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Preface

People today are increasingly relying on public computer networks to conduct business and
take care of household needs. However, public networks may be insecure because data stored in
networked computers or transmitted through networks can be stolen, modified, or fabricated
by malicious users. Thus, it is important to know what security measures are available and
how to use them. Network security practices are designed to prevent these potential problems.
Originating from meeting the needs of providing data confidentiality over public networks,
network security has grown into a major academic discipline in both computer science and
computer engineering, and also an important sector in the information industry.

The goal of network security is to give people the liberty of enjoying computer networks
without the fear of compromising their rights and interests. Network security accomplishes
this goal by providing confidentiality, integrity, nonrepudiation, and availability of useful data
that are transmitted in open networks or stored in networked computers.

Network security will remain an active research area for several reasons. Firstly, security
measures that are effective today may no longer be effective tomorrow because of advance-
ments and breakthroughs in computing theory, algorithms, and computer technologies. Sec-
ondly, after the known security problems are solved, other security loopholes that were pre-
viously unknown may at some point be discovered and exploited by attackers. Thirdly, when
new applications are developed or new technologies are invented, new security problems may
also be created with them. Thus, network security is meant to be a long-lasting scuffle between
the offenders and the defenders.

Research and development in network security has mainly followed two lines. One line
studies computer cryptography and uses it to devise security protocols. The other line examines
loopholes and side effects of the existing network protocols, software, and system configu-
rations. It develops firewalls, intrusion detection systems, anti-malicious-software software,
and other countermeasures. Interweaving these two lines together provides the basic building
blocks for constructing deep layered defense systems against network security attacks.

This book is intended to provide a balanced treatment of network security along these two
lines, with adequate materials and sufficient depth for teaching a one-semester introductory
course on network security for graduate and upper-level undergraduate students. It is intended
to inspire students to think about network security and prepare them for taking advanced
network security courses. This book may also be used as a reference for IT professionals.

This book is a revision and extension of an early textbook written by the first author under
the title of “Computer Network Security: Theory and Practice,” which was co-published in
2008 by the Higher Education Press and Springer. The book is structured into 10 chapters.



xvi Preface

Chapter 1 presents an overview of network security. It discusses network security goals,
describes common network attacks, characterizes attackers, and defines a basic network secu-
rity model.

Chapter 2 presents standard symmetric-key encryption algorithms, including DES, AES,
and RC4. It discusses their strength and weaknesses. It also describes common block-cipher
modes of operations and a recent block-cipher offset-codebook mode of operations. Finally, it
presents key generation algorithms.

Chapter 3 presents standard public-key encryption algorithms and key-exchange algorithms,
including Diffie-Hellman key exchange, RSA public-key cryptosystem, and elliptic-curve
cryptography. It also discusses how to transmit and manage keys.

Chapter 4 presents secure hash functions and message authentication code algorithms for the
purpose of authenticating data, including SHA-512, Whirlpool, SHA-3, cryptographic check-
sums, and the standard hash message authentication codes. It then discusses birthday attacks
on secure hash functions and describes the digital signature standard. It presents a dual signa-
ture scheme used for electronic transactions and a blind signature scheme used for producing
electronic cash. It concludes with a description of the Bitcoin protocol.

Chapter 5 presents several network security protocols commonly used in practice. It
first describes a standard public-key infrastructure for managing public-key certificates. It
then presents IPsec, a network-layer security protocol; SSL/TLS, a transport-layer security
protocol; and several application-layer security protocols, including PGP and S/MIME for
sending secure email messages, Kerberos for authenticating users in local area networks, and
SSH for protecting remote logins.

Chapter 6 presents common security protocols for wireless local area networks at the
data-link layer, including WEP for providing wired-equivalent privacy, WPA and IEEE
802.111/WPA?2 for providing wireless protected access, and IEEE 802.1X for authenticating
wireless users. It then presents the Bluetooth security protocol and the ZigBee security
protocol for wireless personal-area networks. Finally, it discusses security issues in wireless
mesh networks.

Chapter 7 presents the key security issues involved in the burgeoning area of cloud
computing, including a discussion of the multitenancy problem and issues of access control.
It then presents advanced topics of searchable encryption for cryptographic cloud storage.

Chapter 8 presents firewall technologies and basic structures, including network-layer
packet filtering, transport-layer stateful inspections, transport-layer gateways, application-layer
proxies, trusted systems and bastion hosts, screened subnets, and network address translations.

Chapter 9 presents intrusion detection technologies, including intrusion detection system
architecture and common intrusion detection methods. It also discusses event signatures, sta-
tistical analysis, and data mining methods. Finally, it introduces honeypot technologies.

Chapter 10 describes malicious software, such as viruses, worms, and Trojan horses, and
introduces countermeasures. It also covers Web security and discusses mechanisms against
denial of service attacks.

Since the publication of the first edition, a number of readers have kindly shared with us
their personal experiences in dealing with network security attacks. Some of their stories, after
minor editing, are included in the text and the exercise problems.

To get the most out of this book, readers are assumed to have taken undergraduate courses
on discrete mathematics, algorithms, data communications, and network programming, or



Preface xvii

have equivalent preparations. For convenience, Chapter 3 includes a section reviewing basic
concepts and results of number theory used in public-key cryptography. While it does not
introduce socket programming, the book contains socket API client—server programming
exercises. These exercises are designed for computer science and computer engineering
students. Readers who do not wish to do them or simply do not have time to write code
may skip them. Doing so would not affect much the learning of materials presented in the
book.

Exercise problems for each chapter are divided into discussion problems and homework
problems. There are six discussion problems in each chapter, designed to hep stimulate readers
to think about the materials presented in that chapter at the conceptual level. These problems
are intended to be discussed in class, with the instructor being the moderator. The homework
problems are designed to have three levels of difficulty: regular, difficult (designated with *),
and challenging (designated with **). This book contains a number of hands-on drills, pre-
sented as exercise problems. Readers are encouraged to try them all.

This book is intended to provide a concise and balanced treatment of network security with
sufficient depth suitable for teaching a one-semester introductory course on network security. It
was written on the basis of what the first author learned and experienced during the last 18 years
from teaching these courses and on student feedback accumulated over the years. Powerpoint
slides of these lectures can be found at http://www.cs.uml.edu/~wang/NetSec.
Due to space limitations, some interesting topics and materials are not presented in this book.
After all, one book can only accomplish one book’s mission. We only hope that this book can
achieve its objective. Of course, only you, the reader, can be the judge of it. We will be grateful
if you will please offer your comments, suggestions, and corrections to us at wang @cs.uml.edu
or kisselz@merrimack.edu.

We have benefited a great deal from numerous discussions over the last 20 years with our
academic advisors, colleagues, teaching assistants, as well as current and former students. We
are grateful to Sarah Agha, Stephen Bachelder, Yiqi Bai, William Baker, Samip Banker, David
Bestor, Robert Betts, Ann Brady, Stephen Brinton, Jeff Brown, William Brown, Matthew
Byrne, Robert Carbone, Jason Chan, Guanling Chen, Mark Conway, Michael Court, Andrew
Cross, Daniel DaSilva, Paul Downing, Matthew Drozdz, Chunyan Du, Paul Duvall, Adam
Elbirt, Zheng Fang, Daniel Finch, Jami Foran, Xinwen Fu, Anthony Gendreau, Weibo Gong,
Edgar Goroza, Swati Gupta, Peter Hakewessell, Liwu Hao, Steve Homer, Qiang Hou, Marlon
House, Bei Huang, Jared Karro, Christopher Kraft, Fanyu Kong, Lingfa Kong, Zaki Jaber,
Ming Jia, Kimberly Johnson, Ken Kleiner, Minghui (Mark) Li, You (Stephanie) Li, Joseph
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Network Security Overview

If you know your enemies and know yourself, you will win hundred times in hun-
dred battles. If you know yourself but not your enemies, you will suffer a defeat
for every victory won. If you do not know yourself or your enemies, you will
always lose.

—Sun Tzu, “The Art of War”

The goal of network security is to give people the freedom to enjoy computer networks without
the fear of compromising their rights and interests. Network security therefore needs to guard
networked computer systems and protect electronic data that is either stored in networked
computers or transmitted in the networks. The Internet, which is built on the [P communication
protocols, has become the dominant computer network technology. It interconnects millions
of computers and edge networks into one immense network system. The Internet is a public
network, where individuals or organizations can easily become subscribers of the Internet
service by connecting their own computers and networking devices (e.g., routers and sniffers)
to the Internet and paying a small subscription fee.

Because IP is a store-forward switching technology, where data is transmitted using routers
controlled by other people, user A can read user B’s data that goes through user A’s network
equipment. Likewise, user A’s data transmitted in the Internet may also be read by user B.
Hence, any individual or any organization may become an attacker, a target, or both. Even if
one does not want to attack other people, it is still possible that one’s networked computers may
be compromised into becoming an attacking tool. Therefore, to achieve the goal of network
security, one must first understand the attackers, what could become their targets, and how
these targets might be attacked.

1.1 Mission and Definitions

The tasks of network security are to provide confidentiality, integrity, nonrepudiation, and
availability of useful data that are transmitted in public networks or stored in networked
computers.
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The concept of data has a broad sense in the context of network security. Any object that
can be processed or executed by computers is data. Thus, source code, executable code, files
in various formats, email messages, digital music, digital graphics, and digital video are each
considered data. Data should be read, written, or modified only by legitimate users. That is,
unauthorized individuals or organizations are not allowed to have access to data.

Just as CPU, RAM, hard disk, and network bandwidth are resources, data is also a resource.
Data is sometimes referred to as information or messages.

Each piece of data has two possible states, namely, the transmission state and the storage
state. Data in the transmission state is simply data in the process of being delivered to a
network destination. Data in the storage state is that which is stored in a local computer or
in a storage device. Thus, the meanings of data confidentiality and data integrity have the
following two aspects:

1. Provide and maintain the confidentiality and integrity of data that is in the transmission
state. In this sense, confidentiality means that data during transmission cannot be read by
any unauthorized user, and integrity means that data during transmission cannot be modified
or fabricated by any unauthorized user.

2. Provide and maintain the confidentiality and integrity of data that is in the storage state.
Within this state, confidentiality means that data stored in a local device cannot be read by
any unauthorized user through a network, and integrity means that data stored in a local
device cannot be modified or fabricated by any unauthorized user through a network.

Data nonrepudiation means that a person who owns the data has no way to convince other
people that he or she does not own it.

Data availability means that attackers cannot block legitimate users from using available
resources and services of a networked computer. For example, a computer system infected
with a virus should be able to detect and disinfect the virus without much delay, and a server
hit by denial of service attacks should still be able to provide services to its users.

Unintentional components in protocol specifications, protocol implementations, or other
types of software that are exploitable by attackers are often referred to as loopholes, flaws, or
defects. They might be an imperfect minor step in a protocol design, an unforeseen side effect
of a certain instruction in a program, or a misconfigured setting in a system.

Defense is the guiding principle of network security, but it is a passive defense because
before being attacked, the victim has no idea who the attackers are and from which computers
in the jungle of the Internet the attackers will launch their attacks. After a victim is attacked,
even if the attacker’s identity and computer system are known, the victim still cannot launch a
direct assault at the attacker, for such actions may be unlawful. What constitutes legal actions
against attackers involves a discussion of relevant laws, which is beyond the scope of this
book. Therefore, although offense may be the best defense in military operations, this tactic
may not apply to network security. Building a deep layered defense system is instead the best
possible defense tactic in network security. Within this type of defense system, multiple layers
of defense mechanisms are used to resist possible attacks.

Network security is a major part of information security. In addition to network security,
information security deals with many other security issues, including security policies,
security auditing, security assessment, trusted operating systems, database security, secure
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code, emergency response, computer forensics, software forensics, disaster recovery, and
security training.

e Security policies are special rules to protect a computer network system against security
attacks. For example, security policies may specify what types of data are to be protected,
who should be given the access right of read from or write to the data, and how the data
should flow from one place to the next.

e Security auditing is a procedure of checking how well the security policies for a particular
computer network system are followed. It may be a manual procedure or an automated
procedure run by software tools.

e Security assessment is a procedure of determining the security needs of a particular system,
measuring the strength and weakness of the existing security policies, and assessing whether
the security policies are reasonable and whether security loopholes exist.

e A trusted operating system is an operating system without any security flaws or loopholes
in system designs, computing resource management, software implementations, and
configurations.

e Database security is a set of security measures specifically devised for database systems,
specifying which data fields are accessible by which level of users.

e Secure software is software that contains no security flaws, loopholes, or side effects.

e Intrusion response is a set of actions that should take place when a computer network system
is detected being intruded by intruders.

e Cyber forensics studies how to collect information of user activities from computer systems
and network communications, providing evidence to indict cyber criminals. Cyber forensics
can be further divided into computer forensics and network forensics.

e Disaster recovery is a set of mechanisms to bring a computer system that goes down because
of attacks or natural disasters back to a working status.

This book does not cover these issues, but it may touch certain aspects of them.

1.2 Common Attacks and Defense Mechanisms

Common network security attacks can be characterized into a few basic types. Almost every
known network security attack is either one of these basic types or a combination of several
basic types.

1.2.1 Eavesdropping

Eavesdropping is an old and effective method for stealing private information. In network
communications, the eavesdroppers may intercept data from network traffic using a network-
ing device and a packet sniffer. A packet sniffer, or network sniffer, is a program for monitoring
incoming network traffic. When connecting a router to the Internet, for example, one can use
a packet sniffer to capture all the IP packets going through that router. TCPdump and Wire-
shark (formerly known as Ethereal) are network sniffers widely used today, which are
available as free downloads (see Exercise 1.5).
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Using a packet sniffer as an eavesdropping tool, one can intercept IP packets that go through
the router he controls. To capture a particular IP packet, however, the eavesdropper must first
determine which communication path the IP packet will travel through. Then, he could either
try to get control of a certain router on the path or try to insert a new router of his own on the
path. This task is more difficult but is not impossible. For example, the eavesdropper may try
to compromise a router on the path and install a packet sniffer in it to intercept the IP packets
he is after. The eavesdropper may also use an ARP spoofing technique (see Section 1.2.4) to
reroute IP packets to his sniffer without compromising a router.

Eavesdropping wireless communications is easier. In this case, the attacker simply needs to
place a receiver with the same radio frequency of the wireless network within the communi-
cation range of the network.

There is no way to stop eavesdropping in public networks. To counter eavesdropping, the
best defense mechanism is to encrypt data. Computer cryptography is developed for this
purpose, where the sender encrypts data into an unintelligible form before he transmits it.
Data encryption is a major component of computer cryptography. It uses an encryption key in
concert with an encryption algorithm, to break the original data into pieces and mix them up
in a certain way to make it unintelligible, so that the eavesdropper cannot obtain any useful
information out of it. Thus, even if the eavesdropper is able to intercept the encrypted data,
he is still not able to obtain the original data without knowing the decryption key. We often
refer the original data as plaintext data, or simply plaintext, and encrypted data as ciphertext
data, or simply ciphertext.

Ciphertext data can be converted back to plaintext data using a decryption key along with
a decryption algorithm. The encryption key is a string of characters, which is also referred
to as secret key. In a symmetric-key encryption algorithm, also referred to as conventional
encryption, the encryption key and the decryption key are identical. In a public-key encryption
algorithm, also known as asymmetric-key encryption, the encryption key and the decryption
key are different.

1.2.2  Cryptanalysis

Cryptanalysis is the art and science of finding useful information from ciphertext data without
knowing the decryption keys. For example, in a substitution cipher that substitutes plaintext
letters with ciphertext letters, if a ciphertext message reveals a certain statistical structure, then
one may be able to decipher it. To obtain a statistical structure of the data, one may calculate the
frequency of each character in the ciphertext data and compare it against the known statistical
frequency of each character in the language used in the plain text. For example, in the English
language, the letter “e” has the highest frequency. Thus, in a substitution cipher, the character
that has the highest frequency in the ciphertext data is likely to correspond to the plaintext letter
“e” (see e.g., Exercise 1.7). This analysis can be further extended to common phrases. Analyz-
ing statistical structures of ciphertext messages was an effective method to break encryptions
before the computer era.

Modern encryption algorithms can produce ciphertext without any trace of statistical struc-
ture. Therefore, modern cryptanalysis is focused on analyzing encryption algorithms using
mathematical techniques and high-performance computers.

The best method against cryptanalysis is to devise encryption algorithms that reveal no
statistical structures in ciphertext messages using sophisticated mathematics and longer
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encryption keys. Using sophisticated mathematics makes mathematical analysis difficult.
Using longer keys makes brute force attacks impractical. In addition to having stronger
encryption algorithms, it is equally important to distribute and manage keys safely and to
implement encryption algorithms without exploitable loopholes.

1.2.3  Password Pilfering

Computer users need to prove to the system that they are legitimate users. The most widely
used authentication mechanism is in the form of user names and user passwords. User names
are public information, but user passwords must be kept secret. Only two parties should have
knowledge of the password, namely, the user and the underlying computer program (e.g., an
operating system or a specific software application). A password is a sequence of letters, digits,
or other characters, which is often selected by the user. Legitimate users enter their user names
and passwords to prove their legitimacy to the computer program. An unauthorized user may
impersonate a legitimate user to “legitimately” log on to a password-protected system or appli-
cation, if he can get hold of a legitimate user name and password pair. He can then gain all the
“legal” rights to transmit, receive, modify, and fabricate data.

Password protection is often the first defense line, and sometimes, it may be the only defense
mechanism available in the system. Thus, we must take measures to ensure that user passwords
are well protected against larcenies. For this purpose, we will look at several common methods
for pilfering user passwords. These methods include guessing, social engineering, dictionary
attacks, side-channel attacks, and password sniffing. Phishing attacks and pharming attacks
have become the most common form of mass social engineering attacks in recent years.

1.2.3.1 Guessing

Guessing is the simplest method to acquire a password illegitimately. The attacker may get
lucky if users use short passwords or if they forget to change the default passwords created for
them. Also, users have a tendency to use the same passwords.

According to data compiled yearly by SplashData, a password management company, the
top 10 most common passwords used by users, listed in decreasing order of popularity, are as
follows:

. 123456

. password
. 12345678

. gwerty

. abcl23

. 123456789
111111

. 1234567

. iloveyou
. adobel23

OO 001NN WN -

—

If the user chooses a simple password such as these 10 easy ones, then the guesser would
indeed have an easy task.
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1.2.3.2 Social Engineering

Social engineering is a method of using social skills to pilfer secret information from the
victims. For example, attackers may try to impersonate people with authority or organizations
of reputation to trick unvigilant users to reveal their user names and user passwords to the
attackers. Impersonation may be carried out either in person or in an electronic form. Phish-
ing and pharming are common electronic forms of social engineering attacks in recent years,
targeted at a large number of people.

There are other forms of social engineering attacks. For example, attackers may try to collect
recycled papers from the recycle bins in a corporation’s office building, hoping to find useful
login information. Attackers may also make a Web browser pop up a window asking for user
login information.

Physical Impersonation

Physical impersonation means that the attacker pretends to be a different person to delude
the victim. For example, the following imaginary conversion between the attacker and a
receptionist named Betty demonstrates how a social engineering attack might be carried out
in person:

Attacker: (Speaking with an authoritative voice.) “Hello, Betty, this is Nina
Hatcher. I am Marketing Manager of the China branch office.”

Betty: (Thinking that this woman knew my name, my number, and spoke like a
manager, she must be whom she said she was.) “Hello, Nina, what can I do for
you?”’

Attacker: “Betty, I am attending a meeting in Guangzhou to finalize an important
deal with a large corporation in China. To close the deal, I’ll need to verify certain
technical data produced by your group that I believe is still stored in the computer
at your site. This is urgent. I tried to log on to your system today, but for some
reason it didn’t work. I was able to log on to it yesterday though. Is your computer
down? Can you help me out here?”

Betty: “Well, I don’t know what happened. But you may try the following - --”
(Thinking that she is doing the company a favor by telling the marketing manager
how to get into the system.)

Phishing

Phishing attacks are mass social engineering attacks that take advantage of people with a
tendency to trust authorities. The main forms of phishing attacks are disguised email mes-
sages or masqueraded Websites. For example, attackers (also called phishers) send disguised
email messages to people as if these messages were from banks, credit card companies, or other
financial institutions that people may pay attention to. People who receive such messages are
told that there was a security breach in their accounts, and so they are required to verify their
account information for security purposes. They are then directed to a masqueraded Website
to enter their user names and passwords (e.g., see Exercise 1.15). The following example is a
real phishing message verbatim (The reader may notice a number of grammatical errors and
format problems.):
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From: UML NEW EMAIL <helpdesk@uml .edu>

To:

Date: Wed, Jul 7, 2010 at 2:28 AM

Subject: Re UNIVERSITY I.T.S UPDATE

Welcome to the university of Massachusetts Lowell New webmail system.

Many of you have given us suggestions about how to make the Umass Lowell
webmail better and we have listened. This is our continuing effort to provide you
with the best email services and prevent the rate of spam messages received in
your inbox folder daily. Consequently all in-active old email accounts will be deleted
during the upgrade.

To prevent your account from deletion and or being suspended we recommends
all email accounts owner users to upgrade to the new email. Fill in your data in the
blank space provided;

(Email: ), (User I.D ), (password )

The University I.T.S
www.uml.edu

Checked by AVG - Version: 8.5.437 Virus Database: 271.1.12840 - Release

This was a blunt phishing attack, in which the phisher simply asked the recipients to fill
in the blanks with their passwords. Other more sophisticated phishing emails may contain a
bogus Website as a trap to capture account information entered by the victims. Here, the email
and the Website are the baits. The sniffing mechanisms hiding behind the Web page are the
hook. Most phishing emails, no matter how well they are put together, would often contain the
lines of “Something happened with your account, and you need to go to this page to fix it, or
your account will be deleted”. In general, any phishing email would contain a link to a bogus
Website, called a phishing site. Phishing sites may look like the real ones, with the purpose of
luring careless users to enter useful login information only to be captured by the phisher.

Even if you do not plan to enter any information on the bogus Website, clicking the link in
the phishing email may already compromise your computer, for modern phishing techniques
make it possible to embed exploits in a Web page, and the exploits will be activated when
you open the Web page.

Users may look at the following three things to detect abnormalities: (1) the “From”
address, which may look odd; (2) the URL links the phishers want them to click on, which
may be similar to but definitely different from the real site (e.g., a URL that looks like
Citicard is in reality not the Citibank’s real site); and (3) the look and feel of the Website if the
user fails to identify any abnormality during the first two items, for the bogus Website would
not be exactly the same as the real site. For example, the color scheme may look different.
If you receive an email from a bank or a credit card company telling you that your have a
problem with your account and asking you for your user name and password, then most likely
it is a phishing email, for banks or credit card companies would never send emails to their
customers asking for their account information.
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Sometimes, a phishing email may contain a line similar to this: “To be removed from this
list click here.” Do not click on this link, for it will notify the attacker that the user did read
the email and consequently more annoying emails may come.

Antiphishing extensions of Web browsers are emerging technology for detecting and
blocking phishing sites. Email scanners may also be used to identify phishing emails.
However, blocking phishing and not blocking legitimate emails is challenging, even with
appropriate email scanners. Thus, users may also want to develop their own tools to detect
compromised email accounts and disable them before they can send out phishing emails.

1.2.3.3 Pharming

Pharming attacks use Web technologies to redirect users from the URLSs they want to visit to a
URL specified by the attacker, including changing DNS setting or the hosts file on the victim’s
computer, where DNS stands for domain-name service. Attacks that change DNS settings are
also referred to as DNS poisoning. If an DNS-poisoning attack is launched from an insecure
home router or wireless access point, it is also referred to as a drive-by pharming. Reported by
Symantec in 2008, the first drive-by pharming attack was targeted at a Mexican bank.

Similarly to phishing attacks, pharming may also be used to pilfer user passwords. But
pharming attacks do not need to set up baiting messages as phishing attacks normally do and
hence may disguise themselves better and trap people in more easily.

To counter pharming attacks, it is important for users to make sure that their DNS software
and the hosts files have not been compromised and that the URL they are visiting is the right
one before doing anything else.

