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Preface

People today are increasingly relying on public computer networks to conduct business and
take care of household needs. However, public networks may be insecure because data stored in
networked computers or transmitted through networks can be stolen, modified, or fabricated
by malicious users. Thus, it is important to know what security measures are available and
how to use them. Network security practices are designed to prevent these potential problems.
Originating from meeting the needs of providing data confidentiality over public networks,
network security has grown into a major academic discipline in both computer science and
computer engineering, and also an important sector in the information industry.

The goal of network security is to give people the liberty of enjoying computer networks
without the fear of compromising their rights and interests. Network security accomplishes
this goal by providing confidentiality, integrity, nonrepudiation, and availability of useful data
that are transmitted in open networks or stored in networked computers.

Network security will remain an active research area for several reasons. Firstly, security
measures that are effective today may no longer be effective tomorrow because of advance-
ments and breakthroughs in computing theory, algorithms, and computer technologies. Sec-
ondly, after the known security problems are solved, other security loopholes that were pre-
viously unknown may at some point be discovered and exploited by attackers. Thirdly, when
new applications are developed or new technologies are invented, new security problems may
also be created with them. Thus, network security is meant to be a long-lasting scuffle between
the offenders and the defenders.

Research and development in network security has mainly followed two lines. One line
studies computer cryptography and uses it to devise security protocols. The other line examines
loopholes and side effects of the existing network protocols, software, and system configu-
rations. It develops firewalls, intrusion detection systems, anti-malicious-software software,
and other countermeasures. Interweaving these two lines together provides the basic building
blocks for constructing deep layered defense systems against network security attacks.

This book is intended to provide a balanced treatment of network security along these two
lines, with adequate materials and sufficient depth for teaching a one-semester introductory
course on network security for graduate and upper-level undergraduate students. It is intended
to inspire students to think about network security and prepare them for taking advanced
network security courses. This book may also be used as a reference for IT professionals.

This book is a revision and extension of an early textbook written by the first author under
the title of “Computer Network Security: Theory and Practice,” which was co-published in
2008 by the Higher Education Press and Springer. The book is structured into 10 chapters.
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Chapter 1 presents an overview of network security. It discusses network security goals,
describes common network attacks, characterizes attackers, and defines a basic network secu-
rity model.

Chapter 2 presents standard symmetric-key encryption algorithms, including DES, AES,
and RC4. It discusses their strength and weaknesses. It also describes common block-cipher
modes of operations and a recent block-cipher offset-codebook mode of operations. Finally, it
presents key generation algorithms.

Chapter 3 presents standard public-key encryption algorithms and key-exchange algorithms,
including Diffie–Hellman key exchange, RSA public-key cryptosystem, and elliptic-curve
cryptography. It also discusses how to transmit and manage keys.

Chapter 4 presents secure hash functions and message authentication code algorithms for the
purpose of authenticating data, including SHA-512, Whirlpool, SHA-3, cryptographic check-
sums, and the standard hash message authentication codes. It then discusses birthday attacks
on secure hash functions and describes the digital signature standard. It presents a dual signa-
ture scheme used for electronic transactions and a blind signature scheme used for producing
electronic cash. It concludes with a description of the Bitcoin protocol.

Chapter 5 presents several network security protocols commonly used in practice. It
first describes a standard public-key infrastructure for managing public-key certificates. It
then presents IPsec, a network-layer security protocol; SSL/TLS, a transport-layer security
protocol; and several application-layer security protocols, including PGP and S/MIME for
sending secure email messages, Kerberos for authenticating users in local area networks, and
SSH for protecting remote logins.

Chapter 6 presents common security protocols for wireless local area networks at the
data-link layer, including WEP for providing wired-equivalent privacy, WPA and IEEE
802.11i/WPA2 for providing wireless protected access, and IEEE 802.1X for authenticating
wireless users. It then presents the Bluetooth security protocol and the ZigBee security
protocol for wireless personal-area networks. Finally, it discusses security issues in wireless
mesh networks.

Chapter 7 presents the key security issues involved in the burgeoning area of cloud
computing, including a discussion of the multitenancy problem and issues of access control.
It then presents advanced topics of searchable encryption for cryptographic cloud storage.

Chapter 8 presents firewall technologies and basic structures, including network-layer
packet filtering, transport-layer stateful inspections, transport-layer gateways, application-layer
proxies, trusted systems and bastion hosts, screened subnets, and network address translations.

Chapter 9 presents intrusion detection technologies, including intrusion detection system
architecture and common intrusion detection methods. It also discusses event signatures, sta-
tistical analysis, and data mining methods. Finally, it introduces honeypot technologies.

Chapter 10 describes malicious software, such as viruses, worms, and Trojan horses, and
introduces countermeasures. It also covers Web security and discusses mechanisms against
denial of service attacks.

Since the publication of the first edition, a number of readers have kindly shared with us
their personal experiences in dealing with network security attacks. Some of their stories, after
minor editing, are included in the text and the exercise problems.

To get the most out of this book, readers are assumed to have taken undergraduate courses
on discrete mathematics, algorithms, data communications, and network programming, or
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have equivalent preparations. For convenience, Chapter 3 includes a section reviewing basic
concepts and results of number theory used in public-key cryptography. While it does not
introduce socket programming, the book contains socket API client–server programming
exercises. These exercises are designed for computer science and computer engineering
students. Readers who do not wish to do them or simply do not have time to write code
may skip them. Doing so would not affect much the learning of materials presented in the
book.

Exercise problems for each chapter are divided into discussion problems and homework
problems. There are six discussion problems in each chapter, designed to hep stimulate readers
to think about the materials presented in that chapter at the conceptual level. These problems
are intended to be discussed in class, with the instructor being the moderator. The homework
problems are designed to have three levels of difficulty: regular, difficult (designated with *),
and challenging (designated with **). This book contains a number of hands-on drills, pre-
sented as exercise problems. Readers are encouraged to try them all.

This book is intended to provide a concise and balanced treatment of network security with
sufficient depth suitable for teaching a one-semester introductory course on network security. It
was written on the basis of what the first author learned and experienced during the last 18 years
from teaching these courses and on student feedback accumulated over the years. Powerpoint
slides of these lectures can be found at http://www.cs.uml.edu/∼wang/NetSec.
Due to space limitations, some interesting topics and materials are not presented in this book.
After all, one book can only accomplish one book’s mission. We only hope that this book can
achieve its objective. Of course, only you, the reader, can be the judge of it. We will be grateful
if you will please offer your comments, suggestions, and corrections to us at wang@cs.uml.edu
or kisselz@merrimack.edu.

We have benefited a great deal from numerous discussions over the last 20 years with our
academic advisors, colleagues, teaching assistants, as well as current and former students. We
are grateful to Sarah Agha, Stephen Bachelder, Yiqi Bai, William Baker, Samip Banker, David
Bestor, Robert Betts, Ann Brady, Stephen Brinton, Jeff Brown, William Brown, Matthew
Byrne, Robert Carbone, Jason Chan, Guanling Chen, Mark Conway, Michael Court, Andrew
Cross, Daniel DaSilva, Paul Downing, Matthew Drozdz, Chunyan Du, Paul Duvall, Adam
Elbirt, Zheng Fang, Daniel Finch, Jami Foran, Xinwen Fu, Anthony Gendreau, Weibo Gong,
Edgar Goroza, Swati Gupta, Peter Hakewessell, Liwu Hao, Steve Homer, Qiang Hou, Marlon
House, Bei Huang, Jared Karro, Christopher Kraft, Fanyu Kong, Lingfa Kong, Zaki Jaber,
Ming Jia, Kimberly Johnson, Ken Kleiner, Minghui (Mark) Li, You (Stephanie) Li, Joseph
Litman, Benyuan Liu, Yan (Jenny) Liu, Wenjing Lou, Jie Lu, Shan (Ivory) Lu, David Martin,
Randy Matos, Laura Mattson, Thomas McCollem, Caterina Mullen, Paul Nelson, Dane
Netherton, Michael Niedbala, Gerald Normandin, Kelly O’Donnell, Sunday Ogundijo, Xian
Pan, Alexander Pennace, Sandeep Sahu, Subramanian Sathappan, John Savage, Kris Schlatter,
Patrick Schrader, Susan Schueller, Liqun (Catherine) Shao, Blake Skinner, Chunyao Song,
Adnan Suljevic, Hengky Susanto, Anthony Tiebout, David Thompson, Nathaniel Tuck, John
Uhaneh, John Waller, Tao Wang, Brian Werner, Brian Willner, Christopher Woodard, Fang Wu,
Jianhui Xie, Jie (Jane) Yang, Zhijun Yu, and Ning Zhong for their comments and feedbacks.

During the writing of the first edition, Jared Karro read the entire draft, Stephen Brinton
read Chapters 1–5 and 7–8 (cloud security not included), Guanling Chen read Chapter 6, and
Wenjing Lou read Chapters 2 and 6. Their comments have helped improve the quality of the

http://www.cs.uml.edu/%E2%88%BCwang/NetSec
http://www.cs.uml.edu/%E2%88%BCwang/NetSec
http://www.cs.uml.edu/%E2%88%BCwang/NetSec
mailto:atwang@cs.uml.edu
mailto:kisselz@merrimack.edu
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first edition in many ways, and to them we owe our gratitude. We are grateful to Anthony
Gendreau and Adnan Suljevic for pointing out typos in the first edition.

We thank the reviewers for interesting suggestions and Ying Liu at the Higher Education
Press for initiating this book project and editing the first edition of the book.

Jie Wang

Zachary A. Kissel
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Network Security Overview

If you know your enemies and know yourself, you will win hundred times in hun-
dred battles. If you know yourself but not your enemies, you will suffer a defeat
for every victory won. If you do not know yourself or your enemies, you will
always lose.

—Sun Tzu, “The Art of War”

The goal of network security is to give people the freedom to enjoy computer networks without
the fear of compromising their rights and interests. Network security therefore needs to guard
networked computer systems and protect electronic data that is either stored in networked
computers or transmitted in the networks. The Internet, which is built on the IP communication
protocols, has become the dominant computer network technology. It interconnects millions
of computers and edge networks into one immense network system. The Internet is a public
network, where individuals or organizations can easily become subscribers of the Internet
service by connecting their own computers and networking devices (e.g., routers and sniffers)
to the Internet and paying a small subscription fee.

Because IP is a store-forward switching technology, where data is transmitted using routers
controlled by other people, user A can read user B’s data that goes through user A’s network
equipment. Likewise, user A’s data transmitted in the Internet may also be read by user B.
Hence, any individual or any organization may become an attacker, a target, or both. Even if
one does not want to attack other people, it is still possible that one’s networked computers may
be compromised into becoming an attacking tool. Therefore, to achieve the goal of network
security, one must first understand the attackers, what could become their targets, and how
these targets might be attacked.

1.1 Mission and Definitions

The tasks of network security are to provide confidentiality, integrity, nonrepudiation, and
availability of useful data that are transmitted in public networks or stored in networked
computers.

Introduction to Network Security: Theory and Practice, Second Edition. Jie Wang and Zachary A. Kissel.
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The concept of data has a broad sense in the context of network security. Any object that
can be processed or executed by computers is data. Thus, source code, executable code, files
in various formats, email messages, digital music, digital graphics, and digital video are each
considered data. Data should be read, written, or modified only by legitimate users. That is,
unauthorized individuals or organizations are not allowed to have access to data.

Just as CPU, RAM, hard disk, and network bandwidth are resources, data is also a resource.
Data is sometimes referred to as information or messages.

Each piece of data has two possible states, namely, the transmission state and the storage
state. Data in the transmission state is simply data in the process of being delivered to a
network destination. Data in the storage state is that which is stored in a local computer or
in a storage device. Thus, the meanings of data confidentiality and data integrity have the
following two aspects:

1. Provide and maintain the confidentiality and integrity of data that is in the transmission
state. In this sense, confidentiality means that data during transmission cannot be read by
any unauthorized user, and integrity means that data during transmission cannot be modified
or fabricated by any unauthorized user.

2. Provide and maintain the confidentiality and integrity of data that is in the storage state.
Within this state, confidentiality means that data stored in a local device cannot be read by
any unauthorized user through a network, and integrity means that data stored in a local
device cannot be modified or fabricated by any unauthorized user through a network.

Data nonrepudiation means that a person who owns the data has no way to convince other
people that he or she does not own it.

Data availability means that attackers cannot block legitimate users from using available
resources and services of a networked computer. For example, a computer system infected
with a virus should be able to detect and disinfect the virus without much delay, and a server
hit by denial of service attacks should still be able to provide services to its users.

Unintentional components in protocol specifications, protocol implementations, or other
types of software that are exploitable by attackers are often referred to as loopholes, flaws, or
defects. They might be an imperfect minor step in a protocol design, an unforeseen side effect
of a certain instruction in a program, or a misconfigured setting in a system.

Defense is the guiding principle of network security, but it is a passive defense because
before being attacked, the victim has no idea who the attackers are and from which computers
in the jungle of the Internet the attackers will launch their attacks. After a victim is attacked,
even if the attacker’s identity and computer system are known, the victim still cannot launch a
direct assault at the attacker, for such actions may be unlawful. What constitutes legal actions
against attackers involves a discussion of relevant laws, which is beyond the scope of this
book. Therefore, although offense may be the best defense in military operations, this tactic
may not apply to network security. Building a deep layered defense system is instead the best
possible defense tactic in network security. Within this type of defense system, multiple layers
of defense mechanisms are used to resist possible attacks.

Network security is a major part of information security. In addition to network security,
information security deals with many other security issues, including security policies,
security auditing, security assessment, trusted operating systems, database security, secure
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code, emergency response, computer forensics, software forensics, disaster recovery, and
security training.

• Security policies are special rules to protect a computer network system against security
attacks. For example, security policies may specify what types of data are to be protected,
who should be given the access right of read from or write to the data, and how the data
should flow from one place to the next.

• Security auditing is a procedure of checking how well the security policies for a particular
computer network system are followed. It may be a manual procedure or an automated
procedure run by software tools.

• Security assessment is a procedure of determining the security needs of a particular system,
measuring the strength and weakness of the existing security policies, and assessing whether
the security policies are reasonable and whether security loopholes exist.

• A trusted operating system is an operating system without any security flaws or loopholes
in system designs, computing resource management, software implementations, and
configurations.

• Database security is a set of security measures specifically devised for database systems,
specifying which data fields are accessible by which level of users.

• Secure software is software that contains no security flaws, loopholes, or side effects.
• Intrusion response is a set of actions that should take place when a computer network system

is detected being intruded by intruders.
• Cyber forensics studies how to collect information of user activities from computer systems

and network communications, providing evidence to indict cyber criminals. Cyber forensics
can be further divided into computer forensics and network forensics.

• Disaster recovery is a set of mechanisms to bring a computer system that goes down because
of attacks or natural disasters back to a working status.

This book does not cover these issues, but it may touch certain aspects of them.

1.2 Common Attacks and Defense Mechanisms

Common network security attacks can be characterized into a few basic types. Almost every
known network security attack is either one of these basic types or a combination of several
basic types.

1.2.1 Eavesdropping

Eavesdropping is an old and effective method for stealing private information. In network
communications, the eavesdroppers may intercept data from network traffic using a network-
ing device and a packet sniffer. A packet sniffer, or network sniffer, is a program for monitoring
incoming network traffic. When connecting a router to the Internet, for example, one can use
a packet sniffer to capture all the IP packets going through that router. TCPdump and Wire-
shark (formerly known as Ethereal) are network sniffers widely used today, which are
available as free downloads (see Exercise 1.5).



4 Introduction to Network Security

Using a packet sniffer as an eavesdropping tool, one can intercept IP packets that go through
the router he controls. To capture a particular IP packet, however, the eavesdropper must first
determine which communication path the IP packet will travel through. Then, he could either
try to get control of a certain router on the path or try to insert a new router of his own on the
path. This task is more difficult but is not impossible. For example, the eavesdropper may try
to compromise a router on the path and install a packet sniffer in it to intercept the IP packets
he is after. The eavesdropper may also use an ARP spoofing technique (see Section 1.2.4) to
reroute IP packets to his sniffer without compromising a router.

Eavesdropping wireless communications is easier. In this case, the attacker simply needs to
place a receiver with the same radio frequency of the wireless network within the communi-
cation range of the network.

There is no way to stop eavesdropping in public networks. To counter eavesdropping, the
best defense mechanism is to encrypt data. Computer cryptography is developed for this
purpose, where the sender encrypts data into an unintelligible form before he transmits it.
Data encryption is a major component of computer cryptography. It uses an encryption key in
concert with an encryption algorithm, to break the original data into pieces and mix them up
in a certain way to make it unintelligible, so that the eavesdropper cannot obtain any useful
information out of it. Thus, even if the eavesdropper is able to intercept the encrypted data,
he is still not able to obtain the original data without knowing the decryption key. We often
refer the original data as plaintext data, or simply plaintext, and encrypted data as ciphertext
data, or simply ciphertext.

Ciphertext data can be converted back to plaintext data using a decryption key along with
a decryption algorithm. The encryption key is a string of characters, which is also referred
to as secret key. In a symmetric-key encryption algorithm, also referred to as conventional
encryption, the encryption key and the decryption key are identical. In a public-key encryption
algorithm, also known as asymmetric-key encryption, the encryption key and the decryption
key are different.

1.2.2 Cryptanalysis

Cryptanalysis is the art and science of finding useful information from ciphertext data without
knowing the decryption keys. For example, in a substitution cipher that substitutes plaintext
letters with ciphertext letters, if a ciphertext message reveals a certain statistical structure, then
one may be able to decipher it. To obtain a statistical structure of the data, one may calculate the
frequency of each character in the ciphertext data and compare it against the known statistical
frequency of each character in the language used in the plain text. For example, in the English
language, the letter “e” has the highest frequency. Thus, in a substitution cipher, the character
that has the highest frequency in the ciphertext data is likely to correspond to the plaintext letter
“e” (see e.g., Exercise 1.7). This analysis can be further extended to common phrases. Analyz-
ing statistical structures of ciphertext messages was an effective method to break encryptions
before the computer era.

Modern encryption algorithms can produce ciphertext without any trace of statistical struc-
ture. Therefore, modern cryptanalysis is focused on analyzing encryption algorithms using
mathematical techniques and high-performance computers.

The best method against cryptanalysis is to devise encryption algorithms that reveal no
statistical structures in ciphertext messages using sophisticated mathematics and longer
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encryption keys. Using sophisticated mathematics makes mathematical analysis difficult.
Using longer keys makes brute force attacks impractical. In addition to having stronger
encryption algorithms, it is equally important to distribute and manage keys safely and to
implement encryption algorithms without exploitable loopholes.

1.2.3 Password Pilfering

Computer users need to prove to the system that they are legitimate users. The most widely
used authentication mechanism is in the form of user names and user passwords. User names
are public information, but user passwords must be kept secret. Only two parties should have
knowledge of the password, namely, the user and the underlying computer program (e.g., an
operating system or a specific software application). A password is a sequence of letters, digits,
or other characters, which is often selected by the user. Legitimate users enter their user names
and passwords to prove their legitimacy to the computer program. An unauthorized user may
impersonate a legitimate user to “legitimately” log on to a password-protected system or appli-
cation, if he can get hold of a legitimate user name and password pair. He can then gain all the
“legal” rights to transmit, receive, modify, and fabricate data.

Password protection is often the first defense line, and sometimes, it may be the only defense
mechanism available in the system. Thus, we must take measures to ensure that user passwords
are well protected against larcenies. For this purpose, we will look at several common methods
for pilfering user passwords. These methods include guessing, social engineering, dictionary
attacks, side-channel attacks, and password sniffing. Phishing attacks and pharming attacks
have become the most common form of mass social engineering attacks in recent years.

1.2.3.1 Guessing

Guessing is the simplest method to acquire a password illegitimately. The attacker may get
lucky if users use short passwords or if they forget to change the default passwords created for
them. Also, users have a tendency to use the same passwords.

According to data compiled yearly by SplashData, a password management company, the
top 10 most common passwords used by users, listed in decreasing order of popularity, are as
follows:

1. 123456
2. password
3. 12345678
4. qwerty
5. abc123
6. 123456789
7. 111111
8. 1234567
9. iloveyou

10. adobe123

If the user chooses a simple password such as these 10 easy ones, then the guesser would
indeed have an easy task.
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1.2.3.2 Social Engineering

Social engineering is a method of using social skills to pilfer secret information from the
victims. For example, attackers may try to impersonate people with authority or organizations
of reputation to trick unvigilant users to reveal their user names and user passwords to the
attackers. Impersonation may be carried out either in person or in an electronic form. Phish-
ing and pharming are common electronic forms of social engineering attacks in recent years,
targeted at a large number of people.

There are other forms of social engineering attacks. For example, attackers may try to collect
recycled papers from the recycle bins in a corporation’s office building, hoping to find useful
login information. Attackers may also make a Web browser pop up a window asking for user
login information.

Physical Impersonation
Physical impersonation means that the attacker pretends to be a different person to delude
the victim. For example, the following imaginary conversion between the attacker and a
receptionist named Betty demonstrates how a social engineering attack might be carried out
in person:

Attacker: (Speaking with an authoritative voice.) “Hello, Betty, this is Nina
Hatcher. I am Marketing Manager of the China branch office.”

Betty: (Thinking that this woman knew my name, my number, and spoke like a
manager, she must be whom she said she was.) “Hello, Nina, what can I do for
you?”

Attacker: “Betty, I am attending a meeting in Guangzhou to finalize an important
deal with a large corporation in China. To close the deal, I’ll need to verify certain
technical data produced by your group that I believe is still stored in the computer
at your site. This is urgent. I tried to log on to your system today, but for some
reason it didn’t work. I was able to log on to it yesterday though. Is your computer
down? Can you help me out here?”

Betty: “Well, I don’t know what happened. But you may try the following · · · ”
(Thinking that she is doing the company a favor by telling the marketing manager
how to get into the system.)

Phishing
Phishing attacks are mass social engineering attacks that take advantage of people with a
tendency to trust authorities. The main forms of phishing attacks are disguised email mes-
sages or masqueraded Websites. For example, attackers (also called phishers) send disguised
email messages to people as if these messages were from banks, credit card companies, or other
financial institutions that people may pay attention to. People who receive such messages are
told that there was a security breach in their accounts, and so they are required to verify their
account information for security purposes. They are then directed to a masqueraded Website
to enter their user names and passwords (e.g., see Exercise 1.15). The following example is a
real phishing message verbatim (The reader may notice a number of grammatical errors and
format problems.):
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From: UML NEW EMAIL <helpdesk@uml.edu>

To:

Date: Wed, Jul 7, 2010 at 2:28 AM

Subject: Re UNIVERSITY I.T.S UPDATE

Welcome to the university of Massachusetts Lowell New webmail system.

Many of you have given us suggestions about how to make the Umass Lowell
webmail better and we have listened. This is our continuing effort to provide you
with the best email services and prevent the rate of spam messages received in
your inbox folder daily. Consequently all in-active old email accounts will be deleted
during the upgrade.

To prevent your account from deletion and or being suspended we recommends
all email accounts owner users to upgrade to the new email. Fill in your data in the
blank space provided;

(Email:_______), (User I.D_______), (password_______)
(Retype password____________).

The University I.T.S

www.uml.edu

Checked by AVG - Version: 8.5.437 Virus Database: 271.1.12840 - Release

This was a blunt phishing attack, in which the phisher simply asked the recipients to fill
in the blanks with their passwords. Other more sophisticated phishing emails may contain a
bogus Website as a trap to capture account information entered by the victims. Here, the email
and the Website are the baits. The sniffing mechanisms hiding behind the Web page are the
hook. Most phishing emails, no matter how well they are put together, would often contain the
lines of “Something happened with your account, and you need to go to this page to fix it, or
your account will be deleted”. In general, any phishing email would contain a link to a bogus
Website, called a phishing site. Phishing sites may look like the real ones, with the purpose of
luring careless users to enter useful login information only to be captured by the phisher.

Even if you do not plan to enter any information on the bogus Website, clicking the link in
the phishing email may already compromise your computer, for modern phishing techniques
make it possible to embed exploits in a Web page, and the exploits will be activated when
you open the Web page.

Users may look at the following three things to detect abnormalities: (1) the “From”
address, which may look odd; (2) the URL links the phishers want them to click on, which
may be similar to but definitely different from the real site (e.g., a URL that looks like
Citicard is in reality not the Citibank’s real site); and (3) the look and feel of the Website if the
user fails to identify any abnormality during the first two items, for the bogus Website would
not be exactly the same as the real site. For example, the color scheme may look different.
If you receive an email from a bank or a credit card company telling you that your have a
problem with your account and asking you for your user name and password, then most likely
it is a phishing email, for banks or credit card companies would never send emails to their
customers asking for their account information.

mailto:helpdesk@uml.edu
http://www.uml.edu
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Sometimes, a phishing email may contain a line similar to this: “To be removed from this
list click here.” Do not click on this link, for it will notify the attacker that the user did read
the email and consequently more annoying emails may come.

Antiphishing extensions of Web browsers are emerging technology for detecting and
blocking phishing sites. Email scanners may also be used to identify phishing emails.
However, blocking phishing and not blocking legitimate emails is challenging, even with
appropriate email scanners. Thus, users may also want to develop their own tools to detect
compromised email accounts and disable them before they can send out phishing emails.

1.2.3.3 Pharming

Pharming attacks use Web technologies to redirect users from the URLs they want to visit to a
URL specified by the attacker, including changing DNS setting or the hosts file on the victim’s
computer, where DNS stands for domain-name service. Attacks that change DNS settings are
also referred to as DNS poisoning. If an DNS-poisoning attack is launched from an insecure
home router or wireless access point, it is also referred to as a drive-by pharming. Reported by
Symantec in 2008, the first drive-by pharming attack was targeted at a Mexican bank.

Similarly to phishing attacks, pharming may also be used to pilfer user passwords. But
pharming attacks do not need to set up baiting messages as phishing attacks normally do and
hence may disguise themselves better and trap people in more easily.

To counter pharming attacks, it is important for users to make sure that their DNS software
and the hosts files have not been compromised and that the URL they are visiting is the right
one before doing anything else.

1.2.3.4 Dictionary Attacks

For security reasons, only encrypted passwords, that is, not in their original form, should be
stored in a computer system. This prevents attackers from learning the passwords even if they
break into the system. In early versions of UNIX and Linux operating systems, for example,
the encrypted user passwords of the system are stored in a file named passwd under directory
/etc. This encryption is not a one-to-one encryption. Namely, the encryption algorithm can
calculate the ciphertext string of a given password, but the ciphertext string cannot be uniquely
decrypted. Such an encryption is also referred to as an encrypted hash. In early versions of
UNIX and Linux operating systems, user names and the corresponding encrypted user pass-
words stored in the passwd file were ASCII strings that could be read by users. In later
versions of UNIX and Linux operating systems, however, the encrypted user passwords of the
system are no longer stored this way. Instead, they are stored in a file named shadow under
directory /etc, which is an access-restricted system file.

In the Windows NT/XP operating system, for another example, the user names and the
encrypted user passwords are stored in the system’s registry in a file named SAM. They can be
read using special tools, for example, pwdump.

Dictionary attacks take advantage of the way some people use dictionary words, names, and
dates as passwords. These attacks find user passwords from their encrypted forms. A typical
dictionary attack proceeds as follows:

1. Obtain information of user names and the corresponding encrypted passwords. This
was done, for example, in early versions of Unix or Linux by getting a copy of the
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/etc/passwd file. In Windows XP, it can be done using pwdump to read the system
registry.

2. Run the encryption routine used by the underlying system on all dictionary words, names,
and dates. That is, compute the encrypted hash for each dictionary word, each name, and
each date.

3. Compare each output obtained from Step 2 with the encrypted passwords obtained from
Step 1. If a match presents, a user password is found. In other words, suppose that w is a
word and w′ = crypt(w) is the output of the encryption routine crypt on input w. Suppose
that u and pu are a pair of user name and encrypted password of user u. If w′ = pu, then w
is user u’s password or is equivalent to user u’s password, for w may not be unique.

Step 2 is computationally intensive, for there are many words, names, and dates. To avoid
carrying out this costly computation each time an encrypted hash is given, one would want to
precompute Step 2 and store the results (i.e., password-hash pairs) in one table, so that one
only needs to do a table lookup to find the corresponding plaintext password from the given
encrypted hash. But such a table will be humongous. Constructing a Rainbow table helps to
reduce the table size and make the computation at Step 2 manageable.

Rainbow Tables
A rainbow table is a table of two columns constructed as follows: let r be a function that maps
an encrypted hash of a password to a string in the domain of possible passwords. This function
r is referred to as a reduction function, for the length of a password is typically shorter than
the length of its encrypted hash value. The function r can be defined in a number of ways.
For example, suppose that the domain of passwords is a set of all possible eight-character
strings. Let h be a cryptographic hash function that, on an eight-character password, generates
a 16-character long hash value. Then, we may define r as follows: For any eight-character
string w, function r on input h(w) returns the last eight characters of h(w). Function r may
also return the first eight characters of h(w) or any combination of eight characters selected
from h(w). Note that r is not an inverse function of h.

Let w11 be a given password. Apply h and r alternatively to obtain a chain of passwords
that are different pairwise:

w11, w12, · · · , w1n1
,

where n1 is a number chosen by the user, and

w1i = r(h(w1,i−1)),

i = 2, 3, · · · , n1.

Store
(w11, h(w1n1

))

in the rainbow table, where w11 is in the first column and h(w1n1
) is in the second column.

Figure 1.1 depicts the construction of a rainbow table.
Now, choose a new password w21 (i.e., w21 has not been generated in previous chains).

Repeat the same procedure for another round to obtain

w22, w23, · · · , w2n2
,
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Figure 1.1 Construction of a rainbow table

where n2 is a number chosen by the user and w2i = r(h(w2,i−1) for i = 2, 3, · · · , n2, such that
the first chain and the second chain are disjoint. That is, for any 1 ≤ u ≤ n1 and 1 ≤ v ≤ n2,
we have w1u �= w2v . Store

(w21, h(w2n2
))

in the rainbow table. Performing this procedure k times will generate k rows in the rainbow
table as follows:

Password Hash value

w11 h(w1n1
)

w21 h(w2n2
)

· · · · · ·
wk1 h(wknk

)

where wj1 is the first password in the jth chain, h(wjnj
) is the encrypted hash of the last

password in the same chain, and the chains are disjoint pairwise.
Let f : A → B and g : B → A be two functions. Let y ∈ B and i ≥ 0. Define (f ◦ g)i(y)

as follows:

(f ◦ g)i(y) =

{
y, if i = 0,

f(g((f ◦ g)i−1(y))), if i ≥ 1.

Let Q0 be an encrypted value of a password w. That is, Q0 = h(w). If

h((h ◦ r)i(Q0)) = h(wjnj
)

for some i ≥ 0 and some j with 1 ≤ j ≤ k and i ≤ j, then w is possible to appear in the jth
chain of wj1, · · · , wjnj

. Thus, the following algorithm may help find w.

1. Set Q1 ← Q0 and t ← 0. Let n = max{n1, · · · , nk}.
2. Check if there is a 1 ≤ j ≤ k such that Q1 = h(wjnj

) and t ≤ n. If yes, goto Step 3;
otherwise, goto Step 4.

3. Apply r and h alternatively on wj1 for 0 ≤ i ≤ j times until wjni
= (r ◦ h)i(wj1) is gen-

erated such that h(wjni
) = Q0. If such a wjni

is found, return w = wjni
; otherwise, goto

Step 4.
4. Set Q1 ← h(r(Q1)) and t ← t + 1. If t ≤ n, then goto Step 2. Otherwise, return “password

not found.” (The rainbow table does not contain the password whose hash value equals Q0.)

Note that we may use several different reduction functions in the same password chain,
which helps avoid collisions that two different chains, starting from different passwords, may
end up at the same password or at the same hash value at some point.
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Remarks
It is worth noting that dictionary attacks may also be used in a positive way. For example,
Windows Office allows users to encrypt Microsoft Word documents, where secret keys used for
encryption are generated on the basis of the passwords selected by users. If, after a long while,
a user forgets the password of a password-protected document, then the file will no longer
be useful, for the user cannot decrypt it. To solve this problem, a company named Elcomsoft
developed a password recovery software program using the dictionary attack techniques. This
is a positive application of dictionary attacks. On the other hand, we note that if an encrypted
office document is stolen, then the thief can also use this program to decrypt the document.
There is a positive side and a negative side to every thing. A kitchen knife is intended to chop
food, but it can also be used to harm people. Water can carry boats, but it can also topple them.

We also note that the file /etc/passwd in recent versions of UNIX and Linux no longer
displays the encrypted user passwords (see Exercise 1.8). This makes it more difficult for the
attackers to obtain the list of encrypted passwords for launching a dictionary attack.

1.2.3.5 Password Sniffing

Password sniffers are software programs used to capture remote login information such as user
names and user passwords. Common network applications such as Telnet, FTP, SMTP, and
POP3 often require users to type in their user names and passwords for authentication, making
it possible for a password sniffer to intercept useful login information. For remote logins,
however, one may use special programs (e.g., SSH) to encrypt all messages, thus making it
more difficult to sniff user passwords.

SSH and other programs that encrypt login information such as HTTPS, however, are still
vulnerable to password sniffing attacks. For example, Cain and Abel, a password recovery
tool for the Microsoft Operating Systems, is a network sniffing tool that can capture and crack
encrypted passwords using dictionary, brute-force, and cryptanalysis attacks. Cain & Abel can
be downloaded free of charge from http://www.oxid.it/cain.html.

1.2.3.6 Side-Channel Attacks

Social media sites, such as Facebook, LinkedIn, and Twitter, provide user-friendly platforms
for billions of users to interact with each other. Many users also like to post their personal data
on social media sites for others to see. However, security measures on social media sites are
not as strong as one would like. As a result, it is often easier to obtain user login information
from social media sites than from online banking sites. In June 2012, for example, LinkedIn
was under a massive attack from Russia, resulting in 6 million user passwords stolen, for the
passwords were not encrypted properly.

In general, attackers can legitimately obtain personal information posted by users from
social media sites, including favorite food, pets, siblings, birthdays, and birthplaces, as well
as the schools they graduated from, and the places they grew up in. Many of these items are
the typical questions the users are asked to verify their identity when logging to their banking
accounts. To make things worse, people tend to use the same passwords for multiple accounts,
including their banking accounts. Thus, social media has become a side channel for attackers
to obtain user passwords of relevant banking accounts.

http://www.oxid.it/cain.html
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1.2.3.7 Key-Logging Attacks

A Key logger is software that records key strokes of the user at the point of entry. Eavesdrop-
ping keystrokes is a more effective method to capture passwords entered by the user on the
keyboard before the passwords are encrypted. Pressing a key on the keyboard will also gener-
ate radiation, which may be exploited to learn keystrokes. Attacks such as this are referred to as
tempest attacks. We may use anti-key-logging software tools to counter key-logging attacks.

1.2.3.8 Password Protection

The following rules and practices can help protect passwords from pilfering:

1. Use long passwords, with a combination of letters, capital letters, digits, and other char-
acters such as $, #, &, %. Do not use dictionary words, common names, and dates as
passwords. This rule makes guessing attacks and dictionary attacks arduous.

2. Do not reveal your passwords to anyone you do not know. Do not submit to anyone who
acts as if he has authority. If you have to give out your password to someone you trust, do
so face to face. Avoid telling passwords over the phone or using email. This practice helps
prevent social engineering breaches.

3. Change passwords periodically and do not reuse old passwords. This rule helps defend users
against patient and persistent attackers who may keep on running dictionary attacks on all
possible strings formed using the first rule and hope that they may get lucky. Attackers may
also keep records of old passwords they have identified.

4. Do not use the same password for different accounts. Thus, even if a user’s password for a
particular account is compromised, the user’s other accounts would still be safe.

5. Do not use remote login software that does not encrypt user passwords and other important
personal information. This practice makes password sniffing difficult.

6. Shred all discarded papers using a good paper shredder. This practice makes it difficult for
attackers to find useful information from discarded old documents.

7. Avoid entering any information in any popup window, and avoid clicking on links in sus-
picious emails. Instead, go to the legitimate Website directly using the true URL address,
and follow the directions there. This practice helps counter password sniffing and reduce
the chance of being caught by phishers.

1.2.3.9 Other User-Authentication Methods

Authentication using user passwords is so far the most widely used authentication method.
Traditionally, there are three methods for proving one’s identity. The first method uses secret

passwords. The second method uses biometrics of unique biological features, for example,
fingerprints and retinas. The third method uses authenticating items, for example, passes and
certificates of identification. These three methods have been applied and implemented in com-
puter applications.

The first method is implemented in the form of user names and user passwords.
The second method is implemented in the form of connecting biometric devices to a com-

puter, for example, fingerprint readers and retina scanners. These devices are relatively more
expensive to acquire and maintain and so are often used in a tightly controlled environment
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Figure 1.2 Man-in-the-middle attacks. The solid lines represent the actual communications, and the
dash line represents the perceived communication between user A and user B

where high levels of security are required. For example, instead of using credit card readers
at check-out stands to authenticate credit holders and link payments to their accounts, using
fingerprint readers is just as convenient and is more secure.

The third method is implemented in the form of electronic passes authenticated by the issuer.
Certain authentication protocols (e.g., Kerberos) use this method to authenticate users.

Authentication using user passwords is the easiest method to implement and so far the most
commonly used authentication method.

1.2.4 Identity Spoofing

Identity spoofing attacks allow attackers to impersonate a victim without using the victim’s
passwords. Common identity spoofing attacks include man-in-the-middle attacks, message
replays, network spoofing, and software exploitation attacks.

1.2.4.1 Man-in-the-middle Attacks

In a man-in-the-middle attack, the attacker tries to compromise a network device (or installs
one of his own) between two or more users. Using this device, the attacker can intercept,
modify, or fabricate data transmitted between users. The attacker will then forward them as
if they have not been touched by the attacker. For example, the attacker may intercept an IP
packet sent by user A, modify its payload, and then send the modified packet to user B as if
it comes from user A. This way, both users may still believe that they are directly talking to
each other, without realizing that the confidentiality and integrity of the IP packets they receive
have already been compromised (see Fig. 1.2).

Encrypting and authenticating IP packets are common measures to thwart man-in-the-middle
attacks. This is because the attacker cannot read or modify an encrypted IP packet without
decrypting it. Also, the attacker has no way to authenticate a modified or fabricated IP packet
to convince the receiver that it comes from a legitimate sender.
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1.2.4.2 Message Replays

In a message replay attack, the attacker first intercepts a legitimate message, keeps it intact,
and then retransmits it at a later time to the original receiver. In some authentication protocols,
for example, after user A proves herself to the system as a legitimate user, she will be given an
authentication pass. With this pass, she will be able to obtain services provided by the system.
This pass is encrypted, and so it cannot be modified. However, the attacker may intercept it,
keep a copy, and use it later to impersonate user A to get the services from the system.

The following are common mechanisms for thwarting message replay attacks:

1. Attach a random number to the message. This number is referred to as a nonce. When a user
receives a message whose nonce appeared before, he knows that this message is a replay,
which is then discarded. This method, however, requires that users keep a record of every
nonce they first encounter, which may not be practical.

2. Attach a time stamp to the message. When a user receives a message whose time stamp is
old, he knows that this message is a replay. This method, however, requires that all net-
worked computers be synchronized with little error. While not a problem in local area
networks, accurate synchronization is difficult to achieve in wide area networks.

3. The best method to thwart message replay attacks is to use a nonce and a time stamp
together. Using this method, synchronization does not have to be very accurate, and the
user only needs to keep track of the nonces he encounters in a short and fixed time interval.
The user stores a nonce in a record with a time stamp when it is first recorded. When this
time stamp becomes old, the nonce is removed. The length of the time interval is deter-
mined by the worst-case error of an achievable synchronization. A message is considered
as a replay only when its nonce is already in the record or its time stamp is out of the
time interval.

1.2.4.3 Network Spoofing

IP spoofing is one of the major network spoofing techniques. It consists of SYN flooding, TCP
hijacking, and ARP spoofing. ARP spoofing is also referred to as ARP poisoning.

SYN Flooding
SYN flooding exploits an implementation side effect of the TCP/IP network protocols. In a
SYN flooding attack, the attacker fills the target computer’s TCP buffer with a large volume
of SYN control packets, making the target computer unable to establish communications with
other computers. When this happens, the target computer is called a muted computer or a
silenced computer. The TCP buffer is a set of contiguous memory locations allocated by
the underlying network application program. It is used to store TCP packets that have been
received but not yet processed.

To launch a SYN flooding attack against a target computer, the attacker sends to it a large
number of crafted SYN packets, each requesting to establish TCP connections. The term
crafted SYN packet means that the source address contained in the SYN packet is a legiti-
mate IP address, but the host computer on that address is not reachable. This host computer
may be powered off or taken off the network. We call such a computer a dead computer.
Detecting whether an IP address is unreachable can be done using the ping command (or



Network Security Overview 15

other commands in case a live computer has been hardened to not respond to the ping com-
mand). If an IP address does not respond to ping, then it is probably unreachable. The ping
command is a common network management tool based on the ICMP protocol. The attacker
uses crafted SYN packets to avoid being tracked down. And he uses a legitimate source IP
address to ensure that the crafted SYN packets will be delivered to its destination, because the
domain name server will drop IP packets with fake IP addresses.

According to the three-way handshake procedure in the TCP protocol, the victim’s computer
is obliged to send an ACK packet to the source IP address contained in the SYN packet it
receives and waits for an ACK packet to be sent back from that IP address. However, the host
computer with that source IP address is not reachable, and so it will not respond. Thus, the
victim’s computer will never receive the ACK packet it is waiting for, forcing the crafted SYN
packet to remain in the TCP buffer until its lifetime expires. During this period of time, the
TCP buffer is completely occupied by (i.e., flooded with) crafted SYN packets, and so the
victim’s computer will have no room in the TCP buffer to establish any new connection with
another computer. The victim’s computer is then considered muted.

TCP Hijacking
Suppose that computer V is a company computer and user A is an employee of that company
and is going to log on to computer V from home. User A’s computer sends a SYN control
packet to V and now suppose that an attacker intercepts this packet. The attacker then uses the
SYN flooding attack to mute computer V, so that V cannot complete the three-way handshake
protocol with user A’s computer. If the attacker can predict the correct TCP sequence number
for the ACK packet that is supposed to be sent to A from the muted computer V, then the
attacker can craft an ACK packet and send it to user A’s computer. The crafted ACK packet
uses the correct TCP sequence number and V’s IP address as the source IP address. User A’s
computer receives the ACK packet and verifies that it has the correct TCP sequence number.
It then sends an ACK packet to the attacker to complete the three-way handshake procedure
with the attacker. Thus, the TCP connection that user A’s computer has established is with the
attacker, instead of with V.

To see how this works, we note that the TCP protocol uses the sequence number in its
TCP header to identify which TCP packets belong to the same communication. Figure 1.3
depicts the TCPv4 header format. As the TCP protocol header does not contain the source IP
address, the TCP-layer software would not check the legitimacy of the IP addresses contained
in the IP header. See Fig. 1.4 for the standard IPv4 header format. The IP protocol routes

Figure 1.3 The standard TCPv4 header format
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Figure 1.4 The standard IPv4 header format

the IP packet it receives to the destination on the basis of the information contained in the IP
header. It does not keep track of the header information of previous IP packets it received.
Thus, checking the source IP address at the IP layer does not help identify whether the source
IP address in the current IP packet is the same as those in previous IP packets. This shows
that the working of the TCP/IP protocol suite (its early implementation in particular) actually
makes TCP hijacking possible. To stop TCP hijacking, it is important to use software (e.g.,
TCP wrappers) that checks IP addresses at the TCP layer.

In 1994, Kevin Mitnick, a resident in North Carolina of the United States, launched TCP
hijacking attacks from his home and broke into several major companies’ computers a few
thousand kilometers away in California. Mitnick was later convicted and sentenced to 5 years
in prison for this crime.

ARP Spoofing
Computers are identified by unique media access control (MAC) addresses. MAC addresses
are also called physical addresses. ARP is an address resolution protocol at the link layer, which
converts the destination IP address in the IP header to the MAC address of the underlying com-
puter at the destination network. In an ARP spoofing attack, the attacker changes the legitimate
MAC address of an IP address to a different MAC address chosen by the attacker (see, e.g.,
Exercise 1.7.2).

To prevent ARP spoofing attacks, checking is the key. In particular, we should strengthen
checking procedures of MAC addresses and domain names and make sure that the source
IP address and the destination address in an IP packet have not been changed during
transmissions.

1.2.5 Buffer-Overflow Exploitations

Buffer overflow, also referred to as buffer overrun, is a common software loophole exploited
by attackers. A buffer is a set of contiguous memory locations allocated to a process. The size
of the buffer is fixed in its declaration in the program. A buffer overflow occurs if the process
writes more data into the buffer than it can hold. The following is a simple C program that
writes the buffer of eight bytes with a string str of 34 bytes, causing it to overflow.
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int main() {
char buffer[8];
char *str = "This is a test of buffer overflow.";
strcpy(buffer, str);
printf("%s", buffer);

}

It is possible to exploit buffer overflows to redirect the victim’s program to execute attackers’
own code located in a different buffer area. Such attacks often exploit function calls in standard
memory layout, where the buffer is placed in a heap and the return address of the function call
is placed in a stack. The stack is in the higher end of the memory space, while the heap is in the
lower end, where they grow toward each other and shrink away from each other (see Fig. 1.5).
The following are general steps of this type of attacks:

1. Find a program that is vulnerable to buffer overflows. For example, programs that use
string-based functions (e.g., strcpy() and strcat()) are vulnerable, for they do not
check bounds. These functions would copy as many characters as possible until a NULL
byte is encountered.

2. Figure out the address of the attacker’s code.
3. Determine the number of bytes that is long enough to overwrite the return address.
4. Overflow the buffer that rewrites the original return address of the function call with the

address of the attacker’s code.

In reality, exploiting buffer overflows to breach security is often a complex and difficult
procedure.

The best way to prevent buffer overflow attacks is to close the doors of overflow. That is,
one should always add statements to check bounds when dealing with buffers in a program.
Avoid using string functions that do not check bounds.

Low addresses

High addresses

Buffer Heap

StackReturn address

Function parameters

Figure 1.5 Typical memory layout for function call
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1.2.5.1 Compiler Protections for Buffer Overflow

Buffer overflow often has a simple programming fix. Unfortunately, these fixes are often over-
looked. To combat this problem, compiler-induced protections have been developed, one of
which is the notion of canary values. Borrowing its name from the coal-mining practice of
lowering a canary into a coal mine to determine if sufficient oxygen exists for miners to enter,
a canary value is a special value stored on the programs execution stack, which helps to detect
if the return address from a function has been altered. This value is pushed on to the stack
immediately after the return address. If a buffer-overflow attack is executed, the heap will
likely be overflown into the canary value and the return address (see Fig. 1.6). Thus, if the
attacker manages to overwrite the return address, then it is likely that they will also overwrite
the canary value and thus be detected.

To enable the canary value to protect from buffer overflow, the function prologue and
epilogue code generated by the compiler must be modified to deal with the canary value. The
prologue must be modified such that the canary value is pushed onto the stack after the return
address. The epilogue code must be modified to check that the canary value is valid.

If the same canary value is used in every program, every time a function call is made,
the attacker would easily be able to construct buffer overflow attacks. To launch an attack
on the system that uses the same canary value for every function call, the attacker merely
places the canary value in the correct location in the data used for buffer overflow. The check
of the canary in the function epilogue will pass, and thus the return address will vector off to
the attacker’s malicious code. To correct this problem, a random canary value is often used. A
random canary value is chosen at execution and used for just that execution. This means that
every time the attacker runs the potentially vulnerable code, the canary is different, and thus
the attacker cannot use the attack that works with the fixed canary values.

1.2.6 Repudiation

In some situations, the owner of the data may not want to admit ownership of the data to evade
legal consequences. He may argue that he has never sent or received the data in question.

Low memory

High memory

Buffer Heap

Stack

Return address

Function parameters

Canary value

Figure 1.6 Typical memory layout for a function call that uses a canary value
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Repudiation is straightforward if the data has not been authenticated. Even if the data has been
authenticated, repudiation is still possible when the underlying authentication methods or the
communication protocols contain loopholes. The owner of the authenticated data may be able
to convince the judge that, because of the loopholes, anyone could have easily fabricated the
message and made it look like it was produced by him.

Secure encryption and authentication algorithms are effective mechanisms to counter repu-
diation attacks.

1.2.7 Intrusion

Intrusion in network security means that an illegitimate user, also known as intruder, gains
access to someone else’s computer systems. The intruder may turn a victim’s computer into
his own server, which may result in stolen computing resources and network bandwidth from
the victim. The intruder may also steal useful information residing in the victim’s computer.

Configuration loopholes, protocol flaws, and software side effects may all be exploited by
intruders. Opening TCP or UDP ports that should not be open is a common configuration
loophole. TCP and UDP ports are entry points of network application programs.

Intrusion detection is a technology for detecting intrusion incidents. Closing TCP and UDP
ports that may be exploited by intruders can also help reduce intrusions.

1.2.7.1 IP Scans and Port Scans

IP scans and port scans are common hacking tools. IP scans search for existing IP addresses in
the Internet, and port scans search for open ports in a computer. Attackers use IP scans to search
for potential targets and port scans to identify open ports that are vulnerable in the targets.

However, IP scans and port scans can also help users to identify in their own systems
which ports are open and which ports may be vulnerable. Several such products are avail-
able. For example, ShieldsUP! of Gibson Research Corporation and Nessus of Southwest
Research Institute are two such products (see Exercise 1.19).

1.2.8 Traffic Analysis

The purpose of traffic analysis is to determine who is talking to whom by analyzing IP packets.
Even if the payload of the IP packet is encrypted, the attacker may still obtain useful informa-
tion from analyzing IP headers. An IP header contains the source IP address and the destination
IP address, which reveal who is sending messages to whom. If its payload (i.e., the encapsu-
lated TCP packet) is not encrypted, the port numbers can also be obtained. This information
can be used to learn which application program is used to read the message. When preparing
for a big event, individuals or organizations may frequently exchange messages before the
event takes place. If the traffic analyzer learns this information from analyzing IP headers, an
attacker may conclude that something big is about to happen.

The best way to combat traffic analysis is to encrypt IP headers. But an IP packet with an
encrypted IP header cannot be routed to the destination. Thus, a new plaintext IP header must
be inserted in front of the encrypted IP header for delivery. This may be done using a network
gateway. A gateway is a special-purpose computer shared by many users in the local network. It
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Figure 1.7 Using gateways to encrypt IP packets. (1) Sender forwards an IP packet to gateway A at
the sending side. (2) Gateway A encrypts sender’s IP packet (the shaded part) and routes it to the next
router in the Internet. (3) The IP packet from Gateway A is delivered to gateway B at the receiving side,
with certain attributes (e.g., TTL) in the plaintext IP header (shown as the unshaded part) modified. (4)
Gateway B removes its header, decrypts the encrypted IP packet of the sender, and forwards it to the
receiver

can encrypt a user’s IP packet (including its header) at the sending side, decrypt the encrypted
IP packet at the receiving side, and forward it to the destination MAC address. If there are
no other routers between the sending-side gateway and the sender’s computer, and there are
no other routers between the receiving-side gateway and the receiver’s computer, then traffic
analysis can only reveal that the two gateways are talking to each other (see Fig. 1.7), without
gaining any information about which user behind one gateway is talking to which user behind
the other gateway.

1.2.9 Denial of Service Attacks

The goal of denial of service attacks is to block legitimate users from getting services they
can normally get from servers. Such attacks often force the target computer to process a large
number of useless things, hoping to consume all its critical resources. A denial of service
attack, denoted by DoS, may be launched from a single computer, or from a group of computers
distributed in the Internet. The latter attack is called a distributed denial of service attack and
is denoted by DDoS.

1.2.9.1 DoS Attacks

SYN flooding is a typical and effective technique used by DoS attacks. The smurf attack is
another typical type of DoS attack, where smurf is the name of the software used to execute
the attack. It sends an excessive number of messages to the target computer and crashes it
by consuming all its resources. In a typical smurf attack, the attacker sends crafted ping
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Figure 1.8 Smurf attack

requests to a large number of computers within a short period of time, where the source IP
address in the crafted ping request is replaced with the victim’s IP address. According to the
ICMP protocol, a computer that receives a ping request will respond to the source IP address
with a pong message, informing the sender that “I am alive”. Therefore, each computer that
receives the crafted ping request will respond to the victim’s computer with a pongmessage.
Forced to process a large number of pongmessages within a short period of time, the victim’s
computer will use up its computing resources and crash (see Fig. 1.8). Thus, the idea of smurf
attacks is to crash a single target with a lot of borrowed hammers.

1.2.9.2 DDoS Attacks

A typical DDoS attack proceeds according to the following sequence:

1. Compromise as many networked computers as possible. This may be achieved using
Trojans (see Section 1.2.10 for a description of Trojans).

2. Install special software in the compromised computers to carry out a DoS attack at a certain
time later. Such software is called zombie software, and such a computer is called a zombie
computer or simply a zombie. A collection of zombies is also called a zombie army, which
is now typically called a botnet.

3. Issue an attack command to every zombie computer to launch a DoS attack on the same
target at the same time.

Figure 1.9 depicts a DDoS attack. On receiving the attacker’s command, each zombie
computer uses SYN flooding to mute the victim’s Website.

In 2000, for example, a 15-year-old high-school student in Montreal, Canada, with an
assumed name “Mafiaboy,” launched a DDoS attack against Web servers of several major
companies and paralyzed these Web servers for a week. These companies, including Amazon,
Cable News Network, eBay, E*Trade, Dell, and Yahoo!, suffered substantial financial losses
because of this attack. Mafiaboy was sentenced to spend 8 months in a youth detention center.
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Figure 1.9 A DDoS attack using SYN flooding to mute the victim’s Website

1.2.9.3 Spam Mail

Spam mails are uninvited emails, which may be commercial messages or phishing messages.
While not intended to bring the victim’s computer out of service, spam mails do consume
computing resources. Spam mails are annoying, particularly when one’s mailbox is filled up
with them.

Standard electronic messaging systems have made it possible for individuals and companies
to send unwanted bulk messages to people. Such individuals or companies are often referred to
as spammers. Spamming can occur in any form of network applications, but email spam is by
far the most common spamming form. According to a recent statistics, about half a billion spam
emails are sent in every single day. In other words, each email user is expected to receive about
eight spam messages a day. Spamming also occurs in Web search engines, Instant Messaging,
blogs, mobile phone messaging, and other network applications.

Spam filters are software solutions to detect and block spam mails from reaching the user’s
mailbox.

1.2.10 Malicious Software

Software intended to harm computers is malicious software. Malicious software is also referred
to as malware. Common forms of malicious software include virus, worms, Trojans, logic
bombs, backdoors, and spyware.

1.2.10.1 Viruses and Worms

A computer virus is a piece of software that can reproduce itself. However, a virus is not a
standalone program. In other words, it must attach itself to another program or another file.
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A program or file that contains a virus is called an infected program (also called an infected
host). When an infected program is transmitted to another computer, the virus that lives in it
is also transmitted along with its host program.

The execution of a virus is initiated by the infected host. Namely, only when an infected
program is executed or an infected file is opened, a virus contained in it may get executed.
When executed, a virus may do harm (e.g., delete system files) to the system where its host
resides or replicate itself to infect other healthy hosts in the system.

A computer worm is also a piece of software that can reproduce itself. Unlike a virus, a
worm is a standalone program. In other words, it does not need a host to live in. A worm can
execute itself at any time it wishes. When executed, a worm may do harm to the system where
it resides or replicate itself to other systems through networks.

There are two common measures to combat viruses and worms. One measure deploys virus
scans to detect, quarantine, and delete infected hosts and worms. The other measure, consisting
of the following rules, blocks viruses and worms from entering a computer:

1. Do not download software (e.g., games) from untrusted Websites or other sources.
2. Do not open any executable file given to you by someone you do not know.
3. Make sure that software patches are installed and up to date.

Neglecting software patches may be fatal. For example, in the summer of 2001, many
systems that run Microsoft Internet Information Services (IIS) were hit by the Code Red
worm, the Nimda worm, and the Code Red II worm. These worms made headline news,
and they all exploited the same loophole in IIS. Microsoft knew about this problem and
provided a patch to correct it a year earlier. However, many system administrators did not
install this patch and thus left wide open doors into their systems for the worms to come in
and do damage.

1.2.10.2 Trojans

Trojans are also called Trojan horses. The name Trojan horse came from a Greek legend.
Legend has it that ancient Greeks, wanting to apprehend a beauty named Helen, attacked the
fortified city of Troy but failed. Faking a retreat, the Greeks left behind a huge, hollow wooden
horse with a number of soldiers hidden inside. Not suspecting any danger, the Trojans hauled
the wooden horse inside the city as a trophy. At night, the Greek army returned, and the soldiers
hidden inside the wooden horse went out and opened the city gates for the invasion troops to
come in. The city of Troy fell.

In the realm of network security, Trojans are software programs that appear to do one
thing but secretly also perform other tasks. Trojans often disguise themselves as desirable
and harmless software applications to lure people to download them. When they are executed
by the user, the hidden functions contained in them, which now have the user’s access
rights, do harmful things secretly. Games and network management tools available for
free downloads from unknown Websites often are Trojans. Trojans may also use appealing
names such as AntiSPYware.exe or Real_Player.exe (note that the real one is
RealPlayer.exe) to trap users to use them.

The same measures of combating viruses and worms can also be used to combat Trojans.
Virus scans can also detect, quarantine, and delete Trojans.
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1.2.10.3 Logic Bombs

Logic bombs are subroutines or instructions embedded in a program. Their execution is trig-
gered by conditional statements. For example, a company employee working on a development
project may install a logic bomb inside a program. The bomb will be set off only if the
employee has not run the program in a certain period of time. When that condition is met,
it would mean that the employee was fired some time before. The logic bomb in this case is
used to gain revenge against the employer.

There are three measures to counter logic bombs. First, employers should always do their
best to take care of their employees, so that none would be tempted to place a logic bomb.
Second, project managers should hire an outside company or form a special team of reviewers
from a different group of people other than the developers to review the source code. Third, rel-
evant laws should be established so that employees who planted logic bombs will face criminal
charges. With these countermeasures in place, unhappy employees would think twice before
planting logic bombs in programs.

1.2.10.4 Backdoors

Backdoors are secret entrance points to a program. They are often inserted by software
developers to provide a short cut to enter a password-protected program when attempting
to modify or debug code. These backdoors that avoid the typical password entrances of
normal users may later be discovered and used by attackers. Attackers who compromise
network systems have been known to insert their own backdoors so that they can more easily
re-enter later.

We note that, with the increase of outsourcing software development projects and other
vital tasks to other countries, the potential for logic bombs and backdoors also increases. The
major counter measure of backdoors is to check source code, which should be conducted by
an independent team.

1.2.10.5 Spyware

Spyware is a type of software that installs itself on the user’s computer. Spyware is often
used to monitor what users do and to harass them with popup commercial messages. Browser
hijacking and zombieware are the most disastrous kinds of spyware.

Browser Hijacking
Browser hijacking is a technique that changes the settings of the user’s browsers. It may replace
the user’s default Website with a different Website selected by the attacker. Or it may stop the
user from visiting the Websites he or she wants to visit. For example, the Google redirect virus,
which affected a lot of people in 2012/2013, redirects the browser to a Website that has nothing
to do with the search query entered by the user.

Zombieware
Zombieware is software that takes over the user’s computer and turns it into a zombie for
launching DDoS attacks or into a relay that carries out harmful activities such as sending spam
email or spreading viruses. Therefore, the purpose of zombieware is to hijack computers.
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In addition to hijacking browsers and computers, spyware can also do a number of other
things, including the followings:

Monitoring
Spyware can be used to monitor and report to a Web server or to the attacker’s machine a user’s
surfing habits and patterns, such as which Web pages the user has browsed and which products
the user has purchased.

Password Sniffing
Spyware can be used to sniff user passwords by logging users’ keystrokes using a keystroke
logger. A keystroke logger is a program that can capture user names and user passwords when
the users type them in.

Adware
Adware is software that automatically displays advertising materials on the user’s computer
screen. The common form of adware is popup windows with commercial material. While
not intended to harm users, adware consumes user’s precious computing resources and is
annoying.

To counter spyware, users may use antispyware software to detect and block spyware.
Microsoft’s Windows Defender, for example, is such a software tool. Windows Defender is
available as a free download.

Most modern antivirus software includes checks for spyware, adware, and hacking tools
such as keystroke loggers and network sniffers.

1.3 Attacker Profiles

Attackers are often characterized as black-hat hackers, script kiddies, cyber spies, employees,
and cyber terrorists.

1.3.1 Hackers

Hackers are people with special knowledge of computer systems. They are interested in sub-
tle details of software, algorithms, and system configurations. Hackers are an elite group of
well-trained and highly motivated people. Depending on their motives, hackers are further
characterized as black-hat hackers, white-hat hackers, and grey-hat hackers.

1.3.1.1 Black-Hat Hackers

Black-hat hackers are people who hack computing systems for their own benefit. For example,
they may hack into an online store’s computer system and steal credit card numbers stored in
it. They may then use the stolen credit card numbers to buy merchandise or sell them to other
people. Black-hat hackers are the wicked doers in network security.

Note that, without the “black-hat” modifier, hacker is not a derogatory term. News media,
however, have widely used hackers to denote black-hat hackers. To avoid confusions, several
authors have suggested to use crackers to denote black-hat hackers.
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1.3.1.2 White-Hat Hackers

White-hat hackers are hackers who have high moral standards. They hack computing systems
for the purpose of searching for security loopholes and developing solutions. They publish
security problems and solutions at security conferences, on dedicated Websites, or through
special mailing lists. White-hat hackers are the righteous doers in network security.

1.3.1.3 Grey-Hat Hackers

Grey-hat hackers are hackers who wear a white hat most of the time but may also wear a black
hat once in a while. For example, when they discover attacks, instead of reporting the incidents
to law enforcements, grey-hat hackers may take the matter in their own hands and strike the
attackers back themselves. Grey-hat hackers are the Robin Hood type people in the world of
network security.

1.3.1.4 Disclosures of Security Problems

When discovering security vulnerabilities in a software product, white-hat hackers and
grey-hat hackers would often work directly with the vendors of products to help them fix the
problems before they release the details of their discoveries. Whether a full disclosure of
their findings should be allowed is an ongoing debate, in part due to the perceived view of
the white-hat hackers and the grey-hat hackers that the vendors are not doing enough to fix
security problems in a timely manner.

1.3.2 Script Kiddies

Script kiddies are people who use scripts and programs developed by black-hat hackers to
attack other people’s computers. Such scripts and programs are often referred to as hacking
tools. Script kiddie is a derogatory term. It is used to indicate that script kiddies only know
how to copy and use a hacking tool. They do not understand how it works, and they are not
capable of writing any hacking tool themselves. Script kiddies like to crack any target they
possibly can, so that they can say to others in the underground cracker community that “I am
smarter.” Script kiddies may also attack targets with high profiles just to attract the attention
of the media.

Although they do not know how to write hacking tools or understand how an existing hack-
ing tool works, script kiddies are dangerous. Many of them are just teenagers who do not care
about, or are not mature enough to know, the consequences of their actions. However, they are
energetic, and they are everywhere. They launch attacks from unexpected places and at any
time, which could inflict serious damages to other people.

1.3.3 Cyber Spies

Cyber espionage takes place at all levels. It could be an individual activity or an organizational
effort. Cyber spies collect intelligence through intercepted network communications. They
could be working for a good cause or just for money.
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Governments run cyber intelligence units to intercept network communications and deci-
pher encrypted messages. The National Security Agency (NSA) and the Central Intelligence
Agency (CIA), for example, are the two largest intelligence agencies of the U.S. government.
The NSA hires many first-class mathematicians and computer scientists to work for it. Many
of them are professors at U.S. universities. They teach during school years and work for NSA
during summers. They study encryption algorithms and develop cryptanalysis tools. This sort
of work has helped win battles.

During World War II, for example, the intelligence department of the U.S. Pacific Fleet was
able to partially decipher Japanese secret code, which helped Admiral Chester W. Nimitz, the
Commander in Chief of the Pacific Fleet, deduce the Japanese scheme of invading the Midway
Atoll in the mid-Pacific. Nimitz seized the opportunity and ordered his two aircraft carriers to
ambush the approaching Japanese invasion forces. With another barely restored carrier joining
in the battle a few days later, American aviators sunk four Japanese carriers, with the cost of
losing only one carrier. The battle of Midway became a turning point, from a defensive to an
offensive campaign for American Pacific naval forces.

1.3.4 Vicious Employees

Vicious employees are people who intentionally breach security to harm their employers. They
may plant logic bombs or open backdoors in programs they help develop. They may act as
script kiddies to attack company computers to get the attentions of their employers. They may
also act as cyber spies to collect and sell company secrets for money.

1.3.5 Cyber Terrorists

Terrorists are extremists who do not hesitate to use extreme means to destroy public property
and take innocent life. Cyber terrorists are terrorists who use computer and network technolo-
gies to carry out their attacks and produce public fear. Attacks by cyber terrorist have not been
reported yet. However, if they did attack, cyber terrorists would be extremely harmful.

1.3.6 Hypothetical Attackers

The hypothetical attackers this book deals with are black-hat hackers, script kiddies, greedy
cyber spies who are willing to betray their countries or organizations for monetary benefits,
and vicious employees. Attackers of these four kinds may be wicked, but they are not terrorists.
Cyber terrorists, on the other hand, are the die-hard enemies, and so they may need to be dealt
with using a different set of measures not addressed in this book.

1.4 Basic Security Model

The basic security model consists of four components: cryptosystems, firewalls, anti-
malicious-software software (AMS software), and intrusion detection systems (IDS system).
Figure 1.10 shows this security model.

Cryptosystems use computer cryptography and security protocols to protect data. Secu-
rity protocols include encryption protocols, authentication protocols, and key management
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protocols. Figure 1.11 shows the encryption and decryption components. It is customary to
use E to denote an encryption algorithm, D its decryption algorithm, and K the secret key.

Firewalls, AMS software, and IDS systems are used to protect data stored in networked com-
puters. Firewalls are special software packages installed in computers and networking devices
that check incoming and outgoing network packets. Certain features of firewalls have also
been incorporated into hardware devices to achieve faster processing speeds. AMS software
scans system directories, files, and registries to identify, quarantine, or delete malicious code.
IDS systems monitor system logins, study user behaviors, and analyze log files to identify and
sound alarms when intrusions are detected.

In addition to using firewalls, AMS software, and IDS systems, we may also set up sacrificial
decoy machines to lure attackers’ attentions away from important computers. Decoy machines
are also known as honeypots.
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This book is centered around these four major components. This book also introduces
honeypot technologies.

1.5 Security Resources

Network security is not something that can be taken care of once and for all, because when
old security problems are solved, new security problems will appear. Thus, network security
defenders will have to fight against the attackers continuously. Network security is an art of
defense in digital form. This book covers basic principles, methods, and techniques of network
security. It does not and cannot cover every aspect of the area. It does not and cannot tell you
what the new attacks are going to be. Fortunately, there are many online security resources
available to help you win this fight. The following are a few popular resources.

1.5.1 CERT

Founded in 1988, CERT is a research institute affiliated with Carnegie Mellon University. Its
full name is Computer Emergency Response Team. Its budget comes mainly from the U.S.
government.

CERT was the earliest organization devoted to studying security problems and offering prac-
tical solutions to system administrators to help secure their computer systems. It sends monthly
reports to subscribers, free of charge, of any security breach identified in the current month,
with recommended solutions. In addition, CERT also trains computer security personnel. Its
Website is www.cert.org.

1.5.2 SANS Institute

Founded in 1989, SANS Institute is a nonprofit organization devoted to collecting, archiving,
and publishing computer security information. It provides this information to users free of
charge. SANS stands for SysAdmin, Audit, Network, and Security. In addition, SANS Institute
also offers computer security training, issues certification, and funds research. Its Website is
www.sans.org.

1.5.3 Microsoft Security

Microsoft security is Microsoft’s official Website devoted to providing security information
for Microsoft products. It provides security updates to Microsoft users. Its Website is
www.microsoft.com/security/default.mspx.

1.5.4 NTBugtraq

NTBugtraq is a moderated open list service for users to post and discuss security exploits and
bugs in Microsoft’s products. Its Website is www.ntbugtraq.com.

http://www.cert.org
http://www.sans.org
http://www.microsoft.com/security/default.mspx
http://www.ntbugtraq.com
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1.5.5 Common Vulnerabilities and Exposures

The Common Vulnerabilities and Exposures (CVE) database is a free database maintained by
the Mitre Corporation. CVE tracks software vulnerabilities across all major software products
from all major vendors. This is the most widely used collection of information on security
vulnerabilities. The vulnerabilities contained within the database are scored and ranked using
the Common Vulnerability Scoring System (CVSS), a standard maintained by NIST. The CVE
Web site is www.cve.mitre.org.

1.6 Closing Remarks

Sun Tzu said: All warfare is based on deception. Attackers may attack us where we are unpre-
pared and appear where they are not expected. Network security is no exception. For example,
even if we develop an unbreakable encryption algorithm, if keys are not managed properly,
attackers can still break the encryption system, not by attacking the encryption algorithm, but
by exploiting loopholes in key management protocols.

We must assume that attackers are capable of using any means available to achieve their
objectives. They avoid what is strong and strike at what is weak. Therefore, we must remember
that it will only take a small blow at a weak spot to bring down any apparently strong defense
system. Also, a defense system would just be an ornament if one could bypass it. The famous
Maginot Line, for instance, is an example. During World War II, the French militaries were
confident that the Maginot Line of concrete fortifications they spent 10 years to build along the
French-German border could stop German aggression. The German invasion forces, however,
did not assault the Maginot Line directly as anticipated by the French. Instead, they dispatched
motorized troops to quickly cut through the Low Countries of Belgium and the Netherlands
and invaded France from unexpected locations in a third country. Lessons like this have taught
us that in network security, we must constantly examine our network defense mechanisms
from all aspects and fortify any weak point as soon as it is identified.

1.7 Exercises

1.7.1 Discussions

1.1. Have you experienced any network security attack described in the text? If so, please
share your experience with the class. If you have experienced network security
attacks not described in the text, please describe them in detail.

1.2. How did you solve the network security problems you encountered?

1.3. Why type of attackers do you think attacked you?

1.4. Networked computers are managed by different types of people. What type of people
do you think are most vulnerable to network security attacks?

1.5. Why do you think phishing and pharming attacks are so common? What measures
would your suggest to counter them?

1.6. Why do you think network security must be a multiple-layer defense mechanism?

http://www.cve.mitre.org
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1.7.2 Homework

1.1. This book assumes that the reader has taken a computer network course, or has
sufficient experience working with computer networks.

(a) Describe the major structure of a TCP packet and explain the main functions of
the TCP headers.

(b) Describe the major structure of an IP packet and explain the main functions of
the IP headers.

(c) Explain the three-way handshake protocol in the TCP protocol and describe its
main functions.

(d) Describe the difference between UDP and TCP. Give an example of an appli-
cation that would use UDP and an application that would use TCP. Justify your
answers.

1.2. On the basis of your understandings of network protocols, answer the following
questions:

(a) Explain the main functions of the ARP protocol.
(b) Explain the main functions of the ICMP protocol.
(c) Explain the major functions of routers, switches, and gateways.
(d) Explain the major functions of the SMTP protocol.

1.3. Describe the major differences between IPv4 and IPv6.

1.4. Use network administration tools to familiarize yourself with network configura-
tions.

(a) In the Windows operating system, ipconfig, ping, tracert, nslookup,
and netstat are common network administration tools. On a machine running
Windows, go to the start menu, select run, and then enter cmd to open a
command window. Execute these five network administration tools. Explain the
results you observe. For each of these admin tools, use option -? to list each
option of the tool and explain its usage. For example, enter ipconfig -? to
learn all options of ipconfig and explain their usage.

Execute the following commands and explain the results you observe:

ping cs.uml.edu
ping www.google.com
tracert www.yahoo.com
netstat -e

(b) In the UNIX and Linux operating systems, ping, nslookup, netstat, and
arp are common network administration tools. You may use the man tool to
find out how to use these tools. For example, enter man netstat to list all
information about netstat. On a machine running UNIX or Linux, execute
these tools and explain the results you observe.

(c) Open a cmdwindow on a Windows machine and execute ipconfig /all to
list all information of the network setup of your PC. Write down the host name,
MAC address of your network adapter, IP address, subnet mask, and default
gateway of your PC.

http://www.google.com
http://www.yahoo.com
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In the UNIX and Linux operating systems, you may find the IP addresses of
all hosts in the system in /etc/hosts. On a machine running UNIX or Linux,
enter more /etc/hosts and explain what you see.

(d) Open a cmd window on a Windows machine and execute netstat -ano.
Identify which ports are TCP ports, which ports are listening, which ports have
established connections, and which ports are UDP ports. Also identify what pro-
grams are running on these ports.

To find out what program is running on a given port number, first identify its
PID (process ID), and then open the Windows Task Manager window (e.g., you
may open it by pressing the three keys of Ctrl-Alt-Del simultaneously).
Select View, Select Columns,· · ·, and PID. Then select Process and
find out which program is running on the PID. For example, suppose that the
following line is included in the result returned from netstat -ano:

Proto Local Address Foreign Address State PID
TCP 127.0.0.1:1026 127.0.0.1:1027 ESTABLISHED 664

From here, we know that Port 1026 is a TCP port where a connection has been
established and its PID is 664. From the Windows Task Manager, we find out
that postgres.exe has PID 664. Thus, we know that postgres.exe is
running on Port 1026.

(e) Open a cmd window on a Windows machine and execute arp -a. It lists
the physical address of your router. Compared to the physical address given
by ipconfig /all, what is the difference between these two physical
addresses? On a UNIX machine, enter arp -a on the UNIX prompt to list the
ARP table in your machine.

1.5. Network sniffers are also referred to as packet sniffers. Network sniffers are software
used to monitor network connections and obtain information of network packets.
TCPdump and Wireshark are widely used packet sniffers with free downloads
from www.tcpdump.org and www.wireshark.org, respectively. TCPdump
has been around for many years. Wireshark, formerly known as Ethereal until
2006, is newer and has a nicer GUI interface.

If you are using a Windows machine, download from http://www.wire
shark.org/ and install Wireshark-win64-1.12.0.exe (64-bit) or
Wireshark-win32-1.12.0.exe (32-bit) or its newest version. This version
contains WinPCap4.0.1. You will need to install it as well. If you are using
other operating systems, please download and install from the Wireshark Website
a corresponding version of Wireshark. Then execute Wireshark.

We want to sniff ARP packets. For this purpose, on the open window of “The
Wireshark Network Analyzer,” select Capture, Options, and then select net-
work card in the Interface box. In the Capture Filter empty box type in
arp, and then select Start to launch ARP sniffing. At this time, you will see a
popup window titled “(the name of the network card): Capturing - Wireshark”.
To generate ARP packets (so that you have something to sniff), open a Web browser
and visit a few Websites. After a short while, you will see that ARP packets have
been captured in the popup window. Select Capture on the menu bar, then select

http://www.tcpdump.org
http://www.wireshark.org
http://www.wire
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Stop to stop sniffing. Note that the Wireshark window is divided into three por-
tions. The upper portion shows the ARP packets that have been captured, the middle
portion shows the packer headers, and the lower portion shows the contents of the
ARP packets in hexadecimal and ASCII code. Explain what you see.

Disclaimer: Network sniffing should only be done on a network where one has
permission to do so and all parties are aware that it is (or may be) occurring. Oth-
erwise, it may inadvertently break the Federal electronic eavesdropping and wire-
tap laws.

1.6. We often want to use a network sniffer to only pick up the types of packets we are
interested in.
(a) Execute Wireshark. Select Options from the menu of Capture. A win-

dow named “Wireshark: Capture Options” will pop up. In the empty
box of Capture Filter, enter tcp port 25, and then click Start to
begin sniffing. Send yourself an email message. Then click Capture on the
menu bar and select Stop. Explain what you see.

(b) Execute Wireshark. Select Options from the menu of Capture. A win-
dow named “Wireshark: Capture Options” will pop up. In the empty
box of Capture Filter, enter tcp port 80, and then click Start
to begin sniffing. Open a Web browser to visit a few Websites. Then select
Capture on the menu bar and select Stop. Explain what you see.

1.7. Finding statistical structures in a cipher text message is a common cryptanalysis
method. For example, given a ciphertext message, we first calculate the frequency
of each letter occurring in the messages. We then compare these letter frequencies
with the letter frequencies one would expect to have in the underlying language.
If there is a clear one-to-one correspondence, we will then know which ciphertext
letter corresponds to which plaintext letter. This method is especially effective to
break earlier designed encryption algorithms.

In the English language, for example, the following table lists the expected fre-
quency of each letter, in the decreasing order of frequencies.

e t a o i n s h r d
12.702 9.056 8.167 7.507 6.996 6.749 6.327 6.094 5.987 4.253
l c u m w f g y p b
4.052 2.782 2.758 2.406 2.360 2.228 2.015 1.974 1.929 1.492
v k j x q z
0.978 0.772 0.153 0.150 0.095 0.074

If the ciphertext message is not long enough, we may not be able to obtain a fre-
quency curve similar to that of the statistical frequency curve. Thus, we may also
want to calculate frequencies of strings of two or more letters, for they may corre-
spond to common letter strings such as er, or, the, and ing. Such information would
be useful. Suppose that we have the following ciphertext message with punctuation
and space removed, where the plain-text message is written in English:
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NTCGPDOPANFLHJINTOOFITOVJHJCTMMHIHEMTCPFDWTSOFSHTOGFWTE
TTJJTBTOOFSZOVEOCHCVCHPJHOCGTOHNQMTOCNTCGPDCGFCSTQMFBTO
FBGFSFBCTSHJCGTQMFHJCTYCXHCGFAHYTDDHAATSTJCBGFSFBCTSHJC
GTBHQGTSCTYCCGHONTCGPDQSTOTSWTOCGTMTCCTSASTRVTJBZHJCGTQ
MFHJCTYCFJDOPPJTBFJOTFSBGAPSCGTQMFHJCTYCASPNFIHWTJBHQGT
SCTYCEZBPNQFSHJICGTASTRVTJBZPATFBGMTCCTSFIFHJOCCGTLJPXJ
BPNNPJASTRVTJBZHJCGTVJDTSMZHJIMFJIVFIT

(a) Calculate the frequency of each letter.
(b) Compare your calculated letter frequencies with the statistical letter frequencies,

and find out the plaintext message properly punctuated and spaced.

1.8. In early versions of UNIX and Linux operating systems, login passwords of the users
are stored in the file /etc/passwd in the following format:

user:password:ID:group-ID:comment:home:shell

where the encrypted passwords were readable text strings (e.g., 3/25#2%v), mak-
ing dictionary attacks possible. Recent versions have fixed this problem by only
showing a symbol ∗ or x indicating that the user is required to enter the password.
Suppose that your /etc/passwd file contains the following entry:

nobody:*:65534:10:NFS Nobody (normal):/:/bin/nosh

Explain the meaning of each component in this entry.

1.9. Let h be a hash function and r a reduction function. Let T be a rainbow table of k
rows for D under h and r, where the jth row is (wj1, h(wjnj

) for 1 ≤ j ≤ k. Let
Q0 = h(w) and Q1 = (h ◦ r)i(Q0), where i ≥ 0. Suppose Q1 = h(wjnj

) for some
1 ≤ j ≤ k and i ≤ j. Answer the following questions:
(a) Under what conditions will w appear in the jth chain of wj1, · · · , wjnj

?
(b) Under what conditions will w not appear in the jth chain of wj1, · · · , wjnj

?
(c) We note that in practice, h often maps a shorter password to a longer hash value.

Thus, without lost of generality, we may assume that h is one-to-one for a given
domain of passwords. It is common practice to use different reduction functions
to produce a password chain. Why can this technique help increase the likelihood
that w appears in the jth chain of wj1, · · · , wjnj

?

1.10. Two readers of the first edition shared with us their experiences on distributing
passwords:
• “I can recall a security incident where the user name and password were acci-

dentally sent off the secure network to an unauthorized email address. While no
further security incidents occurred, it was certainly possible for an attacker to
recover the username and password and do serious damage to the network.”

• “At work, we ONLY give passwords over the phone, and of course only when
we know who we are speaking to. Of all the no-no’s in network security, sending
password via insecure emails has to be at the top of the list.”
Describe your practice of distributing passwords and discuss their pros and cons.
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1.11. “Early in my career as a Web developer,” a reader of the first edition told us, “I cre-
ated a Website for a friend. I created the FTP login name and password using the
same first eight characters of the name of the site. In about 6 month time, some-
body hacked into the site and put their own silly page in place of her content. Once I
regained control, I created a high-strength password using a combination of upper-
case and lowercase letters, numbers, and symbols, with a minimum of eight charac-
ters. I have since followed this practice for every Web login I create.”

(a) Discuss what the Web developer did before being hacked was problematic.
(b) Do you think that the weak password the Web developer set up was the actual

cause of his friend’s computer being hacked? Justify your answer.
(c) Do you think that the Web developer’s solution to the problem was effective?

Justify your answer.

1.12. “Previously when I had DSL and an old router at home, the wireless encryption
didn’t work and I would occasionally find unauthorized users on my network,” a
reader told us. “I knew enough not to conduct any sensitive business using the wire-
less connection, but did once make an online shopping transaction using a credit
card (I was being lazy). Within 2 days, there were fraudulent charges on my credit
card.” Make an educational guess what might happen and justify your answer.

1.13. “My account was compromised by a brute force attack a while back when I was
playing an online game,” said a reader of the first edition. “In response I purchased
an RSA token and linked my account to it, so that even if my password was com-
promised again my account could never be fully accessed without the token code.”

(a) Discuss why playing an online game might breach user accounts.
(b) Research the use of RSA tokens and explain whether using an RSA token would

help secure user accounts for playing online games. Justify your answer.

1.14. A reader of the first edition reported the following social engineering attack hap-
pened to him: “Sometime ago I received a random phone call from someone (later
identified as a fraudster) who wanted to speak to a senior person in my company.

Caller: Hello. Can I speak with the head of operations? (The fraudster did not
mention a name, just a common job title, trying to sniff out a name and email address
from me if I mistakenly mentioned the name of the person.)

Me: Can you please mention the name of the person you intend to reach, as we
have many operation departments and heads around here (Baiting the fraudster)?

Caller: I have lost the business card he gave me and can’t remember the details.
Can you be kind enough to give me the name, email address, or direct number of
one of the heads who might likely be in the same business meeting where I met the
person I am trying to reach?

At this point the caller was suspicious enough that I transferred the call to my
company’s security investigative unit, which took it up from there.”

(a) Describe whether you have a similar procedure at work and how you think the
procedure could be improved.

(b) If you receive similar phone calls at home, what would you and should you do?
Note that some crooks may call you that your tax returns contained errors and
you must call a certain number to clear it up; otherwise you will be in trouble.
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Others may change the content a little by, for example, telling you that your
neighbors reported to the police department that you did something wrong. Any-
way, all they try to get you to do is to call a certain number and then scare you
to death so that you would provide them information or give them money.

1.15. Good baits are essential for a phishing attack to be successful. Baits are often pre-
sented in the form of email messages and Websites that appear to be authoritative.
Links contained in phishing messages are traps, leading to Websites controlled by
attackers. Discuss how to identify phishing messages and phishing sites.

1.16. The following phishing attacks were experienced by some of the readers. In each
instance, describe what you would do if it happened to you.

(a) “A few years ago one of my network passwords on LinkedIn was compromised,
possibly through phishing or pharming. As a result, spam messages spoofing
my identity were sent to my connections. I discovered this when some of my
connections notified me and said that they knew that I would not send such
messages. I changed my passwords (and continue to do so periodically) and as
a result the problem has not occurred since.”

(b) “I received phishing emails 2 months ago (around November 2013), claiming to
be from FedEX. There were several clues that they were bogus. For example, the
content and the Subject Line did not look right, and nowhere did I see anything
similar to fedex.com. The message was very generic about some complica-
tion in delivery, and it urged the recipient to open up a file attachment that looked
very suspicious. Sometimes you can tell an email is a phishing attack because
the link it gives you in the message does not look right.”

(c) “I have been getting attacked very frequently through emails lately (in early
2014). One example is an email stating that I was offered a job, and asked me to
fill out a form with all of my personal data. This is obviously an attempt to get
my personal information because legitimate employers wouldn’t offer me a job
if they didn’t know anything about me. My solution to the phishing attacks are
never to login to anything through an email, and never giving out information
to anyone I can’t authenticate or trust. I think one of the main reasons that my
phone number and email address were compromised is my resume being posted
on sites like monster.com. As soon as I find a job I’m taking it down!”

(d) “I’ve received tons of phishing emails over the years. When I was a customer of a
local bank, I encountered the best phishing email I have ever received. I received
an email that looked like it was from the bank with a link to the Website. I clicked
the link. When I was about to login, I noticed that the color of the site did not
look right. I took a closer look at the URL, and realized that it was not the official
Website of the bank. It almost tricked me. I blocked the sender and emailed the
bank who then passed it along to the FBI.”

(e) “I’ve encountered several cleverly disguised email invitations to provide
account information. Thankfully, I’ve never entered personal information that
was requested, but I know that many less security conscious people have. The
best way to combat phishing is to ignore requests for personal information that
emanate from the Web. When in doubt, call the institution directly, and not with
the number on the email.”
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(f) “Just last week (i.e., in mid January 2014), I received a phishing email. It
appeared to come from an organization I know, but the actual email address
was obviously not, and contained (false) links to reset my password. I reported
it to the IT Help Desk.”

1.17. Do you agree with the following rule of thumb when dealing with possible phishing
emails: “If an email comes from a company or individual I don’t recognize, I delete
it. If it’s really important, they will call me!” Justify your answer.

*1.18. ARP maps an IP address to a MAC address of a computer. Thus, assigning a different
MAC address to an IP address redirects message to a different computer. Conduct
the following experiment. Let A, B, and C be three PCs connected to the same local
area network (LAN) running Microsoft Windows (or Linux). Suppose that you have
an user account on each of these computers and you have the same user name fool
on computers B and C. Suppose that you can modify the ARP table on computer B
(e.g., such as what a super user may do). On computer C, run arp -a to obtain its
MAC address. Then on computer B, run arp -s to modify its ARP table to map
B’s IP address to C’s MAC address. Wait for a while or reboot B to let B’s new ARP
table take effect. Now, send an email message from your account on computer A to
your account fool on computer B. This message will be redirected to your account
fool on computer C. Verify this result in your experiment.

1.19. Use port scans to check your computer’s open ports.
(a) Use ShieldsUP! to scan your computer’s open ports for possible loopholes.

Visit www.grc.com and click the ShieldsUP! link. Then move your mouse
down to find the ShieldsUP! link. Click the link and follow the instructions
to scan your computer’s open ports.

(b) Nessus has features similar to ShieldsUP!. It checks open ports and tries to
determine what programs are running on them. Visit www.nessus.org and
download nessus. Next, use nessus to scan your computer.

1.20. “Port scans are very frequent on our network by outside and inside attackers,” a
reader told us. “We simply block repeat offenders.” Argue that this is a good solution.
Can you think of a better approach to counter port scans? Justify your answers.

1.21. Web servers are easy targets of DoS attacks. For example, attackers may bombard a
Web server with a large number of login attempts in a short period of time, forcing
the Web server to use up its computing resources for checking passwords.

Web servers may use a picture verification service as follows: when receiving
a login request, the Website opens a login page that will display, in addition to the
usual windows for entering user name and password, a few characters in different
colors or shapes, embedded in a small frame of colorful background and a window
to enter these characters. To complete the login procedure, the user must also type
in these characters. If these characters are not entered correctly, the Web server
will not proceed to check the user name and password. This mechanism is typically
used to prevent automation of services the Website provides and level the playing
field (e.g., Ticketmaster uses this service to prevent scalpers from using a program
to purchase tickets).

http://www.grc.com
http://www.nessus.org
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Explain how automation of services could be used to launch DoS attacks, and why
the picture-verification mechanism may help stop DoS attacks.

1.22. A reader of the first edition shared this experience with us: “I sometimes saw employ-
ees bringing in a small personal switch and connecting it to the company LAN.
Occasionally these switches would cause broadcast storms that resulted in denial of
service on the LAN. It was easy to find these switches using tools such as wireshark
and then remove them.” These are rogue switches. Explain how to use wireshark to
identify rogue switches.

1.23. “We had experienced repeated DoS attacks on our corporate Web servers,” a
reader said. “The attackers were flooding our servers with external communication
requests, so much so that the servers could not respond to legitimate traffic. To
counter these attacks, we moved to a SaaS solution for our online customer software
from AWS (Amazon Web Services), and transitioned to a similar model for our
corporate Web servers using a Rackspace provider, beefing up its security and
redundancy during the transition.”
(a) Conduct a research on AWS, SaaS, and Rackspace.
(b) On the basis of your research, argue that the solution the company took is a

good one.

1.24. Sometimes, a legitimate application may affect the performance of your system.
Googlebot, for example, is such an application. It is a highly debatable issue whether
such applications are considered malware. Googlebot is a Web crawling tool devel-
oped by Google, which is also referred to as spider. It is used to crawl the Internet
and discover new and updated pages for the Google index. Here is a story shared by
a reader: “I worked with a customer who was facing extremely slow performance in
their portal at the time of open enrollment for a new service. It was identified that it
was Googlebot causing the problem, which was crawling the content on their exter-
nal facing portal. They then worked with Google and the internal security team to
filter the traffic to eliminate the additional crawling time.”

Discuss this issue and justify your opinions.

1.25. Microsoft operating systems have become the household operating systems by peo-
ple in all walks of life. Thus, computers that run Windows operating systems are
hackers’ major targets. Consequently, loopholes, flaws, and defects have been found
one after another.

Use Microsoft Baseline Security Analyzer (MBSA) to analyze security settings
of your Windows operating system and other Microsoft products. To do so, first
download and install the newest version of MBSA from the following link:

www.microsoft.com/technet/security/tools/mbsahome.mspx

Then execute MBSA to scan your Windows system.

1.26. Server programs that run in the background of your computer are entry points to
your computer from the network. Some of these programs are necessary, some are
not, and some are malicious programs downloaded by careless users. Suppose that
you are running Windows XP on your computer.

http://www.microsoft.com/technet/security/tools/mbsahome.mspx
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(a) Follow the following procedure to identify which server programs are running
and which server programs have been closed: SelectRun from theStartmenu,
then type in msconfg. Press the OK button to open the window of System
Configuration Utility, and click Services. For example, is your
DHCP client running or stopped?

(b) Follow the following steps to find out the usages of XP-supported services:
Select Run from the Start menu, then type in services.msc. Press the
OK bottom to open the window of Services and select Services. Select
each service one at a time and read about its usage. For example, what is the
usage of the DHCP client?

1.27. Back Orifice is a computer program designed for remote system administration to
control a computer running the Windows operating system from a remote location.
But it may also be use to log keystrokes easily. Other key-logging tools include
hardware keylogger and invisible keylogger. Conduct a survey on keyloggers and
write a paper reporting your findings.

1.28. Critical information may be stolen when you shop online. A reader shared with us
the following story: “Just last year (i.e., in 2013) I had my credit card information
stolen from what I believed to be a keystroke-logging attack. Since then I’ve beefed
up my security and installed an anti-keylogger.”

Identify and discuss security vulnerabilities you can think of associated with
online shopping.

1.29. As we mentioned in the text, an apparently well-protected network could be brought
down via an apparently minor trick. The following is a story shared by a reader of
the first edition: “I am a system administrator for a large company with employees
worldwide. My site produces sensitive hardware and software products. We have a
very strong network security team keeping our network safe. However, about 2 years
ago (i.e., in 2012), espionage hackers still managed to get into our network. As secure
as our network was, the hackers used Outlook Web Access (OWA) to get into our net-
work, retrieving a large volume of data in 2 days. The attack took the following steps:

1. They first collected information form media and by calling the company
disguised as a sales person or government authority. They managed to retrieve
email addresses from local users who were assigned to my site.

2. They then used a spoofing method to send emails to users from the known
employees to other employees.

3. They would send emails with Trojans only during off hours, so that the email
recipient would use OWA at home to access their email and bypass the firewalls
and network security protocols at work.

The email spoofing was being done for about 2 weeks until a employee replied
to the hacker, thinking it was an employee from a company laptop off hours. When
the employee returned to the office the next day the hacker was able to bypass the
firewall and get into the network. We had to make major changes to the network
from top down including the following:

1. Removed all OWA installations.
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2. Spent a large sum of money to purchase firewalls and network security devices
and distributed them globally.

3. Hired ten additional network security professionals.
4. Removed all local administrative rights from domain computers.
5. Purchased USB token devices to key staff members with administrator rights on

computers. The devise was a custom token that had both a certificate embedded in
it associated with the employee and a password management code. For example,
SafeNet. Inc sells such products (see http://www.safenet-inc.com/
data-protection/authentication/pki-authentication/).

6. Required all employees to change passwords every 25 days for a year.
Also as a result of this attack, I had to travel for about a year to multiple locations

two to three times a month to give network security training to users. We have not
been hacked again so far and we continue to make improvements on our network.
We send out intentional spoofing emails every now and then to test our employees
and I have to give remote training to those who fail the tests.”
(a) Discuss the attacking techniques the attacker was using in this attack.
(b) Discuss how to identify spoofing emails.

1.30. “Since the MafiaBoy attack in 2000, on a regular basis, our own servers have been hit
by DDoS attacks on average once every 2 years,” said a reader. Have you experienced
any DDoS attack? If so, what measures did you take to counter DDoS attacks?

1.31. “I have discovered that DDoS effects can occur by accident on an alarming rate due
to improperly configured application software. It is helpful if the network system is
configured to shut down the troubled application. Otherwise, it can be difficult to
use diagnostic tools to find it.” Discuss how you may configure the system to detect
misconfigured applications to address this reader’s concern.

1.32. “Our servers were taken down with the Code Red and copycat worms in the early
2000s.” The reader who shared this experienced also made the following comments:
“Everybody I know has suffered from malicious software attacks at one time or
another–no matter how careful you are. If you are not completely protected with
updated anti-virus/malware software and more importantly, safe browsing habits, it
can happen again to almost anyone.”

Share your own experiences using one or more concrete examples of malicious
software attacks you encountered.

1.33. “Several lab computers I administered were infected with viruses that hijacked the
system,” a reader told us. “The infected system displayed a message supposedly
from the FBI saying that the system was in violation of copyright laws and for a
small fee could be cleared up (using a credit card of course). It frankly was too
much work to clean it up so we instead just reinstalled the system.”

Suggest a way to cleanup such viruses without reinstalling the system. Justify
your answer.

1.34. “Back at the dawn of time when I was an undergrad,” said a reader, “my univer-
sity’s computers were riddled with viruses. One that I remember in particular was

http://www.safenet-inc.com/
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the Stoned virus. It would attack the file allocation table in the DOS operating sys-
tem, making the computer unable to find any file. Antivirus tools were not readily
available then, so I kept a floppy disk that was just for the university computers.
Once I used a disk at school, I marked it and never used it anywhere else. I’m sure
that helped spread the virus on the university computers but it kept the viruses off
my own PC.”

While floppy disks are no longer in use, USB sticks are still widely used today.
How do you like the reader’s approach to viruses and justify your answer.

1.35. “In early 2013 I built a Website for a local restaurant using Drupal. It was a
relatively straightforward site, with no actual commerce function. It didn’t have
any personal information on it, or in the MySQL database back end. I hid the
administrative login for Drupal, but not very well. I just put it somewhere where
a site user couldn’t navigate to. However, Drupal is set up in such a way that site
structures can be guessed by hackers, or perhaps mine was just crawled somehow
by a program specializing in this sort of thing. Almost every day I received requests
to add users to the site. The restaurant went out of business last week, so I took the
site down, which stopped the requests right away.”

Can you suggest what happened to the Website and offer a fix if the site were to
be run?

1.36. “This past year (e.g., in 2013), I developed a quick and easy site for one of our
meetings on a subdomain especially for it outside of our usual security model. One
morning, my inbox was flooded with hundreds of error messages (i.e., error mes-
sages sent from sites to developers with all the parameters of the requests), all with
SQL statements embedded in an open text field’s input string. Fortunately, none of
the attempts to access the database was successful and that day we came up with a
procedure to prevent it from happening in the future by (1) validating all input before
it is submitted and (2) blocking any suspicious statements before they get submitted
to the database.”

Describe how to identify suspicious SQL statements.

1.37. “A few months ago in 2013, a coworker of mine turned on an old PC hooked up to our
work network and did not tell anyone. That old PC had been off line for a couple of
years. Within a day or two we were having all kinds of network problems, from per-
formance slowdown to other weird issues. Because this PC was behind our firewall it
was not picked up right away. It turned out that all these problems were caused sim-
ply by an old worm in that old PC. To remedy the situation we first removed that old
PC. We then manually scanned all our PCs and servers with multiple antivirus and
malware tools, for the worm had also compromised the antivirus software installed
on the PCs. We shut down the ports and services the worm was spreading through
until we were sure that the network was clean. Once clean we were able to reconnect
everything and went back to business as usual. This took about 72 hours to remedy.
This incident made us revise our security policies and procedures to prevent things
like this from happening again.”

What do you think the new security policy should be for this reader’s company to
avoid similar incidents mentioned in the message from happening again?



42 Introduction to Network Security

1.38. Junk email filters are software tools used to prevent junk email messages from
entering your mailbox. Microsoft Office Outlook has this feature. To set it up, open
Office Outlook and click Actions. Point the mouse to Junk E-Mail, click
Junk E-mail options, Safe Lists Only, Safe Senders, and Add.
Type in here the email addresses you wish to receive email messages from, then
click OK. Likewise, you may also specify the email addresses that you do not want
to receive messages from. Describe how this can be done.

1.39. “A server I managed was once compromised by an attacker. The attacker gained
root access using buffer overflow and installed a Trojan that replaced standard Linux
commands with infected ones, opening up ports for the attacker to attack other loca-
tions. We fixed the problem by a complete system reinstall from original media and
applied proper security patches.”

Describe what each of these two remedies do.

1.40. Canary Values. The GNU Compiler Collection (GCC) supports buffer overflow
protection using random canary values.

(a) Determine what the -fstack-protector and -fstack-protector-
all flags are used for when compiling code using the GNU C (gcc) and C++
(g++) compilers.

(b) Compile C code with and without the -fstack-protector-all flag and
disassemble the executables using the Linux tool objdump, with the -d option,
compare the output and determine what code is responsible for inserting the
canary value in the prologue and what code is responsible for checking the
canary value in the epilogue.

1.41. “When I was a kid I had problems with adware and Trojans on my Windows PC.
Since then I always make sure that my machines have security software installed.
Now I am using Norton Internet Security and it seems to get the job done. We also
have Norton endpoint security installed on the development VMs at work.” Have
you experienced any malicious software attack that even the Norton security tools
did not help remove them?

1.42. “I had an infection with spyware on my home computer. It popped up a window
with an instruction to download Windows antivirus software. It would popup and
keep popping up until my computer would freeze because all the opened windows
had used up all of the memory. I looked up how to fix the problem but it seemed
so involved I finally just took the easy route: I wiped my hard drive, reinstalled the
system from scratch, and downloaded antivirus and spyware tools. On a separate
note, in my work we use common access cards to log in to computers and we can’t
even plug in a USB for fear that there might be malware on it.”

(a) What do you think happened to this person’s computer?
(b) Is the USB policy mentioned a good policy? Justify your answer.

1.43. “I have had several instances where my wife’s computer became infected with some
form of malware or another. She visited several questionable sites that I cautioned
her against, but the joy of those sites outweighed my warnings. Of course each time
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her computer was infected I would have to fix it and hear about why can’t I stop her
machine from being infected. To help me avoid this, I run Linux at home which I
have found to be much more secure, and less susceptible to viruses.”

Do you agree with this reader’s last comment about Linux being much more
secure and less susceptible to viruses? Justify your answers.

1.44. “I once worked for a guy as a consultant,” a reader told us. “The guy started bragging
about the logic bomb he created. He set things up so that 3 months after he left
the company (due to downsizing), the company screens would be taken over by
a faked video of a senior member of the management team having inappropriate
relationships with a donkey. The company then called him back in as a consultant
(since he knew the system so well) to help find the cause of the problem. He worked
at a very high rate of pay for 4 months pretending to solve the problem created by
him. I stopped working for him the next week.”

Are you aware of any person who planned logic bombs in the software they wrote?
If so, please describe it. If not, imagine and describe a situation in which a logic bomb
may be planned.

