if ȳ(v) < y1 then
return ∅

if x1 ≤ x̄(v) ≤ x2 then
M ← {p̄(v)} // we should output p̄(v)

else
M ← ∅

if x1 ≤ x̂(v) then
L ← PSTSearch(x1, x2, y1, T.leftChild(v))

else
L ← ∅

if x̂(v) ≤ x2 then
R ← PSTSearch(x1, x2, y1, T.rightChild(v))

else
R ← ∅

return L ∪ M ∪ R

Algorithm 21.5: Three-sided range searching in a priority search tree T . The algo-

rithm is initially called with PSTSearch(x1, x2, y1, T.root()).

Note that we have defined three-sided ranges to have a left, right, and bottom

side, and to be unbounded at the top. This restriction was made without loss of gen-

erality, however, for we could have defined our three-sided range queries using any

three sides of a rectangle. The priority search tree from such an alternate definition

is similar to the one defined above, but “turned on its side.”

Let us analyze the running time of method PSTSearch for answering a three-

sided range-search query on a priority search tree T storing a set of n items with

two-dimensional keys. We denote with s the number of items reported. Since we

spend O(1) time for each node we visit, the running time of method PSTSearch

www.it-ebooks.info

http://www.it-ebooks.info/

612 Chapter 21. Multidimensional Searching

v

x
1

x
2

y
1

u

Figure 21.6: Three-sided range-searching in a priority search tree. The nodes visited

are drawn with thick lines. The nodes storing reported items are gray-filled.

is proportional to the number of visited nodes.

Each node v visited by method PSTSearch is classified as follows:

• Node v is a boundary node if it is on the search path for x1 or x2 when

viewing T as a binary search tree on the median x-coordinate stored at its

nodes. The item stored at an internal boundary node may be inside or outside

the three-sided range. By Lemma 21.3, the height of T is O(log n). Thus,

there are O(log n) boundary nodes.

• Node v is an inside node if it is internal, it is not a boundary node, and

ȳ(v) ≥ y1. The item stored at an internal node is inside the three-sided

range. The number of inside nodes is no more than the number s of items

reported.

• Node v is a terminal node if it is not a boundary node and, if internal, ȳ(v) <
y1. The item stored at an internal terminal node is outside the three-sided

range. Each terminal node is the child of a boundary node or an inside node.

Thus, the number of terminal nodes is at most twice the number of boundary

nodes plus inside nodes. Thus, there are O(log n + s) terminal nodes.

Theorem 21.4: A priority search tree T storing n items with two-dimensional
keys uses O(n) space and can be constructed in O(n log n) time, to answer three-
sided range queries in O(log n + s) time, where s is the number of items reported.

Of course, three-sided range queries are not as constrained as four-sided range

queries, which can be answered in O(log2 n + k) time using the range tree data

structure discussed above. Still, priority search trees can be used to speed up

the running time of answering standard four-sided, two-dimensional range queries.

The resulting data structure, which is known as the priority range tree, uses priority

search trees as auxiliary structures in a way that achieves the same space bound as

traditional range trees. We discuss this data structure next.

www.it-ebooks.info

http://www.it-ebooks.info/

21.2. Priority Search Trees 613

21.2.3 Priority Range Trees
Let T be a balanced binary search tree storing n items with two-dimensional keys,

ordered according to their x-coordinates. We show how to augment T with prior-

ity search trees as auxiliary structures to answer (four-sided) range queries. The

resulting data structure is called a priority range tree.

To convert T into a priority range tree, we visit each internal node v of T other

than the root and construct, as an auxiliary structure, a priority search tree T (v)
for the items stored in the subtree of T rooted at v. If v is a left child, T (v) an-

swers range queries for three-side ranges unbounded on the right. If v is a right

child, T (v) answers range queries for three-side ranges unbounded on the left. By

Lemmas 21.1 and 21.3, a priority range tree uses O(n log n) space and can be con-

structed in O(n log n) time. The method for performing a two-dimensional range

query in a priority range tree is given in Algorithm 21.7 (PSTRangeSearch).

Algorithm PSTRangeSearch(x1, x2, y1, y2, v):
Input: Search keys x1, x2, y1, and y2; node v in the primary structure T of a

priority range tree

Output: The items in the subtree rooted at v whose coordinates are in the x-

range [x1, x2] and in the y-range [y1, y2]
if T.isExternal(v) then

return ∅
if x1 ≤ x(v) ≤ x2 then

if y1 ≤ y(v) ≤ y2 then
M ← {element(v)}

else
M ← ∅

L ← PSTSearch(x1, y1, y2, T (leftChild(v)).root())
R ← PSTSearch(x2, y1, y2, T (rightChild(v)).root())
return L ∪ M ∪ R

else if x(v) < x1 then
return PSTRangeSearch(x1, x2, y1, y2, T.rightChild(v))

else
// x2 < x(v)
return PSTRangeSearch(x1, x2, y1, y2, T.leftChild(v))

Algorithm 21.7: Range searching in a priority range tree T . The algorithm is ini-

tially called with PSTRangeSearch(x1, x2, y1, y2, T.root()).

Theorem 21.5: A priority range tree T for a set of n items with two-dimensional
keys uses O(n log n) space and can be constructed in O(n log n) time. Using T , a
two-dimensional range-search query takes time O(log n+s), where s is the number
of elements reported.

www.it-ebooks.info

http://www.it-ebooks.info/

614 Chapter 21. Multidimensional Searching

21.3 Quadtrees and k-d Trees
Multi-dimensional data sets often come from large applications; hence, we often

desire linear-space structures for storing them. A general framework for designing

such linear-space structures for d-dimensional data, where the dimensionality d is

assumed to be a fixed constant, is based on an approach called the partition tree.

A partition tree is a rooted tree T that has at most n external nodes, where

n is the number of d-dimensional points in our given set S. Each external node

of a partition tree T stores a different small subset from S. Each internal node

v in a partition tree T corresponds to a region of d-dimensional space, which is

then divided into some number c of different cells or regions associated with v’s

children. For each region R associated with a child u of v, we require that all the

points in u’s subtree fall inside the region R. Ideally, the c different cells for v’s

children should easily be distinguished using a constant number of operations.

21.3.1 Quadtrees
The first partition tree data structure we discuss is the quadtree. The main ap-

plication for quadtrees is for sets of points that come from images, where x- and

y-coordinates are integers, because the data points come from image pixels. In

addition, they exhibit their best properties if the distributions of points is fairly

nonuniform, with some areas being mostly empty and others being dense.

Suppose we are given a set S of n points in the plane. In addition, let R denote a

square region that contains all the points of S (for example, R could be a bounding

box of a 2048 × 2048 image that produced the set S). The quadtree data structure

is a partition tree T such that the root r of T is associated with the region R. To

get to the next level in T , we subdivide R into four equal-sized squares R1, R2,

R3, and R4, and we associate each square Ri with a potential child of the root r.

Specifically, we create a child vi of r, if the square Ri contains a point in S. If a

square Ri contains no points of S, then we create no child of r for it. This process

of refining R into the squares R1, R2, R3, and R4 is called a split.
The quadtree T is defined by recursively performing a split at each child v of r

if necessary. That is, each child v of r has a square region Ri associated with it, and

if the region Ri for v contains more than one point of S, then we perform a split at

v, subdividing Ri into four equal-sized squares and repeating the above subdivision

process at v. We continue in this manner, splitting squares that contain more than

one point into four subsquares, and recursing on the nonempty subsquares, until

we have separated all the points of S into individual squares. We then store each

point p in S at the external node of T that corresponds to the smallest square in the

subdivision process that contains p. We store at each internal node, v, a concise

representation of the split that we performed for v.

www.it-ebooks.info

http://www.it-ebooks.info/

21.3. Quadtrees and k-d Trees 615

1 2 3

4

a

b

c

d

e

f

g

h

ij

k

l

m

1

42

2

1 2 3

4

1 2 3 4 2
ab cd e

f g hi jk lm

Figure 21.8: A quadtree. We illustrate an example point set and its corresponding

quadtree data structure.

We illustrate an example point set and an associated quadtree in Figure 21.8.

Note, however, that, contrary to the illustration, there is potentially no upper bound

on the depth of a quadtree, as we have previously defined. For example, our point

set S could contain two points that are very close to one another, and it may take a

long sequence of splits before we separate these two points. Thus, it is customary

for quadtree designers to specify some upper bound D on the depth of T . Given a

set S of n points in the plane, we can construct a quadtree T for S so as to spend

O(n) time building each level of T . Thus, in the worst case, constructing such a

depth-bounded quadtree takes O(Dn) time.

Answering Range Queries with a Quadtree

One of the queries that quadtrees are often used to answer is range searching. Sup-

pose that we are given a rectangle A aligned with the coordinate axes, and are asked

to use a quadtree T to return all the points in S that are contained in A. The method

for answering this query is quite simple. We start with the root r of T , and we

compare the region R for r to A. If A and R do not intersect at all, then we are

done—there are no points in the subtree rooted at r that fall inside A. Alterna-

tively, if A completely contains R, then we simply enumerate all the external-node

descendants of r. These are two simple cases. If instead R and A intersect, but

A does not completely contain R, then we recursively perform this search on each

child v of r.

In performing such a range-searching query, we can traverse the entire tree

T and not produce any output in the worst case. Thus, the worst-case running

time for performing a range query in a depth D quadtree, with n external nodes is

O(Dn). From a worst-case point of view, answering a range-searching query with a

quadtree is actually worse than a brute-force search through the set S, which would

take O(n) time to answer a two-dimensional range query. In practice, however, the

quadtree typically allows for range-searching queries to be processed faster than

this.

www.it-ebooks.info

http://www.it-ebooks.info/

616 Chapter 21. Multidimensional Searching

21.3.2 k-d Trees

There is a drawback to quadtrees, which is that they do not generalize well to higher

dimensions. In particular, each node in a four-dimensional analogue of a quadtree

can have as many as 16 children. Each internal node in a d-dimensional quadtree

can have as many as 2d children. To overcome the out-degree drawback for storing

data from dimensions higher than three, data structure designers often consider

alternative partition tree structures that are binary.

Another kind of partition data structure is the k-d tree, which is similar to

quadtree structure, but is binary. The k-d tree data structure is actually a family

of partition tree data structures, all of which are binary partition trees for storing

multidimensional data. Like the quadtree data structure, each node v in a k-d tree is

associated with a rectangular region R, although in the case of k-d trees this region

is not necessarily square. The difference is that when it comes time to perform a

split operation for a node v in a k-d tree, it is done with a single line that is perpen-

dicular to one of the coordinate axes. For three- or higher-dimensional data sets,

this “line” is an axis-aligned hyperplane. Thus, no matter the dimensionality, a k-d

tree is a binary tree, for we resolve a split by associating the part of v’s region R
to the “left” of the splitting line with v’s left child, and associating the part of v’s

region R to the “right” of the splitting line with v’s right child. As with the quadtree

structure, we stop performing splits if the number of points in a region falls below

some fixed constant threshold. (See Figure 21.9.)

a

b

c

d

e

f

g
h

ij
k

l

m

a b dce f hg ikj l m

n o

p

onp

Figure 21.9: An example k-d tree.

There are two fundamentally different kinds of k-d trees, region-based k-d

trees and point-based k-d trees. Region-based k-d trees are essentially binary ver-

sions of quadtrees. Each time a rectangular region R needs to be split in a region-

based k-d tree, the region R is divided exactly in half by a line perpendicular to

the longest side of R. If there is more than one longest side of R, then they are

split in a “round-robin” fashion. On the other hand, point-based k-d trees, perform

splits based on the distribution of points inside a rectangular region. The k-d tree

of Figure 21.9 is point-based.

www.it-ebooks.info

http://www.it-ebooks.info/

21.3. Quadtrees and k-d Trees 617

The method for splitting a rectangle R containing a subset S′ ⊆ S in a point-

based k-d tree involves two steps. In the first step, we determine the dimension i
that has the largest variation in dimension i from among those points in S′. This

can be done, for example, by finding, for each dimension j, the points in S′ with

minimum and maximum dimension j values, and taking i to be the dimension with

the largest gap between these two values. In the second step, we determine the

median dimension i value from among all those points in S′, and we split R with

a line going through this median perpendicular to the dimension i axis. Thus, the

split for R divides the set of points in S′ in half, but may not divide the region

R itself very evenly. Using a linear-time median-finding method (Section 9.2),

this splitting step can be performed in O(k|S′|) time. Therefore, the running time

for building a k-d tree for a set of n points can be characterized by the following

recurrence equation: T (n) = 2T (n/2) + kn, which is O(kn log n). Moreover,

since we divide the size of the set of points associated with a node in two with each

split, the height of T is �log n�. Figure 21.9 illustrates a point-based k-d tree built

using this algorithm.

The advantage of point-based k-d trees is that they are guaranteed to have nice

depth and construction times. The drawback of point-based schemes is that they

may give rise to “long-and-skinny” rectangular regions, which are usually consid-

ered bad for most k-d tree query methods.

Using k-d Trees for Nearest Neighbor Searching

Let us discuss how k-d trees can be used to do nearest-neighbor searching, where

we are given a query point p and asked to find the point in S that is closest to

p. A good way to use a k-d tree T to answer such a query is as follows. We

first search down the tree T to locate the external node v with smallest rectangular

region R that contains p. Any points of S that fall in R or in the region associated

with v’s sibling are then compared to find a current closest neighbor, q. We can

then define a sphere centered at p and containing q as a current nearest-neighbor

sphere, s. Given this sphere, we then perform a traversal of T (with a bottom-up

traversal being preferred) to find any regions associated with external nodes of T
that intersect s. If during this traversal we find a point closer than q, then we update

the reference q to refer to this new point and we update the sphere s to contain this

new point. We do not visit any nodes that have regions not intersecting s. When

we have exhausted all possible alternatives, we output the current point q as the

nearest neighbor of p. In the worst case, this method may take O(n) time, but there

are many different analytic and experimental analyses that suggest that the average

running time is more like O(log n), using some reasonable assumptions about the

distribution of points in S. In addition, there are a number of useful heuristics for

speeding up this search in practice, with one of the best being the priority searching

strategy, which says that we should explore subtrees of T in order of the distance

of their associated regions to p.

www.it-ebooks.info

http://www.it-ebooks.info/

618 Chapter 21. Multidimensional Searching

21.4 Exercises

Reinforcement
R-21.1 What would be the worst-case space usage of a range tree, if the primary structure

were not required to have O(log n) height?

R-21.2 Given a binary search tree, T , built on the x-coordinates of a set of n objects,
describe an O(n)-time method for computing minx(v) and maxx(v) for every
node, v, in T .

R-21.3 Show that the high y values in a priority search tree satisfy the heap-order prop-
erty.

R-21.4 Argue why the algorithm for answering three-sided range-searching queries with
a priority search tree is correct.

R-21.5 What is the worst-case depth of a k-d tree defined on n points in the plane? What
about in higher dimensions?

R-21.6 Suppose a set S contains n two-dimensional points whose coordinates are all
integers in the range [0, N]. What is the worst-case depth of a quadtree defined
on S?

R-21.7 Draw a quadtree for the following set of points, assuming a 16 × 16 bounding
box:

{(1, 2), (4, 10), (14, 3), (6, 6), (3, 15), (2, 2), (3, 12), (9, 4), (12, 14)}.

R-21.8 Construct a k-d tree for the point set of Exercise R-21.7.

R-21.9 Construct a priority search tree for the point set of Exercise R-21.7.

Creativity
C-21.1 The minx(v) and maxx(v) labels used in the two-dimensional range tree are not

strictly needed. Describe an algorithm for performing a two-dimensional range-
searching query in a two-dimensional range tree where each internal node of the
primary structure only stores a key(v) label (which is the x-coordinate of its
element). What is the running time of your method?

C-21.2 Let D be an ordered dictionary with n items implemented with a balanced search
tree. Show how to implement the following method for D in time O(log n):

countAllInRange(k1, k2): Compute and return the number of items in D with
key k such that k1 ≤ k ≤ k2.

Note that this method returns a single integer.

www.it-ebooks.info

http://www.it-ebooks.info/

21.4. Exercises 619

C-21.3 Give a pseudocode description of an algorithm for constructing a range tree from
a set of n points in the plane in O(n log n) time.

C-21.4 Describe an efficient data structure for storing a set S of n items with ordered
keys, so as to support a rankRange(a, b) method, which enumerates all the items
with keys whose rank in S is in the range [a, b], where a and b are integers in
the interval [0, n − 1]. Describe methods for object insertions and deletion, and
characterize the running times for these and the rankRange method.

C-21.5 Design a static data structure (which does not support insertions and deletions)
that stores a two-dimensional set S of n points and can answer, in O(log2 n)
time, queries of the form countAllInRange(a, b, c, d), which return the number
of points in S with x-coordinates in the range [a, b] and y-coordinates in the range
[c, d]. What is the space used by this structure?

C-21.6 Design a data structure for answering countAllInRange queries (as defined in
the previous exercise) in O(log n) time.

Hint: Think of storing auxiliary structures at each node that are “linked” to the
structures at neighboring nodes.

C-21.7 Show how to extend the two-dimensional range tree so as to answer d-dimensional
range-searching queries in O(logd n) time for a set of d-dimensional points,
where d ≥ 2 is a constant.

Hint: Design a recursive data structure that builds a d-dimensional structure us-
ing (d − 1)-dimensional structures.

C-21.8 Suppose we are given a range-searching data structure D that can answer range-
searching queries for a set of n points in d-dimensional space for any fixed di-
mension d (like 8, 10, or 20) in time that is O(logd n+k), where k is the number
of answers. Show how to use D to answer the following queries for a set S of n
rectangles in the plane:

• findAllContaining(x, y): Return an enumeration of all rectangles in S that
contain the point (x, y).

• findAllIntersecting(a, b, c, d): Return an enumeration of all rectangles that
intersect the rectangle with x-range [a, b] and y-range [c, d].

What is the running time needed to answer each of these queries?

C-21.9 Let S be a set of n intervals of the form [a, b], where a < b. Design an effi-
cient data structure that can answer, in O(log n + k) time, queries of the form
contains(x), which asks for an enumeration of all intervals in S that contain x,
where k is the number of such intervals. What is the space usage of your data
structure?

C-21.10 Describe an efficient method for inserting an object into a (balanced) priority
search tree. What is the running time of this method?

www.it-ebooks.info

http://www.it-ebooks.info/

620 Chapter 21. Multidimensional Searching

Applications
A-21.1 Quadtrees are often used for geometric environments defined by images, so the

points involved can be normalized to be represented as pairs of fixed-precision
binary numbers in the interval [0, 1]. Such environments also allow for quadtrees
to be representable using one-dimensional search structures, as is explored in this
exercise. So let (x, y) be such a point, with

x = 0.x1x2 . . . xk and y = 0.y1y2 . . . yk,

in binary. Define interleave(x, y) to be the binary number, z, formed by inter-
leaving of the binary numbers x and y, so

z = 0.x1y1x2y2 . . . xkyk,

in binary. Assume we have a set, S, of n such points in the plane and we have
constructed a quadtree, T , for this set of points. Let Z be an array that contains
the points of S in lexicographical order by the results of calling interleave on
each point. Show that for any node, v, in T , the descendants of v are stored in
a contiguous subarray of Z and there is no point in this subarray that is not a
descendant of v in T .

A-21.2 In some computer graphics and computer gaming applications, in order to save
space, we might like to store a set of two-dimensional points in a single data
structure that can be used for both nearest-neighbor queries and range searching.
We have already discussed above how a k-d tree can be used to answer nearest-
neighbor queries with good expected-time behavior. Show that a (round-robin)
k-d tree defined on n two-dimensional points can also be used to answer range-
search queries in O(

√
n + s) time, where s is the number of points output by the

query.

A-21.3 In some applications, such as in computer vision, an input set of two-dimensional
points can be assumed to be given as pairs of integers, rather than arbitrary real
numbers. Suppose, then, that you are given a set of n two-dimensional points
such that each coordinate is in the range [0, 4n]. Show that you can construct a
priority search tree for this set of points in O(n) time.

A-21.4 In applications involving the use of quadtrees in memory-constrained devices,
such as smartphones, we often want to optimize the data structure to make it
more space efficient. One obvious improvement is to take a standard quadtree,
T , and replace each chain of nodes having only one child with a single edge. This
gives us a data structure known as the compressed quadtree. Describe an efficient
method for constructing a compressed quadtree for a set of n two-dimensional
points. What is the time and space complexity for your algorithm?

A-21.5 A higher-dimensional version of a quadtree is known as an octree, since, in three
dimensions it divides each cube into 8 subcubes and recursively constructs an
octree for each nonempty subcube as a child. Suppose we are given such a three-
dimensional structure, but we are only interested in two of the three dimensions,
since we can only display two-dimensional images on a computer screen. De-
scribe an efficient method for converting an octree into a quadtree defined on two
of the dimensions used to construct the octree.

www.it-ebooks.info

http://www.it-ebooks.info/

21.4. Exercises 621

A-21.6 When the Sload Digital Sky Survey decided to create a data structure for stor-
ing the objects identified by their projects, they needed a method for searching
for two-dimensional points that are on a sphere rather than being in a rectangle.
So they started with a sphere, cut it into quarters by two perpendicular great cir-
cles going through the poles and then into eight pieces by one more cut using a
great circle through the equator. This divided the sphere into eight regions that
“almost” equilateral triangles. Viewing each region as a perfect equilateral trian-
gle, describe a recursive way to subdivide each one of these triangles that results
in a set of children that are also equilaterial triangles, in a fashion suggestive
of a quadtree. Describe how your structure could be used to effectively answer
circular range-search queries to find all the points inside a given circle on this
sphere.

A-21.7 The quadtree is often used by people who never worry about its worst-case depth
being high. There is a good reason for this belief, if one can assume some ran-
domness exists for the input set of points. Use a Chernoff bound (Section 19.5)
to show that the height of a quadtree defined on n points in the unit square chosen
uniformly and independently at random is O(log n) with high probability.

Hint: If we divide a square into four equal-sized squares, and assign n points
uniformly and independently at random to the square, consider the probability
that any subsquare has more than n/2 of the points.

A-21.8 In computer graphics and computer gaming environments, a common heuristic is
to approximate a complex two-dimensional object by a smallest enclosing rectan-
gle whose sides are parallel to the coordinate axes, which is known as a bounding
box. Using this technique allows system designers to generalize range searching
over points to more complex objects. So, suppose you are given a collection of n
complex two-dimensional objects, together with a set of their bounding boxes,

S = {R1, R2, . . . , Rn}.

Suppose further that for some reason you have a data structure, D, that can store
n four-dimensional points so as to answer four-dimensional range-search queries
in O(log3 n + s) time, where s is the number of points in the query range. Ex-
plain how you can use D to answer two-dimensional range queries for the rect-
angles in S, given a query rectangle, R, would return every bounding box, Ri,
in S, such that Ri is completely contained inside R. Your query should run in
O(log3 n + s) time, where s is the number of bounding boxes that are output as
being completely inside the query range, R.

A-21.9 Consider the previous exercise, but instead of explaining how to use D to an-
swer box-containment range queries, now explain how to build an efficient data
structure, D, that can store four-dimensional range queries for four-dimensional
points in O(log3 n + s) time, where s is the number of answers. What is the
space complexity of your data structure, D?

www.it-ebooks.info

http://www.it-ebooks.info/

622 Chapter 21. Multidimensional Searching

Chapter Notes
Multi-dimensional search trees are discussed in books by Mehlhorn [159], Samet [181,
182], and Wood [217]. Please see these books for an extensive discussion of the history of
multidimensional search trees, including various data structures for solving range queries.
Priority search trees are due to McCreight [149], although Vuillemin [213] introduced this
structure earlier under the name “Cartesian trees.” They are also known as “treaps,” as
described by McCreight [149] and Seidel and Aragon [191]. Edelsbrunner [61] shows how
priority search trees can be used to answer two-dimensional range queries. Arya et al. [15,
16] present the balanced box decomposition tree and show it can be used for approximate
nearest-neighbor and range searching. The reader interested in recent developments for
range-searching data structures is referred to the book chapters by Agarwal [3, 4] or the
survey paper by Matouŝek [147].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

22 Computational Geometry

Domain decomposition for parallel processing of a wing-body-nacelle-pylon
configuration. U.S. government photo. NASA.

Contents

22.1 Operations on Geometric Objects 625
22.2 Convex Hulls . 630
22.3 Segment Intersection . 638
22.4 Finding a Closest Pair of Points 642
22.5 Exercises . 646

www.it-ebooks.info

http://www.it-ebooks.info/

624 Chapter 22. Computational Geometry

A common problem in robotics is to identify a trajectory from a starting point,

s, to a target point, t, that avoids a certain obstacle. Among the many possible

trajectories, suppose we would like to find one that is as short as possible. Let

us assume that the environment is mapped out as a two-dimensional map and the

obstacle is a connected region, P . We can compute a shortest trajectory for a robot

to move from s to t while avoiding P with the following strategy (see Figure 22.1):

1. We determine whether the line segment � = st intersects P . If it does not

intersect, then � is the shortest trajectory avoiding P .

2. Otherwise, if st intersects P , then we compute a geometric object, H , known

as the convex hull, from the vertices of polygon P plus points s and t. This

object can be visualized by imagining that there are two rubber bands, con-

necting s and t, with one touching P on the left and one touching P on the

right. One of these chains would therefore be traversed by going clockwise

from s to t and the other by going counterclockwise from s to t.
3. We select and return the shortest of these two polygonal chains with end-

points s and t on H .

s

t

P

Figure 22.1: An example shortest trajectory from a point, s, to a point, t, avoiding

a polygonal region, P . The shortest trajectory in this case is the clockwise chain

from s to t.

Motivated by this, and other problems dealing with geometric objects, such as

points, lines, and polygons, this chapter is directed at computational geometry,

which studies data structures and algorithms for dealing with geometric data. We

include a discussion of the convex hull problem, as well as a general method for

designing efficient geometric algorithms, called the plane-sweep technique. We

illustrate the applicability of this technique by showing how it can be used to solve

two-dimensional computational geometry problems, by reducing them to a series

of one-dimensional problems. Specifically, we apply the plane-sweep technique to

the computation of the intersections of a set of orthogonal line segments and to the

identification of a closest pair of points from a set of points.

www.it-ebooks.info

http://www.it-ebooks.info/

22.1. Operations on Geometric Objects 625

22.1 Operations on Geometric Objects

Geometric algorithms take geometric objects of various types as their inputs. The

basic geometric objects in the plane are points, lines, segments, and polygons.

There are many ways of representing planar geometric objects. Rather than

give separate detailed data structures for representing points, lines, segments, and

polygons, however, which would be appropriate for a book on geometric algo-

rithms, we instead assume we have intuitive representations for these objects. For

example, a two-dimensional point could be represented by a pair of numbers, a line

segment could be represented by a pair of points, a line could be represented by

a linear equation, and a polygon could be represented by a circular sequence of

points. Still, even with our assumption that geometric objects will have intuitive

representations, we nevertheless discuss a few of the algorithmic issues related to

working with geometric objects in this section.

Lines

We can represent a line l as a triple, (a, b, c), such that these values are the coeffi-

cients a, b, and c of the linear equation,

ax + by + c = 0,

associated with l. Alternatively, we may specify instead two different points, q1 and

q2, and associate them with the line that goes through both. Given the Cartesian

coordinates (x1, y1) of q1 and (x2, y2) of q2, such that these points have distinct x-

and y-coordinates, the equation of the line l through q1 and q2 is given by

x − x1

x2 − x1
=

y − y1

y2 − y1
,

from which we derive the following:

a = y2 − y1

b = x1 − x2

c = y1(x2 − x1) − x1(y2 − y1).

Line Segments

A line segment s is typically represented by the pair (p, q) of points in the plane that

form s’s endpoints. We may also represent s by giving the line through it, together

with a range of x- and y-coordinates, that restrict this line to the segment s. (Why

is it insufficient to include just a range of x- or y-coordinates?)

www.it-ebooks.info

http://www.it-ebooks.info/

626 Chapter 22. Computational Geometry

Intersection of Two Lines

One of the most important operations that geometric objects should support is the

intersection operation. For example, given two lines l1 and l2, we may want to

know whether they intersect, that is, if they have one or more points in common. If

l1 and l2 are represented by their equations

a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0,

then l1 and l2 intersect if and only if one of the following two conditions is satisfied.

• The determinant ∣∣∣∣ a1 b1

a2 b2

∣∣∣∣ = a1b2 − a2b1

is nonzero, which implies that the two lines intersect in exactly one point.

• There exists a positive constant k such that: a2 = ka1, b2 = kb1, and c2 =
kc1, which implies that the two lines are coincident.

These tests are easily carried out in O(1) time.

Intersection of Two Line Segments

Testing whether two segments s1 and s2 intersect, that is, if they have one or more

points in common, is disappointingly more complicated, however. The reader is

encouraged to think about this problem before reading on.

The first approach that might come to mind is to test whether the lines l1 and l2
through s1 and s2, respectively, intersect. We distinguish three cases:

• If l1 and l2 do not intersect, then we know that s1 and s2 also do not intersect

and we return a negative answer.

• If l1 and l2 intersect and are coincident, we test whether the ranges of x-

coordinates of s1 and s2 overlap, and similarly for the y-coordinates.

• Otherwise, we compute the intersection point q of l1 and l2. The coordinates

of q are given by the solution of the system of two equations in two unknowns

that are derived from the equations of lines l1 and l2 (which can be specified

as formulas, with a little extra work). Given the intersection point q, we can

then test whether point q is included both in s1 and s2. This can be done by

checking that the x-coordinate of q lies in the range of the x-coordinates of

both s1 and s2, and similarly for the y-coordinate of q.

This testing method is admittedly somewhat complicated. An alternative approach

is based on the concept of orientation, which we discuss next.

www.it-ebooks.info

http://www.it-ebooks.info/

22.1. Operations on Geometric Objects 627

Point Orientation Testing

An important geometric relationship, which arises in many geometric algorithms,

and particularly for convex hull construction, is orientation. Given an ordered

triplet (p, q, r) of points, we say that (p, q, r) makes a left turn and is oriented

counterclockwise if the angle that stays on the left-hand side when going from p
to q and then to r is less than π. If the angle on the right-hand side is less than π
instead, then we say that (p, q, r) makes a right turn and is oriented clockwise.

(See Figure 22.2.) It is possible that the angles of the left- and right-hand sides are

both equal to π, in which case the three points actually do not make a turn, and we

say that their orientation is collinear.

Given a triplet (p1, p2, p3) of three points p1 = (x1, y1), p2 = (x2, y2), and

p3 = (x3, y3), in the plane, let Δ(p1, p2, p3) be the determinant defined by

Δ(p1, p2, p3) =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = x1y2−x2y1+x3y1−x1y3+x2y3−x3y2. (22.1)

The function Δ(p1, p2, p3) is often called the “signed area” function, because its

absolute value is twice the area of the (possibly degenerate) triangle formed by the

points p1, p2, and p3. In addition, we have the following important fact relating this

function to orientation testing.

Theorem 22.1: The orientation of a triplet (p1, p2, p3) of points in the plane is
counterclockwise, clockwise, or collinear, depending on whether Δ(p1, p2, p3) is
positive, negative, or zero, respectively.

We sketch the proof of Theorem 22.1; we leave the details as an exercise (R-

22.2). In Figure 22.2, we show a triplet (p1, p2, p3) of points with x1 < x2 < x3.

Clearly, this triplet makes a left turn if the slope of segment p2p3 is greater than the

slope of segment p1p2. This is expressed by the following question:

Is
y3 − y2

x3 − x2
>

y2 − y1

x2 − x1
? (22.2)

By the expansion of Δ(p1, p2, p3) shown in 22.1, we can verify that inequality 22.2

is equivalent to Δ(p1, p2, p3) > 0.

p1

p2

p3

x2_x1

x3
_x2

y 3
_
y 2

y 2
_
y 1

Figure 22.2: An example of a left turn. The differences between the coordinates

between p1 and p2 and the coordinates of p2 and p3 are also illustrated.

www.it-ebooks.info

http://www.it-ebooks.info/

628 Chapter 22. Computational Geometry

In fact, there is a quick way to show the above equivalence using some facts

about determinants. By a standard property of determinants, we can subtract a row

from another row without changing the determinant. Hence,

Δ(p1, p2, p3) =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
x1 y1 1

(x2 − x1) (y2 − y1) 0
(x3 − x2) (y3 − y2) 0

∣∣∣∣∣∣
= (x2 − x1)(y3 − y2) − (y2 − y1)(x3 − x2).

Thus, testing if Δ(p1, p2, p3) > 0 is equivalent to answering question 22.2.

Example 22.2: Using the notion of orientation, let us consider the problem of
testing whether two line segments s1 and s2 intersect. Specifically, Let s1 = p1q1

and s2 = p2q2 be two segments in the plane. s1 and s2 intersect if and only if one
of the following two conditions is verified:

1. (a) (p1, q1, p2) and (p1, q1, q2) have different orientations, and
(b) (p2, q2, p1) and (p2, q2, q1) have different orientations.

2. (a) (p1, q1, p2), (p1, q1, q2), (p2, q2, p1), and (p2, q2, q1) are all collinear,
and

(b) the x-projections of s1 and s2 intersect, and
(c) the y-projections of s1 and s2 intersect.

Condition 1 is illustrated in Figure 22.3. We also show, in Table 22.4, the respective
orientation of the triplets (p1, q1, p2), (p1, q1, q2), (p2, q2, p1), and (p2, q2, q1) in
each of the four cases for Condition 1. A complete proof is left as an exercise (R-
22.3). Note that the conditions also hold if s1 and/or s2 is a degenerate segment
with coincident endpoints.

p1

q1

p2

q2

s1

s2

p1

q1

p2

q2

s1

s2

p1

q1

p2

q2

s1

s2

p1

q1

p2

q2

s1

s2

(a) (b) (c) (d)

Figure 22.3: Examples illustrating four cases of Condition 1 of Example 22.2.

www.it-ebooks.info

http://www.it-ebooks.info/

22.1. Operations on Geometric Objects 629

case (p1, q1, p2) (p1, q1, q2) (p2, q2, p1) (p2, q2, q1) intersection?

(a) CCW CW CW CCW yes

(b) CCW CW CW CW no

(c) COLL CW CW CCW yes

(d) COLL CW CW CW no

Table 22.4: The four cases shown in Figure 22.3 for the orientations specified by

Condition 1 of Example 22.2, where CCW stands for counterclockwise, CW stands

for clockwise, and COLL stands for collinear.

Polygons

We can represent a polygon P by a cyclical sequence of points, called the vertices
of P . (See Figure 22.5.) The segments between consecutive vertices of P are called

the edges of P . Polygon P is said to be simple, if intersections between pairs of

edges of P happen only at a common endpoint vertex. A polygon is convex if it is

simple and all its internal angles are less than π.

Our discussion of different ways of representing points, lines, segments, and

polygons is not meant to be exhaustive. It is meant simply to indicate the different

ways we can implement these geometric objects.

(a) (b)

(c)

Figure 22.5: Examples of polygons: (a) intersecting, (b) simple, (c) convex.

www.it-ebooks.info

http://www.it-ebooks.info/

630 Chapter 22. Computational Geometry

22.2 Convex Hulls
One of the most studied geometric problems is that of computing the convex hull of

a set of points. Informally speaking, the convex hull of a set of points in the plane

is the shape taken by a rubber band that is placed “around the points” and allowed

to shrink to a state of equilibrium. (See Figure 22.6.)

(a) (b)

Figure 22.6: The convex hull of a set of points in the plane: (a) an example “rubber

band” placed around the points; (b) the convex hull of the points.

The convex hull corresponds to the intuitive notion of a “boundary” of a set of

points and can be used to approximate the shape of a complex object. Indeed, com-

puting the convex hull of a set of points is a fundamental operation in computational

geometry.

Basic Properties of Convex Hulls

We say that a region R is convex if any time two points p and q are in R, the entire

line segment pq is also in R. The convex hull of a set of points S is the boundary

of the smallest convex region that contains all the points of S inside it or on its

boundary. The notion of “smallest” refers to either the perimeter or area of the

region, both definitions being equivalent. The convex hull of a set of points S in

the plane defines a convex polygon, and the points of S on the boundary of the

convex hull define the vertices of this polygon.

There are a number of applications of the convex hull problem, in addition to

the robot motion planning problem mentioned above, including partitioning prob-

lems, shape testing problems, and separation problems. For example, if we wish to

determine whether there is a half-plane (that is, a region of the plane on one side

of a line) that completely contains a set of points A but completely avoids a set

of points B, it is enough to compute the convex hulls of A and B and determine

whether they intersect each other.

www.it-ebooks.info

http://www.it-ebooks.info/

22.2. Convex Hulls 631

There are many interesting geometric properties associated with convex hulls.

The following theorem provides an alternate characterization of the points that are

on the convex hull and of those that are not.

Theorem 22.3: Let S be a set of planar points with convex hull H . Then

• A pair of points a and b of S form an edge of H if and only if all the other
points of S are contained on one side of the line through a and b.

• A point p of S is a vertex of H if and only if there exists a line l through
p, such that all the other points of S are contained in the same half-plane
delimited by l (that is, they are all on the same side of l).

• A point p of S is not a vertex of H if and only if p is contained in the interior
of a triangle formed by three other points of S or in the interior of a segment
formed by two other points of S.

The properties expressed by Theorem 22.3 are illustrated in Figure 22.7. A

complete proof of them is left as an exercise (R-22.4). As a consequence of The-

orem 22.3, we can immediately verify that, in any set S of points in the plane, the

following critical points are always on the boundary of the convex hull of S:

• A point with minimum or maximum x-coordinate

• A point with minimum or maximum y-coordinate.

a b

p

q

a

b

p

q

(a) (b)

a

b

c

p

(c)

Figure 22.7: Illustration of the properties of the convex hull given in Theorem 22.3:

(a) points a and b form an edge of the convex hull; (b) points a and b do not form

an edge of the convex hull; (c) point p is not on the convex hull.

www.it-ebooks.info

http://www.it-ebooks.info/

632 Chapter 22. Computational Geometry

22.2.1 The Gift Wrapping Algorithm
Theorem 22.3 basically states that we can identify a particular point, say one with

minimum y-coordinate, that provides an initial starting configuration for an algo-

rithm that computes the convex hull. The gift wrapping algorithm for computing

the convex hull of a set of points in the plane is based on just such a starting point

and can be intuitively described as follows (see Figure 22.8):

1. View the points as pegs implanted in a level field, and imagine that we tie

a rope to the peg corresponding to the point a with minimum y-coordinate

(and minimum x-coordinate if there are ties). Call a the anchor point, and

note that a is a vertex of the convex hull.

2. Pull the rope to the right of the anchor point and rotate it counterclockwise

until it touches another peg, which is the next vertex of the convex hull.

3. Continue rotating the rope counterclockwise, identifying a new vertex of the

convex hull at each step, until the rope gets back to the anchor point.

a

a

(a) (b)

a
a

(c) (d)

Figure 22.8: Initial four wrapping steps of the gift wrapping algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

22.2. Convex Hulls 633

Using Orientation Testing for the Wrapping Step

Each time we rotate our “rope” around the current peg until it hits another point,

we perform an operation called a wrapping step. Geometrically, a wrapping step

involves starting from a given line L known to be tangent to the convex hull at the

current anchor point a, and determining the line through a and another point in the

set making the smallest angle with L. Implementing this wrapping step does not

require trigonometric functions and angle calculations, however. Instead, we can

use the following theorem, which follows from Theorem 22.3.

Theorem 22.4: Let S be a set of points in the plane, and let a be a vertex of the
convex hull, H , of S. The next vertex of H , going counterclockwise from a, is the
point, p, such that triplet (a, p, q) makes a left turn with every other point q of S.

Details of the Gift Wrapping Algorithm

We give the details in Algorithm 22.9, which starts with the set, S, of n points and

a point, a, in S on the convex hull, H , of S, which could be, say, a point with

minimum x-coordinate. Note that finding such a point, a, can easily be done in

O(n) time.

Algorithm GiftWrap(S, a):

Input: A set, S, of points in the plane beginning with point a, such that a is on

the convex hull of S
Output: List H of the convex hull vertices of S in counterclockwise order

H ← [a]
repeat

Let b be the last element in H
Let p be a vertex in S such that p 	= b
for each point, q, in S, with q 	= p and q 	= b do

if (b, p, q) forms a right turn then
p ← q

Add p to the end of the list H
until p = a
return H

Algorithm 22.9: The gift wrapping algorithm. Here we make the simplifying as-

sumption that no three of the points in S are collinear.

www.it-ebooks.info

http://www.it-ebooks.info/

634 Chapter 22. Computational Geometry

Analysis of the Gift Wrapping Algorithm

Let us analyze the running time of the gift wrapping algorithm. Let n be the number

of points of S, and let h ≤ n be the number of vertices of the convex hull H of S.

Let p0, . . . , ph−1 be the vertices of H . Finding the anchor point a = p0 takes O(n)
time. Since with each wrapping step of the algorithm we discover a new vertex of

the convex hull, the number of wrapping steps is equal to h.

Step i is a minimum-finding computation based on finding a point, p, such that

every other point, q, in S forms a left turn when going from b to p to q. This

step runs in O(n) time, since determining the orientation of a triplet takes O(1)
time and we must examine all the points of S to find the smallest with respect

to the orientation test. Our description assumed that no three points in S were

collinear, but the above algorithm can be extended to handing this case without

effecting the asymptotic performance of the algorithm. Thus, we can summarize

the performance of the gift wrapping algorithm with the following theorem.

Theorem 22.5: Given a set, S, of n points in the plane, the gift wrapping algo-
rithm constructs a list representation of the convex hull of S in O(nh) time, where
h is the number of vertices on the boundary of the convex hull.

Output Sensitivity

We note that h can be as large as n, that is, when all the points in S are vertices

on the convex hull; hence, in the worst case, this algorithm runs in O(n2) time.

Still, h can be as small as 3, in which case the gift wrapping algorithm would run in

O(n) time. Thus, there is a large difference between the best-case and worst-case

performance of the gift wrapping algorithm.

This algorithm is nevertheless reasonably efficient in practice, however, for it

can take advantage of the (common) situation when h, the number of hull points,

is small relative to the number of input points, n. That is, this algorithm is said

to be an output sensitive algorithm—an algorithm whose running time depends on

the size of the output. Gift wrapping has a running time that varies between linear

and quadratic, and is efficient if the convex hull has few vertices. For instance,

if we choose n points uniformly and independently at random in the interior of a

rectangle, then the expected number of points on their convex hull is O(log n).

We discuss in the next section an algorithm that is efficient for all hull sizes,

although it is slightly more complicated.

www.it-ebooks.info

http://www.it-ebooks.info/

22.2. Convex Hulls 635

22.2.2 The Graham Scan Algorithm

A convex hull algorithm that has an efficient running time no matter how many

points are on the boundary of the convex is the Graham scan algorithm. The

Graham scan algorithm for computing the convex hull H of a set P of n points in

the plane consists of the following three phases:

1. We find a point a of P that is a vertex of H and call it the anchor point. We

can, for example, pick as our anchor point a the point in P with minimum

y-coordinate (and minimum x-coordinate if there are ties).

2. We sort the remaining points of P (that is, P − {a}) radially around a, and

let S be the resulting sorted list of points. (See Figure 22.10.) In the list S,

the points of P appear sorted counterclockwise “by angle” with respect to

the anchor point a, although no explicit computation of angles is performed.

a

Figure 22.10: Sorting around the anchor point in the Graham scan algorithm.

3. After adding the anchor point a at the first and last position of S, we scan
through the points in S in (radial) order, maintaining at each step a list H
storing a convex chain “surrounding” the points scanned so far. Each time

we consider new point p, we perform the following test:

(a) If p forms a left turn with the last two points in H , or if H contains

fewer than two points, then add p to the end of H .