1.2.3.4 Dictionary Attacks

For security reasons, only encrypted passwords, that is, not in their original form, should be
stored in a computer system. This prevents attackers from learning the passwords even if they
break into the system. In early versions of UNIX and Linux operating systems, for example,
the encrypted user passwords of the system are stored in a file named passwd under directory
/etc. This encryption is not a one-to-one encryption. Namely, the encryption algorithm can
calculate the ciphertext string of a given password, but the ciphertext string cannot be uniquely
decrypted. Such an encryption is also referred to as an encrypted hash. In early versions of
UNIX and Linux operating systems, user names and the corresponding encrypted user pass-
words stored in the passwd file were ASCII strings that could be read by users. In later
versions of UNIX and Linux operating systems, however, the encrypted user passwords of the
system are no longer stored this way. Instead, they are stored in a file named shadow under
directory /etc, which is an access-restricted system file.

In the Windows NT/XP operating system, for another example, the user names and the
encrypted user passwords are stored in the system’s registry in a file named SAM. They can be
read using special tools, for example, pwdump.

Dictionary attacks take advantage of the way some people use dictionary words, names, and
dates as passwords. These attacks find user passwords from their encrypted forms. A typical
dictionary attack proceeds as follows:

1. Obtain information of user names and the corresponding encrypted passwords. This
was done, for example, in early versions of Unix or Linux by getting a copy of the
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/etc/passwd file. In Windows XP, it can be done using pwdump to read the system
registry.

2. Run the encryption routine used by the underlying system on all dictionary words, names,
and dates. That is, compute the encrypted hash for each dictionary word, each name, and
each date.

3. Compare each output obtained from Step 2 with the encrypted passwords obtained from
Step 1. If a match presents, a user password is found. In other words, suppose that w is a
word and w' = crypt(w) is the output of the encryption routine crypt on input w. Suppose
that u and p,, are a pair of user name and encrypted password of user u. If w’ = p,,, then w
is user u’s password or is equivalent to user u’s password, for w may not be unique.

Step 2 is computationally intensive, for there are many words, names, and dates. To avoid
carrying out this costly computation each time an encrypted hash is given, one would want to
precompute Step 2 and store the results (i.e., password-hash pairs) in one table, so that one
only needs to do a table lookup to find the corresponding plaintext password from the given
encrypted hash. But such a table will be humongous. Constructing a Rainbow table helps to
reduce the table size and make the computation at Step 2 manageable.

Rainbow Tables
A rainbow table is a table of two columns constructed as follows: let r be a function that maps
an encrypted hash of a password to a string in the domain of possible passwords. This function
r is referred to as a reduction function, for the length of a password is typically shorter than
the length of its encrypted hash value. The function r can be defined in a number of ways.
For example, suppose that the domain of passwords is a set of all possible eight-character
strings. Let / be a cryptographic hash function that, on an eight-character password, generates
a 16-character long hash value. Then, we may define r as follows: For any eight-character
string w, function 7 on input A(w) returns the last eight characters of h(w). Function r may
also return the first eight characters of A (w) or any combination of eight characters selected
from h(w). Note that r is not an inverse function of h.

Let w,; be a given password. Apply h and r alternatively to obtain a chain of passwords
that are different pairwise:

Wyp, Wygy** v Wip,

where 7, is a number chosen by the user, and
Wy = T(h(wl,i—l))a
1=2,3,-,Mn4.

Store
(wyy, h’(wlnl )

in the rainbow table, where wy; is in the first column and A (wy,, ) is in the second column.
Figure 1.1 depicts the construction of a rainbow table.

Now, choose a new password w,; (i.e., wy; has not been generated in previous chains).
Repeat the same procedure for another round to obtain

Wag; Wag, " "+ s Wop,,
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wh Wy Wy - Wy w,
WV\ / hi ri

h(w,) h(w,) h(w,_,)

Figure 1.1 Construction of a rainbow table

where 7, is a number chosen by the user and w,; = r(h(w,,; ;) fori = 2,3, -- -, ny, such that
the first chain and the second chain are disjoint. That is, forany 1 <« <n; and 1 < v < n,,
we have w,,, # w,,. Store

(wyy, h(w2n2))

in the rainbow table. Performing this procedure k times will generate k rows in the rainbow
table as follows:
Password | Hash value

Wiy h(wm)
Way h(w2n2)
Wiy h(wknk)

where w; is the first password in the jth chain, h(wjnj) is the encrypted hash of the last
password in the same chain, and the chains are disjoint pairwise.

Let f: A— Bandg: B — A be two functions. Let y € B and i > 0. Define (f o g)*(y)
as follows:

fg((fog) ' (y), if i>1,
Let @, be an encrypted value of a password w. That is, Q, = h(w). If
h((ho T)i(Qo)) = h(wjnj)

for some 7 > 0 and some j with 1 < j < k and ¢ < j, then w is possible to appear in the jth
chain of w;y, -, Wiy, - Thus, the following algorithm may help find w.

(F o0)'(0) = {y L

1. Set @, < Q,and t < 0. Let n = max{n,---,n.}.

2. Check if there is a 1 < j < k such that Q; = h(w
otherwise, goto Step 4.

3. Apply  and h alternatively on w;; for 0 <4 < j times until w;,,. = (1 o h)*(w,,) is gen-
erated such that h(w = Q. If such a wy,, . is found, return w = w;,, ; otherwise, goto
Step 4.

4. Set @, — h(r(Q,))andt — ¢ + 1.If t < n, then goto Step 2. Otherwise, return “password
not found.” (The rainbow table does not contain the password whose hash value equals ().)

.Y and t <n. If yes, goto Step 3;
in, yes, g p

Jni ) v Jn >

Note that we may use several different reduction functions in the same password chain,
which helps avoid collisions that two different chains, starting from different passwords, may
end up at the same password or at the same hash value at some point.



Network Security Overview 11

Remarks
It is worth noting that dictionary attacks may also be used in a positive way. For example,
Windows Office allows users to encrypt Microsoft Word documents, where secret keys used for
encryption are generated on the basis of the passwords selected by users. If, after a long while,
a user forgets the password of a password-protected document, then the file will no longer
be useful, for the user cannot decrypt it. To solve this problem, a company named Elcomsoft
developed a password recovery software program using the dictionary attack techniques. This
is a positive application of dictionary attacks. On the other hand, we note that if an encrypted
office document is stolen, then the thief can also use this program to decrypt the document.
There is a positive side and a negative side to every thing. A kitchen knife is intended to chop
food, but it can also be used to harm people. Water can carry boats, but it can also topple them.
We also note that the file /etc/passwd in recent versions of UNIX and Linux no longer
displays the encrypted user passwords (see Exercise 1.8). This makes it more difficult for the
attackers to obtain the list of encrypted passwords for launching a dictionary attack.

1.2.3.5 Password Sniffing

Password sniffers are software programs used to capture remote login information such as user
names and user passwords. Common network applications such as Telnet, FTP, SMTP, and
POP3 often require users to type in their user names and passwords for authentication, making
it possible for a password sniffer to intercept useful login information. For remote logins,
however, one may use special programs (e.g., SSH) to encrypt all messages, thus making it
more difficult to sniff user passwords.

SSH and other programs that encrypt login information such as HTTPS, however, are still
vulnerable to password sniffing attacks. For example, Cain and Abel, a password recovery
tool for the Microsoft Operating Systems, is a network sniffing tool that can capture and crack
encrypted passwords using dictionary, brute-force, and cryptanalysis attacks. Cain & Abel can
be downloaded free of charge from http://www.oxid.it/cain.html.

1.2.3.6 Side-Channel Attacks

Social media sites, such as Facebook, LinkedIn, and Twitter, provide user-friendly platforms
for billions of users to interact with each other. Many users also like to post their personal data
on social media sites for others to see. However, security measures on social media sites are
not as strong as one would like. As a result, it is often easier to obtain user login information
from social media sites than from online banking sites. In June 2012, for example, LinkedIn
was under a massive attack from Russia, resulting in 6 million user passwords stolen, for the
passwords were not encrypted properly.

In general, attackers can legitimately obtain personal information posted by users from
social media sites, including favorite food, pets, siblings, birthdays, and birthplaces, as well
as the schools they graduated from, and the places they grew up in. Many of these items are
the typical questions the users are asked to verify their identity when logging to their banking
accounts. To make things worse, people tend to use the same passwords for multiple accounts,
including their banking accounts. Thus, social media has become a side channel for attackers
to obtain user passwords of relevant banking accounts.
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1.2.3.7 Key-Logging Attacks

A Key logger is software that records key strokes of the user at the point of entry. Eavesdrop-
ping keystrokes is a more effective method to capture passwords entered by the user on the
keyboard before the passwords are encrypted. Pressing a key on the keyboard will also gener-
ate radiation, which may be exploited to learn keystrokes. Attacks such as this are referred to as
tempest attacks. We may use anti-key-logging software tools to counter key-logging attacks.

1.2.3.8 Password Protection

The following rules and practices can help protect passwords from pilfering:

1. Use long passwords, with a combination of letters, capital letters, digits, and other char-
acters such as $, #, &, %. Do not use dictionary words, common names, and dates as
passwords. This rule makes guessing attacks and dictionary attacks arduous.

2. Do not reveal your passwords to anyone you do not know. Do not submit to anyone who
acts as if he has authority. If you have to give out your password to someone you trust, do
so face to face. Avoid telling passwords over the phone or using email. This practice helps
prevent social engineering breaches.

3. Change passwords periodically and do not reuse old passwords. This rule helps defend users
against patient and persistent attackers who may keep on running dictionary attacks on all
possible strings formed using the first rule and hope that they may get lucky. Attackers may
also keep records of old passwords they have identified.

4. Do not use the same password for different accounts. Thus, even if a user’s password for a
particular account is compromised, the user’s other accounts would still be safe.

5. Do not use remote login software that does not encrypt user passwords and other important
personal information. This practice makes password sniffing difficult.

6. Shred all discarded papers using a good paper shredder. This practice makes it difficult for
attackers to find useful information from discarded old documents.

7. Avoid entering any information in any popup window, and avoid clicking on links in sus-
picious emails. Instead, go to the legitimate Website directly using the true URL address,
and follow the directions there. This practice helps counter password sniffing and reduce
the chance of being caught by phishers.

1.2.3.9 Other User-Authentication Methods

Authentication using user passwords is so far the most widely used authentication method.

Traditionally, there are three methods for proving one’s identity. The first method uses secret
passwords. The second method uses biometrics of unique biological features, for example,
fingerprints and retinas. The third method uses authenticating items, for example, passes and
certificates of identification. These three methods have been applied and implemented in com-
puter applications.

The first method is implemented in the form of user names and user passwords.

The second method is implemented in the form of connecting biometric devices to a com-
puter, for example, fingerprint readers and retina scanners. These devices are relatively more
expensive to acquire and maintain and so are often used in a tightly controlled environment
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A thinks that she is The attacker intercepts or B thinks that he is
talking to B directly modifies communications talking to A directly
between A and B

Figure 1.2 Man-in-the-middle attacks. The solid lines represent the actual communications, and the
dash line represents the perceived communication between user A and user B

where high levels of security are required. For example, instead of using credit card readers
at check-out stands to authenticate credit holders and link payments to their accounts, using
fingerprint readers is just as convenient and is more secure.
The third method is implemented in the form of electronic passes authenticated by the issuer.
Certain authentication protocols (e.g., Kerberos) use this method to authenticate users.
Authentication using user passwords is the easiest method to implement and so far the most
commonly used authentication method.

1.2.4  Identity Spoofing

Identity spoofing attacks allow attackers to impersonate a victim without using the victim’s
passwords. Common identity spoofing attacks include man-in-the-middle attacks, message
replays, network spoofing, and software exploitation attacks.

1.2.4.1 Man-in-the-middle Attacks

In a man-in-the-middle attack, the attacker tries to compromise a network device (or installs
one of his own) between two or more users. Using this device, the attacker can intercept,
modify, or fabricate data transmitted between users. The attacker will then forward them as
if they have not been touched by the attacker. For example, the attacker may intercept an IP
packet sent by user A, modify its payload, and then send the modified packet to user B as if
it comes from user A. This way, both users may still believe that they are directly talking to
each other, without realizing that the confidentiality and integrity of the IP packets they receive
have already been compromised (see Fig. 1.2).

Encrypting and authenticating IP packets are common measures to thwart man-in-the-middle
attacks. This is because the attacker cannot read or modify an encrypted IP packet without
decrypting it. Also, the attacker has no way to authenticate a modified or fabricated IP packet
to convince the receiver that it comes from a legitimate sender.
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1.2.4.2 Message Replays

In a message replay attack, the attacker first intercepts a legitimate message, keeps it intact,
and then retransmits it at a later time to the original receiver. In some authentication protocols,
for example, after user A proves herself to the system as a legitimate user, she will be given an
authentication pass. With this pass, she will be able to obtain services provided by the system.
This pass is encrypted, and so it cannot be modified. However, the attacker may intercept it,
keep a copy, and use it later to impersonate user A to get the services from the system.

The following are common mechanisms for thwarting message replay attacks:

1. Attach arandom number to the message. This number is referred to as a nonce. When a user
receives a message whose nonce appeared before, he knows that this message is a replay,
which is then discarded. This method, however, requires that users keep a record of every
nonce they first encounter, which may not be practical.

2. Attach a time stamp to the message. When a user receives a message whose time stamp is
old, he knows that this message is a replay. This method, however, requires that all net-
worked computers be synchronized with little error. While not a problem in local area
networks, accurate synchronization is difficult to achieve in wide area networks.

3. The best method to thwart message replay attacks is to use a nonce and a time stamp
together. Using this method, synchronization does not have to be very accurate, and the
user only needs to keep track of the nonces he encounters in a short and fixed time interval.
The user stores a nonce in a record with a time stamp when it is first recorded. When this
time stamp becomes old, the nonce is removed. The length of the time interval is deter-
mined by the worst-case error of an achievable synchronization. A message is considered
as a replay only when its nonce is already in the record or its time stamp is out of the
time interval.

1.2.4.3 Network Spoofing

1P spoofing is one of the major network spoofing techniques. It consists of SYN flooding, TCP
hijacking, and ARP spoofing. ARP spoofing is also referred to as ARP poisoning.

SYN Flooding

SYN flooding exploits an implementation side effect of the TCP/IP network protocols. In a
SYN flooding attack, the attacker fills the target computer’s TCP buffer with a large volume
of SYN control packets, making the target computer unable to establish communications with
other computers. When this happens, the target computer is called a muted computer or a
silenced computer. The TCP buffer is a set of contiguous memory locations allocated by
the underlying network application program. It is used to store TCP packets that have been
received but not yet processed.

To launch a SYN flooding attack against a target computer, the attacker sends to it a large
number of crafted SYN packets, each requesting to establish TCP connections. The term
crafted SYN packet means that the source address contained in the SYN packet is a legiti-
mate [P address, but the host computer on that address is not reachable. This host computer
may be powered off or taken off the network. We call such a computer a dead computer.
Detecting whether an IP address is unreachable can be done using the ping command (or
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other commands in case a live computer has been hardened to not respond to the ping com-
mand). If an IP address does not respond to ping, then it is probably unreachable. The ping
command is a common network management tool based on the ICMP protocol. The attacker
uses crafted SYN packets to avoid being tracked down. And he uses a legitimate source IP
address to ensure that the crafted SYN packets will be delivered to its destination, because the
domain name server will drop IP packets with fake IP addresses.

According to the three-way handshake procedure in the TCP protocol, the victim’s computer
is obliged to send an ACK packet to the source IP address contained in the SYN packet it
receives and waits for an ACK packet to be sent back from that IP address. However, the host
computer with that source IP address is not reachable, and so it will not respond. Thus, the
victim’s computer will never receive the ACK packet it is waiting for, forcing the crafted SYN
packet to remain in the TCP buffer until its lifetime expires. During this period of time, the
TCP buffer is completely occupied by (i.e., flooded with) crafted SYN packets, and so the
victim’s computer will have no room in the TCP buffer to establish any new connection with
another computer. The victim’s computer is then considered muted.

TCP Hijacking

Suppose that computer V is a company computer and user A is an employee of that company
and is going to log on to computer V from home. User A’s computer sends a SYN control
packet to V and now suppose that an attacker intercepts this packet. The attacker then uses the
SYN flooding attack to mute computer V, so that V cannot complete the three-way handshake
protocol with user A’s computer. If the attacker can predict the correct TCP sequence number
for the ACK packet that is supposed to be sent to A from the muted computer V, then the
attacker can craft an ACK packet and send it to user A’s computer. The crafted ACK packet
uses the correct TCP sequence number and V’s IP address as the source IP address. User A’s
computer receives the ACK packet and verifies that it has the correct TCP sequence number.
It then sends an ACK packet to the attacker to complete the three-way handshake procedure
with the attacker. Thus, the TCP connection that user A’s computer has established is with the
attacker, instead of with V.

To see how this works, we note that the TCP protocol uses the sequence number in its
TCP header to identify which TCP packets belong to the same communication. Figure 1.3
depicts the TCPv4 header format. As the TCP protocol header does not contain the source IP
address, the TCP-layer software would not check the legitimacy of the IP addresses contained
in the IP header. See Fig. 1.4 for the standard IPv4 header format. The IP protocol routes

16-bit source port number 16-bit destination port number

32-bit sequence number

32-bit acknowledgement number

Abithdr | 6
lsflgtﬁi | oreserved g control bits 16-bit window size
16-bit TCP checksum 16-bit urgent pointer

Figure 1.3 The standard TCPv4 header format
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4-bit 4-bithd | 8-bit type of service 16-bit total length (in bytes)

version length (TOS)
16-bit identification number %-abgl; 13-bit fragmentation offset
ET m _ _
8-bit ?F}zt)o tve 8-bit protocol 16-bit header checksum

32-bit source IP address

32-bit destination IP address

Figure 1.4 The standard IPv4 header format

the IP packet it receives to the destination on the basis of the information contained in the IP
header. It does not keep track of the header information of previous IP packets it received.
Thus, checking the source IP address at the IP layer does not help identify whether the source
IP address in the current IP packet is the same as those in previous IP packets. This shows
that the working of the TCP/IP protocol suite (its early implementation in particular) actually
makes TCP hijacking possible. To stop TCP hijacking, it is important to use software (e.g.,
TCP wrappers) that checks IP addresses at the TCP layer.

In 1994, Kevin Mitnick, a resident in North Carolina of the United States, launched TCP
hijacking attacks from his home and broke into several major companies’ computers a few
thousand kilometers away in California. Mitnick was later convicted and sentenced to 5 years
in prison for this crime.

ARP Spoofing

Computers are identified by unique media access control (MAC) addresses. MAC addresses
are also called physical addresses. ARP is an address resolution protocol at the link layer, which
converts the destination IP address in the IP header to the MAC address of the underlying com-
puter at the destination network. In an ARP spoofing attack, the attacker changes the legitimate
MAC address of an IP address to a different MAC address chosen by the attacker (see, e.g.,
Exercise 1.7.2).

To prevent ARP spoofing attacks, checking is the key. In particular, we should strengthen
checking procedures of MAC addresses and domain names and make sure that the source
IP address and the destination address in an IP packet have not been changed during
transmissions.

1.2.5 Buffer-Overflow Exploitations

Buffer overflow, also referred to as buffer overrun, is a common software loophole exploited
by attackers. A buffer is a set of contiguous memory locations allocated to a process. The size
of the buffer is fixed in its declaration in the program. A buffer overflow occurs if the process
writes more data into the buffer than it can hold. The following is a simple C program that
writes the buf fer of eight bytes with a string stx of 34 bytes, causing it to overflow.
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int main() {
char buffer([8];
char *str = "This is a test of buffer overflow.";
strcpy (buffer, str);
printf ("%$s", buffer);

Itis possible to exploit buffer overflows to redirect the victim’s program to execute attackers’
own code located in a different buffer area. Such attacks often exploit function calls in standard
memory layout, where the buffer is placed in a heap and the return address of the function call
is placed in a stack. The stack is in the higher end of the memory space, while the heap is in the
lower end, where they grow toward each other and shrink away from each other (see Fig. 1.5).
The following are general steps of this type of attacks:

1. Find a program that is vulnerable to buffer overflows. For example, programs that use
string-based functions (e.g., strcpy () and strcat ()) are vulnerable, for they do not
check bounds. These functions would copy as many characters as possible until a NULL
byte is encountered.

2. Figure out the address of the attacker’s code.

Determine the number of bytes that is long enough to overwrite the return address.

4. Overflow the buffer that rewrites the original return address of the function call with the
address of the attacker’s code.

e

In reality, exploiting buffer overflows to breach security is often a complex and difficult
procedure.

The best way to prevent buffer overflow attacks is to close the doors of overflow. That is,
one should always add statements to check bounds when dealing with buffers in a program.
Avoid using string functions that do not check bounds.

Low addresses

Buffer Heap

i

Return address Stack

Function parameters

High addresses

Figure 1.5 Typical memory layout for function call
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1.2.5.1 Compiler Protections for Buffer Overflow

Buffer overflow often has a simple programming fix. Unfortunately, these fixes are often over-
looked. To combat this problem, compiler-induced protections have been developed, one of
which is the notion of canary values. Borrowing its name from the coal-mining practice of
lowering a canary into a coal mine to determine if sufficient oxygen exists for miners to enter,
a canary value is a special value stored on the programs execution stack, which helps to detect
if the return address from a function has been altered. This value is pushed on to the stack
immediately after the return address. If a buffer-overflow attack is executed, the heap will
likely be overflown into the canary value and the return address (see Fig. 1.6). Thus, if the
attacker manages to overwrite the return address, then it is likely that they will also overwrite
the canary value and thus be detected.

To enable the canary value to protect from buffer overflow, the function prologue and
epilogue code generated by the compiler must be modified to deal with the canary value. The
prologue must be modified such that the canary value is pushed onto the stack after the return
address. The epilogue code must be modified to check that the canary value is valid.

If the same canary value is used in every program, every time a function call is made,
the attacker would easily be able to construct buffer overflow attacks. To launch an attack
on the system that uses the same canary value for every function call, the attacker merely
places the canary value in the correct location in the data used for buffer overflow. The check
of the canary in the function epilogue will pass, and thus the return address will vector off to
the attacker’s malicious code. To correct this problem, a random canary value is often used. A
random canary value is chosen at execution and used for just that execution. This means that
every time the attacker runs the potentially vulnerable code, the canary is different, and thus
the attacker cannot use the attack that works with the fixed canary values.

1.2.6 Repudiation

In some situations, the owner of the data may not want to admit ownership of the data to evade
legal consequences. He may argue that he has never sent or received the data in question.

Low memory

Buffer Heap

+
i

Canary value Stack

Return address

Function parameters

High memory

Figure 1.6 Typical memory layout for a function call that uses a canary value
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Repudiation is straightforward if the data has not been authenticated. Even if the data has been
authenticated, repudiation is still possible when the underlying authentication methods or the
communication protocols contain loopholes. The owner of the authenticated data may be able
to convince the judge that, because of the loopholes, anyone could have easily fabricated the
message and made it look like it was produced by him.

Secure encryption and authentication algorithms are effective mechanisms to counter repu-
diation attacks.

1.2.7 Intrusion

Intrusion in network security means that an illegitimate user, also known as intruder, gains
access to someone else’s computer systems. The intruder may turn a victim’s computer into
his own server, which may result in stolen computing resources and network bandwidth from
the victim. The intruder may also steal useful information residing in the victim’s computer.

Configuration loopholes, protocol flaws, and software side effects may all be exploited by
intruders. Opening TCP or UDP ports that should not be open is a common configuration
loophole. TCP and UDP ports are entry points of network application programs.

Intrusion detection is a technology for detecting intrusion incidents. Closing TCP and UDP
ports that may be exploited by intruders can also help reduce intrusions.

1.2.7.1 IP Scans and Port Scans

IP scans and port scans are common hacking tools. IP scans search for existing IP addresses in
the Internet, and port scans search for open ports in a computer. Attackers use IP scans to search
for potential targets and port scans to identify open ports that are vulnerable in the targets.

