

Liz Rice

Container Security
Fundamental Technology Concepts that Protect

Containerized Applications

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05670-6

[LSI]

Container Security
by Liz Rice

Copyright © 2020 Vertical Shift Ltd. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Developmental Editor: Virginia Wilson
Production Editor: Nan Barber
Copyeditor: Arthur Johnson
Proofreader: Kim Wimpsett

Indexer: Devon Thomas
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2020: First Edition

Revision History for the First Edition
2020-04-03: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492056706 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Container Security, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Aqua Security. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492056706
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. ix

1. Container Security Threats. 1
Risks, Threats, and Mitigations 2
Container Threat Model 3
Security Boundaries 6
Multitenancy 7

Shared Machines 8
Virtualization 8
Container Multitenancy 9
Container Instances 10

Security Principles 10
Least Privilege 10
Defense in Depth 11
Reducing the Attack Surface 11
Limiting the Blast Radius 11
Segregation of Duties 11
Applying Security Principles with Containers 11

Summary 12

2. Linux System Calls, Permissions, and Capabilities. 13
System Calls 13
File Permissions 14

setuid and setgid 16
Linux Capabilities 19
Privilege Escalation 21
Summary 22

iii

3. Control Groups. 23
Cgroup Hierarchies 23
Creating Cgroups 24
Setting Resource Limits 26
Assigning a Process to a Cgroup 27
Docker Using Cgroups 28
Cgroups V2 29
Summary 30

4. Container Isolation. 31
Linux Namespaces 32
Isolating the Hostname 33
Isolating Process IDs 35
Changing the Root Directory 38
Combine Namespacing and Changing the Root 41
Mount Namespace 42
Network Namespace 43
User Namespace 45

User Namespace Restrictions in Docker 48
Inter-process Communications Namespace 48
Cgroup Namespace 49
Container Processes from the Host Perspective 50
Container Host Machines 52
Summary 53

5. Virtual Machines. 55
Booting Up a Machine 55
Enter the VMM 57

Type 1 VMMs, or Hypervisors 57
Type 2 VMM 58
Kernel-Based Virtual Machines 59

Trap-and-Emulate 59
Handling Non-Virtualizable Instructions 60
Process Isolation and Security 61
Disadvantages of Virtual Machines 62
Container Isolation Compared to VM Isolation 63
Summary 63

6. Container Images. 65
Root Filesystem and Image Configuration 65
Overriding Config at Runtime 66

iv | Table of Contents

OCI Standards 66
Image Configuration 67
Building Images 68

The Dangers of docker build 68
Daemonless Builds 69
Image Layers 69

Storing Images 71
Identifying Images 72
Image Security 73
Build-Time Security 74

Provenance of the Dockerfile 74
Dockerfile Best Practices for Security 75
Attacks on the Build Machine 77

Image Storage Security 77
Running Your Own Registry 77
Signing Images 78

Image Deployment Security 78
Deploying the Right Image 78
Malicious Deployment Definition 79
Admission Control 79

GitOps and Deployment Security 80
Summary 80

7. Software Vulnerabilities in Images. 83
Vulnerability Research 83
Vulnerabilities, Patches, and Distributions 84
Application-Level Vulnerabilities 85
Vulnerability Risk Management 85
Vulnerability Scanning 85
Installed Packages 86
Container Image Scanning 87

Immutable Containers 87
Regular Scanning 88

Scanning Tools 89
Sources of Information 89
Out-of-Date Sources 89
Won’t Fix Vulnerabilities 89
Subpackage Vulnerabilities 90
Package Name Differences 90
Additional Scanning Features 90
Scanner Errors 90

Table of Contents | v

Scanning in the CI/CD Pipeline 91
Prevent Vulnerable Images from Running 93
Zero-Day Vulnerabilities 93
Summary 94

8. Strengthening Container Isolation. 95
Seccomp 95
AppArmor 97
SELinux 98
gVisor 100
Kata Containers 102
Firecracker 103
Unikernels 103
Summary 104

9. Breaking Container Isolation. 105
Containers Run as Root by Default 105

Override the User ID 106
Root Requirement Inside Containers 107
Rootless Containers 109

The --privileged Flag and Capabilities 111
Mounting Sensitive Directories 113
Mounting the Docker Socket 114
Sharing Namespaces Between a Container and Its Host 115
Sidecar Containers 115
Summary 116

10. Container Network Security. 117
Container Firewalls 117
OSI Networking Model 119
Sending an IP Packet 120
IP Addresses for Containers 121
Network Isolation 122
Layer 3/4 Routing and Rules 123

iptables 123
IPVS 125

Network Policies 125
Network Policy Solutions 127
Network Policy Best Practices 128

Service Mesh 129
Summary 130

vi | Table of Contents

11. Securely Connecting Components with TLS. 131
Secure Connections 131
X.509 Certificates 132

Public/Private Key Pairs 133
Certificate Authorities 134
Certificate Signing Requests 136

TLS Connections 136
Secure Connections Between Containers 138
Certificate Revocation 138
Summary 139

12. Passing Secrets to Containers. 141
Secret Properties 141
Getting Information into a Container 142

Storing the Secret in the Container Image 143
Passing the Secret Over the Network 144
Passing Secrets in Environment Variables 144
Passing Secrets Through Files 145

Kubernetes Secrets 145
Secrets Are Accessible by Root 146
Summary 148

13. Container Runtime Protection. 149
Container Image Profiles 149

Network Traffic Profiles 150
Executable Profiles 150
File Access Profiles 152
User ID Profiles 152
Other Runtime Profiles 153
Container Security Tools 153

Drift Prevention 155
Summary 156

14. Containers and the OWASP Top 10. 157
Injection 157
Broken Authentication 157
Sensitive Data Exposure 158
XML External Entities 158
Broken Access Control 158
Security Misconfiguration 159
Cross-Site Scripting XSS 159

Table of Contents | vii

Insecure Deserialization 159
Using Components with Known Vulnerabilities 160
Insufficient Logging and Monitoring 160
Summary 161

Conclusions. 163

Appendix. Security Checklist. 165

Index. 167

viii | Table of Contents

Preface

Many organizations are running applications in cloud native environments, using
containers and orchestration to facilitate scalability and resilience. If you’re a member
of the Operations, the DevOps, or even the DevSecOps team setting up these envi‐
ronments for your company, how do you know whether your deployments are
secure? If you’re a security professional with experience in traditional server-based or
virtual machine–based systems, how can you adapt your existing knowledge for
container-based deployments? And as a developer in the cloud native world, what do
you need to think about to improve the security of your containerized applications?
This book delves into some of the key underlying technologies that containers and
cloud native rely on, to leave you better equipped to assess the security risks and
potential solutions applicable to your environment and to help you avoid falling into
bad practices that will leave your technology deployments exposed.

In this book you will learn about many of the building block technologies and mecha‐
nisms that are commonly used in container-based systems, and how they are con‐
structed in the Linux operating system. Together we will dive deep into the
underpinnings of how containers work and how they communicate so that you are
well versed not just in the “what” of container security but also, and more impor‐
tantly, in the “why.” My goal in writing this book is to help you better understand
what’s happening when you deploy containers. I want to encourage you to build men‐
tal models that allow you to make your own assessment of potential security risks that
could affect your deployments.

This book primarily considers the kind of “application containers” that many busi‐
nesses are using these days to run their business applications in systems such as
Kubernetes and Docker. This is in contrast to “system containers” such as LXC and
LXD from the Linux Containers Project. In an application container, you are encour‐
aged to run immutable containers with as little code as is necessary to run the appli‐
cation, whereas in a system container environment the idea is to run an entire Linux
distribution and treat it more like a virtual machine. It’s considered perfectly normal
to SSH into a system container, but application container security experts will look at

ix

https://linuxcontainers.org

you askance if you want to SSH into an application container (for reasons covered
later in this book). However, the basic mechanisms used to create application and sys‐
tem containers alike are control groups, namespaces, and changing the root directory,
so this book will give you a solid foundation from which you may wish to explore the
differences in approach taken by the different container projects.

Who This Book Is For
Whether you consider yourself a developer, a security professional, an operator, or a
manager, this book will suit you best if you like to get into the nitty-gritty of how
things work, and if you enjoy time spent in a Linux terminal.

If you are looking for an instruction manual that gives a step-by-step guide to secur‐
ing containers, this may not be the book for you. I don’t believe there is a one-size-
fits-all approach that would work for every application in every environment and
every organization. Instead, I want to help you understand what is happening when
you run applications in containers, and how different security mechanisms work, so
that you can judge the risks for yourself.

As you’ll find out later in this book, containers are made with a combination of fea‐
tures from the Linux kernel. Securing containers involves using a lot of the same
mechanisms as you would use on a Linux host. (I use the term “host” to cover both
virtual machines and bare-metal servers.) I lay out how these mechanisms work and
then show how they apply in containers. If you are an experienced system adminis‐
trator, you’ll be able to skip over some sections to get to the container-specific
information.

I assume that you have some basic familiarity with containers, and you have probably
at least toyed with Docker or Kubernetes. You will understand terms like “pulling a
container image from a registry” or “running a container” even if you don’t know
exactly what is happening under the covers when you take these actions. I don’t
expect you to know the details of how containers work—at least, not until you have
read the book.

What This Book Covers
We’ll start in Chapter 1 by considering threat models and attack vectors that affect
container deployments, and the aspects that differentiate container security from tra‐
ditional deployment security. The remainder of the book is concerned with helping
you build a thorough understanding of containers and these container-specific
threats, and with how you can defend against them.

Before you can really think about how to secure containers, you’ll need to know how
they work. Chapter 2 sets the scene by describing some core Linux mechanisms such

x | Preface

as system calls and capabilities that will come into play when we use containers. Then
in Chapters 3 and 4, we’ll delve into the Linux constructs that containers are made
from. This will give you an understanding of what containers really are and of the
extent to which they are isolated from each other. We’ll compare this with virtual
machine isolation in Chapter 5.

In Chapter 6 you’ll learn about the contents of container images and consider some
best practices for building them securely. Chapter 7 addresses the need to identify
container images with known software vulnerabilities.

In Chapter 8 we will look at some optional Linux security measures that can be
applied to harden containers beyond the basic implementation we saw in Chapter 4.
We will look into ways that container isolation can be compromised through danger‐
ous but commonplace misconfigurations in Chapter 9.

Then we will turn to the communications between containers. Chapter 10 looks at
how containers communicate and explores ways to leverage the connections between
them to improve security. Chapter 11 explains the basics of keys and certificates,
which containerized components can use to identify each other and set up secure net‐
work connections between themselves. This is no different for containers than it is
for any other component, but this topic is included since keys and certificates are
often a source of confusion in distributed systems. In Chapter 12 we will see how cer‐
tificates and other credentials can be safely (or not so safely) passed to containers at
runtime.

In Chapter 13 we will consider ways in which security tooling can prevent attacks at
runtime, taking advantage of the features of containers.

Finally, Chapter 14 reviews the top 10 security risks published by the Open Web
Application Security Project and considers container-specific approaches for address‐
ing them. Spoiler alert: some of the top security risks are addressed in exactly the
same way whether your application is containerized or not.

A Note about Kubernetes
These days the majority of folks using containers are doing so under the Kubernetes
orchestrator. An orchestrator automates the process of running different workloads
in a cluster of machines, and there are places in this book where I will assume that
you have a basic grasp of this concept. In general, I have tried to stay focused on con‐
cepts that act at the level of the underlying containers—the “data plane” in a Kuber‐
netes deployment.

Because Kubernetes workloads run in containers, this book is relevant to Kubernetes
security, but it is not a comprehensive treatment of everything related to securing
Kubernetes or cloud native deployments. There are many other concerns around the

Preface | xi

https://kubernetes.io

configuration and use of the control plane components that are outside the scope of
this book. If you would like more on this topic, you might be interested in the
O’Reilly Kubernetes Security report (which I coauthored with Michael Hausenblas).

Examples
There are lots of examples in this book, and I encourage you to try them out for
yourself.

In the examples I assume that you are comfortable with basic Linux command-line
tools like ps and grep, and with the basic day-to-day activities of running container
applications through the use of tools like kubectl or docker. This book will use the
former set of tools to explain a lot more about what’s happening when you use the
latter!

To follow along with the examples in this book, you will need access to a Linux
machine or virtual machine. I created the examples using an Ubuntu 19.04 virtual
machine running under VirtualBox on my Mac; I also use Vagrant to create, start,
and stop my virtual machines. You should be able to achieve similar results on differ‐
ent Linux distributions and using virtual machines from your favorite cloud provider.

How to Run Containers
For many people, their main (perhaps only) experience of running containers directly
is with Docker. Docker democratized the use of containers by providing a set of tools
that developers generally found easy to use. From a terminal, you manipulate con‐
tainers and container images using the docker command.

This docker tool is really a thin layer making API calls to Docker’s main component:
a daemon that does all the hard work. Within the daemon is a component called
containerd that is invoked whenever you want to run a container. The containerd
component makes sure that the container image you want to run is in place, and it
then calls a runc component to do the business of actually instantiating a container.

If you want to, you can run a container yourself by invoking containerd or even runc
directly. The containerd project was donated by Docker to the Cloud Native Com‐
puting Foundation (CNCF) back in 2017.

Kubernetes uses an interface called the Container Runtime Interface (CRI) beneath
which users can opt for a container runtime of their choice. The most commonly
used options today are the aforementioned containerd and CRI-O (which originated
from Red Hat before being donated to the CNCF).

The docker CLI is just one option for managing containers and images. There are
several others you can use to run the kind of application containers covered in this

xii | Preface

https://oreil.ly/Of6yK
https://www.virtualbox.org/
https://www.vagrantup.com/
https://cncf.io
https://cncf.io
https://containerd.io
https://cri-o.io

book. Red Hat’s podman tool, originally conceived to remove reliance on a daemon
component, is one such option.

The examples in this book use a variety of different container tools to illustrate that
there are multiple container implementations that share many common features.

Feedback
There is a website at containersecurity.tech to accompany this book. You are invited to
raise issues there with feedback and any corrections that you’d like to see in future
editions.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://containersecurity.tech.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

Preface | xiii

https://containersecurity.tech
https://containersecurity.tech
mailto:bookquestions@oreilly.com

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Container Security by
Liz Rice (O’Reilly). Copyright 2020 Vertical Shift Ltd., 978-1-492-05670-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, please visit http://
oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/container-security.

xiv | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/container-security

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, and news, see our website at http://
www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I’m grateful to many people who have helped and supported me through the process
of writing this book.

• My editor at O’Reilly, Virginia Wilson, for keeping everything on track and mak‐
ing sure the book is up to scratch.

• The technical reviewers who provided thoughtful comments and actionable feed‐
back: Akhil Behl, Alex Pollitt, Andrew Martin, Erik St. Martin, Phil Estes, Rani
Osnat, and Robert P. J. Day.

• My colleagues at Aqua Security who taught me so much about container security
over the years.

• Phil Pearl—my husband, my best critic and coach, and my best friend.

Preface | xv

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Container Security Threats

In the last few years, the use of containers has exploded. The concepts around con‐
tainers existed for several years before Docker, but most observers agree that it was
Docker’s easy-to-use command-line tools that started to popularize containers among
the developer community from its launch in 2013.

Containers bring many advantages: as described in Docker’s original tagline, they
allow you to “build once, run anywhere.” They do this by bundling together an appli‐
cation and all its dependencies and isolating the application from the rest of the
machine it’s running on. The containerized application has everything it needs, and it
is easy to package up as a container image that will run the same on my laptop and
yours, or in a server in a data center.

A knock-on effect of this isolation is that you can run multiple different containers
side by side without them interfering with each other. Before containers, you could
easily end up with a dependency nightmare where two applications required different
versions of the same packages. The easiest solution to this problem was simply to run
the applications on separate machines. With containers, the dependencies are isolated
from each other so it becomes straightforward to run multiple apps on the same
server. People quickly realized that they could take advantage of containerization to
run multiple applications on the same host (whether it’s a virtual machine or a bare-
metal server) without having to worry about dependencies.

The next logical step was to spread containerized applications across a cluster of
servers. Orchestrators such as Kubernetes automate this process so that you no longer
have to manually install an app on a particular machine; you tell the orchestrator
what containers you want to run, and it finds a suitable location for each one.

1

From a security perspective, many things are the same in a containerized environ‐
ment as they are in a traditional deployment. There are attackers out in the world
who want to steal data, or modify the way a system behaves, or use other people’s
compute resources to mine their own cryptocurrencies. This doesn’t change when
you move to containers. However, containers do change a lot about the way that
applications run, and there are a different set of risks as a result.

Risks, Threats, and Mitigations
A risk is a potential problem, and the effects of that problem if it were to occur.

A threat is a path to that risk occurring.

A mitigation is a countermeasure against a threat—something you can do to prevent
the threat or at least reduce the likelihood of its success.

For example, there is a risk that someone could steal your car keys from your house
and thus drive off in your car. The threats would be the different ways they might
steal the keys: breaking a window to reach in and pick them up; putting a fishing rod
through your letter box; knocking on your door and distracting you while an accom‐
plice slips in quickly to grab the keys. A mitigation for all these threats might be to
keep your car keys out of sight.

Risks vary greatly from one organization to another. For a bank holding money on
behalf of customers, the biggest risk is almost certainly that money being stolen. An
ecommerce organization will worry about the risks of fraudulent transactions. An
individual running a personal blog site might fear someone breaking in to imperso‐
nate them and post inappropriate comments. Because privacy regulations differ
between nations, the risk of leaking customers’ personal data varies with geography—
in many countries the risk is “only” reputational, while in Europe the General
Data Protection Regulation (GDPR) allows for fines of up to 4% of a company’s total
revenue.

Because the risks vary greatly, the relative importance of different threats will also
vary, as will the appropriate set of mitigations. A risk management framework is a
process for thinking about risks in a systematic way, enumerating the possible threats,
prioritizing their importance, and defining an approach to mitigation.

Threat modeling is a process of identifying and enumerating the potential threats to a
system. By systematically looking at the system’s components and the possible modes
of attack, a threat model can help you identify where your system is most vulnerable
to attack.

2 | Chapter 1: Container Security Threats

https://oreil.ly/guQg3
https://oreil.ly/guQg3

There is no single comprehensive threat model, as it depends on your risks, your par‐
ticular environment, your organization, and the applications you’re running, but it is
possible to list some potential threats that are common to most, if not all, container
deployments.

Container Threat Model
One way to start thinking about the threat model is to consider the actors involved.
These might include:

• External attackers attempting to access a deployment from outside
• Internal attackers who have managed to access some part of the deployment
• Malicious internal actors such as developers and administrators who have some

level of privilege to access the deployment
• Inadvertent internal actors who may accidentally cause problems
• Application processes that, while not sentient beings intending to compromise

your system, might have programmatic access to the system

Each actor has a certain set of permissions that you need to consider:

• What access do they have through credentials? For example, do they have access
to user accounts on the host machines your deployment is running on?

• What permissions do they have on the system? In Kubernetes, this could refer to
the role-based access control settings for each user, as well as anonymous users.

• What network access do they have? For example, which parts of the system are
included within a Virtual Private Cloud (VPC)?

There are several possible routes to attacking a containerized deployment, and one
way to map them is to think of the potential attack vectors at each stage of a contain‐
er’s life cycle. These are summarized in Figure 1-1.

Container Threat Model | 3

Figure 1-1. Container attack vectors

Vulnerable application code
The life cycle starts with the application code that a developer writes. This code,
and the third-party dependencies that it relies on, can include flaws known as
vulnerabilities, and there are thousands of published vulnerabilities that an
attacker can exploit if they are present in an application. The best way to avoid
running containers with known vulnerabilities is to scan images, as you will see
in Chapter 7. This isn’t a one-off activity, because new vulnerabilities are discov‐
ered in existing code all the time. The scanning process also needs to identify
when containers are running with out-of-date packages that need to be updated
for security patches. Some scanners can also identify malware that has been built
into an image.

Badly configured container images
Once the code has been written, it gets built into a container image. When you
are configuring how a container image is going to be built, there are plenty of
opportunities to introduce weaknesses that can later be used to attack the run‐
ning container. These include configuring the container to run as the root user,
giving it more privilege on the host than it really needs. You’ll read more about
this in Chapter 6.

Build machine attacks
If an attacker can modify or influence the way a container image is built, they
could insert malicious code that will subsequently get run in the production envi‐
ronment. In addition, finding a foothold within the build environment could be a

4 | Chapter 1: Container Security Threats

stepping stone toward breaching the production environment. This is also dis‐
cussed in Chapter 6.

Supply chain attacks
Once the container image is built, it gets stored in a registry, and it gets retrieved
or “pulled” from the registry at the point where it’s going to be run. How do you
know that the image you pull is exactly the same as what you pushed earlier?
Could it have been tampered with? An actor who can replace an image or modify
an image between build and deployment has the ability to run arbitrary code on
your deployment. This is another topic I’ll cover in Chapter 6.

Badly configured containers
As we’ll discuss in Chapter 9, it’s possible to run containers with settings that give
it unnecessary, and perhaps unplanned, privileges. If you download YAML con‐
figuration files from the internet, please don’t run them without carefully check‐
ing that they do not include insecure settings!

Vulnerable hosts
Containers run on host machines, and you need to ensure that those hosts are
not running vulnerable code (for example, old versions of orchestration compo‐
nents with known vulnerabilities). It’s a good idea to minimize the amount of
software installed on each host to reduce the attack surface, and hosts also need
to be configured correctly according to security best practices. This is discussed
in Chapter 4.

Exposed secrets
Application code often needs credentials, tokens, or passwords in order to com‐
municate with other components in a system. In a containerized deployment,
you need to be able to pass these secret values into the containerized code. As
you’ll see in Chapter 12, there are different approaches to this, with varying levels
of security.

Insecure networking
Containers generally need to communicate with other containers or with the out‐
side world. Chapter 10 discusses how networking works in containers, and Chap‐
ter 11 discusses setting up secure connections between components.

Container escape vulnerabilities
The widely used container runtimes including containerd and CRI-O are by now
pretty battle-hardened, but it’s still within the realm of possibility that there are
bugs yet to be found that would let malicious code running inside a container
escape out onto the host. One such issue, sometimes referred to as Runcescape,
came to light as recently as 2019. You’ll read about the isolation that is supposed
to keep application code constrained within a container in Chapter 4. For some
applications, the consequences of an escape could be sufficiently damaging that

Container Threat Model | 5

https://oreil.ly/cFSaJ

it’s worth considering stronger isolation mechanisms, such as those covered in
Chapter 8.

There are also some attack vectors that are outside the scope of this book.

• Source code is generally held in repositories, which could conceivably be attacked
in order to poison the application. You will need to ensure that user access to the
repository is controlled appropriately.

• Hosts are networked together, often using a VPC for security, and typically con‐
nected to the internet. Exactly as in a traditional deployment, you need to protect
the host machines (or virtual machines) from access by threat actors. Secure net‐
work configuration, firewalling, and identity and access management all still
apply in a cloud native deployment as they do in a traditional deployment.

• Containers typically run under an orchestrator—commonly Kubernetes in
today’s deployments, though there are other options such as Docker Swarm or
Hashicorp Nomad. If the orchestrator is configured insecurely or if administra‐
tive access is not controlled effectively, this gives attackers additional vectors to
affect the deployment.

For more on threat models in Kubernetes deployments, you may be
interested in reading the Kubernetes Threat Model commissioned
by the CNCF.
In addition, the CNCF’s Financial User Group has published a
Kubernetes Attack Tree created using the STRIDE methodology.

Security Boundaries
A security boundary (sometimes called a trust boundary) appears between parts of
the system, such that you would need some different set of permissions to move
between those parts. Sometimes these boundaries are set up administratively—for
example, in a Linux system, the system administrator can modify the security bound‐
ary defining what files a user can access by changing the groups that the user is a
member of. If you are rusty on Linux file permissions, a refresher is coming up in
Chapter 2.

A container is a security boundary. Application code is supposed to run within that
container, and it should not be able to access code or data outside of the container
except where it has explicitly been given permission to do so (for example, through a
volume mounted into the container).

The more security boundaries there are between an attacker and their target (your
customer data, for example), the harder it is for them to reach that target.

6 | Chapter 1: Container Security Threats

https://oreil.ly/r0ZAG
https://oreil.ly/r1lg8
https://oreil.ly/rNmPN

The attack vectors described in “Container Threat Model” on page 3 can be chained
together to breach several security boundaries. For example:

• An attacker may find that because of a vulnerability in an application depend‐
ency, they are able to execute code remotely within a container.

• Suppose that the breached container doesn’t have direct access to any data of
value. The attacker needs to find a way to move out of the container, either to
another container or to the host. A container escape vulnerability would be one
route out of the container; insecure configuration of that container could provide
another. If the attacker finds either of these routes available, they can now access
the host.

• The next step would be to look for ways to gain root privileges on the host. This
step might be trivial if your application code is running as root inside the con‐
tainer, as you’ll see in Chapter 4.

• With root privileges on the host machine, the attacker can get to anything that
the host, or any of the containers running on that host, can reach.

Adding and strengthening the security boundaries in your deployment will make life
more difficult for the attacker.

An important aspect of the threat model is to consider the possibility of attacks from
within the environment in which your applications are running. In cloud deploy‐
ments, you may be sharing some resources with other users and their applications.
Sharing machine resources is called multitenancy, and it has a significant bearing on
the threat model.

Multitenancy
In a multitenant environment, different users, or tenants, run their workloads on
shared hardware. (You may also come across the term “multitenancy” in a software
application context, where it refers to multiple users sharing the same instance of
software, but for the purposes of this discussion, only the hardware is shared.)
Depending on who owns those different workloads and how much the different ten‐
ants trust each other, you might need stronger boundaries between them to prevent
them from interfering with each other.

Multitenancy is a concept that has been around since the mainframe days in the
1960s, when customers rented CPU time, memory, and storage on a shared machine.
This is not so very different from today’s public clouds, like Amazon AWS, Microsoft
Azure, and Google Cloud Platform, where customers rent CPU time, memory, and
storage, along with other features and managed services. Since Amazon AWS
launched EC2 back in 2006, we have been able to rent virtual machine instances run‐
ning on racks of servers in data centers around the world. There may be many virtual

Multitenancy | 7

machines (VMs) running on a physical machine, and as a cloud customer operating a
set of VMs you have no idea who is operating the VMs that neighbor yours.

Shared Machines
There are situations in which a single Linux machine (or virtual machine) may be
shared by many users. This is very common in university settings, for instance, and
this is a good example of true multitenancy, where users don’t trust each other and,
quite frankly, the system administrators don’t trust the users. In this environment
Linux access controls are used to strictly limit user access. Each user has their own
login ID, and the access controls of Linux are used to limit access to ensure, for exam‐
ple, that users can modify only files in their own directories. Can you imagine the
chaos if university students could read, or—even worse—modify, their classmates’
files?

As you’ll see in Chapter 4, all the containers running on the same host share the same
kernel. If the machine is running the Docker daemon, any user who can issue docker
commands effectively has root access, so a system administrator won’t want to grant
that to untrusted users.

In enterprise situations, and more specifically in cloud native environments, you are
less likely to see this kind of shared machine. Instead, users (or teams of users who
trust each other) will typically use their own resources allocated to them in the form
of virtual machines.

Virtualization
Generally speaking, virtual machines are considered to be pretty strongly isolated
from each other, by which we mean that it’s unlikely that your neighbors can observe
or interfere with the activities in your VMs. You can read more about how this isola‐
tion is achieved in Chapter 5. In fact, according to the accepted definition, virtualiza‐
tion doesn’t count as multitenancy at all: multitenancy is when different groups of
people share a single instance of the same software, and in virtualization the users
don’t have access to the hypervisor that manages their virtual machines, so they don’t
share any software.

That’s not to say that the isolation between virtual machines is perfect, and histori‐
cally users have complained about “noisy neighbor” issues, where the fact that you are
sharing a physical machine with other users can result in unexpected variances in
performance. Netflix was an early adopter of the public cloud, and in the section “Co-
tenancy is hard” in a 2010 blog post, it acknowledged that it built systems that might
deliberately abandon a subtask if it proved to be operating too slowly. More recently,
others have claimed that the noisy neighbor problem isn’t a real issue.

8 | Chapter 1: Container Security Threats

https://oreil.ly/yfkQI
https://oreil.ly/CGlZ0
https://oreil.ly/CGlZ0
https://oreil.ly/iE4qE

There have also been cases of software vulnerabilities that could compromise the
boundary between virtual machines.

For some applications and some organizations (especially government, financial, or
healthcare), the consequences of a security breach are sufficiently serious to warrant
full physical separation. You can operate a private cloud, running in your own data
center or managed by a service provider on your behalf, to ensure total isolation of
your workloads. Private clouds sometimes come with additional security features
such as additional background checks on the personnel who have access to the data
center.

Many cloud providers have VM options where you are guaranteed to be the only cus‐
tomer on a physical machine. It’s also possible to rent bare-metal machines operated
by cloud providers. In both these scenarios, you will completely avoid the noisy
neighbor issue, and you also have the advantage of the stronger security isolation
between physical machines.

Whether you are renting physical or virtual machines in the cloud or using your own
servers, if you’re running containers, you may need to consider the security bound‐
aries between multiple groups of users.

Container Multitenancy
As you’ll see in Chapter 4, the isolation between containers is not as strong as that
between VMs. While it does depend on your risk profile, it’s unlikely that you want to
use containers on the same machine as a party that you don’t trust.

Even if all the containers running on your machines are run by you or by people you
absolutely trust, you might still want to mitigate against the fallibility of humans by
making sure that your containers can’t interfere with each other.

In Kubernetes, you can use namespaces to subdivide a cluster of machines for use by
different individuals, teams, or applications.

The word “namespace” is an overloaded term. In Kubernetes, a
namespace is a high-level abstraction that subdivides cluster
resources that can have different Kubernetes access controls
applied to them. In Linux, a namespace is a low-level mechanism
for isolating the machine resources that a process is aware of. You’ll
learn about this kind of namespace in detail in Chapter 4.

Use role-based access control (RBAC) to limit the people and components that can
access these different Kubernetes namespaces. The details of how to do this are
outside the scope of this book, but I would like to mention that Kubernetes RBAC
controls only the actions you can perform through the Kubernetes API. Application

Multitenancy | 9

containers in Kubernetes pods that happen to be running on the same host are pro‐
tected from each other only by container isolation, as described in this book, even if
they are in different namespaces. If an attacker can escape a container to the host, the
Kubernetes namespace boundary makes not one jot of difference to their ability to
affect other containers.

Container Instances
Cloud services such as Amazon AWS, Microsoft Azure, or Google Cloud Platform
offer many managed services, through which the user can rent software, storage, and
other components without having to install or manage them. A classic example is
Amazon’s Relational Database Service (RDS); with RDS, you can easily provision
databases that use well-known software like PostgreSQL, and getting your data
backed up is as simple as ticking a box (and paying a bill, of course).

Managed services have extended to the world of containers, too. Azure Container
Instances and AWS Fargate are services that allow you to run containers without hav‐
ing to worry about the underlying machine (or virtual machine) on which they run.

This can save you from a significant management burden and allows you to easily
scale the deployment at will. However, at least in theory, your container instances
could be colocated on the same virtual machine as those of other customers. Check
with your cloud provider if in doubt.

You are now aware of a good number of potential threats to your deployment. Before
we dive into the rest of the book, I’d like to introduce some basic security principles
that should guide your thinking when assessing what security tools and processes you
need to introduce into your deployment.

Security Principles
These are general guidelines that are commonly considered to be a wise approach
regardless of the details of what you’re trying to secure.

Least Privilege
The principle of least privilege states that you should limit access to the bare mini‐
mum that a person or component needs in order to do their job. For example, if you
have a microservice that performs product search in an ecommerce application, the
principle of least privilege suggests that the microservice should only have credentials
that give it read-only access to the product database. It has no need to access, say, user
or payment information, and it has no need to write product information.

10 | Chapter 1: Container Security Threats

Defense in Depth
As you’ll see in this book, there are many different ways you can improve the security
of your deployment and the applications running within it. The principle of defense
in depth tells us that you should apply layers of protection. If an attacker is able to
breach one defense, another layer should prevent them from harming your deploy‐
ment or exfiltrating your data.

Reducing the Attack Surface
As a general rule, the more complex a system is, the more likely it is that there is a
way to attack it. Eliminating complexity can make the system harder to attack. This
includes:

• Reducing access points by keeping interfaces small and simple where possible
• Limiting the users and components who can access a service
• Minimizing the amount of code

Limiting the Blast Radius
The concept of segmenting security controls into smaller subcomponents or “cells”
means that should the worst happen, the impact is limited. Containers are well-suited
to this principle, because by dividing an architecture into many instances of a micro‐
service, the container itself can act as a security boundary.

Segregation of Duties
Related to both least privilege and limiting blast radius is the idea of segregating
duties so that, as much as possible, different components or people are given author‐
ity over only the smallest subset of the overall system that they need. This approach
limits the damage a single privileged user might inflict by ensuring that certain opera‐
tions require more than one user’s authority.

Applying Security Principles with Containers
As you’ll see in later sections of this book, the granularity of containers can help us in
the application of all these security principles.

Least privilege
You can give different containers different sets of privileges, each minimized to
the smallest set of permissions it needs to fulfill its function.

Defense in depth
Containers give another boundary where security protections can be enforced.

Security Principles | 11

Reducing the attack surface
Splitting a monolith into simple microservices can create clean interfaces
between them that may, if carefully designed, reduce complexity and hence limit
the attack surface. There is a counterargument that adding a complex orchestra‐
tion layer to coordinate containers introduces another attack surface.

Limiting the blast radius
If a containerized application is compromised, security controls can help con‐
strain the attack within the container and prevent it from affecting the rest of the
system.

Segregation of duties
Permissions and credentials can be passed only into the containers that need
them, so that the compromise of one set of secrets does not necessarily mean that
all secrets are lost.

These benefits sound good, but they are somewhat theoretical. In practice they can
easily be outweighed by poor system configuration, bad container image hygiene, or
insecure practices. By the end of this book, you should be well armed to avoid the
security pitfalls that can appear in a containerized deployment and take advantage of
the benefits.

Summary
You’ve now got a high-level view of the kinds of attacks that can affect a container-
based deployment, and an introduction to the security principles that you can apply
to defend against those attacks. In the rest of the book you’ll delve into the mecha‐
nisms that underpin containers so that you can understand how security tools and
best-practice processes combine to implement those security principles.

12 | Chapter 1: Container Security Threats

CHAPTER 2

Linux System Calls, Permissions,
and Capabilities

In most cases, containers run within a computer running a Linux operating system,
and it’s going to be helpful to understand some of the fundamental features of Linux
so that you can see how they affect security, and in particular how they apply to con‐
tainers. I’ll cover system calls, file-based permissions, and capabilities and conclude
with a discussion of privilege escalation. If you’re familiar with these concepts, feel
free to skip to the next chapter.

This is all important because containers run Linux processes that are visible from the
host. A containerized process uses system calls and needs permissions and privileges
in just the same way that a regular process does. But containers give us some new
ways to control how these permissions are assigned at runtime or during the con‐
tainer image build process, which will have a significant impact on security.

System Calls
Applications run in what’s called user space, which has a lower level of privilege than
the operating system kernel. If an application wants to do something like access a file,
communicate using a network, or even find the time of day, it has to ask the kernel to
do it on the application’s behalf. The programmatic interface that the user space code
uses to make these requests of the kernel is known as the system call or syscall
interface.

There are some 300+ different system calls, with the number varying according to the
version of Linux kernel. Here are a few examples:

read

read data from a file

13

write

write data to a file

open

open a file for subsequent reading or writing

execve

run an executable program

chown

change the owner of a file

clone

create a new process

Application developers rarely if ever need to worry about system calls directly, as they
are usually wrapped in higher-level programming abstractions. The lowest-level
abstraction you’re likely to come across as an app developer is the glibc library or the
Golang syscall package. In practice these are usually wrapped by higher layers of
abstractions as well.

If you would like to learn more about system calls, check out my
talk “A Beginner’s Guide to Syscalls”, available on O’Reilly’s learn‐
ing platform.

Application code uses system calls in exactly the same way whether it’s running in a
container or not, but as you will see later in this book, there are security implications
to the fact that all the containers on a single host share—that is, they are making sys‐
tem calls to—the same kernel.

Not all applications need all system calls, so—following the principle of least privilege
—there are Linux security features that allow users to limit the set of system calls that
different programs can access. You’ll see how these can be applied to containers in
Chapter 8.

I’ll return to the subject of user space and kernel-level privileges in Chapter 5. For
now let’s turn to the question of how Linux controls permissions on files.

File Permissions
On any Linux system, whether you are running containers or not, file permissions are
the cornerstone of security. There is a saying that in Linux, everything is a file. Appli‐
cation code, data, configuration information, logs, and so on—it’s all held in files.
Even physical devices like screens and printers are represented as files. Permissions

14 | Chapter 2: Linux System Calls, Permissions, and Capabilities

https://oreil.ly/HrZzJ
https://oreil.ly/QTxzb

on files determine which users are allowed to access those files and what actions they
can perform on the files. These permissions are sometimes referred to as discretionary
access control, or DAC.

Let’s examine this a little more closely.

If you have spent much time in a Linux terminal, you will likely have run the ls -l
command to retrieve information about files and their attributes.

Figure 2-1. Linux file permissions example

In the example in Figure 2-1, you can see a file called myapp that is owned by a user
called “liz” and is associated with the group “staff.” The permission attributes tell you
what actions users can perform on this file, depending on their identity. There are
nine characters in this output that represent the permissions attributes, and you
should think of these in groups of three:

• The first group of three characters describes permissions for the user who owns
the file (“liz” in this example).

• The second group gives permissions for members of the file’s group (here,
“staff ”).

• The final set shows what any other user (who isn’t “liz” or a member of “staff ”) is
permitted to do.

There are three actions that users might be able to perform on this file: read, write, or
execute, depending on whether the r, w, and x bits are set. The three characters in
each group represent bits that are either on or off, showing which of these three
actions are permitted—a dash means that the bit isn’t set.

In this example, only the owner of the file can write to it, because the w bit is set only
in the first group, representing the owner permissions. The owner can execute the
file, as can any member of the group “staff.” Any user is allowed to read the file,
because the r bit is set in all three groups.

If you’d like more detail on Linux permissions, there is a good arti‐
cle at https://oreil.ly/7DKZw.

File Permissions | 15

https://oreil.ly/7DKZw

There’s a good chance that you were already familiar with these r, w, and x bits, but
that’s not the end of the story. Permissions can be affected by the use of setuid, setgid,
and sticky bits. The first two are important from a security perspective because they
can allow a process to obtain additional permissions, which an attacker might use for
malevolent purposes.

setuid and setgid
Normally, when you execute a file, the process that gets started inherits your user ID.
If the file has the setuid bit set, the process will have the user ID of the file’s owner.
The following example uses a copy of the sleep executable owned by a non-root user:

vagrant@vagrant:~$ ls -l `which sleep`
-rwxr-xr-x 1 root root 35000 Jan 18 2018 /bin/sleep
vagrant@vagrant:~$ cp /bin/sleep ./mysleep
vagrant@vagrant:~$ ls -l mysleep
-rwxr-xr-x 1 vagrant vagrant 35000 Oct 17 08:49 mysleep

The ls output shows that the copy is owned by the user called vagrant. Run this
under root by executing sudo sleep 100, and in a second terminal you can take a
look at the running process—the 100 means you’ll have 100 seconds to do this before
the process terminates (I have removed some lines from this output for clarity):

vagrant@vagrant:~$ ps ajf
 PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND
 1315 1316 1316 1316 pts/0 1502 Ss 1000 0:00 -bash
 1316 1502 1502 1316 pts/0 1502 S+ 0 0:00 _ sudo ./mysleep 100
 1502 1503 1502 1316 pts/0 1502 S+ 0 0:00 _ ./mysleep 100

The UID of 0 shows that both the sudo process and the mysleep process are running
under the root UID. Now let’s try turning on the setuid bit:

vagrant@vagrant:~$ chmod +s mysleep
vagrant@vagrant:~$ ls -l mysleep
-rwsr-sr-x 1 vagrant vagrant 35000 Oct 17 08:49 mysleep

Run sudo ./mysleep 100 again, and look at the running processes again from the
second terminal:

vagrant@vagrant:~$ ps ajf
PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND
1315 1316 1316 1316 pts/0 1507 Ss 1000 0:00 -bash
1316 1507 1507 1316 pts/0 1507 S+ 0 0:00 _ sudo ./mysleep 100
1507 1508 1507 1316 pts/0 1507 S+ 1000 0:00 _ ./mysleep 100

The sudo process is still running as root, but this time mysleep has taken its user ID
from the owner of the file.

This bit is typically used to give a program privileges that it needs but that are not
usually extended to regular users. Perhaps the canonical example is the executable

16 | Chapter 2: Linux System Calls, Permissions, and Capabilities

ping, which needs permission to open raw network sockets in order to send its ping
message. (The mechanism used to give this permission is a capability, which we’ll
look at in “Linux Capabilities” on page 19.) An administrator might be happy for
their users to run ping, but that doesn’t mean they are comfortable letting users open
raw network sockets for any other purpose they might think of. Instead, the ping exe‐
cutable is often installed with the setuid bit set and owned by the root user so that
ping can use privileges normally associated with the root user.