1.45. “In 2012, some syndicates were able to hack into our credit-card payment systems
in North America, causing us financial loss of up to $2.7 million dollars. They did
this through a combination of password theft, cryptanalysis, and phishing emails.
Like the textbook says: The battle against network attacks is a perpetual one as the
various attackers constantly device new means to breach our network securities.”
Can you make an educational guess when the attack this reader mentioned might
take place? Justify your answers.

**1.46. When the TCP/IP protocols and the OSI seven-layer model were devised, their
designers were only concerned about how to efficiently and reliably transmit data
from the source computer to the destination computer. Data security was not a
concern at that time. Consequently, the TCP/IP protocols and the OSI model do
not contain any built-in security mechanism. When they later realized this security
weakness, protocol designers started to add all kinds of security mechanisms into
communication protocols. But these early protocols were not designed for data
security, and so they may not have the right framework for adding security features.
Adding a security feature to a protocol not built for it is like taking out materials
from a wall to mend a fence. Thus, network designers have started to investigate
the following issue: if one designs a communication protocol all over again, what
would be the best native architecture for including the current security mechanisms
as well as for adding future security features. Think about this issue when you read
the rest of the book, and try to develop a design of your own. This exercise is to be
handed in at the end of the course.





2
Data Encryption Algorithms

The history of using secret writing to protect valuable information is probably as long as the
history of written language itself. Computer cryptography was created to protect confidential
data in digital forms, and it thrives in the Internet era. Data encryption is a critical component
of computer cryptography. It uses encryption algorithms and secret keys to transform data from
that which is readable to that which is unintelligible. Encryption algorithms must be reversible,
so that data can be transformed, using the same secret key, from the unintelligible form back to
its original form. Encryption algorithms of this kind are referred to as conventional encryption
algorithms or symmetric-key encryption algorithms.

For example, let P0P1 · · ·P25 be a fixed permutation of the 26 English letters, which maps
letter A to P0, B to P1, · · ·, and Z to P25. Replacing each letter in a given English message
according to this mapping, we can transform the message to a new form that is unintelli-
gible to an untrained eye. This is a simple encryption algorithm, where the secret key is
P0P1 · · ·P25. Exercise 1.7 uses this algorithm, where the secret key is FEBDTAIGHKLMN-
JPQRSOCVWXYZU. Replacing each letter according to the reverse mapping, namely, replacing
P0 with A, P1 with B, · · ·, and P25 with Z, the data in the new form can be transformed back
to its original form. Thus, devising an encryption algorithm is not difficult. What is difficult is
to devise good encryption algorithms.

Good encryption algorithms must satisfy a number of requirements. This chapter first
describes design criteria of encryption algorithms. It then presents several common block
cipher encryption algorithms, including Data Encryption Standard (DES), triple-DES, and
Advanced Encryption Standard (AES). It also introduces common block cipher modes and
the RC4 stream cipher. Finally, it describes how to generate secret keys.

2.1 Data Encryption Algorithm Design Criteria

Any message written over a fixed set of symbols can always be represented as a binary string.
A binary string is a sequence of 0’s and 1’s. Several standard binary encoding schemes, referred
to as character code sets, have been established to encode various sets of computer symbols
for different written languages. For example, the ASCII code set encodes English letters and
other commonly used symbols into binary strings; the GB 2312-80 code set encodes simplified
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Chinese characters; the EBCDIC code set encodes western European languages; and the ISO
8859 code set encodes accented Latin and non-Latin European languages, including Greek,
Semitic, and Hebrew. The Unicode code set and the ISO 10646 code set intend to unify all
code sets to encode all languages. Without loss of generality, we assume that plaintext data
and ciphertext data are binary strings.

Binary digits 0 and 1 are called bits. To reduce computation overhead costs, encryption
algorithms should only use bit operations that are easy to implement on electronic computers.
For instance, permuting bits in a binary string is a simple binary operation.

Let X be a binary string. Define the length of X , denoted by |X|, to be the number of bits
contained in X . If |X| = �, we say that X is an �-bit binary string.

Let a ∈ {0, 1} and k be a non-negative integer. We use ak to denote the following k-bit
binary string:

ak = aa · · · a︸ ︷︷ ︸
k a’s

.

Let X = x1x2 · · ·x� and Y = y1y2 · · · ym be two binary strings, where xi, yi ∈ {0, 1}. We
use XY to denote the concatenation operation of X and Y ; that is,

XY = x1x2 · · ·x�y1y2 · · · ym.

For clarity, we may also use X ‖ Y to denote the concatenation operation XY.

2.1.1 ASCII Code

The ASCII code set consists of all 7-bit binary strings (see Appendix A), representing
non-negative integers from 0 to 127. The first 32 ASCII codes and the last ASCII code
are control codes, which are not displayable. ASCII codes from number 32 to 126 encode
uppercase and lowercase English letters, decimal digits, punctuation marks, and arithmetic
operation notations. Because a byte that is an 8-bit binary string is the basic storage unit in
a computer, we often use one byte to represent one ASCII code by prepending a zero. This
allows us to expand the ASCII code set to represent up to 128 extra symbols by setting the
leftmost bit in each ASCII code from 0 to 1. Sometimes, we also use the leftmost bit as a
parity bit for error detection. In any case, using the 8-bit ASCII code set to encode an English
message will result in a binary string of length divisible by 8. Using other code sets such as
unicode to encode data may result in a binary string of length divisible by 16. Without loss
of generality, we assume that any plaintext message is encoded as a binary string of length
divisible by 8.

2.1.2 XOR Encryption

The exclusive-OR operation, denoted by ⊕ or XOR, is a simple binary operation, where

0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0.

Thus, for any a ∈ {0, 1}, we have

a ⊕ a = 0, a ⊕ 0 = a, a ⊕ 1 = 1 − a, a ⊕ (1 − a) = 1.
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We can think of the exclusive-OR operation for a single bit as addition modulo 2. Let X = x1
x2 · · ·x� and Y = y1y2 · · · y� be two �-bit binary strings. Define

X ⊕ Y = (x1 ⊕ y1)(x2 ⊕ y2) · · · (x� ⊕ y�).

Thus, X ⊕ X = 0� and X ⊕ 0� = X .
We use E, D, and K to denote an encryption algorithm, a decryption algorithm, and a

secret key, respectively. When E and D appear in the same context, it is understood that D is
the reverse algorithm of E.

Let � be a positive integer divisible by 8 and K an �-bit secret key. Divide the plaintext data
M into a sequence of blocks

M1,M2, · · · ,Mk,

where each block is �-bit long, except possibly the last block Mk. If |Mk| < �, add an 8-bit
control code at the end of Mk once or several times to obtain a new block such that its length
is exactly �. For example, we may use the control code nl = 00001010 to pad Mk. This
procedure is called padding. For simplicity, we still use Mk to represent the new block.

An encryption algorithm that encrypts one block at a time is called a block cipher algorithm
(or simply block cipher). In a block cipher algorithm, the value of � is often selected to be
64 or 128. When � equals the length of the basic code used in the underlying language, for
example, when � = 8, we call the encryption algorithm a stream cipher algorithm. Thus, on
the surface, the difference between a block cipher and a stream cipher is the length of the block.
In stream cipher algorithms, padding is not needed.

We can use the XOR operation to design an encryption algorithm. Let K be a secret key of
length �. The encryption algorithm encrypts Mi to produce a ciphertext block Ci as follows:

Ci = EK(Mi) = K ⊕ Mi.

The decryption algorithm decrypts Ci into Mi as follows:

DK(Ci) = K ⊕ Ci = K ⊕ (K ⊕ Mi) = (K ⊕ K) ⊕ Mi = 0� ⊕ Mi = Mi.

XOR encryption is the simplest encryption algorithm. For example, let � = 16 and
K = 1001101010011011, then E encrypts FUN as follows:

Plaintext: F U N (Padding)

ASCII: 01000110 01010101 01001110 00001010
Secret key: ⊕ 10011010 10011011 10011010 10011011

Ciphertext: 11011100 11001110 11010100 10010001

The XOR encryption algorithm is simple and fast. But the resulting level of security is low.
For example, eavesdroppers can easily calculate the secret key K from a plaintext–ciphertext
pair (Mi, Ci) as follows:

Mi ⊕ Ci = Mi ⊕ (Mi ⊕ K) = K.

Attacks such as this that derive secret keys using a small number of samples of ciphertext data
and the corresponding plaintext data are referred to as known-plaintext attacks.
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To protect XOR encryptions from known-plaintext attacks, users must change encryption
keys frequently. If each encryption key is used exactly once, the XOR encryption algorithm
offers the best security there is. This security is known as information theoretic security. This
method is referred to as one-time pads. To implement the one-time-pad scheme, one must first
generate a long list of encryption keys sufficient for applications in the foreseeable future,
make two identical copies, and distribute the list to the sender and the receiver. Both sides
must then use the same keys synchronously and remove a key from the list once it is used. The
one-time-pad scheme is secure and simple. However, it is unscalable. Implementing one-time
pads for network communications would require each pair of users to generate, transmit, and
store a huge number of secret keys. This is formidable. Thus, we must explore different meth-
ods to devise encryption algorithms that are not only secure, but also practical. On the other
hand, although it is not wise to be used alone, the XOR operation still is a major operation
employed in all mainstream encryption algorithms.

2.1.3 Criteria of Data Encryptions

Encryption keys must be kept secret at all times. Encryption algorithms may also be kept secret.
A secret encryption algorithm is by itself a cryptosystem. For example, during World War II
while fighting against the Japanese forces, the U.S. Marine Corps used the language spoken
by Navajos, a remote native American Indian tribe, to generate secret codes. This encryption
scheme was never broken by the Japanese.

Keeping encryption algorithms secret, however, does not help to study and verify the secu-
rity of these algorithms, nor does it help to establish encryption standards. Thus, we assume
that encryption algorithms are publicly disclosed, an assumption called Kerchoffs’ principle.
Only encryption keys are to be kept secret. To be practical, encryption keys must be reusable.

Good encryption algorithms must satisfy the following criteria.

2.1.3.1 Efficiency

The operations used in encryption and decryption algorithms must be easy to implement on
hardware and software. Executing these algorithms should only consume moderate resources.
In particular, the time complexity and the space complexity of the algorithms must each be
kept within a small constant factor of the input size.

To achieve efficiency, encryption algorithms should only employ operations that are easy
to implement on a computer. The following operations are common in mainstream encryption
algorithms: exclusive-OR, permutation, substitution, circular shift, and operations on finite
fields. Permutation, substitution, and circular shift are unary operations. The circular shift
operation is a special form of permutation. A permutation is a one-to-one mapping, while
a substitution is a many-to-one mapping.

2.1.3.2 Resistance of Statistical Analysis

Encryption algorithms must destroy any statistical structure in the plaintext data, making any
statistical analysis useless. The common way to achieve this goal is to require encryption algo-
rithms to satisfy the diffusion and confusion requirements.
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1. By diffusion, it means that a change of a single bit in the plaintext string will cause a
number of bits in the ciphertext string to be changed. These bits should be distributed in
the ciphertext string as evenly as possible. In other words, every single bit in the ciphertext
data is affected by a number of bits evenly spread across the plaintext string.

2. By confusion, it means that a change of a single bit in the encryption key will cause a
number of bits in the ciphertext string to be changed. These bits should be distributed in
the ciphertext string as evenly as possible. In other words, every single bit in the ciphertext
data is affected by a number of bits evenly spread across the encryption key.

Diffusion and confusion are also referred to as avalanche effects.
Diffusion may be achieved by repeatedly executing a fixed sequence of operations for a

fixed number of rounds on strings generated from the previous round.
Confusion may be achieved by the following method:

1. Generate a number of subkeys from the encryption key.
2. Use the first subkey to operate on the plaintext string in the first round.
3. Use each subsequent subkey in each subsequent round to operate on the new string gener-

ated from the previous round.

Combining these two methods in a coherent way, we may be able to obtain an encryption
algorithm that offers both diffusion and confusion.

2.1.3.3 Resistance of Brute-Force Attacks

Suppose that the encryption key is � bits long. After eavesdropping a ciphertext message C,
the eavesdropper could use brute force to decipher C by calculating M ′ = DK ′(C) for each
�-bit binary string K ′. If M ′ is readable and makes sense, then it would likely be the original
plaintext message. As there are 2� different �-bit binary strings, such a brute force attack
incurs a time complexity in the magnitude of 2�. Thus, � must be sufficiently large to thwart
brute-force attacks.

This time complexity of 2� is often used as a benchmark to determine the effectiveness of
a cryptanalysis method. If a cryptanalysis method can break an encryption algorithm with a
time complexity much less than 2�, then this method will be considered useful.

What value of � (the length of the key) would be sufficient depends on computing technolo-
gies in the near future. It is a common belief that using � = 128 would be sufficient for many
years to come.

2.1.3.4 Resistance of Other Attacks

Encryption algorithms must also resist other types of attacks. In addition to the known-
plaintext attacks, these attacks include chosen-plaintext attacks and mathematical attacks.

In a chosen-plaintext attack, the attacker chooses a particular plaintext message as a bait
to lure his opponents to encrypt it, where the chosen plaintext message contains useful infor-
mation for the attacker. During World War II, for example, the intelligence department of the
U.S. Pacific Fleet suspected that a certain code frequently occurring in the intercepted Japanese
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encrypted messages meant “Midway Atoll”. To confirm this suspicion, the U.S. intelligence
deliberately had a plaintext message sent out, requesting a replacement of a broken facility in
Midway to lure the Japanese intelligence to encrypt it. From this, they were able to confirm
that their suspicions were indeed correct.

In mathematical attacks, the attacker uses mathematical methods to decipher encrypted mes-
sages. These methods include differential cryptanalysis, linear cryptanalysis, and algebraic
cryptanalysis. Detailed discussions of these attacks are beyond the scope of this book.

2.1.4 Implementation Criteria

Implementations of encryption algorithms must resist side channel attacks. Side channel
attacks do not attack the algorithms directly. Instead, they explore loopholes in the imple-
mentation environments. For example, the timing attack is a common side channel attack. In
a timing attack, the attacker analyzes the computing time of certain operations, which may
help obtain useful information about the encryption key. Timing attacks could be useful if the
run-time of certain operations in the underlying encryption algorithm fluctuates substantially
on different bit values in the encryption key.

One way to combat timing attacks is to flatten the computation-time differences between
instructions by, for example, executing a few redundant operations on instructions that use
much less time to execute.

2.2 Data Encryption Standard

The DES was published by the U.S. National Bureau of Standards (NBS) in 1977. NBS was
the predecessor of the U.S. National Institute of Standards and Technology (NIST). DES was
based on the Lucifer encryption algorithm developed by an IBM research group led by Horst
Feistel. In particular, DES is a concrete realization of the Feistel cipher scheme. Its encryption
and decryption structures are symmetrical, and they use four basic operations: exclusive-OR,
permutation, substitution, and circular shift. DES was widely used from the mid-1970s to
the early 2000s. Although gradually phasing out, DES played an important role in modern
cryptography and represents a popular design paradigm for data encryption.

2.2.1 Feistel’s Cipher Scheme

The Feistel cipher scheme (FCS) divides the plaintext string into a sequence of blocks, each
of which is 2l bits long. FCS only uses basic operations of XOR and substitution. Let n be a
positive integer. FCS first generates n subkeys of a fixed length from the encryption key K. Let
these subkeys be K1, · · · ,Kn. Let F denote the substitution function that takes an l-bit binary
string and a subkey as input and generates an l-bit binary string as output. Divide a 2l-bit plain-
text block M into two halves L0 and R0 of equal length, where L0 and R0 are, respectively, the
prefix substring and the suffix substring of M . The FCS encryption and decryption algorithms
each executes n rounds of a fixed sequence of operations (see Figure 2.1).

FCS encryption executes the following operations in round i, where i = 1, · · · , n:

Li = Ri−1, (2.1)

Ri = Li−1 ⊕ F (Ri−1,Ki). (2.2)
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Figure 2.1 Feistel cipher scheme block diagram

After n rounds, the plaintext block M = L0R0 is transformed to LnRn. Let Ln+1 = Rn and
Rn+1 = Ln be the output of FCS encryption. That is, the FCS encryption algorithm produces
a ciphertext block C = Ln+1Rn+1.

Rewrite C as C = L′
0R

′
0; namely, let Ln+1 = L′

0 and Rn+1 = R′
0. The FCS decryption algo-

rithm is symmetrical to the FCS encryption algorithm, except that the subkeys are applied in
the reverse order. In particular, the FCS decryption algorithm executes the following operations
in round i, where i = 1, 2, · · · , n:

L′
i = R′

i−1, (2.3)

R′
i = L′

i−1,⊕F (R′
i−1,Kn−i+1). (2.4)

After n rounds, the ciphertext block C = L′
0R

′
0 is transformed to L′

nR′
n. Let L′

n+1 = R′
n and

R′
n+1 = L′

n, and let L′
n+1R

′
n+1 be the output of FCS decryption.

We now show that the ciphertext block C = Ln+1Rn+1 = L′
0R

′
0 is transformed back to the

plaintext block M = L0R0. Because the output of the FCS decryption is L′
n+1R

′
n+1, it suffices

to show the following equality:
L′

n+1R
′
n+1 = L0R0.
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Here is a proof. Note that L′
n+1 = R′

n and R′
n+1 = L′

n, and so it suffices to show that
R′

n = L0 and L′
n = R0. We can use mathematical induction to show that for any integer i

with 0 ≤ i ≤ n, we have

L′
i = Rn−i, (2.5)

R′
i = Ln−i. (2.6)

Let i = n, and we will get what we need to prove.
The mathematical induction proof is given as follows. We first note that L′

0 = Ln+1 = Rn

and R′
0 = Rn+1 = Ln. Thus, when i = 0, Equalities 2.5 and 2.6 hold.

Induction hypothesis: for any positive integer i ≤ n, we have

L′
i−1 = Rn−i+1, R

′
i−1 = Ln−i+1.

It follows from Equality 2.3, the induction hypothesis, and Equality 2.1 that

L′
i = R′

i−1 = Ln−i+1 = Rn−i.

Thus, Equality 2.5 is true.
From Equality 2.4 (the induction hypothesis), Equality 2.2, and Equality 2.1, we have

R′
i = L′

i−1 ⊕ F (R′
i−1,Kn−i+1)

= Rn−i+1 ⊕ F (Ln−i+1,Kn−i+1)

= [Ln−i ⊕ F (Rn−i,Kn−i+1)] ⊕ F (Rn−i,Kn−i+1)

= Ln−i ⊕ [F (Rn−i,Kn−i+1) ⊕ F (Rn−i,Kn−i+1)]

= Ln−i ⊕ 0w

= Ln−i.

Thus, Equality 2.6 is true. This completes the proof of the correctness of the FCS decryption
algorithm.

DES is an instance of FCS with l = 32. That is, the block size of DES is � = 64. The length
of DES encryption keys is 56 bits. However, a DES encryption key is represented as a 64-bit
binary string, where the 8ith bit (i = 1, 2, · · · , 8) is the parity bit of the seven bits immediately
before it. The parity bit is used for error detection. Let K be an encryption key. DES first
generates 16 subkeys from K, where each subkey has exactly 48 bits. There are n = 16 rounds
of executions in DES.

2.2.2 DES Subkeys

Let K = k1k2 · · · k64 be an encryption key of DES. To generate 16 subkeys, DES first removes
each 8ith bit (i = 1, 2, · · · , 8) from K. For convenience, we still use K to denote the new
string. DES then permutes the remaining 56 bits using the initial permutation IPkey as follows,
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where bits are listed row wise:

IPkey(K) =

k57 k49 k41 k33 k25 k17 k9 k1 k58 k50 k42 k34 k26 k18
k10 k2 k59 k51 k43 k35 k27 k19 k11 k3 k60 k52 k44 k36
k63 k55 k47 k39 k31 k23 k15 k7 k62 k54 k46 k38 k30 k22
k14 k6 k61 k53 k45 k37 k29 k21 k13 k5 k28 k20 k12 k4

It is evident that IPkey(K) permutes K in the following way: the indexes of the first 28 bits
start from 57 such that each next index is equal to the current index minus 8 mod 65. The
indexes of the next 24 bits start from 63 such that each next index is equal to the current index
minus 8 mod 63. The indexes of the last four bits start from 28 such that each next index is
equal to the current index minus 8.

The modular operation is a common operation when dealing with integers in a finite domain.
Let m be a positive integer and a be a non-negative integer. Then “a mod m” is the remainder
of dividing a by m. If a < 0 and its absolute value |a| < m, then a mod m is equal to the
smallest positive integer b such that b − a = m. For instance, −5 mod 65 = 60.

Let X = x1x2 · · ·x56 be a 56-bit binary string, where xi ∈ {0, 1}. Let Pkey be a compress
permutation that takes X as input and produces a 48-bit string as output. Pkey is defined as
follows, where bits are listed row wise:

Pkey(X) =

x14 x17 x11 x24 x1 x5 x3 x28 x15 x6 x21 x10
x23 x19 x12 x4 x26 x8 x16 x7 x27 x20 x13 x2
x41 x52 x31 x37 x47 x55 x30 x40 x51 x45 x33 x48
x44 x49 x39 x56 x34 x53 x46 x42 x50 x36 x29 x32

Let Y be a 28-bit binary string. Let LSz(i)(Y ) denote the new string obtained by shifting Y
circularly to the left z(i) times, where z(i) is defined as follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
z(i) 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Rewrite IPkey(K) as U0V0, where both U0 and V0 are 28-bit binary strings. Then the ith
subkey Ki is generated as follows, where i = 1, 2, · · · , 16:

Ui = LSz(i)(Ui−1),

Vi = LSz(i)(Vi−1),

Ki = Pkey(UiVi).

For instance, let

U0 = 1001101001110110001010011010,

V0 = 0110010110001001110101100101.

Then

U1 = LSz(1)(U0) = LS1(U0) = 0011010011101100010100110101,

V1 = LSz(1)(V0) = LS1(V0) = 1100101100010011101011001010.
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Thus,

K1 = Pkey(U1V1)

= Pkey(00110100111011000101001101011100101100010011101011001010)

= 101100110101100110000110000011110110110001001110.

2.2.3 DES Substitution Boxes

The substitution function F in DES is defined using eight special matrices. They are referred to
as substitution boxes or S-Boxes in short. Each S-Box is a 4 × 16 matrix (see Table 2.1), where
each row in each S-Box is a permutation of integers from 0 to 15. We label these S-Boxes as
S1, S2, · · · , S8. For each r with 1 ≤ r ≤ 8, write

Sr = [s(r)
ij ]4×16, i = 0, · · · , 3, j = 0, · · · , 15.

Let S be a function that takes a 48-bit string as input and produces a 32-bit binary string as
output. In particular, let Y = y1y2 · · · y48 be a 48-bit binary string, where yi ∈ {0, 1}. We use
Y [i, j](i < j) to denote the substring yi · · · yj . Divide Y into eight 6-bit blocks:

Y = Y [1, 6]Y [7, 12]Y [13, 18]Y [19, 24]Y [25, 30]Y [31, 36]Y [37, 42]Y [43, 48].

For each 6-bit block Y [6r − 5, 6r] (r = 1, 2, · · · , 8), we use the rth S-Box to generate a 4-bit
binary string as output, denoted by Sr(Y [6r − 5, 6r]), as follows:

Let Y [6r − 5, 6r] = b1b2b3b4b5b6, where bq ∈ {0, 1} for q = 1, · · · , 6. Let i = b1b6 denote
the binary representation for a row number and j = b2b3b4b5 denote the binary representation
for a column number. Then define Sr(Y [6r − 5, 6r]) to be the number in the 4-bit binary
representation at row i + 1 and column j + 1 in matrix Sr; namely,

Sr(Y [6r − 5, 6r]) = s
(r)
ij .

For example, if Y [7, 12] = 110010, then S2(110010) = s
(2)
10,1001 = s

(2)
2,9 = 8.

Let
S(Y ) = S1(Y [1, 6])S2(Y [7, 12]) · · ·S8(Y [43, 48]).

Then S(Y ) transforms the 48-bit input Y to a 32-bit output.
The constructions of the S-Boxes followed a clear set of criteria for the purpose of resist-

ing possible attacks. They were also bound by the computing technologies available in the
mid-1970s. For example, the reason why an S-Box has a 6-bit input and a 4-bit output is due
to the chip technology available at that time. It took several months of computing time at
that time to compute the S-Boxes that satisfy all the criteria. Because the set of criteria for
the S-Boxes was not published and because NSA played a role in selecting DES, many peo-
ple suspected that NSA had planted backdoors in these S-Boxes so that NSA can decipher
DES-encrypted messages should they decide to do so. This of course was sheer speculation.
In the 1990s, the set of criteria used by the DES design team was discovered by cryptana-
lysts not in the team. After this, IBM finally decided to publish the original set of criteria for
constructing the S-Boxes.
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Table 2.1 DES S-Boxes

S1 : 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2 : 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 : 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4 : 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5 : 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 : 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7 : 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 : 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

2.2.4 DES Encryption

DES implements its substitution function F using permutations, exclusive-OR, subkeys, and
substitutions from the S-Boxes. In particular, for each 32-bit half block Ri−1, DES first uses a
function called expansion permutation, denoted by EP, to expand it into a 48-bit string. It then
XORs this string with a 48-bit subkey, takes the resulting 48-bit output as the input of function
S to generate a 32-bit string, and permutes this string to generate a 32-bit string Li.
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2.2.4.1 Expansion Permutation

Let U = u1u2 · · ·u32 (ui ∈ {0, 1}) be a 32-bit binary string. The expansion permutation EP
on U is defined as follows, where bits are listed row wise:

EP(U) =

u32 u1 u2 u3 u4 u5
u4 u5 u6 u7 u8 u9
u8 u9 u10 u11 u12 u13
u12 u13 u14 u15 u16 u17
u16 u17 u18 u19 u20 u21
u20 u21 u22 u23 u24 u25
u24 u25 u26 u27 u28 u29
u28 u29 u30 u31 u32 u1

We note that in EP(U ), the indexes of the four middle columns are 1, 2, · · · , 32; the indexes
of the first column start from 32, where the next index is the current index plus 4 mod 32; and
the indexes of the last column start from 5, where the next index is the current index plus 4
mod 32.

2.2.4.2 DES Substitution

Let V = v1v2 · · · v32 be a 32-bit binary string. Permuting V using the following permutation
P , where bits are listed row wise:

P (V ) =
v16 v7 v20 v21 v29 v12 v28 v17 v1 v15 v23 v26 v5 v18 v31 v10
v2 v8 v24 v14 v32 v27 v3 v9 v19 v13 v30 v6 v22 v11 v4 v25

DES defines its substitution function F as follows:

F (Ri−1,Ki) = P (S(EP(Ri−1) ⊕ Ki)), i = 1, 2, · · · , 16.

2.2.4.3 Encryption Steps

Let A = a1a2 · · · a64 (ai ∈ {0, 1}) be a 64-bit binary string. Define a permutation σ as follows:
it first reverses A as a64a63 · · · a1. It then lists the prefix a64a63 · · · a33 into four columns from
right to left, where each column has exactly eight rows. It also lists the suffix a32a31 · · · a1 into
four columns from right to left, where each column has exactly eight rows, and inserts them
alternately in the prefix columns. That is, according to the listing order, we have

4 8 3 7 2 6 1 5

a40 a8 a48 a16 a56 a24 a64 a32
a39 a7 a47 a15 a55 a23 a63 a31
a38 a6 a46 a14 a54 a22 a62 a30
a37 a5 a45 a13 a53 a21 a61 a29
a36 a4 a44 a12 a52 a20 a60 a28
a35 a3 a43 a11 a51 a19 a59 a27
a34 a2 a42 a10 a50 a18 a58 a26
a33 a1 a41 a9 a49 a17 a57 a25
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The permutation enumerates the elements in this list row wise. Denote by σ−1 the inverse of σ.
Let M = m1m2 · · ·m64 (mi ∈ {0, 1}) be a plaintext block. Define an initial permutation

IP by IP(M) = σ−1(M). It is straightforward to verify that IP(M ) is equal to the following
string, where each number i represents bit mi (1 ≤ i ≤ 64) and bits are listed row wise:

IP(M) =

58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

It is easy to see that the indexes of the first two rows in IP(M ) start from 58, where the next
index is equal to the current index minus 8 mod 66; and the indexes of the last two rows in
IP(M ) start from 57, where the next index is equal to the current index minus 8 mod 66.

Let C = c1c2 · · · c64 (ci ∈ {0, 1}). Then IP−1(C) = σ(C) is the inverse of IP(C), defined
as follows, where each number i represents bit ci(1 ≤ i ≤ 64) and bits are listed row wise:

IP−1(C) =

40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26 33 1 41 9 49 17 57 25

It is straightforward to verify that IP ◦ IP−1(M) = IP−1 ◦ IP(M) = M . For example, let
C = IP(M). Because IP changes m1 to m58 and IP−1 changes c1 to c40, where c1 = m58 and
c40 = m1, we know that IP−1 ◦ IP changes m1 back to m1.

Let M and K be, respectively, a 64-bit plaintext block and a 64-bit encryption key with
added parity bits. Let K1,K2, · · · ,K16 be the 16 subkeys generated from K as described in
Section 2.2.2. The DES encryption steps are given as follows:

1. Rewrite IP(M) = L0R0, where |L0| = |R0| = 32.
2. For i = 1, 2, · · · , 16, execute the following operations in order:

Li = Ri−1,

Ri = Li−1 ⊕ F (Ri−1,Ki).

3. Finally, let C = IP−1(R16L16). (Note that the input of IP−1 is R16L16, not L16R16.)

2.2.5 DES Decryption and Correctness Proof

DES decryption is symmetrical to DES encryption, except that subkeys are applied in the
reverse order. The DES decryption steps are given as follows:

1. Rewrite IP(C) = L′
0R

′
0, where |L0| = |R0| = 32.

2. For i = 1, 2, · · · , 16, execute the following operations in order

L′
i = R′

i−1,

R′
i = L′

i−1 ⊕ F (R′
i−1,K17−i).

3. Finally, let L′
17R

′
17 = IP−1(R′

16L
′
16); we then obtain back the plaintext block M .
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To prove the correctness of DES decryption, we need to show that

M = IP−1(R′
16L

′
16).

Because L′
0R

′
0 = IP(C) = IP(IP−1(R16L16)) = R16L16, we have L′

0 = R16 and R′
0 = L16.

We note that except IP is used before round 1 starts and IP−1 after round 16, the rest of
DES is a concrete implementation of FCS. It follows from FCS decryption that L′

16 = R0 and
R′

16 = L0. Thus,

IP−1(R′
16L

′
16) = IP−1(L0R0) = IP−1(IP(M)) = M.

This completes the proof.

2.2.6 DES Security Strength

The security strength of DES depends on the number of rounds, the length of encryption key,
and the construction of the substitution function. A substantial number of experiments have
demonstrated that DES encryption provides good diffusion and confusion effects.

It can be shown that if the number of rounds in DES encryption is less than 16, then differ-
ential cryptanalysis can break DES encryption in a reasonable amount of time.

The length of a DES encryption key is 56 bits, which was sufficient to resist brute-force
attacks in the 1970s to 1980s. However, the 56-bit key length was no longer secure in the
late 1990s due to advancements of computer technologies and algorithms. For example, in
1999, the Electronic Frontier Foundation (EFF) based in the United States spent less than
$250,000 to build a special-purpose supercomputer, named “DES Cracker,” to crack DES
encryptions. Working with Distributed.Net and a worldwide network of nearly 100,000 PCs
on the Internet, DES Cracker broke in 22 hours the “DES Challenge III” encrypted message.
The DES Challenges were a series of DES-encrypted messages posted by RSA Data Security
in 1997. DES Challenge III was the last one to be broken. This indicated that the DES era was
approaching its end.

Does this mean that all the manpower and resources spent over the years in developing
hardware and software DES products were down the drain? It is true that DES encryption
keys are too short to resist brute-force attacks, but DES has other good properties that have
resisted many other attacks. Thus, it is reasonable to look for ways to effectively extend the
DES encryption key length without changing the DES algorithms. Fortunately, it can be shown
that DES is not a group. Therefore, applying DES multiple times is different from applying
DES a single time. In other words, for any three 56-bit DES encryption keys K1,K2,K3, we
have EK2

◦ EK1
�= EK3

, where EK represents DES encryption with key K. We note that this
property may not be true in other encryption algorithms. For example, in XOR encryption, for
any given encryption keys K1 and K2, let K3 = K1 ⊕ K2, then

EK2
(EK1

(M)) = (M ⊕ K1) ⊕ K2 = M ⊕ K3 = EK3
(M),

where E represents XOR encryption.
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2.3 Multiple DES

As discussed in Section 2.2.6, applying DES multiple times can effectively extend the length
of encryption keys without modifying DES. Multiple DES can therefore be used to resist
brute-force attacks. We use kDES to denote a multiple DES scheme of applying DES k times.
By applying DES, it means applying either the encryption algorithm E or the decryption
algorithm D.

2.3.1 Triple-DES with Two Keys

Triple-DES with two keys, denoted by 3DES/2, is the simplest and reasonably secure method
against brute-force attacks. It extends the key length to 112 bits long. Let K1 and K2 be
two 56-bit encryption keys and M a 64-bit plaintext block. The standard 3DES/2 encryp-
tion algorithm applies EK1

on M to obtain C1 = EK1
(M), then applies DK2

on C1 to obtain
C2 = DK2

(C1), and finally applies EK1
on C2 to obtain C = EK1

(C2). That is,

C = EK1
(DK2

(EK1
(M))). (2.7)

For convenience, we denote this scheme by C = EDEK1,K2
(M).

The following is the 3DES/2 decryption algorithm:

M = DK1
(EK2

(DK1
(C))). (2.8)

For convenience, we denote this scheme by M = DEDK1,K2
(C).

We note that there are other combinations for 3DES with two keys, such as EEEK1,K2
or

EEDK1,K2
. Any of these combinations would serve the purpose. However, only the combina-

tion of EDEK1,K2
allows us to use 3DES/2 to decrypt ciphertext string produced by applying

single DES with key K. This is done as follows: let C = EK(M) and let K1 = K2 = K.
Then

DEDK,K(C) = DK(EK(M)) = M.

A major drawback of 3DES is that its software executions are not as efficient as one would
like them to be.

2.3.2 2DES and 3DES/3

In addition to 3DES/2, we may also apply DES twice with two keys, denoted by 2DES/2.
For simplicity, we use 2DES to denote 2DES/2. Let K1 and K2 be two DES encryption keys
and M a 64-bit plaintext block. The standard 2DES encryption algorithm E and decryption
algorithm D are described as follows:

C = EK2
(EK1

(M)),

M = DK1
(DK2

(C)).
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However, 2DES is vulnerable to the meet-in-the-middle attack (see Section 2.3.3 for details).
Thus, 2DES is considered nonsecure.

We may also apply DES thrice with three keys, denoted by 3DES/3. 3DES/3 has an effective
key length of 168 bits. Let K1,K2, and K3 be three encryption keys. The standard 3DES/3
encryption algorithm E and decryption algorithm D are described as follows:

C = EK3
(DK2

(EK1
(M))), (2.9)

M = DK1
(EK2

(DK3
(C))). (2.10)

2.3.3 Meet-in-the-Middle Attacks on 2DES

2DES is vulnerable to the meet-in-the-middle attacks. Suppose that the attacker has obtained
two plaintext–ciphertext pairs (M1, C1) and (M2, C2), where

C1 = EK2
(EK1

(M1)), C2 = EK2
(EK1

(M2)).

That is,
DK2

C1 = EK1
(M1), DK2

(C2)) = EK1
(M2).

The attacker may then be able to identify, with probability close to 1, the encryption keys K1
and K2 with time complexity much smaller than 2112. The attack can be carried out as follows:

List all 56-bit strings U0, U1, · · · , U256−1 and calculate, for each pair (Ui, Uj),

Xi = EUi
(M1), Yj = DUj

(C1).

Note that when Ui = K1 and Uj = K2, we have Xi = Yj . Thus, for each pair (Xi, Yj) with
Xi = Yj , it is possible that (Ui, Uj) = (K1,K2). If there is only one such pair, then we have
found the encryption keys K1 and K2. Otherwise, apply each pair (Ui, Uj) with Xi = Yj on
(M2, C2) to obtain

X ′
i = EUi

(M2), Y ′
j = DUj

(C2).

Again, we note that when Ui = K1 and Uj = K2, we have X ′
i = Y ′

j . Thus, if X ′
i = Y ′

j , then
(Ui, Uj) is more likely to be the encryption key pair. Indeed, we can show that the possibility
that there exist more than one such pair is very small.

Note that for any plaintext block M and any candidate (Ui, Uj) for the encryption key pair,
the ciphertext block C = EUj

(EUi
(M)) is uniformly distributed (or close to being uniformly

distributed). This is the property any good encryption algorithm should possess. Because
|Ui| = |Uj | = 56, there are 256 · 256 = 2112 pairs (Xi, Yj). As |Xi| = 64, the expected number
of pairs (Ui, Uj) that satisfy EUi

(M1) = Xi = DUj
(C1) is or near

2112/264 = 248.

Likewise, the expected number of pairs (Ui, Uj) from these 248 pairs that satisfy EUi
(M2) =

DUj
(C2) and EUi

(M1) = DUj
(C1) is or near

248/264 = 2−16.

Thus, the possibility of finding (K1,K2) is or near 1 − 2−16.
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The time complexity of executing this attack is in the order of

2(256 + 248) < 258.

This is much smaller than 2112.

2.4 Advanced Encryption Standard

Researchers have never stopped searching for better encryption algorithms that are more effi-
cient, more secure, and more flexible. New encryption algorithms should be able to use longer
keys and handle larger blocks. In some applications, people may also want to specify their
own key length and block size. Thus, it would be desirable to have key length and block size
as parameters.

A number of encryption algorithms have since been devised. Some of the early ones include
Blowfish, CAST, GOST (the former Soviet Encryption Standard), International Data Encryp-
tion Algorithm (IDEA), LOKI, RC4, RC5, REDOC-II, REDOC-III, SAFER, and Skipjack.
Most of these encryption algorithms are Feistel ciphers.

Realizing the urgent need to establish a new encryption standard, NIST launched in 1997
the advanced encryption standard competition for selecting a successor to DES. The follow-
ing encryption algorithms were submitted for consideration: CAST-256, CRYPTON, DEAL,
DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, and
Twofish, where MARS, RC6, Rijndael, Serpent, and Twofish were selected semifinalists. In
November 2001, NIST officially chose Rijndael to be the new AES. Rijndael was devised by
Belgian cryptographers Joan Daemen and Vincent Rijmen.

2.4.1 AES Basic Structures

AES is a block cipher, but it is not a Feistel cipher. Its encryption and decryption, although
similar, are not symmetrical. The basic computation unit in AES is a byte, rather than a bit as
in DES. A byte is an 8-bit binary string. AES divides the plaintext string into 128-bit blocks.
AES can use encryption keys of three different key lengths. An AES-encryption key can be
16-byte long, 24-byte long, or 32-byte long. Regardless of what key length is used, AES will
generate and use 16-byte subkeys, also called round keys. AES can also run a different number
of operation rounds. To generate a sufficient number of round keys, AES expands encryption
keys depending on the number of rounds and the length of the encryption key specified by the
users. Table 2.2 depicts the relations between key lengths, the number of rounds, and the length
of expanded encryption keys, where a word is a binary string of length equal to four bytes.

Table 2.2 AES key lengths, the number of rounds, and the length of expanded encryption keys

Key length Number of Rounds Expansion key length

Words Bytes Bits Words Bytes Bits

4 16 128 10 44 176 1408
6 24 192 12 52 208 1664
8 32 256 14 60 240 1920
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AES treats a 128-bit block as a sequence of 16 bytes and represents it as a 4 × 4 square
matrix, where each element is a byte in the block. In particular, let M = a0a2 · · · a15 be a
plaintext block, where each ai is a byte. Then AES rewrites M as Matrix 2.11:

M =

⎡
⎢⎢⎣

a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15

⎤
⎥⎥⎦ . (2.11)

We refer to a 4 × 4 matrix of bytes as a state matrix. AES encryption executes in each
round (except the last round) the same sequence of simple operations on state matrices that
transforms the plaintext block into a ciphertext block. These operations are substitute-bytes,
shift-rows, mix-columns, and add-round-key.

1. The operation of substitute-bytes is a nonlinear operation based on a specially designed
substitution box. The purpose of this operation is to resist differential cryptanalysis, linear
cryptanalysis, and other mathematical attacks.

2. The operation of shift-rows is an elementary operation on state matrices. It is a linear oper-
ation. The purpose of this operation is to produce diffusion.

3. The operation of mix-columns is also an elementary operation on state matrices. Its purpose
is the same as shift-rows.

4. The operation of add-round-key is a simple set of exclusive-OR operations on state
matrices. It is a linear operation. The purpose of this operation is to produce confusion.

It is customary to use AES-128, AES-192, and AES-256 to denote, respectively, AES under
128-bit keys, 192-bit keys, and 256-bit keys. These three variants of AES all have the same
encryption and decryption structures. They differ only on the number of rounds, where each
round uses a different round key.

We describe AES using AES-128. AES-128 first expands the 128-bit key into an array
W [0, 43] of words. It then rewrites W [0, 43] as a sequence of eleven 128-bit round keys
K0,K1, · · · ,K11. In other words,

Ki = W [4i, 4i + 3], i = 0, 1, · · · , 10,

where W [4i, 4i + 3] = W [4i]W [4i + 1]W [4i + 2]W [4i + 3].
For convenience, we use sub to denote the operation of substitute-bytes, shr the operation of

shift-rows, mic the operation of mix-columns, and ark the operation of add-round-key. Denote
by inv_sub (or sub−1) the inverse operation of sub, inv_shr (or shr−1) the inverse operation
of shr, and inv_mic (or mic−1) the inverse operation of mic. Figure 2.2 depicts the AES-128
encryption and decryption block diagram.

In the following several subsections, we describe AES S-Boxes, the subkey generation algo-
rithm, the operations of ark, sub, shr, mic, and their inverse operations. We then introduce the
Galois field GF (28) and show how S-Boxes are constructed. Skipping the last two topics will
not affect the understanding of AES encryption and decryption operations.
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Figure 2.2 AES-128 encryption and decryption diagram

2.4.2 AES S-Boxes

AES uses only one S-Box. It is used to generate subkeys and define the operation of substitute
bytes. The AES S-Box is a 16 × 16 matrix of bytes, which is defined on the basis of the
multiplication operation of the Galois field GF (28). Unlike the S-Boxes used in DES, the
AES S-Box is a permutation of all 256 bytes. Its reverse permutation is called the reverse
S-Box.

We only present the S-Box and the reverse S-Box in this subsection, where each element
and index is represented by two hexadecimal digits. We describe how they are constructed in
Section 2.4.11. We use

S = [sij ]16×16

to denote the AES S-Box and
S−1 = [s′ij ]16×16
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Table 2.3 The S-Box of AES

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 2.4 The reverse S-Box of AES

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

to denote its reverse. The S-Box is given in Table 2.3, and the reverse S-Box is given in
Table 2.4.

Let w = b0 · · · b7 be a byte, where each bi is a bit. Define a byte-substitution function S as
follows: let i = b0b1b2b3 denote the binary representation of the row index and j = b4b5b6b7
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denote the binary representation of a column index of sij in the S-Box. Then

S(w) = sij , (2.12)

S−1(w) = s′ij . (2.13)

That is, S(w) is the element on the intersection of the (i + 1)th row and the (j + 1)th column
in the S-Box S. Likewise, S−1(w) is the element on the intersection of the (i + 1)th row and
the (j + 1)th column in the inverse S-Box S−1.

For example, let w = b8, then S(w) = sb,8 = 6c, and S−1(6c) = s′6,c = b8.
It is straightforward to see from the S-Box S and its reverse S−1 that, for any 8-bit string

w, we have
S(S−1(w)) = w and S−1(S(w)) = w.

2.4.3 AES-128 Round Keys

Let K = K[0, 31]K[32, 63]K[64, 95]K[96, 127] be a 4-word encryption key, where each
K[32i, 32i + 31] is a 32-bit binary string, i = 0, 1, 2, 3. AES expands K into a 44-word array
W [0, 43]. We first define a byte transformation function M as follows:

M(b7b6b5b4b3b2b1b0) =

{
b6b5b4b3b2b1b00, if b7 = 0,

b6b5b4b3b2b1b00 ⊕ 00011011, if b7 = 1,
(2.14)

where each bi is a bit. We see in Section 2.4.10 that M represents a multiplication operation
of 00000010 and b7b6 · · · b0 over Galois field GF (28).

For example,

M(db) = M(11011011)

= 10110110 ⊕ 00011011

= 10101101

= ad.

Let j be a non-negative number. Define m(j) as follows:

m(j) =

⎧⎪⎨
⎪⎩

00000001, if j = 0,

00000010, if j = 1,

M(m(j − 1)), if j > 1.

(2.15)

We see in Section 2.4.10 that function m(j) represents the result of multiplying the GF (28)
element 00000010 by itself for j − 1 times.

We now define a word-substitution function T that transforms a 32-bit string to a 32-bit
string on the basis of parameter j and the AES S-Box. Let w = w1w2w3w4, where each wi is
a byte. Let j be a positive integer. Let

T (w, j) = [(S(w2) ⊕ m(j − 1)]S(w3)S(w4)S(w1),

where S is the byte-substitution function defined by Equality 2.12.
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We now expand K = K0K1 · · ·K15 to obtain W [0, 43] as follows:

W [0] = K[0, 31],

W [1] = K[32, 63],

W [2] = K[64, 95],

W [3] = K[96, 127],

W [i] =

{
W [i − 4] ⊕ T (W [i − 1], i/4), if i is divisible by 4,
W [i − 4] ⊕ W [i − 1], otherwise,

i = 4, · · · , 43.

2.4.4 Add Round Keys

Let Ki = W [4i, 4i + 3] = W [4i]W [4i + 1]W [4i + 2]W [4i + 3] be an AES-128 round key,
where i = 0, · · · , 10. Rewrite Ki as a 4 × 4 matrix of bytes:

Ki =

⎡
⎢⎢⎣

k0,0 k0,1 k0,2 k0,3
k1,0 k1,1 k1,2 k1,3
k2,0 k2,1 k2,2 k2,3
k3,0 k3,1 k3,2 k3,3

⎤
⎥⎥⎦ ,

where each element is a byte and W [4i + j] = k0,jk1,jk2,jk3,j , j = 0, 1, 2, 3.
In what follows we use

A =

⎡
⎢⎢⎣

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

⎤
⎥⎥⎦

to represent the current state matrix. Initially, A = M (see Matrix 2.11). The add-round-key
operation ark is defined as follows:

ark(A, Ki) = A ⊕ Ki =

⎡
⎢⎢⎣

a0,0 ⊕ k0,0 a0,1 ⊕ k0,1 a0,2 ⊕ k0,2 a0,3 ⊕ k0,3
a1,0 ⊕ k1,0 a1,1 ⊕ k1,1 a1,2 ⊕ k1,2 a1,3 ⊕ k1,3
a2,0 ⊕ k2,0 a2,1 ⊕ k2,1 a2,2 ⊕ k2,2 a2,3 ⊕ k2,3
a3,0 ⊕ k3,0 a3,1 ⊕ k3,1 a3,2 ⊕ k3,2 a3,3 ⊕ k3,3

⎤
⎥⎥⎦ .

The inverse operation ark−1 is the same as ark. That is, ark−1(A, Ki) = ark(A, Ki). It is
straightforward to verify that

ark(ark−1(A, Ki), Ki) = ark−1(ark(A, Ki), Ki) = A.
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2.4.5 Substitute-Bytes

The substitute-bytes operation sub is defined as follows:

sub(A) = [S(aij)]4×4 =

⎡
⎢⎢⎣

S(a0,0) S(a0,1) S(a0,2) S(a0,3)
S(a1,0) S(a1,1) S(a1,2) S(a1,3)
S(a2,0) S(a2,1) S(a2,2) S(a2,3)
S(a3,0) S(a3,1) S(a3,2) S(a3,3)

⎤
⎥⎥⎦ ,

where S is the byte-substitution function defined in Section 2.4.2 (see formula 2.12).
It is straightforward to verify that the inverse operation sub−1 is given by

sub−1(A) = [S−1(aij)]4×4,

where S−1 is defined in Section 2.4.2 (see formula 2.13). This is because for any byte w, we
have S(S−1(w)) = S−1(S(w)) = w, which implies that

sub(sub−1(A)) = sub−1(sub(A)) = A.

2.4.6 Shift-Rows

The shift-row operation shr performs a left-circular-shift i − 1 times on the ith row in the state
matrix A, where i = 1, 2, 3, 4. Its inverse shr−1 performs a right-circular-shift i − 1 times on
the ith row. That is,

shr(A) =

⎡
⎢⎢⎣

a0,0 a0,1 a0,2 a0,3
a1,1 a1,2 a1,3 a1,0
a2,2 a2,3 a2,0 a2,1
a3,3 a3,0 a3,1 a3,2

⎤
⎥⎥⎦ , shr−1(A) =

⎡
⎢⎢⎣

a0,0 a0,1 a0,2 a0,3
a1,3 a1,0 a1,1 a1,2
a2,2 a2,3 a2,0 a2,1
a3,1 a3,2 a3,3 a3,0

⎤
⎥⎥⎦ .

It is straightforward to verify that

shr(shr−1(A)) = shr−1(shr(A)) = A.

2.4.7 Mix-Columns

The mix-columns operation mic is defined as follows:

mic(A) = [a′
ij ]4×4,

where each element in mic(A) is determined by the following operations (j = 0, 1, 2, 3) :

a′
0,j = M(a0,j) ⊕ [M(a1,j) ⊕ a1,j ] ⊕ a2,j ⊕ a3,j ,

a′
1,j = a0,j ⊕M(a1,j) ⊕ [M(a2,j) ⊕ a2,j ] ⊕ a3,j ,

a′
2,j = a0,j ⊕ a1,j ⊕M(a2,j) ⊕ [M(a3,j) ⊕ a3,j ],

a′
3,j = [M(a0,j) ⊕ a0,j ] ⊕ a1,j ⊕ a2,j ⊕M(a3,j).
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For example, let

A =

⎡
⎢⎢⎣

db 2d f2 d4
13 26 0a d4
53 31 22 d4
45 4c 5c d5

⎤
⎥⎥⎦ , then mic(A) =

⎡
⎢⎢⎣

8e 4d 9f d5
4d 7e dc d5
a1 bd 58 d7
bc f8 9d d6

⎤
⎥⎥⎦ . (2.16)

We verify a′
0,0 as follows:

a′
0,0 = M(db) ⊕ [M(13) ⊕ 13] ⊕ 53 ⊕ 45

= 10101101 ⊕ [00100110 ⊕ 00010011] ⊕ 01010011 ⊕ 01000101

= 10001110

= 8e.

The reader is asked to verify the rest of the elements.
Let w be a byte and i a positive integer. Define

Mi(w) = M(Mi−1(w)) (i > 1), M1(w) = M(w).

Let

M1(w) = M3(w) ⊕M2(w) ⊕M(w), (2.17)

M2(w) = M3(w) ⊕M(w) ⊕ w, (2.18)

M3(w) = M3(w) ⊕M2(w) ⊕ w, (2.19)

M4(w) = M3(w) ⊕ w. (2.20)

The inverse operation of mic−1 is defined by

mic−1(A) = [a′′
ij ]4×4,

where each column in mic−1(A) is defined as follows:

a′′
0,j = M1(a0,j) ⊕M2(a1,j) ⊕M3(a2,j) ⊕M4(a3,j), (2.21)

a′′
1,j = M4(a0,j) ⊕M1(a1,j) ⊕M2(a2,j) ⊕M3(a3,j), (2.22)

a′′
2,j = M3(a0,j) ⊕M4(a1,j) ⊕M1(a2,j) ⊕M2(a3,j), (2.23)

a′′
3,j = M2(a0,j) ⊕M3(a1,j) ⊕M4(a2,j) ⊕M1(a3,j). (2.24)

We show in Section 2.4.10 that for any state matrix A the following relation holds:

mic(mic−1(A)) = mic−1(mic(A)) = A. (2.25)

2.4.8 AES-128 Encryption

Let Ai (i = 0, 1, · · · , 11) be a sequence of state matrices, where A0 is the initial state matrix M
(i.e., Matrix 2.11), Ai (i = 1, 2, · · · , 10) represents the input state matrix at round i, and A11
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is the ciphertext block C, which is in the form of state matrix. Given below are the encryption
steps of AES-128:

A1 = ark(A0, K0),

Ai+1 = ark(mic(shr(sub(Ai))), Ki), i = 1, 2, · · · , 9,

A11 = ark(shr(sub(A10)), K10).

2.4.9 AES-128 Decryption and Correctness Proof

Let Ci (i = 0, 1, · · · , 11) be a sequence of state matrices, where C0 is the ciphertext block
C = A11, Ci (i = 1, 2, · · · , 10) represents the input state matrix at round i, and C11 is the out-
put state matrix at round 10. The following are the decryption steps of AES-128:

C1 = ark(C0, K10),

Ci+1 = mic−1(ark(sub−1(shr−1(Ci)), K10−i)), i = 1, 2, · · · , 9,

C11 = ark(sub−1(shr−1(C10)), K0).

We now show that C11 = A0. We first show the following equality using mathematical
induction:

Ci = shr(sub(A11−i)), i = 1, 2, · · · , 10. (2.26)

A proof of Equality 2.26 goes as follows. When i = 1, we have

C1 = ark(A11, K10)

= A11 ⊕ K10

= ark(shr((sub(A10)), K10) ⊕ K10)

= shr((sub(A10)) ⊕ K10) ⊕ K10

= shr(sub(A10)).

Thus, Equality 2.26 holds. Assume that Equality 2.26 holds for 1 ≤ i < 10. We have

Ci+1 = mic−1(ark(sub−1(shr−1(Ci)), K10−i))

= mic−1(sub−1(shr−1(shr(sub(A11−i)))) ⊕ K10−i)

= mic−1(A11−i ⊕ K10−i)

= mic−1(ark(mic(shr(sub(A10−i))), K10−i) ⊕ K10−i)

= mic−1([mic(shr(sub(A10−i))) ⊕ K10−i] ⊕ K10−i)

= shr(sub(A10−i))

= shr(sub(A11−(i+1))).

Thus, Equality 2.26 is true.



70 Introduction to Network Security

Finally, we have

C11 = ark(sub−1(shr−1(C10)), K0)

= sub−1(shr−1(shr(sub(A1)))) ⊕ K0

= A1 ⊕ K0

= (A0 ⊕ K0) ⊕ K0

= A0.

This completes the correctness proof of AES-128 decryption.

2.4.10 Galois Fields

In addition to the shift-rows operation, the basic operations of AES are based on the XOR
operation and a special multiplication operation on 8-bit strings. These two operations and the
set of all 8-bit strings form a finite field.

A field is an algebraic structure that consists of a set F and two operations on elements in
F . These two operations are addition and multiplication, denoted by + and ×, respectively,
which satisfy the following conditions:

1. Closure: (∀a, b ∈ F )[a + b ∈ F and a × b ∈ F ].
2. Associativity: ∀a, b, c ∈ F :

a + (b + c) = (a + b) + c,

a × (b × c) = (a × b) × c.

3. Distributivity: ∀a, b, c ∈ F :

a × (b + c) = (a × b) + (a × c),

(a + b) × c = (a × c) + (b × c).

4. Unit element: There are elements e0, e1 ∈ F , where e0 �= e1, such that ∀a ∈ F :

a + e0 = e0 + a = a,

a × e1 = e1 × a = a.

The element e0 is called the unit element of the addition operation and e1 the unit element
of the multiplication operation.

5. Inverse:

∀a ∈ F : (∃a′ ∈ F )[a + a′ = a′ + a = e0],

∀a ∈ F − {e0} : (∃a′′ ∈ F )[a × a′′ = a′′ × a = e1].

Elements a′, a′′ are called, respectively, the additive inverse (denoted by −a) and the mul-
tiplicative inverse (denoted by a−1.)

6. Commutativity: (∀a, b ∈ F )[a + b = b + a and a × b = b × a].
7. Nonzero divisor: If a, b ∈ F and a × b = e0, then a = e0 or b = e0.
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We use (F,+,×) to denote a field. It is called a finite field if F is a finite set and an infinite
field otherwise. The field of real numbers, for example, is the set of all real numbers with the
ordinary addition and multiplication operations.

Finite fields have a nice property; namely, any finite field consists of exactly pn elements for
some prime number p and integer n ≥ 2. A prime number is a positive integer that is divisible
only by 1 and by itself. Elements in a finite field of size pn can be uniquely represented by
polynomials of degree n − 1 with coefficients in the set {0, 1, · · · , p − 1}. A finite field with
its elements written in this form is called a Galois field, denoted by GF (pn). Each element in
GF (pn) is represented by the following polynomial

bn−1x
n−1 + · · · + b1x + b0,

denoted in short by bn−1 · · · b1b0, where each coefficient

bi ∈ {0, 1, · · · , p − 1}.

The addition operation over GF (pn) is addition modulo p of coefficients for terms of the same
degree. The multiplication operation first multiplies two polynomials in the normal way. If the
degree of the resulting polynomial is greater than n − 1, then divide it by a fixed irreducible
polynomial of degree n, and take the remainder as the result of the multiplication. A polyno-
mial is irreducible if it cannot be expressed as a product of two polynomials whose degrees
are at least 1.

Modern electronic computers operate on binary operations using memory with bytes as
basic units. Thus, choosing GF (28) to form the basic operation space for encryption algo-
rithms becomes natural. GF (28) consists of all 8-bit binary strings as elements, where each
element b7 · · · b1b0 represents the following polynomial:

f(x) = b7x
7 + · · · + b1x + b0,

where the addition operation “+” is the exclusive-OR operation ⊕, and we use them inter-
changeably when there is no confusion. Thus, the inverse element of any element b is −b = b.
We use ⊗ to denote the multiplication operation on GF (28). The definition of the multipli-
cation operation depends on the chosen irreducible polynomial. AES chooses the following
irreducible polynomial:

r(x) = x8 + x4 + x3 + x + 1.

This irreducible polynomial makes multiplication simple. We use p(x) mod r(x) to denote the
remainder polynomial of dividing p(x) by r(x). It is straightforward to verify that

x8 mod r(x) = x8 − r(x) = x4 + x3 + x + 1.

Hence, we have

x ⊗ f(x) = (b7x
8 + b6x

7 + · · · + b0x) mod r(x)

=

{
b6x

7 + · · · + b0x, if b7 = 0,

(x4 + x3 + x + 1) + (b6x
7 + · · · + b0x), if b7 = 1.
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Denoting this formula using binary strings and XOR, we have

00000010 ⊗ b7b6b5b4b3b2b1b0 =

{
b6b5b4b3b2b1b00, if b7 = 0,

b6b5b4b3b2b1b00 ⊕ 00011011, if b7 = 1.

This is the definition of function M defined in Section 2.4.3 (see Formula 2.14). That is,

M(b7b6b5b4b3b2b1b0) = 00000010 ⊗ b7b6b5b4b3b2b1b0 = 02 ⊗ b7b6b5b4b3b2b1b0.

The function m(j) defined in Section 2.4.3 is the result of multiplying 00000010 by itself
for j − 1 times. That is,

m(j) = 00000010 ⊗ · · · ⊗ 00000010,

where the number of ⊗ is j − 1.
We now verify Equality 2.25. We first note that mic(A) and mic−1(A) are the products of

the following matrix multiplications:

mic(A) =

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦ ⊗ A, (2.27)

mic−1(A) =

⎡
⎢⎢⎣

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

⎤
⎥⎥⎦ ⊗ A. (2.28)

The matrix multiplication in this case follows the standard rule, with ⊕ being the addition
operation and ⊗ the multiplication operation. In particular, we can verify Equality 2.27 from
Equalities 2.17 –2.20 by noting that

M(w) ⊕ w = (02 ⊗ w) ⊕ w = (02 ⊕ 01) ⊗ w = 03 ⊗ w.

Likewise, we can verify Equality 2.28 from Equalities 2.21 –2.24 by noting that

Mi(w) = M(Mi−1(w)) = xi ⊗ w.

Hence,
M1(w) = (x3 + x2 + x) ⊗ w = 0e ⊗ w,

M2(w) = (x3 + x + 1) ⊗ w = 0b ⊗ w,

M3(w) = (x3 + x2 + 1) ⊗ w = 0d ⊗ w,

M4(w) = (x3 + 1) ⊗ w = 09 ⊗ w.

We can therefore show that mic(A) ⊗ mic−1(A) = mic−1(A) ⊗ mic(A) = I4 by verifying
the following equalities, where I4 is the identity matrix of size 4:⎡

⎢⎢⎣
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦ ⊗

⎡
⎢⎢⎣

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

01 00 00 00
00 01 00 00
00 00 01 00
00 00 00 01

⎤
⎥⎥⎦ = I4, (2.29)
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⎡
⎢⎢⎣

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

⎤
⎥⎥⎦ ⊗

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

01 00 00 00
00 01 00 00
00 00 01 00
00 00 00 01

⎤
⎥⎥⎦ = I4. (2.30)

For example, the first element at the right-hand side in Equality 2.29 is

(02 ⊗ 0e) ⊕ (03 ⊗ 09) ⊕ (01 ⊗ 0d) ⊕ (01 ⊗ 0b)

= M(0e) ⊕ (M(09) ⊕ 09) ⊕ 0d ⊕ 0b

= 1c ⊕ (12 ⊕ 09) ⊕ 0d ⊕ 0b

= 01.

2.4.11 Construction of the AES S-Box and Its Inverse

The S-Box S used by AES is constructed as follows:

1. Initially, S is a 16 × 16 matrix of all 8-bit strings in the lexicographical order. That is, its
first row is vector (00, 01, · · · ,0f), its second row is vector (10, 11, · · · ,1f), and so on,
and its last row is vector (f0, f1, · · · ,ff).

2. Keep the first two elements in S (i.e., 00 and 01) unchanged, and replace any other element
w with its inverse w−1.

For example, as 02’s multiplication inverse is 8d, the element 02 is replaced with 8d.
3. Replace each element b7b6 · · · b0 with b′7b

′
6 · · · b′0, where each bit b′i (i = 0, 1, · · · , 7) is

determined by

b′i = bi ⊕ b(i+4)mod 8 ⊕ b(i+5)mod 8 ⊕ b(i+6)mod 8 ⊕ b(i+7)mod 8 ⊕ ci,

and c7c6c5c4c3c2c1c0 = 01100011.
For example, from Step 2 we know that the element s0,2 at the intersection of the first

row and the third column is 8d = 10001101 = b7 · · · b1b0. Thus,

b′7 = b7 ⊕ b3 ⊕ b4 ⊕ b5 ⊕ b6 ⊕ c7 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0,

b′6 = b6 ⊕ b2 ⊕ b3 ⊕ b4 ⊕ b5 ⊕ c6 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1,

b′5 = b5 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b4 ⊕ c5 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1,

b′4 = b4 ⊕ b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ c4 = 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1,

b′3 = b3 ⊕ b7 ⊕ b0 ⊕ b1 ⊕ b2 ⊕ c3 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0,

b′2 = b2 ⊕ b6 ⊕ b7 ⊕ b0 ⊕ b1 ⊕ c2 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 1,

b′1 = b1 ⊕ b5 ⊕ b6 ⊕ b7 ⊕ b0 ⊕ c1 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1,

b′0 = b0 ⊕ b4 ⊕ b5 ⊕ b6 ⊕ b1 ⊕ c0 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1.

Hence, s0,2 = 01110111 = 77.
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It is required that each element s′i,j in the inverse S-Box S−1 must satisfy the following
relations:

s′i,j = uv, su,v = ij.

Element s′i,j , where i, j ∈ {0, 1, · · · , f}, can be calculated as follows: first find the element ij
in S. Let su,v = ij. Then let s′i,j = uv.

For example, as s6,a = 02, we have s′0,2 = 6a.

2.4.12 AES Security Strength

AES is designed to resist differential cryptanalysis and linear cryptanalysis. It uses 128-bit (or
longer) encryption keys to resist brute-force attacks. It modifies each element in the current
state matrix in each round, and so it will achieve good diffusion and confusion effects after a
few rounds of execution. AES is believed to be superior to DES.

In June 2003, the U.S. government decided that classified government information should
be encrypted using AES-128, and for TOP SECRET information, AES-192 or AES-256 must
be used. The New European Schemes for Signatures, Integrity, and Encryption (NESSIE) also
supported the use of AES. In June 2004, the Institute of Electrical and Electronics Engineers
(IEEE) adopted AES in its 802.11i wireless security standard. IEEE 802.11i is also known as
Wireless-Fidelity Protected Access 2 (Wi-Fi WPA 2). Today, AES has been used in almost all
network security protocols and software products.

No methods have been found that are efficient enough to be considered serious threats to
AES, although certain types of side channel attacks have been discovered. Algebraic attacks,
however, have attracted attentions. For example, if the attacker knows a pair of AES-128 plain-
text and ciphertext blocks, then the attacker may be able to calculate the AES encryption key
by solving a system of 1600 quadratic equations of 8000 unknowns. Although solving a sys-
tem of quadratic equations of this magnitude by today’s mathematical theory and computing
technology is hopeless, this study opens up a new direction of investigation.

2.5 Standard Block Cipher Modes of Operations

Let � be the block size of a given block cipher (e.g., � = 64 for DES and � = 128 for AES).
Let M be a plaintext string. Divide M into a sequence of blocks:

M = M1M2 · · ·Mk,

such that the size of each block Mi is � (using padding for the last block if necessary). There
are several methods to encrypt M . Such methods are referred to as block cipher modes of
operations. The following are the standard block cipher modes of operations:

1. electronic-codebook mode (ECB),
2. cipher-block-chaining mode (CBC),
3. cipher-feedback mode (CFB),
4. output-feedback mode (OFB), and
5. counter mode (CTR).
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Table 2.5 ECB mode

ECB encryption steps ECB decryption steps

Ci = EK(Mi), Mi = DK(Ci),
i = 1, 2, · · · , k. i = 1, 2, · · · , k.

2.5.1 Electronic-Codebook Mode

The ECB mode encrypts each plaintext block independently. Let Ci be the ith ciphertext block.
Table 2.5 lists the encryption and decryption steps under the ECB mode.

ECB is often used to encrypt short plaintext messages M .

2.5.2 Cipher-Block-Chaining Mode

When the plaintext message M is long, the possibility that Mi = Mj for some i �= j
will increase. When this happens, their corresponding cipher blocks Ci and Cj are iden-
tical under the ECB mode, which will be disclosed to the eavesdropper. The use of the
cipher-block-chaining mode can overcome this weakness. Under the CBC mode, the previous
ciphertext block is used to encrypt the current plaintext block. At the beginning, CBC uses
an initial �-bit block C0, referred to as an initial vector. Table 2.6 lists the encryption and
decryption steps under the CBC mode.

CBC is commonly used in practice.

2.5.3 Cipher-Feedback Mode

Under the ECB and CBC modes, the receiver must wait for the entire ciphertext block to arrive
before decryption can be started. There are several drawbacks in these schemes:

1. If the ciphertext block is too long, it would hinder the receiver from reading the entire
plaintext message M continuously.

2. If padding is used when dividing M into blocks, the actual number of transmitted bits in
ciphertext blocks will be larger than the number of bits in M .

3. If a bit error occurs in a ciphertext block during transmission (i.e., a bit is flipped during
transmission), it would affect the readability of the plaintext block after decryption because
of the effect of diffusion.

The use of CFB mode can overcome these drawbacks. CFB does not divide M into blocks.
Instead, it encrypts each basic code one at a time. Let s be the length of the basic code in a

Table 2.6 CBC mode

CBC encryption steps CBC decryption steps

Ci = EK(Ci−1 ⊕ Mi), Mi = DK(Ci) ⊕ Ci−1,
i = 1, 2, · · · , k. i = 1, 2, · · · , k.
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given code set. For example, s = 8 for ASCII code and s = 16 for Unicode. Note that s can
also be set to other values, as long as the length of the block is divisible by s. Let

M = w1w2 · · ·wm,

where each wi is an s-bit binary string, and � is divisible by s.
Under CFB mode, the sender and the receiver share the same �-bit initial vector V0. Encryp-

tion begins by encrypting V0 to produce a ciphertext block U1. Let ps(U) represent the s-bit
prefix of U , and sj(U) the j-bit suffix of U . The encryption procedure calculates C1 = w1 ⊕
ps(U1). It then shifts V0 s bits to the left and fills in the s bits on the right with C1. Repeat this
until Cm is obtained. Table 2.7 lists the encryption and decryption steps under the CFB mode.

CFB is a common method to turn a block cipher algorithm into a stream cipher algorithm.

2.5.4 Output-Feedback Mode

If during the transmission of a CFB cipher string Ci a bit error occurs, then this error not only
will affect the correctness of wi, but also will affect the correctness of wi+1, wi+2, · · · , wi+�/s.
This is because Ci will be removed from V only after �/s iterations. Output feedback mode
can overcome this drawback. OFB is similar to CFB. The only difference is that OFB does not
place Ci in Vi. Table 2.8 lists the encryption and decryption steps under the OFB mode.

OFB is also a common method to turn a block cipher algorithm to a stream cipher algorithm.
It is commonly used in error-prone environments.

2.5.5 Counter Mode

CTR produces block ciphers. It uses an �-bit counter Ctr, which starts from an initial
value and increases by 1 each time. Adding 1 to 1� resets Ctr to 0�. In other words,

Table 2.7 CFB mode

CFB encryption steps CFB decryption steps

Ui = EK(Vi−1), Ui = EK(Vi−1),
Ci = wi ⊕ ps(Ui), wi = Ci ⊕ ps(Ui),
Vi = s�−s(Vi−1)Ci, Vi = s�−s(Vi−1)Ci,
i = 1, · · · , m − 1; i = 1, · · · , m − 1;

Um = EK(Vm−1), Um = EK(Vm−1),
Cm = wm ⊕ ps(Um). wm = Cm ⊕ ps(Um).

Table 2.8 OFB mode

OFB encryption steps OFB decryption steps

Ui = EK(Vi−1), Ui = EK(Vi−1),
Ci = wi ⊕ ps(Ui), wi = Ci ⊕ ps(Ui),
Vi = s�−s(Vi−1)ps(Ui), Vi = s�−s(Vi−1)ps(Ui),
i = 1, · · · , m − 1; i = 1, · · · , m − 1;

Um = EK(Vm−1), Um = EK(Vm−1),
Cm = wm ⊕ ps(Um). wm = Cm ⊕ ps(Um).
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Table 2.9 CTR mode

CTR encryption steps CTR decryption steps

Ctr = Ctr0, Ctr = Ctr0,
Ci = EK(Ctr++) ⊕ Mi, Mi = EK(Ctr++) ⊕ Ci,

i = 1, · · · , k. i = 1, · · · , k.

Ctr ← Ctr + 1 mod 2�. We use Ctr0 to denote the initial value of Ctr and Ctr++ to denote
Ctr + 1 mod 2�. Table 2.9 lists the encryption and decryption steps under the CTR mode.

CTR is simple, and it overcomes the drawbacks of ECB. It is commonly used in applications
that require faster encryption speed.

2.6 Offset Codebook Mode of Operations

The Offset codebook mode (OCB) of operations is a newer but more complex mode of oper-
ations for block ciphers. It was devised by Rogaway, Bellare, Black, and Krovetz in 2001.
OCB provides encryption and authentication simultaneously, and it has stronger security prop-
erties than the standard modes of operations introduced in Section 2.5. OCB is parallelizable,
allowing multiple hardware units to execute the algorithm on the same input simultaneously.

2.6.1 Basic Operations

Let a be an �-bit binary string. Denote by firstbit(a) the first bit of a and lastbit(a) the last bit
of a.

Let � = 128. Define f (a) and g(a) as follows:

f(a) =

{
a � 1, if firstbit(a) = 0,
(a � 1) ⊕ 012010000111, if firstbit(a) = 1.

(2.31)

g(a) =

{
a � 1, if lastbit(a) = 0,
(a � 1) ⊕ 1012010000111, if lastbit(a) = 1.

(2.32)

Note that if we treat a as an element in GF (2128), that is, if we treat a as a sequence of coeffi-
cients of a polynomial of degree 127, then f(a) = ax and g(a) = ax−1. Let ⊕ and ⊗ denote,
respectively, the addition operation and the multiplication operation of GF (2128), where ⊕ is
the ordinary exclusive-OR operation on coefficients.

Let i be a positive integer. Let ntz(i) denote the largest integer z such that 2z divides i. That
is, ntz(i) is the number of trailing 0’s in the binary representation of i.

For example, ntz(12) = ntz(1100) = 1 and ntz(16) = ntz(10000) = 4.
Let i ≥ −1 be an integer. Let a(i) denote a ⊗ xi. Thus, a(−1) = g(a), a(0) = a, and

a(1) = f(a). It is straightforward to see that, for i > 1,

a(i) = f(f(· · · f(a) · · ·)) with i many f ’s. (2.33)

Let γk denote a sequence of 2k binary strings of length k as

γk = (γk
0 , γk

1 , · · · , γk
2k−1),
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where γk
0 = 0k and γk

1 = 0k−1
1 , such that every two successive strings differ in exactly one

place. That is, if we perform XOR on any two successive strings, we get exactly one 1 in the
resulting new string. The number of 1’s as the result of XORing two strings is referred to as
the Hamming distance of the strings. A sequence of strings of equal length is a Gray code if
for every two successive strings, their Hamming distance is 1. Thus, γk is a Gray code. Let

γk+1 = (0γk
0 , 0γk

1 , · · · , 0γk
2k−2, 0γk

2k−1, 1γk
2k−1, 1γ2k−2, · · · , 1γk

1 , 1γk
0 ). (2.34)

Then γk+1 is also a Gray code.
Let γ denote γ�. That is, γi = γ�

i for 0 ≤ i ≤ 2� − 1. Then for 1 ≤ i ≤ 2� − 1, we have

γi = γi−1 ⊕ (0�−11 � ntz(i)). (2.35)

This implies that

γi ⊗ a = [γi−1 ⊕ (0�−11 � ntz(i))] ⊗ a

= (γi−1 ⊗ a) ⊕ (0�−11 � ntz(i)) ⊗ a

= (γi−1 ⊗ a) ⊕ (a ⊗ xntz(i))

= (γi−1 ⊗ a) ⊕ a(ntz(i)).

Let n be a non-negative integer and b(n) the binary representation of n. Assume that |b(n)| ≤
�. Let

ppad�(n) = 0�−|b(n)|b(n),

where ppad stands for “prefix padding”. Let X be a binary string. Let

len�(X) = ppad�(|X| mod 2�).

For example, let X be an 18-bit binary string. Then

len4(X) = ppad4(18 mod 24) = ppad4(2) = 0010.

We extend the XOR operation on two binary strings of unequal length as follows: let X =
x1x2 · · ·xm and Y = y1y2 · · · yn be two binary strings, where xi and yj are bits for 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Let κ = min{m,n}. Define

X ⊕ Y = x1 · · ·xκ ⊕ y1 · · · yκ = (x1 ⊕ y1)(x2 ⊕ y2) · · · (xκ ⊕ yκ).

For example,
1001 ⊕ 010101 = 1001 ⊕ 0101 = 1100.

2.6.2 OCB Encryption and Tag Generation

We now describe how OCB encrypts data and authenticates data. We assume that the block
size of the underlying encryption algorithm E (e.g., AES) is � = 128. Using an encryption
algorithm with a different block size follows the same procedure except that we need to modify
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f (a) and g(a) defined in Equalities 2.31 and 2.32. OCB produces a τ -bit tag for authentication,
where τ ≤ �.

Suppose that Alice wants to encrypt and authenticate a plaintext message M to be sent to
Bob. Alice first divides M into �-bit blocks as

M = M1 ‖ M2 ‖ · · · ‖ Mm,

where |M1| = |M2| = · · · = |Mm−1| = � and 1 ≤ |Mm| ≤ �.
Let K denote the encryption key of E shared by Alice and Bob. Alice selects an �-bit initial

vector N , which is transmitted in plaintext to Bob.
Alice encrypts M and produces a tag T of M as follows:

L = EK(0�),

R = EK(N ⊕ L),

Zi = γi ⊗ (L ⊕ R) for i = 1, · · · ,m,

Ci = EK(Mi ⊕ Zi) ⊕ Zi for i = 1, · · · ,m − 1,

Xm = len(Mm) ⊕ f(L) ⊕ Zm,

Ym = EK(Xm),

Cm = Ym ⊕ Mm,

T = pτ (EK(M1 ⊕ · · · ⊕ Mm−1 ⊕ Cm0�−|Cm| ⊕ Ym ⊕ Zm)).

Alice sends N ‖ C1 ‖ · · · ‖ Cm ‖ T to Bob.

2.6.3 OCB Decryption and Tag Verification

On receiving N ‖ C1 ‖ · · · ‖ Cm ‖ T from Alice, Bob does the following to obtain M and
verify the tag.

L = EK(0�),

R = EK(N ⊕ L),

Zi = γi ⊗ (L ⊕ R) for i = 1, · · · ,m,

Mi = DK(Ci ⊕ Zi) ⊕ Zi for i = 1, · · · ,m − 1,

Xm = len(Cm) ⊕ g(L) ⊕ Zm,

Ym = EK(Xm),

Mm = Ym ⊕ Cm,

T ′ = pτ (EK(M1 ⊕ Mm−1 ⊕ Cm0�−|Cm| ⊕ Ym)).

If T = T ′, then Bob accepts M1M2 · · ·Mm and rejects it otherwise.
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2.7 Stream Ciphers

Block ciphers under the CFB or OFB modes can produce stream ciphers. However, they incur
extra computation overhead. In certain network applications, particularly in wireless network
applications where end devices are hand-held devices (e.g., simple cell phones), executing
full-strength block ciphers on these devices may be undesirable because these devices tend to
have limited computation capabilities and stringent power supplies. Thus, one would like to
use stream ciphers that require less computing power and consume less energy.

The first stream cipher was invented by Gilbert S. Vernam in 1917. We introduce in this
section the RC4 (pronounced “arc-four”) stream cipher. RC4 was designed by Ron Rivest in
1987 as a trade secret for RSA Security, which was made public in 1994. In particular, RC4
is a major component in the Wired Equivalent Privacy (WEP) protocol adopted in the IEEE
802.11b standard for providing Ethernet-like MAC-layer access for wireless LANs.

2.7.1 RC4 Stream Cipher

RC4 uses encryption keys of variable lengths of 8l bits, where l(1 ≤ l ≤ 256) is an integer cho-
sen by the user. RC4 uses substitution and modular addition operations to generate a sequence
of 8-bit subkeys, and XORs the current plaintext character with a new subkey to generate a
cipher stream.

2.7.1.1 RC4 Subkey Generation

RC4 uses an array S[0, 255] of 256 bytes to generate subkeys. This array is used to form a
new permutation of 8-bit binary strings at each iteration. Let K be an encryption key, where
|K| = 8l, 1 ≤ l ≤ 256. Rewrite K as an array K[0, l − 1] of l bytes. That is,

K = K[0]K[1] · · ·K[l − 1].

RC4 generates subkey streams as follows:

Key Scheduling Algorithm (KSA)

Initialization:
for each i = 0, · · · , 255

set S[i] ← i
Initial permutation:

set j ← 0
for each i = 0, 1, · · · , 255

set j ← (j + S[i]+K[i mod l]) mod 256
swap S[i] with S[j]
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Subkey Generation Algorithm (SGA)

Initialization:
set i ← 0
set j ← 0
set u ← 0

Permutation and generation loop:
set u ← u+1

set i ← (i+1) mod 256
set j ← (j + S[i]) mod 256
swap S[i] with S[j]
set Ku ← S[(S[i] + S[j]) mod 256] (See Fig. 2.3)
repeat

RC4 Encryption and Decryption
Let M = M1M2 · · ·Mk be a plaintext string, where each Mi is an 8-bit binary string.

RC4 encryption: Ci = Mi ⊕ Ki, i = 1, 2, · · · , k.
RC4 decryption: Mi = Ci ⊕ Ki, i = 1, 2, · · · , k.

2.7.2 RC4 Security Weaknesses

KSA uses the secret encryption key to generate the initial permutation of S. SGA then gen-
erates subkey streams from the initial permutation, which no longer uses the encryption key
in any form. This means that knowing the initial permutation is equivalent to breaking RC4
encryption. Even if the initial permutation is only partially revealed, the attacker may still be
able to compute a few subkeys using SGA. Thus, KSA is the critical security point of RC4.

2.7.2.1 Weak Keys

Selecting a suitable encryption key to produce a secure initial permutation is difficult. Fluhrer,
Mantin, and Shamir showed in 2001 that a large number of 8l-bit binary strings are weak

Figure 2.3 RC4 subkey generation after KSA is performed and the values of i and j are set
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encryption keys in the sense that a small part of the string could determine a large number of
bits in the initial permutation and help reveal the secret encryption key.

In particular, let S be the initial permutation. Let b be a positive integer and i an index.
Denote by Ib(S) the number of indexes such that S[i] ≡ i mod b. The initial permutation S
is said to be almost b-conserving if Ib(S) > N − 1. Let K be an RC4 encryption key. If for
any index i, we have K[i mod l] ≡ (1 − i) mod b,K[0] = 1, and the most significant bit of
K[1] is 1, then K is referred to as a special b-exact key.

Let K be an 8l-bit special b-exact key, where b = 2q for some q with 1 ≤ q ≤ 8. It can be
shown that if l is divisible by b, then with a probability of at least 2/5, the initial permuta-
tion S produced by KSA(K) is almost b-conserving. It can be shown that if keys are almost
b-conserving, then there is a strong probabilistic correlation between certain bits of the secret
key and certain bits of the subkey stream. Detailed analysis of this result is rather involved,
which is omitted in this book. On the basis of this correlation, the attacker may be able to
deduce the WEP key. We refer this attack to as the Fluhrer–Mantin–Shamir FMS attack.

In practice, an encryption key in network protocols using RC4 is often a concatenation of
a long-term secret part and a short-term public part. The public component would reveal part
of the initial permutation, and the public component may be reused. The reader is referred
to Chapter 6 for detailed discussions of security weaknesses in RC4 applications in wireless
communications.

2.7.2.2 Attacks from Reusing Subkey Streams

RC4 also requires that the subkey stream be used only once. Otherwise, it is vulnerable to a
known-plaintext attack and a related-plaintext attack. The known-plaintext attack will reveal
the subkey stream used to encrypt the plaintext (see Section 2.1.2).

The related-plaintext attack is intended to obtain the content of two plaintext messages by
XORing the corresponding encrypted strings. In particular, Let M1 and M2 be two plaintext
messages of the same length, where

M1 = m11m12 · · ·m1n,

M2 = m21m22 · · ·m2n,

and each mij is a binary bit. Suppose that they are encrypted by RC4 using the same encryption
key K. That is, first apply RC4 on K to generate a subkey stream k1, k2, · · · , kn, then encrypt
M1 and M2 to obtain C1 = c11c12 · · · c1n and C2 = c21c22 · · · c2n, where cij = mij ⊕ kj . Sup-
pose that the attacker intercepts C1 and C2, which allows him to obtain

c1j ⊕ c2j = (m1j ⊕ kj) ⊕ (m2j ⊕ kj) = m1j ⊕ m2j , j = 1, 2, · · · , n.

Thus, the attacker obtains the exclusive-OR value of two unknown plaintext strings. From this,
he may be able to deduce the original plaintext strings. For example, the attacker may use a
statistical analysis to find common words and phrases in certain type of documents. He then
performs exclusive-OR on each pair of the words and phrases to produce a list of binary strings
that are the exclusive-OR values of two plaintext strings. This list will help deduce, on a given
binary string, two plaintext strings whose exclusive-OR value is the same as the string.
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2.8 Key Generations

Secret keys are critical components of encryption algorithms. The best way to generate secret
keys is to generate them randomly. There are a number of methods to randomly generate
encryption keys. For example, one may move the mouse at will on the screen and record
its track as a binary sequence. This method may produce truly random binary strings. How-
ever, this method needs to interact with users, which is not practical for network applications.
The best alternative is to generate pseudorandom strings using deterministic algorithms. Such
algorithms are called pseudorandom number generators (PRNG). We introduce two PRNG
algorithms in this section.

2.8.1 ANSI X9.17 PRNG

We note that a ciphertext block of an encryption algorithm by itself is a pseudorandom binary
string. It can therefore be used as an encryption key. Using an encryption algorithm as a PRNG
requires an initial key K. For example, we may choose a 128-bit binary string K as an encryp-
tion key of AES-128 under OFB mode, and then use V ′

1V
′
2 · · ·V ′

16 as an 128-bit secret key of
AES-128, where V ′

i is an 8-bit binary string determined by the following recurrence relations:

Ui = EK(Vi−1), (V0 is a fixed initial vector)

V ′
i = p8(Ui)

Vi = s�−8(Vi−1)V
′
i

i = 1, 2, · · · , 16.

The X9.17 PRNG standard was published in 1985 by the American National Standard Insti-
tute (ANSI) for financial institution key management (wholesale). It was reaffirmed in 1991
and updated in 1995. X9.17 PRNG is based on DES. In particular, it uses 3DES/2 with two ini-
tial keys K1 and K2 and an initial vector V0. X9.17 also uses two special 64-bit binary strings
Ti and Vi to generate a 64-bit pseudorandom string Ri at each round of computation, where
Ti represents the current date and time, updated before each round, and Vi, called a seed, is
determined by the following recurrence relations:

Ri = EDEK1,K2
(Vi ⊕ EDEK1,K2

(Ti)),

Vi+1 = EDEK1,K2
(Ri ⊕ EDEK1,K2

(Ti)),

i = 0, 1, · · ·

2.8.2 BBS Pseudorandom Bit Generator

BBS is a pseudorandom bit generator devised by Lenore Blum, Manuel Blum (1995 Turing
Award winner), and Michael Shub in 1986. It generates a pseudorandom bit in each round of
computation. In particular, let p and q be two large prime numbers that satisfy

p mod 4 = q mod 4 = 3.

That is, the remainders of dividing p by 4 and dividing q by 4 are both equal to 3. We discuss
how to find large prime numbers in Section 3.2.5. Let n = p × q and let s be a positive number
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such that s and p are relatively prime and s and q are relatively prime. That is, gcd(s, p) = 1
and gcd(s, q) = 1, where gcd(x, y) denotes the largest common factor of x and y. Without
loss of generality, assume that x > y ≥ 0. Then gcd(x, y) can be calculated efficiently using
the following recurrence relation, also known as Euclid’s algorithm:

gcd(x, y) =

{
gcd(y, x mod y), if y > 0,

x, if y = 0.

It can be shown that Euclid’s algorithm only incurs O(log y) recursive calls. It follows from
Euclid’s algorithm that there are integers a and b such that gcd(x, y) = ax + by.

BBS generates pseudorandom bit as follows:

x0 = s2 mod n,

xi = x2
i−1 mod n,

bi = xi mod 2,

i = 1, 2, · · ·

For example, let p = 383 and q = 503. It is straightforward to verify that p ≡ q ≡ 3( mod 4).
Let s = 101355. Using Euclid’s algorithm it is easy to show that gcd(s, p) = gcd(s, q) = 1.
The first 128 binary bits b1, b2, · · · , b128 generated by BBS, for example, may then be used as
an AES-128 encryption key.

The difficulty of predicting the (k + 1)th BBS bit bk+1 from the k previous BBS bits
b1, · · · , bk depends on the difficulty of the integer factorization problem, also known as
integer factorization. Integer factorization asks, for a given positive nonprime number n, all
prime factors of n. This is a computationally intensive problem. The best known algorithm
for integer factorization has a time complexity in the order of

e
3
√

ln n(ln ln n)2
.

It can be shown that, if integer factorization cannot be solved in polynomial time, then a BBS
pseudorandom bit cannot be distinguished from a true random bit in polynomial time. This
means that any algorithm that can compute, with a probability greater than 1/2, the (k + 1)th
BBS bit bk+1 from the k previous bits b1, · · · , bk, its time complexity must be greater than any
polynomial of the size of n, where the size of n is |n| = �log2n�.

It is a common belief that integer factorization does not have polynomial-time algorithms
under conventional computing devices. However, using an unconventional computation model,
integer factorization can be solved efficiently. In 1994, Peter Shor, an American computer
scientist, showed that integer factorization can indeed be solved in polynomial time using a
theoretical model of quantum computers.

2.9 Closing Remarks

The study of encryption algorithms is an active research and development area. Any encryption
algorithm, if it is commonly used to encrypt data or is made to be an encryption standard by
reputable organizations, will attract attention. Despite intensive studies, however, there have
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been no known encryptions algorithms that have been proven secure using mathematical meth-
ods. Therefore, people would consider an encryption algorithm secure (i.e., secure for the time
being) if it resists all possible attacks one can think of under the current technology. Thus, DES
and 2DES are considered insecure, while 3DES/2 and AES are considered secure. In impor-
tant applications, we should only use encryption algorithms that have been studied extensively
and in which no serious security flaws have been found.

In addition to encryption algorithms and key generation algorithms, how to manage encryp-
tion keys in local systems and how to distribute them over networks is another critical issue.
We discuss this issue in the following chapter.

2.10 Exercises

2.10.1 Discussions

2.1. What are the basic structures and techniques to encrypt data?

2.2. Can you generalize the 64-bit block size and 56-bit key DES to DES+ with 128-bit
block size and 128-bit key? How about with 196-bit and 252-bit keys?

2.3. Why do you think AES is a better encryption algorithm?

2.4. What is the best way to apply encryption algorithms to encrypt data?

2.5. What is the best way to generate secret keys?

2.6. How do you think secret keys are distributed between communication parties?

2.10.2 Homework

Programming assignments in this book are assumed to be carried out in the C lan-
guage. You may also use C++ or Java, as long as you will do so consistently through-
out the book.

2.1. A ciphertext message generated by a simple letter permutation maintains the letter
frequencies of the plaintext message. To flatten frequencies in the ciphertext mes-
sage, we may use a generalized XOR encryption. For simplicity, we assume that any
plaintext message is a sequence of capital English letters. Firstly, we map all 26 cap-
ital letters to integers from 0 to 25, and we use I to denote this mapping. That is,
I(A) = 0, I(B) = 1, · · · , I(Z) = 25. Let X and Y be two English letters. Let

X + Y = I−1([I(X) + I(Y )] mod 26),

where I−1 is the inverse function of I , namely, I−1(0) = A, I−1(1) = B, · · · ,
I−1(25) = Z. Let X = X1 · · ·Xn and Y = Y1 · · ·Yn be two strings of equal length
over the English alphabet. Let

X + Y = (X1 + Y1) · · · (Xn + Yn).
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Let K be an arbitrary letter string of length �. We use K as the encryption key. Note
that K may contain the same letter multiple times. Let M be a plaintext message.
Divide M into blocks M1,M2, · · ·Mk, where the length of each block Mi (i < k) is
�. Let the length of Mk be m. Let Km denote the first m letters in K.

Define an encryption algorithm E as follows: EK(M) = C1C2 · · ·Ck, where Ci =
K + Mi, i = 1, · · · , k − 1, and Ck = Km + Mk.

(a) Describe the decryption algorithm D.
(b) Let K =BLACKHAT. Encrypt the following passage:

Methods of making messages unintelligible to adversaries have been
necessary. Substitution is the simplest method that replaces a char-
acter in the plaintext with a fixed different character in the ciphertext.
This method preserves the letter frequency in the plaintext, and so
one can search for the plaintext from a given ciphertext by comparing
the frequency of each letter against the known common frequency in
the underlying language.

(c) Write a program to implement E and D.

2.2. Let

IPkey(K) =
1101001110101100001011000111
0110101010100111100010011101,

Compute the DES subkey K1.

2.3. Draw a block diagram of the DES encryption algorithm and a block diagram of the
DES decryption algorithm.

2.4. Let M and K each be 64-bit binary strings, representing a plaintext message WHITE-
HAT and an encryption key BLACKHAT.

Each letter in the plaintext message is encoded using an 8-bit ASCII code by adding
a leading 0 to its 7-bit ASCII code. For example, the 7-bit ASCII code of letter W is
1010111 (see Appendix A), and its 8-bit ASCII code is 01010111.

Each letter in the encryption key is encoded using its 7-bit ASCII code, with an
additional parity bit added at the end such that the total number of 1’s (including the
parity bit) is an even number. For example, the 7-bit ASCII code of letter B is 1000010
(see Appendix A), and so B is encoded by 10000100.

Carry out the first round of DES encryption. What is L1R1?

2.5. Write a program to implement the DES subkey generation algorithm, where the input
of the program is an 8-bit string of English letters, while the output is a sequence of
48-bit subkeys.

*2.6. Write a program encrypt.c and a program decrypt.c to implement, respec-
tively, DES encryption and decryption. The program encrypt.c takes an English
plaintext file, encoded in ASCII, as an input file and an eight-letter string as an encryp-
tion key. It encrypts the plaintext file and writes the ciphertext in a binary file as output.
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The program decrypt.c takes a binary file as input and decrypts the ciphertext file
using the same encryption key and writes the plaintext in ASCII file as output.

**2.7. This exercise involves two users. To do this exercise, you must first complete
Exercise 2.6. User A first selects two DES encryption keys K1,1 and K1,2. User
A then selects two 64-bit plaintext blocks M1,j , where j = 1, 2, computes C1,j =
EK1,2

(EK1,1
(M1,j)), and sends (M1,j , C1,j) by email to user B. Likewise, user B

also selects two DES encryption keys K2,1 and K2,2, selects two 64-bit plaintext
blocks M2,j , where j = 1, 2, computes C2,j = EK2,2

(EK2,1
(M2,j)), and sends

(M2,j , C2,j) to user A by email.
From each of the keys K1,j , user A selects 10 arbitrary bits and replaces the remain-

ing bits each with a question mark. User A sends the two modified strings to user B.
Likewise, user B does the same thing on keys K2,j and sends the corresponding mod-
ified strings to user A. User A carries out the meet-in-the-middle attack on 2DES to
user B’s secret key and vice versa. Do they have the same success rate?

2.8. We have shown that meet-in-the-middle attack is substantially more effective than
a brute-force attack. Generalizing this idea, devise a meet-in-the-middle attack on
3DES/2. Is it effective?

*2.9. Let E be the encryption algorithm defined in Exercise 2.1. Show that for any encryp-
tion keys K1 and K2, there is always an encryption key K3 such that for any plaintext
message M , we have

EK2
(EK1

(M)) = EK3
(M).

Note that K1 and K2 may have different lengths.

2.10. Show that 3DES/3 (see Formula 2.10) can be used to decrypt ciphertext message
produced by DES.

2.11. Point out unsymmetrical places between AES encryption and AES decryption.

2.12. Let K = 1234567890abcdef1234567890abcdef be an AES-128 encryption key,
represented in hexadecimal. Calculate round key K1 = W [4, 7].

2.13. Show that generating AES-128 round keys is equivalent to the following pseudo code.

KeyExpansion (byte K[16], word W[44]) {
int i;
word temp;
for (i=0; i < 4; i ++)

W [i] = K[4*i,4*i+3];
for (i = 4; i < 44; i++) {

temp = W [i-1];
if (i mod 4 == 0)

temp = SubWord(RotWord(temp)) ⊕ Rcon[i/4];
W [i] = W [i-4] ⊕ temp;

}
}
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Here functions SubWord, RotWord, and Rcon are defined as follows. Let W =
w1w2w3w4 be a word, where each wi is a byte. Then

SubWord(W ) = S(w1)S(w2)S(w3)S(w4),

RotWord(W ) = w2w3w4w1.

Rcon[j] is a round constant, which is a word defined by (RC[j], 0, 0, 0), with

RC[j] =

{
02 ⊗ RC[j − 1], if j > 1,

01, if j = 1.

2.14. Verify the following elements in matrix mic(A) (see Equality 2.16): a′
0,1 = 4d,a′

0,2 =
9f,a′

0,3 = d5.

2.15. Let (a0,0, a1,0, a2,0, a3,0) = (8e,4d,a1,bc) be the first row in the state matrix A, com-
pute the first column in matrix mic−1(A); that is, compute (a′′

0,0, a
′′
1,0, a

′′
2,0, a

′′
3,0).

2.16. Let w1 and w2 be two 8-bit binary strings. Let A and B be two 4 × 4 byte matrices, that
is, each element in the matrix is an 8-bit binary string. Prove the following equalities:

(a) M(w1 ⊕ w2) = M(w1) ⊕M(w2).
(b) mic−1(A ⊕ B) = mic−1(A) ⊕ mic−1(B).

2.17. Let K = a0 a1 b2 b3 c4 c5 d6 d7 e8 e9 fa fb 0c 0d 1e 1f be an AES-128 encryption
key, represented in hexadecimal. Execute the first round of AES-128 on the plaintext
block 01 12 23 34 45 56 67 78 89 9a ab bc cd de ef f0. What is the state matrix A2
after the first round?

2.18. Let A be a state matrix. Show that shr−1 and sub−1 commute, that is,

shr−1(sub−1(Ci)) = sub−1(shr−1(Ci)).

2.19. Let p(x) be a polynomial of degree n in GF (2n). Show that

xn mod p(x) = p(x) − xn.

2.20. Complete the verification of Equality 2.28.

2.21. Prove Equalities 2.29 and 2.30.

2.22. Following the construction algorithm of the AES S-Box, find the fourth element in
the first row, that is, s0,3, in the S-Box S and the fourth element in the first row, that
is, s′0,3, in the inverse S-Box S−1.

*2.23. Write a client-server program using socket API to implement AES-128 using an
encryption key known to both sides, which is stored in a file. The client program takes
a plaintext file and the encryption key file as input, encrypts the plaintext file using
AES-128, and sends ciphertext blocks to the server program one block at a time. The
server program uses the same encryption key from the encryption key file to decrypt
the blocks it receives, one block at a time, and writes the plaintext blocks to a file.
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2.24. RC5 is a block cipher with a Feistel structure. Its block size, the number of rounds,
and key length may vary. In particular, RC5 takes 2w-bit block as input, where w ∈
{16, 32, 64}; runs for r rounds, where r ∈ {0, 1, · · · , 255}; and uses b-byte keys,
where b ∈ {0, 1, · · · , 255}. It is customary to denote RC5-w/r/b an RC5 encryption
algorithm with parameters w, r, and b. For example, RC5-32/12/16 takes a 64-bit
block as input, runs for 12 rounds, and uses a 128-bit encryption key.

RC5 uses t = 2r + 1 subkeys of length w : S0, S1, · · · , St−1, generated by the fol-
lowing algorithm. Let K be a b-byte encryption key: K0, · · · ,Kb−1, where Ki is the
ith byte in K. Let c be the smallest integer that is greater than or equal to 8b/32. Let
L0L1 · · ·Lc−1 be a 32c-bit binary string, where each Li is a 32-bit binary string. Copy
K to L from left to right. Pad the unoccupied locations in L (if any) with 0. Let

S0 ← Pw

For i = 1 to t − 1, let

Si ← (Si − 1+ Qw) mod 232

Let i ← j ← A ← B ← 0

Execute the following statements for 3× max {t,c} times:

A ← Si ← (Si+ A+ B) «<< 3

B ← Lj ← (Lj+ A+ B) <<< (A+ B)

i ← (i + 1) mod t

j ← (j + 1) mod c

where Pw = Odd[(e − 2)2w], Qw = Odd[(Φ − 1)2w], Odd(x) denotes the odd
number that is closest to x, Φ is the golden ratio 1+

√
5

2 , and x <<< y denotes the
left-circular-shift operation on x for y bits. In particular, Pw and Qw are given as
follows (in hexadecimal):

w 16 32 64

Pw b7e1 b7e15163 b7e151628aed2a6b
Qw 9e37 9e3779b9 9e3779b97f4a7c15

Write a program to generate RC5 keys.

2.25. RC5 encryption and decryption are given as follows. Let M = LR, where L and R

are, respectively, w-bit binary strings.
RC5 encryption:

L ← (L+ S0) mod 232

R ← (R+ S1) mod 232

For i = 1 to r, let

L ← (((L⊕ R) <<< R)+ S2i) mod 232

R ← (((L⊕ R) <<< L)+ S2i + 1) mod 232



90 Introduction to Network Security

RC5 decryption:

For i = r down to 1, let
R ← (((R− S2i + 1) mod 232) >>> L)⊕ L
L ← (((L− S2i) mod 232) >>> R)⊕ R

R ← (R−S1) mod 232

L ← (L− S0) mod 232

where x >>> y denotes the circular-right-shift operation on x for y bits.

(a) Prove the correctness of RC5 decryption.
(b) Write a program to implement RC5 encryption and decryption, using Exercise

2.24 to generate encryption keys. Here the plain text is an ASCII file, while the
encryption keys and cipher text are stored in binary files. Note that RC5 follows
the little-endian format to store binary strings (see Exercise 2.26).