(b) Otherwise, remove the last point in H and repeat the test for p.

We stop when we return to the anchor point a, at which point H stores the

vertices of the convex hull of P in counterclockwise order.

The details of the scan phase (Phase 3) are spelled out in Algorithm Scan,

described in Algorithm 22.11.

www.it-ebooks.info

http://www.it-ebooks.info/

636 Chapter 22. Computational Geometry

Algorithm Scan(S, a):
Input: A list S of points in the plane beginning with point a, such that a is on

the convex hull of S and the remaining points of S are sorted counterclock-

wise around a
Output: List S with only convex hull vertices remaining

S.insertLast(a) // add a copy of a at the end of S
prev ← S.first() // so that prev = a initially

curr ← S.after(prev) // the next point is on the current convex chain

repeat
next ← S.after(curr) // advance

if points (point(prev), point(curr), point(next)) make a left turn then
prev ← curr

else
S.remove(curr) // point curr is not in the convex hull

prev ← S.before(prev)
curr ← S.after(prev)

until curr = S.last()
S.remove(S.last()) // remove the copy of a

Algorithm 22.11: The scan phase of the Graham scan convex hull algorithm. (See

Figure 22.12.) Variables prev, curr, and next are positions (Section 2.2.2) of the

list S. We assume that an accessor method point(pos) is defined that returns the

point stored at position pos. We give a simplified description of the algorithm that

works only if S has at least three points, and no three points of S are collinear.

Analysis of the Graham Scan Algorithm

Let us now analyze the running time of the Graham scan algorithm, which is illus-

trated in Figure 22.12. We denote the number of points in P (and S) with n. The

first phase (finding the anchor point) clearly takes O(n) time. The second phase

(sorting the points around the anchor point) takes O(n log n) time provided we

use one of the asymptotically optimal sorting algorithms, such as heap-sort (Sec-

tion 5.4) or merge-sort (Section 8.1). The analysis of the scan (third) phase is more

subtle. To analyze the scan phase of the Graham scan algorithm, let us look more

closely at the repeat loop of Algorithm 22.11. At each iteration of the loop, either

variable next advances forward by one position in the list S (successful if test), or

variable next stays at the same position but a point is removed from S (unsuccessful

if test). Hence, the number of iterations of the repeat loop is at most 2n. Therefore,

each statement of algorithm Scan is executed at most 2n times. Since each state-

ment requires the execution of O(1) elementary operations in turn, algorithm Scan
takes O(n) time. In conclusion, the running time of the Graham scan algorithm is

dominated by the second phase, where sorting is performed. Thus, the Graham

scan algorithm runs in O(n log n) time.

www.it-ebooks.info

http://www.it-ebooks.info/

22.2. Convex Hulls 637

a a a

(a) (b) (c)

a a a

(d) (e) (f)

a a a

(g) (h) (i)

Figure 22.12: Third phase of the Graham scan algorithm (see Algorithm 22.11).

www.it-ebooks.info

http://www.it-ebooks.info/

638 Chapter 22. Computational Geometry

22.3 Segment Intersection
The next problem we consider is that of finding all the intersecting pairs among

a set of n line segments. Of course, we could apply a brute-force algorithm to

check every pair of segments to see whether they intersect. Since the number of

pairs is n(n − 1)/2, this algorithm takes O(n2) time, since we can test any pair

for intersection in constant time. If all the pairs intersect, this algorithm is optimal.

Still, we would like to have a faster method for the case where the number of

intersecting pairs is small or there are no intersections at all. Specifically, if s is the

number of intersecting pairs, we would like to have an output sensitive algorithm

whose running time depends on both n and s. We shall present an algorithm that

uses the plane-sweep technique and runs in O(n log n + s) time for the case when

the input set of segments consists of n orthogonal segments, meaning that each

segment in the set is either horizontal or vertical.

Before we proceed with our algorithm, we make a slight digression to review

a problem discussed previously in this book. This problem is the one-dimensional

range-searching problem, in which we wish to dynamically maintain a dictionary

of numbers (that is, points on a number line), subject to insertions and deletions

and queries of the following form:

findAllInRange(k1, k2): Return a list of all the elements in D with key k, such

that k1 ≤ k ≤ k2.

We show in Section 3.2 how we can use any balanced binary search tree to maintain

such a dictionary in order to achieve O(log n) time for insertion and removal, and

O(log n + s) time for answering findAllInRange queries, where n is the number

of points in the dictionary and s is the number of returned points in the range.

Let us return to the problem at hand, which is to compute all intersecting pairs

of segments from a collection of n horizontal and vertical segments. The main idea

of the algorithm for solving this problem is to reduce this two-dimensional problem

to a collection of one-dimensional range-searching problems. In so doing, we are

going to make use of a technique known as plane sweeping. In using this technique,

we solve a static two-dimensional problem by imagining that we sweep the plane

with a vertical line, L. During the sweep, we maintain various data structures for

the objects that interact with L, and at various events we pause the sweep to update

and/or query these data structures. In the case of orthogonal segment intersection,

for each vertical segment v, we consider an event corresponding to a stopping of

L at the vertical line l(v) through v, and plunge into the “one-dimensional world”

of line l(v). (See Figure 22.13.) Only the vertical segment v and the intersections

of horizontal segments with l(v) exist in this world. In particular, segment v corre-

sponds to an interval of l(v), a horizontal segment h intersecting l(v) corresponds

to a point on l(v), and the horizontal segments crossing v correspond to the points

on l(v) contained in the interval.

www.it-ebooks.info

http://www.it-ebooks.info/

22.3. Segment Intersection 639

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 22.13: Plane sweep for orthogonal segment intersection: (a) a set of hor-

izontal and vertical segments; (b) the collection of one-dimensional range-search

problems; (c) beginning of the plane sweep (the ordered dictionary S of horizontal

segments is empty); (d) the first (left-endpoint) event, causing an insertion into S;

(e) the second (left-endpoint) event, causing another insertion into S; (f) the third

(left-endpoint) event, causing yet another insertion into S; (g) the first vertical-

segment event, causing a range search in S (two intersections reported); (h) the

next (left-endpoint) event, causing an insertion into S; (i) a left-endpoint event

three events later, causing an insertion into S.

www.it-ebooks.info

http://www.it-ebooks.info/

640 Chapter 22. Computational Geometry

The Plane-Sweep Segment Intersection Algorithm

Suppose, then, that we are given a set of n horizontal and vertical segments in the

plane. We will determine all pairs of intersecting segments in this set by using the

plane sweep technique and the collective approach suggested by the above idea.

This algorithm involves simulating the sweeping of a vertical line, L, over the seg-

ments, moving from left to right, starting at a location to the left of all the input

segments. During the sweep, the set of horizontal segments currently intersected

by the sweep line is maintained by means of insertions into and removals from a

dictionary ordered by y-coordinate. When the sweep encounters a vertical segment

v, a range query on the dictionary is performed to find the horizontal segments

intersecting v.

Specifically, during the sweep, we maintain an ordered dictionary, S, storing

horizontal segments with their keys given by their y-coordinates. The sweep pauses

at certain events that trigger the actions shown in Table 22.14, which are illustrated

above in Figure 22.13. We give the details in Algorithm 22.15.

Event Action
left endpoint of a

horizontal segment h
insert h into dictionary S

right endpoint of a

horizontal segment h
remove h from dictionary S

vertical segment v perform a range search on S with selection range

given by the y-coordinates of the endpoints of v

Table 22.14: Events triggering actions in the plane-sweep algorithm for orthogonal

segment intersection.

Algorithm SegmentIntersect(C):
Input: A collection, C, of horizontal and vertical line segments

Output: All the intersecting horizontal-vertical pairs of segments in C

Let S be an initially empty dictionary of objects ordered by y-coordinates

Let E be a sorted listing of the segments in C by x-coordinates

for each element, e, in E in sorted order do
if e is a left endpoint of a horizontal segment, h = ([x1, x2], y) then

insert h into S with key y
else if e is a right endpoint of a horizontal segment, h = ([x1, x2], y) then

remove h from S using the key y
else if e is a vertical segment, v = (x, [y1, y2]) then

Report all segments in S in the range [y1, y2] as intersecting v

Algorithm 22.15: Orthogonal segment intersection reporting algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

22.3. Segment Intersection 641

Analysis of the Plane-Sweep Line Intersection Algorithm

To analyze the running time of this plane-sweep algorithm, first note that we must

identify all the events and sort them by x-coordinate. An event is either an endpoint

of a horizontal segment or a vertical segment. Hence, the number of events is

at most 2n. When sorting the events, we compare them by x-coordinate, which

takes O(1) time. Using one of the asymptotically optimal sorting algorithms, such

as heap-sort (Section 5.4) or merge-sort (Section 8.1), we can order the events

in O(n log n) time. The operations performed on the dictionary S are insertions,

removals, and range searches. Each time an operation is executed, the size of S is

at most 2n.

We can implement S as a balanced binary search tree (Chapter 4), so that in-

sertions and deletions each take O(log n) time. As we have reviewed above, range

searching in an n-element ordered dictionary can be performed in O(log n + s)
time, using O(n) space, where s is the number of items reported. Let us charac-

terize, then, the running time of a range search triggered by a vertical segment v
as

O(log n + s(v)),

where s(v) is the number of horizontal segments currently in the dictionary S that

intersect v. Thus, indicating the set of vertical segments with V , the running time

of the sweep is

O

(
2n log n +

∑
v∈V

(log n + s(v))

)
.

Since the sweep goes through all the segments, the sum of s(v) over all the ver-

tical segments encountered is equal to the total number s of intersecting pairs of

segments. Hence, we conclude that the sweep takes time O(n log n + s).

In summary, the complete segment intersection algorithm, outlined above, con-

sists of the event sorting step followed by the sweep step. Sorting the events takes

O(n log n) time, while sweeping takes O(n log n+s) time. Thus, the running time

of the algorithm is O(n log n + s). This gives us the following.

Theorem 22.6: Given a collection, C, of n horizontal and vertical line segments
in the plane, we can report all pairs of intersecting horizontal-vertical pairs of seg-
ments in O(n log n + s) time, where s is the number of pairs.

Thus, we have an efficient output-sensitive algorithm for orthogonal line seg-

ment intersection reporting.

www.it-ebooks.info

http://www.it-ebooks.info/

642 Chapter 22. Computational Geometry

22.4 Finding a Closest Pair of Points
Another geometric problem that can be solved using the plane-sweep technique

involves the concept of proximity, which is the relationship of distance that exists

between geometric objects. Specifically, we focus on the closest pair problem,

which consists of finding a pair of points p and q that are at a minimum distance

from each other in a set of n points. This pair is said to be a closest pair. We will

use the Euclidean definition of the distance between two points a and b:

dist(a, b) =
√

(x(a) − x(b))2 + (y(a) − y(b))2,

where x(p) and y(p) respectively denote the x- and y-coordinates of the point p.

Applications of the closest pair problem include the verification of mechanical parts

and integrated circuits, where it is important that certain separation rules between

components be respected.

A straightforward “brute-force” algorithm for solving the closest pair problem

is to compute the distance between every pair of points and select a pair with mini-

mum distance. Since the number of pairs is n(n−1)/2, this algorithm takes O(n2)
time. We can apply a more clever strategy, however.

It turns out that we can effectively apply the plane-sweep technique to the clos-

est pair problem. We solve the closest pair problem, in this case, by imagining that

we sweep the plane by a vertical line from left to right, starting at a position to the

left of all n of the input points. As we sweep the line across the plane, we keep

track of the closest pair seen so far, and of all those points that are “near” the sweep

line. We also keep track of the distance, d, between the closest pair seen so far. In

particular, as we illustrate in Figure 22.16, while sweeping through the points from

left to right, we maintain the following data:

• A closest pair (a, b) among the points encountered, and the distance d =
dist(a, b)

• An ordered dictionary S that stores the points lying in a strip of width d to

the left of the sweep line and uses the y-coordinates of points as keys.

Each input point p corresponds to an event in this plane sweep. When the sweep

line encounters a point p, we perform the following actions:

1. We update dictionary S by removing the points at horizontal distance greater

than d from p, that is, each point r such that x(p) − x(r) > d.

2. We find the closest point q to the left of p by searching in dictionary S (we

will say in a moment how this is done). If dist(p, q) < d, then we update the

current closest pair and distance by setting a ← p, b ← q, and d ← dist(p, q).
3. We insert p into S.

www.it-ebooks.info

http://www.it-ebooks.info/

22.4. Finding a Closest Pair of Points 643

d

d d d

(a) (b) (c)

d d d

(d) (e) (f)

Figure 22.16: Plane sweep for the closest pair problem: (a) the first minimum dis-

tance d and closest pair (highlighted); (b) the next event (box B(p, d) contains a

point, but the half-circle C(p, d) is empty); (c) next event (C(p, d) again is empty,

but a point is removed from S); (d) next event (with C(p, d) again empty). The

dictionary S contains the points in the gray strip of width d; (e) a point p is encoun-

tered (and a point removed from S), with B(p, d) containing 1 point, but C(p, d)
containing none; thus, the minimum distance d and closest pair (a, b) stay the same;

(f) a point p encountered with C(p, d) containing 2 points (and a point is removed

from S).

www.it-ebooks.info

http://www.it-ebooks.info/

644 Chapter 22. Computational Geometry

Clearly, we can restrict our search of the closest point q to the left of p to the

points in dictionary S, since all other points will have distance greater than d. What

we want are those points in S that lie within the half-circle C(p, d) of radius d cen-

tered at and to the left of point p. (See Figure 22.17.) As a first approximation, we

can get the points in the enclosing d × 2d rectangular box B(p, d) of C(p, d) (Fig-

ure 22.17) by performing a range search on S for the points in S with y-coordinates

in the interval of keys [y(p) − d, y(p) + d]. We examine such points, one by one,

and find the closest to p, denoted q. Since the operations performed on dictionary

S are range searches, insertions, and removals of points, we implement S by means

of an AVL tree or red-black tree.

d

d

p
q

d

B(p,d)

C(p,d)

Figure 22.17: Box B(p, d) and half-circle C(p, d).

The following intuitive property, whose proof is left as an exercise (R-22.6), is

crucial to the analysis of the running time of the algorithm.

Theorem 22.7: A rectangle of width d and height 2d can contain at most six
points such that any two points are at distance at least d.

Thus, there are at most six points of S that lie in the box B(p, d). So the range-

search operation on S, to find the points in B(p, d), takes time O(log n+6), which

is O(log n). Also, we can find the point in B(p, d) closest to p in O(1) time.

Before we begin the sweep, we sort the points by x-coordinate, and store them

in an ordered list X . The list X is used for two purposes:

• To get the next point to be processed

• To identify the points to be removed from dictionary S.

We keep references to two positions in the list X , which we denote as firstInStrip
and lastInStrip. Position lastInStrip keeps track of the new point to be inserted into

S, while position firstInStrip keeps track of the left-most point in S. By advancing

www.it-ebooks.info

http://www.it-ebooks.info/

22.4. Finding a Closest Pair of Points 645

lastInStrip one step at a time, we find the new point to be processed. By using

firstInStrip, we identify the points to be removed from S. Namely, while we have

x(point(firstInStrip)) < x(point(lastInStrip)) − d,

we perform operation remove(y(point(firstInStrip))) on dictionary S and advance

firstInStrip.

Let n be the number of input points. Our analysis of the plane-sweep algorithm

for the closest pair problem is based on the following observations:

• The preliminary sorting by x-coordinate takes time O(n log n).
• Each point is inserted once and removed once from dictionary S, which has

size at most n; hence, the total time for inserting and removing elements in S
is O(n log n).

• By Theorem 22.7, each range query in S takes O(log n) time. We execute

such a range query each time we process a new point. Thus, the total time

spent for performing range queries is O(n log n).

We conclude that we can compute a closest pair in a set of n points in time O(n log n).

www.it-ebooks.info

http://www.it-ebooks.info/

646 Chapter 22. Computational Geometry

22.5 Exercises

Reinforcement
R-22.1 Verify that the absolute value of the function Δ(p1, p2, p3) is twice the area of

the triangle formed by the points p1, p2, and p3 in the plane.

R-22.2 Provide a complete proof of Theorem 22.1.

R-22.3 Provide a complete proof of Example 22.2.

R-22.4 Provide a complete proof of Theorem 22.3.

R-22.5 Provide a complete proof of Theorem 22.4.

R-22.6 Provide a complete proof of Theorem 22.7.

R-22.7 Give a pseudocode description of the plane-sweep algorithm for finding a closest
pair of points among a set of n points in the plane.

R-22.8 Draw as best you can the convex hull of the following set of points:

{(2, 2), (4, 4), (6, 4), (8, 1), (8, 7), (9, 3), (1, 5), (5, 4)}.

Creativity
C-22.1 Using the orientation test, give a pseudocode description of a method, inTrian-

gle(p, q, r, s), which tests whether a point, p, is inside the interior of a triangle
(q, r, s), assuming q, r, and s are listed in counterclockwise order.

C-22.2 Using the inTriangle(p, q, r, s) method from the previous exercise, and additional
orientation tests, design a data structure that can be built for a given n-vertex
convex polygon, P , to determine for any query point, p, whether p lies inside P .
Your data structure should use O(n) space and answer point-in-polygon queries
in O(log n) time.

Hint: Use Figure 22.7c as a guide.

C-22.3 Let S be a set of n distinct points in the plane. Say that a point p = (x, y) in S is
max-max if there is no other point q = (x′, y′) in S such that x < x′ and y < y′.
Similarly, say that a point p = (x, y) in S is max-min if there is no other point
q = (x′, y′) in S such that x < x′ and y′ < y, that p = (x, y) in S is min-max
if there is no other point q = (x′, y′) in S such that x′ < x and y < y′, and that
p = (x, y) in S is min-min if there is no other point q = (x′, y′) in S such that
x′ < x and y′ < y. Show that if a point, p, is on the convex hull of S, then it
must also be a max-max, max-min, min-max, or min-min point in S.

C-22.4 Show that the expected number of points on the convex hull of a set of n points
chosen uniformly and independently at random in the interior of a rectangle, R,
is O(log n).
Hint: Use the fact established in the previous exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

22.5. Exercises 647

C-22.5 Design an O(n)-time algorithm to test whether a given n-vertex polygon is con-
vex. You should not assume that P is simple.

C-22.6 Suppose you are given an n-vertex convex polygon, P . Describe an O(n)-time
method for computing the area of P .

C-22.7 Say that a polygon, P , is monotone if any vertical line intersects the boundary of
P in at most two points. Given a simple monotone polygon, P , with n vertices,
show that you can find the convex hull of P in O(n) time.

C-22.8 Let C be a collection of n horizontal and vertical line segments. Describe an
O(n log n)-time algorithm for determining whether the segments in C form a
simple polygon.

C-22.9 Given a set P of n points, design an efficient algorithm for constructing a simple
polygon whose vertices are the points of P .

C-22.10 Design an O(n2)-time algorithm for testing whether a polygon with n vertices is
simple. Assume that the polygon is given by the list of its vertices.

C-22.11 Give an example of a set of input points for which the simplified Graham scan
algorithm, given in Algorithm 22.11, does not work correctly.

C-22.12 Let P be a set of n points in the plane. Modify the Graham scan algorithm to
compute, for every point p of P that is not a vertex of the convex hull, either a
triangle with vertices in P , or a segment with endpoints in P that contains p.

C-22.13 Suppose you are given a set S of n line segments in the plane, such that each
makes a positive angle with the x-axis of either 30◦ or 60◦ (so there are only two
possible slopes for the lines in S). Describe an efficient algorithm for finding
all the pairs of intersecting segments in S. What is the running time of your
method?

C-22.14 Suppose we are given an array, A, of n nonintersecting segments, s1, s2, . . . , sn,
with endpoints on the lines y = 0 and y = 1, and ordered from left to right.
Given a point q with 0 < y(q) < 1, design an algorithm that in O(log n) time
computes the segment si of A immediately to right of q, or reports that q is to the
right of all the segments.

C-22.15 Describe an O(n log n)-time algorithm for finding the second closest pair of
points in a set, S, of n points in the plane. That is, you should return the pair,
(p, q), in S, such that the only pair of points that could be closer to each other
than the distance between p and q is the closest pair of points in S.

Applications
A-22.1 In several computational geometry problems involving distances defined by a

set, S, of n points in the plane, it is often useful to first know what is the largest
distance between a pair of points in S, which is known as the diameter of S.
Another way to define the diameter of such a set, S, is as the largest distance
between two parallel lines, L1 and L2, such that all the points of S are either on
one of these lines or between them. Suppose, then, that your are given such a set,
S. Describe an O(n log n)-time algorithm for computing the diameter of S.

www.it-ebooks.info

http://www.it-ebooks.info/

648 Chapter 22. Computational Geometry

A-22.2 Gerrymandering is a process where voting districts are drawn to achieve various
political goals, such as maximizing the number of voters from a certain party,
rather than to achieve geometric goals, such as having districts drawn to have
generally round or square shapes. This process often gives rise to very compli-
cated shapes for voting districts, and it can sometimes be challenging to deter-
mine whether a giving person is inside or outside a given district, due to the ways
it can wind around. Suppose, then, that you are given a voting district defined by
an n-vertex simple polygon, P . Give an O(n)-time algorithm for testing whether
a point q is inside or outside of P . You may assume that q is not on the boundary
of P and that there is no vertex of P with the same x-coordinate as q.

A-22.3 Line segments and polygons are used to model geometric objects in computer
graphics, video games, and computer-aided design, often in data pipelines that
use the output of one program as the input to another. One complication that can
arise in such scenarios is that a data format needed for the input to the second
system may be missing from the output from the first. For instance, one program
may output an object as an unordered set of line segments but the other may
require its input to be defined by a polygon. So, suppose you are given a set,
S, of n line segments, in no particular order. Describe an efficient algorithm
for determining whether the segments of S form a polygon, P , and if so, give a
polygonal representation for P . You may allow P to be non-simple (that is, self-
intersecting), but P must be a single cyclical chain of distinct vertices connected
by the segments in S. What is the running time of your algorithm?

A-22.4 In the hidden-line elimination problem, we would like to visualize a three-
dimensional scene, described by a collection of polygons, from a particular view-
ing point, p, and in a particular direction. This problem is often solved by pro-
jecting the edges of the polygons in the scene onto a view plane perpendicular
to the viewing direction. Then this set of segments is processed to remove the
portions of edges that cannot be seen from p because they are occluded by a poly-
gon in the scene. In order to identify visible and invisible portions of edges, it is
helpful to know which pairs of line segments intersect one another. So, suppose
you are given a set, S, of n line segments in the plane. Describe an algorithm to
enumerate all k pairs of intersecting segments in S in O((n + k) log n) time.

Hint: Use the plane-sweep technique, including segments intersections as events.
Note that you cannot know these events in advance, but it is always possible to
know the next event to process as you are sweeping.

A-22.5 Computational metrology deals with algorithms for measuring things, such as
manufactured parts, and one of the standard algorithms is to determine the flat-
ness of an edge of a manufactured part based on a set of points that are sampled
along that edge (say, by a laser range-finder or a scanning electron microscope).
Since it is extremely rare for such a set of points to be perfectly collinear, we
need a rigorous way of defining flatness in this context. One such way is to de-
fine the flatness of a set, S, of n two-dimensional points as the smallest distance
between two parallel lines, L1 and L2, such that all the points of S are either on
one of these lines or between them. This distance is known as the width of S.
Describe an O(n log n)-time algorithm for determining the width of such a set,
S, of n points in the plane.

www.it-ebooks.info

http://www.it-ebooks.info/

22.5. Exercises 649

A-22.6 Suppose you are hiking in the wild country of some exotic part of the world.
Naturally, an important part of your survival gear is a GPS tracking device and
a digital map of the region you are hiking in, which includes the pathways of
trails, rivers, and creeks, as well as obstacles like cliffs and mountains. These
pathways and obstacles are described on your map by a collection, S, of n two-
dimensional line segments that may intersect only at their endpoints (hence, no
pair of segments in S cross). In order to locate your position on this map, how-
ever, you need to identify where your current position, (x, y), lies in reference to
the segments in S. Such a query can be satisfied by imagining that we shoot a
vertical ray up or down from the point, (x, y), to the first segment that it hits in
S, which is known as a vertical ray-shooting query. In order to facilitate such a
query, it is desirable for us to process the segments in S to define a trapezoidal
decomposition of the plane. Such a decomposition is defined by shooting verti-
cal rays up and down from every endpoint of a segment in S until it hits another
segment in S or it hits the boundary of the map. In the map defined by S and
these vertical rays, every face is either a trapezoid or a triangle. This partitioning
allows us to then construct a data structure for answering vertical ray-shooting
queries, since such a query can be answered simply by identifying the face in the
trapezoidal decomposition that contains the starting point for the ray. Thus, given
a set, S, of n line segments that may intersect only at their endpoints, describe an
O(n log n)-time algorithm for constructing a trapezoidal decomposition of S.

A-22.7 In machine learning applications, we often have some kind of condition defined
over a set, S, of n points, which we would like to characterize—that is, “learn”—
using some simple rule. For instance, these points could correspond to biological
attributes of n medical patients and the condition could be whether a given patient
tests positive for a given disease or not, and we would like to learn the correlation
between these attributes and this disease. Think of the points with positive tests
as painted “red,” and the tests with negative tests as painted “blue.” Suppose that
we have a simple two-factor set of attributes; hence, we can view each patient as
a two-dimensional point in the plane, which is colored as either red or blue. An
ideal characterization, from a machine learning perspective, is if we can separate
the points of S by a line, L, such that all the points on one side of L are red and all
the points on the other side of L are blue. So suppose you are given a set, S, of n
red and blue points in the plane. Describe an efficient algorithm for determining
whether there is a line, L, that separates the red and blue points in S. What is the
running time of your algorithm?

A-22.8 Imagine a game, Battlestrip, which involves one player laying down a set of hor-
izontal line segments on his computer screen, and another player laying down
a set of vertical segments on hers. Then the two computer screens are virtually
overlaid on top of one another and the winner is the player with a single segment
that intersects the most segments of his or her opponent. Your job is to determine
who is the winner. So, suppose you are given a set S of n horizontal and vertical
line segments in the plane. Describe an algorithm running in O(n log n) time for
finding the vertical segment, v, in S that intersects the maximum number of hori-
zontal segments in S, as well as the horizontal segment, h, in S that intersects the
maximum number of vertical segments in S. (Note that there may be many more
than O(n log n) pairs of intersecting horizontal and vertical line segments.)

www.it-ebooks.info

http://www.it-ebooks.info/

650 Chapter 22. Computational Geometry

A-22.9 Given a set S of points in the plane, define the Voronoi diagram of S to be the
set of regions V (p), called Voronoi cells, defined, for each point p in S, as the
set of all points q in the plane such that p is a closest neighbor of q in S. Such a
diagram is useful in a host of different applications, including the construction of
data structures to answer nearest-neighbor queries.

a. Show that each cell in a Voronoi diagram is convex.
b. Show that if p and q are a closest pair of points in the set S, then the Voronoi

cells V (p) and V (q) touch.
c. Show that a point p is on the boundary of the convex hull of the set S if

and only if the Voronoi cell V (p) for p is unbounded.

A-22.10 Given a set S of points in the plane, define the Delaunay triangulation of S to
be the set of all triangles (p, q, r) such that p, q, and r are in S and the circle
defined to have these points on its boundary is empty—it contains no points of S
in its interior. Such triangulations have many applications to modeling problems,
as Delaunay triangulations tend to avoid “long and skinny” triangles, which are
bad for modeling applications.

a. Show that if p and q are a closest pair of points in the set S, then p and q
are joined by an edge in the Delaunay triangulation.

b. Show that the Voronoi cells V (p) and V (q), as defined in the previous
exercise, share an edge in the Voronoi diagram of a point set S if and only
if p and q are joined by an edge in the Delaunay triangulation of S.

Chapter Notes
The convex hull algorithm we present in this chapter is a variant of an algorithm given
by Graham [91]. The plane-sweep algorithm we present for intersecting orthogonal line
segments is due to Bentley and Ottmann [31]. The closest point algorithm we present
combines ideas of Bentley [27] and Hinrichs et al. [98].

There are several excellent books for computational geometry, including books by
Edelsbrunner [62], Mehlhorn [159], O’Rourke [165], Preparata and Shamos [173], Berg
et al. [32], and handbooks edited by Goodman and O’Rourke [87], and Pach [166]. Other
sources for further reading include surveys by Aurenhammer [17], Lee and Preparata [140],
and book chapters by Goodrich [88], Lee [139], and Yao [218]. Also, the books by
Sedgewick [188, 189] contain several chapters on computational geometry, which have
some very nice figures. Indeed, the figures in Sedgewick’s books have inspired many of
the figures we present in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

23 String Algorithms

Algorithms Book Word Cloud, 2014. Word cloud produced by frequency rank-
ing the words in this book using wordcloud.cs.arizona.edu. Used with permis-
sion.

Contents

23.1 String Operations . 653
23.2 The Boyer-Moore Algorithm 656
23.3 The Knuth-Morris-Pratt Algorithm 660
23.4 Hash-Based Lexicon Matching 664
23.5 Tries . 669
23.6 Exercises . 680

www.it-ebooks.info

http://www.it-ebooks.info/

652 Chapter 23. String Algorithms

Document processing is one of the main applications of computers. We use

computers to edit documents, to search documents, to transport documents over the

Internet, and to display documents on printers and computer screens. Web search-

ing is a significant and important document processing application, and many of the

key computations in all of this document processing involve character strings and

string pattern matching. For example, the Internet document formats HTML and

XML are primarily text formats, with added links to multimedia content. Making

sense of the many terabytes of information on the Internet requires a considerable

amount of text processing.

In this chapter, we study several fundamental text processing algorithms for

quickly performing important operations on strings of characters. We pay partic-

ular attention to algorithms for string searching and pattern matching, since these

can often be computational bottlenecks in many document processing applications.

We also study some fundamental algorithmic issues involved in text processing, as

well.

Not surprisingly, text processing algorithms operate primarily on inputs that use

character strings as the underlying data type of the objects involved. The terminol-

ogy and notation for strings, as used in this chapter, is fairly intuitive, and it turns

out that representing a string as an array of characters is simple and efficient. Here,

we typically think of the input size, n, as referring to the length of the strings used

as inputs. So we don’t spend a lot of attention discussing data structures for string

representations. For instance, we can think of a string simply as an array of char-

acters, with many string operations amounting to simple query operations on such

arrays. Nevertheless, string processing often involves an interesting method for

string pattern matching, and we study pattern matching algorithms in this chapter.

We also study the trie data structure, which is a tree-based structure that allows

for fast searching in a collection of strings. One of the special cases of this data

structure is the suffix trie, which allows for a number of interesting queries to be

performed on strings.

We should also mention that there are several string problems discussed in pre-

vious chapters. For instance, we discuss an important text processing problem in

Section 10.3—namely, the problem of compressing a document of text so that it fits

more efficiently in storage or can be transmitted more efficiently over a network. In

addition, in Section 12.5, we deal with how we can measure the similarity between

two documents, based on the use of dynamic programming to solve the longest

common subsequence problem. All of these problems are topics that arise often

in Internet computations, such as web crawlers, search engines, document distribu-

tion, and information retrieval. We discuss, for instance, how the trie data structure

can be used to implement a supporting data structure for a search engine.

www.it-ebooks.info

http://www.it-ebooks.info/

23.1. String Operations 653

23.1 String Operations
Text documents are ubiquitous in modern computing, as they are used to communi-

cate and publish information. From the perspective of algorithm design, such doc-

uments can be viewed as simple character strings. That is, they can be abstracted

as a sequence of the characters that make up their content. Performing interesting

searching and processing operations on such data, therefore, requires that we have

efficient methods for dealing with character strings.

At the heart of algorithms for processing text are methods for dealing with char-

acter strings. Character strings can come from a wide variety of sources, including

scientific, linguistic, and Internet applications. Indeed, the following are examples

of such strings:

P = "CGTAAACTGCTTTAATCAAACGC"

R = "U.S. Lands an Astronaut on Mars!"

S = "http://www.wiley.com/college/goodrich/".

The first string, P , comes from DNA applications, the last string, S, is the URL

for the website that accompanies this book, and the middle string, R, is a fictional

news headline. In this section, we present some of the useful operations that are

supported by string representations for processing strings.

Substrings

Several of the typical string processing operations involve breaking large strings

into smaller strings. In order to be able to speak about the pieces that result from

such operations, we use the term substring of an m-character string P to refer to

a string of the form P [i]P [i + 1]P [i + 2] · · ·P [j], for some 0 ≤ i ≤ j ≤ m − 1,

that is, the string formed by the characters in P from index i to index j, inclusive.

Technically, this means that a string is actually a substring of itself (taking i = 0
and j = m − 1), so if we want to rule this out as a possibility, we must restrict

the definition to proper substrings, which require that either i > 0 or j < m − 1.

To simplify the notation for referring to substrings, let us use P [i..j] to denote the

substring of P from index i to index j, inclusive. That is,

P [i..j] = P [i]P [i + 1] · · ·P [j].

We use the convention that if i > j, then P [i..j] is equal to the null string, which

has length 0. In addition, in order to distinguish some special kinds of substrings,

let us refer to any substring of the form P [0..i], for 0 ≤ i ≤ m − 1, as a prefix
of P , and any substring of the form P [i..m − 1], for 0 ≤ i ≤ m − 1, as a suffix
of P . For example, if we again take P to be the string of DNA given above, then

"CGTAA" is a prefix of P , "CGC" is a suffix of P , and "TTAATC" is a (proper)

substring of P . Note that the null string is a prefix and a suffix of any other string.

www.it-ebooks.info

http://www.wiley.com/college/goodrich
http://www.it-ebooks.info/

654 Chapter 23. String Algorithms

The Pattern Matching Problem

In the classic pattern matching problem on strings, we are given a text string T
of length n and a pattern string P of length m, and want to find whether P is a

substring of T . The notion of a “match” is that there is a substring of T starting at

some index i that matches P , character by character, so that

T [i] = P [0], T [i + 1] = P [1], . . . , T [i + m − 1] = P [m − 1].

That is,

P = T [i..i + m − 1].

Thus, the output from a pattern matching algorithm is either an indication that the

pattern P does not exist in T or the starting index in T of a substring matching P .

To allow for fairly general notions of a character string, we typically do not

restrict the characters in T and P to come explicitly from a well-known character

set, like the ASCII or Unicode character sets. Instead, we typically use the general

symbol Σ to denote the character set, or alphabet, from which the characters of

T and P can come. This alphabet Σ can, of course, be a subset of the ASCII or

Unicode character sets, but it could also be more general and is even allowed to

be infinite. Nevertheless, since most document processing algorithms are used in

applications where the underlying character set is finite, we usually assume that the

size of the alphabet Σ, denoted with |Σ|, is a fixed constant.

Example 23.1: Suppose we are given the text string

T = "abacaabaccabacabaabb"

and the pattern string
P = "abacab".

Then P is a substring of T . Namely, P = T [10..15].

Brute-Force Pattern Matching

The brute-force approach pattern is a technique for algorithm design when we have

something we wish to search for or when we wish to optimize some function and

we can afford to spend a considerable amount of time optimizing it. In applying this

technique in a general situation, we typically enumerate all possible configurations

of the inputs involved and pick the best of all these enumerated configurations.

In applying this technique to the pattern matching algorithm, we simply test

all the possible placements of P relative to T . This approach, shown in Algo-

rithm 23.1, is quite simple.

The brute-force pattern matching algorithm could not be simpler. It consists of

two nested loops, with the outer loop indexing through all possible starting indices

of the pattern in the text, and the inner loop indexing through each character of the

www.it-ebooks.info

http://www.it-ebooks.info/

23.1. String Operations 655

Algorithm BruteForceMatch(T, P):
Input: Strings T (text) with n characters and P (pattern) with m characters

Output: Starting index of the first substring of T matching P , or an indication

that P is not a substring of T

for i ← 0 to n − m // for each candidate index in T do
j ← 0
while (j < m and T [i + j] = P [j]) do

j ← j + 1
if j = m then

return i
return “There is no substring of T matching P .”

Algorithm 23.1: Brute-force pattern matching.

pattern, comparing it to its potentially corresponding character in the text. Thus,

the correctness of the brute-force pattern matching algorithm follows immediately.

The running time of brute-force pattern matching in the worst case is not good,

however, because, for each candidate index in T , we can perform up to m character

comparisons to discover that P does not match T at the current index. Referring

to Algorithm 23.1, we see that the outer for-loop is executed at most n − m + 1
times, and the inner loop is executed at most m times. Thus, the running time of

the brute-force method is O((n − m + 1)m), which is O(nm). Note that, when

m = n/2, this algorithm has quadratic running time O(n2).

In Figure 23.2 we illustrate the execution of the brute-force pattern matching

algorithm on the strings T and P from Example 23.1.

11 comparisons

1

a b a c a a b a c c a b a c a b a a b b

7

8

27262523

a b a c a b

a b a c a b

a b a c a b

a b a c a b

2422

10

a b a c a b

2 3 4 5 6

9

Figure 23.2: Example run of the brute-force pattern matching algorithm. The algo-

rithm performs 27 character comparisons, indicated above with numerical labels.

www.it-ebooks.info

http://www.it-ebooks.info/

656 Chapter 23. String Algorithms

23.2 The Boyer-Moore Algorithm

At first, we might feel that it is always necessary to examine every character in T
in order to locate a pattern P as a substring. But this is not always the case, for the

Boyer-Moore (BM) pattern matching algorithm, which we study in this section, can

sometimes avoid comparisons between P and a sizable fraction of the characters

in T . The only caveat is that whereas the brute-force algorithm can work even with

a potentially unbounded alphabet, the BM algorithm assumes the alphabet is of

fixed, finite size. It works most quickly when the alphabet is moderately sized and

the pattern is relatively long.

In this section, we describe a simplified version of the original BM algorithm.

The main idea is to improve the running time of the brute-force algorithm by adding

two potentially time-saving heuristics:

Looking-Glass Heuristic: When testing a possible placement of P against T , be-

gin the comparisons from the end of P and move backward to the front of P .

Character-Jump Heuristic: During the testing of a possible placement of P against

T , a mismatch of text character T [i] = c with the corresponding pattern char-

acter P [j] is handled as follows. If c is not contained anywhere in P , then

shift P completely past T [i] (for it cannot match any character in P). Other-

wise, shift P until an occurrence of character c in P gets aligned with T [i].

We will formalize these heuristics shortly, but at an intuitive level, they work as an

integrated team. The looking-glass heuristic sets up the other heuristic to allow us

to avoid comparisons between P and whole groups of characters in T . In this case

at least, we can get to the destination faster by going backward, for if we encounter

a mismatch during the consideration of P at a certain location in T , then we are

likely to avoid lots of needless comparisons by significantly shifting P relative to

T using the character-jump heuristic. The character-jump heuristic pays off big if

it can be applied early in the testing of a potential placement of P against T .

Therefore, let us define how the character-jump heuristics can be integrated

into a string pattern matching algorithm. To implement this heuristic, we define a

function last(c) that takes a character c from the alphabet and specifies how far we

may shift the pattern P if a character equal to c is found in the text that does not

match the pattern. In particular, we define last(c) as follows:

• If c is in P , last(c) is the index of the last (right-most) occurrence of c in P .

Otherwise, we conventionally define last(c) = −1.

If characters can be used as indices in arrays, then the last function can be eas-

ily implemented as a lookup table. We leave the method for computing this table

www.it-ebooks.info

http://www.it-ebooks.info/

23.2. The Boyer-Moore Algorithm 657

efficiently as a simple exercise (R-23.6). The last function will give us all the in-

formation we need to perform the character-jump heuristic. In Algorithm 23.3, we

show the BM pattern matching method. The jump step is illustrated in Figure 23.4.

Algorithm BMMatch(T, P):
Input: Strings T (text) with n characters and P (pattern) with m characters

Output: Starting index of the first substring of T matching P , or an indication

that P is not a substring of T

compute function last
i ← m − 1
j ← m − 1
repeat

if P [j] = T [i] then
if j = 0 then

return i // a match!

else
i ← i − 1
j ← j − 1

else
i ← i + m − min(j, 1 + last(T [i])) // jump step

j ← m − 1
until i > n − 1
return “There is no substring of T matching P .”

Algorithm 23.3: The Boyer-Moore pattern matching algorithm.

In Figure 23.5, we illustrate the execution of the Boyer-Moore pattern matching

algorithm on a similar input string as in Example 23.1.

Worst-Case Analysis of the Boyer-Moore Algorithm

The correctness of the BM pattern matching algorithm follows from the fact that

each time the method makes a shift, it is guaranteed not to “skip” over any possible

matches. For last(c) is the location of the last occurrence of c in P .

The worst-case running time of the BM algorithm is O(nm + |Σ|). Namely,

the computation of the last function takes time O(m + |Σ|) and the actual search

for the pattern takes O(nm) time in the worst case, the same as the brute-force

algorithm. An example of a text-pattern pair that achieves the worst case is

T =
n︷ ︸︸ ︷

aaaaaa · · · a

P = b

m−1︷ ︸︸ ︷
aa · · · a .

The worst-case performance, however, is unlikely to be achieved for English text.

www.it-ebooks.info

http://www.it-ebooks.info/

658 Chapter 23. String Algorithms

Improved Analysis of the Boyer-Moore Algorithm

Indeed, the BM algorithm is often able to skip over large portions of the text. (See

Figure 23.6.) There is experimental evidence that on English text, the average

number of comparisons done per text character is approximately 0.24 for a five-

character pattern string. The payoff is not as great for binary strings or for very short

patterns, however, in which case the KMP algorithm, discussed in Section 23.3, or,

for very short patterns, the brute-force algorithm, may be better.

We have actually presented a simplified version of the Boyer-Moore (BM) al-

gorithm. The original BM algorithm achieves running time O(n + m + |Σ|) by

using an alternative shift heuristic to the partially matched text string, whenever

it shifts the pattern more than the character-jump heuristic. This alternative shift

heuristic is based on applying the main idea from the Knuth-Morris-Pratt pattern

matching algorithm, which we discuss in the next section.

Worst-Case Improvement for String Pattern Matching

In studying the worst-case performance of the brute-force and BM pattern matching

algorithms on specific instances of the problem, such as that given in Example 23.1,

we should notice a major inefficiency. Specifically, we may perform many compar-

isons while testing a potential placement of the pattern against the text, yet if we

(a)

. a

. a . . b .

i

jl

. a . . b .

m - (1 + l)

1 + l

(b)

. a

. . . . b a

i

j l

. . . . b a

m - j

j

Figure 23.4: Illustration of the jump step in the BM algorithm, where l denotes

last(T [i]). We distinguish two cases: (a) 1 + l ≤ j, where we shift the pattern by

j − l units; (b) j < 1 + l, where we shift the pattern by one unit.

www.it-ebooks.info

http://www.it-ebooks.info/

23.2. The Boyer-Moore Algorithm 659

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

1113

The last(c) function:

c a b c d

last(c) 4 5 3 −1

Figure 23.5: An illustration of the BM pattern matching algorithm. The algorithm

performs 13 character comparisons, which are indicated with numerical labels.

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

Figure 23.6: Execution of the Boyer-Moore algorithm on an English text and pat-

tern, where a significant speedup is achieved. Note that not all text characters are

examined.

discover a pattern character that does not match in the text, then we throw away all

the information gained by these comparisons and start over again from scratch with

the next incremental placement of the pattern.