I chose my language carefully in that last sentence. As you’ll see later in this section,
ping actually jumps through a few hoops to avoid running as root. Before I get to
that, let’s see the setuid bit in action.

You can experiment with the permissions required to run ping effectively by taking
your own copy as a non-root user. It doesn’t really matter whether you are pinging a
reachable address; the point is to see whether ping has sufficient permissions to open
the raw network socket. Check that you can run ping as expected:

vagrant@vagrant:~$ ping 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
^C
--- 10.0.0.1 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1017ms

Having established that you can run ping as a non-root user, take a copy and see
whether that is also runnable:

vagrant@vagrant:~$ ls -l `which ping`
-rwsr-xr-x 1 root root 64424 Jun 28 11:05 /bin/ping
vagrant@vagrant:~$ cp /bin/ping ./myping
vagrant@vagrant:~$ ls -l ./myping
-rwxr-xr-x 1 vagrant vagrant 64424 Nov 24 18:51 ./myping
vagrant@vagrant:~$./myping 10.0.0.1
ping: socket: Operation not permitted

When you copy an executable, the file ownership attributes are set according to the
user ID you’re operating as, and the setuid bit is not carried over. Running this myping
as a regular user doesn’t have sufficient privileges to open the raw socket. If you check
the permissions bits carefully, you can see that the original ping has the s or setuid bit
instead of a regular x.

You can try changing the ownership of the file to root (you’ll need sudo to be allowed
to do this), but still the executable doesn’t have sufficient privileges, unless you run as
root:

vagrant@vagrant:~$ sudo chown root ./myping
vagrant@vagrant:~$ ls -l ./myping
-rwxr-xr-x 1 root vagrant 64424 Nov 24 18:55 ./myping
vagrant@vagrant:~$./myping 10.0.0.1
ping: socket: Operation not permitted

File Permissions | 17

vagrant@vagrant:~$ sudo ./myping 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
^C
--- 10.0.0.1 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1012ms

Now set the setuid bit on the executable and try again:

vagrant@vagrant:~$ sudo chmod +s ./myping
vagrant@vagrant:~$ ls -l ./myping
-rwsr-sr-x 1 root vagrant 64424 Nov 24 18:55 ./myping
vagrant@vagrant:~$./myping 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
^C
--- 10.0.0.1 ping statistics ---
3 packets transmitted, 0 received, 100% packet loss, time 2052ms

As you’ll see shortly in “Linux Capabilities” on page 19, there is another way to give
myping sufficient privileges to open the socket without the executable having all the
privileges associated with root.

Now, this running copy of ping works because it has the setuid bit, which allows it to
operate as root, but if you use a second terminal to take a look at the process using ps,
you might be surprised by the results:

vagrant@vagrant:~$ ps uf -C myping
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
vagrant 5154 0.0 0.0 18512 2484 pts/1 S+ 00:33 0:00 ./myping localhost

As you can see, the process is not running as root, even though the setuid bit is on
and the file is owned by root. What’s happening here? The answer is that in modern
versions of ping, the executable starts off running as root, but it explicitly sets just the
capabilities that it needs and then resets its user ID to be that of the original user. This
is what I was referring to earlier in this section when I said that it jumps through
some hoops.

If you want to explore this for yourself in more detail, one option is
to use strace to see the system calls that the ping (or myping) exe‐
cutable makes. Find the process ID of your shell, and then in a sec‐
ond terminal running as root strace -f -p <shell process ID>
will trace out all the system calls from within that shell, including
any executables running within it. Look for the setuid() system
call, which resets the user ID. You’ll see that this happens shortly
after some setcap() system calls that set the capabilities that the
thread will need.

Not all executables are written to reset the user ID in this way. You can use the copy
of sleep from earlier in this chapter to see more normal setuid behavior. Change the

18 | Chapter 2: Linux System Calls, Permissions, and Capabilities

ownership to root, set the setuid bit (this gets reset when you change ownership), and
then run it as a non-root user:

vagrant@vagrant:~$ sudo chown root mysleep
vagrant@vagrant:~$ sudo chmod +s mysleep
vagrant@vagrant:~$ ls -l ./mysleep
-rwsr-sr-x 1 root vagrant 35000 Dec 2 00:36 ./mysleep
vagrant@vagrant:~$./mysleep 100

In another terminal you can use ps to see that this process is running under root’s
user ID:

vagrant@vagrant:~$ ps uf -C mysleep
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 6646 0.0 0.0 7468 764 pts/2 S+ 00:38 0:00 ./mysleep 100

Now that you have experimented with the setuid bit, you are in a good position to
consider its security implications.

Security implications of setuid

Imagine what would happen if you set setuid on, say, bash. Any user who runs it
would be in a shell, running as the root user. In practice it isn’t quite as simple as that,
because most shells behave much like ping and reset their user ID to avoid being used
for such trivial privilege escalations. But it’s very easy to write your own program that
does setuid on itself and then, having already transitioned to root, calls the shell.

Because setuid provides a dangerous pathway to privilege escalation, some container
image scanners (covered in Chapter 7) will report on the presence of files with the
setuid bit set. You can also prevent it from being used with the --no-new-privileges
flag on a docker run command.

The setuid bit dates from a time when privileges were much simpler—either your
process had root privileges or it didn’t. The setuid bit provided a mechanism for
granting extra privileges to non-root users. Version 2.2 of the Linux kernel intro‐
duced more granular control over these extra privileges through capabilities.

Linux Capabilities
There are over 30 different capabilities in today’s Linux kernel. Capabilities can be
assigned to a thread to determine whether that thread can perform certain actions.
For example, a thread needs the CAP_NET_BIND_SERVICE capability in order to bind to
a low-numbered (below 1024) port. CAP_SYS_BOOT exists so that arbitrary executables
don’t have permission to reboot the system. CAP_SYS_MODULE is needed to load or
unload kernel modules.

Linux Capabilities | 19

https://oreil.ly/viKwm
https://oreil.ly/viKwm

I mentioned earlier that the ping tool runs as root just long enough to give itself the
required capability that allows a thread to open a raw network socket. This particular
capability is called CAP_NET_RAW.

Consult man capabilities on a Linux machine for detailed infor‐
mation on capabilities.

You can see the capabilities assigned to a process by using the getpcaps command.
For example, a process run by a non-root user typically won’t have capabilities:

vagrant@vagrant:~$ ps
 PID TTY TIME CMD
22355 pts/0 00:00:00 bash
25058 pts/0 00:00:00 ps
vagrant@vagrant:~$ getpcaps 22355
Capabilities for '22355': =

If you run a process as root, it’s a different story altogether:

vagrant@vagrant:~$ sudo bash
root@vagrant:~# ps
 PID TTY TIME CMD
25061 pts/0 00:00:00 sudo
25062 pts/0 00:00:00 bash
25070 pts/0 00:00:00 ps
root@vagrant:~# getpcaps 25062
Capabilities for '25062': = cap_chown,cap_dac_override,cap_dac_read_search,
cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap
cap_linux_immutable,cap_net_bind_service,cap_net_broadcast,cap_net_admin,
cap_net_raw,cap_ipc_lock,cap_ipc_owner,cap_sys_module,cap_sys_rawio,
cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,cap_sys_boot,
cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_tty_config,cap_mknod,
cap_lease,cap_audit_write,cap_audit_control,cap_setfcap,cap_mac_override
cap_mac_admin,cap_syslog,cap_wake_alarm,cap_block_suspend,cap_audit_read+ep

Files can have capabilities assigned directly to them. Earlier, you saw that a copy of
ping wasn’t permitted to run under a non-root user without the setuid bit. There is
another approach: assign the capabilities that it needs directly to the executable file.
Take a copy of ping and check that it has normal permissions (no setuid bit). This
isn’t permitted to open the socket:

vagrant@vagrant:~$ cp /bin/ping ./myping
vagrant@vagrant:~$ ls -l myping
-rwxr-xr-x 1 vagrant vagrant 64424 Feb 12 18:18 myping
vagrant@vagrant:~$./myping 10.0.0.1
ping: socket: Operation not permitted

20 | Chapter 2: Linux System Calls, Permissions, and Capabilities

Use setcap to add the CAP_NET_RAW capability to the file, which grants it permission
to open raw network sockets. You will need root privileges to change the capabilities.
More precisely, you need only the capability CAP_SETFCAP, but this is automatically
granted to root:

vagrant@vagrant:~$ setcap 'cap_net_raw+p' ./myping
unable to set CAP_SETFCAP effective capability: Operation not permitted
vagrant@vagrant:~$ sudo setcap 'cap_net_raw+p' ./myping

This will have no effect on the permissions that ls shows, but you can check the
capabilities with getcap:

vagrant@vagrant:~$ ls -l myping
-rwxr-xr-x 1 vagrant vagrant 64424 Feb 12 18:18 myping
vagrant@vagrant:~$ getcap ./myping
./myping = cap_net_raw+p

This capability allows the copy of ping to operate:

vagrant@vagrant:~$./myping 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
^C

For a more in-depth discussion of the ways that file and process
permissions interact, see Adrian Mouat’s post on Linux capabilities
in practice.

Following the principle of least privilege, it’s a good idea to grant only the capabilities
that are needed for a process to do its job. When you run a container, you get the
option to control the capabilities that are permitted, as you’ll see in Chapter 8.

Now that you are familiar with the basic concepts of permissions and privileges in
Linux, I’d like to turn to the idea of escalating privileges.

Privilege Escalation
The term “privilege escalation” means extending beyond the privileges you were sup‐
posed to have so that you can take actions that you shouldn’t be permitted to take. To
escalate their privileges, an attacker takes advantage of a system vulnerability or poor
configuration to grant themselves extra permissions.

Oftentimes, the attacker starts as a non-privileged user and wants to gain root privi‐
leges on the machine. A common method of escalating privileges is to look for soft‐
ware that’s already running as root and then take advantage of known vulnerabilities
in the software. For example, web server software might include a vulnerability that
allows an attacker to remotely execute code, such as the Struts vulnerability. If the

Privilege Escalation | 21

https://oreil.ly/DE8e-
https://oreil.ly/DE8e-
https://oreil.ly/ydu-a

web server is running as root, anything that is remotely executed by an attacker will
run with root privileges. For this reason, it is a good idea to run software as a non-
privileged user whenever possible.

As you’ll learn later in this book, by default containers run as root. This means that
compared with a traditional Linux machine, applications running in containers are
far more likely to be running as root. An attacker who can take control of a process
inside a container still has to somehow escape the container, but once they achieve
that, they will be root on the host, and there is no need for any further privilege esca‐
lation. Chapter 9 discusses this in more detail.

Even if a container is running as a non-root user, there is potential for privilege esca‐
lation based on the Linux permissions mechanisms you have seen earlier in this
chapter:

• Container images including with a setuid binary
• Additional capabilities granted to a container running as a non-root user

You’ll learn about approaches for mitigating these issues later in the book.

Summary
In this chapter you have learned (or revised) some fundamental Linux mechanisms
that will be essential to understanding later chapters of this book. They also come into
play in security in numerous ways; the container security controls that you will
encounter are all built on top of these fundamentals.

Now that you have some basic Linux security controls under your belt, it’s time to
start looking at the mechanisms that make up containers so that you can understand
for yourself how root on the host and in the container are one and the same thing.

22 | Chapter 2: Linux System Calls, Permissions, and Capabilities

CHAPTER 3

Control Groups

In this chapter, you will learn about one of the fundamental building blocks that are
used to make containers: control groups, more commonly known as cgroups.

Cgroups limit the resources, such as memory, CPU, and network input/output, that a
group of processes can use. From a security perspective, well-tuned cgroups can
ensure that one process can’t affect the behavior of other processes by hogging all the
resources—for example, using all the CPU or memory to starve other applications.
There is also a control group called pid for limiting the total number of processes
allowed within a control group, which can prevent the effectiveness of a fork bomb.

A fork bomb rapidly creates processes that in turn create more pro‐
cesses, leading to an exponential growth in the use of resources that
ultimately cripples the machine. This video of a talk I gave a few
years back includes a demonstration of using the pid control group
to limit the effect of a fork bomb.

As you will see in detail in Chapter 4, containers run as regular Linux processes, so
cgroups can be used to limit the resources available to each container. Let’s see how
cgroups are organized.

Cgroup Hierarchies
There is a hierarchy of control groups for each type of resource being managed, and
each hierarchy is managed by a cgroup controller. Any Linux process is a member of
one cgroup of each type, and when it is first created, a process inherits the cgroups of
its parent.

23

https://oreil.ly/Us75y
https://oreil.ly/Us75y

The Linux kernel communicates information about cgroups through a set of pseudo‐
filesystems that typically reside at /sys/fs/cgroup. You can see the different types of
cgroups on your system by listing the contents of that directory:

root@vagrant:/sys/fs/cgroup$ ls
blkio cpu,cpuacct freezer net_cls perf_event systemd
cpu cpuset hugetlb net_cls,net_prio pids unified
cpuacct devices memory net_prio rdma

Managing cgroups involves reading and writing to the files and directories within
these hierarchies. Let’s take a look at the memory cgroup as an example:

root@vagrant:/sys/fs/cgroup$ ls memory/
cgroup.clone_children memory.limit_in_bytes
cgroup.event_control memory.max_usage_in_bytes
cgroup.procs memory.move_charge_at_immigrate
cgroup.sane_behavior memory.numa_stat
init.scope memory.oom_control
memory.failcnt memory.pressure_level
memory.force_empty memory.soft_limit_in_bytes
memory.kmem.failcnt memory.stat
memory.kmem.limit_in_bytes memory.swappiness
memory.kmem.max_usage_in_bytes memory.usage_in_bytes
memory.kmem.slabinfo memory.use_hierarchy
memory.kmem.tcp.failcnt notify_on_release
memory.kmem.tcp.limit_in_bytes release_agent
memory.kmem.tcp.max_usage_in_bytes system.slice
memory.kmem.tcp.usage_in_bytes tasks
memory.kmem.usage_in_bytes user.slice

You can write to some of these files to manipulate the cgroup, while others contain
information written by the kernel to provide data on the state of the cgroup. There’s
no immediately obvious way to tell which are parameters and which are informa‐
tional without consulting the documentation, but you can probably guess what some
of these files do just from their names. For example, memory.limit_in_bytes holds a
writable value that sets the amount of memory available to processes in the group;
memory.max_usage_in_bytes reports the high-water mark of memory usage within
the group.

This memory directory is the top level of the hierarchy, and in the absence of other
cgroups, this will hold memory information for all running processes. If you want to
limit memory usage for a process, you will need to create a new cgroup and then
assign the process to it.

Creating Cgroups
Creating a subdirectory inside this memory directory creates a cgroup, and the kernel
automatically populates the directory with the various files that represent parameters
and statistics about the cgroup:

24 | Chapter 3: Control Groups

https://oreil.ly/LQxKB

root@vagrant:/sys/fs/cgroup$ mkdir memory/liz
root@vagrant:/sys/fs/cgroup$ ls memory/liz/
cgroup.clone_children memory.limit_in_bytes
cgroup.event_control memory.max_usage_in_bytes
cgroup.procs memory.move_charge_at_immigrate
memory.failcnt memory.numa_stat
memory.force_empty memory.oom_control
memory.kmem.failcnt memory.pressure_level
memory.kmem.limit_in_bytes memory.soft_limit_in_bytes
memory.kmem.max_usage_in_bytes memory.stat
memory.kmem.slabinfo memory.swappiness
memory.kmem.tcp.failcnt memory.usage_in_bytes
memory.kmem.tcp.limit_in_bytes memory.use_hierarchy
memory.kmem.tcp.max_usage_in_bytes notify_on_release
memory.kmem.tcp.usage_in_bytes tasks
memory.kmem.usage_in_bytes

The details of what each of these different files means are beyond the scope of this
book, but some of the files hold parameters that you can manipulate to define limits
for the control group, and others communicate statistics about the current use of
resources in the control group. You could probably make an educated guess that, for
example, memory.usage_in_bytes is the file that describes how much memory is cur‐
rently being used by the control group. The maximum that the cgroup is allowed to
use is defined by memory.limit_in_bytes.

When you start a container, the runtime creates new cgroups for it. You can use a
utility called lscgroup (on Ubuntu this is installed via the cgroup-tools package) to
help see these cgroups from the host. Since there are quite a lot of them, let’s just look
at the difference in memory cgroups before and after starting a new container with
runc. In one terminal window, take a snapshot of the memory cgroups:

root@vagrant:~$ lscgroup memory:/ > before.memory

Start a container in a second terminal:

vagrant@vagrant:alpine-bundle$ sudo runc run sh
/ $

Then take another snapshot and compare the two:

root@vagrant:~$ lscgroup memory:/ > after.memory
root@vagrant:~$ diff before.memory after.memory
4a5
> memory:/user.slice/user-1000.slice/session-43.scope/sh

The hierarchy is relative to the root of the memory cgroup, which is conventionally
located at /sys/fs/cgroup/memory. While the container is still running, we can
inspect the cgroup from the host:

root@vagrant:/sys/fs/cgroup/memory$ ls user.slice/user-1000.slice/session-43.sco
pe/sh/
cgroup.clone_children memory.limit_in_bytes

Creating Cgroups | 25

cgroup.event_control memory.max_usage_in_bytes
cgroup.procs memory.move_charge_at_immigrate
memory.failcnt memory.numa_stat
memory.force_empty memory.oom_control
memory.kmem.failcnt memory.pressure_level
memory.kmem.limit_in_bytes memory.soft_limit_in_bytes
memory.kmem.max_usage_in_bytes memory.stat
memory.kmem.slabinfo memory.swappiness
memory.kmem.tcp.failcnt memory.usage_in_bytes
memory.kmem.tcp.limit_in_bytes memory.use_hierarchy
memory.kmem.tcp.max_usage_in_bytes notify_on_release
memory.kmem.tcp.usage_in_bytes tasks
memory.kmem.usage_in_bytes

From inside the container, the list of its own cgroups is available from the /proc
directory:

/ $ cat /proc/$$/cgroup
12:cpu,cpuacct:/sh
11:cpuset:/sh
10:hugetlb:/sh
9:blkio:/sh
8:memory:/user.slice/user-1000.slice/session-43.scope/sh
7:pids:/user.slice/user-1000.slice/session-43.scope/sh
6:freezer:/sh
5:devices:/user.slice/sh
4:net_cls,net_prio:/sh
3:rdma:/
2:perf_event:/sh
1:name=systemd:/user.slice/user-1000.slice/session-43.scope/sh
0::/user.slice/user-1000.slice/session-43.scope

Notice that the memory cgroup is exactly what you found from the host’s perspective.
Once you have a cgroup, you can modify parameters within it by writing to the
appropriate files.

You might be wondering about the user.slice/user-1000 parts of the preceding
cgroup listing. This relates to systemd, which automatically creates some cgroup hier‐
archies for its own approach to resource control. Red Hat provides a readable
description of this if you are interested in learning more.

Setting Resource Limits
You can see how much memory is available to the cgroup by examining the contents
of its memory.limit_in_bytes file:

root@vagrant:/sys/fs/cgroup/memory$ cat user.slice/user-1000.slice/session-43.sco
pe/sh/memory.limit_in_bytes
9223372036854771712

26 | Chapter 3: Control Groups

https://oreil.ly/i4OWd
https://oreil.ly/i4OWd

By default the memory isn’t limited, so this giant number represents all the memory
available to the virtual machine I’m using to generate this example.

If a process is allowed to consume unlimited memory, it can starve other processes
on the same host. This might happen inadvertently through a memory leak in an
application, or it could be the result of a resource exhaustion attack that takes advan‐
tage of a memory leak to deliberately use as much memory as possible. By setting
limits on the memory and other resources that one process can access, you can
reduce the effects of this kind of attack and ensure that other processes can carry on
as normal.

You can modify the config.json file in runc’s runtime bundle to restrict memory that it
will assign to the cgroup when it creates a container. Cgroup limits are configured in
the linux:resources section of config.json, like this:

 "linux": {
 "resources": {
 "memory": {
 "limit": 1000000
 },
 ...
 }
 }

You will need to stop the container and rerun the runc command for this new config‐
uration to be picked up. If you use the same name for the container, the cgroup name
will be the same (but you can check by running cat /proc/$$/cgroup inside the
container). Now you’ll find that the memory.limit_in_bytes parameter is approxi‐
mately what you configured as the limit—presumably, to the nearest kB:

root@vagrant:/sys/fs/cgroup/memory$ cat user.slice/user-1000.slice/session-43.sco
pe/sh/memory.limit_in_bytes
999424

It’s runc that changed this value. To set a limit for a cgroup, you simply have to write
the value into the file that corresponds to the parameter you want to limit.

This shows how the limits are set, but the final piece of the cgroups puzzle is to see
how processes get assigned into cgroups.

Assigning a Process to a Cgroup
Much like setting resource limits, assigning a process to a cgroup is a simple matter of
writing its process ID into the cgroup.procs file for the cgroup. In the following
example, 29903 is the process ID of a shell:

root@vagrant:/sys/fs/cgroup/memory/liz$ echo 100000 > memory.limit_in_bytes
root@vagrant:/sys/fs/cgroup/memory/liz$ cat memory.limit_in_bytes
98304

Assigning a Process to a Cgroup | 27

https://oreil.ly/npkSE

root@vagrant:/sys/fs/cgroup/memory/liz$ echo 29903 > cgroup.procs
root@vagrant:/sys/fs/cgroup/memory/liz$ cat cgroup.procs
29903
root@vagrant:/sys/fs/cgroup/memory/liz$ cat /proc/29903/cgroup | grep memory
8:memory:/liz

The shell is now a member of the cgroup, with its memory limited to a little under
100kB. This isn’t a lot to play with, so even trying to run ls from inside the shell
breaches the cgroup limit:

$ ls
Killed

The process gets killed when it attempts to exceed the memory limit.

Docker Using Cgroups
You’ve seen how cgroups are manipulated by modifying the files in the cgroup filesys‐
tem for a particular type of resource. It’s straightforward to see this in action in
Docker.

To follow along with these examples, you will need Docker running
directly on a Linux (virtual) machine. If you’re running Docker for
Mac/Windows, it’s running within a virtual machine, which means
(as you’ll see in Chapter 5) that these examples won’t work for you,
because the Docker daemon and containers are running using a
separate kernel within that virtual machine.

Docker automatically creates its own cgroups of each type. You can see them by look‐
ing for directories called docker within the cgroups hierarchy:

root@vagrant:/sys/fs/cgroup$ ls */docker | grep docker
blkio/docker:
cpuacct/docker:
cpu,cpuacct/docker:
cpu/docker:
cpuset/docker:
devices/docker:
freezer/docker:
hugetlb/docker:
memory/docker:
net_cls/docker:
net_cls,net_prio/docker:
net_prio/docker:
perf_event/docker:
pids/docker:
systemd/docker:

28 | Chapter 3: Control Groups

When you start a container, it automatically creates another set of cgroups within the
docker cgroups. Create a container and give it a memory limit that we can observe
within the memory cgroup. This example runs a container in the background that
sleeps long enough for you to see its cgroups:

root@vagrant:~$ docker run --rm --memory 100M -d alpine sleep 10000
68fb008c5fd3f9067e1aa245b4522a9f3675720d8953371ecfcf2e9faf91b8a0

If you look in the cgroups hierarchy, you will see new cgroups created for this con‐
tainer, using the container ID as a cgroup name:

root@vagrant:/sys/fs/cgroup$ ls memory/docker/
68fb008c5fd3f9067e1aa245b4522a9f3675720d8953371ecfcf2e9faf91b8a0
cgroup.clone_children
cgroup.event_control
cgroup.procs
memory.failcnt
memory.force_empty
memory.kmem.failcnt
memory.kmem.limit_in_bytes
memory.kmem.max_usage_in_bytes
...

Check the limit in bytes within this memory cgroup:

root@vagrant:/sys/fs/cgroup$ cat memory/docker/68fb008c5fd3f9067e1aa245b4522a9f36
75720d8953371ecfcf2e9faf91b8a0/memory.limit_in_bytes
104857600

You can also confirm that the sleeping process is a member of the cgroup:

root@vagrant:/sys/fs/cgroup$ cat memory/docker/68fb008c5fd3f9067e1aa245b4522a9f36
75720d8953371ecfcf2e9faf91b8a0/cgroup.procs
19824
root@vagrant:/sys/fs/cgroup$ ps -eaf | grep sleep
root 19824 19789 0 18:22 ? 00:00:00 sleep 10000
root 20486 18862 0 18:28 pts/1 00:00:00 grep --color=auto sleep

Cgroups V2
There has been a version 2 of cgroups available in the Linux kernel since 2016, and
Fedora became the first Linux distro to default to cgroups v2 in mid-2019. However,
at the time of writing, the most popular container runtime implementations assume
version 1 of cgroups and don’t support v2 (though there is ongoing work, which Aki‐
hiro Suda summarized nicely in a blog post).

The biggest difference is that in cgroups v2 a process can’t join different groups for
different controllers. In v1 a process could join /sys/fs/cgroup/memory/mygroup
and /sys/fs/cgroup/pids/yourgroup. In v2 things are simpler: the process
joins /sys/fs/cgroup/ourgroup and is subject to all the controllers for ourgroup.

Cgroups V2 | 29

https://oreil.ly/pDTZ6

Cgroups v2 also has better support for rootless containers so that resource limits can
be applied to them. You’ll come to this in “Rootless Containers” on page 109.

Summary
Cgroups limit the resources available to different Linux processes. You don’t have to
be using containers to take advantage of cgroups, but Docker and other container
runtimes provide a convenient interface for using them: it’s very easy to set resource
limits at the point where you run a container, and those limits are policed by cgroups.

Constraining resources provides protection against a class of attacks that attempt to
disrupt your deployment by consuming excessive resources, thereby starving legiti‐
mate applications. It’s recommended that you set memory and CPU limits when you
run your container applications.

Now that you know how resources are constrained in containers, you are ready to
learn about the other pieces of the puzzle that make up containers: namespaces and
changing the root directory. Move on to Chapter 4 to find out how these work.

30 | Chapter 3: Control Groups

CHAPTER 4

Container Isolation

This is the chapter in which you’ll find out how containers really work! This will be
essential to understanding the extent to which containers are isolated from each other
and from the host. You will be able to assess for yourself the strength of the security
boundary that surrounds a container.

As you’ll know if you have ever run docker exec <image> bash, a container looks a
lot like a virtual machine from the inside. If you have shell access to a container and
run ps, you can see only the processes that are running inside it. The container has its
own network stack, and it seems to have its own filesystem with a root directory that
bears no relation to root on the host. You can run containers with limited resources,
such as a restricted amount of memory or a fraction of the available CPUs. This all
happens using the Linux features that we’re going to delve into in this chapter.

However much they might superficially resemble each other, it’s important to realize
that containers aren’t virtual machines, and in Chapter 5 we’ll take a look at the differ‐
ences between these two types of isolation. In my experience, really understanding
and being able to contrast the two is absolutely key to grasping the extent to which
traditional security measures can be effective in containers, and to identifying where
container-specific tooling is necessary.

You’ll see how containers are built out of Linux constructs such as namespaces and
chroot, along with cgroups, which were covered in Chapter 3. With an understand‐
ing of these constructs under your belt, you’ll have a feeling for how well protected
your applications are when they run inside containers.

Although the general concepts of these constructs are fairly straightforward, the way
they work together with other features of the Linux kernel can be complex. Container
escape vulnerabilities (for example, CVE-2019-5736, a serious vulnerability discov‐

31

https://oreil.ly/NtcRv

ered in both runc and LXC) have been based on subtleties in the way that namespaces,
capabilities, and filesystems interact.

Linux Namespaces
If cgroups control the resources that a process can use, namespaces control what it
can see. By putting a process in a namespace, you can restrict the resources that are
visible to that process.

The origins of namespaces date back to the Plan 9 operating system. At the time,
most operating systems had a single “name space” of files. Unix systems allowed the
mounting of filesystems, but they would all be mounted into the same system-wide
view of all filenames. In Plan 9, each process was part of a process group that had its
own “name space” abstraction, the hierarchy of files (and file-like objects) that this
group of processes could see. Each process group could mount its own set of filesys‐
tems without seeing each other.

The first namespace was introduced to the Linux kernel in version 2.4.19 back in
2002. This was the mount namespace, and it followed similar functionality to that in
Plan 9. Nowadays there are several different kinds of namespace supported by Linux:

• Unix Timesharing System (UTS)—this sounds complicated, but to all intents and
purposes this namespace is really just about the hostname and domain names for
the system that a process is aware of.

• Process IDs
• Mount points
• Network
• User and group IDs
• Inter-process communications (IPC)
• Control groups (cgroups)

It’s possible that more resources will be namespaced in future revisions of the Linux
kernel. For example, there have been discussions about having a namespace for time.

A process is always in exactly one namespace of each type. When you start a Linux
system it has a single namespace of each type, but as you’ll see, you can create addi‐
tional namespaces and assign processes into them. You can easily see the namespaces
on your machine using the lsns command:

vagrant@myhost:~$ lsns
 NS TYPE NPROCS PID USER COMMAND
4026531835 cgroup 3 28459 vagrant /lib/systemd/systemd --user
4026531836 pid 3 28459 vagrant /lib/systemd/systemd --user
4026531837 user 3 28459 vagrant /lib/systemd/systemd --user

32 | Chapter 4: Container Isolation

https://oreil.ly/BCi9W
https://oreil.ly/NZqb-

4026531838 uts 3 28459 vagrant /lib/systemd/systemd --user
4026531839 ipc 3 28459 vagrant /lib/systemd/systemd --user
4026531840 mnt 3 28459 vagrant /lib/systemd/systemd --user
4026531992 net 3 28459 vagrant /lib/systemd/systemd --user

This looks nice and neat, and there is one namespace for each of the types I men‐
tioned previously. Sadly, this is an incomplete picture! The man page for lsns tells us
that it “reads information directly from the /proc filesystem and for non-root users it
may return incomplete information.” Let’s see what you get when you run as root:

vagrant@myhost:~$ sudo lsns
 NS TYPE NPROCS PID USER COMMAND
4026531835 cgroup 93 1 root /sbin/init
4026531836 pid 93 1 root /sbin/init
4026531837 user 93 1 root /sbin/init
4026531838 uts 93 1 root /sbin/init
4026531839 ipc 93 1 root /sbin/init
4026531840 mnt 89 1 root /sbin/init
4026531860 mnt 1 15 root kdevtmpfs
4026531992 net 93 1 root /sbin/init
4026532170 mnt 1 14040 root /lib/systemd/systemd-udevd
4026532171 mnt 1 451 systemd-network /lib/systemd/systemd-networkd
4026532190 mnt 1 617 systemd-resolve /lib/systemd/systemd-resolved

The root user can see some additional mount namespaces, and there are a lot more
processes visible to root than were visible to the non-root user. The reason to show
you this is to note that when we are using lsns, we should run as root (or use sudo)
to get the complete picture.

Let’s explore how you can use namespaces to create something that behaves like what
we call a “container.”

The examples in this chapter use Linux shell commands to create a
container. If you would like to try creating a container using the Go
programming language, you will find instructions at https://
github.com/lizrice/containers-from-scratch.

Isolating the Hostname
Let’s start with the namespace for the Unix Timesharing System (UTS). As mentioned
previously, this covers the hostname and domain names. By putting a process in its
own UTS namespace, you can change the hostname for this process independently of
the hostname of the machine or virtual machine on which it’s running.

If you open a terminal on Linux, you can see the hostname:

vagrant@myhost:~$ hostname
myhost

Isolating the Hostname | 33

https://oreil.ly/nd0Eh
https://github.com/lizrice/containers-from-scratch
https://github.com/lizrice/containers-from-scratch

Most (perhaps all?) container systems give each container a random ID. By default
this ID is used as the hostname. You can see this by running a container and getting
shell access. For example, in Docker you could do the following:

vagrant@myhost:~$ docker run --rm -it --name hello ubuntu bash
root@cdf75e7a6c50:/$ hostname
cdf75e7a6c50

Incidentally, you can see in this example that even if you give the container a name in
Docker (here I specified --name hello), that name isn’t used for the hostname of the
container.

The container can have its own hostname because Docker created it with its own UTS
namespace. You can explore the same thing by using the unshare command to create
a process that has a UTS namespace of its own.

As it’s described on the man page (seen by running man unshare), unshare lets you
“run a program with some namespaces unshared from the parent.” Let’s dig a little
deeper into that description. When you “run a program,” the kernel creates a new
process and executes the program in it. This is done from the context of a running
process—the parent—and the new process will be referred to as the child. The word
“unshare” means that, rather than sharing namespaces of its parent, the child is going
to be given its own.

Let’s give it a try. You need to have root privileges to do this, hence the sudo at the
start of the line:

vagrant@myhost:~$ sudo unshare --uts sh
$ hostname
myhost
$ hostname experiment
$ hostname
experiment
$ exit
vagrant@myhost:~$ hostname
myhost

This runs a sh shell in a new process that has a new UTS namespace. Any programs
you run inside the shell will inherit its namespaces. When you run the hostname
command, it executes in the new UTS namespace that has been isolated from that of
the host machine.

If you were to open another terminal window to the same host before the exit, you
could confirm that the hostname hasn’t changed for the whole (virtual) machine. You
can change the hostname on the host without affecting the hostname that the name‐
spaced process is aware of, and vice versa.

This is a key component of the way containers work. Namespaces give them a set of
resources (in this case the hostname) that are independent of the host machine, and

34 | Chapter 4: Container Isolation

of other containers. But we are still talking about a process that is being run by the
same Linux kernel. This has security implications that I’ll discuss later in the chapter.
For now, let’s look at another example of a namespace by seeing how you can give a
container its own view of running processes.

Isolating Process IDs
If you run the ps command inside a Docker container, you can see only the processes
running inside that container and none of the processes running on the host:

vagrant@myhost:~$ docker run --rm -it --name hello ubuntu bash
root@cdf75e7a6c50:/$ ps -eaf
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 18:41 pts/0 00:00:00 bash
root 10 1 0 18:42 pts/0 00:00:00 ps -eaf
root@cdf75e7a6c50:/$ exit
vagrant@myhost:~$

This is achieved with the process ID namespace, which restricts the set of process IDs
that are visible. Try running unshare again, but this time specifying that you want a
new PID namespace with the --pid flag:

vagrant@myhost:~$ sudo unshare --pid sh
$ whoami
root
$ whoami
sh: 2: Cannot fork
$ whoami
sh: 3: Cannot fork
$ ls
sh: 4: Cannot fork
$ exit
vagrant@myhost:~$

This doesn’t seem very successful—it’s not possible to run any commands after the
first whoami! But there are some interesting artifacts in this output.

The first process under sh seems to have worked OK, but every command after that
fails due to an inability to fork. The error is output in the form <command>: <process
ID>: <message>, and you can see that the process IDs are incrementing each time.
Given the sequence, it would be reasonable to assume that the first whoami ran as pro‐
cess ID 1. That is a clue that the PID namespace is working in some fashion, in that
the process ID numbering has restarted. But it’s pretty much useless if you can’t run
more than one process!

There are clues to what the problem is in the description of the --fork flag in the
man page for unshare: “Fork the specified program as a child process of unshare
rather than running it directly. This is useful when creating a new pid namespace.”

Isolating Process IDs | 35

You can explore this by running ps to view the process hierarchy from a second ter‐
minal window:

vagrant@myhost:~$ ps fa
 PID TTY STAT TIME COMMAND
...
30345 pts/0 Ss 0:00 -bash
30475 pts/0 S 0:00 _ sudo unshare --pid sh
30476 pts/0 S 0:00 _ sh

The sh process is not a child of unshare; it’s a child of the sudo process.

Now try the same thing with the --fork parameter:

vagrant@myhost:~$ sudo unshare --pid --fork sh
$ whoami
root
$ whoami
root

This is progress, in that you can now run more than one command before running
into the “Cannot fork” error. If you look at the process hierarchy again from a second
terminal, you’ll see an important difference:

vagrant@myhost:~$ ps fa
 PID TTY STAT TIME COMMAND
...
30345 pts/0 Ss 0:00 -bash
30470 pts/0 S 0:00 _ sudo unshare --pid --fork sh
30471 pts/0 S 0:00 _ unshare --pid --fork sh
30472 pts/0 S 0:00 _ sh
...

With the --fork parameter, the sh shell is running as a child of the unshare process,
and you can successfully run as many different child commands as you choose within
this shell.

Given that the shell is within its own process ID namespace, the results of running ps
inside it might be surprising:

vagrant@myhost:~$ sudo unshare --pid --fork sh
$ ps
 PID TTY TIME CMD
14511 pts/0 00:00:00 sudo
14512 pts/0 00:00:00 unshare
14513 pts/0 00:00:00 sh
14515 pts/0 00:00:00 ps
$ ps -eaf
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Mar27 ? 00:00:02 /sbin/init
root 2 0 0 Mar27 ? 00:00:00 [kthreadd]
root 3 2 0 Mar27 ? 00:00:00 [ksoftirqd/0]
root 5 2 0 Mar27 ? 00:00:00 [kworker/0:0H]

36 | Chapter 4: Container Isolation

...many more lines of output about processes...
$ exit
vagrant@myhost:~$

As you can see, ps is still showing all the processes on the whole host, despite running
inside a new process ID namespace. If you want the ps behavior that you would see in
a Docker container, it’s not sufficient just to use a new process ID namespace, and the
reason for this is included in the man page for ps: “This ps works by reading the vir‐
tual files in /proc.”

Let’s take a look at the /proc directory to see what virtual files this is referring to.
Your system will look similar, but not exactly the same, as it will be running a differ‐
ent set of processes:

vagrant@myhost:~$ ls /proc
1 14553 292 467 cmdline modules
10 14585 3 5 consoles mounts
1009 14586 30087 53 cpuinfo mpt
1010 14664 30108 538 crypto mtrr
1015 14725 30120 54 devices net
1016 14749 30221 55 diskstats pagetypeinfo
1017 15 30224 56 dma partitions
1030 156 30256 57 driver sched_debug
1034 157 30257 58 execdomains schedstat
1037 158 30283 59 fb scsi
1044 159 313 60 filesystems self
1053 16 314 61 fs slabinfo
1063 160 315 62 interrupts softirqs
1076 161 34 63 iomem stat
1082 17 35 64 ioports swaps
11 18 3509 65 irq sys
1104 19 3512 66 kallsyms sysrq-trigger
1111 2 36 7 kcore sysvipc
1175 20 37 72 keys thread-self
1194 21 378 8 key-users timer_list
12 22 385 85 kmsg timer_stats
1207 23 392 86 kpagecgroup tty
1211 24 399 894 kpagecount uptime
1215 25 401 9 kpageflags version
12426 26 403 966 loadavg version_signature
125 263 407 acpi locks vmallocinfo
13 27 409 buddyinfo mdstat vmstat
14046 28 412 bus meminfo zoneinfo
14087 29 427 cgroups misc

Every numbered directory in /proc corresponds to a process ID, and there is a lot of
interesting information about a process inside its directory. For example, /proc/
<pid>/exe is a symbolic link to the executable that’s being run inside this particular
process, as you can see in the following example:

Isolating Process IDs | 37

vagrant@myhost:~$ ps
 PID TTY TIME CMD
28441 pts/1 00:00:00 bash
28558 pts/1 00:00:00 ps
vagrant@myhost:~$ ls /proc/28441
attr fdinfo numa_maps smaps
autogroup gid_map oom_adj smaps_rollup
auxv io oom_score stack
cgroup limits oom_score_adj stat
clear_refs loginuid pagemap statm
cmdline map_files patch_state status
comm maps personality syscall
coredump_filter mem projid_map task
cpuset mountinfo root timers
cwd mounts sched timerslack_ns
environ mountstats schedstat uid_map
exe net sessionid wchan
fd ns setgroups
vagrant@myhost:~$ ls -l /proc/28441/exe
lrwxrwxrwx 1 vagrant vagrant 0 Oct 10 13:32 /proc/28441/exe -> /bin/bash

Irrespective of the process ID namespace it’s running in, ps is going to look in /proc
for information about running processes. In order to have ps return only the infor‐
mation about the processes inside the new namespace, there needs to be a separate
copy of the /proc directory, where the kernel can write information about the name‐
spaced processes. Given that /proc is a directory directly under root, this means
changing the root directory.

Changing the Root Directory
From within a container, you don’t see the host’s entire filesystem; instead, you see a
subset, because the root directory gets changed as the container is created.

You can change the root directory in Linux with the chroot command. This effec‐
tively moves the root directory for the current process to point to some other location
within the filesystem. Once you have done a chroot command, you lose access to
anything that was higher in the file hierarchy than your current root directory, since
there is no way to go any higher than root within the filesystem, as illustrated in
Figure 4-1.

The description in chroot’s man page reads as follows: “Run COMMAND with root
directory set to NEWROOT. […] If no command is given, run ${SHELL} -i
(default: /bin/sh -i).”

38 | Chapter 4: Container Isolation

Figure 4-1. Changing root so a process only sees a subset of the filesystem

From this you can see that chroot doesn’t just change the directory, but also runs a
command, falling back to running a shell if you don’t specify a different command.