2.26. Current computer architecture is based on 32-bit or 64-bit CPU. These computers
store information by words and address memory locations by bytes. Thus, one word
has four addressable units, whose relative addresses are 0, 1, 2, 3. Let w = w3w2w1w0
be a 4-byte binary string. We have two choices to store w in a word: store wi at relative
address i, or store it at relative address 3 − i, where 0 ≤ i ≤ 3. The first choice is
referred to as little-endian storage, and the latter big-endian storage. In other words,
if bytes in a 4-byte string are read from left to right, then in the little-endian storage,
the first byte is stored in the location with the largest relative address in a word, the
second byte is stored in the location with the second largest relative address, and so
on; in the big-endian storage, the first byte is stored in the location with the smallest
relative address in a word, the second byte is stored in the location with the second
smallest relative address, and so on. Let w = 08040201 (hexadecimal), the following
shows how w is stored in the little-endian storage and in the big-endian storage:

For another example, on a 16-bit computer, the basic storage unit is a 2-byte mem-
ory unit, where each byte is addressable. Thus, to store UNIX, we get UNIX in the
big-endian storage, and we get NUXI in the little-endian storage.

Write a program that can exchange between the little-endian storage and the
big-endian storage.

2.27. Show that in the CBC mode, any error occurred in one cipher block during transmis-
sion will affect the correctness of two plaintext blocks at the receiving side.

Table 2.10 Little-endian storage and big-endian storage of
08040201

Relative address Little-endian Big-endian

0 01 08
1 02 04
2 04 02
3 08 01
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2.28. Suppose that we are using AES under the CFB mode with s = 8. If a transmission
error occurs in one cipher block, how many plaintext blocks will be affected at the
receiving side?

2.29. For each of the following cipher-block modes, draw a block diagram for encryption
and a block diagram for decryption.

(a) Electronic codebook mode (ECB).
(b) Cipher block chaining mode (CBC).
(c) Cipher feedback mode (CFB).
(d) Output feedback mode (OFB).
(e) Counter mode (CTR).

2.30. Show that the OCB decryption and tag verification described in Section 2.6.3 is
correct.

2.31. Draw a block diagram to describe OCB encryption and tag generation.

2.32. Draw a block diagram to describe OCB decryption and tag verification.

*2.33. Give two examples to show that OCB has stronger security properties than standard
block cipher modes of operations introduced in Section 2.5.

*2.34. In Exercise 2.23, you have written a client-server program to encrypt and decrypt data
using AES-128 under ECB. Rewrite this program using CBC, where the initial vector
is a pseudorandom binary string generated by BBS.

*2.35. Let M1, · · · ,Mk be a sequence of plaintext blocks, where each Mi is �-bit long for
1 ≤ i < k, � is the input size of the underlying encryption algorithm E, and Mk is
q-bit long for q < �. Define a ciphertext stealing mode (CTS) as follows, where C0 is
an �-bit initial vector and K an encryption key:

Ci = EK(Mi) ⊕ Ci−1, i = 1, · · · , k − 2,

Ck = pq(Zk−1), Zk−1 = EK(Yk−1), Yk−1 = Mk−1 ⊕ Ck−2,

Ck−1 = EK(Yk), Yk = Zk−1 ⊕ Mk0�−q.

(a) Describe how to decrypt Ck−1 and Ck, and prove the correctness of your
decryption.

(b) Draw a block diagram for encryption and a block diagram for decryption
under CTS.

2.36. Alice proposes the following method to verify that she and Bob share the same
AES-128 key. Alice generates a 128-bit binary string r using BBS, encrypts r,
and sends the ciphertext block rA = EKA

(r) to Bob, where E is the AES-128
encryption algorithm and KA is Alice’s AES-128 encryption key. Bob decrypts rA

to get r′ = DKB
(rA) and sends r′ to Alice, where D is the AES-128 decryption

algorithm and KB is Bob’s AES-128 encryption key. Alice checks whether r′ = r.
If so, then KA = KB . Is this protocol secure? Justify your answer.
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2.37. Modify RC4 as follows: shorten the array S from 256 cells in RC4 to eight cells
and replace each occurrence of 255 in RC4 with 7. This gives a simplified version of
RC4. Let K = 0110010110000011 be an encryption key. Use this simplified RC4 to
encrypt plaintext WHITEHAT.

*2.38. Let M1 = m11m12 · · ·m1n and M2 = m21m22 · · ·m2n be two binary strings that are
unknown to you, where each mij is a binary bit. However, you know

M1 ⊕ M2 = (m11 ⊕ m21)(m21 ⊕ m22) · · · (m1n ⊕ m2n).

Describe how you may be able to deduce M1 and M2.

2.39. Let p = 383 and q = 503. Show that p ≡ q ≡ 3 ( mod 4). Then let s = 101355.
Write a program to implement BBS and produce the first 128 pseudorandom bits
b1, b2, · · · , b128.

2.40. The following result can be used to check whether a PRNG is sufficiently random:
for any two positive integers x and y, if they are selected uniformly at random, then
the probability that gcd(x, y) = 1 is equal to 6/π2. Write a program to verify the
randomness of the PRNG supported by the operating system of your machine.



3
Public-Key Cryptography and Key
Management

To use data encryption algorithms and key generation algorithms in network communications,
users involved in a communication must first agree on using the same secret keys. Before
public-key cryptography was invented, delivering secret keys from one user to another relied
on couriers. For example, one user would generate a secret key and then use a trusted courier
to deliver the key to the other users. Or the users would set up a meeting to determine a secret
key with all users present. Secret keys may also be delivered using a variety of communication
systems, including postal service, email service, and phone service. These methods, however,
are insecure and inflexible for network communication applications.

Invented in the 1970s, public-key cryptography (PKC) was a major breakthrough in cryp-
tography. It makes it possible, without sharing prior secrets, to distribute secret keys securely
and to authenticate data. The study of PKC also provides new applications to the seemingly
unrelated area of number theory. In this chapter, we first introduce the basic concepts of PKC.
We then describe several concrete public-key cryptosystems, including Diffie-Hellman key
exchange, Elgamal public-key cryptosystem, RSA public-key cryptosystem, and elliptic-curve
PKC. These methods use several results in number theory. For convenience, we include a
section reviewing these number theoretic results. Finally, we discuss how to transmit secret
keys using PKC without sharing prior secrets and how to manage keys. Data authentication
methods will be introduced in Chapter 4.

3.1 Concepts of Public-Key Cryptography

In the following sections, we refer to user A as Alice, user B as Bob, user C as Charlie, and
the attacker as Malice.

PKC is a new concept. It allows Alice and Bob to exchange secret keys securely and effi-
ciently over public networks without sharing prior secrets. Let us first look at an example.
Suppose that Alice wants to send a message M (e.g., M could be an AES-128 encryption key)
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confidentially to Bob using the standard postal service. However, Alice and Bob do not share
prior secrets, and so if Alice uses a conventional encryption algorithm to encrypt M and sends
to Bob the encrypted M , Bob will have no way to decrypt it.

To overcome this obstacle, Bob comes up with the following scheme: Bob first sends an
empty box with a lock hasp and an open padlock to Alice. Bob keeps the key in a secure place.
After receiving the empty box and the open padlock from Bob, Alice places M in the box,
locks it with Bob’s padlock, and sends the locked box back to Bob. Bob uses his key to open
the lock and reads M . This is a basic idea of PKC. In this example, the open lock serves as the
public key used for encryption, which is open to the public. The key Bob keeps is the private
key used for decryption, which is to be kept private.

PKC transforms this idea to a mathematical form suitable for network communications.
Let us consider another example. Assume that Alice has defined two functions f0 and f1

such that the following equality holds:

f1(f0(a, y), x) = f1(f0(a, x), y), (3.1)

and that it is difficult to derive x from f0(a, x) and a. On the basis of these two functions,
Alice devises a public-key cryptosystem. The purpose of this system is for Alice and Bob to
calculate the same encryption key. In particular, let a be a public key known to Alice and Bob.
Alice randomly selects a positive number x1 as her private key, calculates y1 = f0(a, x1), and
sends y1 to Bob. Meanwhile, Bob randomly selects a positive number x2 as his private key,
calculates y2 = f0(a, x2), and sends y2 to Alice. Alice calculates K1 = f1(y2, x1) and uses
K1 as her secret key for a conventional encryption algorithm. Bob calculates K2 = f1(y1, x2)
and uses K2 as his secret key for a conventional encryption algorithm. It follows from

f1(y2, x1) = f1(f0(a, x2), x1) = f1(f0(a, x1), x2) = f1(y1, x2)

that K1 = K2. Thus, Alice and Bob now share the same secret key K1, although Alice does
not know x2 and Bob does not know x1. Although Malice may eavesdrop y1 and y2, she cannot
obtain x1 or x2. Thus, it is difficult for Malice to calculate K1 or K2.

PKC provides mathematical constructions of functions f0 and f1.
In 1976, two American mathematicians Whitfield Diffie and Martin Hellman published a

number-theoretic construction of functions f0 and f1. About the same time, a British math-
ematician Malcolm J. Williamson, then employed by British Government Communications
Headquarters (GCHQ), also devised a similar key exchange scheme. However, Williamson’s
result was not published because of GCHQ regulations.

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman published a number-theoretic-
based public-key cryptosystem, which is referred to as the RSA public-key cryptosystem. RSA
can be used to encrypt and authenticate data. Rivest, Shamir, and Adleman were awarded
the 2002 Turing Award for this work. About the same time, a British mathematician Clifford
Cocks, then employed by GCHQ, also devised a similar public-key cryptosystem. However,
Cocks’s result was not published until 1997 because of GCHQ regulations.

In 1985, Neal Koblitz and Victor Miller proposed, independently, elliptic-curve cryptogra-
phy (ECC). Its functionalities are similar to those of RSA’s.

RSA and ECC both have an encryption algorithm and a decryption algorithm. In PKC we
still use E to denote an encryption algorithm and D a decryption algorithm. We use Ku and
Kr to denote, respectively, a public key and a private key. We often want a PKC to satisfy the
following three criteria:
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Forward Efficiency
Encryption C = EKu(M) and decryption M = DKr (C) must be easy to compute. Moreover,
it must be easy to generate a new key pair (Ku,Kr) so that key pairs may be changed from
time to time.

Backward Intractability
It must be computationally intractable to compute M from ciphertext C and public key Ku.
In other words, the public key Ku must not leak out any useful information about the corre-
sponding private key Kr.

Commutability
The public key Ku and the private key Kr must satisfy the following equalities:

M = DKr (EKu(M))

= DKu(EKr (M))

= EKu(DKr (M))

= EKr (DKu(M)).

The commutability requirement is needed for data authentications and digital signatures. It is
not necessary for key exchange.

Public-key cryptosystems often deal with positive integers, instead of arbitrary binary
strings as in conventional encryption algorithms. For any given binary string x, we can
always insert a digit 1 in the leftmost position to obtain a positive integer 1x. Let n be a
positive integer. We can divide M into a sequence of blocks such that the length of each
block is less than log2 n − 1. Inserting a digit 1 in the leftmost position of each block yields a
positive integer less than n. Without loss of generality, we assume that each plaintext block is
a positive integer less than a certain value.

Number theory plays a major role in constructing PKCs. We introduce in the following
section some of the fundamental concepts and results in number theory.

3.2 Elementary Concepts and Theorems in Number Theory

Number theory is a mathematical branch devoted to studying properties of integers. Integers
are formed from prime numbers, and there are infinitely many prime numbers.

Let f (n) and g(n) be functions from positive integers to positive integers. We write f(n) ∼
g(n) if

lim
n→∞

f(n)
g(n)

= 1.

The followings two results are fundamental theorems of integers:

The fundamental theorem of arithmetic. Any integer that is greater than 1 is a product of
prime numbers. Moreover, this product has a unique representation if prime numbers are listed
in nondecreasing order.

Prime number theorem. Let n be an integer greater than 1 and π(n) be the number of prime
numbers that are less than n. Then π(n) ∼ n/ ln n.
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Let n be an integer greater than 1. According to the fundamental theorem of arithmetic, the
integer n can be uniquely represented by

n = pα1
1 pα2

2 · · · pαt
t , (3.2)

where p1 < p2 < · · · < pt are prime numbers, and each αi(i = 1, · · · , t) is a positive integer.
For example,

85 = 5 · 17,

1200 = 24 · 3 · 52,

11011 = 7 · 112 · 13.

3.2.1 Modular Arithmetic and Congruence Relations

Throughout this subsection, let a and b be integers and m a positive integer. Recall that a mod
m represents the remainder of dividing a by m. Let �x� denote the largest integer that is less
than or equal to x. Then

a = �a/m� · m + (amod m). (3.3)

Modular arithmetic has the following properties:

(a + b)mod m = (amod m + b mod m)mod m,

(a − b)mod m = (amod m − b mod m)mod m,

(a × b)mod m = (amod m × b mod m)mod m.

Let b be a given positive integer. Let c and d be two positive integers with c < d. Suppose
that we want to find an integer a ∈ [c, d] such that a and b are relatively prime. This can be done
efficiently as follows: if b is an even number, then choose at random an odd number a ∈ [c, d]
(likewise, if b is an odd number, then choose at random a number a ∈ [c, d]) and check, using
Euclid’s algorithm, whether gcd(a, b) = 1. If not, repeat this procedure by selecting a that is
not previously chosen until gcd(a, b) = 1.

Congruence is a basic relation between integers. In particular, a is said to be congruent
to b modulo m, denoted by a ≡ b (mod m), if a − b is divisible by m. In other words,
a ≡ b (mod m) if and only if there is an integer k (positive or negative) such that
a = b + m · k.

For example, 29 ≡ 4 (mod 5); −11 ≡ −4 (mod 7); −4 ≡ 3 (mod 7).

3.2.2 Modular Inverse

Let a and n be positive integers with a < n. If there is a positive integer b < n such that
a · b ≡ 1 (mod n), then we say that b is a’s inverse modulo n, denoted by a−1 mod n. When
there is no confusion about the modulo n, we use a−1 to denote a’s inverse.

Finding a modular inverse is the basic operation in RSA public-key cryptosystem. However,
modular inverse does not always exist. For example, let a = 2, n = 4, then a does not have a
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modular inverse modulo n. This is because for any integer b with 1 ≤ b < 4, we have 2 · b 
≡1
(mod 4).

Euler’s theorem states that if gcd(a, n) = 1, then a’s inverse modulo n is guaranteed to
exist. Moreover, it has a simpler form using Euler’s totient function φ.

Let n be a positive integer. Euler’s totient function φ(n) is defined to be the number of
positive integers that are less than or equal to n and relatively prime to n. For example,
φ(9) = 6, because each of 1, 2, 4, 5, 7, 8 is relatively prime to 9, while 3 and 6 are not.

Write n in the form of Expression 3.2, then

φ(n) = [pα1−1
1 (p1 − 1)][pα2−1

2 (p2 − 1)] · · · [pαt−1
t (pt − 1)]. (3.4)

For instance, φ(72) = φ(23 · 32) = 23−1(2 − 1) · 32−1(3 − 1) = 4 · 6 = 24.

Euler’s theorem. Let a be a positive integer and n an integer greater than 1 that is relatively
prime to a. Then aφ(n) ≡ 1 (mod n).

It follows from Euler’s theorem that a−1 = aφ(n)−1 mod n if gcd(a, n) = 1 and n > 1.

Proof of Euler’s theorem. Note that n > 1. Let x1, x2, · · · , xφ(n) be an enumeration of all pos-
itive integers less than n that are relatively prime to n. As gcd(a, n) = 1 and gcd(xi, n) = 1,
we have gcd(axi, n) = 1. Thus, gcd(axi mod n, n) = 1. In other words, axi mod n is equal
to xj for some j. Note that xi 
= xj if and only if axi mod n 
= axj mod n. We have

{ax1 mod n, ax2 mod n, · · · , axφ(n) mod n} = {x1, x2, · · · , xφ(n)}.

Thus,

φ(n)∏
i=1

xi ≡
φ(n)∏
i=1

axi (mod n),

φ(n)∏
i=1

xi ≡ aφ(n)
φ(n)∏
i=1

xi (mod n).

This implies that aφ(n) ≡ 1 (mod n). This completes the proof.
When n is a prime number, Euler’s theorem is often referred to as Fermat’s little theorem.

Fermat’s little theorem. Let p be a prime number and a a positive number not divisible by p.
Then ap−1 ≡ 1(mod p).

If follows from Fermat’s little theorem that a−1 = ap−2 mod p, if gcd(a, p) = 1 and p is a
prime number.

In addition to Euler’s theorem and Fermat’s little theorem, we can also calculate modular
inverse using the following two methods:

1. Let a and u be positive integers with n > 1. Write a · u = n + 1, then a · u ≡ 1 (mod n).
Thus, a−1 = u mod n.

For instance, because 4 · 6 = 24 = 23 + 1, we know that 4−1 mod 23 = 6.
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2. Let a and n be positive integers with n > 1. Let A =
[
1 0 a
0 1 n

]
. If A can be transformed

to

[
u v 1
w x y

]
using elementary matrix transformations, then we have au + nv = 1. Thus,

a · u ≡ 1 (mod n). That is, a−1 = u mod n.

For instance, let a = 3 and n = 5. Let A =
[
1 0 3
0 1 5

]
. Multiplying the first row by 2 and

then subtracting the second row, we get

[
2 −1 1
0 1 5

]
. Thus, 3−1 mod 5 = 2.

3.2.3 Primitive Roots

Let a and n be positive integers that are relatively prime, where n > 1. It follows from Euler’s
theorem that aφ(n) ≡ 1 (mod n). If am 
≡1 (mod n) for any positive integer m < φ(n), then
a is a primitive root modulo n. We also say that n has a primitive root a.

For instance, let n = 2 · 5 = 10. We have φ(10) = 4 and 94 ≡ 1 (mod 10). But 9 is not a
primitive root modulo 10, for 92 ≡ 1 (mod 10). We can show that 10 has primitive roots 3
and 7.

It is straightforward to verify that if n has a primitive root a, then the following φ(n) modular
exponentiations are different pairwise:

amod n, a2 mod n, · · · , aφ(n) mod n.

This is the longest cycle of exponentiations modulo n without repetition and forms a multi-
plicative group modulo n, denoted by Z∗

n. A primitive root a modulo n is also referred to as a
generator of the group Z∗

n.
In particular, if n is prime, denoted by p, and p has a primitive root a, then the following

p − 1 modular exponentiations modulo p

amod p, a2 mod p, · · · , ap−1 mod p

are different pairwise.
Not every integer n has a primitive root. For instance, 12 does not have a primitive root. It

can be shown that only the numbers of the following forms have primitive roots: 2, 4, pα, and
2pα, where p is an odd prime number and α is a positive integer.

3.2.4 Fast Modular Exponentiation

Let a, x, n be positive integers with a < n. Calculating modular exponentiation ax mod n is
a common operation in PKC. If we compute y = ax first and then compute y mod n, then the
time complexity of this computation would be too high, for the value of y may be large. This
computation is unnecessary because ax mod n < n. Indeed, we can compute ax mod n much
more efficiently. To see how this can be done, we first assume that x is a power of 2; namely,
x = 2m for some non-negative integer m. Let r(m) = a2m

mod n. We have the following
recursive relation:

r(m) =

{
r2(m − 1)mod n, if m > 0,

amod n, if m = 0.



Public-Key Cryptography and Key Management 99

Thus, we can start from i = 0, square r(i), and then take the modulo n to yield r(i + 1).
Repeating this procedure m times, we get r(m). It should be noted that r(i) < n for each
i, which means that the squaring operation is always performed on positive integers smaller
than n.

Now let us assume that x is an arbitrary positive integer represented in the binary form
bk · · · b1b0, where k = �log2x�, bi ∈ {0, 1}. Then

x = bk · 2k + · · · + b1 · 21 + b0 · 20 =
∑
bi=1

2i.

Thus,

ax mod n = a(∑bi=12
i) mod n

=

[∏
bi=1

a2i

]
mod n

=

[∏
bi=1

(a2i

mod n)

]
mod n.

On the basis of this, we can derive the following fast modular exponentiation algorithm, where
g0 (the output of the algorithm) is equal to ax mod n:

1. Let gk = a.
2. For each integer i from k − 1 down to 0:
3. Let g

i
= (gi+1 × gi+1)mod n;

4. If b
i
= 1 let g

i
= (gi × a)mod n.

This algorithm will undergo at most 2k = 2�log2x� multiplication operations on positive inte-
gers that are less than n.

For instance, let x = 37. Converting it to binary representation, we get x = 100101. Thus,

a37 mod n = (a25 · a22 · a)mod n = [(a23 · a)22 · a]mod n.

Applying the fast modular exponentiation algorithm, we get

g5 = amod n,

g4 = a2 mod n,

g3 = g2
4 mod n = a22

mod n,

g2 = ((g2
3 mod n) · a)mod n = a23 · amod n,

g1 = g2
2 mod n = (a23 · a)2 mod n,

g0 = [(g2
1 mod n) · a]mod n = [(a23 · a)22 · a]mod n.

Therefore, g0 = a37 mod n. Let a = 7 and n = 11. Then g5 = 7, g4 = 72 mod 11 = 5,
g3 = 52 mod 11 = 3, g2 = [(32 mod 11) · 7]mod 11 = 8, and g1 = 82 mod 11 = 9. Hence,

737 mod 11 = [(92 mod 11) · 7]mod 11 = 4 · 7mod 11 = 6.



100 Introduction to Network Security

3.2.5 Finding Large Prime Numbers

Constructing a PKC often needs to use large prime numbers that consist of hundreds of bits.
Finding a prime number in a given range can be done by checking each odd number in the range
until a prime number is found. For example, we can find a k-bit prime number by checking
k-bit odd numbers one at a time until a prime number is found. Such binary numbers can be
represented as a regular expression of 1(0 + 1)k−21, where (0 + 1)� denotes any �-bit binary
string. It follows from the prime number theorem that we can expect at least one prime number
among any ln 2k+1 = (k + 1) ln 2 consecutive k-bit binary positive integers. Thus, we could
find a k-bit prime number by checking (k + 1) ln 2/2 many k-bit positive odd numbers. For
instance, if k = 300, then we may be able to find a prime number by only checking about
301 · ln 2/2 < 105 many 300-bit consecutive positive odd numbers. Such computations can
be carried out easily.

Therefore, the primary task becomes how to efficiently determine whether a given odd num-
ber n is prime. One way to do this is to use the classic sieve, which checks whether n has a
factor that is greater than 1 but less than or equal to

√
n. However, the time complexity of a

sieve is equal to O(
√

n) = O(2
1
2 log n), which is exponential of the length of n. So when n is

large, using sieve is not practical.
There exists a polynomial-time algorithm to determine whether a given integer is a prime

number, but it takes much more time to run than Miller–Rabin’s primality test. Miller–Rabin’s
primality test is a probabilistic algorithm that uses the following property of prime numbers to
determine whether a given integer is prime with large probability:

Let p be an odd prime number. It follows from the fundamental theorem of arith-
metic that there is a positive integer k such that p − 1 = 2kq, where q is an odd
number. Let a be an integer with 1 < a < p − 1. Then either aq mod p = 1 or
there is a non-negative integer j < k such that a2jq mod p = −1.

This property can be proven as follows. From Fermat’s little theorem, we know that ap−1

mod p = 1. That is, a2kq mod p = 1. Let us consider the following sequence of integers:

a20q mod p, a21q mod p, · · · , a2k−1q mod p, a2kq mod p,

where the last integer is equal to 1 and each number in the sequence is a square of the previous
number modulo p, that is,

a2jq mod p = [a2j−1q]2 mod p = [a2j−1q mod p]2 mod p.

Thus, if aq mod p = 1, then every integer in this sequence is equal to 1. If aq mod p 
= 1,
then as a2kq mod p = 1, there must be a non-negative integer j < k such that a2jq mod p 
= 1
and a2j+1q mod p = 1. As [a2jq mod p]2 mod p = a2j+1q mod p = 1, we must have a2jq mod
p = −1.

Thus, if there is an integer a with 1 < a < n − 1 such that aq mod n 
= 1 and a2jq mod
n 
= −1 for all j from 1 to k − 1, then n is not prime.

3.2.5.1 Miller–Rabin’s Primality Test

Let n be an odd number greater than 1. Let k be an integer in the expression n − 1 = 2kq,
where q is an odd number.
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1. Choose at random an integer a with 1 < a < n − 1.
2. If aq mod n 
= 1 and a2jq mod n 
= −1 for all j with 1 ≤ j ≤ k − 1, then output “n is not

prime” and halt.
3. Otherwise, output “n is likely to be prime”. Then choose at random another integer a with

1 < a < n − 1, and repeat Step 2.

As long as it does not halt, that is, as long as it does not output “n is not prime,” this procedure
is repeated for m times, where m is a positive integer.

Miller–Rabin’s primality test returns false information only when it outputs “n is likely to be
prime” while n is not a prime number. It can be shown that the probability that this can happen
is less than 2−2m. If m = 20, then this probability is less than 2−40 < 10−12. Therefore, if one
runs Miller–Rabin’s primality test with a sufficiently large integer m and the test still does not
halt, then n will very likely be prime.

3.2.6 The Chinese Remainder Theorem

The Chinese remainder theorem, first studied by the ancient Chinese, finds a solution to a set
of simultaneous congruence equations.

Let i be a positive integer. Let Zi = {0, · · · , i − 1}. Let n1, n2, · · · , nk be positive integers
that are pairwise relatively prime. That is, gcd(ni, nj) = 1 for all i 
= j with 1 ≤ i, j ≤ k. Let
n = n1 × n2 × · · · × nk.

The Chinese remainder theorem.. For any given set of simultaneous congruence equations
x ≡ ai (mod ni), where i = 1, · · · , k, it has the following unique solution in Zn:

x =

(
k∑

i=1

aibi

)
mod n,

where bi = mi(m
−1
i mod ni) and mi = n/ni.

Note that m−1
i mod ni exists because mi and ni are relatively prime. As an example of using

the Chinese remainder theorem, let (n1, n2, n3) = (3, 5, 7), n = 3 × 5 × 7 = 105. Then
the following set of simultaneous congruence equations of x ≡ 2 (mod 3), x ≡ 3 (mod 5),
and x ≡ 2 (mod 7) has the unique solution x = 23 in Z105 for the following reasons:
m1 = 5 × 7 = 35,m2 = 3 × 7 = 21, and m3 = 3 × 5 = 15. Thus,

m−1
1 mod n1 = 35−1 mod 3 = 2,

m−1
2 mod n2 = 21−1 mod 5 = 1,

m−1
3 mod n3 = 15−1 mod 7 = 1.

This implies that b1 = 35 × 2 = 70, b2 = 21 × 1 = 21, and b3 = 15 × 1 = 15. Hence,

(2 × 70 + 3 × 21 + 2 × 15)mod 105 = (35 + 63 + 30)mod 105 = 23.

The Chinese remainder theorem has a special form for the case of a1 = a2 = · · · = ak = a.
It states that for all integers x and a, if x ≡ a (mod ni) for i = 1, · · · , k, then x ≡ a (mod n).

This result can be proven as follows. As x ≡ a (mod ni) for all i from 1 to k, we know that
x − a is divisible by each of these ni’s. As ni’s are pairwise relatively prime, x − a must be
divisible by the product of these ni’s. Namely, x ≡ a (mod n).
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3.2.7 Finite Continued Fractions

Finite continued fractions are fractional numbers of the following form:

where a0 is an integer (which could be zero), and a1 · · · , ak are nonzero integers. It is custom-
ary to use [a0; a1, · · · , ak] to denote such a finite continued fraction.

Continued fractions are representations of real numbers. Given a real number x, we can
construct a continued fraction (possibly infinite) to represent x as follows.

3.2.7.1 Construction of Continued Fractions

1. Set x0 ← x, a0 ← �x0�, i ← 0.
2. If xi = ai, then halt. Otherwise, set
3. xi+1 ← 1

xi−ai
,

4. ai+1 ← �xi+1�.
5. Set i ← i + 1 and goto Step 2.

If this algorithm generates a finite sequence a0, a1, · · · , ak, then

[a0; a1, · · · , ak] = x,

and so x is a rational number. On the other hand, if x is a rational number, then the algo-
rithm will halt, producing a finite continued fraction [a0; a1, · · · , ak] for some k such that x =
[a0; a1, · · · , ak]. If we let x = m/n (where m and n are nonzero integers with gcd(m,n) = 1),
then it can be shown that k ≤ log2 n.

If the algorithm generates an infinite sequence a0, a1, · · ·, then it can be shown that for any
k > 1 and any 1 ≤ j < k, the finite prefix [a0; a1, · · · , ak] is closer to x than [a0; a1, · · · , aj ].
The following are two examples that represent nonrational numbers as infinite continued
fractions:
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The following theorem states that if a rational number y is sufficiently close to x, then y
must be a prefix of x’s continued fraction representation.

Finite continued fraction approximation theorem. Let x be a real number and [a0;
a1, · · ·] a continued fraction representation of x that may or may not be infinite. If there is a
non-negative integer r and a positive integer s such that |x − r

s
| < (

√
2s)−2, then there must

be k such that
r

s
= [a0; a1, · · · , ak].

3.3 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange protocol provides a concrete construction of functions f0
and f1 defined in Section 3.1. It uses primitive roots and modular exponentiation operations.
In particular, it uses two global parameters (p,a) known to all parties involved in the commu-
nication, where p is a large prime number and a is a primitive root modulo p. The functions
f0 and f1 are defined as follows:

f0(p, a;x) = ax mod p,

f1(x, b) = xb mod p,

where x and b are positive integers. We have

f1(f0(p, a; y), x) = (ay mod p)x mod p = ayx mod p = f0(p, a;x · y),

f1(f0(p, a;x), y) = (ax mod p)y mod p = axy mod p = f0(p, a;x · y).

Thus, f1(f0(p, a; y), x) = f1(f0(p, a;x), y). This shows that the functions f0 and f1 satisfy
Equality 3.1.

3.3.1 Key Exchange Protocol

Diffie-Hellman key exchange allows Alice and Bob to create a common secret key without
sharing prior secrets. The algorithm proceeds as follows: Alice randomly selects a positive
number XA < p as her private key and calculates

YA = f0(p, a;XA) = aXA mod p

as her public key. In the meantime, Bob randomly selects a positive number XB < p as his
private key and calculates

YB = f0(p, a;XB) = aXB mod p

as his public key. Alice then sends YA to Bob and Bob sends YB to Alice. Finally, both Alice
and Bob independently perform secret key calculations. Alice calculates KA = f1(YB ,XA) =
Y XA

B mod p, and Bob calculates KB = f1(YA,XB) = Y XB

A mod p. We have already shown
in Section 3.1 that KA = KB . Therefore, Alice and Bob now share the same secret key
K = KA = KB .
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For example, let the global parameters be (p, a) = (541, 2). Suppose that Alice selects her
private key to be XA = 137 and sends her public key YA = 2137 mod 541 = 208 to Bob. Sup-
pose that Bob selects his private key to be XB = 193 and sends his public key YB = 2193 mod
541 = 195 to Alice. Next, Alice and Bob calculate, respectively,

KA = Y XA

B mod 541 = (195)137 mod 541 = 486,

KB = Y XB

A mod 541 = (208)193 mod 541 = 486,

to obtain the same secret key K = 486.
As modular exponentiations can be calculated using the fast modular exponentiation algo-

rithm, Diffie-Hellman key exchange satisfies the efficiency requirement. Its intractability relies
on the difficulty of solving x from y = ax mod p, where x < p. This problem is referred to as
the discrete logarithm problem, or the discrete log problem for short. It is a common belief that
discrete log cannot be solved in polynomial time on conventional computing devices. Thus, as
long as the prime number p is sufficiently large, Diffie-Hellman key exchange is considered
secure. On the other hand, Peter Shor, an American scientist, showed in 1994 that discrete log
can be solved in polynomial time on a theoretical model of quantum computers. Discrete log
will be used again in Chapter 4 when we discuss digital signatures.

3.3.2 Man-in-the-Middle Attacks

Suppose that Malice eavesdrops YA or YB . As there are no known efficient algorithms that can
solve discrete log, Malice has no ways to solve XA or XB . However, Malice could launch a
man-in-the-middle attack to establish a key KmA with Alice and a key KmB with Bob, while
Alice thinks that she shares KmA with Bob and Bob thinks that he shares KmB with Alice.
Therefore, when Alice encrypts data using KmA, Malice can decrypt it. Likewise, when Bob
encrypts data using KmB , Malice can decrypt it.

To launch a man-in-the-middle attack, Malice selects at random a positive integer Xm < p
and calculates Ym = aXm mod p. Malice places a sniffer on the communication channel used
by Alice and Bob. When she intercepts YA sent from Alice to Bob and YB sent from Bob
to Alice, Malice sends Ym to Bob as it were YA and sends Ym to Alice as it were YB (see
Figure 3.1).

Suppose that Alice does not know that YB has been replaced with Ym and Bob does not know
that YA has been replaced with Ym. Following the Diffie-Hellman key exchange protocol, Alice
and Bob proceed to compute, respectively,

KA = Y XA
m mod p = aXm·XB mod p,

KB = Y XB
m mod p = aYm·XB mod p.

Malice computes

KmA = Y Xm

A mod p = aXA·Xm mod p = KA,

KmB = Y Xm

B mod p = aXB ·Xm mod p = KB .
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Figure 3.1 Man-in-the-middle attack being carried out on the Diffie-Hellman key exchange. (a) Malice
intercepts Alice’s public key YA and Bob’s public key YB . Malice then sends Ym to Bob as if it were
YA and sends Ym to Alice as if it were YB . (b) Because Alice shares KmA with Malice and Bob shares
KmB with Malice, Malice can read encrypted data encrypted using KmA or KmB

Thus, Alice and Bob have not established any common secret key. Instead, Malice has estab-
lished with Alice a secret key KmA = KA and established with Bob a secret key KmB = KB .
When Alice encrypts M using encryption key KA and sends the ciphertext CA = EKA

(M)
to Bob, Malice intercepts and decrypts it using KmA to obtain M . Malice then uses KmB to
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encrypt M and sends the ciphertext Cm = EKmB
(M) to Bob. Bob then uses KB to decrypt

Cm and get M . Likewise, Malice can read any encrypted message sent from Bob encrypted
using KB . In addition, Malice may also modify or fabricate M .

We note that this man-in-the-middle attack will fail if Alice and Bob can authenticate each
other. The RSA public-key cryptosystem introduced in Section 3.4 provides a mechanism for
authenticating users.

3.3.3 Elgamal PKC

Taher Elgamal, an Egyptian-American cryptographer, devised in 1985 a public-key cryptosys-
tem on the basis of the Diffie-Hellman key exchange protocol. It is often referred to as Elgamal
PKC. Note that “Elgamal” has also been written as “ElGamal” (with a capital G in the middle).
Elgamal PKC uses two global parameters p and a, just like those used in the Diffie-Hellman
key exchange protocol, where p is a prime number and a is a primitive root modulo p.

Alice randomly selects a positive integer XA < p as her private key and calculates
YA = aXA mod p as her public key.

Bob randomly selects a positive integer XB < p as his private key and calculates
YB = aXB mod p as his public key.

Let M be a positive integer less than p that represents a block to be encrypted. Alice encrypts
M as follows:

1. Select a positive integer k at random with k < p;
2. Compute K = (YB)k mod p;
3. Compute C1 = ak mod p, C2 = (K · M)mod p, and send (C1, C2) to Bob.

After receiving (C1, C2), Bob can decrypt it by calculating

M = (C2 · (CXB
1 mod p)−1)mod p. (3.5)

The proof of its correctness is left to the reader (see Exercise 3.13).

3.4 RSA Cryptosystem

The basic operation of the RSA public-key cryptosystem is modular exponentiation. Decryp-
tion takes place by finding the modular inverse.

3.4.1 RSA Key Pairs, Encryptions, and Decryptions

Suppose that Alice wants to set up an RSA cryptosystem. She first selects two large prime
numbers p and q, and calculates n = p · q. She then selects a positive integer d such that
1 < d < φ(n) and gcd(d, φ(n)) = 1. Finally, she computes the inverse of d modulo φ(n),
denoted by e. That is, she finds e such that de ≡ 1 (mod φ(n)). Alice publishes (e,n) as her
public key. She keeps d, p, q, and φ(n) secret and uses (d,n) as her private key.

Suppose that Bob wants to encrypt M (some positive integer less than n) and send the
encrypted message to Alice without sharing a prior secret key with Alice. Bob uses RSA
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encryption to encrypt M as follows:

RSA encryption : C = Me mod n. (3.6)

After receiving C, Alice uses RSA decryption to decrypt C as follows:

RSA decryption : M = Cd mod n. (3.7)

We now prove the correctness of RSA decryption; namely, we want to show that Equality 3.7
is true. We present two different proofs. One proof uses the Chinese remainder theorem, while
the other does not use it.

Proof 1: We prove Equality 3.7 using the Chinese remainder theorem. As n = p · q, we have
φ(n) = (p − 1) · (q − 1). It follows from de ≡ 1 (mod φ(n)) that there is an integer k such
that

de = k · φ(n) + 1.

Case 1: M is not divisible by p, that is, gcd(M,p) = 1. It follows from Fermat’s little theorem
that Mp−1 ≡ 1 (mod p). Hence,

Mde ≡ Mkφ(n)M ≡ (Mp−1)k(q−1)M ≡ (1)k(q−1)M ≡ M (mod p).

Case 2: M is divisible by p, that is, gcd(M,p) = p. Then M ≡ 0 (mod p) and Mde ≡ 0
(mod p). This implies that Mde ≡ M (mod p). Hence, we always have Mde ≡ M
(mod p).

Likewise, we can show that Mde ≡ M (mod q). By the special form of the Chinese remain-
der theorem, we have Mde ≡ M (mod pq). As M < n, we have Mde mod n = M . This
completes the proof.

Proof 2: If gcd(n,M) = 1, then M is not divisible by p or q. Hence, by Euclid’s theorem,
we have Mφ(n) mod n = 1. This implies that

Mkφ(n) mod n =
(
Mφ(n) mod n

)k

mod n = 1k mod n = 1.

Thus,

Cd mod n = (Me mod n)d mod n

= Med mod n

= Mkφ(n)+1 mod n

=
[(

Mkφ(n) mod n
)
· M mod n

]
mod n

= (1 · M mod n)mod n

= M.

If gcd(n,M) 
= 1, then it follows from M < n and n = p · q that M is divisible either by
p or by q, but not by both p and q (otherwise, M ≥ n). Without loss of generality, assume that
M is divisible by p (the case that M is divisible by q is similar). This implies that M is not
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divisible by q. That is, M = l · p for a positive integer l and gcd(M, q) = 1. By Fermat’s little
theorem, we have Mq−1 mod q = 1. Thus,

Mkφ(n) mod q = (Mq−1 mod q)k(p−1) mod q

= 1k(p−1) mod q

= 1.

Therefore, there is an integer u such that Mkφ(n) = 1 + u · q. As M = � · p, we have

Mkφ(n)+1 = M + M · u · q = M + l · u · p · q = M + l · u · n ≡ M mod n,

namely, Mkφ(n)+1 mod n = M . Thus,

Cd mod n = Mkφ(n)+1 mod n = M.

This completes the proof.
For example, let p = 13, q = 19. Then

n = p · q = 247,

φ(n) = 12 · 18 = 216.

Choose d = 173 and compute e = 5, where de = 865 ≡ 1mod 216. Let M = 85. We have

C = Me mod n = 855 mod 247

= [((852 mod 247)2 mod 247) · 85]mod 247

= ((622 mod 247) · 85)mod 247 = (139 · 85)mod 247

= 206.

On the other hand, Cd mod n = 206173 mod 247. As

173 = 27 + 25 + 23 + 22 + 1,

we have
C173 mod n = ((((C22 · C)22 · C)2 · C)22 · C)mod n.

Applying the fast modular exponentiation algorithm, we get

g7 = C = 206,

g6 = g2
7 mod n = 2062 mod 247 = 199,

g5 = (g2
6 mod n · C)mod n = ((1992 mod 247) · 206)mod n = 137,

g4 = g2
5 mod n = 1372 mod 247 = 244,

g3 = ((g2
4 mod n) · C)mod n = ((2442 mod 247) · 206)mod 247 = 125,

g2 = ((g2
3 mod n) · C)mod n = ((1252 mod 247) · 206)mod 247 = 93,

g1 = g2
2 mod n = 932 mod 247 = 4,

g0 = ((g2
1 mod n) · C)mod n = ((42 mod 247) · 206)mod 247 = 85 = M.
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From Section 3.2.5, we know that finding large prime numbers p and q can be done effi-
ciently. Once p and q are determined, finding a positive integer d such that gcd(d, φ(n)) = 1
is straightforward using Euclid’s algorithm. From the discussions in Sections 3.2.2 and 3.2.3,
we can find e = d−1 mod φ(n) efficiently. Using the fast modular exponentiation algorithm,
we can carry out RSA encryption and decryption efficiently. Thus, RSA satisfies the efficiency
requirement.

RSA also satisfies the commutability requirement because

M = Dd,n(Ee,n(M)) = (Me mod n)d mod n

= Ed,n(De,n(M)) = (Md mod n)e mod n

= De,n(Ed,n(M))

= Ee,n(Dd,n(M)).

The intractability of RSA depends on the difficulty of integer factorization discussed in
Section 2.8.2. It is a consensus that if RSA parameters p, q, d are appropriately selected and
changed from time to time, then RSA cryptosystem is secure. How to select these parame-
ters appropriately to avoid possible attacks is an important issue. We discuss several common
parameter attacks in the following section.

3.4.2 RSA Parameter Attacks

This section discusses several common attacks on RSA that take advantage of inappropri-
ately selected parameters. This will serve as a guideline for choosing correct RSA parameters.
Attacks against RSA may use the following methods:

1. Try all possible parameters d to decrypt an encrypted block.
2. Factor n.
3. Conduct time analysis to find d.
4. Derive RSA parameters from partial information of these parameters.

The first method is a brute-force method, which is infeasible when n and d are sufficiently
large.

How to factor n efficiently is a long-standing open problem. Despite intensive efforts, it is
still not known whether integer factorization can be solved in polynomial time on a conven-
tional computer.

Time analysis on RSA execution is possible because the execution time of modular expo-
nentiation differs a great deal on the basis of the current bit in the exponent. This difference
may be exploited to deduce d. In particular, under fast modular exponentiation, d is represented
as a binary string dk · · · d1d0. Its execution time on di = 1 is substantially more than that on
di = 0. If this difference is measurable, then d could be derived. Executing a few redundant
instructions when di = 0 could thwart this time analysis.

We discuss several methods that may breach RSA security if partial information of RSA
parameters is known.
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3.4.2.1 Small Exponent Attacks

Small values of e and d should be avoided. For example, assume that Alice and Bob happen
to use the same value of e = 2, but with different values of nA and nB , where nA and nB

happen to be relatively prime. Suppose that Charlie wants to send the same message M to Alice
and Bob using their public keys to encrypt them, where M < min{nA, nB}. Namely, Charlie
sends CA = M 2 mod nA to Alice and CB = M 2 mod nB to Bob. If Malice intercepts CA and
CB , then she can use the Chinese remainder theorem to solve the following two simultaneous
congruences:

x ≡ CA (mod nA),

x ≡ CB (mod nB).

Let x0 ∈ Zn be a solution, where n = nAnB . Then x0 = M 2 mod n. As M 2 < n, we have
x0 = M 2, and so M = √

x0.
For another example, assume that d < 1

3n
1/4 and q < p < 2q, then one can compute d in

polynomial time of log2 n as follows:
We note that q2 < p · q = n, which means that q <

√
n. As

n − φ(n) = p · q − (p − 1)(q − 1) = p + q − 1

and q < p < 2q, we have
4 ≤ n − φ(n) < 3q < 3

√
n.

From de ≡ 1 (mod φ(n)), we know that there is a positive integer k such that de = kφ(n)
+ 1. As e < φ(n), we have

φ(n)k < de <
1
3
φ(n)n1/4.

This implies that k < 1
3n

1/4. It follows from kn − de = k(n − φ(n)) − 1 that

0 < kn − de < k(n − φ(n)) <
1
3
n1/4(3

√
n) = n3/4.

Dividing both sides of this inequality by dn, we get

0 <
k

d
− e

n
<

1
dn1/4 <

1
3d2 <

1
2d2 .

Hence, | e/n − k/d |< (
√

2d)−2.
By the finite continued fraction approximation theorem (see Section 3.2.7), we know that

k/d is a prefix of e/n’s continued fraction. Namely, if e/n = [a0; a1, · · · , am], then there is a
positive integer j ≤ m such that

k/d = [a0; a1, · · · , aj ].

We can compute [a0; a1, · · · , ai], i = 1, · · · ,m, using the continued fraction construction algo-
rithm introduced in Section 3.2.7 in polynomial time of log2 n. Let Ai/Bi = [a0; a1, · · · , ai].
Then Ai/Bi is a candidate of k/d. To determine whether Ai/Bi = k/d, we first verify whether
Ci = (eBi − 1)/Ai is an integer. If not, we choose the next i. If Ci = (eBi − 1)/Ai is an
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integer, then it is possible that Ai = k and Bi = d. To verify whether this is the case, we solve
the following quadratic equation:

x2 − (n − Ci + 1)x + n = 0. (3.8)

As Ci > 0, solutions to Equation 3.8 cannot be equal to 1 or n. Let r1, r2 be two solutions to
Equation 3.8 . That is,

x2 − (n − Ci + 1)x + n = (x − r1)(x − r2).

If we let x = 0, then we get
n = r1 · r2.

If both r1 and r2 are integers, then we get {r1, r2} = {p, q}, from which we can calculate φ(n).
From φ(n) and e, we can calculate d using Euclid’s algorithm. If r1 or r2 is not an integer, we
then choose the next i and repeat the aforementioned steps until d is found. Note that solving
Equation 3.8 can be done in polynomial time of log2 n. Thus, we can find d in polynomial time
of log2 n.

3.4.2.2 Partial Information Attacks

When partial information of parameters p, q, and d leaks out, we must select new parameters,
because partial information of these parameters may be exploited by attackers. For example,
let the length of the decimal representation of n be m. It can be shown that if the prefix (or
suffix) m/4 bits of p (or q) leak out, then n can be factored efficiently. For another example,
it can be shown that if m/4 bits in the suffix of d leak out, then d can be found efficiently.

If the parameter d is compromised, then we must not use the original secret parameters p
and q to generate a new pair of d and e, for p and q may no longer be secret. This is because
from the compromised d and the corresponding e, we have

de ≡ 1 (mod φ(n)).

Thus, there is a positive integer k such that de − 1 = kφ(n), from which we can factor n as
follows:

Let a be an arbitrary positive integer less than n. Compute gcd(a, n) using Euclid’s algo-
rithm. If gcd(a, n) > 1, then we know that gcd(a, n) ∈ {p, q}. If gcd(a, n) = 1, then it
follows from Euclid’s theorem ade−1 ≡ 1 (mod n). Let u = de − 1. Note that φ(n) is an even
number. Thus, u = kφ(n) must be an even number. We have

(au/2 + 1)(au/2 − 1) ≡ 0 (mod n). (3.9)

If au/2 
≡ ± 1 (mod n), then gcd ((au/2 + 1)mod n, n) or gcd((au/2 − 1)mod n, n) is a
prime factor of n. Otherwise, we have the following three cases:

Case 1: au/2 ≡ −1 (mod n). That is, au/2 ≡ (n − 1) (mod n) and (au/2 + 1) mod n = 0.
Choose a different value for a and repeat the aforementioned procedure.

Case 2: au/2 ≡ 1 (mod n) and u/2 is an odd number. Choose a different value for a and repeat
the aforementioned procedure.

Case 3: au/2 ≡ 1 (mod n) and u/2 is an even number. Set u ← u/2 and start from Equal-
ity 3.9 until case 1 or case 2 occurs.
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3.4.2.3 Other Attacks

We should avoid encrypting plaintext M that contains a prime factor p or q. This is because
if M < n and n is not relative prime, then n can be factored efficiently. Without loss of gen-
erality, assume that gcd(M,n) = p. Thus, gcd(C, n) = p. Using Euclid’s algorithm, we can
calculate p efficiently.

If M is short and M is a product of two integers whose lengths are close to each other, then
Malice can use meet-in-the-middle attack to compute M . For instance, let the length of binary
representation of M be � and M = m1 · m2, where m1 and m2 are two integers, and the length
of m1 and the length of m2 are all less than or equal to �/2. Malice intercepts C = Me mod n,
computes the following two arrays of values, and then sorts them into nondecreasing order:

1. Array 1: For each positive integer x ≤ 2�/2+1, compute Cx−e (mod n).
2. Array 2: For each positive integer y ≤ 2�/2+1, compute ye (mod n).

If there are integers x and y such that

Cx−e (mod n) = ye (mod n),

then C ≡ (xy)e (mod n). Thus, M ≡ C−e ≡ xy (mod n).
The time of complexity of this attack is in the order of 2�/2+2, which is much smaller than

the complexity of 2� in a brute-force attack. For instance, if M is a 128-bit encryption key
that is a product of two 64-bit integers, then Malice can compute M using meet-in-the-middle
attack in the order of 266 time. A simple way to combat meet-in-the-middle attack is to break
up the product. For example, one may throw in a few useless symbols at the beginning or at
the end of the plaintext message so that the new string cannot be written as the product of two
integers that have about the same length.

3.4.3 RSA Challenge Numbers

A number that is equal to the product of two prime numbers is often referred to as a
semiprime. The ultimate security of an RSA cryptosystem rests on how difficult it is to factor
semiprimes. To stimulate this line of research, the RSA designers and the RSA security
company publish, respectively, an old list and a new list of semiprimes, called RSA challenge
numbers, soliciting solutions from the public. These numbers contain from 100 to 617
decimal digits. Early published RSA challenge numbers were named by RSA-ld, where ld is
decimal length of the number. For instance, RSA-200 consists of 200 decimal digits, which
was factored in May 2005. Later published RSA challenge numbers were named by RSA-lb,
where lb is the binary length of the number. For instance, RSA-576 consists of 576 bits, which
was factored in December 2003. RSA-640 was factored in November 2005. The following is
the decimal representation of RSA-640:

RSA-640: 31074182404900437213507500358885679300373460228427
27545720161948823206440518081504556346829671723286
78243791627283803341547107310850191954852900733772
4822783525742386454014691736602477652346609
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Table 3.1 Status of RSA challenge numbers

Challenge number Decimal length Prize (USD) Status Date

RSA-576 174 $10,000 Factored 2003–12–03
RSA-640 193 $20,000 Factored 2005–11–02
RSA-704 212 $30,000 Factored 2012–07–02
RSA-768 232 $50,000 Factored 2009–12–12
RSA-896 270 $75,000 Not factored
RSA-1024 309 $100,000 Not factored
RSA-1536 463 $150,000 Not factored
RSA-2048 617 $200,000 Not factored

Table 3.1 lists the status of RSA Factoring Challenge. RSA Security was acquired by EMC2

in 2007, but the prizes offered by RSA Security for factoring RSA challenge numbers are still
honored.

The competition of factoring RSA challenge numbers has led to two conclusions. Firstly, we
should change semiprimes from time to time, where a particular semiprime should only be used
in a time interval shorter than the time required to factor an RSA challenge number of a similar
length. Secondly, we should use semiprimes that consist of more than 200 decimal digits.

However, there is a practicality issue on the length of semiprimes: if semiprimes are required
to have long length to avoid being factored, then it may compromise the efficiency requirement.
Thus, finding an alternative becomes important. This effort has led to the development of
elliptic-curve cryptography.

3.5 Elliptic-Curve Cryptography

The mathematics used in elliptic-curve cryptography is deep. This section only provides a brief
introduction.

In general, an elliptic curve is a plane curve defined by an equation of the form

y2 + a1xy + a2y = x3 + a3x
2 + a4x + a5,

where coefficients a1, a2, a3, a4, a5 are real numbers. Note that an elliptic curve may not have
the shape of an ellipse.

We are particularly interested in the following special form of elliptic curves, with a1 =
a2 = a3 = 0 in Equation 3.10 and with a4 renamed to a and a5 to b (Fig. 3.2 provides two
examples):

y2 = x3 + ax + b, where 4a3 + 27b2 
= 0. (3.10)

3.5.1 Commutative Groups on Elliptic Curves

Let E(a, b) denote the set of points on the elliptic curve defined by Equation 3.10 . Then E(a, b)
is additive. This property can be used to construct a commutative group. A commutative group,
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Figure 3.2 (a) y2 = x3 − x. (b) y2 = x2 − x + 1

or Abelian group, is a set of elements G with an addition operation “+” satisfying the following
five conditions:

1. Closure: (∀x, y ∈ G)[x + y ∈ G].
2. Associativity: (∀x, y, z ∈ G)[x + (y + z) = (x + y) + z].
3. Unit element: There is an element in G, denoted by 0, such that

(∀x ∈ G)[x + 0 = 0 + x = 0].

4. Inverse: For any element x ∈ G, there is an element x′ ∈ G such that

x + x′ = x′ + x = 0,

where x′ is often denoted by −x. We use x − y to denote x + (−y).
5. Commutativity: (∀x, y ∈ G)[x + y = y + x].

In a commutative group, the unit element is also called the zero element.
Let X, Y ∈ E(a, b). We have the following two cases.
Case 1: X 
= Y . Let L be a straight line connecting X and Y . If L is not perpendicular, then

L must intersect with a unique point Z in E(a, b), where Z 
= X and Z 
= Y .
Case 2: X = Y . Let L be a tangent line to the elliptic curve on point X . If L is not perpen-

dicular, then L must intersect with a unique point Z in E(a, b), where Z 
= X .
In either case, if L is perpendicular, then L will not intersect with any other point in E(a, b).

However, we introduce an imaginary point O that intersects with L at imaginary locations
infinitely far away. This imaginary point O will play the role of the unit element, called a
zero point.

Let E′(a, b) = E(a, b) ∪ {O}. Define an addition operation “+” on points in E(a, b)′ as
follows:

1. For any X ∈ E′(a, b), let X + O = X .
2. For any X, Y ∈ E(a, b), if X 
= Y but they have the same x-coordinate, then it follows

from Equation 3.10 that X and Y are images on the x-axis; namely, X = (x, y) and
Y = (x,−y). Let X + Y = O. Thus, we have −X = (x,−y).
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3. For any X, Y ∈ E(a, b), if their x-coordinates are different, then let L be a straight line
connecting these two points.

(a) If L is not a tangent line to the curve, then L must intersect with a unique different third
point Z ∈ E(a, b). Let X + Y = −Z, namely, X + Y is the image of Z on the x-axis.

(b) If L is a tangent line to the curve at point X , let X + Y = −X .
(c) If L is a tangent line to the curve at point Y , let X + Y = −Y .

4. For any X ∈ E(a, b), let LX be a tangent line to the curve at point X . Let Y ∈ E(a, b) be
another point that is also on LX . Let X + X = −Y .

It can be shown that (E′(a, b),+) is a commutative group (see Exercise 3.8.2).

3.5.2 Discrete Elliptic Curves

For the sake of encoding data, we only consider integral points (x, y) in E(a, b); namely, x
and y are both integers. Moreover, we consider integral points modulo a prime number p.

Let Zp = {0, 1, · · · , p − 1}. If 4b3 + 27c2 mod p 
= 0, let

Ep(a, b) = E(a, b) ∩ {(x, y) | x ∈ Zp, y ∈ Zp}

E′
p(a, b) = Ep(a, b) ∪ {O}.

Define an addition operation “+” over E′
p(a, b) to be the same as the addition operation

over E′(a, b) for the first two conditions (i.e., replace E′(a, b) with E′
p(a, b)). For the last two

conditions, because a straight line connecting two points in Ep(a, b) may not intersect with
the curve at an integral point in Ep(a, b), we modify these two conditions as follows:

3′. For any X, Y ∈ Ep(a, b), if their x-coordinates are different, then let X + Y = (x3, y3),
where

x3 = (λ2 − x1 − x2)mod p,

y3 = (λ(x1 − x3) − y1)mod p,

λ =
y1 − y2

x1 − x2
mod p.

4′. For any X = (x, y) ∈ Ep(a, b), let X + X = (x′, y′), where

x′ = (λ2 − 2x)mod p,

y′ = (λ(x − x′) − y)mod p,

λ =
3x2 + b

2y
mod p.

It can be shown that (E′
p(a, b),+) is a commutative group.
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Figure 3.3 Point distribution in E23(1, 0)

As an example, let p = 23, b = 1, and c = 0. We have

E′
23(1, 0) =

{(∞,∞), (0, 0), (1, 5), (1, 18), (9, 5), (9, 18),
(11, 10), (11, 13), (13, 5), (13, 18), (15, 3), (15, 20),
(16, 8), (16, 15), (17, 10), (17, 13), (18, 10), (18, 13),
(19, 1), (19, 22), (20, 4), (20, 19), (21, 6), (21, 17)},

where O = (∞,∞). Figure 3.3 displays how points in E23(1, 0) are distributed.

3.5.3 ECC Encodings

To encrypt plaintext M , we first represent it as a positive integer as in RSA cryptography.
We then encode the integer representation as a point in Ep(a, b) in a way that it can be reversed.
That is, M can be obtained from its point representation in ep(a, b). It is not known whether
there is a polynomial-time algorithm to generate such an encoding, but an encoding can be
obtained efficiently using a probabilistic algorithm. Although there is no guarantee that the
algorithm can always generate a valid encoding, it can be shown that the probability that the
algorithm fails to generate one is very small.

Suppose that M is a positive integer much smaller than p. Let x = M . Check whether

M 3 + bM + c

is equal to the square of some integer modulo p. If not, append a few digits at the end of M ,
and modify these digits if necessary, to obtain a new number M ′ < p, so that M ′3 + bM ′ + c
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is equal to the square of some integer modulo p. This can be done using the following proba-
bilistic algorithm.

Let γ be a large integer such that
ε = 2−γ

is very small, and (M + 1)γ < p. Let

xj = Mγ + j,

where 0 ≤ j < γ. For each j from 0 to γ − 1, compute

yj =
√

(x3
j + bxj + c)mod p.

If yj is an integer, let PM = (xj , yj) be M ’s encoding. Otherwise, increase the value of j and
repeat the same computation until an integral yj is found or j = γ. If j = γ, it means that the
algorithm failed to find an encoding for M . It can be shown that for each j, the probability
that yj is not an integer is approximately equal to 1/2. Thus, the probability that the algorithm
fails to find an encoding for M is only about ε. Given PM = (x, y), it is easy to verify that
M = �x/γ�. We will call γ the encoding parameter.

For example, let (p, b, c, γ) = (179, 3, 34, 15). Then (4 · b3 + 27 · c2)mod p = 174 
= 0. It
follows from (M + 1)γ < 176 that 1 ≤ M ≤ 12. Let M = 10. We have xj = Mγ + j =
150 + j, where 0 ≤ j < 15. When j = 0, we have x0 = 150 and (x3

0 + bx0 + c)mod p =
(1503 + 3 · 150 + 34)mod 179 = 81 = 92. Thus, y0 = 9 is an integer. Hence, P10 = (150, 9)
is an encoding for M = 10 over E′

179(3, 34). As �150/15� = 10, we can obtain M = 10 from
(150, 9).

3.5.4 ECC Encryption and Decryption

It is customary to refer to elliptic-curve encryption as ECC encryption and to elliptic-curve
decryption as ECC decryption.

Let k be an integer greater than 1. For any X ∈ E′
p(a, b), let

kX = X + (k − 1)X.

The elliptic-curve logarithm problem is to find k from kX. There is no known efficient algo-
rithm to solve this problem. The security of ECC encryption rests on the difficulty of solving
this problem.

Similarly to Diffie-Hellman key exchange, ECC encryption also requires that Alice and
Bob share the same parameters. Let G ∈ Ep(a, b) and γ be an encoding parameter. Let
(Ep(a, b), G, γ) be the parameters shared by all parties.

Alice randomly selects a positive integer kA as her private key. She then computes
PA = kAG as her public key and publishes PA. Suppose that Bob wants to encrypt a plaintext
block M using ECC encryption using Alice’s public key KA, where M is a positive integer
satisfying (M + 1)γ < p. Bob uses the following ECC encryption procedure.

Bob randomly selects a positive integer k, encodes M to a point PM = (x, y) ∈ Ep(a, b),
and computes the following two points in Ep(a, b) as the ciphertext of M :

C = (kG, PM + kPA).

For convenience, we use π0(C) to denote kG and π1(C) to denote PM + kPA.
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After receiving C from Bob, Alice uses the following ECC decryption procedure to
decrypt C:

PM = π1(C) − kAπ0(C) = (x, y). (3.11)

She then computes M = �x/γ�.
The correctness of Equality 3.11 is shown as follows:

π1(C) − kAπ0(C) = (PM + kPA) − kA(kG)

= PM + k(kAG) − kA(kG)

= PM .

3.5.5 ECC Key Exchange

ECC can also be used to exchange keys. Similarly to ECC encryption, Alice and Bob must
agree on the same parameters (Ep(b, c), G, γ) in ECC key exchange. Let n be the smallest
positive integer satisfying nG = O.

To obtain the same secret key through ECC key exchange, Alice selects at random a positive
integer kA < n as her private key. She then computes PA = kAG ∈ Ep(a, b) as her public key
and sends PA to Bob. In the meantime, Bob selects at random a positive integer kB < n as his
private key, computes PB = kBG ∈ Ep(a, b) as his public key, and sends PB to Alice. Alice
then computes KA = kAPB as her secret key, and Bob computes KB = kBPA as his secret
key. It is easy to see that

KA = kAPB = kA(kBG) = kB(kAG) = kBPA = KB .

This key exchange scheme is also referred to as the elliptic-curve Diffie-Hellman (ECDH)
scheme.

3.5.6 ECC Strength

The security of ECC rests on the difficulty of solving the elliptic-curve logarithm problem,
which has not been studied as intensively as the discrete logarithm problem. However, the
requirements of ECC parameters are not as rigid as those of RSA. In other words, using a
prime number p consisting of a few hundred bits appears to be sufficient in ECC, while in
RSA, the modulo n is required to have more than a thousand bits. On the other hand, ECC
cryptanalysis has not been conducted as deeply or broadly as RSA cryptanalysis has. And so,
our understanding of ECC is far less than that of RSA.

3.6 Key Distributions and Management

PKC takes substantially more time to encrypt data than conventional encryption algorithms,
and so PKC is not suitable for encrypting long data. PKC is often used to encrypt secret keys
for conventional encryption algorithms and other short messages. Suppose that Alice and Bob
have already agreed on a symmetric-key encryption algorithm. When Alice wants to exchange
confidential information with Bob; Alice generates a secret key K using a PRNG, encrypts K
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using Bob’s public key, and then sends the encrypted key C to Bob. Bob uses his private key
to decrypt C to obtain K.

3.6.1 Master Keys and Session Keys

Suppose that Alice and Bob have agreed on a secret key. If they use this secret key to encrypt
other secret keys during a certain period of time, then this key is referred to as a master key,
denoted by Km. To protect the master key from being compromised by Malice, Alice and Bob
should use it sparingly to reduce exposure of the master key. Instead, they should generate a
new secret key for each new communication session and use the master key to encrypt it for
distribution. Such keys are referred to as session keys, denoted by Ks. In particular, suppose
that Alice wants to send a confidential message to Bob, and they share a master key Km. Alice
first generates a session key Ks, encrypts it using Km, and then sends EKm

(Ks) to Bob. After
receiving EKm

(Ks), Bob decrypts it using Km and obtains Ks. From now on, Alice and Bob
will use Ks to encrypt and decrypt data for the current communication session until the session
is terminated.

The lifetime of a session key is much shorter than that of a master key. A session key is
typically used to encrypt a message (e.g., an email message) or to encrypt packets in a particular
TCP connection from the time a TCP connection is established to the time the connection is
closed. The lifetime of a master key is longer, depending on the underlying applications.

For example, suppose that Alice wants to log on to her company’s computer from home
using a secure remote login application program. This is a client-server program that does,
among other things, the following: when Alice opens the client program on her home computer,
the program generates a master key Km, uses the public key of her company to encrypt Km,
and sends the encrypted Km to the server program. The server program decrypts the encrypted
master key sent from Alice using its private key to obtain Km. The client program then gener-
ates a session key Ks, encrypts it using Km, and sends EKm

(Ks) to the server program. This
session key Ks will be used to encrypt all communications between the client program and the
server program for the current login session, including Alice’s user name, password, control
messages, and data. When Alice logs out, the session key Ks becomes obsolete. However,
the master key Km remains valid for the next login session. The master key Km will become
obsolete when Alice exists the client program.

3.6.2 Public-Key Certificates

In addition to encrypting secret keys, RSA, as well as ECC, can also be used to authenticate
data. Authentication helps to maintain data integrity and data nonrepudiation. Suppose that
Alice wants to prove to Bob that a message M is indeed from her. She first uses her private
key Kr

A to encrypt M and sends (M,CA) to Bob, where CA = EKr
A
(M). Bob uses Alice’s

public key Ku
A to decrypt CA and then compare the decrypted message with M . If the two are

identical, then Bob is convinced that M is indeed from Alice, because only she knows Kr
A.

Using this procedure, Alice can prove her identity to Bob using a special message M that says
“I am Alice.”

To use PKC to encrypt or authenticate data, one must first obtain the receivers’ public keys.
Public keys may be published and distributed in a number of ways. No matter what method
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is used, the user needs to be confident that a published public key really does belong to the
purported owner.

Public keys can be published at a special Website in the form of a directory, listing owner
names and their public keys. They also may be published at an owner’s own Websites or they
may be distributed in email messages. These methods are simple, but they are not secure,
because there is no way to ensure true ownership of a public key. For instance, Malice may
pretend to be Bob and lure Alice to use his public key as if it were Bob’s. Therefore, we need
to find a way to authenticate public keys. A common method is to use a trusted organization
as an authenticator. For example, similarly to the domain name service that provides IP
address lookups, a trusted organization may create a public-key service to provide public-key
lookups. This scheme may be practical if each IP address only has one public key. In reality,
however, the host of an IP address may be a machine with many user accounts, where each
user may have a number of public keys. Thus, this method will cause substantially more
network traffic, because each user might need to communicate with the public-key server for
the receiver’s public key. This high volume of potential network traffic makes the idea of a
public-key service impractical.

The use of public-key certificates is a practical and simple method to authenticate pub-
lic keys. Public-key certificates are also referred to as digital certificates. For simplicity, we
sometimes use certificates to denote public-key certificates. Public-key certificates are issued
by trusted organizations, which are referred to as certificate authorities, denoted by CAs. A
CA uses PKC to authenticate certificates. It publishes its public key on its Website. It issues a
certificate for each user, encrypted by CA’s private key for authentication. In particular, a cer-
tificate is a digital document including the following information: user name, user’s public key,
issue date, CA name, and valid period of the key. Because a certificate may be long, a CA typ-
ically only encrypts a hash value of the certificate using its private key. This process is known
as signing the certificate. When Alice needs to use Bob’s public key, she first asks Bob to send
her his certificate, and then uses CA’s public key to verify that the certificate is indeed issued
by the CA. From Bob’s certificate, Alice obtains Bob’s public key and its expiration period.

The use of public-key certificates helps to thwart data-repudiation attacks. If Bob possesses
a digital document encrypted by Alice’s private key and Alice’s certificate, then Alice will have
a difficult time denying that she did not sign the document, unless she can prove to the court
beyond reasonable doubt that her private key was already stolen before she digitally signed
the document.

We describe in Section 5.2 an industry standard of public-key certificates.

3.6.3 CA Networks

In addition to issuing certificates to users, a CA also needs to keep track of which certificates
are out of date and which certificates have been canceled. It may become a problem when a
CA has many users. To solve this problem, multiple CAs may be needed to form a CA chain.

We use CA〈Ku
X〉 to denote the certificate issued by CA to user X whose public key is Ku

X .
Let CA1 and CA2 denote two different CAs. Assume that Alice is CA1’s user, but not CA2’s

user. Alice possesses a certificate CA1〈Ku
A〉 issued by CA1. Assume that Bob is CA2’user, but

not CA1’s user. Bob possesses a certificate CA2〈Ku
B〉 issued by CA2. Alice does not know

CA2’s public key or how to use it even if she did know it, for she is not CA1’s subscriber.
Likewise, Bob does not know CA1’s public key nor how to use it. Thus, Alice and Bob have
difficulties verifying each other’s certificate.
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To allow Alice to verify Bob’s certificate, we require that CAs be able to authenticate each
other’s public keys. That is, CA1 issues a certificate CA1〈Ku

CA2
〉 for CA2 and makes it avail-

able to its users. Also, CA2 issues a certificate CA2〈Ku
CA1

〉 for CA1 and makes it available to
its users. When Alice sends Bob her certificate CA1〈Ku

A〉, she also sends CA2〈Ku
CA1

〉 along
with it. Bob first uses CA2’s public key to verify CA1’s public key, then uses CA1’s public
key to verify Alice’s public key. Likewise, Bob sends to Alice two certificates CA2〈Ku

B〉 and
CA1〈Ku

CA2
〉, so that Alice can first verify CA2’s public key and then use it to verify Bob’s

public key.
We can use a directed graph, called a CA network to represent the relations between CAs,

where a vertex represents a CA and an edge from vertex CAi to vertex CAj means that CAj

is CAi’s user; namely, CAi has issued a certificate CAi〈Ku
CAj

〉 to CAj . We call a non-CA
user a regular user. Thus, the aforementioned example can be represented by the CA network
shown in Figure 3.4.

When a CA network consists of more than two CAs, we call a path from one CA to another
CA a certificate path. Figure 3.5 is such an example. In this example, the path from Alice
(denoted by A in the figure) to Bob (denoted by B in the figure) has two certificate paths:
CA1 → CA5 → CA4 and CA1 → CA3 → CA5 → CA4. However, from Bob to Alice, there
is only one certificate path CA4 → CA2 → CA1.

In the CA network shown in Fig. 3.5, regular users of CA1 and CA2 can verify each other’s
certificate as follows: suppose that Alice is a regular user of CA1 and Bob a regular user
of CA4. When Bob sends his certificate CA4〈Ku

B〉 to Alice, he must also send her all the
certificates of the CAs on a certificate path from CA4 to CA1. In this case, there is only one
certificate path: CA4 → CA2 → CA1, and so Bob needs to send CA2〈Ku

CA4
〉 and CA1〈Ku

CA2
〉

to Alice, allowing Alice to use CA1’s public key to verify CA2’s public key, use CA2’s public
key to verify CA4’s public key, and finally use CA4’s public key to verify Bob’s public key.

Multiple certificate paths may exist from one CA to another CA. Naturally, we would like to
find the best certificate path, which should be the shortest and most trustworthy. However, these
two measures may compete with each other, for different CAs may adopt different security
policies and use different security protections, resulting in different levels of trust. Thus, a
longer certificate path may turn out to be more trustworthy. How to measure the trustworthiness
of a certificate path is a complex issue, which is beyond the scope of this book.

3.6.4 Key Rings

In a host computer, there may be many user accounts in which each user may have one or more
public and private key pairs. When a user in the system obtains public-key certificates of users
outside of the system, he should store these certificates and the corresponding public keys for

Figure 3.4 A CA network consisting of two CAs that can verify each other’s public key
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Figure 3.5 A CA network consisting of more than two CAs

Table 3.2 A sample private-key ring, where PA represents Alice’s login password and H(PA)
represents the secret key generated from PA

Key ID Owner’s name Public key Encrypted private key Time stamp

Ku
A mod 2� Alice Ku

A EH(PA)(K
r
A) TA

...
...

...
...

...

later use for himself and for other users in the system, which avoids duplicate communications
and computations. Thus, we need to find ways to store and manage these public and private key
pairs. One way to do this is to use a centralized data structure to store all these pairs acquired by
the different users in the system. This data structure is referred to as public-key ring. Likewise,
for a particular security application, we may also use a centralized data structure to store all
the public and private key pairs of each user in the system. This data structure is referred to as
private-key ring.

3.6.4.1 Private-Key Rings

A private-key ring is a table (see Table 3.2) in which each row represents a record of a particular
user, which includes the following attributes: key ID, owner’s name, public key, encrypted
private key, and time stamp.
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The following are explanations of these attributes:

1. The key ID is an �-bit binary string for a fixed � to identify a public key. For example, we
may use Ku mod 2� to represent an �-bit ID of the public key Ku.

2. The owner’s name is the user name who owns the public key in the record, which may be
represented by user’s login name or user’s email address.

3. The public key is the public-key component in the user’s public and private key pair.
4. The encrypted private key is the ciphertext of the private-key component in the user’s public

and private key pair, encrypted using a secret key generated from user’s login password.
The encrypted private key is to be decrypted using the user’s login password.

5. The time stamp is the date and time sequence when the public and private key pair was
generated.

A private-key ring may, of course, contain other attributes on the basis of the requirements
of a specific application.

3.6.4.2 Public-Key Rings

A public-key ring is also a table in which each row represents a record of a particular user,
which includes the following attributes: key ID, owner’s name, public key, CA name, CA trust,
and time stamp. The first three attributes have the same meanings as those in a private-key ring.
The following are explanations of the rest of the attributes:

1. CA name is the name of the CA that issued the owner’s public-key certificate.
2. CA trust is a numerical value, indicating the degree of trust given to the CA.
3. Time stamp is a date and time sequence at which the record was created.

A public-key ring may contain other attributes on the basis of the requirements of a specific
application.

3.7 Closing Remarks

PKC is a major breakthrough in computer cryptography. It makes it possible to distribute secret
keys confidentially from one user to the other without requiring users to share prior secrets.
It also makes it possible to authenticate data. The security of PKC depends on the difficulties
of solving certain mathematical problems. These problems are believed to be intractable on
conventional computers, but there have been no formal proofs. The quest for a new and better
public-key cryptosystem will continue.

3.8 Exercises
3.8.1 Discussions

3.1. What is the major problem in distributing secret keys in network communications
and why does PKC solve the problem?
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3.2. Comparing Diffie-Hellman with RSA as key distribution schemes, which one do you
think is better?

3.3. Comparing Elgamal PKC with RSA as encryption schemes, which one do you think
is better?

3.4. Comparing Diffie-Hellman with ECC as key exchange schemes, which one do you
think is better?

3.5. Comparing RSA with ECC as encryption schemes, which one do you think is better?

3.6. Discuss the concept of key chains.

3.8.2 Homework

3.1. Alice wants to send a plaintext file M to Bob confidentially. However, Alice and
Bob do not share any prior secret. What Alice has is a box with two lock hasps,
while Alice and Bob each have a lock with a key. Alice figures out a way to lock M
inside this box and transmit the locked box to Bob such that during the transmission,
the box is always locked. Bob can get M while no one else can, and no keys are
transmitted. Describe Alice’s method.

3.2. Let a, b, c, d, and n be integers with n 
= 0. Prove the following properties.

(a) a ≡ a (mod n).
(b) a ≡ 0 (mod n) if and only if n is divisible by a.
(c) a ≡ b (mod n) if and only if b ≡ a (mod n).
(d) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).
(e) If a ≡ b (mod n) and c ≡ d (mod n), then

a + c ≡ b + d (mod n), a − c ≡ b − d (mod n), ac ≡ bd (mod n).

3.3. Calculate φ(12), and then find all positive integers a < φ(12) such that aφ(12) ≡ 1
(mod 12). Prove that there is no primitive root modulo 12.

3.4. Let p be a prime number and n < p be a positive integer. Show that a2 mod p = 1
if and only if amod p = 1 or amod p = −1.

3.5. The basic operation in the fast modular exponentiation algorithm is the modular
squaring operation a2 mod n. If we let a be an �-bit binary integer, then the length of
a2 is about 2�. If � is close to log2 n (the length of the binary representation of n), then
computing a2 will require about 2log2 n space. To reduce the memory requirement,
devise an algorithm to compute a2 mod n so that the binary representation of the
largest number during the computation has at most 3�/2 bits.

3.6. Use the fast modular exponentiation algorithm to compute 101124 mod 110.

3.7. Write a program to implement the fast modular exponentiation algorithm.
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3.8. Let x = m/n be a rational number, where m and n are positive integers and
gcd(m,n) = 1. Let [a0; a1, · · · , ak] be the finite continued fraction of x, generated

by the continued fraction construction algorithm. Show that k ≤ log2 n.

3.9. If we let prime number p = 353 then a = 3 is a primitive root modulo p. Use these
two numbers to construct a Diffie-Hellman key exchange system.
(a) If Alice selects a private key XA = 97, what is the value of Alice’s public key

YA?
(b) If Bob selects a private key XB = 233, what is the value of Bob’s public key

YB?
(c) What is the value of the secret key agreed on by both Alice and Bob?

3.10. Let p = 13.
(a) Show that a = 2 is a primitive root modulo p. Use these two parameters to con-

struct a Diffie-Hellman key exchange system.
(b) If Alice’s public key is YA = 7, what is the value of her private key XA?
(c) If Bob’s public key is YB = 11, what is the value of his private key XB?

3.11. Let p be a prime and a be a positive integer. Alice selects at random a private key
XA and uses YA = Xa

A mod p for her public key. Bob selects at random a private
key XB and uses YB = Xa

B mod p as his public key. How do Alice and Bob agree
on the same secret key? Is this method secure? Justify your answer.

3.12. Write a client-server program using the socket API to implement the Diffie-Hellman
key exchange protocol. To complete this problem, you should first complete Exercise
2.39 and Exercise 3.7.

3.13. Prove the correctness of Elgamal decryption. That is, prove Equality 3.5.

3.14. Can the man-in-the-middle attack that can be carried out against the Diffie-Hellman
key exchange be used successfully to attack Elgamal PKC? Justify your answer.

3.15. Let p = 61, q = 53, d = 2753. Find e such that de ≡ 1mod φ(pq).

3.16. Let n = 187 = 11 × 17.
(a) Let e = 7, M = 89. Calculate the RSA ciphertext C.
(b) From C calculated in (a), compute plaintext M .
(c) Let e = 7, M = 88. Calculate the RSA ciphertext C. Can this C be used to

factor n = 187? Justify your answer.

3.17. Describe how to attack RSA if a small value of e = 3 is used. Can you come up a
simple way to prevent such attacks? Justify your answer.

3.18. Alice uses the following method to encrypt English plaintext messages, where only
capital letters are used: map each English capital letter to numbers from 100 to 125;
namely, map A to 100, B to 101, · · ·, and Z to 125. She then encrypts such integers
one at a time. She uses large values of n and e. Is Alice’s method secure? Justify
your answer.
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3.19. If C = Me mod n in RSA encryption, show that (2eC)d ≡ 2M mod n.

3.20. Assume that Alice encrypts a message M using RSA with public keys n = 437 and
e = 3, which yields ciphertext C = 75. If someone tells Malice that M ∈ {8, 9},
then Malice can determine the true value of M without factoring n. How can Malice
do this?

3.21. Assume that Alice and Bob use the same RSA number n, where Alice’s public expo-
nent eA and Bob’s public exponent eB are relatively prime. Now Charlie wants to
send a message M to both Alice and Bob. Charlie encrypts M using Alice’s pub-
lic key to get CA = MeA mod n and encrypts M using Bob’s public key to get
CB = MeB mod n. He then sends CA to Alice and CB to Bob. Malice intercepts
both CA and CB , which he uses to calculate M . How can Malice do this?

3.22. Write a client-server program to implement RSA encryption and decryption,
where RSA parameters are given. To do this exercise, you should first complete
Exercise 3.7.

**3.23. RSA-576 and RSA-640 have been factored. Conduct a literature search and write a
paper describing how these numbers were factored.

3.24. Let y2 = x3 − x + 1 be an elliptic curve. Let X = (1, 1) and Y = (−1,−1). Com-
pute X + Y and 2Y .

3.25. Compute E23(0, 1) and E17(1, 1).

*3.26. Show that (E′(a, b),+) defined in Section 3.5.1 is a commutative group.

*3.27. Show that (E′
p(a, b),+) defined in Section 3.5.2 is a commutative group.

3.28. Show that ECC encryption and decryption satisfy commutativity.

3.29. Let the global parameters of an ECC system be E23(1, 1), G = (3, 10), and γ = 4.
Assume that Alice selects kA = 5 as her private key.

(a) Compute Alice’s public key PA.
(b) Let M = 4. Compute M ’s encoding PM using E23(1, 1).
(c) Bob selects k = 3 and encrypts PM using Alice’s public key to get C. What are

the values of the two coordinates in C?
(d) Show how Alice decrypts C to get M .

3.30. Let the global parameters of an ECC system be E11(1, 6), G = (2, 7), and γ = 2.
Assume that Alice selects kA = 6 as her private key.

(a) Compute Alice’s public key PA.
(b) Let M = 2. Compute M ’s encoding PM in E11(1, 6).
(c) Bob selects k = 5 and encrypts PM using Alice’s public key to get C. What are

the values of the two coordinates in C?
(d) Show how Alice decrypts C to get M .
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3.31. Discuss whether it is useful to have a data structure of a secret-key ring in a system.
If yes, give an example to show that this is a useful concept.

3.32. The use of PKC and public-key certificates to distribute secret keys is a simple and
secure method. Without PKC, we can also use symmetric-key encryption algorithms
to distribute secret keys using a key distribution center (KDC). A KDC is a trusted
organization. Each user of a KDC must first register with the KDC and establish a
master key with the KDC. When Alice wants to communicate with Bob confiden-
tially, Alice first requests her KDC to generate a session key. After receiving such a
request from Alice, KDC generates a session key, encrypts it using the master key
shared with Alice, and sends it back to Alice.

(a) Devise a secure session key distribution protocol for a KDC.
*(b) Improve your protocol in (a) so that it can resist man-in-the-middle attacks and

message replay attacks and allows Alice and Bob to authenticate each other’s
identity. Moreover, your protocol should cut down communication overhead
as much as possible and incorporate TCP three-way handshake protocol to
establish a protected connection between Alice and Bob.

(c) How does the KDC manage all the master keys? Is a secret-key ring data struc-
ture useful in this application?

(d) Before using the KDC, each user must first register with the KDC, prove his
identity to the KDC, and then establish a shared master key. Without using
PKC, how can this be done?

(e) A KDC can easily become a bottleneck when it has to handle many requests
from many users in a short period of time. Design a hierarchical KDC system
to help solve this problem.

(f) Analyze the pros and cons of using a KDC to distribute secret session keys.

3.33. Similar to setting up a KDC for distributing secret keys, we can also establish a
public-key authority center (PKA) to obtain a user’s public key without using his
public-key certificate. A PKA is a trusted organization. To use PKA, each user must
first register his public key with the PKA.

(a) Devise a secure public-key distribution protocol for a PKA.
*(b) Improve your protocol in (a) so that it can resist man-in-the-middle attacks and

message replay attacks and allows Alice and Bob to authenticate each other’s
identity. Moreover, your protocol should cut down communication overhead
as much as possible, and incorporate the TCP three-way handshake protocol
to establish a protected connection between Alice and Bob.

(c) How does a PKA manage users’ public keys? Can a user prove his identity to
the PKA without registering with the PKA?

(d) Before using a PKA, each user must first register with the PKA and prove his
identity to the PKA. How can this be done?

(e) A PKA can easily become a bottleneck when it has to handle many requests
from many users in a short period of time. Design a hierarchical PKA system
to help solve this problem.

(f) Analyze the pros and cons of using a PKA to distribute public keys.
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*3.34. Suppose that Alice knows an integer i and Bob knows an integer j. They want to
know whether i ≤ j without revealing their own integers to each other. This is often
referred to as Yao’s millionaire problem. Devise a security protocol to solve this
problem.

*3.35. Alice and Bob will go to two separate places in a region governed by a dictator, where
the only way they can communicate is through a government-censored network. To
use this network, messages are not allowed to be encrypted because government
agents want to reveal the content of the messages. But the sender is allowed to sign
the message. Alice and Bob do share a secret key, but they will not be able to use any
encryption algorithms once they are there. They figure out a way to communicate
using the government-censored network, so that the real data is well protected with
confidentiality and integrity. This is often referred to as a subliminal channel. Try to
describe their method and justify your answer. Note: there are a number of ways to
build a subliminal channel. Alice and Bob should use a method that is cost-effective
and secure (if they were caught cheating, they might be executed).



4
Data Authentication

Data authentication has two purposes: certify the origin of the data and convince the user that
the data has not been modified or fabricated. Data authentication is a critical mechanism to
maintain data integrity and nonrepudiation. Data authentication may be achieved either using
conventional encryption algorithms or using public-key cryptography.

Suppose that Alice and Bob share a common secret key K. Alice wants to send a data
string M to Bob and convince Bob that M does indeed come from her without being modified
during transmission. This can be done as follows: Alice sends M together with C to Bob,
where C = EK(M) and E is a conventional encryption algorithm agreed on by Alice and
Bob. Because only Alice and Bob know K, Bob can use K to decrypt C to get M ′. Bob
will be convinced that M indeed comes from Alice and that M has not been modified during
transmission if and only if M ′ = M . This method, however, allows Alice to deny to Charlie
that M comes from her, for it could have come from Bob who shares the same secret key K
with her. Public-key cryptography overcomes this obstacle. Section 3.6.2 has introduced how
to use public-key cryptography to authenticate data and provide data nonrepudiation.

If M is short, one may encrypt M directly to authenticate it. However, if M is long, encrypt-
ing the entire M for the purpose of authenticating it may be overkill because it incurs extra
computation and traffic overhead. To authenticate a long data string M , it suffices to compute
a short representation h of M and encrypt h.

A short representation of M generated without using any secret key is often referred to
as a digital digest or a digital fingerprint, which can be obtained using a cryptographic hash
function. A short representation of M generated using a secret key is referred to as a message
authentication code (MAC) or a tag, which can be obtained using an encrypted checksum
algorithm. We can also combine a cryptographic hash function and an encrypted checksum
algorithm to generate a keyed-hash message authentication code (HMAC).

This chapter introduces hash function, MAC, and HMAC algorithms, as well as digital
signature standard algorithms. It also introduces a dual signature scheme for electronic trans-
actions and a blind signature scheme for producing electronic cash.

4.1 Cryptographic Hash Functions

A hash function takes a long string as input, breaks it into pieces, mixes them up, and produces
a new string with a short length. Not every hash function is suitable for generating a digital
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fingerprint. For example, let us look at a simple hash function H⊕ that uses the XOR operation
to transform an input string of arbitrary length to a 16-bit long output string. In particular, let
M = M1M2 · · ·Mk, where each Mi (except possibly the last block Mk) is a 16-bit binary
string. If the last block is shorter than 16 bits, pad it with 1’s to make it a 16-bit block. For
convenience, we still use Mk to denote this block. Let

H⊕(M) = M1 ⊕ M2 ⊕ · · · ⊕ Mk.

This hash function is ill suited for generating fingerprints because it is easy to find sentences
with different meanings that have the same hash value under this hash function. For example,
consider the following two sentences with different meanings: “He likes you but I hate you”
and “He hates you but I like you”. Let S1 and S2 denote, respectively, the binary strings
obtained from the first and the second sentences by encoding English letters using 8-bit ASCII
codes and removing white spaces between words. It is straightforward to verify that H⊕(S1) =
H⊕(S2).

To be well suited for generating fingerprints, a hash function must satisfy several criteria.

4.1.1 Design Criteria of Cryptographic Hash Functions

Let H be a hash function to be constructed. We first set an upper bound Γ for the length of
input strings (measured by bits), where Γ is a very large number. The output length γ is fixed,
where γ is much less than Γ . For example, we may choose Γ = 264 − 1 and γ = 160. We
require that each γ-bit string be selected with the same likelihood as a hash value of the hash
function if input strings are selected uniformly and independently at random. Thus, it follows
from the pigeonhole principle that for any input string x, there must be several input strings
y with H(x) = H(y). To generate a good digital fingerprint, H must possess the one-way
property and the computational uniqueness property. Such a hash function is referred to as a
cryptographic hash function (CHF).

4.1.1.1 One-Way Property

The one-way property assures that computing a digital fingerprint for a given string is easy
but finding a string that has a given fingerprint is hard. In other words, for any binary string x
with |x| ≤ Γ , it is easy to compute H(x) (e.g., in linear time of |x|), but for any binary string
h with |h| = γ, it is hard to find a binary string x such that h = H(x) (e.g., finding such an x
requires exponential time of |x|).

4.1.1.2 Computational Uniqueness Property

The computational uniqueness property assures that it is computationally difficult to find two
different strings with the same fingerprint. There are two types of computational uniqueness;
they are collision resistance and strong collision resistance.
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Collision Resistance
A hash function H is collision resistant, if for any binary string x with |x| ≤ Γ , it is compu-
tationally intractable (e.g., it requires exponential time of |x|) to find a different string y with
|y| ≤ Γ such that H(x) = H(y), although we know that such strings y exist.

Strong Collision Resistance
A hash function H is strongly collision resistant if it is computationally intractable to find two
binary strings x and y with |x| ≤ Γ and |y| ≤ Γ (e.g., it requires exponential time of |x| + |y|)
such that H(x) = H(y) in practice for most situations.

It is straightforward to verify that if a hash function is not collision resistant, then it is not
strongly collision resistant. However, the opposite is not true. In other words, even if a hash
function is not strongly collision resistant, it may still be collision resistant in practice for most
situations.

4.1.2 Quest for Cryptographic Hash Functions

Despite intensive efforts, it is still not known whether cryptographic hash functions exist with
the one-way property and the computational uniqueness property. Over the years, several can-
didates of cryptographic hash functions have been constructed and used in practice, although
there is no mathematical proof that these hash functions indeed possess the desired properties.
These hash functions may contain subtle loopholes that are exploitable by the attacker. Thus,
it is important to identify such weaknesses to help devise stronger hash functions.

In 2004, for example, a Chinese mathematician Xiaoyun Wang and her group showed that
several widely used hash functions at that time, including MD4, MD5, HACAL-128, and
RIPEMD, do not satisfy the requirement of strong collision resistance. This is contrary to
prior beliefs. They also showed in 2005 that another commonly used hash function SHA-1’s
collision resistance is not as strong as people thought it was. They developed a method that
can find two different strings x and y, with time complexity in the order of 269, such that
SHA-1(x) = SHA-1(y). Prior to this, it was commonly believed that the time complexity of
finding such a pair of strings is in the order of 280 (see Section 4.4). Later that year, Xiaoyun
Wang, Andrew Yao (2000 Turing Award winner), and Francis Yao further reduced this time
complexity to the order of 263. These results again tell us what was believed to be strong and
secure may no longer be so because of advancements of technologies and methodologies. New
findings will stimulate new designs of hash functions to overcome the problems that have been
identified.

This section introduces two standard hash functions. They are SHA-512 and Whirlpool.
They are strong candidates of cryptographic hash functions.

SHA stands for Secure Hash Algorithms. SHA-512 and SHA-1 hash functions were devised
by NSA and were made standards for cryptographic hash functions by NIST in, respectively,
1995 and 2002. Exercises 4.8 and 4.9 present a description of SHA-1. Between SHA-1 and
SHA-512, there are SHA-256 and SHA-384. The set of SHA-256, SHA-384, and SHA-512 is
also referred to as the SHA-2 series.

Whirlpool, named after M51 (Whirlpool) Galaxy in Canes Venatici, was devised by a
Brazilian cryptographer Paulo SLM Barreto and a Belgium cryptographer Vincent Rijmen
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Figure 4.1 The basic structure of hash functions, where M is a plaintext block, IV is an initial vector,
F is a compression function, and “+” is some form of modular addition operation

(co-author of AES) in 2000, which was recommended by NESSIE and adopted by ISO and
the International Electrotechnical Commission (IEC) as part of the joint ISO/IEC international
standard in 2003.

4.1.3 Basic Structure of Standard Hash Functions

The SHA-1, SHA-2, and Whirlpool hash algorithms all have the same basic structure. This
structure was proposed by Ralph C. Merkle in 1978. The heart of this basic structure is a
compression function F . Different hash algorithms use different compression functions. The
basic structure is a CBC mode of repeated applications of F without using secret keys (see
Figure 4.1).

4.1.4 SHA-512

In SHA-512, Γ = 2128 − 1 and γ = 512, whereas in SHA-1, Γ = 264 − 1 and γ = 160.

4.1.4.1 Initial Process

Let M be a binary string with |M | ≤ Γ . Let L be the length of M . We represent L as a 128-bit
binary string and denote it by b128(L). We pad M to produce a new binary string M ′ as follows:

M ′ = M ‖ 10� ‖ b128(L), � ≥ 0,

such that the length of M ′ is divisible by 1024, where ‖ represents concatenation. Let L′ denote
the length of M ′. We have

L′ = L + (1 + �) + 128 = L + � + 129.

It follows from Equality 3.3 that

L = 1024 ·
⌊

L

1024

⌋
+ L mod 1024.
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Hence, we can determine � as follows:

� =

{
895 − L mod 1024, if 895 ≥ L mod 1024,

895 + (1024 − L mod 1024), if 895 < L mod 1024.

It is straightforward to verify that there is a positive integer N such that L′ = 1024N . So we
can write

M ′ = M1M2 · · ·MN ,

where each Mi is a 1024-bit binary string.
SHA-512 uses a 512-bit initial vector IV. Let r1, r2, r3, r4, r5, r6, r7, and r8 be variables,

each of which represents a 64-bit binary string. We view each ri as a 64-bit register. Their ini-
tial values are, respectively, the 64-bit binary string in the prefix of the fractional component
of

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17, and
√

19. Representing these values in hexadecimal,
we have

r1 = 6a09e667f3bcc908, r5 = 510e527fade682d1,

r2 = bb67ae8584caa73b, r6 = 9b05688c2b3e6c1f,

r3 = 3c6ef372fe94f82b, r7 = 1f83d9abfb41bd6b,

r4 = a54ff53a5f1d36f1, r8 = 5be0cd19137e2179.

All SHA algorithms store binary strings in the big-endian format (see Exercise 2.26 for the
definition of the big-endian format).

4.1.4.2 SHA-512 Compression Function

The compression function F of SHA-512 takes two inputs; one is a 1024-bit plaintext block
Mi, and the other is a 512-bit string Hi−1, where 1 ≤ i ≤ N and Hi−1 is the current content
in r1r2r3r4r5r6r7r8.

Divide Mi into sixteen 64-bit blocks W0,W1, · · · ,W15, where

Wi = M [64i, 64i + 64], i = 0, 1, · · · , 15

Then generate sixty-four 64-bit binary strings W16,W17, · · · ,W79 as follows:

Wt = [σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16] mod 264,

t = 16, · · · , 79,

σ0(W ) = (W ≫ 1) ⊕ (W ≫ 8) ⊕ (W � 7),

σ1(W ) = (W ≫ 19) ⊕ (W ≫ 61) ⊕ (W � 6),

where W ≫ n denotes a shift operation that shifts W circularly to the right n times, and
W � n denotes a shift operation that shifts W linearly to the left n times (with the n-bit
suffix of W filled with 0’s).
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Let X = x1x2 · · ·x� and Y = y1y2 · · · y� be two binary strings of equal length, where
xi, yi ∈ {0, 1}. Define

X ∧ Y = (x1 ∧ y1)(x2 ∧ y2) · · · (x� ∧ y�),

X ∨ Y = (x1 ∨ y1)(x2 ∨ y2) · · · (x� ∨ y�),

X = x1x2 · · ·x�,

where ∧ denotes the logical conjunction, that is,

0 ∧ 1 = 1 ∧ 0 = 0 ∧ 0 = 0, 1 ∧ 1 = 1;

∨ denotes the logical disjunction, that is,

0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1, 0 ∨ 0 = 0;

and x denotes the logical negation, that is,

0 = 1, 1 = 0.

Let Z = z1z2 · · · z� be a binary string, where each zi is a bit. Let ch(X,Y,Z) denote the
conditional predicate “if X , then Y else Z.” That is,

ch(X,Y,Z) = (X ∧ Y ) ∨ (X ∧ Z).

Let maj(X,Y,Z) denote the majority predicate, that is,

maj(X,Y,Z) = (X ∧ Y ) ⊕ (X ∧ Z) ⊕ (Y ∧ Z).

Let K0,K1, · · · ,K79 denote the sequence of SHA-512 constants, where each constant is a
64-bit binary string (see Appendix B). Let T1 and T2 denote temporary variables representing
64-bit binary strings. Let r denote a 64-bit register. Let

Δ0(r) = (r ≫ 28) ⊕ (r ≫ 34) ⊕ (r ≫ 39),

Δ1(r) = (r ≫ 14) ⊕ (r ≫ 18) ⊕ (r ≫ 41).

The SHA-512 compression function F (Mi,Hi−1) for each i is executed 80 rounds of the
same operations. In particular, for t from 0 to 79, it does the following:

T1 ← [r8 + ch(r5, r6, r7) + Δ1(r5) + Wt + Kt] mod 264,

T2 ← [Δ0(r1) + maj(r1, r2, r3)] mod 264,

r8 ← r7,

r7 ← r6,

r6 ← r5,

r5 ← (r4 + T1) mod 264,

r4 ← r3,
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r3 ← r2,

r2 ← r1,

r1 ← (T1 + T2) mod 264.

After 80 rounds of executions, the 512-bit string in r1r2r3r4r5r6r7r8 is the output of
F (Mi,Hi−1).

4.1.4.3 SHA-512 Algorithm

Let X = X1X2 · · ·Xk and Y = Y1Y2 · · ·Yk, where each Xi and Yi is an �-bit binary string.
Generalize the bitwise-XOR operation to an �-bitwise-XOR operation as follows:

X⊕�Y = [(X1 + Y1) mod 2�][(X2 + Y2) mod 2�] · · · [(Xk + Yk) mod 2�].

Clearly, ⊕1 is the standard bitwise-XOR operation ⊕. Then M ’s digital fingerprint is deter-
mined by H(M) = HN , where HN is calculated recursively as follows:

H0 = IV,

Hi = Hi−1⊕64F (Mi,Hi−1),

i = 1, 2, · · · , N.

4.1.5 WHIRLPOOL

In Whirlpool, Γ = 2256 − 1 and γ = 512.

4.1.5.1 Initial Process

Let M be a binary string with |M | < 2256. Let L be the length of M . We represent L as a
256-bit binary string and denote it by b256(L). Similarly to SHA-512, we pad M to produce a
new binary string M ′ as follows:

M ′ = M ‖ 10� ‖ b256(L), � ≥ 0,

such that the length of M ′ is divisible by 512. Let L′ denote the length of M ′. We have

L′ = L + (1 + �) + 256 = L + � + 257.

It follows from Equality 3.3 that

L = 512 ·
⌊

L

512

⌋
+ L mod 512.

Hence, we can determine � as follows:

� =

{
255 − L mod 512, if 255 ≥ L mod 512,

255 + (512 − L mod 512), if 255 < L mod 512.
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It is straightforward to verify that there is a positive integer N such that L′ = 512N . So we
can write

M ′ = M1M2 · · ·MN ,

where each Mi is a 512-bit binary string.

4.1.5.2 Compression Function

The heart of the Whirlpool compression function F is an encryption algorithm W . It takes
a 512-bit plaintext block X and a 512-bit key K as input, manipulates X in a way similar
to AES, and produces a 512-bit output W (X,K). In this algorithm, a 512-bit binary string
is divided into a sequence of 64 bytes and is treated as an 8 × 8 state matrix of bytes, where
elements are listed row wise. Recall that AES deals with 4 × 4 matrices of bytes.

Whirlpool’s compression function is defined as follows:

F (X,K) = W (X,K) ⊕ X.

The Whirlpool fingerprint of M is obtained using a CBC mode on Mi defined as follows:

H0 = 0512,

Hi = Hi−1 ⊕ F (Mi,Hi−1)

= Hi−1 ⊕ W (Mi,Hi−1) ⊕ Mi,

i = 1, 2, · · · , N,

where H(M) = HN .
We describe in the following section how round keys are generated and how W (X,K) is

constructed.

Generating Round Keys
A total of eleven 512-bit round keys are generated from K, denoted by K0,K1, · · · ,K10. In
particular, K0 = K and Ki(1 ≤ i ≤ 10) is generated using the same sequence of four basic
operations on Ki−1. These four operations are substitute-bytes, denoted by sub; shift-columns,
denoted by shc; mix-rows, denoted by mir; and add-round-constant, denoted by arc. In other
words, We will treat Ki as an 8 × 8 state matrix of bytes for these operations and so we will
denote it by bolditalic Ki.

Ki = arc(mir(shc(sub(Ki−1))), RCi),

where RCi is an 8 × 8 state matrix RCi representing a 512-bit constant string obtained directly
from Whirlpool’s S-Box (see Table 4.1). In particular, the first eight bytes in RCi are the ith
eight bytes in the S-Box, where the rest of the bytes are 0’s. That is, if we write RCi as a
sequence of bytes with RCi[j] denoting the jth byte in RCi, where 0 ≤ j ≤ 63, and list the
elements in Whirlpool’s S-Box row wise as s0, s1, · · · , s255, then

RCi[j] =

{
s8(i−1)+j , if 0 ≤ j ≤ 7,

00000000, if 8 ≤ j ≤ 63,
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Figure 4.2 Block diagram of W

where i = 1, 2, · · · , 10. For instance, the first eight bytes in RC1 are 18 23 c6 e8 87 b8 01
4f, and the first eight bytes in RC8 are e4 27 41 8b a7 7d 95 c8.