The Knuth-Morris-Pratt (or “KMP”) algorithm, which we discuss next, avoids

this waste of information and, in so doing it achieves a running time of O(n + m),
which is optimal in the worst case. That is, in the worst case any pattern matching

algorithm will have to examine all the characters of the text and all the characters

of the pattern a constant number of times.

www.it-ebooks.info

http://www.it-ebooks.info/

660 Chapter 23. String Algorithms

23.3 The Knuth-Morris-Pratt Algorithm

The main idea of the KMP algorithm is to preprocess the pattern string P so as

to compute a failure function f that indicates the proper shift of P so that, to the

largest extent possible, we can reuse previously performed comparisons. Specifi-

cally, the failure function f(j) is defined as the length of the longest prefix of P
that is a suffix of P [1..j] (note that we did not put P [0..j] here). We also use the

convention that f(0) = 0. Later, we will discuss how to compute the failure func-

tion efficiently. The importance of this failure function is that it “encodes” repeated

substrings inside the pattern itself.

Example 23.2: Consider the pattern string P = "abacab" from Example 23.1.
The KMP failure function f(j) for the string P is as shown in the following table:

j 0 1 2 3 4 5

P [j] a b a c a b

f(j) 0 0 1 0 1 2

The KMP pattern matching algorithm, shown in Algorithm 23.7, incrementally

processes the text string T comparing it to the pattern string P .

Algorithm KMPMatch(T, P):
Input: Strings T (text) with n characters and P (pattern) with m characters

Output: Starting index of the first substring of T matching P , or an indication

that P is not a substring of T

f ← KMPFailureFunction(P) // construct the failure function f for P
i ← 0
j ← 0
while i < n do

if P [j] = T [i] then
if j = m − 1 then

return i − m + 1 // a match!

i ← i + 1
j ← j + 1

else if j > 0 // no match, but we have advanced in P then
j ← f(j − 1) // j indexes just after prefix of P that must match

else
i ← i + 1

return “There is no substring of T matching P .”

Algorithm 23.7: The KMP pattern matching algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

23.3. The Knuth-Morris-Pratt Algorithm 661

Intuition Behind the KMP Algorithm

During the execution of the KMP algorithm, each time there is a match, we incre-

ment the current indices. On the other hand, if there is a mismatch and we have

previously made progress in P , then we consult the failure function to determine

the new index in P where we need to continue checking P against T . Otherwise

(there was a mismatch and we are at the beginning of P), we simply increment the

index for T (and keep the index variable for P at its beginning). We repeat this

process until we find a match of P in T or the index for T reaches n, the length

of T (indicating that we did not find the pattern P in T).

The main part of the KMP algorithm is the while-loop, which performs a com-

parison between a character in T and a character in P each iteration. Depending

upon the outcome of this comparison, the algorithm either moves on to the next

characters in T and P , consults the failure function for a new candidate character in

P , or starts over with the next index in T . The correctness of this algorithm follows

from the definition of the failure function. The skipped comparisons are actually

unnecessary, for the failure function guarantees that all the ignored comparisons

are redundant—they would involve comparing characters we already know match.

In Figure 23.8, we illustrate the execution of the KMP pattern matching algo-

rithm on the same input strings as in Example 23.1. Note the use of the failure

function to avoid redoing one of the comparisons between a character of the pat-

tern and a character of the text. Also note that the algorithm performs fewer overall

comparisons than the brute-force algorithm run on the same strings (Figure 23.2).

1

a b a c a a b a c c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

no comparison

needed here

Figure 23.8: An illustration of the KMP pattern matching algorithm. The failure

function f for this pattern is given in Example 23.2. The algorithm performs 19
character comparisons, which are indicated with numerical labels.

www.it-ebooks.info

http://www.it-ebooks.info/

662 Chapter 23. String Algorithms

Analysis of the KMP Algorithm

Excluding the computation of the failure function, the running time of the KMP

algorithm is clearly proportional to the number of iterations of the while-loop. For

the sake of the analysis, let us define k = i − j. Intuitively, k is the total amount

by which the pattern P has been shifted with respect to the text T . Note that

throughout the execution of the algorithm, we have k ≤ n. One of the following

three cases occurs at each iteration of the loop.

• If T [i] = P [j], then i increases by 1, and k does not change, since j also

increases by 1.

• If T [i] 	= P [j] and j > 0, then i does not change and k increases by at least

1, since in this case k changes from i−j to i−f(j−1), which is an addition

of j − f(j − 1), which is positive because f(j − 1) < j.

• If T [i] 	= P [j] and j = 0, then i increases by 1 and k increases by 1, since j
does not change.

Thus, at each iteration of the loop, either i or k increases by at least 1 (possibly

both); hence, the total number of iterations of the while-loop in the KMP pattern

matching algorithm is at most 2n. Of course, achieving this bound assumes that we

have already computed the failure function for P .

Constructing the KMP Failure Function

To construct the failure function used in the KMP pattern matching algorithm, we

use the method shown in Algorithm 23.9. This algorithm is another example of

a “bootstrapping” process quite similar to that used in the KMPMatch algorithm.

We compare the pattern to itself as in the KMP algorithm. Each time we have

two characters that match, we set f(i) = j + 1. Note that since we have i > j
throughout the execution of the algorithm, f(j − 1) is always defined when we

need to use it.

Algorithm KMPFailureFunction runs in O(m) time. Its analysis is analogous

to that of algorithm KMPMatch. Thus, we have the following:

Theorem 23.3: The Knuth-Morris-Pratt algorithm performs pattern matching on
a text string of length n and a pattern string of length m in O(n + m) time.

The running time analysis of the KMP algorithm may seem a little surprising

at first, for it states that, in time proportional to that needed just to read the strings

T and P separately, we can find the first occurrence of P in T . Also, it should be

noted that the running time of the KMP algorithm does not depend on the size of

the alphabet.

www.it-ebooks.info

http://www.it-ebooks.info/

23.3. The Knuth-Morris-Pratt Algorithm 663

Algorithm KMPFailureFunction(P):
Input: String P (pattern) with m characters

Output: The failure function f for P , which maps j to the length of the longest

prefix of P that is a suffix of P [1..j]
i ← 1
j ← 0
f(0) ← 0
while i < m do

if P [j] = P [i] then
// we have matched j + 1 characters

f(i) ← j + 1
i ← i + 1
j ← j + 1

else if j > 0 then
// j indexes just after a prefix of P that must match

j ← f(j − 1)
else

// we have no match here

f(i) ← 0
i ← i + 1

Algorithm 23.9: Computation of the failure function used in the KMP pattern

matching algorithm. Note how the algorithm uses the previous values of the failure

function to efficiently compute new values.

The intuition behind the worst-case efficiency of the KMP algorithm comes

from our being able to get the most out of each comparison that we do, and by our

not performing comparisons we know to be redundant. The KMP algorithm is best

suited for strings from small-size alphabets, such as DNA sequences.

Limitations for Repeated Queries

The BM and KMP pattern matching algorithms presented above speed up the

search of a pattern in a text by preprocessing the pattern (to compute the failure

function in the KMP algorithm or the last function in the BM algorithm). In some

applications, however, we would like to take a complementary approach, where

we would consider a string searching algorithms that preprocess the text to sup-

port multiple queries. This approach is suitable for applications where a series of

queries is performed on a fixed text, so that the initial cost of preprocessing the text

is compensated by a speedup in each subsequent query (for example, a website that

offers pattern matching in Shakespeare’s Hamlet or a search engine that offers web

pages on the Hamlet topic).

www.it-ebooks.info

http://www.it-ebooks.info/

664 Chapter 23. String Algorithms

23.4 Hash-Based Lexicon Matching

In this section, we discuss an approach to string pattern matching that is due to Karp

and Rabin and is based on hashing. The advantage of this approach is that it lets us

efficiently solve a generalization of the string pattern matching problem, which we

call lexicon matching. In this problem, we are given a set, L = {P1, P2, . . . , Pl},

of l different pattern strings, and a text string, T , and we would like to find all the

places in T where a pattern, Pi, is a substring. We call the set, L, the lexicon of

strings we would like to find in T .

For example, L could be a set consisting of trademarked words for a certain

company, Example.com, and T could be the text of a book published by a former

employee. A lawyer for Example.com might like to search for all the instances in

T where a trademarked word for Example.com is used. Alternatively, L could be

a set consisting of nontrivial sentences from published articles about Shakespeare

and T could be a term paper submitted by a certain student, William Fakespeare, in

a Shakespeare course. The instructor for this course might wish to know whether

William plagiarized any of the sentences from L in writing his term paper, T . Both

of these examples are possible applications of an efficient algorithm for the lexicon

matching problem.

Let h(X) be a hash function that takes a character string, X , and maps it to an

integer. (See Chapter 6.) Say that such a function is a uniform hash function for L
if, for any pattern Pk in L, the number of other patterns, Pj , with j 	= k, such that

h(Pi) = h(Pj), is O(1). Intuitively, we refer to h as a “uniform” hash function in

this case, because it spreads the hash values for the strings in L uniformly in the

range of h. Note, however, that we are not necessarily requiring that we store the

patterns in L in a hash table—each hash value for a pattern in L is instead a kind of

“fingerprint” for that pattern.

Let us assume, for the sake of simplicity, that all the patterns in the lexicon L
are of the same length, m. (We explore a more general case in Exercise C-23.13.)

The hash-based lexicon matching algorithm for L and T consists of two phases. In

the first phase, we compute the hash value of each pattern in the lexicon, L, and

insert this value, together with the index of the corresponding pattern, in a set, H .

In the second phase, we step through the text, T , and compute the hash value of the

length-m substring of T starting at that point. If we find a match with a hash value

of a pattern in the lexicon L, then we do a full character-by-character comparison

of the corresponding pattern and this substring of T to see if we have a confirmed

substring match. (See Figure 23.10.)

We give a pseudocode description of the Karp-Rabin hash-based lexicon match-

ing algorithm in Algorithm 23.11.

www.it-ebooks.info

http://www.it-ebooks.info/

23.4. Hash-Based Lexicon Matching 665

Figure 23.10: How the Karp-Rabin hash-based lexicon matching algorithm works.

A hash value, h(X), is computed for each length-m substring, X , of the text. If it

matches the hash value of a pattern, it is then confirmed as either a true match or a

false match.

Algorithm HashMatch(L, T):
Input: A set, L = {P1, . . . , Pl}, of l pattern strings, each of length m, and a

text string, T , of length n
Output: Each pair, (i, k), such that a pattern, Pk, in L, appears as a substring

of T starting at index i

1: Let H be an initially empty set of key-value pairs (with hash-value keys)

2: Let A be an initially empty list of integer pairs (for found matches)

3: for k ← 1 to l do
4: Add the key-value pair, (h(Pk), k), to H
5: for i ← 0 to n − m do
6: f ← h(T [i..i + m − 1])
7: for each key-value pair, (f, k), with key f in H do
8: // check Pk against T [i..i + m − 1]
9: j ← 0

10: while j < m and T [i + j] = Pk[j] do
11: j ← j + 1
12: if j = m then
13: Add (i, k) to A // a match at index i for Pk

14: return A

Algorithm 23.11: The Karp-Rabin hash-based lexicon matching algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

666 Chapter 23. String Algorithms

Analysis of the Karp-Rabin Algorithm

Let us analyze the Karp-Rabin hash-based lexicon matching algorithm, assuming

that computing h(X) takes O(m) time for any string, X , of length m. Since there

are l pattern strings in L, each of length m, computing the hash values for the

patterns in L and inserting all the hash-indexed pairs into H , for the patterns in L,

takes O(lm) expected time, if we implement H as a hash table, or O(lm log l) time

if we implement H using a balanced binary search tree. Similarly, each execution

of Step 6, to compute the hash value of a length-m substring of T , takes O(m)
time; hence, computing all the hash values for the length-m substrings in T takes

O(nm) time. If we implement H as a hash table, then doing each lookup for such

a computed hash value takes O(1) expected time, and if H is implemented with a

balanced binary search tree, then this lookup takes O(log l) time. Finally, the total

time for performing all the while-loops is O(lnm) in the worst case, since there

are l patterns, each of length m. Thus, the total running time of this algorithm

is O(lnm + (n + l) log l) = O(lnm + l log l) in the worst case. Of course, this

worst-case time is no better than using the brute-force algorithm to search for every

pattern in L separately.

This worst-case bound is based on the pessimistic assumption that the hash

values for the patterns in L might all be identical, however. Instead, if we assume

that the hash function, h, is a uniform hash function for L, then the number of

collisions for any hash value, h, is O(1). Under this assumption, the Karp-Rabin

hash-based lexicon matching algorithm runs in O(lm+nm) expected time, if H is

implemented with a hash table, since the number of iterations of the for-each loop

is O(1) in each invocation in this case.

23.4.1 An Optimization for Rolling Hash Functions
Suppose the patterns in L and the text T are sufficiently diverse so that the proba-

bility that any pattern in L appears as a substring at a given location in T is at most

1/m. This assumption is reasonable for real-world applications, for example, such

as in the trademarked-words or plagiarism examples given above. Under this diver-

sity assumption, the total time needed to perform all the tests for possible matches

in the text T is expected to be O(n(1/m)m) = O(n), which is optimal, since it

takes O(n) time just to input T itself.

Unfortunately, even under this diversity assumption, the running time for the

above Karp-Rabin hash-based lexicon matching algorithm is still Ω(nm), if it takes

Ω(m) time to compute the hash value of each length-m substring of the text, T (in

Step 6 of Algorithm 23.11). We can eliminate this bottleneck, however, if we use a

rolling-hash function, h, for which there exists a constant-time shift-hash function,

shiftHash(h(X[i..i + m − 1]), X, i), which takes a hash value, h(X[i..i + m −
1]), for the length-m substring, X[i..i + m − 1], starting at index i, of a string,

X , and computes the hash value, h(X[i + 1..i + m]), of the length-m substring,

www.it-ebooks.info

http://www.it-ebooks.info/

23.4. Hash-Based Lexicon Matching 667

X[i + 1..i + m], starting at index i + 1 of X . (See Figure 23.12.)

Figure 23.12: How a rolling-hash function works in the Karp-Rabin algorithm.

For example, consider polynomial-based hashing (which, as discussed in Sec-

tion 6.2.2, works well for character strings) applied to length-m character strings.

In this case, we have a seed value, a > 0, and a prime number, p > cm, where c is

the number of characters in our alphabet, and we define the hash, h(X[i..i+m−1]),
of a length-m substring, X[i..i + m − 1], of a string, x, as follows:

X[i]am−1 + X[i + 1]am−2 + · · · + X[i + m − 2]a + X[i + m − 1],

where we view each character in X as an integer in the range [0, c − 1] and all

arithmetic is done modulo p. We can compute this hash function using O(m)
arithmetic operations, by Horner’s rule, as

X[i + m − 1] + a(X[i − m − 2] + · · · + a(X[i + 1] + aX[i]) · · ·),

where all arithmetic is done modulo p.

In this case, we can compute the function, shiftHash(h(X[i..i+m−1], X, i),
as

a
(
h(X[i..i + m − 1]) − X[i]am−1

)
+ X[i + m],

which equals

X[i + 1]am−1 + X[i + 2]am−2 + · · · + X[i + m − 1]a + X[i + m],

with all arithmetic done modulo p. Also, note that we can compute this shift-hash

function using O(1) modular arithmetic operations if we have precomputed the

value of am−1 mod p and we have the hash value h(X[i..i + m − 1]).

We give a pseudocode description of the rolling-hash implementation of the

Karp-Rabin lexicon matching algorithm in Algorithm 23.13.

www.it-ebooks.info

http://www.it-ebooks.info/

668 Chapter 23. String Algorithms

Algorithm RollingHashMatch(L, T):
Input: A set, L = {P1, . . . , Pl}, of l pattern strings, each of length m, and a

text string, T , of length n
Output: Each pair, (i, k), such that a pattern, Pk, in L, appears as a substring

of T starting at index i

1: Let H be an initially empty set of key-value pairs (with hash-value keys)

2: Let A be an initially empty list of integer pairs (for found matches)

3: for k ← 1 to l do
4: Add the key-value pair, (h(Pk), k), to H
5: for i ← 0 to n − m do
6: if i = 0 then // initial hash

7: f ← h(T [0..m − 1])
8: else
9: f ← shiftHash(f, T, i)

10: for each key-value pair, (f, k), with key f in H do
11: // check Pk against T [i..i + m − 1]
12: j ← 0
13: while j < m and T [i + j] = Pk[j] do
14: j ← j + 1
15: if j = m then
16: Add (i, k) to A // a match at index i for Pk

17: return A

Algorithm 23.13: A rolling-hash implementation of the Karp-Rabin lexicon match-

ing algorithm.

Analysis of Rolling-Hash Lexicon Matching

Let us analyze this rolling-hash lexicon matching algorithm, assuming that the pat-

terns in L and T are sufficiently diverse and the rolling-hash function, h, is chosen

so that the probability that a hash value for a length-m substring of T has a match

with any pattern in L is at most 1/m. For example, in the polynomial hash function

discussed above, if the prime number, p, is chosen to be larger than cm, where c
is the number of characters in the alphabet, then the probability that two randomly

chosen length-m character strings have the same hash value is at most 1/cm. Un-

der this diversity and hash-function assumption, then, the expected running time

for the Karp-Rabin lexicon matching algorithm is O(lm + n), assuming the set

H is implemented with a hash table. This performance is due to the fact that the

expected number of O(m)-time comparisons between a pattern Pk and a length-m
substring of T is O(n/m). Note that the expected running time of O(lm + n) is

also optimal, since it takes O(lm + n) time just to read in the input strings for this

problem.

www.it-ebooks.info

http://www.it-ebooks.info/

23.5. Tries 669

23.5 Tries
A trie (pronounced “try”) is a tree-based data structure for storing strings in order

to support fast pattern matching. The main application for tries is in information

retrieval. Indeed, the name “trie” comes from the word “retrieval.” In an informa-

tion retrieval application, such as a search for a certain DNA sequence in a genomic

database, we are given a collection S of strings, all defined using the same alphabet.

The primary query operations that tries support are pattern matching and prefix
matching. The latter operation involves being given a string X , and looking for all

the strings in S that contain X as a prefix.

23.5.1 Standard Tries
Let S be a set of s strings from alphabet Σ, such that no string in S is a prefix

of another string. A standard trie for S is an ordered tree T with the following

properties (see Figure 23.14):

• Each node of T , except the root, is labeled with a character of Σ.

• The ordering of the children of an internal node of T is determined by a

canonical ordering of the alphabet Σ.

• T has s external nodes, each associated with a string of S, such that the con-

catenation of the labels of the nodes on the path from the root to an external

node v of T yields the string of S associated with v.

Thus, a trie T represents the strings of S with paths from the root to the external

nodes of T . Note the importance of assuming that no string in S is a prefix of

another string. This ensures that each string of S is uniquely associated with an

external node of T . We can always satisfy this assumption by adding a special

character that is not in the original alphabet Σ at the end of each string.

An internal node in a standard trie T can have anywhere between 1 and d chil-

dren, where d is the size of the alphabet. There is an edge going from the root r to

one of its children for each character that is first in some string in the collection S.

In addition, a path from the root of T to an internal node v at depth i corresponds

to an i-character prefix X[0..i − 1] of a string X of S. In fact, for each character

c that can follow the prefix X[0..i − 1] in a string of the set S, there is a child of

v labeled with character c. In this way, a trie concisely stores the common prefixes

that exist among a set of strings.

If there are only two characters in the alphabet, then the trie is essentially a

binary tree, although some internal nodes may have only one child (that is, it may

be an improper binary tree). In general, if there are d characters in the alphabet,

then the trie will be a multi-way tree where each internal node has between 1 and

www.it-ebooks.info

http://www.it-ebooks.info/

670 Chapter 23. String Algorithms

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

Figure 23.14: Standard trie for the strings {bear, bell, bid, bull, buy, sell, stock,

stop}.

d children. In addition, there are likely to be several internal nodes in a standard

trie that have fewer than d children. For example, the trie shown in Figure 23.14

has several internal nodes with only one child. We can implement a trie with a tree

storing characters at its nodes.

Theorem 23.4: A standard trie storing a collection S of s strings of total length
n from an alphabet of size d has the following properties:

• Every internal node of T has at most d children
• T has s external nodes
• The height of T is equal to the length of the longest string in S
• The number of nodes of T is O(n).

The worst case for the number of nodes of a trie occurs when no two strings

share a common nonempty prefix—that is, except for the root, all internal nodes

have one child.

A trie T for a set S of strings can be used to implement a dictionary whose keys

are the strings of S. Namely, we perform a search in T for a string X by tracing

down from the root the path indicated by the characters in X . If this path can be

traced and terminates at an external node, then we know X is in the dictionary. For

example, in the trie in Figure 23.14, tracing the path for “bull” ends up at an exter-

nal node. If the path cannot be traced or the path can be traced but terminates at an

internal node, then X is not in the dictionary. In the example in Figure 23.14, the

path for “bet” cannot be traced and the path for “be” ends at an internal node. Nei-

ther such word is in the dictionary. Note that in this implementation of a dictionary,

single characters are compared instead of the entire string (key).

www.it-ebooks.info

http://www.it-ebooks.info/

23.5. Tries 671

Analysis

It is easy to see that the running time of the search for a string of size m is O(dm),
where d is the size of the alphabet. Indeed, we visit at most m + 1 nodes of T and

we spend O(d) time at each node. For some alphabets, we may be able to improve

the time spent at a node to be O(1) or O(log d) by using a dictionary of characters

implemented in a hash table or lookup table. However, since d is a constant in most

applications, we can stick with the simple approach that takes O(d) time per node

visited.

Application to Word Matching

From the above discussion, it follows that we can use a trie to perform a special type

of pattern matching, called word matching, where we want to determine whether

a given pattern matches one of the words of the text exactly. (See Figure 23.15.)

Word matching differs from standard pattern matching since the pattern cannot

match an arbitrary substring of the text, but only one of its words. Using a trie,

word matching for a pattern of length m takes O(dm) time, where d is the size of

the alphabet, independent of the size of the text. If the alphabet has constant size

(as is the case for text in natural languages and DNA strings), a query takes O(m)
time, proportional to the size of the pattern. A simple extension of this scheme

supports prefix matching queries. However, arbitrary occurrences of the pattern in

the text (for example, the pattern is a proper suffix of a word or spans two words)

cannot be efficiently performed.

Standard Trie Construction

To construct a standard trie for a set S of strings, we can use an incremental algo-

rithm that inserts the strings one at a time. Recall the assumption that no string of S
is a prefix of another string. To insert a string X into the current trie T , we first try

to trace the path associated with X in T . Since X is not already in T and no string

in S is a prefix of another string, we will stop tracing the path at an internal node v
of T before reaching the end of X . We then create a new chain of node descendants

of v to store the remaining characters of X . The time to insert X is O(dm), where

m is the length of X and d is the size of the alphabet. Thus, constructing the entire

trie for set S takes O(dn) time, where n is the total length of the strings of S.

www.it-ebooks.info

http://www.it-ebooks.info/

672 Chapter 23. String Algorithms

s e e b e a r ? s e l l s t o c k !

s e e b u l l ? b u y s t o c k !

b i d s t o c k !

a

a

h e t h e b e l l ? s t o p !

b i d s t o c k !

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

a r

87 88

(a)

a

e

b

l

s

u

l

e t

e

0, 24

o

c

i

l

r

6

l

78

d

47, 58

l

30

y

36

l

12

k

17, 40,

51, 62

p

84

h

e

r

69

a

(b)

Figure 23.15: Word matching and prefix matching with a standard trie: (a) an ex-

ample text that is to be searched; (b) a standard trie for the words in the text (with

articles and prepositions, which are also known as stop words, excluded). We show

external nodes augmented with indications of the corresponding word positions.

There is a potential space inefficiency in the standard trie that has prompted the

development of the compressed trie, which is also known (for historical reasons)

as the Patricia trie. Namely, there are potentially a lot of nodes in the standard trie

that have only one child, and the existence of such nodes is a waste, for it implies

that the total number of nodes in the tree could be more than the number of words

in the corresponding text.

We discuss the compressed trie data structure in the next subsection.

www.it-ebooks.info

http://www.it-ebooks.info/

23.5. Tries 673

23.5.2 Compressed Tries
A compressed trie is similar to a standard trie but it ensures that each internal node

in the trie has at least two children. It enforces this rule by compressing chains of

single-child nodes into individual edges. (See Figure 23.16.) Let T be a standard

trie. We say that an internal node v of T is redundant if v has one child and is not

the root. For example, the trie of Figure 23.14 has eight redundant nodes. Let us

also say that a chain of k ≥ 2 edges,

(v0, v1)(v1, v2) · · · (vk−1, vk),
is redundant if

• vi is redundant for i = 1, . . . , k − 1
• v0 and vk are not redundant.

We can transform T into a compressed trie by replacing each redundant chain

(v0, v1) · · · (vk−1, vk) of k ≥ 2 edges into a single edge (v0, vk), relabeling vk

with the concatenation of the labels of nodes v1, . . . , vk.

e

b

ar ll

s

u

ll y

ell to

ck p

id

Figure 23.16: Compressed trie for the strings {bear, bell, bid, bull, buy, sell, stock,

stop}. Compare this with the standard trie shown in Figure 23.14.

Thus, nodes in a compressed trie are labeled with strings, which are substrings

of strings in the collection, rather than with individual characters. The advantage of

a compressed trie over a standard trie is that the number of nodes of the compressed

trie is proportional to the number of strings and not to their total length, as shown

in the following theorem (compare with Theorem 23.4).

Theorem 23.5: A compressed trie storing a collection S of s strings from an
alphabet of size d has the following properties:

• Every internal node of T has at least two children and at most d children
• T has s external nodes
• The number of nodes of T is O(s).

www.it-ebooks.info

http://www.it-ebooks.info/

674 Chapter 23. String Algorithms

The attentive reader may wonder whether the compression of paths provides

any significant advantage, since it is offset by a corresponding expansion of the

node labels. Indeed, a compressed trie is truly advantageous only when it is used as

an auxiliary index structure over a collection of strings already stored in a primary

structure, and is not required to actually store all the characters of the strings in the

collection. Given this auxiliary structure, however, the compressed trie is indeed

quite efficient.

Suppose, for example, that the collection S of strings is an array of strings S[0],
S[1], . . ., S[s−1]. Instead of storing the label X of a node explicitly, we represent it

implicitly by a triplet of integers (i, j, k), such that X = S[i][j..k]; that is, X is the

substring of S[i] consisting of the characters from the jth to the kth included. (See

the example in Figure 23.17. Also compare with the standard trie of Figure 23.15.)

s e e

b e a r

s e l l

s t o c k

b u l l

b u y

b i d

h e

b e l l

s t o p

0 1 2 3 4

a rS[0] =

S[1] =

S[2] =

S[3] =

S[4] =

S[5] =

S[6] =

S[7] =

S[8] =

S[9] =

0 1 2 3 0 1 2 3

(a)

1, 1, 1

1, 0, 0 0, 0, 0

4, 1, 1

0, 2, 2

3, 1, 2

1, 2, 3 8, 2, 3

6, 1, 2

4, 2, 3 5, 2, 2 2, 2, 3 3, 3, 4 9, 3, 3

7, 0 3

0, 1, 1

(b)

Figure 23.17: (a) Collection S of strings stored in an array. (b) Compact represen-

tation of the compressed trie for S.

This additional compression scheme allows us to reduce the total space for the

trie itself from O(n) for the standard trie to O(s) for the compressed trie, where n
is the total length of the strings in S and s is the number of strings in S. We must

still store the different strings in S, of course, but we nevertheless reduce the space

for the trie. In the next section, we present an application where the collection of

strings can also be stored compactly.

www.it-ebooks.info

http://www.it-ebooks.info/

23.5. Tries 675

23.5.3 Suffix Tries

One of the primary applications for tries is for the case when the strings in the col-

lection S are all the suffixes of a string X . Such a trie is called the suffix trie (also

known as a suffix tree or position tree) of string X . For example, Figure 23.18a

shows the suffix trie for the eight suffixes of string "minimize".

For a suffix trie, the compact representation presented in the previous section

can be further simplified. Namely, we can construct the trie so that the label of

each vertex is a pair (i, j) indicating the string X[i..j]. (See Figure 23.18b.) To

satisfy the rule that no suffix of X is a prefix of another suffix, we can add a special

character, denoted with $, that is not in the original alphabet Σ at the end of X (and

thus to every suffix). That is, if string X has length n, we build a trie for the set of

n strings X[i..n − 1]$, for i = 0, . . . , n − 1.

Saving Space

Using a suffix trie allows us to save space over a standard trie by using several

space compression techniques, including those used for the compressed trie. The

advantage of the compact representation of tries now becomes apparent for suffix

tries. Since the total length of the suffixes of a string X of length n is

1 + 2 + · · · + n =
n(n + 1)

2
,

storing all the suffixes of X explicitly would take O(n2) space. Even so, the suf-

fix trie represents these strings implicitly in O(n) space, as formally stated in the

following theorem.

Theorem 23.6: The compact representation of a suffix trie T for a string X of
length n uses O(n) space.

Construction

We can construct the suffix trie for a string of length n with an incremental algo-

rithm like the one given in Section 23.5.1. This construction takes O(dn2) time

because the total length of the suffixes is quadratic in n. However, the (compact)

suffix trie for a string of length n can be constructed in O(n) time with a specialized

algorithm, different from the one for general tries. This linear-time construction al-

gorithm is fairly complex, however, and is not reported here. Still, we can take

advantage of the existence of this fast construction algorithm when we want to use

a suffix trie to solve other problems.

www.it-ebooks.info

http://www.it-ebooks.info/

676 Chapter 23. String Algorithms

e nimize

nimize ze

zei mi

mize nimize ze

(a)

m i n i z em i

0 1 2 3 4 5 6 7

7, 7 2, 7

2, 7 6, 7

6, 7

4, 7 2, 7 6, 7

1, 1 0, 1

(b)

Figure 23.18: (a) Suffix trie T for the string X = "minimize". (b) Compact

representation of T , where pair (i, j) denotes X[i..j].

Using a Suffix Trie

The suffix trie T for a string X can be used to efficiently perform pattern matching

queries on text X . Namely, we can determine whether a pattern P is a substring of

X by trying to trace a path associated with P in T . P is a substring of X if and

only if such a path can be traced. The details of the pattern matching algorithm are

given in Algorithm 23.19, which assumes the following additional property on the

labels of the nodes in the compact representation of the suffix trie:

If node v has label (i, j) and Y is the string of length y associated with

the path from the root to v (included), then X[j − y + 1..j] = Y .

This property ensures that we can easily compute the start index of the pattern in

the text when a match occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

23.5. Tries 677

Algorithm suffixTrieMatch(T, P):
Input: Compact suffix trie T for a text X and pattern P
Output: Starting index of a substring of X matching P or an indication that P

is not a substring of X

p ← P.length() // length of suffix of the pattern to be matched

j ← 0 // start of suffix of the pattern to be matched

v ← T.root()
repeat

f ← true // flag indicating that no child was successfully processed

for each child w of v do
i ← start(w)
if P [j] = T [i] then

// process child w
x ← end(w) − i + 1
if p ≤ x then

// suffix is shorter than or of the same length of the node label

if P [j..j + p − 1] = X[i..i + p − 1] then
return i − j // match

else
return “P is not a substring of X”

else
// suffix is longer than the node label

if P [j..j + x − 1] = X[i..i + x − 1] then
p ← p − x // update suffix length

j ← j + x // update suffix start index

v ← w
f ← false
break out of the for loop

until f or T.isExternal(v)
return “P is not a substring of X”

Algorithm 23.19: Pattern matching with a suffix trie. We denote the label of a node

v with (start(v), end(v)), that is, the pair of indices specifying the substring of the

text associated with v.

www.it-ebooks.info

http://www.it-ebooks.info/

678 Chapter 23. String Algorithms

Suffix Trie Properties

The correctness of algorithm suffixTrieMatch follows from the fact that we search

down the trie T , matching characters of the pattern P one at a time until one of the

following events occurs:

• We completely match the pattern P .

• We get a mismatch (caught by the termination of the for-loop without a

breakout).

• We are left with characters of P still to be matched after processing an exter-

nal node.

Let m be the size of pattern P and d be the size of the alphabet. In order to

determine the running time of algorithm suffixTrieMatch, we make the following

observations:

• We process at most m + 1 nodes of the trie.

• Each node processed has at most d children.

• At each node v processed, we perform at most one character comparison

for each child w of v to determine which child of v needs to be processed

next (which may possibly be improved by using a fast dictionary to index the

children of v).

• We perform at most m character comparisons overall in the processed nodes.

• We spend O(1) time for each character comparison.

Analysis

We conclude that algorithm suffixTrieMatch performs pattern matching queries in

O(dm) time (and would possibly run even faster if we used a dictionary to index

children of nodes in the suffix trie). Note that the running time does not depend on

the size of the text X . Also, the running time is linear in the size of the pattern,

that is, it is O(m), for a constant-size alphabet. Hence, suffix tries are suited for

repetitive pattern matching applications, where a series of pattern matching queries

is performed on a fixed text.

We summarize the results of this section in the following theorem.

Theorem 23.7: Let X be a text string with n characters from an alphabet of
size d. We can perform pattern matching queries on X in O(dm) time, where m is
the length of the pattern, with the suffix trie of X , which uses O(n) space and can
be constructed in O(dn) time.

We explore another application of tries in the next subsection.

www.it-ebooks.info

http://www.it-ebooks.info/

23.5. Tries 679

23.5.4 Search Engines
The World Wide Web contains a huge collection of text documents (web pages).

Information about these pages is gathered by a program called a web crawler, which

then stores this information in a special dictionary database. A web search engine
allows users to retrieve relevant information from this database, thereby identifying

relevant pages on the web containing given keywords. In this section, we present a

simplified model of a search engine.

Inverted Files

The core information stored by a search engine is a dictionary, called an inverted
index or inverted file, storing key-value pairs (w, L), where w is a word and L
is a collection of references to pages containing word w. The keys (words) in

this dictionary are called index terms and should be a set of vocabulary entries

and proper nouns as large as possible. The elements in this dictionary are called

occurrence lists and should cover as many web pages as possible.

We can efficiently implement an inverted index with a data structure consisting

of the following:

• An array storing the occurrence lists of the terms (in no particular order)

• A compressed trie for the set of index terms, where each external node stores

the index of the occurrence list of the associated term.

The reason for storing the occurrence lists outside the trie is to keep the size of the

trie data structure sufficiently small to fit in internal memory. Instead, because of

their large total size, the occurrence lists have to be stored on disk.

With our data structure, a query for a single keyword is similar to a word match-

ing query (see Section 23.5.1). Namely, we find the keyword in the trie and we

return the associated occurrence list.

When multiple keywords are given and the desired output is the pages contain-

ing all the given keywords, we retrieve the occurrence list of each keyword using

the trie and return their intersection. To facilitate the intersection computation,

each occurrence list should be implemented with a sequence sorted by address or

with a dictionary, which allows for a simple intersection algorithm similar to sorted

sequence merging (Section 8.1).

In addition to the basic task of returning a list of pages containing given key-

words, search engines provide an important additional service by ranking the pages

returned by relevance. Devising fast and accurate ranking algorithms for search

engines is a major challenge for computer researchers and electronic commerce

companies.

www.it-ebooks.info

http://www.it-ebooks.info/

680 Chapter 23. String Algorithms

23.6 Exercises

Reinforcement
R-23.1 How many nonempty prefixes of the string P ="aaabbaaa" are also suffixes

of P ?

R-23.2 Draw a figure illustrating the comparisons done by the brute-force pattern match-
ing algorithm for the case when the text is "aaabaadaabaaa" and the pattern
is "aabaaa".

R-23.3 Repeat the previous problem for the BM pattern matching algorithm, not count-
ing the comparisons made to compute the last function.

R-23.4 Repeat the previous problem for the KMP pattern matching algorithm, not count-
ing the comparisons made to compute the failure function.

R-23.5 Compute a table representing the last function used in the BM pattern matching
algorithm for the pattern string

"the quick brown fox jumped over a lazy cat"

assuming the following alphabet (which starts with the space character):

Σ = { ,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}.

R-23.6 Assuming that the characters in alphabet Σ can be enumerated and can index
arrays, give an O(m + |Σ|) time method for constructing the last function from
an m-length pattern string P .

R-23.7 Compute a table representing the KMP failure function for the pattern string
"cgtacgttcgtac".

R-23.8 Draw a standard trie for the following set of strings:

{abab, baba, ccccc, bbaaaa, caa, bbaacc, cbcc, cbca}.
R-23.9 Draw a compressed trie for the set of strings given in Exercise R-23.8.

R-23.10 Draw the compact representation of the suffix trie for the string

"minimize minime".

R-23.11 What is the longest prefix of the string "cgtacgttcgtacg" that is also a
suffix of this string?

R-23.12 Give an example of an input instance for lexicon matching problem, with just a
single pattern in the lexicon, L, that forces the Karp-Rabin algorithm given in
Algorithm 23.11 to run in Ω(nm) time.

R-23.13 Explain why tabulation hashing, which is discussed in Section 6.2.3, is not a good
candidate for use in a rolling-hash lexicon matching algorithm.

R-23.14 Describe how to compute shiftHash(h(X[i..i+m−1]), X, i) for the hash func-
tion, h(X[i..i + m − 1]) = X[i] + · · · + X[i + m − 1], where each character is
viewed as an integer in the range [0, c − 1], with c being the size of the alphabet,
and all arithmetic is done modulo a prime, p.

www.it-ebooks.info

http://www.it-ebooks.info/

23.6. Exercises 681

Creativity
C-23.1 Give an example of a text T of length n and a pattern P of length m that

force the brute-force pattern matching algorithm to have a running time that is
Ω(nm).

C-23.2 Give a justification of why the KMPFailureFunction method (Algorithm 23.9)
runs in O(m) time on a pattern of length m.

C-23.3 Show how to modify the KMP string pattern matching algorithm so as to find
every occurrence of a pattern string P that appears as a substring in T , while
still running in O(n + m) time. (Be sure to catch even those matches that over-
lap.)

C-23.4 Let T be a text of length n, and let P be a pattern of length m. Describe an
O(n + m)-time method for finding the longest prefix of P that is a substring
of T .

C-23.5 Say that a pattern P of length m is a circular substring of a text T of length n if
there is an index 0 ≤ i < m, such that P = T [n − m + i..n − 1] + T [0..i − 1],
that is, if P is a substring of T or P is equal to the concatenation of a suffix of T
and a prefix of T . Give an O(n + m)-time algorithm for determining whether P
is a circular substring of T .

C-23.6 The KMP pattern matching algorithm can be modified to run faster on binary
strings by redefining the failure function as

f(j) = the largest k < j such that P [0..k − 2]P [k − 1] is a suffix of P [1..j],

where overlineP [k] denotes the complement of the kth bit of P . Describe how
to modify the KMP algorithm to be able to take advantage of this new failure
function and also give a method for computing this failure function. Show that
this method makes at most n comparisons between the text and the pattern (as
opposed to the 2n comparisons needed by the standard KMP algorithm given in
Section 23.3).

C-23.7 Modify the simplified BM algorithm presented in this chapter using ideas from
the KMP algorithm so that it runs in O(n + m) time.

C-23.8 Consider the substring pattern matching problem for a length-m pattern, P , and
a length-n text, T , where one of the characters in P is a symbol, “?,” which
is not in the alphabet for the text. This symbol, “?,” is a wild-card character,
which matches with any character of the alphabet for the text. The pattern, P ,
contains exactly one “?” symbol. Show how to modify the Karp-Rabin matching
algorithm for this single-pattern instance of the lexicon matching problem so that
the expected running time of the resulting algorithm is O(n + m).

C-23.9 Show how to perform prefix matching queries using a suffix trie.

C-23.10 Give an efficient algorithm for deleting a string from a standard trie and analyze
its running time.

C-23.11 Give an efficient algorithm for deleting a string from a compressed trie and ana-
lyze its running time.

www.it-ebooks.info

http://www.it-ebooks.info/

682 Chapter 23. String Algorithms

C-23.12 Describe an algorithm for constructing the compact representation of a suffix trie
and analyze its running time.

C-23.13 Describe a generalized version of the Karp-Rabin lexicon matching algorithm
for the case when their are k different possible pattern sizes. Characterize the
running time of this algorithm in terms of n, k, and the total size, N , of all the
patterns in the lexicon.

Applications
A-23.1 When a web crawler is exploring the Internet looking for content to index for a

search engine, the crawler needs some way of detecting when it is visiting a copy
of a website it has encountered before. Describe a way for a web crawler to store
its web pages efficiently so that it can detect in O(n) time whether a web page of
length n has been previously encountered and, if not, add it to the collection of
previously encountered web pages in O(1) additional time.

A-23.2 Search engines need a fast way to detect and ignore stop words, that is, words,
such as prepositions, pronouns, and articles, that are very common and carry no
meaningful information content. Describe an efficient method for storing and
searching a set of stop words in a way that supports stop-word identification in
constant time for all constant-length stop words.

A-23.3 DNA strings are sometimes spliced into other DNA strings as a product of re-
combinant DNA processes. But DNA strings can be read in what would be either
the forward or backward direction for a standard character string. Thus, it is use-
ful to be able to identify prefixes and their reversals. Let T be a DNA text string
of length n. Describe an O(n)-time method for finding the longest prefix of T
that is a substring of the reversal of T .

A-23.4 Linguists are interested in studying the way in which words are constructed, with
common prefixes and suffixes giving important clues to the meanings of words
they are contained in. Thus, a useful tool for a linguist would be to be able to
identify all the words in a given collection, W , of words, that have the same
prefix, p, or suffix, s. Indeed, it is useful even to just know the number of such
words in W . Describe how to build a data structure for W that can quickly
answer, for any prefix, p, or suffix, s, the number of words in W that have the
prefix p or suffix s. What is the performance of your method?

A-23.5 One way to mask a message, M , using a version of steganography, is to insert
random characters into M at pseudo-random locations so as to expand M into a
larger string, C. For instance, the message,

ILOVEMOM,

could be expanded into

AMIJLONDPVGEMRPIOM.

It is an example of hiding the string, M , in plain sight, since the characters in
M and C are not encrypted. As long as someone knows where the random

www.it-ebooks.info

http://www.it-ebooks.info/

23.6. Exercises 683

characters where inserted, he or she can recover M from C. The challenge for
law enforcement, therefore, is to prove when someone is using this technique,
that is, to determine whether a string C contains a message M in this way. Thus,
describe an O(n)-time method for detecting if a string, M , is a subsequence of a
string, C, of length n.

A-23.6 Consider the previous exercise, but now suppose that the masking process first
pads many random characters to form a prefix and suffix of M before adding a
few random characters at various locations in the middle of M . Thus, a likely
message, M , is one that is much shorter than the host string, C. Describe an
O(n2)-time algorithm for determining if M is a subsequence of C, and, if so,
returns the shortest substring of C having M as a subsequence.

A-23.7 Suppose Bill is graduate of Slacker University, and he took a little “shortcut”
when he was asked to build a software system that could take a pattern, P , of
length, m, and text, T , of length, n, with both defined over the same alphabet of
size d for some constant d > 1, and determine whether P is a substring of T .
Namely, Bill’s software simply returns the answer “no” whenever it is asked to
determine whether a pattern P of length m is contained in a text T of length n.
When confronted by his Boss about this software, Bill replied that his software
system is almost always correct, that is, Bill claims that his software fails with
probability that is o(1) as a function of m and n. Give an asymptotic charac-
terization of the probability that Bill’s simple algorithm incorrectly determines
whether P is a substring in T , assuming that all possible pattern strings of length
m are equally likely. Is Bill right about his software?