However, IP scans and port scans can also help users to identify in their own systems
which ports are open and which ports may be vulnerable. Several such products are avail-
able. For example, ShieldsUP! of Gibson Research Corporation and Nessus of Southwest
Research Institute are two such products (see Exercise 1.19).

1.2.8 Traffic Analysis

The purpose of traffic analysis is to determine who is talking to whom by analyzing IP packets.
Even if the payload of the IP packet is encrypted, the attacker may still obtain useful informa-
tion from analyzing IP headers. An IP header contains the source IP address and the destination
IP address, which reveal who is sending messages to whom. If its payload (i.e., the encapsu-
lated TCP packet) is not encrypted, the port numbers can also be obtained. This information
can be used to learn which application program is used to read the message. When preparing
for a big event, individuals or organizations may frequently exchange messages before the
event takes place. If the traffic analyzer learns this information from analyzing IP headers, an
attacker may conclude that something big is about to happen.

The best way to combat traffic analysis is to encrypt IP headers. But an IP packet with an
encrypted IP header cannot be routed to the destination. Thus, a new plaintext IP header must
be inserted in front of the encrypted IP header for delivery. This may be done using a network
gateway. A gateway is a special-purpose computer shared by many users in the local network. It
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Figure 1.7 Using gateways to encrypt IP packets. (1) Sender forwards an IP packet to gateway A at
the sending side. (2) Gateway A encrypts sender’s IP packet (the shaded part) and routes it to the next
router in the Internet. (3) The IP packet from Gateway A is delivered to gateway B at the receiving side,
with certain attributes (e.g., TTL) in the plaintext IP header (shown as the unshaded part) modified. (4)
Gateway B removes its header, decrypts the encrypted IP packet of the sender, and forwards it to the
receiver

can encrypt a user’s IP packet (including its header) at the sending side, decrypt the encrypted
IP packet at the receiving side, and forward it to the destination MAC address. If there are
no other routers between the sending-side gateway and the sender’s computer, and there are
no other routers between the receiving-side gateway and the receiver’s computer, then traffic
analysis can only reveal that the two gateways are talking to each other (see Fig. 1.7), without
gaining any information about which user behind one gateway is talking to which user behind
the other gateway.

1.2.9 Denial of Service Attacks

The goal of denial of service attacks is to block legitimate users from getting services they
can normally get from servers. Such attacks often force the target computer to process a large
number of useless things, hoping to consume all its critical resources. A denial of service
attack, denoted by DoS, may be launched from a single computer, or from a group of computers
distributed in the Internet. The latter attack is called a distributed denial of service attack and
is denoted by DDoS.

1.2.9.1 DoS Attacks

SYN flooding is a typical and effective technique used by DoS attacks. The smurf attack is
another typical type of DoS attack, where smurf is the name of the software used to execute
the attack. It sends an excessive number of messages to the target computer and crashes it
by consuming all its resources. In a typical smurf attack, the attacker sends crafted ping
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Figure 1.8 Smurf attack

requests to a large number of computers within a short period of time, where the source IP
address in the crafted ping request is replaced with the victim’s IP address. According to the
ICMP protocol, a computer that receives a ping request will respond to the source IP address
with a pong message, informing the sender that “T am alive”. Therefore, each computer that
receives the crafted ping request will respond to the victim’s computer with a pong message.
Forced to process a large number of pong messages within a short period of time, the victim’s
computer will use up its computing resources and crash (see Fig. 1.8). Thus, the idea of smurf
attacks is to crash a single target with a lot of borrowed hammers.

1.2.9.2 DDoS Attacks

A typical DDoS attack proceeds according to the following sequence:

1. Compromise as many networked computers as possible. This may be achieved using
Trojans (see Section 1.2.10 for a description of Trojans).

2. Install special software in the compromised computers to carry out a DoS attack at a certain
time later. Such software is called zombie software, and such a computer is called a zombie
computer or simply a zombie. A collection of zombies is also called a zombie army, which
is now typically called a botnet.

3. Issue an attack command to every zombie computer to launch a DoS attack on the same
target at the same time.

Figure 1.9 depicts a DDoS attack. On receiving the attacker’s command, each zombie
computer uses SYN flooding to mute the victim’s Website.

In 2000, for example, a 15-year-old high-school student in Montreal, Canada, with an
assumed name “Mafiaboy,” launched a DDoS attack against Web servers of several major
companies and paralyzed these Web servers for a week. These companies, including Amazon,
Cable News Network, eBay, E*Trade, Dell, and Yahoo!, suffered substantial financial losses
because of this attack. Mafiaboy was sentenced to spend 8 months in a youth detention center.
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Figure 1.9 A DDoS attack using SYN flooding to mute the victim’s Website

1.2.9.3 Spam Mail

Spam mails are uninvited emails, which may be commercial messages or phishing messages.
While not intended to bring the victim’s computer out of service, spam mails do consume
computing resources. Spam mails are annoying, particularly when one’s mailbox is filled up
with them.

Standard electronic messaging systems have made it possible for individuals and companies
to send unwanted bulk messages to people. Such individuals or companies are often referred to
as spammers. Spamming can occur in any form of network applications, but email spam is by
far the most common spamming form. According to a recent statistics, about half a billion spam
emails are sent in every single day. In other words, each email user is expected to receive about
eight spam messages a day. Spamming also occurs in Web search engines, Instant Messaging,
blogs, mobile phone messaging, and other network applications.

Spam filters are software solutions to detect and block spam mails from reaching the user’s
mailbox.

1.2.10 Malicious Software

Software intended to harm computers is malicious software. Malicious software is also referred
to as malware. Common forms of malicious software include virus, worms, Trojans, logic
bombs, backdoors, and spyware.

1.2.10.1 Viruses and Worms

A computer virus is a piece of software that can reproduce itself. However, a virus is not a
standalone program. In other words, it must attach itself to another program or another file.
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A program or file that contains a virus is called an infected program (also called an infected
host). When an infected program is transmitted to another computer, the virus that lives in it
is also transmitted along with its host program.

The execution of a virus is initiated by the infected host. Namely, only when an infected
program is executed or an infected file is opened, a virus contained in it may get executed.
When executed, a virus may do harm (e.g., delete system files) to the system where its host
resides or replicate itself to infect other healthy hosts in the system.

A computer worm is also a piece of software that can reproduce itself. Unlike a virus, a
worm is a standalone program. In other words, it does not need a host to live in. A worm can
execute itself at any time it wishes. When executed, a worm may do harm to the system where
it resides or replicate itself to other systems through networks.

There are two common measures to combat viruses and worms. One measure deploys virus
scans to detect, quarantine, and delete infected hosts and worms. The other measure, consisting
of the following rules, blocks viruses and worms from entering a computer:

1. Do not download software (e.g., games) from untrusted Websites or other sources.
2. Do not open any executable file given to you by someone you do not know.
3. Make sure that software patches are installed and up to date.

Neglecting software patches may be fatal. For example, in the summer of 2001, many
systems that run Microsoft Internet Information Services (IIS) were hit by the Code Red
worm, the Nimda worm, and the Code Red II worm. These worms made headline news,
and they all exploited the same loophole in IIS. Microsoft knew about this problem and
provided a patch to correct it a year earlier. However, many system administrators did not
install this patch and thus left wide open doors into their systems for the worms to come in
and do damage.

1.2.10.2 Trojans

Trojans are also called Trojan horses. The name Trojan horse came from a Greek legend.
Legend has it that ancient Greeks, wanting to apprehend a beauty named Helen, attacked the
fortified city of Troy but failed. Faking a retreat, the Greeks left behind a huge, hollow wooden
horse with a number of soldiers hidden inside. Not suspecting any danger, the Trojans hauled
the wooden horse inside the city as a trophy. At night, the Greek army returned, and the soldiers
hidden inside the wooden horse went out and opened the city gates for the invasion troops to
come in. The city of Troy fell.

In the realm of network security, Trojans are software programs that appear to do one
thing but secretly also perform other tasks. Trojans often disguise themselves as desirable
and harmless software applications to lure people to download them. When they are executed
by the user, the hidden functions contained in them, which now have the user’s access
rights, do harmful things secretly. Games and network management tools available for
free downloads from unknown Websites often are Trojans. Trojans may also use appealing
names such as AntiSPYware.exe or Real Player.exe (note that the real one is
RealPlayer.exe) to trap users to use them.

The same measures of combating viruses and worms can also be used to combat Trojans.
Virus scans can also detect, quarantine, and delete Trojans.
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1.2.10.3 Logic Bombs

Logic bombs are subroutines or instructions embedded in a program. Their execution is trig-
gered by conditional statements. For example, a company employee working on a development
project may install a logic bomb inside a program. The bomb will be set off only if the
employee has not run the program in a certain period of time. When that condition is met,
it would mean that the employee was fired some time before. The logic bomb in this case is
used to gain revenge against the employer.

There are three measures to counter logic bombs. First, employers should always do their
best to take care of their employees, so that none would be tempted to place a logic bomb.
Second, project managers should hire an outside company or form a special team of reviewers
from a different group of people other than the developers to review the source code. Third, rel-
evant laws should be established so that employees who planted logic bombs will face criminal
charges. With these countermeasures in place, unhappy employees would think twice before
planting logic bombs in programs.

1.2.10.4 Backdoors

Backdoors are secret entrance points to a program. They are often inserted by software
developers to provide a short cut to enter a password-protected program when attempting
to modify or debug code. These backdoors that avoid the typical password entrances of
normal users may later be discovered and used by attackers. Attackers who compromise
network systems have been known to insert their own backdoors so that they can more easily
re-enter later.

We note that, with the increase of outsourcing software development projects and other
vital tasks to other countries, the potential for logic bombs and backdoors also increases. The
major counter measure of backdoors is to check source code, which should be conducted by
an independent team.

1.2.10.5 Spyware

Spyware is a type of software that installs itself on the user’s computer. Spyware is often
used to monitor what users do and to harass them with popup commercial messages. Browser
hijacking and zombieware are the most disastrous kinds of spyware.

Browser Hijacking

Browser hijacking is a technique that changes the settings of the user’s browsers. It may replace
the user’s default Website with a different Website selected by the attacker. Or it may stop the
user from visiting the Websites he or she wants to visit. For example, the Google redirect virus,
which affected a lot of people in 2012/2013, redirects the browser to a Website that has nothing
to do with the search query entered by the user.

Zombieware

Zombieware is software that takes over the user’s computer and turns it into a zombie for
launching DDoS attacks or into a relay that carries out harmful activities such as sending spam
email or spreading viruses. Therefore, the purpose of zombieware is to hijack computers.
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In addition to hijacking browsers and computers, spyware can also do a number of other
things, including the followings:

Monitoring

Spyware can be used to monitor and report to a Web server or to the attacker’s machine a user’s
surfing habits and patterns, such as which Web pages the user has browsed and which products
the user has purchased.

Password Sniffing

Spyware can be used to sniff user passwords by logging users’ keystrokes using a keystroke
logger. A keystroke logger is a program that can capture user names and user passwords when
the users type them in.

Adware

Adware is software that automatically displays advertising materials on the user’s computer
screen. The common form of adware is popup windows with commercial material. While
not intended to harm users, adware consumes user’s precious computing resources and is
annoying.

To counter spyware, users may use antispyware software to detect and block spyware.
Microsoft’s Windows Defender, for example, is such a software tool. Windows Defender is
available as a free download.

Most modern antivirus software includes checks for spyware, adware, and hacking tools
such as keystroke loggers and network sniffers.

1.3 Attacker Profiles

Attackers are often characterized as black-hat hackers, script kiddies, cyber spies, employees,
and cyber terrorists.

1.3.1 Hackers

Hackers are people with special knowledge of computer systems. They are interested in sub-
tle details of software, algorithms, and system configurations. Hackers are an elite group of
well-trained and highly motivated people. Depending on their motives, hackers are further
characterized as black-hat hackers, white-hat hackers, and grey-hat hackers.

1.3.1.1 Black-Hat Hackers

Black-hat hackers are people who hack computing systems for their own benefit. For example,
they may hack into an online store’s computer system and steal credit card numbers stored in
it. They may then use the stolen credit card numbers to buy merchandise or sell them to other
people. Black-hat hackers are the wicked doers in network security.

Note that, without the “black-hat” modifier, hacker is not a derogatory term. News media,
however, have widely used hackers to denote black-hat hackers. To avoid confusions, several
authors have suggested to use crackers to denote black-hat hackers.
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1.3.1.2 White-Hat Hackers

White-hat hackers are hackers who have high moral standards. They hack computing systems
for the purpose of searching for security loopholes and developing solutions. They publish
security problems and solutions at security conferences, on dedicated Websites, or through
special mailing lists. White-hat hackers are the righteous doers in network security.

1.3.1.3 Grey-Hat Hackers

Grey-hat hackers are hackers who wear a white hat most of the time but may also wear a black
hat once in a while. For example, when they discover attacks, instead of reporting the incidents
to law enforcements, grey-hat hackers may take the matter in their own hands and strike the
attackers back themselves. Grey-hat hackers are the Robin Hood type people in the world of
network security.

1.3.1.4 Disclosures of Security Problems

When discovering security vulnerabilities in a software product, white-hat hackers and
grey-hat hackers would often work directly with the vendors of products to help them fix the
problems before they release the details of their discoveries. Whether a full disclosure of
their findings should be allowed is an ongoing debate, in part due to the perceived view of
the white-hat hackers and the grey-hat hackers that the vendors are not doing enough to fix
security problems in a timely manner.

1.3.2  Script Kiddies

Script kiddies are people who use scripts and programs developed by black-hat hackers to
attack other people’s computers. Such scripts and programs are often referred to as hacking
tools. Script kiddie is a derogatory term. It is used to indicate that script kiddies only know
how to copy and use a hacking tool. They do not understand how it works, and they are not
capable of writing any hacking tool themselves. Script kiddies like to crack any target they
possibly can, so that they can say to others in the underground cracker community that “I am
smarter.” Script kiddies may also attack targets with high profiles just to attract the attention
of the media.

Although they do not know how to write hacking tools or understand how an existing hack-
ing tool works, script kiddies are dangerous. Many of them are just teenagers who do not care
about, or are not mature enough to know, the consequences of their actions. However, they are
energetic, and they are everywhere. They launch attacks from unexpected places and at any
time, which could inflict serious damages to other people.

1.3.3  Cyber Spies

Cyber espionage takes place at all levels. It could be an individual activity or an organizational
effort. Cyber spies collect intelligence through intercepted network communications. They
could be working for a good cause or just for money.
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Governments run cyber intelligence units to intercept network communications and deci-
pher encrypted messages. The National Security Agency (NSA) and the Central Intelligence
Agency (CIA), for example, are the two largest intelligence agencies of the U.S. government.
The NSA hires many first-class mathematicians and computer scientists to work for it. Many
of them are professors at U.S. universities. They teach during school years and work for NSA
during summers. They study encryption algorithms and develop cryptanalysis tools. This sort
of work has helped win battles.

During World War II, for example, the intelligence department of the U.S. Pacific Fleet was
able to partially decipher Japanese secret code, which helped Admiral Chester W. Nimitz, the
Commander in Chief of the Pacific Fleet, deduce the Japanese scheme of invading the Midway
Atoll in the mid-Pacific. Nimitz seized the opportunity and ordered his two aircraft carriers to
ambush the approaching Japanese invasion forces. With another barely restored carrier joining
in the battle a few days later, American aviators sunk four Japanese carriers, with the cost of
losing only one carrier. The battle of Midway became a turning point, from a defensive to an
offensive campaign for American Pacific naval forces.

1.3.4  Vicious Employees

Vicious employees are people who intentionally breach security to harm their employers. They
may plant logic bombs or open backdoors in programs they help develop. They may act as
script kiddies to attack company computers to get the attentions of their employers. They may
also act as cyber spies to collect and sell company secrets for money.

1.3.5 Cyber Terrorists

Terrorists are extremists who do not hesitate to use extreme means to destroy public property
and take innocent life. Cyber terrorists are terrorists who use computer and network technolo-
gies to carry out their attacks and produce public fear. Attacks by cyber terrorist have not been
reported yet. However, if they did attack, cyber terrorists would be extremely harmful.

1.3.6 Hypothetical Attackers

The hypothetical attackers this book deals with are black-hat hackers, script kiddies, greedy
cyber spies who are willing to betray their countries or organizations for monetary benefits,
and vicious employees. Attackers of these four kinds may be wicked, but they are not terrorists.
Cyber terrorists, on the other hand, are the die-hard enemies, and so they may need to be dealt
with using a different set of measures not addressed in this book.

1.4 Basic Security Model

The basic security model consists of four components: cryptosystems, firewalls, anti-
malicious-software software (AMS software), and intrusion detection systems (IDS system).
Figure 1.10 shows this security model.

Cryptosystems use computer cryptography and security protocols to protect data. Secu-
rity protocols include encryption protocols, authentication protocols, and key management
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protocols. Figure 1.11 shows the encryption and decryption components. It is customary to
use F to denote an encryption algorithm, D its decryption algorithm, and K the secret key.

Firewalls, AMS software, and IDS systems are used to protect data stored in networked com-
puters. Firewalls are special software packages installed in computers and networking devices
that check incoming and outgoing network packets. Certain features of firewalls have also
been incorporated into hardware devices to achieve faster processing speeds. AMS software
scans system directories, files, and registries to identify, quarantine, or delete malicious code.
IDS systems monitor system logins, study user behaviors, and analyze log files to identify and
sound alarms when intrusions are detected.

In addition to using firewalls, AMS software, and IDS systems, we may also set up sacrificial
decoy machines to lure attackers’ attentions away from important computers. Decoy machines
are also known as honeypots.
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This book is centered around these four major components. This book also introduces
honeypot technologies.

1.5 Security Resources

Network security is not something that can be taken care of once and for all, because when
old security problems are solved, new security problems will appear. Thus, network security
defenders will have to fight against the attackers continuously. Network security is an art of
defense in digital form. This book covers basic principles, methods, and techniques of network
security. It does not and cannot cover every aspect of the area. It does not and cannot tell you
what the new attacks are going to be. Fortunately, there are many online security resources
available to help you win this fight. The following are a few popular resources.

1.5.1 CERT

Founded in 1988, CERT is a research institute affiliated with Carnegie Mellon University. Its
full name is Computer Emergency Response Team. Its budget comes mainly from the U.S.
government.

CERT was the earliest organization devoted to studying security problems and offering prac-
tical solutions to system administrators to help secure their computer systems. It sends monthly
reports to subscribers, free of charge, of any security breach identified in the current month,
with recommended solutions. In addition, CERT also trains computer security personnel. Its
Website is www . cert . org.

1.5.2 SANS Institute

Founded in 1989, SANS Institute is a nonprofit organization devoted to collecting, archiving,
and publishing computer security information. It provides this information to users free of
charge. SANS stands for SysAdmin, Audit, Network, and Security. In addition, SANS Institute
also offers computer security training, issues certification, and funds research. Its Website is
WWW . Sans.org.

1.5.3  Microsoft Security

Microsoft security is Microsoft’s official Website devoted to providing security information
for Microsoft products. It provides security updates to Microsoft users. Its Website is
www.microsoft.com/security/default.mspx.

1.5.4 NTBugtraq

NTBugtraq is a moderated open list service for users to post and discuss security exploits and
bugs in Microsoft’s products. Its Website is www . ntbugtraqg. com.
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1.5.5 Common Vulnerabilities and Exposures

The Common Vulnerabilities and Exposures (CVE) database is a free database maintained by
the Mitre Corporation. CVE tracks software vulnerabilities across all major software products
from all major vendors. This is the most widely used collection of information on security
vulnerabilities. The vulnerabilities contained within the database are scored and ranked using
the Common Vulnerability Scoring System (CVSS), a standard maintained by NIST. The CVE
Web site is www . cve.mitre.org.

1.6 Closing Remarks

Sun Tzu said: All warfare is based on deception. Attackers may attack us where we are unpre-
pared and appear where they are not expected. Network security is no exception. For example,
even if we develop an unbreakable encryption algorithm, if keys are not managed properly,
attackers can still break the encryption system, not by attacking the encryption algorithm, but
by exploiting loopholes in key management protocols.

We must assume that attackers are capable of using any means available to achieve their
objectives. They avoid what is strong and strike at what is weak. Therefore, we must remember
that it will only take a small blow at a weak spot to bring down any apparently strong defense
system. Also, a defense system would just be an ornament if one could bypass it. The famous
Maginot Line, for instance, is an example. During World War II, the French militaries were
confident that the Maginot Line of concrete fortifications they spent 10 years to build along the
French-German border could stop German aggression. The German invasion forces, however,
did not assault the Maginot Line directly as anticipated by the French. Instead, they dispatched
motorized troops to quickly cut through the Low Countries of Belgium and the Netherlands
and invaded France from unexpected locations in a third country. Lessons like this have taught
us that in network security, we must constantly examine our network defense mechanisms
from all aspects and fortify any weak point as soon as it is identified.

1.7 Exercises

1.7.1 Discussions

1.1. Have you experienced any network security attack described in the text? If so, please
share your experience with the class. If you have experienced network security
attacks not described in the text, please describe them in detail.

1.2. How did you solve the network security problems you encountered?
1.3. Why type of attackers do you think attacked you?

1.4. Networked computers are managed by different types of people. What type of people
do you think are most vulnerable to network security attacks?

1.5. Why do you think phishing and pharming attacks are so common? What measures
would your suggest to counter them?

1.6. Why do you think network security must be a multiple-layer defense mechanism?
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1.7.2 Homework

1.1.

1.2.

1.3.

1.4.

This book assumes that the reader has taken a computer network course, or has

sufficient experience working with computer networks.

(a) Describe the major structure of a TCP packet and explain the main functions of
the TCP headers.

(b) Describe the major structure of an IP packet and explain the main functions of
the IP headers.

(c) Explain the three-way handshake protocol in the TCP protocol and describe its
main functions.

(d) Describe the difference between UDP and TCP. Give an example of an appli-
cation that would use UDP and an application that would use TCP. Justify your
answers.

On the basis of your understandings of network protocols, answer the following
questions:

(a) Explain the main functions of the ARP protocol.

(b) Explain the main functions of the ICMP protocol.

(c) Explain the major functions of routers, switches, and gateways.

(d) Explain the major functions of the SMTP protocol.

Describe the major differences between IPv4 and IPv6.

Use network administration tools to familiarize yourself with network configura-
tions.

(a) Inthe Windows operating system, ipconfig, ping, tracert, nslookup,
and net stat are common network administration tools. On a machine running
Windows, go to the start menu, select run, and then enter cmd to open a
command window. Execute these five network administration tools. Explain the
results you observe. For each of these admin tools, use option -? to list each
option of the tool and explain its usage. For example, enter ipconfig -? to
learn all options of ipconf ig and explain their usage.

Execute the following commands and explain the results you observe:

ping cs.uml.edu

ping www.google.com
tracert www.yahoo.com
netstat -e

(b) In the UNIX and Linux operating systems, ping, nslookup, netstat, and
arp are common network administration tools. You may use the man tool to
find out how to use these tools. For example, enter man netstat to list all
information about net stat. On a machine running UNIX or Linux, execute
these tools and explain the results you observe.

(c) Open a cmd window on a Windows machine and execute ipconfig /allto
list all information of the network setup of your PC. Write down the host name,
MAC address of your network adapter, IP address, subnet mask, and default
gateway of your PC.
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1.5.

In the UNIX and Linux operating systems, you may find the IP addresses of
all hosts in the system in /et c/hosts. On a machine running UNIX or Linux,
enter more /etc/hosts and explain what you see.

(d) Open a cmd window on a Windows machine and execute netstat -ano.
Identify which ports are TCP ports, which ports are listening, which ports have
established connections, and which ports are UDP ports. Also identify what pro-
grams are running on these ports.

To find out what program is running on a given port number, first identify its
PID (process ID), and then open the Windows Task Manager window (e.g., you
may open it by pressing the three keys of Ctr1l-Alt-Del simultaneously).
Select View, Select Columns,---, and PID. Then select Process and
find out which program is running on the PID. For example, suppose that the
following line is included in the result returned from netstat -ano:

Proto Local Address Foreign Address State PID
TCP 127.0.0.1:1026 127.0.0.1:1027 ESTABLISHED 664

From here, we know that Port 1026 is a TCP port where a connection has been
established and its PID is 664. From the Windows Task Manager, we find out
that postgres.exe has PID 664. Thus, we know that postgres.exe is
running on Port 1026.