Encryption Structure
After the round keys are generated, the algorithm W writes the 64-byte string X in the form
of a state matrix A = (au,v)8×8, where

au,v = x8u+v,

and u, v = 0, 1, · · · , 7. It then performs the add-round-key operation, denoted by ark, on A
and K0 to generate a new string A0. It repeats the same sequence of four operations for 10
rounds. In particular, for each round i with 1 ≤ i ≤ 10,

Ai = ark(mir(shc(sub(Ai−1))), Ki),

and W (X,K) = A10.
Figure 4.2 depicts the block diagram of W .

Substitute Bytes
Whirlpool’s operation of substitute-bytes uses a 16 × 16 S-Box defined in Table 4.1.
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Table 4.1 Whirlpool S-Box (in hexadecimal values)

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 18 23 c6 e8 87 b8 01 4f 36 a6 d2 f5 79 6f 91 52
1 60 bc 9b 8e a3 0c 7b 35 1d e0 d7 c2 2e 4b fe 57
2 15 77 37 e5 9f f0 4a ca 58 c9 29 0a b1 a0 6b 85
3 bd 5d 10 f4 cb 3e 05 67 e4 27 41 8b a7 7d 95 c8
4 fb ee 7c 66 dd 17 47 9e ca 2d bf 07 ad 5a 83 33
5 63 02 aa 71 c8 19 49 c9 f2 e3 5b 88 9a 26 32 b0
6 e9 0f d5 80 be cd 34 48 ff 7a 90 5f 20 68 1a ae
7 b4 54 93 22 64 f1 73 12 40 08 c3 ec db a1 8d 3d
8 97 00 cf 2b 76 82 d6 1b b5 af 6a 50 45 f3 30 ef
9 3f 55 a2 ea 65 ba 2f c0 de 1c fd 4d 92 75 06 8a
a b2 e6 0e 1f 62 d4 a8 96 f9 c5 25 59 84 72 39 4c
b 5e 78 38 8c c1 a5 e2 61 b3 21 9c 1e 43 c7 fc 04
c 51 99 6d 0d fa df 7e 24 3b ab ce 11 8f 4e b7 eb
d 3c 81 94 f7 b9 13 2c d3 e7 6e c4 03 56 44 7f a9
e 2a bb c1 53 dc 0b 9d 6c 31 74 f6 46 ac 89 14 e1
f 16 3a 69 09 70 b6 c0 ed cc 42 98 a4 28 5c f8 86

For the construction of Whirlpool’s S-Box, the reader is referred to Exercises 4.9.10,
4.9.11, and 4.12.

Let A = (ai,j)8×8 be an 8 × 8 state matrix of bytes. Let

x = x0x1x2x3x4x5x6x7

be an eight-bit string, where each xi ∈ {0, 1}. Let π1(x) denote the decimal value of the binary
string x0x1x2x3 and π2(x) denote the decimal value of the binary string x4x5x6x7. Define a
substitution function S on x by

S(x) = sπ1(x),π2(x),

where su,v is the byte at the uth row and the vth column in Whirlpool’s S-Box and 0 ≤
u, v ≤ 7. Whirlpool’s operation sub of substitute-bytes is defined as follows:

sub(A) = (S(ai,j))8×8.

Shift Columns
The shift-columns operation shc in Whirlpool is similar to the shift-rows operation shr in
AES, except that the columns rather than the rows are shifted. In particular, the jth column is
circularly shifted down j bytes, where j = 0, 1, · · · , 7.

Mix Rows
The mix-rows operation mir in Whirlpool is similar to the mix-columns operation mic in
AES. In particular, it uses the following constant matrix, where each row, starting from the
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second row, is a circular right shift of the previous row:

Δ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01 01 04 01 08 05 02 09
09 01 01 04 01 08 05 02
02 09 01 01 04 01 08 05
05 02 09 01 01 04 01 08
08 05 02 09 01 01 04 01
01 08 05 02 09 01 01 04
04 01 08 05 02 09 01 01
01 04 01 08 05 02 09 01

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then mir is defined by
mir(A) = A · Δ,

where the scalar addition operation and the scalar multiplication operation on bytes are the
same as those defined in AES.

Add Round Constant and Add Round Key
The add-round-constant operation arc and the add-round-key operation ark in Whirlpool are
the same as the add-round-key operation in AES. In particular,

arc(A, RCi) = A ⊕ RCi,

ark(A, Ki) = A ⊕ Ki,

where the ⊕ operation on two matrices is the ⊕ operation on bytes of corresponding elements
in the matrices.

4.1.6 SHA-3 Standard

In 2007, NIST launched a competition to define a secure hash algorithm to provide an alterna-
tive to SHA-2. The SHA-2 hash functions are still considered secure by the NIST, and so NIST
required that the SHA-3 standard be drop-in compatible with any system that uses SHA-2. This
means that SHA-3 must support output sizes of 224, 256, 384, and 512 bits.

In 2012, NIST announced that the Keccak family of hash functions devised by Bertoni,
Daemen, Peeters, and Van Assche was selected as the SHA-3 standard. This construction devi-
ates from the traditional CBC mode of repeated applications of compression structure used by
SHA-2 and Whirlpool. Instead, it uses a sponge construction originating from the work of
the Keccak team.

4.1.6.1 Sponge Functions

A sponge function takes a variable length binary string as input and constructs an arbitrary
length binary string as output. The heart of a sponge function is a fixed length permutation. In



140 Introduction to Network Security

particular, a sponge function consists of three phases: a setup phase, an absorb phase, and a
squeeze phase.

Let M be the input string and the hash output length be r. Let b = 25 × 2� with 0 ≤ � ≤ 6.
Thus, b ∈ {25, 50, 100, 200, 400, 800, 1600}. Given a value of b, write b = r + c, where both
r and c are positive integers, r is called the rate, and c is called the capacity. In general, the
selection of r is arbitrary, but the capacity c should be sufficiently large to make the hash
function secure. SHA-3 specifies that c = 2γ, where γ is the length of the hash value.

For example, if we want the hash value to have length γ = 224, then we have c = 2γ = 448,
and so we may choose b = 800 with r = 352.

Setup
In the setup phase, we first pad M by appending at most r − 1 bits in the form of 10∗1 for
a new string M ′ such that |M |′ is divisible by r. Let N = |M |′/r. Divide M ′ into N blocks
such that each block is r-bit long. Denote these blocks by

M1,M2, · · · ,MN .

Let A be a b-bit string. Divide A into 25 substrings of length m = 2�, and rewrite the 25
substrings into a 5 × 5 state matrix listed row wise, denoted by A = (ai,j)5×5. Let ai,j,k denote
the kth bit in ai,j .

Absorb
In the absorb phase, each block is absorbed by the XOR operation with the current state,
followed by the application of a fixed-length permutation fb on b-bit inputs, which will be
described later. In particular, let Ai be the current state, which is a binary string from the
current state matrix Ai by listing all the entries row wise. Initially, A0 = 0b. Let Mi be the
current block. Recall that the size of Mi is r, pr(X) returns the r-bit prefix of string X , and
sc(X) returns the c-bit suffix of X . Then

Ai = fb((pr(Mi ⊕ Ai−1) ‖ sc(Ai−1)),

i = 1, · · · , N.

Squeeze
In the squeeze phase, the permutation fb iterates itself a few times on the initial input of AN

until the output string is at least as long as the desired hash value. Let n denote the number of
iterations. Each iteration generates a new string of length b as follows:

AN+i = fb(AN+i−1),

i = 1, · · · , n.

Let

hi = pr(AN+i−1),

i = 1, · · · , n.

The output of the squeeze phase is h1 · · ·hn with length rn. For example, suppose that the
length of the desired hash value is γ = 224, then because in this case r > γ, we can simply
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Figure 4.3 The sponge function construction using a b-bit permutation fb, where b = r + c. The state
is initially set to 0b and the result is an rn-bit string

choose n = 1. For another example, if γ = 160, then c = 2γ = 320, then we may choose
b = 400 with r = 80. In this case, we may choose n = 2.

Basic Sponge Structure
Figure 4.3 depicts the basic structure of the sponge function.

Hash Value
Let Hγ denote the SHA-3 hash function with output length γ. Then

Hγ(M) = pγ(h1 ‖ · · · ‖ hn).

4.1.6.2 The Keccak Family of Permutations

We now describe the Keccak family of permutations fb, where b = 25 × 2� with 0 ≤ � ≤ 6,
and b = r + c.

The permutation fb takes a 5 × 5 state matrix A as input and carries out the following five
operations, where indices are computed modulo 4 and 2� where appropriate.

1. Diffusion: For all 0 ≤ i, j ≤ 4 and 0 ≤ k ≤ 2� − 1, compute

ai,j,k = ai,j,k ⊕
4⊕

y=0

ai−1,y,k ⊕
4⊕

y=0

ai+1,y,k−1.

2. Dispersion (of bits in words): This operation is the following sequence of 24 steps:

(a) Set i = 1 and j = 0.
(b) For t = 0 to 23 do

i. ai,j = ai,j ⊕ ((t + 1)(t + 2)/2).
ii. Set i = j and j = (2i + 3j) mod 5.

3. Dispersion (of words): For all 0 ≤ i, j ≤ 4, compute

ai,(2i+3j) mod 5 = ai,j .
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Table 4.2 Round constants for the symmetry disruption phase of the fb for
� = 6. For � < 6, use the prefix of these round constants to obtain the round
constants of appropriate length

l Value l Value

0 0x0000000000000001 12 0x000000008000808B
1 0x0000000000008082 13 0x800000000000008B
2 0x800000000000808A 14 0x8000000000008089
3 0x8000000080008000 15 0x8000000000008003
4 0x000000000000808B 16 0x8000000000008002
5 0x0000000080000001 17 0x8000000000000080
6 0x8000000080008081 18 0x000000000000800A
7 0x8000000000008009 19 0x800000008000000A
8 0x000000000000008A 20 0x8000000080008081
9 0x0000000000000088 21 0x8000000000008080
10 0x0000000080008009 22 0x0000000080000001
11 0x000000008000000A 23 0x8000000080008008

4. Nonlinear Map: For each 0 ≤ i, j ≤ 4, compute

ai,j = ai,j ⊕ (a(i+1) mod 5,j ∧ a(i+2) mod 5,j).

This map provides resistance to linear cryptanalysis.
5. Symmetry Disruption: During the lth round, compute

a0,0 = a0,0 ⊕ RCl,

where RCl is the round constant for the lth round.

Table 4.2 lists the round constants for � = 6, where the length of each word is 64-bit long.

Generating Round Constants
The round constants for the permutation fb are generated using a Linear Feedback Shift Reg-
ister (LFSR). We call the initial value of the word, stored in the register, the seed.

A Galois LFSR is used to produce the round constants using a homomorphism

ϕ : GF (2)[x]/(x8 + x6 + x5 + x4 + 1) → GF (2).

In particular, let RCl,k denote the k-bit of RCl. Then we have, for 0 ≤ j ≤ �,

RCl,2j−1 = rcj+7l,

where rct is the output of the LFSR defined by

rct = (xt mod x8 + x6 + x5 + x4 + 1) mod x.

All other bits of RCr are zero.
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For example, rc9 is computed as follows:

rc9 = (x9 mod x8 + x6 + x5 + x4 + 1) mod x

= (−x6 − x5 − x4 − x) mod x

= (x6 + x5 + x4 + x) mod x

= 0.

4.2 Cryptographic Checksums

Checksums are commonly used to detect transmission errors in network communications. For
instance, the IP header in IPv4 contains a 16-bit 1’s complement sum and the Ethernet frame
contains a 32-bit Cyclic Redundancy Check (CRC). However, these checksums cannot be used
to authenticate data or be used as fingerprints, for it is easy to find a different string to have the
same checksum as that of the given string. We can, however, use symmetric-key encryption
algorithms to generate cryptographic checksums to authenticate data. Cryptographic check-
sums are also known as Message Authentication Codes (MAC).

4.2.1 Exclusive-OR Cryptographic Checksums

Let M = M1M2 · · ·Mk be a message, where each Mi (after appropriate padding) is a 128-bit
binary string. Let E denote the AES-128 encryption algorithm and K an AES-128 secret
key. Let

H⊕(M) = M1 ⊕ M2 ⊕ · · · ⊕ Mk.

Then MAC(M) = EK(H⊕(M)) is the MAC code for M . However, this method is insecure,
for it is vulnerable to a man-in-the-middle attack. For example, suppose that Alice and Bob
share the same AES-128 key K. If Alice sends (M,EK(H⊕(M))) to Bob to authenticate M
and Malice intercepts it, then Malice can use EK(H⊕(M)) to impersonate Alice to authen-
ticate almost any message. This can be done as follows: let M ′ = Y1Y2 · · ·Y� be an arbitrary
message, where each Yi (after appropriate padding) is a 128-bit binary string. Let

Y = Y1 ⊕ Y2 ⊕ · · · ⊕ Y� ⊕ H⊕(M),

M ′′ = M ′ ‖ Y.

Note that M ′′ is basically the same message as M ′. Malice sends

(M ′′, EK(H⊕(M)))

to Bob to make him believe that M ′′ comes from Alice as follows. According to the authenti-
cation protocol, Bob first computes

H⊕(M ′′) = Y1 ⊕ Y2 ⊕ · · · ⊕ Y� ⊕ Y = H⊕(M).

He then decrypts EK(H⊕(M)) to get H⊕(M) = H⊕(M ′′), and so Bob would have to believe
that M ′′ comes from Alice.
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4.2.2 Design Criteria of MAC Algorithms

Let MACK(M) denote M ’s MAC code, where K is a secret key. We require that MACK(M)
satisfy the following four criteria:

1. Forward efficiency: Computing MACK(M) is easy and efficient.
2. Backward intractability: It is computationally difficult to compute M from MACK(M).
3. Computational uniqueness: It is computationally difficult to find M ′ �= M from

(M, MACK(M)) such that MACK(M ′) = MACK(M).
4. Uniform distribution: Let k be the length of the MAC code. Let M be a string selected

uniformly at random. Let M ′ �= M be a string, where M ′ is either selected at random
independently of M or transformed from M (e.g., using a transformation function f such
that M ′ = f(M)). Then the probability of MACK(M ′) = MACK(M) is 2−k.

Despite intensive efforts, there have been no known MAC algorithms proven to satisfy these
four criteria. We can, however, use standard encryption algorithms and standard hash functions
to construct message authentication codes to meet the needs in practical applications.

4.2.3 Data Authentication Algorithm

In 1985, the NIST established a data authentication code standard DAC. It is based on DES
under CBC mode.

Let M = M1M2 · · ·Mk, where each Mi (after appropriate padding) is a 64-bit binary string.
Let K be a DES key and E be DES encryption algorithm. Let

C1 = EK(M1),

Ci = EK(Mi ⊕ Ci−1),

i = 2, · · · , k.

Then DAC = Ck.
As DES is phasing out, DAC has been replaced with a new authentication scheme called

Keyed-Hash Message Authentication Code (HMAC).

4.3 HMAC

HMAC is an algorithmic scheme. It uses a hash function and a symmetric-key encryption
algorithm to generate authentication codes. The basic idea of HMAC is to embed the secret
information of the key into the data and then compute a hash value from it.

4.3.1 Design Criteria of HMAC

1. Any reasonable hash function can be deployed directly, that is, without any modification,
in HMAC.
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2. Any cryptographic hash function deployed in HMAC should maintain its basic properties,
including the one-way property (i.e., forward efficiency and backward intractability) and
the computational uniqueness property.

3. The use of secret keys is simple.
4. Analysis of the strength of a HMAC code can be obtained from analyzing the strength of

the hash function deployed.

4.3.2 HMAC Algorithm

HMAC takes the following parameters:

H: a hash function to be embedded (e.g., SHA-512 and Whirlpool).
IV : the initial vector of H .
M : the message to be authenticated.
L: the number of blocks of M .
�: the output length of H(M).
b: the number of bits in a block, which is divisible by 8. It is required that b ≥ �.
K: the secret key with a length ≤ b. (If |K| > b, then let K ← H(K) such that

|K| = �.)
K ′: K ′ = 0b−|K|K is the prefix padding of K with |K ′| = b.
ipad: ipad = (00110110)b/8.
opad: opad = (01011100)b/8.
K ′

0: K ′
0 = K ′ ⊕ ipad. (K ′

0 reverse one-half of the bits in K ′.)
K ′

1: K ′
1 = K ′ ⊕ opad. (K ′

1 also reverses one-half of the bits in K ′.)

The HMAC algorithm is given as follows:

HMAC(K,M) = H(K ′
1 ‖ H(K ′

0 ‖ M)). (4.1)

We use HMAC-SHA-512 to denote the HMAC implementation with SHA-512 as the
embedded hash function. Likewise, we use HMAC-Whirlpool to denote the HMAC
implementation with Whirlpool as the embedded hash function.

It can be shown that the strength of an HMAC implementation is closely related to that of
the underlying hash function it deploys.

4.4 Birthday Attacks

Suppose that we want to know whether in a group of people there are two persons who were
born on the same day in the same month. If each person has the same likelihood of being born
on any one of the 365 days in a year (for simplicity, we assume there are no leap years), we
can show that in a group of 23 people, the probability that there are at least two persons born
on the same day in the same month is greater than 1/2. To see why this is true, let us fix an
order to these 23 people. Then the probability that the second person’s birthday differs from
the first person’s is 364/365. Likewise, the probability that the ith person’s birthday differs
from any of the previous i − 1 persons’ birthdays is (365 − i + 1)/365. Thus, the probability
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that none of the 23 people has the same birthday is(
364
365

)
×

(
363
365

)
× · · · ×

(
343
365

)
< 0.493.

Hence, the probability that in a group of 23 people there are at least two people with the
same birthday is greater than 1 − 0.493 = 0.507 > 1/2. We generalize this idea to study the
complexity upper bound of breaking the strong collision resistance of hash functions.

4.4.1 Complexity of Breaking Strong Collision Resistance

Let H be a hash function with a fixed output length. Thus, H has a fixed number of different
outputs. Without loss of generality, we assume that H has exactly n different outputs. Note
that n is a power of 2 if H is a cryptographic hash function, but it does not have to be so in
other cases.

Select k inputs uniformly and independently at random and list them as y1, y2, · · · , yk.
Then the probability that there are two indexes i and j with j < i such that H(yi) = H(yj) is
(i − 1)/n. Hence, for any i with 2 ≤ i ≤ k, the probability that H(yi) differs from any H(yj)
with j < i is

1 − i − 1
n

.

Therefore, the probability that none of these k strings collides, that is, H(yi) �= H(yj) for any
j < i ≤ k, is (

1 − 1
n

) (
1 − 2

n

)
· · ·

(
1 − k − 1

n

)
.

Let P (n, k) denote the probability that a collision occurs in k strings under H . That is, P (n, k)
is the probability that there are two strings yi and yj with i �= j such that H(yi) = H(yj). Then

P (n, k) = 1 −
(

1 − 1
n

) (
1 − 2

n

)
· · ·

(
1 − k − 1

n

)
. (4.2)

To compute P (n, k), we use the following inequality:

1 − x < e−x, (4.3)

where x is any positive real number. The proof of this inequality can be found in most college
calculus textbooks.

It follows from Equality 4.2 and Inequality 4.3 that

P (n, k) > 1 − e−1/ne−2/n · · · e−(k−1)/n

= 1 − e−
k(k−1)

2n .

Let 1 − e−
k(k−1)

2n = 1/2. Then e−
k(k−1)

2n = 1/2. Thus,

k(k − 1)
2n

= ln 2. (4.4)
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Solving Quadratic Equation 4.4, we get

k =
1 +

√
1 + 8 ln 2 · n

2
. (4.5)

When n ≥ 52, because 52 > 36/ ln 2, we have
√

8 ln 2 · n < 1 +
√

1 + 8 ln 2 · n <
√

9 ln 2 · n. (4.6)

Thus, from Equality 4.5 and Inequality 4.6 we get
√

8 ln 2 · n
2

< k <

√
9 ln 2 · n

2
, (4.7)

1.17
√

n < k < 1.25
√

n. (4.8)

This implies that when 1.17
√

n < k < 1.25
√

n, the probability that a collision occurs in k
inputs under H is greater than 1/2. For example, when n = 356, we have 1.25

√
365 < 23.89

and 1.17
√

365 > 22.35. Any integer between 22.35 and 23.89 can only be 23. This verifies
what we showed at the beginning of this section: the probability of at least two persons who
were born on the same day and in the same month in a group of 23 people is greater than 1/2.

The computations in this section give rise to the following birthday paradox.

Birthday Paradox. From a basket of n balls of different colors, pick k (k < n) balls uni-
formly and independently at random and record their colors (i.e., after a ball is picked, record
its color, and put it back in the basket before the next ball is picked). If 1.17

√
n < k < 1.25

√
n,

then with probability at least 1/2, there is at least one ball that is picked more than once.

Let H be a cryptographic hash function with output length �. Then n = 2�. Thus, if we
select 1.25 · 2�/2 ≈ 2�/2 input strings uniformly and independently at random, the probability
that there are two different strings x and y such that H(x) = H(y) is greater than 1/2. This
indicates that the complexity upper bound of the strong collision resistance of H does not
exceed the complexity of searching 2�/2 random strings.

For example, the complexity upper bound of strong collision resistance for SHA-1 is
2160/2 = 280 and for SHA-512 is 2512/2 = 2256.

4.4.2 Set Intersection Attack

Suppose that we select uniformly and independently at random two sets of integers from
{1, 2, · · · , n}, with k integers in each set, where k < n. What is the probability Q(n, k) that
these two sets intersect?

Let A = {a1, a2, · · · , ak} and B = {b1, b2, · · · , bk} denote these two sets. As the proba-
bility that b1 = a1 is 1/n, we know that the probability that b1 �= a1 is 1 − 1/n. Likewise, the
probability that none of the k elements in B equals a1 is (1 − 1/n)k. Thus, the probability
that B and A disjoin is [(

1 − 1
n

)k
]k

=
(

1 − 1
n

)k2

< (e−1/n)k2
,
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where the inequality at the right-hand side follows from Inequality 4.3. Hence,

Q(n, k) = 1 −
(

1 − 1
n

)k2

> 1 − e−k2/n.

Let 1 − e−k2/n = 1/2. Then ln 2 = k2/n. Hence, k =
√

ln 2 · n. That is,

0.69
√

n < k < 0.7
√

n. (4.9)

In other words, if 0.69
√

n < k < 0.7
√

n, then Q(n, k) > 1/2.
The set intersection attack is a form of birthday attack. In this attack, the attacker first uses a

legitimate document D to obtain AU’s signature, where AU is an authentication authority (e.g.,
a company CEO). That is, the attacker uses D to obtain C = 〈H(D)〉Kr

AU
, where 〈H(D)〉Kr

AU
represents AU’s signed copy of H(D) using his private key Kr

AU.
The attacker then produces a new document F that has different meanings from D

such that H(F) = H(D). The attacker can then use (F , C) to show that F is endorsed
by AU.

Suppose that AU is willing to sign any legitimate document. The attacker may launch a set
intersection attack as follows:

1. By assumption, AU will sign any legitimate document D or any document that has the same
meaning as D. Let the output length of H be � bits, which is fixed regardless of the length
of the input. The attacker prepares a set S1 of 2�/2 different documents, all having the same
meaning as D. These documents can be obtained, for example, using one or more of the
following methods:

(a) Replace a word or a phrase in D with a synonym or a synonymic phrase.
(b) Rephrase sentences in D.
(c) Use different punctuation.
(d) Reorganize the structure of D.
(e) Change passive tense to active, or active to passive.

2. By assumption, AU will refuse to sign any malicious document. To obtain AU’s signature
on a malicious document F , the attacker prepares a set S2 of 2�/2 different documents, all
having the same meaning as F .

3. The attacker computes

H(S1) = {H(X) | X ∈ S1},
H(S2) = {H(X) | X ∈ S2}.

Although the documents in S1 (similarly in S2) are not generated uniformly or inde-
pendently at random, their hash values are distributed uniformly and independently.
This is the property of a cryptographic hash function. Thus, the probability that there
is a document D′ ∈ S1 and a document F′ ∈ S2 such that H(D′) = H(F′) is greater
than 1/2.

Assuming the attacker has found such two documents, he presents D′ to AU for AU’s
signature.

If such a pair of documents (D′,F′) does not exist in this round, the attacker repeats the
same procedure until he finds such a pair.
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The set intersection attack also indicates that the complexity of breaking the strong collision
resistance of any cryptographic hash function has an upper bound in the magnitude of 2�/2.

4.5 Digital Signature Standard

PKC is the most effective mechanism to produce a digital signature for a given document.
Suppose that Alice wants to sign a document M . She first computes H(M), where H is
a cryptographic hash function. She then encrypts H(M) with her private key Kr

A to get
EKr

A
(H(M)). For Bob to verify that she has signed the document M , Alice will present

(M,EKr
A
(H(M))) to Bob, together with her public-key certificate CA〈Ku

A〉. Bob retrieves
Ku

A from Alice’s certificate, decrypts EKr
A
(H(M)) to get h using Ku

A, computes H(M) on
the copy of M he receives, and verifies that h = H(M) to confirm Alice’s signature.

RSA and ECC would be natural choices of PKC for digital signatures. RSA, however, was
under patent protection from 1978 to 2000. NIST, being a government agency, should not
establish standards using patented algorithms to benefit patentees, and so it established a digital
signature standard (DSS) using a different digital signature algorithm. DSS was first published
in 1991. It was modified once in 1994 and once in 1996. After RSA’s patent protection ended
in 2000, NIST included RSA and ECC as part of DSS. The DSS algorithm introduced in this
section is the original DSS published in 1996.

Note that DSS can only be used to generate digital signatures. That is, it cannot be used
to encrypt data. DSS uses SHA-1 to compute a 160-bit hash value. The reader is referred to
Exercises 4.8 and 4.9 for a description of SHA-1. In particular, DSS uses the following three
global parameters:

p: a prime number with 2L−1 < p < 2L, where 512 < L < 1024
and L is divisible by 64.

q: a prime number and a factor of p − 1, with 2159 < q < 2160.
g: g = h(p−1)/q mod p, where 1 < h < p − 1 is an integer with g > 1.

To use DSS, each user must first select at random a positive integer x < q as a private key.
After this selection, the user then computes y = gx mod p as the public key and obtains a
public-key certificate CA〈y〉 for y.

4.5.1 Signing

Suppose that Alice’s private key is xA and her public-key is yA. To digitally sign a document
M , Alice first selects at random a positive integer kA < q. She then computes

rA = (gkA mod p) mod q,

k−1
A = kq−2

A mod q,

sA = [k−1
A · (H(M) + xA · rA)] mod q,

and uses (rA, sA) as M ’s digital signature. We call this procedure a signing procedure or
simply signing.
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4.5.2 Signature Verifying

Suppose that Bob obtains (M ′, (r′A, s′A)) from Alice and her certificate CA〈yA〉. Bob first
obtains Alice’s public-key yA using CA’s public key to decrypt CA〈yA〉. He then carries out
the following computations and verifies Alice’s digital signature:

w = (s′A)−1 mod q = (s′A)q−2 mod p,

u1 = (H(M ′) · w) mod q,

u2 = (r′A · w) mod q,

v = [(gu1 · yu2
A ) mod p ] mod q.

If v = r′A, then Bob can be confident that M ′
A does indeed bear Alice’s signature. This com-

putation is referred to as signature verification.

4.5.3 Correctness Proof of Signature Verification

We now prove the correctness of signature verification. That is, we show that if M ′ = M, r′A =
rA, s′A = sA, then v = r′A.

Note that gcd(h, p) = 1, for 1 < h < p − 1. It follows from Fermat’s little theorem that
hp−1 mod p = 1. Hence,

gq mod p = (h(p−1)/q mod p)q mod p

= hp−1 mod p

= 1.

If m and n are positive integers and m = n mod q, then there is an integer k such that
m = n + kq. Hence,

gm mod p = gn+kq mod p

= (gngkq) mod p

= [(gn mod p)(gq mod p)k] mod p

= (gn mod p) · 1k mod p

= gn mod p.

As M ′ = M, s′A = sA, and r′A = rA, we have

w = s−1
A mod q, (4.10)

u1 = (H(M) · w) mod q, (4.11)

u2 = (rA · w) mod q. (4.12)

It follows from Equality 4.11 that

gu1 mod p = gH(M)·w mod p.

It follows from Equality 4.12 that

xA · u2 = xA · rA · w mod q.
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Thus,
yu2

A mod p = gxA·u2 mod p = gxA·rA·w mod p.

We therefore have

v = [(gu1 · yu2
A ) mod p] mod q

=
[(

gH(M)·w · gxA·rA·w
)

mod p
]

mod q

=
[(

gH(M)·w · gxA·rA·w
)

mod q
]

mod p

=
[(

g(H(M)+xA·rA)w
)

mod q
]

mod p.

As sA = [k−1
A (H(M) + xA · rA)] mod q, we have

w = s−1
A mod q = [kA(H(M) + xA · rA)−1] mod q.

This implies that (H(M) + xA · rA)w = kA mod q. Therefore,

v = (gkA mod p) mod q = rA.

This completes the proof.

4.5.4 Security Strength of DSS

The security strength of DSS rests on the strength of SHA-1 and the difficulty of solving
discrete log. The complexity of breaking the strong collision resistance of SHA-1 has been
reduced from 280 to 263. However, breaking the collision resistance (i.e., given (M,H(M))
find M ′ �= M such that H(M ′) = H(M)) is harder. Intractability of discrete log ensures that
it is difficult to compute kA or xA from rA and sA.

4.6 Dual Signatures and Electronic Transactions

Suppose that Alice has a message I1 and wants Bob to act according to what it says. So she
sends I1 to Bob. However, for Bob to act on I1, he must wait for Charlie to tell him it is okay
to do so. Charlie, on the other hand, needs Alice to send him a separate message I2 to convince
him that he can give Bob the go-ahead message in which I2 must be linked with I1, but Charlie
is not allowed to see what I1 is. Moreover, all messages must be properly authenticated and
remain confidential during transmissions.

Dual signature is an interactive authentication protocol for solving this problem. In partic-
ular, it allows Alice to encrypt both I1 and I2, sign them using her private key, and send them
to Bob. However, she only allows Bob to read I1. In other words, Bob cannot decrypt I2. Bob
verifies that he received both I1 and I2 from Alice. He then transmits them to Charlie, but he
only allows Charlie to read I2. Charlie verifies that both I1 and I2 come from Alice through
Bob. He then sends a receipt RC to Bob, telling Bob whether he approves I2. Bob verifies that
he received RC from Charlie. He then sends a receipt RB to Alice, telling Alice whether he
will act on I1.
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4.6.1 Dual Signature Applications

Dual signature may be used in online shopping applications to provide security and privacy
protections, where Alice is a customer, Bob a merchant, and Charlie a banker.

Alice browses Bob’s online store, creates an order list I1, fills in her payment information
I2 (credit card number, name, expiration date, etc.), and sends both I1 and I2 to Bob. Bob first
verifies that they indeed come from Alice. He then reads Alice’s order list I1 and sends both I1
and I2 (which he cannot read) to Charlie. Charlie first verifies that I1 and I2 come from Alice
through Bob. He then reads Alice’s payment information I2. Note that Charlie cannot read
Alice’s order list. Depending on whether the information provided in I2 is correct and whether
Alice has a sufficient credit line, Charlie issues a receipt RC and sends it to Bob, telling Bob
whether he will be paid for selling the items to Alice on her order list I1. Bob verifies that RC

indeed comes from Charlie. If RC says payment will be made, Bob creates a receipt RB and
sends it to Alice, informing her that her order has been filled.

Requiring that both I1 and I2 be linked together prevents separation of a payment from
an order, so that nobody can use this payment to pay for a different order. Disallowing Bob
from reading I2 and Charlie from reading I1 gives Alice better privacy protection than what
the current practice provides. In the current practice, merchants can read customers’ credit
card information, and banks can find out what customers have purchased. Requiring that all
messages be authenticated and remain confidential during transmissions ensures that Malice
cannot obtain any useful information by eavesdropping and cannot modify or fabricate order
information or payment information.

Dual signature is used in the Secure Electronic Transaction Protocol (SET), which was
devised in 1996 by two major U.S. credit card companies: Visa and Mastercard. SET is a
complex protocol, which has not been deployed in practice.

4.6.2 Dual Signatures and Electronic Transactions

Alice, Bob, and Charlie first agree on a hash function H and a PKC encryption algorithm E
(e.g., RSA). Let (Ku

A,Kr
A), (Ku

B ,Kr
B), and (Ku

C ,Kr
C) be, respectively, the public–private key

pair for Alice, Bob, and Charlie. Moreover, they all know each other’s public key; for example,
they may pass their public-key certificates to each other. Let D be the decryption algorithm
of E.

Alice carries out the following steps:

1. Compute

sB = EKu
B
(I1),

sC = EKu
C
(I2),

hB = H(sB),

hC = H(sC),

ds = DKr
A
(H(hB ‖ hC)),

where ds is a dual signature.
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2. Transmit (sB , sC , ds) to Bob.
3. Wait for Bob’s receipt RB , which is in the form of EKu

A
(DKr

B
(RB)) (see Bob’s step 5).

4. Decrypt EKu
A
(DKr

B
(RB)) using Alice’s private key to get DKr

B
(RB), and verify Bob’s

signature using Bob’s public key to get RB . This completes the protocol.

Bob carries out the following steps:

1. Compute H(H(sB) ‖ hC) and EKu
A
(ds), and check whether they are identical. If identical,

then it implies that (sB , sC , ds) indeed comes from Alice.
2. Compute DKr

B
(sB) to get I1.

3. Transmit (sB , sC , ds) to Charlie.
4. Wait for Charlie’s receipt RC , which is in the form of EKu

B
(DKr

C
(RC)) (see Charlie’s

step 3).
5. Decrypt EKu

B
(DKr

C
(RC)) using Bob’s private key to get DKr

C
(RC), and verify

Charlie’s signature using Charlie’s public key to get RC . Issue a receipt RB and sends
EKu

A
(DKr

B
(RB) to Alice.

Charlie carries out the following steps:

1. Compute H(H(sB) ‖ H(sC)) and EKu
A
(ds), and check whether they are identical. If iden-

tical, then it implies that (sB , sC , ds) indeed comes from Alice.
2. Compute DKr

C
(sC) to get I2.

3. Issue a receipt RC and send EKu
B
(DKr

C
(RC)) to Bob.

Note that sB can only be decrypted by Bob and sC can only be decrypted by Charlie. In other
words, Bob cannot see I2 and Charlie cannot see I1. Because of the dual signature, Malice or
Bob cannot modify or fabricate Alice’s I1 or I2. Likewise, Malice or Charlie cannot modify
or fabricate Alice’s I1 or I2 without being caught.

4.7 Blind Signatures and Electronic Cash

A blind signature is a signature signed on a message presented in an unintelligible form (i.e.,
the signer cannot review its content), but the signature can be verified against the original
message. In the nondigital world, for example, one can achieve this effect using an envelope:
Alice puts a message in an envelope, seals it, and presents the sealed envelope to Bob for him
to sign his name along the seal. Because the envelope is sealed before Bob signs it, this has
the effect that Bob signs Alice’s message enclosed in the envelop without being able to see the
content of the message. A digital blind signature can be achieved using the RSA cryptosystem
and a blind factor as follows, where a blind factor is used to make a message unintelligible.

4.7.1 RSA Blind Signatures

Let n, d, and e be Bob’s RSA parameters, where n and e are published. Suppose that Alice
wants Bob to sign her message M blind, where M < n. She chooses a pseudorandom number
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r < n as a blind factor with gcd(n, r) = 1, calculates

Mr = M · re mod n,

and presents Mr to Bob. (The re in this case is equivalent to a sealed envelop containing M .)
Bob signs Mr and produces a signature

sr = Md
r mod n.

As de ≡ 1( mod φ(n)) and gcd(n, r) = 1, it follows from Fermat’s little theorem that

rde ≡ r( mod n),

and that r−1 mod n exists. Thus, Alice can remove the blind factor from sr by calculating
(sr · r−1) mod n and obtain

sM = sr · r−1 mod n

= Md · rde · r−1 mod n

= Md · r · r−1 mod n

= Md mod n.

Alice now obtains Bob’s signature on M , and Bob does not know the content of M .

4.7.2 Electronic Cash

Using credit cards to pay for goods or services will expose the identities of the credit card
holders. This is a major difference between using credit cards and cash, for cash does not link
to its owner. Cash payment is anonymous: cash can be owned by anyone, and cash does not
reveal its owner’s identity. In addition, cash can be circulated. Circulating from one owner to
another, cash leaves no obvious trace (except perhaps the owner’s fingerprints) to identify who
has owned it. Cash can also be divided into cash of smaller values.

Electronic cash is a note in a digital form issued by a bank. It circulates in the world of
networks, to be used to pay for goods and services. Anyone who owns electronic cash may
go to the bank that issues it to obtain paper money of the same value. Thus, electronic cash
should satisfy the following requirements:

1. Anonymous and untraceable: Electronic cash may be owned by anyone, and it does not
reveal its owner’s identity. Electronic cash circulated in the networks should leave no trace
to its owners. A person or a bank receiving electronic cash will not be able to identify who
has been the owner of it.

2. Secure: Electronic cash can be circulated safely in the networks. That is, it cannot be mod-
ified or fabricated.

3. Convenient: Electronic cash payments do not need to go through any financial institution.
4. Nonreplicable: Electronic cash cannot be replicated. That is, there is only one true copy of

electronic cash. When electronic cash changes hands, the old owner can no longer use it
(although he might possess a digital replica).
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5. Transferable: Electronic cash can be transferred from one owner to another.
6. Dividable: An electronic cash note with a larger value can be divided into several electronic

cash notes of smaller values such that the summation of these smaller values is equal to the
value of the original note.

Despite intensive efforts, no electronic cash protocols have been devised to satisfy all these
requirements. On the other hand, it is possible to devise a electronic cash protocol that satisfies
some of the most important requirements. For example, eCash is such a protocol. Devised by
David Chaum in the 1980s, eCash uses blind signatures to ensure that it is anonymous and
untraceable.

4.7.2.1 eCash

Let B denote a financial institution. Let n, d, and e be B’s RSA parameters. For convenience,
we assume that B only issues one-dollar-value eCash notes, called an eCash dollar, which is
equivalent to the worth of one dollar.

Suppose that Alice wants to obtain an eCash dollar from B. She and B perform the following
computations:

1. Alice generates a sequence number m to represent this eCash dollar and a pseudorandom
number r < n to be used as a blind factor. She then calculates

x = mre mod n,

and sends both x and her bank account number to B.
2. B charges one dollar (plus a service fee) to Alice’s account, calculates

y = x d mod n,

and sends y to Alice.
3. Alice calculates

z ≡ y · r−1 ≡ md( mod n).

That is, z is m with B’s signature. Then (m, z) is an eCash dollar for Alice.

Note that B is not able to see m when it signs x, and so B is unable to link m to Alice.
This eCash dollar (m, z) is free to change hands. Any person who owns (m, z) may cash it for
a dollar from B. This can be done as follows. Suppose that Charlie has (m, z). He transmits
(m, z) to B. After receiving (m, z), B first verifies whether z has its signature. That is, B
verifies whether

ze ≡ mde ≡ m( mod n).

If the answer is yes and the sequence number m has not been presented, then B records m and
sends a dollar to Charlie. Otherwise, (m, z) is invalid.

If Alice pays Bob with this eCash dollar (m, z) to exchange for goods or service that Bob
is providing, then Bob should check with B whether z is a signed copy of m and m has not
been recorded. If the answer is yes, then Bob knows that this eCash dollar is good. Otherwise,
Bob should reject it.
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Because only Alice knows r, B or any other person will not be able to connect m to x, and so
nobody knows Alice created m. After (m, z) changes hands, it leaves no trace to its previous
owner. Thus, eCash is anonymous and untraceable. However, Alice may still keep a copy of
(m, z) after she gives it to Bob, and so she may cash it before Bob does.

4.7.3 Bitcoin

Bitcoin is a network protocol. It can be viewed as a mining game, where players are awarded
for their successes with prizes. These prizes are called Bitcoins, which posses certain proper-
ties of currency. From the currency point of view, Bitcoin differs from eCash in the sense that
it is a completely decentralized currency. In other words, there is no trusted bank to maintain
balances or issue new currency. This means that there is no centralized trust in the currency. Bit-
coins, instead of using a trusted bank to give Bitcoins a real value, use a group of cooperating
players to form a peer-to-peer network called Bitcoin network. The Bitcoin network main-
tains a global distributed ledger of transactions. Each transaction itemizes a payment from one
player to another. This ledger is called the block chain. The Bitcoin network is also responsible
for verifying each transaction as it enters the block chain.

Bitcoin digitally signs individual transactions, not a particular Bitcoin, which differs from
eCash. Let BTC denote the Bitcoins unit. Suppose that Alice wants to pay Bob a certain amount
of BTC. To do so, she must collect transactions she owns that sum up to a value greater than or
equal to the amount she wishes to pay Bob. For example, suppose that Alice wants to pay Bob
with c BTC. To do so, Alice must first gather transactions belonging to herself from the global
distributed ledger. These transactions must sum up to a value greater than or equal to c BTC.
Alice then broadcasts a signed transaction message to all users in the Bitcoin network, listing
Bob – represented by Bob’s payment address – as the receiver of the payment. The payment
address is a function of Bob’s public key. The entire signed transaction message is called a
transaction record. This transaction becomes a new item in the global distributed ledger, and
consists of the following components:

• A list of transactions destined to Alice that sum to at least c. These transactions are lines in
the global distributed ledger.

• A hash of each transaction that Alice is going to use for payment.
• The payment address for Bob, along with how much BTC from the transactions should be

payed to Bob.
• The payment address for Alice, along with how much change Alice should receive from the

transaction.
• Finally, the above-mentioned items (except for the pay outs) are hashed and signed with

Alice’s private key.

A hash is needed in all cases. The Bitcoin protocol currently uses SHA-256. The new transac-
tion record, as previously mentioned, is broadcasted to all members of the network.

4.7.3.1 Mining

To obtain Bitcoins, players must first collect a certain set of transactions from the Bitcoin
network. These set of transactions is called a block, and this process is referred to as mining.
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Figure 4.4 An example of Merkle tree, where H is a hash function and bi represents a block

The type of players who mine the Bitcoin network is referred to as miners. A block consists
of the following components:

• A list of verified transactions.
• A hash of those transactions.
• A link to the previous transaction in the block chain.
• A proof that the transactions have been verified.

Miners then need to add the new block to the block chain to be awarded a certain number
of Bitcoins.

The transactions listed in the new block have all been verified by the miner. To verify a
transaction, the miner checks that the signatures work and that no coins were spent twice.

The transactions in the new block are combined into a single hash value using a Merkle tree.
A Merkle tree is a hashing scheme that organizes blocks of data into a binary tree where only
the leaves contain the data. Every leaf node in the Merkle tree is a hash of the block at that
leaf, and every internal node is the hash of its two children (see Fig. 4.4).

To link the new block to the previous block in the block chain, the transaction must contain
a reference to the previous block, which is done using a proof-of-work (POW). A POW is,
intuitively, a value that is extremely hard to generate to meet a certain requirement but very
easy to verify. This scheme makes the process of acquiring Bitcoins from the Bitcoin network
immensely difficult, and so some people are willing to pay real money to acquire Bitcoins from
someone who own them. Some stores also accept Bitcoins as cash payments. In late 2013, a
bitcoin could sell for about 6000 Chinese yuan in the Chinese market (about 1000 US dollars).

Proof-of-Work
A POW p for a new block with a difficulty level of k is obtained as follows, where k is a
positive integer:

1. Let r be the root of the Merkle tree of the new block, r′ the root of the Merkle tree of the pre-
vious block, and p a binary string. Let H be a hash function. Compute H ◦ H(r, r′, p) = h,
where h is called a double hash.

2. If h begins with k consecutive 0’s, then use h as the hash value of the new block and the
number p as the proof. Both values are included in the block.

3. If h does not begin with k consecutive 0’s, then select a new p and go to Step 1.
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When k is large, for example, when k = 100, the miner may have to try, in the worst case, at
least 2100 > 1010 different values of p to find a proof, making it computationally intractable.
On the other hand, if a proof is given, then it is easy to verify that the double hash value is
equal to h.

Adding New Blocks
The new block, once constructed, is broadcasted to all other miners in the Bitcoin network.
This is done so that all users can agree on the new block being added to the block chain. In the
case where two miners each broadcast a new block and one block is a subset of the other, only
the block with more transactions is kept. In the rare case that these two blocks have the same
number of transactions (i.e., they are the same block), there is a temporary split in the block
chain that is eventually resolved by the Bitcoin network. The resolution occurs when one of the
forked chains contains more transactions than the competing chain, as miners would always
favor the longer chain.

Miners add new Bitcoins using a special transaction called a coinbase transaction. When
the miner is building a new transaction block, he adds this special coinbase transaction. This
transaction lists the miner as the recipient of a certain amount of Bitcoins. At the time of writing
this is 25 BTC. The source of this transaction is a special zero address. Recall that the miner
only gets paid if the new block gets added to the block chain.

4.8 Closing Remarks

The developments of PKCs, public-key infrastructures, and cryptographic hash functions have
made data authentications easy routines. This signature mechanism is more flexible and more
reliable than using shared secrets to authenticate data. Thus, it is natural to establish digital
signature standards using PKCs and cryptographic hash functions.

4.9 Exercises

4.9.1 Discussions

4.1. Why is PKC a better method to authenticate data?

4.2. Why do we want to compute cryptographic hashing?

4.3. What is the advantage of HMAC?

4.4. Why is birthday attack an efficient method for breaching security?

4.5. Can you think of a different application of blind signature?

4.6. Do you think that Bitcoin could become a popular electronic currency?

4.9.2 Homework

4.1. Find two English sentences with different meanings (substantially different from the
example given in Section 4.1), which have the same hash value under the 16-bit
XOR-hash function H⊕.
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4.2. Let h = 1001101000111010 be a 16-bit binary string. Find four different binary
strings such that they have the same hash value h under the 16-bit XOR-hash
function H⊕.

4.3. In the initial process of SHA-512, it pads M to obtain a new string M ′. Explain how
to obtain M from M ′.

4.4. Draw a flow diagram of SHA-512 that transforms a 1024-bit block Mi to eighty 64-bit
binary strings W [0, 79].

4.5. Draw a flow diagram showing the computations of the SHA-512 compression
function F (Mi,Hi−1). You should show the first round, the last round, and the ith
round of computations, where i represents a round between the first and the last
round.

4.6. Draw a flow diagram to show the computation in one round of the SHA-512 com-
pression function F (Mi,Hi−1).

*4.7. How does SHA-512 attempt to achieve the one-way property and the computational
uniqueness property? Can you find any weakness? Justify your answers.

4.8. Let M be a L-bit binary string with L < 264. Pad M to yield the following new binary
string

M ′ = M ‖ 10� ‖ b160(L), � ≥ 0

such that the length of M ′ (measured by bits) is divisible by 512. How do you deter-
mine �?

4.9. SHA-1 is much simpler than SHA-512. In SHA-1, γ = 160 bits and Γ = 264 − 1
bits. Let M be an input string with |M | ≤ Γ . SHA-1 first pads M to produce a new
string M ′ as described in Exercise 4.8, where each block is 512-bit long. There are 80
rounds of computations in the SHA-1 compression function, where basic operations
are on 32-bit binary strings. Let X , Y , and Z be 32-bit binary strings. Let

Ft(X,Y,X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(X ∧ Y ) ∨ (X ∧ Z), if 0 ≤ t < 20,

X ⊕ Y ⊕ Z, if 20 ≤ t < 40,

(X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z), if 40 ≤ t < 60,

X ⊕ Y ⊕ Z, if 60 ≤ t < 80.

Define 80 constants K0,K1, · · · ,K79 as follows:

Kt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5a827999, if 0 ≤ t < 20,

6ed9eba1, if 20 ≤ t < 40,

8f1bbcdc, if 40 ≤ t < 60,

ca62c1d6, if 60 ≤ t < 80.

Let r1, r2, r3, r4, and r5 be variables, each of which represents a 32-bit binary
string (160 bits totally), where their initial values are, in hexadecimal,
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r1 = 67452301,

r2 = efcdab89,

r3 = 98badcfe,

r4 = 10325476,

r5 = c3d2e1f0.

Let the initial vector IV of SHA-1 be the concatenation of the initial values of
r1, r2, r3, r4, and r5.

Recall that |M ′| = N × 512 bits, where N is a positive integer. Let M ′ = M1
M2 · · ·MN , where each Mi is a 512-bit binary string. SHA-1 produces a hash value
SHA-1(M) = HN using the following recurrence relation:

Hi = Hi−1⊕32F (Mi,Hi−1),

i = 1, 2, · · · , N,

H0 = IV,

where F (Mi,Hi−1) is a compression function, defined as follows:

1. Let Mi = W0W1 · · ·W15, where each Wj is a 32-bit binary string.
2. For t from 16 to 79, let

Wt = [(Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16] ≪ 1.

3. For t from 0 to 79, let

T ← [(r1 ≪ 5) + Ft(r2, r3, r4) + r5 + Wt + Kt] mod 232,

r5 ← r4,

r4 ← r3,

r3 ← r2 ≪ 30,

r2 ← r1,

r1 ← T.

(a) Draw a flow diagram of SHA-1 computation, including how Wi is generated and
the computation of the SHA-1 compression function.

**(b) Explain why using the order of 2k computations with k < 80 could allow you
to find M0 �= M1 such that SHA-1(M0) = SHA-1(M1).

*4.10. The entries in Whirlpool’s S-Box (see Table 4.3) are calculated using finite-field
operations defined on GF (24) under an irreducible polynomial r(x) = x4 + x + 1.
In particular, let u be a hexadecimal digit. Let

E(u) =

{(
x3 + x + 1

)u mod r(x), if u �= f,
0, if u = f.
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Table 4.3 The E mini-box for constructing the S-Box of Whirlpool

u 0 1 2 3 4 5 6 7 8 9 a b c d e f
E(u) 1 b 9 c d 6 f 3 e 8 7 4 a 2 5 0

Show that E is determined by Table 4.3.

*4.11. Let E−1 denote the inverse function of E defined in Exercise 4.9.2. Show that E−1 is
determined by Table 4.4.

Table 4.4 The E−1 mini-box for constructing the S-Box of Whirlpool

u 0 1 2 3 4 5 6 7 8 9 a b c d e f
E−1(u) f 0 d 7 b e 5 a 9 2 c 1 3 4 8 6

4.12. Let R be a random permutation of 0, 1, · · · , f defined in Table 4.5.

Table 4.5 The R mini-box for constructing the S-Box of Whirlpool

u 0 1 2 3 4 5 6 7 8 9 a b c d e f
R(u) 7 c b d e 4 9 f 6 3 8 a 2 5 1 0

The entry si,j in Whirlpool’s S-Box is calculated using the following tweaked
procedure:

i, j = 0, 1, · · · , f,

y = E(i) ⊕ E−1(j),

z1 = R(y) ⊕ E(i),

z2 = R(y) ⊕ E−1(j),

si,j = E(z1)E
−1(z2),

where i and j are four-bit binary strings.
For example, consider s0,0. We have

y = E(0000) ⊕ E−1(0000) = 0001 ⊕ 1111 = 1110.

We further have R(1110) = 0001, z1 = 0001 ⊕ 0001 = 0000, z2 = 0001 ⊕ 1111 =
1110. Thus, we have ss0,0 = E(0000)E−1(1110) = 18.

Compute the fifth row of Whirlpool’s S-Box (see Table 4.1). That is, compute
s4,0, s4,1, · · · , s4,f.

4.13. What is the value of rc10?

4.14. Write a program to implement SHA-3 for � = 6.
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4.15. Draw a flow diagram of HMAC computations.

4.16. Show that Equality 2.33 is true.

4.17. Show that Equality 2.34 is true.

4.18. Show that Equality 2.35 is true.

4.19. Find the value of k so that in a group of k randomly selected people, the probability
that there are at least two persons who were born on the same date in the same month
is greater than 3/4? For convenience, assume that there are no leap years.

4.20. Randomly select k students from the first grade, second grade, and the third grade
students. How big must k be to ensure that the probability of at least two students
among the selected having the same birthday (i.e., they were born on the same date,
in the same month, and in the same year) is greater than 1/2? Assume that students in
the same grade were born in the same year, and none of them was born in a leap year.

4.21. In Section 4.4.1, we have determined that if we randomly select
√

n strings, then the
probability that there are at least two strings x �= y such that H(x) = H(y) is greater
than 1/2, where H is a hash function and n is the number of different hash values.

Let x be fixed. Then select k strings randomly and independently. What is the
probability that there is at least one string y �= x in the selected strings such that
H(y) = H(x)? What should k be for the probability to be greater than 1/2?

4.22. Prove that when n ≥ 52, Inequality 4.6 holds. That is,

1 +
√

1 + 8 ln 2 · n <
√

9 ln 2 · n.

4.23. Give a concrete application of the set intersection attack.

4.24. Let E be a symmetric-key encryption algorithm, where it takes a �-bit data block and
a �-bit key as input. Let M = M1M2 · · ·MN , where each Mi is a �-bit binary string
(after appropriate padding if necessary). Define a hash function H as follows:

H0 = � −bit initial vector,

Hi = EHi−1
(Mi),

i = 1, 2, · · · , N,

H(M) = HN .

Show that if Malice can obtain one pair (M ′,H(M ′)), then she can find a message
M ′′ �= M ′ such that H(M ′′) = H(M ′) using the method of set intersection attack.

4.25. The UNIX operating system (as well as Linux) uses a symmetric-key encryption algo-
rithm named crypt(3) to hash users passwords and store the hash values in a file. An
early version of crypt(3) transforms a user password w to a 56-bit binary string kw

as a secret key for DES. It then randomly selects a 12-bit binary string s, referred to
as salt. It modifies DES to obtain a new encryption algorithm DES[s], where s is the
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salt value and DES[s] does everything the same as in DES except in the output of the
expansion permutation EP (see Section 2.2.4 for a description of EP): If the ith bit in
s is 1, swap the ith bit with the (i + 24)th bit in the output of EP. crypt(3) computes
w’s hash value hs,w as follows

C0 = DES[s]kw
(064),

Ci = DES[s]kw
(Ci−1),

i = 1, 2, · · · , 24,

hs,w = C24.

The operating system stores hs,w and its salt value s according to user names in a
file (see Table 4.6)

Table 4.6 File structure for storing user passwords

User name Salt Hash value of user password

Alice s hs,w

...
...

...

After a user enters his user name u and user password w, the operating system
computes a 56-bit secret key kw of w. It searches for u’s record in the password file
and finds the salt value s associated with u. It then computes hs,w and compares it
with the hash value stored in the record. The user is allowed to log on if and only if
these two values are identical.

(a) Explain why salt values are needed.
(b) Under crypt(3), how long is the effective length of a user’s password?
(c) Analyze the security strength of crypt(3).

*4.26. Early versions of crypt(3) did not support users selecting passwords with arbitrary
length, which makes it vulnerable to dictionary attacks. To improve security, crypt(3)
was later modified to compute hash values of user passwords using MD5, which
allows users to select passwords with arbitrary length.

(a) Search the literature for a detailed description of the modified crypt(3) algorithm.
Then write a short paper (about 4000 words) describing this algorithm and ana-
lyzing its security strength.

(b) MD5 has been shown to have a weakness (i.e., it does not satisfy the requirement
of strong collision resistance). Will this mean that using MD5 in crypt(3) is no
longer secure? Justify your answer.

*4.27. Microsoft Windows XP, unlike UNIX or Linux, stores user names and user passwords
in the registry. Search the literature for a detailed description of how this is done and
write a short paper (about 4000 words) describing this algorithm and analyzing its
security strength.
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4.28. Draw a flow diagram of the DSS signing algorithm and a flow diagram of the DSS
signature verifying algorithm.

4.29. If Alice’s random number kA used to sign a document using DSS is stolen, what
would happen?

4.30. In addition to securing online shopping, can you think of any other applications for
which dual signatures can be used?

*4.31. Can you modify the eCash scheme presented in Section 4.7.2 so that it also satisfies
the dividability requirement? Justify your answer.

4.32. Explain which requirements of electronic cash listed in Section 4.7.2 is met by eCash
and which requirements is not met by eCash.

*4.33. Alice creates an electronic document and wants her boss Bob to sign it using RSA.
However, Alice does not want Bob to see the document he is asked to sign. Bob, on
the other hand, agrees to sign any legitimate document Alice presents to him. Devise
a blind signature scheme to solve this problem.

4.34. Devise a double signature scheme using RSA to sign a document with two signa-
tures. In particular, the two signatures are signed sequentially. Only after the second
signatory verifies the first signature should he sign the document with the first signa-
tory’s signature. The document must be verifiable by the public that it indeed has two
signatures.

4.35. The double signature scheme described in Exercise 4.34 is a special application of
multiple-key public-key cryptography (MKPKC). An MKPKC encryption algorithm
uses several keys, some of which are public keys, while the remaining keys are private.
Generalize RSA from one public key and one private key to a multiple public-key
RSA. Justify your answer. That is, prove the correctness of the multiple public-key
RSA decryption algorithm.

*4.36. An undeniable signature is a signature signed on a document using signer’s private
key such that the signature cannot be verified without signer’s permission. More-
over, the signer can prove forged signatures so that he cannot falsely deny a genuine
signature of his.

The first property allows the signer to restrict who may verify his signature; so that
if an authorized user obtains a copy of the document, he will be unable to verify the
signature.

In 1989, David Chaum and Hans van Antwerpen devised a scheme for undeniable
signatures. Do a literature search and write a paper of up to 4000 words to describe
their scheme.

4.37. How does the Bitcoin network prevent a miner from adding fake blocks in the block
chain? Justify your answer.

4.38. Does the number of Bitcoins have an upper bound? Justify your answer.



5
Network Security Protocols
in Practice

Computer cryptography provides building blocks for constructing network security protocols.
These building blocks include symmetric-key encryption algorithms, public-key encryption
algorithms, key-generation and key-exchange algorithms, cryptographic hash functions,
authentication algorithms, digital signatures, and public-key infrastructures. We call these
building blocks cryptographic algorithms.

To protect network communications, one may deploy cryptographic algorithms at any layer
in the network architecture. The use of cryptographic algorithms at different layers offers
different degrees of protection. This technique of placing algorithms within the different net-
work layers is the first issue discussed in this chapter.

We then introduce common network security protocols used in practice. These protocols
include the X.509 public-key infrastructure (PKI), the IP security protocol at the network
layer (IPsec), the Secure Sockets Layer protocol at the transport layer (SSL/TLS), and
several application-layer security protocols, including Pretty Good Privacy (PGP), Secure/
Multipurpose Internet Mail Extension (S/MIME), Kerberos, Secure Shell (SSH), and an
electronic voting protocol.

5.1 Crypto Placements in Networks

TCP/IP is the dominant networking technology today. It is a five-layer architecture. These
layers are, from top to bottom, the application layer, the transport layer (TCP), the network
layer (IP), the data-link layer, and the physical layer. In addition to TCP/IP, there also are
other networking technologies. For convenience, we use the OSI network model to represent
non-TCP/IP network technologies. Different networks are interconnected using gateways. A
gateway can be placed at any layer.

The OSI model is a seven-layer architecture. The OSI architecture is similar to the TCP/IP
architecture, except that the OSI model specifies two additional layers between the application
layer and the transport layer in the TCP/IP architecture. These two layers are the presentation
layer and the session layer. Figure 5.1 shows the relation between the TCP/IP layers and the

Introduction to Network Security: Theory and Practice, Second Edition. Jie Wang and Zachary A. Kissel.
© Higher Education Press. All rights reserved. Published 2015 by John Wiley & Sons Singapore Pte Ltd.
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Figure 5.1 Correspondence between layers of the TCP/IP architecture and the OSI model. Also shown
are placements of cryptographic algorithms in network layers, where the dotted arrows indicate actual
communications of cryptographic algorithms

OSI layers. The application layer in TCP/IP corresponds to the application layer and the pre-
sentation layer in OSI. The transport layer in TCP/IP corresponds to the session layer and the
transport layer in OSI. The remaining three layers in the TCP/IP architecture are one-to-one
correspondent to the remaining three layers in the OSI model.

The functionalities of OSI layers are briefly described as follows:

1. The application layer serves as an interface between applications and network programs.
It supports application programs and end-user processing. Common application-layer pro-
grams include remote logins, file transfer, email, and Web browsing.

2. The presentation layer is responsible for dealing with data that is formed differently. This
protocol layer allows application-layer programs residing on different sides of a communi-
cation channel with different platforms to understand each other’s data formats regardless
of how they are presented.

3. The session layer is responsible for creating, managing, and closing a communication con-
nection.

4. The transport layer is responsible for providing reliable connections, such as packet
sequencing, traffic control, and congestion control.

5. The network layer is responsible for routing device-independent data packets from the cur-
rent hop to the next hop.

6. The data-link layer is responsible for encapsulating device-independent data packets into
device-dependent data frames. It has two sublayers: logical link control and media access
control.

7. The physical layer is responsible for transmitting device-dependent frames through some
physical media.

Starting from the application layer, data generated from an application program is passed
down layer-by-layer to the physical layer. Data from the previous layer is enclosed in a new
envelope at the current layer, where the data from the previous layer is also just an envelope
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containing the data from the layer before it. This is similar to enclosing a smaller envelope in
a larger one. The envelope added at each layer contains sufficient information for handling the
packet. Application-layer data are divided into blocks small enough to be encapsulated in an
envelope at the next layer.

Application data blocks are “dressed up” in the TCP/IP architecture according to the fol-
lowing basic steps. At the sending side, an application data block is encapsulated in a TCP
packet when it is passed down to the TCP layer. In other words, a TCP packet consists of
a header and a payload, where the header corresponds to the TCP envelope and the payload
is the application data block. Likewise, the TCP packet will be encapsulated in an IP packet
when it is passed down to the IP layer. An IP packet consists of a header and a payload, which
is the TCP packet passed down from the TCP layer. The IP packet will be encapsulated in
a device-dependent frame (e.g., an Ethernet frame) when it is passed down to the data-link
layer. A frame has a header, and it may also have a trailer. For example, in addition to having a
header, an Ethernet frame also has a 32-bit cyclic redundancy check (CRC) trailer. When it is
passed down to the physical layer, a frame will be transformed to a sequence of media signals
for transmission. Figure 5.2 demonstrates this process.

At the destination side, the medium signals are converted by the physical layer into a frame,
which is passed up to the data-link layer. The data-link layer passes the frame payload (i.e.,

Application layer
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IP packet
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Data block

TCP layer

IP layer
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Physical layer
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Figure 5.2 Flow diagram of packet generation
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the IP packet encapsulated in the frame) up to the IP layer. The IP layer passes the IP payload,
namely, the TCP packet encapsulated in the IP packet, up to the TCP layer. The TCP layer
passes the TCP payload, namely, the application data block, up to the application layer. When
a packet arrives at a router, it only goes up to the IP layer, where certain fields in the IP header
are modified (e.g., the value of TTL is decreased by 1). This modified packet is then passed
back down layer-by-layer to the physical layer for further transmission.

Deploying cryptographic algorithms at different layers has different security effects.
For convenience, we use the term crypto placement to mean deployment of cryptographic
algorithms.

5.1.1 Crypto Placement at the Application Layer

Deploying cryptographic algorithms at the application layer provides end-to-end security
protection. Data is encrypted or authenticated at this layer. The encrypted or authenticated
data then goes through each layer below as if it were normal data. That is, it does not need to
be decrypted or checked for signatures at any layer.

On the other hand, TCP headers and IP headers are not encrypted or authenticated because
these headers are added within the lower layers, making it possible for an attacker to analyze
traffic and modify header information. For example, Malice may change the destination IP
address in the IP header to have the modified packet delivered to a different person.

5.1.2 Crypto Placement at the Transport Layer

Deploying cryptographic algorithms at the transport layer provides security protections for
TCP packets. The payload of a TCP packet or the entire TCP packet itself (i.e., both header
and payload) can be encrypted or authenticated at this layer.

Crypto placement at the transport layer does not affect the application data received from
the application layer. Therefore, users do not need to modify any application programs.

The IP header encapsulating the encrypted or authentication TCP packet is not encrypted,
making it possible for the attacker to analyze traffic using information from IP headers. If
the TCP header is not encrypted, the attacker may further obtain additional information such
as TCP sequencing numbers. This makes it possible for the attacker to figure out how TCP
sequencing numbers might be generated. This information is needed if the attacker wants to
hijack a TCP connection.

5.1.3 Crypto Placement at the Network Layer

Deploying cryptographic algorithms at the network layer provides link-to-link security
protection. At this layer, the payload of the IP packet or the entire IP packet itself (i.e., both
headers and payloads) can be encrypted or authenticated. Applying cryptographic algorithms
on payloads does not affect the routing functionality, and it is referred to as the transport mode
application. Applying cryptographic algorithms on the entire packet requires a network-layer
gateway to route tunnel mode IP packets, which is equivalent to hiding the whole IP packets
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inside the gateway, and it is referred to as the tunnel mode application. In particular, when a
tunnel-mode IP packet arrives, the gateway first deciphers the encrypted IP packet (or verifies
its signature). This allows the gateway to read the IP header. If the gateway is not in the
destination edge network, the gateway re-encrypts (or re-authenticates) the whole IP packet,
adds a plaintext IP header of its own, and routes the new IP packet to the next IP gateway.
Thus, the IP packets are visible to the gateways at the end points of a tunnel but remain
invisible inside the tunnel that may contain other routers.

Unlike the encryption that takes place within an application layer where applications need
to incorporate cryptographic algorithms specifically, deploying cryptographic algorithms at
the network layer does not require modifications to the existing application programs. Thus,
implementing link-to-link security protection places no extra work on application programs.

A transport-mode IP packet leaves the original IP header in plaintext format, but its payload,
that is, the TCP header and the TCP payload, is encrypted, making it possible for the attacker
to analyze network traffic. However, the attacker will not be able to obtain TCP sequenc-
ing numbers or other information contained in the TCP header. A tunnel-mode IP packet
might leave the IP header of the gateway in plaintext format, and so the attacker can only
observe traffics between IP gateways, instead of between users. This can be further protected
using nested tunnels, that is, a tunnel wrapping around another tunnel, to make traffic analysis
more difficult.

5.1.4 Crypto Placement at the Data-Link Layer

Deploying cryptographic algorithms at the data-link layer provides security protections for
frames. Payloads of the frames are encrypted or authenticated at this layer. Deploying cryp-
tographic algorithms at the data-link layer also does not require modifications to the exist-
ing application programs. We note that frames travel only one link. Thus, traffic analysis on
encrypted frames would not yield much information.

In this chapter, we focus on crypto placements at the network layer, at the transport layer,
and at the application layer. We introduce crypto placements at the data-link layer in Chapter 6
in the context of wireless security.

5.1.5 Implementations of Crypto Algorithms

Cryptographic algorithms may be implemented on hardware, using Application Specific
Integrated Circuit (ASIC) technologies, or in software. In general, it is common to implement
cryptographic algorithms at the application layer using software and at the data-link
layer using hardware. Implementations of cryptographic algorithms at other layers can
be performed using software, or hardware, or both. Hardware implementations offer the
best performance, but they are inflexible to change, hard to port to different platforms,
and may cost more to develop. Software implementations, on the other hand, are flexible
to change, easier to port, and may cost less to develop, but their performance will not
match the performance of hardware implementations. Recent advances of programmable
network processors (e.g., Intel IXP network processors), however, may offer both hardware
performance and software flexibility.
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5.2 Public-Key Infrastructure

To deploy cryptographic algorithms in network applications, we need a way to distribute secret
keys using open networks. Public-key cryptography is the best way to distribute these secret
keys. In order to use public-key cryptography, we need to build a public-key infrastructure
(PKI) to support and manage public-key certificates and certificate authority (CA) networks.
In particular, PKIs are set up to perform the following functions:

1. Determine the legitimacy of users before issuing public-key certificates to them.
2. Issue public-key certificates upon user requests.
3. Extend public-key certificates valid time upon user requests.
4. Revoke public-key certificates upon users’ requests or when the corresponding private keys

are compromised.
5. Store and manage public-key certificates.
6. Prevent digital signature signers from denying their signatures.
7. Support CA networks to allow different CAs to authenticate public-key certificates issued

by other CAs.

5.2.1 X.509 Public-Key Infrastructure

Recommended by the Internet Engineering Task Force (IETF), X.509 is a public-key infras-
tructure established by the Telecommunication Standardization Sector of the International
Telecommunication Union (ITU) in 1988. It is also referred to as the ITU-T PKI standard,
and we denote it by PKIX. PKIX consists of the following four basic components: end entity,
certificate authority (CA), registration authority (RA), and repository. An entity means any
user of public-key certificates or any device (e.g., servers and routers) that supports PKIX.
These components have the following functionalities:

1. The CA is responsible for issuing and revoking public-key certificates.
2. The RA is responsible for verifying identities of owners of public-key certificates.
3. The Repository is responsible for storing and managing public-key certificates and certifi-

cate revocation lists (CRLs). A CRL is a list of certificates revoked by CA.

Figure 5.3 shows the architecture of PKIX.
Transaction management between the end entity, CA, RA, and repository includes the fol-

lowing items:

1. Registration: Users register with CA or RA before certificates are issued to them. Users
may register their certificates directly or indirectly through RA.

2. Initialization: Users obtain initial information, including public keys of CAs and RAs, sig-
nature algorithms, and information.

3. Certificate issuing and publication: CA or RA issues and publishes certificates in the repos-
itory for users.

4. Key recovery: CA or RA provides necessary mechanisms for users to recover lost private
keys.

5. Key generation: CA or RA periodically generates new key pairs for users.
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6. Certificate revocation: Users inform CA or RA to revoke their certificates if they lose private
keys, if they change names/addresses, or in case of any other events that may jeopardize
the security of their private keys.

7. Cross-certification: Different CAs should be able to authenticate certificates issued by each
other.

5.2.2 X.509 Certificate Formats

X.509 certificate formats have gone through three different versions. X.509 version 1 was first
released in 1988. X.509 version 2 was not used widely. X.509 version 3 was released in 1996
and is the most common certificate format used today. An X.509 certificate consists of the
following components:

1. Version: It indicates which version the certificate is using.
2. Serial number: It is a unique number assigned to the certificate within the same CA.
3. Algorithm: It lists the name of the hash function and the public-key encryption algorithm

used to generate the signature for the certificate. For example, the name sha1RSA indicates
that the signature of the certificate is generated by applying RSA on the hash value of the
certificate produced by SHA-1.

4. Issuer: It gives the issuer’s name.
5. Validity period: It gives a time interval when the certificate is valid.
6. Subject: It gives the certificate owner’s name.
7. Public key: It gives the subject’s public-key information and parameter information (if any)

and what algorithm this key is to be used with.
8. Extension: It gives other information such as what the subject’s key is used for. Only version

3 offers this component.
9. Properties: It gives the encrypted hash value of the certificate using CA’s private key (i.e.,

the signature of the certificate) and other information.
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Table 5.1 An X.509 certificate generated by Adobe Acrobat Pro, where c, email, ou, o, and cn are
X.509 names, representing, respectively, certificate owner’s country, email address, organization,
employer, and name

Name Value

Key usage Sign transaction, Encrypt document
SHA1 digest of public key C2139EE0B1CD6C22F485650EA5B1EB23D2882487
Public key RSA (1024 bits)

30 81 9F 30 0D 06 09 2A 86 48 86 F7 0D 01
01 01 05 00 03 81 8D 00 30 81 89 02 81 81
00 C5 DD 2D 97 2F 1F A5 4E 16 6A 32 FE 37
77 44 4C 0C 2F 03 E0 02 05 64 AB C3 52 F0
A9 5E 4F 32 1A E6 3E 77 83 C7 56 8F B8 A1
FF 1F 15 F5 9C DA 7E DF C3 F3 92 80 A0 B7
EB 2B 14 3E 6C 6D CA D2 4F 92 C1 7C 7F 43
B4 F6 15 63 07 ED C0 7E 5A F7 4F 0E 13 75
2C 9C 9E 59 FD DA 4F 71 F3 B0 35 0B EA F0
60 D2 33 45 BD 5A DA DD 09 42 AF EB C4 40
38 4A F0 DC 42 79 05 56 BC DE A5 CF 50 8D
8A C5 02 03 01 00 01

Validity ends 2017/12/11 19:48:34 -04’00’
Validity starts 2012/12/11 19:48:34 -04’00’
Serial number 47 D2 ED 7D 82 FF 40 21 08 F5
Issuer c = US, email = wang@cs.uml.edu

ou = Department of Computer Science
o = UMass Lowell, cn = Jie Wang

Subject c = US, email = wang@cs.uml.edu
ou = Department of Computer Science
o = UMass Lowell, cn = Jie Wang

Signature algorithm SHA1 RSA (1.2.840.113549.1.1.5)
Version 3

Table 5.1 shows an example of the components in an X.509 certificate generated by Adobe
Acrobat X Pro, which can be found in option of Details under the Adobe Acrobat Pro Certifi-
cate Viewer.

Suppose that Alice wants to send a master key KAB to Bob and prove to Bob that it indeed
comes from Alice without being modified during transmission. Alice first obtains from PKIX
Bob’s certificate CA〈Ku

B〉, verifies CA’s signature, and extracts Bob’s public key Ku
B from

the certificate. Alice then sends the following message to Bob:

DKr
A
(M) ‖ CA〈Ku

A〉 ‖ M, (5.1)

where
M = tA ‖ rA ‖ IDB ‖ EKu

B
(KAB),

E is a public-key encryption algorithm agreed on by both Alice and Bob with D being its
decryption algorithm, (Ku

A,Kr
A) is Alice’s public-private key pair, tA is a time stamp, rA is a

nonce, IDB is Bob’s identity, and CA〈Ku
A〉 is Alice’s certificate.

mailto:wang@cs.uml.edu
mailto:wang@cs.uml.edu


Network Security Protocols in Practice 173

After receiving Message 5.1, Bob first verifies the signature of Alice’s certificate using CA’s
public key. If confirmed, Bob retrieves Alice’s public key Ku

A from the certificate and uses Ku
A

to encrypt DKr
A
(M) to get M . Bob then extracts from M the time stamp, the nonce, IDB ,

and EKu
B
(KAB). If IDB is correct, and the time stamp and the nonce are valid, then Bob uses

his own private key KB
r to decrypt E(Ku

B ,KAB) to get KAB .

5.3 IPsec: A Security Protocol at the Network Layer

IPsec is a major security protocol at the network layer. Some authors write it as IPSec. It is
written as IPsec in RFC documents. IPsec provides a potent platform for constructing virtual
private networks (VPN). VPNs are private networks overlayed on public networks.

As mentioned in Section 5.1, the purpose of deploying cryptographic algorithms at the
network layer is to encrypt or authenticate IP packets (either just the payloads or the whole
packets). IPsec specifies how this is to be done. IPsec also specifies how to exchange keys.
Thus, IPsec consists of authentication protocols, encryption protocols, and key exchange pro-
tocols. They are referred to, respectively, as authentication header (AH), encapsulating secu-
rity payload (ESP), and Internet key exchange (IKE).

1. AH is an authentication format. It is used to authenticate the origin of the IP packet and
ensure its integrity. In addition, AH uses the sliding window technique to detect message
replays. Values in certain fields in the IP header (e.g., TTL) are updated at each hop during
transmission, but values in most of the fields remain unchanged. For each IP packet to
be authenticated, AH authenticates its payload and the fields with unchanged values in its
header.

2. ESP is an encryption format. It is used to encrypt IP packets, either just their payloads or
the whole packets. It can also be used to authenticate IP packets.

3. IKE is a key exchange format. It is used to establish secret keys for the sender and the
receiver.

IPsec supports a number of encryption algorithms for users to choose from. When Alice
wants to communicate with Bob using IPsec, Alice must first select a set of encryption algo-
rithms and parameters and then inform Bob about her selection. Bob may accept Alice’s
selection or negotiate with Alice for a different set of algorithms and parameters. Once the
algorithms and parameters are selected, IPsec establishes a security association (SA) between
Alice and Bob for the rest of the session.

5.3.1 Security Association

A security association provides the following information:

1. Security parameters index (SPI): It is a 32-bit binary string used to identify a particular set of
algorithms and parameters, as well as a particular communication session. SPI is included
in AH and ESP to ensure that both sides will use the same algorithms and parameters.

2. IP destination address: It specifies which host the underlying SA is established for.
3. Security protocol identifier: It specifies whether the underlying SA is established for AH

or ESP. IPsec disallows AH and ESP to use the same SA simultaneously.
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A SA has a particular lifetime. SAs for different communication sessions that use the same
set of algorithms and parameters, with the same IP destination address and security protocol
identifier, are different SAs that are specified with different SPIs.

SAs can be established dynamically by IKE or statically by the IPsec manager of the host
computer.

When both ESP and AH are applied to an IP packet, IPsec applies ESP before authentication.
That is, AH is in front of the ESP header. The reason for this is that deciphering a packet would
take more time than verifying a signature of it. If authentication fails in the first place, then
there is no need to decipher the packet in the second place. This means that the authentication
SA comes in front of the ESP SA. A sequence of SAs is referred to as an SA bundle.

IPsec has several built-in mechanisms to facilitate the use of SAs. They are security asso-
ciation database (SAD), security policy database (SPD), and SA selectors (SAS).

5.3.1.1 Security Association Database

In order to facilitate searching (after an SA relation is established between users), IPsec stores
the SA information in the SAD at a user’s local machine. Therefore, including SPI in the
IPsec packet header allows IPsec to look for the SA information within the SAD to process
the packets.

5.3.1.2 Security Policy Database

IPsec is placed at the network layer, and so it needs to handle TCP packets from different users.
Not every packet needs encryption or authentication. For IPsec on the sending host to know
what to do when a TCP packet is passed down from the transport layer, the IPsec manager at
the host computer must create and maintain a list of rules, which is referred to as the security
policy. To facilitate searching, a security policy is stored in the SPD at the host computer.
On the basis of the information contained in the TCP header, IPsec finds the corresponding
security policy in the SPD. On the basis of this security policy, IPsec will encrypt the packet,
authenticate the packet, or do nothing.

5.3.1.3 SA Selectors

IPsec allows users to assign a set of rules to an SA that determines which packets the SA is
applied to. Such a set of rules is referred to as an SA selector. For example, one may give a
certain SA a selector so that the SA only handles packets whose destination IP addresses fall
into a certain range.

SAs are directional. Some SAs can handle outgoing packets, some can only be used to
handle incoming packets, and others can handle both.

5.3.2 Application Modes and Security Associations

IPsec supports the transport-mode and the tunnel-mode applications of cryptographic
algorithms.
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Establishing SAs in transport mode is straightforward. For each outbound TCP packet
passed down to the network layer at the sending host, IPsec checks the security policy stored
in the local SPD. If the TCP packet is to be encrypted, IPsec encrypts it, adds an ESP header
in front of the encrypted TCP packet, and specifies an SA. Likewise, if the TCP packet is to
be authenticated, IPsec signs it with a digital signature, adds an authentication header in front
of it, and specifies an SA. A normal IP header will then be added to the resulting packet for
transmission. IPsec at the receiving host finds the SA in its SAD according to the SPI in the
ESP header or in the authentication header and processes the packet accordingly.

Establishing SAs in tunnel mode is more involved. It depends on how many IPsec gateways
there are on the path from the sending host to the receiving host. Between adjacent IPsec
gateways, there could be other routers.

5.3.2.1 Single Tunnel

The simplest tunnel-mode SA is a one-layer tunnel. For each outbound IP packet that asks
for tunnel-mode encryption (the case for tunnel-mode authentication is similar), the IPsec
gateway Gs at the sending side encrypts the entire IP packet, adds an IP header of its own,
and forwards the resulting packet to the next IPsec gateway G1. In order for it to forward the
resulting packet, Gs needs to establish a security association SAs,1 with G1 to ensure that G1
knows how to decipher the IP packet it receives. G1 checks the IP header of the deciphered IP
packet, obtains its destination IP address, and finds the next IPsec gateway G2 to forward this
packet to. G1 then encrypts the entire IP packet, adds an IP header of its own, and forwards
the resulting packet to G2. To carry out this forwarding action, G1 needs to establish a security
association SA1,2 with G2. This process continues until the destination IPsec gateway Gd is
reached.

5.3.2.2 Nested Tunnels

In the above-mentioned example, the original IP packet can be read by each of the IPsec gate-
ways on the path. To disallow reading of the original IP packets by certain IPsec gateways,
IPsec can wrap another tunnel around the tunnel. For example, assume that Gs, G1, and Gd

are three IPsec gateways between host A and host B, where Gs is the sending-side gateway,
G1 is the next gateway of Gs, and Gd, the destination gateway, is the next gateway of G1. Sup-
pose that Gs supports encryption algorithms A1 and A2, G1 supports encryption algorithms
A2 and A3, and Gd supports encryption algorithms A1 and A3, where A1 is the weakest algo-
rithm. Suppose that host A needs to send an IP packet P to host B using the strongest possible
encryption algorithms during transmission but does not want G1 to read P , where P ’s header
has host A’s IP address as the source and host B’s IP address as the destination. This objective
can be achieved using nested tunnels as follows (see Figure 5.4):

1. Gs establishes a security association SAs,d with Gd, specifying that A1 is the chosen
encryption algorithm. Gs encrypts P using A1 to get an ESP packet denoted by A1(P ).
This creates a tunnel t0 between Gs and Gd. Gs adds an IP header IPhs,d in front of A1(P ),
with Gs’s IP address as the source and Gd’s IP address as the destination. Let P ′ denote
this new packet. That is,

P ′ = IPhs,d ‖ A1(P ).
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Figure 5.4 A demonstration of multiple layers of nested tunnels, where R1 denotes other routers on
the path from IPsec gateway Gs to IPsec gateway G1, and R2 denotes other routers on the path from
IPsec gateway G1 to IPsec gateway Gd

2. Gs establishes a security association SAs,1 with G1, specifying that A2 is the chosen
encryption algorithm. Gs encrypts P ′ using A2 to get an ESP packet denoted by A2(P

′).
This creates a tunnel t1 between Gs and Gd that wraps around tunnel t0. Gs adds an IP
header IPhs,1 in front of A2(P

′), with Gs’s IP address as the source and G1’s IP address
as the destination. Let P1 denote this new packet, that is,

P1 = IPhs,1 ‖ A2(P
′).

Gs forwards P1. (Note that P1 may go through other routers between Gs and G1.)
3. On receiving P1, G1 first uses A2, obtained from SAs,1 through the SPI contained in the

ESP header of A2(P
′), to decipher P1 to get P ′. Realizing from IPhs,d that the payload of

P ′, that is, A1(P ), is to be forwarded to Gd, G1 establishes a security association SA1,d

with Gd, specifying that A3 is the chosen encryption algorithm. G1 encrypts P ′ using A3
to get an ESP packet denoted by A3(P

′). This creates a tunnel t2 between G1 and Gd that
wraps around tunnel t0. G1 adds an IP header IPh1,d in front of A3(P

′), with G1’s IP
address as the source and Gd’s IP address as the destination. Let P2 denote this new packet,
that is,

P2 = IPh1,d ‖ A3(P
′).

G1 forwards P2 to Gd. (Note that P2 may go through other routers between G1 and Gd.)
4. On receiving P2, Gd first uses A3, obtained from SA1,d through the SPI contained in the

ESP header of A3(P
′), to decipher P2 to get P ′. Realizing from IPhs,d that Gd is the

final destination for the payload of P ′, Gd uses A1, obtained from SAs,d through the SPI
contained in the ESP header of A1(P ), to decipher the encrypted A1(P ) to get P , and
forwards P to host B.

5.3.3 AH Format

Figure 5.5 shows IPsec’s authentication header format, where each field is defined as follows:

The field of “next header” is used to indicate the type of header immediately after the authen-
tication header. For example, if an ESP header is immediately after the AH header, then this
field is used to indicate the type of ESP.

The field of “payload length” is used to specify the number of words in the field of “integrity
check value” (ICV) plus 1. For example, if the ICV is a 96-bit HMAC code, then the value in
the “payload length” field equals �96/32� + 1 = 4, where �x� denotes the smallest integer
greater than or equal to x. Equivalently, the payload length is equal to the number of words
contained in the header minus 2.
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0

Next header Payload length

Security parameters index (SPI)

Sequence number

Integrity check value (variable length)

RESERVED

8 16 31

Figure 5.5 Authentication header format

The field of “RESERVED” is reserved for future applications, which is occupied with 0’s at
the current version.

The field of SPI has already been explained in Section 5.3.1.
The field of “sequence number” is used to identify an authentication header, where the

sequence number is a 32-bit counter. It is used to foil message replays.

In particular, the sending host sets the sequence number to 0 when it establishes an SA with
the receiving host. The number is increased by 1 each time the SA is used until it is equal to
232 − 1, at which time, the SA must be terminated. A new SA must be established if there still
are packets to be sent in the same session.

5.3.3.1 Sliding Window

To resist message replay attacks, IPsec at the receiving host uses a sliding window to determine
which packets should be processed and which packets should be dropped. A sliding window is
a buffer that can hold w sequence numbers; the default value of w is 64. IPsec at the destination
host sets up a sliding window SW [1, w] for each SA it creates. Initially, SW [i] is unmarked
for all i from 1 to w.

When the first packet associated with the SA arrives, the right end of the window SW [w] is
marked, representing the highest sequence number received so far. Let n represent this number.

After receiving a packet with sequence number i, the destination IPsec finds the SA window
the packet belongs to and does the following:

1. If n − w + 1 ≤ i ≤ n, that is, if i is within the window, check if SW [i + w − n] is marked.
If it is marked, the packet is a replay; drop the packet. If it is not marked, check the signa-
ture of the packet. If the signature is valid, mark SW [i + w − n] and process the packet;
otherwise, drop the packet.

2. If i ≤ n − w, the packet is old; drop the packet.
3. If i > n, check the signature of the packet. That is, unmark everything that is shifted out of

the window. If the signature is valid, shift everything in the window to the left i − n times,
set n ← i, mark SW [w], and unmark every SW [j] with w − n − i < j ≤ w − 1. If the
signature is not valid, drop the packet.
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5.3.3.2 Integrity Check Value

The field of “integrity check value (ICV)” holds a hash value of the data to be authenticated.
IPsec at the receiving host decrypts the authenticated data, computes the hash value of the
decrypted data, and compares it against the ICV to verify its signature. In the transfer mode,
the data to be authenticated is the IP payload, and the authentication header is placed between
the IP header and the TCP header. In the tunnel mode, it is the entire IP packet, except the fields
in the IP header whose values (such as TTL and checksum) are updated dynamically during
the transmission. The authentication header is placed in front of the entire IP packet. ICV may
be a prefix of the value of a standard hash function. For example, under HMAC-SHA-1-96,
ICV is the 96-bit prefix of the hash value produced by HMAC-SHA-1.

5.3.4 ESP Format

Figure 5.6 shows the ESP format.
The SPI field has the same meaning as the SPI field in the authentication header (see Section

5.3.3).
The “sequence number” field has the same meaning as the “sequence number” field found

in the authentication header.
Within the “payload data” field, data is placed to be encrypted. Under the transport mode, the

encrypted data is the IP payload, that is, the TCP packet. Under the tunnel mode, the encrypted
data is the entire IP packet.

The “padding” field is used to pad the encrypted data to the desirable length according to
the underlying encryption algorithms.

The “pad length” field is used to indicate how many bytes are included in the “padding”
field.

The “next header” field points to the first header succeeding the ESP header.

0 8 16 24 31

Security parameters index (SPI)

Sequence number

Payload data (variable length)

Authentication data (variable length) Trailer

Payload

Header

Padding (0 to 255 bytes)

Pad length Next header
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Figure 5.6 ESP format
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The length of the binary string

payload data ‖ padding ‖ pad length ‖ next header

must be divisible by 32. This binary string is to be encrypted, and we call the encrypted string
the encrypted component of the ESP packet.

The “authentication data” field stores the ICV value of the following binary string:

SPI ‖ sequence number ‖ payload data ‖ padding ‖ pad length ‖ next header.

Its length is divisible by 32. It is used to check the integrity of the encrypted component of the
ESP packet.

Thus, an ESP packet has a header, a payload, and a trailer. The header consists of SPI and
the sequence number; the payload consists of the payload data, padding, pad length, and next
header; and the trailer consists of the authentication data.

5.3.5 Secret Key Determination and Distribution

To use encryption algorithms to create ESP packets and to use HMAC authentication
algorithms to authenticate packets, the sending host and the receiving host must first agree
on using the same secret keys. This involves key determination and key distribution. Secret
keys are set up automatically using key exchange protocols, although they can also be set
up manually by system administrators. IPsec uses Oakley key determination protocol (KDP)
and Internet security association and key management protocol (ISAKMP). Oakley KDP
is Diffie–Hellman key exchange with authentication and several other security measures.
However, it does not specify formats. ISAKMP, on the other hand, specifies key exchange
formats, but it does not specify key exchange algorithms.

5.3.5.1 Oakley KDP

We have shown in Section 3.3.2 that the Diffie–Hellman key exchange scheme is vulnerable
to the man-in-the-middle attack. However, this attack can be prevented if all parties involved
in a key exchange can authenticate each other. Oakley KDP uses authentication methods to
combat man-in-the-middle attacks.

In addition to the man-in-the-middle attack, the Diffie–Hellman key exchange scheme is also
vulnerable to the clogging attack. The clogging attack is a form of denial-of-service attacks. It
forces users to engage in a large number of expensive operations with the purpose of crashing
their computer systems. In the context of Diffie–Hellman key exchange, the attacker sends
to the victim a large number of public keys Yi in crafted IP packets, where the source IP
addresses contained in the crafted packets are IP addresses of unreachable hosts, forcing the
victim’s computer to compute secret keys Ki = Y X

i mod p. Because modular exponentiations
are expensive computations, computing a large number of modular exponentiations at the same
time would use up the CPU cycles of the computer.

Oakley KDP uses cookie exchange to resist clogging attacks. In particular, suppose that
Alice receives a message from Bob, which may contain Bob’s Diffie–Hellman public-key YB ,
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requesting to use Diffie–Hellman key exchange to determine a secret key. In this example, Bob
is the initiator and Alice the responder. Instead of carrying out the exponentiation Y XA

B mod
p right away, Alice generates a (pseudo) random number, called a cookie, sends it to Bob, and
waits for Bob’s acknowledgement. Only after she receives the acknowledgement will Alice
carry out the exponentiation operation. Because in a crafted packet the host on the source IP
address used in a clogging attack is not reachable, the victim’s computer will not receive any
acknowledgement of the cookie it sent, and so it will not execute the exponentiation operations
it was asked to perform. To save time, the initiator will send a cookie along with his initial
request. A cookie can be extended to include extra information. Thus, a cookie is a string that
contains a random number as a substring, and the rest of the string represents other information.

Cookie exchange, Diffie–Hellman key exchange, and authentication are the three major
components in Oakley KDP. In addition to these three components, Oakley KDP also uses
nonce to thwart message-replay attacks.

To describe how Oakley KDP users exchange information, we define the following
notations.

1. CKYI denotes the initiator’s cookie, and CKYR denotes the receiver’s cookie.
2. OK_KEYX denotes that the underlying message is for key exchange.
3. NIDP denotes that the succeeding part in the message is not encrypted, while IDP denotes

that the succeeding part in the message is encrypted.
4. GRP denotes Diffie–Hellman parameters p and a, where p is a prime number and a is a

primitive root modulo p. Note that Oakley KDP provides default values of p and a, but it
also allows the initiator and the responder to negotiate a new set of parameters.

5. gx and gy denotes, respectively, ax mod p and ay mod p, where p and a are specified in
GRP.

6. EHAO denotes the list of encryption algorithms, hash functions, and authentication algo-
rithms supported by the initiator. EHAO is provided to the responder.

7. EHAS denotes the encryption algorithm, hash function, and the authentication algorithm
selected by the responder from EHAO.

8. IDI and IDR denote, respectively, the initiator’s name and the responder’s name.
9. NI and NR denote, respectively, the initiator’s nonce and the responder’s nonce.

10. SKr
I
(X) and SKr

R
(X) denote, respectively, the initiator’s signature of X and the respon-

der’s signature of X .

The following are the basic interactions between the initiator and the responder using Oakley
KDP:

I → R : CKYI, OK_KEYX, GRP, gx, EHAO, NIDP, IDI, IDR,NI,
SKr

I
(IDI ‖ IDR ‖ NI ‖ GRP ‖ gx ‖ EHAO).

R → I : CKYR,CKYI, OK_KEYX, GRP, gy, EHAS, NIDP, IDR, IDI,NR,NI,
SKr

R
(IDR ‖ IDI ‖ NR ‖ NI ‖ GRP ‖ gy ‖ gx ‖ EHAS).

I → R : CKYI,CKYR, OK_KEYX, GRP, gx, EHAS, NIDP, IDI, IDR,NI,NR,
SKr

I
(IDI ‖ IDR ‖ NI ‖ NR ‖ GRP ‖ gx ‖ gy ‖ EHAS).
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Figure 5.7 ISAKMP header

5.3.5.2 ISAKMP Formats and Exchanges

ISAKMP specifies packet formats used for key exchange and other types of information
exchange. An ISAKMP packet consists of a header and a payload. ISAKMP supports several
types of payloads.

ISAKMP Header Format
Figure 5.7 shows the ISAKMP header format.

The 64-bit “cookie” field (of the initiator’s or the responder’s) contains, in addition to a
random number, information to establish, notify, or delete a security association.

The 8-bit “next payload” field indicates the type of the first payload in the message.
The 4-bit “major version” field indicates the major version of ISAKMP being used. Like-

wise, the 4-bit “minor version” field indicates the minor version of ISAKMP being used.
The 8-bit “exchange type” field indicates the type of exchange.
The 8-bit “flags” field is used to specify options.
The 32-bit “message ID” field is a unique identifier of the underlying message.
The 32-bit “length” field specifies the number of bytes in the entire packet (i.e., header and

all payloads).

ISAKMP Payload Types
ISAKMP specifies a number of payload types. They are SA, proposal, transform, key-
exchange, identification, certificate-request, certificate, hash, signature, nonce, notification,
and delete payloads.

1. The SA payload is used to establish a security association.
2. The proposal payload is used to negotiate an SA.
3. The transform payload specifies encryption and authentication algorithms.
4. The key-exchange payload specifies a key-exchange algorithm.
5. The identification payload carries information for identifying peers.
6. The certificate-request payload is used to request a public-key certificate.
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7. The certificate payload contains a public-key certificate.
8. The hash payload contains the hash value of a hash function.
9. The signature payload contains the output of a digital signature function.

10. The nonce payload contains a nonce.
11. The notification payload notifies the status of the other types of payloads (e.g., “invalid

signature” is a notification).
12. The delete payload is used to notify the receiver that the sender has deleted an SA or

several SAs.

The payload in an ISAKMP packet may be one type of payload or a sequence of payloads
of different types. For more information about these payload types, the reader is referred to
RFC 2408 and other relevant RFC documents.

Each type of payload begins with a payload header of the same form (see Figure 5.8).
The 8-bit “next payload” field specifies the type of the succeeding payload. It is equal to 0

if it is the last payload.
The 16-bit “payload length” field specifies the number of bytes in the current payload and

its payload header (i.e., not the payloads before or after it).

A Sample ISAKMP Exchange
The following is an ISAKMP payload exchange example:

1. I → R: SA, proposal, transfer, nonce
2. R → I: SA, proposal, transfer, nonce
3. I → R: key-exchange, identification, signature
4. R → I: key-exchange, identification, signature

In this example of payload exchange, the initiator first sends an SA payload, a proposal
payload, a transfer payload, and a nonce payload to the responder for the purpose of setting
up a security association. The responder selects an encryption algorithm and an authentication
algorithm from the list provided by the initiator (i.e., the algorithms contained in the initiator’s
transfer payload). The responder then sends an SA payload, a proposal payload, a transfer pay-
load, and a nonce payload to the initiator for the purpose of completing a security association.
The initiator then sends a key-exchange payload, an identification payload (with the initiator’s
identity), and a signature payload (for authentication) to the responder for the purpose of deter-
mining a secret key. The responder sends a key-exchange payload, an identification payload
(with the responder’s identity), and a signature payload (for authentication) to the initiator to
complete the key exchange procedure.

This example is the basic type of exchange. There are other types of exchange described in
relevant RFC documents.

Figure 5.8 ISAKMP payload header
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5.3.5.3 Internet Key Exchange

The IKE is heavily influenced by Oakley KDP. It has two distinct versions called version 1
and version 2. We only describe version 1, which is documented in RFC 2409.

The IKE protocol consists of two distinct phases. Phase one is responsible for authenticating
and establishing session keys. Phase two is responsible for setting up SAs.

Phase one consists of two different authentication methods called the Main Mode and the
Aggressive Mode. The Main Mode method must be implemented by all IKE software. Phase
one is designed on top of the ISAKMP specification. The sample ISAKMP exchange described
in the previous section is exactly phase one of IKE version 1. The key exchange used by IKE
is Diffie–Hellman.

Phase two, sometimes called Quick Mode, is a three-message protocol used to establish an
SA given the association created in Phase one. In particular, the SA established in Phase one
is used to protect Quick Mode communications. The messages exchanged are all encrypted
using the SA established in Phase one. The exchange of messages is as follows:

1. I → R: Propose cryptographic parameters for the SA. This message contains the SPI for I,
a proposal, and a nonce.

2. R → I: Acceptance of the cryptographic proposal for the SA. This message contains the
SPI for R, acceptance of the cryptographic parameters, and a nonce.

3. I → R: Acknowledgment by I that R has accepted the cryptographic parameters.

5.4 SSL/TLS: Security Protocols at the Transport Layer

The SSL and the TLS are common transport-layer security protocols used in practice. Designed
and developed by Netscape in 1994, SSL is used to protect World-Wide-Web applications and
electronic transactions. The World Wide Web is a client-server application program. Thus,
placing cryptographic algorithms at the transport layer (i.e., just below the application layer)
to protect Web applications is a reasonable choice. TLS is a revised version of SSL version
3, which was published in 1999 as the transport-layer security standard by The Internet Engi-
neering Task Force (IETF). There are only minor differences between TLS and SSLv3. This
section describes SSL.

SSL consists of two components. The first component is referred to as the record proto-
col, which is placed on top of transport-layer protocols. The second component consists of
the handshake protocol, the change-cipher-spec protocol, and the alert protocol. The second
component is placed between application-layer protocols (such as HTTP) and the record pro-
tocol. Figure 5.9 shows how the SSL protocol structure exists between the application-layer
protocol (in this case, HTTP) and the transport-layer protocol within the TCP/IP protocol stack.
In particular, HTTPS specifies the HTTP protocol over SSL.

The handshake protocol establishes cryptographic algorithms, a compression algorithm,
and parameters to be used by both sides during the encrypted exchange. After this, the record
protocol takes over the communications. In particular, it is responsible for dividing a message
into blocks, compressing each block, authenticating them, encrypting them, adding a record
header to each block, and then transmitting the resulting blocks. The change-cipher-spec
protocol allows communicating parties to change algorithms or parameters during a com-
munication session. The alert protocol is a management protocol; it notifies communicating
parties when problems occur.
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Transport layer

Figure 5.9 SSL structure

Data can often be compressed to reduce size without losing information. ZIP is a widely
used data compression algorithm in network communications. Invented by Phil Katz in the
mid-1980s, ZIP is based on an universal algorithm for sequential data compression devised
by Jacob Ziv and Abraham Lempel in 1977. This universal algorithm is often referred to as
the LZ77 compression algorithm. Published as open format in 1989, ZIP has since been used
in various popular data compression products, including PKZIP, WinZip, WinRAR, and gzip.
See Appendix C for a detailed description of data compression using ZIP.

5.4.1 SSL Handshake Protocol

The handshake protocol is a complicated protocol. It allows the client and the server to negoti-
ate and select a set of cryptographic algorithms and to exchange keys. It also allows the client
and the server to authenticate each other. Because of the complexity of the protocol, we use an
example of online shopping to describe the handshake protocol. The client program and the
server program exchange information in four phases.

For convenience, we use “client” to denote “the client program” or “the user of the client
program”. Likewise, we use “server” to denote “the server program”. In SSL applications of the
World Wide Web, the client program is the Web browser and the server program a Web server.

5.4.1.1 Phase 1: Select Cryptographic Algorithms

The client initiates a conversation with a client_hello message to the server, and the
server responds with a server_hello message to the client. The client_hello mes-
sage consists of the following information:

1. Version number vc: It is the highest SSL version installed at the client-side computer (e.g.,
vc = 3.)

2. Pseudorandom string rc: It is a 32-byte string consisting of a 4-byte time stamp and a
28-byte nonce generated by a pseudorandom number generator at the client-side computer.
This string is used to resist message-replay attacks.