A-23.8 Suppose the trustee for the estate of famous photographer, Ansel Adams, was
interested in finding examples of people posting Ansel Adams photographs on
their personal websites without including attributions to him. Suppose further
that some of these people have tried to conceal their possible copyright infringe-
ment by cropping the image down to be a smaller size. Thus, given a candidate
image, P , taken from someone’s personal website, and his own photograph, T ,
Mr. Adams is interested in determining whether it is possible to create the im-
age P by cropping the image T . Assuming that P and T are square images,
this problem can be easily modeled as a two-dimensional version of the pattern
matching problem. In two-dimensional pattern matching, a pattern, P , is given
as an m × m array of characters, and the text, T , is given as an n × n array
of characters, and we are interested in finding a location, (i, j), such that P is a
submatrix of T when shifted to the location, (i, j). That is,

P [k, l] = T [i + k, j + l],

for k = 0, . . . , m − 1 and l = 0, . . . , m − 1. In the context of the problem
of interest for the trustee of the estate of Ansel Adams, each pixel in an image
could be viewed as a character (corresponding, for example, to an 8-bit intensity
value in a black-and-white image). Describe an efficient algorithm for solving
this two-dimensional pattern matching problem. What are the worst-case and
expected-case running times for your algorithm?

www.it-ebooks.info

http://www.it-ebooks.info/

684 Chapter 23. String Algorithms

Chapter Notes
The KMP algorithm is described by Knuth, Morris, and Pratt in their journal article [132].
Boyer and Moore published their algorithm in the same year [35]. In their article, Knuth
et al. [132] also prove that the BM algorithm runs in linear time. More recently, Cole [46]
shows that the BM algorithm makes at most 3n character comparisons in the worst case,
and this bound is tight. Hashing-based pattern matching is presented by Karp and Ra-
bin [123]. Some of the algorithms presented in this chapter are also discussed in the book
chapter by Aho [7], albeit in a more theoretical framework. The reader interested in further
study of string pattern matching algorithms is referred to the book by Stephen [200] and
the book chapters by Aho [7] and Crochemore and Lecroq [52].

The trie was invented by Morrison [161] and is discussed extensively in the classic
book Sorting and Searching by Knuth [131]. The name “Patricia” is short for “Practical
Algorithm to Retrieve Information Coded in Alphanumeric” [161]. McCreight [148] shows
how to construct suffix tries in linear time. An introduction to the field of information re-
trieval, which includes a discussion of search engines for the World Wide Web, is provided
in the book by Baeza-Yates and Ribeiro-Neto [20].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

24 Cryptography

Union code book used in the U.S. Civil War. U.S. government Image. NSA.

Contents

24.1 Greatest Common Divisors (GCD) 687
24.2 Modular Arithmetic . 691
24.3 Cryptographic Operations 699
24.4 The RSA Cryptosystem 703
24.5 The El Gamal Cryptosystem 706
24.6 Exercises . 708

www.it-ebooks.info

http://www.it-ebooks.info/

686 Chapter 24. Cryptography

Computers today are used for a multitude of sensitive applications. Customers

utilize electronic commerce to make purchases and pay their bills. Businesses use

the Internet to share sensitive company documents and interact with business part-

ners. Governments use computers to keep track of personal information about their

citizens. Hospitals use databases to track patients and their billing information.

And universities use networks of computers to store personal information about

students and their grades. Each of us has an abundance of private and personal

information that is being stored and transmitted by computers today.

Such sensitive information can be potentially damaging if it is altered, de-

stroyed, or falls into the wrong hands. Thus, we should use powerful techniques

to protect our sensitive data. In this chapter, we discuss several powerful algorith-

mic techniques for protecting sensitive information, so as to achieve the following

goals:

• Data integrity: Information should not be altered without detection. For

example, it is important to prevent the modification of purchase orders or

other contractually binding documents transmitted electronically.

• Authentication: Individuals and organizations that are accessing or commu-

nicating sensitive information must be correctly identified, that is, authen-

ticated. For example, corporations offering telecommuting arrangements to

their employees should set up an authentication procedure for accessing cor-

porate databases through the Internet.

• Authorization: Agents that are performing computations involving sensitive

information must be authorized to perform those computations.

• Nonrepudiation: In transactions that imply a contract, the parties that have

agreed to that contract must not have the ability of backing out of their obli-

gations without being detected.

• Confidentiality: Sensitive information should be kept secret from individuals

who are not authorized to see that information. That is, we must ensure that

data is viewed by the sender and by the receiver, but not by unauthorized

parties who can eavesdrop on the communication. For example, many email

messages are meant to be confidential.

Many of the techniques we discuss in this chapter for achieving the above goals

utilize number theory. Thus, we begin this chapter by discussing a number of

important number theory concepts and algorithms. We describe the ancient, yet

surprisingly efficient, Euclid’s algorithm for computing greatest common divisors,

as well as algorithms for computing modular exponents and inverses. We show how

many of these number theory algorithms can be used in cryptographic algorithms

that implement computer security services. We focus on encryption, including the

popular public-key encryption schemes, RSA and El Gamal.

www.it-ebooks.info

http://www.it-ebooks.info/

24.1. Greatest Common Divisors (GCD) 687

24.1 Greatest Common Divisors (GCD)

Many modern encryption schemes, like RSA and El Gamal, are based on view-

ing messages as numbers and using number-theoretic algorithms to process them.

Thus, before we discuss some of these well-known encryption schemes, we should

first discuss several fundamental algorithms for performing important computa-

tions involving numbers. Throughout this discussion, we assume that all variables

are integers. Also, proofs of some mathematical facts are left as exercises.

24.1.1 Some Facts from Elementary Number Theory

To get us started, we need some facts from elementary number theory, including

some notation and definitions. Given positive integers a and b, we use the notation

a|b
to indicate that a divides b, that is, b is a multiple of a. If a|b, then we know that

there is some integer k, such that b = ak. The following properties of divisibility

follow immediately from this definition.

Theorem 24.1: Let a, b, and c be arbitrary integers. Then

• If a|b and b|c, then a|c.

• If a|b and a|c, then a|(ib + jc), for all integers i and j.

• If a|b and b|a, then a = b or a = −b.

Proof: See Exercise C-24.1.

Recall that an integer p is prime if p ≥ 2 and its only divisors are the trivial

divisors 1 and p. Thus, in the case that p is prime, d|p implies d = 1 or d = p. An

integer greater than 2 that is not prime is composite. We also have the following:

Theorem 24.2 (Fundamental Theorem of Arithmetic): Let n > 1 be an in-
teger. Then there is a unique set of prime numbers {p1, . . . , pk} and positive integer
exponents {e1, . . . , ek}, such that

n = pe1
1 · · · pek

k .

The product pe1
1 · · · pek

k is known as the prime decomposition of n in this case.

Theorem 24.2 and the notion of unique prime decomposition is the basis of several

cryptographic schemes.

www.it-ebooks.info

http://www.it-ebooks.info/

688 Chapter 24. Cryptography

The Greatest Common Divisor (GCD)

The greatest common divisor of positive integers a and b, denoted gcd(a, b), is the

largest integer that divides both a and b. Alternatively, we could say that gcd(a, b)
is the number c, such that if d|a and d|b, then d|c. If gcd(a, b) = 1, we say that a
and b are relatively prime. We extend the notion of greatest common divisor to a

pair of arbitrary integers by the following two rules:

• gcd(a, 0) = gcd(0, a) = a.

• gcd(a, b) = gcd(|a|, |b|), which takes care of negative values.

Thus, gcd(12, 0) = 12, gcd(10 403, 303) = 101, and gcd(−12, 78) = 6.

Relating the Modulo Operator and the GCD

The following theorem gives an alternative characterization of the greatest common

divisor. Its proof makes use of the modulo operator.

Theorem 24.3: For any positive integers a and b, gcd(a, b) is the smallest posi-
tive integer d such that d = ia + jb for some integers i and j. In other words, if d
is the smallest positive integer linear combination of a and b, then d = gcd(a, b).

Proof: Suppose d is the smallest integer such that d = ia + jb for integers i and

j. Note that, immediately from the definition of d, any common divisor of both a
and b is also a divisor of d. Thus, d ≥ gcd(a, b). To complete the proof, we need

to show that d ≤ gcd(a, b).
Let h =
a/d�. That is, h is the integer such that a mod d = a − hd. Then

a mod d = a − hd

= a − h(ia + jb)
= (1 − hi)a + (−hj)b.

In other words, a mod d is also an integer linear combination of a and b. Moreover,

by the definition of the modulo operator, a mod d < d. But d is the smallest

positive integer linear combination of a and b. Thus, we must conclude that a mod
d = 0, which implies that d|a. In addition, by a similar argument, we get that d|b.

Thus, d is a divisor of both a and b, which implies d ≤ gcd(a, b).

As we will show in Section 24.2, this theorem shows that the gcd function is

useful for computing multiplicative modular inverses. In the next subsection, we

show how to quickly compute the gcd function.

www.it-ebooks.info

http://www.it-ebooks.info/

24.1. Greatest Common Divisors (GCD) 689

24.1.2 Euclid’s GCD Algorithm
To compute the greatest common divisor of two numbers, we can use one of the

oldest algorithms known, Euclid’s algorithm. This algorithm is based on the fol-

lowing property of gcd(a, b):

Lemma 24.4: Let a and b be two positive integers. For any integer r, we have

gcd(a, b) = gcd(b, a − rb).

Proof: Let d = gcd(a, b) and c = gcd(b, a− rb). That is, d is the largest integer

such that d|a and d|b, and c is the largest integer such that c|b and c|(a − rb). We

want to prove that d = c. By the definition of d, the number

(a − rb)/d = a/d − r(b/d)

is an integer. Thus, d divides both a and a − rb; hence, d ≤ c.

By the definition of c, k = b/c must be an integer, since c|b. Moreover,

(a − rb)/c = a/c − rk

must also be an integer, since c|(a− rb). Thus, a/c must also be an integer, that is,

c|a. Therefore, c divides both a and b; hence, c ≤ d. We conclude then that d = c.

Lemma 24.4 leads us easily to an ancient algorithm, known as Euclid’s algo-

rithm, for computing the greatest common divisor (GCD) of two numbers, shown

next in Algorithm 24.1.

Algorithm EuclidGCD(a, b):
Input: Nonnegative integers a and b
Output: gcd(a, b)

if b = 0 then
return a

return EuclidGCD(b, a mod b)
Algorithm 24.1: Euclid’s GCD algorithm.

An example of the execution of Euclid’s algorithm is shown in Table 24.2.

1 2 3 4 5 6 7

a 412 260 152 108 44 20 4

b 260 152 108 44 20 4 0

Table 24.2: Example of an execution of Euclid’s algorithm to compute

gcd(412, 260) = 4. The arguments a and b of each recursive invocation of method

EuclidGCD(412, 260) are shown left-to-right, with the column headings showing

the level of recursion in the EuclidGCD method.

www.it-ebooks.info

http://www.it-ebooks.info/

690 Chapter 24. Cryptography

Analyzing Euclid’s Algorithm

Let us analyze the running time of Euclid’s GCD algorithm. The number of arith-

metic operations performed by method EuclidGCD(a, b) is proportional to the

number of recursive calls. So to bound the number of arithmetic operations per-

formed by Euclid’s algorithm, we need only bound the number of recursive calls.

First, we observe that after the first call, the first argument is always larger than

the second one. For i > 0, let ai be the first argument of the ith recursive call of

method EuclidGCD. Clearly, the second argument of a recursive call is equal to

ai+1, the first argument of the next call. Also, we have

ai+2 = ai mod ai+1,

which implies that the sequence of the ai’s is strictly decreasing. We will now show

that the sequence decreases quickly. Specifically, we claim that

ai+2 <
1
2
ai.

To prove the claim, we distinguish two cases:

Case 1: ai+1 ≤ 1
2ai. Since the sequence of the ai’s is strictly decreasing, we have

ai+2 < ai+1 ≤ 1
2
ai.

Case 2: ai+1 > 1
2ai. In this case, since ai+2 = ai mod ai+1, we have

ai+2 = ai mod ai+1 = ai − ai+1 <
1
2
ai.

Thus, the size of the first argument to the EuclidGCD method decreases by half

with every other recursive call. We may therefore summarize the above analysis as

follows.

Theorem 24.5: Let a and b be two positive integers. Euclid’s algorithm computes
gcd(a, b) by executing O(log max(a, b)) arithmetic operations.

We note that the complexity bound here is based on counting arithmetic op-

erations, which themselves can be implemented to have reasonably-fast running

times as a function of their input sizes, which are defined by the number of bits of

the numbers involved. Moreover, note that the numbers, a and b, are represented

using O(log max(a, b)) bits. So if we let n denote the input size for Euclid’s algo-

rithm, in bits, then we can characterize its performance as using O(n) arithmetic

operations.

www.it-ebooks.info

http://www.it-ebooks.info/

24.2. Modular Arithmetic 691

24.2 Modular Arithmetic

Let Zn denote the set of nonnegative integers less than n:

Zn = {0, 1, · · · , (n − 1)}.
The set Zn is also called the set of residues modulo n, because if b = a mod
n, b is sometimes called the residue of a modulo n. Modular arithmetic in Zn,

where operations on the elements of Zn are performed modn, exhibits properties

similar to those of traditional arithmetic, such as the associativity, commutativity,

distributivity of addition and multiplication, and the existence of identity elements

0 and 1 for addition and multiplication, respectively. Moreover, in any arithmetic

expression, reducing each of its subexpressions modulo n produces the same result

as computing the entire expression and then reducing that value modulo n. Also,

every element x in Zn has an additive inverse, that is, for each x ∈ Zn, there is a

y ∈ Zn such that x + y mod n = 0. For example, the additive inverse of 5 modulo

11 is 6.

When it comes to multiplicative inverses, however, an important difference

arises. Let x be an element of Zn. A multiplicative inverse of x is an element

z−1 ∈ Zn such that xx−1 ≡ 1 mod n. For example, the multiplicative inverse of

5 modulo 9 is 2, that is, 5−1 = 2 in Z9. As in standard arithmetic, 0 does not have

a multiplicative inverse in Zn. Interestingly, some nonzero elements also may not

have a multiplicative inverse in Zn. For example, 3 does not have a multiplica-

tive inverse in Z9. However, if n is prime, then every element x 	= 0 of Zn has a

multiplicative inverse in Zn (1 is its own multiplicative inverse).

Theorem 24.6: An element x > 0 of Zn has a multiplicative inverse in Zn if and
only if gcd(x, n) = 1 (that is, x and n have no common factors other than 1).

Proof: Suppose that gcd(x, n) = 1. By Theorem 24.3, there are integers i and

j such that ix + jn = 1. This implies ix mod n = 1, that is, i mod n is the

multiplicative inverse of x in Zn, which proves the “if” part of the theorem.

To prove the “only if” part, suppose, for a contradiction, that x > 1 divides n,

and there is an element y such that xy ≡ 1 mod n. We have xy = kn+1, for some

integer k. Thus, we have found integers i = y and j = −k such that ix + jn = 1.

By Theorem 24.3, this implies that gcd(x, n) = 1, a contradiction.

Recall that if gcd(x, n) = 1, we say x and n are relatively prime (1 is relatively

prime to all other integers). Thus, Theorem 24.6 implies that x has a multiplicative

inverse in Zn if and only if x is relatively prime to n. In addition, Theorem 24.6

implies that the sequence 0, x, 2x, 3x, . . . , (n − 1)x is simply a reordering of the

elements of Zn, that is, it is a permutation of the elements Zn.

www.it-ebooks.info

http://www.it-ebooks.info/

692 Chapter 24. Cryptography

Example Multiplicative Inverses

In Table 24.3, we show the multiplicative inverses of the elements of Z11 as an

example. When the multiplicative inverse x−1 of x exists in Zn, the notation y/x
in an expression taken modulo n means “y x−1 mod n.”

x 0 1 2 3 4 5 6 7 8 9 10

x−1 mod 11 1 6 4 3 9 2 8 7 5 10

Table 24.3: Multiplicative inverses of the elements of Z11.

In Table 24.4, we show the powers of the nonnull elements of Z11. We observe

the following interesting patterns:

• The last column of the table, with the values x10 mod 11 for x = 1, · · · , 10,

contains all ones, as given by Fermat’s Little Theorem (19.5).

• In row 1, a subsequence of one element (1), is repeated ten times.

• In row 10, a subsequence of two elements, ending with 1, is repeated five

times, since 102 mod 11 = 1.

• In rows 3, 4, 5, and 9, a subsequence of five elements, ending with 1, is

repeated twice.

• In each of the rows 2, 6, 7, and 8, the ten elements are all distinct.

• The lengths of the subsequences forming the rows of the table, and their

number of repetitions, are the divisors of 10, that is, 1, 2, 5, and 10.

x x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1 1 1 1 1 1 1 1 1

2 4 8 5 10 9 7 3 6 1

3 9 5 4 1 3 9 5 4 1

4 5 9 3 1 4 5 9 3 1

5 3 4 9 1 5 3 4 9 1

6 3 7 9 10 5 8 4 2 1

7 5 2 3 10 4 6 9 8 1

8 9 6 4 10 3 2 5 7 1

9 4 3 5 1 9 4 3 5 1

10 1 10 1 10 1 10 1 10 1

Table 24.4: Successive powers of the elements of Z11 modulo 11.

www.it-ebooks.info

http://www.it-ebooks.info/

24.2. Modular Arithmetic 693

Euler’s Totient Function

Euler’s totient function of a positive integer n, denoted φ(n), is defined as the

number of positive integers less than or equal to n that are relatively prime to n.

That is, φ(n) is equal to the number of elements in Zn that have multiplicative

inverses in Zn. If p is a prime, then

φ(p) = p − 1.

Indeed, since p is prime, each of the numbers 1, 2, . . . , p− 1 are relatively prime to

it, and φ(p) = p − 1.

What if n isn’t a prime number? Suppose n = pq, where p and q are distinct

primes. How many numbers are relatively prime to n? Well, initially, we observe

that there are pq positive integers between 1 and n. However, q of them (including

n) are multiples of p, and so they have a gcd of p with n. Similarly, there are

p multiples of q (again, including n). Those multiples can’t be counted in φ(n).
Thus, we see that

φ(n) = pq − q − (p − 1) = (p − 1)(q − 1).

Euler’s totient function is closely related to an important subset of Zn known as

the multiplicative group for Zn, which is denoted as Z∗
n. The set Z∗

n is defined to

be the set of integers between 1 and n that are relatively prime to n. If n is prime,

then Z∗
n consists of the n − 1 nonzero elements in Zn, that is,

Z∗
n = {1, 2, . . . , n − 1},

if n is prime. In general, Z∗
n contains φ(n) elements.

The set Z∗
n possesses several interesting properties, with one of the most impor-

tant being that this set is closed under multiplication modulo n. That is, for any pair

of elements a and b of Z∗
n, we have that c = ab mod n is also in Z∗

n. Indeed, by

Theorem 24.6, a and b have multiplicative inverses in Zn. To see that Z∗
n has this

closure property, let d = a−1b−1 mod n. Clearly, cd mod n = 1, which implies

that d is the multiplicative inverse of c in Zn. Thus, again applying Theorem 24.6,

we have that c is relatively prime to n, that is, c ∈ Z∗
n. In algebraic terminology, we

say that Z∗
n is a group, which is a shorthand way of saying that each element in Z∗

n

has a multiplicative inverse and multiplication in Z∗
n is associative, has an identity,

and is closed in Z∗
n.

The fact that Z∗
n has φ(n) elements and is a multiplicative group naturally leads

to an extension of Fermat’s Little Theorem (19.5). Recall that in Fermat’s Little

Theorem, the exponent is p − 1 = φ(p), since p is prime. As it turns out, a gen-

eralized form of Fermat’s Little Theorem is true, too. This generalized form is

presented in the following, which is known as Euler’s Theorem.

www.it-ebooks.info

http://www.it-ebooks.info/

694 Chapter 24. Cryptography

Euler’s Theorem

Theorem 24.7 (Euler’s Theorem): Let n be a positive integer, and let x be an
integer such that gcd(x, n) = 1. Then

xφ(n) ≡ 1 (mod n).

Proof: The proof technique is similar to that of Fermat’s Little Theorem. Denote

the elements of set Z∗
n, the multiplicative group for Zn, as u1, u2, . . . , uφ(n). By

the closure property of Z∗
n,

Z∗
n = {xui : i = 1, · · · , φ(n)},

that is, multiplying elements in Z∗
n by x modulo n merely permutes the sequence

u1, u2, . . . , uφ(n). Thus, multiplying together the elements of Z∗
n, we obtain

(xu1) · (xu2) · · · (xuφ(n)) ≡ u1 u2 · · ·uφ(n) (mod n).

Again, we collect a term xφ(n) on one side, giving us the congruence

xφ(n)(u1 u2 · · ·uφ(n)) ≡ u1 u2 · · ·uφ(n) (mod n).

Dividing by the product of the ui’s, gives us xφ(n) ≡ 1 mod n.

Theorem 24.7 gives a closed-form expression for the multiplicative inverses.

Namely, if x and n are relatively prime, we can write

x−1 ≡ xφ(n)−1 (mod n).

Generators

Given a prime p and an integer a between 1 and p−1, the order of a is the smallest

exponent e > 1 such that

ae ≡ 1 mod p.

A generator (also called primitive root) of Zp is an element g of Zp with order p−1.

We use the term “generator” for such an element a, because the repeated exponen-

tiation of a can generate all of Z∗
p . For example, as shown in Table 24.4, the

generators of Z11 are 2, 6, 7, and 8. Generators play an important role in many

computations, including several in image analysis and cryptography. The existence

of generators is established by the following theorem, stated without proof.

Theorem 24.8: If p is a prime, then set Zp has φ(p − 1) generators.

www.it-ebooks.info

http://www.it-ebooks.info/

24.2. Modular Arithmetic 695

24.2.1 Modular Exponentiation

Suppose we want to compute 30,19243,791 mod 65,301. Multiplying 30,192 by

itself 43,791 times and then taking the result modulo 65,301 will yield unpre-

dictable results in most programming languages due to arithmetic overflows. Thus,

we should take the modulo after each multiplication, keeping the numbers in Zn,

where n = 65,301 is the modulus.

The Main Drawback with This Naive Approach

Unfortunately, although this “naive” exponentiation algorithm is correct, it is inef-

ficient, for it requires Θ(p) multiplications and divisions, where p is the exponent.

With large exponents, this running time would be quite slow, since it is exponential

in the size of the input, which is the number of bits needed to represent the various

input numbers. Fortunately, there is a better algorithm.

The Repeated Squaring Algorithm

A simple but important observation for an improved exponentiation algorithm is

that squaring a number ap is equivalent to multiplying its exponent p by two. In

addition, multiplying two numbers ap and aq is equivalent to computing a(p+q).

Based on these observations, we can evaluate ap mod n with the recursive compu-

tation, called the repeated squaring method, given in Algorithm 24.5.

Algorithm FastExponentiation(a, p, n):
Input: Integers a, p, and n
Output: r = ap mod n

if p = 0 then
return 1

if p is even then
t ← FastExponentiation(a, p/2, n) // p is even, so t = ap/2 mod n
return t2 mod n

t ← FastExponentiation(a, (p − 1)/2, n) // p is odd, so t = a(p−1)/2 mod n
return a(t2 mod n) mod n

Algorithm 24.5: Algorithm FastExponentiation for modular exponentiation using

the repeated squaring method. Note that, since the modulo operator is applied after

each arithmetic operation in method FastExponentiation, the size of the operands

of each multiplication and modulo operation is never more than 2�log2 n� bits.

www.it-ebooks.info

http://www.it-ebooks.info/

696 Chapter 24. Cryptography

Analyzing the Repeated Squaring Algorithm

The main idea of this repeated squaring algorithm is to consider each bit of the

exponent, p, in turn by dividing p by two until p goes to zero, squaring the current

product Qi for each such bit. In addition, if the current bit is a 1 (that is, p is odd),

then we multiply in the base, a, as well.

To see why this algorithm works, define, for i = 1, . . . ,b,

Qi = aqi mod n.

From the recursive definition of qi, we derive the following definition of Qi:

Qi = (Q2
i−1 mod n)apb−i mod n for 1 < i ≤ b

Q1 = apb−1 mod n.
(24.1)

It is easy to verify that Qb = ap mod n.

We show a sample execution of the repeated squaring algorithm for modular

exponentiation in Table 24.6.

p 12 6 3 1 0

r 1 12 8 2 1

Table 24.6: Example of an execution of the repeated squaring algorithm for modular

exponentiation. For each recursive invocation of FastExponentiation(2, 12, 13),
we show the second argument, p, and the output value r = 2p mod 13.

The running time of the repeated squaring algorithm is easy to analyze. Refer-

ring to Algorithm 24.5, a constant number of arithmetic operations are performed,

excluding those in the recursive call. Also, in each recursive call, the exponent

p gets halved. Thus, the number of recursive calls and arithmetic operations is

O(log p). We may therefore summarize as follows.

Theorem 24.9: Let a p, and n be positive integers, with a < n. The repeated
squaring algorithm computes ap mod n using O(log p) arithmetic operations.

Since the number, p, is represented in binary using O(log p) bits, this theo-

rem implies that the number of arithmetic operations used in the repeated squaring

algorithm is linear in the input size of the exponent, p, in bits.

www.it-ebooks.info

http://www.it-ebooks.info/

24.2. Modular Arithmetic 697

24.2.2 Modular Multiplicative Inverses

We turn now to the problem of computing multiplicative inverses in Zn. First, we

recall Theorem 24.6, which states that a nonnegative element x of Zn admits an

inverse if and only if gcd(x, n) = 1. The proof of Theorem 24.6 actually suggests

a way to compute x−1 mod n. Namely, we should find the integers i and j referred

to by Theorem 24.3, such that

ix + jn = gcd(x, n) = 1.

If we can find such integers i and j, we immediately obtain

i ≡ x−1 mod n.

The computation of the integers i and j referred to by Theorem 24.3 can be done

with a variation of Euclid’s algorithm, called extended Euclid’s algorithm.

Revisiting Euclid’s GCD Algorithm

Let a and b be positive integers, and denote with d their greatest common divisor,

d = gcd(a, b).

Let q = a mod b and r be the integer such that a = rb + q, that is,

q = a − rb.

Euclid’s algorithm is based on the repeated application of the formula

d = gcd(a, b) = gcd(b, q),

which immediately follows from Lemma 24.4.

Suppose that the recursive call of the algorithm, with arguments b and q, also

returns integers k and l, such that

d = kb + lq.

Recalling the definition of r, we have

d = kb + lq = kb + l(a − rb) = la + (k − lr)b.

Thus, we have

d = ia + jb, for i = l and j = k − lr.

This last equation suggests a method to compute the integers i and j, in addition to

the GCD of a and b.

www.it-ebooks.info

http://www.it-ebooks.info/

698 Chapter 24. Cryptography

Extended Euclid’s Algorithm

The resulting method, known as the extended Euclid’s algorithm, is shown in Al-

gorithm 24.7.

Algorithm ExtendedEuclidGCD(a, b):
Input: Nonnegative integers a and b
Output: Triplet of integers (d, i, j) such that d = gcd(a, b) = ia + jb

if b = 0 then
return (a, 1, 0)

q ← a mod b
Let r be the integer such that a = rb + q
(d, k, l) ← ExtendedEuclidGCD(b, q)
return (d, l, k − lr)

Algorithm 24.7: Extended Euclid’s algorithm.

We present, in Table 24.8, a sample execution of this algorithm. Its analysis is

analogous to that of Euclid’s algorithm.

a 412 260 152 108 44 20 4

b 260 152 108 44 20 4 0

r 1 1 1 2 2 5

i 12 -7 5 -2 1 0 1

j -19 12 -7 5 -2 1 0

Table 24.8: Execution of ExtendedEuclidGCD(a, b), for a = 412 and b = 260, to

compute (d, i, j) such that d = gcd(a, b) = ia + jb. For each recursive invocation,

we show the arguments a and b, variable r, and output values i and j. The output

value d is always gcd(412, 260) = 4.

Theorem 24.10: Let a and b be two positive integers. The extended Euclid’s
algorithm for computing a triplet of integers (d, i, j) such that

d = gcd(a, b) = ia + jb,

executes O(log max(a, b)) arithmetic operations.

Corollary 24.11: Let x be an element of Zn such that gcd(x, n) = 1. The multi-
plicative inverse of x in Zn can be computed with O(log n) arithmetic operations.

www.it-ebooks.info

http://www.it-ebooks.info/

24.3. Cryptographic Operations 699

24.3 Cryptographic Operations
The Internet enables a growing number of useful activities, such as email, shop-

ping, and financial transactions, to be performed electronically. However, the In-

ternet itself is an insecure transmission network: data transmitted over Wi-Fi and

other communication media travels can be observed and potentially modified en-

route to its destination. A variety of cryptographic techniques have therefore been

developed to support secure communication over an insecure network such as the

Internet. In particular, cryptography research has developed the following useful

cryptographic computations:

• Encryption/decryption: A message M to be transmitted, called the plaintext,
is transformed into an unrecognizable string of characters C, called the ci-
phertext, before being sent over the network. This transformation is known

as encryption. After the ciphertext C is received, it is converted back to

the plaintext M using an inverse transformation (that depends on additional

secret information). This reverse transformation is called decryption. An

essential ingredient in encryption is that it should be computationally infea-

sible for an outsider to transform C back to M (without knowing the secret

information possessed by the receiver).

• Digital signatures: The author of a message M computes a message S that

is derived from M and secret information known by the author. The message

S is a digital signature if another party can easily verify that only the author

of M could have computed S in a reasonable amount of time.

The two techniques lead to methods for supporting the information security

services discussed in the introduction:

• Data integrity: Computing a digital signature S of a message M not only

helps us determine the author of M , it also verifies the integrity of M , for a

modification to M would produce a different signature. So to perform a data

integrity check we can perform a verification test that S is, in fact, a digital

signature for the message M .

• Authentication: The above cryptographic tools can be used for authentica-

tion in two possible ways. In password authentication schemes, a user will

type a user ID and password in a client application, with this combination

being immediately encrypted and sent to an authenticator. If the encrypted

user ID and password combination matches that in a user database, then the

individual is authenticated (and the database never stores passwords in plain-

text). Alternatively, an authenticator can issue a challenge to a user in the

form of a random message M that the user must immediately digitally sign

for authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

700 Chapter 24. Cryptography

• Authorization: Given a scheme for authentication, we can issue authoriza-

tions by keeping lists, called access control lists, that are associated with

sensitive data or computations that should be accessed only by authorized

individuals. Alternatively, the holder of a right to sensitive data or computa-

tions can digitally sign a message C that authorizes a user to perform certain

tasks. For example, the message could be of the form, “I, U.S. Corporation

vice president, give person x permission to access our fourth quarter earnings

data.”

• Confidentiality: Sensitive information can be kept secret from nonauthorized

agents by encrypting it.

• Nonrepudiation: If we make the parties negotiating a contract, M , digitally

sign that message, then we can have a way of proving that they have seen and

agreed to the content of the message M .

Symmetric Encryption Schemes

As mentioned above, a fundamental problem in cryptography is confidentiality,

that is, sending a message from Alice to Bob so that a third party, Eve, cannot

gain any information from an intercepted copy of the message. Moreover, we have

observed that confidentiality can be achieved by encryption schemes, or ciphers,

where the message M to be transmitted, called the plaintext, is encrypted into an

unrecognizable string of characters C, called the ciphertext, before being sent over

the network. After the ciphertext C is received, it is decrypted back to the plaintext

M using an inverse transformation called decryption.

Secret Keys

In describing the details of an encryption scheme, we must explain all the steps

needed in order to encrypt a plaintext M into a ciphertext C, and how to then

decrypt that ciphertext back to M . Moreover, in order for Eve to be unable to

extract M from C, there must be some secret information that is kept private from

her.

In traditional cryptography, a common secret key k is shared by Alice and Bob,

and is used to both encrypt and decrypt the message. Such schemes are also called

symmetric encryption schemes, since k is used for both encryption and decryption

and the same secret is shared by both Alice and Bob.

Substitution Ciphers

A classic example of a symmetric cipher is a substitution cipher, where the secret

key is a permutation π of the characters of the alphabet. Encrypting plaintext M
into ciphertext C consists of replacing each character x of M with character y =
π(x). Decryption can be easily performed by knowing the permutation function π.

www.it-ebooks.info

http://www.it-ebooks.info/

24.3. Cryptographic Operations 701

Indeed, M is derived from C by replacing each character y of C with character x =
π−1(y). The Caesar cipher is an early example of a substitution cipher, where each

character x is replaced by character

y = x + k mod n,

where n is the size of the alphabet and 1 < k < n is the secret key. This substitution

scheme is known as the “Caesar cipher,” for Julius Caesar is known to have used it

with k = 3.

Substitution ciphers are quite easy to use, but they are not secure. Indeed, the

secret key can be quickly inferred using frequency analysis, based on the knowl-

edge of the frequency of the various letters, or groups of consecutive letters in the

text language.

Symmetric Cryptosystems

Secure and efficient symmetric ciphers do exist, and are often referred to by their

acronyms, such as “3DES,” “IDEA,” and “AES.” They perform a sequence of

complex substitution and permutation transformations on the bits of the plaintext.

While these systems are important in many applications, they are only mildly in-

teresting from an algorithmic viewpoint; hence, they are out of the scope of this

book. They run in time proportional to the length of the message being encrypted

or decrypted. Thus, we mention that these algorithms exist and are fast, but in this

book we do not discuss any of these efficient symmetric ciphers in any detail.

Public-Key Cryptosystems

A major problem with symmetric ciphers, however, is key transfer, or how to dis-

tribute the secret key for encryption and decryption. In 1976, Diffie and Hellman

described an abstract system that would avoid these problems, the public-key cryp-
tosystem. While they didn’t actually publish a particular public-key system, they

discussed the features of such a system. Specifically, given a message M , encryp-

tion function E, and decryption function D, the following four properties must

hold:

1. D(E(M)) = M .

2. Both E and D are easy to compute.

3. It is computationally infeasible to derive D from E.

4. E(D(M)) = M .

In retrospect, these properties might seem like common sense, but they actually rep-

resent a significant innovation. The first property merely states that once a message

has been encrypted, applying the decryption procedure will restore it. Property two

is perhaps more obvious. In order for a cryptosystem to be practical, encryption

and decryption must be computationally fast.

www.it-ebooks.info

http://www.it-ebooks.info/

702 Chapter 24. Cryptography

The third property is the start of the innovation. It means that E only goes one

way; it is computationally infeasible to invert E, unless you already know D. Thus,

the encryption procedure E can be made public. Any party can send a message,

while only one knows how to decrypt it.

If the fourth property holds, then the mapping is one-to-one. Thus, the cryp-

tosystem is a solution to the digital signature problem. Given an electronic mes-

sage from Bob to Alice, how can we prove that Bob actually sent it? Bob can apply

his decryption procedure to some signature message M . Any other party can then

verify that Bob actually sent the message by applying the public encryption proce-

dure E. Since only Bob knows the decryption function, only Bob can generate a

signature message which can be correctly decoded by the function E.

One-Way Hash Functions

Public-key cryptosystems are often used in conjunction with a one-way hash func-
tion, also called a message digest or fingerprint. We provide an informal descrip-

tion of such a function next. A formal discussion is beyond the scope of this book.

A one-way hash function H maps a string (message) M of arbitrary length to

an integer d = H(M) with a fixed number of bits, called the digest of M , that

satisfies the following properties:

1. Given a string M , the digest of M can be computed quickly.

2. Given the digest d of M , but not M , it is computationally infeasible to

find M .

A one-way hash function is said to be collision-resistant if, given a string M , it is

computationally infeasible to find another string M ′ with the same digest, and is

said to be strongly collision-resistant if it is computationally infeasible to find two

strings, M1 and M2, with the same digest.

Several functions believed to be strongly collision-resistant one-way hash func-

tions have been devised. The ones currently advocated the most in practice are

SHA-1, which produces a 160-bit digest, and SHA-256, which produces a 256-bit

digest.

Using One-Way Hash Functions with Digital Signatures

One of the main applications of one-way hash functions is to speed up the construc-

tion of digital signatures. If we have a collision-resistant, one-way hash function,

we can sign the digest of a message instead of the message itself, that is, the signa-

ture S is given by:

S = D(H(M)).

Except for small messages, hashing the message and signing the digest is faster, in

practice, than signing the message directly.

www.it-ebooks.info

http://www.it-ebooks.info/

24.4. The RSA Cryptosystem 703

24.4 The RSA Cryptosystem

Probably the most well-known public-key cryptosystem is tied to the difficulty of

factoring large numbers. It is named RSA after its inventors, Rivest, Shamir, and

Adleman. In this cryptosystem, we begin by selecting two large primes, p and q.

Let n = pq be their product and recall that φ(n) = (p− 1)(q − 1). Encryption and

decryption keys e and d are selected so that

• e and φ(n) are relatively prime

• ed ≡ 1 (mod φ(n)).

The second condition means that d is the multiplicative inverse of e modφ(n).
The pair of values n and e form the public key, while d is the private key. In

practice, e is chosen either randomly or as one of the following numbers: 3, 17,

or 65 537.

The rules for encrypting and decrypting with RSA are simple. Let us assume,

for simplicity, that the plaintext is an integer M , with 0 < M < n. If M is a

string, we can view it as an integer by concatenating the bits of its characters. The

plaintext M is encrypted into ciphertext C with one modular exponentiation using

the encryption key e as the exponent:

C ← M e mod n (RSA encryption).

The decryption of ciphertext C is also performed with an exponentiation, using

now the decryption key d as the exponent:

M ← Cd mod n (RSA decryption).

The correctness of the above encryption and decryption rules is justified by the

following theorem.

Theorem 24.12: Let p and q be two odd primes, and define n = pq. Let e be
relatively prime with φ(n) and let d be the multiplicative inverse of e modulo φ(n).
For each integer x such that 0 < x < n,

xed ≡ x (mod n).

Proof: Let y = xed mod n. We want to prove that y = x. Because of the way

we have selected e and d, we can write ed = kφ(n) + 1, for some integer k. Thus,

we have

y = xkφ(n)+1 mod n.

We distinguish two cases.

www.it-ebooks.info

http://www.it-ebooks.info/

704 Chapter 24. Cryptography

Case 1: x does not divide n. We rewrite y as follows:

y = xkφ(n)+1 mod n

= xxkφ(n) mod n

= x(xφ(n) mod n)k mod n.

By Theorem 24.7 (Euler’s theorem), we have xφ(n) mod n = 1, which im-

plies y = x · 1k mod n = x.

Case 2: x divides n. Since n = pq, with p and q primes, x is a multiple of either

p or q. Suppose x is a multiple of p, that is, x = hp for some positive

integer h. Clearly, x cannot be a multiple of q as well, since otherwise x
would be greater than n = pq, a contradiction. Thus, gcd(x, q) = 1 and by

Theorem 24.7 (Euler’s theorem), we have

xφ(q) ≡ 1 (mod q).

Since φ(n) = φ(p)φ(q), raising both sides of the above congruence to the

power of kφ(q), we obtain

xkφ(n) ≡ 1 (mod q),

which we rewrite as

xkφ(n) = 1 + iq,

for some integer i. Multiplying both sides of the above equality by x, and

recalling that x = hp and n = pq, we obtain

xkφ(n)+1 = x + xiq

= x + hpiq

= x + (hi)n.

Thus, we have

y = xkφ(n)+1 mod n = x.

In either case, we have shown that y = x, which concludes the proof of the theorem.

The symmetry of the encryption and decryption functions implies that the RSA

cryptosystem directly supports digital signatures. Indeed, a digital signature S for

message M is obtained by applying the decryption function to M , that is,

S ← Md mod n (RSA signature).

The verification of the digital signature S is now performed with the encryption

function, that is, by checking that

M ≡ Se (mod n) (RSA verification).

www.it-ebooks.info

http://www.it-ebooks.info/

24.4. The RSA Cryptosystem 705

The Difficulty of Breaking RSA

Note that even if we know the value e, we cannot figure out d unless we know φ(n).
Most cryptography researchers generally believe that breaking RSA requires that

we compute φ(n) and that this requires factoring n. While there is no proof that

factorization is computationally difficult, a whole series of famous mathematicians

have worked on the problem over the past few hundred years. Especially if n is

large (≈ 200 digits), it will take a very long time to factor it. To give you an idea of

the state of the art, mathematicians were quite excited when a nationwide network

of computers was able to factor the ninth Fermat number, 2512 − 1. This number

has “only” 155 decimal digits. Barring a major breakthrough, the RSA system will

remain secure. For if technology somehow advances to a point where it is feasible

to factor 200-digit numbers, we need only choose an n with 300 or 400 digits.

Analysis and Setup for RSA Encryption

The running time of RSA encryption, decryption, signature, and verification is sim-

ple to analyze. Indeed, each such operation requires a constant number of modular

exponentiations, which can be performed with method FastExponentiation (Al-

gorithm 24.5).

Theorem 24.13: Let n be the modulus used in the RSA cryptosystem. RSA
encryption, decryption, signature, and verification each take O(log n) arithmetic
operations.

To set up the RSA cryptosystem, we need to generate the public and private

key pair. Namely, we need to compute the private key (d, p, q) and the public key

(e, n) that goes with it. This involves the following computations:

• Selection of two random primes p and q with a given number of bits. This

can be accomplished by testing random integers for primality, as discussed

at the end of Section 19.4.1.

• Selection of an integer e relatively prime to φ(n). This can be done by pick-

ing random primes less than φ(n) until we find one that does not divide φ(n).
In practice, it is sufficient to check small primes from a list of known primes

(often e = 3 or e = 17 will work).

• Computing the multiplicative inverse d of e in Zφ(n). This can be done using

the extended Euclid’s algorithm (Corollary 24.11).

www.it-ebooks.info

http://www.it-ebooks.info/

706 Chapter 24. Cryptography

24.5 The El Gamal Cryptosystem

We have seen that the security of the RSA cryptosystem is related to the difficulty

of factoring large numbers. It is possible to construct cryptosystems based on other

difficult number-theoretic problems. We now consider the El Gamal cryptosystem,

named after its inventor, Taher El Gamal, which is based on the difficulty of a

problem called the “discrete logarithm.”

The Discrete Logarithm

When we’re working with the real numbers, logb y is the value x, such that bx = y.

We can define an analogous discrete logarithm. Given integers b and n, with b < n,

the discrete logarithm of an integer y to the base b is an integer x, such that

bx ≡ y mod n.

The discrete logarithm is also called index, and we write

x = indb,ny.

While it is quite efficient to raise numbers to large powers modulo p (recall

the repeated squaring algorithm, Algorithm 24.5), the inverse computation of the

discrete logarithm is much harder. The El Gamal system relies on the difficulty of

this computation.

El Gamal Encryption

Let p be a prime, and g be a generator of Z∗
p . The private key x is an integer between

1 and p − 2. Let y = gx mod p. The public key for El Gamal encryption is the

triplet (p, g, y). If taking discrete logarithms is as difficult as it is widely believed,

releasing y = gx mod p does not reveal x.

To encrypt a plaintext M , a random integer k relatively prime to p − 1 is se-

lected, and the following pair of values is computed:

a ← gk mod p
b ← Myk mod p

(El Gamal encryption).

The ciphertext C consists of the pair (a, b) computed above.

www.it-ebooks.info

http://www.it-ebooks.info/

24.5. The El Gamal Cryptosystem 707

El Gamal Decryption

The decryption of the ciphertext C = (a, b) in the El Gamal scheme, to retrieve the

plaintext M , is simple:

M ← b/ax mod p (El Gamal decryption).

In the above expression, the “division” by ax should be interpreted in the con-

text of modular arithmetic, that is, b is multiplied by the inverse of ax in Zp. The

correctness of the El Gamal encryption scheme is easy to verify. Indeed, we have

b/ax mod p = Myk(ax)−1 mod p

= Mgxk(gkx)−1 mod p

= M.