Create a new directory and try to chroot into it:

vagrant@myhost:~$ mkdir new_root
vagrant@myhost:~$ sudo chroot new_root
chroot: failed to run command ‘/bin/bash’: No such file or directory
vagrant@myhost:~$ sudo chroot new_root ls
chroot: failed to run command ‘ls’: No such file or directory

This doesn’t work! The problem is that once you are inside the new root directory,
there is no bin directory inside this root, so it’s impossible to run the /bin/bash shell.
Similarly, if you try to run the ls command, it’s not there. You’ll need the files for any
commands you want to run to be available within the new root. This is exactly what
happens in a “real” container: the container is instantiated from a container image,
which encapsulates the filesystem that the container sees. If an executable isn’t present
within that filesystem, the container won’t be able to find and run it.

Why not try running Alpine Linux within your container? Alpine is a fairly minimal
Linux distribution designed for containers. You’ll need to start by downloading the
filesystem:

vagrant@myhost:~$ mkdir alpine
vagrant@myhost:~$ cd alpine
vagrant@myhost:~/alpine$ curl -o alpine.tar.gz http://dl-cdn.alpinelinux.org/
alpine/v3.10/releases/x86_64/alpine-minirootfs-3.10.0-x86_64.tar.gz
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 2647k 100 2647k 0 0 16.6M 0 --:--:-- --:--:-- --:--:-- 16.6M
vagrant@myhost:~/alpine$ tar xvf alpine.tar.gz

At this point you have a copy of the Alpine filesystem inside the alpine directory you
created. Remove the compressed version and move back to the parent directory:

vagrant@myhost:~/alpine$ rm alpine.tar.gz
vagrant@myhost:~/alpine$ cd ..

Changing the Root Directory | 39

You can explore the contents of the filesystem with ls alpine to see that it looks like
the root of a Linux filesystem with directories such as bin, lib, var, tmp, and so on.

Now that you have the Alpine distribution unpacked, you can use chroot to move
into the alpine directory, provided you supply a command that exists within that
directory’s hierarchy.

It’s slightly more subtle than that, because the executable has to be in the new
process’s path. This process inherits the parent’s environment, including the PATH
environment variable. The bin directory within alpine has become /bin for the new
process, and assuming that your regular path includes /bin, you can pick up the ls
executable from that directory without specifying its path explicitly:

vagrant@myhost:~$ sudo chroot alpine ls
bin etc lib mnt proc run srv tmp var
dev home media opt root sbin sys usr
vagrant@myhost:~$

Notice that it is only the child process (in this example, the process that ran ls) that
gets the new root directory. When that process finishes, control returns to the parent
process. If you run a shell as the child process, it won’t complete immediately, so that
makes it easier to see the effects of changing the root directory:

vagrant@myhost:~$ sudo chroot alpine sh
/ $ ls
bin etc lib mnt proc run srv tmp var
dev home media opt root sbin sys usr
/ $ whoami
root
/ $ exit
vagrant@myhost:~$

If you try to run the bash shell, it won’t work. This is because the Alpine distribution
doesn’t include it, so it’s not present inside the new root directory. If you tried the
same thing with the filesystem of a distribution like Ubuntu, which does include
bash, it would work.

To summarize, chroot literally “changes the root” for a process. After changing the
root, the process (and its children) will be able to access only the files and directories
that are lower in the hierarchy than the new root directory.

40 | Chapter 4: Container Isolation

In addition to chroot, there is a system call called pivot_root. For
the purposes of this chapter, whether chroot or pivot_root is used
is an implementation detail; the key point is that a container needs
to have its own root directory. I have used chroot in these exam‐
ples because it is slightly simpler and more familiar to many
people.
There are security advantages to using pivot_root over chroot, so
in practice you should find the former if you look at the source
code of a container runtime implementation. The main difference
is that pivot_root takes advantage of the mount namespace; the
old root is no longer mounted and is therefore no longer accessible
within that mount namespace. The chroot system call doesn’t take
this approach, leaving the old root accessible via mount points.

You have now seen how a container can be given its own root filesystem. I’ll discuss
this further in Chapter 6, but right now let’s see how having its own root filesystem
allows the kernel to show a container just a restricted view of namespaced resources.

Combine Namespacing and Changing the Root
So far you have seen namespacing and changing the root as two separate things, but
you can combine the two by running chroot in a new namespace:

me@myhost:~$ sudo unshare --pid --fork chroot alpine sh
/ $ ls
bin etc lib mnt proc run srv tmp var
dev home media opt root sbin sys usr

If you recall from earlier in this chapter (see “Isolating Process IDs” on page 35), giv‐
ing the container its own root directory allows it to create a /proc directory for the
container that’s independent of /proc on the host. For this to be populated with pro‐
cess information, you will need to mount it as a pseudofilesystem of type proc. With
the combination of a process ID namespace and an independent /proc directory, ps
will now show just the processes that are inside the process ID namespace:

/ $ mount -t proc proc proc
/ $ ps
PID USER TIME COMMAND
 1 root 0:00 sh
 6 root 0:00 ps
/ $ exit
vagrant@myhost:~$

Success! It has been more complex than isolating the container’s hostname, but
through the combination of creating a process ID namespace, changing the root
directory, and mounting a pseudofilesystem to handle process information, you can
limit a container so that it has a view only of its own processes.

Combine Namespacing and Changing the Root | 41

There are more namespaces left to explore. Let’s see the mount namespace next.

Mount Namespace
Typically you don’t want a container to have all the same filesystem mounts as its
host. Giving the container its own mount namespace achieves this separation.

Here’s an example that creates a simple bind mount for a process with its own mount
namespace:

vagrant@myhost:~$ sudo unshare --mount sh
$ mkdir source
$ touch source/HELLO
$ ls source
HELLO
$ mkdir target
$ ls target
$ mount --bind source target
$ ls target
HELLO

Once the bind mount is in place, the contents of the source directory are also avail‐
able in target. If you look at all the mounts from within this process, there will prob‐
ably be a lot of them, but the following command finds the target you created if you
followed the preceding example:

$ findmnt target
TARGET SOURCE FSTYPE OPTIONS
/home/vagrant/target
 /dev/mapper/vagrant--vg-root[/home/vagrant/source]
 ext4 rw,relatime,errors=remount-ro,data=ordered

From the host’s perspective, this isn’t visible, which you can prove by running the
same command from another terminal window and confirming that it doesn’t return
anything.

Try running findmnt from within the mount namespace again, but this time without
any parameters, and you will get a long list. You might be thinking that it seems
wrong for a container to be able to see all the mounts on the host. This is a very simi‐
lar situation to what you saw with the process ID namespace: the kernel uses
the /proc/<PID>/mounts directory to communicate information about mount points
for each process. If you create a process with its own mount namespace but it is using
the host’s /proc directory, you’ll find that its /proc/<PID>/mounts file includes all the
preexisting host mounts. (You can simply cat this file to get a list of mounts.)

To get a fully isolated set of mounts for the containerized process, you will need to
combine creating a new mount namespace with a new root filesystem and a new proc
mount, like this:

42 | Chapter 4: Container Isolation

vagrant@myhost:~$ sudo unshare --mount chroot alpine sh
/ $ mount -t proc proc proc
/ $ mount
proc on /proc type proc (rw,relatime)
/ $ mkdir source
/ $ touch source/HELLO
/ $ mkdir target
/ $ mount --bind source target
/ $ mount
proc on /proc type proc (rw,relatime)
/dev/sda1 on /target type ext4 (rw,relatime,data=ordered)

Alpine Linux doesn’t come with the findmnt command, so this example uses mount
with no parameters to generate the list of mounts. (If you are cynical about this
change, try the earlier example with mount instead of findmnt to check that you get
the same results.)

You may be familiar with the concept of mounting host directories into a container
using docker run -v <host directory>:<container directory> To achieve
this, after the root filesystem has been put in place for the container, the target con‐
tainer directory is created and then the source host directory gets bind mounted into
that target. Because each container has its own mount namespace, host directories
mounted like this are not visible from other containers.

If you create a mount that is visible to the host, it won’t automati‐
cally get cleaned up when your “container” process terminates. You
will need to destroy it using umount. This also applies to the /proc
pseudofilesystems. They won’t do any particular harm, but if you
like to keep things tidy, you can remove them with umount proc.
The system won’t let you unmount the final /proc used by the host.

Network Namespace
The network namespace allows a container to have its own view of network interfaces
and routing tables. When you create a process with its own network namespace, you
can see it with lsns:

vagrant@myhost:~$ sudo lsns -t net
 NS TYPE NPROCS PID USER NETNSID NSFS COMMAND
4026531992 net 93 1 root unassigned /sbin/init
vagrant@myhost:~$ sudo unshare --net bash
root@myhost:~$ lsns -t net
 NS TYPE NPROCS PID USER NETNSID NSFS COMMAND
4026531992 net 92 1 root unassigned /sbin/init
4026532192 net 2 28586 root unassigned bash

Network Namespace | 43

You might come across the ip netns command, but that is not
much use to us here. Using unshare --net creates an anonymous
network namespace, and anonymous namespaces don’t appear in
the output from ip netns list.

When you put a process into its own network namespace, it starts with just the loop‐
back interface:

vagrant@myhost:~$ sudo unshare --net bash
root@myhost:~$ ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

With nothing but a loopback interface, your container won’t be able to communicate.
To give it a path to the outside world, you create a virtual Ethernet interface—or more
strictly, a pair of virtual Ethernet interfaces. These act as if they were the two ends of a
metaphorical cable connecting your container namespace to the default network
namespace.

In a second terminal window, as root, you can create a virtual Ethernet pair by speci‐
fying the anonymous namespaces associated with their process IDs, like this:

root@myhost:~$ ip link add ve1 netns 28586 type veth peer name ve2 netns 1

• ip link add indicates that you want to add a link.
• ve1 is the name of one “end” of the virtual Ethernet “cable.”
• netns 28586 says that this end is “plugged in” to the network namespace associ‐

ated with process ID 28586 (which is shown in the output from lsns -t net in
the example at the start of this section).

• type veth shows that this a virtual Ethernet pair.
• peer name ve2 gives the name of the other end of the “cable.”
• netns 1 specifies that this second end is “plugged in” to the network namespace

associated with process ID 1.

The ve1 virtual Ethernet interface is now visible from inside the “container” process:

root@myhost:~$ ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: ve1@if3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group ...
 link/ether 7a:8a:3f:ba:61:2c brd ff:ff:ff:ff:ff:ff link-netnsid 0

The link is in “DOWN” state and needs to be brought up before it’s any use. Both
ends of the connection need to be brought up.

44 | Chapter 4: Container Isolation

Bring up the ve2 end on the host:

root@myhost:~$ ip link set ve2 up

And once you bring up the ve1 end in the container, the link should move to “UP”
state:

root@myhost:~$ ip link set ve1 up
root@myhost:~$ ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: ve1@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP ...
 link/ether 7a:8a:3f:ba:61:2c brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet6 fe80::788a:3fff:feba:612c/64 scope link
 valid_lft forever preferred_lft forever

To send IP traffic, there needs to an IP address associated with its interface. In the
container:

root@myhost:~$ ip addr add 192.168.1.100/24 dev ve1

And on the host:

root@myhost:~$ ip addr add 192.168.1.200/24 dev ve1

This will also have the effect of adding an IP route into the routing table in the
container:

root@myhost:~$ ip route
192.168.1.0/24 dev ve1 proto kernel scope link src 192.168.1.100

As mentioned at the start of this section, the network namespace isolates both the
interfaces and the routing table, so this routing information is independent of the IP
routing table on the host. At this point the container can send traffic only to
192.168.1.0/24 addresses. You can test this with a ping from within the container to
the remote end:

root@myhost:~$ ping 192.168.1.100
PING 192.168.1.100 (192.168.1.100) 56(84) bytes of data.
64 bytes from 192.168.1.100: icmp_seq=1 ttl=64 time=0.355 ms
64 bytes from 192.168.1.100: icmp_seq=2 ttl=64 time=0.035 ms
^C

We will dig further into networking and container network security in Chapter 10.

User Namespace
The user namespace allows processes to have their own view of user and group IDs.
Much like process IDs, the users and groups still exist on the host, but they can have
different IDs. The main benefit of this is that you can map the root ID of 0 within a
container to some other non-root identity on the host. This is a huge advantage from
a security perspective, since it allows software to run as root inside a container, but an

User Namespace | 45

attacker who escapes from the container to the host will have a non-root, unprivi‐
leged identity. As you’ll see in Chapter 9, it’s not hard to misconfigure a container to
make it easy escape to the host. With user namespaces, you’re not just one false move
away from host takeover.

As of this writing, user namespaces are not in particularly common
use yet. This feature is not turned on by default in Docker (see
“User Namespace Restrictions in Docker” on page 48), and it is
not supported at all in Kubernetes, though it has been under
discussion.

Generally speaking, you need to be root to create new namespaces, which is why the
Docker daemon runs as root, but the user namespace is an exception:

vagrant@myhost:~$ unshare --user bash
nobody@myhost:~$ id
uid=65534(nobody) gid=65534(nogroup) groups=65534(nogroup)
nobody@myhost:~$ echo $$
31196

Inside the new user namespace the user has the nobody ID. You need to put in place a
mapping between user IDs inside and outside the namespace, as shown in Figure 4-2.

Figure 4-2. Mapping a non-root user on the host to root in a container

This mapping exists in /proc/<pid>/uid_map, which you can edit as root (on the
host). There are three fields in this file:

• The lowest ID to map from the child process’s perspective
• The lowest corresponding ID that this should map to on the host
• The number of IDs to be mapped

As an example, on my machine, the vagrant user has ID 1000. In order to have
vagrant get assigned the root ID of 0 inside the child process, the first two fields are 0
and 1000. The last field can be 1 if you want to map only one ID (which may well be

46 | Chapter 4: Container Isolation

https://oreil.ly/YBN-i
https://oreil.ly/YBN-i

the case if you want only one user inside the container). Here’s the command I used
to set up that mapping:

vagrant@myhost:~$ sudo echo '0 1000 1' > /proc/31196/uid_map

Immediately, inside its user namespace, the process has taken on the root identity.
Don’t be put off by the fact that the bash prompt still says “nobody”; this doesn’t get
updated unless you rerun the scripts that get run when you start a new shell (e.g.,
~/.bash_profile):

nobody@myhost:~$ id
uid=0(root) gid=65534(nogroup) groups=65534(nogroup)

A similar mapping process is used to map the group(s) used inside the child process.

This process is now running with a large set of capabilities:

nobody@myhost:~$ capsh --print | grep Current
Current: = cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,
cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,
cap_net_bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,
cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,
cap_sys_pacct,cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,
cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,
cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,
cap_wake_alarm,cap_block_suspend,cap_audit_read+ep

As you saw in Chapter 2, capabilities grant the process various permissions. When
you create a new user namespace, the kernel gives the process all these capabilities so
that the pseudo root user inside the namespace is allowed to create other namespaces,
set up networking, and so on, fulfilling everything else required to make it a real
container.

In fact, if you simultaneously create a process with several new namespaces, the user
namespace will be created first so that you have the full capability set that permits you
to create other namespaces:

vagrant@myhost:~$ unshare --uts bash
unshare: unshare failed: Operation not permitted
vagrant@myhost:~$ unshare --uts --user bash
nobody@myhost:~$

User namespaces allow an unprivileged user to effectively become root within the
containerized process. This allows a normal user to run containers using a concept
called rootless containers, which we will cover in Chapter 9.

The general consensus is that user namespaces are a security benefit because fewer
containers need to run as “real” root (that is, root from the erspective). However,
there have been a few vulnerabilities (for example, CVE-2018-18955) directly related
to privileges being incorrectly transformed while transitioning to or from a user

User Namespace | 47

https://oreil.ly/764Ia

namespace. The Linux kernel is a complex piece of software, and you should expect
that people will find problems in it from time to time.

User Namespace Restrictions in Docker
You can enable the use of user namespaces in Docker, but it’s not turned on by default
because it is incompatible with a few things that Docker users might want to do.

The following will also affect you if you use user namespaces with other container
runtimes:

• User namespaces are incompatible with sharing a process ID or network name‐
space with the host.

• Even if the process is running as root inside the container, it doesn’t really have
full root privileges. It doesn’t, for example, have CAP_NET_BIND_SERVICE, so it
can’t bind to a low-numbered port. (See Chapter 2 for more information about
Linux capabilities.)

• When the containerized process interacts with a file, it will need appropriate per‐
missions (for example, write access in order to modify the file). If the file is
mounted from the host, it is the effective user ID on the host that matters.
This is a good thing in terms of protecting the host files from unauthorized
access from within a container, but it can be confusing if, say, what appears to be
root inside the container is not permitted to modify a file.

Inter-process Communications Namespace
In Linux it’s possible to communicate between different processes by giving them
access to a shared range of memory, or by using a shared message queue. The two
processes need to be members of the same inter-process communications (IPC)
namespace for them to have access to the same set of identifiers for these
mechanisms.

Generally speaking, you don’t want your containers to be able to access one another’s
shared memory, so they are given their own IPC namespaces.

You can see this in action by creating a shared memory block and then viewing the
current IPC status with ipcs:

$ ipcmk -M 1000
Shared memory id: 98307
$ ipcs

------ Message Queues --------
key msqid owner perms used-bytes messages

48 | Chapter 4: Container Isolation

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 0 root 644 80 2
0x00000000 32769 root 644 16384 2
0x00000000 65538 root 644 280 2
0xad291bee 98307 ubuntu 644 1000 0

------ Semaphore Arrays --------
key semid owner perms nsems
0x000000a7 0 root 600 1

In this example, the newly created shared memory block (with its ID in the shmid
column) appears as the last item in the “Shared Memory Segments” block. There are
also some preexisting IPC objects that had previously been created by root.

A process with its own IPC namespace does not see any of these IPC objects:

$ sudo unshare --ipc sh
$ ipcs

------ Message Queues --------
key msqid owner perms used-bytes messages

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status

------ Semaphore Arrays --------
key semid owner perms nsems

Cgroup Namespace
The last of the namespaces (at least, at the time of writing this book) is the cgroup
namespace. This is a little bit like a chroot for the cgroup filesystem; it stops a process
from seeing the cgroup configuration higher up in the hierarchy of cgroup directories
than its own cgroup.

Most namespaces were added by Linux kernel version 3.8, but the
cgroup namespace was added later in version 4.6. If you’re using a
relatively old distribution of Linux (such as Ubuntu 16.04), you
won’t have support for this feature. You can check the kernel ver‐
sion on your Linux host by running uname -r.

You can see the cgroup namespace in action by comparing the contents of /proc/
self/cgroup outside and then inside a cgroup namespace:

vagrant@myhost:~$ cat /proc/self/cgroup
12:cpu,cpuacct:/
11:cpuset:/

Cgroup Namespace | 49

10:hugetlb:/
9:blkio:/
8:memory:/user.slice/user-1000.slice/session-51.scope
7:pids:/user.slice/user-1000.slice/session-51.scope
6:freezer:/
5:devices:/user.slice
4:net_cls,net_prio:/
3:rdma:/
2:perf_event:/
1:name=systemd:/user.slice/user-1000.slice/session-51.scope
0::/user.slice/user-1000.slice/session-51.scope
vagrant@myhost:~$
vagrant@myhost:~$ sudo unshare --cgroup bash
root@myhost:~# cat /proc/self/cgroup
12:cpu,cpuacct:/
11:cpuset:/
10:hugetlb:/
9:blkio:/
8:memory:/
7:pids:/
6:freezer:/
5:devices:/
4:net_cls,net_prio:/
3:rdma:/
2:perf_event:/
1:name=systemd:/
0::/

You have now explored all the different types of namespace and have seen how they
are used along with chroot to isolate a process’s view of its surrounding. Combine
this with what you learned about cgroups in the previous chapter, and you should
have a good understanding of everything that’s needed to make what we call a
"container.”

Before moving on to the next chapter, it’s worth taking a look at a container from the
perspective of the host it’s running on.

Container Processes from the Host Perspective
Although they are called containers, it might be more accurate to use the term “con‐
tainerized processes.” A container is still a Linux process running on the host
machine, but it has a limited view of that host machine, and it has access to only a
subtree of the filesystem and perhaps to a limited set of resources restricted by
cgroups. Because it’s really just a process, it exists within the context of the host oper‐
ating system, and it shares the host’s kernel as shown in Figure 4-3.

50 | Chapter 4: Container Isolation

Figure 4-3. Containers share the host’s kernel

You’ll see how this compares to virtual machines in the next chapter, but before that,
let’s examine in more detail the extent to which a containerized process is isolated
from the host, and from other containerized processes on that host, by trying some
experiments on a Docker container. Start a container process based on Ubuntu (or
your favorite Linux distribution) and run a shell in it, and then run a long sleep in it
as follows:

$ docker run --rm -it ubuntu bash
root@1551d24a $ sleep 1000

This example runs the sleep command for 1,000 seconds, but note that the sleep
command is running as a process inside the container. When you press Enter at the
end of the sleep command, this triggers Linux to clone a new process with a new
process ID and to run the sleep executable within that process.

You can put the sleep process into the background (Ctrl-Z to pause the process, and
bg %1 to background it). Now run ps inside the container to see the same process
from the container’s perspective:

me@myhost:~$ docker run --rm -it ubuntu bash
root@ab6ea36fce8e:/$ sleep 1000
^Z
[1]+ Stopped sleep 1000
root@ab6ea36fce8e:/$ bg %1
[1]+ sleep 1000 &
root@ab6ea36fce8e:/$ ps
 PID TTY TIME CMD
 1 pts/0 00:00:00 bash
 10 pts/0 00:00:00 sleep
 11 pts/0 00:00:00 ps
root@ab6ea36fce8e:/$

While that sleep command is still running, open a second terminal into the same
host and look at the same sleep process from the host’s perspective:

me@myhost:~$ ps -C sleep
 PID TTY TIME CMD
30591 pts/0 00:00:00 sleep

Container Processes from the Host Perspective | 51

The -C sleep parameter specifies that we are interested only in processes running
the sleep executable.

The container has its own process ID namespace, so it makes sense that its processes
would have low numbers, and that is indeed what you see when running ps in the
container. From the host’s perspective, however, the sleep process has a different,
high-numbered process ID. In the preceding example, there is just one process, and it
has ID 30591 on the host and 10 in the container. (The actual number will vary
according to what else is and has been running on the same machine, but it’s likely to
be a much higher number.)

To get a good understanding of containers and the level of isolation they provide, it’s
really key to get to grips with the fact that although there are two different process
IDs, they both refer to the same process. It’s just that from the host’s perspective it has
a higher process ID number.

The fact that container processes are visible from the host is one of the fundamental
differences between containers and virtual machines. An attacker who gets access to
the host can observe and affect all the containers running on that host, especially if
they have root access. And as you’ll see in Chapter 9, there are some remarkably easy
ways you can inadvertently make it possible for an attacker to move from a compro‐
mised container onto the host.

Container Host Machines
As you have seen, containers and their host share a kernel, and this has some conse‐
quences for what are considered best practices relating to the host machines for con‐
tainers. If a host gets compromised, all the containers on that host are potential
victims, especially if the attacker gains root or otherwise elevated privileges (such as
being a member of the docker group that can administer containers where Docker is
used as the runtime).

It’s highly recommended to run container applications on dedicated host machines
(whether they be VMs or bare metal), and the reasons mostly relate to security:

• Using an orchestrator to run containers means that humans need little or no
access to the hosts. If you don’t run any other applications, you will need a very
small set of user identities on the host machines. These will be easier to manage,
and attempts to log in as an unauthorized user will be easier to spot.

• You can use any Linux distribution as the host OS for running Linux containers,
but there are several “Thin OS” distros specifically designed for running contain‐
ers. These reduce the host attack surface by including only the components
required to run containers. Examples include RancherOS, Red Hat’s Fedora Cor‐
eOS, and VMware’s Photon OS. With fewer components included in the host

52 | Chapter 4: Container Isolation

machine, there is a smaller chance of vulnerabilities (see Chapter 7) in those
components.

• All the host machines in a cluster can share the same configuration, with no
application-specific requirements. This makes it easy to automate the provision‐
ing of host machines, and it means you can treat host machines as immutable. If
a host machine needs an upgrade, you don’t patch it; instead, you remove it from
the cluster and replace it with a freshly installed machine. Treating hosts as
immutable makes intrusions easier to detect.

I’ll come back to the advantages of immutability in Chapter 6.

Using a Thin OS reduces the set of configuration options but doesn’t eliminate them
completely. For example, you will have a container runtime (perhaps Docker) plus
orchestrator code (perhaps the Kubernetes kubelet) running on every host. These
components have numerous settings, some of which affect security. The Center for
Internet Security (CIS) publishes benchmarks for best practices for configuring and
running various software components, including Docker, Kubernetes, and Linux.

In an enterprise environment, look for a container security solution that also protects
the hosts by reporting on vulnerabilities and worrisome configuration settings. You
will also want logs and alerts for logins and login attempts at the host level.

Summary
Congratulations! Since you’ve reached the end of this chapter, you should now know
what a container really is. You’ve seen the three essential Linux kernel mechanisms
that are used to limit a process’s access to host resources:

• Namespaces limit what the container process can see—for example, by giving the
container an isolated set of process IDs.

• Changing the root limits the set of files and directories that the container can see.
• Cgroups control the resources the container can access.

As you saw in Chapter 1, isolating one workload from another is an important aspect
of container security. You now should be fully aware that all the containers on a given
host (whether it is a virtual machine or a bare-metal server) share the same kernel. Of
course, the same is true in a multiuser system where different users can log in to the
same machine and run applications directly. However, in a multiuser system, the
administrators are likely to limit the permissions given to each user; they certainly
won’t give them all root privileges. With containers—at least at the time of writing—
they all run as root by default and are relying on the boundary provided by
namespaces, changed root directories, and cgroups to prevent one container from
interfering with another.

Summary | 53

https://cisecurity.org
https://cisecurity.org

Now that you know how containers work, you might want to
explore Jess Frazelle’s contained.af site to see just how effective they
are. Will you be the person who breaks the containment?

In Chapter 8 we’ll explore options for strengthening the security boundary around
each container, but next let’s delve into how virtual machines work. This will allow
you to consider the relative strengths of the isolation between containers and between
VMs, especially through the lens of security.

54 | Chapter 4: Container Isolation

https://contained.af/

CHAPTER 5

Virtual Machines

Containers are often compared with virtual machines (VMs), especially in terms of
the isolation that they offer. Let’s make sure you have a solid understanding of how
VMs operate so that you can reason about the differences between them and contain‐
ers. This will be particularly useful when you want to assess the security boundaries
around your applications when they run in containers, or in different VMs. When
you are discussing the relative merits of containers from a security perspective,
understanding how they differ from VMs can be a useful tool.

This isn’t a black-and-white distinction, really. As you’ll see in Chapter 8, there are
several sandboxing tools that strengthen the isolation boundaries around containers,
making them more like VMs. If you want to understand the security pros and cons of
these approaches, it’s best to start with a firm understanding of the difference between
a VM and a “normal” container.

The fundamental difference is that a VM runs an entire copy of an operating system,
including its kernel, whereas a container shares the host machine’s kernel. To under‐
stand what that means, you’ll need to know something about how virtual machines
are created and managed by a Virtual Machine Monitor (VMM). Let’s start to set the
scene for that by thinking about what happens when a computer boots up.

Booting Up a Machine
Picture a physical server. It has some CPUs, memory, and networking interfaces.
When you first boot up the machine, an initial program runs that’s called the BIOS,
or Basic Input Output System. It scans how much memory is available, identifies the
network interfaces, and spots any other devices such as displays, keyboards, attached
storage devices, and so on.

55

In practice, a lot of this functionality has been superseded nowadays by UEFI (Uni‐
fied Extensible Firmware Interface), but for the sake of argument, let’s just think of
this as a modern BIOS.

Once the hardware has been enumerated, the system runs a bootloader that loads and
then runs the operating system’s kernel code. The operating system could be Linux,
Windows, or some other OS. As you saw in Chapter 2, kernel code operates at a
higher level of privilege than your application code. This privilege level allows it to
interact with memory, network interfaces, and so on, whereas applications running in
user space can’t do this directly.

On an x86 processor, privilege levels are organized into rings, with Ring 0 being the
most privileged and Ring 3 being the least privileged. For most operating systems in a
regular setup (without VMs), the kernel runs at Ring 0 and user space code runs at
Ring 3, as shown in Figure 5-1.

Figure 5-1. Privilege rings

Kernel code (like any code) runs on the CPU in the form of machine code instruc‐
tions, and these instructions can include privileged instructions for accessing mem‐
ory, starting CPU threads, and so on. The details of everything that can and will
happen while the kernel initializes are beyond the scope of this book, but essentially
the goal is to mount the root filesystem, set up networking, and bring up any system
daemons. (If you want to dive deeper, there is a lot of great information on Linux ker‐
nel internals, including the bootstrap process, on GitHub.)

Once the kernel has finished its own initialization, it can start running programs in
user space. The kernel is responsible for managing everything that the user space pro‐
grams need. It starts, manages, and schedules the CPU threads that these programs
run in, and it keeps track of these threads through its own data structures that repre‐
sent processes. One important aspect of kernel functionality is memory management.
The kernel assigns blocks of memory to each process and makes sure that processes
can’t access one another’s memory blocks.

56 | Chapter 5: Virtual Machines

https://oreil.ly/GPutF

Enter the VMM
As you have just seen, in a regular setup, the kernel manages the machine’s resources
directly. In the world of virtual machines, a Virtual Machine Monitor (VMM) does
the first layer of resource management, splitting up the resources and assigning them
to virtual machines. Each virtual machine gets a kernel of its own.

For each virtual machine that it manages, the VMM assigns some memory and CPU
resources, sets up some virtual network interfaces and other virtual devices, and starts
a guest kernel with access to these resources.

In a regular server, the BIOS gives the kernel the details of the resources available on
the machine; in a virtual machine situation, the VMM divides up those resources and
gives each guest kernel only the details of the subset that it is being given access to.
From the perspective of the guest OS, it thinks it has direct access to physical mem‐
ory and devices, but in fact it’s getting access to an abstraction provided by the VMM.

The VMM is responsible for making sure that the guest OS and its applications can’t
breach the boundaries of the resources it has been allocated. For example, the guest
operating system is assigned a range of memory on the host machine. If the guest
somehow tries to access memory outside that range, this is forbidden.

There are two main forms of VMM, often called, not very imaginatively, Type 1 and
Type 2. And there is a bit of gray area between the two, naturally!

Type 1 VMMs, or Hypervisors
In a regular system, the bootloader runs an operating system kernel like Linux or
Windows. In a pure Type 1 virtual machine environment, a dedicated kernel-level
VMM program runs instead.

Type 1 VMMs are also known as hypervisors, and examples include Hyper-V, Xen,
and ESX/ESXi. As you can see in Figure 5-2, the hypervisor runs directly on the hard‐
ware (or “bare metal”), with no operating system underneath it.

Figure 5-2. Type 1 Virtual Machine Monitor, also known as a hypervisor

Enter the VMM | 57

https://oreil.ly/FsXVi
https://xenproject.org/
https://oreil.ly/ezG3t

In saying “kernel level,” I mean that the hypervisor runs at Ring 0. (Well, that’s true
until we consider hardware virtualization later in this chapter, but for now let’s just
assume Ring 0.) The guest OS kernel runs at Ring 1, as depicted in Figure 5-3, which
means it has less privilege than the hypervisor.

Figure 5-3. Privilege rings used under a hypervisor

Type 2 VMM
When you run virtual machines on your laptop or desktop machine, perhaps through
something like VirtualBox, they are “hosted” or Type 2 VMs. Your laptop might be
running, say, macOS, which is to say that it’s running a macOS kernel. You install
VirtualBox as a separate application, which then goes on to manage guest VMs that
coexist with your host operating system. Those guest VMs could be running Linux or
Windows. Figure 5-4 shows how the guest OS and host OS coexist.

Figure 5-4. Type 2 Virtual Machine Monitor

Consider that for a moment and think about what it means to run, say, Linux within a
macOS. By definition this means there has to be a Linux kernel, and that has to be a
different kernel from the host’s macOS kernel.

The VMM application has user space components that you can interact with as a user,
but it also installs privileged components allowing it to provide virtualization. You’ll
see more about how this works later in this chapter.

Besides VirtualBox, other examples of Type 2 VMMs include Parallels and QEMU.

58 | Chapter 5: Virtual Machines

https://www.virtualbox.org
https://parallels.com
https://oreil.ly/LZmcn

Kernel-Based Virtual Machines
I promised that there would be some blurred boundaries between Type 1 and Type 2.
In Type 1, the hypervisor runs directly on bare metal; in Type 2, the VMM runs in
user space on the host OS. What if you run a virtual machine manager within the ker‐
nel of the host OS?

This is exactly what happens with a Linux kernel module called KVM, or Kernel-
based Virtual Machines, as shown in Figure 5-5.

Figure 5-5. KVM

Generally, KVM is considered to be a Type 1 hypervisor because the guest OS doesn’t
have to traverse the host OS, but I’d say that this categorization is overly simplistic.

KVM is often used with QEMU (Quick Emulation), which I listed earlier as a Type 2
hypervisor. QEMU dynamically translates system calls from the guest OS into host
OS system calls. It’s worth a mention that QEMU can take advantage of hardware
acceleration offered by KVM.

Whether Type 1, Type 2, or something in between, VMMs employ similar techniques
to achieve virtualization. The basic idea is called “trap-and-emulate,” though as we’ll
see, x86 processors provide some challenges in implementing this idea.

Trap-and-Emulate
Some CPU instructions are privileged, meaning they can be executed only in Ring 0;
if they are attempted in a higher ring, this will cause a trap. You can think of the trap
as being like an exception in application software that triggers an error handler; a trap
will result in the CPU calling to a handler in the Ring 0 code.

If the VMM runs at Ring 0 and the guest OS kernel code runs at a lower privilege, a
privileged instruction run by the guest can invoke a handler in the VMM to emulate
the instruction. In this way the VMM can ensure that the guest OSs can’t interfere
with each other through privileged instructions.

Unfortunately, privileged instructions are only part of the story. The set of CPU
instructions that can affect the machine’s resources is known as sensitive. The VMM
needs to handle these instructions on behalf of the guest OS, because only the VMM

Trap-and-Emulate | 59

has a true view of the machine’s resources. There is also another class of sensitive
instructions that behaves differently when executed in Ring 0 or in lower-privileged
rings. Again, a VMM needs to do something about these instructions because the
guest OS code was written assuming the Ring 0 behavior.

If all sensitive instructions were privileged, this would make life relatively easy for
VMM programmers, as they would just need to write trap handlers for all these sensi‐
tive instructions. Unfortunately, not all x86 sensitive instructions are also privileged,
so VMMs need to use different techniques to handle them. Instructions that are sen‐
sitive but not privileged are considered to be “non-virtualizable.”

Handling Non-Virtualizable Instructions
There are a few different techniques for handling these non-virtualizable instructions:

• One option is binary translation. All the non-privileged, sensitive instructions in
the guest OS are spotted and rewritten by the VMM in real time. This is complex,
and newer x86 processors support hardware-assisted virtualization to simplify
binary translation.

• Another option is paravirtualization. Instead of modifying the guest OS on the
fly, the guest OS is rewritten to avoid the non-virtualizable set of instructions,
effectively making system calls to the hypervisor. This is the technique used by
the Xen hypervisor.

• Hardware virtualization (such as Intel’s VT-x) allows hypervisors to run in a new,
extra privileged level known as VMX root mode, which is essentially Ring –1.
This allows the VM guest OS kernels to run at Ring 0 (or VMX non-root mode),
as they would if they were the host OS.

If you would like to dig deeper into how virtualization works, Keith
Adams and Ole Agesen provide a useful comparison and describe
how hardware enhancements enable better performance.

Now that you have a picture of how virtual machines are created and managed, let’s
consider what this means in terms of isolating one process, or application, from
another.

60 | Chapter 5: Virtual Machines

https://oreil.ly/D1cZO
https://oreil.ly/D1cZO

Process Isolation and Security
Making sure that applications are safely isolated from each other is a primary security
concern. If my application can read the memory that belongs to your application, I
will have access to your data.

Physical isolation is the strongest form of isolation possible. If our applications are
running on entirely separate physical machines, there is no way for my code to get
access to the memory of your application.

As we have just discussed, the kernel is responsible for managing its user space pro‐
cesses, including assigning memory to each process. It’s up to the kernel to make sure
that one application can’t access the memory assigned to another. If there is a bug in
the way that the kernel manages memory, an attacker might be able to exploit that
bug to access memory that they shouldn’t be able to reach. And while the kernel is
extremely battle-tested, it’s also extremely large and complex, and it is still evolving.
Even though we don’t know of significant flaws in kernel isolation as of this writing, I
wouldn’t advise you to bet against someone finding problems at some point in the
future.

These flaws can come about due to increased sophistication in the underlying hard‐
ware. In recent years, CPU manufacturers developed “speculative processing,” in
which a processor runs ahead of the currently executing instruction and works out
what the results are going to be ahead of actually needing to run that branch of code.
This enabled significant performance gains, but it also opened the door to the famous
Spectre and Meltdown exploits.

You might be wondering why people consider hypervisors to give greater isolation to
virtual machines than a kernel gives to its processes; after all, hypervisors are also
managing memory and device access and have a responsibility to keep virtual
machines separate. It’s absolutely true that a hypervisor flaw could result in a serious
problem with isolation between virtual machines. The difference is that hypervisors
have a much, much simpler job. In a kernel, user space processes are allowed some
visibility of each other; as a very simple example, you can run ps and see the running
processes on the same machine. You can (given the right permissions) access infor‐
mation about those processes by looking in the /proc directory. You are allowed to
deliberately share memory between processes through IPC and, well, shared memory.
All these mechanisms, where one process is legitimately allowed to discover informa‐
tion about another, make the isolation weaker, because of the possibility of a flaw that
allows this access in unexpected or unintended circumstances.

There is no similar equivalent when running virtual machines; you can’t see one
machine’s processes from another. There is less code required to manage memory
simply because the hypervisor doesn’t need to handle circumstances in which
machines might share memory—it’s just not something that virtual machines do. As a

Process Isolation and Security | 61

result, hypervisors are far smaller and simpler than full kernels. There are well over
20 million lines of code in the Linux kernel; by contrast, the Xen hypervisor is around
50,000 lines.

Where there is less code and less complexity, there is a smaller attack surface, and the
likelihood of an exploitable flaw is less. For this reason, virtual machines are consid‐
ered to have strong isolation boundaries.

That said, virtual machine exploits are not unheard of. Darshan Tank, Akshai Aggar‐
wal, and Nirbhay Chaubey describe a taxonomy of the different types of attack, and
the National Institute of Standards and Technology (NIST) has published security
guidelines for hardening virtualized environments.

Disadvantages of Virtual Machines
At this point you might be so convinced of the isolation advantages of virtual
machines that you might be wondering why people use containers at all! There are
some disadvantages of VMs compared to containers:

• Virtual machines have start-up times that are several orders of magnitude greater
than a container. After all, a container simply means starting a new Linux pro‐
cess, not having to go through the whole start-up and initialization of a VM. The
relatively slow start-up times of VMs means that they are sluggish for auto-
scaling, not to mention that fast start-up times are important when an organiza‐
tion wants to ship new code frequently, perhaps several times per day. (However,
Amazon’s Firecracker, discussed in “Firecracker” on page 103, offers VMs with
very fast start-up times, of the order of 100ms as of this writing.)

• Containers give developers a convenient ability to “build once, run anywhere”
quickly and efficiently. It’s possible, but very slow, to build an entire machine
image for a VM and run it on one’s laptop, but this technique hasn’t taken off in
the developer community in the way containers have.

• In today’s cloud environments, when you rent a virtual machine you have to
specify its CPU and memory, and you pay for those resources regardless of how
much is actually used by the application code running inside it.

• Each virtual machine has the overhead of running a whole kernel. By sharing a
kernel, containers can be very efficient in both resource use and performance.

When choosing whether to use VMs or containers, there are many trade-offs to be
made among factors such as performance, price, convenience, risk, and the strength
of security boundary required between different application workloads.

62 | Chapter 5: Virtual Machines

https://oreil.ly/FHKhp
https://oreil.ly/1MWub
https://oreil.ly/1MWub
https://oreil.ly/HCXBO
https://oreil.ly/HCXBO
https://oreil.ly/W_b7o
https://oreil.ly/W_b7o

Container Isolation Compared to VM Isolation
As you saw in Chapter 4, containers are simply Linux processes with a restricted view.
They are isolated from each other by the kernel through the mechanisms of namespa‐
ces, cgroups, and changing the root. These mechanisms were created specifically to
create isolation between processes. However, the simple fact that containers share a
kernel means that the basic isolation is weaker compared to that of VMs.

However, all is not lost! You can apply additional security features and sandboxing to
strengthen this isolation, which I will explain in Chapter 8. There are also very effec‐
tive security tools that take advantage of the fact that containers tend to encapsulate
microservices, and I will cover these in Chapter 13.

Summary
You should now have a good grasp of what virtual machines are. You have learned
why the isolation between virtual machines is considered strong compared to con‐
tainer isolation, and why containers are generally not considered suitably secure for
hard multitenancy environments. Understanding this difference is an important tool
to have in your toolbox when discussing container security.