3. Session ID Sc: The value of Sc may be any number. If Sc = 0, it means that the client wants
to start a new SSL connection using a new session. An SSL connection is determined by
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the cryptographic algorithms, parameters, and hash functions agreed on by the client and
the server. If Sc �= 0, it means that the client wants to start a new SSL connection using the
current session, or update the parameters of the current SSL connection.

4. Cipher suite: It is a list of public-key encryption algorithms, symmetric-key encryption
algorithms, and hash functions supported by the client-side system, listed in decreasing
order of preference. For example, the client may supply the following cipher suite:

〈 RSA, ECC, Diffie–Hellman, Elgamal;

AES-128, 3DES/3, MARS, RC6, Serpent, Twofish;

SHA-512, Whirlpool, SHA-384, SHA-256, SHA-1 〉.

Each item in the list also comes with a description of how to use it.
5. Compression method: It is a list of compression algorithms supported by the client-side

system, listed in decreasing order of preference. For example, the client may supply the
following list of compression methods:

〈 ZIP, WinZip, PKZIP 〉.

The server_hello message contains the cryptographic algorithms selected by the
server. In particular, it consists of the following information:

1. Version number vs: vs = min{vc, v}, where v is the highest SSL version installed at the
server-side computer.

2. Pseudorandom string rs: It is a 32-byte string consisting of a 4-byte time stamp and a
28-byte nonce generated by a pseudorandom number generator at the server-side computer.

3. Session ID Ss: If Sc = 0, then Ss is equal to the new session ID; otherwise, Ss = Sc.
4. Cipher suite: It is a list of a public-key encryption algorithm, a symmetric-key encryption

algorithm, and a hash function selected by the server from the client’s cipher suite. For
example, the server may select

〈 RSA, AES-128, Whirlpool 〉

as its cipher suite.
5. Compression method: It is a compression method selected by the server from the list of

client’s compression methods. For example, the server may select WinZip as its compres-
sion method.

5.4.1.2 Phase 2: Authenticate Server and Exchange Key

The server sends the following information to the client:

1. Server’s public-key certificate.
2. Server’s key-exchange information.
3. Server’s request of client’s public-key certificate.
4. Server’s closing statement of server_hello.
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Because the client may not have a public-key certificate, and because the client’s iden-
tity can be verified through the client’s credit card information and the standard methods of
authenticating credit card holders, Step 3 is often omitted. If the server selects RSA to exchange
keys, then Step 2 can also be omitted.

5.4.1.3 Phase 3: Authenticate Client and Exchange Key

The client responds to the server with the following information:

1. Client’s public-key certificate.
2. Client’s key-exchange information.
3. Client’s ICV of its public-key certificate.

The key-exchange information between the server and the client is used to generate a master
key between them.

If the server did not ask for the client’s public-key certificate, then the first item and the third
item are omitted in the client’s reply.

If the server in Phase 1 chooses RSA to exchange secret keys, then the client generates and
exchanges a secret key as follows: the client first verifies the signature of the server’s public-key
certificate. If verified, the client obtains the server’s public key Ku

s . It then generates a 48-byte
pseudorandom string spm, referred to as a pre-master secret. It then uses the server’s public
key Ku

s to encrypt spm using RSA and sends the ciphertext string as key-exchange information
to the server. Thus, the client and the server both have the following strings:

rc, rs, spm.

As spm is encrypted before it is transmitted, only the end users, namely, the client and the
server, know the value of spm.

The client and the server calculate the master secret sm as follows:

sm = H1(spm ‖ H2(
′A′ ‖ spm ‖ rc ‖ rs)) ‖

H1(spm ‖ H2(
′BB′ ‖ spm ‖ rc ‖ rs)) ‖

H1(spm ‖ H2(
′CCC ′ ‖ spm ‖ rc ‖ rs)),

where H1 and H2 are hash functions (note that SSL uses MD5 as the default hash function for
H1 and SHA-1 as the default hash function of H2), ′A′, ′BB′, and ′CCC ′ denote, respectively,
the ASCII code of A, BB, and CCC.

5.4.1.4 Phase 4: Complete Handshake

The client and the server send to each other a change_cipher_spec message and a
finish message to close the handshake protocol. Both sides determine whether they have
calculated the same master secret. For this purpose, the finish message sent from each side
must contain a hash value of the master secret sm it has calculated.
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After the handshake protocol is ended, both sides calculate a secret-key block Kb using the
same method for calculating the master secret sm. The only difference is to replace spm with
sm. That is,

Kb = H1(sm ‖ H2(
′A′ ‖ sm ‖ rc ‖ rs)) ‖

H1(sm ‖ H2(
′BB′ ‖ sm ‖ rc ‖ rs)) ‖

H1(sm ‖ H2(
′CCC ′ ‖ sm ‖ rc ‖ rs)) ‖

H1(sm ‖ H2(
′DDDD′ ‖ sm ‖ rc ‖ rs)) ‖

· · ·

SSL then divides Kb into six blocks, each of which forms a secret key. The six secret keys
that are obtained are put into two groups:

Group I: (Kc1,Kc2,Kc3)

Group II: (Ks1,Ks2,Ks3)

That is,
Kb = Kc1 ‖ Kc2 ‖ Kc3 ‖ Ks1 ‖ Ks2 ‖ Ks3 ‖ Z,

where Z is the remaining substring. The first group of secret keys is used to protect packets
from the client to the server, denoted by

(Kc1,Kc2,Kc3) = (Kc,HMAC,Kc,E , IVc),

where Kc,HMAC is used as the secret key for an HMAC algorithm, Kc,E as the secret key for a
symmetric-key encryption algorithm, and IVc as the initial vector for running the encryption
algorithm under the CBC mode. The second group of secret keys is used to protect packets
from the server to the client, denoted by

(Ks1,Ks2,Ks3) = (Ks,HMAC,Ks,E , IVs).

The usage of each of these keys is the same as that of the corresponding key for the client.
The handshake protocol is responsible for establishing a secure communication session

between the client and the server. After this, the client and the server will use the SSL record
protocol to protect their communications.

5.4.2 SSL Record Protocol

The handshake protocol determines what encryption algorithms, parameters, secret keys, and
compression algorithms are to be used in the underlying communication session. The record
protocol uses these algorithms, parameters, secret keys, and compression algorithms to protect
data. Let M be a message to be sent from the client to the server. The SSL record protocol at
the client site will first divide M into a sequence of data blocks

M1,M2, · · · ,Mk.
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Encrypt compressed block and HMAC

Add SSL record header to encrypted block

Figure 5.10 SSL record protocol

It will then compress, authenticate, and encrypt each data block (see Figure 5.10) and transmit
encrypted blocks to the server.

In particular, let CX, H , and E be, respectively, the compression algorithm, the HMAC
algorithm, and the symmetric-key algorithm selected by both sides during the SSL handshake
protocol. For each data block Mi, i = 1, 2, · · · , k, the client does the followings:

1. Compress Mi to get M ′
i = CX(Mi).

2. Authenticate M ′
i to get M ′′

i = M ′
i ‖ HKc,HMAC

(M ′
i).

3. Encrypt M ′′
i to get Ci = EKc,E

(M ′′
i ).

4. Encapsulate Ci to get Pi = [SSL record header] ‖ Ci.
5. Transmit Pi to the server.

When the server receives a Pi from the client, it first extracts Ci from Pi. It then decrypts Ci

to get M ′′
i , extracts M ′

i and HKc,HMAC
(M ′

i), verifies the authentication code, and decompress
M ′

i to get Mi.
Under SSL, any data sent from the server to the client also goes through the same process.

This provides data confidentiality and integrity for data transmitted between the client and
the server.

5.5 PGP and S/MIME: Email Security Protocols

There are a number of security protocols at the application layer. The most used of these
protocols are email security protocols and remote login security protocols. The former includes
PGP and S/MIME. The latter includes SSH. In addition, Kerberos authentication for local area
networks is also popular.

Simple Mail Transfer Protocol (SMTP) and Post Office Protocol (POP) are the basic email
protocols. Both SMTP and POP are TCP protocols. POP3 is the commonly used version of
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Figure 5.11 SMTP and POP3 flow diagram

POP, where POP3 and POP use different port numbers. Other than this, we use POP and POP3
interchangeably in this book, unless otherwise stated. SMTP is responsible for transmitting
email, while POP3 is responsible for receiving email (see Figure 5.11).

SMTP was designed to transmit text messages encoded using 7-bit ASCII codes. This
presents a problem, for encrypted email messages are in binary format. To solve this problem,
one needs to devise a method to convert a binary string to a character string for transmission
and convert it back to the original binary string at the destination.

As certain binary strings represent ASCII control codes, it is difficult to represent binary
strings directly using ASCII codes. However, it is possible to represent a binary string using
hexadecimal digits, because the basic storage of binary data is byte. Each hexadecimal digit is
represented by an ASCII code. This method, however, is not economical (see Exercise 5.23).
As the number of characters used in English is over 26 but less than 27, using a 6-bit binary
string to represent an English character becomes a natural choice. This gives rise to Base64
encoding, a.k.a. Radix-64 encoding. For a detailed description of Base64 encoding, the reader
is referred to Appendix D.

5.5.1 Basic Email Security Mechanisms

Email security is a classic application of cryptographic algorithms. Let E and D denote a
symmetric-key encryption algorithm and its decryption algorithm. Let Ê and D̂ denote a
public-key encryption algorithm and its decryption algorithm. When there is no confusion
in the context, the hat may be omitted.

Suppose that Alice wants to prove to Bob that a certain email message M he receives is
from Alice. She can do so by sending the following string to Bob:

M ‖ ÊKr
A
(H(M)) ‖ CA〈Ku

A〉,

where Ku
A and Kr

A are Alice’s public key and private key, respectively. After receiving

M ‖ SM ‖ CA〈Ku
A〉

from Alice, where SM is the signed copy of M using Alice’s private key. Bob first verifies
CA’s signature on the public-key certificate CA〈Ku

A〉 and extracts KA from it. He then extracts
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M and verifies whether SM = ÊKr
A
(H(M)). If so, then Bob is convinced that M is indeed

from Alice.
Suppose that Alice wants to ensure that M remains confidential during transmission and

she knows Bob’s public key Ku
B . She sends the following string to Bob:

EKA
(M) ‖ ÊKu

B
(KA),

where KA is Alice’s secret key. After receiving this string from Alice, Bob first decrypts
ÊKu

B
(KA) using his private key to obtain KA; that is, he computes

D̂Kr
B
(ÊKu

B
(KA)) = KA.

He then uses KA to decrypt EKA
(M) to obtain M ; that is, he computes

DKA
(EKA

(M)) = M.

Phil Zimmermann incorporated cryptographic algorithms and mechanisms in an email sys-
tem he called PGP and made it easy to use. He published the PGP source code in 1991. Today,
PGP is owned by PGP Corporation, which continues the tradition of publishing the source code
of each new version of PGP for peer review. This practice helps to ensure product integrity.
PGP is now owned by Symantec Corporation.

5.5.2 PGP

PGP implements all major cryptographic algorithms, the ZIP compression algorithm, and the
Base64 encoding algorithm. It can be used to authenticate a message, encrypt a message, or
both. PGP follows the following general format: authentication, ZIP compression, encryption,
and Base64 encoding. The Base64 encoding procedure makes the message ready for SMTP
transmission. Figure 5.12 shows the general format of a PGP message Alice sends to Bob.

Alice and Bob each maintain a public-key ring and a private-key ring.
The secret-key component consists of Alice’s session key KA encrypted using Bob’s public

key Ku
B and the key ID of Ku

B . The encryption ensures the confidentiality of KA, and the key
ID informs which public key in his key ring Bob should use to decrypt it.

The signature component consists of a time stamp when Alice signs the message, the key
ID of Alice’s public key Kr

A to inform Bob which key in his key ring he should use to verify
Alice’s signature, the first two bytes of the message digest of Alice’s message for Bob to verify
the message digest, and the encrypted message digest using Alice’s private key Kr

A that serves
as Alice’s signature on the message.

The message component consists of the file name of the message, the time stamp for when
the message was created, and the message itself.

The signature component and the message component are compressed using ZIP and
encrypted using the session key KA Alice generated. The new binary string produced by this
process is then attached to the secret-key Component, and the whole string is converted to a
Base64 string. This format is used for Alice to provide authentication and confidentiality of
her message. If she only wants to authenticate her message, Alice does not need to include
the secret-key component and the encryption part using the session key. If she only wants
to provide confidentiality of the message, Alice does not need to include the signature
component.
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Figure 5.12 The general format of a PGP message Alice sends to Bob

5.5.3 S/MIME

SMTP can only handle 7-bit ASCII text messages. While POP can handle other content types
besides 7-bit ASCII, POP may, under a common default setting, download all the messages
stored in the mail server to the user’s local computer. After that, POP will remove these mes-
sages from the mail server. This makes it difficult for the user to read his messages from
multiple computers. Neither SMTP nor POP3 can authenticate or encrypt email messages.

The Multipurpose Internet Mail Extension protocol (MIME) was designed to support send-
ing and receiving email messages in various formats, including nontext files generated by
word processors, graphics files, sound files, and video clips. Moreover, MIME allows a single
message to include mixed types of data in any combination of these formats.

The Internet Mail Access Protocol (IMAP), operated on TCP port 143, stores incoming
email messages in the mail server until the user deletes them deliberately. This allows the
user to access his mailbox from multiple machines and download messages to a local machine
without deleting it from the mailbox in the mail server.

To solve the third problem and to support multimedia email messages at the same time, RSA
Security extended MIME in 1999 to include cryptographic algorithms for authenticating and
encrypting messages. The new protocol is referred to as S/MIME. S/MIME version 3 was des-
ignated by IETF to be the email security standard. In terms of security functionality, S/MIME
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is similar to PGP. It can automatically authenticate, encrypt, or authenticate and encrypt all
outgoing email message. It can also authenticate, encrypt, or authenticate and encrypt a spe-
cific email message. However, unlike PGP, S/MIME requires signatories to possess public-key
certificates.

S/MIME specifies encryption algorithms and encoding formats. It uses X.509 PKI and
public-key certificates. It supports standard symmetric-key encryption algorithms, public-key
encryption algorithms, digital signature algorithms, cryptographic hash algorithms, and com-
pression functions. S/MIME uses MIME formats to enclose encrypted messages.

5.6 Kerberos: An Authentication Protocol

The use of public-key certificates is arguably the best method to authenticate users across
networks. This method, however, requires a PKI, which incurs substantial overhead costs. For
users in the same local area network, this method is not necessary, because users in the local
area networks have their user names and password information stored in the local server, which
are used to authenticate users. Kerberos, named after a monstrous three-headed, snake-tailed
guard dog of Hades in Greek mythology, is an authentication protocol designed for users in
the same local area network without using public-key cryptography.

5.6.1 Basic Ideas

Kerberos was designed and developed in the late 1980s by a research team at Massachusetts
Institute of Technology, led by Steve Miller and Clifford Neuman, as part of Project Athena.
The goal of Kerberos is to make it easy for users to authenticate themselves to various servers
at the local network (e.g., email server, Web server, and file server) for obtaining services,
without needing to type in their passwords every time before they use the service. When a
user wants to use a certain service provided by a server in his local network, he needs to prove
to the server that he is a legitimate user. On the other hand, servers should also authenticate
themselves to users so that users know that they are using a legitimate service. While users
may use their user names and passwords to authenticate themselves to a server each time
they are using it, this practice is obviously cumbersome. In the meantime, each server must
also maintain an up-to-date record of user names and passwords, which makes it arduous to
manage. Kerberos uses symmetric-key encryption algorithms and electronic passes to solve
this problem. An electronic pass is referred to as a ticket.

A ticket is used to authenticate its holder’s identity. Kerberos uses two different types of
tickets and two special servers to issue tickets to users. One is called authentication server
(AS), and the other is called the ticket-granting server (TGS). AS manages users; it keeps and
maintains records of user login names and their password information (e.g., cryptographic
hash values of the passwords). TGS manages servers; it shares a different master key with
each server. TGS knows the names of all the users, which can be made public in the local
network, but only AS knows user password information.

When first logging on to the network, the user must prove to AS his identity by typing his
user name and password. After AS authenticates the user, AS issues a TGS-ticket to the user.
When he wants to use a service provided by server V, the user presents his TGS-ticket to TGS.
TGS verifies the legitimacy of the TGS-ticket and issues a V-ticket to the user. This type of
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Figure 5.13 Single-realm Kerberos, where the three dash lines indicate, respectively, the first-phase,
the second-phase, and the third-phase communications

ticket is referred to as a server ticket, which is tied to that specific server. The user uses his
V-ticket to request service from V.

Kerberos can be used in a single LAN with one AS and one TGS. It can also be used across
several local LANs. The first kind is referred to as single-realm Kerberos and the latter as
multiple-realm Kerberos. In other words, a Kerberos realm is a set of users and servers, all
using the same AS for authentication.

5.6.2 Single-Realm Kerberos

Figure 5.13 shows the flow diagram of single-realm Kerberos protocol, which consists of three
phases. In the first phase, the user requests a TGS-ticket. In the second phase, the user requests
a server ticket. In the third phase, the user presents his server ticket to the server to obtain
service.

We use the notations specified in Table 5.2 to describe Kerberos protocol steps.

5.6.2.1 Phase 1: AS Issues a TGS-Ticket to User

1. U → AS: IDU ‖ IDTGS ‖ t1;
2. AS → U: EKU

(KU,TGS ‖ IDTGS ‖ t2 ‖ LT2 ‖ TicketTGS),
TicketTGS = EKTGS

(KU,TGS ‖ IDU ‖ ADU ‖ IDTGS ‖ t2 ‖ LT2).

5.6.2.2 Phase 2: TGS Issues a Server Ticket to User

1. U → TGS: IDV ‖ TicketTGS ‖ AuthU,TGS,
AuthU,TGS = EKU,TGS

(IDU ‖ ADU ‖ t3);
2. TGS → U: EKU,TGS

(KU,V ‖ IDV ‖ t4 ‖ TicketV),
TicketV = EKV

(KU,V ‖ IDU ‖ ADU ‖ IDV ‖ t4 ‖ LT4).

5.6.2.3 Phase 3: User Requests Service from Server

1. U → V: TicketV ‖ AuthU,V,
AuthU,V = EKU,V

(IDU ‖ ADU ‖ t5);
2. V → U: EKU,V

(t5 + 1).
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Table 5.2 Notations and their meanings used to describe Kerberos protocol
steps

Notation Meaning

U User
V Server
IDU U’s ID
IDTGS TGS’s ID
ti Time stamp
EK Symmetric-key encryption with secret key K
KU The secret key derived from user U’s password
KU,TGS The session key generated by AS to be used by U and TGS
KTGS The master key shared by AS and TGS
KV The master key shared by TGS and V
KU,V The session key generated by TGS to be used by U and V
LTi Expiration time
TicketTGS TGS-ticket issued to U by AS
TicketV Server ticket for using server V issued to U by TGS
ADU U’s MAC address
AuthU,TGS Authentication code generated using secret key KU,TGS
AuthU,V Authentication code generated using secret key KU,V

5.6.2.4 Dissection

In the first phase, the request sent from U to AS is not encrypted, where the time stamp is used
to resist message replay attacks. We note that Kerberos is mainly used in local area networks
and that in local area networks it is reasonable to assume that all the clocks on networked
computers are synchronized. Thus, time stamps alone are sufficient to resist message replay
attacks. On the basis of what it receives, AS finds user’s password PU. It then computes a
secret key KU on the basis of PU. AS then generates a session key KU,TGS for U and TGS and
encrypts it using the master key KTGS shared by AS and TGS. AS encrypts

KU,TGS ‖ IDU ‖ ADU ‖ IDTGS ‖ t2 ‖ LT2

and generates a TGS-ticket, where IDU is U’s ID, used to show TGS U’s login name; ADU
is U’s MAC address, used to specify that this TGS-ticket can only be used by the computer
whose MAC address is ADU. Time stamp t2 and expiration time LT2 are used to prevent
eavesdroppers from reusing this TGS-ticket.

After receiving

EKU
(KU,TGS ‖ IDTGS ‖ t2 ‖ LT2 ‖ TicketTGS)

from AS, U uses the same method used by AS to compute KU from PU (where U needs to type
in PU on the computer with MAC address ADU). U then uses KU to decrypt what he received
from AS to get the session key KU,TGS and TGS-ticket TicketTGS. U uses the TGS-ticket
to request a server ticket from TGS. He can repeat this request as many times as he wants
before LT2 expires. For example, U may want to send an email message, browse a Website,
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and fetch a file. Therefore, he needs to authenticate himself to the local email server, the local
Webserver, and the local file server. Suppose that U wants to obtain service from server V. He
is now entering the second phase of Kerberos.

In the second phase, U sends his ID, V’s ID, his TGS-ticket, and the encrypted string, using
the session key KU,TGS, of his ID, his MAC address, and a new time stamp t3 to TGS. TGS
checks that the TGS-ticket is still valid by checking the time stamp and the expiration time
contained in it. TGS then verifies U’s ID and U’s MAC address against those contained in the
TGS-ticket, and that the time stamp t3 did not occur before. TGS then generates a session key
KU,V for U and V and a server ticket TicketV for V. The server ticket is encrypted using the
master key KV shared by TGS and V, which will allow V to authenticate that the ticket indeed
was issued by TGS.

In the third phase, U sends to V the TGS-ticket TicketV he obtained from TGS, and the
encrypted string of U’s ID, U’s MAC address, and a new time stamp t5. V then verifies all the
information to determine whether U is a legitimate user. V then adds t5 by 1, encrypts it using
the session key KU,V, and sends the encrypted string to U to indicate that authentication is
completed and U is going to receive the service he has requested.

5.6.3 Multiple-Realm Kerberos

Suppose that the Department of Computer Science and the Department of Computer Engineer-
ing at the same university occupy two buildings nearby and have each installed single-realm
Kerberos in their LANs, both of which are connected to the university network. Suppose that
the Department of Computer Science has installed a new software package and several com-
puter engineering professors and students want to use it, which is covered by the licensing
agreement. However, the computer engineering professors and students need to be authenti-
cated to the computer science server. This may be done by creating new accounts for these
professors and students in the computer science Kerberos, which would add to the system
management burden, or by using multiple-realm Kerberos through mutual authentication of
each department’s TGS.

Multiple-realm Kerberos is based on single-realm Kerberos with a slight modification. Sup-
pose that a user U in a single-realm Kerberos A wants to use a service provided in a different
but nearby single-realm Kerberos. The proximity ensures time synchronization needed in the
protocol. Multiple-realm Kerberos consists of four phases. In the first phase, U sends a request
to the local AS for a ticket of the local TGS. After verifying that U is a legitimate user, the local
AS grants U’s request. In the second phase, U uses the local TGS-ticket to request the local
TGS to grant him a TGS-ticket of the neighboring TGS. The local TGS issues a TGS-ticket
of the neighboring TGS. In the third phase, U uses his TGS-ticket of the neighboring TGS to
request a server ticket for the server in the neighboring network. TGS in the neighboring net-
work issues a server ticket to U. In the forth phase, U uses the server ticket of the neighboring
network to obtain service provided in the neighboring network.

Figure 5.14 shows a flow diagram of multiple-realm Kerberos.
We use AS to denote the authentication server in the local realm and AS′ the authentication

server in the neighbor realm, and we call them, respectively, local authentication server and
neighbor authentication server. We define TGS and TGS′ in a similar manner. Multiple-realm
Kerberos consists of four phases.



196 Introduction to Network Security

Figure 5.14 Flow diagram of multiple-realm Kerberos

5.6.3.1 Phase 1: Local AS Issues a Local TGS-Ticket to User

1. U → AS: IDU ‖ IDTGS ‖ t1;
2. AS → U: EKU

(KU,TGS ‖ IDTGS ‖ t2 ‖ LT2 ‖ TicketTGS),
TicketTGS = EKTGS

(KU,TGS ‖ IDU ‖ ADU ‖ IDTGS ‖ t2 ‖ LT2).

5.6.3.2 Phase 2: Local TGS Issues a Neighbor TGS-Ticket to User

1. U → TGS: IDV ‖ TicketTGS ‖ AuthU,TGS,
AuthU,TGS = EKU,TGS

(IDU ‖ ADU ‖ t3);
2. TGS → U: EKU,TGS

(KU,TGS′ ‖ IDTGS′ ‖ t4 ‖ TicketTGS′),
TicketTGS′ = EKTGS′

(KU,TGS′ ‖ IDU ‖ ADU ‖ IDTGS′ ‖ t4 ‖ LT4).

5.6.3.3 Phase 3: Neighbor TGS′ Issues a Server Ticket to User

1. U → TGS′: IDV ‖ TicketTGS′ ‖ AuthU,TGS′ ,
AuthU,TGS′ = EKU,TGS′

(IDU ‖ ADU ‖ t5);
2. TGS′ → U: EKU,TGS′

(KU,V ‖ IDV ‖ t6 ‖ TicketV),
TicketV = EKV

(KU,V ‖ IDU ‖ ADU ‖ IDV ‖ t6 ‖ LT6).
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5.6.3.4 Phase 4: User Requests Service from Neighbor Server

1. U → V: TicketV ‖ AuthU,V,
AuthU,V = EKU,V

(IDU ‖ ADU ‖ t7);
2. V → U: EKU,V

(t7 + 1).

Dissection of multiple-realm Kerberos is left as exercise (see Exercise 5.32).

5.7 SSH: Security Protocols for Remote Logins

Telnet, rlogin, rsh, rcp, and FTP were once popular application-layer protocols for users to
log on to a remote computer and to transfer or copy files between different computers. These
protocols, however, transmit data in plaintext without any cryptographic protection, and so they
are vulnerable to password sniffing, eavesdropping, IP spoofing, and other types of security
attacks.

To protect remote logins from security attacks, a Finnish researcher Tatu Ylönen devised in
1995 a security protocol called SSH. SSH creates a secure connection between two computers
using authentication and encryption algorithms. It also supports data compression. SSH also
provides security protection for file transfers (SFTP) and file copy (SCP).

SSH is a client-server application protocol. It is divided into three layers that are housed in
the application layer of the TCP/IP network model. They are the connection layer, the user
authentication layer, and the transport layer. Figure 5.15 shows the SSH architecture.

The SSH transport layer is the bottom layer. It is used to authenticate server, exchange
keys in the initial phase, and set up encryption and compression algorithms. The user’s com-
puter ensures that it is connecting to the same server computer during subsequent sessions.
Subsequent packets transmitted between the client and the server are all encrypted using a
symmetric-key encryption algorithm.

SSH connection

SSH user authentication Application layer

SSH transport

TCP

IP

Data link

Physical

Figure 5.15 SSH architecture
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The SSH user authentication layer is the next layer on top of the SSH transportation layer. It
is used to authenticate the user (i.e., the client) to the server. The user may authenticate himself
using password or public-key cryptography.

The SSH connection layer is the highest layer. It is used to set up multiple channels for
different applications in a single SSH connection, each transferring data in both directions.

As SSH encrypts everything it sends and receives, SSH provides data confidentiality and
data integrity between the client computer and the server computer and resists IP spoofing
attacks.

SSH is a widely used security protocol with several free downloads (see Exercise 5.35).

5.8 Electronic Voting Protocols

The goal of electronic voting protocols is to allow a group of distributed parties to vote in
an election. These elections somewhat parallel traditional elections. In a traditional election,
voters must be registered with the municipality. On the voting day, a voter must authenticate
himself to a trusted third party, which then provides the voter with a ballot. The voter then
goes into a cubicle and indicates his selection. The voter places the completed ballot through
a machine that adds the ballot to the tally.

In electronic voting, a similar experience is provided. Voters must still authenticate to the
system. However, the ballots are protected through the use of cryptography. Moreover, the
election is publicly auditable at every step in the process. Electronic voting protocols generally
seek to provide the following two guarantees:

1. Ballot casting assurance: Each voter gains personal assurance that his ballot is correctly
cast.

2. Universal verifiability: Any observer can verify that all ballots are properly tallied.

Traditionally, electronic voting protocols are divided into two main phases: ballot prepara-
tion and ballot tallying. In the ballot preparation phase, a voter prepares an encrypted ballot
that represents his choice. In the ballot tallying phase, the set of encrypted ballots is crypto-
graphically processed to produce a tally and a proof of correctness of that tally. To help satisfy
the security guarantees outlined previously, every encrypted ballot and the associated voter
identification are posted to a public bulletin board for easy auditing.

To understand the details of electronic voting protocols, we must first understand the follow-
ing three cryptographic primitives: interactive proofs, re-encryption schemes, and threshold
cryptography. We describe each topic in turn and conclude with a discussion of electronic
voting protocol constructions.

5.8.1 Interactive Proofs

An interactive proof is a protocol that consists of two parties named Peggy and Victor. Peggy
is in possession of some secret. Victor wants to be convinced that Peggy actually possesses
the secret. However, Peggy does not want to just reveal the secret. In order for Peggy to prove
to Victor that she knows the secret, she agrees to interact with Victor. Victor will repeatedly
challenge Peggy to answer queries that she would be able to answer only if she knew the
secret. Once Peggy has succeeded a polynomial number of times, then Victor is convinced that
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Peggy knows the secret. Victor and Peggy are subject to a polynomial-time bound (possibly
probabilistic).

We explain the ideas of interactive proofs using the canonical example of the graph iso-
morphism problem. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is
a bijection ϕ : V1 → V2. A mapping ϕ is called a bijection if it is injective (one-to-one) and
surjective (onto). A map is injective if every element of the domain is mapped to a distinct
element in the range. A map is surjective if every element y in the range has a corresponding
element x in the domain such that ϕ(x) = y. When ϕ is a bijection for the graph isomorphism
problem, it must additionally be the case that for all vertices in V1, the edge (u,w) ∈ E1 if and
only if (ϕ(u), ϕ(w)) ∈ E2.

Assume for the moment that Peggy knows that graph G1 and G2 are isomorphic, denoted
by G1 
 G2, which implies that Peggy knows the associated bijection ϕ. Peggy wishes to
convince Victor that she knows that G1 
 G2. The following is one round of the interactive
protocol Peggy and Victor:

1. Setup: Peggy constructs a graph H such that G1 
 H . By construction Peggy knows the
bijection ϕ′ : G1 → H . Using ϕ and ϕ′ Peggy constructs two maps: σ0 = ϕ′ and σ1 =
ϕ′ ◦ ϕ−1. Peggy finishes by sending H to Victor.

2. Selection: Victor flips a fair coin and sends the digit 1 to Peggy if the coin comes up head.
If the coin comes up tail, Victor sends the digit 0 to Peggy.

3. Verification: Peggy sends to Victor σi where i is the value Victor generated in the selection
step. Victor then verifies that σi is a valid bijection that shows Gi+1 
 H .

With a little effort, we can verify that if Peggy does in fact know the correct bijection ϕ that
shows G1 
 G2, then no matter how Victor’s coin lands, he will obtain the correct result.
In the case that Victor’s coin comes up tails, Peggy sends the bijection σ0 to Victor and by
construction G1 
 H . In the case that Victor’s coin comes up heads, Peggy sends the bijection
σ1 = ϕ′ ◦ ϕ−1. As Victor is trying to show that G2 
 H , we apply σ1 to G2 map G2 to G1 and
then use the isomorphism ϕ′ to map G1 to H .

5.8.2 Re-encryption Schemes

Re-encryption is a cryptographic primitive used in electronic voting protocols. A re-encryption
scheme seeks to allow users to create a new ciphertext whose plaintext is equivalent to an
existing ciphertext’s plaintext. Moreover, this new ciphertext can be created without knowing
the plaintext message.

We can construct a re-encryption scheme using the Elgamal encryption system. Recall from
Chapter 3 that the Elgamal cryptographic system works over the multiplicative group Z∗

p for
a prime number p. As a primitive root of p is a generator of the multiplicative group Z∗

p, it is
also customary to use g to denote a generator. We use this notation here (as opposed to the use
of a in Chapter 3).

The public key for the scheme is gX mod p, and the private key is X < p, which is randomly
selected. An example encryption of a message M < p is

(C1, C2) =
(
gk mod p,MgXk mod p

)
,

where k < p is a number chosen at random.
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To re-encrypt an Elgamal ciphertext, it is sufficient to select a new random value k′ and
produce from the ciphertext (C ′

1C
′
2) a new ciphertext(

C1g
k′

, C2g
Xk′

)
.

It remains to show that the re-encryption scheme does produce a ciphertext with plaintext
equivalent to (C1, C2). We have

(C ′
1, C

′
2) =

(
C1g

k′
mod p,C2g

Xk′
mod p

)
=

(
gkgk′

mod p,MgXkgXk′
mod p

)
=

(
gk+k′

mod p,MgXk+Xk′
mod p

)
=

(
gk+k′

mod p,MgX(k+k′) mod p
)

.

Note that k + k′ is still a random number, This lends evidence to the fact that these
re-encryption schemes produce ciphertexts that have the same plaintexts. In addition, if
the party executing the re-encryption protocol were to reveal k′, then it would be publicly
verifiable that the two ciphertexts represent the same plaintext messages. In fact, under this
notion, the integer k′ can be thought of as a proof.

5.8.3 Threshold Cryptography

Threshold cryptography is a form of PKC, where a predetermined number of parties must
cooperate to decrypt a ciphertext. To construct a system of this form, the participating parties
must jointly produce a public key. Each participant begins by generating and publishing an
encryption key. These keys are then aggregated in some way to form a public key, which will
be published to the world.

We use an Elgamal-based system to demonstrate a construction of this primitive. To under-
stand this primitive, one must first understand the notion of a secret sharing scheme. A secret
sharing scheme is a cryptographic primitive that allows n parties to share a secret and at some
later time allows m parties (m ≤ n) to cooperate and recover the secret (technically, this is
called a threshold scheme).

The following secret sharing scheme was devised by Adi Shamir in 1979. Let s be a secret
to be shared by n parties, where s is a number. Construct an (m − 1)-degree polynomial with
m ≤ n:

p(x) = am−1x
m−1 + am−2x

m−2 + · · · + a1x
1 + s.

A special party, called the dealer, sets up this polynomial and is responsible for distributing
the shares of the secret. To each of the n parties in the system, the dealer provides a point on
the curve generated by the m − 1 degree polynomial. For example, party 3 may be given the
point (3, p(3)). Once this process is complete, the dealer destroys the polynomial.

To recover the secret, at least m parties must cooperate to reconstruct the polynomial. In
particular, these m parties use interpolation to recover the polynomial and then evaluate the
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recovered polynomial at x = 0 to obtain s. The common interpolation technique is called
Lagrange Interpolation. The Lagrange Interpolation process is given by the following two
equations:

L(x) =
∑
j∈Δ

�j,Δ(x)yj , (5.2)

�j,Δ(x) =
∏
k∈Δ
k �=j

x − xk

xj − xk

, (5.3)

where Δ is a set of point indices and each point is of the form (xi, yi). The number �j(x) is
commonly called the Lagrange coefficient.

Combining the Shamir Secret Sharing scheme and the Elgamal PKC in a certain way known
as the Pedersen system, we achieve a threshold cryptographic scheme. The Pedersen system
consists of a key-selection phase and a key distribution phase.

In the key-selection phase, each user Pi selects a random number ri < p and publishes
hi = gri . Once all users have published their values, the public key for the threshold system
is derived by

h =
n∏

i=1

hi =
n∏

i=1

gri .

Let r be the private key associated with h.
In the distribution phase, a group of users works collectively to distribute shares of r to all

users using the Shamir secret sharing scheme. The process is described as follows:

1. User Pi chooses a random polynomial fi(z) of degree m − 1, where m is the minimum
number of users who have to cooperate to recover r. Define fi by

fi(z) = fi,m−1z
m−1 + fi,m−2z

m−2 + · · · + fi,1z + ri.

Clearly, fi(0) = ri, which is user Pi’s share of r.
2. User Pi computes and broadcasts Fi,j = gfi,j for all 1 ≤ j ≤ m − 1.
3. User Pi secretly sends a signed message containing sij = fi(j) to user Pj for all 1 ≤ j ≤ n

with j �= i.
4. User Pi verifies the share received from Pj by first checking the signature and then verifying

the equality

gsij =
k−1∏
t=0

(
Fj,t

)it

=
k−1∏
t=0

(
g(fj,t)it

)

for all j �= i.
5. Once satisfied with the signatures and the equality for all j, user Pi computes her share si

of r as si =
∑n

j=1 sji and signs h to mark her agreement with the public key for the group.

To decrypt the ciphertext (C1, C2), users must cooperate in the following way:

1. Each user Pi broadcasts wi = Csi
1 .
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2. Each user computes

M =
C2∏

j∈Δw
�j,Δ(0)
j

,

where Δ is the set of user identifiers involved in the decryption. Recall that every user can
compute the Lagrange coefficient as xj = j for all j. Therefore, the computation of �j,Δ(0)
is well defined.

5.8.4 The Helios Voting Protocol

We describe the Helios voting protocol as a concrete example of electronic voting protocols.
The Helios consists of the following five phases:

1. Vote phase: Each voter, represented by Alice, needs to confirm that the device she is using
to encrypt her vote is operating correctly. When she is satisfied, she can cast her encrypted
ballot. To have her ballot counted, Alice must authenticate herself to the system.

2. Publish phase: The system posts Alice’s encrypted vote along with her name to a public
bulletin board. This way, Alice, and everyone else, can confirm that Alice did indeed vote.

3. Shuffle phase: The shuffle phase is performed after the voting has concluded. The system
decouples the votes from the names and mixes the votes.

4. Tally phase: The system first tallies the votes in the public view (e.g., on the bulletin board)
and then destroys the votes.

5. Audit phase: This is an optional phase where any auditor may choose to download all the
election data and verify the shuffle and tally phases.

5.8.4.1 Vote and Publish

In the voting phase, Alice is presented with a list of candidates she could select and confirm.
Once the selection is confirmed, the device she is using encrypts her ballot using the Threshold
Elgamal system. Alice is then given a hash (e.g., SHA-256) of her encrypted vote as a com-
mitment from the system. Alice is then provided with an option to audit or cast her ballot. If
Alice chooses to audit her ballot, then she will be provided with the ciphertext of her ballot
and the random number used in the Elgamal encryption.

To cast a vote after auditing, Alice must re-vote and obtain a new ciphertext and hash. The
system then discards all random values it generated for the Threshold Elgamal encryption.
Alice will then be prompted to authenticate herself to the system. Helios is currently imple-
mented as a Webpage and uses username and password to authentical users. Once Alice has
authenticated herself, the system will post the encrypted ballot with Alice’s identifier to the
bulletin board.

5.8.4.2 Shuffle

A mix network is used to preserve the anonymity of ballots. A mix network, or mixnet, is a
network of servers called mix servers, where each server takes in a set of data items, mixes
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(permutes) the set, and passes the resulting set to the next server. Every mix server is further
required to prove that its resulting mix is genuine using interactive proof.

Assume that the ballots have all been collected in a set B. The mixnet proceeds as follows
for each mix server:

1. Re-encrypt each ballot Bi ∈ B using the Elgamal re-encryption scheme to produce
ballot B′

i.
2. Shuffle (permute) the set of re-encrypted ballots {B′

1, B
′
2, · · · , B′

n} to form a ballot set B′.
3. Construct m additional random Ballot sets B1,B2, · · · Bm, processed in the same way as

B′. Note that in Step 1, Bi starts as B.
4. Interact with a user to get a random sequence of length m of challenge bits: c1c2c3 · · · cm.
5. For all 1 ≤ i ≤ m, where ci = 0, show that the ballot set Bi is equivalent to the ballot set B.

To do so, it suffices to reveal the permutation and the re-encryption random values for every
ballot. Note that the ballot itself may be leaked, but not what the ballot contains!

6. For all 1 ≤ i ≤ m, where ci = 1, show the ballot set Bi is equivalent to the ballot set B′ by

(a) computing the pairwise difference of the re-encryption data used to produce B′ and Bi;
and

(b) computing the composition of the inverse permutation used to produce Bi and the per-
mutation used to produce B′.

Both compositions are then furnished to the verifier.

The transcripts of the proofs are posted to the bulletin board.

5.8.4.3 Tally

In the tally phase, the ballots are decrypted and tallied. This tally as well as proof of the decryp-
tion is posted to the bulletin board. To prove that the threshold encrypted ballots are decrypted
correctly, an interactive proof strategy is used. In particular, this protocol is called the proof of
decryption protocol.

The proof of decryption protocol used in the Helios voting protocol is the following
Chaum-Pedersen protocol, which proves that for a given Elgamal ciphertext (α, β) and the
plaintext claim M , we have

logg(g
x) = logα

(
β

M

)
.

The following protocol between Peggy and Victor can be used to demonstrate the veracity of
that statement.

1. Selection: Peggy selects a w ∈ Z∗
p and sends A = gw and B = αw.

2. Challenge: Victor challenges Peggy with a random number c ∈ Z∗
p.

3. Response: Peggy responds with t = w + xc.

4. Verification: Victor check that gt = Agxc and αt = B
(

β
M

)c

.
If it does match, then Victor agrees that the decryption was correct. Otherwise, Victor does
not agree on the decryption.
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To see why this proof works, it suffices to note that for Peggy to construct t, she would
either be the owner of the private key x or have to solve the discrete log problem to compute
x from the public key gx. Because discrete log is intractable according to common beliefs, we
conclude that Peggy is the owner of the private key, and thus her decryption is correct. The
proof is then posted to the bulletin board.

5.9 Closing Remarks

How to construct practical security protocols to protect network communications is a critical
issue in network security. Security flaws in security protocols are often caused by improper
handling of a cryptographic algorithm, not by the algorithm itself. Improper key management
and careless implementations of security protocols are common reasons that security loopholes
exist. Whether a security protocol will do exactly what it is intended to do can only be tested
through practice. This is a process of discovering defects, patching loopholes, and devising
new security protocols. The security protocols we described in this chapter are for the three top
layers of the Internet (i.e., above the data-link layer). We introduce wireless network security
protocols at the data-link layer in the following chapter.

5.10 Exercises

5.10.1 Discussions

5.1. In your opinion, should the construction of PKI facilities be under close control of
the government?

5.2. Do you think that the development of global economy will demand the establishment
of a global PKI authority? How do you imagine such a system will work?

5.3. Provide an example attack that IPsec cannot protect against.

5.4. From your experience, if a Website uses SSL to transmit your credit card information
when you do online shopping, how much do you trust that it is secure in the scale
from 1 to 10 with 10 being 100% secure. What security problems would you be
concerned about?

5.5. From your experience, why do you think one must use a secure remote login proto-
col. Even if SSH is used, how much do you trust that it is secure in the scale from 1
to 10 with 10 being 100% secure. What security problems would you be concerned
about?

5.6. Which network security protocols do you use more often than the others? What
security protocols do you wish to have that are not currently available?

5.10.2 Homework

5.1. Placing cryptographic algorithms in the transport layer has a different security
impact than placing them in the network layer. Explain the differences.



Network Security Protocols in Practice 205

5.2. Placing cryptographic algorithms in the application layer has a different security
impact than placing them in the data-link layer. Explain the differences.

5.3. Suppose that cryptographic algorithms are deployed at the IP layer. Thus, when
a TCP packet is passed down to the IP layer, its payload or the entire packet is
encrypted or authenticated. Does it make sense to encrypt or authenticate only the
header? Justify your answer.

5.4. Suppose that a TCP header is encrypted at the TCP layer. Can this TCP packet be
delivered to the destination without using some type of TCP gateway? When does
the encrypted TCP header need to be deciphered? Justify your answers.

5.5. Explain why one may want to encrypt the entire frame at the data-link layer. What
can one get from performing traffic analysis on such frames?

5.6. Explain why one may want to authenticate the entire frame at the data-link layer.

5.7. If only the payloads of frames are encrypted (i.e., frame headers and trailers are not
encrypted), what can one get from performing traffic analysis on such frames?

5.8. Users of Microsoft Windows XP may look at the public-key certificates and the list
of revoked certificates stored in the system following these instructions: Click Start
then Run. Enter mmc and click OK. In the popup window titled “Console1” click in
succession File, Add/Remove Snap-in, Add, Certificate, Add, My user account
(skip it if it is already selected), Finish, Close, and OK. Click the “+” sign at the
left-hand side of the Certificate – Current User window and answer the following
questions.

(a) What does each item mean?
(b) In which items do revoked certificates appear? Which certificates have been

revoked?

5.9. If you have Adobe Acrobat version 6.0 or a later version installed on your computer,
you can create public-key certificates and use public keys to authenticate documents.
Suppose that the document you want to sign is a PDF file. Open this file using Acro-
bat. Click Advanced then Manage Digital IDs. Point the mouse to My Digital ID
Files, then click in succession Select My Digital ID File, New Digital ID File, and
Continue. Fill in the blank box with relevant information. Click Create. A win-
dow titled The New Self-Sign Digital ID File will pop up. This is your public-key
certificate. Click Save.

Click in succession Advanced, Manage Digital IDs, My Digital ID Files, My
Digital ID File Settings, and Export. Select Save the data to a file. This is your
public key. Select a directory and a file name, then click in succession Save, OK,
and Close.

Click in succession File, Save as Certified Document, and OK. Select Disallow
any changes to the document, then click Next. Select Do not show Certification
on document, then click in succession Next, Add Digital ID, Create a self-signed
digital ID, and Continue. Select Add as a “Windows Trusted Root” Digital ID,
then click Create and OK. Select the public-key certificate you just created, and
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click OK and View digital ID. You will see a certificate similar to Table 5.1. List
your certificate and explain each item.

Finally, click Close and Sign and Save as. Enter the file name and click OK.

5.10. Describe the differences between IPsec transport mode and the IPsec tunnel mode.

5.11. Download the latest version of OpenSSL (available for both Windows and Linux)
from http://www.openssl.org and use it to create a self-signed certificate
for use as a CA and then create a user certificate signed by the CA.

Can you load the CA certificate into the Windows and use the client certificate to
send S/MIME emails?

5.12. The early versions of OpenSSL suffered from the Heartbleed bug attack that allows
anyone on the Internet to read the memory of the systems protected by the early
versions of OpenSSL, including the memory of the secret keys. Conduct a research
on Heartbleed bug and write a report of up to 4000 words on your findings.

5.13. Use the “Heartbleed Bug checker” at https://filippo.io/Heartbleed/
to check if your OpenSSL server is still vulnerable to the Heartbleed bug.

5.14. Use the “LastPass’ SSL date checker” at https://lastpass.com/heart
bleed/ to check if your OpenSSL server has updated its SSL certificate. If the
update was done after April 4, 2014, then it is likely that the system administrator
of your OpenSSL server has patched the Heartbleed bug vulnerability.

5.15. The IPsec transport mode and the IPsec tunnel mode can be mixed together. Describe
the pros and cons of different combinations of these two modes.

5.16. Describe using a diagram the working of the sliding window in AH.

5.17. Explain the meanings in the basic interactions in Oakley KDP.

5.18. The following is an ISAKMP payload exchange example:

1. I → R: SA, proposal, transfer, nonce
2. R → I: SA, proposal, transfer, nonce
3. I → R: key-exchange, nonce
4. R → I: key-exchange, nonce
5. I → R: identification (of I), signature
6. R → I: identification (of R), signature

Explain what this exchange is trying to accomplish.

5.19. IPsec has been implemented with IPv4 and IPv6. However, it is easier to implement
IPsec with IPv6. Explain why this is the case.

**5.20. Can you design a network protocol so that IPsec can be implemented in a more
natural way than IPv6? Justify your answer.

5.21. The later versions of Linux includes IPsec. If you are running Linux, install IPsec
on your Linux machine.

http://www.openssl.org
https://filippo.io/Heartbleed/
https://lastpass.com/heart
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5.22. Translate the following binary strings to Base64 strings:

(a) 10010010
(b) 1010110110010010
(c) 101100100110110110100011
(e) 01001101100100100101110010110010

5.23. Because binary data is a full 8-bit per byte, it is possible to convert a binary string
to a text string using hexadecimal digits. That is, one can represent each byte using
two hexadecimal digits, where each hexadecimal digit is represented by an ASCII
code. Explain why this method is not economical.

5.24. According to your experience of online shopping, describe how SSL is executed.

5.25. Draw a flow diagram describing the SSL handshake protocol.

5.26. Describe how the receiving site of SSL executes the SSL record protocol.

5.27. Use Wireshark to identify packets used for executing the SSL handshake pro-
tocol. (Note: you should finish Exercise 1.5 first.) If your bank supports online
banking, use Wireshark to obtain your login packets and check whether they are
encrypted.

5.28. In this hands-on drill, you will install PGP on a PC and use PGP with Outlook
Express to send secure email messages. Firstly, download PGP Freeware 8.0 (or
the latest version) from
http://www.pgpi.org/products/pqp/versions/freeware
for your operating system. For example, for Windows XP, go to
http://www.pgpi.org/products/pqp/versions/freeware
/winxp.

Click the file you downloaded and install it. Select I am a New User, and
enter your name and organization. Select PGPMail for Microsoft Outlook Express
and press the Next button. After PGP is installed, do the followings:

(a) Generate a public/private key pair: click the PGPtray icon and select PGP-
keys. Then select keys and New Key. Now you will enter the PGP key
generation wizard. Click Next. Enter your name and your email address. The
key pair you will generate will be associated with the name and the email address
you enter here. Select algorithm (e.g., RSA) and key length (select a number
between 1024 and 4096). Then enter an expiration date. Click the Next button
and enter a pass phrase of your choice (you need to remember this pass phrase).
Click Finish. Now a public key should be shown on your screen.

(b) Distribute your public key: send your public key to your correspondents (e.g.,
your classmates). You may simply drag the key to the body of a mail message
and send it.

(c) Obtain your correspondent’s public key: ask your correspondent to mail you
his key and put it in your key ring. To do so, click PGPtray (the PGP exe-
cutable), select Current Window and Decrypt and Verify. You may

http://www.pgpi.org/products/pqp/versions/freeware
http://www.pgpi.org/products/pqp/versions/freeware
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also obtain your correspondent’s public key from the key server (if your corre-
spondent has sent his public key to it). Validate your correspondent’s public key
and sign the key. To sign a key, select Keys from PGPtray, then click New
Keys and Sign. Now you are ready to use your correspondent’s public key.

(d) Send an authenticated email message or an encrypted email message to your
correspondent: at the top right “new message” window of Outlook Express, you
will see two buttons: Encrypt Message Before Sending and Sign
Message Before Sending. Choose accordingly (e.g., choose either one
of them or both). Then send the message.

(e) Receive an authenticated email message or an encrypted email message: Simply
select the decrypt and verify option.

5.29. Microsoft Office Outlook and Outlook Express both support S/MIME. To set it
up, one must first install a digital ID (i.e., a digital certificate) following these
steps: Open Office Outlook or Outlook Express, then click in succession Tools,
Options, Security, and Get a Digital ID. Select your country or region. Click
VeriSign Web Site then Click here (for 60-day free trial). Enter your email
address, and click in succession Accept and OK. If Get a Digital ID does not
work, go to the VeriSign Website directly using the following URL: https:
//digitalid.verisign.com/cgi-bin/OEenroll.exe?name
=& email=, and obtain a free-trial digital ID from there. After you receive your
digital ID, click in succession Continue, Install, and Yes.

(a) Follow these steps to sign a message: Open Office Outlook or Outlook Express.
Click in succession Tools, Options, Security, Add digital signature to out-
going message, and OK. Send a message to yourself. Click Send then OK.
Describe how to authenticate a sender’s identity.

(b) Follow these steps to encrypt a message: Open Office Outlook or Outlook
Express. Click in succession Message, New Message, and Encrypt. Send a
message to yourself and explain how to decrypt a message.

5.30. Explain the advantages of separating AS and TGS into two entities in Kerberos.

5.31. Explain why AuthU,TGS is added in Phase 3 of single-realm Kerberos. What attacks
can it help protect?

5.32. Provide a dissection of multiple-realm Kerberos protocol steps.

5.33. Draw a flow diagram to describe single-realm Kerberos dialogs.

5.34. Draw a flow diagram to describe multiple-realm Kerberos dialogs.

5.35. You will need to use two networked computers running Microsoft Windows to do
this exercise. Download from http://www.ssh.com the evaluation version of
the latest SSH client program and SSH server program. Install the client program on
one machine, install the server program on the other machine, and run SFTP.

*5.36. SSH has two different versions. The original version is called SSH1, and the revised
version is called SSH2. These are two different protocols. Search the literature and

http://www.ssh.com
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write a short paper of up to 4000 words describing these two versions of SSH.
Explain why SSH2 is more secure than SSH1.

5.37. Visit the Helios voting protocol Webpage: https://vote.heliosvoting
.org/, and describe potential security flaws in deploying the voting protocol for a
student government election.

5.38. In the electronic voting protocol described in Problem 5.37, is it really necessary for
Alice to verify the voting machine correctly encrypted her ballot?

*5.39. Describe an interactive proof protocol between Peggy and Victor where Peggy,
knowing the three coloring of a graph, can prove this fact to Victor. As in the text,
Peggy does not want to actually reveal the three coloring to Victor.

https://vote.heliosvoting




6
Wireless Network Security

Wireless computer networks are playing a major role in modern communications. Laptop com-
puters, cell phones, and embedded systems in common appliances and automobiles may be
connected to form an ad hoc network or to a fixed network infrastructure such as the Internet
through wireless access points. Wireless access points have been installed in office buildings,
homes, airports, hotels, highway service stations, and other facilities, providing people with
unprecedented conveniences and flexibilities to exchange information and enjoy online enter-
tainment. People today, for example, can connect their laptop computers to the Internet while
sitting in their own backyards or while waiting for flights in the airports. Wireless computer
networks have started a new revolution in the information industry.

This chapter introduces the IEEE 802.11 wireless network standard for wireless local area
networks (WLANs), wireless network security vulnerabilities, and common wireless secu-
rity protocols. The latter includes the Wired Equivalent Privacy (WEP) protocol, the Wi-Fi
Protected Access (WPA) protocol, WPA2, the IEEE 802.11i protocol, and the IEEE 802.1X
authentication protocol. This chapter also introduces the Bluetooth protocol and the ZigBee
protocol for wireless personal area networks (WPANs) and their security mechanisms. Finally,
it introduces several security issues in wireless mesh networks (WMNs).

6.1 Wireless Communications and 802.11 WLAN Standards

Wireless networks transmit data in the air via radio waves of various frequencies. Transmitting
radio waves in the open air, however, makes it easy for any person on the street to intercept
wireless data, to connect his computing devices to a nearby wireless network, or to inject
new packets to existing wireless networks. To do these, what the attacker needs is a radio
transmitter and receiver with the same radio frequency of the underlying wireless network.
The attacker may also jam a particular wireless channel using a jamming device. Channel
jamming may also be unintentional, for common wireless networks are operated on the same
frequency.

Media access in wireless networks is fundamentally different from the media access mech-
anisms in wired networks, where one has to hook up a computing device to a network cable
for transmitting and receiving data, and the cables are physically protected by walls, ceilings,
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doors, pipes, and other forms of physical structures. Thus, how to provide wired equivalent
media access in wireless networks becomes a unique security issue.

Providing physical-layer security protections for wireless networks is difficult, for anyone
may disturb or jam a selected radio frequency. Jamming a radio frequency is in a way equivalent
to cutting a network cable in a wired network. Attacks of this kind are easy to implement by the
attacker but difficult to prevent by the defender. To counter such attacks, the spread spectrum
technology has been developed to make radio signals more difficult to detect and more difficult
to jam.

Most wireless security protocols deal with media access at the data-link layer, including
implementations of encryption algorithms, authentication algorithms, and integrity-check
algorithms. This approach provides network access with WEP. With security mechanisms
implemented at the data-link layer, higher-layer protocols and applications can be used
without any modification.

The IEEE 802.11 standards specify a suite of protocols and specifications for WLAN com-
munications at the physical layer with appropriate security protections at the data-link layer.

6.1.1 WLAN Architecture

A WLAN may attach itself to a wired infrastructure. Such WLANs are referred to as infrastruc-
ture WLANs. A WLAN may also be formed without attaching itself to a fixed infrastructure.
Such WLANs are referred to as ad hoc WLANs (or peer-to-peer WLANs).

6.1.1.1 Infrastructure WLANs

An infrastructure WLAN consists of one or more wireless access points (WAP) and a num-
ber of wireless-enabled computing devices (e.g., laptop computers, tablets, and smartphones).
WAP is often referred to as AP in short. A wireless-enabled computing device is referred to as a
mobile station (STA) or a wireless node (WN). An AP is equipped with a radio transmitter and
receiver, an antenna, and a standard port for wired connection. At one end of an AP is a wired
link connected to a wired LAN. At the other end of an AP is a radio transmitter and receiver
used to establish radio connections between the AP and an STA. A single AP may establish
wireless connections with multiple STAs at the same time through time division multiplexing
access. Thus, an AP in a WLAN is similar to a switch in a LAN, and an infrastructure WLAN
is similar to a traditional star network. Figure 6.1 shows a schematic of infrastructure WLANs.

The AP in an infrastructure WLAN is fixed, which serves as the center of the network. An
STA will need to select an AP within its communication range and connect itself to the AP to
become a new member of the WLAN.

Each STA in the 802.11 standards is identified by a 48-bit MAC address. APs can be con-
figured so that they can be accessed only by STAs from a given list of MAC addresses. This
is called MAC-address filtering.

Each AP is associated with a Service Set Identifier (SSID), which serves as the name of the
WLAN. Each AP announces regularly its SSID and other information needed for an STA to
establish a connection with it. This process is known as beaconing. An STA waits for a beacon
frame from an AP and joins a WLAN by sending a request frame to the corresponding AP
with the AP’s SSID it receives. This process is known as scanning.
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Figure 6.1 A schematic of infrastructure wireless local area networks

6.1.1.2 Wi-Fi Networks

WLANs that meet the 802.11 standards may be certified as Wi-Fi networks by the Wi-Fi
Alliance. Wi-Fi stands for Wireless Fidelity. The Wi-Fi Alliance, established in 1999, is a
nonprofit organization for promoting the worldwide adoption of the IEEE 802.11 standards
for high-speed WLANs.

6.1.1.3 Wi-Fi Hotspots

The geographic region covered by a Wi-Fi AP is often referred to as a Wi-Fi hotspot . The AP
is connected to the Internet, allowing STAs in the hotspot to connect to the Internet through
the AP.

6.1.1.4 Ad Hoc WLANs

An ad hoc WLAN is formed without using any fixed wired infrastructure, where an STA may
communicate with another STA directly within communication range. If the destination STA
is not within the communication range of the source STA, the source STA will use interme-
diate STAs to relay data to the destination STA. Thus, an ad hoc WLAN is similar to a wired
peer-to-peer network.

6.1.2 802.11 Essentials

802.11 is the wireless counterpart of 802.3 and 802.5 in the IEEE 802 protocol family, where
802.3 is the IEEE standard for Ethernet LANs and 802.5 is the IEEE standard for token
ring LANs. The data-link layer consists of the logical-link control (LLC) sublayer and the
media-access (MAC) sublayer. 802.11 specifies communications and security mechanisms for
WLAN at the MAC sublayer and at the physical layer. Figure 6.2 shows the schematic of the
IEEE 802 family.
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Figure 6.2 A schematic of the IEEE 802 family

The MAC sublayer of 802.11 uses the carrier sense multiple access with collision avoidance
(CSMA/CA) scheme. 802.11 consists of a series of protocols. The first protocol was named
802.11, and the subsequent protocols were named 802.11 followed by a lower-case letter,
which ranged from 802.11a to 802.11u. Of these subprotocols, 802.11a, 802.11b, 802.11g,
and 802.11i have been used widely, where 802.11b supports a data rate of up to 11 Mbps with
a transmission range of about 35 m indoor and about 110 m outdoor, while 802.11g supports
a data rate of up to 54 Mbps with the same transmission range as 802.11b. WEP is defined in
802.11b, and WPA2 is defined on the basis of 802.11i.

802.11b and 802.11g operate on the same radio frequency of 2.4 GHz, while 802.11a oper-
ates on frequency of 5 GHz. As most cordless phones operate on the frequency of 2.4 GHz,
802.11a will not be interfered with by cordless phones, microwaves, or Bluetooth devices. In
addition, 802.11a channels do not overlap with 802.11b and 802.11g channels. In the United
States, 802.11b and 802.11g consist of 11 useable channels, where channels 12–14 are reserved
for emergency responders.

Built on previous 802.11 standards, 802.11n supports devices with multiple-input
multiple-output (MIMO) capacity. These devices use multiple transmitter and receiver
antennas to improve system performance.

In ad hoc WLANs, network bandwidths are often reduced by a factor of 2, for receiving
nodes need to forward data toward the destination.

6.1.3 Wireless Security Vulnerabilities

Wireless technologies have the following weaknesses:

1. Wireless communications could be easily sniffed.
2. Radio signals could be easily disturbed or injected to the network.
3. Wireless hand-held computing devices and embedded systems may not have sufficient com-

puting resources or power supply to carry out complex computations that require fast CPUs
and large memory space.

These weaknesses make wireless communications vulnerable to eavesdropping attacks,
denial-of-service attacks, message-replay attacks, STA-spoofing attacks, and AP-spoofing
attacks.
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STAs and APs in early wireless network protocols were identified only by MAC addresses.
MAC addresses were transmitted in plaintext, and so impersonating STAs and APs was
straightforward. The attacker may impersonate a legitimate user and deliberately inject
certain malicious packets to the network for the purpose of achieving false authentication or
breaking existing wireless connections between legitimate STAs and legitimate APs.

6.2 Wired Equivalent Privacy

The WEP protocol, published in 1999, is the security component at the data-link layer of
802.11b.

WEP requires that all STAs and APs in the same WLAN share the same preset secret key K,
referred to as the WEP key. A WEP key may be 40-bit or 104-bit long. Some WEP products
may even support 232-bit WEP keys. WEP allows each WLAN device to share more than one
WEP key. WEP keys are identified using a 1-byte key ID, denoted by keyID.

WEP does not specify how to generate or distribute secret keys. Thus, secret keys are often
selected by the system administrator and distributed using land-line communications or other
methods. In general, WEP keys are not changed once they are installed.

6.2.1 Device Authentication and Access Control

WEP uses a challenge-response authentication scheme to authenticate STAs. That is, for an
STA to get access to an AP, the STA must authenticate itself to the AP as follows:

1. Request: The STA transmits a request for connection to the AP in the WLAN.
2. Challenge: The AP generates 128-bit pseudorandom string

cha = a1a2 · · · a16,

where each ai is an 8-bit string for 1 ≤ i ≤ 16, and sends cha to the STA.
3. Response: The STA generates a 24-bit initialization vector V and encrypts cha using RC4

with key V ‖ K. That is, the STA applies RC4 on V ‖ K to generate a subkey stream
k1, k2, · · · , k16, where each ki is an 8-bit string. It then computes ri = ai ⊕ ki for i =
1, 2, · · · , 16. The STA sends

res = V ‖ r1r2 · · · r16

to the AP.
4. Verification: The AP applies RC4 on V ‖ K to generate the same subkey stream k1, k2,

· · · , k16, computes a′
i = ri ⊕ ki, and verifies whether a′

i = ai, where i = 1, 2, · · · , 16. If
yes, the STA is authenticated and the connection request is granted. If not, the STA is denied
access to the AP.

6.2.2 Data Integrity Check

Let M be the packet passed down from the network layer to the data-link layer for transmission.
WEP at the LLC sublayer calculates a 32-bit Cyclic Redundancy Check (CRC-32) value of
M as the integrity check value.
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6.2.2.1 Cyclic Redundancy Check

CRC is a simple binary polynomial division procedure that takes a binary string as input and
outputs a binary string of a fixed length as error-detection code. WEP uses CRC to check
data integrity. In particular, let M be an n-bit binary string. Let P be a binary polynomial of
degree k appropriately chosen, represented as a (k + 1)-bit binary string. To obtain a k-bit
CRC value, treat M0k as a binary polynomial of degree at most n + k − 1. Divide M0k by P
to obtain a k-bit remainder R, which is the CRC value, denoted by CRCk(M). IEEE 802.3
selects

P = 100000100110000010001110110110111

to be the CRC-32 polynomial, that is,

P (x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1.

The new polynomial M ‖ CRCk(M) is divisible by P . This can be proved as follows.
Firstly, write M as a polynomial M(x) of degree at most n − 1. Then M0k represents the
polynomial M(x)xk. We have

M(x)xk mod P (x) = R(x),

where R = CRCk(M). Thus, because adding binary coefficients is the same as exclusive-OR,
we have

(M(x)xk + R(x)) mod P (x)

= (R(x) + R(x)) mod P (x)

= 0 mod P (x)

= 0.

Thus, if M ‖ CRCk(M) is not divisible by P , it implies that M has been modified.
To calculate a CRC value, let T = M , align P to T at the leftmost bit that is 1, and perform

XOR on P and the corresponding bits in T . Let T denote the new string. Repeat the same
procedure until P goes out of the right-hand side of T . The rightmost k bits are the remainder,
which is used as the integrity check value (ICV).

We use an example to demonstrate the CRC procedure. For simplicity, let n = 8 and k = 4.
The standard CRC4 polynomial is x4 + x + 1. That is, P = 10011. Let M = 11001010, then
CRC4(M) = 0100 (see Figure 6.3).

6.2.3 LLC Frame Encryption

Let M be an 802.11b LLC frame to be transmitted by the sender, which includes the
LLC-frame header and the packet passed down from the upper layer. An LLC frame is also
referred to as MAC Service Data Unit (MSDU).

WEP calculates the CRC32(M) and encrypts M ‖ CRC32(M) at the MAC sublayer using
the RC4 stream cipher. In particular,
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Figure 6.3 A sample CRC4 calculation

Figure 6.4 802.11b MAC sublayer frame layout

1. Let
M ‖ CRC32(M) = m1m2 · · ·m�,

where each mi is an 8-bit binary string.
2. The sender’s MAC sublayer generates a 24-bit initialization string V , and uses RC4 on

input V ‖ K to generate a sequence of 8-bit subkeys k1, k2, · · · , k�. Let

ci = mi ⊕ ki.

3. The sender’s MAC sublayer adds a header to the payload

V ‖ keyID ‖ c1c2 · · · c�

and transmits it in the air for the receiver. Figure 6.4 shows the layout of an 802.11b MAC
sublayer frame.

For convenience, we denote this encryption algorithm by

C = (M ‖ CRC32(M)) ⊕ RC4(V ‖ K).
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The initialization string V is used to produce a different subkey stream for a different LLC
frame. The initialization string is typically referred to as initialization vector. Thus, the key
V ‖ K is also referred to as a per-frame key. Note that the initialization vector V is transmitted
in plaintext, which is used by the receiver to calculate the same subkey sequence k1, k2, · · · , k�

for decrypting ci to get mi. Removing the rightmost 32 bits from m1,m2, · · · ,m�, the receiver
gets M .

WEP encryption is intended to provide WEP protection. WEP does not provide confiden-
tiality against legitimate STAs in the network. Thus, application-layer encryptions are needed
to provide confidentiality for user data against STAs.

6.2.4 Security Flaws of WEP

WEP, although used widely, was a hastily designed security protocol. It contains serious secu-
rity flaws in device authentication, frame integrity check, frame encryption, and access control.

6.2.4.1 Authentication Flaws

The challenge-response authentication scheme used in WEP is a simple exclusive-OR scheme,
which is vulnerable to the known-plaintext attack as described in Section 2.1.2. In particular,
the attacker may use a sniffer to intercept a challenge–response pair (cha, res) between the
AP and a legitimate STA, where

cha = a1a2 · · · a16,

res = V ‖ r1r2 · · · r16,

ri = ai ⊕ ki,

i = 1, 2, · · · , 16.

Thus, Malice, the attacker, can compute ki = ai ⊕ ri for i = 1, 2, · · · , 16. This allows Malice
to authenticate her device to the AP as follows:

1. Send a request to the AP.
2. Wait for the challenge string cha′ from the AP.
3. Use the previously computed key streams k1, k2, · · · , k16 to XOR the challenge string cha′

to get a response string res′.
4. Send the previously captured initialization vector V and the response string res′ to the AP.

The AP applies RC4 to V ‖ K to generate the same key stream k1, k2, · · · , k16, verifies that
k1k2 · · · k16 ⊕ res′ = cha′, and authenticates Malice’s device.

6.2.4.2 Integrity Check Flaws

CRC has been widely used at the data-link layer to detect transmission errors in data frames,
but it is a poor choice for checking frame integrity. This is because CRC has the following two
weaknesses:
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1. Linear property: For any two strings x and y,

CRC(x ⊕ y) = CRC(x) ⊕ CRC(y). (6.1)

The proof of this property is straightforward (see Exercise 6.7).
2. No secret key involved: CRC is generated without using secret keys.

The first weakness allows the attacker to modify a message so that the CRC of the modified
message is the same as that of the original message. The second weakness allows the attacker
to inject new messages.

Message Tampering
Suppose that M is the original packet that Alice wants to send to Bob. According to the encryp-
tion scheme, Alice’s STA sends the following string C to Bob’s STA:

C = (M ‖ CRC32(M)) ⊕ RC4(V ‖ K).

Suppose that Malice intercepts C. Then Malice can modify C in anyway she wants to, and
the modification cannot be detected by integrity check. This can be done as follows. Let Γ be
an arbitrary frame. Malice modifies C by

C ′ = (Γ ‖ CRC32(Γ )) ⊕ C,

and sends it to Bob. It follows from Equality 6.1 that

C ′ = (Γ ‖ CRC32(Γ )) ⊕ C

= [(Γ ‖ CRC32(Γ )) ⊕ (M ‖ CRC32(M))] ⊕ RC4(V ‖ K)

= [(Γ ⊕ M) ‖ (CRC32(Γ ) ⊕ CRC32(M))] ⊕ RC4(V ‖ K)

= [(Γ ⊕ M) ‖ (CRC32(Γ ⊕ M))] ⊕ RC4(V ‖ K)

= (M ′ ‖ CRC32(M
′)) ⊕ RC4(V ‖ K),

where M ′ = Γ ⊕ M . Thus, Bob will receive a new message M ′ with the correct integrity
check value of CRC32(M

′).

Message Injections
RC4 is vulnerable to the known-plaintext attack. That is, if a legitimate plaintext–ciphertext
pair (M,C) is known, then performing M ⊕ C will yield the subkey stream used to encrypt
M . As the initialization string V is transmitted in plaintext and CRC is generated without
using any secret key, the attacker can inject a message and have it authenticated if the same
initialization vector can be reused. What he needs to do is to generate a message Θ he wants to
inject to the network, compute CRC32(Θ), encrypt CRC32(Θ) ‖ Θ using the subkey stream
he obtains from a known-plaintext attack, and inject

V ‖ (Θ ‖ CRC32(Θ)) ⊕ RC4(V ‖ K)

to the network.
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Fragmentation Attacks
The fragmentation attack takes advantage of the unique structure in the 802.11b LLC frame
header to inject messages to the network. In particular, the first eight bytes in the header of any
LLC frame have the following fixed values (represented in hexadecimal):

AA AA 03 00 00 00 08 00

if it is an IP packet, or
AA AA 03 00 00 00 08 06

if it is an ARP packet, where each ARP packet has a fixed length of 36 bytes. Thus, it is
straightforward to distinguish an ARP packet from an IP packet.

These eight bytes are the first to be encrypted. Thus, the attacker may obtain the first eight
subkeys

k1, k2, · · · , k8

from any intercepted MAC frame by performing a simple XOR operation. Let V be the ini-
tialization string.

The 802.11b MAC sublayer may divide an LLC frame up to 16 segments. Thus, the attacker
may inject a 64-byte LLC frame by segmenting it into sixteen 4-byte fragments, use V and the
subkey stream k1, k2, · · · , k8 to encrypt each 4-byte fragment and its 4-byte integrity check
value (ICV), put it in a MAC frame, and inject it to the network.

6.2.4.3 Confidentiality Flaws

Recall that RC4 (see Section 2.7.1) is a stream cipher that first expands the encryption key to
generate an initial permutation of a 256-byte array, then keeps swapping elements in the array
to generate subkey streams.

Repeating Initialization Vectors
In Section 2.7.2, we have discussed that the RC4 stream cipher is vulnerable to the
related-plaintext attack if a subkey stream is reused. To avoid regenerating the same subkey
stream, WEP generates independently at random a 24-bit initialization string V for each
frame to form a frame key V ‖ K, which allows RC4 to generate a different subkey stream.

However, as there are only 224 = 16, 777, 216 different initialization vectors, it follows from
the birthday paradox (see Section 4.4.1) that after 1.25

√
224 = 5120 frames, the chance that

there is at least one initialization vector appearing more than once is greater than 50%.
Moreover, as 802.11b has a bandwidth of 11 Mbps, it is easy to have more than 224 frames

transmitted in a busy network in a short period of time, during which some initialization vectors
will be repeated.

RC4 Weak Keys
In Section 2.7.2, we have discussed that knowing the initial permutation is equivalent to break-
ing RC4 encryption. Even if the initial permutation is partially revealed, the attacker may still
be able to obtain information about the encryption key. Thus, it is important to select a suitable
encryption key to produce a secure initial permutation. But selecting a suitable encryption key
may be difficult, for many binary strings form weak encryption keys.
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In WEP, the 24 bits of the initialization vector in the per-frame encryption key are open to
the public. The Fluhrer–Mantin–Shamir (FMS) attack described in Section 2.7.2 collects weak
initialization vectors used with the same WEP key (i.e., these vectors are almost 2q-conserving
for 1 ≤ q ≤ 8) and uses them to deduce the WEP key.

A number of WEP cracking software tools have since been developed on the basis of
the FMS attack. These tools include WEPCrack, WEPLab, WEPWedgie, WEPAttack,
AirSnort, AirJack, and AirCrack. Appendix E describes a WEPCrack experiment to crack
WEP keys.

6.3 Wi-Fi Protected Access

The WPA protocol, published in 2003 by the Wi-Fi Alliance, was designed on the basis of an
early version (draft 3) of the IEEE 802.11i standard. WPA has three major objectives. The first
objective is to correct all the security problems found in WEP. The second objective is to make
the existing hardware that supports WEP also support WPA. The third objective is to ensure
that WPA is compatible with the 802.11i standard to be announced.

In particular, WPA uses a specifically designed integrity check algorithm, called the Michael
algorithm, to produce Message Integrity Code (MIC) for preventing forgeries. Although it
still uses RC4 to encrypt LLC frames, WPA uses a new key structure to generate per-frame
keys that prevents message replays and de-correlates public initialization vectors from weak
RC4 keys. The new key structure uses a new initialization vector generation scheme and a
key mixing algorithm. All of these mechanisms are specified in the Temporal Key Integrity
Protocol (TKIP).

6.3.1 Device Authentication and Access Controls

WPA supports two methods for authenticating STAs. The first method uses a preset secret key
in the same way as WEP. This method is intended to secure home and small-office WLANs.
Thus, this method is referred to as Home-and-Small-Office WPA. The second method is more
sophisticated, which is intended to secure corporate WLANs. Thus, it is also referred to as
Enterprise WPA. It uses an authentication server (AS) and a preshared secret between the AS
and an STA, where different STAs share different preshared secrets with the AS. Preshared
secrets are often presented in the form of passwords.

Enterprise WPA adopts the 802.1X Port-Based Network Access Control protocol to authen-
ticate STAs. The AS is connected to a wired local area network. The AS may be a sepa-
rate server or implemented inside an AP. 802.1X was originally developed for authenticating
dial-up devices. Using the early terminology of 802.1X, an STA is also referred to as a sup-
plicant, an AP an authenticator, and the AS a Remote Authentication Dial-In User Service
(RADIUS) server.

6.3.1.1 802.1X in A Nutshell

802.1X specifies a procedure for authenticating an STA when the STA wants to obtain access
to a local area network (see Figure 6.5).
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Figure 6.5 Schematic of 802.1X authentication steps, where dash lines represent the actual connec-
tions. Connections 2 and 3 are through the AP

1. The STA sends a request to the AP it wants to get access to. The AP asks for the identity
of STA.

2. The STA sends to the AP its identity and its signature using its master key shared with
the AS. The AP passes it to the AS. AS verifies STA’s signature and grants the access
permission to the STA if the signature is validated and passes its decision to AP. The AP
then informs the STA about AS’s decision.

3. The STA is granted access to the WLAN.

6.3.2 TKIP Key Generations

Suppose that an STA and an AP have completed the 802.1X authentication process with an
AS, where the STA shares a presecret key with the AP and the AP shares a presecret key with
the AS. The AS generates a 256-bit pairwise master key (PMK) and sends it confidentially
to the AP using the preshared secret key between the AS and the AP. The AP then sends the
PMK confidentially to the STA using the preshared secret key between the AP and the STA.
In the case where 802.1X authentication is not required, the preshared master key between the
STA and the AP is used to generate a PMK directly at both sides.

Different STA shares with the AP a different PMK. In the case where several STAs want to
use the same master key for group communication, the key is referred to as a group master key
(GMK), or simply a group key.

TKIP first generates a PMK for each STA. It then generates, on the basis of PMK and other
information about the devices involved, four 128-bit secret pairwise transient keys (PTKs).

6.3.2.1 Pairwise Transient Keys

When an STA wants to connect to the AP, TKIP generates four 128-bit temporal subkeys for
data encryptions, data integrity checks, EAPoL encryptions, and EAPoL integrity checks to
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be used in the connection, where EAPoL stands for “Extensible Authentication Protocol over
LAN”. They are the Data Encryption key, the Data MIC key, the EAPoL Encryption key, and
the EAPoL MIC key. These four subkeys are referred to as the pairwise transient keys (PTK).
In particular, the first two keys are used to encrypt data and produce MIC of the data. The last
two keys are used to secure communications between the AP and the STA during the initial
handshake procedure. PTKs are temporal, for they are generated with different values each
time an STA is associated with the AP. In other words, PTKs are session keys.

PTKs are generated using a pseudorandom number generator on the seed value made up of
PMK, the MAC address of the STA, the MAC address of the AP, the nonce generated by the
STA, and the nonce generated by the AP. We use AMAC and ANonce to denote, respectively,
the MAC address and the nonce of the AP. Likewise, we use SMAC and SNonce to denote,
respectively, the MAC address and the nonce of the STA.

6.3.2.2 Four-Way Handshakes

Both of the STA and the AP must have the same input to generate the same PTK. That is, the
STA and the AP must exchange their MAC addresses and nonces after the STA is authenti-
cated using 802.1X. TKIP uses the following four-way handshake procedure to complete this
exchange.

802.1X introduces the notion of robust security networks (RSN) and the notion of security
network associations (RSNA). RSNA specifies that in an RSN, APs can only be connected by
RSN-enabled STAs.

Assume that the AS has informed the AP that the STA is authenticated and the PMK has
been computed. Now the STA sends a special packet called robust security network infor-
mation element (RSN IE) RSNIESTA to the AP, where RSN IE contains authentication and
pairwise cipher suite selectors, group key cipher suite selector, RSN capabilities, and other
RSNA parameters. The AP responds to the STA with an RSN IE RSNIEAP to inform the STA
which algorithms and parameters it wants to use. Figure 6.6 shows a schematic of a typical
RSN IE, where AKM stands for authentication and Key management algorithms.

Step 1: AP Sends ANonce to STA
The AP generates an ANonce, a sequence number sn, and sends

message1 = (AMAC, ANonce, sn) (6.2)

in plaintext to the STA. The STA generates an SNonce and computes the PTK from the PMK,
SMAC, SNonce, AMAC, and ANonce.
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Figure 6.6 Schematic of an RSN IE
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Step 2: STA Sends SNonce to AP
The STA computes MIC of (SNonce, sn) using the EAPoL MIC key it generated in Step 1 and
sends

message2 = (SMAC, SNonce, sn) ‖ MIC(SNonce, sn) ‖ RSNIESTA (6.3)

to the AP. The MIC ensures that the AP and the STA have the same PMK.

Step 3: AP Acknowledges STA
The AP extracts SNonce and SMAC from message2 it receives from the STA and computes
the PTK using the PMK shared with the STA, SMAC, SNonce, AMAC, and ANonce. It then
uses the EAPoL MIC key to validate the MIC it receives. If the validation fails, the AP stops
the handshake procedure. Otherwise, the AP sends the following acknowledgement message
to the STA:

message3 = (AMAC, ANonce, sn + 1) ‖
MIC(ANonce, sn + 1) ‖ RSNIEAP . (6.4)

This message indicates that the AP is ready to use the new PTK.

Step 4: STA Acknowledges AP
After receiving the acknowledgement message3 the AP sends to the STA in Step 3, the STA
sends the following acknowledgement to the AP:

message4 = (SMAC, sn + 1) ‖ MIC(sn + 1) (6.5)

This message indicates that the STA is also ready to use the new PTK. This completes the
four-way handshake procedure.

After the four-way handshake is completed, the AP and the STA will each generate and
install PTK. Figure 6.7 shows a schematic of the four-way handshake procedure.

In addition to the MAC addresses, nonces, and the sequence numbers, the STA in step 2 will
also send to the AP an RSN IE to establish security relation.

6.3.3 TKIP Message Integrity Code

TKIP uses the Michael algorithm to generate MIC. Michael, designed solely for WPA by a
Dutch cryptographic engineer Niels Ferguson, generates a 64-bit message authentication code
using a 64-bit secret key. In particular, one half of the Data MIC key is used as the 64-bit secret
key for authenticating messages sent from the AP to the STA, and the other half is used as the
64-bit secret key for authenticating messages sent from the STA to the AP.

TKIP stores strings in the little-endian storage format. For convenience, we assume that
items (bits, bytes, words, etc.) with small indexes are stored in low memory locations.

Let K be a 64-bit secret key shared between the STA and the AP. Divide K into two halves
K0 and K1 of equal length. Let

M = M1 · · ·Mn

be an LLC frame to be transmitted, where each Mi is a 32-bit block.
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Figure 6.7 Schematic of a 4-way handshake procedure

Michael generates MIC for M using K as follows:

(L1, R1) = (K0,K1),

(Li+1, Ri+1) = F (Li ⊕ Mi, Ri),

i = 1, 2, · · · , n

MIC = Ln+1Rn+1,

where F is a Feistel type of substitution. Let l and r be two 32-bit strings. Then F (l, r) is
defined as follows:

r0 = r,

l0 = l,

r1 = r0 ⊕ (l0 ≪ 17),

l1 = l0⊕32r1,

r2 = r1 ⊕ XSWAP(l1),

l2 = l1⊕32r2,

r3 = r2 ⊕ (l2 ≪ 3),

l3 = l2⊕32r3,

r4 = r3 ⊕ (l3 ≫ 2),
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l4 = l3⊕32r4,

F (l, r) = (l4, r4),

where l⊕32r = (l + r) mod 232, XSWAP(l) swaps the left-half of l with the right-half of l.
For example, representing numbers in hexadecimal, we have

XSWAP(12345678) = 56781234.

Michael as an MIC is much more secure than CRC32, for Michael uses a 64-bit secret
key on a Feistel encryption structure. But Michael MIC is still vulnerable to security attacks.
For example, the attacker could create any message and attach a 64-bit binary string to it as
a possible MIC, trying to find the correct MIC without knowing the secret key. Trying all
of the 264 strings will surely find the correct MIC for the message. While 264 is large, there
is a differential cryptanalysis attack that requires only 229 tries. To prevent the attacker from
keeping trying, TKIP specifies that if two failed forgeries are detected within a second, the
STA should delete its keys and disengage with the AP. And the STA should wait for a minute
before connecting to the AP again.

6.3.4 TKIP Key Mixing

TKIP generates a per-frame key using a key mixing algorithm for each frame that an STA
wants to send to the AP. Key mixing uses a 48-bit initialization string V , generated for each
frame using a 48-bit counter, which is referred to as the TKIP sequence counter (TSC). Divide
V into three 16-bit blocks V2, V1, V0.

The key mixing algorithm consists of two mixing phases, denoted by mix1 and mix2, where
mix1 takes a 128-bit input and outputs an 80-bit string, while mix2 takes a 128-bit input and
outputs a 128-bit string. Each mixing phase is a Feistel structure, involving a sequence of
additions, XORs, and substitutions. The substitution function, denoted by S, uses two S-boxes,
each of which is a table consisting of 256 bytes. Let at denote the 48-bit MAC address of the
transmitter (i.e., the source device), kt the 128-bit data encryption key of the transmitter, pk1
the output of mix1, and pk2 the output of mix2. Then

pk1 = mix1(a
t, V2V1, k

t),

pk2 = mix2(pk1, V0, k
t),

where pk2 is a 128-bit per-frame key for RC4.

6.3.4.1 S-Boxes

TKIP uses two S-boxes S0 and S1 to substitute a 16-bit string with a 16-bit string. In particular,
divide X into two bytes: X0 and X1. That is, X = X1X0. Treat X0 and X1 each as an index
value from 0 to 255. Use S0 to substitute X0, the lower byte of X; and use S1 to substitute X1,
the upper byte of X . Then S1(X1) is the value in S1 at index X1 (see Table 6.1), and S0(X0)
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Table 6.1 S1: the TKIP S-box for the upper byte

c6 f8 ee f6 ff d6 de 91 60 02 ce 56 e7 b5 4d ec 8f 1f 89 fa ef b2 8e fb
41 b3 5f 45 23 53 e4 9b 75 e1 3d 4c 6c 7e f5 83 68 51 d1 f9 e2 ab 62 2a
08 95 46 9d 30 37 0a 2f 0e 24 1b df cd 4e 7f ea 12 1d 58 34 36 dc b4 5b
a4 76 b7 7d 52 dd 5e 13 a6 b9 00 c1 40 e3 79 b6 d4 8d 67 72 94 98 b0 85
bb c5 4f ed 86 9a 66 11 8a e9 04 fe a0 78 25 4b a2 5d 80 05 3f 21 70 f1
63 77 af 42 20 e5 fd bf 81 18 26 c3 be 35 88 2e 93 55 fc 7a c8 ba 32 e6
c0 19 9e a3 44 54 3b 0b 8c c7 6b 28 a7 bc 16 ad db 64 74 14 92 0c 48 b8
9f bd 43 c4 39 31 d3 f2 d5 8b 6e da 01 b1 9c 49 d8 ac f3 cf ca f4 47 10
6f f0 4a 5c 38 57 73 97 cb a1 e8 3e 96 61 0d 0f e0 7c 71 cc 90 06 f7 1c
c2 6a ae 69 17 99 3a 27 d9 eb 2b 22 d2 a9 07 33 2d 3c 15 c9 87 aa 50 a5
03 59 09 1a 65 d7 84 d0 82 29 5a 1e 7b a8 6d 2c

Table 6.2 S0: the TKIP S-Box for the lower byte

a5 84 99 8d 0d bd b1 54 50 03 a9 7d 19 62 e6 9a 45 9d 40 87 15 eb c9 0b
ec 67 fd ea bf f7 96 5b c2 1c ae 6a 5a 41 02 4f 5c f4 34 08 93 73 53 3f
0c 52 65 5e 28 a1 0f b5 09 36 9b 3d 26 69 cd 9f 1b 9e 74 2e 2d b2 ee fb
f6 4d 61 ce 7b 3e 71 97 f5 68 00 2c 60 1f c8 ed be 46 d9 4b de d4 e8 4a
6b 2a e5 16 c5 d7 55 94 cf 10 06 81 f0 44 ba e3 f3 fe c0 8a ad bc 48 04
df c1 75 63 30 1a 0e 6d 4c 14 35 2f e1 a2 cc 39 57 f2 82 47 ac e7 2b 95
a0 98 d1 7f 66 7e ab 83 ca 29 d3 3c 79 e2 1d 76 3b 56 4e 1e db 0a 6c e4
5d 6e ef a6 a8 a4 37 8b 32 43 59 b7 8c 64 d2 e0 b4 fa 07 25 af 8e e9 18
d5 88 6f 72 24 f1 c7 51 23 7c 9c 21 dd dc 86 85 90 42 c4 aa d8 05 01 12
a3 5f f9 d0 91 58 27 b9 38 13 b3 33 bb 70 89 a7 b6 22 92 20 49 ff 78 7a
8f f8 80 17 da 31 c6 b8 c3 b0 77 11 cb fc d6 3a

is the value in the S0 at index X0 (see Table 6.2). S1 is also referred to as the TKIP S-Box for
the upper byte and S0 the TKIP S-Box for the lower byte. Define S(X) by

S(X) = S1(X1)S0(X0).

For example, let X = 0102, then S(X) = S1(01)S0(02) = f899.

6.3.4.2 Computation of Phase 1

We use the following notations to describe the computation of phase 1 and phase 2:

at
n : then th byte ofat, whereat

5 is the highest byte andat
0 the lowest byte

kt
n : then th byte ofkt, wherekt

15 is the highest byte andkt
0 the lowest byte

Divide pk1 into five 16-bit blocks as

pk1 = pk14pk13pk12pk11pk10,
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where each pk1i(i = 0, 1, · · · , 4) is a 16-bit binary string. The phase 1 function
mix1((a

t, V2V1, k
t) is defined as follows:

pk10 ← V1
pk11 ← V2
pk12 ← at

1a
t
0

pk13 ← at
3a

t
2

pk14 ← at
5a

t
4

for i ← 0 to 3 do
pk10 ← pk10 ⊕16 S[pk14 ⊕ (kt

1k
t
0)]

pk11 ← pk11 ⊕16 S[pk10 ⊕ (kt
5k

t
4)]

pk12 ← pk12 ⊕16 S[pk11 ⊕ (kt
9k

t
8)]

pk13 ← pk13 ⊕16 S[pk12 ⊕ (kt
13k

t
12)]

pk14 ← pk14 ⊕16 S[pk13 ⊕ (kt
1k

t
0)] + ⊕16 i

pk10 ← pk10 ⊕16 S[pk14 ⊕ (kt
3k

t
2)]

pk11 ← pk11 ⊕16 S[pk10 ⊕ (kt
7k

t
5)]

pk12 ← pk12 ⊕16 S[pk11 ⊕ (kt
11k

t
10)]

pk13 ← pk13 ⊕16 S[pk12 ⊕ (kt
15k

t
14)]

pk14 ← pk14 ⊕16 S[pk13 ⊕ (kt
3k

t
2)] + ⊕16 2i⊕16 1

6.3.4.3 Computation of Phase 2

Let pt denote an 80-bit binary string as a temporary variable. Divide pt into 16-bit blocks as

pt = pt5pt4pt3pt2pt1pt0,

where each pti is a 16-bit string.
Let X = X1X0 be a 16-bit string, where X1 and X0 are bytes. Denote by ub(X) = X1 and

lb(X) = X0.
Let RC4Key denote the 128-bit output of mix2(pk1, V0, k

t), which is the per-frame key
for RC4 to generate subkey stream. Divide RC4Key into 16 bytes as

RC4Key = RC4Key15 RC4Key14 · · · RC4Key0.

RC4Key is computed as follows:

for i ← 0 to 5 do
pti ← pk1i

for i ← 0 to 5 do
pti ← pti⊕16S[pt(5+i) mod 6 ⊕ (kt

2i+1k
t
2i)]

for i ← 0 to 1 do
pti ← pti⊕16([pt(5+i) mod 6 ⊕ (kt

2i+13k
t
2i+12)]≫ 1)

for i ← 2 to 5 do
pti ← pti⊕16(pti−1 ≫ 1)

RC4Key0 ← ub(V0)
RC4Key1 ← (ub(V0) ∨ 00100000) ∧ 01111111
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RC4Key2 ← lb(V0)
RC4Key3 ← lb(pt5 ⊕ [(kt

1k
t
0)»1])

for i ← 0 to 5 do
RC4Key2i+4 ← lb(pti)
RC4Key2i+5 ← lb(pti)

Note that the lowest three bytes of RC4Key, denoted by IV, are

IV = ub(V0) ‖ U ‖ lb(V0), (6.6)

where U = 0v131v12 · · · v8. IV is to be transmitted as the initialization vector in WEP, where
ub(V0) is to be transmitted first. The remaining 104-bit string is used as a WEP key.

6.3.5 WPA Encryption and Decryption

At the transmission end, WPA encrypts MSDU (i.e., an LLC frame) by reusing the WEP
encryption block. In particular, the ICV of an MSDU is computed first and then attached at the
end of the MSDU. This new string is then fragmented into several smaller blocks according
to the MAC sublayer specification. The initialization vector V2V1V0 is included in the MAC
Protocol Data Unit (MPDU) (i.e., the MAC sublayer frame) and transmitted in the public,
where V0 can be obtained from IV by removing the middle byte U . The middle byte U in the
WEP IV is used to avoid a certain type of RC4 weak keys. Figure 6.8 shows a schematic of
WPA encryption.

At the receiving end, WPA strips off the MAC sublayer header, extracts the initialization
vector V , and computes the transient keys. It then decrypts fragmented MSDU and reassembles
them back to the original MSDU and its ICV.

The transmitter increments its initialization vector by 1, starting from 0, for each fragmented
MSDU to be sent. Out-of-order frames will be dropped at the destination. The TSC counter
for the initialization vector will be reset to 0 for a new connection with a new data encryption
key. This mechanism prevents message replays.

6.3.6 WPA Security Strength and Weaknesses

WPA is superior to WEP in a number of ways. WPA uses 802.1X to authenticate devices
and uses TKIP to generate temporal keys for encrypting LLC frames and producing MICs of
the frames to be sent. TKIP, in particular, is the major security product that reuses the WEP
encryption mechanism. Users may be able to upgrade their existing WEP devices to run WPA
with minimal costs.

However, the security strength of TKIP has not been analyzed, and so flaws unknown of at
this point may be discovered later to attack WPA.

WPA is vulnerable to DoS attacks. Let M be an LLC frame. WPA computes the MIC of M
and includes it in the payload. WPA then computes fragments of M ‖ ICV(M) to F1, F2, · · ·,
according to the MAC sublayer protocol. For each fragment Fi, WPA generates a 48-bit initial-
ization vector Vi and uses it to generate a WEP initialization vector and a WEP key. Because the
values of the initialization vector are always increased and because it is transmitted in plaintext,
the attacker may intercept an MAC frame and replace the initialization vector contained in it
with a larger value. As it cannot be decrypted correctly, the encrypted frame will be discarded.
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Figure 6.8 A schematic of WPA encryption, where only the major components in an MPSU are shown

This will cause legitimate MAC frames that arrive at a later time to be rejected because the
value of its initialization vector has already been used.

Another type of DoS attacks takes advantage of the TKIP specification with MIC verifica-
tions. Recall that if two MSDUs with forged MICs are detected within a second, TKIP will
discard these MSDUs and disconnect the STA from the AP. Thus, the attacker may simply
keep sending forged MSDUs to prevent legitimate STAs from being connected to the AP.

6.4 IEEE 802.11i/WPA2

WPA, published in 2002, was a rush solution directed at solving urging security problems in
WEP using existing WEP hardware. WPA was based on draft 3 of IEEE 802.11i. In 2004,
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IEEE published the official version of the 802.11i standard. The Wi-Fi Alliance subsequently
published WPA2 on the basis of 802.11i, which is interoperable with 802.11i. This section is
focused on 802.11i.

802.11i defines a counter mode-CBC MAC protocol (CCMP) using AES-128 to encrypt
data and compute the MIC of the data. 802.11i also uses 802.1X to authenticate STAs.

As AES-128 is used for both encryption and authentication, encryption keys can be
reused. Thus, initialization vectors transmitted in plaintext are no longer needed to generate
per-frame keys.

However, unlike WPA that can reuse WEP cards to support WPA, most existing Wi-Fi WPA
cards cannot be upgraded to support 802.11i, for 802.11i uses AES as its underlying encryption
algorithm.

6.4.1 Key Generations

IEEE 802.11i has the same key hierarchy as WPA. That is, 802.11i generates a 256-bit PMK
and four temporal 128-bit PTKs for WPA. In addition, 802.11i also generates a 384-bit tempo-
ral key for each session between an STA and the AP, used to carry out CCMP operations. This
384-bit key is generated using a pseudorandom number generator on the STA’s MAC address,
the STA’s nonce, the AP’s MAC address, and the AP’s nonce, which are exchanged following
a 4-way handshake protocol as in WPA.

The 384-bit key is then divided into three 128-bit transient keys, two of which are used
to establish connection between the STA and the AP. The other is used as a session key for
carrying out the AES-128 encryption algorithm.

6.4.2 CCMP Encryptions and MIC

CCMP uses AES counter mode to encrypt MSDUs. That is, it uses an 128-bit counter Ctr,
starting from an initial value and increases 1 each time. Let M be an MSDU. Divide M into
a sequence of 128-bit blocks:

M = M1M2 · · ·Mk.

Let Ctr0 denote the initial value of the counter. Let K denote the 128-bit AES encryption key
and AES-128K(X) the AES-128 encryption algorithm on 128-bit string X with key K. Then
the encryption of M is carried out as follows:

Ctr = Ctr0,

Ci = AES-128K(Ctr + 1) ⊕ Mi,

i = 1, · · · , k.

CCMP uses cipher-block chaining message authentication code (CBC-MAC) to authenti-
cate MSDUs and perform integrity checks. CBC-MAC using AES-128 is defined as follows:

C0 = 0128,

Ci = AES-128K(Ci−1 ⊕ Mi),

i = 1, 2, · · · , k.
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Unlike in WPA that the MIC is calculated on an MSDU before it is fragmented at the MAC
sublayer, 802.11i fragments the MSDU first. In particular, 802.11i calculates the CBC-MAC
of each fragment and appends the MIC to the fragment. It then encrypts each fragment together
with its MIC.

6.4.3 802.11i Security Strength and Weaknesses

The cryptographic algorithms and security mechanism used in 802.11i are superior to those
used in WPA and WEP. 802.11i eliminates the use of public initialization vectors in generat-
ing session keys. In addition to using CCMP for encryption and authentication, 802.11i also
recommends using the mode of OCB (described in Section 2.6) as an alternative for encryp-
tion and authentication. However, OCB is patented, and so adopting it officially in an industry
standard is inappropriate.

While CCMP is believed to be secure, 802.11i is still vulnerable to a number of security
attacks. Most of the security vulnerabilities in 802.11i are from communication protocols.
For example, 802.11i is vulnerable to rollback attacks, and the four-way handshake proto-
col is vulnerable to RSN IE poisoning attacks. Moreover, as we mentioned earlier, wireless
networks are vulnerable to DoS attacks, and 802.11i is no exception. Most DoS attacks are tar-
geted at MAC-layer protocols. We describe in this subsection three DoS attacks: the rollback
attacks, the RSN IE poisoning attacks, and the de-association attacks. The reader is referred
to Exercises 6.18, 6.19, and 6.20 for several other possible DoS attacks.

6.4.3.1 Rollback Attacks

IEEE 802.11i is meant to establish only RSNs. However, to accommodate existing WEP and
WPA devices, 802.11i allows RSN devices to communicate with pre-RSN devices. This makes
rollback attacks possible, for the attacker may be able to trick an RSN device to roll back to
WEP. For example, the attacker may impersonate a legitimate RSN AP to broadcast a message
announcing that it is a WEP AP, or impersonate a legitimate RSN STA to request a WEP
connection with an RSN AP.

To counter rollback attacks, we may configure RSN APs to decline WEP or WPA connec-
tions. This countermeasure, however, will block WEP or WPA devices from using RSN APs.
Thus, a better measure would be for RSN APs to decline WEP or WPA connections for criti-
cal applications where security is a primary concern and allow WEP or WPA connections for
applications where weaker security protections are acceptable.

6.4.3.2 RSN IE Poisoning Attacks

RSN IE poisoning is a DoS attack against the four-way handshake protocol. Recall that
message2 sent by the STA to the AP in Step 2 of the four-way handshake protocol (see
Message 6.3) contains RSNIESTA. The AP verifies MIC and discards message2 if the MIC
is incorrect. Otherwise, the AP compares bit-by-bit RSNIESTA with the local record the
AP received prior to the handshake. If they are not identical, the AP stops the handshake
procedure and de-authenticates the STA.
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In Step 3, the AP sends RSNIEAP to the STA in message3. The STA then checks the RSN
IE before verifying MIC. If the received RSN IE is not identical to the local record, the STA
stops the handshake procedure and de-authenticates the AP. Checking RSN IE before verifying
MIC presents a design flaw, for the attacker can forge message3 with the wrong RSN IE and
force the STA to disconnect from the AP.

6.4.3.3 De-Association Attacks

De-association attacks use forged MAC-layer management frames to break an existing con-
nection between an STA and an AP. For example, suppose that an STA has already established
a connection with an AP. The attacker sends a forged de-authentication frame to the AP to
de-associate the STA from the AP. The AP, however, believes that the connection still exists,
making it possible for the attacker to impersonate the STA to connect to the AP.

6.5 Bluetooth Security

Bluetooth is a communication technology for building ad hoc WPANs. It allows wireless
devices with low power, for example, cellular phones, PDAs, and embedded systems, to com-
municate with each other within a short range. The IEEE 802.15 standard for WPANs is based
on the Bluetooth technology.