Using El Gamal for Digital Signatures

A variation of the above scheme provides a digital signature. Namely, a signature

for message M is a pair S = (a, b) obtained by selecting a random integer k
relatively prime to p − 1 (which, of course, equals φ(p)) and computing

a ← gk mod p
b ← k−1(M − xa) mod (p − 1) (El Gamal signature).

To verify a digital signature S = (a, b), we check that

yaab ≡ gM (mod p) (El Gamal verification).

The correctness of this digital signature scheme is based on the following:

yaab mod p = ((gx mod p)a mod p)((gk mod p)k−1(M−xa) mod (p−1) mod p)
= gxagkk−1(M−xa) mod (p−1) mod p
= gxa+M−xa mod p
= gM mod p.

Analysis of El Gamal Encryption

The analysis of the performance of the El Gamal cryptosystem is similar to that of

RSA. Namely, we have the following.

Theorem 24.14: Let n be the modulus used in the El Gamal cryptosystem. El
Gamal encryption, decryption, signature, and verification each take O(log n) arith-
metic operations.

www.it-ebooks.info

http://www.it-ebooks.info/

708 Chapter 24. Cryptography

24.6 Exercises

Reinforcement
R-24.1 Show the execution of method EuclidGCD(14300, 5915) by constructing a table

similar to Table 24.2.

R-24.2 Write a nonrecursive version of Algorithm EuclidGCD.

R-24.3 What is 960 mod 77?

R-24.4 Construct the multiplication table of the elements of Z11, where the element in
row i and column j (0 ≤ i, j ≤ 10) is given by i · j mod 11.

R-24.5 Show the execution of method FastExponentiation(5, 12, 13) by constructing a
table similar to Table 24.6.

R-24.6 Write a nonrecursive version of Algorithm ExtendedEuclidGCD.

R-24.7 Extend Table 24.8 with two rows giving the values of ia and jb at each step of
the algorithm and verify that ia + jb = 1.

R-24.8 Show the execution of method ExtendedEuclidGCD(412, 113) by constructing
a table similar to Table 24.8.

R-24.9 What are the multiplicative inverses of 113, 114, and 127 in Z299.

R-24.10 Construct a table showing an example of the RSA cryptosystem with parameters
p = 17, q = 19, and e = 5. The table should have two rows, one for the plaintext
M and the other for the ciphertext C. The columns should correspond to integer
values in the range [10, 20] for M .

R-24.11 Show the result of an El Gamal encryption of the message M = 8 using k = 4
for the public key (p, g, y) = (59, 2, 25).

Creativity
C-24.1 Prove Theorem 24.1.

C-24.2 Show the existence of additive inverses in Zp, that is, prove that for each x ∈ Zp,
there is a y ∈ Zp, such that x + y mod p = 0.

C-24.3 Let p be a prime. Give an efficient alternative algorithm for computing the mul-
tiplicative inverse of an element of Zp that is not based on the extended Euclid’s
algorithm. What is the running time of your algorithm?

C-24.4 Give an alternative proof of Theorem 24.6 that does not use Theorem 24.3.

C-24.5 Show how to modify Algorithm ExtendedEuclidGCD to compute the multi-
plicative inverse of an element in Zn using arithmetic operations on operands
with at most 2�log2 n� bits.

www.it-ebooks.info

http://www.it-ebooks.info/

24.6. Exercises 709

C-24.6 Suppose Alice wants to send Bob a message, M , that is the price she is willing
to pay for his old bike. Here, M is just an integer in binary. She uses the RSA
algorithm to encrypt M , to produce the ciphertext, C, using Bob’s public key,
and sends it to Bob. Unfortunately, Eve has intercepted C before it gets to Bob
Explain how Eve can use Bob’s public key to alter the ciphertext C to change it
into C ′, so that if she sends C ′ to Bob (with Eve pretending to be Alice), then,
after Bob has decrypted C ′, he will get a plaintext that is twice the value of M .

C-24.7 Solve the previous exercise, but use the El Gamal cryptosystem instead of RSA.

C-24.8 Suppose the primes p and q used in the RSA cryptosystem, to define n = pq, are
in the range [

√
n− log n,

√
n + log n]. Explain how you can efficiently factor n

using this information.

C-24.9 Why can’t you use the pair (1, n) as an RSA public key, even if n = pq, for two
large primes, p and q?

Applications
A-24.1 There is a perfectly secure cipher, known as the one-time pad, which is said

to have been used for encrypting messages on the “hot line” between Moscow
and Washington, DC, during the Cold War. In this cryptosystem, Alice and Bob
each share a random bit string, K, as large as any message they might wish to
communicate. The string K is the secret key. To compute a ciphertext, C, from
a message, M , Alice computes

C = M ⊕ K,

where “⊕” denotes the bitwise exclusive-or operator. Show that Bob can decrypt
the ciphertext, C, by computing C ⊕ K. Also, show that this scheme achieves
perfect confidentiality, based on the facts that each bit of the output is indepen-
dent, random, and every plaintext of length |M | is a possible plaintext for the
ciphertext, C.

A-24.2 There are instances when it is useful to prove that a document, D, exists on a
certain date. In order to facilitate such proofs, Bob collects a group of docu-
ments, D1, D2, . . . , Dn, every day from people wanting time stamps for their
documents on that day. Bob constructs a complete binary tree, T , with n leaves,
of height �log n�, with each leaf, i, associated with a document, Di. He stores
at i the result, hi = H(Di), of a one-way hash function computed on Di. For
each internal node, v, with children x and y, he stores hv = H(hx||hy), where
|| denotes concatenation. Finally, he publishes the value, hr, for the root, r, of
T in a classified advertisement in a local newspaper. How can Bob give each
document owner a set of O(log n) numbers so that together with the classified
advertisement, each document owner can prove the existence of his or her docu-
ment on the date the ad appeared, with the confidence of the security properties
of the one-way hash function, H?

A-24.3 Consider the time stamping problem from the previous exercise, but now suppose
that each day that there is one document added to the set, and one document that
is removed from the set, but all of the remaining documents still need to be proven

www.it-ebooks.info

http://www.it-ebooks.info/

710 Chapter 24. Cryptography

to exist as a part of the set on that day. Explain how Bob can update the tree, T ,
in O(log n) time, to reflect these changes?

A-24.4 Suppose Alice is a U.S. spy on a 7-day trip to a faraway land and wants to prove
for each day she is gone that she not been captured. She has chosen a secret ran-
dom number, x, which she is keeping secret. But she did tell her CIA handler the
value y = H(H(H(H(H(H(H(x))))))), where H is a one-way cryptographic
hash function. Unfortunately, her enemy, Eve, was able to listen in on this mes-
sage; hence, Eve also knows the value of y. Explain how Alice can send a single
message every day that proves she has not been captured.

A-24.5 Digital certificates are signed documents, where a respected authority verifies the
binding between a person’s identity information (like their name, email address,
etc.) and their public key. But if that person loses the private key that goes with
his or her public key, then this certification needs to be revoked. To support this
service, the respected authority can keep a dictionary, D, of revoked certificates.
Explain how the authority can answer any request for the revocation status for
any digital certificate in O(log n) time, where n is the size of D. Also, how can
the person asking this query be able to prove to a third party that the result is
valid?

A-24.6 One of the main uses for public-key cryptography is that it can be used to es-
tablish a secret key for a communication session between Alice and Bob even if
they have never met to share that secret key in advance. Explain how public key
cryptography can be used for this purpose.

A-24.7 Suppose Bob has an RSA public key, (e, n), and that he has promised Eve that
she can send him any single message, M < n, and he will sign M using a
simple RSA signature method to compute S = Md mod n, where d is his private
RSA exponent, sending S back to Eve. What Bob doesn’t know is that Eve
has previously captured a ciphertext C that Alice encrypted for Bob using her
plaintext, P , and Bob’s RSA public key, (e, n). Eve wants to trick Bob into
decrypting C for her without revealing P . So Eve asks Bob to sign the message
M = reC mod n, where r is a random number that Eve chose to be relatively
prime to n. Explain how, even though she does not know the value of d, Eve can
use Bob’s signature, S, on M , to discover the plaintext, P , for C.

Chapter Notes
An introduction to number theory is provided in books by Koblitz [133] and Kranakis [136].
The classic textbook on numerical algorithms is the second volume of Knuth’s series on
The Art of Computer Programming [130]. Algorithms for number theoretic problems are
also presented in the books by Bressoud and Wagon [38] and by Bach and Shallit [19].

The RSA cryptosystem is named after the initials of its inventors, Rivest, Shamir, and
Adleman [178]. The El Gamal cryptosystem is named after its inventor [79]. Sections 24.1
and 24.3 are based in part on an unpublished manuscript of Achter and Tamassia [1].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

25 The Fast Fourier Transform

Plate VI from Europas bekannteste Schmetterlinge. Beschreibung der wichtig-
sten Arten und Anleitung zur Kenntnis und zum Sammeln der Schmetter-
linge und Raupen (ca. 1895), F. Nemos, Oestergaard Verlag, Berlin, 18 chro-
molithographische Tafeln, 160 pp. Public domain image.

Contents

25.1 Convolution . 713
25.2 Primitive Roots of Unity 715
25.3 The Discrete Fourier Transform 717
25.4 The Fast Fourier Transform Algorithm 721
25.5 Exercises . 727

www.it-ebooks.info

http://www.it-ebooks.info/

712 Chapter 25. The Fast Fourier Transform

A common computation in many cryptographic systems is the multiplication of

large integers. For instance, real-world uses of the RSA cryptosystem often involve

1024-bit, 2048-bit, or even 3072-bit keys; hence, RSA encryption and decryption

with such keys involves the multiplication of large integers having these bit lengths.

In fact, the U.S. National Institute for Standards and Technology (NIST) has argued

that to achieve a high level of security for the RSA cryptosystem one should use

15,360-bit keys. Thus, from an algorithmic viewpoint, improving the running time

for integer multiplication can result in faster and more secure cryptographic proto-

cols involving large integers.

Unfortunately, a straightforward adaptation of the standard method for multi-

plying integers, as taught in elementary school, results in a method for multiplying

two n-bit integers that runs in O(n2) time. This can be improved to an algorithm

running in O(n1.585) time, using the divide-and-conquer Karatsuba algorithm de-

scribed in Section 11.2, which is okay for moderately large integers, but multiply-

ing the large integers used in cryptographic computations could benefit from an

even faster algorithm. Interestingly, the technique we discuss in this chapter, the

Fast Fourier Transform (FFT), can be used to achieve a much faster algorithm for

multiplying large integers. Moreover, it turns out that the FFT has many other ap-

plications as well, including fast methods for signal processing, image processing,

scientific data analysis, and the pricing of financial options.

Suppose, then, that we want to multiply two n-bit integers, P = an−1 . . . a1a0

and Q = bn−1 . . . b1b0. Rather than attack the problem of computing R = P · Q
directly, however, let us reduce it to a related problem—polynomial multiplication.

Construct two polynomials, p(x) and q(x), from P and Q as follows:

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1

q(x) = b0 + b1x + a2x
2 + · · · + bn−1x

n−1,

and note that P = p(2) and Q = q(2). Imagine, for the moment, that we had a fast

algorithm to compute the polynomial

r(x) = p(x) · q(x).

Then we could compute the integer product, R = P · Q, by first computing the

polynomial, r(x), and then performing the evaluation R ← r(2).

As one of the most surprising and ingenious results in algorithms, it turns out

that we can compute an efficient representation for the product polynomial, r(x),
using O(n log n) arithmetic operations on reasonably sized numbers. Thus, using

the above approach, we can design a method for multiplying two n-bit integers

using O(n log n) such arithmetic operations. The FFT algorithm, which achieves

this result, is based on an interesting use of the divide-and-conquer technique. We

therefore devote this entire chapter to describing and analyzing this algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

25.1. Convolution 713

25.1 Convolution
A polynomial represented in coefficient form is described by a coefficient vector

a = [a0, a1, . . . , an−1] as follows:

p(x) =
n−1∑
i=0

aix
i.

The degree of such a polynomial is the largest index of a nonzero coefficient ai. A

coefficient vector of length n can represent polynomials of degree at most n − 1.

The coefficient representation is natural, in that it is simple and allows for sev-

eral polynomial operations to be performed quickly. For example, given a second

polynomial described using a coefficient vector b = [b0, b1, . . . , bn−1] as

q(x) =
n−1∑
i=0

bix
i,

we can easily add p(x) and q(x) component-wise to produce their sum,

p(x) + q(x) =
n−1∑
i=0

(ai + bi)xi.

Likewise, the coefficient form for p(x) allows us to evaluate p(x) efficiently, by

Horner’s rule (Exercise C-1.14), as

p(x) = a0 + x(a1 + x(a2 + · · · + x(an−2 + xan−1) · · ·)).
Thus, with the coefficient representation, we can add and evaluate degree-(n − 1)
polynomials using O(n) arithmetic operations.

Multiplying two polynomials p(x) and q(x), as defined above in coefficient

form, is not straightforward, however. To see the difficulty, consider p(x) · q(x):

p(x)·q(x) = a0b0+(a0b1+a1b0)x+(a0b2+a1b1+a2b0)x2+· · ·+an−1bn−1x
2n−2.

That is,

p(x) · q(x) =
2n−2∑
i=0

cix
i,

where

ci =
i∑

j=0

ajbi−j ,

for i = 0, 1, . . . , 2n − 2. This equation defines a vector c = [c0, c1, . . . , c2n−1],
which we call the convolution of the vectors a and b. For symmetry reasons, we

view the convolution as a vector of size 2n, defining c2n−1 = 0. We denote the

convolution of a and b as a ∗ b.

www.it-ebooks.info

http://www.it-ebooks.info/

714 Chapter 25. The Fast Fourier Transform

Using the Interpolation Theorem for Polynomials

If we apply the definition of the convolution directly, then it will take us Θ(n2) time

to multiply the two polynomials p and q. The Fast Fourier Transform (FFT) algo-

rithm allows us to perform this multiplication using O(n log n) arithmetic opera-

tions. The improvement of the FFT is based on an interesting observation. Namely,

that another way of representing a degree-(n − 1) polynomial is by its value on n
distinct inputs. Such a representation is unique, because of the following theorem.

Theorem 25.1 [The Interpolation Theorem for Polynomials]: Given a set
of n pairs,

S = {(x0, y0), (x1, y1), (x2, y2), . . . , (xn−1, yn−1)},
such that the xi’s are all distinct, there is a unique degree-(n−1) polynomial, p(x),
with p(xi) = yi, for i = 0, 1, . . . , n − 1.

Suppose, then, that we can represent a polynomial not by its coefficients, but

instead by its value on a collection of different inputs. This theorem suggests an

alternative method for multiplying two polynomials p and q. In particular, evaluate

p and q for 2n different inputs x0, x1, . . . , x2n−1 and compute the representation of

the product of p and q as the set

{(x0, p(x0)q(x0)), (x1, p(x1)q(x1)), . . . , (x2n−1, p(x2n−1)q(x2n−1))}.
Such a computation would clearly require just O(n) arithmetic operations, given

the 2n input-output pairs for each of p and q.

The challenge, then, to effectively using this approach to multiply p and q is

to come up quickly with 2n input-output pairs for p and q. Applying Horner’s

rule to 2n different inputs would require Θ(n2) arithmetic operations, which is not

asymptotically any faster than using the convolution directly. So Horner’s rule is

of no immediate help. Of course, we have full freedom in how we choose the set

of 2n inputs for our polynomials. That is, we have full discretion to choose inputs

that are easy to evaluate. For example, the evaluation,

p(0) = a0,

is a simple case. But we have to choose a set of 2n easy inputs to evaluate p on,

not just one. Fortunately, the mathematical concept we discuss next provides a

convenient set of inputs that are collectively easier to use to evaluate a polynomial

than applying Horner’s rule 2n times.

www.it-ebooks.info

http://www.it-ebooks.info/

25.2. Primitive Roots of Unity 715

25.2 Primitive Roots of Unity

One of the central ideas that allows for fast polynomial evaluation is the concept of

primitive roots of unity.

Definition

A number, ω, is a primitive nth root of unity, for n ≥ 2, if it satisfies the following

properties:

1. ωn = 1, that is, ω is an nth root of 1.

2. The numbers 1, ω, ω2, . . . , ωn−1 are distinct.

Note that this definition implies that a primitive nth root of unity has a multiplica-

tive inverse, ω−1 = ωn−1, for

ω−1ω = ωn−1ω = ωn = 1.

Thus, we can speak in a well-defined fashion of negative exponents of ω, as well

as positive ones.

A Complex Example of a Primitive Root of Unity

The notion of a primitive nth root of unity may, at first, seem like a strange defini-

tion with few examples. But it actually has several important instances.

One important example is the complex number

ω = e2πi/n = cos(2π/n) + i sin(2π/n),

which is a primitive nth root of unity when we perform all our arithmetic in the

complex number system, where i =
√−1.

An Integer Example of a Primitive Root of Unity

As another example, suppose that we have a prime number, p = cn + 1, for some

positive integer, c. Choose x to be a multiplicative generator for the positive num-

bers in the finite field, Zt, which is defined on the set of integers, {0, 1, 2, . . . , t−1}
(see Section 24.1). That is, choose x so that the numbers, x, x2, . . . , xt−1, are all

distinct, modulo t. By Fermat’s Little Theorem (19.5), xt−1 mod t = 1. Thus, the

number,

ω = xc mod t,

is a primitive nth root of unity in Zt.

www.it-ebooks.info

http://www.it-ebooks.info/

716 Chapter 25. The Fast Fourier Transform

Properties of Primitive Roots of Unity

Primitive nth roots of unity have a number of important properties, including the

following three ones.

Lemma 25.2 (Cancellation Property): If ω is an nth root of unity, then, for
any integer k 	= 0, with −n < k < n,

n−1∑
j=0

ωkj = 0.

Proof: Since ωk 	= 1,

n−1∑
j=0

ωkj =
(ωk)n − 1
ωk − 1

=
(ωn)k − 1
ωk − 1

=
1k − 1
ωk − 1

=
1 − 1
ωk − 1

= 0.

Lemma 25.3 (Reduction Property): If ω is a primitive (2n)th root of unity,
then ω2 is a primitive nth root of unity.

Proof: If 1, ω, ω2, . . . , ω2n−1 are distinct, then 1, ω2, (ω2)2, . . . , (ω2)n−1 are

also distinct.

Lemma 25.4 (Reflective Property): If ω is a primitive nth root of unity and n
is even, then

ωn/2 = −1.

Proof: By the cancellation property, for k = n/2,

0 =
n−1∑
j=0

ω(n/2)j

= ω0 + ωn/2 + ωn + ω3n/2 + · · · + ω(n/2)(n−2) + ω(n/2)(n−1)

= ω0 + ωn/2 + ω0 + ωn/2 + · · · + ω0 + ωn/2

= (n/2)(1 + ωn/2).

Thus, 0 = 1 + ωn/2.

An interesting corollary to the reflective property, which motivates its name, is

the fact that if ω is a primitive nth root of unity and n ≥ 2 is even, then

ωk+n/2 = −ωk.

www.it-ebooks.info

http://www.it-ebooks.info/

25.3. The Discrete Fourier Transform 717

25.3 The Discrete Fourier Transform
Let us now return to the problem of evaluating a polynomial defined by a coefficient

vector a as

p(x) =
n−1∑
i=0

aix
i,

for a carefully chosen set of input values. The technique we discuss in this section,

called the Discrete Fourier Transform (DFT), is to evaluate p(x) at the nth roots

of unity, ω0, ω1, ω2, . . . , ωn−1. Admittedly, this gives us just n input-output pairs,

but we can “pad” our coefficient representation for p with 0’s by setting ai = 0, for

n ≤ i ≤ 2n−1. This padding would let us view p as a degree-(2n−1) polynomial,

which would in turn let us use the primitive (2n)th roots of unity as inputs for a

DFT for p. Thus, if we need more input-output values for p, let us assume that the

coefficient vector for p has already been padded with as many 0’s as necessary.

Formally, the Discrete Fourier Transform for the polynomial p represented by

the coefficient vector a is defined as the vector y of values

yj = p(ωj),

where ω is a primitive nth root of unity. That is,

yj =
n−1∑
i=0

aiω
ij .

In the language of matrices, we can alternatively think of the vector y of yj values

and the vector a as column vectors and say that

y = Fa,

where F is an n × n matrix such that F [i, j] = ωij .

The Inverse Discrete Fourier Transform

Interestingly, the matrix F has an inverse, F−1, so that F−1(F (a)) = a for all

a. The matrix F−1 allows us to define an inverse Discrete Fourier Transform. If

we are given a vector y of the values of a degree-(n − 1) polynomial p at the nth

roots of unity, ω0, ω1, . . . , ωn−1, then we can recover a coefficient vector for p by

computing

a = F−1y.

Moreover, the matrix F−1 has a simple form, in that F−1[i, j] = ω−ij/n. Thus,

we can recover the coefficient ai as

ai =
n−1∑
j=0

yjω
−ij/n.

www.it-ebooks.info

http://www.it-ebooks.info/

718 Chapter 25. The Fast Fourier Transform

The following lemma justifies this claim, and is the basis of why we refer to F and

F−1 as “transforms.”

Lemma 25.5: For any vector a, F−1 · Fa = a.

Proof: Let A = F−1 · F . It is enough to show that A[i, j] = 1 if i = j, and

A[i, j] = 0 if i 	= j. That is, A = I , where I is the identity matrix. By the

definitions of F−1, F , and matrix multiplication,

A[i, j] =
1
n

n−1∑
k=0

ω−ikωkj .

If i = j, then this equation reduces to

A[i, i] =
1
n

n−1∑
k=0

ω0 =
1
n
· n = 1.

So, consider the case when i 	= j, and let m = j − i. Then the ijth entry of A can

be written as

A[i, j] =
1
n

n−1∑
k=0

ωmk,

where −n < m < n and m 	= 0. By the cancellation property for a primitive nth

root of unity, the right-hand side of the above equation reduces to 0; hence,

A[i, j] = 0,

for i 	= j.

Given the DFT and the inverse DFT, we can now define our approach to multi-

plying two polynomials p and q.

To use the discrete Fourier transform and its inverse to compute the convolu-

tion of two coefficient vectors, a and b, we apply the following steps, which we

illustrate in a schematic diagram, as shown in Figure 25.1.

1. Pad a and b each with n 0’s and view them as column vectors to define

a′ = [a0, a1, . . . , an−1, 0, 0, . . . , 0]T

b′ = [b0, b1, . . . , bn−1, 0, 0, . . . , 0]T .

2. Compute the Discrete Fourier Transforms y = Fa′ and z = Fb′.
3. Multiply the vectors y and z component-wise, defining the simple product

y · z = Fa′ · Fb′, where

(y · z)[i] = (Fa′ · Fb′)[i] = Fa′[i] · Fb′[i] = yi · zi,

for i = 1, 2, . . . , 2n − 1.

4. Compute the inverse Discrete Fourier Transform of this simple product. That

is, compute c = F−1(Fa′ · Fb′).

www.it-ebooks.info

http://www.it-ebooks.info/

25.3. The Discrete Fourier Transform 719

Pad with n 0's Pad with n 0's

[a
0
,a

1
,a

2
,...,an-1

] [b
0
,b

1
,b

2
,...,bn-1

]

DFT DFT

[a
0
,a

1
,a

2
,...,an-1

,0,0,...,0] [b
0
,b

1
,b

2
,...,bn-1

,0,0,...,0]

[y
0
,y

1
,y

2
,...,y

2n-1
] [z

0
,z

1
,z

2
,...,z

2n-1
]

Component

Multiply

inverse DFT

[y
0
z

0
,y

1
z

1
,...,y

2n-1
z

2n-1
]

[c
0
,c

1
,c

2
,...,c

2n-1
]

(Convolution)

Figure 25.1: An illustration of the Convolution Theorem, to compute c = a ∗ b.

www.it-ebooks.info

http://www.it-ebooks.info/

720 Chapter 25. The Fast Fourier Transform

The reason the above approach works is because of the following.

Theorem 25.6 [The Convolution Theorem]: Suppose we are given two n-
length vectors a and b padded with 0’s to 2n-length vectors a′ and b′, respectively.
Then a ∗ b = F−1(Fa′ · Fb′).

Proof: We will show that F (a ∗ b) = Fa′ · Fb′. So, consider A = Fa′ · Fb′.
Since the second halves of a′ and b′ are padded with 0’s,

A[i] =

⎛
⎝n−1∑

j=0

ajω
ij

⎞
⎠ ·
(

n−1∑
k=0

bkω
ik

)

=
n−1∑
j=0

n−1∑
k=0

ajbkω
i(j+k),

for i = 0, 1, . . . , 2n − 1. Consider, next, B = F (a ∗ b). By the definition of

convolution and the DFT,

B[i] =
2n−1∑
l=0

2n−1∑
j=0

ajbl−jω
il.

Substituting k for l − j, and changing the order of the summations, we get

B[i] =
2n−1∑
j=0

2n−1−j∑
k=−j

ajbkω
i(j+k).

Since bk is undefined for k < 0, we can start the second summation above at k = 0.

In addition, since aj = 0 for j > n − 1, we can lower the upper limit in the first

summation above to n − 1. But once we have made this substitution, note that the

upper limit on the second summation above is always at least n. Thus, since bk = 0
for k > n − 1, we may lower the upper limit on the second summation to n − 1.

Therefore,

B[i] =
n−1∑
j=0

n−1∑
k=0

ajbkω
i(j+k),

which proves the theorem.

We now have a method for computing the multiplication of two polynomials

that involves computing two DFTs, doing a simple linear-time component-wise

multiplication, and computing an inverse DFT. Thus, if we can find a fast algo-

rithm for computing the DFT and its inverse, then we will have a fast algorithm for

multiplying two polynomials. We describe such a fast algorithm, which is known

as the “Fast Fourier Transform,” next.

www.it-ebooks.info

http://www.it-ebooks.info/

25.4. The Fast Fourier Transform Algorithm 721

25.4 The Fast Fourier Transform Algorithm

The Fast Fourier Transform (FFT) algorithm computes a Discrete Fourier Trans-

form (DFT) of an n-length vector in O(n log n) time. In the FFT algorithm, we

apply the divide-and-conquer approach to polynomial evaluation by observing that

if n is even, we can divide a degree-(n − 1) polynomial

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1

into two degree-(n/2 − 1) polynomials

peven(x) = a0 + a2x + a4x
2 + · · · + an−2x

n/2−1

podd(x) = a1 + a3x + a5x
2 + · · · + an−1x

n/2−1

and noting that we can combine these two polynomials into p using the equation

p(x) = peven(x2) + xpodd(x2).

The DFT evaluates p(x) at each nth root of unity, ω0, ω1, ω2, . . . , ωn−1. Note

that, by the reduction property, the values (ω2)0, ω2, (ω2)2, (ω2)3, . . . , (ω2)n−1 are

(n/2)th roots of unity. Thus, we can evaluate each of peven(x) and podd(x) at these

values, and we can reuse those same computations in evaluating p(x). This obser-

vation is used in Algorithm 25.2 (FFT), which takes as input an n-length coefficient

vector a and a primitive nth root of unity ω, where n is a power of 2.

Algorithm FFT(a, ω):
Input: An n-length coefficient vector a = [a0, a1, . . . , an−1] and a primitive

nth root of unity ω, where n is a power of 2
Output: A vector y of values of the polynomial for a at the nth roots of unity

if n = 1 then
return y = a.

x ← ω0 // x will store powers of ω, so initially x = 1.

// Divide Step, which separates even and odd indices

aeven ← [a0, a2, a4, . . . , an−2]
aodd ← [a1, a3, a5, . . . , an−1]
// Recursive Calls, with ω2 as (n/2)th root of unity, by the reduction property

yeven ← FFT(aeven, ω2)
yodd ← FFT(aodd, ω2)
// Combine Step, using x = ωi

for i ← 0 to n/2 − 1 do
yi ← yeven

i + x · yodd
i

yi+n/2 ← yeven
i − x · yodd

i // Uses reflective property

x ← x · ω
return y

Algorithm 25.2: Recursive FFT algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

722 Chapter 25. The Fast Fourier Transform

The Correctness of the FFT Algorithm

The pseudocode description in Algorithm 25.2 for the FFT algorithm is deceptively

simple, so let us say a few words about why it works correctly. First, note that the

base case of the recursion, when n = 1, correctly returns a vector y with the one

entry, y0 = a0, which is the leading and only term in the polynomial p(x) in this

case.

In the general case, when n ≥ 2, we separate a into its even and odd instances,

aeven and aodd, and recursively call the FFT using ω2 as the (n/2)th root of unity.

As we have already mentioned, the reduction property of a primitive nth root of

unity, allows us to use ω2 in this way. Thus, we may inductively assume that

yeven
i = peven(ω2i)
yodd

i = podd(ω2i).

Let us therefore consider the for-loop that combines the values from the recursive

calls. Note that in the i iteration of the loop, x = ωi. Thus, when we perform the

assignment statement

yi ← yeven
i + xyodd

i ,

we have just set

yi = peven((ω2)i) + ωi · podd((ω2)i)
= peven((ωi)2) + ωi · podd((ωi)2)
= p(ωi),

and we do this for each index i = 0, 1, . . . , n/2 − 1. Similarly, when we perform

the assignment statement

yi+n/2 ← yeven
i − xyodd

i ,

we have just set

yi+n/2 = peven((ω2)i) − ωi · podd((ω2)i).

Since ω2 is a primitive (n/2)th root of unity, (ω2)n/2 = 1. Moreover, since ω is

itself a primitive nth root of unity,

ωi+n/2 = −ωi,

by the reflection property. Thus, we can rewrite the above identity for yi+n/2 as

yi+n/2 = peven((ω2)i+(n/2)) − ωi · podd((ω2)i+(n/2))

= peven((ωi+(n/2))2) + ωi+n/2 · podd((ωi+(n/2))2)

= p(ωi+n/2),

and this will hold for each i = 0, 1, . . . , n/2 − 1. Thus, the vector y returned by

the FFT algorithm will store the values of p(x) at each of the nth roots of unity.

www.it-ebooks.info

http://www.it-ebooks.info/

25.4. The Fast Fourier Transform Algorithm 723

Analyzing the FFT Algorithm

The FFT algorithm follows the divide-and-conquer paradigm, dividing the origi-

nal problem of size n into two subproblems of size n/2, which are solved recur-

sively. We assume that each arithmetic operation performed by algorithms takes

O(1) time. The divide step as well as the combine step for merging the recursive

solutions, each take O(n) time. Thus, we can characterize the running time T (n)
of the FFT algorithm using the recurrence equation

T (n) = 2T (n/2) + bn,

for some constant b > 0. By the Master Theorem (11.4), T (n) is O(n log n).
Therefore, we can summarize our discussion as follows.

Theorem 25.7: Given an n-length coefficient vector a defining a polynomial
p(x), and a primitive nth root of unity, ω, the FFT algorithm evaluates p(x) at each
of the nth roots of unity, ωi, for i = 0, 1, . . . , n − 1, using O(n log n) arithmetic
operations.

There is also an inverse FFT algorithm, which computes the inverse DFT in

O(n log n) time. The details of this algorithm are similar to those for the FFT al-

gorithm and are left as an exercise (R-25.1). Combining these two algorithms in our

approach to multiplying two polynomials p(x) and q(x), given their n-length coef-

ficient vectors, we have an algorithm for computing this product using O(n log n)
arithmetic operations, in the field used to define the primitive roots of unity used

by the FFT algorithm.

Multiplying Big Integers

Let us revisit the problem discussed in the introduction, of multiplying two n-bit

integers. Namely, suppose we are given two big integers P and J that use at most

n ≥ 64 bits each, where n is a power of 2, and we are interested in computing

R = P · Q. As mentioned earlier, we construct two polynomials, p(x) and q(x),
from P and Q as follows:

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1

q(x) = b0 + b1x + a2x
2 + · · · + bn−1x

n−1,

and note that P = p(2) and Q = q(2). Then we use the FFT algorithm to compute

a coefficient representation of the degree-2n polynomial,

r(x) = p(x) · q(x).

This takes O(n log n) arithmetic operations, say, in Zt, for a prime number, t, that

can be represented using O(log n) bits. This is likely to be on the order of the word

size of our computer, since it takes O(log n) bits just to represent the number n.

Finally, given this representation for r(x), we need to compute r(2) and assign this

to R.

www.it-ebooks.info

http://www.it-ebooks.info/

724 Chapter 25. The Fast Fourier Transform

A Divide-and-Conquer Algorithm for Evaluating r(2)

We can compute r(2) efficiently via yet another divide-and-conquer algorithm, by

noting that if r1(x) is a polynomial defined by the first n (lower-order) coefficients

of r(x) and r2(x) is a polynomial defined by the second n (higher-order) coeffi-

cients of r(x), then

r(x) = r1(x) + r2(x) · xn.

Thus, we can evaluate r(2) as follows:

if n = 1 then
return r(2)

recursively compute R1 ← r1(2)
recursively compute R2 ← r2(2)
Let R′

2 ← R2 · 2n

return R1 + R′
2

Note that doing the multiplication of R2 and 2n is not as difficult as the integer

multiplication problem we are trying to solve. In particular, since we are computing

r(2) in binary, we can multiply r1(2) by 2n by a left shift of the bits of r2(2) by n
places. Thus, we can do the final multiplication by 2n and addition of the resulting

O(n)-bit numbers in O(n) time. Therefore, this divide-and-conquer evaluation

algorithm can be characterized by the recurrence equation,

T (n) = 2T (n/2) + bn,

for some constant b ≥ 1; hence, the evaluation of r(2) can be done in O(n log n)
time. This gives us the following.

Theorem 25.8: Given two n-bit integers P and Q, we can compute the product
R = P · Q using O(n log n) arithmetic operations.

Here, the arithmetic operations are done in the number system that is used to

define the primitive nth roots of unity required by the FFT algorithm. For instance,

if we can do all the arithmetic in Zt, for a prime t = cn + 1, for a small integer

constant, c, such that t can be stored in a single word on our computer, then we can

perform each arithmetic operation in O(1) time in the RAM model.

In some cases, we cannot assume that arithmetic involving reasonably sized

words can be done in constant time, however. In such scenarios, we must pay

constant time for every bit operation. In this model it is still possible to use the

FFT to multiply two n-bit integers, but the details are somewhat more complicated

and the running time increases to O(n log n log log n). We omit the details for this

approach here.

www.it-ebooks.info

http://www.it-ebooks.info/

25.4. The Fast Fourier Transform Algorithm 725

Implementing the FFT Algorithm to Avoid Repeated Array Allocation

The pseudocode for the recursive FFT algorithm calls for the allocation of several

new arrays, including aeven, aodd, yeven, yodd, and y. Allocating all of these arrays

with each recursive call could prove to be a costly amount of extra work. If it can

be avoided, saving this additional allocation of arrays could significantly improve

the constant factors in the running time of the FFT algorithm.

Fortunately, the structure of FFT allows us to avoid this repeated array alloca-

tion. Instead of allocating many arrays, we can use a single array, A, for the input

coefficients and use a single array, Y , for the answers. The main idea that allows for

this usage is that we can think of the arrays A and Y as partitioned into subarrays,

each one associated with a different recursive call. We can identify these subarrays

using just two variables, base, which identifies the base address of the subarray,

and n, which identifies the size of the subarray. Thus, we can avoid the overhead

associated with allocating lots of small arrays with each recursive call.

Having decided that we will not allocate new arrays during the FFT recursive

calls, we must deal with the fact that the FFT algorithm involves performing sep-

arate computations on even and odd indices of the input array. In the pseudocode

of Algorithm 25.2, we use new arrays aeven and aodd, but now we must use sub-

arrays in A for these vectors. Our solution for this memory management problem

is to take the current n-cell subarray in A, and divide it into two subarrays of size

n/2. One of the subarrays will have the same base as A, while the other has base

base + n/2. We move the elements at even indices in A to the lower half and we

move elements at odd indices in A to the upper half. In doing so, we define an in-

teresting permutation known as the inverse shuffle. This permutation gets its name

from its resemblance to the inverse of the permutation we would get by cutting the

array A in half and shuffling it perfectly as if it were a deck of cards. Repeating

it recursively on each half gives rise to a structure known as the butterfly network,

because of its symmetry. (See Figure 25.3.)

0 1110987654321 1512 1413

0 1110987654321 1512 1413

old A:

new A:

Figure 25.3: An illustration of the inverse shuffle permutation.

www.it-ebooks.info

http://www.it-ebooks.info/

726 Chapter 25. The Fast Fourier Transform

Avoiding Recursion

Another constant-time improvement we can make to the running of the FFT algo-

rithm is to avoid recursion. The main challenge in such an implementation is that

we have to figure out a way of performing all the inverse shuffles in the input array

A. Rather than performing each inverse shuffle with each iteration, we instead per-

form all the inverse shuffles in advance, assuming that n, the size of the input array,

is a power of two.

In order to figure out the net effect of the permutation we would get by repeated

and recursive inverse shuffle operations, let us consider how the inverse shuffles

move data around with each recursive call. In the first recursive call, of course,

we perform an inverse shuffle on the entire array A. Note how this permutation

operates at the bit level of the indices in A. It brings all elements at addresses that

have a 0 as their least significant bit to the bottom half of A. Likewise, it brings all

elements at addresses that have a 1 as their least significant bit to the top half of A.

That is, if an element starts out at an address with b as its least significant bit, then

it ends up at an address with b as its most significant bit. The least significant bit in

an address is the determiner of which half of A an element winds up in. In the next

level of recursion, we repeat the inverse shuffle on each half of A. Viewed again at

the bit level, for b = 0, 1, these recursive inverse shuffles take elements originally

at addresses with b as their second least significant bit, and move them to addresses

that have b as their second most significant bit. Likewise, for b = 0, 1, the ith levels

of recursion move elements originally at address with b as their ith least significant

bit, to addresses with b as their ith most significant bit. Thus, if an element starts

out at an address with binary representation [bl−1 . . . b2b1b0], then it ends up at an

address with binary representation [b0b1b2 . . . bl−1], where l = log2 n. That is, we

can perform all the inverse shuffles in advance just by moving elements in A to

the address that is the bit reversal of their starting address in A. To perform this

permutation, we build a permutation array, reverse, in the multiply method, and

then use this inside the FFT method to permute the elements in the input array A
according to this permutation.

www.it-ebooks.info

http://www.it-ebooks.info/

25.5. Exercises 727

25.5 Exercises

Reinforcement
R-25.1 Describe the inverse FFT algorithm, which computes the inverse DFT in O(n log n)

time. That is, show how to reverse the roles of a and y and change the assign-
ments so that, for each output index, we have

ai =
1
n

n−1∑
j=1

yjω
−ij .

R-25.2 Write the complex nth roots of unity for n = 4 and n = 8 in the form a + bi.

R-25.3 What is the bit-reversal permutation, reverse, for n = 16?

R-25.4 Show that 5 is a multiplicative generator of the positive numbers in Z17.

R-25.5 Use the FFT and inverse FFT to compute the convolution of a = [1, 2, 3, 4]
and b = [4, 3, 2, 1], using arithmetic in Z17. Use the fact that 5 is a generator
for the positive elements of Z17, and show the output of each component as in
Figure 25.1.

R-25.6 Use the convolution theorem to compute the product of the polynomials p(x) =
3x2 +4x+2 and q(x) = 2x3 +3x2 +5x+3, using arithmetic in Z17. You may
use the fact that 5 is a generator for the positive elements of Z17.

R-25.7 Compute the discrete Fourier transform of the vector [5, 4, 3, 2] using arithmetic
modulo 17 = 24 + 1. Use the fact that 5 is a generator for the positive elements
in Z17.

R-25.8 Compute the product of the binary numbers (01101000)2 and (10001011)2 using
the algorithm given in the book.

R-25.9 What is the exact number of recursive calls made to compute the convolution
of the vectors [6, 2, 3, 5, 2, 5, 8, 3, 2, 6] and [4, 2, 3, 2, 7, 3, 3, 9], using recursive
definitions of the FFT and inverse FFT algorithms?

Creativity
C-25.1 Prove the following more general form of the reduction property of primitive

roots of unity: For any integer c > 0, if ω is a primitive (cn)th root of unity, then
ωc is a primitive nth root of unity.

C-25.2 Prove that ω = 24b/m is a primitive mth root of unity when multiplication is
taken modulo (22b + 1), for any integer b > 0 that is a multiple of m.

C-25.3 Given degree-n polynomials p(x) and q(x), describe a method for multiplying
the derivatives of p(x) and q(x), that is, p′(x) ·q′(x), using O(n log n) arithmetic
operations.

www.it-ebooks.info

http://www.it-ebooks.info/

728 Chapter 25. The Fast Fourier Transform

C-25.4 Describe a version of the FFT that works when n is a power of 3 by dividing the
input vector into three subvectors, recursing on each one, and then merging the
subproblem solutions. Derive a recurrence equation for the running time of this
algorithm and solve this recurrence using the Master Theorem.

C-25.5 Describe a method for computing the coefficients of the polynomial,

P (x) = (x + 1)n,

in O(n) time.

Applications
A-25.1 In Shamir secret sharing, an administrator, Bob, chooses a secret number, s, in

a finite field, Zp, for some prime number, p. He then chooses n−1 more random
numbers, a1, a2, . . . , an−1, in Zp, and uses them to define the polynomial,

p(x) = s + a1x + a2x
2 + · · · + an−1x

n−1.

Then, for each of n < p friends, he chooses a distinct value, xi, and distributes
p(xi) to friend number i. Argue why it is impossible for a group of (n − 1)
friends to learn the secret s, but if all n friends cooperate, they can learn s. Also,
describe a method for Bob to compute all the values, p(x1), p(x2), . . . , p(xn),
using O(n2) arithmetic operations in Zp.

A-25.2 Consider the Shamir secret sharing problem from the previous exercise, but now
design an algorithm for computing all the values, p(x1), p(x2), . . . , p(xn), using
O(n log2 n) arithmetic operations. You may use “as a black box” an algorithm,
PolyDivide, which takes two polynomials, p(x) and q(x), given in coefficient
form, with each of them having degree at most (n−1), and returns the remainder
polynomial, r(x),

r(x) = p(x) mod q(x),

in coefficient form, using O(n log n) arithmetic operations. In addition, you may
use the fact that, for any point, xi,

p(xi) = p(x) mod (x − xi).

Finally, you may use the fact that if we let

qi,j(x) =
j∏

k=i

(x − xk),

then p(x) = p(x) mod q1,n(x), and

p(x) mod qi,j(x) = (p(x) mod qk,l(x)) mod qi,j(x),

for k ≤ i ≤ j ≤ l.

www.it-ebooks.info

http://www.it-ebooks.info/

25.5. Exercises 729

A-25.3 In some numerical computing applications, a desired computation is to find a
polynomial that goes through a given set of points on a line, which, without loss
of generality, we can assume is the x-axis. So suppose you are given a set of real
numbers

X = {x0, x1, . . . , xn−1}.
Note that, by the Interpolation Theorem for Polynomials, there is a unique degree-
(n − 1) polynomial p(x), such that

p(xi) = 0, for i = 0, 1, . . . , n − 1,

and these are the only 0-values for the polynomial. Design a divide-and-conquer
algorithm that can construct a coefficient-form representation of this polynomial,
p(x), using O(n log2 n) arithmetic operations.

A-25.4 Suppose you have a software method, Conv, that can perform the convolution
of two length-n integer vectors, A and B, using the FFT algorithm described in
this chapter. Suppose further that you have been asked to build a system that can
take an n-bit binary “text” string, T , and an m-bit binary “pattern” string, P , for
m ≤ n, and determine all the places in T where P appears as a substring. Show
that in O(n) time, plus the time needed for calls to the Conv method, you can
solve this pattern matching problem by making two calls to the Conv function.

Hint: Note that the kth position in the convolution of two bit strings, A and B,
counts the number of 1’s that match among the first k − 1 places in A with the
last k − 1 places in the reversal of B.