Securing virtual machines themselves is outside the scope of this book, although I
touched on hardening container host configuration in “Container Host Machines” on
page 52.

Later in this book you will see some examples in which the weaker isolation of con‐
tainers (in comparison to VMs) can easily be broken through misconfiguration.
Before we get to that, let’s make sure you are up to speed on what’s inside a container
image and how images can have a significant bearing on security.

Container Isolation Compared to VM Isolation | 63

CHAPTER 6

Container Images

If you have been using Docker or Kubernetes, you are likely to be familiar with the
idea of container images that you store in a registry. In this chapter we’re going to
explore container images, looking at what they contain and how container runtimes
like Docker or runc use them.

With an understanding of what images are under your belt, you’re ready to think
about the security implications of building, storing, and retrieving images—and there
are a lot of attack vectors related to these steps. You’ll learn about best practices for
ensuring that builds and images don’t compromise your overall system.

Root Filesystem and Image Configuration
There are two parts to a container image: the root filesystem and some configuration.

If you followed along with the examples in Chapter 4, you downloaded a copy of the
Alpine root filesystem and used this as the contents of root inside your container. In
general, when you start a container you instantiate it from a container image, and the
image includes the root filesystem. If you run docker run -it alpine sh and com‐
pare it to what’s inside your hand-built container, you will see the same layout of
directories and files, and they will match completely if the version of Alpine is the
same.

If, like many people, you have come to containers through the use of Docker, you’ll be
used to the idea of building images based on the instructions in a Dockerfile. Some
Dockerfile commands (like FROM, ADD, COPY, or RUN) modify the contents of the root
filesystem that’s included in the image. Other commands, like USER, PORT, or ENV,
affect the configuration information that’s stored in the image alongside the root file‐
system. You can see this config information by running docker inspect on an
image. This config information gives Docker instructions on runtime parameters that

65

should be set up by default when running the image. For example, if an environment
variable is specified using an ENV command in the Dockerfile, this environment vari‐
able will be defined for the container process when it runs.

Overriding Config at Runtime
In Docker, the config information can be overridden at runtime using command-line
parameters. For example, if you want to change an environment variable or set a new
one, you can do this with docker run -e <VARNAME>=<NEWVALUE>

In Kubernetes, you do this with an env definition for the container in a pod’s YAML
definition:

apiVersion: v1
kind: Pod
metadata:
 name: demo
spec:
 containers:
 - name: demo-container
 image: demo-reg.io/some-org/demo-image:1.0
 env:
 - name: DEMO_ENV
 value: "This overrides the value"

The (imaginary) image demo-image:1.0 was built from a Dockerfile, which might
have included the line ENV DEMO_ENV="The original value". This YAML overrides
the value for DEMO_ENV, and if the container were to log the value of this variable, you
would see This overrides the value.

If the container runtime in your Kubernetes deployment is an OCI-compliant tool
like runc, the values from the YAML definition end up in an OCI-compliant con
fig.json file. Let’s find out more about these OCI standard container files and tools.

OCI Standards
The Open Container Initiative (OCI) was formed to define standards around con‐
tainer images and runtime. It took its lead from a lot of the work that had been done
in Docker, so there is quite a lot in common between what happens in Docker and
what is defined in the specs—in particular, a goal of the OCI was for the standards to
support the same user experience that Docker users had come to expect, like the abil‐
ity to run an image with a default set of configuration settings. The OCI specs cover
an image format, which discusses how container images are built and distributed.

Skopeo is useful for manipulating and inspecting OCI images. It can generate an
OCI-format image from a Docker image:

66 | Chapter 6: Container Images

https://opencontainers.org
https://oreil.ly/Rxejf

$ skopeo copy docker://alpine:latest oci:alpine:latest
$ ls alpine
blobs index.json oci-layout

But an OCI-compliant runtime like runc doesn’t work directly with the image in this
format. Instead, it first has to be unpacked into a runtime filesystem bundle. Let’s look
at an example, using umoci to unpack the image:

$ sudo umoci unpack --image alpine:latest alpine-bundle
$ ls alpine-bundle
config.json
rootfs
sha256_3bf9de52f38aa287b5793bd2abca9bca62eb097ad06be660bfd78927c1395651.mtree
umoci.json
$ ls alpine-bundle/rootfs
bin etc lib mnt proc run srv tmp var
dev home media opt root sbin sys usr

As you can see, this bundle includes a rootfs directory with the contents of an
Alpine Linux distribution. There is also a config.json file that defines the runtime set‐
tings. The runtime instantiates a container using this root filesystem and settings.

When you’re using Docker, you don’t get direct access to the config information in
the form of a file you can inspect with cat or your favorite text editor, but you can see
that it’s there by using the docker image inspect command.

Image Configuration
Now that you know from Chapters 3 and 4 how containers are created, it’s worth tak‐
ing a look at one of these config.json files, because a lot of it should look familiar.
Here’s an extract as an example:

...
 "linux": {
 "resources": {
 "memory": {
 "limit": 1000000
 },
 "devices": [
 {
 "allow": false,
 "access": "rwm"
 }
]
 },
 "namespaces": [
 {
 "type": "pid"
 },
 {
 "type": "network"

Image Configuration | 67

https://oreil.ly/VtJ0F
https://oreil.ly/Rdfab

 },
 {
 "type": "ipc"
 },
 {
 "type": "uts"
 },
 {
 "type": "mount"
 }
]
 }

As you can see, the configuration information includes a definition of everything
runc should do to create the container, including a list of any resources that it should
constrain through cgroups, and the namespaces it should create.

You have seen how an image consists of two parts: the root filesystem and some con‐
figuration information. Now let’s consider how an image gets built.

Building Images
Most people’s experience of building container images is to use the docker build
command. This follows the instructions from a file called a Dockerfile to create an
image. Before discussing the build itself, I’d like to briefly discuss why docker build
needs careful attention from a security point of view.

Docker has been working on a rootless mode that should address
the issues described in the upcoming section, but as I write it’s still
considered “experimental.”

The Dangers of docker build
When you run a docker command, the command-line tool you invoked (docker)
does very little by itself. Instead, it converts your command into an API request that it
sends to the Docker daemon via a socket referred to as the Docker socket. Any pro‐
cess that has access to the Docker socket can send API requests to the daemon.

The Docker daemon is a long-running process that actually does the work of running
and managing both containers and container images. As you saw in Chapter 4, in
order to create a container, the daemon needs to be able to create namespaces, so it
needs to be running as root.

Imagine that you want to dedicate a machine (or virtual machine) to build container
images and store them in a registry. Using the Docker approach, your machine has to

68 | Chapter 6: Container Images

run the daemon, which has a lot more capabilities beyond building and interacting
with registries. Without additional security tooling, any user who can trigger a
docker build on this machine can also perform a docker run to execute any com‐
mand they like on the machine.

Not only can they run any command they like, but also, if they use this privilege to
perform a malicious action, it will be hard to track down who was responsible. You
may keep an audit log of certain actions that users take, but—as illustrated nicely in a
post by Dan Walsh—the audit will record the daemon process’s ID rather than that of
the user.

To avoid these security risks, there are several alternative tools for building container
images without relying on the Docker daemon.

Daemonless Builds
One such tool is BuildKit from the Moby project, which can also run in rootless
mode. (As you may know, Docker renamed its open source code “Moby” in an
attempt to avoid the inevitable confusion when the project and company names were
the same.) BuildKit is a foundation for the experimental Docker rootless build mode
noted previously.

Other non-privileged builds include Red Hat’s podman and buildah. A blog post from
Puja Abbassi describes these tools and compares them to docker build.

Google’s Bazel can build many other types of artifact, not just container images. Not
only does it not require Docker, but it also prides itself on generating images deter‐
ministically so that you can reproduce the same image from the same source.

Google also produced a tool called Kaniko for running builds within a Kubernetes
cluster without needing access to the Docker daemon.

Other “daemonless” tools for building containers include Jess Frazelle’s img and
Aleksa Sarai’s orca-build.

At the time of writing, it’s not obvious that there is a clear winner from among any of
these tools.

Image Layers
Regardless of which tool you use, the vast majority of container image builds are
defined through a Dockerfile. The Dockerfile gives a series of instructions, each of
which results in either a filesystem layer or a change to the image configuration. This
is described well in the Docker documentation, but if you want to dig into the details,
you might enjoy the blog post I wrote about re-creating the Dockerfile from an
image.

Building Images | 69

https://oreil.ly/TszBl
https://oreil.ly/TszBl
https://oreil.ly/jefkr
https://podman.io
https://buildah.io
https://oreil.ly/FNYY_
https://oreil.ly/FNYY_
https://oreil.ly/Jz_30
https://oreil.ly/_nRoM
https://oreil.ly/RfXtm
https://oreil.ly/kimqz
https://oreil.ly/zGJpP
https://oreil.ly/2SSdJ
https://oreil.ly/2SSdJ

Sensitive data in layers
Anyone who has access to a container image can access any file included in that
image. From a security perspective, you want to avoid including sensitive informa‐
tion such as passwords or tokens in an image. (I’ll cover how you should handle this
information in Chapter 12.)

The fact that every layer is stored separately means that you have to be careful not to
store sensitive data, even if a subsequent layer removes it. Here’s a Dockerfile that
illustrates what not to do:

FROM alpine
RUN echo "top-secret" > /password.txt
RUN rm /password.txt

One layer creates a file, and then the next layer removes it. If you build this image and
then run it, you won’t find any sign of the password.txt file:

vagrant@vagrant:~$ docker run --rm -it sensitive ls /password.txt
ls: /password.txt: No such file or directory

But don’t let this fool you—the sensitive data is still included in the image. You can
prove this by exporting the image to a tar file using the docker save command and
then unpacking the tar:

vagrant@vagrant:~$ docker save sensitive > sensitive.tar
vagrant@vagrant:~$ mkdir sensitive
vagrant@vagrant:~$ cd sensitive
vagrant@vagrant:~$ tar -xf ../sensitive.tar
vagrant@vagrant:~/sensitive$ ls
0c247e34f78415b03155dae3d2ec7ed941801aa8aeb3cb4301eab9519302a3b9.json
552e9f7172fe87f322d421aec2b124691cd80edc9ba3fef842b0564e7a86041e
818c5ec07b8ee1d0d3ed6e12875d9d597c210b488e74667a03a58cd43dc9be1a
8e635d6264340a45901f63d2a18ea5bc8c680919e07191e4ef276860952d0399
manifest.json

Inspecting the content will make it pretty clear what each of these files and directories
are for:

• manifest.json is the top-level file describing the image. It tells you which file
represents the config (the 0c24...json file in this case), describes any tags for
this image, and lists each of the layers.

• 0c24...json is the config for the image (as described earlier in this chapter).
• Each of the directories represents one of the layers that make up the root filesys‐

tem for the image.

The config includes the history of the commands that were run to construct this con‐
tainer. As you can see, in this case the sensitive data is revealed in the step that runs
the echo command:

70 | Chapter 6: Container Images

vagrant@vagrant:~/sensitive$ cat 0c247*.json | jq '.history'
[
 {
 "created": "2019-10-21T17:21:42.078618181Z",
 "created_by": "/bin/sh -c #(nop) ADD
 file:fe1f09249227e2da2089afb4d07e16cbf832eeb804120074acd2b8192876cd28 in / "
 },
 {
 "created": "2019-10-21T17:21:42.387111039Z",
 "created_by": "/bin/sh -c #(nop) CMD [\"/bin/sh\"]",
 "empty_layer": true
 },
 {
 "created": "2019-12-16T13:50:43.914972168Z",
 "created_by": "/bin/sh -c echo \"top-secret\" > /password.txt"
 },
 {
 "created": "2019-12-16T13:50:45.085349285Z",
 "created_by": "/bin/sh -c rm /password.txt"
 }
]

Inside each layer’s directory there is another tar file holding the contents of the file‐
system at that layer. It’s easy to reveal the password.txt file from the appropriate layer:

vagrant@vagrant:~/sensitive$ tar -xf 55*/layer.tar
vagrant@vagrant:~/sensitive$ cat password.txt
top-secret

As this shows, even if a subsequent layer deletes a file, any file that ever existed in any
layer can easily be obtained by unpacking the image. Don’t include anything in any
layer that you aren’t prepared to be seen by anyone who has access to the image.

Earlier in this chapter you saw what’s inside an OCI-compliant container image, and
you now know what is happening when these images are built from a Dockerfile.
Now let’s consider how images are stored.

Storing Images
Images are stored in container registries. If you use Docker, you’ve probably used the
Docker Hub registry, and if you’re working with containers using the services of a
cloud provider, it’s likely you’re familiar with one of their registries—Amazon’s Elastic
Container Registry, for example, or Google Container Registry. Storing an image in a
registry is generally referred to as a push, and retrieving it is a pull.

At the time of writing, the OCI is working on a distribution specification that defines
the interface for interacting with a container registry, where containers are stored.
Although this is a work in progress, it leans on prior art from these existing container
registries.

Storing Images | 71

https://hub.docker.com
https://oreil.ly/3Jvl7

Each layer is stored separately as a “blob” of data in the registry, identified by a hash
of its contents. To save storage space, a given blob needs to be stored only once,
although it may be referenced by many images. The registry also stores an image
manifest that identifies the set of image layer blobs that make up the image. Taking a
hash of the image manifest gives a unique identifier for the entire image, which is
referred to as the image digest. If you rebuild the image and anything about it
changes, this hash will also change.

If you’re using Docker, you can easily see the digests for images held locally on your
machine by using the following command:

vagrant@vagrant:~$ docker image ls --digests
REPOSITORY TAG DIGEST IMAGE ID CREATED SIZE
nginx latest sha256:50cf...8566 231d40e811cd 2 weeks ago 126MB

When you push or pull an image, you can use this digest to precisely reference this
particular build, but this isn’t the only way you can refer to an image. Let’s review the
different ways of identifying container images.

Identifying Images
The first part of an image reference is the URL of the registry where it is stored. (If
the registry address is omitted, this implies either a locally stored image or an image
stored on Docker Hub, depending on the command context.)

The next part of an image reference is the name of the user or organization account
that owns this image. This is followed by an image name, and then either the digest
that identifies its contents or a human-readable tag.

Putting this together gives us an address that looks like one of these options:

<Registry URL>/<Organization or user name>/<repository>@sha256:<digest>
<Registry URL>/<Organization or user name>/<repository>:<tag>

If the registry URL is omitted, it defaults to Docker Hub’s address, docker.io.
Figure 6-1 shows an example version of an image as it appears on Docker Hub.

You could pull this image with either of the following commands:

vagrant@vagrant:~$ docker pull aquasec/trivy:0.2.1
vagrant@vagrant:~$ docker pull aquasec/
trivy:sha256:4c0b03c25c500bce7a1851643ff3c7b774d863a6f7311364b92a450f3a78e6a3

Referring to an image by hash is unwieldy for humans to deal with, hence the com‐
monplace use of tags, which are just arbitrary labels applied to the image. A single
image can be given any number of tags, and the same tag can be moved from one
image to another. Tags are often used to indicate the version of software contained in
the image—as in the example just shown, which is version 0.2.1.

72 | Chapter 6: Container Images

Figure 6-1. Example image on Docker Hub

Because tags can be moved from image to image, there is no guarantee that specifying
an image by tag today will give you exactly the same result as it does tomorrow. In
contrast, using the hash reference will give you the identical image, because the hash
is defined from the contents of the image. Any change to the image results in a differ‐
ent hash.

This effect may be exactly what you intend. For example, you might refer to an image
using a tag that refers to the major and minor version number in a semantic version‐
ing schema. If a new patched version is released, you rely on the image maintainers to
retag the patched image with the same major and minor version number so that you
get the up-to-date patched version when you next pull the image.

However, there are occasions when the unique reference to an image is important.
For example, consider the scanning of images for vulnerabilities (which is covered in
Chapter 7). You might have an admission controller that checks that images can be
deployed only if they have been through the vulnerability scanning step, and this will
need to check records of the images that have been scanned. If these records refer to
the images by tag, the information is unreliable, as there’s no way of knowing whether
the image has changed and needs to be rescanned.

Now that you know how images are stored, let’s turn to the security concerns that
relate to images.

Image Security
The main concern when it comes to image security is image integrity—that is, ensur‐
ing that the intended images are what gets used. If an attacker is able to get an unin‐
tended image running in a deployment, they can run any code they like. There are
various potential weak points in the chain, from building and storing an image to
running the image, as shown in Figure 6-2.

Image Security | 73

Figure 6-2. Image attack vectors

Application developers can affect security through the code they write. Static and
dynamic analysis tools, peer review, and testing can all help to identify insecurities
added during development. This all applies for containerized applications just as it
does without containers. But since this book is concerned with containers, let’s move
on to discussing the potential for weaknesses that can be introduced at the point
where you build a container image.

Build-Time Security
The build step takes a Dockerfile and converts it into a container image. Within that
step, there are a number of potential security risks.

Provenance of the Dockerfile
The instructions for building an image come from a Dockerfile. Each stage of the
build involves running one of these instructions, and if a bad actor is able to modify
the Dockerfile, it’s possible for them to take malicious actions, including:

• adding malware or cryptomining software into the image
• accessing build secrets
• enumerating the network topology accessible from the build infrastructure
• attacking the build host

It may seem obvious, but the Dockerfile (like any source code) needs appropriate
access controls to protect against attackers adding malicious steps into the build.

The contents of the Dockerfile also have a huge bearing on the security of the image
that the build produces. Let’s turn to some practical steps you can take in the Docker‐
file to improve image security.

74 | Chapter 6: Container Images

Dockerfile Best Practices for Security
These recommendations all improve the security of the image and reduce the chances
that an attacker can compromise containers running from this image:

Base image
The first line of the Dockerfile is a FROM instruction indicating a base image that
the new image is built from.

• Refer to an image from a trusted registry (see “Image Storage Security” on
page 77).

• Arbitrary third-party base images might include malicious code, so some
organizations mandate the use of preapproved or “golden” base images.

• The smaller the base image, the less likely that it includes unnecessary code,
and hence the smaller the attack surface. Consider building from scratch (a
completely empty image suitable for standalone binaries) or using a minimal
base image such as distroless. Smaller images also have the benefit of being
quicker to send over the network.

• Be thoughtful about using a tag or a digest to reference the base image. The
build will be more reproducible if you use a digest, but it means you are less
likely to pick up new versions of a base image that might include security
updates. (That said, you should pick up missing updates through a vulnera‐
bility scan of your complete image.)

Use multi-stage builds
The multi-stage build is a way of eliminating unnecessary contents in the final
image. An initial stage can include all the packages and toolchain required to
build an image, but a lot of these tools are not needed at runtime. As an example,
if you write an executable in Go, it needs the Go compiler in order to create an
executable program. The container that runs the program doesn’t need to have
access to the Go compiler. In this example, it would be a good idea to break the
build into a multi-stage build: one stage does the compilation and creates a
binary executable; the next stage just has access to the standalone executable. The
image that gets deployed has a much smaller attack surface; a nonsecurity benefit
is that the image itself will also be smaller, so the time to pull the image is
reduced.

Capital One has several multi-stage build examples for node appli‐
cations on its blog, showing how you can even run tests as different
steps within a multi-stage build without impacting the contents of
the final image.

Build-Time Security | 75

https://oreil.ly/kaUEc
https://oreil.ly/k34z-
https://oreil.ly/CRMuY

Non-root USER
The USER instruction in a Dockerfile specifies that the default user identity for
running containers based on this image isn’t root. If you don’t want all your con‐
tainers running as root, specify a non-root user in all your Dockerfiles.

RUN commands
Let’s be absolutely clear—a Dockerfile RUN command lets you run any arbitrary
command. If an attacker can compromise the Dockerfile with the default security
settings, that attacker can run any code of their choosing. If you have any reason
not to trust people who can run arbitrary container builds on your system, I can’t
think of a better way of saying this: you have given them privileges for remote
code execution. Make sure that privileges to edit Dockerfiles are limited to trus‐
ted members of your team, and pay close attention to code reviewing these
changes. You might even want to institute a check or an audit log when any new
or modified RUN commands are introduced in your Dockerfiles.

Volume mounts
Particularly for demos or tests, we often mount host directories into a container
through volume mounts. As you will see in Chapter 9, it’s important to check that
Dockerfiles don’t mount sensitive directories like /etc or /bin into a container.

Don’t include sensitive data in the Dockerfile
We’ll discuss sensitive data and secrets in more detail in Chapter 12, but for now
please understand that including credentials, passwords, or other secret data in
an image makes it easier for those secrets to be exposed.

Avoid setuid binaries
As discussed in Chapter 2, it’s a good idea to avoid including executable files with
the setuid bit, as these could potentially lead to privilege escalation.

Avoid unnecessary code
The smaller the amount of code in a container, the smaller the attack surface.
Avoid adding packages, libraries, and executables into an image unless they are
absolutely necessary. For the same reason, if you can base your image on the
scratch image or one of the distroless options, you’re likely to have dramatically
less code—and hence less vulnerable code—in your image.

Include everything that your container needs
If the previous point exhorted you to exclude superfluous code from a build, this
point is a corollary: do include everything that your application needs to operate.
If you allow for the possibility of a container installing additional packages at
runtime, how will you check that those packages are legitimate? It’s far better to
do all the installation and validation when the container image is built and create
an immutable image. See “Immutable Containers” on page 87 for more on why
this is a good idea.

76 | Chapter 6: Container Images

Following these recommendations will help you build images that are harder to
exploit. Now let’s turn to the risk that an attacker will attempt to find weaknesses in
your container build system.

Attacks on the Build Machine
The machine that builds the image is a concern for two main reasons:

• If an attacker can breach the build machine and run code on it, can they reach
other parts of your system? As you saw in “The Dangers of docker build” on page
68, there are reasons to explore using a build tool that doesn’t require a privileged
daemon process.

• Can an attacker influence the outcome of a build so that you end up building,
and ultimately running, malicious images? Any unauthorized access that inter‐
feres with a Dockerfile’s instructions or that triggers unexpected builds can have
disastrous consequences. For example, if an attacker can influence the code that’s
built, they could insert a backdoor into containers that run on your production
deployment.

Given that your build machines create the code that you will ultimately run in your
production cluster, it’s critical to harden them against attack as if they were as impor‐
tant as the production cluster itself. Reduce the attack surface by eliminating unnec‐
essary tools from build machines. Restrict direct user access to the machines, and
protect them from unauthorized network access using VPCs and firewalls.

It is a good idea to run builds on a separate machine or cluster of machines from the
production environment to limit the possible effects of a host attack from within a
build. Limit network and cloud service access from this host to prevent an attacker
from accessing other elements of your deployment.

Image Storage Security
Once the image is built it needs to be stored in a registry. If an attacker can replace or
modify an image, this results in you running code of their choosing.

Running Your Own Registry
Many organizations maintain their own registries or use managed registries from
their cloud provider and require that only images from those permitted registries can
be used. Running your own registry (or your own instance of a managed registry)
gives you more control and visibility over who can push and pull images. It also
reduces the possibility of a DNS attack that allows an attacker to spoof the registry
address. If the registry lives within a Virtual Private Cloud (VPC), it is highly unlikely
that an attacker can do this.

Image Storage Security | 77

Care should be taken to restrict direct access to the registry’s storage media. For
example, a registry running in AWS might use S3 to store images, and the S3
bucket(s) should have restrictive permissions so that a bad actor can’t directly access
stored image data.

Signing Images
Image signing associates an identity with an image (in much the same way as certifi‐
cates are signed, which is covered in Chapter 11).

Image signing is quite complex, so it’s unlikely that this is something you want to
build for yourself. Various registries implement image signing based on the Notary
implementation of the TUF (The Update Framework) specification. Notary has a rep‐
utation for being difficult to use, so it’s exciting that as I write, most if not all of the
major cloud providers are getting involved with version 2 of this project.

Another project that addresses concerns about the supply chain for container images
is in-toto. This framework ensures that each of an expected set of build steps ran
completely, produced the correct output given the correct input, and was performed
in the right order by the right people. Multiple steps are chained together, with in-
toto carrying security-related metadata from each step through the process. The
result is to ensure that software in production is verifiably running the same code as
the developer shipped from their laptop.

What if you want to use a container image from a third party, either directly as an
application or as a base image in your builds? You can take a signed image directly
from the software vendor or from another trusted source, perhaps testing the image
yourself before storing it in your own registry.

Image Deployment Security
The main security concern at deployment time is ensuring that the correct image gets
pulled and run, although there are additional checks you might want to make
through what is called admission control.

Deploying the Right Image
As you saw in “Identifying Images” on page 72, container image tags are not immuta‐
ble—they can be moved to different versions of the same image. Referring to an
image by its digest, rather than by tag, can help ensure that the image is the version
that you think it is. However, if your build system tags images with semantic version‐
ing and this is strictly adhered to, this may be sufficient and easier to manage since
you don’t necessarily have to update the image reference for every minor update.

78 | Chapter 6: Container Images

https://oreil.ly/fMD6d
https://oreil.ly/fMD6d
https://in-toto.io/

If you refer to images by tag, you should always pull the latest version before running
in case there has been an update. Fortunately, this is relatively efficient since the
image manifest is retrieved first, and image layers have to be retrieved only if they
have changed.

In Kubernetes, this is defined by the imagePullPolicy. An image policy to pull every
time is unnecessary if you refer to images by digest, since any update would mean
you have to change the digest.

Depending on your risk profile, you may also want to check the provenance of the
image by checking for an image signature managed by a tool like the aforementioned
Notary.

Malicious Deployment Definition
When you are using a container orchestrator, there typically are configuration files—
YAML for Kubernetes, for instance—that define the containers that make up each
application. It’s just as important to verify the provenance of these configuration files
as it is to check the images themselves.

If you download YAML from the internet, please check it very carefully before run‐
ning it in your production cluster. Be aware that any small variations—such as the
replacement of a single character in a registry URL—could result in a malicious
image running on your deployment.

Admission Control
This is another topic that strays beyond the scope of pure container security, but I
want to introduce the idea of admission control here because it’s a good place to vali‐
date many of the ideas discussed earlier in this chapter.

An admission controller can perform checks at the point where you are about to
deploy a resource into a cluster. In Kubernetes, admission control can evaluate any
kind of resource against policies, but for the purposes of this chapter, I will just con‐
sider an admission controller that is checking whether to permit a container based on
a particular container image. If the admission control checks fail, the container does
not get run.

Admission controllers can perform several vital security checks on the container
image before it is instantiated into a running container:

• Has the image been scanned for vulnerabilities/malware/other policy checks?
• Does the image come from a trusted registry?
• Is the image signed?
• Is the image approved?

Image Deployment Security | 79

• Does the image run as root?

These checks ensure that no one can bypass checks earlier in the system. For example,
there is little advantage in introducing vulnerability scanning into your CI pipeline if
it turns out that people can specify deployment instructions that refer to images that
haven’t been scanned.

GitOps and Deployment Security
GitOps is a methodology in which all the configuration information about the state of
a system is held under source control, just as the application source code is. When a
user wants to make an operational change to the system, they don’t apply commands
directly but instead check in the desired state in code form (for example, in YAML
files for Kubernetes). An automated system called the GitOps operator makes sure
that the system is updated to reflect the latest state as defined under code control.

This impacts security in significantly beneficial ways. Users no longer need direct
access to the running system because everything is done at arm’s length via the source
code control system (typically Git, as the name implies). As shown in Figure 6-3, user
credentials allow access to the source control system, but only the automated GitOps
operator has permissions for modifying the running system. Because Git records
every change, there is an audit trail for every operation.

Figure 6-3. GitOps

Summary
You have seen how the container runtime needs a root filesystem and some configu‐
ration information. You can override the config using parameters that can be passed
in at runtime or configured in Kubernetes YAML. Some of these configuration set‐
tings have a bearing on application security. There also will be plenty of opportunities

80 | Chapter 6: Container Images

to introduce malicious code into container images if you don’t follow the best practi‐
ces listed in “Dockerfile Best Practices for Security” on page 75.

The standard container image builders in common use at the time of writing tend to
be privileged and present a number of weak points that you need to harden against
attack, but there are alternative and more secure image builders available and in
development.

At the point where images are deployed, orchestrators and security tools allow for
admission controllers, which present an opportunity to perform security checks on
those images.

Container images encapsulate your application code and any dependencies on third-
party packages and libraries. The next chapter looks at how these dependencies could
include exploitable vulnerabilities and examines tooling to identify and eliminate
those vulnerabilities.

Summary | 81

CHAPTER 7

Software Vulnerabilities in Images

Patching software for vulnerabilities has long been an important aspect of maintain‐
ing the security of deployed code. This is still a relevant problem in the world of con‐
tainers, but as you will see in this chapter, the patching process has been completely
reinvented. But first, let’s cover what software vulnerabilities are and how they are
published and tracked.

Vulnerability Research
A vulnerability is a known flaw in a piece of software that an attacker can take advan‐
tage of to perform some kind of malicious activity. As a general rule, you can assume
that the more complex a piece of software is, the more likely it is to have flaws, some
of which will be exploitable.

When there is a vulnerability in a common piece of software, attackers may be able to
take advantage of it wherever it is deployed, so there is an entire research industry
devoted to finding and reporting new vulnerabilities in publicly available software,
especially operating system packages and language libraries. You have probably heard
of some of the most devastating vulnerabilities, like Shellshock, Meltdown, and
Heartbleed, which get not just a name but sometimes even a logo. These are the rock
stars of the vulnerability world, but they are a tiny fraction of the thousands of issues
that get reported every year.

Once a vulnerability is identified, the race is on to get a fix published so that users can
deploy that fix before attackers take advantage of the issue. If new issues were
announced to the public straightaway, this would create a free-for-all for attackers to
take advantage of the problem. To avoid this, the concept of responsible security dis‐
closures has been established. The security researcher who finds a vulnerability con‐
tacts the developer or vendor of the software in question. Both parties agree on a

83

timeframe after which the researcher can publish their findings. There is some posi‐
tive pressure here for the vendor to make efforts to provide a fix in a timely fashion,
as it’s better for both the vendor and its users that a fix is available before publication.

A new issue will get a unique identifier that begins with “CVE,” which stands for
Common Vulnerabilities and Exposures, followed by the year. For example, the Shell‐
Shock vulnerability was discovered in 2014 and is officially referred to as
CVE-2014-6271. The organization that administers these IDs is called MITRE, and it
oversees a number of CVE Numbering Authorities (CNAs) that can issue CVE IDs
within certain scopes. Some large software vendors—for example, Microsoft, Red
Hat, and Oracle—are CNAs entitled to assign IDs for vulnerabilities within their own
products. GitHub became a CNA toward the end of 2019.

These CVE identifiers are used in the National Vulnerability Database (NVD) to keep
track of the software package and versions that are affected by each vulnerability. At
first glance, you might be tempted to think that’s the end of the story—there’s a list of
all the package versions that are affected, so if you have one of those versions, you are
exposed. Unfortunately, it’s not as simple as that, because depending on the Linux dis‐
tribution you’re using, it might have a patched version of the package.

Vulnerabilities, Patches, and Distributions
Let’s take a look at ShellShock as an example. This was a critical vulnerability that
affected the GNU bash package, and the NVD’s page for CVE-2014-6271 has a long
list of vulnerable versions ranging from 1.14.0 to 4.3. If you’re running a very old
installation of Ubuntu 12.04 and you found that your server has bash version
4.2-2ubuntu2.2, you might think that it is vulnerable because it’s based on bash 4.2,
which is included in the NVD’s list for ShellShock.

In fact, according to the Ubuntu security advisory for the same vulnerability, that
exact version has the fix for the vulnerability applied, so it’s safe. The Ubuntu main‐
tainers decided that rather than require everyone on 12.04 to upgrade to a whole new
minor version of bash, they would apply the patch for the vulnerability and make that
patched version available.

To get a real picture of whether the packages installed on a server are vulnerable or
not, you would need to reference not just the NVD but also the security advisories
that apply to your distribution.

So far this chapter has considered packages (like bash in the preceding example) that
are distributed in binary form through package managers such as apt, yum, rpm, or
apk. These packages are shared across all the applications in a filesystem, and on a
server or virtual machine the fact that they are shared can cause no end of problems:
one application may depend on a certain version of a package that turns out to be
incompatible with another application that you want to run on the same machine.

84 | Chapter 7: Software Vulnerabilities in Images

https://mitre.org
https://nvd.nist.gov
https://oreil.ly/XGgEb
https://oreil.ly/IEUqF

This issue of dependency management is one of the problems that containers can
address by having a separate root filesystem for each container.

Application-Level Vulnerabilities
There are also vulnerabilities to be found at the application level. Most applications
use third-party libraries that are typically installed using a language-specific package
manager. Node.js uses npm, Python uses pip, Java uses Maven, and so on. The third-
party packages installed by these tools are another source of potential vulnerabilities.

In compiled languages like Go, C, and Rust, your third-party dependencies could be
installed as shared libraries, or they could be linked into your binary at build time.

A standalone binary executable by definition (through the word “standalone”) has no
external dependencies. It may have dependencies on third-party libraries or packages,
but these are built into the executable. In this case you have the option of creating a
container image based on the scratch (empty) base image, which holds nothing but
your binary executable.

If an application doesn’t have any dependencies, it can’t be scanned for published
package vulnerabilities. It could still have flaws that render it exploitable by attackers,
which we will consider in “Zero-Day Vulnerabilities” on page 93.

Vulnerability Risk Management
Dealing with software vulnerabilities is an important aspect of risk management. It’s
very likely that a deployment of any nontrivial software will include some vulnerabili‐
ties, and there is a risk that systems will be attacked through them. To manage this
risk, you need to be able to identify which vulnerabilities are present and assess their
severity, prioritize them, and have processes in place to fix or mitigate these issues.

Vulnerability scanners automate the process of identifying vulnerabilities. They pro‐
vide information about how serious each issue is and about the software package ver‐
sion in which a fix was applied (if a fix has been made available).

Vulnerability Scanning
If you search the internet, you will find a huge range of vulnerability scanning tools
encompassing various techniques, including port scanning tools like nmap and nessus
that attempt to find vulnerabilities on a live running system by probing it from out‐
side. This is a valuable approach, but it’s not what we are considering in this chapter.
Here, we are more interested in tools that help you find vulnerabilities by examining
the software that is installed in a root filesystem.

Application-Level Vulnerabilities | 85

To identify which vulnerabilities are present, the first task is to establish what soft‐
ware is present. Software gets installed through several different mechanisms:

• The root filesystem starts from a distribution of a Linux root filesystem, which
could have vulnerabilities within it.

• There could be system packages installed by a Linux package manager like rpm or
apk, and language-specific packages installed by tools like pip or RubyGems.

• You might have installed some software directly using wget, curl, or even FTP.

Some vulnerability scanners will query package managers to get a list of the installed
software. If you’re using one of those tools, you should avoid installing software
directly as it won’t be scanned for vulnerabilities.

Installed Packages
As you have seen in Chapter 6, each container image could include a Linux distribu‐
tion, possibly with some packages installed, along with its application code. There
could be many running instances of each container, each of which has its own copy of
the container image filesystem, including any vulnerable packages that might be
included therein. This is illustrated in Figure 7-1, where there are two instances of
container X and one instance of container Y. In addition, the illustration shows some
packages installed directly onto the host machine.

Figure 7-1. Packages on host and in containers

Installing packages directly onto hosts is nothing new—in fact, it is exactly these
packages that system administrators have traditionally had to patch for security rea‐
sons. This was often achieved by simply SSH-ing into each host and installing the
patched package. In the cloud native era, this is frowned upon, because manually
modifying the state of a machine in this way means that it can’t be automatically re-
created in the same state. Instead, it’s better either to build a new machine image with
the updated packages or to update the automation scripts used to provision images so
that new installations include the updated packages.

86 | Chapter 7: Software Vulnerabilities in Images

Container Image Scanning
To know whether your deployment is running containers with vulnerable software,
you need to scan all the dependencies within those containers. There are some differ‐
ent approaches you could take to achieve this.

Imagine a tool that can scan each running container on a host (or across a deploy‐
ment of multiple hosts). In today’s cloud native deployments, it’s common to see hun‐
dreds of instances of containers initiated from the same container image, so a scanner
that takes this approach would be very inefficient, looking at the same dependencies
hundreds of times. It’s far more efficient to scan the container image from which
these containers were derived.

However, this approach relies on the containers running only the software that was
present in the container image and nothing else. The code running in each container
must be immutable. Let’s see why it’s a good idea to treat containers as immutable in
this way.

Immutable Containers
There is (usually) nothing to stop a container from downloading additional software
into its filesystem after it starts running. Indeed, in the early days of containers, it was
not uncommon to see this pattern, as it was considered a way to update the container
to the latest version of software without having to rebuild the container image. If this
idea hadn’t occurred to you before now, please try to wipe it from your memory
straightaway, as it’s generally considered a very bad idea for several reasons, including
these:

• If your container downloads code at runtime, different instances of the container
could be running different versions of that code, but it would be difficult to know
which instance is running what version. Without a stored version of that contain‐
er’s code, it can be hard (or even impossible) to re-create an identical copy. This is
a problem when trying to reproduce field issues.

• It’s harder to control and ensure the provenance of the software running in each
container if it could be downloaded at any time and from anywhere.

• Building a container image and storing it in a registry is very simple to automate
in a CI/CD pipeline. It’s also very easy to add additional security checks—like
vulnerability scanning or verification of the software supply chain—into the
same pipeline.

A lot of production deployments treat containers as immutable simply as a best prac‐
tice, but without enforcement. There are tools that can automatically enforce con‐
tainer immutability by preventing an executable from running in a container if that

Container Image Scanning | 87

executable wasn’t present in the image when it was scanned. This is known as drift
prevention and is discussed further in Chapter 13.

Another way to achieve immutability is to run the container with a read-only filesys‐
tem. You can mount a writable temporary filesystem if the application code needs
access to writable local storage. This may require changes to the application so that it
writes only to this temporary filesystem.

By treating your containers as immutable, you only need to scan each image to find
all the vulnerabilities that might be present in all the containers. But unfortunately,
scanning just once at a single point in time may not be sufficient. Let’s consider why
scans have to happen on a regular basis.

Regular Scanning
As discussed at the beginning of this chapter, there is a body of security researchers
around the world who are finding previously undiscovered vulnerabilities in existing
code. Sometimes they find issues that have been present for years. One of the best-
known examples of this is HeartBleed, a critical vulnerability in the widely used
OpenSSL package that exploited a problem in the heartbeat request and response
flow that keeps a TLS connection alive. The vulnerability was uncovered in April
2014, and it allowed an attacker to send a crafted heartbeat request that asked for a
small amount of data in a large buffer. The absence of a length check in the OpenSSL
code meant that the response would supply the small amount of data, followed by
whatever happened to be in active memory to fill up the rest of the response buffer.
That memory might be holding sensitive data, which would be returned to the
attacker. Serious data breaches that involved the loss of passwords, Social Security
numbers, and medical records were subsequently traced back to the Heartbleed
vulnerability.

Cases as serious as HeartBleed are rare, but it makes sense to assume that if you’re
using a third-party dependency, at some point in the future a new vulnerability will
be uncovered in it. And unfortunately there is no way of knowing when that will hap‐
pen. Even if your code doesn’t change, there is a possibility that new vulnerabilities
have been uncovered within its dependencies.

Regularly rescanning container images allows the scanning tool to check the contents
against its most up-to-date knowledge about vulnerabilities (from the NVD and
other security advisory sources). A very common approach is to rescan all deployed
images every 24 hours, in addition to scanning new images as they are built, as part of
an automated CI/CD pipeline.

88 | Chapter 7: Software Vulnerabilities in Images

Scanning Tools
There are numerous container image scanning tools, from open source implementa‐
tions like Trivy, Clair, and Anchore to commercial solutions from companies like
JFrog, Palo Alto, and Aqua. Many container image registry solutions, such as Docker
Trusted Registry and the CNCF project Harbor, as well as the registries provided by
the major public clouds, include scanning as a built-in feature.

Unfortunately, the results you get from different scanners vary considerably, and it’s
worth considering why.

Sources of Information
As discussed earlier in this chapter, there are various sources for vulnerability infor‐
mation, including per-distribution security advisories. Red Hat even has more than
one—its OVAL feed includes only vulnerabilities for which there is a fix, not those
that have been published but are not yet fixed.

If a scanner doesn’t include data from a distribution’s security feed and is relying just
on the underlying NVD data, it is likely to show a lot of false positives for images
based on that distribution. If you prefer a particular Linux distribution for your base
images, or a solution like distroless, make sure that your image scanner supports it.

Out-of-Date Sources
Occasionally the distribution maintainers change the way they are reporting vulnera‐
bilities. This happened fairly recently with Alpine, which stopped updating its adviso‐
ries at alpine-secdb in favor of a new system at aports. As of this writing, some
scanners are still only reporting data from the old Alpine feed, which hasn’t been
updated in several months.

Won’t Fix Vulnerabilities
Sometimes the maintainers of a distribution will decide that they are not going to fix
a particular vulnerability (perhaps because it’s a negligible risk and the fix is nontriv‐
ial, or because the maintainers have concluded that interactions with other packages
on their platform mean the vulnerability is impossible to exploit).