(e) Open a cmd window on a Windows machine and execute arp -a. It lists
the physical address of your router. Compared to the physical address given
by ipconfig /all, what is the difference between these two physical
addresses? On a UNIX machine, enter arp -a on the UNIX prompt to list the
ARP table in your machine.

Network sniffers are also referred to as packet sniffers. Network sniffers are software
used to monitor network connections and obtain information of network packets.
TCPdump and Wireshark are widely used packet sniffers with free downloads
from www . tcpdump . org and www . wireshark . org, respectively. TCPdump
has been around for many years. Wireshark, formerly known as Ethereal until
20006, is newer and has a nicer GUI interface.

If you are using a Windows machine, download from http://www.wire
shark.org/ and install Wireshark-win64-1.12.0.exe (64-bit) or
Wireshark-win32-1.12.0.exe (32-bit) or its newest version. This version
contains WinPCap4.0.1. You will need to install it as well. If you are using
other operating systems, please download and install from the Wireshark Website
a corresponding version of Wireshark. Then execute Wireshark.

We want to sniff ARP packets. For this purpose, on the open window of “The
Wireshark Network Analyzer,” select Capture, Options, and then select net-
work card in the Interface box. In the Capture Filter empty box type in
arp, and then select Start to launch ARP sniffing. At this time, you will see a
popup window titled “(the name of the network card): Capturing - Wireshark”.
To generate ARP packets (so that you have something to sniff), open a Web browser
and visit a few Websites. After a short while, you will see that ARP packets have
been captured in the popup window. Select Capture on the menu bar, then select
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Stop to stop sniffing. Note that the Wireshark window is divided into three por-
tions. The upper portion shows the ARP packets that have been captured, the middle
portion shows the packer headers, and the lower portion shows the contents of the
ARP packets in hexadecimal and ASCII code. Explain what you see.

Disclaimer: Network sniffing should only be done on a network where one has
permission to do so and all parties are aware that it is (or may be) occurring. Oth-
erwise, it may inadvertently break the Federal electronic eavesdropping and wire-
tap laws.

1.6. We often want to use a network sniffer to only pick up the types of packets we are
interested in.

(a) Execute Wireshark. Select Options from the menu of Capture. A win-
dow named “Wireshark: Capture Options” will pop up. In the empty
box of Capture Filter, enter tcp port 25, and then click Start to
begin sniffing. Send yourself an email message. Then click Capture on the
menu bar and select Stop. Explain what you see.

(b) Execute Wireshark. Select Options from the menu of Capture. A win-
dow named “Wireshark: Capture Options” will pop up. In the empty
box of Capture Filter, enter tcp port 80, and then click Start
to begin sniffing. Open a Web browser to visit a few Websites. Then select
Capture on the menu bar and select Stop. Explain what you see.

1.7. Finding statistical structures in a cipher text message is a common cryptanalysis
method. For example, given a ciphertext message, we first calculate the frequency
of each letter occurring in the messages. We then compare these letter frequencies
with the letter frequencies one would expect to have in the underlying language.
If there is a clear one-to-one correspondence, we will then know which ciphertext
letter corresponds to which plaintext letter. This method is especially effective to
break earlier designed encryption algorithms.

In the English language, for example, the following table lists the expected fre-
quency of each letter, in the decreasing order of frequencies.

e t a 0 i n S h r d
12.702  9.056 8.167 7.507 6.996 6.749 6327 6.094 5987 4.253
1 c u m w f g y p b
4.052 2782 2758 2406 2360 2228 2.015 1974 1929 1492
v k j X q z

0.978 0.772  0.153 0.150 0.095 0.074

If the ciphertext message is not long enough, we may not be able to obtain a fre-
quency curve similar to that of the statistical frequency curve. Thus, we may also
want to calculate frequencies of strings of two or more letters, for they may corre-
spond to common letter strings such as er, or, the, and ing. Such information would
be useful. Suppose that we have the following ciphertext message with punctuation
and space removed, where the plain-text message is written in English:
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1.8.

1.9.

1.10.

NTCGPDOPANFLHJINTOOFITOVJHICTMMHIHEMTCPFDWTSOFSHTOGFWTE
TTJJITBTOOFSZOVEOCHCVCHPJHOCGTOHNQMTOCNTCGPDCGFCSTQMEFBTO
FBGFSFBCTSHJICGTQMFHJICTYCXHCGFAHYTDDHAATSTJCBGFSFBCTSHJC
GTBHQGTSCTYCCGHONTCGPDQSTOTSWTOCGTMTCCTSASTRVTIBZHICGTQ
MFHJICTYCFJDOPPJTBFJOTFSBGAPSCGTQMFHICTYCASPNFIHWTJIBHQGT
SCTYCEZBPNQFSHJICGTASTRVTIBZPATFBGMTCCTSFIFHJOCCGTLIPXJ
BPNNPJASTRVTJBZHJCGTVJIDTSMZHIJIMFJIVFIT

(a) Calculate the frequency of each letter.
(b) Compare your calculated letter frequencies with the statistical letter frequencies,
and find out the plaintext message properly punctuated and spaced.

In early versions of UNIX and Linux operating systems, login passwords of the users
are stored in the file /etc/passwd in the following format:

user:password: ID:group-ID:comment :home:shell

where the encrypted passwords were readable text strings (e.g., 3/25#2%v), mak-
ing dictionary attacks possible. Recent versions have fixed this problem by only
showing a symbol * or x indicating that the user is required to enter the password.
Suppose that your /etc/passwd file contains the following entry:

nobody:*:65534:10:NFS Nobody (normal):/:/bin/nosh

Explain the meaning of each component in this entry.

Let £ be a hash function and r a reduction function. Let T be a rainbow table of k

rows for D under h and r, where the jth row is (w;y, h(wj, ) for 1 < j < k. Let

Qy = h(w) and @, = (hor)"(Q), where i > 0. Suppose Q; = h(w,, ) for some

1 <j <kandi < j. Answer the following questions:

(a) Under what conditions will w appear in the jth chain of w,,- -, Wy,

(b) Under what conditions will w not appear in the jth chain of w;;, - - Wi,

(c) We note that in practice, /& often maps a shorter password to a longer hash value.
Thus, without lost of generality, we may assume that / is one-to-one for a given
domain of passwords. It is common practice to use different reduction functions
to produce a password chain. Why can this technique help increase the likelihood

that w appears in the jth chain of w;, - - - Wi ?

Two readers of the first edition shared with us their experiences on distributing
passwords:

e “I can recall a security incident where the user name and password were acci-
dentally sent off the secure network to an unauthorized email address. While no
further security incidents occurred, it was certainly possible for an attacker to
recover the username and password and do serious damage to the network.”

e “At work, we ONLY give passwords over the phone, and of course only when
we know who we are speaking to. Of all the no-no’s in network security, sending
password via insecure emails has to be at the top of the list.”

Describe your practice of distributing passwords and discuss their pros and cons.
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1.11.

1.12.

1.13.

1.14.

“Early in my career as a Web developer,” a reader of the first edition told us, “I cre-
ated a Website for a friend. I created the FTP login name and password using the
same first eight characters of the name of the site. In about 6 month time, some-
body hacked into the site and put their own silly page in place of her content. Once I
regained control, I created a high-strength password using a combination of upper-
case and lowercase letters, numbers, and symbols, with a minimum of eight charac-
ters. I have since followed this practice for every Web login I create.”

(a) Discuss what the Web developer did before being hacked was problematic.

(b) Do you think that the weak password the Web developer set up was the actual
cause of his friend’s computer being hacked? Justify your answer.

(c) Do you think that the Web developer’s solution to the problem was effective?
Justify your answer.

“Previously when I had DSL and an old router at home, the wireless encryption
didn’t work and I would occasionally find unauthorized users on my network,” a
reader told us. “I knew enough not to conduct any sensitive business using the wire-
less connection, but did once make an online shopping transaction using a credit
card (I was being lazy). Within 2 days, there were fraudulent charges on my credit
card.” Make an educational guess what might happen and justify your answer.

“My account was compromised by a brute force attack a while back when I was
playing an online game,” said a reader of the first edition. “In response I purchased
an RSA token and linked my account to it, so that even if my password was com-
promised again my account could never be fully accessed without the token code.”

(a) Discuss why playing an online game might breach user accounts.
(b) Research the use of RSA tokens and explain whether using an RSA token would
help secure user accounts for playing online games. Justify your answer.

A reader of the first edition reported the following social engineering attack hap-
pened to him: “Sometime ago I received a random phone call from someone (later
identified as a fraudster) who wanted to speak to a senior person in my company.

Caller: Hello. Can I speak with the head of operations? (The fraudster did not
mention a name, just acommon job title, trying to sniff out a name and email address
from me if I mistakenly mentioned the name of the person.)

Me: Can you please mention the name of the person you intend to reach, as we
have many operation departments and heads around here (Baiting the fraudster)?

Caller: I have lost the business card he gave me and can’t remember the details.
Can you be kind enough to give me the name, email address, or direct number of
one of the heads who might likely be in the same business meeting where I met the
person [ am trying to reach?

At this point the caller was suspicious enough that I transferred the call to my
company’s security investigative unit, which took it up from there.”

(a) Describe whether you have a similar procedure at work and how you think the
procedure could be improved.

(b) If you receive similar phone calls at home, what would you and should you do?
Note that some crooks may call you that your tax returns contained errors and
you must call a certain number to clear it up; otherwise you will be in trouble.
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Others may change the content a little by, for example, telling you that your
neighbors reported to the police department that you did something wrong. Any-
way, all they try to get you to do is to call a certain number and then scare you
to death so that you would provide them information or give them money.

1.15. Good baits are essential for a phishing attack to be successful. Baits are often pre-
sented in the form of email messages and Websites that appear to be authoritative.
Links contained in phishing messages are traps, leading to Websites controlled by
attackers. Discuss how to identify phishing messages and phishing sites.

1.16.

The following phishing attacks were experienced by some of the readers. In each
instance, describe what you would do if it happened to you.

(a)

(b)

(c)

(d)

(e)

“A few years ago one of my network passwords on LinkedIn was compromised,
possibly through phishing or pharming. As a result, spam messages spoofing
my identity were sent to my connections. I discovered this when some of my
connections notified me and said that they knew that I would not send such
messages. I changed my passwords (and continue to do so periodically) and as
a result the problem has not occurred since.”

“I received phishing emails 2 months ago (around November 2013), claiming to
be from FedEX. There were several clues that they were bogus. For example, the
content and the Subject Line did not look right, and nowhere did I see anything
similar to fedex . com. The message was very generic about some complica-
tion in delivery, and it urged the recipient to open up a file attachment that looked
very suspicious. Sometimes you can tell an email is a phishing attack because
the link it gives you in the message does not look right.”

“I have been getting attacked very frequently through emails lately (in early
2014). One example is an email stating that I was offered a job, and asked me to
fill out a form with all of my personal data. This is obviously an attempt to get
my personal information because legitimate employers wouldn’t offer me a job
if they didn’t know anything about me. My solution to the phishing attacks are
never to login to anything through an email, and never giving out information
to anyone I can’t authenticate or trust. I think one of the main reasons that my
phone number and email address were compromised is my resume being posted
on sites like monster . com. As soon as I find a job I'm taking it down!”
“I’ve received tons of phishing emails over the years. When I was a customer of a
local bank, I encountered the best phishing email I have ever received. I received
an email that looked like it was from the bank with a link to the Website. I clicked
the link. When I was about to login, I noticed that the color of the site did not
look right. I took a closer look at the URL, and realized that it was not the official
Website of the bank. It almost tricked me. I blocked the sender and emailed the
bank who then passed it along to the FBL.”

“I’'ve encountered several cleverly disguised email invitations to provide
account information. Thankfully, I’ve never entered personal information that
was requested, but I know that many less security conscious people have. The
best way to combat phishing is to ignore requests for personal information that
emanate from the Web. When in doubt, call the institution directly, and not with
the number on the email.”
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(f) “Just last week (i.e., in mid January 2014), I received a phishing email. It
appeared to come from an organization I know, but the actual email address
was obviously not, and contained (false) links to reset my password. I reported
it to the IT Help Desk.”

Do you agree with the following rule of thumb when dealing with possible phishing
emails: “If an email comes from a company or individual I don’t recognize, I delete
it. If it’s really important, they will call me!” Justify your answer.

ARP maps an IP address to a MAC address of a computer. Thus, assigning a different
MAC address to an IP address redirects message to a different computer. Conduct
the following experiment. Let A, B, and C be three PCs connected to the same local
area network (LAN) running Microsoft Windows (or Linux). Suppose that you have
an user account on each of these computers and you have the same user name fool
on computers B and C. Suppose that you can modify the ARP table on computer B
(e.g., such as what a super user may do). On computer C, run arp -a to obtain its
MAC address. Then on computer B, run arp -s to modify its ARP table to map
B’s IP address to C’s MAC address. Wait for a while or reboot B to let B’s new ARP
table take effect. Now, send an email message from your account on computer A to
your account £ool on computer B. This message will be redirected to your account
fool on computer C. Verify this result in your experiment.

Use port scans to check your computer’s open ports.

(a) Use ShieldsUP! to scan your computer’s open ports for possible loopholes.
Visit www . grc . comand click the ShieldsUP! link. Then move your mouse
down to find the ShieldsUP! link. Click the link and follow the instructions
to scan your computer’s open ports.

(b) Nessus has features similar to ShieldsUP!. It checks open ports and tries to
determine what programs are running on them. Visit www .nessus . org and
download nessus. Next, use nessus to scan your computer.

“Port scans are very frequent on our network by outside and inside attackers,” a
reader told us. “We simply block repeat offenders.” Argue that this is a good solution.
Can you think of a better approach to counter port scans? Justify your answers.

Web servers are easy targets of DoS attacks. For example, attackers may bombard a
Web server with a large number of login attempts in a short period of time, forcing
the Web server to use up its computing resources for checking passwords.

Web servers may use a picture verification service as follows: when receiving
a login request, the Website opens a login page that will display, in addition to the
usual windows for entering user name and password, a few characters in different
colors or shapes, embedded in a small frame of colorful background and a window
to enter these characters. To complete the login procedure, the user must also type
in these characters. If these characters are not entered correctly, the Web server
will not proceed to check the user name and password. This mechanism is typically
used to prevent automation of services the Website provides and level the playing
field (e.g., Ticketmaster uses this service to prevent scalpers from using a program
to purchase tickets).


http://www.grc.com
http://www.nessus.org
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Explain how automation of services could be used to launch DoS attacks, and why
the picture-verification mechanism may help stop DoS attacks.

A reader of the first edition shared this experience with us: “I sometimes saw employ-
ees bringing in a small personal switch and connecting it to the company LAN.
Occasionally these switches would cause broadcast storms that resulted in denial of
service on the LAN. It was easy to find these switches using tools such as wireshark
and then remove them.” These are rogue switches. Explain how to use wireshark to
identify rogue switches.

“We had experienced repeated DoS attacks on our corporate Web servers,” a
reader said. “The attackers were flooding our servers with external communication
requests, so much so that the servers could not respond to legitimate traffic. To
counter these attacks, we moved to a SaaS solution for our online customer software
from AWS (Amazon Web Services), and transitioned to a similar model for our
corporate Web servers using a Rackspace provider, beefing up its security and
redundancy during the transition.”

(a) Conduct a research on AWS, SaaS, and Rackspace.
(b) On the basis of your research, argue that the solution the company took is a
good one.

Sometimes, a legitimate application may affect the performance of your system.
Googlebot, for example, is such an application. It is a highly debatable issue whether
such applications are considered malware. Googlebot is a Web crawling tool devel-
oped by Google, which is also referred to as spider. It is used to crawl the Internet
and discover new and updated pages for the Google index. Here is a story shared by
areader: “I worked with a customer who was facing extremely slow performance in
their portal at the time of open enrollment for a new service. It was identified that it
was Googlebot causing the problem, which was crawling the content on their exter-
nal facing portal. They then worked with Google and the internal security team to
filter the traffic to eliminate the additional crawling time.”
Discuss this issue and justify your opinions.

Microsoft operating systems have become the household operating systems by peo-
ple in all walks of life. Thus, computers that run Windows operating systems are
hackers’ major targets. Consequently, loopholes, flaws, and defects have been found
one after another.

Use Microsoft Baseline Security Analyzer (MBSA) to analyze security settings
of your Windows operating system and other Microsoft products. To do so, first
download and install the newest version of MBSA from the following link:

www.microsoft.com/technet/security/tools/mbsahome.mspx

Then execute MBSA to scan your Windows system.

Server programs that run in the background of your computer are entry points to
your computer from the network. Some of these programs are necessary, some are
not, and some are malicious programs downloaded by careless users. Suppose that
you are running Windows XP on your computer.


http://www.microsoft.com/technet/security/tools/mbsahome.mspx
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(a) Follow the following procedure to identify which server programs are running
and which server programs have been closed: Select Run from the Start menu,
then type in msconfg. Press the OK button to open the window of System
Configuration Utility, and click Services. For example, is your
DHCP client running or stopped?

(b) Follow the following steps to find out the usages of XP-supported services:
Select Run from the Start menu, then type in services.msc. Press the
OK bottom to open the window of Services and select Services. Select
each service one at a time and read about its usage. For example, what is the
usage of the DHCP client?

Back Oirifice is a computer program designed for remote system administration to
control a computer running the Windows operating system from a remote location.
But it may also be use to log keystrokes easily. Other key-logging tools include
hardware keylogger and invisible keylogger. Conduct a survey on keyloggers and
write a paper reporting your findings.

Critical information may be stolen when you shop online. A reader shared with us
the following story: “Just last year (i.e., in 2013) I had my credit card information
stolen from what I believed to be a keystroke-logging attack. Since then I've beefed
up my security and installed an anti-keylogger.”

Identify and discuss security vulnerabilities you can think of associated with
online shopping.

As we mentioned in the text, an apparently well-protected network could be brought
down via an apparently minor trick. The following is a story shared by a reader of
the first edition: “I am a system administrator for a large company with employees
worldwide. My site produces sensitive hardware and software products. We have a
very strong network security team keeping our network safe. However, about 2 years
ago (i.e.,in 2012), espionage hackers still managed to get into our network. As secure
as our network was, the hackers used Outlook Web Access (OWA) to get into our net-
work, retrieving a large volume of data in 2 days. The attack took the following steps:

1. They first collected information form media and by calling the company
disguised as a sales person or government authority. They managed to retrieve
email addresses from local users who were assigned to my site.

2. They then used a spoofing method to send emails to users from the known
employees to other employees.

3. They would send emails with Trojans only during off hours, so that the email
recipient would use OWA at home to access their email and bypass the firewalls
and network security protocols at work.

The email spoofing was being done for about 2 weeks until a employee replied
to the hacker, thinking it was an employee from a company laptop off hours. When
the employee returned to the office the next day the hacker was able to bypass the
firewall and get into the network. We had to make major changes to the network
from top down including the following:

1. Removed all OWA installations.
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2. Spent a large sum of money to purchase firewalls and network security devices

and distributed them globally.

Hired ten additional network security professionals.

Removed all local administrative rights from domain computers.

5. Purchased USB token devices to key staff members with administrator rights on
computers. The devise was a custom token that had both a certificate embedded in
it associated with the employee and a password management code. For example,
SafeNet. Inc sells such products (see http://www.safenet-inc.com/
data-protection/authentication/pki-authentication/).

6. Required all employees to change passwords every 25 days for a year.

Hw

Also as a result of this attack, I had to travel for about a year to multiple locations
two to three times a month to give network security training to users. We have not
been hacked again so far and we continue to make improvements on our network.
We send out intentional spoofing emails every now and then to test our employees
and I have to give remote training to those who fail the tests.”

(a) Discuss the attacking techniques the attacker was using in this attack.
(b) Discuss how to identify spoofing emails.

“Since the MafiaBoy attack in 2000, on a regular basis, our own servers have been hit
by DDoS attacks on average once every 2 years,” said a reader. Have you experienced
any DDoS attack? If so, what measures did you take to counter DDoS attacks?

“I have discovered that DDoS effects can occur by accident on an alarming rate due
to improperly configured application software. It is helpful if the network system is
configured to shut down the troubled application. Otherwise, it can be difficult to
use diagnostic tools to find it.” Discuss how you may configure the system to detect
misconfigured applications to address this reader’s concern.

“Our servers were taken down with the Code Red and copycat worms in the early
2000s.” The reader who shared this experienced also made the following comments:
“Everybody I know has suffered from malicious software attacks at one time or
another—no matter how careful you are. If you are not completely protected with
updated anti-virus/malware software and more importantly, safe browsing habits, it
can happen again to almost anyone.”

Share your own experiences using one or more concrete examples of malicious
software attacks you encountered.

“Several lab computers I administered were infected with viruses that hijacked the
system,” a reader told us. “The infected system displayed a message supposedly
from the FBI saying that the system was in violation of copyright laws and for a
small fee could be cleared up (using a credit card of course). It frankly was too
much work to clean it up so we instead just reinstalled the system.”

Suggest a way to cleanup such viruses without reinstalling the system. Justify
your answer.

“Back at the dawn of time when I was an undergrad,” said a reader, “my univer-
sity’s computers were riddled with viruses. One that I remember in particular was
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the Stoned virus. It would attack the file allocation table in the DOS operating sys-
tem, making the computer unable to find any file. Antivirus tools were not readily
available then, so I kept a floppy disk that was just for the university computers.
Once I used a disk at school, I marked it and never used it anywhere else. I'm sure
that helped spread the virus on the university computers but it kept the viruses off
my own PC.”

While floppy disks are no longer in use, USB sticks are still widely used today.
How do you like the reader’s approach to viruses and justify your answer.

“In early 2013 I built a Website for a local restaurant using Drupal. It was a
relatively straightforward site, with no actual commerce function. It didn’t have
any personal information on it, or in the MySQL database back end. I hid the
administrative login for Drupal, but not very well. I just put it somewhere where
a site user couldn’t navigate to. However, Drupal is set up in such a way that site
structures can be guessed by hackers, or perhaps mine was just crawled somehow
by a program specializing in this sort of thing. Almost every day I received requests
to add users to the site. The restaurant went out of business last week, so I took the
site down, which stopped the requests right away.”

Can you suggest what happened to the Website and offer a fix if the site were to
be run?

“This past year (e.g., in 2013), I developed a quick and easy site for one of our
meetings on a subdomain especially for it outside of our usual security model. One
morning, my inbox was flooded with hundreds of error messages (i.e., error mes-
sages sent from sites to developers with all the parameters of the requests), all with
SQL statements embedded in an open text field’s input string. Fortunately, none of
the attempts to access the database was successful and that day we came up with a
procedure to prevent it from happening in the future by (1) validating all input before
it is submitted and (2) blocking any suspicious statements before they get submitted
to the database.”
Describe how to identify suspicious SQL statements.

“A few months ago in 2013, a coworker of mine turned on an old PC hooked up to our
work network and did not tell anyone. That old PC had been off line for a couple of
years. Within a day or two we were having all kinds of network problems, from per-
formance slowdown to other weird issues. Because this PC was behind our firewall it
was not picked up right away. It turned out that all these problems were caused sim-
ply by an old worm in that old PC. To remedy the situation we first removed that old
PC. We then manually scanned all our PCs and servers with multiple antivirus and
malware tools, for the worm had also compromised the antivirus software installed
on the PCs. We shut down the ports and services the worm was spreading through
until we were sure that the network was clean. Once clean we were able to reconnect
everything and went back to business as usual. This took about 72 hours to remedy.
This incident made us revise our security policies and procedures to prevent things
like this from happening again.”

What do you think the new security policy should be for this reader’s company to
avoid similar incidents mentioned in the message from happening again?
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Junk email filters are software tools used to prevent junk email messages from
entering your mailbox. Microsoft Office Outlook has this feature. To set it up, open
Office Outlook and click Actions. Point the mouse to Junk E-Mail, click
Junk E-mail options, Safe Lists Only, Safe Senders, and Add.
Type in here the email addresses you wish to receive email messages from, then
click OK. Likewise, you may also specify the email addresses that you do not want
to receive messages from. Describe how this can be done.