On the basis of the Mobile Communication architecture developed by Ericsson, Bluetooth
was proposed in 1998 as an industrial standard by the Special Interest Group (SIG) formed by
Ericsson, Intel, IBM, Nokia, and Toshiba. Bluetooth allows wireless devices of different plat-
forms made by different vendors to communicate with each other. It was named after Harald
Bluetooth, the 10th century Danish king, who advocated negotiations to solve regional con-
flicts. Designed to support wireless devices with low power, that is, with limited computing
capabilities and power supplies, Bluetooth is restricted to cryptographic algorithms that do not
require much computing resources to execute.

6.5.1 Piconets

Bluetooth is implemented on piconets, which are self-configured and self-organized ad hoc
wireless networks. Piconets are formed dynamically, allowing new devices to join in and cur-
rent devices to leave at will without using access points or other infrastructure devices. In
particular, a piconet may consist of up to eight active devices that use the same physical chan-
nel. All devices in a piconet are peers, that is, they can communicate with each other directly.
Exactly one of these peers is designated as the master node for the purpose of synchronizing
other nodes. The other nodes are referred to as the slave nodes. Slave nodes are synchronized
with the master node.

A Bluetooth device may also be in the parked state. A device in the parked state can become
active quickly. Other devices are said to be in the standby state. A standby device takes a longer
time to become active. A piconet may consist of up to 255 parked devices. Figure 6.9 shows a
schematic of a piconet.
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Figure 6.9 Piconet schematic. M denotes the “master node,” S “slave nodes,” P “parked-state devices”
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Figure 6.10 Scatternet schematic

When a Bluetooth device wants to set up a piconet, it sends out a special packet and becomes
the master node of the piconet. When a Bluetooth device wants to join an existing piconet, it
sends out a special request-to-join packet and becomes a slave node.

Several piconets may overlap, which form a scatternet. Figure 6.10 shows a schematic of a
scatternet. A device can only belong to one piconet at a time.
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6.5.2 Secure Pairings

Suppose that two Bluetooth devices DA and DB in the same piconet want to communicate
securely. For convenience, we will assume that DA is the device that initiates the communi-
cation. Initially, DA and DB must share a personal identification number (PIN). A PIN code
is a string of characters of up to 16 characters, which may be entered by the user or prestored
in a device if the device has no input functions.

DA and DB will then generate shared secret keys to authenticate each other. This is
referred to as a secure pairing. Thus, authentication is the most important part of a secure
pairing.

At the beginning of a secure pairing session, Bluetooth generates a 128-bit initialization
key for each device on the basis of the PIN code and other information. The devices then
each generate a 128-bit link key, also called a combination key. Bluetooth uses the link key to
authenticate devices and generate encryption keys to encrypt packets.

Bluetooth uses a stream cipher called E0 to encrypt packet payloads, which is
re-synchronized for each payload to be encrypted. Bluetooth uses a block cipher SAFER+
and a modified version of SAFER+ to construct three algorithms, denoted by E1, E21, and
E22, to generate subkeys and authenticate devices.

This section is focused on Bluetooth authentication.

6.5.3 SAFER+ Block Ciphers

SAFER+ is a block cipher used to authenticate Bluetooth devices in secure pairings. SAFER+
is an enhancement of SAFER devised by James L. Massey in 1993. SAFER, standing for
Secure And Fast Encryption Routine, is a Fiestel cipher with a 64-bit block size. SAFER+ is
a Fiestel cipher with a 128-bit block size. As in AES, SAFER+ allows 128-bit, 192-bit, and
256-bit key lengths. Bluetooth uses SAFER+ with 128-bit keys, denoted by SAFER+ K-128.

As in any Fiestel cipher, SAFER+ K-128 consists of a key scheduling component and an
encryption component. The SAFER+ K-128 encryption component consists of eight identical
rounds and an output transformation, which need a total of 17 subkeys: two for each round and
one for the output transformation.

6.5.3.1 SAFER+ Subkeys

For convenience, for any k-byte string X = x1x2 · · ·xk, we use X[i] to denote the ith byte xi

and X[i : j] to denote the substring xi · · ·xj , where 0 ≤ i ≤ j ≤ k and xi is a byte.
Let K = k0k1 · · · k15 be a 128-bit encryption key, where ki is a byte for i = 0, 1, · · · , 15.

Let

k16 = k0 ⊕ k1 ⊕ · · · ⊕ k15.

Let X be a byte. Recall that LSk(X) denotes the new string obtained by shifting X circularly
to the left k times. SAFER+ generates seventeen 128-bit subkeys K1,K2, · · · ,K17 as follows:

The first subkey K1 is K. Let

K ← K ‖ k16
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Figure 6.11 Schematic of SAFER+ subkey generation

be a 17-byte expanded key. To generate each of the remaining subkeys Ki, i = 2, · · · , 17, first
perform LS3 on each byte of the expanded key. Then select 16 bytes from the resulting string
in a left-circular shift manner, and perform an XOR operation on the selected 16-byte string
and a constant 16-byte string Bi, called a bias vector to produce Ki, where Bi is obtained as
follows:

Bi[j] =
(
45(4517i+j+1 mod 257) mod 257

)
mod 256,

j = 0, 1, · · · , 15,

Bi = Bi[0]Bi[1] · · ·Bi[15],

i = 2, 3, · · · , 17.

The following procedure generates Ki (see Figure 6.11):

K1 ← k0k1 · · · k15
for j = 0, 1, · · · , 16 do

kj ← LS3(kj)
K2 ← k1k2 · · · k16 ⊕8 B2
for i = 3, 4, · · · , 17 do

for j = 0, 1, · · · , 16 do
kj ← LS3(kj)

Ki ← ki−1ki · · · k16k0 · · · ki−3 ⊕8 Bi−3
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where ⊕8 denotes bytewise addition mod 28. That is, let X = x1x2 · · ·xk and
Y = y1y2 · · · yk be two strings, where xi and yi are bytes, i = 1, 2, · · · , k. Then

X⊕8Y = x1⊕8y1 ‖ x2⊕8y2 ‖ · · · ‖ xk⊕8yk.

6.5.3.2 SAFER+ Encryption

SAFER+ K-128 encrypts a 128-bit plaintext block through eight identical rounds of operations
and one output transformation.

Encryption Rounds
Operations in each round consist of Pseudo Hadamard Transform (PHT), Armenian Shuffles
(ArS), table lookups on two S-boxes e and l, and the ⊕ and ⊕8 operations with two subkeys.

PHT takes two bytes x and y as input and produces two-byte output as follows:

PHT(x, y) = (2x + y) mod 28 ‖ (x + y) mod 28.

Let X = x1x2 · · ·x2k−1x2k be a string, where each xi is a byte, i = 1, 2, · · · , 2k. Define

PHT(X) = PHT(x1, x2) ‖ PHT(x3, x4) ‖ · · · ‖ PHT(x2k−1, x2k).

ArS permutes bytes in a 16-byte string X = x0x1 · · ·x15 as follows, where each xi is a byte
for i = 0, 1, · · · , 15:

ArS(X) = x8x11x12x15x2x1x6x5x10x9x14x13x0x7x4x3.

The S-Box e is a table with 28 entries, which is used to substitute an input byte x with a new
byte e(x) from the table, where e(x) is defined using an exponentiation function as follows:

e(x) = (45x mod (28 + 1)) mod 28.

The S-Box l is an inverse box of e. Namely, l has 28 entries, and the value of each entry l(y)
is determined by

l(y) = x if e(x) = y.

Let Yi denote the 128-bit input to the ith round, where 1 ≤ i ≤ 8. That is, Yi (i > 1) is
the output of the (i − 1)th round and Y1 is the original plaintext block. Let K2i−1 and K2i be
the two subkeys. Let Z1 and Z2 be two 128-bit temporary strings. The ith round in SAFER+
performs the following computations:

Z0 = Yi,

Z1[2j − 2] = e(Z0[2j − 2] ⊕ K2i−1[2j − 2]),

Z1[2j − 1] = l(Z0[2j − 1]⊕8K2i−1[2j − 1]),

Z1[2j] = l(Z0[2j]⊕8K2i−1[2j]),

Z1[2j + 1] = e(Z0[2j + 1] ⊕ K2i−1[2j + 1]),

j = 1, 3, 5, 7.
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Z2[2j − 2] = l(Z1[2j − 2]⊕8K2i[2j − 2]),

Z2[2j − 1] = e(Z1[2j − 1] ⊕ K2i[2j − 1]),

Z2[2j] = e(Z1[2j] ⊕ K2i[2j]),

Z2[2j + 1] = l(Z1[2j + 1]⊕8K2i[2j + 1]),

j = 1, 3, 5, 7.

Yi+1 = PHT( ArS( PHT( ArS( PHT( ArS( PHT(Z2))))))).

Output Transformation
After eight identical rounds are finished, the output transformation component applies K17 to
Y9 as applying K2i−1 to Yi without using S-boxes and generates ciphertext block C. That is,

C[2j − 2] = Y9[2j − 2] ⊕ K17[2j − 2],

C[2j − 1] = Y9[2j − 1]⊕8 K17[2j − 1],

C[2j] = Y9[2j]⊕8 K17[2j],

C[2j + 1] = Y9[2j + 1] ⊕ K17[2j + 1],

j = 1, 3, 5, 7.

6.5.4 Bluetooth Algorithms E1, E21, and E22

Bluetooth uses SAFER+ and a modified version of SAFER+ to construct E1. It uses the
modified version of SAFER+ to construct E21 and E22. The modified version of SAFER+
combines the input of round 1 to the input of round 3 using ⊕ and ⊕8 operations in the same
way of combining K5 to Y3 without using the S-boxes, making the algorithm noninvertible. In
particular, the new Y3 is modified as follows:

Y3[2j − 2] ← Y3[2j − 2] ⊕ Y1[2j − 2],

Y3[2j − 1] ← Y3[2j − 1]⊕8Y1[2j − 1],

Y3[2j] ← Y3[2j]⊕8Y1[2j],

Y3[2j + 1] ← Y3[2j + 1] ⊕ Y1[2j + 1],

j = 1, 3, 5, 7.

For convenience, we use Ar to denote the original SAFER+ encryption algorithm and A′
r

to denote the modified version of the SAFER+ encryption algorithm.
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6.5.4.1 E1

Let K be a 16-byte key, ρ a 16-byte string, and α a 6-byte address. Define K̃ as follows:

K̃[0] = K[0] ⊕8 233, K̃[1] = K[1] ⊕ 229,

K̃[2] = K[2] ⊕8 223, K̃[3] = K[3] ⊕ 193,

K̃[4] = K[4] ⊕8 179, K̃[5] = K[5] ⊕ 167,

K̃[6] = K[6] ⊕8 149, K̃[7] = K[7] ⊕ 131,

K̃[8] = K[8] ⊕ 233, K̃[9] = K[9] ⊕8 229,

K̃[10] = K[10] ⊕ 223, K̃[11] = K[11] ⊕8 193,

K̃[12] = K[12] ⊕ 179, K̃[13] = K[13] ⊕8 167,

K̃[14] = K[14] ⊕ 149, K̃[15] = K[15] ⊕8 131.

Define an expansion function E that expands α cyclically to a 16-byte string as follows:

E(α) = α ‖ α ‖ α[0 : 3].

E1 takes r, K, and α as input and produces the following 16-byte string as output:

E1(K, ρ, α) = A′
r(K̃, [Ar(K, ρ) ⊕ ρ] ⊕8 E(α)). (6.7)

6.5.4.2 E21

The E21 function takes a 16-byte random string ρ and a 6-byte address α as input. Let

ρ′ = ρ[0 : 14] ‖ (ρ[15] ⊕ b(6)),

where b(6) denotes the 8-bit string of 6: 00000110. Then

E21(ρ, α) = A′
r(ρ

′, E(α)). (6.8)

6.5.4.3 E22

The E22 algorithm takes a 16-byte random string ρ, a 6-byte address α, and an �-byte PIN code
p as input, where 1 ≤ � ≤ 16. Let

PIN′ =

{
PIN ‖ α[0] ‖ · · · ‖ α[min{5, 15 − �}], if � < 16,

PIN, if � = 16.
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Let �′ = min{16, � + 6}. Let

κ =

⎧⎪⎨
⎪⎩

PIN′ ‖ PIN′ ‖ PIN′[0 : 1], if �′ = 7,

PIN′ ‖ PIN′[0 : 15 − �′], if 8 ≤ �′ < 16,

ρ, if �′ = 16,

ρ′ = ρ[0 : 14] ‖ (ρ[15] ⊕ b(�′)),

where b(�′) denotes the 8-bit presentation of �′. Then

E22(PIN,ρ, α) = A′
r(κ, ρ′). (6.9)

6.5.5 Bluetooth Authentication

Recall that each Bluetooth device has an �-byte PIN code, where 1 ≤ � ≤ 16. To create a
pairing between two devices DA and DB , where DA initiates the communication with DB ,
both devices must have the same PIN code, which may be prestored in the devices or entered
by the users. Each Bluetooth device also has a 6-byte device address, denoted by BD_ADDR.

Bluetooth generates an initialization key Kinit and a link key KAB for performing device
authentications.

6.5.5.1 Initialization Key

When DA initiates the communication with DB ,DA generates a 16-byte pseudorandom
string, denoted by IN_RANDA and sends it to DB in plaintext. Then both DA and DB

compute the initialization key Kinit as follows:

Kinit = E22( PIN,IN_RANDA, BD_ADDRB),

where BD_ADDRB is the 6-byte device address of DB .

6.5.5.2 Link Key

Both DA and DB will create the link key KAB after they have created Kinit. In particu-
lar, DA generates a 16-byte pseudorandom string LK_RANDA, and DB generates a 16-byte
pseudorandom string LK_RANDB . DA then transmits LK_RANDA ⊕ Kinit to DB and DB

transmits LK_RANDB ⊕ Kinit to DA, which allow DA to get LK_RANDB and DB to get
LK_RANDA.

DA and DB each compute KAB as follows:

KAB = E21(LK_RANDA, BD_ADDRA) ⊕ E21(LK_RANDB, BD_ADDRB).

6.5.5.3 Device Authentication

Bluetooth devices use the challenge-response scheme to authenticate peers. For DA to authen-
ticate DB ,DA generates a 16-byte pseudorandom string AU_RANDA and sends it to DB in
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Figure 6.12 Bluetooth device DA authenticates device DB

plaintext. DB calculates a 4-byte singed response (SRES) as follows:

SRESA = E1(KAB , AU_RANDA, BD_ADDRB)[0 : 3].

It then sends it to DA. DA verifies the correctness of the SRESA it receives from DB to
validate that DA possesses the same KAB to authenticate DB . Figure 6.12 shows a schematic
of device authentication.

6.5.6 A PIN Cracking Attack

The Bluetooth authentication protocol is vulnerable to the PIN cracking attack that is similar to
the meet-in-the-middle attack in 2DES. In particular, assume that Malice eavesdrops an entire
pairing and authentication session between DA and DB as shown in Table 6.3.

Malice may crack the PIN out by brute force as follows: she first enumerates all 248 possible
values of PIN. For each PIN enumerated (denoted by PIN′), Malice can use IN_RANDA from
Message 1 and BD_ADDRB to compute a candidate

K ′
init = E22( PIN′, IN_RANDA, BD_ADDRB).

She uses K ′
init to XOR Message 2 and to XOR Message 3 to obtain, respectively, LK_RAND′

A

and LK_RAND′
B . She then computes a candidate

K ′
AB = E21(LK_RAND′

A, BD_ADDRA) ⊕ E21(LK_RAND′
B, BD_ADDRB).
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Table 6.3 Messages between DA and DB during the entire pairing and authentication
session eavesdropped by the attacker

Message Source Destination Data Length Notes

1 DA DB IN_RANDA 128 bits Plaintext
2 DA DB LK_RANDA ⊕ Kinit 128 bits
3 DB DA LK_RANDB ⊕ Kinit 128 bits
4 DA DB AU_RANDA 128 bits Plaintext
5 DB DA SRESA 32 bits Plaintext
6 DB DA AU_RANDB 128 bits Plaintext
7 DA DB SRESB 32 bits Plaintext

Using the candidate K ′
AB and the last four messages, Malice can verify whether the can-

didate PIN code is indeed the PIN code used by DA and DB . In particular, Malice uses
AU_RANDA from Message 4, K ′

AB , and BD_ADDRB to compute

SRES′
A = E1(AU_RANDA,K ′

AB , BD_ADDRB)[0 : 3],

and verifies whether SRES′
A is identical to SRESA from Message 5. If yes, then Malice

has a good chance to have found PIN. She may further use Messages 6 and 7 to confirm the
PIN code.

We note that cracking a 4-digit PIN on a desktop computer can be done in only a fraction of
a second. Four-digit PINs were commonly used in Bluetooth devices. Thus, one should avoid
using short PIN codes.

6.5.7 Bluetooth Secure Simple Pairing

The Bluetooth Core Specification 2.1 + EDR, introduced in 2007, uses a new pairing protocol
to improve Bluetooth security. The protocol is called the secure simple pairing (SSP) protocol.
It uses the elliptic-curve Diffie–Hellman (ECDH) key-exchange algorithm (see Section 3.5.5)
to negotiate shared secret keys between peers to replace user PIN codes, which makes SSP
resistant to the PIN cracking attack.

Initially, each Bluetooth device generates its own ECDH public–private key pair (Ku,Kr)
for all future SSP pairings.

SSP first exchanges public keys as follows: device DA (the initiator) first sends its public
key Ku

A to device DB . Device DB then sends its public key Ku
B to DA.

This public-key exchange process is vulnerable to the man-in-the-middle attack described
in Section 3.3.2. In particular, the attacking device may intercept both Ku

A and Ku
B and inject

its own key to replace Ku
A and Ku

B , respectively, for DB and DA.
To counter this man-in-the-middle attack, it is desirable to use public-key certificates to

authenticate the owners of the public keys. Bluetooth, however, does not specify link-layer
public-key infrastructure.

Assume that DB has obtained DA’s public key Ku
A and DA has obtained DB’s public

key Ku
B . That is, no man-in-the-middle attacks occurred during the key-exchange phase. SSP
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specifies two authentication phases after the key-exchange phase to counter other forms of
man-in-the-middle attacks. SSP then calculates the link key on the basis of the public keys to
complete the pairing process.

6.6 ZigBee Security

The ZigBee protocol is a standard for low-power wireless personal area networks similar to
Bluetooth. The protocol is built on top of the IEEE 802.15.4 communications standard. Devices
powered by the ZigBee protocol are widely used in health monitoring devices, home security
systems, and home automation systems, to name just a few.

The ZigBee protocol consists of the following four protocol layers: the physical layer, the
medium access control layer, the network layer, and the application layer. The physical layer
and medium access control are strictly specified by the IEEE 802.15.4 standard.

The network layer in the ZigBee is responsible for supporting the network topology. The
topologies supported by ZigBee are star, tree, and mesh networks. The use of mesh networks
is most common. When a ZigBee device wants to create a personal area network, it declares
itself as a ZigBee coordinator and starts a new WPAN. The ZigBee coordinator is also referred
to as the trust center. All other devices that join the new WPAN are called ZigBee end devices.

The application layer is responsible for providing a framework on which new ZigBee
devices are developed. Within the application layer, there is a special sublayer called the
application support sublayer. The application support sublayer is responsible for directly
interfacing with the network layer.

The security of a ZigBee network consists of many of the same facets as a Bluetooth piconet.
Similarly to Bluetooth, ZigBee has the ability to join networks (pairing in the Bluetooth par-
lance), authenticate, and secure the communication between devices.

6.6.1 Joining a Network

Similarly to Bluetooth, a ZigBee device joins a ZigBee network as an unauthenticated member.
The basic protocol consists of the following four messages that occur between the ZigBee
device D and the ZigBee coordinator C:

1. D → C: Request a beacon.
2. C → D: Respond with a beacon.
3. D → C: Request to associate (join) the network.
4. C → D: Respond to the association request.

The association messages contain the addresses of D and C as well as the identifier of the
WPAN. As part of this process, a special key called the network key is sent from the coordinator
to the device in plaintext. This network key is used to secure communication destined for all
devices in the network. Note that this is clearly not a secure practice. However, because data
is sent at low power and the communication range of the ZigBee network is very small, it is
considered “secure enough” to transmit the network key briefly to the newly joined node. It
remains for the newly joined device to be authenticated to the WPAN.



244 Introduction to Network Security

6.6.2 Authentication

Before any secure communication can take place between ZigBee devices, devices must
authenticate to each other. This authentication can occur between any two devices in
the ZigBee network, including the coordinator. We refer to the two devices involved in
authentication as Alice (A) and Bob (B). The protocol is straightforward:

1. A → B: Alice sends to Bob a random string CA, called the challenge.
2. B → A: Bob sends to Alice a random string CB , also called the challenge, with a message

authentication code computed on the message

(02)16 ‖ A ‖ B ‖ CB ‖ CA

using the network key.
3. A → B: Alice sends to Bob the message authentication code, computed with the network

key, of the following message:

(03)16 ‖ A ‖ B ‖ CA ‖ CB .

6.6.3 Key Establishment

Next, the ZigBee devices need to establish link keys for communicating with each other. There
are three methods for establishing link keys:

1. Preinstallation: Keys are placed on to the devices using an out-of-band method. For
example, keys may be set at the factory or entered by a user.

2. Transport: A trusted third party called the trust center securely sends a key.
3. Establishment: Devices coordinate with the trust center to establish keys with both ends of

the link without sending the keys.

The method of Establishment is of the most interest. The protocol that ZigBee uses to obtain
these keys is called the Symmetric-Key Key Establishment (SKKE) protocol. Using the SKKE
protocol, Alice (A) and Bob (B) establish a link key as follows:

1. A → B: Alice sends to Bob a random bit string CA, called the challenge.
2. B → A: Bob sends to Alice a random bit string CB , also called the challenge, along with

a message authentication code computed on the message

(02)16 ‖ A ‖ B ‖ CB ‖ CA

using a key provided to Alice and Bob by the trust center. This key is called the master key,
3. A → B: Alice sends to Bob the message authentication code, computed with the master

secret, of the following message:

(03)16 ‖ A ‖ B ‖ CA ‖ CB .

Once the exchange of messages has occurred, and the message authentication codes have been
verified, a link key L is derived as follows: Each party computes

L = MACMK(A ‖ B ‖ CA ‖ CB),
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where MACMK denotes the message authentication code with key MK. We note that the
SKKE protocol is the same as the authentication protocol, except the use of the master key
and the derivation of the link key L.

6.6.4 Communication Security

Communications between ZigBee devices can be secured at the network layer or the applica-
tion layer. In either case, the encryption uses a symmetric encryption algorithm. A link key is
used if the communication to be secured is just between two ZigBee devices, and a network
key is used if the message is to be broadcast to the entire WPAN.

Regardless of the key, the ZigBee protocol requires the use of AES-128 for all encryptions.
The mode of operation used, however, is not a standard mode. Instead, the ZigBee protocol
defines the CCM* mode of operation. From this mode of operation, an encryption method and
a cryptographic hash scheme can be defined. In particular, the CCM* mode allows the user to
either encrypt, hash, or both encrypt and hash. When used in the encrypt-and-hash form, the
CCM* mode operates as follows:

1. Compute the hash.

(a) Divide the message into 16-byte blocks b1, b2, · · · , bn. The last block may be padded.
(b) Compute Xi = E(K,Xi−1 ⊕ bi−1) for 2 ≤ i ≤ n, where E is the encryption function

and K is the key. We bootstrap this process by computing

X1 = E(K, b1).

(c) The hash is the first M bytes of Xn, where M is the requested digest size.

2. Encrypt the message by constructing a stream cipher.

(a) For each block bi, compute a corresponding stream block si as

si = E(K,Flag ‖ Nonce ‖ i),

where Flag is a set of flags (see ZigBee specification for a description of the flags) and
Nonce is a random value. Moreover, the length of Flag ‖ Nonce ‖ i must be exactly
128 bits.

(b) The ciphertext corresponding to block bi is ci = bi ⊕ si.

6.7 Wireless Mesh Network Security

A WMN is a wireless network consisting of several wireless routers (or STAs that can forward
messages to other STAs) such that for every pair of wireless routers, either they are within
direct communication range or there are a sequence of wireless routers between them such that
adjacent wireless routers are within direct communication range. A wireless router provides
address assignment, routing, DNS lookup, and other networking services. For convenience,
we may view a wireless router as an enhanced AP, and so we still use APs to denote wireless
routers. A sequence of APs in which each pair of adjacent APs are within direct communication
range is referred to as a wireless communication path.

An AP in a WMN may or may not connect to a wired network infrastructure. In a WMN,
each STA is (dynamically) connected to one AP. Thus, the major difference between WMNs
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and wireless local area networks is that WLANs are star networks and WMNs are multihop
networks. Figure 6.13 shows what a wireless mesh network looks like.

As a special case, we remark that an ad hoc wireless network may be formed simply by
allowing both APs and STAs to work in the ad hoc mode.

Most implementations of mesh networks use two sets of radio frequencies for access points.
They will typically utilize 802.11b/g for clients and 802.11a to link the APs. This reduces
interference and will typically result in greater bandwidth.

Inside a WMN, an AP and all the STAs connected to it are referred to as a region. A region
can be viewed as a WLAN. Thus, in a WMN region, we may apply the 802.11i/WPA2 security
standard to authenticate STAs to the AP, to control access to the AP, and to encrypt packets
between STAs and the AP.

Likewise, we may apply the 802.11i/WPA2 standard to secure communications between
any two APs that are within direct communication range. Moreover, if several APs are within
direct communication range pairwise, then the 802.11i/WPA2 standard may also be used to
secure communications between them.

As different APs may be controlled by different administrators, transmitting and managing
secret keys between different APs would require a wireless public-key infrastructure (WPKI)
or a trusted wireless key distribution center (WKDC).

For convenience, we refer an AP in a WMN that relays packets as a mesh router. If a
mesh router is allowed to join a WMN without authentication, there will be a number of
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routing protocol threats and route disruption attacks. This section briefly describes several
such attacks.

6.7.1 Blackhole Attacks

In a blackhole attack, the attacker impersonates a legitimate mesh router and drops packets
it receives, instead of relaying them to the next hop, thus denying service to legitimate users.
The attacker may also coax users to use his mesh router by, for example, advertising that his
mesh router provides service of higher quality or faster speed.

There are two kinds of blackhole attacks. The first kind drops all packets, making the des-
tination AP unreachable. The second kind drops selected packets. For example, it may drop a
packet to certain destinations, a packet in a certain number of packets, or a packet in a certain
period of time, which has the effect of downgrading communication quality.

Blackhole attacks of the second kind are also referred to as grayhole attacks.

6.7.2 Wormhole Attacks

In a wormhole attack, the attacker reroutes the packets sent from an STA in one region to
an STA in a different region on a communication path under the control of the attacker. In
particular, let DA and DB be two STAs in two different regions. Suppose that DA sends a
packet to DB via a normal path of mesh routers determined by the routing protocol. The
attacker may intercept this packet and then send the packet, without any modification, to DB

using a faster route. This has the effect that the attacker creates an extraneous tunnel, referred
to as a worm tunnel between DA and DB controlled by the attacker. The attacher may, for
example, drop tunneled packets or remove the tunnel at a later time, to disrupt communications
between DA and DB . How to effectively and efficiently detect wormhole attacks is a major
research topic.

6.7.3 Rushing Attacks

Rushing attacks are targeted at on-demand routing protocols. A typical on-demand routing
protocol stipulates that each mesh router must forward the first route-request packet it receives
from a source and drop the subsequent route-request packets from the same source to reduce
clutter. The attacker may take advantage of this mechanism by rushing an impersonated
route-request packet before the legitimate one arrives, resulting a denial of service to
legitimate users.

6.7.4 Route-Error-Injection Attacks

In a route-error-injection attack, the attacker simply injects certain forged route-error packets
into the network to break a normal communication path. Because typical route errors are state-
less, injecting route-error packets would be less difficult to do, for it does not require dynamic
information of which states the underlying routing protocol is in.
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6.8 Closing Remarks

Wireless computer networks have provided new platforms for data communications. Com-
pared to the wired networks, the wireless world has certain unique limitations. In particular,
mobile STAs are typically powered by batteries, the standard wireless communication ranges
are short, and wireless networks transmit packets by broadcasting. Thus, while cryptographic
algorithms and infrastructures used to secure wired communications may be borrowed to
secure wireless communications, there are many new issues in wireless security that require
new algorithms, techniques, and infrastructures. WPA, 802.11i/WPA2, Bluetooth, and Zig-
Bee are industry standards that provide solutions to some of these issues. However, even with
these standards in place, different vendors may still introduce implementation-specific vari-
ances in their products, which may cause interoperability problems. Wireless security will
remain a major playground for academic research and industry development in many years
to come.

6.9 Exercises

6.9.1 Discussions

6.1. If your wireless router only supports WEP, do you trust that you are secure?
Explain why.

6.2. Why is WPA more secure than WEP? What are the major differences between WPA
and WPA2?

6.3. What are the major differences between the Wi-Fi security and the Bluetooth
security?

6.4. What are the major differences between the Bluetooth security and the ZigBee
security?

6.5. Suppose that you are asked to design wireless networks to connect fast-moving vehi-
cles, what would be the major issues on security?

6.6. WeChat is arguably the most popular smartphone application in China today, which
makes it very easy for people to communicate in groups. What do you think the
major security concerns would be in WeChat?

6.9.2 Homework

6.1. Explain why in wireless network communications cryptographic algorithms should
be placed in the data-link layer.

6.2. Explain why wireless communications are vulnerable to eavesdropping attacks and
the denial-of-service attacks.

6.3. Explain why wireless communications are vulnerable to message-replay attacks.
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6.4. If in the WEP challenge-response authentication scheme a pseudorandom challenge
is reused, what will happen?

6.5. Let P = 10011 be a CRC4 polynomial. Let M = 10010110. What is CRC4(M)?

6.6. Let P = 10011 be a CRC4 polynomial. Let M = 11001010. We note that
CRC4(M) = 0100. Show that the polynomial M ‖ CRC4(M) is divisible by P .

6.7. For any two strings x and y, show that

CRC(x ⊕ y) = CRC(x) ⊕ CRC(y).

6.8. Summarize the major security weaknesses in WEP.

6.9. Explain why WEP misuses RC4.

*6.10. The attacker would need to collect a sufficient number of packets to crack a WEP
key. Using a “bit-flipping” technique to cause an STA to keep retransmitting ARP
packets, the attacker may be able to collect sufficient information to crack the WEP
key in about 5 to 6 minutes. In this attack, the attacker first uses a sniffer to capture the
probe packets an STA sends out in searching for a legitimate AP. The attacker then
configures his own AP and claims that it is the AP the STA is looking for and have
the faked AP carry out a faked authentication process with the STA, making the STA
connect to the faked AP. Suppose that the victim STA wants to get an IP address using
DHCP, but the faked AP will not provide it. After the DHCP times out, the victim
STA will use a built-in address (169.254.x.x). Once it gets an IP address, the victim
STA will send out an ARP broadcast packet. The attacker then flips the bits in the
encrypted ARP packet to create a new packet that is destined for the client address.
This requires the attacker to know the WEP key. The victim STA sees this new ARP
packet, which is still properly encrypted, and responds with a new AEP packet. The
attacker will keep doing this until a sufficient number of packets are collected.

Provide a detailed description of this attack.

6.11. Describe a birthday attack on the MIC generated by the Michael algorithm.

6.12. Explain the major differences between WEP and WPA.

6.13. Describe the decryption algorithm of CCMP used in 802.11i.

*6.14. Analyze the strength and weaknesses of 802.11i encryption algorithms.

*6.15. Analyze the strength and weaknesses of 802.11i authentication and integrity checks.

6.16. CBC-MAC is often used for authentication. Can it be used as an encryption algo-
rithm as well? Justify your answer.

6.17. How to prevent RSN IE poisoning?

6.18. In the four-way handshake protocol, suppose that the STA and AP have finished the
protocol half-way through. That is, the STA has received message1 from the AP and
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the AP has received message2 from the STA. Now the attacker impersonates the
AP and sends (AMAC, ANonce’, sn) to the STA before the STA receives message3
from the AP. Explain what will happen? Suggest an efficient way to fix the problem.

*6.19. RSN IEs are exchanged in plaintext in the four-way handshake protocol. Does this
cause security concerns? If yes, how do you suggest fixing the problem?

6.20. Explain how the attacker may use the fact that authentication is done only after the
association is done to launch a DoS attack to de-associate STAs from the AP.

6.21. Summarize the security parameters (e.g., encryption algorithms, MIC algorithms,
key sizes, per-frame keys, and initialization vectors) of WEP, WAP, and 802.11i.

*6.22. There have been attempts to use Rainbow tables of passwords and commonly
used Extended Service Set Identifiers (ESSIDs) in wireless networks to crack
WPA and WPA2 keys. Describe how a Rainbow table be used to crack WPA and
WPA2 keys. The Shmoo group offers tools and Rainbow tables in its Website
http://www.shmoo.com/projects.html. Rainbow tables can be
obtained from http://umbra.shmoo.com:6969/ using BitTorrent.

6.23. Why is it difficult to detect wormhole attacks in WMNs?

*6.24. Search the literature and write a short paper describing plausible techniques to detect
wormhole attacks.

6.25. Calculate the S-Boxes e and l in SAFER+.

6.26. Draw a block diagram to represent the ith round of operations in SAFER+.

6.27. Draw a block diagram to represent the output transform component.

6.28. Describe the decryption algorithm of SAFER+ and provide a correctness proof.

6.29. Draw a block diagram describing how the initialization Kinit is generated by DA

and DB .

6.30. Assuming Kinit is created, draw a block diagram describing how the link key KAB

is generated by DA and DB .

6.31. Draw a block diagram describing the mutual authentication process in Bluetooth.

*6.32. Let � be the length of a PIN code. If the Bluetooth PIN cracking procedure finds a
candidate PIN code that passes the validation of SRESA, what is the probability
that the candidate PIN code is the original PIN code?

Likewise, if the same candidate PIN code also passes the validation of SRESB ,
what is the probability that the candidate PIN code is the original PIN code?

**6.33. The PIN cracking procedure described in Section 6.5.6 requires that the attacker
obtains the entire pairing and authentication session. This may not be practical. For
example, if DA and DB store a link key KAB for future use, then they do not need to

http://www.shmoo.com/projects.html
http://umbra.shmoo.com:6969/
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go through the entire pairing and authentication again. Thus, the PIN cracking proce-
dure will not have sufficient information to work on. Devise a method by exploiting
the connection establishment protocol in Bluetooth to force DA and DB , although
they both have stored a link key KAB , to start the entire pairing and authentication
session again.

6.34. In Bluetooth secure pairing, the attacker may initiate the authentication procedure
with a legitimate device over and over again and eventually guess the correct PIN. To
prevent this from happening, each Bluetooth device often maintains a blacklist of bad
device addresses that failed to authenticate themselves. The attacker can take advan-
tage of this mechanism to launch a denial-of-service attack. Describe this attack.

*6.35. Read about SSP from Bluetooth v2.1 + EDR volume 2 specifications and write
a short paper describing how SSP establishes pairing. Is SSP secure against
man-in-the-middle attacks?

6.36. Describe a scenario where an attacker can capitalize on the fact that the Zigbee net-
work key is broadcast in plaintext to a newly joined node.

*6.37. Research an application of Zigbee technology. Write a short paper to discuss how
the security of Zigbee is influential in the adoption of the device.

*6.38. Ad hoc wireless sensor networks (WSNs) are wireless networks of wireless sensor
nodes and base stations. A wireless sensor node is a small microelectronic device
consisting of a sensor unit, a wireless communication unit, a battery power unit, and
a programmable embedded processor. A base station may be a laptop computer or
other computing devices. The sensing range of a sensor is typically modeled as a
disk in the 2D space, or as a sphere in the 3D space, with the sensor located in the
center. The communication range of a sensor is modeled in the same way. Commu-
nication range is typically much larger than sensing range. In an ad hoc WSN, sensor
nodes may communicate with other sensor nodes within communication range, and
communicate with nodes that are in the communication range through intermedi-
ate nodes. Thus, ad hoc WSNs are similar to wireless mesh networks introduced in
Section 6.7. Once a sensor node collects a new data and detects a new event, it will
want to transmit the information back to a base station. WSNs can be used to monitor
a large set of targets spread across a geographical region, with important applica-
tions in military, intrusion detection, environmental monitoring, precision farming,
and other areas.

In a WSN where sensor nodes are randomly deployed (e.g., sensor nodes may
be dropped by aircrafts or shelled by artilleries), it is easy for attackers to insert
their own nodes in the network. Thus, it is important to use an efficient and secure
authentication mechanism to authenticate sensor nodes. Design an authentication
protocol for WSNs and argue that why your design is efficient and secure.





7
Cloud Security

Data and computing during the last decade are moving from the edge of the network into
the center of the network known as cloud storage and cloud computing. This platform shift
has reduced the infrastructure and management cost for end users, adding an important new
dimension to computing that we have known for decades. Cloud computing, different from
the model of computing centers decades ago, has four basic service models. They are the
software-as-a-service model, the platform-as-a-service model, the infrastructure-as-a-service
model, and the storage-as-a-service model. We discuss these models in detail in this chapter.
We also discuss virtualization and other technologies that enable these infrastructures.

The decrease in infrastructure costs, on the other hand, has also been traded for increased
security concerns. When carrying out computation and storing data on the clouds, the security
of user data and computation lies in the control of the cloud providers. This is a significant
amount of trust placed on a third party. We discuss the security concerns and describe solutions
to the security problems for each of the cloud service models. We describe access controls in
untrusted clouds using the proxy re-encryption schemes. We also discuss other security issues
including proofs of storage and secure multiparty computations. Finally, we describe search
over symmetric encryptions for the honest-but-curious clouds and the semi-honest-but-curious
clouds.

7.1 The Cloud Service Models

The concept of cloud computing can be characterized by a number of models. In particular, we
may characterize clouds on the basis of four service models. They are software-as-a-service
(SaaS) clouds, platform-as-a-service (PaaS) clouds, infrastructure-as-a-service (IaaS) clouds,
and storage-as-a-service (STaaS) clouds. Each model offers unique features and incurs differ-
ent security concerns. All but the last models are officially defined by NIST.

Access to the cloud in all service models is provided through Internet services. Most clouds
interact with the user through the Hypertext Transfer Protocol (HTTP), following a set of
design guidelines known as the Representational State Transfer architecture, which is referred

Introduction to Network Security: Theory and Practice, Second Edition. Jie Wang and Zachary A. Kissel.
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to the REST architecture or RESTful architecture. The most common REST architecture uses
the uniform resource identifier (URI) and the HTTP functions of PUT, POST, and GET to
provide an appropriate interface to the cloud.

7.1.1 The REST Architecture

The REST architecture capitalizes on the notion that a URI can be used to represent actions that
Web servers should perform. It combines the existing HTTP infrastructure with results in
the Hypertext Markup Language (HTML), the Extensible Markup Language (XML), or the
JavaScript Object Notation (JSON) format. As an example, suppose that we wish to deter-
mine the CPU time we have consumed on a cloud. Our cloud provider may inform us that the
URI for our CPU time is http://sky.cloud/user/johndoe/usage. We can simply
execute an HTTP GET request for this URI, and the CPU usage data will be returned to us in
a certain format. In this case, we assume that the format is JSON.

In what follows, we use the terms of users and clients interchangeably.

7.1.2 Software-as-a-Service

The SaaS clouds provide specific applications to all users. That is, users of SaaS clouds can
only use the applications provided by the clouds. Compared to the PaaS and IaaS clouds, the
SaaS clouds provide the least amount of access freedom to their users for the cloud resources.
These applications are maintained solely by the cloud provider, thus alleviating expensive
maintenance costs for the clients.

The SaaS service is one of the oldest forms of cloud computing. For example, users of
Webmail such as Gmail and Yahoo! mail are interacting with SaaS clouds. Gmail users are
interacting with the SaaS cloud for Gmail and Yahoo! mail users with the SaaS cloud for
Yahoo! mail. Other common applications include online social networks such as Facebook,
Twitter, and Google+.

7.1.3 Platform-as-a-Service

The PaaS clouds allow users to deploy their own applications in the clouds. The cloud
maintains control and manages the entire cloud infrastructure. Common PaaS clouds include
Google AppEngine and a subset of Amazon Web Services (AWS).

7.1.4 Infrastructure-as-a-Service

The IaaS clouds allow users to deploy their own operating systems on top of the machines they
lease from the clouds. The cloud provider maintains the hardware of its machines, but they will
not provide support for the operating systems and application software the users deploy on top
of them. Common IaaS clouds include the Amazon Elastic Compute Cloud (EC2).

http://sky.cloud/user/johndoe/usage.We
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7.1.5 Storage-as-a-Service

The STaaS model is not a cloud architecture approved by the NIST. But the technology of
storage-as-a-service, also known as cloud storage, has enjoyed a growing popularity. A STaaS
cloud is a cloud architecture where the cloud provider maintains a collection of bulk storage
accessible through the use of a REST protocol. Common STaaS clouds include Amazon S3,
Dropbox, and Google Drive.

7.2 Cloud Security Models

As in any other field of security, we must define the power of the adversary. In the setting
of cloud computing, the adversary is the cloud provider itself. In what follows, we outline
three adversarial models of the clouds. They are the trusted-third-party (TTP) clouds,
honest-but-curious (HBC) clouds, and semi-honest-but-curious (SHBC) clouds.

7.2.1 Trusted-Third-Party

In the TTP model, users must completely trust the cloud providers. This trust is backed by
the service-level agreements (SLA) with the cloud provider or by other policies offered by
the cloud provider. The trust may also reside in brand recognition. No protection, however, is
offered against the individuals who manage the cloud infrastructure or the perpetrators who
hack in the cloud system. Nevertheless, the TTP model is the only one in practice today, despite
offering the weakest form of security.

7.2.2 Honest-but-Curious

The HBC model describes a cloud that interacts with the users in the following way:

1. Honestly store the data (if needed).
2. Honestly follow the steps of the protocol.
3. Try to learn as much information as possible from the computations and interactions with

the users.

Considerably more flexible than the TTP model, the HBC model itself is akin to the classic
eavesdropping security in the setting of encrypted communications.

7.2.3 Semi-Honest-but-Curious

The HBC model has served well for a number of cloud-based protocols. However, it does not
take into consideration the desire of the cloud to do as little work as possible. The SHBC model
captures a more liberal set of requirements, where the cloud acts in the following way:

1. Honestly store the data (if needed).
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2. Honestly execute requested operations or a fraction of them.
3. Return a nonzero fraction of the results of the operations.
4. Try to learn as much information as possible from the interactions.

7.3 Multiple Tenancy

In a cloud computing environment, a number of different clients are expected to have data or
applications reside on the same hardware in the same data center. The problems that occur
because of this setting are known as the multitenancy problem. From the security standpoint,
we want to know what the tenants can learn about each other from their coexistence on the
same hardware. We are also concerned with how the tenants may affect each other.

7.3.1 Virtualization

Virtualization is a technology that supports software-based emulation or provisioning of com-
puter hardware resources. This may involve emulating the entire computer configurations so
that multiple operating systems can simultaneously coexist on the same physical hardware.
This process is known as constructing virtual machines. In particular, virtual machines are
software emulators of computers, allowing a computer to run different operating systems
concurrently without any modification of the operating systems it emulates. Moreover, vir-
tual machines provide a level of isolation between applications running on different virtual
machines. Both software-based virtualization and hardware-assisted virtualization are avail-
able, which present a revolutionary breakthrough in cloud computing.

Because of the flexibility offered by virtualization, virtual machines are particularly useful
for the IaaS clouds. For example, Amazon EC2 allows users to create a virtual machine that
hosts different operating systems.

Virtual machines are enabled at a special layer called the hypervisor. The hypervisor layer
is responsible for providing access to resources according to how resources are provisioned
to the virtual machine. These resources could be logical or physical. In the case of a logical
resource, an actual physical resource is shared among multiple virtual machines. In the case of
a physical resource, the actual hardware resource is in complete control of the virtual machine
it is assigned to.

We categorize virtualization technologies on the basis of the implementation of hypervisor
into software-based virtualization and hardware-assisted virtualization.

7.3.1.1 Software-based Virtualization

In software-based virtualization, the hypervisor runs on top of a true operating system (see
Fig. 7.1). The operating system that runs the hypervisor is called the host operating system,
and the emulated operating systems that run on top of the hypervisor are called the guest oper-
ating systems. The hypervisor is responsible for mediating access to the underlying hardware
resources. Oracle Virtual Box and VMWare are examples of software virtualization.
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Figure 7.1 Software-based virtualization
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Figure 7.2 Hardware-assisted virtualization

7.3.1.2 Hardware-Assisted Virtualization

In hardware-assisted virtualization, the hypervisor runs as firmware, which handles the pro-
visioning of hardware resources from the primary operating system (see Fig. 7.2). The pri-
mary operating system is responsible for providing the management interface to the hyper-
visor. Initially, the primary operating system has control of all hardware resources in the
system. It then elects to relinquish control of some resources to create new guest operating
systems. The Oracle VM Server for SPARC is an example of hardware-assisted virtualiza-
tion. Unlike software-based virtualization, hardware-assisted virtualization requires specific
hardware to run.

7.3.1.3 Hypervisor Security

Virtualization, however, also opens a door for multitenancy problems to take place, particularly
in the IaaS clouds, as IaaS clouds expose virtual machines to their clients. Most hypervi-
sors are designed with basic security protections. Recall that it is the responsibility of the
hypervisor to provide an interface to partition the hardware to a given virtual machine. As the
hypervisor interposes the virtual machine and hardware, it is poised to include security mecha-
nisms. In particular, most hypervisors are able to monitor both storage- and computation-bound
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operations at a coarse-grained level. For example, coarse-grained monitoring of the storage can
include what disks are accessed by the virtual machine and when.

Recent advances in technologies have enabled finer-grained hypervisor security through
the process of introspection. Introspection can be used to monitor network traffic, memory
usage, process status, and other parts of a virtual machine. Using introspection, hypervisors
are able to enforce security policies and perform more advanced tasks such as firewalls and
intrusion detection systems. (These topics are discussed in the following chapter.) In particular,
introspection enables better separations between multiple tenants of the same cloud.

7.3.2 Attacks

A number of different types of attacks can occur in a multitenant cloud. Side-channel attacks
and co-residency attacks are the major types of attacks, and they often work together.

7.3.2.1 Side-channel Attacks

A side-channel attack in cloud computing is designed to learn information that leaks from
normal operations of the cloud. For example, the network activity destined to a virtual machine
may allow the attacker to glean the relative importance of the virtual machine.

7.3.2.2 Co-residency Attacks

A co-residency attack seeks to create a new virtual machine to co-reside on the same physical
hardware with the virtual machine the attacker wishes to attack. To launch this attack, the
attacker would need to exploit software bugs or exhaustively spin up virtual machines. Once an
attacker successfully spins up a virtual machine that co-resides with the target virtual machine,
the attacker can then launch a side-channel attack.

7.4 Access Control

Access control in the cloud is a mechanism to control user access to hardware resources. Dis-
cretionary access control and mandatory access control are the two common forms of access
control mechanisms. In discretionary access control, users are given privileges and the ability
to grant privileges to other users. The granting of privileges to a resource can only be given by
the resource owner. In mandatory access control, an access policy is setup for all resources in
the system; only the policy manager can grant and revoke privileges.

To enforce an access policy, users must first authenticate themselves to the system. Because
there are several ways to authenticate a user to a system (e.g., Kerberos), we discuss them
as they arise. After authentication, the access policy is enforced by the system that the user is
authenticated to. For example, a typical computer system uses password-based authentication
together with the operating system to provide access control to user files. In particular, Alice
enters her username and password to prove her identity to the system. The file system of the
operating system then enforces the access-control policy for Alice’s files.
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7.4.1 Access Control in Trusted Clouds

If users trust the cloud provider, then they may simply rely on the cloud to enforce access
control for their files. The resources provided to the user is generally managed by the manda-
tory access control mechanism. Specifically, the resources in the client management interface
are protected using a password-based authentication mechanism. The username serves as an
assertion of the user identity, and the password serves as the proof of that assertion. Once the
user has authenticated to the system, the user will be governed by the appropriate access con-
trol policy. For example, the user may be allowed to grant the resources given to him by the
cloud to other users of the system.

7.4.1.1 The Open Authentication Protocol

During the course of interfacing with the cloud, it may be desirable for users to delegate access
to some cloud resources they are in control of without releasing their credentials. This is a form
of discretionary access control. The Open Authentication (OAuth) protocol offers this ability,
which works on top of the existing HTTP protocol. The protocol is described in detail in RFC
5849 (OAuth version 1.0).

In the OAuth protocol, we call the resource being protected by the authentication mechanism
the protected resource. An example of a protected resource is a storage bucket on the Amazon
S3 cloud. A storage bucket is a single object stored in the S3 cloud.

The OAuth protocol specifies three types of principals: the server, the client, and the resource
owner. The server is the principal that can accept OAuth requests. The client is the principal
that can create OAuth requests. The resource owner is the principal that can both access and
provide access to a protected resource.

Figure 7.3 depicts the flow of the OAuth protocol at a high level, which consists of the
following steps:

1. A client creates an OAuth request for temporary credentials to the server.
2. The server responds with a temporary access token.
3. The client then redirects the resource owner to a URI that includes the temporary access

token. This URI points the resource owner at the password authentication screen for the
resource. Logging in to the service results in a prompt for granting of permission to the
client. If permission is granted, the client will be able to access the resource.

4. If the resource owner approves, they are redirected to a callback URI provided in the initial
OAuth request.

5. The client is now able to request a set of tokens, from the server, using its temporary access
tokens. This is done over an SSL connection. Moreover, the request is signed using a key
shared between the client and server.

6. The server responds with a signed message containing the requested tokens. Again, the
message is signed using a key shared between the client and server.

7. The client uses the requested token in a signed message to request access to the delegated
resource. Each time the client uses the tokens, the server validates that token provided. At
a later time, the resource owner may choose to revoke the token to prevent access to the
resource.
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Figure 7.3 An overview of the OAuth protocol

The signatures in the OAuth interactions are based on plaintext, HMAC-SHA1, or
RSA-SHA1. The plaintext method signifies that no signature method is used. The latest
version of OAuth is OAuth version 2.0 described in RFC 6749, which removes signatures
completely. This created controversies from the security standpoint, for without signatures,
the authentication protocol is subject to the following attacks. Clients can be manipulated
into sending their requests to malicious servers. As long as the token is valid, this malicious
server can use the token to request a resource. Specifically, if the client is directed to the
wrong server that collects its credentials, then, as the requests are not signed, the server can
impersonate the client and access its resources. Nevertheless, the OAuth version 2.0 protocol
was standardized in 2012 by the Internet Engineering Task Force (IETF).

7.4.2 Access Control in Untrusted Clouds

In the case where clouds are untrusted, both authentication and access control must be managed
without the involvement of the cloud. Cloud applications can provide their own authentication
and access control to their software via conventional authentication mechanisms and access
control policies. However, when we apply access control mechanisms over the data stored in
the untrusted cloud, we will need to deal with new security issues.

Using basic cryptographic primitives, we can offer a simple access control policy. That is,
encrypt the data before storing it on the cloud. In this case, the access control to the data is
enforced by positioning the appropriate cryptographic key to decrypt the data in question.
What about the case when we want to model group-level access control in the cloud? To solve
this problem, we may use a cryptographic primitive known as proxy re-encryption (PRE). The
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PRE primitive allows an HBC proxy to convert a piece of ciphertext decryptable by Alice to
a piece of ciphertext decryptable by Bob, but the proxy is unable to learn the contents of the
ciphertext, and Bob is not able to learn Alice’s secret key. To understand how this can be done,
we first consider the Blaze, Bleumer, and Strauss (BBS) proxy re-encryption system.

7.4.2.1 BBS Proxy Re-Encryption

The PRE primitive was first devised by Matthew Blaze, Gerrit Bleumer, and Martin Strauss
in 1998, which uses a proxy to re-encrypt a piece of ciphertext encrypted for Alice to a piece
of ciphertext encrypted for Bob. The proxy is trusted to carry out the operations according to
the protocol, but there is no guarantee that the proxy will only perform what it is asked to do.
Thus, it is required that the proxy be unable to see the plaintext as part of the re-encryption
operations. It should also be the case that the proxy cannot recover the private key of Alice
or Bob from performing the re-encryption operations. Likewise, Bob should not be able to
recover Alice’s private key. In this Scenario, Alice plays the role of the delegator and Bob the
role of the delegatee.

PRE schemes can be characterized into unidirectional PRE and bidirectional PRE. In the
unidirectional PRE scheme, the generation of a re-encryption key from Alice to Bob does not
imply a re-encryption key from Bob to Alice. In the bidirectional PRE, a re-encryption key
from Alice to Bob implies a re-encryption key from Bob to Alice. The BBS PRE is bidirec-
tional and uses the Elgamal PKC cryptographic primitive. The BBS PRE scheme consists of
the following components:

Setup
Select a prime number p and a generator g for the group Z

∗
p. Publish g and p as public param-

eters for the entire system.

KeyGen
Alice, the delegator, selects uniformly at random a positive integer a < p as Alice’s private key.
Suppose that Bob is a delegatee. Alice then selects a positive integer b < p as Bob’s private
key and passes b to Bob through a secret channel. Alice computes ga mod p as her public key,
and Bob computes his public key gb mod p.

Encrypt
Alice encrypts a message m using her public key ga mod p as in the Elgamal PKC:

1. Select uniformly at random a positive integer k.
2. Compute the encrypted message (mgak mod p, gk mod p).

Alice then sends the ciphertext to Eve, the proxy.

Decrypt
Alice can decrypt the ciphertext at any time using her own private key a as in the Elgamal
PKC: given a ciphertext tuple (mgak mod p, gk mod p), Alice computes

(mgak mod p) · (gka mod p)−1 = m.



262 Introduction to Network Security

ReKeyGen
Suppose that Alice wants to delegate Bob to decrypt the ciphertext using Bob’s private key and
she does not want to decrypt it first and then encrypt it using Bob’s public key. Alice sends to
Eve b

a as her re-encryption key for Bob and asks Eve to re-encrypt the message for Bob using
the re-encryption key.

ReEncrypt
Eve takes as input Alice’s ciphertext (mgak mod p, gk mod p) and the re-encryption key b

a ,
re-encrypts it as (

mgak( b
a ) mod p, gk mod p

)
,

and sends it to Bob. Bob can then decrypt it using his private key b as in the Elgamal PKC.
We note that the BBS PRE system is a cryptographically weak system. For example, if the

proxy and Bob collude, then they can discover Alice’s private key. Improved PRE schemes
(e.g., unidirectional PRE) have been devised, using a computationally expensive pairing func-
tion, which hinders the practicality of these new schemes.

7.4.2.2 Using PRE for Access Control

Consider for the moment a self-storage facility as an example. Users would want to keep people
they distrust out of their storage bays, including the owners and the staff of the facility. Users
further want significant control over who has access to their storage bays. They want to be able
to change padlocks at any time. They may also want to delegate access to their storage bays to
certain people. How do they delegate this access without compromising the aforementioned
security concerns? We ponder the following situation.

Alice stores her belongings in a UHaul self-storage facility owned by Eve, and she knows
that Eve is a reliable service provider, but she may also look through unlocked storage bays
to satisfy her curiosity. To prevent Eve from looking through her possession, Alice locks her
storage bay with a padlock to which she holds the only key. Alice would like Bob (and possibly
other people) to access her storage bay. She has three options: (1) unlock the lock herself to
let Bob in; (2) designate a trusted third party to do her work; (3) make Bob a copy of her key.

Alice, however, does not want to take any of these three options for the following reasons:

1. She cannot guarantee that she will always be available at the storage facility.
2. She does not want to use a third party, for it is not easy to find a completely trusted third

party, and the third party, like herself, may not always be available.
3. She does not want to make Bob a copy of her key, for doing so would make it easy for

him to distribute her key to other people for them to access her storage bay without her
knowledge.

4. She wants to change padlocks at will without affecting Bob. That is, Bob does not need to
know or do anything when Alice changes padlocks.

To resolve this enigmatical situation, Alice designs a special keysafe that can hold a key to
the padlock for the storage bay. This keysafe has a special locking mechanism with replaceable
cylinders of three different types: the original, unlockable, and user cylinders. Alice can unlock
the keysafe with the original cylinder using her own private key. She can also use her private key
to replace the original cylinder with the unlockable cylinder. The keysafe with the unlockable
cylinder in it cannot be unlocked by any key. The unlockable cylinder can be replaced with
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the original cylinder or a user cylinder using a special key known as the swap key. Any user
cylinder placed in the keysafe can unlock the keysafe with a user key specifically made for the
user. User cylinders in the keysafe can only be replaced with the unlockable cylinder using the
same user key and cannot be replaced with any other cylinders.

Alice constructs a user cylinder and a user key for Bob and sends to Bob his user key. She
then gives the swap key and the user cylinder for Bob to Eve to keep in her office. Alice locks
her storage bay with a padlock and places the key to the padlock in the keysafe. She then locks
the keysafe and replaces the original cylinder with the unlockable cylinder.

When Bob wishes to access Alice’s storage bay, he asks Eve for the swap key and the user
cylinder for him. Bob then uses the swap key to swap the unlockable cylinder in the keysafe
with the user cylinder for him, uses his user key to unlock the keysafe, and uses the key in the
keysafe to unlock the padlock. When he is finished in the storage bay, Bob locks the storage bay
with the padlock, places the key back in the keysafe, and replaces the user cylinder currently
in the keysafe with the unlockable cylinder.

In the aforementioned scenario, Alice and Bob form a group with access to a shared
resource, namely, Alice’s storage bay. The confidentiality of the contents is preserved via
the use of the keysafe. The group access is provided via the cylinders and the keysafe. In
addition, Alice has dynamic control over who has access to her storage bay by creating a new
user cylinder for her keysafe. Alice is thus always aware of who has access to her storage
bay. Moreover, the fact that Bob can replace the replaceable cylinder with his user cylinder
eliminates the need for a trusted third party to unlock the lock for him. Alice, of course, can
change padlocks anytime without needing to change Bob’s user cylinder or Bob’s user key.

As far as trust is concerned, neither Alice nor Bob would place much trust in Eve. They only
trust that Eve will keep Alice’s swap key and user keys and give them to anybody who asked
for them.

We may use PRE to realize the idea of keysafe and establish a UNIX-like group-level access
control system for files stored in the cloud for the data owner. In particular, the data owner
may provide group-level access control to the different groups of users in the following way:

1. Construct a public and private key pair for each group.
2. For each file to be accessed by a specific group of users, encrypt the file using a conventional

encryption algorithm with a secret key K and encrypt K using the owner’s public key.
Upload the encrypted files and the encrypted K to the cloud.

3. To add a new user to the group, re-encrypt the encrypted K for the group, which is decrypt-
able using the group’s private key, to a ciphertext that is decryptable using the new user’s
private key. The cloud is in possession of the re-encryption key.

4. To read a file in the cloud, the user asks the cloud to re-encrypt the file using the
re-encryption key for the group the user belongs to.

Explanations that this protocol meets what Alice’s wants are left to the reader as exercise
Problem 7.10.

7.5 Coping with Untrusted Clouds

After a model of the cloud has been determined, coping with the security issues can begin.
In addition to the concerns around virtualized systems, we are concerned with two major
security issues related to the computation offloaded to the cloud and the sensitive data stored
in it.
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7.5.1 Proofs of Storage

The simplest security guarantee we desire out of the STaaS cloud is the guarantee of data
storage. We want the cloud to certify that what we have requested the cloud to store has actu-
ally been done as asked. We would therefore want the cloud to provide an uncorruptable and
unforgeable proof guaranteeing the storage of the data. This proof of storage should be signif-
icantly smaller in size than the actual data being stored.

One way to provide a proof of storage is the challenge and response scheme, where the
challenger is trying to ascertain if the responder knows some information. The password-based
authentication system, for example, is the most common challenge and response system. To
provide a proof of storage, the challenge–response system works as follows:

1. Challenger (the user) challenges the responder (the cloud) to prove that it possess a file f .
2. Responder returns to the challenger a short proof that it has file f . If the responder does not

return a proof, then it is assumed that the responder does not have file f .
3. Challenger verifies the proof returned by the responder. If verification succeeds, then the

responder has possession of file f ; otherwise, the responder does not have file f .

There is a publicly verifiable proof and there is a privately verifiable proof, both relying on
PKC. A proof of storage is called publicly verifiable if anyone knowing a client’s public key
can verify the cloud’s storage of the client’s file. A proof of storage is called privately verifiable
if only the original client can verify the cloud’s storage of the client’s file.

7.5.1.1 A Proof-of-Storage Protocol

Using the mechanisms of the Diffie–Hellman key exchange, one can devise a proof-of-storage
protocol. The protocol consists of a setup phase and a challenge phase. In the setup phase, the
client asks the cloud to store a file f on the cloud and stores a small amount of information
of fixed size on the client’s own computer related to the file. In the challenge phase, the client
challenges the cloud to prove that it has indeed stored the file.

In what follows, assume that n is the product of two primes and g a generator of the multi-
plicative group of Z∗

n.

Setup Phase:

1. The client stores a = gf mod n in the client’s computer.
2. The client sends f to the cloud.

Challenge Phase:

1. Challenge: The client selects a value r uniformly at random from Z∗
n and sends gr to the

cloud.
2. Response: The cloud sends the proof p = (gr)f mod n to the client.
3. Verification: The client computes ar mod n and compares it to p. If the two values are

equal, the proof of storage succeeds; otherwise, it fails.
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We note that in both the setup phase and the challenge phase of the proof-of-storage protocol,
the file f is used as a number, and the time complexity of computing gf mod n is quadratic
in the size of f . As the size of f could be very large, we will need to modify the protocol to
make it practical, which is left to the reader as an exercise problem (see Problem 7.15).

7.5.2 Secure Multiparty Computation

Secure multiparty computation is a technique that allows multiple untrusting party to jointly
compute a function of shared data without revealing their individual inputs and allows them to
see the result. The problem was first considered by Andrew C. Yao in the 1980s. This notion
is also useful in offloading computation to the cloud in such a way that the cloud can perform
the computation but cannot learn anything beyond some function of the result. This particular
case is sometimes referred to a secure function evaluation.

As an example of the situation, consider for the moment that two millionaires, Alice and
Bob, meet on the street. They are both curious as to which of them is richer, but neither is
inclined to reveal to the other his/her net worth. Using secure multiparty computation, they can
both achieve this. In essence, Alice and Bob wish to jointly compute the following function

f(a, b) =

{
1 if a > b,

0 otherwise,

where a is the amount of money that Alice has and b is the amount of money that Bob has.

7.5.2.1 Garbled Circuits

One way to solve the Millionaire’s problem is through the use of a garbled circuit invented by
Andrew C. Yao (although Yao himself never published this result). The idea is to model the
truth table of circuits in a way that obscures both the input and their output. The use of Boolean
circuits is a natural choice, as any computation can be described using one. The following is a
high-level view of how the garbled circuit protocol works:

1. Circuit Construction: Alice constructs a Boolean circuit (using 1 for true and 0 for false)
that corresponds to the function f being computed. The circuit itself has two inputs, one
for Alice and one for Bob.

2. Garble Circuit: Alice proceeds to “garble” the truth table for each gate of the circuit. This
garbling hides the true correspondence between gate inputs and their outputs.

3. Send Circuit to Bob: Alice sends the garbled circuit along with the values for the input wires
that correspond to Alice’s input to the circuit.

4. Bob Converts Input: Bob uses a process called oblivious transfer to get Alice to give him
the correct garbled values for his input without revealing to Alice what garbled value he is
looking for.

5. Bob Evaluates Circuit: Bob evaluates the circuit using the truth tables and the garbled input
to obtain the output. Bob then shares the output with Alice.
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Table 7.1 Truth table for the exclusive-or operation

a b a ⊕ b

0 0 0
0 1 1
1 0 1
1 1 0

Table 7.2 First phase of garbling the exclusive-or gate

a b a ⊕ b

k0
a k0

b k0
a⊕b

k0
a k1

b k1
a⊕b

k1
a k0

b k1
a⊕b

k1
a k1

b k0
a⊕b

Garble Circuit
To garble a circuit, Alice must garble each individual gate. To illustrate the process, we use
the XOR operation as an example. Recall that the XOR operation is defined by

a ⊕ b =

{
1, if a = b

0, otherwise

Suppose that we are given a truth table in Table 7.1.
Garbling occurs using the truth table representation of the operation.
Alice starts by choosing a symmetric-key algorithm and generating four keys for the algo-

rithm, where each key represents one possible input value for each of the variables. The keys
for the inputs are k0

a, k1
a, k0

b , and k1
b , where kv

i is the key for input i having value v ∈ {0, 1}. In
addition, there needs to be a key for every possible output value. In this case, there is only one
output with one of two possible values. Thus, we have the keys k0

a⊕b and k1
a⊕b. If we make the

appropriate substitution in the truth table, then we obtain the truth table given in Table 7.2.
Alice proceeds to produce the garbled value of the circuit by double encrypting each output

value with the appropriate key for b, followed by encrypting with the appropriate key for a.
The resulting truth table is given in Table 7.3.

Finally, Alice removes all the headers and permutes the orders of the row to prevent infor-
mation leakage on the basis of a “natural order” of gate inputs and outputs (see, e.g., the truth
table in Table 7.4).

Alice has completed garbling one gate. If she needs to garble additional gates, she will use
the keys for outputs to help hook the output of the gate to the input of a subsequent gate. After
all the gates have been hooked to each other, the first, second, and third columns of each table
are removed. Alice must maintain

• the mapping between the keys of the outputs and the values they represent;
• the mapping between the keys of the inputs and the values they represent.
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Table 7.3 Second phase of garbling the exclusive-or gate

a b a ⊕ b Garbled value

k0
a k0

b k0
a⊕b Ek0

a
(Ek0

b
(k0

a⊕b))

k0
a k1

b k1
a⊕b Ek0

a
(Ek1

b
(k1

a⊕b))

k1
a k0

b k1
a⊕b Ek1

a
(Ek0

b
(k1

a⊕b))

k1
a k1

b k0
a⊕b Ek1

a
(Ek1

b
(k0

a⊕b))

Table 7.4 Final phase of garbling the exclusive-or gate

k1
a k0

b k1
a⊕b Ek1

a
(Ek0

b
(k1

a⊕b))

k0
a k0

b k0
a⊕b Ek0

a
(Ek0

b
(k0

a⊕b))

k0
a k1

b k1
a⊕b Ek0

a
(Ek1

b
(k1

a⊕b))

k1
a k1

b k0
a⊕b Ek1

a
(Ek1

b
(k0

a⊕b))

To allow Bob to learn the result of the computation, Alice must send Bob the mapping
between the keys of the outputs and the values. This is optional, as one can envision cases
where you do not want Bob to learn the unencrypted output (e.g., in the case of offloading a
computation to the cloud).

Oblivious Transfer
To obtain the correct garbled inputs, Bob must ask Alice which key represents 0 and which
key represents 1 for a given wire. However, Alice does not want to give what Bob asks. On
the other hand, Bob does not want to reveal the value he is looking for either. Surprisingly,
this problem can be solved using oblivious transfer. Technically speaking, this case is known
as the 1-out-of-2 oblivious transfer, denoted by OT 1

2 . Formally, an OT 1
2 protocol is a protocol

where Alice has two messages m1 and m2, and Bob wants to retrieve one of those messages.
However, Bob does not want to tell Alice what message he wants, and Alice does not want to
reveal both messages to Bob. This task can be achieved using a method invented by Shimon
Even, Oded Goldreich, and Abraham Lempel, and we call it the EGL protocol. Instantiated
with the RSA PKC with modulus n, public key e, and private key d, the EGL protocol works
as follows:

1. Alice has two secret messages m1 and m2 in the message space for RSA. She generates
two random strings x0 and x1 in the message space of RSA. Alice sends to Bob the values
of n, e, x0, and x1.

2. Bob selects a message b ∈ {0, 1}, which is represented by xb. In addition, he selects a
random number k in the message space of RSA. Bob sends to Alice the message r = (ke +
xb) mod n.
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3. Alice computes two values k0 and k1 to blind the messages m1 and m2, where

ki = (r − xi) mod n,

i = 0, 1.

Alice sends to Bob two messages MAC′
0 = m0 + k0 and m′

1 = m1, k1.
4. Bob takes the received messages (m′

0,m
′
1) as input and uses his known choice m′

b to
unmask the message mb. This is accomplished by computing mb = m′

b − k. Note that
this k only works with the choice of b that Bob was committed to when he requested the
message.

Garbled Circuit Evaluation
Bob evaluates the garbled circuit, provided by Alice, using the input values for a gate to decrypt
the output values for a gate. This is done through a series of decryptions following the structure
of the circuit. Recall that for each gate, all Bob knows is a set of ciphertexts in a random order.
This means that Bob must attempt to decrypt all ciphertexts to learn the key for the gate’s
output wire. In a standard symmetric cipher, such as AES, all decryptions would yield a valid
plaintext. There are, however, encodings Alice could use to signal that a decryption is valid.
One way to achieve this is to append to the random values a significantly long fixed string
such as a string of 0’s. Then a decryption is valid only when that significantly long fixed string
appears in the output (the string will be ignored when determining the key). To initiate the
process, Bob simply uses the values on the input wires to decrypt the correct output value and
then uses that value (key) as input to the next gate. When the output wires are reached, Bob
maps the keys to the binary values and sends those binary values to Alice.

7.5.3 Oblivious Random Access Machines

The computation model of Random Access Machines (RAMs) is the prototypical model used
for traditional single processor computers. The RAM model consists of a machine with a single
CPU and a finite number of registers, a unbounded random-access memory, and primitive
instructions. In this model of computation, each instruction executes in a constant amount of
time, and there are no instructions that execute in parallel. Every location in the memory can
be directly accessed (directly addressable) in a constant amount of time.

From the security point of view, we observe that algorithms in the RAM model leak the
location in the memory that the algorithm is using. The sequence of memory locations read
from or written to by an algorithm is called the algorithm’s access pattern. By observing the
access patterns of an algorithm, one can easily deduce what operations are performed and what
data is valuable.

When a program is executing in the context of an untrusted cloud, we would want to hide the
access pattern, so that we will not leak any information the algorithm deems important. The
most naïve solution to this problem is as follows: given a RAM model with m cells of memory.
For each access requested, each of the m cells is both read from and written to. Moreover, this
is done in a predetermined order. Ignoring the extreme inefficiencies of such solutions, we can
observe that a passive adversary is unable to determine (1) what cell is of current interest and
(2) what operation was requested. We call such a scheme oblivious, as its accesses are the same
for all input of size n.
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The Oblivious Random Access Machine (ORAM) model of computation hides the access
pattern from any adversary observing an algorithms execution. In particular, an ORAM is a
RAM that reveals no information about an algorithm’s input beyond the running time on the
input. The goal in studying ORAMs is to seek efficient simulations for algorithms in the RAM
model using an Oblivious RAM.

7.5.3.1 Generic Oblivious RAM Simulation

The simplest simulation of an ORAM is the “Square Root” solution. In this simulation, we
assume that we have access to a probabilistic RAM. We will call the memory access requested
by the algorithm a virtual memory access. This notion of virtual memory access differs from
the notion of virtual memory in operating systems.

In the “Square Root” simulation, the virtual memory access pattern is completely hidden.
Specifically, the simulation additionally hides (1) which virtual locations are accessed and in
what order, and (2) how many times a particular virtual location is accessed. To achieve these
properties, the simulation requires m + 2

√
m cells of memory, where m is the total number

of memory cells needed by the RAM model algorithm.
The memory used by the simulation is divided into three chunks, denoted by, respectively,

the main section, the dummy section, and the shelter section.

1. The main section is the first chunk of m memory cells to provide all the memory needed
by the algorithm in the RAM model.

2. The dummy section is the chunk of
√

m memory cells following the main section.
3. The shelter section is the chunk of

√
m memory cells following the dummy section, to

serve as a form of cache for the recently accessed cells.

The simulation operates in an infinite loop as follows:

1. Obliviously permute the first m +
√

m cells of memory in the main section and the dummy
section using a random permutation.

2. Simulate
√

m virtual memory accesses using the shelter section as a cache.
3. After

√
m accesses, use the shelter to update the affected cells obliviously.

In what follows, we assume that each memory cell has (1) a tag field, (2) a value field, (3)
a virtual address field, and (4) a shelter bit. The virtual address field will default to the virtual
address that the cell represents, or ∞ if it is a dummy cell. The shelter bit will be set to 0 for
all memory locations in the main and dummy sections.

Obliviously Permutation
We obliviously permute the element of memory using a random permutation π. In particular,
we select a random function

f : {1, 2, . . . ,m +
√

m} → {1, 2, · · · ,m2 + 2m
√

m + m},

which is stored internally in the CPU. The tag for the memory cell i is f (i). We then construct
a permutation π(i) = k for each cell, where π(i) = k if and only if f (i) is the kth smallest
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element in {f(j)|1 ≤ j ≤ m +
√

m}. We then use an oblivious sort to order the memory
contents in increasing order by tag.

An oblivious sort is a sorting algorithm in which the same compare–exchange operations are
executed in the same order for every input of size n. In other words, the compare–exchange
operations are independent of the elements being sorted. There are a number of such sort-
ing algorithms, and we use a simple, asymptotically inefficient oblivious insertion sort for
easy exposition. The oblivious insertion sort algorithm on array A of size n works by loop-
ing through the array with index j and then comparing all the elements at indices i < j with
their right neighbor at location i + 1. If the element at location i is greater than the element
at location i + 1, the elements are swapped (this is called a compare and exchange opera-
tion). Once all elements at position i < j are inspected, j is incremented and the process is
repeated.

It is straightforward to note that regardless of the initial permutation of the elements of A, the
oblivious insertion sort algorithm always performs the same compare–exchange operations.

We also note that π(i) is not easy to compute. In particular, to determine π(i), one must
perform a binary search on tags to find f (i). The binary search algorithm is also oblivious as
you will always, in this case, perform O(lg (m +

√
m)) accesses.

Simulate
√

m Memory Accesses
To simulate a virtual memory access for the cell i, we first scan the entire shelter section and
look for the ith cell. If the ith cell is found in the shelter, we then access one of the dummy
locations not previously accessed. This should be done using the random permutation. In other
words, we will access the memory cell of π(m + 1) through π(m +

√
m). If, on the other

hand, the ith cell is not found, then we retrieve the memory cell π(i).
We can simulate up to

√
m memory accesses. Let mem denote the location in memory and

count be the number of memory accesses made.
Search for the memory location in the shelter section; if it is found, we will store the value

in that memory location in a CPU register. If the memory location was found in the shelter,
we access π(m + count) using an oblivious binary search. Otherwise, we access location
π(i) directly. Finally, we iterate over the entire shelter section accessing and updating every
location. Specifically, we are sure to add the currently accessed cell to the shelter. Once we
exceed

√
m accesses, we must move to the next step as the shelter is full.

Update Permuted Memory
After

√
m memory accesses, the shelter must be written back to the permuted memory. This

must be done obliviously. This can be done by sorting all m + 2
√

m memory locations. We
obliviously sort the virtual addresses in decreasing order to break ties using the shelter bit. This
organizes all the duplicate virtual addresses next to each other. We then traverse the m + 2

√
m

memory cells and write ∞ to the second occurrence of any virtual address.

Adding Confidentiality
It is a simple addition, to any Oblivious RAM simulation, to provide confidentiality of the
value stored in memory. To do this, we will use an encryption algorithm that is secure against
a chosen-plaintext attack. In other words, the encryption must be CPA-Secure. A CPA-Secure
cipher guarantees that there are many possible ciphertexts for every plaintext and key com-
bination. In essence, the encryption is randomized. Examples of CPA-Secure ciphers include
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Elgamal PKC and any block cipher in CBC or OFB mode using random initialization vec-
tors. The modifications would mean that every write to memory would require the writing of
a new ciphertext to each cell of memory accessed as a result of the write operation. In the case
of the “Square Root” simulation, this would mean that

√
m writes would be performed for

each write. This is the case as only the shelter section is written to in the course of a normal
access.

7.6 Searchable Encryption∗

Imagine for the moment that Alice has a large collection of documents, D, that she wishes
to store in a distributed storage environment owned by Bob. Bob has been known to be nosy,
which means that Alice must encrypt all the documents in her document collection before
uploading them to Bob’s distributed storage environment. Assume, now, that Alice wants to
read the documents in D that contain a certain word or phrase. What does she do? Trivially, she
could ask Bob to send her all the files, decrypt them locally, and then search for the documents
that contain the information she is looking for. Retrieving all the files and then decrypting
them, however, will incur a great cost in both communication and time. It would be far more
efficient, for Alice, if Bob could perform the search and only send her the documents that
match her queries. Alice’s problem is known as the searchable encryption problem.

Dawn Xiadong Song, David Wagner, and Adrian Perrig, in 2000, offered the first glimpse
of a solution to Alice’s problem under the HBC model. They introduced Searchable Sym-
metric Encryption (SSE). This new SSE construction allows for Alice to ask Bob to query the
encrypted document collection for a specific word or phrase. Alice enables Bob to perform the
search by providing Bob, at query time, with some special information known as a trapdoor.
Bob then returns the results of the query to Alice. The guarantees that they provided are that
the queries remain unknown to Bob (query privacy) and any information beyond the number
of results and size of the encrypted documents is unknown to Bob (query result privacy).

Although not its original intention, we can adapt the searchable encryption to cloud stor-
age. We assume that a collection of encrypted documents, D, is stored in the cloud such that a
search query can be executed over all the documents in the collection. The cloud is responsible
for both executing the query and returning the results. We have the added security guarantee
that the cloud should be unable to learn the nature of the query. If one uses only symmet-
ric cryptography in the solution, the problem is called the Symmetric Searchable Encryption
problem.

7.6.1 Keyword Search

The simplest type of query that Alice could send to Bob is a query for what documents contain
a certain keyword. This problem is known as keyword search. It has been extensively studied
in the context of both symmetric and asymmetric cryptography. In this section, we consider
example constructions on the basis of symmetric cryptography. For solutions based on asym-
metric cryptography, we point the reader to work by Dan Boneh, Giovanni Di Crescenzo,
Rafail Ostrovsky, and Giuseppe Persiano from 2004.
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7.6.1.1 Basic Symmetric-Encryption-Based Techniques

We consider two types of searches distinguished between hidden searches and nonhidden
searches. In a hidden search, the query submitted to the cloud is constructed in such a way
that the cloud is unable to ascertain the meaning of the query (i.e., query privacy). In a nonhid-
den search, the query is known to the cloud. For our application, we will only be concerned
with hidden searches, as we do not want to reveal the keyword to the cloud.

We use the following assumptions:

1. A document d consists of a sequence of words.
2. There exists a family of pseudo-random functions Fki

: {0, 1}n−m → {0, 1}n, for any n
and m. A pseudo-random function is a member of the family of functions where the behav-
ior of one function, drawn randomly from the family, is computationally indistinguishable
from any other random function.

3. There exists a family of functions as a set of keyed functions F : {0, 1}k × {0, 1}n →
{0, 1}l, where k, n, l > 1.

4. There exists a family of pseudo-random permutations (encryption function)
Eki

: {0, 1}n → {0, 1}n, for any n. If the domain and range of a pseudo-random
function are the same, we have a notion called a pseudo-random permutation.

5. There exists a family of pseudo-random generators G with output contained in {0, 1}m, for
any m. A pseudo-random generator is a function provided with an n-bit input that expands
its input to a longer sequence in a way that the distribution generated by the pseudo-random
generator is computationally indistinguishable from being truly random.

6. fk′ : {0, 1}∗ → K is a pseudo-random function that maps arbitrary binary strings to a key
space K.

Using these functions and the document collection D, we construct an SSE system that
consists of two basic operations Encrypt and Search. The Encrypt operation encrypts a doc-
ument in such a way that at a later time, the cloud can run Search and obtain an answer to
a keyword query. The scheme requires two secret keys k′ and k′′ maintained by the owner of
the collection.

Encrypt
For each word wi of n-bit long in the document d, the data owner does the following:

1. Encrypt word wi as xi = Ek′′(wi).
2. Split xi as Li ‖ Ri, where |Li| = n − m and |Ri| = m.
3. Choose ki = fk′(Li).
4. Generate a pseudo-random value si for word wi using the pseudo-random number generator

G with output length n − m.
5. Let Ti = si ‖ Fki

(si), where F outputs a binary string of length m.
6. Write Ci = Ek′′(wi) ⊕ Ti to the file that will be uploaded to the cloud.

Essentially, the Encrypt operation encrypts each word in the document and then encrypts
the encrypted word with a stream cipher. Recall that a stream cipher can be generated using a
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block cipher under the CFB or OFB mode of operations. Similarly, a stream cipher can also
be generated using a pseudo-random number generator.

Search
To search for a keyword w, the data owner sends a query consisting of x = Ek′′(w) and k =
fk′(L) to the cloud, where L is the leftmost n − m bits of x. The cloud proceeds as follows
for every word in the document d:

1. Compute Ti = Ci ⊕ x
2. Parse Ti as s ‖ v.
3. If v = Fk(s), then the word is found and stop. Place the document d is in the list of docu-

ments to send back to the data owner.

Essentially, the Search operation uses the encryption of the keyword to serve as a token. The
key is needed for computation of the pseudo-random function. The pseudo-random function
itself serves as a check condition for a match. Statistically speaking, the only way the search
token will match is if the pseudo-random function applied to the n − m bit string matches with
what is computed by XORing with the token.

While this system achieves the basic properties of SSE, we note that it leaks statistical infor-
mation including the access pattern and the results. Moreover, this scheme also suffers from
efficiency. If we want to find all documents in the collection D that have keyword w (expressed
by D(w)), we must perform a search with complexity linear in the number of documents and
words in each document.

7.6.1.2 Index-Based Approaches

To move away from linear search in the size of the document collection, we first assign a unique
numeric identifier to every document in the collection D. We can then use an inverted index
to reduce the search complexity. An inverted index is a data structure that maps a keyword to
a document identifier that contains the keyword. Essentially, every entry in the inverted index
pairs the keyword w with D(w). Therefore, when an inverted index is searched for a keyword,
all identifiers of documents that contain the keyword are returned without consulting the actual
document collection D. To use the inverted index for SSE, we must encrypt the index in some
form. We call this form of the inverted index the encrypted index.

We use the following four algorithms to construct an indexed-based searchable symmetric
encryption:

1. KeyGen: which is used to generate any secret keys needed by the system.
2. BuildIndex: which is used to construct the encrypted index.
3. TrapGen: which is used to generate a trapdoor of the keyword. The trapdoor allows the

cloud to search for the keyword in the encrypted index without revealing the keyword.
4. Search: which takes a trapdoor and an index and returns the identifiers of all documents

that match the keyword. This is the only operation run by the cloud.

As an example of inverted index, we construct a lookup table that matches a keyword w to
a list that represents D(w). The construction requires
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• A pseudo-random function F that maps a word to a binary string of length that is a polyno-
mial in the size of the largest document set. The size of a document set is the total number
of words contained in the document set.

• A pseudo-random function G that maps a word to a binary string of length k.

The four algorithms are instantiated as follows:

• KeyGen: Generate three keys K1,K2, and K3. The keys are pseudo-random binary strings
of length k. Every document in D is symmetrically encrypted with key K3.

• BuildIndex: Construct the index using a lookup table T , which is a dictionary data structure.
In particular, for each word w in the dictionary Δ:

1. Create a search key kw = GK2
(w) for word w.

2. Construct the list of document identifiers of documents that matches keyword w, and
XOR the list with the output of pseudo-random function F on the word w. In other
words, compute

Lw = D(w) ⊕ FK1
(w).

3. Store Lw in T using key kw.

The encrypted index is then sent directly to the cloud along with the document collection
encrypted under key K3.

• TrapGen: The client sends the pair τ = (FK1
(w), GK2

(w)) to the cloud as a trapdoor,
which allows the cloud to search the index.

• Search: Given the trapdoor τ and the index T , the cloud parses τ as (f, g). The cloud
then accesses location g in T , denoted by T [g], and returns T [g] ⊕ f to the client. At this
point, the cloud will either return the list of document identifiers to the client or return all
the encrypted documents to the client. The decision is an implementation choice. Once the
user has the encrypted documents that match the query, the client has to just use K3 and the
decryption algorithm to retrieve the plaintext.

This indexed-based mechanism is significantly more efficient than the nonindexed approach.
The system, however, is not without flaws. Firstly, it leaks the access pattern akin to the non-
indexed approach. Secondly, it has a drawback that documents cannot be dynamically added
to the collection. The only way to add documents to a collection is to publish a new encrypted
index. The nonindexed approach does not have this drawback.

7.6.2 Phrase Search

The process of searching for phrases over encrypted data was first considered by Yinqi Tang,
Dawu Gu, Ning Ding, and Haining Lu. They solved the problem by presenting a two-phase
protocol to handle the search over the encrypted data. In the first phase, the cloud retrieves the
document identifiers for documents that contain all the words in the phrase provided by
the client and returns the identifiers to the client. This phase relies on a global index, namely,
the index shared among all documents in the cloud. In the second phase, the client sends the
phrase query and a list of document identifiers to the cloud. The cloud searches for an exact
phrase match for each document in the per document index (phrase table) and returns to the
client the actual encrypted documents that match the phrase.
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We first construct a phrase table for each document, allowing the cloud to determine if the
phrase occurs in a specific document without learning what the phrase is. To construct the
table, we must assume the existence of the following three keyed pseudo-random functions:

Ψ : {0, 1}λ × {0, 1}∗ → {0, 1}n,

h : {0, 1}λ × {0, 1}∗ → {0, 1}u,

f : {0, 1}λ × {0, 1}∗ → {0, 1}λ.

The table has the dimensions of wc × (d + 1), where wc is the number of distinct words
in the document and d is the highest frequency (for any word) that occurs in the document
collection D.

We then construct a phrase matching lookup table as follows:

1. Associate a random number ri with the ith word in the document.
2. Store in the first column of the lookup table the value Ψz(wi ‖ id(D)), where id(D) denotes

the identifier associated with document D.
3. For each remaining element of the lookup table, store hs(ri−1) ‖ ri if the word ri−1 pre-

cedes ri. It is required that key s be distinct for two coherent words (i.e., s = fk(wi−1 ‖
wi ‖ id(D))). The first word in the document is handled in a special way by computing
hs(r

∗) ‖ ri, where r∗ is a random number.
4. After all of the relationships are placed in the lookup table, all unfilled slots are filled

with random numbers of the same size as the output of hs and the size of the random
number.

5. Finally, permute the contents of each row in the table (starting from the second element)
and sort the rows on the basis of the first element of each row.

An example of the construction is given in Figure 7.4 for document Dj

To search this phrase lookup table, the cloud will use each Ψz(wi ‖ id(d)) value in the order
it appears. The Ψz(wi ‖ id(d)) part of the trapdoors is constructed by the client as part of
conducting the phrase search. The cloud proceeds as follows:

1. Use binary search to find the row for Ψz(wi ‖ id(d)).
2. Search the row for fk(wi−1 ‖ wi ‖ id(d)). If there is a word in the phrase that is not found,

return false. If all pieces of the phrase are found, return true.

7.6.3 Searchable Encryption Attacks

There are two major types of attacks on searchable encryption. They are the chosen-query
attack(CQA1) and the adaptive chosen-query attack(CQA2). In a CQA1 attack, we assume
that the cloud (as an adversary) is allowed to query the index using queries that do not depend
on the results of previous queries. In a CQA2 attack, we assume that the cloud is allowed to
make adaptive queries to the data structure. In either case, we seek to guarantee that the cloud
can only learn the access pattern (what was accessed) and the results of the queries (the set of
document identifiers that match the search). Everything else is to be kept secret.
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Figure 7.4 An example of a phase matching lookup-table-based index

A guarantee against CQA1 attacks is a relatively weak security guarantee. One can think
of this security model as the case where the client issues batch queries. A guarantee against
CQA2 attacks is a much stronger notion of security over that of CQA1.

There are examples that satisfy both security models. For example, the phrase search scheme
is a CQA1-secure system. At the time of this writing, there is no known CQA2 secure encrypted
phrase search scheme. But the indexed-based keyword search system is a CQA2-secure
system.

7.6.4 Searchable Symmetric Encryptions for the SHBC Clouds

The solutions presented previously for searchable symmetric encryptions are for the HBC
cloud model. The first searchable symmetric encryption scheme secure in the SHBC cloud
model is due to Qi Chai and Guang Gong in 2012. The system we present here is the corrected
system made by the authors of this book. We often refer to a scheme secure in the SHBC model
as a verifiable scheme. Formally, we define the scheme as follows:

Definition 1 (Verifiable SSE). A Verifiable SSE scheme is a collection of five polynomial-
time algorithms

SSE = (Keygen, BuildIndex, Token, Search, Verify).

The explanations of these algorithms are given as follows:
Keygen(1λ) is a probabilistic key generation algorithm run by the data owner O (who is

also the client). It takes a unary notation of λ (as security parameter) as input and returns a
secret key KO such that the length of KO is polynomially bounded in k.

BuildIndex(KO,D) is a (possibly probabilistic) algorithm run by the data owner O. It takes
as input the secret key KO and a document collection D that is polynomially bounded in λ
and returns an index I such that the length of I is polynomially bounded in λ.

Token(KO, w) is run by the data owner O. It takes the secret key KO and a word w as
inputs and returns a token Tw.
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Search(I, Tw) is run by the cloud S. It takes an index I for a collection D and the Token
Tw for word w as inputs and returns the set of identifiers of documents containing w, denoted
by D(w) and proof of correctness proof(D(w)). The proof must be polynomially bounded in
λ and unforgeable.

Verify(D(w), proof(D(w)), w,KO) is run by the data owner to verify that the results in
D(w) are correct via proof proof(D(w)). The Verify algorithm will return true if the proof is
correct and false otherwise.

7.6.4.1 Tries

The keyword indexing mechanism used in this scheme is a data structure called trie, which
was devised by Edward Fredkin in 1960. It supports two main operations Insert and Search.
Both operations take a word w ∈ Σ∗ as input. A trie is a |Σ ∪ {$}|-ary tree, where $ /∈ Σ is a
special symbol. Each internal node of the tree is labeled with an element of Σ, and each leaf
node is labeled with $. A root-to-leaf path through the tree denotes a word w ∈ Σ∗.

The Insert operation appends a $ to the input w. Starting at the root node of the tree, we use
w to create a path. The first time we reach a node that does not have the current corresponding
letter in w, we add a subpath as a child to the current node. Moreover, we label this subpath
appropriately with the remaining letters of w, terminating the path with a $.

The Search function uses input w as a path through the tree. The function first adds a $ to
the path. If that path ends in a leaf, that is, if the path is a root-to-leaf path, then the search is
successful. Otherwise, the word does not exist in the dictionary.

7.6.4.2 A Privacy-Preserving Trie

In what follows, we denote a trie by T and a node by Ti,j , where j is the depth of the node
and i the left-to-right placement of the node. We denote the access to values stored in a node
of T by Ti,j [s], where s denotes the name of the field. We denote the parent of a node Ti,j by
parent(Ti,j).

To build a privacy-preserving trie, assign each node with three fields: l, h, and e, where l
holds the symbol in Σ of the given node, h stores a globally unique value for the node, and
e stores a bit map of the children of the node. In the case that a node is a leaf, the field e
actually holds a list of identifiers of documents that contain the word on the path from the
root to the leaf. This e field will often be described as a “verification tag.” The construction
requires a keyed hash function F : {0, 1}λ × {0, 1}∗ → {0, 1}z , a semantically secure block
cipher (G, E ,D), and a function ord : Σ → Z

+ which, when given a letter in Σ, returns the
index of the associated letter in the alphabet Σ.

We first use the Insert operation of the trie data structure to insert every word appearing in
D into the trie. Next, in a level order traversal of the trie, every internal node Ti,j has its h field
set to

Fk1
(l ‖ j ‖ parent(Ti,j)[h])

and its e field set to

Ek2
(h ‖ b),
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where b is the bitmap of the children of the node. Every leaf node Ti,j+1 has its e field set to

(D(w) ‖ Ek2
(h ‖ D(w)))

for word w that is represented by the root-to-leaf path through the trie. The leaf node also
has its h field set to Fk1

($ ‖ j + 1 ‖ parent(Ti,j+1)[h]). Each node of the trie permutes its
children and removes its associated symbol stored in l. Figure 7.5 shows the construction of a
privacy-preserving trie on the dictionary Δ = {cat, car,do,dog}.

Given a method for constructing a privacy-preserving trie, the five operations for the Veri-
fiable SSE scheme is as follows:

Keygen(1λ):
Select a key k1 uniformly at random from {0, 1}λ and use G to generate a key k2 of λ bits.
Return the key KO = (k1, k2).

BuildIndex(KO, D):
Using KO and D, construct a secure trie, I, as described in section 7.6.4. Return the tuple
({Ek2

(di)|di ∈ D}, I).

Token(KO, w):
The client generates a privacy-preserving query π for the cloud to use in searching for the
keyword in the index. The query π for a word w is constructed by setting πi = Fk1

(wi ‖ i ‖
πi−1) for i ≥ 1, where wi is the ith letter in word w. The value πi−1 is the hash of (1) the
previous character in the word, (2) its position in the word, and (3) the its parents hash value.
We bootstrap this by setting π0 = 0. The value Tw = π is returned. This means that we are
essentially building a chained hash along the root to leaf path that exist in the nodes of the trie.

Search(I, Tw):
To search the index for the token Tw, we use the Search procedure of a Trie matching the
h values along the root-to-leaf path. At each node Ti,j , along the root-to-leaf path, we add to
proof(D(w)) the value Ti,j [e]. When we reach the leaf, we have recovered D(w). If the leaf
node is reached, return (D(w), proof(D(w))). Otherwise, return (⊥, proof(D(w))).

Verify(D(w), proof(D(w)), w, KO):
To verify the results, we first call Tw = Token(KO, w) to generate a token Tw = π. For each
ti in the sequence proof(D(w)) = 〈t1, t2, . . . t�〉:

1. If i �= |w| + 1, then compute (r1, b) = Dk2
(ti). Otherwise, parse t|w|+1 as α ‖ β and com-

pute (r1, δ) = Dk2
(β).

2. Verify that r1 = πi.
3. If i �= |w| + 1, then verify that b[ord(wi+1)] = 1. Otherwise, verify that α = δ (i.e., both

are D(w)).

Assuming that D(w) = ⊥, it should be the case that Step 3 will fail when processing tag t�.
If it does, Verify returns true. Otherwise, Verify returns false.
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(a) Insert the words “cat”, “car”, “dog”, and “do” into the trie

(b) Using a level order traversal, construct the appropriate hash chains

(c) Using a level order traversal, construct the appropriate verification tags and delete the
values in the l fields

Figure 7.5 Steps for constructing an encrypted trie



280 Introduction to Network Security

Assuming D(w) �= ⊥, the Verify routine only returns true when the following conditions
are met:

• � = |w| + 1.
• Parsing t|w|+1 as (D(w),Fk1

(D(w))) results in D(w) matching Fk1
(D(w)).

• Step 2 and 3 do not fail for any ti where i < �.

Otherwise, Verify returns false.

7.7 Closing Remarks

In this chapter, we toured the various parts of cloud computing where security is a concern. We
investigated the basics of virtual machine architecture and the attacks that capitalize on that
architecture. We considered passive side-channel attacks. We concluded by looking at clouds
we do not fully trust and how to deal with those untrusted clouds. Cloud security will continue
to be a major concern.

7.8 Exercises

7.8.1 Discussions

7.1. Describe your experience in cloud computing and indicate which cloud service providers
you have worked with.

7.2. Describe a few concrete examples of STaaS applications and the security concerns of
these applications.

7.3. Why is the SHBC model a better model from the security point of view? Can you think
of a more realistic cloud model?

7.4. In the PRE scheme, is the proxy necessary and why?

7.5. Can you think of a STaaS application where providing nonadaptive security is sufficient?

7.6. Think about how to generalize search over encrypted data to relational databases.

7.8.2 Homework

7.1. Provide an example of when you would want to use each of the following clouds:

(a) A SaaS cloud.
(b) A PaaS cloud.
(c) An IaaS cloud.

7.2. Many companies are hesitant to move their operations into the cloud, even if the
provider has a service-level agreement. Explain why this is the case and justify your
answers.
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7.3. Install an operating system virtualization product such as Oracle Virtual Box. Exper-
iment with installing and managing a guest operating system.

7.4. Describe an attack that leverages the multitenancy of clients in the cloud infrastruc-
ture.

7.5. Discuss what benefits there are from using hardware-assisted virtualization versus
pure software virtualization.

7.6. Conduct a research on a REST API for cloud storage products such as Dropbox
(http://www.dropbox.com), and write a report of up to 4000 words.

7.7. Give an example of a side-channel attack that a virtual machine co-resident with
another may perform.

7.8. Conduct research on a recent co-residency attack and write a report of up to 4000
words.

*7.9. Research and implement a library interposer in Linux that audits fopen calls. Your
program should record what file was opened and the mode of access used to open it.
Hint: You will find the man pages for dlopen, dlsym, and dlclose helpful. You
will also find it necessary to read up on the LD_PRELOAD shell variable.

7.10. Explain why the PRE protocol for access control meets Alice’s needs. In particular,
explain which components correspond to the keysafe, various types of cylinders, and
keys. Justify your answers.

*7.11 In the chapter, it was mentioned that there exist unidirectional PRE schemes that use
bilinear pairings. Research bilinear pairings and show how you can recover a session
key in the Diffie–Hellman protocol by eavesdropping if you have a bilinear pairing.

7.12. Is the Linux file permission system an example of discretionary or mandatory access
control? Justify your answer.

7.13. Describe why computer security experts might disagree on removing the signatures
from the OAuth protocol in OAuth 2.0.

7.14. Recall the PRE protocol discussed in the chapter. Is it possible for the proxy server
and another user to collude (work together) to recover the delegator’s private key? If
so please explain the attack.

7.15. The Diffie–Hellman-based proof of storage protocol presented in the chapter treats
the file f as a very large number. It was mentioned in the text that this is impractical.
Using a cryptographic hash function, describe a simple modification to this protocol
to make it more practical.

7.16. Construct the garbled circuit for each of the following gates:
(a) The AND gate.
(b) The OR gate.
(c) The NAND gate. Recall that A NAND B is equivalent to A ∧ B.

http://www.dropbox.com
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7.17. Is bubble sort an oblivious sorting algorithm? Justify your answer.

7.18. Research and describe a different oblivious sorting algorithm that can be used in the
ORAM simulation we discussed. Is your new algorithm more efficient? Justify your
answer.

7.19. We define the overhead of an ORAM simulation by the ratio of the number of accesses
done by the ORAM to the number of original accesses. If the Square-Root Solution
is used, what is the overhead? Justify your answer.

7.20 Why are we concerned about leaking access patterns when we deal with data? What
can the attacker do with this access pattern?

7.21 The text states that the searchable encryption system for keyword search devised by
Song, Wagner, and Perrig is not very efficient. Explain why and justify your answer.

7.22. Why is it desirable to have a CQA2-secure searchable encryption scheme opposed to
a CQA1-secure searchable encryption scheme? Justify your answer.

7.23. It is known that Oblivious RAMs provide the most secure solution the SSE problem.
Devise a solution to the SSE problem using an Oblivious RAM.

7.24. Why are researchers still looking for solutions to the SSE problem if the most secure
solution is already available using Oblivious RAMs?

7.25. In the original privacy-preserving trie construction due to Qi Chai and Guang Gong,
the leafs of the tries had e values of D(w) ‖ Fk1

(D(w)) for word w. Recall that w
is the root-to-leaf path through the trie. Describe an attack that allows the cloud to
return a different bitmap, D(w), that still verifies.

7.26. After solving problem 7.25, do you see why the values kept in the e fields of the leaves
prevent this attack?

7.27. In the chapter, we discussed 1-out-of-2 oblivious transfer. There is also 1-out-of-n
oblivious transfer where the Bob gets only one value out of a possible n values without
telling Alice which one. Research an application for 1-out-of-n oblivious transfer.

*7.28. Implement the privacy-preserving trie, as described in this chapter, in your language
of choice.

7.29. In the access control mechanism we described in Section 7.4.2, the cloud must posses
the re-encryption key as well as perform the re-encryption. It may be the case that
we instead wish for the cloud to only archive the re-encryption keys and have the
clients re-encrypt the ciphertexts on their own. Identify and discuss a security flaw
that appears if this is allowed.