Given that the maintainers are not going to provide a fix, it becomes something of a
philosophical question for scanner tool developers: considering it’s not actionable, do
you show the vulnerability in the results or not? At Aqua we heard from some of our
customers that they don’t want to see this category of result, so we provide an option
to give the user the choice. It just goes to show that there is no such thing as a “cor‐
rect” set of results when it comes to vulnerability scanning.

Scanning Tools | 89

https://oreil.ly/SxKQT
https://oreil.ly/avK-2
https://oreil.ly/7rFFt
https://docs.docker.com/ee/dtr
https://docs.docker.com/ee/dtr
https://goharbor.io
https://oreil.ly/jE4ad
https://oreil.ly/jE4ad
https://oreil.ly/lVHll
https://oreil.ly/J1-YA

Subpackage Vulnerabilities
Sometimes a package is installed and reported by the package manager, but in fact it
consists of one or more subpackages. A good example of this is the bind package on
Ubuntu. Sometimes this is installed with only the docs subpackage, which, as you
might imagine, consists only of documentation. Some scanners assume that if the
package is reported, then the whole package (including all its possible subpackages) is
installed. This can result in false positives where the scanner reports vulnerabilities
that can’t be present because the guilty subpackage is not installed.

Package Name Differences
The source name for a package may include binaries that have completely different
names. For example, in Debian, the shadow package includes binaries called login,
passwd, and uidmap. If the scanner doesn’t take this into account, it can result in false
negative results.

Additional Scanning Features
A few image scanners detect other issues in addition to vulnerabilities, such as:

• Known malware within the image
• Executables with the setuid bit (which, as you saw in Chapter 2, can allow privi‐

lege escalation)
• Images configured to run as root
• Secret credentials such as tokens or passwords
• Sensitive data in the form of credit card or Social Security numbers or something

similar

Scanner Errors
As I hope this section of the book has made clear, reporting on vulnerabilities is not
as straightforward as you might at first imagine. So it’s very likely that in any scanner
you will find cases in which there is a false positive or false negative due to a bug in
the scanner or a flaw in the security advisory data feeds that the scanner reads.

That said, it’s better to have a scanner in place than not. If you don’t have a scanner in
place and use it regularly, you really have no way of knowing whether your software is
prey to an easy exploit. Time is no healer in this regard—the critical Shellshock
vulnerability was discovered in code that was decades old. If you rely on complex
dependencies, you should expect that at some point some vulnerabilities will be
found within them.

90 | Chapter 7: Software Vulnerabilities in Images

https://oreil.ly/SpPXQ

False positives can be irritating, but some tools will let you whitelist individual vul‐
nerability reports so that you can decide for yourself whether you want to accept
them going forward.

Assuming that you are convinced that a scanner would be a good thing to include in
your processes, let’s turn to the possible options for incorporating it into your team’s
workflow.

Scanning in the CI/CD Pipeline
Consider a CI/CD pipeline from left to right, with “writing code” at the far left and
“deploying to production” at the far right, as in Figure 7-2. It’s better to remove issues
as early as possible in this pipeline because doing so is quicker and cheaper, in exactly
the same way that finding and fixing bugs is much more time-consuming and expen‐
sive after deployment than during development.

In a traditional host-based deployment, all the software running on a host shares the
same packages. The security team in an organization would typically be responsible
for updating those packages with security fixes on a regular basis. This activity is
largely decoupled from the development and testing stages of each application’s life
cycle, and it’s way over to the right in the deployment pipeline. There often can be
issues where different applications share the same package but need different ver‐
sions, requiring careful dependency management and, in some cases, code changes.

In contrast, as you saw in Chapter 6, in a container-based deployment each image
includes its own dependencies, so different application containers can have their own
versions of each package as needed. There is no need to worry about compatibility
between app code and the set of dependencies they use. This, plus the existence of
container image scanning tools, allows vulnerability management to “shift left” in the
pipeline.

Teams can include vulnerability scanning as an automated step. When a vulnerability
needs to be addressed, developers can do this by updating and rebuilding their appli‐
cation container image to include the patched version. Security teams no longer need
to do this manually.

There are a few places where scanning can be introduced, as illustrated in Figure 7-2.

Scanning in the CI/CD Pipeline | 91

Figure 7-2. Scanning for vulnerabilities in the CI/CD pipeline

Developer scanning
If you use a scanner that is easy to deploy on the desktop, individual developers
can scan their local image builds for issues, giving them the chance to fix them
before they push to a source code repository.

Scan on build
Consider incorporating a scanning step immediately after the container image is
built in your pipeline. If the scan reveals vulnerabilities above a certain severity
level, you can fail the build to ensure that it never gets deployed. Figure 7-3
shows the output from an AWS CodeBuild project that builds an image from a
Dockerfile and then scans it. In this example, a high-severity vulnerability was
detected, and this has caused the build to fail.

Figure 7-3. Example of failing a build when a high-severity vulnerability is detected

92 | Chapter 7: Software Vulnerabilities in Images

Registry scans
After the image has been built, the pipeline typically pushes it to an image regis‐
try. It’s a good idea to regularly scan images in case a new vulnerability has been
found in a package that’s used by an image that hasn’t been rebuilt in a while.

The following articles have useful details on how to incorporate
various scanners within different CI/CD pipeline solutions:

• “Scanning images with Trivy in an AWS CodePipeline”
• “Container Scanning” on GitLab
• “Docker Image Scanning in your Codefresh Pipeline with

Aqua”

You probably don’t want to leave the scan step until the point of deployment, for the
simple reason that you would scan every instance of the container as it gets instanti‐
ated, even though these instances all come from the same container image. Assuming
that you can treat the container as immutable, it’s the image and not the container
that you should scan.

Prevent Vulnerable Images from Running
It’s one thing to use a scanner to establish whether an image has any significant vul‐
nerabilities, but you also need to make sure that vulnerable images don’t get
deployed. This can be done as part of the admission control step that we considered
in “Admission Control” on page 79, as indicated in Figure 7-2. If there isn’t a check to
ensure that only scanned images can be deployed, it would be relatively easy to bypass
the vulnerability scanner.

Generally speaking, commercial vulnerability scanners are sold as part of a broader
platform that also correlates admission control with scan results. In a Kubernetes
deployment, you can use Open Policy Agent to enforce custom admission control
checks, which could include checking that images have passed their vulnerability
scan. Google is also working on this capability as part of the Kritis project.

So far in this chapter we have discussed known vulnerabilities in dependencies that
your application code relies on. But this misses out on an important category of vul‐
nerabilities called zero days.

Zero-Day Vulnerabilities
“Vulnerability Research” on page 83 discussed how there are security researchers
around the world looking for new ways to exploit existing software. It stands to

Prevent Vulnerable Images from Running | 93

https://oreil.ly/6ANm9
https://oreil.ly/okLcm
https://oreil.ly/P5_59
https://oreil.ly/P5_59
https://oreil.ly/PIhQu

reason that when a new vulnerability is found, some amount of time passes before a
fix is published that addresses the problem. Until a fix is made available, the vulnera‐
bility is known as a zero-day or 0-day vulnerability because no days have passed since
the fix was published. (It is not so long since it was considered acceptable to wait for
up to, say, thirty days before applying a security patch. The mind boggles at how
many attacks could be attempted in this length of time.)

If it’s possible for a third-party library to have a bug that an attacker can exploit, the
same is true for any code—including the applications that your team is writing. Peer
review, static analysis, and testing can all help to identify security issues in your code,
but there’s a chance that some issues will slip through. Depending on your organiza‐
tion and the value of its data, there may be bad actors in the world for whom it’s
worthwhile trying to find these flaws.

The good news is that if a vulnerability isn’t published, the vast majority of potential
attackers in the world don’t know about it, any more than you do.

The bad news is that you can bet on the fact that sophisticated attackers and nation-
state organizations have libraries of as-yet-unpublished vulnerabilities. We know this
to be true from Edward Snowden’s revelations.

No amount of matching against a vulnerability database is going to be able to identify
a vulnerability that hasn’t been published yet. Depending on the type and severity of
the exploit, sandboxing as described in Chapter 8 may well protect your application
and your data. Your best hope for defending against zero-day exploits is to detect and
prevent anomalous behavior at runtime, which I will discuss in Chapter 13.

Summary
In this chapter, you read about vulnerability research and the CVE identifiers that are
assigned to different vulnerability issues. You saw why it’s important to have
distributions-specific security advisory information and to not just rely on the NVD.
You know why different scanners can produce different results, so you are better
armed to make a decision about which tools to use. Whichever scanner you pick, I
hope you’re now convinced that you need container image scanning built into your
CI/CD pipeline.

94 | Chapter 7: Software Vulnerabilities in Images

https://oreil.ly/Yz1tJ

CHAPTER 8

Strengthening Container Isolation

Back in Chapters 3 and 4, you saw how containers create some separation between
workloads even though they are running on the same host. In this chapter, you’ll
learn about some more advanced tools and techniques that can be used to strengthen
the isolation between workloads.

Suppose you have two workloads and you don’t want them to be able to interfere with
each other. One approach is to isolate them so that they are unaware of each other,
which at a high level is really what containers and virtual machines are doing.
Another approach is to limit the actions those workloads can take so that even if one
workload is somehow aware of the other, it is unable to take actions to affect that
workload. Isolating an application so that it has limited access to resources is known
as sandboxing.

When you run an application as a container, the container acts as a convenient object
for sandboxing. Every time you start a container, you know what application code is
supposed to be running inside that container. If the application were to be compro‐
mised, the attacker might try to run code that is outside that application’s normal
behavior. By using sandboxing mechanisms, we can limit what that code can do,
restricting the attacker’s ability to affect the system. The first mechanism we’ll con‐
sider is seccomp.

Seccomp
In “System Calls” on page 13, you saw that system calls provide the interface for an
application to ask the kernel to perform certain operations on the application’s behalf.
Seccomp is a mechanism for restricting the set of system calls that an application is
allowed to make.

95

When it was first introduced to the Linux kernel back in 2005, seccomp (for “secure
computing mode”) meant that a process, once it had transitioned to this mode, could
make only a very few system calls:

• sigreturn (return from a signal handler)
• exit (terminate the process)
• read and write, but only using file descriptors that were already open before the

transition to secure mode

Untrusted code could be run in this mode without being able to achieve anything
malicious. Unfortunately, the side effect is that lots of code couldn’t really achieve
anything at all useful in this mode. The sandbox was simply too limited.

In 2012, a new approach called seccomp-bpf was added to the kernel. This uses Berke‐
ley Packet Filters to determine whether or not a given system call is permitted, based
on a seccomp profile applied to the process. Each process can have its own profile.

The BPF seccomp filter can look at the system call opcode and the parameters to the
call to make a decision about whether the call is permitted by the profile. In fact, it’s
slightly more complicated than that: the profile indicates what to do when a syscall
matches a given filter, with possible actions including return an error, terminate the
process, or call a tracer. But for most uses in the world of containers, the profile either
permits a system call or returns an error, so you can think of it as whitelisting or
blacklisting a set of system calls.

This can be very useful in the container world because there are several system calls
that a containerized application really has no business trying to make, except under
extremely unusual circumstances. For example, you really don’t want any of your
containerized apps to be able to change the clock time on the host machine, so it
makes sense to block access to the syscalls clock_adjtime and clock_settime. It’s
unlikely that you want containers to be making changes to kernel modules, so there is
no need for them to call create_module, delete_module, or init_module. There is a
keyring in the Linux kernel, and it isn’t namespaced, so it’s a good idea to block con‐
tainers from making calls to request_key or keyctl.

The Docker default seccomp profile blocks more than 40 of the 300+ syscalls (includ‐
ing all the examples just listed) without ill effects on the vast majority of container‐
ized applications. Unless you have a reason not to do so, it’s a good default profile to
use.

Unfortunately, although it’s used by default in Docker, there is no seccomp profile
applied by default using Kubernetes (even if you’re using Docker as the container
runtime). At least at the time of writing, support for seccomp is an Alpha feature, and
you can apply profiles using annotations on PodSecurityPolicy objects.

96 | Chapter 8: Strengthening Container Isolation

https://oreil.ly/3sNNI
https://oreil.ly/6gIjt

Jess Frazelle uses a seccomp profile to great effect on contained.af
to demonstrate the strength of containers+seccomp isolation—it
hasn’t been breached as of this writing, despite attempts over sev‐
eral years.

You might want to go even further and limit a container to an even smaller group of
syscalls—in an ideal world, there would be a tailored profile for each application that
permits precisely the set of syscalls that it needs. There are a few different possible
approaches to creating this kind of profile:

• You can use strace to trace out all the system calls being called by your applica‐
tion. Jess Frazelle describes how she did this to generate and test the default
Docker seccomp profile in this blog post.

• A more modern way to get the list of systems calls is with an eBPF-based utility.
Bearing in mind that seccomp uses BPF to limit the set of syscalls that are per‐
mitted, it’s no great surprise that you can use eBPF (for “extended Berkeley
Packet Filter”) to get the list of syscalls that it uses. You can use tools like
falco2seccomp or Tracee to list the system calls being generated by a container.

• If creating seccomp profiles yourself seems like a lot of effort, you may wish to
look at commercial container security tools, some of which have the ability to
observe individual workloads in order to automatically generate custom seccomp
profiles.

If you are interested in the underlying technology behind strace,
you might like to watch this talk in which I create a very basic
strace implementation in a few lines of Go.

AppArmor
AppArmor (short for “Application Armor”) is one of a handful of Linux security
modules (LSM) that can be enabled in the Linux kernel. In AppArmor, a profile can
be associated with an executable file, determining what that file is allowed to do in
terms of capabilities and file access permissions. You’ll recall that these were both
covered in Chapter 2. To see whether AppArmor is enabled in your kernel, look in
the file /sys/module/apparmor/parameters/enabled—if you find y, then AppArmor is
enabled.

AppArmor and other LSMs implement mandatory access controls. A mandatory
access control is set by a central administrator, and once set, other users do not have
any ability to modify the control or pass it on to another user. This is in contrast to

AppArmor | 97

https://contained.af/
https://oreil.ly/ROlHh
https://oreil.ly/z5yyT
https://oreil.ly/iw-rL
https://oreil.ly/SV6d-
https://gitlab.com/apparmor

Linux file permissions, which are discretionary access controls, in the sense that if my
user account owns a file, I could grant your user access to it (unless this is overridden
by a mandatory access control), or I could set it as unwritable even by my own user
account to prevent myself from inadvertently changing it. Using mandatory access
controls gives the administrator much more granular control of what can happen on
their system, in a way that individual users can’t override.

AppArmor includes a “complain” mode in which you can run your executable against
a profile and any violations get logged. The idea is that you can use these logs to
update the profile, with the goal of eventually seeing no new violations, at which
point you start to enforce the profile.

To create AppArmor profiles for containers, you should consider
using bane.

Once you have a profile, you install it under the /etc/apparmor directory and run a
tool called apparmor_parser to load it. See which profiles are loaded by looking
at /sys/kernel/security/apparmor/profiles.

Running a container using docker run --security-opt="apparmor:<profile

name>" ... will constrain the container to the behaviors permitted by the profile.
Containerd and CRI-O also support AppArmor.

There is a default Docker AppArmor profile, but be aware that, as with the seccomp
one, Kubernetes does not use it by default. You will need to add annotations to use
any AppArmor profile on a container in a Kubernetes pod.

SELinux
SELinux, or “Security-Enhanced Linux,” is another type of LSM, this time developed
by Red Hat, although history (or at least Wikipedia) relates that it has its roots in
projects by the US National Security Agency. If you’re running a Red Hat distribution
(RHEL or Centos) on your hosts, there is a good chance that SELinux is enabled
already.

SElinux lets you constrain what a process is allowed to do in terms of its interactions
with files and other processes. Each process runs under an SELinux domain—you can
think of this as the context that the process is running in—and every file has a type.
You can inspect the SELinux information associated with each file by running ls -lZ,
and similarly you can add -Z to the ps command to get the SELinux detail for
processes.

98 | Chapter 8: Strengthening Container Isolation

https://oreil.ly/Xe7YZ
https://oreil.ly/_l1O8
https://oreil.ly/gV7_e

A key distinction between SELinux permissions and regular DAC Linux permissions
(as seen in Chapter 2) is that in SELinux, permissions have nothing to do with the
user identity—they are described entirely by labels. That said, they work together, so
an action has to be permitted by both DAC and SELinux.

Every file on the machine has to be labeled with its SELinux information before you
can enforce policies. These policies can dictate what access a process of a particular
domain has to files of a particular type. In practical terms, this means that you can
limit an application to have access only to its own files and prevent any other pro‐
cesses from being able to access those files. In the event that an application becomes
compromised, this limits the set of files that it can affect, even if the normal discre‐
tionary access controls would have permitted it. When SELinux is enabled, it has a
mode in which policy violations are logged rather than enforced (similar to what we
saw in AppArmor).

Creating an effective SELinux profile for an application takes in-depth knowledge of
the set of files that it might need access to, in both happy and error paths, so that task
may be best left to the app developer. Some vendors provide profiles for their
applications.

If you are interested in learning more about SELinux, there is a
good tutorial on the subject by DigitalOcean, or you might prefer
Dan Walsh’s visual guide. Project Atomic provides details on how
SELinux interacts with Docker.

The security mechanisms we have seen so far—seccomp, AppArmor, and SELinux—
all police a process’s behavior at a low level. Generating a complete profile in terms of
the precise set of systems calls or capabilities needed can be a difficult job, and a small
change to an application can require a significant change to the profile in order to
run. The administrative overhead of keeping profiles in line with applications as they
change can be a burden, and human nature means there is a tendency either to use
loose profiles or to turn them off altogether. The default Docker seccomp and
AppArmor profiles provide some useful guardrails if you don’t have the resources to
generate per-application profiles.

It’s worth noting, however, that although these protection mechanisms limit what the
user space application can do, there is still a shared kernel. A vulnerability within the
kernel itself, like Dirty COW, would not be prevented by any of these tools.

So far in this chapter you have seen security mechanisms that can be applied to a con‐
tainer to limit what that container is permitted to do. Now let’s turn to a set of sand‐
boxing techniques that fall somewhere between container and virtual machine
isolation, starting with gVisor.

SELinux | 99

https://oreil.ly/2Hx6b
https://oreil.ly/jmhC-
https://oreil.ly/msyOa
https://oreil.ly/qQiJL

gVisor
Google’s gVisor sandboxes a container by intercepting system calls in much the same
way that a hypervisor intercepts the system calls of a guest virtual machine.

According to the gVisor documentation, gVisor is a “user-space kernel,” which strikes
me as a contradiction in terms but is meant to describe how a number of Linux sys‐
tem calls are implemented in user space through paravirtualization. As you saw in
Chapter 5, paravirtualization means reimplementing instructions that would other‐
wise be run by the host kernel.

To do this, a component of gVisor called the Sentry intercepts syscalls from the appli‐
cation. Sentry is heavily sandboxed using seccomp, such that it is unable to access
filesystem resources itself. When it needs to make system calls related to file access, it
off-loads them to an entirely separate process called the Gofer.

Even those system calls that are unrelated to filesystem access are not passed through
to the host kernel directly but instead are reimplemented within the Sentry. Essen‐
tially it’s a guest kernel, operating in user space.

The gVisor project provides an executable called runsc that is compatible with OCI-
format bundles and acts very much like the regular runc OCI runtime that we met in
Chapter 6. Running a container with runsc allows you to easily see the gVisor pro‐
cesses, but if you have an existing config.json file for runc, you will probably need
to regenerate a runsc-compatible version. In the following example I am running the
same bundle for Alpine Linux that I used in “OCI Standards” on page 66:

$ cd alpine-bundle
Store the existing config.json that works with runc
$ mv config.json config.json.runc
Create a config.json file for runsc
$ runsc spec
$ sudo runsc run sh

In a second terminal you can use runsc list to see containers created by runsc:

$ runsc list
ID PID STATUS BUNDLE CREATED OWNER
sh 32258 running /home/vagrant/alpine-bundle 2019-08-26T13:51:21 root

Inside the container, run a sleep command for long enough that you can observe it
from the second terminal. The runsc ps <container ID> shows the processes run‐
ning inside the container:

$ runsc ps sh
UID PID PPID C STIME TIME CMD
0 1 0 0 14:06 10ms sh
0 15 1 0 14:15 0s sleep

100 | Chapter 8: Strengthening Container Isolation

https://gvisor.dev/docs
https://oreil.ly/cMROh

So far, so much as expected, but things get very interesting if you start to look at the
processes from the host’s perspective (the output here was edited to show the interest‐
ing parts):

$ ps fax
 PID TTY STAT TIME COMMAND
 ...
3226 pts/1 S+ 0:00 | _ sudo runsc run sh
3227 pts/1 Sl+ 0:00 | _ runsc run sh
3231 pts/1 Sl+ 0:00 | _ runsc-gofer --root=/var/run/runsc
3234 ? Ssl 0:00 | _ runsc-sandbox --root=/var/run/runsc
3248 ? tsl 0:00 | _ [exe]
3257 ? tl 0:00 | _ [exe]
3266 ? tl 0:00 | _ [exe]
3270 ? tl 0:00 | _ [exe]
 ...

You can see the runsc run process, which has spawned two processes: one is for the
Gofer; the other is runsc-sandbox but is referred to as the Sentry in the gVisor docu‐
mentation. Sandbox has a child process that in turn has three children of its own.
Looking at the process information for these child and grandchild processes from the
host’s perspective reveals something interesting: all four of them are running the
runsc executable. For brevity the following example shows the child and one
grandchild:

$ ls -l /proc/3248/exe
lrwxrwxrwx 1 nobody nogroup 0 Aug 26 14:11 /proc/3248/exe -> /usr/local/bin/runsc
$ ls -l /proc/3257/exe
lrwxrwxrwx 1 nobody nogroup 0 Aug 26 14:13 /proc/3257/exe -> /usr/local/bin/runsc

Notably, none of these processes refers to the sleep executable that we know is run‐
ning inside the container because we can see it with runsc ps. Trying to find that
sleep executable more directly from the host is also unsuccessful:

vagrant@vagrant:~$ sudo ps -eaf | grep sleep
vagrant 3554 3171 0 14:26 pts/2 00:00:00 grep --color=auto sleep

This inability to see the processes running inside the gVisor sandbox is much more
akin to the behavior you see in a regular VM than it is like a normal container. And it
affords extra protection for the processes running inside the sandbox: even if an
attacker gets root access on a host, there is still a relatively strong boundary between
the host and the running processes. Or least there would be, were it not for the runsc
command itself! It offers an exec subcommand that we can use, as root on the host,
to operate inside a running container:

$ sudo runsc exec sh ps
PID USER TIME COMMAND
 1 root 0:00 /bin/sh
 21 root 0:00 sleep 100
 22 root 0:00 ps

gVisor | 101

While this isolation looks very powerful, there are two significant limitations:

• The first is that not all Linux syscalls have been implemented in gVisor. If your
application wants to use any of the unimplemented syscalls, it can’t run inside
gVisor. At the time of this writing, 97 systems were not available in gVisor. This
compares to around 44 syscalls that are blocked by the default Docker seccomp
profile.

• The second is performance. In many cases performance is very close to that
achieved with runc, but if your application makes a lot of system calls, its perfor‐
mance may well be impacted. The gVisor project published a performance guide
to help you explore this in more detail.

Because gVisor reimplements the kernel, it’s large and complex, and that complexity
suggests a relatively high chance of including some vulnerabilities of its own (like this
privilege escalation discovered by Max Justicz).

As you have seen in this section, gVisor provides an isolation mechanism that more
closely resembles a virtual machine than a regular container. However, gVisor affects
only the way that an application accesses system calls. Namespaces, cgroups, and
changing the root are still used to isolate the container.

The rest of this chapter discusses approaches that use virtual machine isolation for
running containerized applications.

Kata Containers
As you’ve seen in Chapter 4, when you run a regular container, the container runtime
starts a new process within the host. The idea with Kata Containers is to run contain‐
ers within a separate virtual machine. This approach gives the ability to run applica‐
tions from regular OCI format container images, with all the isolation of a virtual
machine.

Kata uses a proxy between the container runtime and a separate target host where the
application code runs. The runtime proxy creates a separate virtual machine using
QEMU to run the container on its behalf.

One criticism of Kata Containers is that you have to wait for a virtual machine to
boot up. The folks at AWS have created a lightweight virtual machine that is specifi‐
cally designed for running containers, with much faster startup times than a normal
VM: Firecracker.

102 | Chapter 8: Strengthening Container Isolation

https://oreil.ly/PHsFm
https://oreil.ly/Lt5Ge
https://oreil.ly/Lt5Ge
https://oreil.ly/zqC6i
https://oreil.ly/awCYt
https://katacontainers.io

Firecracker
As you saw in “Disadvantages of Virtual Machines” on page 62, virtual machines are
slow to start, making them unsuitable for the ephemeral workloads that typically run
in containers. But what if you had a virtual machine that boots extremely quickly?
Firecracker is a virtual machine offering the benefits of secure isolation through a
hypervisor and no shared kernel, but with startup times around 100ms, it is much
more suitable for containers. It has the benefit of becoming field-hardened due to its
(as I understand it, gradual) adoption by AWS for its Lambda and Fargate services.

Firecracker is able to start up so fast because its designers have stripped out function‐
ality that is generally included in a kernel but that isn’t required in a container. Enu‐
merating devices is one of the slowest parts of booting a system, but containerized
applications rarely have a reason to use many devices. The main saving comes from a
minimal device model that strips out all but the essential devices.

Firecracker runs in user space, with a REST API for configuring guests to run under
the Firecracker VMM. It uses KVM-based hardware virtualization for its guest oper‐
ating systems, so you can’t run it within, say, a Type 2–based guest OS on your laptop,
unless your combination of hardware and software supports nested virtualization.

There is one last approach to isolation that I’d like to cover in this chapter, and it takes
an even more extreme approach to reducing the size of the guest operating system:
Unikernels.

Unikernels
The operating system that runs in a virtual machine image is a general-purpose offer‐
ing that you can reuse for any application. It stands to reason that apps are unlikely to
use every feature of the operating system. If you were able to drop the unused parts,
there would be a smaller attack surface.

The idea of Unikernels is to create a dedicated machine image consisting of the appli‐
cation and the parts of the operating system that the app needs. This machine image
can run directly on the hypervisor, giving the same levels of isolation as regular
virtual machines, but with a lightweight startup time similar to what we see in
Firecracker.

Every application has to be compiled into a Unikernel image complete with every‐
thing it needs to operate. The hypervisor can boot up this machine in just the same
way that it would boot a standard Linux virtual machine image.

IBM’s Nabla project makes use of Unikernel techniques for containers. Nabla con‐
tainers use a highly restricted set of just seven system calls, with this policed by a sec‐
comp profile. All other system calls from the application get handled within a

Firecracker | 103

https://oreil.ly/ZkPef
https://oreil.ly/W_BRY

Unikernel library OS component. By accessing only a small proportion of the kernel,
Nabla containers reduce the attack surface. The downside is that you need to rebuild
your applications in Nabla container form.

Summary
In this chapter, you have seen that there are a variety of ways to isolate instances of
application code from one another, which look to some degree like what we under‐
stand as a “container”:

• Some options use regular containers, with additional security mechanisms
applied to bolster basic container isolation: seccomp, AppArmor, SELinux. These
are proven and battle-tested but also renowned for how hard they are to manage
effectively.

• There are new solutions that give the isolation of a virtual machine: Firecracker
and Unikernels.

• Finally, there is a third category of sandboxing techniques such as gVisor that fall
somewhere between container and virtual machine isolation.

What’s right for your applications depends on your risk profile, and your decision
may be influenced by the options offered by your public cloud and/or managed solu‐
tion. Regardless of the container runtime you use and the isolation it enforces, there
are ways that a user can easily compromise this isolation. Move on to Chapter 9 to see
how.

104 | Chapter 8: Strengthening Container Isolation

CHAPTER 9

Breaking Container Isolation

In Chapter 4, you saw how a container is constructed and how it gets a limited view
of the machine it is running on. In this chapter, you’ll see how easy it is to configure
containers to run in such a way that this isolation is effectively broken.

Sometimes you will want to do this deliberately, to achieve something specific such as
off-loading networking functionality to a sidecar container. In other circumstances,
the ideas discussed in this chapter could be seriously compromising the security of
your applications!

To start with, let’s talk about what is arguably the most insecure-by-default behavior
in the container world: running as root.

Containers Run as Root by Default
Unless your container image specifies a non-root user or you specify a non-default
user when you run a container, by default the container will run as root. And it’s easy
to confirm that (unless you are set up with user namespaces) this is not just root
inside the container but also root on the host machine.

This example assumes that you are using the docker command
provided by Docker. If you have installed podman, you may have
followed the advice to alias docker so that it actually runs podman
instead. The behavior of podman is quite different with regard to
root users. I’ll come to the differences later in this chapter, but for
now be aware that the following example won’t work with podman.

105

https://podman.io

As a non-root user, run a shell inside an Alpine container using docker and check the
user identity:

$ whoami
vagrant
$ docker run -it alpine sh
/ $ whoami
root

Even though it was a non-root user that ran the docker command to create a con‐
tainer, the user identity inside the identity is root. Now let’s confirm that this is the
same as root on the host by opening a second terminal on the same machine. Inside
the container, run a sleep command:

/ $ sleep 100

In the second window, check the identity of this user:

$ ps -fC sleep
UID PID PPID C STIME TTY TIME CMD
root 30619 30557 0 16:44 pts/0 00:00:00 sleep 100

This process is owned by the root user from the host’s perspective. Root inside the
container is root on the host.

If you’re using runc rather than docker to run containers, a similar demo would be
less convincing because (aside from rootless containers, which we will discuss
shortly) you need to be root on the host to run a container in the first place. This is
because only root has sufficient capabilities to create namespaces, generally speaking.
In Docker, it’s the Docker daemon, running as root, that creates containers on your
behalf.

Under Docker, the fact that containers run as root, even when initiated by a non-root
user, is a form of privilege escalation. In and of itself, it’s not necessarily a problem
that the container is running as root, but it does ring alarm bells when thinking about
security. If an attacker can escape a container that is running as root, they have full
root access to the host, which means free access to everything on the machine. Do
you want to be just one line of defense away from an attacker taking over a host?

Fortunately, it’s possible to run containers as non-root users. You can either specify a
non-root user ID or use the aforementioned rootless containers. Let’s look at both of
these options.

Override the User ID
You can override this at runtime by specifying a user ID for the container.

In runc, you can do this by modifying the config.json file inside the bundle. Change
the process.user.uid, for example, like this:

106 | Chapter 9: Breaking Container Isolation

 ...
 "process": {
 "terminal": true,
 "user": {
 "uid": 5000,
 ...
 }
 ...
 }

Now the runtime will pick up this user ID and use it for the container process:

$ sudo runc run sh
/ $ whoami
whoami: unknown uid 5000
/ $ sleep 100

Despite using sudo to run as root, the user ID for the container is 5000, and you can
confirm this from the host:

$ ps -fC sleep
UID PID PPID C STIME TTY TIME CMD
5000 26909 26893 0 16:16 pts/0 00:00:00 sleep 50

As you saw in Chapter 6, an OCI-compliant image bundle holds both the root filesys‐
tem for an image and the runtime configuration information. This same information
is packed into a Docker image. You can override the user config with the --user
option, like this:

$ docker run -it --user 5000 ubuntu bash
I have no name!@b7ca6ec82aa4:/$

You can change the user ID that is built into a Docker image with the USER command
in its Dockerfile. But the vast majority of container images on public repositories are
configured to use root because they don’t have a USER setting. If there is no user ID
specified, by default your container will run as root.

Root Requirement Inside Containers
There are many commonly used container images that encapsulate popular software
that was originally designed to run directly on servers. Take the Nginx reverse proxy
and load balancer, for example; it existed long before Docker became popular, but it’s
now available as a container image on Docker Hub. At least at the time of writing this
book, the standard Nginx container image was configured to run as root by default. If
you start an nginx container and look at the processes running within it, you will see
the master process running as root:

Containers Run as Root by Default | 107

$ docker run -d --name nginx nginx
4562ab6630747983e6d9c59d839aef95728b22a48f7aff3ad6b466dd70ebd0fe
$ docker top nginx
PID USER TIME COMMAND
91413 root 0:00 nginx: master process nginx -g daemon off;
91458 101 0:00 nginx: worker process

It makes total sense for the nginx code to run as root when it’s running on a server.
By default it accepts requests on the traditional web port 80. Opening low-numbered
ports (under 1024) requires the CAP_NET_BIND_SERVICE (see Chapter 2), and the sim‐
plest way to ensure this is true is to have nginx run as the root user. But this require‐
ment makes a lot less sense in a container, where a port mapping means that the
nginx code could listen on any port, and this could be mapped to port 80 (if
required) on the host.

Recognizing that running as root is a problem, many vendors now provide Docker
images that run as normal, unprivileged users. You will find a repository of Docker‐
files for Nginx, for example, at https://github.com/nginxinc/docker-nginx-unprivileged.

It’s relatively straightforward to build an Nginx image that can run as a non-root user
(there is a simple example here). For other applications, it can be trickier and may
require changes to the code that are more extensive than a few tweaks to the Docker‐
file and some configurations. Thankfully, Bitnami has gone to the trouble of creating
and maintaining a series of non-root container images for many popular applications.

Another reason why container images are sometimes configured to run as root is so
that they can install software using package managers like yum or apt. It’s completely
reasonable for this to happen during the build of a container image, but once the pack‐
ages are installed, a later step in the Dockerfile could easily be a USER command so
that the image is configured to run under a non-root user ID.

I strongly recommend that you don’t allow containers to install software packages at
runtime, for several reasons:

• It’s inefficient: if you install all the software you need at build time, you do it once
only, rather than repeating it every time you create a new instance of the
container.

• Packages that get installed at runtime haven’t been scanned for vulnerabilities
(see Chapter 7).

• Related to the fact that the packages haven’t been scanned, but arguably worse: it’s
harder to identify exactly what versions of packages are installed into each differ‐
ent running instance of your containers, so if you do become aware of a vulnera‐
bility, you won’t know which containers to kill and redeploy.

108 | Chapter 9: Breaking Container Isolation

https://github.com/nginxinc/docker-nginx-unprivileged
https://oreil.ly/UFmcG
https://oreil.ly/W4nV2

• Depending on the application, you might be able to run the container as read-
only (by using the --read-only option in docker run, or by setting ReadOnly
RootFileSystem to true in a Kubernetes PodSecurityPolicy), which would make
it harder for an attacker to install code.

• Adding packages at runtime means you are not treating them as immutable. See
“Immutable Containers” on page 87 for more about the security advantages of
immutable containers.

Another thing that you can do only as a root user is to modify the kernel. If you want
to allow your containers to do this, be it on your own head!

If you would like to explore the dangers of running as root under
Kubernetes, you will find some demos at https://github.com/lizrice/
running-with-scissors.

For your own application code, use a non-root user whenever you can, or run with
user namespaces (as seen in “User Namespace” on page 45), so that root inside the
container is not the same as root on the host. One practical way to run with user
namespaces, if your system supports it, is to use rootless containers.

Rootless Containers
If you worked through the examples in Chapter 4, you’ll know that you need root
privileges to perform some of the actions that go into creating a container. This is typ‐
ically seen as a no-go in traditional shared machine environments, where multiple
users can log in to the same machine. An example is a university system, where stu‐
dents and staff often have accounts on a shared machine or cluster of machines. Sys‐
tem administrators quite rightly object to giving root privileges to a user so that they
can create containers, as that would also allow them to do anything (deliberately or
accidentally) to any other user’s code or data.

In recent years, the Rootless Containers initiative has been working on the kernel
changes required to allow non-root users to run containers.

Containers Run as Root by Default | 109

https://github.com/lizrice/running-with-scissors
https://github.com/lizrice/running-with-scissors
https://rootlesscontaine.rs

In a Docker system, you don’t actually need to be root to run a con‐
tainer, but you need to be a member of the docker group that has
permissions to send commands over the Docker socket to the
Docker daemon. It’s worth being aware that being able to do this is
equivalent to having root on the host. Any member of that group can
start a container, and as you are now aware, by default they will be
running as root. If they were to mount the host’s root directory
with a command like docker run -v /:/host <image>, they
would have full access to the host’s root filesystem, too.

Rootless containers make use of the user namespace feature that you saw in “User
Namespace” on page 45. A normal non-root user ID on the host can be mapped to
root inside the container. If a container escape occurs somehow, the attacker doesn’t
automatically have root privileges, so this is a significant security enhancement.

The podman container implementation supports rootless containers, and it doesn’t use
a privileged daemon process in the way that Docker does. This is why the examples at
the start of this chapter behave differently if you have docker aliased to podman.

Read more about root inside and outside a podman container in
Scott McCarty’s blog post.

However, rootless containers aren’t a panacea. Not every image that runs successfully
as root in a normal container will behave the same in a rootless container, even
though it appears to be running as root from the container’s perspective. This is
because of some subtleties in the way that Linux capabilities behave.

As the documentation for user namespaces states, they isolate not just user and group
IDs but also other attributes, including capabilities. In other words, you can add or
drop capabilities for a process in a user namespace, and they apply only inside that
namespace. So if you add a capability for a rootless container, it applies only in that
container, but not if the container is supposed to have access to other host resources.

Dan Walsh wrote a blog post with some good examples of this. One of them is about
binding to low-numbered ports, which requires CAP_NET_BIND_SERVICE. If you run a
normal container with CAP_NET_BIND_SERVICE (which it would likely have by default
if running as root) and sharing the host’s network namespace, it could bind to any
host port. A rootless container, also with CAP_NET_BIND_SERVICE and sharing the
host’s network, would not be able to bind to low-numbered ports because the capabil‐
ity doesn’t apply outside the container’s user namespace.

110 | Chapter 9: Breaking Container Isolation

https://oreil.ly/ISuFf
https://oreil.ly/iZiaw
https://oreil.ly/1fwZP

By and large, the namespacing of capabilities is a good thing, as it allows container‐
ized processes to seemingly run as root, but without the ability to do things that
would require capabilities at the system level, like changing the time or rebooting the
machine. The vast majority of applications that can run in a normal container will
also run successfully in a rootless container.

When using rootless containers, although the process appears from the container’s
perspective to be running as root, from the host’s perspective it’s a regular user. One
interesting consequence of this is that the rootless container doesn’t necessarily have
the same file access permissions as it would have without the user remapping. To get
around this, the filesystem needs to have support to remap file ownership and group
ownership within the user namespace. (Not all filesystems have this support at the
time of writing.)

As of this writing, rootless containers are still in their relative infancy. There is sup‐
port in runtimes, including runc and podman, and there is experimental support in
Docker. Irrespective of the runtime, using rootless containers is not yet an option in
Kubernetes, though Akihiro Suda and others have built a proof of concept called
Usernetes.

Running as root inside a container isn’t exactly a problem in and of itself, as the
attacker still needs to find a way to escape the container. From time to time container
escape vulnerabilities have been found, and they probably will continue to be found.
But a runtime vulnerability isn’t the only way that container escape can be made pos‐
sible. Later in this chapter, you’ll see ways in which risky container configurations can
make it easy to escape the container, with no vulnerability required. Combine these
bad configurations with containers running as root, and you have a recipe for
disaster.

With user ID overrides and rootless containers, there are options for avoiding run‐
ning containers as the root user. However you achieve it, you should try to avoid con‐
tainers running as root.

The --privileged Flag and Capabilities
Docker and other container runtimes let you specify a --privileged option when
you run a container. Andrew Martin has called it “the most dangerous flag in the
history of computing,” with good reason: it’s incredibly powerful, and it’s widely
misunderstood.

It’s often thought that --privileged equates to running a container as root, but you
already know that containers run as root by default. So what other privileges could
this flag be bestowing on the container?

The --privileged Flag and Capabilities | 111

https://oreil.ly/GnOoq
https://oreil.ly/GnOoq
https://oreil.ly/42RRY

The answer is that, although in Docker the process runs under the root user ID by
default, a large group of root’s normal Linux capabilities are not granted as a matter of
course. (If you need a refresher on what capabilities are, skip back to “Linux Capabili‐
ties” on page 19.)

It’s easy enough to see the capabilities that a container is granted by using the capsh
utility, first in a container without --privileged and again with it (I have omitted
some of the output for clarity):

vagrant@vagrant:~$ docker run --rm -it alpine sh -c 'apk add -U libcap; capsh
--print | grep Current'
...
Current: = cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,
cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,
cap_audit_write,cap_setfcap+eip

vagrant@vagrant:~$ docker run --rm -it --privileged alpine sh -c 'apk add -U
libcap; capsh --print | grep Current'
...
Current: = cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,
cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,
cap_net_bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,
cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,
cap_sys_pacct,cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,
cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,
cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,
cap_wake_alarm,cap_block_suspend,cap_audit_read+eip

The precise set of capabilities granted without the privileged flag is implementation
dependent. The OCI defines a default set, granted by runc.

That default set includes CAP_SYS_ADMIN, and this single capability flag grants access
to a huge range of privileged activities, including things like manipulating namespa‐
ces and mounting filesystems.

Eric Chiang wrote a blog post about the dangers of --privileged
in which he shows an example of breaking out of a container onto
the host filesystem by mounting a device from /dev into the con‐
tainer filesystem.