“A server I managed was once compromised by an attacker. The attacker gained
root access using buffer overflow and installed a Trojan that replaced standard Linux
commands with infected ones, opening up ports for the attacker to attack other loca-
tions. We fixed the problem by a complete system reinstall from original media and
applied proper security patches.”

Describe what each of these two remedies do.

Canary Values. The GNU Compiler Collection (GCC) supports buffer overflow
protection using random canary values.

(a) Determine what the -fstack-protector and -fstack-protector-
all flags are used for when compiling code using the GNU C (gcc) and C++
(g++) compilers.

(b) Compile C code with and without the - fstack-protector-all flag and
disassemble the executables using the Linux tool objdump, with the -d option,
compare the output and determine what code is responsible for inserting the
canary value in the prologue and what code is responsible for checking the
canary value in the epilogue.

“When I was a kid I had problems with adware and Trojans on my Windows PC.
Since then I always make sure that my machines have security software installed.
Now I am using Norton Internet Security and it seems to get the job done. We also
have Norton endpoint security installed on the development VMs at work.” Have
you experienced any malicious software attack that even the Norton security tools
did not help remove them?

“I had an infection with spyware on my home computer. It popped up a window
with an instruction to download Windows antivirus software. It would popup and
keep popping up until my computer would freeze because all the opened windows
had used up all of the memory. I looked up how to fix the problem but it seemed
so involved I finally just took the easy route: I wiped my hard drive, reinstalled the
system from scratch, and downloaded antivirus and spyware tools. On a separate
note, in my work we use common access cards to log in to computers and we can’t
even plug in a USB for fear that there might be malware on it.”

(a) What do you think happened to this person’s computer?
(b) Is the USB policy mentioned a good policy? Justify your answer.

“I have had several instances where my wife’s computer became infected with some
form of malware or another. She visited several questionable sites that I cautioned
her against, but the joy of those sites outweighed my warnings. Of course each time
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her computer was infected I would have to fix it and hear about why can’t I stop her
machine from being infected. To help me avoid this, I run Linux at home which I
have found to be much more secure, and less susceptible to viruses.”

Do you agree with this reader’s last comment about Linux being much more
secure and less susceptible to viruses? Justify your answers.

“T once worked for a guy as a consultant,” a reader told us. “The guy started bragging
about the logic bomb he created. He set things up so that 3 months after he left
the company (due to downsizing), the company screens would be taken over by
a faked video of a senior member of the management team having inappropriate
relationships with a donkey. The company then called him back in as a consultant
(since he knew the system so well) to help find the cause of the problem. He worked
at a very high rate of pay for 4 months pretending to solve the problem created by
him. I stopped working for him the next week.”

Are you aware of any person who planned logic bombs in the software they wrote?
If so, please describe it. If not, imagine and describe a situation in which a logic bomb
may be planned.

“In 2012, some syndicates were able to hack into our credit-card payment systems
in North America, causing us financial loss of up to $2.7 million dollars. They did
this through a combination of password theft, cryptanalysis, and phishing emails.
Like the textbook says: The battle against network attacks is a perpetual one as the
various attackers constantly device new means to breach our network securities.”
Can you make an educational guess when the attack this reader mentioned might
take place? Justify your answers.

When the TCP/IP protocols and the OSI seven-layer model were devised, their
designers were only concerned about how to efficiently and reliably transmit data
from the source computer to the destination computer. Data security was not a
concern at that time. Consequently, the TCP/IP protocols and the OSI model do
not contain any built-in security mechanism. When they later realized this security
weakness, protocol designers started to add all kinds of security mechanisms into
communication protocols. But these early protocols were not designed for data
security, and so they may not have the right framework for adding security features.
Adding a security feature to a protocol not built for it is like taking out materials
from a wall to mend a fence. Thus, network designers have started to investigate
the following issue: if one designs a communication protocol all over again, what
would be the best native architecture for including the current security mechanisms
as well as for adding future security features. Think about this issue when you read
the rest of the book, and try to develop a design of your own. This exercise is to be
handed in at the end of the course.
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Data Encryption Algorithms

The history of using secret writing to protect valuable information is probably as long as the
history of written language itself. Computer cryptography was created to protect confidential
data in digital forms, and it thrives in the Internet era. Data encryption is a critical component
of computer cryptography. It uses encryption algorithms and secret keys to transform data from
that which is readable to that which is unintelligible. Encryption algorithms must be reversible,
so that data can be transformed, using the same secret key, from the unintelligible form back to
its original form. Encryption algorithms of this kind are referred to as conventional encryption
algorithms or symmetric-key encryption algorithms.

For example, let P, P, - - - Py be a fixed permutation of the 26 English letters, which maps
letter A to P, B to P},---, and Z to P,5. Replacing each letter in a given English message
according to this mapping, we can transform the message to a new form that is unintelli-
gible to an untrained eye. This is a simple encryption algorithm, where the secret key is
ByP, - - - Py;. Exercise 1.7 uses this algorithm, where the secret key is FEBDTAIGHKLMN -
JPQRSOCVWXYZU. Replacing each letter according to the reverse mapping, namely, replacing
P, with A, P, with B, - - -, and P,; with Z, the data in the new form can be transformed back
to its original form. Thus, devising an encryption algorithm is not difficult. What is difficult is
to devise good encryption algorithms.

Good encryption algorithms must satisfy a number of requirements. This chapter first
describes design criteria of encryption algorithms. It then presents several common block
cipher encryption algorithms, including Data Encryption Standard (DES), triple-DES, and
Advanced Encryption Standard (AES). It also introduces common block cipher modes and
the RC4 stream cipher. Finally, it describes how to generate secret keys.

2.1 Data Encryption Algorithm Design Criteria

Any message written over a fixed set of symbols can always be represented as a binary string.
A binary string is a sequence of 0’s and 1’s. Several standard binary encoding schemes, referred
to as character code sets, have been established to encode various sets of computer symbols
for different written languages. For example, the ASCII code set encodes English letters and
other commonly used symbols into binary strings; the GB 2312-80 code set encodes simplified
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Chinese characters; the EBCDIC code set encodes western European languages; and the ISO
8859 code set encodes accented Latin and non-Latin European languages, including Greek,
Semitic, and Hebrew. The Unicode code set and the ISO 10646 code set intend to unify all
code sets to encode all languages. Without loss of generality, we assume that plaintext data
and ciphertext data are binary strings.

Binary digits O and 1 are called bits. To reduce computation overhead costs, encryption
algorithms should only use bit operations that are easy to implement on electronic computers.
For instance, permuting bits in a binary string is a simple binary operation.

Let X be a binary string. Define the length of X, denoted by | X, to be the number of bits
contained in X. If | X | = ¢, we say that X is an (-bit binary string.

Let a € {0,1} and k be a non-negative integer. We use a” to denote the following k-bit
binary string:

a* =aa---a.
N——
ka’s

Let X =22y -2,and Y = y,y, - - - y,,, be two binary strings, where z;,y, € {0,1}. We
use XY to denote the concatenation operation of X and Y; that is,

XY =2 2 Yp Y

m*

For clarity, we may also use X || Y to denote the concatenation operation XY.

2.1.1 ASCII Code

The ASCII code set consists of all 7-bit binary strings (see Appendix A), representing
non-negative integers from 0 to 127. The first 32 ASCII codes and the last ASCII code
are control codes, which are not displayable. ASCII codes from number 32 to 126 encode
uppercase and lowercase English letters, decimal digits, punctuation marks, and arithmetic
operation notations. Because a byte that is an 8-bit binary string is the basic storage unit in
a computer, we often use one byte to represent one ASCII code by prepending a zero. This
allows us to expand the ASCII code set to represent up to 128 extra symbols by setting the
leftmost bit in each ASCII code from O to 1. Sometimes, we also use the leftmost bit as a
parity bit for error detection. In any case, using the 8-bit ASCII code set to encode an English
message will result in a binary string of length divisible by 8. Using other code sets such as
unicode to encode data may result in a binary string of length divisible by 16. Without loss
of generality, we assume that any plaintext message is encoded as a binary string of length
divisible by 8.

2.1.2 XOR Encryption

The exclusive-OR operation, denoted by & or XOR, is a simple binary operation, where
000=0,001=1,1060=1,1p1=0.
Thus, for any a € {0,1}, we have

a®ba=0,a®0=a,a®1l=1-a,a®(1—a)=1
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We can think of the exclusive-OR operation for a single bit as addition modulo 2. Let X = z;
Ty --xpand Y = yyy, - - - y, be two £-bit binary strings. Define

XY = (2, 0y) (0@ yy) -+ (2, D yyp)-

Thus, X & X = 0°and X & 0° = X.

We use E, D, and K to denote an encryption algorithm, a decryption algorithm, and a
secret key, respectively. When F and D appear in the same context, it is understood that D is
the reverse algorithm of F.

Let ¢ be a positive integer divisible by 8 and K an ¢-bit secret key. Divide the plaintext data
M into a sequence of blocks

MlaMZa e aMka

where each block is ¢-bit long, except possibly the last block M, . If |M, | < ¢, add an 8-bit
control code at the end of M, once or several times to obtain a new block such that its length
is exactly ¢. For example, we may use the control code nl = 00001010 to pad M,,. This
procedure is called padding. For simplicity, we still use M, to represent the new block.

An encryption algorithm that encrypts one block at a time is called a block cipher algorithm
(or simply block cipher). In a block cipher algorithm, the value of ¢ is often selected to be
64 or 128. When ¢ equals the length of the basic code used in the underlying language, for
example, when ¢ = 8, we call the encryption algorithm a stream cipher algorithm. Thus, on
the surface, the difference between a block cipher and a stream cipher is the length of the block.
In stream cipher algorithms, padding is not needed.

We can use the XOR operation to design an encryption algorithm. Let K be a secret key of
length ¢. The encryption algorithm encrypts M, to produce a ciphertext block C; as follows:

C;, =Ex(M,;) =Ko M,.
The decryption algorithm decrypts C; into M, as follows:
Dy(C)=KaoC,=K®(KaoM,)=(KaoK)®M,=0"®dM, =M,

XOR encryption is the simplest encryption algorithm. For example, let ¢/ =16 and
K =1001101010011011, then E encrypts FUN as follows:

Plaintext: F u N (Padding)

ASCII: 01000110 01010101 01001110 00001010
Secretkey: & 10011010 10011011 10011010 10011011

Ciphertext: 11011100 11001110 11010100 10010001

The XOR encryption algorithm is simple and fast. But the resulting level of security is low.
For example, eavesdroppers can easily calculate the secret key K from a plaintext—ciphertext
pair (M, C;) as follows:

M,aeC,=M&(M,eK)=K.
Attacks such as this that derive secret keys using a small number of samples of ciphertext data
and the corresponding plaintext data are referred to as known-plaintext attacks.
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To protect XOR encryptions from known-plaintext attacks, users must change encryption
keys frequently. If each encryption key is used exactly once, the XOR encryption algorithm
offers the best security there is. This security is known as information theoretic security. This
method is referred to as one-time pads. To implement the one-time-pad scheme, one must first
generate a long list of encryption keys sufficient for applications in the foreseeable future,
make two identical copies, and distribute the list to the sender and the receiver. Both sides
must then use the same keys synchronously and remove a key from the list once it is used. The
one-time-pad scheme is secure and simple. However, it is unscalable. Implementing one-time
pads for network communications would require each pair of users to generate, transmit, and
store a huge number of secret keys. This is formidable. Thus, we must explore different meth-
ods to devise encryption algorithms that are not only secure, but also practical. On the other
hand, although it is not wise to be used alone, the XOR operation still is a major operation
employed in all mainstream encryption algorithms.

2.1.3 Criteria of Data Encryptions

Encryption keys must be kept secret at all times. Encryption algorithms may also be kept secret.
A secret encryption algorithm is by itself a cryptosystem. For example, during World War 11
while fighting against the Japanese forces, the U.S. Marine Corps used the language spoken
by Navajos, a remote native American Indian tribe, to generate secret codes. This encryption
scheme was never broken by the Japanese.

Keeping encryption algorithms secret, however, does not help to study and verify the secu-
rity of these algorithms, nor does it help to establish encryption standards. Thus, we assume
that encryption algorithms are publicly disclosed, an assumption called Kerchoffs’ principle.
Only encryption keys are to be kept secret. To be practical, encryption keys must be reusable.

Good encryption algorithms must satisfy the following criteria.

2.1.3.1 Efficiency

The operations used in encryption and decryption algorithms must be easy to implement on
hardware and software. Executing these algorithms should only consume moderate resources.
In particular, the time complexity and the space complexity of the algorithms must each be
kept within a small constant factor of the input size.

To achieve efficiency, encryption algorithms should only employ operations that are easy
to implement on a computer. The following operations are common in mainstream encryption
algorithms: exclusive-OR, permutation, substitution, circular shift, and operations on finite
fields. Permutation, substitution, and circular shift are unary operations. The circular shift
operation is a special form of permutation. A permutation is a one-to-one mapping, while
a substitution is a many-to-one mapping.

2.1.3.2 Resistance of Statistical Analysis

Encryption algorithms must destroy any statistical structure in the plaintext data, making any
statistical analysis useless. The common way to achieve this goal is to require encryption algo-
rithms to satisfy the diffusion and confusion requirements.
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1. By diffusion, it means that a change of a single bit in the plaintext string will cause a
number of bits in the ciphertext string to be changed. These bits should be distributed in
the ciphertext string as evenly as possible. In other words, every single bit in the ciphertext
data is affected by a number of bits evenly spread across the plaintext string.

2. By confusion, it means that a change of a single bit in the encryption key will cause a
number of bits in the ciphertext string to be changed. These bits should be distributed in
the ciphertext string as evenly as possible. In other words, every single bit in the ciphertext
data is affected by a number of bits evenly spread across the encryption key.

Diffusion and confusion are also referred to as avalanche effects.

Diffusion may be achieved by repeatedly executing a fixed sequence of operations for a
fixed number of rounds on strings generated from the previous round.

Confusion may be achieved by the following method:

1. Generate a number of subkeys from the encryption key.

2. Use the first subkey to operate on the plaintext string in the first round.

3. Use each subsequent subkey in each subsequent round to operate on the new string gener-
ated from the previous round.

Combining these two methods in a coherent way, we may be able to obtain an encryption
algorithm that offers both diffusion and confusion.

2.1.3.3 Resistance of Brute-Force Attacks

Suppose that the encryption key is ¢ bits long. After eavesdropping a ciphertext message C,
the eavesdropper could use brute force to decipher C' by calculating M’ = D . (C') for each
(-bit binary string K'. If M’ is readable and makes sense, then it would likely be the original
plaintext message. As there are 2° different /-bit binary strings, such a brute force attack
incurs a time complexity in the magnitude of 2¢. Thus, ¢ must be sufficiently large to thwart
brute-force attacks.

This time complexity of 2¢ is often used as a benchmark to determine the effectiveness of
a cryptanalysis method. If a cryptanalysis method can break an encryption algorithm with a
time complexity much less than 2¢, then this method will be considered useful.

What value of ¢ (the length of the key) would be sufficient depends on computing technolo-
gies in the near future. It is a common belief that using ¢ = 128 would be sufficient for many
years to come.

2.1.3.4 Resistance of Other Attacks

Encryption algorithms must also resist other types of attacks. In addition to the known-
plaintext attacks, these attacks include chosen-plaintext attacks and mathematical attacks.

In a chosen-plaintext attack, the attacker chooses a particular plaintext message as a bait
to lure his opponents to encrypt it, where the chosen plaintext message contains useful infor-
mation for the attacker. During World War II, for example, the intelligence department of the
U.S. Pacific Fleet suspected that a certain code frequently occurring in the intercepted Japanese
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encrypted messages meant “Midway Atoll”. To confirm this suspicion, the U.S. intelligence
deliberately had a plaintext message sent out, requesting a replacement of a broken facility in
Midway to lure the Japanese intelligence to encrypt it. From this, they were able to confirm
that their suspicions were indeed correct.

In mathematical attacks, the attacker uses mathematical methods to decipher encrypted mes-
sages. These methods include differential cryptanalysis, linear cryptanalysis, and algebraic
cryptanalysis. Detailed discussions of these attacks are beyond the scope of this book.

2.1.4 Implementation Criteria

Implementations of encryption algorithms must resist side channel attacks. Side channel
attacks do not attack the algorithms directly. Instead, they explore loopholes in the imple-
mentation environments. For example, the timing attack is a common side channel attack. In
a timing attack, the attacker analyzes the computing time of certain operations, which may
help obtain useful information about the encryption key. Timing attacks could be useful if the
run-time of certain operations in the underlying encryption algorithm fluctuates substantially
on different bit values in the encryption key.

One way to combat timing attacks is to flatten the computation-time differences between
instructions by, for example, executing a few redundant operations on instructions that use
much less time to execute.

2.2 Data Encryption Standard

The DES was published by the U.S. National Bureau of Standards (NBS) in 1977. NBS was
the predecessor of the U.S. National Institute of Standards and Technology (NIST). DES was
based on the Lucifer encryption algorithm developed by an IBM research group led by Horst
Feistel. In particular, DES is a concrete realization of the Feistel cipher scheme. Its encryption
and decryption structures are symmetrical, and they use four basic operations: exclusive-OR,
permutation, substitution, and circular shift. DES was widely used from the mid-1970s to
the early 2000s. Although gradually phasing out, DES played an important role in modern
cryptography and represents a popular design paradigm for data encryption.

2.2.1 Feistel’s Cipher Scheme

The Feistel cipher scheme (FCS) divides the plaintext string into a sequence of blocks, each
of which is 2[ bits long. FCS only uses basic operations of XOR and substitution. Let n be a
positive integer. FCS first generates n subkeys of a fixed length from the encryption key K. Let
these subkeys be K, - - -, K,,. Let F' denote the substitution function that takes an [-bit binary
string and a subkey as input and generates an [-bit binary string as output. Divide a 2[-bit plain-
text block M into two halves L and R, of equal length, where L, and R, are, respectively, the
prefix substring and the suffix substring of M. The FCS encryption and decryption algorithms
each executes n rounds of a fixed sequence of operations (see Figure 2.1).
FCS encryption executes the following operations in round ¢, where ¢ = 1, - - -, n:

Lz' - Ri—b 2.1
Ry=L, & F(Rifl, KZ.). 2.2)
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Plaintext block

'n+l R’

Plaintext block

Subkeys

K,

Round 1 Round n

Round 1

Ciphertext block

Ciphertext block

Figure 2.1 Feistel cipher scheme block diagram

After n rounds, the plaintext block M = LR, is transformed to L, I?,,. Let L, ., = R, and
R, ., = L, be the output of FCS encryption. That is, the FCS encryption algorithm produces
aciphertext block C' =L, R, ;.

Rewrite C'as C' = L Rj;namely,let L, ., = Ljand R, = R;. The FCS decryption algo-
rithm is symmetrical to the FCS encryption algorithm, except that the subkeys are applied in
the reverse order. In particular, the FCS decryption algorithm executes the following operations
in round 4, where ¢ = 1,2,-- -, n:

L =R (2.3)

1—17

R, =L, |, 0F(R,_;, K, ;) (2.4)

After n rounds, the ciphertext block C' = L R}, is transformed to L, R],. Let L, ,; = R;, and

o1 =L, andlet L] R/ | be the output of FCS decryption.

We now show that the ciphertext block C' = L, | R, .| = LRy is transformed back to the
plaintext block M = L, R,,. Because the output of the FCS decryptionis L), . | R;, . ,, it suffices
to show the following equality:

L/nJrlR/nJrl = LyRy.
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Here is a proof. Note that L), = R; and R;_ , = L), and so it suffices to show that
R, = L, and L/, = R,. We can use mathematical induction to show that for any integer ¢

with 0 < ¢ < n, we have
Ly =R, 2.5)
R.=1L, ;. (2.6)

Let ¢ = n, and we will get what we need to prove.

The mathematical induction proof is given as follows. We first note that Lj = L,, ., = R
and Ry = R, = L,,. Thus, when ¢ = 0, Equalities 2.5 and 2.6 hold.

Induction hypothesis: for any positive integer ¢ < n, we have

n

L;71 =R, i R/zel =Ly, i1
It follows from Equality 2.3, the induction hypothesis, and Equality 2.1 that

! / o .
L; = i—1 Ln—i+1 - Rn—i‘

3

Thus, Equality 2.5 is true.
From Equality 2.4 (the induction hypothesis), Equality 2.2, and Equality 2.1, we have

Ri=Li & F(R_,K, ;1)
=R, i ®F(Ly, 41, K,y i41)
=[Ln ® F(R,_;, Kn—iﬂ)] S F(R,_;, Kn—iﬂ)
=L, ®[F(R, K, i) ®F(R,_;, K, ;)]
— L, &0
=1L

n—i’

n—i¢*

Thus, Equality 2.6 is true. This completes the proof of the correctness of the FCS decryption
algorithm.

DES is an instance of FCS with [ = 32. That is, the block size of DES is ¢ = 64. The length
of DES encryption keys is 56 bits. However, a DES encryption key is represented as a 64-bit
binary string, where the 8ith bit (i = 1,2, - - - | 8) is the parity bit of the seven bits immediately
before it. The parity bit is used for error detection. Let K be an encryption key. DES first
generates 16 subkeys from K, where each subkey has exactly 48 bits. There are n = 16 rounds
of executions in DES.

2.2.2 DES Subkeys

Let K = kyk, - - - kg, be an encryption key of DES. To generate 16 subkeys, DES first removes
each 8ith bit (i = 1,2,---,8) from K. For convenience, we still use K to denote the new
string. DES then permutes the remaining 56 bits using the initial permutation /P, as follows,
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where bits are listed row wise:
ks Ky Fyy kg3 kos kig ko Ky Ksg Kso Kkuo gy ko Kig
_ ki ko ksg sy kug kss Koy kig ki by Ky ksy kag Fsg
keg ko5 kur kg ki Koy kis kr Kgy Ksy kug kss kg Koo
ki ke kg kss kys ksp koo Koy Kig ks kog ko kio Ky

IPkey(K)

Itis evident that /P, (K') permutes K in the following way: the indexes of the first 28 bits
start from 57 such that each next index is equal to the current index minus 8 mod 65. The
indexes of the next 24 bits start from 63 such that each next index is equal to the current index
minus 8 mod 63. The indexes of the last four bits start from 28 such that each next index is
equal to the current index minus 8.

The modular operation is a common operation when dealing with integers in a finite domain.
Let m be a positive integer and a be a non-negative integer. Then “a mod m” is the remainder
of dividing a by m. If a < 0 and its absolute value |a| < m, then a mod m is equal to the
smallest positive integer b such that b — a = m. For instance, —5 mod 65 = 60.

Let X = x,2, - - 255 be a 56-bit binary string, where z; € {0, 1}. Let P, be a compress
permutation that takes X as input and produces a 48-bit string as output. P, is defined as
follows, where bits are listed row wise:

Ty Tyy Typ Tog Ty Ty Ty Tog Ty5 T Top Ty
Toa Tig Lo Ly Log T Lig Lo Lom Loy Lia T
Pkey(X) _ Loz Tyg Typ Ty Tog Ly Lyg Ly Loy Loy Li3 Ly

Ly Ty T3y Tgy Ly7 T

5 Tgo Ts1 Ly5 L33 Tyg

ot
]

s

S

5
Lyg Tyg T3zg Tsg L3q4 Ly Lya Tso L36 Tog L3z

<o
8

N

=Y

Let Y be a 28-bit binary string. Let LS., ;) (Y) denote the new string obtained by shifting Y’
circularly to the left z(¢) times, where z(¢) is defined as follows:

9 10 11 12 13 14 15 16

i 7 8
2 2 1 2 2 2 2 2 2 1

2(1) |

1 2 3 4 5 6
11 2 2 2 2
Rewrite [Py, (K) as U,Vj, where both U; and Vj, are 28-bit binary strings. Then the ith
subkey K is generated as follows, where i = 1,2, -- - 16:
U, = LSz(i)(Uiq)v
Vi =LS,;(Vii1)s
Ki = Pkey(Uz‘Vz‘)-
For instance, let
U, =1001101001110110001010011010,
V, = 0110010110001001110101100101.
Then
U, = LS, 1)(Uy) = LS, (U,) = 0011010011101100010100110101,

Vi = LS. 1)(Vy) = LS, (V) = 1100101100010011101011001010.
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Thus,
Kl = Pkey(Ul‘/l)
= Pkey(()Ol10100111011000101001101011100101100010011101011001010)
=101100110101100110000110000011110110110001001110.