7.30. We say that a PRE scheme is nontransferable if the proxy and a set of colluding del-
egates cannot re-delegate decryption rights. In other words, they cannot produce a
valid re-encryption key. Demonstrate that the BBS PRE scheme does have the non-
transferability property.
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Network Perimeter Security

Local area networks (LANs), personal area networks (PANs), wireless local area networks
(WLANs), and wireless sensor networks (WSNs) exist on the edges of the Internet. These edge
networks that are contained within individual organizations and households can be found at
various locations across the Internet. In the early days of the Internet when most users were
researchers, setting up a strong defense mechanism to protect an edge network was not a prior-
ity. However, within the current Internet that is much larger and deeper, edge networks with no
protection or with limited protection are invaded time and time again by malicious intruders.
In some cases, the intruder simply walks right into an unprotected edge network, and at other
times, the intruder finds a way to break into one that is weakly defended.

Protecting an edge network against intruders, regardless of how well each individual com-
puter is protected, is similar to protecting a city against intrusions in ancient times. In those
days, a fortified wall was built around the city as a barrier separating the inside from the outside.
There were three layers of defense. The first layer of defense to protect the internal networks
was perimeter security, where entrance and exit points were reduced to only a few, and armed
guards were posted at each of these points to check and question people when they tried to enter
or leave the city. People who did not possess the appropriate documents would be stopped from
entering or leaving the city. The second layer of defense was street patrolling, where armed
guards were scheduled to patrol the city streets to identify intruders who somehow got pass
the entrance points. The third layer of defense was house cleaning, where security specialists
checked individual homes to remove foreign objects and mend security loopholes.

The firewall technology, the intrusion detection systems, and the anti-malicious-software
technology are, respectively, successful adaptations of perimeter security, street patrolling,
and house cleaning in the era of computer networks. The firewall technology allows system
administrators to focus on a few powerful computers on which they can set up strong defense
mechanisms to check incoming and outgoing packets. These computers are placed at entrance
and exit points of the edge networks to protect host computers against malicious packets. This
chapter presents the basic principles of firewalls and common firewall configuration schemes.
Intrusion detection systems and the art of anti-malicious-software are discussed in the following
two chapters.

Introduction to Network Security: Theory and Practice, Second Edition. Jie Wang and Zachary A. Kissel.
© Higher Education Press. All rights reserved. Published 2015 by John Wiley & Sons Singapore Pte Ltd.
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8.1 General Firewall Framework

Firewalls are needed because encryption algorithms cannot effectively stop malicious packets
from getting into an edge network. This is because IP packets, regardless of whether they are
encrypted, can always be forwarded into an edge network. Authentication algorithms, on the
other hand, can be used to help determine whether an incoming IP packet comes from a trusted
user, and so can be used to help stop malicious packets from getting into an edge network.
However, not all host computers in an edge network have the resources to run authentication
algorithms. To make matters worse, host computers in an edge networks are often managed by
different users with different skill levels. Therefore, some computers may be managed appro-
priately with no obvious security flaws, while other computers may be managed poorly with
ample security loopholes.

Firewalls that were developed in the 1990s are important instruments to help restrict network
access. A firewall may be a hardware device, a software package, or a combination of both.
It is used as a barrier between the Internet and an edge network. An edge network is also
referred to as an internal network because it is controlled by its owner. The rest of the Internet
that connects to the edge network is controlled by other owners, and so it is also referred to
as an external network. Figure 8.1 shows an example of a firewall setup. Firewalls examine
incoming and outgoing packets and determine whether to allow them to pass through or to
block them. A packet that is blocked will be removed from the network.

Packets flowing into the internal network from the outside should be evaluated before they
are allowed to enter. One of the critical elements of a firewall is its ability to examine packets
without imposing a negative impact on communication speed while providing security pro-
tections for the internal network. Hardware firewalls are devices using integrated circuits cus-
tomized for filtering packets. This technology is in general referred to as application-specific
integrated circuit (ASIC). Today, firewalls have been embedded in commonplace networking
devices, including routers, switches, modems, and wireless access points. Hardware firewalls
are fast, but they are difficult to update. Software firewalls, on the other hand, are slower, but
they are easier to update. Software firewalls can also run under different platforms. Some of
these software firewalls have become a standard feature of popular operating systems (e.g.,
Linux 2.2 kernel and up and Microsoft Windows XP SP2).

The packet inspection that is carried out by firewalls can be done using several different
methods. On the basis of the particular method used by the firewall, it can be characterized as

External network

Firewall

Internal
network

Figure 8.1 Schematic of a firewall
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Figure 8.2 Firewall placements at different layers

either a packet filter, circuit gateway, application gateway, or dynamic packet filter. In general,
packet filters are placed at the network layer, circuit gateways are placed at the transport layer,
and application gateways are placed at the application layer. Figure 8.2 shows a schematic of
firewall placements at different layers. This firewall characterization based on protocol levels,
however, may sometimes get blurred. Packet filtering, for example, often inspects both of the
IP headers and the TCP headers. A dynamic packet filter is a hybrid firewall. It combines a
packet filter and a circuit gateway into a firewall system.

These types of firewalls are standalone firewalls that are typically controlled by local admin-
istrators. In a large organization with a large number of firewalls, instead of letting each
individual firewall administrator set up its firewall policy, the organization may want to estab-
lish a firewall policy for the entire organization. In such a case, the organization may want
to set up a distributed firewall system to store the policy on a central location and have each
firewall administrator enforce the policy on each firewall.

8.2 Packet Filters

Packet filtering is the basic firewall technology. It inspects ingress packets coming to an internal
network from outside and inspects egress packets going outside from an internal network. The
former is often referred to as ingress filtering and the latter as egress filtering. Packing filtering
only inspects IP headers and TCP headers, not the payloads generated at the application layer.
A packet filtering firewall uses a set of rules to determine whether a packet should be allowed
or denied to pass through.

Packet filtering can be either stateless filtering or stateful filtering. Stateful filtering inspects
the state of network connections. The firewall allows a packet to pass through if it belongs to
an existing connection state or it is a legitimate request for creating a connection. The firewall
blocks it otherwise.

8.2.1 Stateless Filtering

Stateless filtering is the simplest and the most widely used firewall technology. It treats each
packet as an independent object, and it does not keep track of any previously processed packets.
In other words, stateless filtering inspects a packet when it arrives and makes a decision without
leaving any record of the packet being inspected. Stateless filtering is analogous to courier
sorting in a postal office, where the sorting machine or a human sorter inspects each envelope
to ensure that it has a valid destination address.
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In particular, stateless filtering often inspects the source IP address and the destination IP
address in an IP header against a predetermined set of rules. It may also inspect the source port
and the destination port in a TCP header or a UDP header. The set of rules is often referred
to as an access control list (ACL). Table 8.1 shows a simple ACL for ingress filtering, while
Table 8.2 shows an ACL for egress filtering, where a.b.c.d denotes an IP address and * denotes
any address or any port. If an IP address or a TCP/UDP port is untrustworthy or unwelcome,
the IP address or the TCP/UDP port is blocked.

As the network layer already inspects IP headers to deliver the packets, implementing packet
filtering at the network layer is convenient and does not incur too much computation overhead.

Rules in an ACL list are checked one at a time from top to bottom. If there is no rule in ACL
to process a packet being inspected, for example, if its IP address or port does not appear in
ACL, then this packet is blocked by default. In other words, at the end of a typical ACL list,
there is a default rule that blocks every packet as shown in Table 8.3. This default rule does not
need to be listed explicitly. We note that depending on the type of firewall and administration
desires, the default rule may also be set to “allow every packet.”

In addition to blocking ingress packets from a certain IP address or a certain port, or blocking
egress packets to a certain IP address or a certain port, stateless filtering should also block the
following types of packets:

1. An ingress packet having an internal address as the source IP address. A packet such as this
is possibly a crafted packet for the purpose of disguising itself as a legitimate packet in the
internal network to worm its way into the internal network.

2. A packet (ingress or egress) that specifies which routers are to be used. Such a packet is
possibly a crafted packet for the purpose of bypassing certain firewalls.

Table 8.1 Sample ACL rules for ingress filtering, where “int” represents “internal,” “ext” represents
“external,” and “addr” represents “address”

int addr int port ext addr ext port Action Comment

* * a.b.c.d * Block Block packets from this IP address
192.63.8.254 110 * * Allow Open internal POP3 port

Table 8.2 Sample ACL rules for egress filtering

int addr int port ext addr ext port Action Comment

* * a.b.c.d * Block Block packets to this IP address
* * * 25 Allow Allow packets to external SMTP port
* * * > 1023 Allow Allow packets to nonstandard port

Table 8.3 The default rule at the end of ACL

int addr int port ext addr ext port Action Comment

* * * * Block ACL default rule: block everything
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3. A packet with a small payload that may be used to foil ACL filtering. The purpose is to
make the payload so small that the TCP header in the payload will be split into two or
more parts. For example, encapsulate the source port and the destination port in different
IP packets. Such attacks are referred to as TCP fragmentation attacks.

In addition to blocking malicious ingress packets from entering internal networks, state-
less filtering should also block certain internal packets from going out to external networks.
In particular, control packets for establishing communications in internal networks should be
blocked from going outside. These include control packets for carrying out the bootstrap pro-
tocols (Bootp), the Dynamic Host Configuration Protocol (DHCP), the Trivial File Transfer
Protocol (TFTP), the Network Basic Input/Output System (NetBIOS), the Common Internet
File System (CIFS), the Line Printer Remote protocol (LRP), and the Network File System
(NFS) protocol.

Bootp enables a networked computer to boot without using its own hard drive. That is, it
enables a networked computer to obtain an IP address and a boot image before loading the
operating system. DHCP is a protocol developed on the basis of Bootp, and it often supports
Bootp. TFTP is the simplest file transfer protocol that does not use much memory. TFTP is
typically used to update firmware on embedded systems. NetBIOS enables networked com-
puters in the LAN to communicate with each other. CIFS, LPR, and NFS enable networked
computers in local area networks to share files and printers.

Stateless filtering is easy to implement, for it only inspects IP headers and TCP headers.
However, stateless filtering does not block malicious packets that exploit application-layer
software loopholes. As every packet must be examined against the entire ACL, stateless filtering
could become a bottleneck on a high-speed network, resulting in inadvertent packet drops.

8.2.2 Stateful Filtering

Stateful filtering, also referred to as connection-state filtering, keeps track of connections
between an internal host and an external host. A connection state (or state, for short) indicates
whether it is a TCP connection or a UDP connection and whether the connection is established.
Connection states are stored in a state table. When a packet arrives, whether it is an ingress
packet or an egress packet, the stateful filtering firewall checks whether the packet belongs to an
existing connection against its state table. If yes, the firewall allows the packet to pass through
and saves the information (such as its TCP sequence number) for later use. If the packet is a
SYN packet, the firewall creates a new entry in the state table. If the packet does not belong to
an existing connection and it is not a SYN packet, the firewall will discard it. When a network
connection ends, the connection state is removed from the state table.

A port number is a positive integer used to identify a particular program. Any port opened by
an internal host (e.g., a server) is typically specified by a port number less than 1024 by default.
Port numbers less than 1024 are referred to as standard ports. Also by default, external hosts
will use port numbers between 210 = 1024 and 216 − 1 = 65535 to establish TCP connections
with internal hosts. External port numbers may be generated dynamically. Table 8.4 shows an
example of a state table.

Stateful filtering and stateless filtering are often used together. When it is difficult to deter-
mine whether a packet should be blocked on the basis of connection states alone, ACLs will
become useful to help make a more accurate decision.
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Table 8.4 Example of connection state table

Client addr Client port Server addr Server port Connection state Protocol

219.22.101.32 1030 129.63.24.84 25 Established TCP
219.22.101.54 1034 129.63.24.84 161 Established UDP
210.99.201.14 2001 129.63.24.87 80 Established TCP
24.102.129.21 3389 129.63.24.87 110 Established TCP

Keeping a history of connection states, however, may require sophisticated data structures
and search algorithms. One needs to determine, for example, how much information should
be kept in a state table, how to manage it, and how to search for information from it. Execut-
ing these tasks may consume significant amounts of storage space and CPU cycles, which not
only slows down network traffic, but also creates a negative security side effect. For instance,
attackers may flood a large number of crafted packets into a targeted stateful filtering fire-
wall, forcing it to execute excessive computations and therefore break the normal connection
between the internal network and the external network.

Thus, when using stateful filtering, one needs to make sure that the time and space complex-
ities of running it are manageable. For example, instead of keeping track of the entire history
of a connection, one may only keep track of a connection for a fixed period of time.

8.3 Circuit Gateways

Circuit gateways, also referred to as circuit-level gateways, are typically operated at the
transportation layer (although there are exceptions). They evaluate the information of the IP
addresses and the port numbers contained in TCP (or UDP) headers and use it to determine
whether to allow or to disallow an internal host and an external host to establish a connection.

It is common practice to combine packet filters and circuit gateways to form a dynamic
packet filter (DPF).

8.3.1 Basic Structures

The objective of a circuit gateway is to relay a TCP connection between an internal host and
an external host. Thus, a circuit gateway is also referred to as a transparent proxy firewall. In
particular, a circuit gateway first validates a TCP (or a UDP) session. It then establishes sepa-
rately a connection with the internal host and a connection with the external host. It maintains
a table of valid connections and checks an incoming packet (in either direction) against the
information contained in the table. The gateway allows the packet to pass through if it belongs
to an existing connection maintained in the table and blocks it otherwise. When a session ends,
the corresponding entry is removed from the table and the circuit is closed.

In other words, when an external host wants to establish a connection with an internal host
in a network protected by a circuit gateway, the external host cannot establish a connection
directly with the internal host. Instead, the external host can only establish a connection with
the gateway. The gateway will then establish a connection with the internal host if such a
connection is allowed. For example, suppose that the internal host is a server, and the external
host is a client. The client establishes a TCP connection with the circuit gateway, and the
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gateway establishes a TCP connection with the server. The server does not need to know the
client’s name or address to establish a connection, for it only establishes the connection with the
gateway. Likewise, the client does not need to know the server’s name or address to establish
a connection, for it only establishes the connection with the gateway. That is, the gateway
keeps internal computers from being seen from outside. When a connection is established,
the circuit gateway will relay packets between the external host and the internal host without
filtering these packets. Figure 8.3 shows how a circuit gateway is used as a relay node.

In practice, it is common for an organization to separate its internal network from the exter-
nal networks using a circuit gateway, where the circuit gateway uses a public IP address
reachable from outside, and the host machines in the internal network use private IP addresses
unreachable from the Internet. For example, if a client from an external network wants to use
the database server in the internal network, the client first makes a connection request to the
gateway. The gateway then validates the request and establishes a connection, if the request is
legitimate, with the database server in the internal network (see Figure 8.4).
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After establishing a network connection with the external host and a network connection
with the internal host, a circuit gateway will simply play a role as a relay node without inspect-
ing packets passing through. Thus, an internal user may open a port on an internal host and
instruct the gateway to establish connections between external hosts and the internal host.
Malicious packets could therefore enter the internal network through such a channel. Thus,
circuit gateways should be used together with packet filtering firewalls. In addition, a circuit
gateway should keep a log to record information of the packets (ingress or egress) it validates,
including the source IP address, source port, destination IP address, destination port, and the
length of each packet. Such a log file could help identify problems.

8.3.2 SOCKS

SOCKS (short for SOCKetS) is a network protocol for implementing circuit gateways. The
first version of SOCKS was implemented by Dave Koblas and Michelle Koblas in the early
1990s. SOCKS consists of three components: the SOCKS server, the SOCKS client, and the
SOCKS client library.

The SOCKS server runs on a packet filtering firewall through port 1080. The SOCKS client
library runs on an internal host, and the SOCKS client runs on an external client host. The
SOCKS client executes the modified versions of FTP and other standard TCP-based client
application programs, which are modified for SOCKS.

When an external client wants to obtain service from an internal server under the protec-
tion of SOCKS, the client must first establish a TCP connection with the SOCKS server. It
then negotiates with the SOCKS server to select an authentication algorithm, provides informa-
tion for authentication, and submits a relay request. The SOCKS server verifies the information
submitted for authentication and determines whether to establish a relay connection with the
internal server as requested. Even if the external client just wants to send a UDP packet to an
internal host, the client still needs to establish a TCP connection with the SOCKS server and
submits information for authentication. Only after the client’s request is granted should the
client be allowed to forward the UDP packet to the internal host using the SOCKS server as a
relay node. This packet is forwarded through the TCP connection that is established between
the SOCKS server and the client.

8.4 Application Gateways

Application gateways, also referred to as application-level gateways (ALG) or proxy servers,
are software packages installed on a designated computer. An ALG acts like a proxy for inter-
nal hosts, processing service requests from external clients. An ALG performs deep inspec-
tions on each IP packet (ingress or egress). In particular, an ALG inspects application program
formats contained in the packet (e.g., MIME format and SQL format) and examines whether
its payload is permitted. Thus, an ALG may be able to detect a computer virus contained in
the payload. Because an ALG inspects packet payloads, it may be able to detect malicious
code and quarantine suspicious packets, in addition to blocking packets with suspicious IP
addresses and TCP ports. On the other hand, an ALG also incurs substantial computation and
space overheads.
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8.4.1 Cache Gateways

Suppose that a certain organization wants to set up a Web server, where legitimate Internet
users are allowed to obtain Web pages from the Web server. To protect the Web server from
being compromised, a common approach is to set up an application gateway as a proxy for
the Web server, called a Web proxy server. The Web proxy server receives requests at port
80 from external clients and performs deep packet inspections on packet payloads. Only after
the packet payloads pass the security check should the Web proxy server pass the packets to
the Web server. In addition, the Web proxy server also checks Web pages that the Web server
sends to the external client and stores them in its cache. If other clients also request these pages,
the Web proxy server could directly forward these pages from its cache to the clients without
visiting the Web server. Proxy servers of this kind are referred to as cache gateways.

An application gateway is often used with a packet filtering router, where the router is placed
behind the gateway (see Figure 8.5) to further protect connections between the gateway and
the internal hosts.

Application gateways are specific to applications. For example, a Web proxy server is only
used with Web servers; it does not apply to other types of applications.

8.4.2 Stateful Packet Inspections

Stateful packet inspection (SPI) extends stateful packet filtering (SPF) to also inspect packet
payloads. SPI inspects whether a packet belongs to a legitimate connection and whether the
format of its content matches the type of the service the connection is intended to provide. SPI
is not the same as SPF. For example, the payload of a packet that belongs to a Web connection
should be in a common Web format. If not, the packet will be blocked by the firewall.

8.5 Trusted Systems and Bastion Hosts

An application gateway is a computer placed between the internal network and the external
network. It is exposed to attackers from the Internet. Thus, gateway computers need stronger
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security protections. There are two common measures. The first measure fortifies the operat-
ing system of gateway computers to make it become a trusted operating system. The second
measure fortifies gateway computers to become bastion hosts.

8.5.1 Trusted Operating Systems

A Trusted Operating System (TOS) is an operating system that meets a particular set of security
requirements. Whether an operating system can be trusted or not depends on a number of
elements. For example, for an operating system on a particular computer to be certified trusted,
one needs to validate that, among other things, the following four requirements are satisfied:

1. Its system design contains no defects;
2. Its system software contains no loopholes;
3. Its system is configured properly; and
4. Its system management is appropriate.

The first two elements are the problems that system designers and developers need to
resolve. Making source code publicly available (such as Linux) may help validate these
elements. The last two elements are problems for system administrators and users to take
care of. Determining how to access data and what access rights are given to users of different
levels is critical.

Users read and write data through programs. Different users may be given different access
rights to read or write files. Although they are using the same program, the access rights given
to the program must be consistent with those of the users. To make an operating system running
on a particular computer a trusted system, the system administrator must define a set of rules,
specifying which program can be executed by which level of users and what access rights can
be given to what level of users.

Each user of a TOS is assigned a certain level of clearance. Likewise, each file, program, and
directory is given a certain level of secrecy. To prevent users from divulging data intentionally
or unintentionally, TOS must carry out the following two rules rigorously:

1. No read-up: Users of a lower level of clearance cannot execute programs of higher level of
secrecy. Programs of lower level of secrecy cannot read files of higher level of secrecy.

2. No write-down: Users of higher level of clearance cannot use programs of lower level of
secrecy to write data to a file. Likewise, programs of higher levels of secrecy cannot write
data into files of lower levels of secrecy.

The no-read-up rule is evident. To understand the no-write-down rule, assume that Alice has
a high level of clearance, and so she can read files with a high level of secrecy. If she is allowed
to write down, Alice can write data with high level of secrecy into a file with lower level of
secrecy, allowing users of lower levels of clearance to read these data. Thus, no-read-up and
no-write-down rules must be used together.

The Common Criteria, developed by government agencies of Canada, France, Germany, the
Netherlands, the UK, and the United States in the late 1990s, defines a set of requirements for
users to establish security certification of a system or a product.

Trusted Platform Modules

A Trusted Platform Module (TPM) is a cryptographic co-processor on modern motherboards.
A TPM is a passive device, for it will not run unless users make a request. It provides basic
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cryptographic operations such as RSA signatures, asymmetric cryptography using RSA,
SHA-1 hash, and HMAC operations. While there do exist symmetric ciphers on the TPM,
they are not exposed. TPMs also have the ability to provide some level of secure storage
using special purpose registers and off TPM storage techniques. Of interest to the TOS is
TPM’s ability to audit the boot process.

A TPM can be used to audit the computer’s boot software stack. This is achieved by offload-
ing hash computations to the TPM. Specifically, each software module in the boot stack will
trigger the computation of a hash of the software module that directly follows it in the boot
process. The hash values collectively form a trust chain. The hash of the boot block for the
BIOS of the machine is called the root of the trust chain. The root of a trust chain must be
trusted, as the trust of all modules above it in the stack depends on the actions of the root.
These trust chains can be used in one of two ways:

1. Platform Validation: The sequence of hashes can at a later time be extracted from the TPM
and verified, thus providing reliance on the integrity of the system.

2. Network Protection: Once the machine is connected to the network, the chain is signed
by the TPM and the client reports the value to a server that maintains a list of acceptable
configurations for the machine. If the configuration does not match, then it means that the
configuration has been compromised and therefore should be blocked.

This boot integrity process alone has brought the TPMs under scrutiny for allowing
providers to restrict platform independence on their networks. The TPM itself is still a
powerful measure of security that far outweighs, in most cases, the limiting of platform
independence. TPMs have other uses, which can be found in the TPM ISO specification.

8.5.2 Bastion hosts and Gateways

Bastion hosts are computers with strong defense mechanisms. They often serve as host com-
puters for implementing application gateways, circuit gateways, and other types of firewalls.
A bastion host is operated on a trusted operating system that must not contain unnecessary
functionalities or programs. This measure helps to reduce error probabilities and makes it eas-
ier to conduct security checks. Only those network application programs that are absolutely
necessary, for example, SSH, DNS, SMTP, and authentication programs, are installed on a
bastion host.

Gateways operated on bastion hosts must satisfy the following conditions:

1. Gateway software should be written using only small modules. Small modules are easier
to check for security loopholes. Small modules are also easier to be reused.

2. A bastion host may authenticate users at the network layer. That is, it validates the source
IP address and the destination IP address contained in an IP packet. Gateways running on
a bastion host should authenticate users independently at a higher layer.

3. A bastion host should be connected to the smallest possible number of internal hosts, so
that the number of internal hosts that could be affected because of security breaches of the
bastion host is kept to the minimum. This measure also makes management of the bastion
host network easier.

4. Bastion hosts should keep logs of how the systems are used, including connection state of
each TCP session and how long each session lasts. These logs could help system adminis-
trators identify problems.
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5. If multiple gateways are running on a single bastion host, these gateways must operate
independently. If one gateway goes wrong, the system administrator can simply shut it
down without affecting other gateways.

6. Bastion hosts should avoid writing data to their hard disks for the purpose of reducing the
chance for the malicious codes (e.g., viruses, worms, and Trojan hosts) to enter the systems.

7. Gateways running on a bastion host should not be given system administration rights. In
other words, gateway programs should be run under a well-protected directory on the bas-
tion host. In so doing, even if a gateway is compromised, other gateways running under
other directories can still be operational.

8.6 Firewall Configurations

Gateways running on a bastion host are often used with packet filters. Without loss of gen-
erality, we assume that routers have built-in packet filters. For the sake of convenience, we
use a bastion host to represent a proxy server, where a bastion host may run several proxy
servers simultaneously and independently. We introduce in this section several common fire-
wall configurations. They are single-homed bastion host system (SHBH), dual-homed bastion
host system (DHBH), and screened subnets. The latter is often referred to as demilitarized
zones (DMZ).

8.6.1 Single-Homed Bastion Host System

A single-homed bastion host system consists of a packet-filtering router and a bastion host,
where the router connects the internal network to external networks and the bastion host is
inside the internal network. The router announces to the public the IP addresses and the port
numbers of the internal server computers. However, the router does not forward ingress pack-
ets directly to server computers. Instead, the router inspects an ingress packet. If the packet
passes the inspection, the router passes it to the bastion host. The bastion host inspects the
ingress packet. If it passes the inspection, the bastion host then determines which internal server
this packet should be forwarded to. Egress packets going out of the internal network will also
go though the bastion host. The packet filtering firewall inspects each egress packet and blocks
it if its source address is not the IP address of the bastion host or if it fails other filtering rules.

Note that certain servers may not require strong security protections. For example, Web
servers that offer general information about the degree programs in a university do not need
strong security protection. Packets to such server computers do not need to go though the
packet-filtering router. That is, ingress packets to these servers and egress packets from these
servers are allowed without inspection. However, communications between these servers and
the internal hosts still need to go through the bastion host. Figure 8.6 shows a schematic of a
single-homed bastion host network.

In an SHBH system, if Malice compromises the packet-filtering router, she can modify
ACL rules to bypass the bastion host. That is, Malice could modify the ACL rules to forward
packets directly to internal hosts, making the bastion host become nothing but an ornament.
This problem can be solved using a dual-homed bastion host.

8.6.2 Dual-Homed Bastion Host System

A dual-homed bastion host network divides the internal network into two zones. These two
zones are referred to as the inner zone and the outer zone. The inner zone is also referred to as
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Figure 8.6 Schematic of a single-homed bastion host network, where the dotted arrow lines show the
actual communications and the solid lines show the physical network connections

the private zone. The IP addresses of the host computers in the private zone are not reachable
from the external network. The IP addresses of the host computers in the outer zone may be
directly reachable from the Internet. In particular, the router is placed between the external
network and the outer zone, and between the external network and the bastion host. Unlike
in SHBH, the inner zone in DHBH is connected to the bastion host only. Thus, host com-
puters in the inner zone are protected by both the bastion host and the packet-filtering router.
The server machines in the outer zone are protected by the packet-filtering router. Similarly to
the SHBH system, a DHBH allows the server computers in the outer zone to communicate
to the Internet without going through the bastion host. In other words, the ACL in the router
allows each inbound packet to pass through if its source addresses are allowed, and its destina-
tion IP address and port number match with the IP address of a server computer and an open
port on that server. Figure 8.7 shows a schematic of a dual-homed bastion host network.
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Figure 8.7 Schematic of a dual-homed bastion host network, where the dotted arrow lines show the
actual communications and the solid lines show the physical network connections
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In a DHBH system, if Malice compromises the packet-filtering router, she still cannot bypass
the bastion host.

8.6.3 Screened Subnets

Screened subnets are the most secure firewall configurations. A screened subnet consists of a
bastion host and two packet-filtering routers. In particular, a screened subnet is a SHBH net-
work with a second packet-filtering router (i.e., the inner router) inserted between the bastion
host and the internal network. That is, in a screened subnet, one router is placed between the
Internet and the bastion host, and the other router is placed between the bastion host and the
internal network. The two packet-filtering firewalls create an isolated, screened subnetwork
in between. Server computers and devices that do not require strong security protection are
often placed in the screened subnetwork. Figure 8.8 shows a schematic of a screened subnet
system.

The outer router announces to the public the IP addresses and port numbers of the server
computers and devices connected to the screened subnetwork. The inner router announces to
the internal network the IP addresses and port numbers of the server computers and devices
connected to the screened subnetwork. Thus, the structure of the internal network is hidden
from the outside world. The internal hosts can only communicate with external hosts through
server computers or devices in the screened subnetwork.

We may move some of the server computers, for example, database servers, from the
screened subnetwork to the internal network to provide a stronger protection; and place the
corresponding proxy servers, for example, database proxies, in the screened subnetwork.
This configuration, while increasing security, may reduce processing speed. In a particular
application, we need to consider this trade-off and find the optimal configuration.

Bastion host

Router and
packet-filtering
firewall

Router and
packet-filtering
firewall Internal

network

External
network

Server computers and devices

Figure 8.8 Schematic of a screened subnet system, where the dotted arrow lines show the actual com-
munications and the solid lines show the physical network connections
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8.6.4 Demilitarized Zones

A subnetwork between two firewalls in the internal network is often referred to as a demili-
tarized zone (DMZ)1. The external firewall protects the DMZ subnetwork from external net-
works, and the internal firewall protects the internal network from the DMZ. A DMZ subnet-
work may or may not have a bastion host. Server computers and devices that do not require
strong security protections are placed in the DMZ subnetwork so that they will not be exposed
to the external networks without any security protection.

The concept of a single-layer DMZ can be generalized to a multiple-layer DMZ, where
a DMZ may also contain a sub-DMZ. Computers needing the most security protections are
placed in a subnetwork that is connected to the innermost firewall. Computers needing the least
security protections are placed in the outermost DMZ, which is protected only by the outer-
most firewall. Other computers are placed in a DMZ in between. An ingress packet that fails the
inspection at the outermost firewall is blocked from entering the outermost DMZ. Likewise,
an ingress packet that passes the inspection of the outermost firewall but fails the inspection
at the second-layer firewall is blocked from entering the second DMZ. Organizing an internal
network into a hierarchy of subnetworks increases security, for the attackers will have to com-
promise more firewalls to reach to a computer in a deeper subnetwork. Moreover, subnetworks
are relatively easier to manage because of their smaller sizes.

8.6.5 Network Security Topology

Firewalls can be used to divide networks into three separate areas: distrusted region,
semitrusted region, and trusted region (see Figure 8.9).

The distrusted region is the external network outside of the outer firewall. The semitrusted
region is the DMZ between the outer firewall and the inner firewall. This area can include a
bastion host and other server computers. The trusted region is the internal network behind the
inner firewall. The concept of DMZ is a relative concept. For example, certain directories and
files in a bastion host may be designated as DMZ.

Firewall

Distrusted
region Trusted
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Semi-trusted
region (DMZ)

User networks

Firewall

Figure 8.9 A schematic of network security topology

1 Demilitarized zone was a term first used by the United Nations in the 1950s to denote the strip of land along the
38th parallel that separated the Korean Peninsula into the North and South Korea. No troops or military activities of
any kind are allowed in DMZ.



298 Introduction to Network Security

8.7 Network Address Translations

The network address translation (NAT) protocol divides the IP addresses into two groups.
The first group consists of public IP addresses that are reachable from external networks. The
second group consists of private IP addresses that are not reachable from outside hosts directly.
We often refer to an internal network using private IP addresses as a private network. This
collection of private IP addresses is broken up into three classes, which are defined in Table 8.5.

Using NAT, an edge network only needs a small number of public IP addresses to connect
its gateways and routers to the Internet. The private IP addresses are then used by the inter-
nal hosts, which remain hidden behind the gateways and the routers. Different edge networks
may share the same private IP addresses. When the internal network is organized into a hier-
archy of subnetworks, it allows for better use of the available private address space to connect
more computers. As NAT allows edge networks to use the same private addresses over and
over again, it stretches the limited 32-bit address space in IPv4, allowing it to accommodate
substantially more than 232 hosts and devices.

8.7.1 Dynamic NAT

Dynamic NAT is a widely used network technology. It assigns a small number of reachable IP
addresses dynamically to a large number of private networks.

The port address translation (PAT) protocol, a variant of NAT, allows several private net-
works to share one public IP address. It is a common network technology for homes and small
companies. For example, suppose that two internal hosts want to use port 25 to send email to
external hosts at the same time, and their private addresses are 192.168.0.3 and 192.168.0.4.
PAT does this as follows: it translates the source addresses in the packets sent from these two
hosts to the same public IP address of the router with two different port numbers. For example,
it may use 61003 as a port number to indicate a packet sent from host 192.168.0.3 and 61004
as a port number to indicate a packet sent from host 192.168.0.4. When it receives a returned
packet from the destination, the PAT router first checks the port number in the packet. If it
is 61003, the PAT router translates the destination address contained in the packet back to
192.168.0.3 and the port number back to port 25 and forwards the packet to 192.168.0.3:25.
If it is 61004, the PAT router does the same thing for host 192.168.0.4.

8.7.2 Virtual Local Area Networks

A virtual local area network (VLAN) is a network technology for creating several independent
logical LANs over the same physical network. VLANs can be created by configuring switches

Table 8.5 Private network address classes

Address class Starting address of this class Ending address of this class

A 10.0.0.0 10.255.255.255
B 172.16.0.0 172.31.255.255
C 192.168.0.0 192.168.255.255
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Figure 8.10 Logical groupings of switch ports for creating independent VLANs

using software. That is, switch ports can be logically segmented into several groups, where
each group is used for creating an independent VLAN (see Figure 8.10). The VLAN technol-
ogy allows a network administrator to logically divide a physical LAN into different broadcast
domains, or to logically configure host computers on different LANs to the same VLAN.

It is convenient to use the VLAN technology to form and modify logical networks on the
basis of temporary needs. For example, a university can form a VLAN for its tenure and promo-
tion committee. The host computers connected to this VLAN are those used by the committee
members. A firewall or a bastion host may be used to protect this VLAN. Committee members
are elected from each college within the university, and they are changed from year to year.
Thus, the membership of this VLAN will also be changed from year to year.

The IEEE 802.1q standard has been established to support VLANs. We note that vulnera-
bilities were found in certain 802.1q implementations that could compromise security.

8.7.3 Small Office and Home Office Firewalls

Setting up and managing firewalls may require special training, which means it may be imprac-
tical for ordinary users to set up a firewall in a small office or home office (SOHO). We note
that SOHO users often use digital subscriber lines (DSL) to connect their computers to tele-
phone company’s Internet service equipment, or use coaxial cables to connect their computers
to cable television company’s Internet service equipment. The router used for either connec-
tion typically supports NAT/PAT and packet filtering. Such a router is sometimes referred to
as a SOHO firewall (see Figure 8.11).

Modern SOHO routers often support IEEE 802.1q, although a firmware update may be
required.

8.8 Setting Up Firewalls

Microsoft Windows operating systems are shipped with a built-in firewall. To set it up, open
Windows Firewall under the Control Panel and click the firewall on.

For Linux and UNIX operating systems, the user may build a firewall using built-in pro-
grams. For example, Linux users may use the iptables program to build a personal stateless
packet filter, while FreeBSD UNIX users may use the pf program to build an organizational
firewall with a DMZ.
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Figure 8.11 Schematic of a SOHO firewall network

8.8.1 Security Policy

To set up a firewall, we must first form a security policy to specify what is allowed and what
is not allowed. In general, we may want to allow internal users to access the Internet freely or
with minor restrictions. For example, the firewall should allow DNS query packets and initial
egress TCP connection packets to pass through. However, internal users are not allowed to
offer any Internet service directly to the external users. This means that ingress packets of
Internet services must go through appropriate gateways. For example, ingress HTTP packets
must go through a Web server, while ingress mail packets must go through a mail server.

No matter how complex it might evolve, a security policy must start from a small set of
simple rules. On the other hand, for a security policy to be useful, it must be easy to understand
and it must be implementable.

8.8.2 Building a Linux Stateless Packet Filter

The iptables command is a built-in program in Linux for building a stateless packet filter. It
supports NAT, routes IP packets, and filters IP packets on the basis of addresses, port numbers,
and flags. In particular, iptables organizes ACL rules into several subsets of rules called chains.
There are three system chains. They are the input chain, the output chain, and the forward
chain. The input chain is the set of rules for ingress packets, the output chain for egress packets,
and the forward chain for routing packets. The basic syntax of iptables is as follows:

iptables <option> <chain> <matching criteria> <target>

When building a firewall, the common option is -A, which means to append a new rule at
the end of the chain. In addition to -A, the following option of -I may also be used, meaning
to insert a new rule at the beginning of the chain.

Recall that ACL rules are processed in order. Thus, it is important to ensure that rules are
implemented in the correct order.

Suppose that we want to create a simple stateless packet filter on a Linux host with IP
address 129.63.8.109 on the basis of a security policy that permits TCP connections initiated
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by internal users and denies ingress telnet packets. For simplicity, we only create rules for the
input chain. This can be achieved using the following command lines:

iptables -A INPUT -p TCP -s 129.63.8.109 -j ACCEPT
iptables -A INPUT -p TCP ! -syn -d 129.63.8.109 -j

ACCEPT
iptables -A INPUT -p TCP -d 129.63.8.109 telnet -j

DROP

The options of -j, -p, -s, and -d specify how each ACL rule is to be operated, where
-j (means to jump to the target) specifies what to do on the packet under inspection if the
matching criteria is met, -p specifies what protocol the ACL rule applies to, -s specifies the
source IP address, and -d specifies the destination address. The operator ! means negation,
and the option of -syn specifies the SYN flag in the packet.

Thus, the first rule specifies that egress IP packets for TCP connections from host
129.63.8.109 are always allowed. The second rule specifies ingress IP packets for TCP
connections with host 129.63.8.109 are allowed, provided that they are not TCP SYN packets.
The third rule specifies that ingress telnet packets to 129.63.8.109 are blocked.

8.9 Closing Remarks

Firewalls are used to block malicious ingress packets from entering internal networks and
block malicious egress packets from going out to external hosts. However, no matter how
strong firewalls are, attackers may still be able to find ways to enter internal networks. For
example, attackers may disguise themselves as legitimate users to go into internal networks.
Therefore, we will need to know how to identify these intruders. Intrusion detection systems
are technologies developed to meet this need, which are discussed in the following chapter.

8.10 Exercises

8.10.1 Discussions

8.1. Describe your experience in setting up a firewall on your home computers or work
computers.

8.2. If you are familiar with the setup procedure of a particular type of firewall products
(such as Cisco firewalls), share your experiences.

8.3. If you are familiar with Linux firewall setup steps, share your experiences.

8.4. “Home computers may run slower when firewalls are installed. I have found that it is
more helpful to become as security savvy as possible,” said a reader. “I read reports
from Symantec, BugTraq, Microsoft Security Bulletin, and other security forums to
keep up with the latest malware reports and what they do. I check the Registry keys
for strange modifications. I also view the Task Manager to see if there are strange or
malicious processes running.” Share your thoughts and experiences how to become
security savvy.
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8.5. Discuss why the following firewall configurations are important: (1) Create ACL deny
rules. (2) Enable a global policy for FTP inspection. (3) Hide NATs from outside.

8.6. Share your experience in setting up a DMZ (if you have done it).

8.10.2 Homework

8.1. Suppose that an ACL contains the following rules for processing ingress packets:

int addr int port ext addr ext port Action Comments

* 25 * * Allow Allow ingress
SMTP packets

Is this ACL rule secure? Justify your answer.

8.2. Can encrypted packets be relayed through a circuit gateway? Justify your answer.

8.3. Table 8.6 lists common communication protocols used to establish local area network
service. Construct ACL rules to block packets that carry out these protocols from
going out to external networks.

8.4. Requiring a TCP packet as an IP payload to be longer than a certain fixed length
can help resist TCP fragmentation attacks. However, IP packets may not arrive at the
destination in the original order. If a TCP header is divided into two halves, the IP
packet that contains the second half of the TCP header may arrive earlier than the the
IP packet containing the first half of the TCP header. How do you suggest to handle
this situation? Justify your answer.

8.5. Suppose that in the schematic of the screened subnet shown in Figure 8.8 we want to
upgrade the security protection of the SMTP server computer. Describe one or more
methods to solve this problem.

Table 8.6 Communication protocols used for establishing LAN

Port Transport-layer protocol Application

67/68 UDP Bootp/DHCP
69 UDP TFTP
135, 137, 138, 139 TCP and UDP NetBIOS
445 TCP and UDP CIFS
515 TCP LPR
2049 UDP NFS
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8.6. Figure 8.12 is a screened subnet firewall system, where DMZ contains three server
computers. The IP addresses of the outer router, the inner router, and server comput-
ers are shown in the figure. Construct ACL rules such that external hosts can directly
communicate with DMZ server computers but cannot establish direct communica-
tions with any internal host. Justify your construction.

8.7. In Figure 8.12, assume that the outer router uses ACL rules given in Table 7.7 and
the inner router uses ACL rules given in Table 7.8. In addition to port 25, other ports
in the tables are defined as follows: port 80 is used for Web server program HTTP,
port 7 is used for server program echo, port 23 is used for server program telnet,
and port 22 is used for server program SSH.
(a) Explain what each ACL rule is intended to do.
(b) Point out which ACL rule is used for egress packets and which ACL rule is used

for ingress packets.

8.8. The internal network in Figure 8.12 uses private addresses for its hosts. Suppose
that the inner router supports the PAT protocol. If two hosts in the internal network
send egress packets from port 80 simultaneously, where one host uses private address
192.168.8.2 and the other host uses private address 192.168.8.3. Describe how to use
PAT and one public IP address 192.63.16.3 to accomplish this task.

8.9. If in an ingress packet from an external network to the internal network, its source
address is an internal IP address or is a private network address, should this packet be
allowed or blocked? Why?

*8.10. To set up a firewall to deal with DNS packets, one should allow any egress DNS
queries and filter ingress DNS responds, for external servers should not be trusted.
Discuss the advantages and disadvantages of using packet filtering and DNS proxy to
filter DNS packets.

192.63.16.10

192.63.8.1
192.63.16.3192.63.16.2192.63.16.1

DMZ

Web
server

192.63.16.4

Proxy
server

192.63.16.6

192.63.8.2

192.63.8.3

SMTP
server

192.63.16.5

Router and
packet filter

Router and
packet filter

Internet

Internal
network

Figure 8.12 The firewall system used for Exercises 8.6 and 8.7
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Table 8.7 The ACL rules contained in the outer router in Figure 8.12

Line number Source addr Source port Dest addr Dest port Action

1 * * 192.63.16.10 > 1023 Allow
2 * * 192.63.16.1 * Block
3 * * 192.63.16.2 * Block
4 192.63.16.1 * * * Block
5 192.63.16.2 * * * Block
6 192.63.16.10 * * * Allow
7 * * 192.63.16.5 110 Allow
8 * * 192.63.16.10 7 Block
9 * * 192.63.16.10 23 Block
10 * * 192.63.16.10 22 Allow
11 * * 192.63.16.4 80 Allow
12 * * * * Block

Table 8.8 The ACL rules contained in the inner router in Figure 8.12

Line number Source addr Source port Dest addr Dest port Action

1 * * 192.63.16.10 > 1023 Allow
2 * * 192.63.16.10 25 Allow
3 * * 192.63.16.3 * Block
4 * * 192.63.8.1 * Block
5 192.63.16.3 * * * Block
6 192.63.8.1 * * * Block
7 192.63.8.2 * * * Allow
8 192.63.8.3 * * * Allow
9 192.63.16.6 * 192.63.8.2 * Block
10 192.63.16.6 * 192.63.8.3 * Block
11 * * * * Block

*8.11. Suppose that you telnet from an internal host to an outside host on which you don’t
have an account. Your telnet session should fail, but it doesn’t. The internal host
you use to launch telnet has an Ethernet port connected to the local gateway.
Explain how the telnet packets can reach the outside host and allow you to create
a connection. Explain how to prevent this scenario from happening. (Hint: suppose
that there is another router connected to the local gateway, which emits a default entry
to the internal network. This is sometimes referred to as a route leak.)

8.12. If an ingress packet has 127.0.0.1 as both of its source IP address and its destination
IP address, should the packet filter block this packet? Why? (Note: 127.0.0.1 is the
address of localhost.)

8.13. If an ingress packet has 0.0.0.0 as its source IP address or its destination IP address,
should the packet filter block this packet? Why? (Note: 0.0.0.0 is the address for
broadcasting messages.)
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8.14. If an ingress packet belongs to an existing TCP connection, should this packet be
blocked? Why?

8.15. If an ingress packet has 25 or 80 as its destination port number, should this packet be
blocked? Why?

8.16. Explain why SPI is different from SPF.

8.17. If an ingress packet has the IP address of an internal host as its destination address
and has 7 or 23 as its port number, should this packet be blocked? Why?

8.18. In general, egress HTTP packets should be allowed to pass through the firewalls.
Ingress HTTP packets, however, should go through firewall inspections. Suppose that
the Web server is placed in DMZ. If an ingress HTTP packet has an internal IP address
as its destination address, should it be blocked? Why?

8.19. Should egress SMTP traffic be filtered? Why?

8.20. Should an internal host be allowed to connect to an external POP3/IMAP server?
Why?

8.21. If an ingress packet has the IP address of an internal host as its destination address
and has 22 as its port number, should this packet be blocked? Why?

8.22. Microsoft Windows uses port numbers 135–139 and 445 for NetBIOS and file shar-
ing. If an ingress packet has one of these numbers as its port number, should this
packet be blocked? Why?

8.23. If the source address of an egress packet is not an internal address, should this packet
be blocked? Why?

8.24. If the destination address of an egress packet is a private network address, should this
packet be blocked? Why?

8.25. If the destination port of an egress packet is 53, but its source address is not the address
of a DNS server, should this packet be blocked? Why?

8.26. In Microsoft Windows XP or 2000, open Internet Explorer, and then click Tools
and Internet Options. Browse carefully the following options: Security, Content,
Privacy, and Advanced.
(a) There are two options for Trusted Sites and Restricted Sites under Security.

Explain what they mean and how to use them.
(b) Explain what the option of Privacy means and how to use it.
(c) Explain what each of the options for Content mean and how to use it.
(d) Explain what each of the options for Advanced mean and how to use it.

8.27. In Microsoft Windows XP or 2000, open Internet Explorer, and then click Tools
and Internet Options. Use Security and Privacy to accomplish the following tasks:
(a) Set up a reverse firewall.
(b) Block Web page cookies from entering your system.
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8.28. What do the following iptables rules do?

iptables -A INPUT -i $INTERNET -s $BROADCAST_DEST -j
LOG

iptables -A INPUT -i $INTERNET -s $BROADCAST_DEST -j
DROP

where the option -i specifies the interface name the rule applies to, and the -j LOG
logs packets that match the rule.

8.29. Give two examples of attacks that can be resisted using firewalls alone.

8.30. Give two examples of attacks that cannot be resisted using firewalls alone.

8.31. Using the NAT technology, one can connect substantially more than 232 hosts and
devices to the Internet with 32-bit IP addresses. Explain why.

8.32. Under Microsoft Windows 7, DNS search can be done as follows: Click successively
Start and Run. Then type nslookup. Under the prompt > in the popup window, enter
an IP address and press the return key. For example, if you enter cs.uml.edu, then
you will see the following output after you press the return key:

> cs.uml.edu
Server: DD-WRT
Address: 192.168.11.1

Non-Authoritative Answer:
Name: cs.uml.edu
Address: 129.63.8.2

>

(a) Under the prompt > type google.com. Explain what you see.
(b) Under the prompt > enter 66.94.234.13. Explain what you see.
(c) Certain firewalls may block this type of DNS search. If so, you may use the ser-

vice provided by http://www.kloth.net/services/nslookup.php
to carry out a DNS search.

*8.33. Search the literature and describe in detail a real instance of attacking a firewall.
Explain why this attack works. Suggest a solution to help resist such an attack.

8.34. Under Microsoft Windows, you may use route print to show the routing table on your
computer. Use, instead, route or ip route show under Linux or UNIX. Show how to
use them and explain what you see.

*8.35. Read RFC 3089 at http://www.ietf.org/rfc/rfc3089.txt and write a
paper of about 4000 words to describe the SOCKS protocol.

http://www.kloth.net/services/nslookup.php
http://www.ietf.org/rfc/rfc3089.txt
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8.36. Some employees in Company X were using company time to bid on goods at eBay.
The company wants to set up ACL rules to block online bidding on eBay.

(a) Use nslookup to find the IP address of eBay.
(b) Create ACL rules that will block internal hosts from communicating with eBay

servers.
*(c) Can eBay do some simple modification so that the ACL rules you created in (b)

will not work?

8.37. “I work in a financial institution,” said a reader. “So there are times we need to allow a
third-party’s regulatory application servers to access our network. We have to modify
our firewall ACL to open up ports (ftp, proxy, tcp, and http, among others), for they
may be required for the connections to happen.” What types of firewalls do you think
this financial institution has. Can you suggest improvement?

8.38. “I use the Windows firewall on my PC,” a reader told us. “But I have to disable my
firewall every now and then as it does not allow my USB Internet modem to work.
This is not the best security practice, but I have been lucky so far as regards any
attack.” Can you suggest a better way to do this?

8.39. “At home I have setup a Cisco ASA-550X firewall with SPI, ACL, port forwarding
and triggering features to protect my small internal network,” a reader told us. “I
also have Cisco SSL VPN enabled and setup ACL to allow only certain traffic on
the network and specify what networks/subnet the VPN clients is able to access. In
this setup I created an ACL policy to allow VPN client to connect and communicate
with specified computers.” Argue that this protection would be sufficient for a small
internal network.

8.40. “At work I used both E5500 and Cisco ASA-5510 firewalls to protect the corporate
network,” said a reader. “I used address objects, NAT, and the firewall policies for traf-
fic shaping to include multiple site-to-site VPNs using IPsec and Dynamic Multipoint
VPN (DMVPN) between branch sites and vendor sites. A few of our systems were
within the DMZ, and these systems were protected with antivirus software, static rout-
ing configurations, and multiple ACL policies.” Do you think these firewall measures
are sufficient to protect a corporate network? Justify your answer.

8.41. “I am running Mac OS X 10.9.2 on my personal laptop,” a reader told us. “When
enabled, the firewall prevents unauthorized applications, programs, and services from
accepting incoming connections (Mac OS X Window). Recently I discovered that
the firewall was off. I must have disabled it in the past to do something specific and
forgotten to re-enable it. I wonder how long ago that was!” Have you experienced
similar situations? Explain what security consequences you might have to face should
this happen.





9
Intrusion Detections

Network perimeter security cannot stop attackers from entering the internal networks if they
obtain authenticated access to target computers and log on to them as legitimate users. Attack-
ers may be able to obtain login information of legitimate users through, for example, identity
spoofing and phishing attacks. Attackers of this kind are intruders.

Thus, it is desirable, and often is necessary, to detect intrusion activities by monitoring
ingress packets that have passed through firewalls and analyze how users use their computers,
so that system administrators can take appropriate actions against intrusions. It is also possible
to prevent intrusions from entering important systems by using sacrificial decoy assets, called
honeypots, which lure attackers’ attention away from the computers that need protection. This
chapter introduces common intrusion detection techniques and honeypot techniques.

9.1 Basic Ideas of Intrusion Detection

Building automated systems to detect intrusion activities was initiated by Dorothy Denning and
Peter Neumann in the mid-1980s. They observed that intruders often acted differently from
the legitimate users they impersonated. Moreover, behavior differences may be measured to
allow quantitative analysis. Their seminal work has evolved into a fruitful branch of network
security.

The goal of intrusion detection is to identify intrusion activities that already occurred or
are currently occurring inside an internal network. In particular, intrusion detection wants to
detect intrusion activities as quickly as possible so that appropriate actions can be taken to
minimize damages caused by the intrusions. It also wants to trace intruders and collect evi-
dence to indict the criminals. A common approach to detecting intrusions is to find ways to
identify abnormal events, such as finding behavior discrepancies between the intruder and the
legitimate user impersonated by the intruder. This can be done by building automated tools
on the basis of operating system administrations, network protocols, computational statistics,
and data mining. Automated tools for detecting intrusions are referred to as intrusion detection
systems.

Introduction to Network Security: Theory and Practice, Second Edition. Jie Wang and Zachary A. Kissel.
© Higher Education Press. All rights reserved. Published 2015 by John Wiley & Sons Singapore Pte Ltd.
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An intrusion detection system (IDS) is an automated alarm system that searches for direct or
indirect intrusion indications, including intrusions that already happened or are currently tak-
ing place, and notifies the system administrators to take appropriate actions. Traditional IDS
systems may only detect intrusions and alert system administrators. But intrusion detection
systems may also be more proactive to automatically respond to detected intrusion activities.
Such systems are often referred to as intrusion prevention systems (IPS). An IPS could auto-
matically modify network perimeter rules, isolate the affected systems, or shut down services.
For simplicity, we use IDS to denote both traditional IDS and IPS.

9.1.1 Basic Methodology

The basic methodology of detecting intrusions is to log system events and analyze them using
appropriate methods. For example, one may build a simple IDS as follows: log all the packets
passing through a router (or a firewall) using a packet sniffer/logger, and analyze the log to
identify suspicious events on the basis of a given set of rules that specify what events are
unacceptable. Such analysis may be done manually if the log is small. However, typical log
files tend to be as large as several mega bytes. It is formidable to analyze a log file of large size
manually. This calls for automated tools. Snort, for example, is an open source automated tool
(http://www.snort.org) that can log and analyze IP packets in real time. Analyzing
logs is often referred to as auditing.

Keeping logs is important, not only for intrusion detection, but also for post-incident foren-
sics and recovery. Logs may also be required as evidence for prosecuting intruders.

Intrusion detection may be carried out at the network level, or at the host level, or both.
That is, an IDS may detect anomalies in the LAN, or in networked computers, or both. The
first type of intrusion detection is referred to as network-based detection (NBD), the second
type as host-based detection, and the third type as hybrid detection (HBD). Figure 9.1 shows
a schematic of an intrusion detection system layout with a firewall in place.

NetRanger, for example, is a network-based IDS product made by Cisco Systems,
Intruder Alert is a host-based IDS product made by Axent Technologies, and CyberSafe

Internet

Host-based
IDS

Host-based
IDS

Network-based
IDS

Internal network

Hybrid
IDS

Firewall

Figure 9.1 A schematic of an intrusion detection system layout with a firewall in place

http://www.snort.org
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is a hybrid IDS product made by CyberSafe Corporation. A hybrid system may simply
consist of a network-based system and a host-based system that can operate independently.
If a hybrid system is not available, organizations should deploy both network-based systems
and host-based systems and merge alerts from both systems to achieve hybrid-like system
effects.

9.1.2 Auditing

Security auditing is a routine security process. There are two kinds of auditing. The first kind
audits static configuration information, which is also called security profiles. The second kind
audits dynamic events.

9.1.2.1 Security Profiles

A security profile is a set of preconfigured values of certain security parameters, such as how
long a user password should remain valid and how often a user password should be changed.
Table 9.1 shows a simple security profile of a system on password and login parameters.

9.1.2.2 Events

A typical event record should consist of the following fields:

1. Subject: The subject field provides information of the initiator of the event.
2. Action: The action field provides information of the operation carried out by the subject.
3. Object: The object field provides information of the action receiver.
4. Exception condition: The exception-condition field specifies exception condition of the

event.
5. Resource usage: The resource-usage field provides quantitative information about the use

of computing resources of the event.
6. Time stamp: The time-stamp field specifies when the event takes place.

Most events are sequences of elementary actions, where an elementary action could be a
single memory-access operation, a single arithmetic operation, or a single logic operation. For

Table 9.1 A sample security profile on password and login parameters

Parameters Values

Minimum length (bytes) 8
Password Lifetime (days) 90

Expiration warning (days) 14
Maximum number of unsuccessful attempts allowed 3

Login session Delay between login attempts (seconds) 20
Time an account is allowed to remain idle (hours) 12
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Table 9.2 A sample event recorded for detecting intrusion auditing, where “byte-r” represents the
number of bytes been read and “byte-w” represents the number of bytes been written

Subject Action Object Exception
condition

Resource
usage

Time stamp

Alice Executes cp None CPU: 00001 Tue 11/06/07 20:18:33 EST
Alice Opens ./myprog None byte-r: 0 Tue 11/06/07 20:18:33 EST
Alice Writes etc/myprog Write fails byte-w: 0 Tue 11/06/07 20:18:34 EST

example, suppose that Alice, a user of a UNIX system, tries to copy her program myprogram
to the system directory /etc by issuing the following command:

cp myprog/etc

This event consists of three records based on its elementary actions (see Table 9.2). Assum-
ing Alice is not a super user, and so she does not have write-permission in /etc, the command
is aborted.

9.1.3 IDS Components

A typical IDS system should consist of three components: assessment, detection, and alarm.

9.1.3.1 Assessment

The assessment component evaluates security needs of a system and produces a security profile
for the target system.

9.1.3.2 Detection

The detection component collects system usage events and analyzes these events to detect
intrusion activities, where each record in the event log should contain information useful for
detecting intrusions. The objective of auditing events is to identify anomalies on the basis of
certain rules and quantitative measures. For example, one may characterize user activities in a
computer system as a time series of discrete events, define a user profile, and define acceptable
variations of the user profile. If a series of events executed by a user is found to be significantly
different from any acceptable variation of the user’s user profile, then the user is likely to be
an intruder.

In addition to detecting user behaviors, an IDS may also analyze program behaviors. For
example, we note that a typical Web server daemon should not launch programs outside of
its CGI directory. Thus, if something happens otherwise, then it may indicate that a worm is
attempting to infect the Web server.

User Profiles
A user profile may be created by analyzing user’s activities for a certain period of time. It may,
for instance, contain the following information:
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1. When does the user usually log on and log off?
2. What programs, and what ordering of these programs, will the user normally run?
3. How long will each program be executed?

For example, suppose that Betty is a secretary of the Biology department in a university.
Her user profile may look like the following: Betty normally logs on her computer at 8:05 a.m.
She spends about 1 hour reading and replying to email. After that, she uses Microsoft Word
and Excel to work on certain documents under certain directories until 4:00 p.m. She would
occasionally print a file, copy a file, create a new directory, open her mailbox reading and
replying to email, or let her computer idle for a short while during these hours. But she never
installs software or probes system directories. She normally logs out at 4:05 p.m. Thus, if the
system detects that Betty is logging in to her account at midnight and is installing software, then
it will be considered as abnormal activity, which may be the act of an intruder impersonating
Betty.

On the basis of user profiles, the IDS system may allow certain reasonable variations of
the user profile. For example, it may allow justifiable activities (e.g., to open or edit PDF
files) to be included in Betty’s user profile, although such activities have not been recorded.
An acceptable variant may also remove certain events from the user profile or change the
ordering of observable events. What constitutes acceptable behaviors depends on individual
users. Different users may have different sets of acceptable behaviors.

9.1.3.3 Alarm

When an attacker impersonates a legitimate user to log on to the user’s account, the attacker’s
behaviors would likely be different from the true user’s behaviors, which would be considered
unacceptable and will therefore trigger the IDS to alarm the user or the system administrator.
The alarm component specifies how this is to be done. It classifies alarms and specifies how
the system should respond to an alarm.

9.1.4 IDS Architecture

An IDS is an automated alarm system. A typical IDS may consist of a command console and
the targets to be monitored. Figure 9.2 shows a block diagram of an IDS system.

9.1.4.1 Dissection of the IDS Architecture

Command Console
The command console, a.k.a. a detection center, should be run on a separate computer. It con-
trols and manages the target systems. The target systems in an IDS system are host computers
or server computers to be protected. A typical command console may consist of the following
components:

1. Assessment manager: It manages and assesses security profiles of the target systems.
2. Detection manager: It maintains connections with the detection component of the target

systems.
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Figure 9.2 A block diagram of an IDS system, where “A & C policy” stands for “audit and col-
lection policy,” “HD Policy” stands for “host-based detection policy,” and “ND policy” stands for
“network-based detection policy”

3. Alarm manager: It collects and manages suspicious information and determines what
responses are appropriate. For example, it may instruct the target system to do one or more
of the followings: disconnect network connection, cancel user login sessions, remove user
accounts, reset firewall ACLs, and shut itself down.

4. Raw event log centralization: It collects log files sent from the target service.
5. Intrusion detection service: It checks the log files collected by the raw event log centraliza-

tion. When it finds problems, it informs the alarm manager to handle the problems.
6. Audit reduction: It simplifies and organizes raw event log information for storage.
7. Audit log archive: It stores raw event log data.
8. Database: It stores processed and organized event log data.

Target Service
The target service is performed on a host computer or on a server computer to detect intrusions
on these devices. It may consist of the following components:

1. Security profile: The assessment manager at the command console assesses the target sys-
tem and creates a security profile of the system, which is stored in the target system.

2. Audit setting: The detection manager at the command console sets up what is to be audited
at the target system.

3. Event log: The target system generates an event log according to the audit setting.
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4. Host-based intrusion detection service: It checks the event log to search for anomalies and
informs the alarm manager at the command console.

5. Network-based intrusion detection service: It uses a network sniffer/logger (a.k.a. a network
tap) to log packets, searches for anomalies, and informs the alarm manager at the command
console.

The command console should maintain network connections only with the target systems.
That is, the command console should not be reachable from external networks. One way to
ensure this is to place the command console behind a firewall that blocks all packets from or
to external networks. For home or small office users, however, the command console and the
target service may be installed on the same computer.

One may also construct a distributed IDS by distributing the command console components,
part or all of them, across several target systems (see Exercise 9.5).

9.1.5 Intrusion Detection Policies

Intrusion detection policies (IDP) are used to identify intrusion activities. They specify what
data must be protected and how well they should be protected. They also specify what kinds
of activities are considered intrusions and how to respond when suspicious activities are iden-
tified.

Ideal IDPs should be simple, effective, and easy to implement, with minimum false alarm
rates. That is, IDPs should not allow IDS to detect something that is normal as abnormal.
Returning something that is normal as abnormal is also known as false positive detection or
false positive alarm. On the other hand, IDS should not detect something that is abnormal
as normal. Returning something that is abnormal as normal is also known as false negative
detection.

9.1.5.1 False Positives Versus False Negatives

False positive detections and false negative detections are common scenarios in IDS, for the
boundaries between normal and abnormal activities are not always clear. False positive detec-
tions and false negative detections may be competing with each other. To reduce false positive
detections, one may want to revise IDPs to accept additional types of activities as normal,
which means it will detect smaller types of abnormal activities, resulting in an increase of
false negative detections.

On the other hand, to reduce false negative detections, one may want to revise IDPs to
classify more types of activities as abnormal, which, at the same time, will likely make normal
activities detected as abnormal, resulting in an increase of false positive detections.

Thus, how to formulate and fine tune an IDP to balance between false positives and false
negatives is a challenging issue in IDS research and applications.

9.1.5.2 Behavior Classifications

To help reduce both false positives and false negatives, we may characterize behaviors as
green-light behaviors, red-light behaviors, and yellow-light behaviors.
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A green-light behavior is a normal behavior acceptable by the system. For example, any
reasonable behavior from a legitimate user is a green-light behavior.

A red-light behavior is an abnormal behavior that must be rejected by the system. When
a red-light behavior is detected, the ID service at the target system must issue a red-light
alarm to the alarm manager at the detection center. Red-light behaviors are unacceptable
behaviors.

A yellow-light behavior is a behavior that the system cannot determine, with the information
it has so far, whether it is a green-light behavior or a red-light behavior. When a yellow-light
behavior is detected, the ID service at the target system should issue a yellow-light alarm to
the alarm manager at the detection center.

An IDS system should also specify how to respond to yellow-light behavior detections and
red-light behavior detections. The following are possible reactions:

1. Pay further attention to the user with yellow-light behaviors, hoping to collect additional
information to make a better determination.

2. Terminate the login session of the user with red-light behaviors.
3. Disconnect the network connection for the computer where red-light behaviors are

found.
4. Shut down the computer.

9.1.6 Unacceptable Behaviors

When a user logs on to a networked computer and uses its resources, his activities may be
viewed as a sequence of events. These events include using system software (e.g., brows-
ing directories and copying files), using standard application software (e.g., using Microsoft
Office, browsing the Web, sending email, and managing systems), and using user-produced
software. A behavior is a sequence of events or a collection of several sequences of events.
When a legitimate user uses computing resources following the system security policy, the
sequence of events incurred is an acceptable behavior. An unacceptable behavior is a sequence
of events that violate the system security policy.

Building an IDS faces the following two challenging issues:

1. How to define what behaviors are acceptable and what behaviors are not acceptable?
2. How to model and analyze behaviors using quantitative methods?

9.2 Network-Based Detections and Host-Based Detections

NBD and HBD are the two major detection mechanisms. NBDs analyze network packets.
Host-based detections analyze system events and user behaviors. A hybrid IDS supports both
NBDs and HBDs.

Depending on when detections are carried out, there are real-time detections, batch detec-
tions, and periodic detections. Real-time detections analyze data when it arrives, batch detec-
tions analyze data when the set of collected data has reached at a certain size, and periodic
detections analyze data periodically at certain preset time.
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9.2.1 Network-Based Detections

An NBD is responsible for checking packets in the network, identifying which packets are
yellow-light behaviors and which are red-light behaviors, and sending warning messages to
the alarm manager in the command console. It also logs packets in the event log for future
analysis.

A typical NBD consists of two major components: a network tap and a detection engine.
The network tap is responsible for tapping the network at selected points to gather information
passing through these points. The detection engine is responsible for analyzing packets and
sending warning messages to the alarm manager in the command console.

There are two types of NBDs: network-node detections and network-sensor detections. Both
have the same structure. The only difference is where they are placed.

9.2.1.1 Network-Node Detections

A network-node detection NBD is placed inside a target computer, checking ingress packets
and egress packets. Figure 9.3 shows a schematic of a network-node detection component.

9.2.1.2 Network-Sensor Detections

A network-sensor detection NBD is placed at a selected point of the network, checking packets
passing by. It needs to use a network tap (e.g., a network sniffer). Figure 9.4 shows a schematic
of a network-sensor detection component.

9.2.1.3 NBD Advantages

The use of NBDs has the following three advantages:

1. Low cost: In a well-designed large-scale LAN, one only needs to install network-sensor
detection NBDs at a small number of selected points to monitor the entire network.

2. No interference: NBDs monitor packets passively and forward them to detection engines
for analysis. Thus, NBDs do not interfere normal network traffics.

3. Intrusion resistant: An NBD is a small system, which can be easily made to resist intrusion.
Also, it is easy to hide network-sensor detection devices in a network so that intruders will
not be able to find them.

Command console
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engine

NBD

Packets

Target computer

Figure 9.3 Network-node detection
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Figure 9.4 Network-sensor detection

9.2.1.4 NBD Disadvantages

The use of NBDs has the following disadvantages:

1. NBDs may not be able to analyze encrypted packets, and so they cannot analyze IPsec,
SSL, SSH, or other security protocol packets.

2. NBDs may not be able to handle large volume of network traffics in time, causing an
increase of false negative detections.

3. Some intrusion activities, such as fragmentation-attack packets, are hard to identify by
NBDs.

4. Even if it detects an intrusion behavior, it is hard for an NBD to determine whether the
intrusion activity has been successfully carried out (see Section 9.3.2 for information about
compound signatures).

9.2.2 Host-Based Detections

HBDs are installed in target systems (i.e., host computers or server computers). An HBD
installed in a target system checks the event log of the system and alerts the alarm manager in
the command console of any red-light or yellow-light behaviors it identifies. Figure 9.5 shows
a schematic of an HBD component.

The detection engine in an HBD checks the event log to identify suspicious behaviors. It
also checks system logs, including any activities that try to establish, modify, or delete system
files. Thus, an HBD is also referred to as a system integrity verifier (SIV). It creates a record
of system files, including their sizes, locations, and the time they were created, and uses this
record to identify intrusion behaviors.

The detection engine may also check system configurations, such as the .ini documents, .cfg
documents, .dat documents, and the Windows registry.

An HBD may also keep a copy of the event log in its own storage, so that even if the intruder
modifies the event log, the HBD may still uses its own event log to identify intrusions.
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Figure 9.5 Host-based detection

9.2.2.1 HBD Advantages

The use of HBDs has the following advantages:

1. HBDs can detect data that are encrypted during transmissions, because encrypted data will
eventually be decrypted inside the host computer.

2. HBDs can detect intrusion behaviors that cannot be detected by NBDs. For example, HBDs
can detect fragment attack packets.

3. HBDs do not need special hardware devices.
4. HBDs check system logs and so can analyze system behaviors more accurately.

9.2.2.2 HBD Disadvantages

The use of HBDs has the following disadvantages:

1. HBDs are installed in the target systems, and so they require extra system managing.
2. HBDs may consume extra computing resources, including CPU time and storage space,

and so they may affect normal computations.
3. Attacks that affect host computers or server computers may also affect HBDs.
4. HBDs cannot be installed in routers or switches.

9.3 Signature Detections

Signature detections and statistical analysis are major intrusion detection techniques used in
both NBDs and HBDs. Signature detections are also referred to as operational detections.
Signature detections inspect current events (i.e., events that occurred in a small interval of the
current time) and decide whether these events are acceptable. Signature detections are often
associated with a set of rules. Thus, signature detections are also referred to as rule-based
detections.

For example, one may specify a set of behavior rules as follows:

1. System files, particularly the password files, should not be copied by users.
2. Disks should be accessed only by operating system utilities. That is, users should not access

disks directly.
3. Users should not probe other users’ personal directories.
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4. Users should not copy files to other users’ personal directories or to system directories.
5. Users should not modify other users’ files.
6. Users should not keep trying to log on to their accounts if three attempts have failed.
7. Users with higher levels of clearance should not copy files from directories with higher

level secrecy to directories with lower level secrecy.
8. Users with lower levels of clearance should not read files in directories with higher level

secrecy.

Signature detections include network signatures and host-based signatures.

9.3.1 Network Signatures

Network signatures provide information of packet behaviors that may affect the normal exe-
cution of the system. Network signatures consist of header signatures and payload signatures.
Payload signatures are also referred to as content signatures.

9.3.1.1 Payload Signatures

Checking packet contents is a basic intrusion detection technique in NBD systems. It uses pay-
load signatures to determine which packets are acceptable and which packets are not accept-
able. We illustrate this using an example. Suppose that an intruder attempts to use the standard
FTP application program from a remote computer, denoted by so.com, to execute a selected
program on the target computer, denoted by de.com. This example illustrates a common intru-
sion technique to read a system file in the target system. The following commands are payloads
of IP packets transmitted from so.com to de.com:

so.com -> de.com ETHER TYPE=0800 (IP), SIZE=68 bytes
so.com -> de.com IP D=129.63.8.1 S=129.63.8.12 LEN=54,

ID=44340
so.com -> de.com TCP D=21 S=28613 ACK=2132480783

SEQ=1358787809 LEN=14 WIN=61320+
so.com -> de.com FTP C PORT=28113 SITE exec cat+\verb

+/etc/passwd\r\n

The first three lines in this example appear innocent, and so they may be considered accept-
able. The last line is unacceptable, for it attempts to download the /etc/passwd system file
of the target system.

9.3.1.2 Header Signatures

Checking packet headers is another basic intrusion detection technique in NBD systems. It
uses header signatures to identify malicious packets. For example, in a broadcast attack, the
attacker sends packets to the targets in which the source address and the destination address
are the same. Broadcast attacks may cause the target system to crash. Thus, when it finds that
a packet has the same source address as the destination address, the IDS should inform the
alarm manager about it.
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9.3.2 Host-Based Signatures

Host-based signatures provide information of event behaviors that may affect the normal exe-
cution of the system. For example, “three consecutive failed logins” is a host-based signature,
which means that someone enters passwords consecutively three times, but none of them is
successful. This event may occur if a legitimate user forgets his password, or if an intruder
tries to log on to the computer as a legitimate user. When a “three consecutive failed logins”
is detected, the HBD component should inform the alarm manager about it.

Host-based signatures can be characterized as single-event signatures, multievent signa-
tures, multihost signatures, and compound signatures.

9.3.2.1 Single-Event Signatures

A suspicious behavior in a single command is a single-event signature. The following are
several activities with single-event signatures:

1. A single command that modifies a system file.
2. A single command that reads another user’s personal directory.
3. A single command that modifies another user’s file.
4. A single command that performs direct disk I/O. That is, it does not use disk drivers pro-

vided by the underlying operating system to perform disk I/O’s.
5. A single command that duplicates system files.

9.3.2.2 Multievent Signatures

A sequence of several single-event signatures forms a multievent signature. For example, the
“three consecutive failed logins” is a multievent signature, for it consists of three single events.
This is a suspicious multievent signature. For another example, the signature that “users would
often use the same documents they worked on in previous logins” is a multievent signature.
This is an acceptable signature.

9.3.2.3 Multihost Signatures

A multihost signature is a signature formed from a sequence of single-event signatures and
multievent signatures on several different hosts. For example, the following activities have a
multihost signature:

A user attempted to log on to machine α and failed. He then attempted to log on
to machine β and failed again. After this, he attempted to log on to machine γ and
still failed.

9.3.2.4 Compound Signatures

Some intrusion behaviors are hard to identify if only network-based signatures or host-based
signatures are available. This is because a host-based attack launched from a remote computer
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Table 9.3 Examples of compound signatures

Network-based activities Host-based activities Compound signatures

A user uses FTP to log on to
the system and uses cd and
ls commands

A user browses the etc
directory and reads the
passwd file

A user browses system
files from a remote
computer

A user uses FTP to log on to
the system and uses the put
command

The files uploaded to the
system have virus and
Trojan horse signatures

A user uploads malicious
software to the system
from a remote computer

A user uses FTP to log on to
the system and uses the put
command

A user modifies system files
and registry entities

A user modifies system
files from a remote
computer

A certain Web attack Read system executable files A Web attack is successful

may not provide the source of the attack. For example, suppose that an attacker is able to
impersonate a system administrator of a target computer to log on to the target system from
a remote computer. Using host-based signatures, the host-based IDS may only detect that the
intruder is modifying certain system files, which is acceptable because the intruder is imper-
sonating the system administrator. However, if network-based signatures are also available to
allow the IDS to detect that this login is from a remote computer different from any of the
remote computers the system administrator would normally use, then the IDS may be able to
determine that this is an intrusion act. Note that in this case, if only network-based signatures
are available, then even if the IDS detects that the login is from a remote computer, it may
not be able to detect that this login is an intrusion act without knowing that system files are
modified, if remote logins to the target system are allowed.

Thus, it is necessary to combine network-based signatures and host-based signatures to form
compound signatures to more accurately detect intrusion behaviors. Table 9.3 provides several
examples of compound signatures.

9.3.3 Outsider Behaviors and Insider Misuses

People who have authenticated access to a computer system are referred to as insiders of the
system. People who do not have authenticated access to the system are referred to outsiders of
the system. An outsider of the system becomes an insider once he obtains authenticated access
to the system, either legitimately or illegitimately. Thus, an attacker is an outsider before he
obtains authenticated access to the system. But he becomes an insider once he gains authenti-
cated access to the system.

Malicious outsiders and insiders behave differently from legitimate users. Outsider behav-
iors and insider misuses can be used to detect the presence of intruders.

9.3.3.1 Use Outsider Behaviors to Detect Intrusions

Malicious outsiders, wanting to become insiders, may try to gain authenticated access to the
system. They may, for example, plant a Trojan horse in the system to allow them change system
configurations to get into the system. They may also try to hijack a TCP connection to enter the
system. Another example of outsider behaviors is a sweeping attack, in which the malicious
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outsider, wanting to find weak links in the victim’s firewall, “sweeps” the firewall by sending
a series of probing packets. Sweeping attacks often demonstrate well-known packet patterns
that could be detected easily.

9.3.3.2 Use Insider Misuses to Detect Intrusions

Once a malicious outsider becomes an insider, he can do anything a legitimate user is allowed
to do. Because he is malicious, he would do things that legitimate users would not normally
do, which can be used to detect the presence of a malicious insider. For example, a malicious
insider may try to copy system files, change system configurations, or read mission-critical
objects.

9.3.4 Signature Detection Systems

Typical intrusion detection systems use one of the following three methods for modeling sig-
natures: built-in system, programming system, and expert system.

9.3.4.1 Built-in System

This type of intrusion detection systems stores a set of detection rules inside the system and
provides an IDS editor to the user, allowing users to select rules on the basis of their needs.

Examples of built-in IDS systems include CyberSafe Corporation’s Centrax and Internet
Security Systems’ SafeSuite.

9.3.4.2 Programming System

This type of intrusion detection systems provides a set of default rules and a programming
language (or a scripting language), allowing users to select default rules and write their own
rules. This model provides users with flexibilities, but it also requires users to learn to use the
programming language.

Examples of programming IDS systems include Axent Technologies’ ITA and Haystack’s
Stalker, where ITA allows users to use a special scripting language designed by Axent Tech-
nologies to write their own detection rules, while Stalker allows users to use the C language
to write detection rules.

9.3.4.3 Expert System

This type of intrusion detection systems is directed toward meeting special needs for a special
organization. Such a system requires domain experts to define detection signatures.

For example, to build an IDS to detect intrusions related to the banking business, it may need
special knowledge from banking experts. Expert detection rules will then be used to construct
a special-purpose detection engine.

Early IDS systems were expert systems, of which SRI International’s real-time intrusion
detection expert system (IDES), funded by U.S. Navy, has influenced the research and devel-
opment of intrusion detections in many ways. The precursor of SRI International is Stanford
Research Institute created by Stanford University in the 1940s.
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9.4 Statistical Analysis

When the difference between acceptable events and unacceptable events can be quantified,
we can use statistical analysis to identify unacceptable events on the basis of quantified event
measures. There are two common approaches. One approach uses threshold values of certain
measures. The other approach uses user profiles.

Using threshold values, an IDS system counts the number of occurrences of certain types of
events during a period of time and considers it an intrusion behavior when the count exceeds a
predetermined threshold value regardless of who the users are. Threshold detection is simple
to implement, but it is inaccurate.

Using user profiles to detect intrusions is more accurate. It collects past events of a user
or a group of users to create user profiles on the basis of certain quantified measures. Certain
parameters of events can be quantified in a natural way. The following are some examples of
quantifiable events:

1. The time a particular event occurs.
2. The number of times a particular event occurs in a period of time.
3. The current values of system variables.
4. The utilization rate of system resources.

On the basis of these parameters, we may define the following four event measures: event
counter, event gauge, event timer, and resource utilization.

9.4.1 Event Counter

We may use an integer variable for each type of events to record the total number of times this
type of events occurs in a fixed period of time. This variable is referred to as an event counter.
Different types of events use different event counters. The value of an event counter, starting
from zero, is increased by one each time an event of the same type occurs.

Event types are defined on the basis of particular situations. For example, we may treat all
login events of a user during a fixed period of time the same type of events and view each
login from the user a single event. Likewise, we may treat all login events (which may come
from different users) that occurred on the same host computer during a fixed period of time
the same type of events and view each login on the system a single event. We may also treat
the number of executions of a particular command during a fixed period of time the same type
of events.

Note that some events could cause event counters to reset. For example, an event counter of
a user login could be reset if a login is successful after two or three unsuccessful login attempts.

9.4.2 Event Gauge

We may use an integer variable for each measurable object in the system to denote the current
value of the object. This variable is referred to as an event gauge. For example, the buffer space
used by a TCP server is a measurable object, where the current number of packets stored in
the buffer is the current value of the variable. Different objects use different event gauges.
The values of an event gauge are non-negative integers, which may be increased and may be
decreased.
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9.4.3 Event Timer

We may use an integer variable for two related events in the system to denote the time differ-
ence of the occurrences of the first event and the second event. This variable is referred to as
an event timer. For example, we may use an event timer to record the time difference between
two consecutive logins of the same user. We may also use an event timer to record the time
difference between a user login and the first program the user executes after login.

9.4.4 Resource Utilization

We may use a variable for each resource in the system to record the utilization of the resource
during a fixed period of time. This variable is referred to as resource utilization. For example,
the CPU time needed to execute a program, the number of times a user prints in each login,
and the number of email messages a user sends out in each login.

9.4.5 Statistical Techniques

On the basis of the event measures introduced in Sections 9.4.1–9.4.4, we may use statisti-
cal methods to analyze events and identify unacceptable events. Common statistical methods
include the mean and standard deviation, multivariate analysis, Markov process, and time
series analysis.

The mean and standard deviation is the simplest statistical method. We may use it to identify
intrusion activities by comparing average event frequency and its standard deviation with the
normal average event frequency and its standard deviation. For example, we may calculate
the mean and standard deviation of login frequency and execution frequency of a particular
user at a certain time period and compare them with the normal login frequency and execution
frequency. Any substantial discrepancy would indicate intrusion acts.

We may use multivariate analysis to analyze two or more related variables at the same time
to identify anomalies. For example, we may obtain more information by considering the CPU
time and resource utilization at the same time.

Markov process can be used to calculate the probability that the system is changed from
one state to another state. Time series analysis can be used to study event sequences to find
out anomalies.

Large corporations often hire special groups of experts whose sole responsibilities are
to analyze IDS alerts, refine detection algorithms, and provide information to the incident
response teams.

9.5 Behavioral Data Forensics

Behavioral data forensics studies how to use data mining techniques to analyze event logs and
search for useful information. Any information that indicates past, current, and future intrusion
activities would be particularly interesting.

The goal of data mining is to devise algorithms to search for useful information from large
data sets. In the scope of intrusion detection, after collecting raw data (events) from various tar-
get computers, the command console needs to mine these data to identify intrusion behaviors.
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Raw events may have been recorded in various formats. For example, the raw events collected
by NBDs are raw TCP/IP packets, the raw events collected by HBDs may be in operating
system formats, and the system logs may be in the ASCII format.

The amount of raw data collected from a server computer may reach 10 MB per day. Thus,
if an organization has 100 servers, then the total amount of data collected per day may reach
1 GB. Analyzing a large volume of data such as this requires efficient data mining tools.

9.5.1 Data Mining Techniques

Data mining uses the following common techniques:

Data Refinement
Data refinement is a technique for improving data representations to help find new information.
This technique is used to make useful features stand out.

Contextual Interpretation
Contextual interpretation is a technique to interpret data according to its context to help find
new information. Interpreting data from a different point of view would often yield new mean-
ings of the data that were undiscovered previously.

Source Combination
Source combination is a technique that combines different types of data sources to find new
information from new perspectives.

Out-of-Band Data
Out-of-band data is a technique that combines data outside of the scope of intrusion detection
to help find new information.

Drill Down
Drill down is a technique that starts from a higher level of activities. Once a specious behavior
is spotted, look for lower levels of activities to find out more information.

9.5.2 A Behavioral Data Forensic Example

Suppose from analyzing a system log that Cathy, the system manager in a company located
in Chelmsford, Massachusetts, found that user John had 203 successful logins during the
last 30 days, which was substantially larger than his average number of logins in any given
30-day period. This triggered Cathy to drill down and find out what John was doing on these
logins by checking a lower level activity report. Cathy found that John logged in regularly
around 8:30 p.m., executed a program named mytest, and logged out 2 hours later. Using an
out-of-band data resource, Cathy learned that John actually went to see a ballet show from
8:00 p.m. to 10:00 p.m. in the Wang Center for the Performing Arts in Downtown Boston on
a day that John was also recorded logging in at 8:30 p.m. This made Cathy believe that John’s
account had been compromised by an intruder. Further investigation on what the program
mytest did confirmed Cathy’s suspicion.
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9.6 Honeypots

The use of decoy machines to direct intruders’ attention away from the machines under pro-
tection is a major technique to preclude intrusion attacks. Any device, system, directory, or file
used as a decoy to lure attackers away from important assets and to collect intrusion behaviors
is referred to as a honeypot.

A honeypot may be implemented as a physical device or as an emulation system. The idea
is to set up decoy machines in a LAN, or decoy directories/files in a file system and make
them appear important, but with several exploitable loopholes, to lure attackers to attack these
machines or directories/files, so that other machines, directories, and files can evade intruders’
attentions. A decoy machine may be a host computer or a server computer. Likewise, we may
also set up decoy routers or even decoy LANs.

Honeypots can also be used for researchers to study intrusion techniques, formulate
event signatures, and design intrusion countermeasures. Such honeypot is often referred
to as research honeypot. A honeypot deployed in production networks or systems in an
organization, which is not used for research purpose, is referred to as production honeypot.
While a honeypot may be used for both research and production, in general, a research
honeypot is not required to be an industry-grade product.

Thus, a honeypot is set out to do two things:

1. Help its owner to know the enemies.
2. Sacrifice itself to save the other assets.

Honeypots are deliberately set up to deceive and trap intruders to reveal their motivations,
intentions, tactics, techniques, and tools through packet capturing, analysis, and controls. Hon-
eypots have become an important component in the network security infrastructure.

9.6.1 Types of Honeypots

Early honeypots, developed in 1990, were physical systems. They were simply host computers
connected to unprotected LANs with real IP addresses. They were operated on unpatched oper-
ating systems with default configurations. However, physical systems often require high-level
interactions between the honeypot daemon and the operating system running it. It may also
require substantial efforts to maintain a physical honeypot.

Since the late 1990s, researchers have developed new software techniques to construct vir-
tual honeypots by emulating operating systems or network services. They are easy to deploy
and require low-level interactions between the honeypot daemon and the local hard disk. For
example, Honeyd is a network-based emulation honeypot and KFSensor is a host-based
emulation honeypot for the Windows operating system. Other honeypot emulation software
includes CyberCop’s StingandDeception Toolkit.

The MWCollect Alliance (http://www.mwcollect.org) and the Honeynet Project
(http://www.honeynet.org) are international organizations of white-hat hackers
devoted to studying and developing honeypot technologies.

MWCollect projects include Nepenthes, Honeytrap, and HoneyBow.
Honeynet projects include Honeywall CDROM, Sebek, and Interaction Honeypot Analy-

sis Toolkit (HIHAT).

http://www.mwcollect.org
http://www.honeynet.org
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Specialty honeypots are designed specifically to deal with a certain type of intrusions. For
example, honeypots that are designed to handle spam mails are referred to as spam honeypots
or spam traps.

Honeypot functionalities may also be distributed among several honeypots to form a dis-
tributed honeypot. The common architecture of a distributed honeypot consists of a centralized
cluster of high-interaction honeypots and a distributed low-interaction honeypots across the
local area network.

9.6.1.1 Interaction Levels

The interaction level of a honeypot is characterized as follows:

Low Interaction
A honeypot has low interaction if its daemon only writes to the hard disk of the local host.

Mid Interaction
A honeypot has mid interaction if its daemon reads from and writes to the hard disk of the
local host.

High Interaction
A honeypot has high interaction if its daemon interacts with the operating system of the local
host and through the operating system interacts with the local hard disk and other resources.

9.6.1.2 Honeypot Functionalities and Characterizations

A typical honeypot should consist of the following components: data capture, data control,
and interface. The data capture component is used to capture intrusion activities, events, or
attackers. The data control may either slow down intrusion activities or defuse attackers. The
interface component may provide an API, a non-network implementation facilitator (IF), or a
network IF.

Honeypots may be characterized by their interaction levels, distribution appearances, and
network roles. In the last characterization, there are client honeypots and server honeypots.
Honeypot functionalities and characterizations are summarized in Fig. 9.6.

9.6.2 Honeyd

Honeyd is an engine for running virtual IP protocol stacks in parallel. It provides a lightweight
framework for constructing virtual honeypots at the network level. A single instance of
the Honeyd daemon can simulate standard network services (such as SMTP, FTP, and
ICMP) running different operating systems on several different virtual hosts simultaneously.
Honeyd is designed to detect and disable worms, distract intruders, and prevent the spread
of spam mails.
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Figure 9.6 Honeypot functionalities and characterizations

9.6.2.1 Virtual Framework

Honeyd virtual honeypots appear to run on real IP addresses, but these addresses are not
physically allocated. Honeyd receives network packets for virtual honeypots via a router or a
Proxy ARP. Honeyd replies to network packets sent to virtual honeypots. Figure 9.7 shows a
schematic of Honeyd.

Internet
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MAC
129.63.8.3

Linux
129.63.8.4

Windows
129.63.8.5

FreeBSD
129.63.8.6

NetBSD
129.63.8.7

Figure 9.7 Schematic of Honeyd. A single instance of Honeyd daemon simulates the network stack
behaviors of different operating systems on different virtual hosts
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Figure 9.8 A block diagram of Honeyd architecture

Let A.B.C.x and A.B.C.y denote, respectively, the IP addresses of the router and the
Honeyd host. For simplicity, assume that all virtual honeypots are installed in the same domain
with IP addresses

A.B.C.v1, · · · , A.B.C.vk.

Suppose that an intruder sends an ingress packet to the honeypot at A.B.C.vi from the
Internet. The local router receives the packet and forwards the packet to the virtual honeypot
residing in the Honeyd host with IP address A.B.C.y. This can be done by modifying relevant
routing entries in the router to direct packets sent to A.B.C.vi to the Honeyd host. If no special
route is provided, the router will use a Proxy ARP to allocate the MAC address of the virtual
honeyhost, which configures the Honeyd host to reply to ARP requests for A.B.C.vi with the
Honeyd host’s own MAC address. Honeyd is a mid-interaction honeypot.

9.6.2.2 Personality Engines

As attackers may use a fingerprinting tool (e.g., Xprobe) to find out whether a target system is a
honeypot, it is important to make a honeypot look like a valuable target when it is fingerprinted.
Honeyd does this by simulating the network stack behavior of the underlying operating system
supposed to run on the target system. This is referred to as the personality of a virtual honeypot.

Different virtual honeypots have different personalities. Honeyd provides virtual honey-
pot personality through a personality engine. In particular, the personality engine introduces
appropriate changes to the headers of every egress packets to make them meet the expectation
of the operating system supposedly running on the target system, which is now just a virtual
honeypot. Figure 9.8 shows a block diagram of the Honeyd architecture.

Ingress packets are dispatched by a packet dispatcher to the corresponding protocol handler.
For TCP (such as SMTP and FTP) and UDP protocols, a service component is needed. Egress
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packets will then be modified by the personality engine so that they appear to come from the
correct network stacks as the intruder would expect.

9.6.3 MWCollect Projects

Nepenthes, Honeytrap, and HoneyBow are honeypot tools developed by the MWCollect
Alliance, which are specifically used to lure malicious software away from attacking the assets
under protection. Nepenthes and Honeytrap are low-interaction honeypots, while HoneyBow
is a high-interaction tool. Nepenthes and Honeytrap are used to set up virtual honeypots to
collect autonomously spreading, worm-like malware. HoneyBow is a high-interaction physical
honeypot.

While Nepenthes can only trap known malicious software, Honeytrap can trap unknown
attacks. Honeytrap handles ingress packets to unbound TCP ports. When it detects a connection
attempt to an unbound TCP port, the Honeytrap daemon will take over the network server
to handle the TCP connection. In particular, Honeytrap can extract TCP connection attempts
from a network stream. This may be done using a sniffer to catch TCP reset packets with a zero
sequence number, for such packets indicate that the corresponding TCP connection requests
are denied.

9.6.4 Honeynet Projects

A honeynet is a network of real honeypots that operates on real operating systems. While it
may be costly and time consuming, honeynets are capable of capturing more information. In
particular, a honeynet is a reachable decoy network. It uses a stealth inline network device,
called a honeywall, to monitor and control ingress and egress packets to and from real honey-
pots in the network. A honeywall is similar to a firewall, except that honeywall never blocks
packets. The following are several common Honeynet tools:

1. Honeywall CDROM: A honeywall is a hardware device for constructing a Honeynet. Hon-
eywall CDROM is a bootable CD. It contains all the functionality of Honeywall. When
booted from a Honeywall CDROM, the host computer copies the functionality of Honey-
wall and constructs a Honeywall. It allows users to capture, control, and analyze packets.

2. Sebek: Sebek is used to capture attacker activities on real honeypots, even if they are
encrypted by IPsec, SSL, or SSH. In particular, Sebek can recover keystrokes, passwords,
and uploaded files. Figure 9.9 shows a schematic of a Sebek honeypot.

3. High-Interaction Honeypot Analysis Toolkit (HIHAT): This is a Web tool that can trans-
form arbitrary PHP (Hypertext Preprocessor) applications into Web-based high-interaction
Honeypots. HIHAT can be used to monitor and analyze packets to and from the honeypot.
Moreover, it can generate an IP-based geographical mapping of the attack sources.

4. HoneyBow: HoneyBow is a high-interaction malware collection honeypot sensor.

9.7 Closing Remarks

How to detect intrusion activities effectively and efficiently is an active research area. Under-
standing operating systems and network protocols, particularly from the system administration
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point of view, will help design better intrusion detection systems. Computational statistics and
data mining technologies have played an important role in IDS. Honeypot technologies pro-
vide a different way to counter intrusions by luring intruders to attack certain deliberately
created sacrificial assets. Understanding operating systems and network protocols is the key
to construct honeypots.

9.8 Exercises

9.8.1 Discussions

9.1. Discuss why it is possible to automatically detect intrusion activities.

9.2. Describe your experience of using an IDS/IPS system (if you have used one).

9.3. Some users comment that setting up an IDS/IPS system is not an easy task. Why do
you think it is the case?

9.4. If an IDS system produces a lot of false positive alarms or a lot of false positive alarms,
what do you suppose it happens and how would you suggest to fix it?

9.5. Is it possible for an IDS system to produce a lot of false positive and false negative
alarms in a short period of time and why?

9.6. Describe your experience of deploying a honeypot product (if you have used one).

9.8.2 Homework

9.1. Similar to Fig. 9.2, draw a block diagram of a NBD IDS.
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9.2. Download and install Snort from http://www.snort.org. Describe how to use
Snort as a NBD tool.

9.3. Similar to Fig. 9.2, draw a block diagram of a HBD IDS.

9.4. Any device inside a LAN can be a target for intrusion. Network taps can be placed
at any point in the LAN. Suppose that the command console is installed on a bastion
host in a DMZ. Draw a block diagram of such an IDS system.

9.5. One may distribute the command console components (part or all of them) across sev-
eral target systems to form a distributed IDS. Draw a block diagram of a distributed
IDS that provides an overview of the system and detailed information between com-
ponents.

9.6. Explain why the four listed activities in the subsection of “Single-Event Signatures”
are harmful.

9.7. Explain why “a user would often use the same document he used in a previous login”
is a multievent signature. Why is it an acceptable signature?

9.8. Explain why the example given in the subsection of “Multihost Signatures” is a mul-
tihost signature and why it is suspicious.

9.9. Assume that an IDS system detects the following payload signatures. Which signa-
tures are acceptable and which signatures are not acceptable? Justify your answers.

so.com -> de.com ETHER TYPE=0800 (IP), SIZE=68 bytes
so.com -> de.com IP D=129.63.8.1 S=129.63.8.12 LEN=54,ID=44340
so.com -> de.com TCP D=21 S=28613 ACK=2132480783

SEQ=1358787809 LEN=14 WIN=61320
so.com -> de.com FTP C PORT=28113 SITE exec cat /etc/hosts\r\n
so.com -> de.com FTP C PORT=28113 SITE exec cat /etc/services
\r\n

9.10. Given an example of an unacceptable payload signature not mentioned in the text-
book. Justify why it is unacceptable.

9.11. Given an example of an unacceptable header signature not mentioned in the textbook.
Justify why it is unacceptable.

9.12. Give an example of an unacceptable single-event signature not mentioned in the text-
book. Justify why it is unacceptable.

9.13. Give an example of an unacceptable multievent signature not mentioned in the text-
book. Justify why it is unacceptable.

9.14. Give an example of an unacceptable multihost signature not mentioned in the text-
book. Justify why it is unacceptable.

9.15. Give an example of an unacceptable compound signature not mentioned in the text-
book. Justify why it is unacceptable.

http://www.snort.org
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*9.16. Ask your system administrator for a system log during the past 2 weeks and analyze
whether there are intrusion activities. Write a short paper of about 4000 words to
describe your methods and results.

9.17. If an IDS has a high false positives, what would be a possible reason? Can you suggest
a way to reduce false positive detections.

9.18. Assuming a HBD IDS is used to monitor system files. Under what situations can false
positives occur? How can you reduce false positive detections?

*9.19. The following are commercial NBD IDS products and their vendors. Select four prod-
ucts from this list, and write a paper of about 4000 words to describe these products.

1. BlackICE by Network ICE
2. Dragon by Network Security Wizards
3. NFR by Network Flight Recorder
4. NetRanger by Cisco Systems
5. NetProwler by Axent Technologies
6. eTrustID by Computer Associates

*9.20. The following are commercial HBD IDS products and their vendors. Select four prod-
ucts from this List, and write a paper of about 4000 words to describe these products.

1. Computer Misuse Detection System (CMDS) by ODS Networks
2. Kane Security Monitor (KSM) by ODS Networks
3. SecurreCom8001 by ODS Networks
4. Intruder Alert (ITA) by Axent Technologies
5. PSAudit by Pentasafe
6. OperationsManager by Mission Critical

*9.21. The following are commercial hybrid (i.e., with both network-based and host-based
detection) IDS products and their vendors. Write a paper of about 4000 words to
describe these products.

1. Centrax by CyberSafe Corporation
2. CyberCop by Network Associates
3. RealSecure by Internet Security Systems (ISS)

9.22. Visit http://honeytrap.mwcollect.org/attacks and describe 10 most
recent attacks trapped by Honeytrap.

9.23. A target browsing behavior may or may not be threatening, which is a point of inter-
est of conducting behavioral data forensics. Give an example of analyzing browsing
behaviors to help identify intrusion activities.

9.24. If a certain user is browsing mission-critical files from directory to directory and from
host to host, then it is a suspicious activity. This is a point of interest of conducting
behavioral data forensics. Given an example of analyzing critical file browsing trend
to help identify intrusion activities.

http://honeytrap.mwcollect.org/attacks
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9.25. “Recently, we launched a new service and were asked to create a nonsensical name
for the DNS entry,” said a reader, “so that if a hacker enumerated our DNS they would
be unable to identify its worth. The company operates dozens of these servers with
nonsensical names, and it is really hard to figure out where services are.”

Do you think that this measure would be useful to counter intruders? Justify your
answers.

9.26. Suppose that you have a spare older computer that you wish to use it to set up a
honeypot. Download and install Honeytrap from http://www.mwcollect.org
to make this computer a honeypot.

*9.27. On a Linux system, describe how to detect a connection attempt to an unbound TCP
port and how to take over the network server to handle the TCP connection.

9.27. “I have setup an IDS system to support a firewall system,” a reader told us. “The
IDS was a part of a business security appliance, and I configured the IDS using the
appliance Web UI. There is a lot more regarding working with and setting up IDS.
It gets very complicated and time consuming in a large organization. This process
requires extensive knowledge working with additional third part tools and application.
Troubleshooting can then become overbearing.” Why do you think setting up an IDS
was difficult?

9.28. “My experience in managing network-based IDS/IPSs is that this appliance is very
difficult to setup correctly based on organizational security policies,” said a user.
“Most default configurations do not fully comply with specific policies out-of-the-box
and the effort to get the settings correct is a long process, requiring continuous man-
agement.” Can you suggest a way to improve this process?

9.29. Conduct a survey on the following open-source IDS products: Snort, Suri-
cata, Bro, Kismet, OSSEC, and Samhain. Explain what each of these products
does and how to set them up. (Hint: you may consult Joe Schreiber’s blog on
http://www.alienvault.com/blogs/security-essentials/open
-source-intrusion-detection-tools-a-quick-overview.

*9.31. Node subversion is a serious security threat in ad-hoc WSNs (see Exercise 6.9.2
for a description of WSNs). Attackers may be able to penetrate legitimate sensor
nodes using reverse-engineering techniques, or replace them with attackers’ own
malicious sensor nodes. Thus, how to detect subverted sensor nodes is an important
issue. Design an efficient intrusion detection mechanism that is suitable for WSNs
and justify your designs.

9.32. “I once developed a new way of doing a meeting registration,” a reader told us, “and
my boss was thrilled since it was so much easier to maintain with this configurable
technique. The first meeting came and went as a big success. A few months later
when I got in one morning there were almost 100 error messages where it was clear
that people were trying to hack into our server using SQL injection (I noted that the
querystring parameter were part of the error messages). I looking up the IP addresses,
and it turns out they were coming from a technical school in a foreign country! Since

http://www.mwcollect.org
http://www.alienvault.com/blogs/security-essentials/open
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that page wasn’t actively in use, I took it offline, and did not put it back online until I
had come up with a security model that matched all the rest of the site.”

Why do you think the attacks came so late? Explain what the attackers were trying
to achieve. Justify your answer.

9.33. Once a subverted node is detected in an ad-hoc WSN, the good nodes or the base
station may want to take it out of the network by not receiving its data or not com-
municating with it. However, malicious nodes may also be able to impersonate good
nodes to take out good nodes out of service. To deal with this issue, researchers have
proposed to use suicide nodes to take out subverted nodes. That is, once a node A
detects a certain node M is malicious, the node sends a signed suicide note EK(A,M)
to other nodes. After verifying the signature of the suicide note, the other nodes will
de-associate with both nodes A and M . Thus, node A sacrifices itself for the common
good. Discuss the pros and cons of this approach.