Docker introduced the --privileged flag to enable “Docker in Docker.” This is used
widely for build tools and CI/CD systems running as containers, which need access to
the Docker daemon in order to use Docker to build container images. But as this blog
post describes, you should use Docker in Docker, and the --privileged flag in gen‐
eral, with caution.

A more subtle reason why the --privileged flag is so dangerous is that, because peo‐
ple often think that it’s needed to give the container root privileges, they also believe

112 | Chapter 9: Breaking Container Isolation

https://oreil.ly/ryVjj
https://oreil.ly/4f4QO
https://oreil.ly/-ULQo
https://oreil.ly/-ULQo

the converse: that a container running without this flag is not a root process. Please
refer back to “Containers Run as Root by Default” on page 105 if you’re not yet con‐
vinced about this.

Even if you have reasons to run containers with the --privileged flag, I would
advise controls or at least an audit to ensure that only those containers that really
need it are granted the flag. Consider specifying individual capabilities instead.

The Tracee tool that I mentioned in Chapter 8 can be used to trace out cap_capable
events, showing the capabilities that a given container requests from the kernel.

Here is example output showing the first few events traced from a container running
nginx, with some output removed for clarity.

Terminal 1:

$ docker run -it --rm nginx

Terminal 2:

root@vagrant$./tracee.py -c -e cap_capable
TIME(s) UTS_NAME UID EVENT COMM PID PPID RET ARGS
125.000 c8520fe719e5 0 cap_capable nginx 6 1 0 CAP_SETGID
125.000 c8520fe719e5 0 cap_capable nginx 6 1 0 CAP_SETGID
125.000 c8520fe719e5 0 cap_capable nginx 6 1 0 CAP_SETUID
124.964 c8520fe719e5 0 cap_capable nginx 1 3500 0 CAP_SYS_ADMIN
124.964 c8520fe719e5 0 cap_capable nginx 1 3500 0 CAP_SYS_ADMIN

Once you know which capabilities your container needs, you can follow the principle
of least privilege and specify at runtime the precise set that should be granted. The
recommended approach is to drop all capabilities and then add back the necessary
ones as follows:

$ docker run --cap-drop=all --cap-add=<cap1> --cap-add=<cap2> <image> ...

Now you are warned of the dangers of the --privileged flag and the opportunity to
shrink-wrap capabilities for a container. Let’s look at another way that container isola‐
tion can be sidestepped: mounting sensitive directories from the host.

Mounting Sensitive Directories
Using the -v option, you can mount a host directory into a container so that it is
available from the container. And there is nothing to stop you from mounting the
host’s root directory into a container, like this:

$ touch /ROOT_FOR_HOST
$ docker run -it -v /:/hostroot ubuntu bash
root@91083a4eca7d:/$ ls /
bin dev home lib media opt root sbin sys usr
boot etc hostroot lib64 mnt proc run srv tmp var
root@91083a4eca7d:/$ ls /hostroot/

Mounting Sensitive Directories | 113

https://oreil.ly/1dQof

ROOT_FOR_HOST etc lib media root srv vagrant
bin home lib64 mnt run sys var
...

An attacker who compromises this container is root on the host, with full access to
the entire host filesystem.

Mounting the entire filesystem is a pathological example, but there are plenty of other
examples that range in their subtlety, such as the following:

• Mounting /etc would permit modifying the host’s /etc/passwd file from within
the container, or messing with cron jobs, or init, or systemd.

• Mounting /bin or similar directories such as /usr/bin or /usr/sbin would
allow the container to write executables into the host directory—including over‐
writing existing executables.

• Mounting host log directories into a container could enable an attacker to modify
the logs to erase traces of their dastardly deeds on that host.

• In a Kubernetes environment, mounting /var/log can give access to the entire
host filesystem to any user who has access to kubectl logs. This is because con‐
tainer log files are symlinks from /var/log to elsewhere in the filesystem, but
there is nothing to stop the container from pointing the symlink at any other file.
See this blog post for more on this interesting escape.

Mounting the Docker Socket
In a Docker environment, there is a Docker daemon process that essentially does all
the work. When you run the docker command-line utility, this sends instructions to
the daemon over the Docker socket that lives at /var/run/docker.sock. Any entity
that can write to that socket can also send instructions to the Docker daemon. The
daemon runs as root and will happily build and run any software of your choosing on
your behalf, including—as you have seen—running a container as root on the host.
Thus, access to the Docker socket is effectively the equivalent of root access on the
host.

One very common use of mounting the Docker socket is in CI tools like Jenkins,
where the socket is needed specifically for sending instructions to Docker to run
image builds as part of your pipeline. This is a legitimate thing to do, but it does cre‐
ate a potential soft underbelly that an attacker can pierce. A user who can modify a
Jenkinsfile can get Docker to run commands, including those that could give the user
root access to the underlying cluster. For this reason, it’s exceptionally bad practice to
run a CI/CD pipeline that mounts a Docker socket in a production cluster.

114 | Chapter 9: Breaking Container Isolation

https://oreil.ly/gN7no

Sharing Namespaces Between a Container and Its Host
On occasion there might be reasons to have a container use some of the same name‐
spaces as its host. For example, suppose you want to run a process in a Docker con‐
tainer but give it access to the process information from the host. In Docker, you can
request this with the --pid=host parameter.

Recall that containerized processes are all visible from the host; thus, sharing the pro‐
cess namespace to a container lets that container see the other containerized
processes, too. The following example starts by running a long-running sleep inside
one container; that process can be observed from another container started with
--pid=host:

vagrant@vagrant$ docker run --name sleep --rm -d alpine sleep 1000
fa19f51fe07fca8d60454cf8ee32b7e8b7b60b73128e13f6a01751c601280110
vagrant@vagrant$ docker run --pid=host --name alpine --rm -it alpine sh
/ $ ps | grep sleep
30575 root 0:00 sleep 1000
30738 root 0:00 grep sleep
/ $

What’s even more exciting is that running kill -9 <pid> from the second container
can kill the sleep process in the first!

You have seen several ways in which sharing namespaces or volumes between con‐
tainers, or between a container and its host, can weaken the container’s isolation and
compromise security, but it’s by no means always a bad idea to share information
with containers. To conclude this chapter, let’s look at sidecar containers, which are a
common pattern use for good reasons.

Sidecar Containers
A sidecar container is deliberately given access to one or more of an application con‐
tainer’s namespaces so that it can offload functionality from that application. In a
microservice architecture, you might have functionality that you want to reuse in all
your microservices, and a common pattern is to package that functionality into side‐
car container images so that it can easily be reused. Here are a few common examples:

• Service mesh sidecars take over the networking functionality on behalf of the
application container. The service mesh can, for example, ensure that all network
connections use mutual TLS. Offloading this functionality to a sidecar means
that so long as a container is deployed with the sidecar, it will set up secure TLS
connections; there is no need for each application team to spend time enabling
this in its application code. (Further discussion of service meshes is coming up in
the next chapter—see “Service Mesh” on page 129.)

Sharing Namespaces Between a Container and Its Host | 115

• Observability sidecars can set up destinations and configurations for logging,
tracing, and gathering metrics. For example, Prometheus and OpenTelemetry
support sidecars for exporting observability data.

• Security sidecars can police the executables and network connections that are
permitted within an application container. (For example, see my blog post about
securing AWS Fargate containers using Aqua’s MicroEnforcer in sidecar contain‐
ers, or a similar solution from Twistlock.)

This is just a selection of applications for sidecar containers, which legitimately share
namespaces with application containers.

Summary
This chapter covered several ways in which the isolation that’s normally provided by
containers can be compromised through bad configuration.

All the configuration options are provided for good reasons. For example, mounting
host directories into a container can be extremely useful, and sometimes you do need
the option to run a container as root or even with the additional capabilities provided
by the --privileged flag. However, if you’re concerned about security, you’ll want to
minimize the extent to which these potentially dangerous configurations are used and
employ tools to spot when they are happening.

If you’re running in any kind of multitenant environment, you should be even more
attentive to containers with these potentially dangerous configurations. Any
--privileged container will have full access to any other container on the same host,
regardless of relatively superficial controls such as whether they are running in the
same Kubernetes namespace.

In “Sidecar Containers” on page 115, I mentioned service meshes, which can offload
some networking functionality. Now seems like a good time to talk about container
networking.

116 | Chapter 9: Breaking Container Isolation

https://oreil.ly/Jn10W
https://oreil.ly/0HwpE
https://oreil.ly/oHAEk
https://oreil.ly/5YHQk

CHAPTER 10

Container Network Security

Every external attack reaches your deployment across a network, so it’s important to
understand something about networking in order to consider how to secure your
applications and data. This isn’t going to be a comprehensive treatment of everything
to do with networking (that would make this book a lot longer!), but it should give
you the essentials of a sensible mental model you can use to think about network
security in your container deployment.

I’ll start with an overview of container firewalling, which can provide a much more
granular approach to network security than traditional firewalling approaches.

Then there is a review of the seven-layer networking model, which is worth knowing
about so that you can understand the level a network security feature acts at. With
this in place, we will discuss how container firewalling is implemented and look at
some best practices for network policy rules. We end the chapter by looking at the
network security features of service meshes.

Container Firewalls
Containers often go hand in hand with microservice architectures, where an applica‐
tion is broken into small components that can be deployed independently of each
other. This can offer real benefits from a security perspective, because it’s much easier
to define what normal behavior looks like in a small component. A given container
probably has to communicate with only a limited set of other containers, and only a
subset of containers need contact with the outside world.

For example, consider an ecommerce application broken into microservices. One of
these microservices could handle product search requests; it receives search requests
from end users and looks up their search queries in a product database. The

117

containers that make up this service don’t have any reason to communicate with, say,
the payment gateway. Figure 10-1 illustrates this example.

Figure 10-1. Container firewalling

A container firewall can restrict the traffic that flows to and from a set of containers.
In an orchestrator like Kubernetes, the term “container firewall” is rarely used;
instead, you’ll hear about network policies being enforced by a network plug-in. In
both cases, the principle is to restrict container network traffic so that it can only flow
to and from approved destinations. A container firewall (like its traditional counter‐
part) will typically also report on attempted connections outside the rules, providing
useful forensics for investigation into possible attacks.

Container firewalls can be used in conjunction with other network security tools that
you may have come across in traditional deployments as well. For example:

• It’s very common to deploy your container environment in a Virtual Private
Cloud (VPC), which isolates your hosts from the rest of the world.

• You can use a firewall around the entire cluster to control traffic in and out.
• You can use API firewalls (also known as WAF, or Web Application Firewalls) to

restrict traffic at Layer 7.

None of these approaches are new. Combining them with container-aware security
gives additional defense in depth.

Before we look at how container firewalling is achieved, let’s review the seven-layer
networking model and follow the path of an IP packet through a network.

118 | Chapter 10: Container Network Security

OSI Networking Model
The Open Systems Interconnection (OSI) networking model was published in 1984
and defines a layered model of networking that is still commonly referenced today,
although, as you can see from Figure 10-2, the seven layers don’t all have an equiva‐
lent in IP-based networks.

Figure 10-2. OSI model

• Layer 7 is the application layer. If you think about an application making a web
request or sending a RESTful API request, you are picturing something that hap‐
pens at Layer 7. The request is typically addressed by a URL, and to get the
request to its destination, the domain name gets mapped to an Internet Protocol
(IP) address using a protocol called Domain Name Resolution that is offered by a
Domain Name Service (DNS).

• Layer 4 is the transport layer, typically TCP or UDP packets. This is the layer at
which port numbers apply.

• Layer 3 is the layer at which IP packets travel and at which IP routers operate. An
IP network has a set of IP addresses assigned to it, and when a container joins the
network it gets assigned one of those IP addresses. For the purposes of this chap‐
ter, it doesn’t matter whether the IP network uses IP v4 or IP v6—you can con‐
sider that to be an implementation detail.

• At Layer 2, data packets are addressed to endpoints connected to a physical or
virtual interface (which I’ll discuss in a moment). There are several Layer 2 pro‐
tocols, including Ethernet, WiFi, and, if you cast your mind back into history,
Token Ring. (WiFi is slightly confusing here since it covers both Layer 2 and
Layer 1.) I’ll only cover Ethernet in this chapter since that is predominantly
what’s used for Layer 2 container networking. At Layer 2, interfaces are addressed
using MAC addresses.

• Layer 1 is called the physical layer, although to keep us all on our toes, interfaces
at Layer 1 can be virtual. A physical machine will have a physical network device
attached to some kind of cable or wireless transmitter. Cast your mind back to
Chapter 5, and you will recall that a VMM gives a guest kernel access to virtual

OSI Networking Model | 119

devices that map to these physical devices. When you get a network interface on,
say, an EC2 instance in AWS, you’re getting access to one of these virtual inter‐
faces. Container network interfaces are commonly virtual at Layer 1 as well.
Whenever a container joins a network, it has a Layer 1 interface to that network.

Let’s see what happens at these different layers when an application wants to send a
message.

Sending an IP Packet
Imagine an application that wants to send a request to a destination URL. Since this is
the application, it stands to reason from the preceding definition that this is happen‐
ing at Layer 7.

The first step is a DNS look-up to find the IP address that corresponds to the host
name in that URL. DNS could be defined locally (as in the /etc/hosts file on your lap‐
top), or it could be resolved by making a DNS request to a remote service at a config‐
ured IP address. (If the application already knows the IP address it wants to send a
message to, rather than using a URL, the DNS step is skipped.)

Once the networking stack knows which destination IP address it needs to send the
packet to, the next step is a Layer 3 routing decision, which consists of two parts:

1. To reach a given destination, there might be multiple hops in the IP network.
Given the destination IP address, what is the IP address of the next hop?

2. What interface corresponds to this next-hop IP address?

Next, the packet has to be converted to Ethernet frames, and the next-hop IP address
has to be mapped to the corresponding MAC address. This relies on the Address Res‐
olution Protocol (ARP), which maps IP addresses to MAC addresses. If the network
stack doesn’t already know the MAC address for the next-hop IP address (which
could already be held in an ARP cache), then it uses ARP to find out.

Once the network stack has the next-hop MAC address, the message can be sent out
over the interface. Depending on the network implementation, this could be a point-
to-point connection, or the interface may be connected to a bridge.

The easiest way to understand a bridge is to imagine a physical device with a number
of Ethernet cables plugged in. The other end of each cable connects to the network
card on a device—a computer, say. Every physical network card has a unique MAC
address hardcoded into it by the manufacturer. The bridge learns the MAC address at
the far end of each of the cables plugged into its interface. All the devices connected
to the bridge can send packets to each other through the bridge. In container net‐
working the bridge is implemented in software rather than being a separate physical
device, and the Ethernet cables are replaced by virtual Ethernet interfaces. So the

120 | Chapter 10: Container Network Security

message arrives at the bridge, which uses the next-hop MAC address to decide which
interface to forward it on.

When the message arrives at the other end of the Ethernet connection, the IP packet
is extracted and passed back up to Layer 3. Data is encapsulated with headers at dif‐
ferent layers in the networking stack, as shown in Figure 10-3.

Figure 10-3. Networking headers

If this is the packet’s final destination, then it gets passed up to the receiving applica‐
tion. However, this might just be the next hop for the packet, and in that case the net‐
working stack needs to make another routing decision to decide where to send the
packet next.

This explanation glosses over a few details (such as how ARP works, or how routing
decides which is the next-hop IP address), but it should be sufficient for our purposes
of thinking about container networking.

IP Addresses for Containers
The previous section talks about getting traffic to reach a destination based on its IP
address. Containers can share the IP address of their host, or they can each have their
own network stack running in their own network namespace. You saw how network
namespaces are set up in Chapter 4. Since there’s a good chance you are running con‐
tainers under Kubernetes, let’s explore how IP addresses are used in Kubernetes.

In Kubernetes, each pod has its own IP address. If the pod includes more than one
container, you can infer that each container shares the same IP address. This is
achieved by having all containers in a pod share the same network namespace. Every
node is configured to use a range of addresses (a CIDR block), and when a pod is
scheduled to a node, it gets assigned one of the addresses from that range.

IP Addresses for Containers | 121

It’s not strictly true that nodes are always assigned a range of
addresses up-front. For example, on AWS, a pluggable IP address
management module dynamically assigns pod IP addresses from
the range associated with the underlying VPC.

Kubernetes requires that pods in a cluster can connect directly to each other without
any Network Address Translation (NAT) between them. In other circumstances, NAT
allows IP addresses to be mapped so that one entity sees a destination as being at a
certain IP address, even though that isn’t the actual address of the destination device.
(This is one reason why IPv4 has been in use for much longer than originally predic‐
ted. Although the number of IP-addressable devices has far outstripped available
addresses in the IPv4 address space, NAT means we can reuse the vast majority of IP
addresses within private networks.) In Kubernetes, network security policies and seg‐
mentation might prevent a pod from being able to communicate with another pod,
but if the two pods can communicate, they see each other’s IP addresses transparently
without any NAT mapping. There can, however, still be NAT between pods and the
outside world.

Kubernetes services are a form of NAT. A Kubernetes service is a resource in its own
right, and it gets assigned an IP address of its own. It’s just an IP address though—a
service doesn’t have any interfaces, and it doesn’t actually listen for or send traffic.
The address is just used for routing purposes. The service is associated with some
number of pods that actually do the work of the service, so packets sent to the service
IP address need to be forwarded to one of these pods. We’ll shortly see how this is
done through rules at Layer 3.

Network Isolation
It’s worth explicitly pointing out that two components can communicate with each
other only if they are connected to the same network. In traditional host-based envi‐
ronments, you might have isolated different applications from each other by having
separate VLANs for each one.

In the container world, Docker made it easy to set up multiple networks using the
docker network command, but it’s not something that fits naturally in the Kuber‐
netes model where every pod can (modulo network policies and security tools) access
every other pod by IP address.

It’s also worth noting that in Kubernetes the control components run in pods and are
all connected to the same network as the application pods. If you come from a tele‐
communications background, this may surprise you, since a lot of effort was put into
separating the control plane from the data plane in phone networks, primarily for
security reasons.

122 | Chapter 10: Container Network Security

Instead, Kubernetes container networking is enforced using network policies that act
at Layer 3/4.

Layer 3/4 Routing and Rules
As you already know, routing at Layer 3 is concerned about deciding the next hop for
an IP packet. This decision is based on a set of rules about which addresses are
reached over which interface. But this is just a subset of things you can do with Layer
3 rules: there are also some fun things that can go on at this level to drop packets or
manipulate IP addresses, for example, to implement load balancing, NAT, firewalls,
and network security policies. Rules can also act at layer 4 to take into account the
port number. These rules rely on a kernel feature called netfilter.

netfilter is a packet-filtering framework that was first introduced into the Linux
kernel in version 2.4. It uses a set of rules that define what to do with a packet based
on its source and destination addresses.

There are a few different ways that netfilter rules can be configured in user space.
Let’s look at the two most common options: iptables and IPVS.

iptables
The iptables tool is one way of configuring IP packet–handling rules that are dealt
with in the kernel using netfilter. There are several different table types; the two
most interesting types in the context of container networking are filter and nat:

• filter—for deciding whether to drop or forward packets
• nat—for translating addresses

As a root user, you can see the current set of rules of a particular type by running
iptables -t <table type> -L.

The netfilter rules that you can set up with iptables can be very useful for security
purposes. Several container firewall solutions, as well as Kubernetes network plug-
ins, make use of iptables to set up sophisticated network policy rules that are imple‐
mented using netfilter rules. I’ll come back to this in “Network Policies” on page
125. First, let’s delve into the rules that get set up with iptables.

In Kubernetes, kube-proxy uses iptables rules to handle the load balancing of traffic
to services. As mentioned earlier, a service is an abstraction that maps a service name
to a set of pods. The service name gets resolved to an IP address using DNS. When a
packet destined for that service IP address arrives, there is an iptables rule that
matches the destination address and swaps the destination address for that of one of

Layer 3/4 Routing and Rules | 123

https://oreil.ly/sHh4p
https://netfilter.org

the corresponding pods. If the set of pods behind a service changes, the iptables
rules get rewritten on each host accordingly.

It’s easy enough to see the iptables rules for a service. Let’s take a Kubernetes cluster
with a two-replica deployment of nginx, behind a service (I have removed some of
the output fields for clarity):

$ kubectl get svc,pods -o wide
NAME TYPE CLUSTER-IP PORT(S)
service/kubernetes ClusterIP 10.96.0.1 443/TCP
service/my-nginx NodePort 10.100.132.10 8080:32144/TCP

NAME READY STATUS IP
pod/my-nginx-75897978cd-n5rdv 1/1 Running 10.32.0.4
pod/my-nginx-75897978cd-ncnfk 1/1 Running 10.32.0.3

You can list the current address translation rules with iptables -t nat -L. There
will likely be a lot of output, but it’s not too hard to find the interesting parts that
correspond to this nginx service. First, here is the rule that corresponds to the
my-nginx service running on IP address 10.100.132.10. You can see that it’s part of a
chain called “KUBE-SERVICES,” which makes sense since it relates to a service:

Chain KUBE-SERVICES (2 references)
target prot opt source destination
...
KUBE-SVC-SV7AMNAGZFKZEMQ4 tcp -- anywhere 10.100.132.10 /* default/my-
nginx:http cluster IP */ tcp dpt:http-alt
...

The rule specifies a target chain, which appears later in the iptables rules:

Chain KUBE-SVC-SV7AMNAGZFKZEMQ4 (2 references)
target prot opt source destination
KUBE-SEP-XZGVVMRRSKK6PWWN all -- anywhere anywhere statistic mode
random probability 0.50000000000
KUBE-SEP-PUXUHBP3DTPPX72C all -- anywhere anywhere

It seems reasonable to infer from this that traffic is being split between these two tar‐
gets with equal probability. This makes a lot of sense when you see that these targets
have rules that correspond to the IP addresses of the pods (10.32.0.3 and 10.32.0.4):

Chain KUBE-SEP-XZGVVMRRSKK6PWWN (1 references)
target prot opt source destination
KUBE-MARK-MASQ all -- 10.32.0.3 anywhere
DNAT tcp -- anywhere anywhere tcp to:10.32.0.3:80
...
Chain KUBE-SEP-PUXUHBP3DTPPX72C (1 references)
target prot opt source destination
KUBE-MARK-MASQ all -- 10.32.0.4 anywhere
DNAT tcp -- anywhere anywhere tcp to:10.32.0.4:80

124 | Chapter 10: Container Network Security

The problem with iptables is that if you have a lot of complex sets of rules on each
host, performance may drop off. In fact, kube-proxy’s use of iptables was identified
as a performance bottleneck when running Kubernetes at scale. This blog post points
out that 2,000 services with 10 pods each results in an additional 20,000 iptables
rules on every node. To address this, Kubernetes can now use IPVS for load-
balancing services.

IPVS
IP Virtual Server (IPVS) is sometimes referred to as Layer 4 load balancing or Layer 4
LAN switching. It is another rules implementation similar to iptables, but it’s opti‐
mized for load balancing by storing the forwarding rules in hash tables.

This optimization makes it very performant for kube-proxy’s use case, but it doesn’t
necessarily mean you can draw conclusions about the performance of network plug-
ins implementing network policies.

Project Calico published a performance comparison of iptables
and IPVS.

Whether it’s IPVS or iptables that manages netfilter rules, they act within the ker‐
nel. Recalling that the kernel is shared across all the containers on a host, this tells
you that when they are used to enforce security policies, this is happening at the host
level and not within each container.

Now that you have an idea how netfilter rules are manipulated, let’s see how they
are used to implement networking policies for security purposes.

Network Policies
There are various solutions that apply network policies in both Kubernetes and other
container deployments. Outside Kubernetes they might be called “container firewalls”
or “network microsegmentation,” but the basic principles are the same.

Network policies in Kubernetes define the traffic that can flow to and from different
pods. Policies can be defined in terms of ports, IP addresses, services, or labeled pods.
When a message is going to be sent or received, if it’s not approved by the policy, the
network needs to either refuse to set up a connection or drop the message packets. In
the ecommerce example from the start of this chapter, one policy might prevent traf‐
fic from the product search container that has the destination address of the payment
service.

Network Policies | 125

https://oreil.ly/xOyqb
https://oreil.ly/xGO0N
https://oreil.ly/xGO0N

Many network policy implementations make use of netfilter rules for their imple‐
mentation. Let’s take a look at a Kubernetes network policy rule as implemented in
iptables. Here’s a simple NetworkPolicy object that allows pods to access the
my-nginx service only if they are labeled with access=true:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: access-nginx
spec:
 podSelector:
 matchLabels:
 app: my-nginx
 ingress:
 - from:
 - podSelector:
 matchLabels:
 access: "true"

Creating this network policy results in the following additional iptables rule in the
filter table:

Chain WEAVE-NPC-INGRESS (1 references)
target prot opt source destination
ACCEPT all -- anywhere anywhere match-set weave-{U;]TI.l|Md
RzDhN7$NRn[t)d src match-set weave-vC070kAfB$if8}PFMX{V9Mv2m dst /* pods: namespa
ce: default, selector: access=true -> pods: namespace: default, selector: app=my-
nginx (ingress) */

It’s the networking plug-in, rather than a core Kubernetes component, that creates
iptables rules to match the network policy. In the preceding example, as you can
probably guess from the chain name, I was using Weave as the networking plug-in.
The match-set rule isn’t really human-readable, but the comment matches our
expectation that the rule allows traffic from pods in the default namespace with the
label access=true, going to pods in the default namespace with the label app=my-
nginx.

Now that you have seen Kubernetes using iptables rules for network policy enforce‐
ment, let’s try configuring a rule of our own. I’m doing this on a fresh Ubuntu instal‐
lation so that the rules are empty to start with:

$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

126 | Chapter 10: Container Network Security

https://oreil.ly/VmVCc

I’ll set up netcat to respond to requests on port 8000:

$ while true; do echo "hello world" | nc -l 8000 -N; done

In another terminal I can now send requests to this port:

$ curl localhost:8000
hello world

Now I’ll create an iptables rule that rejects traffic on port 8000:

$ sudo iptables -I INPUT -j REJECT -p tcp --dport=8000
$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
REJECT tcp -- anywhere anywhere tcp dpt:8000 reject-with icmp-
port-unreachable

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

As you probably would have predicted, the curl command no longer succeeds in get‐
ting a response:

$ curl localhost:8000
curl: (7) Failed to connect to localhost port 8000: Connection refused

This demonstrates that iptables can be used to restrict traffic. You could imagine
building up lots of rules like this to limit the traffic between containers, but I don’t
recommend doing it by hand. In practice you probably want to use a preexisting
implementation rather than writing your own container network security policy
directly in iptables rules. You’ll get an easier-to-use interface for configuring poli‐
cies, rather than having to create rules from scratch, and in a multi-node system
you’ll have different rules on each node. And there will be a lot of rules—to give you
an idea, I have a single Kubernetes node running the Calico network plug-in,
and with just a handful of application pods running and no network policies,
iptables -L on this machine gives me over 300 lines of filter table rules. The rules
themselves are high performance, but writing them is a complex task. Also, contain‐
ers tend to be ephemeral, so the rules need to be rewritten as containers are created
and destroyed. This is manageable only when the rules are automated rather than
written by hand.

Network Policy Solutions
So what can you use to provide this automation? Kubernetes has NetworkPolicy
objects, although as mentioned earlier, Kubernetes does not itself enforce them. They
have effect only when you’re using a network plug-in that supports them. Depending

Network Policies | 127

https://oreil.ly/Bv_JG

on the network plug-in, you may have options for upgrading to a commercial version
that gives you more flexibility or easier management.

Some commercial container security platforms include container firewalls that ach‐
ieve essentially the same thing but are not installed directly as a Kubernetes network
plug-in. These can include the ability to learn what normal traffic looks like for a par‐
ticular container image so that the policy can be created automatically.

Network Policy Best Practices
Whichever tooling you use to create, manage, and enforce network policies, there are
some recommended best practices:

Default deny
Following the principle of least privilege, set up a policy for each namespace that
denies ingress traffic by default and then add policies to permit traffic only where
you expect it.

Default deny egress
Egress policies relate to traffic exiting your pod. If a container were to be com‐
promised, an attacker could probe the surrounding environment across the net‐
work. Set up policies for each namespace to deny egress traffic by default and
then add policies for expected egress traffic.

Restrict pod-to-pod traffic
Pods are typically labeled to indicate their application. Use policies to limit traffic
so that it can only flow between permitted applications, along with policies that
allow traffic only from pods with the appropriate labels.

Restrict ports
Restrict traffic so that it is accepted only to specific ports for each application.

Ahmet Alp Balkan provides a set of useful network policy recipes.

The network policies that I have discussed so far act at the lower levels of the net‐
working stack (up to Layer 4). Now let’s consider service meshes, which act at the
application layers.

128 | Chapter 10: Container Network Security

https://oreil.ly/L6OjC
https://oreil.ly/RmeUT
https://oreil.ly/JogsQ

Service Mesh
A service mesh provides an additional set of controls and capabilities for how applica‐
tions connect with each other that are implemented at the application layer (Layers
5–7 in the OSI model you saw at the start of this chapter).

There are a few different service mesh projects and products in the cloud native eco‐
system, including Istio, Envoy, and Linkerd, and managed options from the cloud
providers such as AWS App Mesh. Service meshes offer several features and benefits,
some of which relate to security.

The way a service mesh typically works in Kubernetes is for it to be injected as a side‐
car container into each application pod and then the sidecar handles networking on
behalf of the other container(s) in the pod. All traffic to and from the pod goes via
this sidecar proxy. Rule enforcement happens in user space within the proxy.

The service mesh can be configured to use mutual TLS in these sidecar proxies. This
gives the benefit of secure, encrypted connections within the deployment, making it
much harder for an attacker to intercept traffic even if they manage to find a foothold
within the deployment. If you’re not already familiar with mTLS, it’s coming up in
Chapter 11.

Service meshes also typically provide options to enforce application-layer network
policies so that the pods in a service can communicate with other (internal or exter‐
nal) services only if the policy permits it. Because they act at the application, there is a
clear separation of concerns between these policies and the Layer 1–4 network poli‐
cies considered earlier in this chapter.

The Istio documentation provides an example of an application-
layer isolation policy where traffic is allowed to flow only from
ingress to a specific port on pods from a particular application.

The mutual TLS and policy support are powerful security benefits provided by a ser‐
vice mesh, but there are two things to be aware of:

• A service mesh can provide security support only to pods into which it has been
injected as a sidecar. If it’s not present, it can’t do anything.

• Because service mesh network policies are defined at the service level, they are
not effective at protecting your underlying infrastructure from a compromised
pod.

The best practice for enterprises is to use the principle of defense in depth. Alongside
a service mesh, it would be a good idea to have tooling in place to confirm that the

Service Mesh | 129

https://oreil.ly/6bUHM
https://oreil.ly/6bUHM

sidecar is present in all containers, and to use a complementary container network
security solution that can prevent/restrict any traffic that flows directly between con‐
tainers, or between containers and external addresses, rather than via a service IP
address.

There are other features that service meshes may offer, such as can‐
ary deployments, that are unrelated to networking or security. For
more information, see this article from DigitalOcean.

A service mesh sidecar container lives alongside application containers within a pod.
If an application container were to be compromised, it might attempt to bypass or
modify the rules enforced by the sidecar. The sidecar and application containers share
the same network namespace; thus it is a good idea to make sure that the
CAP_NET_ADMIN capability is withheld from application containers so that if one is
compromised, it can’t modify the shared networking stack.

Summary
In this chapter, you have seen how containers enable very granular firewalling
solutions within a deployment. This granularity helps maintain several security
principles:

• Segregation of duties/least privilege by allowing containers only a limited ability
to communicate.

• Limiting the blast radius by preventing a compromised container from attacking
all its neighbors.

• Defense in depth by combining container firewalls with service meshes and
cluster-wide traditional firewalling.

I mentioned that service meshes can automatically set up mutual TLS connections
between containers. In the next chapter, I will explain how TLS makes communica‐
tions more secure, and attempt to demystify the role of keys and certificates in setting
up these secure connections.

130 | Chapter 10: Container Network Security

https://oreil.ly/0Fq5A

CHAPTER 11

Securely Connecting Components with TLS

In any distributed system, there are different components that need to communicate
with each other, and in a cloud native world those components may well be contain‐
ers exchanging messages with each other or with other internal or external compo‐
nents. In this chapter, you’ll see how secured transport connections allow
components to safely send encrypted messages to each other. You’ll explore how
components identify themselves to each other and set up secure connections between
themselves so that malicious components can’t get involved in these communications.

If you’re familiar with how keys and certificates work, you can safely skip this chapter,
as there is nothing particularly container-specific about it. I have included it in this
book because in my experience, it’s an area of confusion for many folks who may be
coming across these concepts for the first time when they start exploring containers
and cloud native tools.

If you are responsible for administering a cloud native system, you will likely need to
configure certificates, keys, and certificate authorities for Kubernetes, etcd, or other
infrastructure components. These can be notoriously confusing, and installation
instructions tend to explain what to do without covering the “why” or the “how.” You
may find this chapter useful for understanding the roles that these different pieces
play.

Let’s start by considering what we mean by “secure connections.”

Secure Connections
In everyday life, we see secure connections being used in web browsers. If you browse
to, say, your online banking facility and you don’t see a little green padlock, you know
that the connection isn’t secure, so you shouldn’t enter your login credentials. There
are two parts to setting up a secure connection to a website:

131

• First, you need to know that the website you are browsing is really owned by
your bank. Your browser checks the identity of the website by verifying its
certificate.

• The second part is encryption. When you are accessing your bank information,
you don’t want any third parties to be able to intercept (or worse, interfere with)
that communication channel.

You may well be familiar with the fact that secure website connections use a protocol
called HTTPS, which stands for HTTP-Secure. As its name suggests, this is a regular
HTTP connection that has been made secure, and this security is added at the trans‐
port layer using a protocol imaginatively called transport layer security (TLS).

If you’re thinking, “But I thought the S stood for SSL, or Secure Sockets Layer?” don’t
worry—you’re really not wrong. The transport layer is the layer that communicates
between a pair of network sockets, and TLS is the modern name for the protocol that
used to be called SSL. The first SSL spec was published by Netscape in 1995 (as ver‐
sion 2, the initial version 1 having been recognized as so seriously flawed that it was
never released). By 1999, the Internet Engineering Task Force (IETF) created the TLS
v1.0 standard, largely based on Netscape’s SSL v3.0, and the industry is now primarily
using TLS v1.3.

Whether you call it SSL or TLS, the protocol relies on certificates to set up secure
connections. Confusingly, we still tend to call these “SSL certificates” 20 years after
the move to TLS. If you really want to be correct, you should call them “X.509
certificates.”

Both identity and encryption key information can be exchanged using X.509 certifi‐
cates. Let’s delve into what these certificates are and how they work.

There are several tools for generating keys, certificates, and certifi‐
cate authorities including ssh-keygen, openssl keygen, and
minica. I demonstrated using minica in a talk called “A Go Pro‐
grammer’s Guide to Secure Connections” in which I also show
what’s happening step-by-step as a client sets up a TLS connection
with a server.

X.509 Certificates
The term “X.509” is the name of the International Telecommunications Union (ITU)
standard that defines these certificates. The certificate is a piece of structured data
that includes information about the identity of its owner and also includes the public
encryption key for communicating with the owner. This public key is half of a public/
private key pair.

132 | Chapter 11: Securely Connecting Components with TLS

https://youtu.be/OF3TM-b890E
https://youtu.be/OF3TM-b890E

Figure 11-1. Certificate

As illustrated in Figure 11-1, the vital pieces of information in a certificate are:

• The name of the entity that this certificate identifies. This entity is called the sub‐
ject, and the subject name is typically in the form of a domain name. In practice,
certificates should use a field called “Subject Alternative Names” that allows the
certificate to identify the subject by more than one name.

• The subject’s public key.
• The name of the certificate authority that issued the certificate. I’ll come back to

this later in this chapter, in “Certificate Authorities” on page 134.
• The validity of the certificate—that is, the date and time at which the certificate

expires.

Public/Private Key Pairs
As its name suggests, a public key can be shared with anyone. The public key has a
corresponding private key that the owner should never disclose.

The math behind the encryption and decryption is beyond the
scope of this book, but I collected some recommended resources
about it in a post on Medium.

The private key is generated first, and from that, a corresponding public key can be
calculated. The public/private key pair can be used for two very useful purposes:

• As illustrated in Figure 11-2, a public key can be used to encrypt a message that
can only be decrypted by the holder of the corresponding private key.

X.509 Certificates | 133

https://oreil.ly/Tbhvd

Figure 11-2. Encryption

• A private key can be used to sign a message that any holder of the corresponding
public key can check to verify that it came from the private key owner. This is
shown in Figure 11-3.

Figure 11-3. Signing

Both the encryption and the signing capabilities of public/private key pairs are used
to set up secure connections.

Let’s suppose that you and I want to exchange encrypted messages. Once I have gen‐
erated a key pair, I can give you the public key so that you can send me encrypted
messages. But if I send you that public key, how do you know that it really came from
me and not from an imposter? To establish that I am who I say am, we will need to
involve a third party that you trust, and that will vouch for my identity. This is the
function of a certificate authority.

Certificate Authorities
A certificate authority, or CA, is a trusted entity that signs a certificate, thus verifying
that the identity contained in that certificate is correct. You should only trust a certifi‐
cate that has been signed by an authority you trust.

On opening a TLS connection to a particular destination, the client that initiates the
connection receives a certificate from the far end, which it can check to make sure
that it is talking to the entity that it intended to reach. For example, when you open a
web connection to your bank, your browser checks that the certificate matches the
URL of your bank, and it also checks what CA signed the certificate.

Other components need to be able to safely identify the CA, so it is represented by a
certificate. But that certificate needs to be signed by a CA, and in order to verify the

134 | Chapter 11: Securely Connecting Components with TLS

signer’s identity, there needs to be need another certificate, and so on and so forth. It
seems that we could build a never-ending chain of certificates! Eventually, there has
to be a certificate that we can trust.

In practice, the chain ends with what’s called a self-signed certificate: an X.509 certifi‐
cate that the CA signed for itself. In other words, the identity represented by the cer‐
tificate is the same as the identity whose private key is used to sign the certificate. If
you can trust that identity, you can trust the certificate. Figure 11-4 shows a certificate
chain, where Ann’s certificate is signed by Bob, and Bob’s is signed by Carol. The
chain ends with Carol’s self-signed certificate.

Figure 11-4. Certificate chain

Web browsers come preinstalled with the identities of a set of certificates from well-
known, trusted CAs known as root CAs. Your web browser will trust any certificate
(or certificate chain) signed by one of these root CAs. If the certificate isn’t signed by
one of the trusted CAs for the browser, it will show the site as insecure (and in brows‐
ers today you will almost certainly see a warning or error message).

If you’re setting up a website that people will connect to over the internet, you will
need a certificate for that website signed by a trusted, public CA. There are several
vendors who act as these CAs and will generate a certificate for a fee, or you can get
one for free from Let’s Encrypt.

When you’re setting up distributed system components such as, say, Kubernetes or
etcd, you get to specify a set of CAs that are used to validate certificates. Assuming
that your system is under your private control, it doesn’t matter to you whether

X.509 Certificates | 135

https://letsencrypt.org

members of the public at large (or their browsers) trust these components—the
important thing is that the components can trust each other. Because this is a private
system, you don’t need to use publicly trusted CAs, and you can very simply set up
your own certificate authorities with self-signed certificates.

Whether you’re using your own CA or a public one, you’ll need to tell the CA about
the certificate(s) you want generated. This is done with a Certificate Signing Request.

Certificate Signing Requests
A Certificate Signing Request (CSR) is a file that includes the following information:

• The public key that the certificate will incorporate
• The domain name(s) that this certificate should work with
• Information about the identity that this certificate should represent (for example,

the name of your company or organization)

You create a CSR and send it to a CA to request an X.509 certificate. You know from
earlier in the chapter that a certificate includes this information, plus the signature
from the CA, so it makes complete sense that this is what is included in a CSR.

Tools like openssl can create a new key pair and CSR in one step. Perhaps confus‐
ingly, openssl can take a private key as input for generating a CSR. This makes sense
when you recall that the public key is derived from the private key. The component
running as this identity (represented by the certificate) will use the private key for
decrypting and signing messages (as you’ll see shortly), but it never uses the public
key itself. It’s the other components that it communicates with who will need the pub‐
lic key, and they get that from the certificate. This component needs the private key,
and it needs the certificate that it will send to other components.

Now that you have a good understanding of what a certificate is, let’s discuss how cer‐
tificates are used for TLS connections.

TLS Connections
Transport layer connections have to be initiated by a component, and that component
is called the client. The entity it is communicating with is called the server. It may well
be the case that this client-server relationship is true only at the transport layer, and at
higher layers the components could be peers.

A client opens a socket and requests a network connection to the server. For a secure
connection, it requests that the server should send back a certificate. As you know
from earlier in this chapter, the certificate conveys two very important pieces of infor‐
mation: the identity of the server, and its public key.

136 | Chapter 11: Securely Connecting Components with TLS

The point of this is that the client can check that the server can be trusted. The client
checks that the server’s certificate was signed by a trusted CA, and if so, that is confir‐
mation that the server can be trusted. The client can go on to use the server’s public
key to encrypt messages that it sends to the server. The client and server agree on a
symmetric key used for the remainder of the messages transferred on this connection
—this is more performant than using the asymmetric public/private key pair. This
message flow is shown in Figure 11-5.