2.2.3 DES Substitution Boxes

The substitution function F in DES is defined using eight special matrices. They are referred to
as substitution boxes or S-Boxes in short. Each S-Box is a4 x 16 matrix (see Table 2.1), where
each row in each S-Box is a permutation of integers from 0 to 15. We label these S-Boxes as
S$1,89,-+,8g. For each r with 1 < r < §, write

ST: [3< >]4><167i207"'737.j207"'715'

ij

Let S be a function that takes a 48-bit string as input and produces a 32-bit binary string as
output. In particular, let Y = 4y, - - - y,5 be a 48-bit binary string, where y; € {0,1}. We use
Y[i, j] (i < j) to denote the substring y, - - - y;. Divide Y into eight 6-bit blocks:

Y =Y [1,6]Y [7,12]Y [13,18]Y [19, 24]Y [25,30]Y [31,36]Y [37,42]Y [43,48].

For each 6-bit block Y [6r — 5,67] (r = 1,2, - - -, 8), we use the rth S-Box to generate a 4-bit
binary string as output, denoted by S,.(Y [6r — 5, 67]), as follows:

Let Y [6r — 5, 67] = bybyb3b,bsbg, where b, € {0,1} forg =1,---,6. Leti = b, bs denote
the binary representation for a row number and j = b,b30,b5 denote the binary representation
for a column number. Then define S,.(Y [6r — 5,67]) to be the number in the 4-bit binary
representation at row ¢ + 1 and column j + 1 in matrix S,.; namely,

S,.(Y[6r —5,6r]) = s§§>.

For example, if Y [7,12] = 110010, then S,(110010) = s{¢),0; = 554 = 8.

Let
S(Y)=5,(Y1,6])S,(Y[7,12])--- Sg(Y [43, 48]).

Then S(Y) transforms the 48-bit input Y to a 32-bit output.

The constructions of the S-Boxes followed a clear set of criteria for the purpose of resist-
ing possible attacks. They were also bound by the computing technologies available in the
mid-1970s. For example, the reason why an S-Box has a 6-bit input and a 4-bit output is due
to the chip technology available at that time. It took several months of computing time at
that time to compute the S-Boxes that satisfy all the criteria. Because the set of criteria for
the S-Boxes was not published and because NSA played a role in selecting DES, many peo-
ple suspected that NSA had planted backdoors in these S-Boxes so that NSA can decipher
DES-encrypted messages should they decide to do so. This of course was sheer speculation.
In the 1990s, the set of criteria used by the DES design team was discovered by cryptana-
lysts not in the team. After this, IBM finally decided to publish the original set of criteria for
constructing the S-Boxes.
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Table 2.1 DES S-Boxes

S: 14 4 13 1 2 15 11 8 0w 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 9 1 7 5 11 3 14 10 0 6 13

S,: 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 013 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 1m 6 7 12 0 5 14 9
S: 10 0 9 14 6 3 15 5 1 13 12 11 4 8
3 7 0 9 3 4 6 10 8 5 14 12 11 15 1

3 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

s, 13 14 3 0 9 10 1 2 8 5 11 12 4 15
38 11 5 6 15 0 3 7 2 12 10 14 9

0 6 9 0 12 7 13 15 1 3 14 2 8 4

15 0 6 10 13 8 9 4 5 11 12 7 2 14

S, 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
4 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 o 13 7 8 15 9 12 5 6 3 0 14

1 8 12 1 14 2 13 6 15 0 9 10 4 5 3

S;: 12 1 10 15 9 2 6 8 0 13 3 14 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 38

9 14 15 5 2 8 12 3 7 4 10 1 13 11 6

4 2 12 9 5 15 10 11 14 1 7 6 8 13

S. 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 1M 13 12 3 7 14 10 15 6 8 0 5 9 2

6 11 13 8 1 4 10 7 5 0 15 14 2 3 12

S 13 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 4 7 4 10 8 13 15 12 9 0 3 5 6 11

2.2.4 DES Encryption

DES implements its substitution function F' using permutations, exclusive-OR, subkeys, and
substitutions from the S-Boxes. In particular, for each 32-bit half block R;_,, DES first uses a
function called expansion permutation, denoted by EP, to expand it into a 48-bit string. It then
XORs this string with a 48-bit subkey, takes the resulting 48-bit output as the input of function
S to generate a 32-bit string, and permutes this string to generate a 32-bit string L;.
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2.2.4.1 Expansion Permutation

Let U = uyuy - - - ugy (u; € {0,1}) be a 32-bit binary string.

on U is defined as follows, where bits are listed row wise:

Uz

Uy
Us
Ug
U3
U7
Ugy
Uas

Uag

Ugy

Uz
Uy

Uy

Uzg

The expansion permutation EP

Uy

‘We note that in EP(U), the indexes of the four middle columns are 1, 2, - - -, 32; the indexes
of the first column start from 32, where the next index is the current index plus 4 mod 32; and
the indexes of the last column start from 5, where the next index is the current index plus 4

mod 32.

2.2.4.2 DES Substitution

Let V = vyv, - - - v4, be a 32-bit binary string. Permuting V' using the following permutation

P, where bits are listed row wise:

PV) =
Uy Vg Uyy Vyq VUgp Uy

U3

Ug Uy Uyp Vg Vg Uiy Ugg Vyy

DES defines its substitution function F' as follows:

F(R,_,K;) = P(S(EP(R,_,) ® K)), i =1,2,---

2.2.4.3 Encryption Steps

Uy Vys Vg Ugyg
Vg V19 V13 U

Us U1g U31 Yy

Vg Ugg V11 Uy Ugs

,16.

Let A = aqay - - - agy (a; € {0,1}) be a64-bit binary string. Define a permutation o as follows:
it first reverses A as agyag; - - - a,. It then lists the prefix agyaqs - - - a5 into four columns from
right to left, where each column has exactly eight rows. It also lists the suffix as,a4; - - - @; into
four columns from right to left, where each column has exactly eight rows, and inserts them
alternately in the prefix columns. That is, according to the listing order, we have

4 8 3

7

2

6

5

ag
az
Qg
as
ay
az
ay
ay

Ay
A7
Ay
Qy5
QAyq
g3
Ay
Ay

Qayg

Q6
a5
ayy
as
P
ap
50
Qg

Qs
Ass

asy

Aoy
Qo3
Qg
Qg1
Ay
Qg
ag
ayy

Ay

a3y
asy
asp
Qg
Aoy
Qo7
Qg
57 (25
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The permutation enumerates the elements in this list row wise. Denote by 0! the inverse of o.
Let M = mymy ---mgy (m; € {0,1}) be a plaintext block. Define an initial permutation

IP by IP(M) = o~ Y(M). It is straightforward to verify that IP(M) is equal to the following

string, where each number ¢ represents bit m,; (1 < 7 < 64) and bits are listed row wise:

58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8
© 57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

IP(M)

It is easy to see that the indexes of the first two rows in IP(M) start from 58, where the next
index is equal to the current index minus 8 mod 66; and the indexes of the last two rows in
IP(M) start from 57, where the next index is equal to the current index minus 8 mod 66.

Let C' = ¢jcy -+~ cgy (¢; € {0,1}). Then IP~1(C) = o(C) is the inverse of IP(C), defined
as follows, where each number ¢ represents bit ¢;(1 < i < 64) and bits are listed row wise:

40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29
"~ 36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26 33 1 41 9 49 17 57 25

P~(C)

It is straightforward to verify that [P o I[P~ (M) = IP~' o IP(M) = M. For example, let
C = IP(M). Because IP changes m, to msg and IP " changes ¢, to ¢, where ¢; = mjq and
c40 = my, we know that IP~" o IP changes m; back to m,,.

Let M and K be, respectively, a 64-bit plaintext block and a 64-bit encryption key with
added parity bits. Let K, K, - - -, K(;; be the 16 subkeys generated from K as described in
Section 2.2.2. The DES encryption steps are given as follows:

1. Rewrite IP(M) = LR, where |L,| = | R,| = 32.
2. Fori =1,2,---,16, execute the following operations in order:

L,=R,
Ri=L, & F(R;_,K;).
3. Finally, let C = IP"'(R4L,;). (Note that the input of IP~'is R L4, not L5 Ry5.)

2.2.5 DES Decryption and Correctness Proof

DES decryption is symmetrical to DES encryption, except that subkeys are applied in the
reverse order. The DES decryption steps are given as follows:

1. Rewrite IP(C) = L{Ry,, where |L,| = |R,| = 32.

2. Fori=1,2,---,16, execute the following operations in order
/ /
Li = R;_y,

Ri=L; | ®F(R_, K7 ;).
3. Finally, let L}, R}, = IP~*(R}L};); we then obtain back the plaintext block M.
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To prove the correctness of DES decryption, we need to show that
M = IP7}(RisLig).

Because Ly R = IP(C) = IP(IP ' (R4Ls)) = RysL;4, we have Ly = Rz and R} = Ly;.
We note that except IP is used before round 1 starts and P! after round 16, the rest of
DES is a concrete implementation of FCS. It follows from FCS decryption that L}; = R, and
Ry = L. Thus,

1PN (RigLyg) = IP~'(LyR,) = P~ (IP(M)) = M.

This completes the proof.

2.2.6 DES Security Strength

The security strength of DES depends on the number of rounds, the length of encryption key,
and the construction of the substitution function. A substantial number of experiments have
demonstrated that DES encryption provides good diffusion and confusion effects.

It can be shown that if the number of rounds in DES encryption is less than 16, then differ-
ential cryptanalysis can break DES encryption in a reasonable amount of time.

The length of a DES encryption key is 56 bits, which was sufficient to resist brute-force
attacks in the 1970s to 1980s. However, the 56-bit key length was no longer secure in the
late 1990s due to advancements of computer technologies and algorithms. For example, in
1999, the Electronic Frontier Foundation (EFF) based in the United States spent less than
$250,000 to build a special-purpose supercomputer, named “DES Cracker,” to crack DES
encryptions. Working with Distributed.Net and a worldwide network of nearly 100,000 PCs
on the Internet, DES Cracker broke in 22 hours the “DES Challenge III” encrypted message.
The DES Challenges were a series of DES-encrypted messages posted by RSA Data Security
in 1997. DES Challenge III was the last one to be broken. This indicated that the DES era was
approaching its end.

Does this mean that all the manpower and resources spent over the years in developing
hardware and software DES products were down the drain? It is true that DES encryption
keys are too short to resist brute-force attacks, but DES has other good properties that have
resisted many other attacks. Thus, it is reasonable to look for ways to effectively extend the
DES encryption key length without changing the DES algorithms. Fortunately, it can be shown
that DES is not a group. Therefore, applying DES multiple times is different from applying
DES a single time. In other words, for any three 56-bit DES encryption keys K, K,, K5, we
have Fy, o By # Ey,, where Ey represents DES encryption with key K. We note that this
property may not be true in other encryption algorithms. For example, in XOR encryption, for
any given encryption keys K, and K,, let K; = K, ® K,, then

By, (B, (M)) = (M@ K,) © Ky =M & Ky = Eg (M),

where E represents XOR encryption.
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2.3 Multiple DES

As discussed in Section 2.2.6, applying DES multiple times can effectively extend the length
of encryption keys without modifying DES. Multiple DES can therefore be used to resist
brute-force attacks. We use kDES to denote a multiple DES scheme of applying DES k times.
By applying DES, it means applying either the encryption algorithm E or the decryption
algorithm D.

2.3.1 Triple-DES with Two Keys

Triple-DES with two keys, denoted by 3DES/2, is the simplest and reasonably secure method
against brute-force attacks. It extends the key length to 112 bits long. Let K and K, be
two 56-bit encryption keys and M a 64-bit plaintext block. The standard 3DES/2 encryp-
tion algorithm applies ', on M to obtain C) = Ey (M), then applies D, on C| to obtain
Cy = D, (C)), and finally applies Ef; on C, to obtain C' = Ep (C,). That is,

C = Ey (D, (Eg (M))). (2.7)

For convenience, we denote this scheme by C' = EDE ¢, r., (M).
The following is the 3DES/2 decryption algorithm:

M = Dy (Eg,(Dg, (C))). (2.8)

For convenience, we denote this scheme by M = DED p, r,(C).

We note that there are other combinations for 3DES with two keys, such as EEE ¢ g, or
EED g k,. Any of these combinations would serve the purpose. However, only the combina-
tion of EDE ¢ g, allows us to use 3DES/2 to decrypt ciphertext string produced by applying
single DES with key K. This is done as follows: let C' = E (M) and let K; = K, = K.
Then

DEDK,K(C) =Dy (Ex(M)) =M.

A major drawback of 3DES is that its software executions are not as efficient as one would
like them to be.

2.3.2 2DES and 3DES/3

In addition to 3DES/2, we may also apply DES twice with two keys, denoted by 2DES/2.
For simplicity, we use 2DES to denote 2DES/2. Let K, and K, be two DES encryption keys
and M a 64-bit plaintext block. The standard 2DES encryption algorithm £ and decryption
algorithm D are described as follows:

C= EK;(EKI(M))v
M = Dy, (D, (C)).
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However, 2DES is vulnerable to the meet-in-the-middle attack (see Section 2.3.3 for details).
Thus, 2DES is considered nonsecure.

‘We may also apply DES thrice with three keys, denoted by 3DES/3. 3DES/3 has an effective
key length of 168 bits. Let K, K,, and K be three encryption keys. The standard 3DES/3
encryption algorithm £ and decryption algorithm D are described as follows:

C = Ey (D, (Ek (M))), (2.9)
M = Dy (Exe, (Dge.(O))). (2.10)

2.3.3 Meet-in-the-Middle Attacks on 2DES

2DES is vulnerable to the meet-in-the-middle attacks. Suppose that the attacker has obtained
two plaintext—ciphertext pairs (M, C,) and (M,, C,), where

Cl = EK2 (EKl(Ml))a 02 = EK2 (EKl(MZ))'

That is,
DKZCI = EKl(Ml)v DKQ(CE)) = EKl(MQ)'

The attacker may then be able to identify, with probability close to 1, the encryption keys K
and K, with time complexity much smaller than 2!2. The attack can be carried out as follows:
List all 56-bit strings Uy, Uy, - - -, Uyx_; and calculate, for each pair (U;, U;),

Xi = EU,i(Ml)v Y] = DUj (Cl)'

Note that when U; = K and U; = K,, we have X; = Y. Thus, for each pair (X;,Y;) with
X,; =Y}, itis possible that (U;,U;) = (K, K,). If there is only one such pair, then we have
found the encryption keys K and K,. Otherwise, apply each pair (U;,U. j) with X; =Y, on
(M,, C,) to obtain

Xz{ = EUi (M,), Yj/ = DUJ- (Cy).

Again, we note that when U; = K, and U; = K,, we have X = Y. Thus, if X] =Y/, then
(U, U; ) is more likely to be the encryptlon key pair. Indeed, we can show that the poss1b1hty
that there exist more than one such pair is very small.

Note that for any plaintext block M and any candidate (U;, Uj) for the encryption key pair,
the ciphertext block C' = Ey; (Ey, (M) is uniformly distributed (or close to being uniformly
distributed). This is the property any good encryption algorithm should possess. Because
\U;| = |U;| = 56, there are 256256 = 2112 pairs (X, Y.). As | X,| = 64, the expected number
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of pairs (U;, U;) that satisty Ey;, (M) = X; = Dy, (C)) is or near

2112/264 _ 248.

Likewise, the expected number of pairs (U, U;) from these 2'* pairs that satisfy Ey;, (M,) =
Dy, (Cy) and Eyy, (M) = Dy, (C4) is or near

248/264 2—16

Thus, the possibility of finding (K, K,) is or near 1 — 2716
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The time complexity of executing this attack is in the order of
2(2°6 4 218) < 2%,

This is much smaller than 2112,

2.4 Advanced Encryption Standard

Researchers have never stopped searching for better encryption algorithms that are more effi-
cient, more secure, and more flexible. New encryption algorithms should be able to use longer
keys and handle larger blocks. In some applications, people may also want to specify their
own key length and block size. Thus, it would be desirable to have key length and block size
as parameters.

A number of encryption algorithms have since been devised. Some of the early ones include
Blowfish, CAST, GOST (the former Soviet Encryption Standard), International Data Encryp-
tion Algorithm (IDEA), LOKI, RC4, RC5, REDOC-II, REDOC-III, SAFER, and Skipjack.
Most of these encryption algorithms are Feistel ciphers.

Realizing the urgent need to establish a new encryption standard, NIST launched in 1997
the advanced encryption standard competition for selecting a successor to DES. The follow-
ing encryption algorithms were submitted for consideration: CAST-256, CRYPTON, DEAL,
DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, and
Twofish, where MARS, RC6, Rijndael, Serpent, and Twofish were selected semifinalists. In
November 2001, NIST officially chose Rijndael to be the new AES. Rijndael was devised by
Belgian cryptographers Joan Daemen and Vincent Rijmen.

2.4.1 AES Basic Structures

AES is a block cipher, but it is not a Feistel cipher. Its encryption and decryption, although
similar, are not symmetrical. The basic computation unit in AES is a byte, rather than a bit as
in DES. A byte is an 8-bit binary string. AES divides the plaintext string into 128-bit blocks.
AES can use encryption keys of three different key lengths. An AES-encryption key can be
16-byte long, 24-byte long, or 32-byte long. Regardless of what key length is used, AES will
generate and use 16-byte subkeys, also called round keys. AES can also run a different number
of operation rounds. To generate a sufficient number of round keys, AES expands encryption
keys depending on the number of rounds and the length of the encryption key specified by the
users. Table 2.2 depicts the relations between key lengths, the number of rounds, and the length
of expanded encryption keys, where a word is a binary string of length equal to four bytes.

Table 2.2 AES key lengths, the number of rounds, and the length of expanded encryption keys

Key length Number of Rounds Expansion key length
Words Bytes Bits Words Bytes Bits
4 16 128 10 44 176 1408
6 24 192 12 52 208 1664

8 32 256 14 60 240 1920
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AES treats a 128-bit block as a sequence of 16 bytes and represents it as a 4 x 4 square
matrix, where each element is a byte in the block. In particular, let M = aya,--- a5 be a
plaintext block, where each a; is a byte. Then AES rewrites M as Matrix 2.11:

ay ay ag Qp
ay a5 a9 Qg
Ay Qg Q1g Gy

az Q7 Q11 Qg5

@2.11)

We refer to a 4 x 4 matrix of bytes as a state matrix. AES encryption executes in each
round (except the last round) the same sequence of simple operations on state matrices that
transforms the plaintext block into a ciphertext block. These operations are substitute-bytes,
shift-rows, mix-columns, and add-round-key.

1. The operation of substitute-bytes is a nonlinear operation based on a specially designed
substitution box. The purpose of this operation is to resist differential cryptanalysis, linear
cryptanalysis, and other mathematical attacks.

2. The operation of shift-rows is an elementary operation on state matrices. It is a linear oper-
ation. The purpose of this operation is to produce diffusion.

3. The operation of mix-columns is also an elementary operation on state matrices. Its purpose
is the same as shift-rows.

4. The operation of add-round-key is a simple set of exclusive-OR operations on state
matrices. It is a linear operation. The purpose of this operation is to produce confusion.

It is customary to use AES-128, AES-192, and AES-256 to denote, respectively, AES under
128-bit keys, 192-bit keys, and 256-bit keys. These three variants of AES all have the same
encryption and decryption structures. They differ only on the number of rounds, where each
round uses a different round key.

We describe AES using AES-128. AES-128 first expands the 128-bit key into an array
W0, 43] of words. It then rewrites W0, 43] as a sequence of eleven 128-bit round keys
Ky, Ky, -+, K. In other words,

K, =W[4i,4i+3], i=0,1,---,10,

where W[4i,4i + 3] = W[4iW[4i + 1]W [4i + 2]W [4i + 3].

For convenience, we use sub to denote the operation of substitute-bytes, shr the operation of
shift-rows, mic the operation of mix-columns, and ark the operation of add-round-key. Denote
by inv_sub (or sub~1) the inverse operation of sub, inv_shr (or shr~1) the inverse operation
of shr, and inv_mic (or mic™"') the inverse operation of mic. Figure 2.2 depicts the AES-128
encryption and decryption block diagram.

In the following several subsections, we describe AES S-Boxes, the subkey generation algo-
rithm, the operations of ark, sub, shr, mic, and their inverse operations. We then introduce the
Galois field G F'(2*) and show how S-Boxes are constructed. Skipping the last two topics will
not affect the understanding of AES encryption and decryption operations.
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Plaintext

inv_shr
inv_mic

inv_sub
inv_shr

myv_mic

WI[0,3]
Round 1
Wi[4,7]
Round 9
W[36,39]
Round 10
W[40,43]

inv_sub

inv_shr

Figure 2.2 AES-128 encryption and decryption diagram

2.4.2 AES S-Boxes

Round 10

Round 9

Round 1

AES uses only one S-Box. It is used to generate subkeys and define the operation of substitute
bytes. The AES S-Box is a 16 x 16 matrix of bytes, which is defined on the basis of the
multiplication operation of the Galois field GF(2%). Unlike the S-Boxes used in DES, the
AES S-Box is a permutation of all 256 bytes. Its reverse permutation is called the reverse

S-Box.

We only present the S-Box and the reverse S-Box in this subsection, where each element
and index is represented by two hexadecimal digits. We describe how they are constructed in

Section 2.4.11. We use

S = [Sij]lb'xlﬁ

to denote the AES S-Box and

§= [S/ij]l(ixl()‘
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Table 2.3 The S-Box of AES

0 1 2 3 4 5 6 7 8 9 a b c d e f

63 7c¢c 77 7b f2 6b 6f ¢5 30 01 67 2b fe d7 ab 76
ca 8 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 cO
b7 fd 93 26 36 3 {7 cc 34 a5 e5 f1 71 d8 31 15
04 c¢7 23 ¢3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
09 83 2¢c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
53 di 00 ed 20 fc bl 5b 6a cb be 39 4a 4c 58 cf
d0o ef aa fb 43 4d 33 8 45 f9 02 7f 50 3c 9of a8
51 a3 40 8 92 9d 38 5 bc b6 da 21 10 ff f3 d2
cd Oc 13 e 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
60 81 4 dc 22 2a 90 88 46 ee b8 14 de 5e Ob db
e0 32 3a 0a 49 06 24 5¢ c2 d3 ac 62 91 95 e4 79
e7 ¢8 37 6d 8 d5 4e a9 6¢c 56 f4 ea 65 7a ae 08
ba 78 25 2¢ 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
70 3e b5 66 48 03 f6 0e 61 35 57 b9 8 «c1 1d Qe
el f8 98 11 69 d9 8 94 9b 1e 87 €9 <ce 55 28 df
8¢ al 89 0d bf e6 42 68 41 99 2d Of b0 54 bb 16

T DO QOO T ®”L OONOOO~WN-—=-O

Table 2.4 The reverse S-Box of AES

0 1 2 3 4 5 6 7 8 9 a b c d e f

52 09 6a d5 30 36 a5 38 bf 40 a3 9 81 3 d7 fb
7c e3 39 82 9 2f fft 8 34 8e 43 44 c4 de €9 cb
54 7b 94 32 a6 c¢c2 23 3d ee 4c 95 Ob 42 fa c3 4de
08 2 al 66 28 d9 24 b2 76 5b a2 49 6d 8b di 25
72 f8 f6 64 86 68 98 16 d4 a4 5¢ cc 5d 65 b6 92
6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
90 d8 ab 00 8c bc d3 Oa f7 e4 58 05 b8 b3 45 06
dd 2c¢c 1e 8f ca 3f of 02 «ci af bd 03 01 13 8a 6b
3a 91 11 41 4 67 dc ea 97 f2 cf ce f0O b4 e6 73
96 ac 74 22 e7 ad 35 8 e2 f9 37 e8 1c 75 df 6e
47 1 ila 71 1d 29 c¢5 89 6f b7 62 0e aa 18 be 1b
fc 56 3e 4b c6 d2 79 20 9a db cO fe 78 cd b5a f4
1f dd a8 33 88 07 c¢7 31 bt 12 10 59 27 80 -ec 5f
60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
a0 e0 3b 4d ae 2a 5 b0 c8 eb bb 3c 83 53 99 61
17 2b 04 7e ba 77 d6 26 el 69 14 63 55 21 Oc 7d

T D QO T OH ©OooONOOUBAWN-—=O

to denote its reverse. The S-Box is given in Table 2.3, and the reverse S-Box is given in
Table 2.4.