A-25.5 Consider a generalization of the pattern matching problem from the previous
exercise, where we allow the pattern P and text T to be strings defined over an
arbitrary alphabet, Σ. Show that you can still find all occurrences of P in T
using two calls to the Conv method. In this case, your algorithm should run in
O(n log |Σ|) time, plus the time needed for the calls to the Conv method.

A-25.6 Consider a further generalization of the pattern matching problem from the pre-
vious exercise, where we allow the pattern, P , to contain instances of a special
“wild card” or “don’t care” symbol, *, which matches any character in the alpha-
bet, Σ. For example, with

P = ab**c

and
T = babdfcabghci,

P matches T in positions 2 and 7. Show that, even in this case, you can still find
all occurrences of P in T using two calls to the Conv method. In this case, your
algorithm should run in O(n log |Σ|) time, plus the time needed for the calls
to the Conv method. (Also, note that this problem cannot be solved using the
efficient algorithms from Chapter 23.)

A-25.7 Suppose you are given a set, S, of n distinct number pairs, (x, y), such as in
the Shamir secret sharing scheme described in Exercise A-25.1. Furthermore,
assume that you have a software method, LinSolve, for solving a system of n
linear equations with n unknowns. Describe how to produce a coefficient-form
representation of the unique degree-(n − 1) polynomial that satisfies y = p(x),
for each (x, y) in S. Your algorithm should run in O(n2) time plus the time taken
by the LinSolve method.

www.it-ebooks.info

http://www.it-ebooks.info/

730 Chapter 25. The Fast Fourier Transform

A-25.8 In financial and scientific data analysis applications, such as in spotting trends
in stocks, we are often interested in making sense of noisy or highly fluctuating
data. One method to achieve this goal is to take an average of recent values, as
shown in Figure 25.4. For instance, in using a weighted moving average, one
begins by specifying a sequence of m weights, W = (w0, w1, . . . , wm−1), with

m−1∑
i=0

wi = 1.

Typically, one chooses the weights so that wi > wi+1, for i = 1, . . . , n − 1, so
as to give greater emphasis to recent data. Then, given a sequence of n ≥ m data
values, X = (x0, x1, . . . , xn−1), the ith value of the weighted moving average
is computed as

Ai = w0ai + w1ai−1 + w2ai−2 + · · · .

For example, if W = (0.5, 0.3, 0.2) and the three most recent data values were
136, 150, 200, then the current weighted moving average would be

Ai = 0.5(136) + 0.3(150) + 0.2(200) = 153,

which is closer to 136 than it is to 200. Given the sequences W and X , as
specified above, describe an efficient method for computing all the Ai values, for
i = 0, 1, . . . , n − 1, using O(n log n) arithmetic operations.

-

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Values

Prefix

average

Figure 25.4: Smoothing data by taking an average of recent values.

Chapter Notes
The Fast Fourier Transform (FFT) appears in a paper by Cooley and Tukey [49]. It is
also discussed in books by Aho, Hopcroft, and Ullman [8], Baase [18], and Yap [219], all
of which were influential in the discussion given above. The fast integer multiplication
method, running in O(n log n log log n) time, is due to Schönhage and Strassen [186].
For information on additional applications of the FFT, the interested reader is referred to
books by Brigham [39] and Elliott and Rao [65], and the chapter by Emiris and Pan [66].
The connection between string matching and convolution begins with work by Fischer and
Paterson [70]. Shamir describes a polynomial-based way to share a secret in [194].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

26 Linear Programming

Brooklyn Bridge showing painters on suspenders. By Eugene de Salgnac,
October 7, 1914. From NYC Municipal Archives. Public domain image.

Contents

26.1 Formulating the Problem 734
26.2 The Simplex Method . 739
26.3 Duality . 746
26.4 Applications of Linear Programming 750
26.5 Exercises . 753

www.it-ebooks.info

http://www.it-ebooks.info/

732 Chapter 26. Linear Programming

Optimization problems are common in the real world, with many applications

in business and science that involve maximizing or minimizing some goal subject

to a set of given constraints. For example, we might like to maximize a profit given

a certain initial investment, or we might wish to minimize the error produced by a

computer simulation using a fixed number of CPUs. Thus, in such contexts, there

are in general two components to such optimization problems:

• a set of constraints that must be satisfied

• an objective function to maximize or minimize subject to the given con-

straints.

In a business application, for instance, the constraints might include the amount

of risk allowed in an investment portfolio, and in a scientific application, the con-

straints might be determined by the number of CPUs available to run a simulation.

In either case, often the objective is to maximize profit or minimize cost.

An Example Optimization Problem

As a more detailed application, suppose that a web server company wants to buy

new servers to replace outdated ones and has two options to choose from. There is

a standard model which costs $400, uses 300W of power, takes up two shelves of

a server rack, and can handle 1000 hits/min. There is also a cutting-edge model,

which costs $1600, uses 500W of power, but takes up only one shelf, and can

handle 2000 hits/min. With a budget of $36,800, 44 shelves of server space and

12,200W of power, how many units of each model should the company purchase

in order to maximize the number of hits it can serve every minute?

Let us introduce some variables, say x1 and x2, to represent the number of

servers for each model. Then the number of hits per minute that can be serviced by

x1 standard servers and x2 cutting-edge servers is

1000x1 + 2000x2.

Our goal is to maximize this quantity.

The number of servers the company should get is limited by three factors: the

budget, which translates into

400x1 + 1600x2 ≤ 36800,

the number of shelves that can be taken up by these servers,

2x1 + x2 ≤ 44,

and the amount of power these servers can use collectively,

300x1 + 500x2 ≤ 12200.

www.it-ebooks.info

http://www.it-ebooks.info/

733

Therefore, this optimization problem can be summarized as follows:

maximize: z = 1000x1 + 2000x2

subject to: 400x1 + 1600x2 ≤ 36800
2x1 + x2 ≤ 44

300x1 + 500x2 ≤ 12200
x1, x2 ≥ 0,

where the inequalities in the last line express the implicit requirement that the num-

ber of each server has to be nonnegative. Such inequalities are necessary to prevent

a nonsensical solution, and they are distinguished from the other constraints in that

they determine the sign of the variables. Solving optimization problems that have

the above general form is known as linear programming, which is the topic we

study in this chapter.

Linear programming encompasses a broad subclass of optimization problems,

including the shortest-path problem and maximum flow, as well as fundamental

applications from the realms of military, science, and business. Algorithms that

solve linear programs (often abbreviated as LP) have been extensively studied in

the last century. Our goal in this chapter is to understand one of these algorithms,

which is still in use, called the simplex method.

Translating Problems into Linear Programs

In general, there are three steps for turning an optimization problem into a linear

program, assuming such a formulation is possible:

1. Determining the variables of the problem.

2. Finding the quantity to optimize, and write it in terms of the variables.

3. Finding all the constraints on the variables and writing equations or inequal-

ities to express these constraints.

In addition, in defining the constraints, we need to be sure to include any implicit

constraints describing the range of values the variables can take and to make sure

all the equations are linear, as in the above example. In this chapter, we discuss

how to create such formulations of optimization problems.

Once we have such a formulation, we then should solve the resulting linear

program, and there are several software packages available for doing this that are

based on various efficient algorithms. In this chapter, we focus on a classic algo-

rithm for solving linear programs, which is known as the simplex method. We also

discuss an important topic known as duality.

www.it-ebooks.info

http://www.it-ebooks.info/

734 Chapter 26. Linear Programming

26.1 Formulating the Problem
Standard Form

Recall that a function, f , is a linear function in the variables, x1, x2, . . . , xn, if it

has the following form:

f(x1, x2, . . . , xn) = a1x1 + a2x2 + · · · + anxn =
n∑

i=1

aixi,

for some real numbers, a1, a2, . . . , an, which are called coefficients or weights.

A linear program in standard form is an optimization problem with the fol-

lowing form:

maximize: z =
∑
i∈V

cixi

subject to:
∑
j∈V

aijxj ≤ bi for i ∈ C

xi ≥ 0 for i ∈ V

where V indexes over the set of variables and C indexes over the set of constraints.

The xi’s are variables, whereas all other symbols represent fixed real numbers.

The function to maximize is called the objective function, and the inequalities are

called constraints. In particular, the inequalities xi ≥ 0 are called nonnegativity
constraints. This program is linear because both the objective and the constraints

are linear functions of the variables, where an inequality is linear if there is a linear

function on one side and a constant on the other side of the inequality.

As an example, the earlier linear program is reproduced below. Notice that it

fits the standard form. To make this fact more explicit, we rewrite it in gray using

the notation from the definition:

maximize: z = 1000x1 + 2000x2 z = c1x1 + c2x2

subject to: 400x1 + 1600x2 ≤ 36800 a11x1 + a12x2≤ b1

2x1 + x2 ≤ 44 a21x1 + a22x2≤ b2

300x1 + 500x2 ≤ 12200 a31x1 + a32x2≤ b3

x1, x2 ≥ 0 x1, x2≥ 0.

There are two variables and three constraints, so V = {1, 2} and C = {1, 2, 3}.

Linear programs also come in several variants of the standard form. For in-

stance, we may want to minimize rather than maximize the objective function, the

inequalities in the constraints may be expressed in terms of “greater than or equal

to,” or the constraints might be better expressed as equalities. Fortunately, these

variants can easily be made to fit the standard form. The following table describes

www.it-ebooks.info

http://www.it-ebooks.info/

26.1. Formulating the Problem 735

how this could be done.

The form . . . can also be written as . . .

minimize f(x1, . . . , xn) maximize −f(x1, . . . , xn)
f(x1, . . . , xn) ≥ y −f(x1, . . . , xn) ≤ −y

f(x1, . . . , xn) = y
f(x1, . . . , xn) ≤ y
f(x1, . . . , xn) ≥ y

For example, we can use the last two rules to rewrite 3x1 − 2x2 = 5 into an

equivalent form consisting of the two inequalities

3x1 − 2x2 ≤ 5,
−3x1 + 2x2 ≤ −5.

Matrix Notation

A linear function can be expressed as a dot product:
n∑

i=1

aixi = �a · �x,
�a = (a1, . . . , an),
�x = (x1, . . . , xn).

Notice that �a is a vector of numbers while �x is a vector of variables. Using dot

products, we can express the standard form more compactly:

maximize: �c · �x
subject to: �a1 · �x ≤ b1

�a2 · �x ≤ b2

...

�am · �x ≤ bm.

In fact, we can express it even more compactly, by letting A be the matrix where

the ith row is vector �ai. In other words, A is the m × n matrix whose ijth entry is

aij . Also let�b be the vector with entries bi. If we extend the meaning of the symbol

≤ to row-wise inequality, we can have a more succinct description of standard form

as follows:

maximize: �c · �x
subject to: A�x ≤ �b.

For example, the inequalities

2x + z ≤ 5
x − 4y − 3z ≤ 1

can be written as

(2, 0, 1) · (x, y, z) ≤ 5
(1,−4,−3) · (x, y, z) ≤ 1 or

(
2 0 1
1 −4 −3

)⎛⎝x
y
z

⎞
⎠ ≤

(
5
1

)
.

www.it-ebooks.info

http://www.it-ebooks.info/

736 Chapter 26. Linear Programming

The Geometry of Linear Programs

To understand a linear program, it helps to look at the problem from a geometric

point of view. For simplicity, let us restrict ourselves to the two-dimensional case

for the time being. In this case, each inequality constraint describes a half-plane,

expressed as an infinite region to one side of a line. So a point that is inside all of

these half-planes is a point that satisfies all the constraints. We call such a point

a feasible solution. Now intersections of half-planes have the shape of a convex

polygon (Section 22.2). So the set of all feasible solutions is a convex polygon. We

call this set the feasible region. For example, Figure 26.1 shows the feasible region

of the linear program from the web server example.

23

22 x 1

x 2

(14,16)

(4, 22)

Figure 26.1: A feasible region is the intersection of half-spaces.

A region is convex if any two points in the region can be joined by a line

segment entirely in the region (see Figure 26.2). Intuitively, if a two-dimensional

shape is convex, then a person walking on its boundary, assuming it has one, would

always be making left turns, or always right turns. (See, also, Section 22.2.)

(a) (b)

Figure 26.2: (a) In a convex set, any segment line joining two points inside the set

is also inside the set. (b) In a non-convex set, there are segments joining two points

in the set that are not entirely in the set.

www.it-ebooks.info

http://www.it-ebooks.info/

26.1. Formulating the Problem 737

In general, linear programs have a geometry in d dimensions where d is the

number of variables. The geometric intuition is the same as in the plane but the

shapes are more complex and the terminology is different. Inequality constraints

in d dimensions are represented by half-spaces instead of half-planes, and their

intersection forms a convex polytope instead of a convex polygon. For instance,

a three-dimensional linear program could have a feasible region in the shape of a

cube, pyramid, soccer ball, or any other three-dimensional convex shape with flat

sides defining its boundary.

It is not enough to find just any feasible solution, of course. We are interested

in one that optimizes the objective function. We refer to this feasible solution an

optimal solution. In the web server example, for instance, the set of points that

produce a particular value, c, of the objective function is given by the equation

c = 1000x1 + 2000x2,

which is represented by a line. Such lines with varying values of c are all parallel,

and we are interested in the one that maximizes c while still containing a feasible

solution somewhere on the line. (See Figure 26.3.)

Referring to Figure 26.3, note that the slope of a line for the above objective

function is always −1/2, regardless of the value of c. So we can imagine that, as

c increases, the line sweeps the plane from the bottom left to the top right, staying

parallel to itself. An optimal solution must be contained within the feasible region,

which is represented by the gray region, and it must have the highest possible ob-

jective value. So the optimal solution is the point in the feasible region which is

last hit by the sweeping line as it sweeps up and to the right. In this case, this point

is the intersection of the lines representing the budget and power constraints,

400x1 + 1600x2 = 36800
300x1 + 500x2 = 12200.

23

22

(4, 22)

(14,16)

c =
4400

c =
3600

c =
2400

x 1

x 2

Figure 26.3: An example two-dimensional feasible region and objective function,

c = 1000x1 + 2000x2. Values of the objective are represented by parallel lines.

www.it-ebooks.info

http://www.it-ebooks.info/

738 Chapter 26. Linear Programming

By solving the above system of two equations in two variables, we see that the

optimal solution occurs when x1 = 4 and x2 = 22. This example illustrates a

principle that applies even to linear programs in higher dimensions—namely, that,

because the feasible region is a convex polytope, an optimal solution, if one exists,

always occurs on the boundary.

An optimal solution may not always be unique, however, such as when we

modify the coefficients of the objective function in our example to

maximize 1500x1 + 2500x2.

(See Figure 26.4(a).) It is also possible that the solution does not exist at all. For

example, this case occurs when the feasible region is unbounded and the objective

function tends to +∞ as we move along a ray contained in the feasible region. (See

Figure 26.4(b).)

23

22

(4, 22)

(14,16)

x 1

x 2

c
=

5 7 5 0
c

=
4 7 5 0

c
=

3 2 5 0

x 1

20

20

c
=

1
0

5

c
=

8
0

c
=

140

x 2

(a) (b)

Figure 26.4: A linear program can have (a) many optimal solutions or (b) no optimal

solution at all.

Finally, a linear program may not have an optimal solution simply because it

has no feasible solution. This situation occurs when the constraints are so restrictive

that no assignment to the variables can satisfy every constraint. Geometrically, this

is the situation in which the intersection of all the half-spaces is empty.

Therefore, one algorithm to solve a linear program that has at least one optimal

solution is to find all the vertices of the feasible region, and evaluate the objec-

tive function at these points. The optimal solution will be the point or points with

highest objective value. This method is not particularly efficient, however, because

there can be exponentially many vertices to evaluate. A better approach consists

of starting at one vertex and, over several iterations, moving to a neighboring ver-

tex with an increasingly better objective value. Thus, we can find a path on the

boundary of the feasible region that starts at any vertex and ends at an optimal one.

This alternative algorithm is called the simplex method, which is the algorithm we

discuss next.

www.it-ebooks.info

http://www.it-ebooks.info/

26.2. The Simplex Method 739

26.2 The Simplex Method

In this section, we describe the simplex method, which is an algorithm for solv-

ing linear programs that follows a path through the vertices of the feasible region

that increases the objective function in a greedy fashion. Although the worst-case

runtime for this algorithm is exponential, in practice the algorithm usually finishes

quickly.

26.2.1 Slack Form

To solve a linear program using the simplex method, we must first rewrite the prob-

lem in a format known as slack form. To convert a linear program from standard

form into slack form, we rewrite each of the inequality constraints as an equiva-

lent equality constraint. This is done with the introduction of new variables, called

slack variables, which are nonnegative and measure the difference in the original

inequality. For example, to rewrite the inequality 2x − 5y ≤ 28 in slack form, we

could introduce a slack variable, s, with the constraints, s = 28 − (2x − 5y) and

s ≥ 0. Intuitively, variable s measures the “slack” in the inequality, that is, the

amount between the lesser and greater quantities in the inequality. We perform this

step for each inequality in the standard form, introducing a slack variable for each

such inequality.

Formally, we say that linear program is in slack form if we seek to maximize a

linear objective, z, subject to constraints that are either equality constraints involv-

ing a slack variable or are nonnegativity constraints, as follows:

maximize: z = c∗ +
∑
j∈F

cjxj

subject to: xi = bi −
∑
j∈F

aijxj , for i ∈ B

xi ≥ 0 for 1 ≤ i ≤ m + n.

The sets B and F partition the xi variables into basic variables and free variables,

respectively. That is, each equality constraint has a basic (slack) variable on the

left-hand side and only free variables on the right-hand side. Thus, free variables

only appear on the left-hand side of nonnegativity constraints. Taken together, the

aij coefficients form a m × n matrix, A, where n = |F | is the number of variables

in the standard form, and m = |B| is the number of constraints in the standard

form. Incidentally, the minus sign in the equality constraints is needed so that the

matrix A is the same in the slack form and standard form.

www.it-ebooks.info

http://www.it-ebooks.info/

740 Chapter 26. Linear Programming

Example 26.1: Below we convert the linear program in standard form (left) into
a slack form (right). In this particular slack form, the basic variables are slack
variables, but this is not always the case.

maximize: z = x1 + 2x2

subject to: −3x1 + 2x2 ≤ 3
x1 + x2 ≤ 2
x1 − x2 ≤ 1

x1, x2 ≥ 0

maximize: z = x1 + 2x2

subject to: x3 = 3 + 3x1 − 2x2

x4 = 2 − x1 − x2

x5 = 1 − x1 + x2

x1, x2, x3, x4, x5 ≥ 0
In this slack form, the free variables have indices F = {1, 2} and the basic

variables have indices B = {3, 4, 5}.

We are interested in the basic solution of the slack form, which means we set

all the free variables to zero and let the equality constraints determine the values

of the basic variables. In the above example, the basic solution is, x1 = x2 = 0,

x3 = 3, x4 = 2, and x5 = 1, or written in vector notation �x = (0, 0, 3, 2, 1), and

the objective function has value z = c∗ = 0. In this case, the basic solution is a

feasible solution, but this need not be the case in general.

The simplex method works by rewriting the slack form until a basic solution

becomes an optimal solution. The operation we use to rewrite the slack form is

called a pivot, which takes a free variable and a basic variable and interchanges

their roles by rewriting the equality constraints and objective function. Pivoting two

variables produces an equivalent slack form, meaning that it has the same feasible

region and that the objective function has the same values in the feasible region.

Example 26.2: In this example, we perform a pivot where the free variable x1

becomes basic and the basic variable x5 becomes free. We perform this pivot by
rewriting the equality constraint with x5 on the left-hand side so that it has x1 on
the left-hand side. Then, we substitute this new equality constraint for x1 in the
old objective function and equality constraints to obtain a new objective function
and new equality constraints involving only the free variables, x2 and x5, on the
right-hand sides.

maximize: z = x1 + 2x2

subject to: x3 = 3 + 3x1 − 2x2

x4 = 2 − x1 − x2

x5 = 1 − x1 + x2

x1, x2, x3, x4, x5 ≥ 0

maximize: z = 1 + 3x2 − x5

subject to: x3 = 6 + x2 − x5

x4 = 2 − 2x2 + x5

x1 = 1 + x2 − x5

x1, x2, x3, x4, x5 ≥ 0.

The basic solution of the new slack form is (1, 0, 6, 2, 0) and the objective value
is 1. So, as a result of the pivot, we have increased the objective value from 0 to
1. Geometrically, we have started from the vertex (0, 0), where the inequalities
x1, x2 ≥ 0 are tight (that is, they are satisfied by equality with the right-hand side),
and we have moved to the vertex (1, 0) where the inequalities x2, x5 ≥ 0 are tight.

www.it-ebooks.info

http://www.it-ebooks.info/

26.2. The Simplex Method 741

The simplex method describes the procedure for performing pivots that increase

the objective value to the optimal objective value. Geometrically, pivots move from

a vertex of the feasible region to a neighbor that increases the objective function the

most. Thus, this approach is an application of the greedy method (Chapter 10).

Lemma 26.3: The slack form of a LP is uniquely determined by the set of free
variables.

Proof: Suppose the two slack forms below are equivalent slack forms

maximize: z = c∗ +
∑
j∈F

cjxj

subject to: xi = bi −
∑
j∈F

aijxj for i ∈ B

xi ≥ 0 for 1 ≤ i ≤ m + n

maximize: z = c′∗ +
∑
j∈F

c′jxj

subject to: xi = b′i −
∑
j∈F

a′ijxj for i ∈ B

xi ≥ 0 for 1 ≤ i ≤ m + n

We aim to show that they are in fact identical, i.e., c∗ = c′∗, cj = c′j for all

j ∈ F , bi = b′i for all i ∈ B, and aij = a′ij for all i ∈ B and j ∈ F . Consider the

equality

0 =

⎛
⎝c∗ +

∑
j∈F

cjxj

⎞
⎠−

⎛
⎝c′∗ +

∑
j∈F

c′jxj

⎞
⎠ = (c∗ − c′∗) +

∑
j∈F

(cj − c′j)xj .

This equation must hold for all feasible (nonnegative) values of the xj . When

xj = 0 for all j ∈ F , we get 0 = c∗ − c′∗, so we must have that c∗ = c′∗. Fix r ∈ F
then let xr = 1 and xj = 0 for j ∈ F \{r}. This produces the equality 0 = cr−c′r,

which implies cr = c′r. Since r was arbitrary, we have that cj = c′j for all j ∈ F .

The remainder of the equalities are proved similarly, and left to Exercise C-

26.14.

Earlier we said we would assume that the basic solution was feasible, but what

do we do when this is not the case? If we know a vertex on the feasible region,

then we can find which of n inequalities are tight there and pivot the associated

variable so that they are free variables. Exercise C-26.5 asks you to show that the

basic solution is feasible in this new slack form. This does not however help us to

find a vertex on the feasible region, however, which will wait until we develop the

details for the simplex method.

www.it-ebooks.info

http://www.it-ebooks.info/

742 Chapter 26. Linear Programming

26.2.2 An Extended Example

In this section, we follow the approach of the simplex method to optimize the fol-

lowing linear program whose feasibly region is drawn to the right. The strategy

will be to perform a sequence of pivot operations, which in the end will yield a

slack form that is readily optimized.

maximize: z = 4x1 + x2

subject to: x2 ≤ 6
x1 + x2 ≤ 8

x1 ≤ 4
x1 − x2 ≤ 2

x1, x2 ≥ 0

2 4

2

4

6

First, we rewrite the linear program into the initial slack form, introducing the

slack variables x3, x4, x5 and x6.

maximize: z = 4x1 + x2

subject to: x3 = 6 − x2

x4 = 8 − x1 − x2

x5 = 4 − x1

x6 = 2 − x1 + x2

x1, x2, x3, x4, x5, x6 ≥ 0

Free Variables: F = {1, 2}
Basic Variables: B = {3, 4, 5, 6}
Basic Solution: (0, 0, 6, 8, 4, 2)
Objective Value: c∗ = 0

Next, we look at the objective function and notice that increasing either x1 or

x2 will increase the objective value. We choose to raise the value of x1 as it has the

largest coefficient. This greedy strategy does not necessarily improve runtime, by

the way, but it is nevertheless often a useful choice in practice. While keeping x2

fixed at zero, we increase x1 as far as possible. The nonnegativity constraints of the

basic variables impose the constraints x1 ≤ ∞ from x3, x1 ≤ 8 from x4, x1 ≤ 4
from x5 and x1 ≤ 2 from x6. The tightest of these constraints is x1 ≤ 2. So we

pivot x1 and x6, setting x1 = 2 and x6 = 0 in the basic solution. This produces a

new but equivalent slack form.

www.it-ebooks.info

http://www.it-ebooks.info/

26.2. The Simplex Method 743
maximize: z = 8 + 5x2 − 4x6

subject to: x1 = 2 + x2 − x6

x3 = 6 − x2

x4 = 6 − 2x2 + x6

x5 = 2 − x2 + x6

x1, x2, x3, x4, x5, x6 ≥ 0

Free Variables: F = {2, 6}
Basic Variables: B = {1, 3, 4, 5}
Basic Solution: (2, 0, 6, 6, 2, 0)
Objective Value: c∗ = 8

Since the coefficient on x6 is negative, raising it from zero will only decrease

the objective function. For this reason, we keep x6 fixed at zero and raise x2 until

we hit the first constraint. The constraints on x2 are: x2 ≤ ∞, x2 ≤ 6, x2 ≤ 3, and

x2 ≤ 2. The tightest of these constraints is x2 ≤ 2 coming from the basic variable

x5. So we set x2 = 2 and x5 = 0 by pivoting x2 and x5. This yields a new slack

form.

maximize: z = 18 − 5x5 + x6

subject to: x1 = 4 − x5

x2 = 2 − x5 + x6

x3 = 4 + +x5 − x6

x4 = 2 + 2x5 − x6

x1, x2, x3, x4, x5, x6 ≥ 0

Free Variables: F = {5, 6}
Basic Variables: B = {1, 2, 3, 4}
Basic Solution: (4, 2, 4, 2, 0, 0)
Objective Value: c∗ = 18

In this slack form, the coefficient of x5 is negative. So we keep x5 fixed at zero

and increase x6. The tightest constraint is x6 ≤ 2 coming from the basic variable

x4. So we pivot x4 and x6, yielding the next slack form.

maximize: z = 20 − 3x5 − x4

subject to: x1 = 4 − x5

x2 = 4 − x4 + x5

x3 = 2 + x4 − x5

x6 = 2 + 2x5 − x4

x1, x2, x3, x4, x5, x6 ≥ 0

Free Variables: F = {4, 5}
Basic Variables: B = {1, 2, 3, 6}
Basic Solution: (4, 4, 2, 0, 0, 2)
Objective Value: c∗ = 20

Now something interesting has happened! Both of the variables in the objective

function have negative coefficients, so increasing either of them would decrease the

objective function. So we conclude that we must be at the optimum and stop. From

the basic solution we see that x1 = 4, x2 = 4 and c∗ = 20, which is the solution to

our original problem.

www.it-ebooks.info

http://www.it-ebooks.info/

744 Chapter 26. Linear Programming

26.2.3 The Simplex Algorithm
We formalize the strategy used in the previous example into Algorithm 26.5, which

is commonly referred to as the simplex method. This version of the algorithm

assumes it is given as input a slack form in which the basic solution is feasible.

Earlier we showed how to produce such a slack form if we know a vertex of the

feasible region, and in Exercise C-26.6 we explore how to find such a vertex.

SimplexMethod(A, b, c, c∗, F, B) :

while there exists j ∈ F with cj > 0 do
r ← arg maxj∈F cj

for i ∈ B do
ki ← (if air 	= 0 then − bi/air else ∞)

s ← arg mini∈B ki

if ks = ∞ then
return unbounded exception

else
Pivot xr and xs.

return (A, b, c, c∗, F, B)

Algorithm 26.5: The simplex method. We assume the input is given in slack form

and that the basic solution is feasible.

Analysis of the Simplex Algorithm

To analyze the running time of the simplex method, we notice that each iteration

of the loop considers a different slack form of the original problem. If a slack form

appears more than once while running the simplex method, then the algorithm will

cycle. Since there are only
(
n+m

n

)
different slack forms, one for each choice of F ,

we know that the algorithm will either halt in
(
n+m

n

)
steps or it will cycle. We can

avoid cycling, however, by having an appropriate rule for choosing among optimal

pivots that don’t actually change the value of the objective function, which is a

phenomenon known as degeneracy. In practice, however, the simplex algorithm

will often halt in polynomial time in any case.

Since the simplex algorithm only works for inputs whose basic solution is feasi-

ble, we need to take into account the amount of time required to put the problem in

this form. In Exercise C-26.6, we explore how to find a vertex of the feasible region

by optimizing a slack form where the basic solution is feasible, taking
(
n+m

n

)
time.

In addition, in Exercise C-26.5, we consider how to transform a slack form into

a slack form in which the basic solution is feasible given a vertex on the feasible

region in time O(mn). Thus, the simplex method will optimize a linear program

in at most O(
(
n+m

n

)
) time.

www.it-ebooks.info

http://www.it-ebooks.info/

26.2. The Simplex Method 745

Example 26.4: Consider the following linear program, written in standard form:

maximize: z = x1 + 2x2

subject to: − x1 + x2 ≤ 3
x1 + 3x2 ≤ 13
x1 − x2 ≤ 1

To solve this linear program using the simplex method, we first we rewrite the linear
program in slack form, introducing the slack variables, x3, x4 and x5.

maximize: z = x1 + 2x2

subject to: x3 = 3 + x1 − x2

x4 = 13 − x1 − 3x2

x5 = 1 − x1 + x2

We then choose to increase x2, as it has the largest coefficient in the objective
function. The most restrictive constraint is given by x3. So we pivot x2 and x3,
yielding the following new slack form with objective value, c∗ = 6.

maximize: z = 6 + 3x1 − 2x3

subject to: x2 = 3 + x1 − x3

x4 = 4 − 4x1 + 3x3

x5 = 4 − x3

Next, we increase x1, as it has the largest coefficient in the objective function. The
most restrictive constraint is x4. So we pivot x1 and x4, which yields the following
slack form with objective value, c∗ = 9.

maximize: z = 9 + 0.25x3 − 0.25x4

subject to: x1 = 1 + 0.75x3 − 0.25x4

x2 = 4 − 0.25x3 − 0.25x4

x5 = 4 − x3

This time, we increase x3. Its most restrictive constraint comes from x5. So we
pivot x3 with x5. We get the new slack form below, with objective value, c∗ = 10.

maximize: z = 10 − 0.25x4 − 0.25x5

subject to: x1 = 4 − 0.25x4 − 0.75x5

x2 = 3 − 0.25x4 + 0.25x5

x3 = 4 − x5

Now that all the coefficients of the objective function are negative, we see that the
optimal value for this linear program is 10, with x1 = 4 and x2 = 3.

www.it-ebooks.info

http://www.it-ebooks.info/

746 Chapter 26. Linear Programming

26.3 Duality
To prove that Algorithm 26.5 does indeed provide the correct output, we must dis-

cuss a linear program related to the original problem called the dual.
Suppose that our input LP has the standard form:

maximize: z =
∑
j∈V

cjxj

subject to:
∑
j∈V

aijxj ≤ bi for i ∈ C

xj ≥ 0 for j ∈ V

It can be put into slack form as follows:

maximize: z =
∑
j∈F

cjxj

subject to: xi = bi −
∑
j∈F

aijxj for i ∈ B

xj ≥ 0 for j ∈ F ∪ B

Therefore, C = B and V = F . Note that this only holds because we did

the obvious transformation between the two forms. There are many more slack

forms equivalent to the original standard form, such as the slack forms produced

at each iteration of Algorithm 26.5, whose indexing sets B and F do not directly

correspond to C and V . Nevertheless, for this section, we assume that whenever

we transform the standard form into slack form, we do the obvious transformation.

So we can assume that C = B and V = F .

Given this initial LP, the dual LP is a minimization problem which interchanges

the roles of�b and �c and the roles of B and F . It also introduces new variables yi:

minimize: z =
∑
i∈B

biyi

subject to:
∑
i∈B

aijyi ≥ cj for j ∈ F

yi ≥ 0 for i ∈ B

When considering the original problem in relationship to its dual, we refer to

the original as the primal LP. Note the symmetry between the primal and dual LPs

written in matrix form:

primal:

maximize: z = �c · �x
subject to: A�x ≤ �b

�x ≥ �0
dual:

minimize: z = �b · �y
subject to: At�y ≥ �c

�y ≥ �0

www.it-ebooks.info

http://www.it-ebooks.info/

26.3. Duality 747

When going from the standard to the slack form, we extend the set of original

variables xi (now called free) to a bigger set to include basic variables. Still, for

this section, let us use �x to refer to the original variables only, which are indexed

by F .

Example 26.5: Below is a primal LP written in standard form and its dual.

maximize: z = x1 + 2x2

subject to: −3x1 + 2x2 ≤ 3
x1 + x2 ≤ 2
x1 − x2 ≤ 1

x1, x2 ≥ 0

minimize: z = 3y1 + 2y2 + y3

subject to: −3y1 + y2 + y3 ≥ 1
2y1 + y2 − y3 ≥ 2

y1, y2, y3 ≥ 0

Note that the dual is no longer in standard form, because of the inequality con-
straints. It can of course be easily converted (Exercise R-26.7).

As we shall see, the solutions to the primal and dual problems are closely re-

lated. Why is that the case? Let’s go back to the web server example.

Example 26.6: Recall the primal LP representing the web server problem.

maximize: z = 1000x1 + 2000x2

subject to: 400x1 + 1600x2 ≤ 36800
2x1 + x2 ≤ 44

300x1 + 500x2 ≤ 12200
x1, x2 ≥ 0

The dual problem is:

minimize: z = 36800y1 + 44y2+12200y3

subject to: 400y1 + 2y2 + 300y3 ≥ 1000
1600y1 + y2 + 500y3 ≥ 2000

y1, y2, y3 ≥ 0

There is a way to interpret this dual problem. Suppose a computer manufacturer
claims that it can cater to the web server company’s needs, and that, by doing so, it
can offer a set of web servers that will outperform the two types of servers the web
server company had planned on using, while staying within its resource limits.

To do so, the computer manufacturer must assess the number of hits/min each
resource can potentially produce. To outperform the first type of server, it must
build a web server that can handle at least 1000 hits/min if it costs $400, occupies
two shelves and uses 300W of power. This constraint corresponds to the first in-
equality of the dual LP. A similar explanation handles the case of the second type
of servers.

The variables in this inequality represent the number of hits/min each unit of
resource will contribute. For example, we can think of y2 as the value of a single
shelf measured in hits/mins, because a resource that contributes more hits/min is

www.it-ebooks.info

http://www.it-ebooks.info/

748 Chapter 26. Linear Programming

likely to increase the price of the computer (this is obviously up for debate, but
let us assume this is true to simplify things). Now the computer manufacturer
is offering its services for profit. So it will try to minimize its own production
costs given the amount of resources available. This production cost is the quantity
described by the objective function of the dual LP.

The minimum number of hits/min that the computer manufacturer can get away
with offering is equal to the maximum number of hits/min its client can achieve by
only using the two types of servers it had at its disposal.

Lemma 26.7: Let �x′ be a feasible solution to the primal LP (A,�b,�c, c∗, F, B) and

let �y′ be a feasible solution to the dual LP. If �c ·�x′ = �b ·�y′, then �x′ and �y′ are optimal
for their respective problems.

Proof: Any two solutions �x and �y that are feasible in the primal and dual prob-

lems respectively give us that

cj ≤
∑
i∈B

aijyi and
∑
j∈F

aijxj ≤ bi.

Using these inequalities one at a time, we see that∑
j∈F

cjxj ≤
∑
j∈F

∑
i∈B

aijyixj ≤
∑
i∈B

biyi.

So just by being feasible, we have �c · �x ≤ �b · �y. In particular, �c · �x ≤ �b · �y′, which

means that the primal objective function cannot be larger than �b · �y′ if we stay in

the feasible region. Since this objective function achieves the value�b · �y′ at �x′, this

means �x′ is optimal for the primal problem. A similar argument shows that �y′ is

optimal for the dual problem.

We now proceed to demonstrate the correctness of Algorithm 26.5.

Theorem 26.8: Suppose that on input LP (A,�b,�c, 0, F, B), Algorithm 26.5 re-
turns the LP (A′, �x′,�c′, c∗, F ′, B′), then �x′ is optimal for the input LP.

Proof: We show that the vector

�y = (yi, i ∈ B) defined by yi =

{
−c′i i ∈ F ′ ∩ B

0 i ∈ B′ ∩ B

is feasible for the dual LP and �c · �x′ = �b · �y and apply the previous lemma.

The input and output LPs are equivalent, so they have the same objective func-

tion: ∑
j∈F

cjxj = c∗ +
∑
i∈F ′

c′ixi (26.1)

= c∗ +
∑

i∈F ′∩F

c′ixi +
∑

i∈F ′∩B

c′ixi. (26.2)

www.it-ebooks.info

http://www.it-ebooks.info/

26.3. Duality 749

The split sum comes from the fact that F ′ ⊆ F ∪ B. Now the last sum can be

rewritten as

∑
i∈F ′∩B

−yi

⎛
⎝bi −

∑
j∈F

aijxj

⎞
⎠ ,

by using the definitions of yi and rewriting the slack variables, xi, such that i ∈
F ′ ∩ B ⊆ B, in terms of the free variables, xk, where k ∈ F . So we get

∑
j∈F

cjxj =

(
c∗ −

∑
i∈B

yibi

)
+
∑
j∈F

(
c′j +

∑
i∈B

aijyi

)
xj ,

where we have substituted the previous expression into the one before, rearranged

the order of the terms, and summed over B and F instead of F ′ ∩ B and F ′ ∩ F ,

because c′j = 0 for all j 	∈ F ′. Setting the coefficients on the left-hand side and

right-hand side equal for each variable xj as well as for the constant term (see

Exercise C-26.15), we have that

cj = c′j +
∑
i∈B

aijyi, j ∈ F (26.3)

c∗ =
∑
i∈B

yibi. (26.4)

Note that because c′j ≤ 0 for any j (this is the terminating condition of Algo-

rithm 26.5), Equation 26.3 becomes

cj ≤
∑
i∈B

aijyi.

So �y is feasible for the dual problem. Also note that if we plug �x′ into Equa-

tion 26.1, ∑
j∈F

cjx
′
j = c∗ +

∑
i∈F ′

c′ix
′
i.

But since x′
i = 0 for i ∈ F ′, we have that �c·�x′ = c∗. Combined with Equation 26.4,

this shows that �c · �x′ = �b · �y.

Thus, we have shown that (1) �y is feasible and that (2) �c · �x′ = �b · �y. These are

the conditions needed for Lemma 26.7, which says that �x′ is optimal.

www.it-ebooks.info

http://www.it-ebooks.info/

750 Chapter 26. Linear Programming

26.4 Applications of Linear Programming
Because linear programming has such a general formulation, it can be used to solve

other algorithmic problems. In particular, if a problem can be expressed as a linear

program, then we can design an algorithm to solve this problem by giving this linear

program as the input to a linear program solver, such as the simplex method. In this

section, we look at three familiar problems that can be reduced to linear programs.

Shortest Paths

In the shortest-path problem, for a specific source, s, and target, t, we are given a

graph whose vertices represent locations, such that each edge, (u, v), has a weight,

d(u, v), that represents the distance between two locations, u and v. The goal is to

find the shortest path between the source, s, and target, t.

We can formulate a linear program for this problem based on the setup and

termination conditions for the Bellman-Ford algorithm (Section 14.3). We define

for every vertex, v, a variable, dv, which should represent the shortest distance

between s and v. The initialization, ds = 0, now becomes one of our constraints. To

pinpoint the correct value for dt, we use the termination condition of the Bellman-

Ford algorithm—namely, that the triangle inequality holds for every edge. Recall

that this is the condition that states that the shortest path from s to v should be no

longer than the shortest path from s to any neighbor u of v followed by the path

from u to v. We want dt to be the largest value that satisfies these conditions, the

same way the algorithm initializes dt = ∞ and progressively decreases its value

until all variables meet the termination condition. Thus, the corresponding linear

program is the following:

maximize: dt

subject to: ds = 0
dv ≤ du + d(u, v), for every edge, (u, v)

This is, of course, the variant of the shortest-paths problem that has a single

source and single target. In the exercises, we explore modifications to this LP to

accommodate generalizations of the shortest-path problem.

Network Flow

Recall from Chapter 16 that a flow network is a connected directed graph with a

source and a sink, and in which each edge, e, has nonnegative weights called its

capacity, c(e).

www.it-ebooks.info

http://www.it-ebooks.info/

26.4. Applications of Linear Programming 751

A flow, f , is a new set of nonnegative edge weights that satisfies the following

rules:

• The Capacity Rule: The flow through an edge must be less than the capacity

of that edge

• The Conservation Rule: With the exception of the source and the sink, the

flow into a vertex must equal the flow out of it.

The maximum flow problem is to find the maximum flow size, that is, the maximum

amount of flow out of the source that satisfies the above two rules. This can be

expressed with a linear program in which the variables are the edge weights, f(e),
the objective function is the flow size, and the constraints are given by the two rules

making up the definition of a valid flow:

maximize:
∑

e∈E+(s)

f(e) where s is the source

subject to: 0 ≤ f(e) ≤ c(e) for all edges e∑
e∈E−(v)

f(e) =
∑

e∈E+(v)

f(e) for all vertices v except for the

source and the sink

Here, E+(v) and E−(v) represent the set of incoming and outgoing edges of a

vertex v respectively. Note that if the capacities of a flow network are integers, the

simplex algorithm will produce a solution with integer edge weights.

Maximum Matching

Suppose five children have gone to a dog shelter to find a new pet. As it happens,

there are exactly five dogs up for adoption. Each child has a preference for certain

breeds, whereas each dog has a preference for children of a certain temperament.

Figure 26.6 shows a graph in which a child and a dog who like each other are

connected by an edge.

Alonzo

Edgar

Donald

Alan

John

Max

Buster

Sam

Rocky

Duke

Figure 26.6: An edge connects a child and a dog who like each other.

www.it-ebooks.info

http://www.it-ebooks.info/

752 Chapter 26. Linear Programming

Is there a pairing scheme in which all children and dogs will be happily matched?

In other words, is there a maximum matching for the graph in Figure 26.6 equal to

the number of children? In general, we can answer maximum matching questions

by setting up a flow network, as done in Section 16.3, and then solving this problem

using the LP given above. We create two additional vertices, a source s and a sink

t. Then, we add a directed edge from the source to every child, and also an edge

from every dog to the sink. Finally, we connect every child to a dog if they both

like each other. We get the directed graph shown in Figure 26.7.

Alonzo

Edgar

Donald

Alan

John

Max

Buster

Sam

Rocky

Duke

s t

Figure 26.7: This flow network solves the bipartite matching problem.

Next, we assign a flow of 1 to each edge. Then there is a perfect matching in

the original graph if and only if the maximum flow is equal to 5. Moreover, if we

solve the flow network problem by converting it into an LP as we did earlier, all

flows will be integers. This means that each edge can only have a flow of 0 or 1, so

that we can interpret 0 as “do not pair them up” and 1 as “pair them up.” Thus, we

can solving the maximum matching problem using a linear program solver.

www.it-ebooks.info

http://www.it-ebooks.info/

26.5. Exercises 753

26.5 Exercises

Reinforcement
R-26.1 Recall at the beginning of the chapter we gave a linear program to help a web

server company decide what server models it should purchase. Suppose that the
standard server model has been replaced by a new “green” server model, which
only requires 200W of power, costs 600, takes up one shelf in the server rack,
and can handle 800 hits/min. Give a new linear program that takes into account
the availability of this new model.