Figure 11-5. TLS handshake

You may have come across the term “skip verify.” This refers to an option at the trans‐
port layer that allows a client to skip the step where it verifies that the certificate was
signed by a known CA. The client simply assumes that the identity claimed by the
certificate is correct. This can be handy in nonproduction environments because it
means you don’t have to bother configuring the client with information about CAs,
and you can simply use self-signed certificates. You still have encrypted communica‐
tions between components, but you can’t have full confidence that components aren’t
imposters, so please don’t use skip-verify options in production!

Once the client has verified the server, it can trust it. But how can the server trust the
client?

If we were discussing a website where you have an account, like a bank, it’s important
that the server verifies your identity before it gives out details of your bank balance,
or worse. For a true client/server relationship such as logging into your bank, this is
typically dealt with through Layer 7 authentication. You supply a username and pass‐
word, perhaps supplementing this with multi-factor authentication through a code

TLS Connections | 137

sent in a text message, or through a one-time password generated by a Yubikey, or a
mobile app like Authy, 1Password, or Google Auth.

Another way to validate the client’s identity is through another X.509 certificate. The
message flow in Figure 11-5 shows both the server and client certificates being
exchanged—this is an option that can be configured at the server side. The server
used one to confirm its identity to the client, so why not do the same thing in reverse?
When this happens, it’s called mutual TLS or mTLS.

Secure Connections Between Containers
Nothing in this chapter so far is specific to containers, but now let’s review some of
the circumstances in which you might need to understand keys, certificates, and cer‐
tificate authorities:

• If you are installing or administering Kubernetes or other distributed system
components, it’s likely that you’ll come across options for using secure connec‐
tions. Installation tools like kubeadm now make it easy to use TLS between con‐
trol plane components, automatically configuring certificates as appropriate. This
doesn’t do anything to secure the traffic between containers and the outside
world.

• As a developer, you might write application code that sets up secure connections
with other components (whether it’s running in a container or not). In that case,
your app code needs access to certificates that you’ll need to create.

• Rather than writing your own code to set up secure connections, you can choose
to use a service mesh to do it for you.

Certificates are intended for distribution, but to use them each component also needs
access to its own private key corresponding to that certificate. The next chapter dis‐
cusses how secret data such as private keys can be passed into containers.

Certificate Revocation
Imagine that an attacker somehow obtains a private key. They can now impersonate
the identity associated with that key, because they can successfully decrypt messages
that were encrypted using the public key embedded in any corresponding certificates.
To prevent this, you need a way of invalidating the certificate immediately, rather
than waiting for its expiry date.

This invalidation is called “certificate revocation” and can be achieved by maintaining
a Certificate Revocation List (CRL) of certificates that should no longer be accepted.

Try not to share identities (and their certificates) across multiple components or
users. It may seem like a management burden to set up individual identities and

138 | Chapter 11: Securely Connecting Components with TLS

certificates for each component, but it means you can revoke the certificate for one
identity without having to reissue a new one to all the (legitimate) users. It also allows
for a separation of concerns whereby each identity can be granted a separate set of
permissions.

In Kubernetes, certificates are used by the kubelet component on
each node to authenticate to the API server and confirm that it
really is an authorized kubelet. These certificates can be rotated.
Certificates are also one of the mechanisms that clients can use to
authenticate themselves with the Kubernetes API Server.
At the time of writing, Kubernetes does not support certificate rev‐
ocation. You can use RBAC configuration to prevent API access for
the client associated with that certificate.

Summary
To avoid man-in-the-middle attacks, you’ll need to make sure that you can trust the
network connections between your various software components. Secure connections
based on mTLS are a tried-and-tested way to ensure this is the case. It’s a good idea to
set up mTLS between your application containers, and if you’re administering dis‐
tributed system components, you will need secure connections between them as well.

Each container or other component using X.509 certificates for authentication will
need three things:

• A private key that should never be shared and should be treated as a secret
• A certificate that it can freely distribute, which other components can use to vali‐

date its identity
• Certificates from one or more trusted CAs that it can use to validate the certifi‐

cates received from other components

Now that you have read this chapter, you should have a good understanding of the
role that keys, certificates, and CAs each play. This knowledge will be helpful when
you’re configuring components to use them.

If you can trust the connections between containers and identify the component at
the far end of a connection, you are in a good place to start passing secrets between
containers. But you’ll need to be able to pass secret values into containers safely—and
that’s what’s coming up in the next chapter.

Summary | 139

https://oreil.ly/b0eon
https://oreil.ly/0DuGQ
https://oreil.ly/RU3ga
https://oreil.ly/RU3ga

CHAPTER 12

Passing Secrets to Containers

Application code often needs certain credentials to do its job. For example, it may
need a password to access a database, or a token giving it permission to access a par‐
ticular API. Credentials, or secrets, exist specifically to restrict access to resources—
the database or the API in these examples. It’s important to make sure that the secrets
themselves stay “secret” and, in compliance with the principle of least privilege, are
accessible only to people or components who really need them.

This chapter starts by considering the desirable properties of secrets and then
explores the options for getting secret information into containers. It ends with a dis‐
cussion of native support for secrets in Kubernetes.

Secret Properties
The most obvious property of a secret is that it needs to be secret—that is, it must be
accessible only to the people (or things) that are supposed to have access. Typically
you ensure this secrecy by encrypting the secret data and sharing the decryption key
only with those entities that should have permission to see the secret.

The secret should be stored in encrypted form so that it’s not accessible to every user
or entity that can access the data store. When the secret moves from storage to wher‐
ever it’s used, it should also be encrypted so that it can’t be sniffed from the network.
Ideally, the secret should never be written to disk unencrypted. When the application
needs the unencrypted version, it’s best if this is held only in memory.

It is perhaps tempting to imagine that once you have encrypted a secret, that is the
end of the matter, because you can pass it safely to another component. However, the
receiver would need to know how to decrypt the information it received, and that
entails a decryption key. This key is in itself a secret, and the receiver would need to

141

get hold of that somehow, leading us back to the original question of how we can pass
this next-level secret safely.

You need to be able to revoke secrets—that is, make them invalid in the event that the
secret should no longer be trusted. This could happen if you know or suspect that an
unauthorized person has been able to access the secret. You might also want to revoke
secrets for straightforward operational reasons, such as someone leaving the team.

You also want the ability to rotate or change secrets. You won’t necessarily know if
one of your secrets has been compromised, so by changing them every so often you
ensure that any attacker who has been able to access some credentials will find that
they stop working. It’s now well-recognized that forcing humans to change passwords
regularly is a bad idea, but software components can cope fine with frequently chang‐
ing credentials.

The life cycle of a secret should ideally be independent of the life cycle of the compo‐
nent that uses it. This is desirable because it means you don’t have to rebuild and
redistribute the component when the secret changes.

The set of people who should have access to a secret is often much smaller than the
set of people who need access to the application source code that will use that secret,
or who can perform deployments or administration on (parts of) the deployment.
For example, in a bank, it’s unlikely that developers should have access to production
secrets that would grant access to account information. It’s quite common for secret
access to be write-only for humans: once a secret is generated (often automatically
and at random), there may never be a reason for a person to legitimately read the
secret out again.

It’s not just people who should be restricted from having access to secrets. Ideally, the
only software components that can read the secret should be those that need access to
it. Since we are concerned with containers, this means exposing a secret only to those
containers that actually need it to function correctly.

Now that we have considered the preferred qualities of a secret, let’s turn to the possi‐
ble mechanisms that could be used to get a secret into the application code running in
a container.

Getting Information into a Container
Bearing in mind that a container is deliberately intended to be an isolated entity, it
should be no surprise that there is a limited set of possibilities for getting information
—including secret data—into a running container:

142 | Chapter 12: Passing Secrets to Containers

https://oreil.ly/ETKEZ
https://oreil.ly/ETKEZ

• Data can be included in the container image, as a file in the image root
filesystem.

• Environment variables can be defined as part of the configuration that goes along
with the image (see Chapter 6 for a reminder of how the root filesystem and con‐
fig information make up an image).

• The container can receive information over a network interface.
• Environment variables can be defined or overridden at the point where the con‐

tainer is run (for example, including -e parameters on a docker run command).
• The container can mount a volume from the host, and read information out of

volumes on that host.

Let’s take each of these options in turn.

Storing the Secret in the Container Image
The first two of these options are unsuitable for secret data because they require you
to hardcode the secret into the image at build time. While this is certainly possible, it
is generally considered a bad idea:

• The secret is viewable by anyone who has access to the source code for the image.
You might be thinking that the secret could be encrypted rather than in plain text
in the source code—but then you’ll need to pass in another secret somehow so
that the container can decrypt it. What mechanism will you use to pass in this
second secret?

• The secret can’t change unless you rebuild the container image, but it would be
better to decouple these two activities. Furthermore, a centralized, automated
system for managing secrets (like CyberArk or Hashicorp Vault) can’t control the
life cycle of a secret that is hardcoded in the source.

Unfortunately, it is surprisingly common to find secrets baked into source code. One
reason is simply that developers don’t all know that it’s a bad idea; another is that it’s
all too easy to put the secrets directly into the code as a shortcut during development
or testing, with the intention of removing them later—and then simply forget to come
back and take them out.

If passing the secret at build time is off the table, the other options all pass the secret
when the container starts or is running.

Getting Information into a Container | 143

Passing the Secret Over the Network
The third option, passing the secret over a network interface, requires your applica‐
tion code to make the appropriate network calls to retrieve or receive the informa‐
tion, and as a result it is the approach I have seen least often in the wild.

In addition, there is the question of encrypting the network traffic that carries the
secret, which necessitates another secret in the form of an X.509 certificate (see Chap‐
ter 11). You could offload this part of the problem to a service mesh, which can be
configured to ensure that network connections use mutual TLS for security.

Passing Secrets in Environment Variables
The fourth option, passing secrets via environment variables, is generally frowned
upon for a couple of reasons:

• In many languages and frameworks, a crash will result in the system dumping
debug information that may well include all the environment settings. If this
information gets passed to a logging system, anyone who has access to the logs
can see secrets passed in as environment variables.

• If you can run docker inspect (or an equivalent) on a container, you get to see
any environment variables defined for the container, whether at build or at run‐
time. Administrators who have good reasons for inspecting properties of a con‐
tainer don’t necessarily need access to the secrets.

Here’s an example of extracting the environment variables from a container image:

vagrant@vagrant:~$ docker image inspect --format '{{.Config.Env}}' nginx
[PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NGINX_VERSION=
1.17.6 NJS_VERSION=0.3.7 PKG_RELEASE=1~buster]

You can also easily inspect environment variables at runtime. This example shows
how the results include any definitions passed in on the run command (EXTRA_ENV
here).

vagrant@vagrant:~$ docker run -e EXTRA_ENV=HELLO --rm -d nginx
13bcf3c571268f697f1e562a49e8d545d78aae65b0a102d2da78596b655e2f9a
vagrant@vagrant:~$ docker container inspect --format '{{.Config.Env}}' 13bcf
[EXTRA_ENV=HELLO PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
NGINX_VERSION=1.17.6 NJS_VERSION=0.3.7 PKG_RELEASE=1~buster]

The 12-factor app manifesto encourages developers to pass configuration through
environment variables, so in practice you may find yourself running third-party con‐
tainers that expect to be configured this way, including some secret values. You can
mitigate the risk of environment variable secrets in a few ways (which may or may
not be worthwhile, depending on your risk profile):

144 | Chapter 12: Passing Secrets to Containers

https://12factor.net/config

• You could process output logs to remove or obscure the secret values.
• You can modify the app container (or use a sidecar container) to retrieve the

secrets from a secure store (like Hashicorp Vault, CyberArk Conjur, or cloud pro‐
vider secret/key management systems). Some commercial security solutions will
provide this integration for you.

One last thing to note about secrets configured through environment variables is that
the environment for a process is configured only once, and that’s at the point where
the process is created. If you want to rotate a secret, you can’t reconfigure the envi‐
ronment for the container from the outside.

Passing Secrets Through Files
The preferred option for passing secrets is to write them into files that the container
can access through a mounted volume. Ideally, this mounted volume should be a
temporary directory that is held in memory rather than written to disk. Combining
this with a secure secrets store ensures that secrets are never stored “at rest”
unencrypted.

Because the file is mounted from the host into the container, it can be updated from
the host side at any time without having to restart the container. Provided the appli‐
cation knows to retrieve a new secret from the file if the old secret stops working, this
means you can rotate secrets without having to restart containers.

Kubernetes Secrets
If you’re using Kubernetes, the good news is that it has native secrets support that
meets many of the criteria I described at the start of this chapter:

• Kubernetes secrets are created as independent resources, so they are not tied to
the life cycle of the application code that needs them.

• Secrets can be encrypted at rest, although (at least as of this writing) you will
need to opt in to this as it’s not enabled by default.

• Secrets are encrypted in transit between components. This requires that you have
secure connections between Kubernetes components, though this is generally the
case by default in most distributions.

• Kubernetes secrets support the file mechanism as well as the environment vari‐
able method, mounting secrets as files in a temporary filesystem that is held in-
memory and never written to disk.

Kubernetes Secrets | 145

• You can set up Kubernetes RBAC (role-based access control) so that users
can configure secrets but can’t access them again, giving them write-only
permissions.

By default in Kubernetes the secret values are stored in the etcd data store as base64-
encoded but not encrypted values. It is possible to configure etcd to encrypt its data
store, though you will need to take care not to store the decryption key on the host.

In my experience most enterprises choose a third-party commercial solution for
secret storage, either from their cloud provider (such as the AWS Key Management
System, or its Azure or GCP equivalents), or from a vendor such as Hashicorp or
CyberArk. These offer several benefits:

• One reason is certificate rotation. When you rotate the certificates that Kuber‐
netes components themselves use, you will need to refresh all the Kubernetes
secrets. This can be avoided by using a dedicated secrets management solution.

• Another benefit is that a dedicated secrets management system can be shared
with multiple clusters. Secret values can be rotated, irrespective of the life cycle of
the application cluster(s).

• These solutions can make it easier for organizations to standardize on one way of
handling secrets, with common best practices for management and consistent
logs and auditing of secrets.

The Kubernetes documentation covers many of the security prop‐
erties of its native secrets support.
Rancher’s documentation includes an example of using AWS KMS
for Kubernetes secret encryption at rest.
There is also a description of injecting secrets from Vault on Hashi‐
corp’s blog.

Secrets Are Accessible by Root
Whether a secret is passed into a container as a mounted file or as an environment
variable, it is going to be possible for the root user on the host to access it.

If the secret is held in a file, that file lives on the host’s filesystem somewhere. Even if
it’s in a temporary directory, the root user will be able to access it. As an demonstra‐
tion of this you can list the temporary filesystems mounted on a Kubernetes node,
and you’ll find something like this:

146 | Chapter 12: Passing Secrets to Containers

https://oreil.ly/wHHDf
https://oreil.ly/wHHDf
https://oreil.ly/XmzCc
https://oreil.ly/XmzCc
https://oreil.ly/qi6yC
https://oreil.ly/qi6yC
https://oreil.ly/CyN1J

root@vagrant:/$ mount -t tmpfs
...
tmpfs on /var/lib/kubelet/pods/f02a9901-8214-4751-b157-d2e90bc6a98c/volumes/kuber
netes.io~secret/coredns-token-gxsqd type tmpfs (rw,relatime)
tmpfs on /var/lib/kubelet/pods/074d762f-00ed-48e6-a22f-43fc673df0e6/volumes/kuber
netes.io~secret/kube-proxy-token-bvktc type tmpfs (rw,relatime)
tmpfs on /var/lib/kubelet/pods/e1bad0db-8c0b-4d7b-8867-9fc019de258f/volumes/kuber
netes.io~secret/default-token-h2x8p type tmpfs (rw,relatime)
...

Using the directory names included in this output, the root user has no difficulty
accessing the secret files held within them.

Extracting the secrets held in environment variables is almost as simple for the root
user. Let’s demonstrate this by starting a container with Docker on the command line,
passing in an environment variable:

vagrant@vagrant:~$ docker run --rm -it -e SECRET=mysecret ubuntu sh
$ env
...
SECRET=mysecret
...

This container is running sh, and from another terminal you can find the process ID
for that executable:

vagrant@vagrant:~$ ps -C sh
 PID TTY TIME CMD
17322 pts/0 00:00:00 sh

In Chapter 4 you saw that lots of interesting information about a process is held in
the /proc directory. That includes all its environment variables, held in /proc/<pro
cess ID>/environ:

vagrant@vagrant:~$ sudo cat /proc/17322/environ
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/binHOSTNAME=2cc99c9
8ba5aTERM=xtermSECRET=mysecretHOME=/root

As you can see, any secret passed in through the environment can be read in this way.
Are you wondering whether it wouldn’t be better to encrypt the secret first? Think
about how you would get the decryption key—which also needs to be kept secret—
into the container.

I can’t overemphasize that anyone who has root access to a host machine has carte
blanche over everything on that machine, including all its containers and their
secrets. This is why it’s so important to prevent unauthorized root access within your
deployment, and why running as root inside a container is so dangerous: since root
inside the container is root on the host, it is just one step away from compromising
everything on that host.

Secrets Are Accessible by Root | 147

Summary
If you have worked through the book to this point, you should have a good under‐
standing of how containers work, and you know how to send secret information
safely between them. You have seen numerous ways in which containers can be
exploited, and many ways in which they can be protected.

The last group of protection mechanisms we shall consider relates to runtime protec‐
tion, coming up in the next chapter.

148 | Chapter 12: Passing Secrets to Containers

CHAPTER 13

Container Runtime Protection

As we saw in Chapter 10, one of the characteristics of containers is they lend them‐
selves to microservice architectures. Application developers can break down a com‐
plex software application into small, self-contained pieces of code that can be scaled
independently, each delivered as a container image.

Breaking a large system into smaller components with well-defined interfaces makes
it easier to design, code, and test the individual components. It also turns out to make
them easier to secure.

Container Image Profiles
If a given container image holds the code for an application microservice and that
microservice does one small function, it’s relatively easy to reason about what that
microservice should do. The code for the microservice is built into a container image,
and it’s possible to construct a runtime profile corresponding to that container image,
defining what it should be able to do.

Every container instantiated from a given image should behave the same way, so it
makes sense that a profile of expected behavior can be defined for an image and then
used to police the traffic to and from all the containers based on that image.

In a Kubernetes deployment, runtime security might be policed on
a pod-by-pod basis—for example, through the PodSecurityPolicy
object, or through security tools that also act at this level. A pod is
essentially a collection of containers that share a network name‐
space, so the underlying mechanisms for runtime security are the
same.

149

I’ll use the same ecommerce platform example from “Container Firewalls” on page
117, with a product search microservice that accepts web requests specifying a search
term (or the first few characters of a search term) as entered by a customer browsing
the ecommerce site. The job of the product search microservice is to look in a prod‐
uct database for items that match the search term and return a response. Let’s start by
thinking about the expected network traffic for this microservice.

Network Traffic Profiles
From the description of the product search microservice, we can infer that its con‐
tainers need to accept and respond to web requests coming from a particular ingress
or load balancer, and they should initiate a database connection to the product data‐
base. Aside from common platform functions like logging or health checks, there is
really no reason for this service to handle or initiate any other network traffic.

It would not be terribly onerous to draw up a profile defining the traffic that is per‐
mitting for this service and then use it to define rules that are enforced at the net‐
working level, as you saw in Chapter 10. Some security tools can act in a recording
mode in which they monitor messages to and from a service over a period of time to
automatically build up a profile of what normal traffic flow looks like. This profile
can be converted into container firewall rules or network policies.

Network traffic isn’t the only behavior that you can observe and profile. Let’s consider
the executables.

Executable Profiles
How many executable programs should run in this product search microservice? For
the sake of illustration, let’s imagine that the code is written as a single Go executable
called productsearch. If you were to monitor the executables running inside these
product search containers, you should only ever see productsearch. Anything else
would be an anomaly and possibly a sign of attack.

Even if the service is written in a scripted language like Python or Ruby, you can
make inferences about what is or isn’t acceptable. Does the service need to “shell out”
to run other commands? If not, then were you ever to observe bash, sh, or zsh exe‐
cutables running in a product search container, you should be alarmed.

This relies on you treating the containers as immutable and assumes that you are not
opening shells directly into containers on your production system. From a security
perspective, there is very little difference between an attacker opening a reverse shell
through an application vulnerability and an administrator opening a shell to perform
some kind of “maintenance.” As discussed in “Immutable Containers” on page 87,
this is considered bad practice!

150 | Chapter 13: Container Runtime Protection

So how can you spot the executables being launched within a container? One tech‐
nology for doing this is eBPF.

Observing executables with eBPF

Let’s consider an nginx container as an example. Under normal circumstances, the
only processes you expect to see inside such a container are nginx processes. Using
the Tracee project that you first met in Chapter 8, I can easily observe the processes
that are started inside an nginx container.

Tracee uses a technology called eBPF (which stands for extended Berkeley Packet Fil‐
ter). eBPF lets Tracee insert code into the kernel, so it needs to be run as root.

To delve into eBPF, you might like to start with the slides from my
talk on eBPF Superpowers. Then you’ll find a lot more information
and resources on Brendan Gregg’s website.

After starting Tracee in one terminal, I run an nginx container from another:

$ docker run --rm -d --name nginx nginx

Tracee shows the nginx executable starting up, just as expected (I have omitted some
output for clarity):

EVENT ARGS
execve /usr/sbin/nginx

Now if I execute another command inside the container—for example, docker exec
-it nginx ls—the executable shows up in Tracee’s output:

EVENT ARGS
execve /usr/sbin/nginx
execve /bin/ls

Imagine that, as an attacker, I insert a cryptocurrency miner inside this container.
When the miner executable starts, a tool like Tracee can spot the executable. Runtime
security tools can carry out this kind of observation, using eBPF or proprietary tech‐
nology to spot when executables are launched and comparing the executable name
against a whitelist or blacklist. I’ll come to the shortcomings of today’s eBPF-based
tooling shortly.

First, let’s consider some of the other properties that can be profiled for a given con‐
tainer image.

Container Image Profiles | 151

https://oreil.ly/-ERmb
http://brendangregg.com

File Access Profiles
Much as you can use eBPF or other technologies to observe when a system call is
used to start an executable, you can observe the system calls that access files. Gener‐
ally speaking, the set of file locations that you would expect a given microservice to
access is also relatively limited. As an example, using Tracee I obtained the following
list of files for an nginx container:

openat /etc/ld.so.cache
openat /lib/x86_64-linux-gnu/libdl.so.2
openat /lib/x86_64-linux-gnu/libpthread.so.0
openat /lib/x86_64-linux-gnu/libcrypt.so.1
openat /lib/x86_64-linux-gnu/libpcre.so.3
openat /usr/lib/x86_64-linux-gnu/libssl.so.1.1
openat /usr/lib/x86_64-linux-gnu/libcrypto.so.1.1
openat /lib/x86_64-linux-gnu/libz.so.1
openat /lib/x86_64-linux-gnu/libc.so.6
openat /etc/localtime
openat /var/log/nginx/error.log
openat /usr/lib/ssl/openssl.cnf
openat /sys/devices/system/cpu/online
openat /etc/nginx/nginx.conf
openat /etc/nsswitch.conf
openat /etc/ld.so.cache
openat /lib/x86_64-linux-gnu/libnss_files.so.2
openat /etc/passwd
openat /etc/group
openat /etc/nginx/mime.types
openat /etc/nginx/conf.d
openat /etc/nginx/conf.d/default.conf
openat /var/log/nginx/error.log
openat /var/log/nginx/access.log
openat /var/run/nginx.pid
openat /proc/sys/kernel/ngroups_max
openat /etc/group

This list is sufficiently long that even an experienced programmer might omit a few of
these files if they tried to draw up a profile by hand, but with tools like Tracee it’s
straightforward to create the list of files that a container is expected to access. Again,
some security tools offer the ability to profile running containers automatically and
then alert on or prevent opening files outside the expected profile.

User ID Profiles
As discussed in Chapter 6, you can define the user ID under which processes run
within a container, so this is another aspect that can be policed by security tools at
runtime. (I hope you’re using non-root users in your application profiles—see “Con‐
tainers Run as Root by Default” on page 105.)

152 | Chapter 13: Container Runtime Protection

As a general rule, if the container is doing one job, it probably needs to operate under
only one user identity. If you were to observe the container using a different identity,
this would be another red flag. If a process were to be unexpectedly running as root,
this privilege escalation would be an even greater cause for concern.

Other Runtime Profiles
You can go to an even lower level and profile productsearch to determine the set of
system calls and capabilities that it needs to make. From this, you can create a
“shrink-wrapped” seccomp or AppArmor profile (see Chapter 8) that applies specifi‐
cally to the containers running productsearch. Jess Frazelle’s bane is a tool for gener‐
ating AppArmor profiles like this.

Using Tracee to observe cap_capable system calls, I obtained the following list of
capabilities required for the nginx container:

CAP_CHOWN
CAP_DAC_OVERRIDE
CAP_DAC_READ_SEARCH
CAP_NET_BIND_SERVICE
CAP_SETGID
CAP_SETUID
CAP_SYS_ADMIN

A similar exercise would result in a list of system calls used by the container that
could be converted into a seccomp profile.

It is much easier to build up this kind of profile for microservice applications than it
is for monoliths, because the number of possible paths through a microservice is dra‐
matically smaller. It’s relatively easy to exercise the error paths as well as the happy
paths to check whether all file access events, system calls, and executables are accoun‐
ted for.

You have seen that it’s possible to build a profile for what “normal” behavior looks like
for a microservice, in terms of what executables, user IDs, and network traffic should
be expected. There are several tools available that leverage this kind of profile to pro‐
vide security at runtime.

Container Security Tools
You have already seen some of these tools in earlier chapters:

• Chapter 8 talked about configuring each container to run with its own
AppArmor, SELinux, or seccomp profile.

• Network traffic can be policed at runtime using network policy or a service mesh,
as described in Chapter 10.

Container Image Profiles | 153

https://oreil.ly/aQy3Q

There are additional tools for policing executables, file access, and user IDs at run‐
time. Most of these are commercial tools, but one open source option is the CNCF
project Falco. This observes container behavior using eBPF and triggers alerts when
something anomalous happens, such as an unexpected executable being run (as in
the earlier example). This approach is a powerful way to detect anomalous behavior,
but it does have limitations when it comes to enforcement. This is because eBPF can
detect but can’t modify system calls. So while this is efficient and powerful for observ‐
ing and alerting to potential attacks, you need another mechanism in place to actually
stop them. Falco can trigger alerts that you can use either to automatically re-
configure the running system or to call for human intervention.

Prevention or alerting
Whichever tool you use for runtime protection, there is one last aspect to consider:
what action do you want the tool to take when it finds anomalous behavior? Ideally,
you’d like it to prevent the unexpected in the first place—this is what happens when
you apply network policies and seccomp/SELinux/AppArmor profiles. But what
about the other forms of runtime profiles discussed in this chapter?

Commercial tools that offer true runtime protection use proprietary techniques that
hook into the container and can prevent it from running anomalous executables,
using an incorrect user ID, or making unexpected file/network access.

Typically, these tools also offer a mode in which anomalous behavior merely triggers
an alert rather than taking preventive action. This can be useful during a trial stage to
ensure that the runtime profiles are correctly set up.

If you’re using a tool that can’t prevent out-of-profile behavior, it will provide you
with alerts. This means you’ll get a notification that a container is behaving badly in
some way. How you should handle such alerts is a complicated question:

• If you automatically delete the container when it triggers an alert, will this affect
the service for users?

• Furthermore, if you delete the container, will it erase evidence that would be use‐
ful for forensics?

• You could terminate just the specific process that triggered the alert, but what if
that’s a “good” process that has been coerced into doing something unexpected
(for example, through an injection attack)?

• If you’re relying on an orchestrator to bring up a new instance, what if the new
instance is subject to the same attack? You can end up in a vicious cycle in which
a container comes up, bad behavior is detected, and the security tool kills the
container, only for it to be re-created by the orchestrator (for example, think
about how Kubernetes will create or destroy pods to ensure that the number
matches the desired replica count).

154 | Chapter 13: Container Runtime Protection

• If this is a new version of a container, can you roll back to the previous version?
• Should you simply rely on human intervention to investigate the unexpected

behavior and determine how to react? This approach inevitably means a signifi‐
cant delay before reacting to the attack, and this delay may be long enough to
allow the attack to extract the data or create damage as it was intended to.

There is no single correct answer when it comes to figuring out how to handle a secu‐
rity alert automatically. However long it takes might be long enough for an attacker to
cause harm. Prevention is much better than cure in this regard.

If your security tools can actually prevent bad behavior within a container before it
happens, there is a possibility that the container can carry on as before. For example,
suppose an attacker has compromised a product search container and is attempting
to run a cryptocurrency miner. The executable is not part of the profile, so the run‐
time security tool prevents it from being run at all. The “good” processes carry on as
normal, but the cryptomining attack is prevented.

The best option is tooling that can prevent anomalous behavior but that generates
alerts or logs so you can investigate and determine whether it is a genuine attack and,
if so, decide on the appropriate next steps.

Drift Prevention
As you’ll recall from “Immutable Containers” on page 87, it’s considered best practice
to treat your containers as immutable. The container is instantiated from its image,
and then the contents of the container should not change. Any executables or depen‐
dencies that the application code needs should be included in that image. We dis‐
cussed this earlier through the lens of vulnerability detection: you can’t scan for
vulnerabilities in code that isn’t included in the image, so you should make sure that
everything you want to scan is included.

Treating containers as immutable gives us another incredibly powerful option for
detecting code injection at runtime: drift prevention, which should be offered by any
serious runtime security solution for containers. This requires coordination between
the scanning and runtime steps:

• The scanner fingerprints the files within the image as part of the scan.
• At runtime, an enforcement tool adds a check whenever a container starts to run

a new executable process. This enforcer compares the executable against the file
fingerprints from the scanning step. If the file isn’t identical, the executable is not
permitted to run (giving a “permission denied” error within the container).

By using file fingerprints rather than a list of filenames, this approach can prevent an
attacker from trying to disguise an injected executable as a legitimate one.

Drift Prevention | 155

Summary
The ability to do granular runtime protection, as described in this chapter, makes spe‐
cialist container security tooling a compelling prospect, especially for organizations
with a lot at risk, such as banks or healthcare organizations.

You’re closing in on the end of the book now. The final chapter reviews the top 10
security risks collated by OWASP and relates these risks to mitigations that are spe‐
cific to containerized deployments.

156 | Chapter 13: Container Runtime Protection

CHAPTER 14

Containers and the OWASP Top 10

If you’re in the security field, there’s a good chance you have come across OWASP, the
Open Web Application Security Project; perhaps you’re even a member of a local
chapter. This organization periodically publishes a list of the top 10 web application
security risks.

While not all applications, containerized or otherwise, are web applications, this is a
great resource for considering which attacks to be most concerned about. You’ll also
find great explanations of these attacks and advice on how to prevent them on the
OWASP website. In this chapter, I’ll relate the current top 10 risks to container-
specific security approaches.

Injection
If your code has an injection flaw, an attacker can get it to execute commands mas‐
querading as data. This is perhaps best illustrated through the immortal xkcd charac‐
ter Little Bobby Tables.

There is nothing container-specific about this, though container image scanning can
reveal known injection vulnerabilities in dependencies. You should review and test
your own application code, following the OWASP advice.

Broken Authentication
This category covers broken authentication and compromised credentials. At the
application level, all the same advice applies for containerized apps as for monoliths
in traditional deployments, but there are some additional container-specific
considerations:

157

https://owasp.org
https://owasp.org/www-project-top-ten
https://xkcd.com/327
https://xkcd.com/327

• The credentials required by each container should be treated as secrets. These
secrets need to be stored with care and passed into containers at runtime, as dis‐
cussed in Chapter 12.

• Breaking an application into multiple containerized components means that they
need to identify each other, typically using certificates, and communicate using
secure connections. This can be handled directly by containers, or you can use a
service mesh to offload this responsibility. See Chapter 11.

Sensitive Data Exposure
It is particularly important to protect any personal, financial, or other sensitive data
that your application has access to.

Whether containerized or not, sensitive information should always be encrypted at
rest and in transit, using a strong cryptographic algorithm. Over time, as processing
power increases, it becomes feasible to brute-force encryption, which means that
older algorithms can start to be considered no longer safe to use.

Because the sensitive data is encrypted, your applications will need credentials to
access it. Following the principles of least privilege and segregation of duties, limit
credentials to only those containers that really need access. See Chapter 12 for cover‐
age of safely passing secrets to containers.

Consider scanning container images for embedded keys, passwords, and other sensi‐
tive data.

XML External Entities
There is nothing container-specific about this category of vulnerable XML process‐
ors. Much as for injection vulnerabilities, you should follow the OWASP advice on
analyzing your own application code for flaws and use a container image scanner to
spot vulnerabilities in dependencies.

Broken Access Control
This category relates to the abuse of privileges that may be granted unnecessarily to
users or components. There are some container-specific approaches to applying least
privilege to containers, as discussed in Chapter 9:

• Don’t run containers as root.
• Limit the capabilities granted to each container.
• Use seccomp, AppArmor, or SELinux.

158 | Chapter 14: Containers and the OWASP Top 10

• Use rootless containers, if possible.

These approaches can limit the blast radius of an attack, but none of these controls
relate to user privileges at the application level, so you should still apply all the same
advice as you would in a traditional deployment.

Security Misconfiguration
Many attacks take advantage of systems that are poorly configured. Examples high‐
lighted in the OWASP Top 10 include insecure or incomplete configurations, open
cloud storage, and verbose error messages containing sensitive information, all of
which have mitigations specific to containers and cloud native deployments:

• Use guidelines like the Center for Internet Security (CIS) Benchmarks to assess
whether your system is configured according to best practices. There are bench‐
marks for Docker and Kubernetes, as well as for the underlying Linux host. It
may not be appropriate in your environment to follow every recommendation,
but they are a very good starting point for assessing your installation.

• If you are using a public cloud service, there are tools such as CloudSploit or
DivvyCloud to check your settings and look for things like publicly accessible
storage buckets or poor password policies. Gartner refers to these checks as
Cloud Security Posture Management (CSPM). (Full disclosure: CloudSploit is
operated by my employer, Aqua Security.)

• As discussed in Chapter 12, using environment variables to convey secrets can
easily result in them being exposed via logs, so I encourage you to use environ‐
ment variables only for information that isn’t sensitive.

You might also want to consider the configuration information that forms part of
each container image under this OWASP category. This was covered in Chapter 6,
along with best practices for building images securely.

Cross-Site Scripting XSS
This is another category that acts at the application level, so there is nothing particu‐
lar about running your app in containers that would affect this risk. You should use a
container image scanner to identify vulnerable dependencies.

Insecure Deserialization
In this type of attack, a malicious user provides a crafted object that the application
interprets to grant the user additional privileges or to change the application behavior
in some way. (I witnessed an example of this myself back in 2011 as a Citibank

Security Misconfiguration | 159

https://cloudsploit.com
https://divvycloud.com

customer, when Citi had a vulnerability allowing a logged-in user to access other peo‐
ple’s accounts simply by modifying the URL.)

Again, this is generally not something that is affected by whether an application is
running in containers or not, though there are some container-specific approaches to
limiting the impact of this kind of attack:

• The OWASP advice on prevention includes a recommendation to isolate the code
that performs deserializing and run it in a low-privilege environment. Perform‐
ing that deserialization step in a dedicated container microservice could provide
that isolation, especially if using Firecracker, gVisor, Unikernels, or other
approaches that we saw in Chapter 8. Running the container as non-root, with as
few capabilities as possible and with a shrink-wrapped seccomp/AppArmor/
SELinux profile, would also help limit the privileges that this kind of attack could
try to leverage.

• Another recommendation from OWASP here is to restrict network traffic to and
from the containers or servers that deserialize. You have seen approaches for
restricting network traffic in Chapter 10.

Using Components with Known Vulnerabilities
I hope that by this stage in the book you can anticipate my advice on this: use an
image scanner to identify known vulnerabilities in your container images. You also
need a process or tooling in place to:

• Rebuild container images to use up-to-date, fixed packages
• Identify and replace running containers based on vulnerable images

Insufficient Logging and Monitoring
The OWASP site shares the terrifying statistic that, on average, breaches take almost
200 days to be identified. It should be possible to dramatically reduce that with suffi‐
cient observation combined with alerting on unexpected behavior.

In any production deployment, you should be logging container events, including:

• Container start/stop events, including the identity of the image and the invoking
user

• Access to secrets
• Any modification of privileges

160 | Chapter 14: Containers and the OWASP Top 10

https://oreil.ly/EsgO7

• Modification of container payload, which could indicate code injection (see
“Drift Prevention” on page 155)

• Inbound and outbound network connections
• Volume mounts (for analysis of mounts that might subsequently turn out to be

sensitive, as described in “Mounting Sensitive Directories” on page 113)
• Failed actions such as attempts to open network connections, write to files, or

change user permissions, as these could indicate an attacker performing recon‐
naissance on the system

Most serious commercial container security tools integrate with enterprise SIEM
(security information and event management) to provide container security insights
and alerts through one centralized system. Even better than observing attacks and
reporting on them after the event, these tools can provide the protection of not just
reporting on unexpected behaviors but preventing them from happening based on
runtime profiles, as discussed in Chapter 13.

Summary
The OWASP Top 10 is a useful resource for making any internet-connected applica‐
tion more secure against the most common types of attack.

You may have spotted that the container-specific recommendation that comes up
most often in this chapter is to scan container images for known vulnerabilities in
third-party dependencies. While it will fail to catch some things (in particular,
exploitable flaws in your own application code), this will probably give you the big‐
gest bang per buck of any preventative tool that you can introduce into a container‐
ized deployment.

Summary | 161

Conclusions

Congratulations on reaching the end of this book!

My first hope for you at this point is that you now have a solid mental model of what
containers are. This will serve you well in discussions about how to secure your con‐
tainer deployments. You should also be armed with knowledge about different isola‐
tion options, should regular containers not give you enough isolation between
workloads for your environment.

I also hope that you now have a good understanding of how containers communicate
with each other and the outside world. Networking is a vast topic in its own right, but
the most important takeaway here is that containers give you a unit not just of
deployment but also of security. There are lots of options for restricting traffic so that
only what is expected can flow between containers and to/from the outside world.

I’d imagine that you see how layered defenses will serve you well in the event of a
breach. If an attacker takes advantage of a vulnerability in your deployment, there are
still other walls they may not be able to breach. The more layers of defense, the less
likely an attack is to succeed.

As you saw in Chapter 14, there are some preventative measures unique to containers
that you can apply against the most commonly exploited attacks against web applica‐
tions. That top 10 list doesn’t cover all the possible weaknesses in your deployment.
Now that you have almost reached the end of the book, you might want to review the
list of attack vectors specific to containers in “Container Threat Model” on page 3.
You will also find a list of questions in the Appendix to help you assess where your
deployment might be most vulnerable and where you should beef up your defenses.

163

I hope that the information in this book helps you to defend your deployment, come
what may. If you are subject to an attack—whether you are breached or you succeed
in keeping your application and data safe—I would love to hear about it. Feedback,
comments, and stories about attacks are always welcome, and you can raise issues at
containersecurity.tech. I’m @lizrice on Twitter.

164 | Conclusions

https://containersecurity.tech
https://twitter.com/lizrice

APPENDIX

Security Checklist

This appendix covers some important items you should at least think about when
considering how best to secure your container deployments. In your environment it
might well not make sense to apply every item, but if you have thought about them,
you will be off to a good start. No doubt this list is not absolutely comprehensive!

• Are you running all containers as a non-root user? See “Containers Run as Root
by Default” on page 105.

• Are you running any containers with the --privileged flag? Are you dropping
capabilities that aren’t needed for each image? See “The --privileged Flag and
Capabilities” on page 111.

• Are you running containers as read-only where possible? See “Immutable Con‐
tainers” on page 87.

• Are you checking for sensitive directories mounted from the host? How about
the Docker socket? See “Mounting Sensitive Directories” on page 113 and
“Mounting the Docker Socket” on page 114.

• Are you running your CI/CD pipeline in your production cluster? Does it have
privileged access or use the Docker socket? See “The Dangers of docker build” on
page 68.

• Are you scanning your container images for vulnerabilities? Do you have a pro‐
cess or tooling in place for rebuilding and redeploying containers where the
image is found to include vulnerabilities? See Chapter 7.

• Are you using a seccomp or AppArmor profile? The default Docker profiles are a
good starting point; even better would be to shrink-wrap a profile for each appli‐
cation. See Chapter 8.

165

• If your host operating system supports SELinux, is it enabled? Do your applica‐
tions have the right SELinux profiles attached? See “SELinux” on page 98.

• What base image are you using? Can you use an option such as a scratch or dis‐
troless image, Alpine, or RHEL minimal? Can you minimize the contents of your
images to reduce the attack surface? See “Dockerfile Best Practices for Security”
on page 75.

• Are you enforcing the use of immutable containers? That is to say, are you mak‐
ing sure that all executable code is added to a container image at build time and
not installed at runtime? See “Immutable Containers” on page 87.