Let w = b, - - - b; be a byte, where each b, is a bit. Define a byte-substitution function S as
follows: let 7 = byb,b,b; denote the binary representation of the row index and j = b,bsbsb,
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denote the binary representation of a column index of s,; in the S-Box. Then
S(w) = s, (2.12)
SN w) = 5. (2.13)

That is, S(w) is the element on the intersection of the (i 4 1)th row and the (5 + 1)th column
in the S-Box S. Likewise, S~ (w) is the element on the intersection of the (i + 1)th row and
the (j + 1)th column in the inverse S-Box S~1.

For example, let w = b8, then S(w) = s, g = 6¢, and S~'(6¢C) = 5.c = b8.

It is straightforward to see from the S-Box S and its reverse S~! that, for any 8-bit string
w, we have

S(SH(w)) = wand STH(S(w)) = w.

2.4.3 AES-128 Round Keys

Let K = K0, 31]K[32,63]K[64,95] K[96,127] be a 4-word encryption key, where each
K [32i,32i 4 31] is a 32-bit binary string, ¢ = 0, 1,2, 3. AES expands K into a 44-word array
W0, 43]. We first define a byte transformation function M as follows:

bgbsb, bbb, b0, if b, =0,

: (2.14)
bgbsbybybyb, b0 & 00011011,  if b, =1,

M (b7b6sbb3bab1by) = {

where each b, is a bit. We see in Section 2.4.10 that M represents a multiplication operation
of 00000010 and b, by - - - b, over Galois field G F(2%).
For example,

M(db) = M(11011011)
= 10110110 & 00011011
= 10101101

=ad.
Let j be a non-negative number. Define m(7) as follows:
00000001, if 7 =0,
m(j) = ¢ 00000010, if j =1, (2.15)
M(m(j—1)), ifj>1
We see in Section 2.4.10 that function m(j) represents the result of multiplying the G F(2%)
element 00000010 by itself for 5 — 1 times.
We now define a word-substitution function 7' that transforms a 32-bit string to a 32-bit

string on the basis of parameter j and the AES S-Box. Let w = w; wywsw,, where each w; is
a byte. Let j be a positive integer. Let

T(w,j) = [(S(wy) & m(j — 1)]S(wy) S (wy)S(w,),

where S is the byte-substitution function defined by Equality 2.12.
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We now expand K = K K - - - K5 to obtain [0, 43] as follows:

w(o0] = K[0,31],
W(l] = K[32,63],
W(2] = K[64,95],
W3] = K[96,127],
B { — 4l T(W[i —1],i/4), ifi is divisible by 4,
— 4o Wi —1], otherwise,
=4,

9

2.4.4 Add Round Keys

Let K, = W4i,4i + 3] = W[4i]W[4i + 1]W[4i + 2]W[4i + 3] be an AES-128 round key,
where ¢ = 0, - - -, 10. Rewrite K; as a 4 x 4 matrix of bytes:

koo ko1 koo Ko
K — kio kiq k1o Kyg

b
koo ko koo ko
k3o k31 ks ks

where each element is a byte and W [4i + j| = kq jk; ;Ko k3 5, j=0,1,2,3.
In what follows we use

Qoo Qo1 A2 Qg3
A= Ao Q11 Q12 G133
Ay Qg1 Qg9 Ag3
Az az1 d32 Q33

to represent the current state matrix. Initially, A = M (see Matrix 2.11). The add-round-key
operation ark is defined as follows:

ark(A,K;) =A DK, =

The inverse operation ark ! is the same as ark. That is, ark ' (A, K;) = ark(A,K,). It is
straightforward to verify that

ark‘(ark‘l(A,Ki),Ki) = arkz_l(arkj(A,Ki),Ki) =A.
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2.4.5 Substitute-Bytes

The substitute-bytes operation sub is defined as follows:
Sgao,o; SEam; S

S(a S(a S

sub(A) = [S(a;)]axs = 1.0 L1

( ) [ ( z])]4 4 S(GZO) S(a2,1) S

where S is the byte-substitution function defined in Section 2.4.2 (see formula 2.12).
It is straightforward to verify that the inverse operation sub~! is given by

sub '(A) = [Sil(aij)]élxél’

where S~! is defined in Section 2.4.2 (see formula 2.13). This is because for any byte w, we
have S(S~1(w)) = S~1(S(w)) = w, which implies that

sub(sub™ ' (A)) = sub ' (sub(A4)) = A.

2.4.6  Shift-Rows

The shift-row operation shr performs a left-circular-shift < — 1 times on the 7th row in the state
matrix A, where i = 1,2, 3, 4. Its inverse shr~! performs a right-circular-shift i — 1 times on
the 7th row. That is,

A0 Qo1 Qo2 Qo3 Qg0 Qo1 Qo2 Qo3
A1 Ao Gy Q _ Az Qg Gy Q
shr(A) = |11 12 %3 G0l gy I(A) _ |%13 Q10 Q11 G2
Qo Qg3 Qo Qg1 Qoo Gg3 Qg Qg
Qg3 Gzo Q37 A39 asq1 G3zo Q33 A3

It is straightforward to verify that
shr(shr Y (A)) = shr~(shr(A)) = A.

2.4.7 Mix-Columns
The mix-columns operation mic is defined as follows:
mic(A) = @)1,
where each element in mic(A) is determined by the following operations (j = 0,1,2,3) :
ap; = M(ag ;) & [M(ay ;) ®ay ;] @ ay; ®agj,
a‘ll,j =ag; & M(ay ;) ® [Mlay;) @ ay ;] © ag ;,
=ay; ®a,; & Mlay;) & [Mlag ;) B ag ],
as ;= [Ml(ay ;) @ ag ;] ©ay ; ®ay; ® M(ay ;).

/!
@g,5
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For example, let

db 2d f2 d4 8e 4d 9f d5
o[sEesl - S e a
45 4c 5c d5 bc f8 9d d6
We verify ay  as follows:
ago = M(db) ® [M(13) © 13] © 53 ® 45
= 10101101 & [00100110 & 00010011] € 01010011 & 01000101
= 10001110
= 8e.
The reader is asked to verify the rest of the elements.
Let w be a byte and ¢ a positive integer. Define
M (w) = MM (w)) (i >1), M'(w)=Mw).
Let
M, (w) = M3 (w) & M?*(w) & M(w), 2.17)
My (w) = M3 (w) & M(w) & w, (2.18)
Mi(w) = M (w) & M (w) & w, (2.19)
My (w) = M3 (w) ® w. (2.20)
The inverse operation of mic~" is defined by
mic™ (A) = [af}] 4,
where each column in mic~!(A) is defined as follows:
My (ay ;) ® My(ay ;) & Ms(a, ;) & My(as ;), (2.21)
al] —M4(aoj) M (ay ]) (a2j)®M5(a3,j)7 (2.22)
ay j = Mj(ag ;) ® My(ay ;) & My(ay ;) & My(ag ), (2.23)
as ;= Ms(ag ;) ® My(ay ;) & My(ay ;) © My (a ;). (2.24)
We show in Section 2.4.10 that for any state matrix A the following relation holds:
mic(mic ' (A)) = mic™ (mic(A)) = A. (2.25)

2.4.8 AES-128 Encryption

LetA, (: =0,1,---,11) be asequence of state matrices, where A is the initial state matrix A/
(i.e., Matrix 2.11), A; (i = 1,2,---,10) represents the input state matrix at round ¢, and A,

%
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is the ciphertext block C, which is in the form of state matrix. Given below are the encryption
steps of AES-128:

A, =ark(A),K,),
Ay = ark(mic(shr(sub(A;))),K;), i=1,2,---,9,
Ay = ark(shr(sub(A,)),K,).

2.4.9 AES-128 Decryption and Correctness Proof

Let C; (i =0,1,---,11) be a sequence of state matrices, where C; is the ciphertext block
C=A,.,C, (i=1,2,---,10) represents the input state matrix at round ¢, and C,, is the out-
put state matrix at round 10. The following are the decryption steps of AES-128:

C, = ark(Cy,K,),
Ci = mi(l(C”"k(*wbil(ShTil(Ci))»Klofi))a i=12,---,9,
Cyy = ark(sub™' (shr™!(Cy)), Kp)-

We now show that C;; = A,. We first show the following equality using mathematical
induction:
C, = shr(sub(A;_;)), i1=1,2,---,10. (2.26)

A proof of Equality 2.26 goes as follows. When ¢ = 1, we have

C, =ark(A,,Ky)
=A; ©Ky
= ark(shr((sub(Ay)), K1y) & Kyg)
= shr((sub(A)) @ Ky) ® Ky
= shr(sub(Ayy))-
Thus, Equality 2.26 holds. Assume that Equality 2.26 holds for 1 < ¢ < 10. We have
C,., = mic *(ark(sub™'(shr™1(C,)),Kyy_;))
= mic *(sub ! (shr ' (shr(sub(A}; ;) © Kyy_;)
=mic (A ®Ky;)
= mic” ! (ark(mic(shr(sub(Ayy_;))), Kig—;) @ Kyq;)
= mic™" ([mic(shr(sub(Ay,_;))) © Kyg_;] © Kyg_;)
shr(sub(Ay,_;))
= shr(sub(An_(iH))).

Thus, Equality 2.26 is true.
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Finally, we have

Cyy = ark(sub™' (shr™!(Cy)). Ky)
= sub ' (shr—*(shr(sub(A))))) ® K,
=4, DK,
= (A& K,) &K,
— A,

This completes the correctness proof of AES-128 decryption.

2.4.10 Galois Fields

In addition to the shift-rows operation, the basic operations of AES are based on the XOR
operation and a special multiplication operation on 8-bit strings. These two operations and the
set of all 8-bit strings form a finite field.

A field is an algebraic structure that consists of a set F' and two operations on elements in

F'. These two operations are addition and multiplication, denoted by + and X, respectively,
which satisfy the following conditions:

1.

Closure: (Va,b € F)la+be F and a x b € F].

2. Associativity: Va, b, c € F":

Distributivity: Va, b, c € F"
ax (b+c)=(axb)+ (axc),
(a+b)xec=(axec)+ (bxc).

Unit element: There are elements e, e; € F, where ¢, # e, such that Va € F":

a+ey=¢ey+a=a,

axXe =e Xa=a.

The element ¢, is called the unit element of the addition operation and e; the unit element
of the multiplication operation.
Inverse:

Vae F: (3d € F)la+d =d +a=e¢y,
Vae F—{ey}: (Fa" € F)laxa" =d" xa=e¢e].

Elements o', a” are called, respectively, the additive inverse (denoted by —a) and the mul-
tiplicative inverse (denoted by a~'.)

Commutativity: (Va, b€ F)la+b=b+a and a x b= b x al.

Nonzero divisor: If a, b € Flanda X b = ¢, thena = ¢, or b = ¢,.
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We use (F, 4, x) to denote a field. It is called a finite field if F" is a finite set and an infinite
field otherwise. The field of real numbers, for example, is the set of all real numbers with the
ordinary addition and multiplication operations.

Finite fields have a nice property; namely, any finite field consists of exactly p™ elements for
some prime number p and integer n > 2. A prime number is a positive integer that is divisible
only by 1 and by itself. Elements in a finite field of size p™ can be uniquely represented by
polynomials of degree n — 1 with coefficients in the set {0, 1,---,p — 1}. A finite field with
its elements written in this form is called a Galois field, denoted by GF'(p™). Each element in
GF(p") is represented by the following polynomial

by 2" by + by,
denoted in short by b,,_; - - - b;b,, where each coefficient
b, €{0,1,---,p—1}

The addition operation over GF'(p") is addition modulo p of coefficients for terms of the same
degree. The multiplication operation first multiplies two polynomials in the normal way. If the
degree of the resulting polynomial is greater than n — 1, then divide it by a fixed irreducible
polynomial of degree n, and take the remainder as the result of the multiplication. A polyno-
mial is irreducible if it cannot be expressed as a product of two polynomials whose degrees
are at least 1.

Modern electronic computers operate on binary operations using memory with bytes as
basic units. Thus, choosing GF(2®) to form the basic operation space for encryption algo-
rithms becomes natural. GF'(2%) consists of all 8-bit binary strings as elements, where each
element b; - - - b, b, represents the following polynomial:

f(x) =bx” + -+ by + by,

where the addition operation “+” is the exclusive-OR operation &, and we use them inter-
changeably when there is no confusion. Thus, the inverse element of any element b is —b = b.
We use @ to denote the multiplication operation on GF(2%). The definition of the multipli-
cation operation depends on the chosen irreducible polynomial. AES chooses the following
irreducible polynomial:

r(z)=a®+a' + 23 + o+ 1.

This irreducible polynomial makes multiplication simple. We use p(x) mod 7(z) to denote the
remainder polynomial of dividing p(z) by r(z). It is straightforward to verify that

2 modr(z) =2 —r(z) =o' + 2 + o+ 1.

Hence, we have

r® f(x) = (ba® + bga” + --- + byx) mod r(x)

) bgr" 4+ by, if b; =0,
(a* + 23+ 2+ 1)+ (bgz" + -+ byz), if by =1
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Denoting this formula using binary strings and XOR, we have

Debsb,bsbyby by0, if b, =0,

00000010 & b bgbsb,bsbyb, by =
TROTTATS TR {b6b5b4b3b2blb00@00011011, it b=1.

This is the definition of function M defined in Section 2.4.3 (see Formula 2.14). That is,
M (b;bgbsb,b3bybiby) = 00000010 & b,bgbsbybsbybiby = 02 @ b;bgbsb,bsbyby by,

The function m(j) defined in Section 2.4.3 is the result of multiplying 00000010 by itself
for 7 — 1 times. That is,

m(j) = 00000010 @ - - - © 00000010,

where the number of ® is j — 1.
We now verify Equality 2.25. We first note that mic(A) and mic ' (A) are the products of
the following matrix multiplications:

(02 03 01 01]
01 02 03 01
01 01 02 03
03 01 01 02

mic(A) = RA, (2.27)

[0e Ob 0d 09]
. 1,y _ |09 Oe Ob Od
mic (A) = od 09 Oe Ob ®A. (2.28)

0b 0d 09 Oe|

The matrix multiplication in this case follows the standard rule, with & being the addition
operation and ® the multiplication operation. In particular, we can verify Equality 2.27 from
Equalities 2.17 —2.20 by noting that

Mw)dw= (020 w)dw=(02®01)®w =03 w.
Likewise, we can verify Equality 2.28 from Equalities 2.21 —2.24 by noting that
Mi(w) = MM (w)) = o @ w.

Hence,
My (w) = (2* 4+ 2° + 1) @ w = 0e ® w,
My(w) = (z*+2+1)@w=0b®w,
My(w) = (2* + 22 + 1) @ w = 0d ® w,
My(w) = (2*+1)@w =09 ® w.

We can therefore show that mic(A) ® mic ' (A) = mic ' (A) ® mic(A) = I, by verifying
the following equalities, where 1 is the identity matrix of size 4:

02 03 01 01 Oe Ob 0d 09 01 00 00 00
01 02 03 01 ® 09 Oe Ob Od| |00 01 00 00 g (2.29)
01 01 02 03 0d 09 O0e Ob| ~— (00 00 O1 00| ~— °# ’

03 01 01 02 Ob 0d 09 Oe 00 00 00 01
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Oe Ob 0d 09 02 03 01 01 01 00 00 00
09 Oe Ob 0Od ® 01 02 03 01| |00 01 00 0O _ (2.30)
0d 09 Oe Ob 01 01 02 03| ~— |00 00 O1 00| ~ °* ’

Ob 0d 09 Oe 03 01 01 02 00 00 00 01

For example, the first element at the right-hand side in Equality 2.29 is

(02 ® 0e) @ (03 ® 09) @ (01 ® 0d) © (01 ® Ob)
= M(0e) @ (M(09) ¢ 09) @ 0d & Ob
=1c® (12®09) @ 0d & Ob
=01.

2.4.11 Construction of the AES S-Box and Its Inverse
The S-Box S used by AES is constructed as follows:

1.

Initially, S is a 16 x 16 matrix of all 8-bit strings in the lexicographical order. That is, its
first row is vector (00,01, --- ,0f), its second row is vector (10,11, --- /1), and so on,
and its last row is vector (f0, f1,--- ff).

Keep the first two elements in S (i.e., 00 and 01) unchanged, and replace any other element
w with its inverse w L.

For example, as 02’s multiplication inverse is 8d, the element 02 is replaced with 8d.

. Replace each element b,bg - - - b, with bbj - - - b, where each bit ¢} (i =0,1,---,7) is

determined by

b; = bz D b(i+4)mod 8D b(i+5)mod gD b(i+6)mod gD b(i+7)mod 8 Dy,

and c;cgescC569¢,¢y = 01100011,
For example, from Step 2 we know that the element s, , at the intersection of the first
row and the third column is 8d = 10001101 = b, - - - b, b,. Thus,

b, =b, &b &b, Dby by B e; =101000600060=0,
by =05 Dby Dby B b, Bb; Dcy=00101000041=1,
by =b; Db Dby, ®b; Db Dy, =00001D1H0R1 =1,
Vy=0b,8b, @b &by ®db;dc,=08100010140=1,
by=b,®b, Dby Db ®byDe;=101D1H0D1H0=0,

by =0y, Dby Db; ®by Db Dy =10001D100H0=1,

V=0, 0b; Dbsg®b; Dby D, =000000101H1=1,

by=by®b, Db; Db Db Dcy=10000000101=1.
Hence, 55, = 01110111 =77.
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It is required that each element s;’ - in the inverse S-Box S~! must satisfy the following

J
relations:

/

Sij = UV, Sy, =1].

Element s;’ ;> wWhere i, j € {0,1,--- , f}, can be calculated as follows: first find the element ij
inS. Lets,, =ij. Then let s;’j = uv.

For example, as Sg.a = 02, we have 3’072 = ba.

2.4.12 AES Security Strength

AES is designed to resist differential cryptanalysis and linear cryptanalysis. It uses 128-bit (or
longer) encryption keys to resist brute-force attacks. It modifies each element in the current
state matrix in each round, and so it will achieve good diffusion and confusion effects after a
few rounds of execution. AES is believed to be superior to DES.

In June 2003, the U.S. government decided that classified government information should
be encrypted using AES-128, and for TOP SECRET information, AES-192 or AES-256 must
be used. The New European Schemes for Signatures, Integrity, and Encryption (NESSIE) also
supported the use of AES. In June 2004, the Institute of Electrical and Electronics Engineers
(IEEE) adopted AES in its 802.11i wireless security standard. IEEE 802.11i is also known as
Wireless-Fidelity Protected Access 2 (Wi-Fi WPA 2). Today, AES has been used in almost all
network security protocols and software products.

No methods have been found that are efficient enough to be considered serious threats to
AES, although certain types of side channel attacks have been discovered. Algebraic attacks,
however, have attracted attentions. For example, if the attacker knows a pair of AES-128 plain-
text and ciphertext blocks, then the attacker may be able to calculate the AES encryption key
by solving a system of 1600 quadratic equations of 8000 unknowns. Although solving a sys-
tem of quadratic equations of this magnitude by today’s mathematical theory and computing
technology is hopeless, this study opens up a new direction of investigation.

2.5 Standard Block Cipher Modes of Operations

Let ¢ be the block size of a given block cipher (e.g., { = 64 for DES and ¢ = 128 for AES).
Let M be a plaintext string. Divide M into a sequence of blocks:

M = M,M,--- M,

such that the size of each block M, is ¢ (using padding for the last block if necessary). There
are several methods to encrypt M. Such methods are referred to as block cipher modes of
operations. The following are the standard block cipher modes of operations:

electronic-codebook mode (ECB),
cipher-block-chaining mode (CBC),
cipher-feedback mode (CFB),
output-feedback mode (OFB), and
counter mode (CTR).

Dk =
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Table 2.5 ECB mode

ECB encryption steps ECB decryption steps
C; = Ex (M), M; = D (C;),
i=1,2,--- k. 1=1,2,--, k.

2.5.1 Electronic-Codebook Mode

The ECB mode encrypts each plaintext block independently. Let C; be the ith ciphertext block.
Table 2.5 lists the encryption and decryption steps under the ECB mode.
ECB is often used to encrypt short plaintext messages M.

2.5.2 Cipher-Block-Chaining Mode

When the plaintext message M is long, the possibility that M; = M; for some i # j
will increase. When this happens, their corresponding cipher blocks C; and C; are iden-
tical under the ECB mode, which will be disclosed to the eavesdropper. The use of the
cipher-block-chaining mode can overcome this weakness. Under the CBC mode, the previous
ciphertext block is used to encrypt the current plaintext block. At the beginning, CBC uses
an initial ¢-bit block C|), referred to as an initial vector. Table 2.6 lists the encryption and
decryption steps under the CBC mode.

CBC is commonly used in practice.

2.5.3 Cipher-Feedback Mode

Under the ECB and CBC modes, the receiver must wait for the entire ciphertext block to arrive
before decryption can be started. There are several drawbacks in these schemes:

1. If the ciphertext block is too long, it would hinder the receiver from reading the entire
plaintext message M continuously.

2. If padding is used when dividing M into blocks, the actual number of transmitted bits in
ciphertext blocks will be larger than the number of bits in M.

3. If a bit error occurs in a ciphertext block during transmission (i.e., a bit is flipped during
transmission), it would affect the readability of the plaintext block after decryption because
of the effect of diffusion.

The use of CFB mode can overcome these drawbacks. CFB does not divide M into blocks.
Instead, it encrypts each basic code one at a time. Let s be the length of the basic code in a

Table 2.6 CBC mode

CBC encryption steps CBC decryption steps

C; = Ex(C; & M), M; = Dy (C) & Cy s
1=1,2,-- k. i=1,2,--- k.
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given code set. For example, s = 8 for ASCII code and s = 16 for Unicode. Note that s can
also be set to other values, as long as the length of the block is divisible by s. Let

M = wywy - w,,,

where each w; is an s-bit binary string, and / is divisible by s.

Under CFB mode, the sender and the receiver share the same ¢-bit initial vector V{,. Encryp-
tion begins by encrypting Vj, to produce a ciphertext block U,. Let p,(U) represent the s-bit
prefix of U, and s, (U) the j-bit suffix of U. The encryption procedure calculates C} = w; &
p,(U,). It then shlfts V}, s bits to the left and fills in the s bits on the right with C',. Repeat this
until C,, is obtained. Table 2.7 lists the encryption and decryption steps under the CFB mode.

CFB is a common method to turn a block cipher algorithm into a stream cipher algorithm.

2.5.4  Output-Feedback Mode

If during the transmission of a CFB cipher string C; a bit error occurs, then this error not only
will affect the correctness of w;, but also will affect the correctness of w; 1, w; o, -+, Wiy p/s-
This is because C; will be removed from V' only after £/s iterations. Output feedback mode
can overcome this drawback. OFB is similar to CFB. The only difference is that OFB does not
place C; in V;. Table 2.8 lists the encryption and decryption steps under the OFB mode.

OFB is also a common method to turn a block cipher algorithm to a stream cipher algorithm.
It is commonly used in error-prone environments.