10
The Art of Anti-Malicious
Software

Malicious software, coded intentionally by malicious programmers, is used to inflict dam-
age to other people’s computers, including hardware resources, files, system programs, and
application programs; steal other people’s data; or exploit other people’s computer resources.
Malicious software sneaks into an internal host through software loopholes or improper sys-
tem configurations; or by luring unvigilant users to copy or download it to their computers.
Ignorance and negligence of computer users are a major factor contributing to malicious soft-
ware being wide spread. Business travelers, a.k.a. road-warriors, who use public access points
and other untrustworthy networks also present enormous risks to corporate networks.

It is evident that firewalls and IDS/IPS alone are not sufficient to stop malicious software
from entering internal computers. New methods are needed to detect, block, and remove mali-
cious software. For this purpose, we need to understand how malicious software is structured,
how it lives, and how it disseminates. In every art, there are a few principles and many tech-
niques. The art of anti-malicious software is no exception. To learn this art, we will need to
understand common kinds of malicious software, which include viruses, worms, trojan horses,
spyware, and zombieware. Malicious codes that exploit software flaws and configuration loop-
holes in Web systems are also common.

This chapter is focused on virus defense, Web security, and DDoS defense methodologies.

10.1 Viruses

A computer virus is a piece of code hiding in a program that can automatically copy itself
or embed a mutation of itself in other programs. A computer worm, on the other hand, is
a standalone program that can automatically replicate itself to other host computers through
networks. Worms may be viewed, roughly, as network viruses.

The program that contains a viral code is referred to as a host program. A host program
of a virus is sometimes referred to as an infected program. A program cleared of all viruses
is referred to as an uninfected program or a healthy program. It is also called a disinfected
program if the program was once infected with a virus but now the virus has been removed.

Introduction to Network Security: Theory and Practice, Second Edition. Jie Wang and Zachary A. Kissel.
© Higher Education Press. All rights reserved. Published 2015 by John Wiley & Sons Singapore Pte Ltd.
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When the host program is not executed, the virus code hiding in it can do nothing. Only when
the host program is executed will the virus code be activated and do something. Computer
viruses are a special kind of parasitism.

Recent development of computing technology has allowed viruses to live in files typi-
cally not viewed as executable programs. These files include PDF files, office documents,
and images, to name just a few. Viral codes contained in these files may be activated by the
application programs that process them. Thus, we also use host files and infected files to denote
files that contain viral codes.

10.1.1 Virus Types

Composing viral code is a competitive and wicked sport played by malicious programmers.
Since the first creation of a computer virus in the 1980s, numerous types of viruses have been
created and spread on almost all common platforms.

Viruses are specific to particular types of file systems, file formats, and operating systems. A
virus that can infect one type of file system, for example, may not work in a different type of file
system. Viruses are also specific to particular types of architecture, CPU, languages, macros,
scripts, debuggers, and every other form of programming or system environment. While a
typical virus that works in one environment may not work in a different environment, there
are also viruses that may work in multiple environments. Viruses of this kind are typically
written as platform-independent code. When such a virus gets in a particular environment, its
platform-independent code will be translated to the local format and infect the local host files.

10.1.1.1 Classification Based on Host Programs

The following are common types of viruses according to the types of host files they would
infect or where they live.

Boot Virus
These types of viruses infect the boot program of a host computer that resides in the boot
sector. A boot virus uses the computer’s boot sequence to activate itself. Once activated, it
may modify the operating system to intercept disk access and infect other disks. It may also
infect an updatable BIOS of a PC computer. For example, Elk Cloner and Cascade are boot
viruses that could infect, respectively, Apple II computers and PC computers.

Boot viruses typically copy the original boot sector to another location. Thus, if two boot
viruses store the original data in the same location and hit the same machine, then the second
infection will replace the original boot sector copied to a new location with the new code in
the first infection, causing the original boot sector to be lost permanently. The Stoned Empire
Monkey virus, for example, is a virus of this kind.

File-System Virus
These types of viruses infect the file system of a host computer. A file is typically stored on
a disk as a group of clusters, where each cluster is stored in contiguous sectors and different
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clusters are stored in noncontiguous sectors. Thus, the file system maintains a table of pointers,
where each pointer points to the first cluster of a file. A file-system virus may overwrite table
entries and spread itself through file systems. For example, DIR-II is such a virus that infects
the File Allocation Table (FAT) file system of Microsoft’s DOS operating systems. The NTFS
stream viruses and NTFS compression viruses have been created to infect Microsoft’s New
Technology File System.

File-Format Virus
These types of viruses infect individual files. For example, a COM virus infects binary files
with the .com extension. An EXE virus infects executable files with the .exe extension. A DLL
virus infects Dynamic Link Library (DLL) files with the .dll extension. An ELF virus infects
executable files in UNIX, where ELF stands for executable and linking format. Device-driver
viruses have also been created to infect driver files of Windows XP. Win32 and Win64 are
the most recent types of viruses targeted, respectively, at 32-bit Windows and 64-bit Windows
operating systems.

Macro Virus
These types of viruses infect documents that contain macro codes. In particular, macro viruses
have been created to infect Microsoft Office documents that allow users to include macro codes
to enhance processing capabilities. These documents include Word, Excel, PowerPoint, and
Visio documents. For example, macros may be added in a Word document to check spelling
automatically when the document is closed. Thousands of macro viruses have been created.
The WM/DMV virus and the XM/Larous virus, created in the mid-1990s, were the first known
macro viruses that infected, respectively, Word documents and Excel spreadsheets. Macro
viruses have also been created for different language versions (e.g., Chinese, Japanese, and
Russian) of the Microsoft Office programs.

Script Virus
These types of viruses infect script files, which include UNIX scripts, Visual Basic scripts
(VBScript), Java scripts (JScript), and batch files. Script viruses typically replicate themselves
in the form of email attachments, office documents, and Web documents. Thus, they are also
classified as worms. For example, LoveLetter was a VBScript virus that spread rapidly in 2000
through email.

Registry Virus
These types of viruses infect the Microsoft Windows registry, where the Windows registry is
a database storing settings and options for Windows operating systems and most nonsystem
software. For example, the Happy99.exe virus infected the Registry by inserting a new key in
the Registry when it is executed.

Memory-Resident Virus
These types of viruses stay in the main memory of the infected computer, infecting any pro-
gram that is loaded in the main memory for execution. The Black Ice virus, for example, is a
memory-resident virus.
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10.1.1.2 Classification Based on Embedded Forms

We may also classify viruses according to the forms they appear in when they infect their
host programs. For example, there are stealth viruses, polymorphic viruses, and metamorphic
viruses. Stealth viruses try to hide themselves without being detected. Compressing an unin-
fected program before embedding the viral code is a stealth virus. Polymorphic viruses may
change instruction orderings or encrypt viral codes with different keys, so that the same viral
code will appear in different forms. Metamorphic viruses can be rewritten automatically during
transmission.

10.1.2 Virus Infection Schemes

A viral code may overwrite a segment of an existing program; or insert itself at the beginning,
in the middle, or at the end of an uninfected host program. It may also break itself into several
segments and insert a different segment in a different location of the uninfected host program.
Figure 10.1 shows a schematic of where a viral code may be inserted in a program.

The viral code may place a goto statement at the entry point of the host program (i.e., at the
first statement to be executed in the host program) to jump to the viral code and place a goto
statement at the end of the viral code to jump back to the first statement of the host program.
If a viral code is fragmented, then at the end of each fragment is a goto statement that jumps
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Figure 10.1 Schematic of virus infection techniques
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to the first statement of the next viral code fragment. Thus, when an infected host program is
executed, the viral code will be executed before the original program of the host is executed.

Because viruses have the same access rights as the host files they live in, viruses can do much
damage. For example, a virus may modify or delete certain system files or configurations.

Similarly to biological viruses, the life cycle of a computer virus is divided into the periods of
latency, infection, and breakout. A virus in the latency period simply stays in the infected host
file and does nothing. When the infected host file is executed, the virus may decide, according
to the instructions of the viral code and the environment, to replicate itself or a mutation of
itself to other healthy hosts (infection), do damage to the system (breakout), or both.

10.1.3 Virus Structures

The structure of a virus typically consists of four subroutines: infect, infection-condition,
break-out, and breakout-condition. The infect subroutine searches for possible host pro-
grams and checks whether they are infected. If not, the subroutine embeds a viral code in it. The
infection-condition subroutine checks whether certain conditions are satisfied for the purpose
of launching the infect subroutine. A viral code may use the infection-condition to sit and wait
for a particular event to occur. For example, it may wait for a certain notable date or a certain
sequence of keystrokes. The break-out subroutine is responsible for carrying out the actual
damage work, including modifying and deleting certain files or system configurations. The
breakout-condition checks whether certain conditions are met for the purpose of executing
the break-out subroutine. The following algorithm is an example showing the virus structure:

1. program V := {
2. 12345;
3. goto main;
4. subroutine infect := {
5. loop:
6. P := get-random-host-program;
7. if (the second line of P = 12345;)
8. then goto loop
9. else insert lines 1-27 in front of P;
10. }
11. subroutine break-out := {
12. modify selected files;
13. delete selected files;
14. ...
15. }
16. subroutine infection-condition := {
17. return true if certain conditions are satisfied;
18. }
19. subroutine breakout-condition := {
20. return true if certain conditions are satisfied;
21. }
22. main: main-program := {
23. if infection-condition then infect;
24. if breakout-condition then break-out;
25. goto next;
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26. }
27. next:
28. the original host program ...
29. }

In this example, the viral code V contains an infect subroutine, which does the following:

1. Search at random for a host program P in the system and check whether the second line of
P is equal to “12345”; a label indicating whether P is infected.

2. If not, that is, if P has not been infected, then insert the viral code in front of P to infect P.
3. If yes, search at random for another program P, and repeat the same procedure.

The first statement of V directs the infected host program to execute the viral code. After the
viral code is executed, it is directed to execute the original host program.

10.1.4 Compressor Viruses

Although an infected host file still uses the same name as that of the original host file, the
length of the infected host file will be longer than the length of the original host file because of
the addition of the viral code. This can be detected simply by checking the size of the host file
against the size of its original program. To avoid being detected, virus writers may write a viral
code that compresses the healthy host before copying itself into it. In particular, when it finds
a healthy host file P, the viral code will first compress it to produce P′ to provide sufficient
space for adding the viral code in it. If after the viral code is added, the length of the infected
host file is still shorter than that of the original host file, the viral code may simply add a few
dummy instructions or symbols to fix the length. When the infected program is executed, the
viral code will need to decompress P′ back to P before it executes P (see Fig. 10.2).

The following is an example of a host-compression virus.

1. program CV := {
2. 012345;
3. goto main;
4. subroutine infect := {
5. loop:
6. P := get-random-host-program;
7. if (the second line of P = 012345; )
8. then goto loop
9. else = {
10. compress P to become P′

11. insert viral code in front of P′;
12. }
13. subroutine break-out := {
14. modify selected files;
15. delete selected files;
16. ...
17. }
18. subroutine infection-condition := {
19. return true if certain conditions are satisfied;
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20. }
21. subroutine breakout-condition := {
22. return true if certain conditions are satisfied;
23. }
24. main: main-program := {
25. if infection-condition then infect;
26. if breakout-condition then break-out;
27. decompress P′ back to P;
28. execute P;
29. }

There are other ways to hide the extra size of the viral code to an infected host file. This
can be done, for example, by storing code in the NTFS alternate file stream, because native
Windows applications do not display its size. The virus may also install a root-kit to intercept
system calls to hide the real file sizes.

10.1.5 Virus Disseminations

Once a virus is in a computer system, it may infect other programs or files within the system. A
virus may enter a host computer through portable storage devices, such as floppy disks, CDs,
and flash memory sticks; through program downloads; or through email attachments.

The use of email attachments to disseminate viruses is common in recent years. This is
because most email systems will automatically open an email attachment when it is selected
and will automatically execute it if it is an executable file. Thus, if an email attachment is an
infected executable file or a document that contains infected macros, executing it allows the
viral code to enter the host system. For example, The Zafi virus that appeared around 2004
Christmas was a virus spread through email attachments. Zafi is also called the Christmas
virus. It contains an SMTP engine that can search the address books of different users in the
infected host computer. It then sends a Christmas greeting message to these addresses with
a Zafi virus attachment. Moreover, the Zafi virus can even detect whether the infected host
computer has a virus scan installed and will attempt to replace the virus scan software with
viral software.

To avoid getting infected from email attachments, users should be cautious not to open email
attachments, particulary attachments sent from a stranger.

Uninfected
program

Infected
program

Infected
program

Viral code

Viral code

Viral code

Infection period Breakout period

CompressP PP' P'

Figure 10.2 Schematic of host-compression virus
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10.1.6 Win32 Virus Infection Dissection

This section uses Win32 viruses to dissect virus infection techniques. Most of the Win32
viruses have one thing in common. That is, they exploit Microsoft’s Portable Executable (PE)
format to infect other programs. Indeed, thousands upon thousands of Win32 viruses have
been reported that use PE to do their tricks.

10.1.6.1 The PE Format

The PE format originated from the Common Object File Format (COFF) in UNIX. It modifies
COFF to present executables, object code, and DLLs in Microsoft Windows operating systems.
It allows the Windows operating system to map an executable image efficiently and reliably
from disk to the memory space. In particular, a PE file consists of headers, sections, and other
information (see Fig. 10.3). Note that on top of the PE format is the MS-DOS MZ header,
where MZ, represented by hexadecimal 4D 5A, stands for Mark Zbikowski, one of the early
developers of DOS. The PE sections contain the modules of code, data, resources, import

Figure 10.3 Schematic of the PE file format
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tables, and export tables, where the .text section holds program code, the .data section holds
the global variables, and the .rsrc section holds the resources. The PE headers provide crucial
information of the executable image.

To save storage space, different sections in one PE file are stored on disk contiguously.
When loaded in the memory, however, each section needs to be aligned to a page boundary, so
that different sections may be given different levels of memory protections. For example, the
.text section should be mapped to executable and read-only memory, while the .data section
should be mapped to nonexecutable, readable, and writable memory. The dynamic linker is
responsible for mapping each section and setting an appropriate access permission to each
page according to the information contained in the corresponding header. Thus, PE headers
are natural targets of exploitations by Win32 viruses.

In a PE file, there is a special area to hold the Import Address Table (IAT), which will store
at run time the actual locations of the Windows API functions to be used by the PE file so
that the code can jump to these locations to run them. IAT is needed because the program at
compile time does not know in advance where the DLLs it will need are located in memory.
These DLLs will be loaded when the PE file is loaded. Thus, IAT is also a natural target of
exploitation by Win32 viruses.

10.1.6.2 PE Headers and Virus Exploitations

A PE header is a structure consisting of a number of fields. The following fields, in particular,
are exploited by most Win32 viruses:

WORD AddressOfEntryPoint
This field stores the address of the entry point of the PE file, which typically points to the .text
section. That is, this is the address where the execution begins. Most Win32 viruses modify
this field to point to the viral code.

DWORD ImageBase
This double-word field stores the address of the PE image. Most Win32 viruses use it to cal-
culate the actual address of certain objects.

DWORD SectionAlignment
This double-word field stores the value for section alignment, where each section in the PE file
is to be mapped into memory starting at a virtual address divisible by this value. Most Win32
viruses use it to calculate the actual address of the viral code.

10.1.7 Virus Creation Toolkits

Viruses are typically written in an assembly language. Thus, writing viruses requires special
training. To make it possible for beginners to create viruses without knowing how to write
assembly code, elite virus writers have produced virus creation toolkits for amateurs. The Next
Generation Virus Creation Kit (NGVCK), for example, was a popular virus creation toolkit.
NGVCK is a Visual Basic application for generating 32-bit viruses infecting Windows PE files.

NGVCK generates metamorphic viruses. It generates a piece of viral code that does the same
thing with each different virus, but with an almost completely different structure each time.
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10.2 Worms

A worm is typically a standalone application program that can replicate itself to a different
computer on a network. This is similar to a worm that creeps its way from one place to another.
A worm executes itself automatically on a remote computer with or without extra help from a
user. Some worms, however, may need a host file for spreading. Thus, worms may be viewed
as a special kind of viruses. In other words, a virus that replicates itself primarily through
networks is a worm.

Worm Structures
A worm typically consists of a target locator subroutine and an infection propagator subrou-
tine. The target locator subroutine is used to find new targets, and the infection propagator
subroutine is used to transfer itself to a new computer.

10.2.1 Common Worm Types

Mass mailers and rabbits are the two most common types of computer worms.
Mass mailers are worms that reproduce themselves to other computers through emails. It

is customary to attach “@mm” at the end of the name of the worm to indicate that it is a
mass-mailer worm. For example, the VBScript LoveLetter worm is sometimes denoted by
VBS/LoveLetter.A@mm.

Rabbits are worms that can massively replicate themselves to take over the entire memory,
causing a system to crash. This behavior resembles, in a way, biological rabbits for their high
breeding rates. Rabbits are often hidden in a file directory, or use normal file names to disguise
themselves.

10.2.2 The Morris Worm

The Morris worm, created in 1988 by Robert Morris, a computer science graduate student
at Cornell University, was one of the earliest worms. It exploited implementation flaws
of UNIX utilities sendmail, finger, and rsh/rexec to replicate itself to other
machines. The UNIX operating system at that time allowed users to create system files (e.g.,
$ HOME/.rhosts) to log on to another networked computer without typing user passwords.
Such files make it easy for the Morris worm to spread across the Internet. Even if the infected
user directory does not contain such documents, the Morris worm can still obtain other users’
email addresses through the mail box contained in the infected user directory. The Morris
worm then uses the dictionary attack to obtain user passwords. Early UNIX operating systems
did not have any security guideline to help users select passwords, which helped make the
dictionary attack successful.

The objective of the Morris worm is to infect other networked computer as quickly as pos-
sible without leaving any trace. Thus, the Morris worm was not intended to harm infected
computers. However, because it spread fast, the Morris worm had produced, unintentionally,
the effect of denial of service. Figure 10.4 depicts the spread of the Morris worm.

For his crime, Robert Morris was sentenced to 3-year probation, plus a fine of $10,050 and
400 hours of community service.
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Figure 10.4 Spread schematics of the Morris worm

10.2.2.1 Exploiting Buffer Overflow in the finger Utility

To use the finger utility to propagate itself to a new host after obtaining a new email address
from the host it resides in, the Morris worm exploited a buffer overflow loophole in the imple-
mentation of the finger server program (a.k.a. daemon). The loophole is that the finger
daemon used a library function gets() on a 512-byte buffer, but it did not check bounds.
The Morris worm sent a crafted 536-byte string to the new host to overrun the 512-byte buffer.
In particular, the 536-byte string contained 28-byte of VAX assembly code, a.k.a. shellcode,
and used buffer overrun to get the new host to run the shellcode contained within it.

10.2.3 The Melissa Worm

The Melissa worm was a macro virus created in 1999 by David L. Smith. It was arguably
the first widely publicized worm targeted at Microsoft products. The Melissa worm replicated
itself through emails. When the user opens an email attachment that contains the Melissa virus
and if the user has Microsoft Outlook installed, the viral code will search 50 email addresses
stored within Outlook and send an email to each of these addresses with a virus attachment.
The email message looks like the following:

From: <the infected sender>
Subject: Important message from <the infected sender>
To: <The 50 chosen recipients>
Attachment: LIST.DOC
Body:
Here is that document you asked for ...
don’t show anyone else ;-)

The attachment LIST.DOC is the host of the macro virus. This scheme repeated recursively,
and so it spread extremely fast and created a huge amount of email traffic, which quickly
jammed the networks. For example, if the Melissa worm spreads itself to exactly 50 recipients
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(some recipients may have already received the same message), then after it spreads for n
times, 50n messages will be sent and a large number of users will be infected.

David L. Smith confessed to his crime, and he was sentenced to a 20-month jail time and a
fine of $5000 in 2002.

10.2.4 The Code Red Worm

The Code Red worm, released in July 2001, infected about 300,000 computers within the first
24 hours of its release. Similarly to the Morris worm that exploited buffer overflow loopholes
in UNIX utilities, the Code Red worm exploited a buffer overflow loophole in Microsoft’s
Internet Information Services (IIS). IIS is run on Windows 2000 or Windows NT servers. The
Code Red worm arrived at the Web server computer as a GET /default.ida request as
follows (with 224 N’s):

GET /default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801
%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3
%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=aHTTP/1.0 ...

where the ellipsis ... represents headers and a request body that contains the main worm
code, %uXXXX represents one unicode character for a total of 44-byte unicode encoding, and
%00=a is an invalid unicode encoding.

This request started the worm code execution, and the request would exist only in the main
memory of the Web server. If the system time was before the 20th of the month, the worm
started to infect new systems. If the time was between the 20th and the 27th of the month, the
worm started a DoS attack on the Website of the White House: www.whitehouse.gov.
The worm propagated to other IIS Web server computers as follows: it generated at random
an IP address and checked whether port 80 was open on this address.

When processing the 224 N’s in the GET request, IIS overwrites the buffer allocated to
GET, which caused a certain C runtime library function to throw an exception. The exception
handling would cause the exception frame be called, which was

%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3

representing four addresses (in hexadecimal): 68589090, 7801cbd3, 90909090, and
00c38190. In particular, the address 7801cbd3 was in the memory image for a certain C
runtime library function, which would eventually transfer the control to the main worm code.

10.2.5 The Conficker Worm

The Conficker worm was the work of a clever combination of several advanced malware
techniques targeting at the Windows operating system. It uses dictionary attacks on admin-
istrator passwords and software flaws to propagate. The Conficker intends to create a botnet

http://www.whitehouse.gov
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by infecting millions of computers. However, the intension of the author(s) of the Conficker
remains a mystery. The Conficker worm has infected millions of computers worldwide.

The Conficker comes with five variants called Conficker A, Conficker B, Conficker B++,
Conficker C, and Conficker E. Conficker A was detected in November 2008 infecting comput-
ers that did not install a Microsoft patch released only weeks earlier. One month later, Conficker
B added new distribution mechanisms including USB memory stick. Conficker A and Con-
ficker B could infect no more than 250 pseudo-random domains a day, and Conficker C would
generate 50,000 pseudo-random domains per day from over 116 domains all over the world.

Removing a Conficker worm from an infected computer is nontrivial, and the Conficker is
still affecting people at the time of writing this section in July 2014. To counter the Conficker, a
group of experts formed a working group, called the Conficker Working Group (CWG), with
a mission to figure out how to remediate infected computers and eliminate the threat of the
botnet. The following are CWG recommendations published in early 2011:

1. Focus on the larger overall threat environment and develop a strategy for dealing with that
global issue, versus the “whack-a-mole” approach of battling one incident after another.

2. Establish the mindset of a “long-term battle” at the outset to help manage burn-out and
fatigue.

3. Work to expand the size, skills, technological advantage and communications networks of
cybersecurity defenders to match the growing threat.

4. Identify resources (monetary and otherwise) used for cybersecurity efforts and work toward
an allocation model that is effective at the strategic level.

10.2.6 Other Worms Targeted at Microsoft Products

Shortly after the Code Red worm was released, the Code Red II worm and the W32.Nimda
worm were released. The SQL slammer worm, the W32.Sobig.F@mm worm, the
W32.Welchia worm, the W32.Mydoom@mm worm, the Storm worm, and the P2P.Palevo.DP
worm were released subsequently.

Similarly to the Code Red worm, the Code Red II and the W32.Nimda worms were released
in 2001, which were both targeted at IIS, exploiting the same buffer-overflow loophole in IIS.
The Code Red II worm placed a backdoor in the Code Red worm, allowing the attackers to
directly control the infected computer. The W32.Nimda worm is similar to the Code Red II
worm, but it can spread itself through different channels, including emails, Web browsing, and
backdoors. It not only can modify Web documents, including .htm, .html, .asp documents, and
certain executable files, but also can replicate itself into several files with different file names
in the infected machine.

The SQL slammer worm, found in 2003, uses a buffer overflow loophole in Microsoft’s
SQL server to infect SQL server machines. It is a small program, but it spread rapidly. The
W32.Sobig.F@mm worm, found in 2003, uses open proxy servers to send a massive number
of junk emails with forged sender information.

The W32.Welchia worm, found in 2003, exploits multiple vulnerabilities in Microsoft prod-
ucts to download a particular patch from Microsoft’s Windows Update Website, install it, and
then restart the computer.

The W32.Mydoom@mm worm, found in 2004, is a worm with a backdoor. It makes infected
machines send out a huge number of junk mails. For example, within 36 hours, it had about
100 million messages sent.
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The storm worm, found in 2007, infects PCs and makes them attack other PCs. For example,
a YouTube storm worm found in August 2007 invited users to see themselves in a video, but
the included link would direct visitors to a Website that downloads malicious code to their PCs.

The P2P.Palevo.DP worm spreads via an IM spam message that tricks the user into saving
an executable file that looks like a .jpg file. If the user opens the file, the malicious code is
executed, which creates hidden files in the Windows folder and modifies certain registry key
to point to these hidden files to bypass the Windows firewall.

10.2.7 Email Attachments

Most email systems allow users to include attachments of various formats. Moreover, email
systems can open an attachment using an appropriate application program or execute it if it is
an executable file. This feature provides convenience to users, but it also provides a platform
for spreading worms.

Certain types of email attachments are safe to open, for they do not contain executable codes
or macros. We refer to such attachments as safe attachments. Other types of email attachments
contain executable codes or macros. The receivers should be cautious whether or not to open
them. Some types of attachments may be opened if they are from trustworthy senders. We refer
to such attachments as to-be-cautious attachments. Other types of attachments are perilous and
should not be opened at all. We refer to such attachments as perilous attachments.

The extension of the file name in an email attachment can be used to help determine which
category the attachment belongs to.

10.2.7.1 Safe Attachments

Listed in Table 10.1 are extension names of common safe attachments.

10.2.7.2 To-Be-Cautious Attachments

Listed in Table 10.2 are extension names of common to-be-cautious attachments.

10.2.7.3 Perilous Attachments

Listed in Table 10.3 are extension names of common perilous attachments.

10.2.7.4 Remarks

The classification of email attachments presented in this case may change in the future because
of new development of technologies. Certain types of attachments that are considered safe
today may no longer be safe tomorrow when new exploitations are discovered for embedding
viruses. Likewise, certain types of to-be-cautious attachments or perilous attachments may be
upgraded to a safer category because known loopholes for virus infections have been fixed. In
the meantime, new types of file extensions may be generated, and so additional members may
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Table 10.1 Extension names of common safe attachments

Extension File type Comment

.ai Graphics Adobe Illustrator’s graphics file

.art Graphics America Online’s graphics file

.avi Video Microsoft’s Audio-Video Interleaved file

.bmp Video Microsoft’s Bitmap file

.cgm Drawing 2D Computer Graphics Metafile file

.dxf Same as above AutoCAD Drawing Exchange Format file

.dwg Same as above AutoCAD data file

.eps Graphics Encapsulated PostScript file

.gif Same as above CompuServe’s Graphics Interchange Format file

.jpe Same as above Joint Photographic Experts Group file

.jpg Same as above Same as above

.jpeg Same as above Same as above

.mid Audio Musical Instrument Digital Interface file

.midi Audio Same as above

.mov Video Apple’s Quicktime Movie file

.mp2 Audio MP2 file

.mp3 Audio MP3 file

.mpg Video Moving Picture Experts Group file

.mpeg Video Same as above

.pcx Graphics Microsoft Windows’ Paintbrush file

.pdf Document Adobe’s Portable Document Format file

.rle Graphics Run Length Encoded file

.rm Audio/video Real Media file

.ram Audio/video Same as above

.rtf Document Microsoft’s Rich Test Format file

.sdr Drawing SmartDraw file

.tif Graphics Image File Format file

.tiff Same as above Same as above

.ttf Font file TrueType font file

.txt Text Microsoft’s text file

.wav Audio IBM and Microsoft’s audio format file

.wma Audio Microsoft Windows Media Audio file

.wri Text Microsoft Windows Write file

be added. On the other hand, certain types of attachments may also be removed from these
tables when they become obsolete.

10.3 Trojans

A Trojan is a program that appears to do something, but it also contains a piece of code that
does something else. This piece of code, called a warrior code, is similar to a viral code, and so
some people would refer to a Trojan horse as a Trojan virus. However, unlike a viral code that
can replicate itself automatically to other programs or systems, the warrior code will remain
in the same program that is also written by the attacker. In general, a Trojan horse will be
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Table 10.2 Extension names of common to-be-cautious attachments

Extension File type Comment

.asp Web document May contain malicious codes or cookies

.doc Word document May contain macro virus

.dot Word document template May contain macro virus

.eml email Attachment itself is an email message, be cautious about the
attachments of it

.htm Web document May contain malicious codes or cookies

.html Same as above Same as above

.lnk File pointers Linked files may contain malicious codes

.rar Compressed file Okay to uncompress, but be careful of the contents in the
uncompressed files

.sea Same as above Same as above

.sit Same as above Same as above

.tex TEX document May contain macros

.url Web links May contain malicious Web pages

.uue Compressed file Okay to uncompress, but be careful of the contents in the
uncompressed files

.wk1 Lotus document May contain macro viruses

.wk3 Same as above Same as above

.wk4 Same as above Same as above

.wks Same as above Same as above

.xls Spreadsheet Same as above

.zip Compressed file Okay to uncompress, but be careful of the contents in the
uncompressed files

Table 10.3 Extension names of common perilous attachments

extension file type comment

.pif Executable Program Information File; contain information for
Windows to run non-Windows applications; may contain
SirCam and other viruses

.exe Same as above Microsoft applications

.com Same as above MS-DOS COM files

.vbs Same as above Microsoft Visual Basic Script

.vb Same as above Microsoft Visual Basic applications

.bat Text MS-DOS batch file of comments and programs

.bin Executable Macintosh applications

.reg Text Windows registry that can change setups

.js Script JavaScript

.jse Script Same as above

.scr Screen saver May be a disguised program

.xlm Executable Microsoft Excel Macros

.wmz Media skin Windows Media Compressed Skin File; may be used to
spread viruses

.hta HTML application Executable contained in a Web page

.ocx ActiveX control Used to execute other programs

.wsf Script Windows Script Files

.wmf Graphics May be used to spread viruses
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passively waiting for someone to bring it into his machine. The attacker, however, may try to
lure users to do so. Trojan horse is considered the simplest kind of malicious software.

There are special kinds of Trojan horses that drop other Trojan horses into compromised
computers. These Trojan horses are referred to as Trojan droppers.

Trojan horses may inflict the following damages to the compromised computers:

1. Install backdoors and Zombieware to prepare for a DDoS attack. Trojan horses can also be
used to install email programs to send out junk emails.

2. Install spyware.
3. Look for users’ bank account numbers and private information.
4. Install viruses or other forms of malicious codes to other machines.
5. Modify or delete user files.

10.3.1 Ransomware

Ransomware is a kind of malware that inflicts serious damages on the infected systems in such
a way that the damages are very hard to recover, even by experts, although the ransomware
itself may be easy to remove from the systems. The attackers hold the secrets to recover the
damages and would offer to fix the infected systems for a fee. Ransomware typically gets in
a system as a Trojan or as an email attachment. CryptoLocker, for example, is a ransomware
targeted at computers running the Windows operating system. It uses RSA PKC to encrypt
certain types of files on the computers and the mounted drives. The attackers hold the private
keys that are strong enough to make the encryptions difficult to break, although it is easy to
remove CryptoLocker from the infected systems. Once activated, the CryptoLocker malware
posts an offer on the infected computer to decrypt the data for a fee, with Bitcoin payments or
prepaid vouchers.

10.4 Malware Defense

For convenience, we use malware to denote viruses, worms, and Trojans. Prevention and
restoration are common approaches to defending and countering malware attacks.

Prevention
Prevention mechanisms block malware from getting into a healthy system. Prevention may be
achieved using the following measures:

1. Install security patches in time.
2. Do not download software from untrusted Websites. In general, you should only download

software from reputable vendors and their distributors, or other sources you trust. When in
doubt, search the Internet and determine whether a particular vendor or a Website could be
trusted.

3. Do not open to-be-cautious email attachments from unknown senders.
4. Do not open perilous email attachments.
5. Avoid using BitTorrent and other peer-to-peer applications to share files (see Section 10.6

for more information on peer-to-peer security).
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Restoration
Restoration mechanisms disinfect infected systems. Restoration may be achieved using the
following measures:

1. Scan files using a malware scanner; quarantine or remove infected files when they are found.
A malware scanner is a program that can detect known malware programs, quarantine them,
and remove them.

2. Keep a backup of the system files and user files, which can be used to restore the system
when it is attacked by malware.

10.4.1 Standard Scanning Methods

Malware scanners scan each file to look for malware. Files to be scanned are executable files,
office documents, email attachments, instance messages, downloaded programs, and other
files that are possible to become hosts to malware. For convenience, we refer to these files
as hostable files. Basic scanning, heuristic scanning, ICV scanning, and behavior monitoring
are standard scanning methods. A malware scanner may implement some or all of these scan-
ning methods, which means that the computing resources used by various scanners may vary
considerably depending on the method or combination of methods used.

Basic Scanning
Basic scanning looks for signatures of known malware in hostable files, including structures,
formats, patterns, and other characteristics. Basic scanning may also check whether the size
of system files has been altered to detect infections.

Heuristic Scanning
Heuristic scanning looks for suspicious code fragments in executable files on the basis of
certain heuristics. For example, heuristic scanning may use certain heuristics to search for
encryption keys embedded in infected files, which are used by polymorphic viruses.

ICV Scanning
ICV scanning computes the integrity check value of each uninfected executable file using a
fixed HMAC algorithm (or other message code authentication algorithm) and a fixed encryp-
tion key. A ICV value is appended to the end of uninfected executable files. This ICV value is a
mark that indicates that the file is uninfected because no viral code would know the encryption
key, and so it cannot change the ICV. Thus, if such a file is infected with a virus, its ICV value
will be different from the original ICV, which can be used to detect viruses.

Behavior Monitoring
Behavior monitoring looks at and evaluates the behavior of executing programs. If a program
in execution is actively searching for other executable programs it is not supposed to, then this
program is likely to have been infected.

10.4.2 Anti-Malicious-Software Products

This section introduces several widely used AMS software products. These products are con-
stantly updated to include new found malware. Users are strongly recommended to apply
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multiple AMS products on the same computer, as a given AMS product may not be able to
capture a particular malware program.

McAfee VirusScan
McAfee is an antivirus software product widely used by users in large organizations and by
home users. It uses basic scanning to detect known viruses and uses heuristic scanning to detect
new viruses. McAfee VirusScan can be obtained from www.mcafee.com.

Norton AntiVirus
The basic functionalities of Norton AntiVirus are similar to those of McAfee VirusScan. In
addition, Norton AntiVirus can also detect and remove spyware, as well as perform preinstal-
lation virus checks. Norton AntiVirus can be obtained from www.symantec.com.

Avast! AntiVirus
Avast! AntiVirus is free of charge to home users. Other than lacking certain special features,
Avast! AntiVirus is a good antivirus product. It can be obtained from www.avast.com.

Webroot SecureAnywhere
Webroot SecureAnywhere is a light-weight, easy-to-use product. It can be obtained from
www.webroot.com.

Malwarebytes Anti-Malware
Malwarebytes Anti-Malware is a powerful AMS product, which offers free and paid versions
for downloads from www.malwarebytes.com.

Other Antivirus Products
Other antivirus software products include PC-cillin, Panda, eTrust EZ Antivirus, AVG
Anti-Virus, and Clam. They can be obtained from the following Websites:

1. PC-cillin: www.trendmicro.com
2. Panda: www.pandasoftware.com
3. EZ Antivirus: www3.ca.com
4. AVG: http://free.grisoft.com/
5. ClamAV: http://www.clamav.net/

AVG Anti-Virus and ClamAV are free antivirus tools, where ClamAV has a Windows ver-
sion and a Linux version.

10.4.3 Malware Emulator

Malware emulator provides an isolated hardware and software emulation environment to actu-
ally run suspicious programs. Doing so helps to identify malware without spreading it.

Users can setup an emulation environment in each host computer or in each LAN, so that
users can run suspicious programs under tight controls. Doing so, however, may also incur
high computation overhead. IBM proposed in 1997 the concept of digital immune system
(DIS) to balance between detection effectiveness and efficiency. The basic idea of DIS is to

http://www.mcafee.com
http://www.symantec.com
http://www.avast.com
http://www.webroot.com
http://www.malwarebytes.com
http://www.trendmicro.com
http://www.pandasoftware.com
http://free.grisoft.com/
http://www.clamav.net/
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Figure 10.5 Schematic of digital immune system

set up a special computer, called the malware analyzer, in the internal network to provide a
well-protected and isolated emulation environment. Each host computer inside each subnet-
work in the internal network will use standard malware scanner to detect and remove malware.
If the host computer finds that a certain program is suspicious, yet it passes malware scan, then
the host computer will forward this suspected program to the malware analyzer through its
administrative host. The malware analyzer runs the suspected program, determines whether it
is infected, and emails the result back to the administrative host. The administrative host then
sends the result to every host computer in the subnetwork. In other words, DIS execution has
four phases (see Fig. 10.5).

1. An internal host in a subnetwork discovers a suspicious program and forwards it to the
administrative host.

2. The administrative host encrypts the suspected program so that the program cannot execute
during transmission. It then forwards the encrypted suspect to the malware analyzer.

3. The malware analyzer decrypts the encrypted suspect, sets up an enumerator to run the
suspected program, and checks whether it contains malware code. For example, it checks
whether the suspected program runs normally without suspicious behaviors. The malware
analyzer then sends the result back to the administrative host.

4. The administrative host then forwards this result to each host computer in the subnetwork.

10.5 Hoaxes

Hoaxes are shams with the sole purpose to trick users to do something they would normally
not do. Computer hoaxes often appear in the form of email messages, urging the recipients to
do something and hoping that the recipients will do as asked out of their kindness, curiosity,
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or greediness. For example, a hoax message may present a desperate plea to help a sick child,
to help stop a virus, to help send a chain mail, to invite you for a free vacation in a fancy place,
or to help a wealthy man’s widow (or daughter) in an African tribe to get the money she is
entitled to from an unheard bank with a promise of giving you a large monetary lump sum in
return for your help. Indeed, almost any topic may be used in a hoax message.

Most of the hoaxes have been designed in order to take your money. You may be asked to
deposit a check under the guise of securing a transaction for a large lump sum from which
you will get a percentage; you may be asked to make a donation to a charity; you may receive
a document with an official look stating that a huge amount of money will be given to you,
provided that you send in a small check for processing the necessary paperwork.

There also are virus hoaxes. For example, the infamous “You’ve Got Virus!” hoax was once
spread widely, claiming that your system might have been infected with the “WORST VIRUS
EVER,” telling you that this virus had just been discovered, and urging you to “FORWARD
THIS TO EVERYONE YOU KNOW!!!”. It also asked you to remove the “virus” in your
system at a certain location. The “virus” in this hoax was a legitimate Java program jdbg-
mgr.exe or sulfnbk.exe. Many users were tricked and actually removed these “viruses.”
Note that this hoax was sometimes referred to as the “Teddy Bear virus hoax” for the icon of
jdbgmgr.exe was a teddy bear.

The countermeasure of hoaxes is to ignore them. That is, do not do what the hoax message
pleads you to do. There is no free lunch. If you think something is too good to be true, then
most likely it is.

If you are not sure whether a virus is a hoax, you should ask your system admin-
istrator or check up on it at relevant Websites, such as McAfee at http://vil.
mcafee.com/hoax.asp, Vmyths.com at http://vmyths.com/, and Sophos.com at
http://www.sophos.com/search/.

10.6 Peer-to-Peer Security

While most network applications are client-server applications, some are peer-to-peer (P2P)
applications. P2P protocols include BitTorrent, eMule, Napster, Skype, and Gnutella, which
have been widely used for users to distribute and share music, games, videos, and other types
of files. The client-server model (see Fig. 10.6) has a star topology where a small number of
servers provide services to a large number clients.

P2P networks are ad hoc networks, where each computer acts both as a client and as a server.
When a user downloads a file to his computer using a P2P application, he becomes a client
of several other computers that have parts (maybe different parts) of the file the user needs
and feed these parts to the user. In the meantime, the user’s computer also becomes a server
to other users who request the same file and feeds the parts it has downloaded to these users.
Figure 10.7 shows a topology of the P2P model.

10.6.1 P2P Security Vulnerabilities

P2P applications are often used to download and share music (e.g., MP3) and video (e.g., AVI)
files. This gives rise to two security concerns. The first concern is copyright infringement, for
users may download copyright-protected materials without paying the copyright owners. The

http://vil
http://vmyths.com/
http://www.sophos.com/search/
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Figure 10.6 Schematic of a client-server topology

Figure 10.7 Schematic of a P2P topology

second concern is that P2P applications may consume too much network bandwidth and local
disk storage, causing denial of service unintentionally or intentionally.

The biggest security concern, however, is that when you use a P2P application, it will open
a specific port on your computer to share files with any user unknown to you without any form
of authentication, making your computer vulnerable to Trojan horses, viruses, and other forms
of malicious software.
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10.6.2 P2P Security Measures

Firstly, users must install official versions of the P2P software. That is, do not download P2P
software from an untrusted site to avoid downloading malicious software.

Secondly, keep in mind that the file downloaded from unknown computers using P2P appli-
cations may not be what it says it is. Thus, the user should scan the downloaded file using a
good antivirus product before opening it. This could prevent Trojan horses, viruses, worms,
and spyware from executing before they are discovered and removed.

Thirdly, disallow users to use P2P software in company computers without special permis-
sion. This will help companies avoid copyright violation lawsuits, prevent denial of service
because of consumption of network resources, and other security attacks.

10.6.3 Instant Messaging

Instant messaging (IM) is a widely used communication tool over the Internet. It allows users
to send instant messages to each other or talk to each other via voice of IP (VoIP) in real time.
The precursor of IM was a simple application program allowing several users logged on to the
same UNIX machine from different terminals to talk to each other simultaneously. It was later
extended to local area networks and the Internet. Some IMs are client-server applications that
use server computers to relay messages, and some are P2P applications.

Common IMs include Yahoo!Messenger, Skype, Google Talk, QQ, and WeChat. The use of
IM is a convenient way to stay in touch with friends and business associates, but users should
be aware of the following risks:

1. Instant messages are often transmitted in plaintext, and so they are subject to eavesdropping.
2. IM system may not check viruses or Trojan horses. Thus, IM may be used by attackers to

transmit viruses and Trojan horses.
3. If end systems are not configured properly, attackers may be able to compromise these

machines through IM.

Users may want to set up ACL rules to control packets passing through the IM ports.

10.6.4 Anonymous Networks

Suppose that Alice wishes to browse a Website stored on Bob’s Web server. She could just use a
standard Web browser to look at this Web page. However, Alice wants to do this anonymously.
In other words, Alice does not want Bob to know that she is looking at a Webpage on his Web
server. Alice can achieve this task by using the Tor protocol.

Tor is an overlay network that consists of a collection of volunteer proxy servers, called
onion routers running a special piece of software that allows for the routing of a TCP message
to a destination. Moreover the onion routers move traffic from Alice to Bob in an anonymous
manner. Alice participates in this process by selecting onion routers, three in practice, to form
a circuit (see Fig. 10.8). This circuit is used to anonymously route traffic to Bob. In addi-
tion, Alice must refresh this circuit after Alice transmits a certain number of messages. The
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Figure 10.8 The selection of a circuit in the Tor network

communication across the circuit is encrypted via a set of symmetric keys shared between
Alice and a given onion router in the circuit.

Alice sends a message to Bob through the circuit by passing the message encrypted with all
of the keys shared with the onion routers across the circuit. Each individual onion router in the
circuit will decrypt the message it receives with the key it shares with Alice.

For Alice (A) to send a message m to Bob (B) using onion routers O1, O2, and O3, and
shared keys KAO1

,KAO2
, and KAO3

, respectively, Alice and the routers cooperate as follows:

1. A → O1: EKAO1
(EKAO2

(EKAO3
(m))).

2. O1 → O2: EKAO2
(EKAO3

(m)).
3. O2 → O3: EKAO3

(m)
4. O3 → B: m.

Onion routers O1 and O3 are given special names in the circuit called the entrance router and
the exit router, respectively.

A reply from B to A in Tor is symmetric to the communication between A and B. The only
difference is that each onion router Oi will perform an encryption of the response at each step.

In practice, Tor is implemented as a proxy for TCP connections. This means that Tor is not
a perfect protocol. In particular, if it is used in conjunction with an out-of-band protocol (a
protocol that can bypass the proxy), the identity of a user can be leaked. For example, any
UDP transmissions will bypass Tor and leak the source of the request.

10.7 Web Security

The World Wide Web, also referred to as the Web (or the small case web by some authors),
is a client-server application program based on TCP connections. It provides software tools
for users to obtain and share information. These tools, however, may contain design flaws
or implementation loopholes that can be used by attackers to harm users. This section
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introduces basic types of Web documents, software tools, possible exploitations, and
countermeasures.

10.7.1 Basic Types of Web Documents

Web documents, also called Web pages, are written using the Hypertext Markup Language
(HTML). They are ASCII text files, where the text is enclosed in HTML tags, describing how
the documents should be displayed. Web documents may or may not contain executable codes.
Web documents can be classified into three categories. They are static documents, dynamic
documents, and active documents. A static document is a Web document that does not contain
executable codes. A dynamic document and an active document both contain executable codes.
The difference is that the executable codes contained in dynamic documents are executed on
the server computer, while the executable codes contained in active documents are executed
on the client computers.

Static Documents
When the client requests a static document from a Web server, the client browser will down-
load the document to the client computer and display it locally. Static documents are safe to
download.

Dynamic Documents
The executable codes contained in a dynamic document are typically written as Common Gate-
way Interface (CGI) scripts. CGI defines a series of system variables used to obtain values from
the the server computers. CGI programs may also be written in other languages such as C and
Visual Basic (VB), where the CGI variables and command lines will be executed.

When the client asks for a dynamic document from a Web server, the server computer runs
the executable codes contained in the document, substitutes the CGI variables contained in the
document with new values, and downloads the resulting document to the client computer for
display.

Dynamic documents also include Java Server Pages (JSP), Active Server Pages (ASP), and
Hypertext Preprocessor (PHP). JSP is a Java technology that enables a Web server to generate
dynamically, upon request from a Web client, HTML, XML, or other types of documents
by embedding certain predefined actions and Java code in a Web page. ASP is Microsoft’s
server-side scripting tool. ASP pages may be written in VBScript or other scripting languages.
PHP is a general-purpose scripting language.

Active Documents
The executable codes contained in an active documents are typically written as JavaScripts
or Java applets. When the client asks for an active document from a Web server, the server
computer will download the entire document to the client machine. The client machine then
runs the executable codes contained in the document.

Java applets are Java programs represented in the platform-independent Java byte code for-
mat for the Java Virtual Machine (JVM), which will be translated into machine code of the local
machine and run at the client computer. A JavaScript file contains a sequence of instructions
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written in the JavaScript language. JavaScript is embedded in an HTML document in between
the <script> and </script> tags. The following is a simple JavaScript document:

<html>
<head>
<title>

Sample JavaScript HTML file
</title>
<script language="JavaScript">

document.writeln("Sample JavaScript HTML file");
</script>
</head>
<body>

.

.

.
</body>
</html>

10.7.2 Security of Web Documents

In general, static documents are safe, for they do not contain executable codes. Dynamic doc-
uments and active documents contain executable codes, and so they may be subject to security
attacks. Because dynamic documents are executed on the server computer and active doc-
uments are executed on the client computer, the server computer may be attacked through
loopholes contained in dynamic documents and in the Web server program, and the client
computer may be attacked through loopholes contained in active documents and in the Web
browser program.

The following are common security measures to protect server-side computers:

1. Update the Web server program to the newest version.
2. Manage rigorously the CGI programs and the directory that stores CGI programs.
3. Allow only designated persons to post CGI programs at the Web server.

Downloaded JavaScript and Java applets run on the client computer are restricted in
well-protected memory space. However, attackers may be able to exploit loopholes in browser
software to create malicious JavaScript or Java applets to harm users. For example, older
browsers could be exploited to allow malicious JavaScript to change the user’s default Web
page to a different Web page designated by the attacker, read system files, or read the email
addresses stored in the user’s mail box.

The following are common security measures to protect client-side computers:

1. Install browser patches in time.
2. Disable JavaScript of the browser so that JavaScript cannot be run on the client computer.
3. Disable Java applets of the browser so that Java applets cannot be run on the client

computer.
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10.7.3 ActiveX

ActiveX is a set of technologies allowing software components to interact with each other,
where different components may be written in different languages. In particular, ActiveX com-
bines the Object Linking and Embedding (OLE) technology and the Component Object Model
(COM) technology into one platform. ActiveX is commonly used to develop interactive appli-
cations for the Internet Explorer (IE) Web browser, allowing users to open Microsoft Office
applications from IE, but it can also be used to develop other applications.

The OLE Technology
The OLE technology allows different applications to transfer and share information. It allows
an object (e.g., an image file) to be linked to a compound file (e.g., a Word document, an
Excel spreadsheet, or a PowerPoint document) or be embedded in a compound document.
The difference between linking and embedding is that, when changes are made to the
contents of an original object linked to a compound document, the changes will be seen
automatically in the compound document. However, such changes will not be seen if the
object is embedded (copied) in the compound document, unless the changes are made
specifically to the embedded object.

The COM Technology
The COM technology allows programs to reuse software components and existing Windows
programs to add new functionalities. COM components are commonly written in C++, but
they can also be written using other languages. The COM technology allows a program to
unplug a COM component at runtime without recompiling the program.

ActiveX Controls
During the last 10 years, many programs have been made “active.” ActiveX controls, in partic-
ular, have been widely used to develop plugins for IE. An ActiveX control is a self-registering
COM object that may be embedded in an HTML document.

ActiveX controls may be activated using the <OBJECT> tags as follows:

<OBJECT ID="ax_example"
CLASSID="clsid:431BD693-4A33-3B46-AA7CD285CA13"
CODEBASE="http://www.ABC.com/ax_controls/"

WIDTH=80 HEIGHT=30>
<PARAM NAME=_version VALUE="2">
</OBJECT>

In this example, ax_example is the name of the ActiveX control, stored under
http://www.ABC.com/ax_controls with the unique hexadecimal serial number.
When the client asks for the HTML document from a Web server that contains this piece of
code, ax_example will be downloaded automatically to the client computer, compiled into
native machine code, and loaded in the client computer’s memory.

Because an ActiveX control is just similar to any executable machine code running on the
client computer, it can do anything once it is downloaded into the local machine. Thus, simi-
larly to Trojan horses, ActiveX controls could cause serious security problems.

http://www.ABC.com/ax_controls/
http://www.ABC.com/ax_controls
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To prevent malicious ActiveX controls from entering the client computer, users may want to
disable ActiveX downloads or only allow ActiveX downloads from trusted Websites. On the
other hand, ActiveX controls can be authenticated, and so users may only download authenti-
cated ActiveX controls.

10.7.4 Cookies

Cookies are text strings of information indicating Web browsing states, which are typically
used to relate a disjoint sequence of connections to a seemingly continuous connection. A
Web browser is a stateless client program that establishes a new connection with a Web server
for each URL request, even if the current request and the previous requests are from the same
Web server. In other words, a Web browser does the following for each request: it establishes
a new TCP connection to the Web server, downloads the document requested, and closes the
connection. For example, to visit a password-protected Web page, the user must first type in his
user name and password. After he is authenticated, he may choose to visit subsequent pages.
Different, unrelated TCP connections will be established for visiting these subsequent pages.
It is cumbersome to require the user to type in his password each time he visits a subsequent
page. To solve this problem, the Web browser generates, after the user types in his password, a
cookie to store the user information and passes it to the user’s browser. When the user requests
a subsequent document, the browser passes the cookie along with the user’s request to the Web
server. The Web server checks the information contained in the cookie. If the information is
acceptable, the Web server will grant the user’s request.

Web browsers often store cookies in a directory for future use. When it connects to a Web
server the next time, the Web browser will search for an appropriate cookie and send it to the
Web server.

Some cookies are short and some are long. A short cookie may contain just an identification
number for the Web server to uniquely identify a user. A long cookie may contain user name,
the IP address of the user’s computer, the operating system used by the computer, and other
information (e.g., a travel itinerary). It is evident that cookies of this sort would raise serious
privacy concerns.

The Web server uses the Set-Cookie header to encapsulate a cookie and send it to the user’s
browser. For example, the Web server may generate a cookie to identify a user and send the
following to the browser:

Set-Cookie: USER_NAME=John Doe; path=/;
expires=Monday, September 10, 2007, 16:59

The browser uses the Cookie header to encapsulate a cookie stored in the local machine
and send back to the Web server as follows:

Cookie: USER_NAME=John Doe

Web servers may use the Set-Cookie header and the Cookie header to keep track which
pages the user has visited and sell this information. Thus, reputable Web servers will often
take substantial measures to ensure that cookies cannot be used for malicious purposes. Users
may also remove cookies stored in their computers every now and then.
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10.7.5 Spyware

Spyware is malicious software. It is typically installed as a plugin module in the user’s Web
browser without the user’s informed consent. Spyware monitors the user’s browsing activities
and collects personal information that the user does not want others to know. It can also modify
system settings to do something against the user’s will. In particular, spyware may perform one
or more of the followings:

1. Collect information, including the user’s surfing habits, favorite Websites, online shop-
ping lists, financial information, and credit card numbers; and send the information to the
attacker’s computer.

2. Monitor the user’s Web surfing activities and pop up a corresponding advertisement win-
dow.

3. Modify the default settings of the user’s browser and redirect the user to a certain Web page.

Spyware does not replicate itself. Thus, spyware is more like a Trojan horse. The differ-
ence is that spyware may be specifically designed to run under Web browsers, and it may not
be a standalone application. To lure the user to download and install spyware, the attacker
may bundle a spyware program in an attractive music, game, or system management pack-
age. The attacker may advertise that the spyware is a system management tool that can help
increase the user computer’s surfing speed, or an antispyware tool that can detect and remove
spyware.

The following are common countermeasures of spyware:

1. Set up a firewall to prevent attackers from embedding spyware.
2. Install software patches in time.
3. Install antispyware software. Windows Defender, for example, is Microsoft’s antispyware

product that can detect, quarantine, or remove spyware in Windows operating systems.

10.7.6 AJAX Security

Traditional Web applications operate in the “click-and-wait” manner. That is, the user clicks a
link or a submit button on his browser to request a page from the Web server, and then waits
for the Web server to download the requested page to the user’s local host. This synchronous
communication of request-and-response sequence confines the interactions between the Web
browser and the Web server and makes surfers feel abrupt. Asynchronous JavaScript and XML
(AJAX) is a recently deployed technology that supports highly interactive Web applications,
where asynchronous program calls can be made to the Web server without causing a full refresh
of a Web page at the client side, providing smoother, faster, and seemingly continuous page
updates. Google Maps, for instance, is an AJAX application. A combination of several existing
technologies, AJAX plays an important part in Web 2.0, the perceived second generation of
Web technologies.

AJAX achieves asynchronous interactions through a client-side JavaScript engine and
server-side XML pages, where XML (acronym of Extensible Markup Language) is an
extension of HTML that allows users to define their own HTML tags. Other scripting
languages may also be used at the client side in place of JavaScript, and JavaScript Object
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Figure 10.9 Schematic of asynchronous interactions between a Web browser and a Web server in AJAX

Notation (JSON) may be used in place of XML with less overhead. The client-side JavaScript
code connects to a Web server through the XMLHttpRequest (XHR) object of JavaScript,
which is triggered asynchronously by user keystrokes, timers, or other events. Figure 10.9
shows a schematic of AJAX interactions between a Web client (browser) and a Web server. In
particular, the client-side scripting engine, in response to an action issued by the user, initiates
calls to the Web server and updates the document at the user’s browser asynchronously.

AJAX applications face the same security problems as traditional Web applications. Most of
the known security attacks on AJAX applications are due to implementation flaws. Cross-site
scripting, for example, is one of them. It tricks an unsuspecting user (e.g., using phishing email)
to visit a malicious Web page. A mere visit to that page could cause the user’s computer to
download malicious JavaScript code and execute it.

For another example, we note that AJAX makes silent calls to Web servers without the
consent of the user, and it replays cookies for each call. This mechanism, if not implemented
properly, presents a security risk. Suppose that Alice logs on to a password-protected Website.
Her browser is given a session cookie by the Web server after she is authenticated. Suppose that
Alice is coaxed to browse a malicious page without logging out first and the malicious page
contains AJAX code, which makes silent calls to the password-protected Website by replaying
the session cookie she obtained earlier from the same Website.
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10.7.7 Safe Web Surfing

In addition to using security tools such as Windows Defender, forming good Web surfing habits
is essential to surfing the Web safely. The following are some of these good surfing habits.

1. Download software only from trusted Websites. If you are not sure whether a downloaded
software contains malicious components, you should ask your system administrator or
search the Web for information.

2. When a window pops up, do not click any button displayed on the popup window (including
the cancel button), for these buttons may be traps. To remove a popup window, you should
use other system methods (e.g., use the Windows Task Manager) or click the red X that
appears at the corner of the window.

3. Read the privacy statements, the license statements, and the security warning statements of
the downloaded software to find out the risks you are taking by installing and running the
downloaded software.

4. When you visit a password-protected site, do not visit other sites with different addresses
from the password-protected site.

5. Do not visit suspicious Websites.

10.8 Distributed Denial-of-Service Attacks

We have introduced in Section 1.2.9 the basic ideas of DDoS attacks. In general, to launch a
DDoS attack, the attacker must first search for a large number of computers and lure their users
to download zombie software. These zombies will then issue at the same time a large number
of service requests to a selected computer to use up its computing resources. There are two
types of DDoS attacks, namely, the master-slave DDoS attack and the master-slave-reflector
DDoS attack.

10.8.1 Master-Slave DDoS Attacks

To prevent being traced when executing a DDoS attack, the attacker may divide zombies into
master zombies and slave zombies. In particular, the attacker first obtains a host of zombies,
called the master zombies. Each master zombie then obtains a host of its own zombies, called
the slave zombies as if the master zombie were the attacker. To launch a master-slave attack
to a particular target, the attacker issues an attack command to each of its master zombies.
Each master zombie will then relay the attack command to its slave zombies. All the slave
zombies will then attack the selected target at the same time. Figure 10.10 shows a schematic
of master-slave DDoS attacks.

10.8.2 Master-Slave-Reflector DDoS Attacks

Attackers may also have master zombies order their slave zombies to launch a Smurf type
of attack to a selected target. For example, each slave zombie sends a large number of crafted
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Figure 10.10 Schematic of master-slave DDoS attack

ping packets to the non-zombie computers it can find, where the source address in the crafted
packet is the IP address of the target. The non-zombie computers used by slave zombies are
referred to as reflectors. Figure 10.11 shows a schematic of master-slave-reflector DDoS attack.

10.8.3 DDoS Attacks Countermeasures

To be successful, a large-scale DDoS attack depends on several conditions. Firstly, it must
use good zombie software. Secondly, it must have a large number of exploitable computers
on the Internet that can be turned to zombie machines. Thirdly, the attacker must be able to
find these computers.

Thus, to counter DDoS attacks, one should try to eliminate the last two conditions from
the equation. That is, reduce the number of vulnerable computers and make it hard for the
attackers find a vulnerable computer.

The first objective can be achieved by improving security management of networked com-
puters so that the computers cannot be turned to zombies easily. Moreover, when a DDoS
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attack comes, the target computer may still be able to detect it and help trace the source of
attacks. These include the following measures:

1. Set up a backup system such that when the active servers suffer from DDoS attacks, the
backup system can be activated to provide normal services.

2. Distribute resources appropriately and modify communication protocols to reduce the pos-
sibilities of becoming a DDoS victim.

3. Construct a DDoS monitoring and responding system that can detect DDoS attacks on the
basis of DDoS behaviors and respond to DDoS attacks when they happen. For example,
remove DDoS attack packets.

4. Keep a complete system log to help trace the sources of DDoS attacks.

The second objective can by achieved by the following measures:

1. Close all unnecessary ports to defy IP scans.
2. Automatically disconnect (e.g., shutdown the computer) the network connection of the

user’s host computer when it is no longer in use. This will help reduce the possibility of the
computer to be used as a zombie in a DDoS attack, although it may have been invaded by
zombieware.

3. Detect and remove zombieware.
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10.9 Closing Remarks

Malicious software programs have become the major security foes of computer security.
They enter networked computers through system loopholes and through a user’s lack of care.
Malicious software may modify or delete user files, collect information, or simply turn a
computer to a background server for the attacker, stealing the user’s computing, network, and
power resources. Thus, in addition to having a good firewall, the user should also install a
good anti-malicious software product (including antivirus software, antispyware software,
and antispam software) and form good surfing habits.

10.10 Exercises

10.10.1 Discussions

10.1. Describe your experiences of being attacked by malware.

10.2. Describe your experiences in dealing with malware attacks.

10.3. If you have a Trojan in your system, how do you think it gets there?

10.4. What security measures should you take when surfing the Web?

10.5. Discuss the general tactics an attacker would often use to lure you to their malware.

10.6. Discuss your experiences in dealing with DoS attacks.

10.10.2 Homework

10.1. Table 10.4 lists common worms and their port numbers. Search relevant references
and describe what each of these worms will do.

10.2. Construct ACL rules to block the worms listed in Exercise 10.1 from entering the
internal network.

10.3. Table 10.5 lists common Trojan horses and their port numbers. Search relevant
references and describe what each of these Trojan horses will do.

10.4. Construct ACL rules to block the Trojan horses from entering the internal network
listed in Exercise 10.3.

10.5. What are the common methods to spread viruses?

10.6. Describe heuristic scanning for finding viruses. The textbook provides an example
of heuristic scanning. Please provide a different example of heuristic scanning.

10.7. “A few years back I had a test laptop at work that was infected with the
w32.blaster malware. I decided to try out the Symantec removal tool to remove it
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Table 10.4 Common worms and their port numbers

Port Protocol layer Name

445 TCP Zotob
1080 TCP MyDoom.B
2041 TCP W32.korgo
2745 TCP Bagle.C
3067 TCP W32.korgo
3127 TCP MyDoom.A
3128 TCP MyDoom.B
5554 TCP Sasser–FTP server
8080 TCP MyDoom.B
8998 UDP Sobig.F
9898 TCP Dabber
9996 TCP Sasser–remote shell
10080 TCP MyDoom.B

Table 10.5 Common Trojan horse and their port numbers

Port Protocol layer Name

1243 TCP SubSeven
1349 UDP Back Orifice DLL
1999 TCP SubSeven
2583 TCP and UDP WinCrash
6711 TCP SubSeven
6776 TCP SubSeven
8787 TCP and UDP Back Orifice 2000
12345 TCP NetBus
12346 TCP NetBus Pro
27374 UDP SubSeven
54320 TCP and UDP Back Orifice 2000
54321 TCP and UDP Back Orifice 2000
57341 TCP and UDP NetRaider

(www.symantec.com/security_response/writeup.jsp?docid=
2003-081119-5051-99)) and it seemed to work. But I ended up wiping the
system anyway and reloading the OS.”

(a) Conduct a research on the w32.blaster malware.
(b) What are the pros and cons of reloading the OS as a measure to clean malware?

10.8. Visit http://www.avast.com/eng/download-avast-home.html,
download avast! 4 Home free of charge for home users, and install it on your
computer. Then run it to scan your system. According to what you see, explain the
mechanism of this antivirus product.

http://www.symantec.com/security_response/writeup.jsp?docid=2003-081119-5051-99
http://www.symantec.com/security_response/writeup.jsp?docid=2003-081119-5051-99
http://www.avast.com/eng/download-avast-home.html


372 Introduction to Network Security

10.9. Describe the similarities and differences between McAfee VirusScan, Norton
AntiVirus, and Avast! AntiVirus. For example, do they perform preinstallation
scanning? Do they support heuristic scanning? Do they provide system security
levels?

10.10. Search from the relevant Websites and list the new viruses and worms that have
occurred in the last 2 weeks.

*10.11. Search for relevant references and describe in details how the Code Red worm used
the buffer-overflow attack to run the main worm code.

10.12. “The Conficker worm attack in 2009 affected some of the standalone systems I
managed through the financial regulator’s Website,” a reader told us. “I was able to
clean up that using the McAfee “stinger” fix released for the Conficker malware.”

Conduct a research on the Internet and explain what the Conficker worm is and
how it is disseminated.

10.13. “In 2009, we were infected by the Conficker worm in my organization. PCs
that were previously infected by previous versions of the Conficker worm were
triggered by the updated version of the worm, which were undetected. It was
a nightmare. The worm disabled system AV products and utilizes scheduled
tasks for reinfection. The worm also infected other systems via USB drives
and password guessing. The worm thrived in environments with Windows OS
shares, weak passwords, lack of software updates, and the unrestricted Autorun
functionality for removable media. We had to go to roughly 400 PCs and removed
each instance on a case by case basis. As a result, although we did not disable
Autoruns, we did change the password security policy.”

Suggest counter measures to prevent the Conficker worm from getting your sys-
tem. Justify your solutions.

10.14. “I have had my home systems attacked many times through the years, even once
with the Lsass malware,” a reader said. “At that time a certified Microsoft techni-
cian helped me get rid of it. Since then my machines have been attacked by overly
aggressive adware and spyware with strange popups and redirection of my home-
page. Once I even had my machine infiltrated by a ‘performance improving’ and
‘antivirus program’ advertised on local TV, which acted much more like spyware.
It took me several days to get rid of this memory hogging software. I had to elimi-
nate or change Registry keys, eliminate certain suspicious, duplicated system files,
rename malicious files before deletion and do some other ‘out of the box’ things
before I could get rid of it. In recent years I have found it far preferable to run
untrustworthy downloaded software on an OS installed on a VM like VMWare, to
check what it will do to system files and to the Registry.”
(a) Conduct a research on the Lsass malware mentioned by this reader.
(b) Share your experience of removing malware where you had to use some

out-of-the-box methods.

10.15. “A few years ago I had to deal with a virus that lodged itself somehow on the
boot process,” a reader told us. “Apparently even Avast! that I had installed on my
computer wasn’t able to detect this virus. I suspected one of my kids downloaded
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free games, which were probably where the virus came from. After a few attempts
I had to use an anti-root-kit to get rid of the virus. This incidence has made me
aware that security issues can strike anyone on a personal level. As they say, many
things begin at home and this experience certainly taught me a good lesson to be
more security conscious.”

Have your experienced similar situations? Give one or more examples.

10.16. “My friend’s Windows XP computer was once locked by the FBI Trojan and he
was instructed by a popup notice to pay $200 or $300 to get it unlocked. I tried to
clean the computer by hand like deleting the entries in registry (Windows/Current
Version/ Run or RunOnce) and tried the Windows restore in Windows XP, but none
of these measures worked. Finally I was able to use Microsoft Security Essentials
(MSE) to remove it. But I needed to run MSE a few times to clean the computer
completely.” A reader of the first edition shared this story. Can you explain what
happened to this person’s computer?

10.17. “About two and a half years ago (i.e., sometime in 2012),” said a reader of the
first edition, “I downloaded a desktop background from a site where there were
lots of backgrounds available. It came with some sort of spy/malware/adware
code attached to it. I rendered the computer unusable and I had to call Information
Services to remove it. It was something that they claimed not to have seen before,
and it took them about 45 minutes to clear my computer. I don’t download such
images anymore.”

Conduct a search on the Internet and make an educational guess on what hap-
pened to this reader’s computer.

10.18. “I find a lot of people that I help in my spare time encounter viruses and worms
constantly,” a reader to us. “There are so many different types out there that can
cause a range of different issues. I find when trying to deal with these infections
there is no one piece of software that can fix all of these types of infections. You
have to build a whole toolbox of different types of software that can help you detect,
quarantine, and successfully clean the infections. I have found sometime it is best
to run multiple piece of software to clean and ensure that the virus or worm has
been removed. Sometimes you cannot be successful and the only way to fix these
types of issues is to reformat and start fresh. I tell all my customers to have a virus
scan, antispyware software, and make sure that they keep their OS patches up to
date.”

In addition to the suggestions mentioned here, can you add a few more measures
that we should take to protect our systems?

10.19. Use examples to explain why a system administrator should not use a user account
with super-user password to browse the Web.

10.20. Use examples to explain why a system administrator should not use an user account
with super-user password to send or receive email.

10.21. A zero-day attack is an attack that exploits a previously unknown flaw in an appli-
cation and a patch has not been released. “Our company was subject to a zero-day
attack a few months ago (i.e., in late 2013),” a reader told us. “That was the first
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time our IT had heard of such attacks. The attackers had found a hole in the OS
we were using before the developers did or had the chance to patch it.” Can you
suggest a good preventative measure to deal with zero-day attacks? Justify your
answer.

10.22. A reader of the first edition shared the following story with us: “I remember that
my computer has been infected a few times from the Websites I visited. I often
search for solutions to my programming issues over the Internet. The sites I have
frequented are hosted by very knowledgable people. A few years back, before
really knowing the trusted sites, I often wound up in places that seemed legitimate,
but after clicking a link inside of a post once, immediately my computer stopped
responding and crazy stuff started filling my screen. Knowing what was happen-
ing, I shut down my computer (the old method of holding the power key down for
five seconds), then started it back up in safe mode. With another computer next to
me to guide me, I went through the process of restoring a backup from Windows
of a few days earlier and all was good. I installed a new virus scan later, and the
scan verified that there was no infection, and I was all good. Since then, I have tried
to stick with official Microsoft sites, ExpertsExchange, and a few other sites that
provide 90% of what I’m looking for. I think now, with modern updated malware
protection, I feel pretty safe to check out some unknown sites if they seem to have
a potential answer that none of the others do.”

Do you agree with the reader’s current practice? Justify your answer.

10.23. In Section 10.7.6, we introduced two security vulnerabilities in AJAX. There are
more security problems in AJAX. Search the relevant literature and describe two
additional security vulnerabilities in AJAX.

*10.24. Web 2.0 is a term coined in 2004 for the purpose of representing the second gen-
eration of Web technologies. The first generation of Web technologies is denoted
by Web 1.0. There is a clear distinction between Web 2.0 and Web 1.0 technolo-
gies. Table 10.6 lists a few Web 1.0 technologies and the corresponding Web 2.0
technologies.

The list can go on. While Web 2.0 has the same types of security issues as
Web 1.0, it has added several new dimensions. Search the relevant literature and
describe five security issues in Web 2.0.

Table 10.6 Web 1.0 versus Web 2.0

Web 1.0 technology Web 2.0 technology

Personal Web pages blogs Blogs
Akamai BitTorrent
mp3.com Napster
DoubleClick Google AdSense
Britannica Online Wikipedia
Content management systems Wikis
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10.25. Visit http://www.microsoft.com/downloads, download Windows
Defender free of charge, and install it on your computer. Then run it to scan for
spyware. According to what you see, explain the mechanism of this antispyware
product.

10.26. In Windows operating systems, cookies for IE are stored on the C drive under the
Documents and Settings directory. First find your user name, and then open the
Cookies directory. Select at random a cookie file and open it. Explain what you
see, and answer the following questions.

(a) If cookies are transmitted to the Web servers in plaintext, list and describe the
potential security threats the clients may face.

(b) If users are allowed to modify cookies stored on local computers, list and
describe the potential security threats the Web servers may face.

10.27. When Alice surfs the Web, she will leave certain information at the Web servers
because her computer needs to establish TCP connections with the Web server
computers, including her user name, her computer’s IP address, and the type and
version of the operating system on her computer. To surf the Web anonymously,
one way to do so is to use a Web proxy server to relay connections between Alice
and the Web servers. Anonymizer is such a system. Download Anonymizer from
http://www.anonymizer.com to surf the Web anonymously.

*10.28. Using a Web proxy server to surf the Web, although the actual Web server does not
know the client’s information (all requests will come from the proxy server), the
proxy server still knows it. This means that the user has to trust the proxy server.
Can one surf the Web anonymously without using any proxy server? Freenet is a
protocol that allows the user to surf and publish articles in the Web anonymously.
Conduct a research on Freenet and write a paper of about 4000 words describing
its usage, architecture, and algorithms.

**10.29. NGVCK generates metamorphic viruses. In particular, it generates a piece of viral
code that does the same thing of the same virus, but with an almost completely
different structure each time. This would defy basic scanning. It has been suggested
that using the hidden Markov model (HMM) can effectively detect metamorphic
viruses.

HMM models a system statistically using a Markov process with unknown
parameters. It provides a formal method to determine hidden parameters from
observable ones.

Describe how you may use HMM to detect metamorphic viruses.

10.30. “Recently (that is, in early 2014) we encountered at work a potential threat orig-
inating from the Amazon cloud,” a reader reported. “One of our business units at
my company alerted us that their Web server was spitting out massive amounts of
Internal server errors. We were thinking at first that the Web server could not han-
dle the standard HTTP traffic and there might be a problem with the code. Looking
at the logs, however, we noted a pattern where the traffic would flood in at a cer-
tain time in the evening. But the amount was barely noticeable by our firewalls or

http://www.microsoft.com/downloads
http://www.anonymizer.com
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load balancers, for the source IPs were coming from different networks owned by
Amazon. As a precaution we denied all networks owned by Amazon from access-
ing this external IP we hosted. It has been two months since we instrumented this
rule of denying Amazon traffic. The performance problems went away as soon as
we blocked this traffic.”

Can you help the reader to pinpoint what went wrong in their Web server?

10.31. One of the readers of the first edition shared with us the following incident:
“I had once experienced a DoS incident (not a malicious attack) that was

resulted from a configuration error in the automatic update policy of an application.
The application was attempting to download external updates for over 500 locally
installed workstations at the same time. This configuration error caused extended
communication outages for mission critical systems already constrained with
satellite bandwidth. Primary measures to counter such incidents we took included
active network monitoring, firewall log checking, and continuous administrator
training so that changes in regular network traffic can be identified sooner. Also,
adherence to a detailed configuration management plan is important to reduce
network intrusions.”

(a) Discuss the measures they took were reasonable ones.
(b) Can you think of other or better measures? Justify your answer.



Appendix A

7-bit ASCII code

000 001 010 011 100 101 110 111

0000 nul soh stx etx eot enq ack bel
0001 bs ht nl vt np cr so si
0010 dle dcl dc2 dc3 dc4 nak syn etb
0011 can em sub esc fs gs rs us
0100 space ! " # $ % & ’
0101 ( ) * + , - . /
0110 0 1 2 3 4 5 6 7
0111 8 9 : ; < = > ?
1000 @ A B C D E F G
1001 H I J K L M N O
1010 P Q R S T U V W
1011 X Y Z [ \ ] ^ _
1100 ‘ a b c d e f g
1101 h i j k l m n o
1110 p q r s t u v w
1111 x y z { | } ∼∼ del

Row numbers represent the 4-bit prefix, and the column numbers represent the
3-bit suffix. The first 32 ASCII codes and the last ASCII code are control codes,
which are not displayable.

Introduction to Network Security: Theory and Practice, Second Edition. Jie Wang and Zachary A. Kissel.
© Higher Education Press. All rights reserved. Published 2015 by John Wiley & Sons Singapore Pte Ltd.





Appendix B

SHA-512 Constants
(in Hexadecimal)

i Ki i Ki i Ki

0 428a2f98d728ae22 1 7137449123ef65cd 2 b5c0fbcfec4d3b2f
3 e9b5dba58189dbbc 4 3956c25bf348b538 5 59f111f1b605d019
6 923f82a4af194f9b 7 ab1c5ed5da6d8118 8 d807aa98a3030242
9 12835b0145706fbe 10 243185be4ee4b28c 11 550c7dc3d5ffb4e2
12 72be5d74f27b896f 13 80deb1fe3b1696b1 14 9bdc06a725c71235
15 c19bf174cf692694 16 e49b69c19ef14ad2 17 efbe4786384f25e3
18 0fc19dc68b8cd5b5 19 240ca1cc77ac9c65 20 2de92c6f592b0275
21 4a7484aa6ea6e483 22 5cb0a9dcbd41fbd4 23 76f988da831153b5
24 983e5152ee66dfab 25 a831c66d2db43210 26 b00327c898fb213f
27 bf597fc7beef0ee4 28 c6e00bf33da88fc2 29 d5a79147930aa725
30 06ca6351e003826f 31 142929670a0e6e70 32 27b70a8546d22ffc
33 2e1b21385c26c926 34 4d2c6dfc5ac42aed 35 53380d139d95b3df
36 650a73548baf63de 37 766a0abb3c77b2a8 38 81c2c92e47edaee6
39 92722c851482353b 40 a2bfe8a14cf10364 41 a81a664bbc423001
42 c24b8b70d0f89791 43 c76c51a30654be30 44 d192e819d6ef5218
45 d69906245565a910 46 f40e35855771202a 47 106aa07032bbd1b8
48 19a4c116b8d2d0c8 49 1e376c085141ab53 50 2748774cdf8eeb99
51 34b0bcb5e19b48a8 52 391c0cb3c5c95a63 53 4ed8aa4ae3418acb
54 5b9cca4f7763e373 55 682e6ff3d6b2b8a3 56 748f82ee5defb2fc
57 78a5636f43172f60 58 84c87814a1f0ab72 59 8cc702081a6439ec
60 90befffa23631e28 61 a4506cebde82bde9 62 bef9a3f7b2c67915
63 c67178f2e372532b 64 ca273eceea26619c 65 d186b8c721c0c207
66 eada7dd6cde0eb1e 67 f57d4f7fee6ed178 68 06f067aa72176fba
69 0a637dc5a2c898a6 70 113f9804bef90dae 71 1b710b35131c471b
72 28db77f523047d84 73 32caab7b40c72493 74 3c9ebe0a15c9bebc
75 431d67c49c100d4c 76 4cc5d4becb3e42b6 77 597f299cfc657e2a
78 5fcb6fab3ad6faec 79 6c44198c4a475817
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Appendix C

Data Compression Using ZIP

ZIP is a simple matching algorithm using two sliding windows, called the base window and
the look-ahead window. These two windows are placed side-by-side on the data file, where the
look-ahead window goes ahead of the base window. ZIP scans the entire file by sliding these
two windows and encoding data on the fly. In particular, ZIP finds the longest prefix s of the
data string contained in the look-ahead window that also appears in the base window. This
string in the look-ahead window (if found) is a copy of s in the base window, and so it can be
uniquely identified by two attributes: (1) the distance between the location of the first character
of s in the base window and the location of the first character in the look-ahead window and
(2) the length of s. If the space needed to hold the values of these two attributes is smaller than
the space needed to hold s, we obtain a saving of space.

To implement this idea, we will need to distinguish the binary values of the two attributes
from normal encodings of characters. Suppose that the data file is encoded using the 8-bit
ASCII code set. If the first bit is used as a parity bit, then it could be either 0 or 1. The first bit
of the binary string representing the two attributes can also be either 0 or 1. Thus, to make a
distinction, we add an extra bit of 1 in front of each ASCII code to yield a 9-bit extended ASCII
code and add an extra bit of 0 in front of the binary string representing the two attributes. This
simple encoding uniquely identifies the original data file.

In particular, let w1 denote the number of characters the base window can hold, where
2d−1 < w1 ≤ 2d for some d ≥ 1. Let w2 denote the number of characters the look-ahead win-
dow can hold, where 2l−1 < w2 ≤ 2l for some l with 1 ≤ l ≤ d. This produces a (d + l +
1)-bit binary encoding for s, where the first bit is 0 (used as an indicator), the next d bits
represent the distance, and the last l bits represent the length. For convenience, we call this
(d + l + 1)-bit code a location code.

A location code is easily distinguishable from any 9-bit extended ASCII code because a
location code has a fixed length and an indicator 0 different from the indicator in a 9-bit
extended ASCII code. In other words, given a compressed file using this encoding method,
it can be uniquely and easily “uncompressed” back to its original ASCII format. The proof is
left to the reader (see the Exercise). Thus, as long as d + l + 1 < 8k, where k = |s|, ZIP may
save space. ZIP then shifts both of the base window and the look-ahead window to the right
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Input

Output

Figure C.1 A demonstration of a ZIP process

max{1, k} times and repeats the same procedure until the look-ahead window is shifted out
of the data file.

For example, let w1 = 18 and w2 = 7. Then d = 5 and l = 3. Let us consider the following
text string:

“a loop containing a loop is a nested loop”

Denote by nb, the binary representation of positive integer n. Running ZIP on this character
string produces the following output (see Figure C.1):

“a loop containing 017b7b is a nested 016b5b”,

where each letter and space in the output string is encoded by a 9-bit extended ASCII code.
For clarity, we do not spell out the location code in binary. The length of the “compressed”
string in binary is therefore equal to 18 × 9 + 9 + 11 × 9 + 9 = 279 bits, and the length of
the original character string encoded in the 8-bit ASCII code set is equal to 41 × 8 = 328 bits.
Thus, ZIP has compressed the original data string to a shorter binary string.

To decode a compressed file, ZIP scans it from the beginning, removes the leading 1 from
each 9-bit extended code, and replaces each 9-bit code with leading 0 by the corresponding
character substring using the distance and length attributes.

Exercise

Show why the 10-bit code defined in this appendix is easily distinguishable from the extended
9-bit ASCII code. That is, given a compressed file using this encoding method, show that it
can be uniquely and easily “uncompressed” back to its original ASCII format.



Appendix D

Base64 Encoding

Base64 encoding represents a 6-bit binary string using a printable character (see Table D.1),
where a 6-bit value of 0–25 represents an upper-case letter A–Z correspondingly; a 6-bit value
of 26–51 represents a lower-case letter a–z correspondingly; a 6-bit value of 52–61 represents
a digit 0–9 correspondingly; and the last two 6-bit values of 62 and 63 represent “+” and “/”,
respectively. Transmitted in ASCII format, this means that every 6-bit string is replaced with
an 8-bit string.

In addition, Base64 encoding uses character “=” as a special indicator. Using Base64 encod-
ing, a binary string is converted to a character string as follows:

Case 1: The binary data consists of only one byte. Pad it at the end with 16 0’s to extend
it to a 24-bit string. This 24-bit string is then converted to a Base64 string of four characters,
with “==” being the last two characters. This indicates that only the first two characters are
to be decoded, and the suffix 0000 is discarded.

Case 2: The binary data consists of only two bytes. Pad it at the end with eight 0’s to extend
it to a 24-bit string. This 24-bit string is then converted to a Base64 string of four characters,
with “=” being the last character. This indicates that only the first three characters are to be
decoded, and the suffix 00 is discarded.

Case 3: The binary data consists of at least three bytes. Place the first three bytes of the
binary data into a 24-bit buffer, where the first byte is placed in the most significant eight bits
of the buffer, the second byte is placed in the middle, and the third byte in the least significant
eight bits. This 24-bit string is then converted to a Base64 string of four characters. Repeat
this process until there is no byte left, there is one byte left, or there are two bytes left. The
conversion is completed if there is no byte left. If there is one byte left, apply Case 1 to this
byte to complete the conversion. If there are two bytes left, apply Case 2 to these two bytes to
complete the conversion.

Given in Table D.2 are several examples of Base64 conversions.
Decoding a Base64 string back to the original binary data is straightforward and is left to

the reader (see Exercise).
The Base64 encoding was first used in the Privacy-enhanced Electronic Mail (PEM) proto-

col for transferring electronic data.
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Table D.1 Base64 encoding

6-bit value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
character encoding A B C D E F G H I J K L M N O P Q R S T
6-bit value 20 21 22 23 24 25 26 27 28 29 31 31 32 33 34 35 36 37 38 39
character encoding U V W Z Y Z a b c d e f g h i j k l m n
6-bit value 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
character encoding o p q r s t u v w x y z 0 1 2 3 4 5 6 7
6-bit value 60 61 62 63
character encoding 8 9 + /

Table D.2 Examples of Base64 conversions, where boldface bits are padding bits

Binary string 10110011 (one byte)
24-bit buffer 101100 110000 000000 000000 (padding of two bytes)

Base64 conversion sw==
binary string 10110011 00000101
24-bit buffer 101100 110000 010100 000000 (padding of one byte)

Base64 conversion swU=
binary string 10110011 00000101 01100010
24-bit buffer 101100 110000 010101 100010 (no padding)

Base64 conversion swVi

Exercise

Describe how to decode Base64 strings back to their original binary strings.



Appendix E

Cracking WEP Keys Using
WEPCrack

This appendix describes an experiment to crack a WEP-protected WLAN using WEPCrack,
an open-source WEP cracking tool. WEPCrack implements the RC4 weak-key attack intro-
duced in 2001 by Fluhrer, Mantin, and Shamir. It is written in the Perl language. Stephen
Brinton designed and implemented the experiments.

E.1 System Setup

The experiment uses three computers and one WEP-enabled Linksys wireless router as an
AP. One computer serves as an Apache Web server, which is connected to the router via an
Ethernet cable. The second computer is a WEP-enabled wireless laptop PC connected to the
router. The router and the laptop computer share a 104-bit secret WEP key K. This computer
continuously requests Web pages from the Web server for the purpose of generating a large
number of frames. The third computer is also a laptop PC equipped with a WEP-enabled
wireless network interface card (NIC) that can monitor network traffic. This computer runs
WEPCrack to crack the WEP key K. Figure E.1 shows the system setup of this experiment.

The experiment uses the following AP and wireless NICs:

AP

The AP used in the experiment was a WEP-enabled Linksys Wireless-B Broadband
Router.

User’s Network Card

Device: Belkin F5D7010 54g Wireless Network card
Driver: ndiswrapper (Belkin: bcmwl5.inf)
Vendor: Broadman

Introduction to Network Security: Theory and Practice, Second Edition. Jie Wang and Zachary A. Kissel.
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Wireless routerWeb server

User requesting Web pages

Attacker running WEPCrack

Figure E.1 WEPCrack experiment system setup

Attacker’s Network Card

Device: AR5212 802.11 abg (Netgate)
Device Name: ath0

Driver: ath_pci
Vendor: Atheros Communications, Inc.

E.2 Experiment Details

WEPCrack cracks WEP keys by first collecting weak initialization vectors. After sufficient
information about weak initialization vectors is obtained, WEP Crack deduces from it the WEP
key used in the WLAN. It may take a number of hours to collect information. After that, the
actual cracking part may take only a few minutes.

Step 1: Initial Setup

Select a 104-bit WEP key for both the AP (the router) and the STA (the laptop computer that
will continuously request Web pages from the Web server). In the experiment, the WEP key
is chosen as a 13-byte binary string

K = 96 6 91 24 207 211 39 92 158 7 240 37 234.

Start the Apache server using the #rcapache2 start command. The STA starts the
requester program requester.c (see Section E.3) using

./requester 172.16.1.1 80 GET /

where 172.16.1.1 is the IP address of the Apache server. This produces continuous request
and sending of a web page over the wireless connection.
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Step 2: Attacker Setup

The attacker’s laptop runs Linux. First run the ifconfig ath0 up command to enable the
laptop’s NIC. Then run the iwconfig ath0 scan command to search for the AP within
range and collect its MAC address, channel, and essid information. The iwconfig ath0
scan command returns the following output:

ath0 Scan completed

Cell 01 -- Address: 00:11:F5:1D:98:04

ESSID: "Gates"

Mode: Master

Frequency: 2.442 GHz (Channel 7)

Quality = 43/94 Signal level = -52 dBm

Noise level = -95 dBm

Encryption Key: on

Bit Rate: ...

Finally, configure the NIC using the following commands:

ifconfig ath0 down

iwconfig ath0 channel 11

iwconfig ath0 ap 00:06:25:F3:CD:89

iwconfig ath0 essid ResearchAP

iwconfig ath0 mode monitor

ifconfig ath0 up

Step 3: Collecting Weak Initialization Vectors

Start Wireshark and open the capture window to capture wireless frames. Then
run the WEPCrack program pcap-getIV.pl using the following command:
./pcap-getIV.pl -i ath0. This may take several hours to run to collect suffi-
cient information. This program produces a log file named IVFile.log, which contains weak
initialization vectors and encrypted outputs. They will be used to help reveal the WEP key.

Step 4: Cracking

Run WEPCrack.pl on IVFile.log to deduce the WEB-kep. After only a few minutes of execu-
tion, WEPCrack arrived at the correct encryption key shown as follows, where $ is the Linux
prompt:

$./WEPCrack.pl

Keysize = 13 [104 bits]

96 6 91 24 207 211 39 92 158 7 240 37 234
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E.3 Sample Code

The STA executes the following program, written by Stephen Brinton, to keep requesting Web
pages.

requester.h

/************************************************
Header name: requester.h

*************************************************/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>

// Maximum Sizes
#define BUFSIZE 1024
#define HOST_NAME_SIZE 256
#define COMMAND_NAME_SIZE 3
#define FILENAME_SIZE 256
#define PORTNUMBER_SIZE 4

#define QLEN 128

requester.c

/***********************************************************
Filename: requester.c
Designer: Stephen Brinton - UML
Overview: This program will continuously request and print

Web pages Usage:

client host portnumber command filename

Example: ./requester www.cnn.com GET index.html
Function: make_socket() - makes a socket connection

************************************************************/

#include "requester.h"

int main(int argc, char *argv[])
{

int sd; // socket descriptor ID

http://www.cnn.com
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int n; // number of characters to/from socket
char msg[BUFSIZE]; // buffer used to hold socket message
char host[HOST_NAME_SIZE]; // host address
char command[COMMAND_NAME_SIZE]; // command - GET or PUT
char filename[FILENAME_SIZE]; // filename to GET/PUT
char port_number[PORTNUMBER_SIZE];
// store portnumber from command line arguments

int portnumber; // portnumber to GET/PUT

// **** GATHER THE ARGUMENTS FROM THE COMMAND LINE ****
if (argc != 5) // check if there are 5 arguments
{ // print error message otherwise

fprintf(stderr, "Error - Usage:
client host port_number command filename\n");

exit(1);
}
{

sprintf(host,argv[1]);
sprintf(port_number,argv[2]);
portnumber = atoi(port_number);
sprintf(command,argv[3]);
sprintf(filename,argv[4]);

}

while(1)
{

if (strcmp("GET",command)!=0 && strcmp("PUT",command)!=0)
{

fprintf(stderr, "Error - Invalid command entered:
%s (Must be either PUT or GET)\n", command);
exit(1);

}
// setup command to be sent through socket to host
if (strcmp("GET",command)==0) // Process the GET command
{

sprintf(msg, "GET %s HTTP/1.0\r\nHost: %s\r\n\r\n",
filename,host);

if ((sd = make_socket(portnumber, host))== -1)
{

exit(1);
};
write(sd,msg,strlen(msg));

}
else // PUT command
{

FILE* fptr;
int fd;
int bytes_read;
struct stat file_info;
char* buffer;
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size_t length;

if ((fptr = fopen(filename, "rb")) == NULL)
{

fprintf(stderr, "Error - File Not Found\n");
close (sd);
exit(1);

}
fd = fileno(fptr);
fstat(fd, &file_info);
length = file_info.st_size;
if (!S_ISREG (file_info.st_mode))
{

fprintf(stderr, "Error - File is not regular\n");
close (fd);
close(sd);
exit(1);

}
sprintf(msg, "PUT /%s HTTP/1.0\r\nHost:

%s\r\nContent-type:
text/plain\r\nContent-length:
%d\r\n\r\n",filename,host,length);

if ((buffer=(char*)malloc(length+strlen(msg)))==NULL)
{

fprintf(stderr, "Error - Insufficient
memory available to send file\n");

close (fd);
exit(1);

}
memcpy(buffer, msg, strlen(msg));
bytes_read=fread(buffer+strlen(msg),1,length,fptr);
close (fd);
if ((sd = make_socket(portnumber, host))== -1)
{

free(buffer);
exit(1);

};
write(sd,buffer,bytes_read+strlen(msg));

}

// **** READ AND DISPLAY MESSAGES FROM SOCKET ****
// read from socket and keep doing it until nothing
// remains in socket
n = recv(sd,msg,sizeof(msg),0);
while (n>0)
{

write(1,msg,n);
n = recv(sd,msg,sizeof(msg),0);

}
close(sd);

} // **** CLOSE CONNECTION ****
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return(0);
}

/*****************************************************************
Function name: make_socket
Overview: This function setups a socket to be used by this client
*****************************************************************/

int make_socket(int portnumber, char* host)
{

struct hostent *ptrh; // pointer used by gethostbyname
struct sockaddr_in sad;
int sd; // socket descriptor ID
// **** PREPARE THE ADDRESS TO BE USED IN MAKING THE CONNECTION
memset ((char *)&sad, 0,sizeof(sad));
sad.sin_family = AF_INET;
sad.sin_port = htons((u_short)portnumber);
ptrh = gethostbyname(host);
if (((char *)ptrh) == NULL)
{

fprintf(stderr,"Error-Invalid host entered: %s\n",host);
return -1;

}
memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);

// **** MAKE THE SOCKET ****
sd = socket(PF_INET, SOCK_STREAM, 0);
if (sd < 0)
{

fprintf(stderr, "Error - Socket creation failed\n");
return -1;

}
// **** CONNECT TO SERVER ****
if (connect(sd, (struct sockaddr *)&sad, sizeof(sad))<0)
{

fprintf(stderr, "Error - Connect failed\n");
return -1;

}
return sd;

}
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Acronyms

ACK Acknowledgement
ACL Access Control List
AES Advanced Encryption Standard
AH Authentication Header
AJAX Asynchronous JavaScript and XML
ALG Application-Level Gateway; Application-Layer Gateway
AMS Anti-Malicious Software
ANSI American National Standard Institute
AP Access Point
ARP Address Resolution Protocol
AS Authentication Server
ASCII American Standard Code for Information Interchange
ASIC Application-Specific Integrated Circuit
ASP Active Server Page
AVI Audio-Video Interleaved
AWS Amazon Web Services

BTC Bitcoin unit

CA Certificate Authority
CBC Cipher-Block-Chaining Mode
CBC-MAC Cipher-Block Chaining Message Authentication Code
CCMP Counter Mode-CBC MAC Protocol
CEO Chief Executive Officer
CERT Computer Emergency Response Team (USA)
CGI Common Gateway Interface
CIA Central Intelligence Agency (USA)
CIFS Common Internet File System
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CHF Cryptographic Hash Function
CLG Circuit-Level Gateway
COFF Common Object File Format
COM Component Object Model
CPU Central Processing Unit
CQA1 Chosen-Query Attack
CAQ2 Adaptive Chosen-Query Attack
CRC Cyclic Redundancy Check
CTR Center
CWG Conficker Working Group

DAC Data Authentication Code
DES Data Encryption Standard
DHCP Dynamic Host Configuration Protocol
DiF Distributed Firewall
DIS Digital Immune System
DLL Dynamic Link Library
DMVPN Dynamic Multipoint VPN
DMZ Demilitarized Zone
DDoS Distributed Denial of Service
DHCP Dynamic Host Configuration Protocol
DHBS Double-Homed Bastion System
DoS Denial of Service
DPF Dynamic Packet Filter
DSL Digital Subscriber Line
DZ Demilitarized Zone

EAPoL Extensible Authentication Protocol over LAN
EBCDIC Extended Binary Coded Decimal Interchange Code
EC2 Amazon Elastic Compute Cloud
ECB Electronic-Codebook Mode
ECC Elliptic-Curve Cryptography
ECDH Elliptic-Curve DiffieHellman
EFF Electronic Frontier Foundation
ELF Executable and Linking Format
ESP Encapsulating Security Payload
ESSID Extended Service Set IDentifier

FAT File Allocation Table
FBI Federal Bureau of Investigation (USA)
FCS Feistel Cipher Scheme
FTP File Transfer Protocol

GB Guojia Biaozhun (National Standards, China)
GCHQ British Government Communications Headquarters
GMK Group Master Key
GUI Graphical User Interface
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HBC Honest-but-Curious
HIHAT High Interaction Honeypot Analysis Toolkit
HMAC Keyed-Hash Message Authentication Code
HBD Host-Based Detection
HMM Hidden Markov Model
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

IAT Import Address Table
IaaS Infrastructure-as-a-Service
IBM International Business Machines Corporation (USA)
ICMP Internet Control Message Protocol
ICV Integrity Check Value
IDEA International Data Encryption Algorithm
IDES Intrusion Detection Expert System
IDP Intrusion Detection Policy
IDS Intrusion Detection System
IE Internet Explorer
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers (USA)
IETF The Internet Engineering Task Force
IIS Internet Information Services
IKE Internet Key Exchange
IM Instant Messaging
IMAP Internet Mail Access Protocol
IP Internet Protocol
IPS Intrusion Prevention System
IPsec IP Security
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ISAKMP Internet Security Association and Key Management Protocol
ISO International Standardization Organization;

International Organization for Standardization
ISP Internet Service Provider
ITU International Telecommunication Union

JSON JavaScript Object Notation
JVM Java Virtual Machine
JSP Java Server Page

KDC Key Distribution Center
KDP Key Determination Protocol
KGA Key Generation Algorithm
KSA Key Scheduling Algorithm

LAN Local Area Network
LFSR Linear Feedback Shift Registers
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MAC Media Access Control
MAC Message Authentication Code
MBSA Microsoft Baseline Security Analyzer
MIC Message Integrity Code
MIDI Musical Instrument Data Interface
MKPKC Multiple-Key Public-Key Cryptography
MPDU MAC Protocol Data Unit
MSDU MAC Service Data Unit

NAT Network Address Translation
NBD Network-Based Detection
NBS National Bureau of Standards (USA)
NESSIE New European Schemes for Signatures, Integrity, and Encryption
NetBIOS Network Basic Input and Output System
NFS Network File System;

National Science Foundation (USA)
NGVCK Next Generation Virus Creation Kit
NIC Network Interface Card
NIDS Network-based Intrusion Detection System
NIST National Institute of Standards and Technology (USA)
NSA National Security Agency (USA)
NTFS New Technology File System

OAuth Open Authentication protocol
OCB Offset-Codebook Mode
OFB Output-Feedback Mode
OLE Object Linking and Embedding
ORAM Oblivious Random Access Machine
OSI Open System Interconnection

PAN Personal Area Network
PaaS Platform-as-a-Service
PAT Port Address Translation
PDA Personal Digital Assistant
PE Portable Executable
PEM Privacy-enhanced Electronic Mail
PGP Pretty Good Privacy
PHP Hypertext Preprocessor
PHT Pseudo Hadamard Transform
PID Process Identifier
PKA Public-Key Authority
PKC Public-Key Cryptography; Public-Key Cryptosystem
PKI Public-Key Infrastructure
PKIX X.509 Public-Key Infrastructure
PMK Pairwise Master Key
POP Post Office Protocol
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POP3 Post Office Protocol version 3
POW Proof-of-Work
PRE Proxy Re-Encryption
PRNG Pseudo-Random Number Generator
PTK Pairwise Transient Key
P2P Peer-to-Peer

RADIUS Remote Authentication Dial-In User Service
RAM Random Access Memory

Random Access Machine
REST Representational State Transfer
RSN Robust Security Network
RSN IE Robust Security Network Information Element
RSNA Robust Security Network Association

SaaS Software-as-a-Service
SA Security Association
SAD Security Association Database
SANS SysAdmin, Audit, Network, and Security Institute (USA)
SAS Security Association Selector
SCP Secure Copy Protocol
SET Secure Electronic Transaction
SFTP Secure File Transfer Protocol
SHA Secure Hash Algorithm
SHBC Semi-Honest-but-Curious
SHBS Single-Homed Bastion System
SIV System Integrity Verifier
SKKE Symmetric-Key Key Establishment
SLA Service-Level Agreement
S/MIME Secure/Multipurpose Internet Mail Extension
SMTP Simple Mail Transfer Protocol
SOHO Small Office and Home Office
SPD Security Policy Database
SPI Security Parameters Index; Stateful Packet Inspection
SPF Stateful Packet Filtering
SRES Singed Response
SSE Searchable Symmetric Encryption
SSH Secure Shell
SSL Secure Sockets Layer
SSP Secure Simple Pairing
STaaS Storage-as-a-Service
STA Station (wireless endpoint)
SYN Synchronization

TCP Transmission Control Protocol
TCPv4 Transmission Control Protocol version 4
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TCPv6 Transmission Control Protocol version 6
Telnet Teletype network
TGS Ticket-Granting Server
TKIP Temporal Key Integrity Protocol
TFTP Trivial File Transfer Protocol
TLS Transport Layer Security
TOS Trusted Operating System
TPM Trusted Platform Module
TSC TKIP Sequence Counter
TTL Time-to-Live value
TTP Trusted Third Party

UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
Unicode Unification Code

VB Visual Basic
VBS Visual Basic Script
VoIP Voice of IP
VPN Virtual Private Network

WAP Wireless Access Point
WEP Wired Equivalent Privacy
Wi-Fi Wireless Fidelity
WKDC Wireless Key Distribution Center
WLAN Wireless Local Area Network
WN Wireless Node
WPA Wi-Fi Protected Access
WPA2 Wi-Fi Protected Access version 2
WPAN Wireless Personal Area Network
WPKI Wireless Public-Key Infrastructure
WSN Wireless Sensor Network

XML Extensible Markup Language
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