R-26.2 Draw the two-dimensional feasible region of the LP from Exercise R-26.1.

R-26.3 Suppose that instead of maximizing hits per minute, constraints, a web server
company wants to minimize cost while maintaining a rack of standard and cutting-
edge servers that can handle at least 15,000 hits per minute. Also, for the sake
of redundancy, the company wants to maintain at least 10 servers in their rack.
Based on these constraints, give a linear program to find the optimal server con-
figuration. Draw the feasible region, and solve the LP geometrically.

R-26.4 In the following linear program, the objective function has a parameter, α. What
values of α result in a program with no unique solution?

maximize: z = αx1 + x2

subject to: 3x1 + 5x2 ≤ 77
7x1 + 2x2 ≤ 56

x1, x2 ≥ 0.

R-26.5 Solve the linear program of Exercise R-26.4, for α = 1, using the simplex
method. Show the result of each pivot.

R-26.6 For each of the regions shown in Figure 26.8, give an LP for which that region is
the feasible region, or explain why no such linear program exists.

x 2

x 12 4 6

2

4

6

x 2

x 12 4 6

2

4

6

(a) (b)

x 2

x 12 4 6

2

4

6

(c)

Figure 26.8: Different plausible feasible regions.

www.it-ebooks.info

http://www.it-ebooks.info/

754 Chapter 26. Linear Programming

R-26.7 Convert the following linear program into standard form:

minimize: z = 3y1 + 2y2 + y3

subject to: −3y1 + y2 + y3 ≥ 1
2y1 + y2 − y3 ≥ 2

y1, y2, y3 ≥ 0

R-26.8 Recall the LP for the dual of the web server problem from Example 26.6:

minimize: z = 36800y1 + 44y2+12200y3

subject to: 400y1 + 2y2 + 300y3 ≥ 1000
1600y1 + y2 + 500y3 ≥ 2000

y1, y2, y3 ≥ 0

Convert this linear program first into standard, and then slack form.

R-26.9 Give a set of linear programming constraints that result in the feasible region
shown in Figure 26.9.

(0 , 9)

(8 , 0)

(3 , 9)

(8 , 6)

x

y

Figure 26.9: A feasible region.

R-26.10 For each vertex, (3, 9) and (8, 6), of the feasible region shown in Figure 26.9,
give an objective function that has that vertex as the optimal solution.

R-26.11 Give an objective function for the feasible region shown in Figure 26.9, such that
there are an infinite number of optimal solutions, none of which have x = 0 or
y = 0. What is the value of the objective function for these solutions?

R-26.12 Formulate the dual of the linear program for the maximum flow problem.

R-26.13 What is the dual of the following linear program?

maximize: z = x1 + 2x2

subject to: x1 + x2 ≤ 5
6x1 − 3x2 ≤ 3

5x1 ≤ 24
6x2 ≤ 9

x1, x2 ≥ 0

www.it-ebooks.info

http://www.it-ebooks.info/

26.5. Exercises 755

Creativity
C-26.1 Prove that there exists a linear program in two variables with exactly one feasible

solution.

C-26.2 Prove that if there exists more than one optimal solution to a linear program, then
there must be infinitely many optimal solutions.

C-26.3 Prove that the set of feasible solutions to a linear program with a nonempty fea-
sible region is convex.

C-26.4 Give a linear program in three variables for which the feasible region is a tetra-
hedron.

C-26.5 When the simplex method was introduced, we assumed that the basic solution
of the slack form was a feasible solution. Describe an algorithm that given an
arbitrary slack form and a vertex on the feasible region, makes transformations
to the slack form to guarantee that the basic solution is feasible.

C-26.6 Given a linear program in slack form such that the basic solution is feasible,
give an algorithm to find a vertex of the feasible region by optimizing the slack
form.

C-26.7 If P is a linear program, let P ∗ denote the dual of P , and let P k∗ denote k
application of the dual function. For example P 2∗ = (P ∗)∗ is the dual of the
dual of P . Show that for any positive integer n, P 2n∗ = P .

C-26.8 Show that if we allow linear programs to have strict inequalities, then there exists
a linear program which is neither infeasible nor unbounded, but nevertheless does
not have an optimal solution with finite objective value.

C-26.9 Prove that if there exists a point that is feasible in both a linear program and its
dual, then that point is the optimal solution in both linear programs.

C-26.10 The maximum independent set (MIS) of a graph G = (V,E) is the largest set of
vertices S ⊆ V such that for any two vertices u, v ∈ S, (u, v) /∈ E; that is, no
pair of vertices in S are neighbors. We want to create a linear program to solve
the MIS problem. We create an indicator variable iv for each vertex v ∈ V , and
the sum of the iv should denote the size of the MIS. Consider the following linear
program formulation of the MIS problem:

maximize:
∑

iv

subject to: iv ≥ 0
iv ≤ 1

iv + iv′ ≤ 1 for (v, v′) ∈ E

What’s wrong with this formulation? Give a small example graph for which
the linear program does not give a reasonable answer for the size of the maxi-
mum independent set. Why doesn’t the program give a reasonable answer in this
case?

www.it-ebooks.info

http://www.it-ebooks.info/

756 Chapter 26. Linear Programming

C-26.11 In Section 26.4, we gave a linear program to solve the shortest-path problem.
What can be said about this linear program if the input graph has a negative
cycle?

C-26.12 Give a linear programming formulation for the all-pairs shortest-path problem.

C-26.13 Give a linear programming formulation to find the minimum spanning tree of a
graph. Recall that a spanning tree T of a graph G is a connected acyclic subgraph
of G that contains every vertex of G. The minimum spanning tree of a weighted
graph G is a spanning tree T of G such that the sum of the edge weights in T is
minimized.

C-26.14 Finish the proof of Lemma 26.3.

C-26.15 Finish the proof of Theorem 26.8 by showing that if

a0 + a1x1 + a2x2 + . . . anxn = b0 + b1x1 + b2x2 + . . . bnxn,

where each xi is a real variable, then ai = bi for i = 0, 1, . . . n.

Applications
A-26.1 In geometric data compression, we are given a collection of geometric objects,

such as points in the plane, and we wish to minimize the number of bits required
to represent the points. Therefore, suppose that rather than express the full (x, y)
coordinates of such a set of points, we encode the y-coordinates of the points
using the following rudimentary data compression scheme. First, we find a line
y = ax+b that approximately passes through the points. Then, instead of storing
the full y-coordinate of each point, we store the function f(x) = ax + b and we
encode y-coordinate of each point (xi, yi) as εi = f(xi) − yi. Suppose you are
given the following set of points:

{(0, 3), (−1.8,−6.1), (−4.2,−11), (1.5, 4.8), (6.3, 19), (2.6, 9.1)}.
Give a linear program that, if solved, will find the function f(x) minimizing the
size of the encoded points using the above compression scheme.

A-26.2 Suppose that you are preparing for the upcoming Zombie Apocalypse. The Cen-
ters for Disease Control and Prevention recommend that any Zombie Apocalypse
Survival Kit should contain at least the following supplies:

• Water (1 gallon per person per day)
• Food (stock up on nonperishable items that you eat regularly)
• Medications (this includes prescription and nonprescription meds)
• Tools and Supplies (utility knife, duct tape, battery-powered radio, etc.)
• Sanitation and Hygiene (household bleach, soap, towels, etc.)
• Clothing and Bedding (a change of clothes for each family member and

blankets)
• Important documents (copies of your driver’s license, passport, and birth

certificate, to name a few)

www.it-ebooks.info

http://www.it-ebooks.info/

26.5. Exercises 757

• First Aid supplies (although you’re a goner if a zombie bites you, you can
use these supplies to treat basic cuts and lacerations)

Although not officially recommended by the CDC, your kit should also include
at least one self-defense item to protect yourself, your family, and your supplies
from zombies and looters. In case of evacuation, each person must be able to
carry their survival kit with them. Therefore, your survival kit must not weigh
more than 100 lbs. In addition, you must not spend more than $500 on your kit.
Your goal is to assemble a kit that maximizes your life expectancy, subject to
these weight and cost constraints. Choose reasonable values for the weight and
cost of each category of item, and model how each category of item might affect
your life expectancy. For example, each gallon of water might increase your life
expectancy by 1 day. Then solve the corresponding linear program to determine
which supplies you should include in your survival kit.

A-26.3 A political candidate has hired you to advise them on how to best spend their
advertising budget. The candidate wants a combination of print, radio, and tele-
vision ads that maximize total impact, subject to budgetary constraints, and avail-
able airtime and print space.

type impact per ad cost per ad max ads per week

radio a 10,000 25

print b 70,000 7

tv c 110,000 15

Design and solve a linear program to determine the best combination of ads for
the campaign.

A-26.4 A perfect pizza maximizes how great it tastes and meets your recommended daily
allowance (RDA) for the three macronutrients carbohydrates, fats, and protein.
Suppose that your diet should consist of 25–35% fats, 45–65% carbohydrates,
and 10–35% proteins. Suppose further that your total calorie intake should be
is 1800–2500 calories. Given the following pizza ingredients, assign each pizza
ingredient a “taste factor” per serving that represents your personal preferences.
If your favorite ingredient is not included, look up its nutritional information
and add it to the list of toppings. Design a linear program choose how much of
each pizza topping you should include to make a pizza that meets the above con-
straints and maximizes how great it tastes. Explain how you chose your objective
function and constraints.

Item Calories Fat Carbs Protein Taste

Thin Crust (per slice) 80 0.5g 15g 0g *

Deep Dish 160 7.5 30g 0g *

Pizza Sauce (1 tbsp) 8 250mg 1g 250mg *

Mozzarella (10 g) 27 2g 298mg 3g *

Pepperoni 46 4g 353mg 2g *

Sausage 17 1g 707mg 1g *

Green Pepper 2 17mg 464mg 86mg *

Onion 4 10mg 934mg 110mg *

Mushroom 2 34mg 328mg 309mg *

Olive 11 1g 524mg 95mg *

Pineapple 5 12mg 1g 54mg *

www.it-ebooks.info

http://www.it-ebooks.info/

758 Chapter 26. Linear Programming

A-26.5 A small retail chain has three warehouses and four retail stores. Each warehouse
stores a certain amount of goods, and each retail store has a demand for a cer-
tain amount of goods. In addition, for each warehouse store pair, there is a set
shipping cost per unit of goods. (See Figure 26.10.) Design and solve a lin-
ear program to determine the minimum-cost shipping schedule that meets the
demands of each retail store.

warehouse supply

W1 100

W2 75

W3 120

retail demand

A 40

B 30

C 50

D 45

100

50

30

75 60

70

80

130
110

120

40

50

W1

W2

W3

A

B

C

D

Figure 26.10: Shipping costs for warehouses and retail stores.

A-26.6 Suppose there are four power plants, which use coal, nuclear, wind, and oil, and
four cities, Flat Top Mountain, Zephyrville, Cherenkov, and Iridescent Islands.
The power plants and cities are connected by a directed power grid, and each
link in the grid has a maximum capacity, as shown in Figure 26.11. Each city
demands power with certain constraints. Flat Top Mountain demands 8 units
of power, and insists that at least 5 units of this power be from the coal power
plant. Zephyrville demands at least 5 units of power and insists that 4 units be
generated from wind. Cherenkov demands 8 units of power and insists that 50%
of its power be from nuclear power. Iridescent Islands demands at least 6 units of
power but wants no more than 2 units of power from oil. Write a linear program
to find the maximum flow of power that meets the demands of each city subject
to the maximum capacities on the internal links in the power grid.

www.it-ebooks.info

http://www.it-ebooks.info/

26.5. Exercises 759

Flat Top Mountain Zephyrville Iridescent Islands

9
7

6 8

56

5

127

3

Cheren kov

Figure 26.11: A coal, nuclear, and wind power plant power for four cities. Power

must be routed through switches in the electrical grid.

A-26.7 Suppose you are part of a trade expedition and there are 15 people in your party
(including yourself). Your final destination lies across the desert, and so you
must hire out camels to carry all of your party’s gear for that portion of your
journey. The desert can be crossed in 10 days, but it could take up to 50% longer
if something goes wrong or you encounter bad weather. You need to bring the
following supplies necessary for survival in the harsh desert conditions:

• Some number of 18L jugs of water. You must bring at least 2L of water per
person per day spent in the desert. Bring enough water to cross the desert
even if something goes wrong.

• Enough tents such that at most two people will sleep in each tent. Each tent
weighs 8kg each.

• A 1kg pack of first aid supplies per ten people-days spent in the desert (for
example, 5 people for 4 days would require 2 first aid packs).

• Some cases of food rations. Each case weighs 10kg and contains 12 rations.
Bring at least one ration per person per day spent in the desert.

• One pack per person of personal supplies (clothing, blankets, etc.) that
weigh 20kg each.

In addition, you have the following trade goods: 5 chests of spices weighing 75kg
each, 5 chests of tea weighing 50 kg each, and 5 chests of silk weighing 25kg
each. Each camel can carry a 300kg load after accounting for the food, water,
and gear required to support the camel over the long desert journey. Design a
linear program to determine the minimum number of camels required to make
the journey.

www.it-ebooks.info

http://www.it-ebooks.info/

760 Chapter 26. Linear Programming

Chapter Notes
The word “programming” in “linear programming” does not have the same meaning as it
has in computer science. It was first used in a mathematical sense by American mathemati-
cian, George B. Dantzig [54]. Linear programming was in use prior to this by the Soviet
military, thanks to Leonid Kantorovich, who invented the concept in 1939. Today, linear
programming is a standard tool of operations research, and it is used to model scheduling
and assignment problems, as well as routing and planning problems.

The complexity of the simplex method puzzled mathematicians for many decades.

While this algorithm seemed efficient in practice, carefully constructed problem instances

can produce an exponential runtime. In 1980, Leonid Khachiyan published a new LP-

solving algorithm [125] with a polynomial runtime that ran slow in practice. The ellipsoid

algorithm, as it was called, was nevertheless revolutionary in concept. Unlike the simplex

method, the ellipsoid algorithm walks through the interior of the feasible region. Narendra

Karmarkar [121] eventually improved on this idea with what is now known as the interior

point method, an algorithm that is fast in practice as well as having a polynomial runtime.

The discrepancy between the theoretical and practical running times of the simplex method

is explained by Spielman and Teng [199], who provide a new approach to analyze an algo-

rithm’s complexity in a way that is a cross between worst-case and average case analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

A Useful Mathematical Facts

In this appendix, we give several useful mathematical facts. We begin with some

combinatorial definitions and facts.

Logarithms and Exponents

The logarithm function is defined as

logb a = c if a = bc.

The following identities hold for logarithms and exponents, with a, c > 0:

1. logb ac = logb a + logb c
2. logb a/c = logb a − logb c
3. logb ac = c logb a
4. logb a = (logc a)/ logc b
5. blogc a = alogc b

6. (ba)c = bac

7. babc = ba+c

8. ba/bc = ba−c.

In addition, we have the following:

Theorem A.1: If a > 0, b > 0, and c > a + b, then

log a + log b ≤ 2 log c − 2.

The natural logarithm function lnx = loge x, where e = 2.71828 . . ., is the

value of the following progression:

e = 1 +
1
1!

+
1
2!

+
1
3!

+ · · · .

In addition,

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · ·

ln(1 + x) = x − x2

2!
+

x3

3!
− x4

4!
+ · · · .

There are a number of useful inequalities relating to these functions (which

derive from these definitions).

www.it-ebooks.info

http://www.it-ebooks.info/

762 Appendix A. Useful Mathematical Facts

Theorem A.2: If x > −1,
x

1 + x
≤ ln(1 + x) ≤ x.

Theorem A.3: For 0 ≤ x < 1,

1 + x ≤ ex ≤ 1
1 − x

.

Theorem A.4: For any two positive real numbers x and n,(
1 +

x

n

)n ≤ ex ≤
(
1 +

x

n

)n+x/2
.

Integer Functions and Relations

The “floor” and “ceiling” functions are defined respectively as follows:

1.
x� = the largest integer less than or equal to x.

2. �x� = the smallest integer greater than or equal to x.

The modulo operator is defined for integers a ≥ 0 and b > 0 as

a mod b = a −
⌊a

b

⌋
b.

The factorial function is defined as

n! = 1 · 2 · 3 · · · · · (n − 1)n.

The binomial coefficient is(
n

k

)
=

n!
k!(n − k)!

,

which is equal to the number of different combinations we can define by choosing

k different items from a collection of n items (where the order does not matter).

The name “binomial coefficient” derives from the binomial expansion:

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k.

We also have the following relationships.

Theorem A.5: If 0 ≤ k ≤ n, then(n

k

)k ≤
(

n

k

)
≤ nk

k!
.

Theorem A.6 (Stirling’s Approximation):

n! =
√

2πn
(n

e

)n
(

1 +
1

12n
+ ε(n)

)
,

where ε(n) is O(1/n2).

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A. Useful Mathematical Facts 763

The Fibonacci progression is a numeric progression such that F0 = 0, F1 = 1,

and Fn = Fn−1 + Fn−2 for n ≥ 2.

Theorem A.7: If Fn is defined by the Fibonacci progression, then Fn is Θ(gn),
where g = (1 +

√
5)/2 is the so-called golden ratio.

Summations

There are a number of useful facts about summations.

Theorem A.8: Factoring summations:
n∑

i=1

af(i) = a

n∑
i=1

f(i),

provided a does not depend upon i.

Theorem A.9: Reversing the order:
n∑

i=1

m∑
j=1

f(i, j) =
m∑

j=1

n∑
i=1

f(i, j).

One special form of summation is a telescoping sum:
n∑

i=1

(f(i) − f(i − 1)) = f(n) − f(0),

which often arises in the amortized analysis of a data structure or algorithm.

The following are some other facts about summations that often arise in the

analysis of data structures and algorithms.

Theorem A.10:
n∑

i=1

i =
n(n + 1)

2
.

Theorem A.11:
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

Theorem A.12: If k ≥ 1 is an integer constant, then
n∑

i=1

ik is Θ(nk+1).

Another common summation is the geometric sum
n∑

i=0

ai,

for any fixed real number 0 < a 	= 1.

www.it-ebooks.info

http://www.it-ebooks.info/

764 Appendix A. Useful Mathematical Facts

Theorem A.13:
n∑

i=0

ai =
1 − an+1

1 − a

for any real number 0 < a 	= 1.

Theorem A.14:
∞∑
i=0

ai =
1

1 − a

for any real number 0 < a < 1.

There is also a combination of the two common forms, called the linear expo-
nential summation, which has the following expansion:

Theorem A.15: For 0 < a 	= 1, and n ≥ 2,
n∑

i=1

iai =
a − (n + 1)a(n+1) + na(n+2)

(1 − a)2
.

The nth harmonic number Hn is defined as

Hn =
n∑

i=1

1
i
.

Theorem A.16: If Hn is the nth harmonic number, for n > 1, then lnn < Hn <
lnn + 1.

Proof: See Exercise C-3.11.

Useful Mathematical Techniques

To determine whether a function is little-oh or little-omega of another, it is some-

times helpful to apply the following rule.

Theorem A.17 (L’Hôpital’s Rule): If we have limn→∞ f(n) = +∞ and we
have limn→∞ g(n) = +∞, then limn→∞ f(n)/g(n) = limn→∞ f ′(n)/g′(n),
where f ′(n) and g′(n) denote the derivatives of f(n) and g(n), respectively.

In deriving an upper or lower bound for a summation, it is often useful to split
a summation as follows:

n∑
i=1

f(i) =
j∑

i=1

f(i) +
n∑

i=j+1

f(i).

Another useful technique is to bound a sum by an integral. If f is a nonde-

creasing function, then, assuming the following terms are defined,∫ b

a−1
f(x) dx ≤

b∑
i=a

f(i) ≤
∫ b+1

a
f(x) dx.

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography

[1] J. D. Achter and R. Tamassia, “Selected topics in algorithms.” Manuscript, 1993.

[2] G. M. Adel’son-Vel’skii and Y. M. Landis, “An algorithm for the organization of information,”
Doklady Akademii Nauk SSSR, vol. 146, pp. 263–266, 1962. English translation in Soviet
Math. Dokl., 3, 1259–1262.

[3] P. K. Agarwal, “Geometric partitioning and its applications,” in Computational Geometry:
Papers from the DIMACS Special Year (J. E. Goodman, R. Pollack, and W. Steiger, eds.),
American Mathematical Society, 1991.

[4] P. K. Agarwal, “Range searching,” in Handbook of Discrete and Computational Geometry
(J. E. Goodman and J. O’Rourke, eds.), ch. 31, pp. 575–598, Boca Raton, FL: CRC Press
LLC, 1997.

[5] P. K. Agarwal, L. Arge, and K. Yi, “I/O-efficient batched union-find and its applications to
terrain analysis,” ACM Trans. Algorithms, vol. 7, no. 1, pp. 11:1–11:21, 2010.

[6] A. Aggarwal and J. S. Vitter, “The input/output complexity of sorting and related problems,”
Comm. ACM, vol. 31, pp. 1116–1127, 1988.

[7] A. V. Aho, “Algorithms for finding patterns in strings,” in Handbook of Theoretical Computer
Science (J. van Leeuwen, ed.), vol. A. Algorithms and Complexity, pp. 255–300, Amsterdam:
Elsevier, 1990.

[8] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms.
Reading, MA: Addison-Wesley, 1974.

[9] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms. Reading, MA:
Addison-Wesley, 1983.

[10] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Appli-
cations. Englewood Cliffs, NJ: Prentice Hall, 1993.

[11] S. Alstrup, I. Li Gortz, T. Rauhe, M. Thorup, and U. Zwick, “Union-find with constant time
deletions,” in Automata, Languages and Programming (L. Caires, G. Italiano, L. Monteiro,
C. Palamidessi, and M. Yung, eds.), vol. 3580 of Lecture Notes in Computer Science, pp. 105–
105, Springer, 2005.

[12] L. Arge and J. S. Vitter, “Optimal external memory interval management,” SIAM Journal on
Computing, vol. 32, no. 6, pp. 1488–1508, 2003.

[13] B. Arkin, F. Hill, S. Marks, M. Schmid, T. J. Walls, and G. McGraw, “How we learned to cheat
at online poker: A study in software security,” Developer.com: Tech Focus, September 1999.

[14] K. Arnold and J. Gosling, The Java Programming Language. The Java Series, Reading, MA:
Addison-Wesley, 1996.

[15] S. Arya and D. M. Mount, “Approximate range searching,” Comput. Geom. Theory Appl.,
vol. 17, pp. 135–152, 2000.

[16] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu, “An optimal algorithm for
approximate nearest neighbor searching in fixed dimensions,” J. ACM, vol. 45, pp. 891–923,
1998.

[17] F. Aurenhammer, “Voronoi diagrams: A survey of a fundamental geometric data structure,”
ACM Comput. Surv., vol. 23, pp. 345–405, Sept. 1991.

[18] S. Baase, Computer Algorithms: Introduction to Design and Analysis. Reading, MA: Addison-
Wesley, 2nd ed., 1988.

[19] E. Bach and J. Shallit, Algorithmic Number Theory, Volume I: Efficient Algorithms. MIT Press,
1996.

[20] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Reading, MA: Addison-
Wesley, 1999.

www.it-ebooks.info

http://www.it-ebooks.info/

766 Bibliography

[21] O. Baruvka, “O jistem problemu minimalnim,” Praca Moravske Prirodovedecke Spolecnosti,
vol. 3, pp. 37–58, 1926. (In Czech).

[22] R. Bayer, “Symmetric binary B-trees: Data structure and maintenance,” Acta Informatica,
vol. 1, no. 4, pp. 290–306, 1972.

[23] R. Bayer and McCreight, “Organization of large ordered indexes,” Acta Inform., vol. 1,
pp. 173–189, 1972.

[24] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics, vol. 16, no. 1, pp. 87–
90, 1958.

[25] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton University Press, 1957.

[26] J. Bentley, “Programming pearls: Algorithm design techniques,” Commun. ACM, vol. 27,
pp. 865–873, September 1984.

[27] J. L. Bentley, “Multidimensional divide-and-conquer,” Comm. ACM, vol. 23, no. 4, pp. 214–
229, 1980.

[28] J. L. Bentley, “Programming pearls: Writing correct programs,” Comm. ACM, vol. 26,
pp. 1040–1045, 1983.

[29] J. L. Bentley, “Programming pearls: Thanks, heaps,” Comm. ACM, vol. 28, pp. 245–250,
1985.

[30] J. L. Bentley, D. Haken, and J. B. Saxe, “A general method for solving divide-and-conquer
recurrences,” SIGACT News, vol. 12, no. 3, pp. 36–44, 1980.

[31] J. L. Bentley and T. A. Ottmann, “Algorithms for reporting and counting geometric intersec-
tions,” IEEE Trans. Comput., vol. C-28, pp. 643–647, Sept. 1979.

[32] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational Geometry: Algo-
rithms and Applications. Springer-Verlag TELOS, 3rd ed., 2008.

[33] G. Booch, Object-Oriented Analysis and Design with Applications. Redwood City, CA: Ben-
jamin/Cummings, 1994.

[34] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis. New York: Cam-
bridge University Press, 1998.

[35] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Comm. ACM, vol. 20, no. 10,
pp. 762–772, 1977.

[36] G. Brassard, “Crusade for a better notation,” SIGACT News, vol. 17, no. 1, pp. 60–64, 1985.

[37] G. Brassard and P. Bratley, Fundamentals of Algorithmics. Englewood Cliffs, NJ: Prentice
Hall, 1996.

[38] D. Bressoud and S. Wagon, A Course in Computational Number Theory. Key College Pub-
lishing, 2000.

[39] E. O. Brigham, The Fast Fourier Transform. Englewood Cliffs, NJ: Prentice-Hall, 1974.

[40] T. Budd, An Introduction to Object-Oriented Programming. Reading, MA: Addison-Wesley,
1991.

[41] S. Carlsson, “Average case results on heapsort,” BIT, vol. 27, pp. 2–17, 1987.

[42] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,” Journal of Computer
and System Sciences, vol. 18, pp. 143–54, 1979.

[43] N. Christofides, “Worst-case analysis of a new heuristic for the traveling salesman problem,”
in Sympos. on New Directions and Recent Results in Algorithms and Complexity (J. F. Traub,
ed.), (New York, NY), p. 441, Academic Press, 1976.

[44] V. Chvátal, “A greedy heuristic for the set-covering problem,” Math. Oper. Res., vol. 4,
pp. 233–235, 1979.

[45] K. L. Clarkson, “Linear programming in O(n3d2
) time,” Inform. Process. Lett., vol. 22,

pp. 21–24, 1986.

[46] R. Cole, “Tight bounds on the complexity of the Boyer-Moore pattern matching algorithm,”
SIAM Journal on Computing, vol. 23, no. 5, pp. 1075–1091, 1994.

[47] D. Comer, “The ubiquitous B-tree,” ACM Comput. Surv., vol. 11, pp. 121–137, 1979.

[48] S. Cook, “The complexity of theorem proving procedures,” in 30th ACM Symp. on Theory of
Computing, pp. 151–158, 1971.

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography 767

[49] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier
series,” Mathematics of Computation, vol. 19, no. 90, pp. 297–301, 1965.

[50] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cambridge, MA:
MIT Press, 1990.

[51] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. Cam-
bridge, MA: MIT Press, 2nd ed., 2001.

[52] M. Crochemore and T. Lecroq, “Pattern matching and text compression algorithms,” in The
Computer Science and Engineering Handbook (A. B. Tucker, Jr., ed.), ch. 8, pp. 162–202,
CRC Press, 1997.

[53] J. Culberson and J. Munro, “Analysis of the standard deletion algorithms in exact fit domain
binary search trees,” Algorithmica, vol. 5, pp. 295–311, 1990.

[54] G. B. Dantzig, Linear Programming and Extensions. Princeton, NJ: Princeton University
Press, 1963.

[55] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing: Algorithms for Geo-
metric Representations of Graphs. Englewood Cliffs, NJ: Prentice Hall, 1998.

[56] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik,
vol. 1, pp. 269–271, 1959.

[57] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach to connected–
component labeling for arbitrary image representations,” J. ACM, vol. 39, pp. 253–280, Apr.
1992.

[58] J. R. Driscoll, H. N. Gabow, R. Shrairaman, and R. E. Tarjan, “Relaxed heaps: An alter-
native to Fibonacci heaps with applications to parallel computation.,” Comm. ACM, vol. 31,
pp. 1343–1354, 1988.

[59] R. Durstenfeld, “Algorithm 235: Random permutation,” Commun. ACM, vol. 7, p. 420, July
1964.

[60] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning about a Highly Con-
nected World. Cambridge University Press, 2010.

[61] H. Edelsbrunner, “A note on dynamic range searching,” Bull. EATCS, vol. 15, pp. 34–40, 1981.

[62] H. Edelsbrunner, Algorithms in Combinatorial Geometry, vol. 10 of EATCS Monographs on
Theoretical Computer Science. Heidelberg, West Germany: Springer-Verlag, 1987.

[63] J. Edmonds, “Matroids and the greedy algorithm,” Mathematical Programming, vol. 1,
pp. 126–136, 1971.

[64] J. Edmonds and R. M. Karp, “Theoretical improvements in the algorithmic efficiency for
network flow problems,” Journal of the ACM, vol. 19, pp. 248–264, 1972.

[65] D. F. Elliott and K. R. Rao, Fast Transform Algorithms, Analyses, and Applications. New
York: Academic Press, 1982.

[66] I. Z. Emiris and V. Y. Pan, “Applications of FFT,” in Algorithms and Theory of Computation
Handbook (M. J. Atallah, ed.), ch. 17, pp. 17–1–17–30, CRC Press, 1999.

[67] D. Eppstein, “Linear probing made easy.” http://11011110.livejournal.com/232567.html.

[68] S. Even, Graph algorithms. Cambridge University Press, 2nd ed., 2012.

[69] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible hashing—a fast access
method for dynamic files,” ACM Trans. Database Syst., vol. 4, pp. 315–344, Sept. 1979.

[70] M. J. Fischer and M. S. Paterson, “String-matching and other products,” tech. rep., Cambridge,
MA, 1974.

[71] R. Fisher, F. Yates, et al., Statistical tables for biological, agricultural and medical research.
Oliver and Boyd, Edinburgh, 3rd ed., 1949.

[72] R. W. Floyd, “Algorithm 97: Shortest path,” Comm. ACM, vol. 5, no. 6, p. 345, 1962.

[73] R. W. Floyd, “Algorithm 245: Treesort 3,” Comm. ACM, vol. 7, no. 12, p. 701, 1964.

[74] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks. Princeton, NJ: Princeton University
Press, 1962.

[75] G. N. Frederickson, “Scheduling unit-time tasks with integer release times and deadlines,”
Information Processing Letters, vol. 16, no. 4, pp. 171–173, 1983.

www.it-ebooks.info

http://11011110.livejournal.com/232567.html
http://www.it-ebooks.info/

768 Bibliography

[76] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network opti-
mization algorithms,” J. ACM, vol. 34, pp. 596–615, 1987.

[77] H. Gabow and R. Tarjan, “A linear time algorithm for a special case of disjoint set union,” J.
Comput. Syst. Sci., vol. 30, pp. 209–221, 1985.

[78] D. Gale and L. Shapley, “College admissions and the stability of marriage,” The American
Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[79] T. E. Gamal, “A public key cryptosystem and a signature scheme based on discrete loga-
rithms,” IEEE Transactions on Information Theory, vol. IT–31, no. 4, pp. 469–472, 1985.

[80] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness. New York, NY: W. H. Freeman, 1979.

[81] A. M. Gibbons, Algorithmic Graph Theory. Cambridge, UK: Cambridge University Press,
1985.

[82] S. S. Godbole, “On efficient computation of matrix chain products,” IEEE Transactions on
Computers, vol. C-22, no. 9, pp. 864–866, 1973.

[83] A. Goldberg and D. Robson, Smalltalk-80: The Language. Reading, MA: Addison-Wesley,
1989.

[84] S. Golomb and L. Baumert, “Backtrack programming,” Journal of the ACM, vol. 12, pp. 516–
524, 1965.

[85] G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures in Pascal and
C. Reading, MA: Addison-Wesley, 1991.

[86] G. H. Gonnet and J. I. Munro, “Heaps on heaps,” SIAM Journal on Computing, vol. 15, no. 4,
pp. 964–971, 1986.

[87] J. E. Goodman and J. O’Rourke, eds., Handbook of Discrete and Computational Geometry.
CRC Press LLC, 1997.

[88] M. T. Goodrich, “Parallel algorithms in geometry,” in Handbook of Discrete and Computa-
tional Geometry (J. E. Goodman and J. O’Rourke, eds.), ch. 36, pp. 669–682, Boca Raton,
FL: CRC Press LLC, 1997.

[89] M. T. Goodrich, M. Handy, B. Hudson, and R. Tamassia, “Accessing the internal organization
of data structures in the JDSL library,” in Proc. Workshop on Algorithm Engineering and Ex-
perimentation (M. T. Goodrich and C. C. McGeoch, eds.), vol. 1619 of Lecture Notes Comput.
Sci., pp. 124–139, Springer-Verlag, 1999.

[90] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter, “External-memory computational
geometry,” in Proc. 34th Annu. IEEE Sympos. Found. Comput. Sci., pp. 714–723, 1993.

[91] R. L. Graham, “An efficient algorithm for determining the convex hull of a finite planar set,”
Inform. Process. Lett., vol. 1, pp. 132–133, 1972.

[92] R. L. Graham and P. Hell, “On the history of the minimum spanning tree problem,” Annals of
the History of Computing, vol. 7, no. 1, pp. 43–57, 1985.

[93] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Reading, MA: Addison-
Wesley, 1989.

[94] L. J. Guibas and R. Sedgewick, “A dichromatic framework for balanced trees,” in IEEE Symp.
Foundations of Computer Science (FOCS), pp. 8–21, 1978.

[95] Y. Gurevich, “What does O(n) mean?,” SIGACT News, vol. 17, no. 4, pp. 61–63, 1986.

[96] B. Haeupler, S. Sen, and R. Tarjan, “Rank-balanced trees,” in Algorithms and Data Struc-
tures (F. Dehne, M. Gavrilova, J. Sack, and C. Toth, eds.), vol. 5664 of LNCS, pp. 351–362,
Springer, 2009.

[97] N. J. Higham, “The accuracy of floating point summation,” SIAM Journal on Scientific Com-
puting, vol. 14, no. 4, pp. 783–799, 1993.

[98] K. Hinrichs, J. Nievergelt, and P. Schorn, “Plane-sweep solves the closest pair problem ele-
gantly,” Inform. Process. Lett., vol. 26, pp. 255–261, 1988.

[99] D. S. Hirchsberg, “A linear space algorithm for computing maximal common subsequences,”
Comm. ACM, vol. 18, no. 6, pp. 341–343, 1975.

[100] C. A. R. Hoare, “Quicksort,” The Computer Journal, vol. 5, pp. 10–15, 1962.

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography 769

[101] D. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems. Boston: PWS Pub-
lishers, 1996.

[102] J. E. Hopcroft and R. E. Tarjan, “Efficient algorithms for graph manipulation,” Comm. ACM,
vol. 16, no. 6, pp. 372–378, 1973.

[103] J. E. Hopcroft and J. D. Ullman, “Set merging algorithms,” SIAM Journal on Computing,
vol. 2, no. 4, pp. 294–303, 1979.

[104] T. C. Hu, Combinatorial Algorithms. Reading, MA: Addison-Wesley, 1981.

[105] T. C. Hu and M. T. Shing, “Computations of matrix chain products, part i,” SIAM Journal on
Computing, vol. 11, no. 2, pp. 362–373, 1982.

[106] T. C. Hu and M. T. Shing, “Computations of matrix chain products, part ii,” SIAM Journal on
Computing, vol. 13, no. 2, pp. 228–251, 1984.

[107] B. Huang and M. Langston, “Practical in-place merging,” Comm. ACM, vol. 31, no. 3, pp. 348–
352, 1988.

[108] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proceedings
of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[109] O. H. Ibarra and C. E. Kim, “Fast approximation algorithms for the knapsack and sum of
subset problems,” Journal of the ACM, vol. 9, pp. 463–468, 1975.

[110] J. JáJá, An Introduction to Parallel Algorithms. Reading, MA: Addison-Wesley, 1992.

[111] V. Jarnik, “O jistem problemu minimalnim,” Praca Moravske Prirodovedecke Spolecnosti,
vol. 6, pp. 57–63, 1930. (in Czech).

[112] D. S. Johnson, “Approximation algorithms for combinatorial problems,” J. Comput. Syst. Sci.,
vol. 9, pp. 256–278, 1974.

[113] M. Johnston, “Spike: AI scheduling for NASA’s Hubble Space Telescope,” in 6th Conf. on
Artificial Intelligence Applications, pp. 184–190, may 1990.

[114] R. E. Jones, Garbage Collection: Algorithms for Automatic Dynamic Memory Management.
John Wiley and Sons, 1996.

[115] M.-Y. Kao and J. Wang, “Efficient minimization of numerical summation errors,” in Automata,
Languages and Programming (K. Larsen, S. Skyum, and G. Winskel, eds.), vol. 1443 of Lec-
ture Notes in Computer Science, pp. 375–386, Springer, 1998.

[116] H. Kaplan, N. Shafrir, and R. E. Tarjan, “Union-find with deletions,” in 19th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 19–28, 2002.

[117] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on automata,” Doklady
Akademii Nauk SSSR, vol. 145, pp. 293–294, 1962. (In Russian).

[118] D. R. Karger, “Global min-cuts in RNC, and other ramifications of a simple min-cut algo-
rithm,” in Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 21–30, 1993.

[119] D. R. Karger, P. Klein, and R. E. Tarjan, “A randomized linear-time algorithm to find minimum
spanning trees,” Journal of the ACM, vol. 42, pp. 321–328, 1995.

[120] D. R. Karger and C. Stein, “A new approach to the minimum cut problem,” J. ACM, vol. 43,
no. 4, pp. 601–640, 1996.

[121] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” Combinatorica,
vol. 4, pp. 373–395, 1984.

[122] R. Karp, “Reducibility among combinatorical problems of computer computations,” in Com-
plexity of Computer Computations (E. Miller and J. W. Thatcher, eds.), pp. 88–104, New York:
Plenum Press, 1972.

[123] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,” IBM Jour-
nal of Research and Development, vol. 31, pp. 249–260, March 1987.

[124] R. M. Karp and V. Ramachandran, “Parallel algorithms for shared memory machines,” in
Handbook of Theoretical Computer Science (J. van Leeuwen, ed.), pp. 869–941, Amsterdam:
Elsevier/The MIT Press, 1990.

[125] L. G. Khachiyan, “Polynomial algorithm in linear programming,” U.S.S.R. Comput. Math. and
Math. Phys., vol. 20, pp. 53–72, 1980.

[126] P. Kirschenhofer and H. Prodinger, “The path length of random skip lists,” Acta Informatica,
vol. 31, pp. 775–792, 1994.

www.it-ebooks.info

http://www.it-ebooks.info/

770 Bibliography

[127] P. N. Klein and N. E. Young, “Approximation algorithms,” in Algorithms and Theory of Com-
putation Handbook (M. J. Atallah, ed.), ch. 34, pp. 34–1–34–19, CRC Press, 1999.

[128] D. E. Knuth, “Big omicron and big omega and big theta,” in SIGACT News, vol. 8, pp. 18–24,
1976.

[129] D. E. Knuth, Fundamental Algorithms, vol. 1 of The Art of Computer Programming. Reading,
MA: Addison-Wesley, 3rd ed., 1997.

[130] D. E. Knuth, Seminumerical Algorithms, vol. 2 of The Art of Computer Programming. Read-
ing, MA: Addison-Wesley, 3rd ed., 1998.

[131] D. E. Knuth, Sorting and Searching, vol. 3 of The Art of Computer Programming. Reading,
MA: Addison-Wesley, 2nd ed., 1998.

[132] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, “Fast pattern matching in strings,” SIAM Journal
on Computing, vol. 6, no. 1, pp. 323–350, 1977.

[133] N. Koblitz, A Course in Number Theory and Cryptography. Springer-Verlag, 1987.

[134] E. Koutsoupias and C. H. Papadimitriou, “On the k-server conjecture,” Journal of the ACM,
vol. 42, no. 5, pp. 971–983, 1995.

[135] D. C. Kozen, The design and analysis of algorithms. New York: Springer-Verlag New York,
Inc., 1992.

[136] E. Kranakis, Primality and Cryptography. John Wiley and Sons, 1986.

[137] J. B. Kruskal, Jr., “On the shortest spanning subtree of a graph and the traveling salesman
problem,” Proc. Amer. Math. Soc., vol. 7, pp. 48–50, 1956.

[138] H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of a set of vectors,” J.
ACM, vol. 22, pp. 469–476, 1975.

[139] D. T. Lee, “Computational geometry,” in The Computer Science and Engineering Handbook
(A. B. Tucker, Jr., ed.), ch. 6, pp. 111–140, CRC Press, 1997.

[140] D. T. Lee and F. P. Preparata, “Computational geometry: a survey,” IEEE Trans. Comput.,
vol. C-33, pp. 1072–1101, 1984.

[141] L. A. Levin, “Universal sorting problems,” Problemy Peredachi Informatsii, vol. 9, no. 3,
pp. 265–266, 1973. (In Russian).

[142] R. Levisse, “Some lessons drawn from the history of the binary search algorithm,” The Com-
puter Journal, vol. 26, pp. 154–163, 1983.

[143] H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation. Upper Saddle
River, NJ: Prentice-Hall, 2nd ed., 1998.

[144] B. Liskov and J. Guttag, Abstraction and Specification in Program Development. Cambridge,
MA/New York: The MIT Press/McGraw-Hill, 1986.

[145] W. Litwin, “Linear hashing: a new tool for file and table addressing,” in 6th Int. Conf. on Very
Large Data Bases (VLDB), (Montreal), pp. 212–223, October 1980.

[146] L. Lovász, “On the ratio of optimal integral and fractional covers,” Discrete Math., vol. 13,
pp. 383–390, 1975.

[147] J. Matoušek, “Geometric range searching,” ACM Comput. Surv., vol. 26, pp. 421–461, 1994.

[148] E. M. McCreight, “A space-economical suffix tree construction algorithm,” Journal of Algo-
rithms, vol. 23, no. 2, pp. 262–272, 1976.

[149] E. M. McCreight, “Priority search trees,” SIAM J. Comput., vol. 14, no. 2, pp. 257–276, 1985.

[150] C. J. H. McDiarmid and B. A. Reed, “Building heaps fast,” Journal of Algorithms, vol. 10,
no. 3, pp. 352–365, 1989.

[151] C. C. McGeoch, “Analyzing algorithms by simulation: Variance reduction techniques and
simulation speedups,” ACM Computing Surveys, vol. 24, no. 2, pp. 195–212, 1992.

[152] C. C. McGeoch, “Toward an experimental method for algorithm simulation,” INFORMS Jour-
nal on Computing, vol. 8, no. 1, pp. 1–15, 1996.

[153] C. C. McGeoch, D. Precup, and P. R. Cohen, “How to find the Big-Oh of your data set (and
how not to),” in Advances in Intelligent Data Analysis, vol. 1280 of Lecture Notes in Computer
Science, pp. 41–52, Springer-Verlag, 1997.

[154] N. Megiddo, “Linear-time algorithms for linear programming in R3 and related problems,”
SIAM J. Comput., vol. 12, pp. 759–776, 1983.

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography 771

[155] N. Megiddo, “Linear programming in linear time when the dimension is fixed,” J. ACM,
vol. 31, pp. 114–127, 1984.