• Are you setting resource limits on your containers? See “Setting Resource Limits”
on page 26.

• Do you have admission control to make sure that only approved images can be
instantiated in production? See “Admission Control” on page 79.

• Are you using mTLS connections between components? This could be imple‐
mented within your application code or by using a service mesh. See Chapter 11.

• Do you have a network policy restricting traffic between components? See Chap‐
ter 10.

• Are you passing secrets into containers using a temporary filesystem? Are your
secrets encrypted at rest and in transit? Are you using a secrets management sys‐
tem for storage and rotation? See Chapter 12.

• Are you using a runtime protection tool to ensure that only expected executables
are running inside containers? See Chapter 13.

• Do you have a runtime security solution for drift prevention? See “Drift Preven‐
tion” on page 155.

• Are you using hosts exclusively for running containers, separate from other
applications? Are you keeping your hosts systems up to date with the latest secu‐
rity releases? Consider running an OS specifically designed for container hosts.
See “Container Host Machines” on page 52.

• Are you running regular checks on the security settings on the underlying cloud
infrastructure using a CSPM tool? Are your hosts and container configured
according to security best practices such as the CIS Benchmarks for Linux,
Docker, and Kubernetes? See “Security Misconfiguration” on page 159.

166 | Appendix: Security Checklist

Index

Symbols
12-factor app manifesto, 144

A
Abbassi, Puja, 69
access control

DAC, 15-19, 99
Dockerfile, 74
MAC, 97
OWASP Top 10, 158
RBAC, 3, 9, 139, 146
SELinux, 99

actors in threat model, 3
(see also threat model)

Adams, Keith, 60
ADD (Docker command), 65
Address Resolution Protocol (ARP) (see ARP)
admission control, 73, 78-80, 93, 166
advisories, security, 89
Agesen, Ole, 60
Aggarwal, Akshai, 62
alerts, 154
Alpine Linux, 65-67

changing root directory example, 39-43
gVisor example, 100
running a shell inside, 106
security advisories, 89

Anchore, 89
anonymous network namespaces, 44
API firewalls, 118
AppArmor, 97-99, 153, 158, 160, 165
application containers, ix

(see also containers)
applications

OWASP Top 10, 157-163
sandboxing, 95-104
vulnerabilities, 3, 85

Aqua, 89, 116
ARP (Address Resolution Protocol), 120
asymmetric keys, 137
attack surface, reducing (see reducing the

attack surface)
attack vectors, 3-7, 73
authentication

Kubernetes API Server, 139
multi-factor, 137
OWASP Top 10, 157
TLS connections, 137

AWS (Amazon Web Services)
App Mesh, 129
CodeBuild, 92
Elastic Container Registry, 71
Fargate, 10, 103, 103, 116
Firecracker, 62, 160
IP addresses and, 122
Key Management System, 146
Lambda, 103
Relational Database Service (RDS), 10

Azure, 7, 10, 146
Azure Container Instances, 10

B
backdoors, 77
backgrounding processes, 51
Balkan, Ahmet Alp, 128
bane, 98, 153
base images, 75, 85, 166
Basic Input Output System (BIOS) (see BIOS)

167

Bazel, 69
Berkeley Packet Filters (BPF) (see BPF)
best practices

CIS guidelines, 53, 159, 166
Dockerfile, 75-77
network policy, 128

/bin directory, 39, 76, 114
binary translation, 60
bind mount, 42, 43
bind package, 90
BIOS (Basic Input Output System), 55
Bitnami, 108
blast radius, limiting, 11, 130, 159
blobs, storing images, 72
booting up

physical machines, 55
virtual machines, 57-59

boundaries
about, 6
containers as, 11, 31, 53
sandboxing with gVisor, 101
Virtual Machine Monitor and, 57
virtual machines as, 55

BPF (Berkeley Packet Filters), 96
bridge, 120
build command, 68-71
buildah, 69
building

building new images for updates, 86, 160
daemonless, 69, 77
in Docker, 65, 68-71
within a Kubernetes cluster, 69
multi-stage, 75
scanning on, 88, 92
on separate machines, 77
vulnerabilities, 4, 74-77

BuildKit, 69

C
cannot fork error, 35
capabilities

namespaces, 111
non-root users, 22
OWASP Top 10, 158
ping and, 17, 20
--privileged flag, 111-113, 116, 165
rootless containers and, 110
runtime profiles, 153
setting, 18, 21, 158

tracing, 113
understanding, 19-21
user namespaces, 47, 47, 48
viewing assigned, 20

Capital One, 75
capsh, 47, 112
CAP_NET_ADMIN, 130
CAP_NET_BIND_SERVICE, 19, 48, 110
CAP_NET_RAW, 20
CAP_SETFCAP, 21
CAP_SYS_BOOT, 19
CAP_SYS_MODULE, 19
Center for Internet Security (CIS) (see CIS)
certificate authorities, 132, 134-137, 139
Certificate Signing Request (CSR) (see CSR)
certificates

certificate authorities, 132, 134-137, 139
expiration, 133
generating, 132, 135
revoking, 138
rotating, 139, 146
self-signed, 135
verifying by browser, 132
verifying, skipping, 137
X.509, 132-139, 144

cgroup-tools package, 25
cgroups, 23-30

about, 53
configuration, 27
constraining in image configuration, 68
controllers, 23, 29
creating, 24-26, 28, 166
Docker and, 28
hierarchies, 23, 26
listing, 24
namespaces, 32, 49
processes, assigning, 27
V2, 29

Chaubey, Nirbhay, 62
checklist, security, 165
Chiang, Eric, 112
chown, 14
chroot, 38-43
CI/CD (continuous integration/continuous

development)
building and storing images, 87, 88, 165
mounting Docker socket, 114
--privileged flag, 165
scanning, 91-93

168 | Index

CIDR, 121
CIS (Center for Internet Security), 53, 159, 166
Citibank, 159
Clair, 89
client, in TLS connections, 136
clock_adjtime, 96
clock_settime, 96
clone, 14
cloud computing

container registries, 71, 77, 89
costs, 62
multitenancy, 7-10
passing secrets in environment variables,

145
private, 9
service meshes, 129
storing secrets, 146
VPCs, 6, 77, 118
vulnerabilities, 6, 159, 166

Cloud Native Computing Foundation (CNCF)
(see CNCF)

Cloud Security Posture Management (CSPM)
(see CSPM)

CloudSploit, 159
CNAs (CVE Numbering Authorities), 84
CNCF (Cloud Native Computing Foundation)

containerd component and, xii
Falco, 154
Harbor, 89
Kubernetes Threat Model, 6

Common Vulnerabilities and Exposures (CVE)
(see CVE)

compiled languages, 85
configuration

cgroups, 27
GitOps, 80
gVisor and, 100
images, 4
OWASP Top 10, 159
verifying provenance of configuration files,

79
viewing, 65, 67

configuration, host, 53
configuration, image, 65-81

history of commands and, 70
overriding at runtime, 66

connections, 131
(see also networks)
between containers, 138

TLS, 131-139
container registries

admission control and, 79
private registeries, 78
scanning, 89, 93
storing images, 71-73, 75

Container Runtime Interface (CRI) (see CRI)
containerd, xii, 5
containers, 1

(see also container registries; images, con‐
tainer; isolation, containers; rootless
containers; sandboxing)

advantages, 1, 62, 85
application vs. system, ix
connections between, 138
creating, 33, 67
from host perspective, 50-53
immutable, 87, 93, 109, 150, 155, 166
IP addresses, 121
multitenancy, 9
process IDs, 52
as processes, 50
running, xii
running as read-only, 109, 165
running as root, 22, 80, 90, 105-111, 147,

158, 165
running with admission control, 79
running with AppArmor, 98
running with no new privileges flag, 19
running with runsc, 100
as security boundaries, 6
sidecar containers, 115, 145
start-up time and, 62
threat model, 2-10
vs. virtual machines, 31, 55, 62

continuous development (see CI/CD)
continuous integration (see CI/CD)
control groups (see cgroups)
controllers, cgroups, 23, 29
COPY (Docker command), 65
CoreOS, 52
create_module, 96
credentials (see secrets)
CRI (Container Runtime Interface), xii
CRI-O, xii, 5
cross-site scripting (XSS), 159
CSPM (Cloud Security Posture Management),

159
CSR (Certificate Signing Request), 136

Index | 169

CVE (Common Vulnerabilities and Exposures),
84

CVE Numbering Authorities (CNAs) (see
CNAs)

CVE-2014-6271 (Shellshock), 83, 84, 90
CVE-2018-18955, 47
CVE-2019-5736, 31
CyberArk, 143, 145, 146

D
DAC (discretionary access control), 15-19, 99
data, passing into containers, 142-145, 145

(see also sensitive data)
Debian, 90
decryption (see encryption)
defense in depth principle, 11, 118, 129
delete_module, 96
dependency vulnerabilities, 85, 88, 161
deploying

admission control, 73
images, 78-80
preventing, 93

deserialization, 159
digests, image, 72, 75, 78
Dirty COW, 99
disclosures, responsible security, 83
discretionary access control (DAC) (see DAC)
distroless, 75
DivvyCloud, 159
DNS (Domain Name Service), 77, 119, 120
Docker

about, 1
AppArmor profile, 98, 99
best practices guidelines, 53, 159, 166
building images, 65, 68-71
cgroups and, 28
configuration, overriding, 66
configuration, viewing, 65, 67
daemon, 68, 114
daemonless builds, 69, 77
group, 110
image digest, viewing, 72
on Mac/Windows, 28
mounting Docker socket, 114
networks, setting up multiple, 122
OCI standards, 66
overriding user ID, 107
--privileged flag, 111-113, 116, 165
rootless mode, 68, 111

running containers, xii
running containers as read-only, 109
running containers as root, 106
running containers with no new privileges

flag, 19
running containers, overriding root, 66, 76,

107, 110
seccomp, 96, 99
SELinux and, 99
user namespaces in, 46, 48

docker command, xii
Docker Hub registry, 71-73
Docker Trusted Registry, 89
Dockerfile

access control, 74
best practices, 75-77
commands, 65
image layers, 69-71

docs subpackage of bind, 90
domain name

Certificate Signing Request, 136
in certificates, 133
isolating, 32-35
OSI networking model, 119

Domain Name Resolution, 119
Domain Name Service (DNS) (see DNS)
drift prevention, 88, 155, 166
duties, segregation of (see segregation of duties)

E
eBPF (extended Berkeley Packet Filters), 97,

151-153, 154
egress, denying as default, 128
Elastic Container Registry, 71
encryption

Certificate Signing Requests, 136
public/private keys, 133, 141
resources on, 133
secrets, 141, 145, 158, 166
secure connections, 132
sensitive data, 158

ENV (Docker command), 65
environment variables

extracting, 144
overriding, 66
secrets in, 143-145, 147, 159

Envoy, 129
errors

cannot fork error, 35

170 | Index

scanning, 90
escape vulnerabilities, 5, 31, 45, 111
ESX/ESXi, 57
/etc directory, 76, 114
etcd data store, 146
Ethernet

bridge, 120
network namespaces and, 44
virtual, 120

exec, 101
executable profiles, 150
execute, 15
execve, 14
exit, 96
extended Berkeley Packet Filters (eBPF) (see

eBPF)
external attackers, 3

F
Falco, 154
falco2seccomp, 97
Fedora, 29, 52
file permissions

Linux, 14-19, 98
read-only filesystems, 88
running containers as non-root, 111
setuid and, 16-19, 76

files
capabilities assigned directly to, 20
everything as, 14
file access profiles, 152
file fingerprints, 155
file permissions, 14
passing secrets through, 145

filesystem bundle, 67
filesystem, root, 65
filter iptables, 123
findmnt, 42
fingerprints, 155
Firecracker, 62, 103, 160
firewalls, 77, 117, 118, 125-128, 129
fork bombs, 23
fork errors, 35
--fork flag, 35
Frazelle, Jess, 54, 69, 97, 153
FROM (Docker command), 65

G
GDPR (General Data Protection Regulation), 2

getcap, 21
getpcaps, 20
GitHub, 84
GitOps, 80
glibc library, 14
Go, 33, 75, 97
Gofer, in gVisor, 100
Golang syscall package, 14
golden base images, 75
Google

Bazel, 69
Cloud Platform, 7, 10, 146
Container Registry, 71
gVisor, 100-102, 160
Kaniko, 69
Kritis, 93

Gregg, Brendan, 151
group ID namespaces, 32, 45
guest OS

OSI networking model, 119
Virtual Machine Monitor and, 57-59

gVisor, 100-102, 160

H
handshake, TLS, 137
Harbor, 89
hardware

booting up physical machines, 55
booting up virtual machines, 57-59

hardware virtualization, 60
hashes

image tags, 72
storing container images, 72

Hashicorp Vault, 143, 145, 146
Hausenblas, Michael (author)

Kubernetes Security, xii
Heartbleed, 83, 88
host attacks, 77
hosts

best practices guidelines, 159
configuration, 53
containers from host perspective, 50-53
dedicated host machines, 52, 166
host attacks, 77
hostname, default, 34
hostname, isolating, 32-35
isolation from containers, 51
mounting host directories, 43, 116, 165
network namespaces, 45

Index | 171

process IDs, 52
secret access and, 146
sharing namespaces between containers and

hosts, 115
term, x
vulnerabilities, 5, 52

HTTPS, 132
Hyper-V, 57
hypervisors

size, 61
Unikernels and, 103, 160
using, 57-59, 60

I
IBM Nabla project, 103
IETF (Internet Engineering Task Force), 132
image digests, 72, 75, 78
image manifest, 72, 79
imagePullPolicy, 79
images, container, 65-81

admission control, 78-80, 93, 166
attack vectors, 73
base images, 75, 85, 166
building, 65, 68-71
building new images for updates, 86, 160
building, daemonless, 69, 77
building, multi-stage, 75
building, security, 74-77
building, within a Kubernetes cluster, 69
configuration, 65-81
configuration, overriding at runtime, 66
configuration, viewing, 65, 67
deploying, 78-80
identifying, 72-73
image policy, 79
immutable, 76, 166
instantiating from, 65
layers, 69-71
names, 72
OCI standards, 66, 71
passing data with, 142-145
preventing from running, 93
root filesystem, 65
running as rootless, 107
runtime profiles, 149
scanning, 4, 85-94, 158, 160, 165
signing, 78, 79
storing, 71-73, 75, 77
tags, 72, 75, 78

unpacking sensitive data, 69-71
vulnerabilities, 4, 83-94

img, 69
immutable containers, 87, 93, 109, 150, 155,

166
immutable images, 76
in-toto, 78
inadvertent internal actors, 3
ingress, denying as default, 128
inheritance, cgroups, 23
init_module, 96
injection flaws, 157, 161
inspect, 65, 67, 144
inter-process communications (IPC) and

namespaces, 32, 48
internal actors, 3
internal attackers, 3
International Telecommunications Union

(ITU) (see ITU)
Internet Engineering Task Force (IETF) (see

IETF)
IP addresses

containers, 121
network namespaces, 45
OSI networking model, 119, 120

ip netns, 44
IP packets

iptables, 123-127
network policies, 122, 125-128
OSI networking model, 119-121
sending, 120

IPC (inter-process communications) and
namespaces, 32, 48

ipcs, 48
iptables, 123-127
IPVS (IP Virtual Server), 125
isolation, containers, 1, 31-54

(see also namespaces)
advantages of containers, 1
breaking, 105-116
changing root directory, 38-43
escape vulnerabilities, 5, 31, 45, 111
from host, 51
hostname, 32-35
sandboxing, 94, 95-104
vs. virtual machine isolation, 9, 63

isolation, networks (see network policies)
isolation, virtual machines, 9, 61, 63
Istio, 129

172 | Index

ITU (International Telecommunications
Union), 132

J
Jenkins, 114
JFrog, 89
Justicz, Max, 102

K
Kaniko, 69
Kata Containers, 102
kernel

checking version of, 49
initialization, 56
isolation in, 61
kernel-level privileges, 13, 56
memory management, 56, 61
OSI networking model, 119

Kernel-based Virtual Machines (KVM) (see
KVM)

keyctl, 96
keys

asymmetric, 137
Certificate Signing Request, 136
encryption, 133, 141
generating tools, 132
scanning, 158
symmetric, 137
TLS connections, 137
X.509 certificates, 132-139

Kritis, 93
kube-proxy, 123, 125
kubeadm, 138
kubelet, 139
Kubernetes, xii

(see also network policies; orchestrators)
about, xi, 1
admission control, 79, 93
AppArmor and, 98
best practices guidelines, 53, 159, 166
certificates for TLS connections, 138, 139
image configuration, overriding, 66
image policy, 79
images, building within a cluster, 69
interface, xii
IP addresses in, 121
iptables, 123-127
load balancing, 123, 125
mounting sensitive directories, 114

namespaces, 9
Open Policy Agent, 93
performance, 125
resources on, xii, 146
role-based access control (RBAC), 3, 9
running containers, xii
running containers as read-only, 109
running containers as root, 109
runtime security, 149
seccomp, 96
secrets, 145
service meshes, 129
services, 122, 123
user namespaces support, 46

Kubernetes API Server authentication, 139
Kubernetes Attack Tree, 6
Kubernetes Security (Hausenblas), xii
Kubernetes Threat Model, 6
KVM (Kernel-based Virtual Machines), 59

L
labels, SELinux permissions, 99
languages, compiled, 85
libraries, vulnerabilities in, 85, 88, 161
limiting the blast radius, 11, 130, 159
Linkerd, 129
Linux, xii

(see also Alpine Linux; capabilities; file per‐
missions; LSM)

best practices guidelines, 53
checking version of, 49
file permissions, 14-19, 98
namespaces in, 9
SELinux, 153, 158, 160, 166
setup for this book, xii
system calls, 13
system containers, ix
Thin OS distributions, 52
Ubuntu, xii, 25, 40, 49, 84, 90

Linux security modules (LSM) (see LSM)
Little Bobby Tables, 157
load balancing, 123, 125
logging

best practices, 160
mounting /log directory, 114
observability sidecars, 116
passing secrets to containers and, 144, 159,

160
policy violations, 98, 99

Index | 173

lscgroup, 25
LSM (Linux security modules), 97-99
lsns, 32, 43
LXC, ix
LXD, ix

M
MAC addresses, 119-121
machines (see shared machines; virtual

machines)
malicious internal actors, 3
malware, 4, 90
man-in-the-middle attacks, 139
managed services, 10
mandatory access controls, 97
manifest, image, 72, 79
mapping

OSI networking model, 119
ports, 108
user IDs, 45, 110

Martin, Andrew, 111
McCarty, Scott, 110
Meltdown, 61, 83
memory

cgroup, 24-29
leaks, 27
management by kernel, 56, 61
sharing with IPC namespaces, 48

memory.limit_in_bytes, 24, 26, 29
memory.max_usage_in_bytes, 24
MicroEnforcer, 116
microsegmentation, network (see network poli‐

cies)
microservices

firewalls, 117
runtime profiles, 149-153

Microsoft
Azure, 7, 10, 146
as CNA, 84

minica, 132
mitigation, defined, 2
MITRE, 84
Moby, 69
monitoring, 150, 160
mount command, 43
mount namespace, 32, 41-43
mount points namespaces, 32, 41
mounts

bind, 42, 43

Docker socket, 114
host directories, 43, 116, 165
listing, 42
mount namespace, 32, 41-43
sensitive data and, 76
sensitive directories, 113
volume mounts, 76, 143, 145

/mounts directory, 42
mTLS, 129, 138, 139, 166
multi-factor authentication, 137
multitenancy, 7-10
mutual TLS, 129, 138, 166

N
Nabla, 103
names

certificates, 133
packages, 90

namespaces, 32-50
anonymous network, 44
capabilities, 111
cgroups, 32, 49
defined, 9
development of, 32
group IDs, 32, 45
inter-process communications (IPC), 32, 48
isolating hostname, 33-35
Kubernetes, 9
in Linux, 9
listing, 32, 43
mount, 32, 41-43
mount points, 32, 41
networks, 32, 43-45, 48, 121, 128
process IDs, 32, 35-38, 41, 48
running containers as non-root, 109-111
service meshes, 130
sharing between containers and hosts, 115
time, 32
Unix Timesharing System (UTS), 32-35
user, 32, 45-48

NAT (Network Address Translation), 122
nat iptables, 123
National Institute of Standards and Technology

(NIST) (see NIST)
National Vulnerability Database (NVD) (see

NVD)
nessus, 85
netfilter, 123-127
Netflix, 8

174 | Index

netns, 44
Netscape, 132
Network Address Translation (NAT) (see NAT)
network command, 122
network microsegmentation (see network poli‐

cies)
network policies, 118, 122, 125-128, 129, 153,

166
networks, 5, 117-130

(see also network policies)
anonymous namespaces, 44
best practices, 128
filtering, 123-127
firewalls, 117, 125-128
listing namespaces, 43
logging, 161
multiple, setting up, 122
namespaces, 32, 43-45, 48, 121, 128
OSI networking model, 119-121
passing secrets to containers, 143
sending IP packets, 120
service meshes, 115, 129-130, 138, 153, 158,

166
traffic profiles, 150
vulnerabilities, 5, 160

Nginx, 107, 113, 124, 126, 151-153
NIST (National Institute of Standards and

Technology), 62
nmap, 85
--no-new-privileges flag, 19
noisy neighbor problem, 8
Notary, 78, 79
NVD (National Vulnerability Database), 84

O
observability sidecars, 116
OCI (Open Container Initiative) standards, 66,

71
open (system call), 14
Open Policy Agent, 93
Open Systems Interconnection (OSI) (see OSI)
Open Web Application Security Project

(OWASP) (see OWASP)
OpenSSL, 88, 136
openssl keygen, 132
OpenTelemetry, 116
Oracle, 84
orca-build, 69
orchestrators, 1

(see also Kubernetes)
about, 1
alerts, 154
defined, xi
security advantages, 52
vulnerabilities, 6, 79

OSI (Open Systems Interconnection) network‐
ing model, 119-121

OVAL feed, 89
OWASP (Open Web Application Security

Project), 157-163

P
package managers, 86, 108
packages

installing, 86, 108
names, 90
scanning, 86, 90
subpackage vulnerabilities, 90
updating, 86
vulnerabilities, 84, 86, 108

Palo Alto, 89
Parallels, 58
paravirtualization, 60, 100
passwords, 70, 90, 158, 159
patches, 84, 86
PATH environment variable, 40
pausing processes, 51
per-distribution security advisories, 89
performance

gVisor and, 102
iptables and, 125
Kubernetes and, 125
virtual machines, 8, 62
virtualization and, 60

permissions
access control, 14
custom registries, 77
Linux file permissions, 14-19, 98
read-only filesystems, 88
running containers as non-root, 111
setuid and, 16-19, 76
in threat model, 3

Photon OS, 52
--pid flag, 35
--pid=host parameter, 115
ping, 18, 20
pivot_root, 41
podman, xii, 69, 105, 110

Index | 175

pods
AppArmor and, 98
defined, 149
IP addresses, 121
iptables, 123-127
restricting pod-to-pod traffic, 128
running containers as read-only, 109
runtime security, 149
seccomp and, 96
service meshes, 129

PodSecurityPolicy
running containers as read-only, 109
seccomp and, 96

PORT (Docker command), 65
ports

mapping, 108
restricting traffic, 128

prevention vs. alerts, 154
principle of defense in depth, 11, 118, 129
principle of least privilege, 10, 21, 113, 128, 158
principle of limiting the blast radius, 11, 130,

159
principle of reducing the attack surface, 11, 62,

75-77, 103, 166
principle of segregation of duties, 11, 158
private clouds, 9
private clouds, virtual, 6, 77, 118
private keys, 133
privilege escalation

defined, 21
deserialization and, 159
gVisor and, 102
running containers as root, 106
setuid and, 19, 21, 76

privilege rings, 56-60
--privileged flag, 111-113, 116, 165
privileges

kernel-level, 13, 56
least privilege principle, 10, 21, 113, 128,

158
logging modifications to, 160
no new privileges flag, 19
--privileged flag, 111-113, 116, 165
system calls and, 13
type 2 VMM and, 58
VMX root mode, 60

/proc directory, 37, 41, 147
process IDs, 32, 35-38, 41, 48, 52
processes, 38

(see also namespaces; process IDs)
assigning to cgroups, 27
backgrounding, 51
changing root directory, 38-43
containers as, 50
listing, 35
pausing, 51

profiles
AppArmor, 97, 99
runtime, 149-153

Project Atomic, 99
Project Calico, 125
Prometheus, 116
ps, 18, 31, 35-38, 41, 51, 61, 98, 100
public keys, 132-139
pull, 71, 72, 79
push, 71

Q
QEMU (Quick Emulation), 58, 102

R
RancherOS, 52
RBAC (role-based access control), 3, 9, 139, 146
RDS (Relational Database Service), 10
read

cgroups and, 24
file permissions, 15
seccomp and, 96
as system call, 13

read-only containers, 109
read-only filesystems, 88
ReadOnlyRootFileSystem, 109
recording network traffic, 150
Red Hat, xii

(see also podman; SELinux)
advisories, 89
as CNA, 84
CRI-O, xii, 5
Fedora, 52
systemd, 26

reducing the attack surface, 11, 62, 75-77, 103,
166

registries, container (see container registries)
registry addresses, 72, 77
Relational Database Service (RDS) (see RDS)
repository vulnerabilities, 6
resource exhaustion attack, 27
resources, setting limits with cgroups, 26, 166

176 | Index

responsible security disclosures, 83
revoking

certificates, 138
secrets, 142

Ring 0 (see privilege rings)
risk management, 2, 85
risks, defined, 2
role-based access control (RBAC) (see RBAC)
root

admission control and, 80
changing root directory, 38-43
Docker daemon and, 114
listing namespaces and, 33
pivot_root, 41
running containers as, 22, 80, 90, 105-111,

147, 158, 165
running containers, overriding user ID, 22,

66, 76, 107, 110
secret access and, 146
VMX root mode, 60

root certificate authorities, 135
root filesystem, 65
rootless containers

cgroups and, 30
running, 109-111, 159
user namespaces, 47

rotating
certificates, 139, 146
secrets, 142, 145, 146

routers in OSI networking model, 119
routes in network namespaces, 45
routing tables, 43, 45
RUN, 76
RUN (Docker command), 65
runc

restricting memory with cgroups, 27
rootless containers, 106, 111
running containers, xii
running containers as root, 106

Runcescape, 5
runsc, 100, 101
runtime, 149-156

avoiding installing packages at, 108
drift prevention, 155, 166
overriding image configurations, 66
profiles, 149-153
security tools, 153-155
vulnerabilities, 166

S
sandboxing, 95-104

about, 94, 95
AppArmor, 97, 153, 158, 160
gVisor, 100-102, 160
seccomp, 95-97, 99, 103, 153, 158, 160
SELinux, 98, 158, 160
virtual machines, 102-104

Sarai, Aleksa, 69
scanning

on build, 88, 92
CI/CD pipeline, 91-93
cross-site scripting (XSS), 159
developer, 92
drift prevention, 88, 155
errors, 90
images, 4, 85-94, 158, 160, 165
injection vulnerabilities, 157
need for regular, 88
packages, 86, 90
registries, 89, 93
resources on, 93
setuid, 19
tools, 85, 89, 90, 165

seccomp, 103, 153, 158, 160, 165
seccomp-bpf, 96
secrets

encryption, 141, 145, 158, 166
extracting, 146
Kubernetes support, 145
life cycle, 142, 143
logging access to, 144, 159, 160
management tools, 143
mounts and, 76
OWASP Top 10, 157
passing secrets to containers, 166
passing to containers, 141-148, 159
properties, 141
revoking, 142
rotating, 142, 145, 146
scanning tools and, 90
storing, 141, 146
vulnerabilities, 5
write-only, 142, 146

security
advisories, 89
checklist, 165
overview of, 1-12
OWASP Top 10, 157-163

Index | 177

principles, overview, 10-12
threat model, 2-10

security boundaries (see boundaries)
security disclosures, 83
security information and event management

(SIEM) (see SIEM)
security sidecars, 116
security tools, 153

(see also AppArmor; network policies; sec‐
comp; SELinux)

about, 153-155
admission control and, 81
pod-by-pod basis, 149
prevention vs. alerts, 154
recording mode, 150
runtime, 151
seccomp and, 97
SIEM, 161

Security-Enhanced Linux (SELinux) (see SELi‐
nux)

segregation of duties, 11, 158
self-signed certificates, 135
SELinux, 98, 153, 158, 160, 166
sensitive data

breaches from Heartbleed, 88
configuration vulnerabilities, 159
encryption, 158
mounting sensitive directories, 113
mounts and sensitive data, 76
OWASP Top 10, 158
scanning tools and, 90
unpacking in images, 69-71

Sentry, in gVisor, 100
service meshes

cloud computing, 129
connections between containers, 138
defined, 115, 129
passing secrets to containers, 144
preventing broken authentication, 158
using, 129-130, 153, 166

setcap, 18, 21
setgid, 16
setuid, 16-19, 22, 76, 90
shadow, 90
shared machines, 8, 8
shared memory, 48
shell, preventing opening directly in containers,

150
Shellshock (CVE-2014-6271), 83, 84, 90

shmid, 49
sidecar containers, 115, 145, 145

(see also service meshes)
SIEM (security information and event manage‐

ment), 161
signing images, 78, 79
sigreturn, 96
skip verify, 137
Skopeo, 66
sleep, 51
Snowden, Edward, 94
socket, mounting Docker, 114
source code

storing secrets in, 142
vulnerabilities, 6

source control, 80
Spectre, 61
speculative processing, 61
spoofing, 77
SSH, ix
ssh-keygen, 132
SSL, 132
SSL certificates, 132
start up, 62, 102, 103
storing

configuration vulnerabilities, 159
images, 71-73, 77
secrets, 141, 146
sensitive data in images, 70

strace, 18, 97
STRIDE, 6
Struts, 21
subject, in certificates, 133
Suda, Akihiro, 29, 111
supply chain attacks, 5, 78, 87
symmetric keys, 137
syscall package, 14
system calls

defined, 13
gVisor and, 102
listing, 97
restricting with seccomp, 96, 99
Unikernels, 103

system containers, ix
systemd, 26, 114

T
tags, image, 72, 75, 78
Tank, Darshan, 62

178 | Index

TCP in OSI networking model, 119
Thin OS distributions, 52
threat model, 2-10
threats, defined, 2
time namespace, 32
TLS (transport layer security), 115, 129, 131,

166
TLS (transport layer security), mutual, 138, 139,

166
Token Ring, 119
tokens, 70, 70, 90

(see also sensitive data)
Tracee, 97, 113, 151, 153
traffic profiles, 150
transport layer security (TLS) (see TLS)
trap-and-emulate, 59
Trivy, 89
trust boundaries (see security boundaries)
TUF (The Update Framework), 78
Twistlock, 116
type 1 VMM, 57-59, 60, 61
type 2 VMM, 58
type veth, 44

U
Ubuntu, xii, 25, 40, 49, 84, 90
UDP in OSI networking model, 119
UEFI (Unified Extensible Firmware Interface),

56
uid_map, 46
umoci, 67
uname -r, 49
Unified Extensible Firmware Interface (UEFI)

(see UEFI)
Unikernels, 103, 160
Unix Timesharing System (UTS) (see UTS)
unshare, 34, 44
The Update Framework (TUF), 78
USER (Docker command), 65, 107
--user flag, 107
user ID

file permissions, 16-19
namespaces, 32, 45-48
overriding, 106-109
profiles, 152

user namespaces, 32, 45-48
user space

booting up physical machines, 56
system calls and, 13

in VMM, 58
user.slice/user-1000, 26
Usernetes, 111
UTS (Unix Timesharing System), 32-35

V
Vagrant, xii
ve1, 44
ve2, 44
version

checking Linux version, 49
deploying right images, 78
in image tags, 72
installing packages at runtime, 108
patches and vulnerabilities, 84
updating vs. rebuilding containers, 87

Virtual Machine Monitor (VMM) (see VMM)
virtual machines, 55-63

booting up, 57-59
vs. containers, 31, 55, 62
disadvantages, 62
handling non-virtualizable instructions, 60
isolation in, 8, 61, 63
KVM (Kernel-based Virtual Machines), 59
multitenancy and, 7
performance, 8, 62
sandboxing, 102-104
start up, 103
threat model, 8-9

Virtual Private Cloud (VPC) (see VPC)
VirtualBox, 58
virtualization, 8, 57-59
VMM (Virtual Machine Monitor)

about, 55
OSI networking model, 119
size, 61
Unikernels and, 103, 160
using, 57-59

VMware, 52
VMX root mode, 60
volume mounts, 76, 143, 145
VPC (Virtual Private Cloud), 6, 77, 118
vulnerabilities, 3

(see also privilege escalation; scanning; sen‐
sitive data)

application, 3, 85
building, 4, 74-77
cloud computing, 6, 159, 166
configuration, 5, 159

Index | 179

database of, 84
defined, 83
dependencies, 85, 88, 161
escape, 5, 31, 45, 111
hosts, 5, 52
identifiers for, 84
iguration, 4
images, container, 4, 83-94
injection, 157, 161
networks, 5, 160
orchestrators, 6, 79
OWASP Top 10, 157-163
packages, 84, 86, 90, 108
patches and, 84, 86
research, 83, 88
responsible security disclosures, 83
runtime, 166
secrets, 5
source code, 6
subpackages, 90
whitelisting, 89, 91, 160
XML, 158
zero-day, 94

W
WAF (Web Application Firewalls), 118

Walsh, Dan, 69, 99, 110
whitelisting vulnerabilities, 89, 91, 160
WiFi in OSI networking model, 119
write

cgroups and, 24
file permissions, 15
seccomp and, 96
as system call, 14

write-only secrets, 142, 146

X
X.509 certificates, 132-139, 144
Xen, 57, 60, 62
XML vulnerabilities, 158
XSS (cross-site scripting), 159

Y
YAML, 66, 79
Yubikey, 137

Z
zero-day vulnerabilities, 94

180 | Index

About the Author
Liz Rice is Vice President of Open Source Engineering with container security spe‐
cialists Aqua Security, where she looks after projects including Trivy, Tracee, kube-
hunter, and kube-bench. She is chair of CNCF’s Technical Oversight Committee and
was cochair of the KubeCon + CloudNativeCon 2018 events in Copenhagen, Shang‐
hai, and Seattle.

She has a wealth of software development, team, and product management experi‐
ence from working on network protocols and distributed systems, and in digital tech‐
nology sectors such as VOD, music, and VoIP. When not writing code or talking
about it, Liz loves riding bikes in places with better weather than her native London,
and competing in virtual races on Zwift.

Colophon
The animal on the cover of Container Security is an armoured catfish (family Loricar‐
iidae), also called loricariids, suckermouth catfish, or “plecos” after the species Hypo‐
stomus plecostomus. These fish are native to Costa Rica, Panama, and South America,
where they inhabit freshwater streams and rivers. Armoured catfish are highly adapt‐
able and can flourish in a number of different environments: slow- and fast-moving
currents, canals, ponds, lakes, estuaries, and even home aquariums.

There are more than 680 species of loricariids, all of which vary in color, shape, and
size. Common traits include the flexible bony plates that distinguish them from other
catfish, a flattened body, and a ventral suckermouth that allows these fish to feed,
breathe, and attach themselves to various surfaces. The mouth and lips allow for suc‐
tion and respiration simultaneously, and their bodies and fins are covered in taste
buds. They can grow anywhere from three inches to over three feet, depending on
conditions. Armoured catfish will eat any number of things, including algae, inverte‐
brates, small bivalves, water fleas, worms, insect larvae, and detritus—one genus, Pan‐
aque, is known for eating wood. Parental care is common in loricariids and many
species will create long burrows along a shoreline where the female will deposit her
eggs. Males guard the eggs until they hatch.

Armoured catfish are nocturnal and non-migratory, but they do have a tendency to
disperse and potentially displace native fish populations when introduced to a new
environment. In addition to their armoured bodies and overall hardiness, armoured
catfish have also evolved modified digestive systems that can function as additional
respiratory organs. If necessary, these fish can breathe air and survive out of water for
more than 20 hours!

The cover illustration is by Karen Montgomery, based on a black-and-white engrav‐
ing from Shaw’s Zoology. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	What This Book Covers
	A Note about Kubernetes
	Examples
	How to Run Containers
	Feedback
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Container Security Threats
	Risks, Threats, and Mitigations
	Container Threat Model
	Security Boundaries
	Multitenancy
	Shared Machines
	Virtualization
	Container Multitenancy
	Container Instances

	Security Principles
	Least Privilege
	Defense in Depth
	Reducing the Attack Surface
	Limiting the Blast Radius
	Segregation of Duties
	Applying Security Principles with Containers

	Summary

	Chapter 2. Linux System Calls, Permissions, and Capabilities
	System Calls
	File Permissions
	setuid and setgid

	Linux Capabilities
	Privilege Escalation
	Summary

	Chapter 3. Control Groups
	Cgroup Hierarchies
	Creating Cgroups
	Setting Resource Limits
	Assigning a Process to a Cgroup
	Docker Using Cgroups
	Cgroups V2
	Summary

	Chapter 4. Container Isolation
	Linux Namespaces
	Isolating the Hostname
	Isolating Process IDs
	Changing the Root Directory
	Combine Namespacing and Changing the Root
	Mount Namespace
	Network Namespace
	User Namespace
	User Namespace Restrictions in Docker

	Inter-process Communications Namespace
	Cgroup Namespace
	Container Processes from the Host Perspective
	Container Host Machines
	Summary

	Chapter 5. Virtual Machines
	Booting Up a Machine
	Enter the VMM
	Type 1 VMMs, or Hypervisors
	Type 2 VMM
	Kernel-Based Virtual Machines

	Trap-and-Emulate
	Handling Non-Virtualizable Instructions
	Process Isolation and Security
	Disadvantages of Virtual Machines
	Container Isolation Compared to VM Isolation
	Summary

	Chapter 6. Container Images
	Root Filesystem and Image Configuration
	Overriding Config at Runtime
	OCI Standards
	Image Configuration
	Building Images
	The Dangers of docker build
	Daemonless Builds
	Image Layers

	Storing Images
	Identifying Images
	Image Security
	Build-Time Security
	Provenance of the Dockerfile
	Dockerfile Best Practices for Security
	Attacks on the Build Machine

	Image Storage Security
	Running Your Own Registry
	Signing Images

	Image Deployment Security
	Deploying the Right Image
	Malicious Deployment Definition
	Admission Control

	GitOps and Deployment Security
	Summary

	Chapter 7. Software Vulnerabilities in Images
	Vulnerability Research
	Vulnerabilities, Patches, and Distributions
	Application-Level Vulnerabilities
	Vulnerability Risk Management
	Vulnerability Scanning
	Installed Packages
	Container Image Scanning
	Immutable Containers
	Regular Scanning

	Scanning Tools
	Sources of Information
	Out-of-Date Sources
	Won’t Fix Vulnerabilities
	Subpackage Vulnerabilities
	Package Name Differences
	Additional Scanning Features
	Scanner Errors

	Scanning in the CI/CD Pipeline
	Prevent Vulnerable Images from Running
	Zero-Day Vulnerabilities
	Summary

	Chapter 8. Strengthening Container Isolation
	Seccomp
	AppArmor
	SELinux
	gVisor
	Kata Containers
	Firecracker
	Unikernels
	Summary

	Chapter 9. Breaking Container Isolation
	Containers Run as Root by Default
	Override the User ID
	Root Requirement Inside Containers
	Rootless Containers

	The --privileged Flag and Capabilities
	Mounting Sensitive Directories
	Mounting the Docker Socket
	Sharing Namespaces Between a Container and Its Host
	Sidecar Containers
	Summary

	Chapter 10. Container Network Security
	Container Firewalls
	OSI Networking Model
	Sending an IP Packet
	IP Addresses for Containers
	Network Isolation
	Layer 3/4 Routing and Rules
	iptables
	IPVS

	Network Policies
	Network Policy Solutions
	Network Policy Best Practices

	Service Mesh
	Summary

	Chapter 11. Securely Connecting Components with TLS
	Secure Connections
	X.509 Certificates
	Public/Private Key Pairs
	Certificate Authorities
	Certificate Signing Requests

	TLS Connections
	Secure Connections Between Containers
	Certificate Revocation
	Summary

	Chapter 12. Passing Secrets to Containers
	Secret Properties
	Getting Information into a Container
	Storing the Secret in the Container Image
	Passing the Secret Over the Network
	Passing Secrets in Environment Variables
	Passing Secrets Through Files

	Kubernetes Secrets
	Secrets Are Accessible by Root
	Summary

	Chapter 13. Container Runtime Protection
	Container Image Profiles
	Network Traffic Profiles
	Executable Profiles
	File Access Profiles
	User ID Profiles
	Other Runtime Profiles
	Container Security Tools

	Drift Prevention
	Summary

	Chapter 14. Containers and the OWASP Top 10
	Injection
	Broken Authentication
	Sensitive Data Exposure
	XML External Entities
	Broken Access Control
	Security Misconfiguration
	Cross-Site Scripting XSS
	Insecure Deserialization
	Using Components with Known Vulnerabilities
	Insufficient Logging and Monitoring
	Summary

	Conclusions
	Security Checklist
	Index
	About the Author
	Colophon