[156] K. Mehlhorn, “A best possible bound for the weighted path length of binary search trees,”
SIAM Journal on Computing, vol. 6, no. 2, pp. 235–239, 1977.

[157] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, vol. 1 of EATCS
Monographs on Theoretical Computer Science. Heidelberg, Germany: Springer-Verlag, 1984.

[158] K. Mehlhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness,
vol. 2 of EATCS Monographs on Theoretical Computer Science. Heidelberg, Germany:
Springer-Verlag, 1984.

[159] K. Mehlhorn, Data Structures and Algorithms 3: Multi-dimensional Searching and Computa-
tional Geometry, vol. 3 of EATCS Monographs on Theoretical Computer Science. Heidelberg,
Germany: Springer-Verlag, 1984.

[160] K. Mehlhorn and A. Tsakalidis, “Data structures,” in Handbook of Theoretical Computer Sci-
ence (J. van Leeuwen, ed.), vol. A. Algorithms and Complexity, pp. 301–341, Amsterdam:
Elsevier, 1990.

[161] D. R. Morrison, “PATRICIA—practical algorithm to retrieve information coded in alphanu-
meric,” Journal of the ACM, vol. 15, no. 4, pp. 514–534, 1968.

[162] R. Motwani and P. Raghavan, Randomized Algorithms. New York: Cambridge University
Press, 1995.

[163] D. R. Musser and A. Saini, STL Tutorial and Reference Guide: C++ Programming with the
Standard Template Library. Reading, MA: Addison-Wesley, 1996.

[164] R. Neapolitan and K. Naimipour, Foundations of Algorithms Using C++ Pseudocode. Boston:
Jones and Bartlett Publishers, 1998.

[165] J. O’Rourke, Computational Geometry in C. Cambridge University Press, 1994.

[166] J. Pach, ed., New Trends in Discrete and Computational Geometry, vol. 10 of Algorithms and
Combinatorics. Springer-Verlag, 1993.

[167] R. Pagh and F. Rodler, “Cuckoo hashing,” Journal of Algorithms, vol. 52, pp. 122–144, 2004.

[168] T. Papadakis, J. I. Munro, and P. V. Poblete, “Average search and update costs in skip lists,”
BIT, vol. 32, pp. 316–332, 1992.

[169] C. H. Papadimitriou and K. Steiglitz, “Some complexity results for the traveling salesman
problem,” in Proc. 8th Annu. ACM Sympos. Theory Comput., pp. 1–9, 1976.

[170] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complex-
ity. Englewood Cliffs, NJ: Prentice Hall, 1982.

[171] M. Patrascu and M. Thorup, “The power of simple tabulation hashing,” in 43rd ACM Symp.
on Theory of Computing (STOC), pp. 1–10, 2011.

[172] P. V. Poblete, J. I. Munro, and T. Papadakis, “The binomial transform and its application to
the analysis of skip lists,” in Proceedings of the European Symposium on Algorithms (ESA),
pp. 554–569, 1995.

[173] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction. Springer-Verlag,
3rd ed., Oct. 1990.

[174] R. C. Prim, “Shortest connection networks and some generalizations,” Bell Syst. Tech. J.,
vol. 36, pp. 1389–1401, 1957.

[175] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,” Communications of the
ACM, vol. 33, no. 6, pp. 668–676, 1990.

[176] M. Raab and A. Steger, ““balls into bins” – a simple and tight analysis,” in Randomization
and Approximation Techniques in Computer Science (RANDOM) (M. Luby, J. Rolim, and
M. Serna, eds.), vol. 1518 of LNCS, pp. 159–170, Springer, 1998.

[177] M. O. Rabin, “A probabilistic algorithm for testing primality,” Journal of Number Theory,
vol. 12, 1980.

[178] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[179] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “An analysis of several heuristics for the
traveling salesman problem,” SIAM J. on Computing, vol. 6, pp. 563–581, 1977.

www.it-ebooks.info

http://www.it-ebooks.info/

772 Bibliography

[180] H. Sackrowitz, “Refining the point(s)-after-touchdown decision,” Chance, vol. 13, no. 3,
pp. 29–34, 2000.

[181] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing,
and GIS. Reading, MA: Addison-Wesley, 1990.

[182] H. Samet, The Design and Analysis of Spatial Data Structures. Reading, MA: Addison-
Wesley, 1990.

[183] D. Sankoff and J. B. Kruskal, Time Warps, String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison. Addison-Wesley, 1983.

[184] J. E. Savage, Models of Computation: Exploring the Power of Computing. Addison-Wesley,
1998.

[185] R. Schaffer and R. Sedgewick, “The analysis of heapsort,” Journal of Algorithms, vol. 15,
no. 1, pp. 76–100, 1993.

[186] A. Schönhage and V. Strassen, “Schnelle multiplikation grosser zahlen,” Computing, vol. 7,
pp. 281–292, 1971.

[187] B. L. Schwartz, “Possible winners in partially completed tournaments,” SIAM Review, vol. 8,
no. 3, pp. 302–308, 1966.

[188] R. Sedgewick, Algorithms. Reading, MA: Addison-Wesley, 1st ed., 1983.

[189] R. Sedgewick, Algorithms in C++. Reading, MA: Addison-Wesley, 1992.

[190] R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms. Reading, MA:
Addison-Wesley, 1996.

[191] R. Seidel and C. Aragon, “Randomized search trees,” Algorithmica, vol. 16, no. 4-5, pp. 464–
497, 1996.

[192] R. Seidel and M. Sharir, “Top-down analysis of path compression,” SIAM Journal on Com-
puting, vol. 34, no. 3, pp. 515–525, 2005.

[193] S. Sen and R. E. Tarjan, “Deletion without rebalancing in balanced binary trees,” in Proc.
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1490–1499, 2010.

[194] A. Shamir, “How to share a secret,” Comm. of the ACM, vol. 22(11), pp. 612–613, 1979.

[195] M. Sipser, Introduction to the Theory of Computation. PWS Publishing Co., 1997.

[196] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging rules,” Comm.
ACM, vol. 28, pp. 202–208, 1985.

[197] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,” J. ACM, vol. 32, no. 3,
pp. 652–686, 1985.

[198] D. K. Smith, “Dynamic programming and board games: A survey,” European Journal of
Operational Research, vol. 176, no. 3, pp. 1299–1318, 2007.

[199] D. A. Spielman and S.-H. Teng, “Smoothed analysis of algorithms: Why the simplex algo-
rithm usually takes polynomial time,” J. ACM, vol. 51, pp. 385–463, May 2004.

[200] G. A. Stephen, String Searching Algorithms. World Scientific Press, 1994.

[201] H. S. Stern, “American football,” in Statistics in Sport (J. Bennett, ed.), Arnold, 1998.

[202] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, vol. 13, pp. 354–
356, 1969.

[203] R. Tamassia, ed., Handbook of Graph Drawing and Visualization. Chapman and Hall/CRC,
2013.

[204] R. Tarjan and U. Vishkin, “An efficient parallel biconnectivity algorithm,” SIAM J. Comput.,
vol. 14, pp. 862–874, 1985.

[205] R. E. Tarjan, “Depth first search and linear graph algorithms,” SIAM Journal on Computing,
vol. 1, no. 2, pp. 146–160, 1972.

[206] R. E. Tarjan, “A class of algorithms which require nonlinear time to maintain disjoint sets,” J.
Comput. System Sci., vol. 18, pp. 110–127, 1979.

[207] R. E. Tarjan, Data Structures and Network Algorithms, vol. 44 of CBMS-NSF Regional Con-
ference Series in Applied Mathematics. SIAM, 1983.

[208] R. E. Tarjan, “Amortized computational complexity,” SIAM J. Algebraic Discrete Methods,
vol. 6, no. 2, pp. 306–318, 1985.

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography 773

[209] R. E. Tarjan and J. van Leeuwen, “Worst-case analysis of set union algorithms,” J. ACM,
vol. 31, pp. 245–281, Mar. 1984.

[210] J. van Leeuwen, “Graph algorithms,” in Handbook of Theoretical Computer Science (J. van
Leeuwen, ed.), vol. A. Algorithms and Complexity, pp. 525–632, Amsterdam: Elsevier, 1990.

[211] J. S. Vitter, Algorithms and Data Structures for External Memory. Foundations and Trends in
Theoretical Computer Science, Hanover, MA: Now Publishers, 2008.

[212] J. S. Vitter and W. C. Chen, Design and Analysis of Coalesced Hashing. New York: Oxford
University Press, 1987.

[213] J. Vuillemin, “A unifying look at data structures,” Comm. ACM, vol. 23, pp. 229–239, 1980.
[214] S. Warshall, “A theorem on boolean matrices,” Journal of the ACM, vol. 9, no. 1, pp. 11–12,

1962.
[215] K. Wayne, “A new property and a faster algorithm for baseball elimination,” SIAM Journal on

Discrete Mathematics, vol. 14, no. 2, pp. 223–229, 2001.
[216] J. W. J. Williams, “Algorithm 232: Heapsort,” Comm. ACM, vol. 7, no. 6, pp. 347–348, 1964.
[217] D. Wood, Data Structures, Algorithms, and Performance. Reading, MA: Addison-Wesley,

1993.
[218] F. F. Yao, “Computational geometry,” in Algorithms in Complexity (R. A. Earnshaw and

B. Wyvill, eds.), pp. 345–490, Amsterdam: Elsevier, 1990.
[219] C. K. Yap, Fundamental Problems in Algorithmic Algebra. Oxford University Press, 1999.

www.it-ebooks.info

http://www.it-ebooks.info/

Index

δ-approximation, 510
2SAT, 491, 503
3SAT, 491, 492

(a, b) tree, 586–588
depth property, 586
size property, 586

accepting a string, 477
access control lists, 700
accounting method, 36–37
accumulator, 30, 33
Achter, 710
Ackermann function, 231, 232, 432
acyclic, 373
additive inverse, 691
Adel’son-Vel’skii, 154
adjacency list, 361
adjacency matrix, 361, 363
adjacent, 356
Adleman, 703
Agarwal, 239, 622
Aggarwal, 602
Aho, 88, 154, 506, 602, 684, 730
Ahuja, 396, 422, 472
algorithm, 2
algorithm analysis, 6–33

average case, 9
worst case, 9

alphabet, 654
Alstrup, 239
amortization, 34–41, 73, 85, 145–148, 151,

221–235, 516–517, 662
accounting method, 36–37
potential function, 37–38

ancestor, 68, 372
anchor point, 632, 634–636
antisymmetric property, 157
approximation algorithms, 509–517
Aragon, 568, 622
Arge, 602
Arkin, 568
Arnold, 88
art gallery guarding, 300
Arya, 622
asymmetric relation, 356
asymptotic notation, 11–33

big-Oh, 11–14
big-Omega, 14
big-Theta, 14

little-oh, 16
little-omega, 16

augmented trees, 104
augmenting cycle, 462
augmenting path, 450
Aurenhammer, 650
AVL tree, 120–124, 644

height-balance property, 120

Baase, 730
back edge, 367, 375, 376, 393
backtracking, 365, 521–523, 528
backward induction, 338
Baeza-Yates, 114, 154, 264, 282, 684
balanced binary search tree, 116–148
balanced search tree, 577
Barůvka, 442
Barůvka’s algorithm, 436–438
baseball, 352
baseball elimination, 460–461
basic solution, 740
basic variables, 739
Baumert, 528
Bayer, 154, 602
Bellman, 352, 422
Bellman-Ford algorithm, 407–409
Bentley, 114, 186, 322, 650
Berg, 650
Bertrand’s Postulate, 213
BFS, see breadth-first search
BFS tree, 372
biconnected, 386
biconnected component, 386
big integers, 313
big-Oh notation, 11–14
big-Omega notation, 14
big-Theta notation, 14
bin packing, 153
binary encoding, 476
binary search, 91–93
binary search tree, 90, 94–100

insertion, 97
removal, 98–99
rotation, 119
trinode restructure, 119

binary space partitioning, 90
binary tree, 69, 76–82, 244

complete, 163
left child, 69

774

www.it-ebooks.info

http://www.it-ebooks.info/

Index 775

level, 76

linked structure, 82

proper, 69

right child, 69

binomial coefficients, 347

binomial distribution, 552

binomial expansion, 762

biodiversity, 534

bipartite graph, 458

birthday paradox, 217, 567

blocking, 572

Bloom filters, 567

Booch, 88

Boolean circuit, 481

bootstrapping, 576

Borodin, 602

bottleneck, 457

bottleneck TSP, 526

boundary node, 102

bounding box, 320, 621

Boyer, 684

branch-and-bound, 524–526, 528

Brassard, 50, 528

Bratley, 528

breadth-first search, 370–372, 376

Brigham, 730

brute force, 654

B-tree, 588–589

bubble-sort, 183

bucket-sort, 267–268

Budd, 88

buffer, 52

butterfly network, 725

c-incremental, 503

cache, 570

cache line, 572

caching algorithms, 594–599

call-by-value, 56

Canny, 568

capacity rule, 445

Carlsson, 186

Carmichael numbers, 547

Cartesian tree, 622

Catalan number, 326

certificate, 479

character-jump heuristic, 656

Chen, 218

Chernoff bound, 108, 109, 260, 551–553

child, 68

Chomsky normal form, 348

Christofides approximation algorithm, 513

Chvátal, 528

CIRCUIT-SAT, 481, 484–486, 489

Clarkson, 282

clauses, 489

clearable table, 34

CLIQUE, 494, 502

clique, 494

clockwise, 627

closed form, 10

closest pairs, 642–645

closure, 415

CNF, see conjunctive normal form

CNF-SAT, 489–491, 503, 506, 522, 523

coalesced hashing, 218

coefficient form, 713

coefficients, 734

coins-in-a-line game, 334

Cole, 684

collinear, 627

collision, 193

collision resolution, 198–214

collision-resistant, 702

Comer, 602

comparator, 179

compare-exchange, 261

complement, 478

complete binary tree, 163

complexity class, 478

component design, 487

composite, 546, 687

compositeness witness function, 547

compressed quadtree, 620

computational geometry, 624–650

closest pairs, 642–645

convex hull, 630–636

degeneracies, 628

orientation, 627–629

plane sweep, 640–645

proximity, 642

segment intersection, 638–641

conditional probability, 27

confidence parameter, 548

confidentiality, 686

congruence, 546

conjunctive normal form, 489, 491

connected components, 220, 221, 359, 369,
372

conservation rule, 445

constraints, 734

container, 88

contraction, 540

contradiction, 23

contrapositive, 23

convex hull, 630–636, 650

www.it-ebooks.info

http://www.it-ebooks.info/

776 Index

gift wrapping, 632–634

Graham scan algorithm, 635–636

convexity, 629, 630, 736

convolution, 713

Convolution Theorem, 720

Cook, 506

Cook-Levin Theorem, 484

Cooley, 730

coordinates, 605

Cormen, 239, 322, 396, 506

cost, 462

counterclockwise, 627

coupon collector problem, 534–535

Crochemore, 684

cross edge, 372, 375, 376

cryptography, 699–707

El Gamal cryptosystem, 706–707

RSA cryptosystem, 703–705

cuckoo hashing, 206–211

currency arbitrage, 422

cursor, 64

cut, 447, 539

cyber-dollar, 36

cycle, 358

directed, 358

cyptograph

public-key, 701–707

DAG, see directed acyclic graph

data integrity, 686, 699

data structure, 2

secondary, 576

data-oblivious, 261

decision problem, 477

decision tree, 257

decryption, 699

degeneracy, 744

degree, 356, 713

Delaunay triangulation, 650

DeMorgan’s law, 23

depth, 72–73

depth-first search, 365–369

deque, 85

descendant, 68, 372

destination, 356

DFS, see depth-first search

DFS tree, 367

DFT, see Discrete Fourier Transform

Di Battista, 88

diameter, 87, 647

dictionary, 189

update operations, 560

digital signature, 699

El Gamal, 707

RSA, 704

digraph, 373

Dijkstra, 422

Dijkstra’s algorithm, 400–406

Dillencourt, 239

directed acyclic graph, 382–384

directed cycle, 373

directed DFS tree, 375

discovery edge, 367, 372, 375, 376

Discrete Fourier Transform, 717–720

discrete logarithm, 706

disjunctive normal form, 490

distance, 399

divide-and-conquer, 243–245, 250–251, 305–
316

DNF, see disjunctive normal form

DNF-DISSAT, 502

DNF-SAT, 502

d-node, 574

Doom, 90

double hashing, 204

double-entry accounting, 216

down-heap bubbling, 170, 176

dual LP, 746

Durstenfeld, 568

dynamic programming, 324–345, 377

dynamic time warping, 351

Easley, 239, 396, 422, 472

Edelsbrunner, 622, 650

edge, 355, 629

destination, 356

end vertices, 356

incident, 356

multiple, 357

origin, 356

outgoing, 356

parallel, 357

self-loop, 357

edge capacity, 445

edit distance, 347

Edmonds, 302, 472

Edmonds-Karp algorithm, 455–457

El-Yaniv, 602

Elliott, 730

El Gamal cryptosystem, 706–707

Emiris, 730

encryption schemes, 700

end vertices, 356

endpoints, 356

equivalence class, 387

equivalence relation, 387

www.it-ebooks.info

http://www.it-ebooks.info/

Index 777

Euclid’s algorithm, 689–690

extended, 697–698

Euler tour, 392, 395

Euler tour traversal, 79, 88

Euler’s Theorem, 693

Even, 396, 422, 472

event, 26

exchange argument, 288

expected value, 27

exponent, 21

extended Euclid’s algorithm, 697

external memory, 571–592, 602

external-memory algorithm, 571–592

external-memory sorting, 590–592

factorial, 762

failure function, 660

Fast Fourier Transform, 713–726, 730

feasible region, 736

feasible solution, 736

Fermat’s Little Theorem, 546

FFT, see Fast Fourier Transform

Fibonacci progression, 763

Fibonacci sequence, 150

FIFO, 57, 592

first-in first-out, 57

Fisher, 568

Fisher-Yates algorithm, 533

Flajolet, 50

flow, see network flow

flow network, 445

Floyd, 186

Floyd-Warshall algorithm, 377, 396

Ford, 422

Ford-Fulkerson algorithm, 449–457

forest, 359

forward edge, 375

frame, 55

Frederickson, 239

free variables, 739

free-space optical communication, 441

Fulkerson, 472

fully polynomial-time approximation scheme,
518

Fundamental Theorem of Arithmetic, 687

fusion, 582, 587, 589

Gabow, 239

Gale, 568

game strategies, 334–338

garbage collection, 380–381

mark-sweep, 380

Garey, 506

Gauss, 20

Gavril, 528

GCD, see greatest common divisor

generator, 694

geometric random variable, 534

geometric sum, 763

Gibbons, 396, 422, 472

gift wrapping, 632–634

Godbole, 352

Golberg, 88

golden ratio, 150, 763

Golomb, 528

Gonnet, 114, 154, 186, 264, 282

Goodman, 650

Goodrich, 602, 650

googol, 15

Gosling, 88

Graham, 50, 442, 650

Graham scan algorithm, 635–636

grammar, 348

graph, 354–396, 398–422, 424–442

acyclic, 373

bipartite, 458

breadth-first search, 370–372, 374–377

connected, 359, 372

data structures, 361–363

adjacency list, 361–362

adjacency matrix, 363

dense, 378

depth-first search, 365–369, 374–377

digraph, 373

directed, 355, 356, 373–384

acyclic, 382–384

strongly connected, 373

mixed, 356

reachability, 373–374, 377–378

shortest paths, 377–378

simple, 357

traversal, 365–372

undirected, 355, 356

weighted, 398–422, 424–442

greatest common divisor, 688–690

Euclid’s algorithm, 689–690

greedy method, 284–297, 399, 400

greedy-choice, 285, 297

group, 693

guess-and-test, 308–309

Guibas, 154

Guttag, 88

Haken, 322

HAMILTONIAN-CYCLE, 499, 501, 506, 526

harmonic number, 108, 112, 517, 535, 764

www.it-ebooks.info

http://www.it-ebooks.info/

778 Index

hash function, 192, 204, 212, 213

2-universal, 212

one-way, 702

hash table, 188, 190–211

chaining, 198

clustering, 203

collision resolution, 198–214

double hashing, 204

linear probing, 200

open addressing, 204

quadratic probing, 204

secondary clustering, 204

universal hashing, 212–214

header, 64

heap, 163–178

heap-order property, 163

heap-sort, 174–178

height, 72–73

height-balance property, 120–123

Hell, 442

Hex game, 238

hidden-line elimination, 648

high probability, 532

Hilbert, 231

Hinrichs, 650

Hirschberg, 352

Hoare, 264

Hochbaum, 528

Hopcroft, 88, 154, 239, 396, 506, 602, 730

Horner’s method, 46

Horner’s rule, 713

Hu, 352

Huang, 264

Huffman, 302

Huffman coding, 292–297

Ibarra, 528

identity matrix, 718

in place, 160, 162

in-degree, 356

in-place, 254, 381

incidence matrix, 496

incident, 356

incoming edges, 356

independent, 26, 28

independent set, 348, 395

INDEPENDENT-SET, 504

index, 60, see discrete logarithm

induction, 23–24

inorder traversal, 95, 99, 118

input size, 476

insertion-sort, 161

inside node, 102

integer multiplication, 313–314

internal memory, 570

intersection, 626

inverse shuffle, 725

inversion, 183, 260

inverted file, 242, 280

items, 189

iterative substitution, 306

JáJá, 88

Jarńık, 442

Johnson, 506, 528

Johnston, 352

Jones, 396

Josephus problem, 87, 114

Kao, 264

Kaplan, 239

Karatsuba, 322

Karger, 442

Karp, 88, 472, 506

Karp-Rabin algorithm, 664, 666, 667

k-d tree, 616–617

key, 157, 189, 190, 574

key transfer, 701

Kim, 528

Klein, 442, 528

Kleinberg, 239, 396, 422, 472

KNAPSACK, 498, 504, 518–520, 525, 526,
528

knapsack problem, 286–288, 343–345

Knuth, 50, 88, 114, 154, 186, 264, 282, 396,
602, 684

Kosaraju, 396

Koutsoupias, 602

Kruskal, 352, 442

Kruskal’s algorithm, 428–432

Kung, 322

L’Hôpital’s Rule, 764

Landis, 154

Langston, 264

language, 477

Las Vegas algorithm, 550

last node, 163

last-in first-out, 53

LCS, see longest common subsequence

leaves, 68

Lecroq, 684

Lee, 650

left child, 69

left subtree, 69

left turn, 627

www.it-ebooks.info

http://www.it-ebooks.info/

Index 779

Leiserson, 396, 506

level, 76, 370

level numbering, 165

level order traversal, 87

Levin, 506

Levisse, 114

Lewis, 528

lexicographic, 242

lexicographical, 268

lexicon matching, 664

LIFO, 53

line, 625

line breaking, 301

linear exponential, 764

linear function, 734

linear probing, 200

linear program, 734

linear programming, 732–752

linearity of expectation, 27, 272

link components, 389

link relation, 387

linked list, 63, 64

doubly linked, 64–66

linked structure, 82

Liskov, 88

list, 60–66

literals, 489

little-oh notation, 16

little-omega notation, 16

live objects, 380

load factor, 199, 205

local replacement, 487

locality-of-reference, 572

locator, 179–181

logarithm, 21, 761

natural, 761

longest common subsequence, 339–342

longest common substring, 348

looking-glass heuristic, 656

lookup table, 191

loop invariant, 25

Lovász, 528

LRU, 592

Luccio, 322

machine precision, 263, 300

machine scheduling, 300

Magnanti, 396, 422, 472

making change, 349

map, 189–211

hash table, 190–211

skip list, 557–562

mark-sweep algorithm, 380

Marker strategy, 597

Markov’s inequality, 551

master theorem, 310–312

matching, 458

matrix chain-product, 325–328

matrix closure, 415–417

matrix multiplication, 315–316

matroid theory, 302

Max-Flow, Min-Cut Theorem, 451

maxima set, 304, 317–318

maximum bipartite matching, 458–459

maximum flow, see network flow

maximum spanning tree, 441

maximum subarray problem, 29

maximum subarray sum, 29

maze, 223

McCreight, 602, 622, 684

McDiarmid, 186

McGeoch, 50

median, 270

Megiddo, 282

Mehlhorn, 114, 154, 396, 422, 472, 602, 622,
650

memoization, 333, 336, 338

memory hierarchy, 570

memory management, 380, 571–573, 594–599

merge-sort, 243–249

multi-way, 590–592

tree, 244

mergeable heap, 151

method stack, 55–56

metric, 511

METRIC-TSP, 511–514

metrology, 281, 648

Milgram, 566

Miller, 568

minimum cut, 448, 539

minimum spanning tree, 425–438

Barůvka’s algorithm, 436–438

Kruskal’s algorithm, 428–432

Prim-Jarnik algorithm, 433–435

minimum-cost flow, 462–468

mode, 260, 280

modular arithmetic, 58, 213, 546, 691–694,
762

modular exponentiation, 695–696

modular multiplicative inverse, 697

modulus, 546

Monte Carlo algorithm, 550

Moore, 684

Morris, 684

Morrison, 684

www.it-ebooks.info

http://www.it-ebooks.info/

780 Index

Motwani, 264, 568, 602

MST, see minimum spanning tree

multi-objective optimization, 317

multi-way search tree, 574

multi-way tree, 574–577

multimap, 190, 216

multiplicative group, 693

multiplicative inverse, 691, 697

Munro, 186

mutually independent, 26

Naimipour, 528

natural logarithm, 761

Neapolitan, 528

nearest-neighbor query, 116

negative binomial distribution, 554

network flow, 444–472

augmenting cycle, 462

augmenting path, 450

backward edge, 447

bottleneck, 457

capacity rule, 445

conservation rule, 445

cut, 447–449

cut capacity, 448

edge capacity, 445

Edmonds-Karp algorithm, 455–457

flow across a cut, 448

flow network, 445–447

flow value, 446

Ford-Fulkerson algorithm, 449–457

forward edge, 447

Max-Flow, Min-Cut Theorem, 451

maximum flow problem, 446, 449

minimum cut, 448

minimum-cost flow, 462–468

residual capacity, 449

residual distance, 455

residual graph, 454

node, 63, 68, 70

ancestor, 68

balanced, 121

boundary, 102

child, 68

descendant, 68

external, 68

inside, 102

internal, 68

outside, 102

parent, 68

redundant, 673

root, 68

sibling, 68

size, 145

unbalanced, 121

nonnegativity constraints, 734

nontree edge, 375, 376

NP, 478, 479

NP-completeness, 474–506

NP-hard, 483

null string, 653

number theory, 686–698

O’Rourke, 650

object-oriented design, 88

objective function, 285, 734

octree, 620

odd-even merge-sort, 261

office party problem, 350

offline-min problem, 237

Ofman, 322

one-sided error, 550

one-time pad, 709

one-way hash function, 702, 710

online algorithm, 593–599

open addressing, 200, 204

optimal binary search tree, 348

optimization problem, 329, 477

order statistic, 270

orientation, 626–628

origin, 356

Orlin, 396, 422, 472

orthogonal segments, 638

Ottmann, 650

out-degree, 356

outgoing edge, 356

output sensitive, 634, 638

outside node, 102

overflow, 579, 589

P, 478

Pach, 650

palindrome, 350

Pan, 730

Papadimitriou, 302, 528, 602

parent, 68

PARTITION, 504

partition, 221

partition tree, 614

password, 699

Patashnik, 50

path, 358

directed, 358

length, 399

simple, 358

weight, 399

www.it-ebooks.info

http://www.it-ebooks.info/

Index 781

path compression, 229

path length, 87

pattern matching, 653–663

Boyer-Moore algorithm, 656–658

brute force, 654–656

Knuth-Morris-Pratt algorithm, 660–663

percolation theory, 224, 237

perfect matching, 513

pivot, 740

plane sweep, 640–645

point, 625

polygon, 625, 629

convex, 629

edges, 629

simple, 629

vertices, 629

polynomial, 46

polynomial-time approximation scheme, 518

polynomial-time reducible, 483

position, 63, 70

potential function, 37–38

Pratt, 684

prefix, 653

prefix code, 292

prefix sums, 31

Preparata, 322, 650

Prim, 442

Prim-Jarnik algorithm, 433–435

primality testing, 547–549

prime, 546, 687

prime decomposition, 687

primitive operations, 7–10, 36

primitive root, 694

primitive root of unity, 715

printer spooler, 59

priority queue, 157–181

priority range tree, 613–614

priority search tree, 609–612

probabilistic packet marking, 566

probability, 26–28

probability space, 26

producer-consumer model, 52

program counter, 56

proximity, 642

prune-and-search, 270–278

pseudo-blocks, 592

pseudo-polynomial-time, 345

pseudo-random-number generators, 530

pseudocode, 5–6

PTAS, see polynomial-time approximation scheme

public-key cryptography, 701–707

public-key cryptosystem, 701

Pugh, 568

quadratic probing, 204

quadtree, 614–615

queue, 52, 57–59

array implementation, 57–59

quick-sort, 250–256

tree, 251

Raab, 568

Rabin, 568

Rabin-Miller algorithm, 548

radix-sort, 268–269

Raghavan, 264, 568, 602

Ramachandran, 88

random binary search tree, 107

random permutation, 531–534

random variable, 27

random-access machine, 7

randomized algorithm, 530

randomized quick-select, 270

randomized quick-sort, 253

range query, 101

range searching

one-dimensional, 101–103

three-sided, 609

range tree, 605–614

range-search query, 605

rank-balanced trees, 118

Rao, 730

reachability, 373

recurrence equation, 10, 248, 305–312

recursion, 10, 56

recursion tree, 307

red-black tree, 126–129, 644

Reed, 186

reflexive property, 157

rehashing, 205

relatively prime, 688, 691

relaxation, 400, 407

repeated squaring, 695

rescalable, 518

residual capacity, 449

residual distance, 455

residual graph, 454

residue, 691

restriction, 487

restructure

trinode, 119

Ribeiro-Neto, 684

riffle shuffle, 262

right child, 69

right subtree, 69

right turn, 627

ring-loading problem, 527

www.it-ebooks.info

http://www.it-ebooks.info/

782 Index

Rivest, 396, 506, 703

road network, 398

Robson, 88

rolling-hash function, 666

root, 68

root object, 380

Rosenkrantz, 528

rotation, 118, 119, 122

double, 119

single, 119

roundoff error, 263, 300

RSA cryptosystem, 703–705

running time, 2–4, 8–10

Sackrowitz, 352

Samet, 602, 622

sample space, 26

Sankoff, 352

SAT, 502

satisfying assignment, 481

Saxe, 322

scalability, 2

scan forward, 558

Schaffer, 186

search engine, 679

secondary clustering, 204

Sedgewick, 50, 154, 186, 650

seed, 530

segment, 625

segment intersection, 638–641

Seidel, 239, 568, 622

selection, 270–278

selection-sort, 159

self-loop, 357

sentinel, 64, 190

separate chaining, 198

separation edge, 386

separation vertex, 386

set cover, 509

SET-COVER, 494, 495, 502, 515–517, 528

Shamir, 703

Shamir secret sharing, 728

Shamos, 650

Shapley, 568

Sharir, 239

Shing, 352

shortest path, 399–417

Bellman-Ford algorithm, 407–409

Dijkstra’s algorithm, 400–406

matrix multiplication, 413–417

sibling, 68

simplex method, 733, 739

sink, 444, 445

ski rental problem, 593

skip list, 557–562

analysis, 561–562

insertion, 559

levels, 557

removal, 560–561

searching, 558–559

towers, 557

update operations, 559–561

skyline problem, 322

slack form, 739

Sleator, 154, 602

Smith-Waterman algorithm, 350

social network, 220

sorting, 158, 243–258, 267–269

bucket-sort, 267–268

external-memory, 590–592

heap-sort, 174–178

in-place, 175, 254

insertion-sort, 161

lower bound, 257–258

merge-sort, 243–249

priority-queue, 158

quick-sort, 250–256

radix-sort, 268–269

selection-sort, 159

stable, 268

source, 444, 445

space usage, 2

spanning forest, 369, 372

spanning subgraph, 359

spanning tree, 359, 365, 367, 368, 370, 372,
425

splay tree, 139–148

split, 579, 589

stable, 268

stable marriage problem, 536–538

stack, 53–56

array implementation, 53–54

standard form, 734

Stearns, 528

steganography, 682

Steger, 568

Steiglitz, 302, 528

Stephen, 684

Stirling’s Approximation, 762

STL, 88

Stooge-sort, 320

stop words, 671, 682

Strassen’s Algorithm, 315

string

null, 653

pattern matching, see pattern matching

www.it-ebooks.info

http://www.it-ebooks.info/

Index 783

prefix, 653

suffix, 653

strongly collision-resistant, 702

strongly connected, 373

strongly NP-hard, 496

subgraph, 359

SUBGRAPH-ISOMORPHISM, 504

subproblem optimality, 326, 329

subproblem overlap, 329

subsequence, 302, 324, 339

SUBSET-SUM, 496–498, 502, 506

substring, 348, 653

subtree, 68

suffix, 653

summation, 19, 763

geometric, 19

symmetric encryption, 700–701

symmetric relation, 355

tabulation-based hashing, 196

tail estimate, 535

tail recursion, 256

Tamassia, 88, 710

Tarjan, 50, 88, 114, 154, 239, 396, 422, 442,
472, 602

task scheduling, 289–291

telescope scheduling, 331–333, 350

telescoping sum, 35, 763

text compression, 292–297

topological ordering, 382–384

total order, 157

totient function, 693

tower, 559

traceback, 566

trailer, 64

transfer, 582

transitive closure, 374, 376

transitive property, 157

traveling salesperson problem, 480, 501

treap, 622

tree, 68–88, 359

binary, see binary tree

child node, 68

depth, 72–73

external node, 68

height, 72–73

internal node, 68

level, 76

linked structure, 83–84

multi-way, 574–577

multidimensional, 605–617

node, 68

ordered, 69

parent node, 68

root node, 68

tree edge, 375, 376

tree traversal, 74–75, 78–81

Euler tour, 80–81

generic, 80–81

inorder, 79

level order, 87

postorder, 75, 78

preorder, 74, 78

triangle inequality, 511

triangulation, 348

trie, 669–679

compressed, 673

standard, 669

trinode restructuring, 118, 122

Tsakalidis, 114, 154

TSP, 480, 501, 511, 512, 518, 524, 526, 528

Tukey, 730

two-dimensional dictionary, 605

two-dimensional pattern matching, 683

two-sided error, 550

(2, 4) tree, 578–584

depth property, 578

size property, 578

Ullman, 88, 154, 239, 506, 602, 730

unary encoding, 476

underflow, 582, 589

uniform hash, 664

union-by-size, 229

union-find, 221–235

universal hashing, 212–214

up-heap bubbling, 168

upper envelope, 321

van Leeuwen, 396, 422, 472

verification, 479

vertex, 355

degree, 356

in-degree, 356

out-degree, 356

vertex cover, 352, 471, 482

VERTEX-COVER, 482, 492–497, 499, 506, 515,
528

vertical ray-shooting, 648

virtual memory, 572

Vishkin, 88

Vitter, 218, 602

Voronoi diagram, 649

Vuillemin, 622

www.it-ebooks.info

http://www.it-ebooks.info/

784 Index

Wang, 264
weak AVL tree, 130–135
web crawler, 339, 365
web spider, 365
weighted moving average, 730
Williams, 186
Wood, 88, 622
word wrapping, 349

Yannakakis, 528
Yao, 650
Yap, 730
Yates, 568
Young, 528

zig, 140, 146
zig-zag, 140, 146
zig-zig, 139, 146

www.it-ebooks.info

http://www.it-ebooks.info/

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

www.it-ebooks.info

http://www.wiley.com/go/eula
http://www.it-ebooks.info/

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Chapter 1 Algorithm Analysis�����������������������������������
	1.1 Analyzing Algorithms�������������������������������
	1.2 A Quick Mathematical Review��������������������������������������
	1.3 A Case Study in Algorithm Analysis���
	1.4 Amortization�����������������������
	1.5 Exercises��������������������

	Part I Data Structures�����������������������������
	Chapter 2 Basic Data Structures��������������������������������������
	2.1 Stacks and Queues����������������������������
	2.2 Lists����������������
	2.3 Trees����������������
	2.4 Exercises��������������������

	Chapter 3 Binary Search Trees
	3.1 Searches and Updates�������������������������������
	3.2 Range Queries������������������������
	3.3 Index-Based Searching��������������������������������
	3.4 Randomly Constructed Search Trees��
	3.5 Exercises��������������������

	Chapter 4 Balanced Binary Search Trees���
	4.1 Ranks and Rotations������������������������������
	4.2 AVL Trees��������������������
	4.3 Red-Black Trees��������������������������
	4.4 Weak AVL Trees�������������������������
	4.5 Splay Trees����������������������
	4.6 Exercises��������������������

	Chapter 5 Priority Queues and Heaps��
	5.1 Priority Queues��������������������������
	5.2 PQ-Sort, Selection-Sort, and Insertion-Sort��
	5.3 Heaps����������������
	5.4 Heap-Sort��������������������
	5.5 Extending Priority Queues������������������������������������
	5.6 Exercises��������������������

	Chapter 6 Hash Tables����������������������������
	6.1 Maps���������������
	6.2 Hash Functions�������������������������
	6.3 Handling Collisions and Rehashing��
	6.4 Cuckoo Hashing�������������������������
	6.5 Universal Hashing����������������������������
	6.6 Exercises��������������������

	Chapter 7 Union-Find Structures��������������������������������������
	7.1 Union-Find and Its Applications��
	7.2 A List-Based Implementation��������������������������������������
	7.3 A Tree-Based Implementation��������������������������������������
	7.4 Exercises��������������������

	Part II Sorting and Selection������������������������������������
	Chapter 8 Merge-Sort and Quick-Sort��
	8.1 Merge-Sort���������������������
	8.2 Quick-Sort���������������������
	8.3 A Lower Bound on Comparison-Based Sorting��
	8.4 Exercises��������������������

	Chapter 9 Fast Sorting and Selection
	9.1 Bucket-Sort and Radix-Sort�������������������������������������
	9.2 Selection��������������������
	9.3 Weighted Medians���������������������������
	9.4 Exercises��������������������

	Part III Fundamental Techniques��������������������������������������
	Chapter 10 The Greedy Method�����������������������������������
	10.1 The Fractional Knapsack Problem���
	10.2 Task Scheduling���������������������������
	10.3 Text Compression and Huffman Coding���
	10.4 Exercises���������������������

	Chapter 11 Divide-and-Conquer������������������������������������
	11.1 Recurrences and the Master Theorem��
	11.2 Integer Multiplication����������������������������������
	11.3 Matrix Multiplication���������������������������������
	11.4 The Maxima-Set Problem����������������������������������
	11.5 Exercises���������������������

	Chapter 12 Dynamic Programming�������������������������������������
	12.1 Matrix Chain-Products���������������������������������
	12.2 The General Technique���������������������������������
	12.3 Telescope Scheduling��������������������������������
	12.4 Game Strategies���������������������������
	12.5 The Longest Common Subsequence Problem��
	12.6 The 0-1 Knapsack Problem������������������������������������
	12.7 Exercises���������������������

	Chapter 13 Graphs and Traversals���������������������������������������
	13.1 Graph Terminology and Representations���
	13.2 Depth-First Search������������������������������
	13.3 Breadth-First Search��������������������������������
	13.4 Directed Graphs���������������������������
	13.5 Biconnected Components����������������������������������
	13.6 Exercises���������������������

	Part IV Graph Algorithms�������������������������������
	Chapter 14 Shortest Paths��������������������������������
	14.1 Single-Source Shortest Paths��
	14.2 Dijkstra's Algorithm��������������������������������
	14.3 The Bellman-Ford Algorithm��������������������������������������
	14.4 Shortest Paths in Directed Acyclic Graphs���
	14.5 All-Pairs Shortest Paths������������������������������������
	14.6 Exercises���������������������

	Chapter 15 Minimum Spanning Trees��
	15.1 Properties of Minimum Spanning Trees��
	15.2 Kruskal's Algorithm�������������������������������
	15.3 The Prim-Jarnık Algorithm
	15.4 Baruvka's Algorithm
	15.5 Exercises���������������������

	Chapter 16 Network Flow and Matching���
	16.1 Flows and Cuts��������������������������
	16.2 Maximum Flow Algorithms�����������������������������������
	16.3 Maximum Bipartite Matching��������������������������������������
	16.4 Baseball Elimination��������������������������������
	16.5 Minimum-Cost Flow�����������������������������
	16.6 Exercises���������������������

	Part V Computational Intractability��
	Chapter 17 NP-Completeness���������������������������������
	17.1 P and NP��������������������
	17.2 NP-Completeness���������������������������
	17.3 CNF-Sat and 3Sat����������������������������
	17.4 Vertex-Cover, Clique, and Set-Cover���
	17.5 Subset-Sum and Knapsack�����������������������������������
	17.6 Hamiltonian-Cycle and TSP�������������������������������������
	17.7 Exercises���������������������

	Chapter 18 Approximation Algorithms��
	18.1 The Metric Traveling Salesperson Problem��
	18.2 Approximations for Covering Problems��
	18.3 Polynomial-Time Approximation Schemes���
	18.4 Backtracking and Branch-and-Bound���
	18.5 Exercises���������������������

	Part VI Additional Topics��������������������������������
	Chapter 19 Randomized Algorithms���������������������������������������
	19.1 Generating Random Permutations��
	19.2 Stable Marriages and Coupon Collecting��
	19.3 Minimum Cuts������������������������
	19.4 Finding Prime Numbers���������������������������������
	19.5 Chernoff Bounds���������������������������
	19.6 Skip Lists����������������������
	19.7 Exercises���������������������

	Chapter 20 B-Trees and External Memory���
	20.1 External Memory���������������������������
	20.2 (2,4) Trees and B-Trees�����������������������������������
	20.3 External-Memory Sorting�����������������������������������
	20.4 Online Caching Algorithms�������������������������������������
	20.5 Exercises���������������������

	Chapter 21 Multidimensional Searching��
	21.1 Range Trees�����������������������
	21.2 Priority Search Trees���������������������������������
	21.3 Quadtrees and k-d Trees
	21.4 Exercises���������������������

	Chapter 22 Computational Geometry��
	22.1 Operations on Geometric Objects���
	22.2 Convex Hulls������������������������
	22.3 Segment Intersection��������������������������������
	22.4 Finding a Closest Pair of Points��
	22.5 Exercises���������������������

	Chapter 23 String Algorithms�����������������������������������
	23.1 String Operations�����������������������������
	23.2 The Boyer-Moore Algorithm�������������������������������������
	23.3 The Knuth-Morris-Pratt Algorithm��
	23.4 Hash-Based Lexicon Matching���������������������������������������
	23.5 Tries�����������������
	23.6 Exercises���������������������

	Chapter 24 Cryptography������������������������������
	24.1 Greatest Common Divisors (GCD)��
	24.2 Modular Arithmetic������������������������������
	24.3 Cryptographic Operations������������������������������������
	24.4 The RSA Cryptosystem��������������������������������
	24.5 The El Gamal Cryptosystem�������������������������������������
	24.6 Exercises���������������������

	Chapter 25 The Fast Fourier Transform��
	25.1 Convolution�����������������������
	25.2 Primitive Roots of Unity������������������������������������
	25.3 The Discrete Fourier Transform��
	25.4 The Fast Fourier Transform Algorithm��
	25.5 Exercises���������������������

	Chapter 26 Linear Programming������������������������������������
	26.1 Formulating the Problem�����������������������������������
	26.2 The Simplex Method������������������������������
	26.3 Duality�������������������
	26.4 Applications of Linear Programming��
	26.5 Exercises���������������������

	Appendix A Useful Mathematical Facts
	Bibliography
	Index
	EULA