2.5.5 Counter Mode

CTR produces block ciphers. It uses an /-bit counter Crr, which starts from an initial
value and increases by 1 each time. Adding 1 to 1° resets Ctr to 0. In other words,

Table 2.7 CFB mode

CFB encryption steps CFB decryption steps
Uy =Ex(V,.1), U, =Eg (V)
C’i :wz@ps(Ui)7 w _C 69ps([]z)’
‘/’i - Slfs(‘/z—l) 2l ‘/7, - SZ s(‘/z 1 027
t=1,---,m—1; i=1,---,m—1;
Um :EK(mel)’ U _E ( 1)

Table 2.8 OFB mode

OFB encryption steps OFB decryption steps
U=E (Vz 1)’ Ui = EK(‘/i—l)’
C :wz® S(Uz)7 wziczéBps(Uz)’
V= SH( )P (Uy), Vi=s,,(Vi_))p.(Up),
Z—]. mfl 7, = 7...’fanf]_;
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Table 2.9 CTR mode

CTR encryption steps CTR decryption steps
Ctr = Ctr,, Ctr = Ctr,,
C, = Ex(Ctr™") @ M,, M, =E, (Ctr) o C,,
i=1,---,k. i=1,---, k.

Ctr — Ctr + 1 mod 2°. We use Ctr, to denote the initial value of Ctr and Ctr*™ to denote
Ctr +1 mod 2°. Table 2.9 lists the encryption and decryption steps under the CTR mode.

CTR is simple, and it overcomes the drawbacks of ECB. It is commonly used in applications
that require faster encryption speed.

2.6 Offset Codebook Mode of Operations

The Offset codebook mode (OCB) of operations is a newer but more complex mode of oper-
ations for block ciphers. It was devised by Rogaway, Bellare, Black, and Krovetz in 2001.
OCB provides encryption and authentication simultaneously, and it has stronger security prop-
erties than the standard modes of operations introduced in Section 2.5. OCB is parallelizable,
allowing multiple hardware units to execute the algorithm on the same input simultaneously.

2.6.1 Basic Operations

Let a be an ¢-bit binary string. Denote by firstbit(a) the first bit of a and lastbit(a) the last bit
of a.
Let ¢ = 128. Define f(a) and g(a) as follows:

a <1, if firstbit(a) = 0,

_ 231

J(@) {(a < 1) ® 0210000111, if firstbit(a) = 1. 230
a>1, if lastbit(a) = 0,

g9(a) = 120 . .( ) (2.32)
(a> 1) 102010000111, if lastbit(a) = 1.

Note that if we treat a as an element in G F'(21%%), that is, if we treat a as a sequence of coeffi-
cients of a polynomial of degree 127, then f(a) = az and g(a) = az~'. Let & and ® denote,
respectively, the addition operation and the multiplication operation of GF'(2!%), where & is
the ordinary exclusive-OR operation on coefficients.

Let ¢ be a positive integer. Let ntz(z) denote the largest integer z such that 2% divides <. That
is, Ntz(z) is the number of trailing 0’s in the binary representation of 7.

For example, ntz(12) = ntz(1100) = 1 and ntz(16) = ntz(10000) = 4.

Let i > —1 be an integer. Let a(i) denote a ® x*. Thus, a(—1) = g(a),a(0) = a, and
a(l) = f(a). It is straightforward to see that, for 7 > 1,

a(i) = f(f(--- f(a)--+)) with ¢ many f’s. (2.33)

Let v* denote a sequence of 2¥ binary strings of length k as

’yk = (P)/(I)C?’Vf:a e 775’071)7
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where 7% = 0F and 7F = Olf_l, such that every two successive strings differ in exactly one
place. That is, if we perform XOR on any two successive strings, we get exactly one 1 in the
resulting new string. The number of 1°s as the result of XORing two strings is referred to as
the Hamming distance of the strings. A sequence of strings of equal length is a Gray code if
for every two successive strings, their Hamming distance is 1. Thus, 4" is a Gray code. Let

YV = (07, 0+, 09 0ak 1 17ak s Dk s+, 1, 195). (2.34)

Then v**1 is also a Gray code.
Let v denote v*. That is, y; = v/ for 0 < i < 2 — 1. Then for 1 < i < 2¢ — 1, we have

Y =7 ® (0°711 < ntz(3)). (2.35)
This implies that
v ®a=[y_,® 071 <ntz(i)] ®a
Vi1 ®a) & (071 < ntz(i)) @ a
Vi1 ®a) & (a® ")
= (V-1 ® a) @ a(ntz(i)).

Let n be a non-negative integer and b(n) the binary representation of n. Assume that |b(n)| <
{. Let

= (
= (

ppad, (n) = 0 1"™Mlp(n),
where ppad stands for “prefix padding”. Let X be a binary string. Let
len,(X) = ppad,(|X | mod 2°).
For example, let X be an 18-bit binary string. Then
len,(X) = ppad,(18 mod 2*) = ppad,(2) = 0010.

We extend the XOR operation on two binary strings of unequal length as follows: let X =
Ty Xy and Y = 4y, - - - y,, be two binary strings, where z; and y; are bits for1 <4 < m
and 1 < j < n.Let xk = min{m, n}. Define

XY=z 2,0y Y= @ Sy)(@, B 1) - (z,, DYy)-

For example,
1001 ¢ 010101 = 1001 @ 0101 = 1100.

2.6.2 OCB Encryption and Tag Generation

We now describe how OCB encrypts data and authenticates data. We assume that the block
size of the underlying encryption algorithm FE (e.g., AES) is ¢ = 128. Using an encryption
algorithm with a different block size follows the same procedure except that we need to modify
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f(a) and g(a) defined in Equalities 2.31 and 2.32. OCB produces a 7-bit tag for authentication,
where 7 < /.

Suppose that Alice wants to encrypt and authenticate a plaintext message M to be sent to
Bob. Alice first divides M into ¢-bit blocks as

M =M, || My |- || My,

where |[M,| = |M,y| =---=|M,,_{|=¢and 1 < |M, | <.

Let K denote the encryption key of F shared by Alice and Bob. Alice selects an ¢-bit initial
vector N, which is transmitted in plaintext to Bob.

Alice encrypts M and produces a tag T’ of M as follows:

L:EK(OZ)v

R=Ex(No®L),

Z,=7v®(L®R) fori=1,---,m,
C<=EK(M4€BZ4)€BZ4 fori=1,---,m—1,
X,, —len(M,,) ® f(L) ®

Y, = E(X,,),

C,=Y, &M,

T=p,(Ex(M,® - ®&M,,_,&C, 071 ay, &z)).

Alicesends N || C, || --- || C,, || T to Bob.

2.6.3 OCB Decryption and Tag Verification

On receiving N || C, || --- || C,,, || T from Alice, Bob does the following to obtain M and
verify the tag.

L:EK(0€)7
Z,=v (L ®R) fori=1,---,m,

M, = Dy (C,; EBZI)EBZ fore=1,---,m—1,
=len(C,,) ® g(L) ®

M, =Y &C,,
T/ = pT(EK(Ml & Mmfl D Cm0Z7lcm‘ D Ym))
If T'= T, then Bob accepts M, M, - - - M,,, and rejects it otherwise.
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2.7 Stream Ciphers

Block ciphers under the CFB or OFB modes can produce stream ciphers. However, they incur
extra computation overhead. In certain network applications, particularly in wireless network
applications where end devices are hand-held devices (e.g., simple cell phones), executing
full-strength block ciphers on these devices may be undesirable because these devices tend to
have limited computation capabilities and stringent power supplies. Thus, one would like to
use stream ciphers that require less computing power and consume less energy.

The first stream cipher was invented by Gilbert S. Vernam in 1917. We introduce in this
section the RC4 (pronounced “arc-four”) stream cipher. RC4 was designed by Ron Rivest in
1987 as a trade secret for RSA Security, which was made public in 1994. In particular, RC4
is a major component in the Wired Equivalent Privacy (WEP) protocol adopted in the IEEE
802.11b standard for providing Ethernet-like MAC-layer access for wireless LANs.

2.7.1 RC4 Stream Cipher

RC4 uses encryption keys of variable lengths of 81 bits, where [(1 < [ < 256) is an integer cho-
sen by the user. RC4 uses substitution and modular addition operations to generate a sequence
of 8-bit subkeys, and XORs the current plaintext character with a new subkey to generate a
cipher stream.

2.7.1.1 RC4 Subkey Generation

RC4 uses an array S[0, 255] of 256 bytes to generate subkeys. This array is used to form a
new permutation of 8-bit binary strings at each iteration. Let X be an encryption key, where
|K| =8l,1 <1< 256. Rewrite K as an array K0,/ — 1] of [ bytes. That is,

K = K[0]K[1]--- K[l - 1].

RC4 generates subkey streams as follows:

Key Scheduling Algorithm (KSA)

Initialization:
foreach7=0, ---, 255
set S[i] «— 1
Initial permutation:
setj <0
foreach:=0,1,---,255
set j «— (j + S[i]+K[i mod []) mod 256
swap S[i] with S[7]
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Subkey Generation Algorithm (SGA)

Initialization:
seti «— 0
setj <0
set u «— 0
Permutation and generation loop:
set u «— u+1
set i «— (2+1) mod 256
set j «— (j + S[i]) mod 256
swap S[i] with S[7]
set K, < S[(S[7] + S[j]) mod 256] (See Fig. 2.3)
repeat

RC4 Encryption and Decryption
Let M = M, M, - - - M,, be a plaintext string, where each )M, is an 8-bit binary string.

RC4 encryption: C; = M; © K;,i =1,
RC4 decryption: M, = C; & K, i

k.
k.

2,
1,2,

2.7.2 RC4 Security Weaknesses

KSA uses the secret encryption key to generate the initial permutation of S. SGA then gen-
erates subkey streams from the initial permutation, which no longer uses the encryption key
in any form. This means that knowing the initial permutation is equivalent to breaking RC4
encryption. Even if the initial permutation is only partially revealed, the attacker may still be
able to compute a few subkeys using SGA. Thus, KSA is the critical security point of RC4.

2.7.2.1 Weak Keys

Selecting a suitable encryption key to produce a secure initial permutation is difficult. Fluhrer,
Mantin, and Shamir showed in 2001 that a large number of 8[-bit binary strings are weak

0 1  SH]+S[jjmod256 i J 254 255

.

mod 256

Figure 2.3 RC4 subkey generation after KSA is performed and the values of ¢ and j are set
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encryption keys in the sense that a small part of the string could determine a large number of
bits in the initial permutation and help reveal the secret encryption key.

In particular, let S be the initial permutation. Let b be a positive integer and 7 an index.
Denote by I, (.S) the number of indexes such that S[i] = ¢ mod b. The initial permutation S
is said to be almost b-conserving if I;(S) > N — 1. Let K be an RC4 encryption key. If for
any index ¢, we have K[i mod [] = (1 —¢) mod b, K[0] = 1, and the most significant bit of
K][1] is 1, then K is referred to as a special b-exact key.

Let K be an 8I-bit special b-exact key, where b = 29 for some g with 1 < ¢ < 8. It can be
shown that if [ is divisible by b, then with a probability of at least 2/5, the initial permuta-
tion S produced by KSA(K) is almost b-conserving. It can be shown that if keys are almost
b-conserving, then there is a strong probabilistic correlation between certain bits of the secret
key and certain bits of the subkey stream. Detailed analysis of this result is rather involved,
which is omitted in this book. On the basis of this correlation, the attacker may be able to
deduce the WEP key. We refer this attack to as the Fluhrer—-Mantin—Shamir FMS attack.

In practice, an encryption key in network protocols using RC4 is often a concatenation of
a long-term secret part and a short-term public part. The public component would reveal part
of the initial permutation, and the public component may be reused. The reader is referred
to Chapter 6 for detailed discussions of security weaknesses in RC4 applications in wireless
communications.

2.7.2.2 Attacks from Reusing Subkey Streams

RC4 also requires that the subkey stream be used only once. Otherwise, it is vulnerable to a
known-plaintext attack and a related-plaintext attack. The known-plaintext attack will reveal
the subkey stream used to encrypt the plaintext (see Section 2.1.2).

The related-plaintext attack is intended to obtain the content of two plaintext messages by
XORing the corresponding encrypted strings. In particular, Let M, and M, be two plaintext
messages of the same length, where

My = myymyy - myy,

My = mgymyy -+ =My,

and each m; ; is a binary bit. Suppose that they are encrypted by RC4 using the same encryption
key K. That is, first apply RC4 on K to generate a subkey stream k, ko, - - -, k,,, then encrypt
M; and M, to obtain Cy = ¢;1¢yy - - ¢y, and Cy = ¢y Cog + + * €y, Where ¢;; = m;; © k. Sup-
pose that the attacker intercepts C'; and C),, which allows him to obtain

Clj @C2j = (mlj @kj) ©® (mz] @Ifj) = mlj @m2j7 j = 1,2,"' ,n.

Thus, the attacker obtains the exclusive-OR value of two unknown plaintext strings. From this,
he may be able to deduce the original plaintext strings. For example, the attacker may use a
statistical analysis to find common words and phrases in certain type of documents. He then
performs exclusive-OR on each pair of the words and phrases to produce a list of binary strings
that are the exclusive-OR values of two plaintext strings. This list will help deduce, on a given
binary string, two plaintext strings whose exclusive-OR value is the same as the string.
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2.8 Key Generations

Secret keys are critical components of encryption algorithms. The best way to generate secret
keys is to generate them randomly. There are a number of methods to randomly generate
encryption keys. For example, one may move the mouse at will on the screen and record
its track as a binary sequence. This method may produce truly random binary strings. How-
ever, this method needs to interact with users, which is not practical for network applications.
The best alternative is to generate pseudorandom strings using deterministic algorithms. Such
algorithms are called pseudorandom number generators (PRNG). We introduce two PRNG
algorithms in this section.

2.8.1 ANSI X9.17 PRNG

‘We note that a ciphertext block of an encryption algorithm by itself is a pseudorandom binary
string. It can therefore be used as an encryption key. Using an encryption algorithm as a PRNG
requires an initial key K. For example, we may choose a 128-bit binary string K as an encryp-
tion key of AES-128 under OFB mode, and then use V{V - - - V/; as an 128-bit secret key of
AES-128, where V/ is an 8-bit binary string determined by the following recurrence relations:

U, =E(V,_y), (V, is a fixed initial vector)

Vi =ps(U;)
Vi=s,5(Vi)V/
i=1,2,---,16.

The X9.17 PRNG standard was published in 1985 by the American National Standard Insti-
tute (ANSI) for financial institution key management (wholesale). It was reaffirmed in 1991
and updated in 1995. X9.17 PRNG is based on DES. In particular, it uses 3DES/2 with two ini-
tial keys K; and K, and an initial vector Vj,. X9.17 also uses two special 64-bit binary strings
T, and V, to generate a 64-bit pseudorandom string R, at each round of computation, where
T, represents the current date and time, updated before each round, and V, called a seed, is
determined by the following recurrence relations:

R, = EDE g, r,(V; ® EDE i 1, (T})),

Vign = EDE g 1, (R; © EDE ¢, i, (T})),
i=0,1,---

2.8.2 BBS Pseudorandom Bit Generator

BBS is a pseudorandom bit generator devised by Lenore Blum, Manuel Blum (1995 Turing
Award winner), and Michael Shub in 1986. It generates a pseudorandom bit in each round of
computation. In particular, let p and ¢ be two large prime numbers that satisfy

p mod4 =¢ mod4 = 3.

That is, the remainders of dividing p by 4 and dividing ¢ by 4 are both equal to 3. We discuss
how to find large prime numbers in Section 3.2.5. Let n = p X ¢ and let s be a positive number
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such that s and p are relatively prime and s and q are relatively prime. That is, ged(s,p) =1
and ged(s,q) = 1, where ged(x,y) denotes the largest common factor of = and y. Without
loss of generality, assume that z > y > 0. Then ged(x,y) can be calculated efficiently using
the following recurrence relation, also known as Euclid’s algorithm:

ged(y,x mody), ify >0,
ged(z,y) = { ( ) .
z, if y=0.
It can be shown that Euclid’s algorithm only incurs O(log vy) recursive calls. It follows from
Euclid’s algorithm that there are integers a and b such that ged(z,y) = ax + by.
BBS generates pseudorandom bit as follows:

x, = s> mod n,
— 52 d

x; =x;_; modn,

b; = x; mod 2,

i=1,2,---

For example, let p = 383 and ¢ = 503. It is straightforward to verify that p = ¢ = 3( mod 4).
Let s = 101355. Using Euclid’s algorithm it is easy to show that ged(s,p) = ged(s,q) = 1.
The first 128 binary bits b;, by, - - - , b5 generated by BBS, for example, may then be used as
an AES-128 encryption key.

The difficulty of predicting the (k4 1)th BBS bit b, ; from the & previous BBS bits
by, --,b, depends on the difficulty of the integer factorization problem, also known as
integer factorization. Integer factorization asks, for a given positive nonprime number 7, all
prime factors of n. This is a computationally intensive problem. The best known algorithm
for integer factorization has a time complexity in the order of

e {/In n(In In n)? )

It can be shown that, if integer factorization cannot be solved in polynomial time, then a BBS
pseudorandom bit cannot be distinguished from a true random bit in polynomial time. This
means that any algorithm that can compute, with a probability greater than 1/2, the (k + 1)th
BBS bit b, from the k previous bits b, - - -, b, its time complexity must be greater than any
polynomial of the size of n, where the size of n is |n| = [logyn].

It is a common belief that integer factorization does not have polynomial-time algorithms
under conventional computing devices. However, using an unconventional computation model,
integer factorization can be solved efficiently. In 1994, Peter Shor, an American computer
scientist, showed that integer factorization can indeed be solved in polynomial time using a
theoretical model of quantum computers.

2.9 Closing Remarks

The study of encryption algorithms is an active research and development area. Any encryption
algorithm, if it is commonly used to encrypt data or is made to be an encryption standard by
reputable organizations, will attract attention. Despite intensive studies, however, there have
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been no known encryptions algorithms that have been proven secure using mathematical meth-
ods. Therefore, people would consider an encryption algorithm secure (i.e., secure for the time
being) if it resists all possible attacks one can think of under the current technology. Thus, DES
and 2DES are considered insecure, while 3DES/2 and AES are considered secure. In impor-
tant applications, we should only use encryption algorithms that have been studied extensively
and in which no serious security flaws have been found.

In addition to encryption algorithms and key generation algorithms, how to manage encryp-
tion keys in local systems and how to distribute them over networks is another critical issue.
We discuss this issue in the following chapter.

2.10 Exercises

2.10.1 Discussions

2.1.

2.2

2.3.
24.
2.5.

2.6.

What are the basic structures and techniques to encrypt data?

Can you generalize the 64-bit block size and 56-bit key DES to DES+ with 128-bit
block size and 128-bit key? How about with 196-bit and 252-bit keys?

Why do you think AES is a better encryption algorithm?
What is the best way to apply encryption algorithms to encrypt data?
What is the best way to generate secret keys?

How do you think secret keys are distributed between communication parties?

2.10.2 Homework

2.1.

Programming assignments in this book are assumed to be carried out in the C lan-
guage. You may also use C++- or Java, as long as you will do so consistently through-
out the book.

A ciphertext message generated by a simple letter permutation maintains the letter
frequencies of the plaintext message. To flatten frequencies in the ciphertext mes-
sage, we may use a generalized XOR encryption. For simplicity, we assume that any
plaintext message is a sequence of capital English letters. Firstly, we map all 26 cap-
ital letters to integers from O to 25, and we use [ to denote this mapping. That is,
I(A)=0,I(B)=1,---,I(Z) = 25. Let X and Y be two English letters. Let

X+Y =T"([I(X)+I(Y)] mod 26),
where 17! is the inverse function of I, namely, I-*(0) = A,I"'(1) =B, -,
I7Y(25)=Z.Let X = X;---X,,and Y =Y, - - Y,, be two strings of equal length
over the English alphabet. Let

X+Y=X,+Y) (X, +Y),).
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2.2.

2.3.

24.

2.5.

*2.6.

Let K be an arbitrary letter string of length £. We use K as the encryption key. Note
that K may contain the same letter multiple times. Let M be a plaintext message.
Divide M into blocks M,, M,, - - - M,, where the length of each block M, (i < k) is
{. Let the length of M, be m. Let K, denote the first m letters in K.

Define an encryption algorithm E as follows: Ey- (M) = C,C, - - - C},, where C; =
K+M;,i=1,---k—=1,and C}, = K, + M,.
(a) Describe the decryption algorithm D.
(b) Let K =BLACKHAT. Encrypt the following passage:

Methods of making messages unintelligible to adversaries have been
necessary. Substitution is the simplest method that replaces a char-
acter in the plaintext with a fixed different character in the ciphertext.
This method preserves the letter frequency in the plaintext, and so
one can search for the plaintext from a given ciphertext by comparing
the frequency of each letter against the known common frequency in
the underlying language.

(c) Write a program to implement £ and D.

Let
1101001110101100001011000111

1P, (K) =
key( ) 0110101010100111100010011101,

Compute the DES subkey K.

Draw a block diagram of the DES encryption algorithm and a block diagram of the
DES decryption algorithm.

Let M and K each be 64-bit binary strings, representing a plaintext message WHITE -
HAT and an encryption key BLACKHAT.

Each letter in the plaintext message is encoded using an 8-bit ASCII code by adding
a leading O to its 7-bit ASCII code. For example, the 7-bit ASCII code of letter W is
1010111 (see Appendix A), and its 8-bit ASCII code is 01010111.

Each letter in the encryption key is encoded using its 7-bit ASCII code, with an
additional parity bit added at the end such that the total number of 1’s (including the
parity bit) is an even number. For example, the 7-bit ASCII code of letter B is 1000010
(see Appendix A), and so B is encoded by 10000100.

Carry out the first round of DES encryption. What is L; R;?

Write a program to implement the DES subkey generation algorithm, where the input
of the program is an 8-bit string of English letters, while the output is a sequence of
48-bit subkeys.

Write a program encrypt.c and a program decrypt . c to implement, respec-
tively, DES encryption and decryption. The program encrypt . c takes an English
plaintext file, encoded in ASCII, as an input file and an eight-letter string as an encryp-
tion key. It encrypts the plaintext file and writes the ciphertext in a binary file as output.
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2.7,

2.8.

*2.9.

2.10.

2.11.

2.12.

2.13.

The program decrypt . c takes a binary file as input and decrypts the ciphertext file
using the same encryption key and writes the plaintext in ASCII file as output.

This exercise involves two users. To do this exercise, you must first complete
Exercise 2.6. User A first selects two DES encryption keys K ; and K ,. User
A then selects two 64-bit plaintext blocks M, ;, where j = 1,2, computes C ; =
By, ,(Eg, (M, ;)), and sends (M, ;,Cy ;) by email to user B. Likewise, user B
also selects two DES encryption keys K, ; and K, ,, selects two 64-bit plaintext
blocks M, ;, where j =1,2, computes C,; = Ey, (Eg, (M,;)), and sends
(M, ;,C, ;) to user A by email.

From each of the keys K, ;, user A selects 10 arbitrary bits and replaces the remain-
ing bits each with a question mark. User A sends the two modified strings to user B.
Likewise, user B does the same thing on keys K, ; and sends the corresponding mod-
ified strings to user A. User A carries out the meet-in-the-middle attack on 2DES to
user B’s secret key and vice versa. Do they have the same success rate?

We have shown that meet-in-the-middle attack is substantially more effective than
a brute-force attack. Generalizing this idea, devise a meet-in-the-middle attack on
3DES/2. Is it effective?

Let E be the encryption algorithm defined in Exercise 2.1. Show that for any encryp-
tion keys K and K, there is always an encryption key K5 such that for any plaintext
message M, we have

EKZ(EKI (M)) = EKg(M)'

Note that /{; and K, may have different lengths.

Show that 3DES/3 (see Formula 2.10) can be used to decrypt ciphertext message
produced by DES.

Point out unsymmetrical places between AES encryption and AES decryption.

Let K = 1234567890abcdef1234567890abcdef be an AES-128 encryption key,
represented in hexadecimal. Calculate round key K, = W[4, 7].

Show that generating AES-128 round keys is equivalent to the following pseudo code.

KeyExpansion (byte K[16], word W[44]) {
inti;
word temp;
for (i=0; i< 4; i ++)
Wi] = K[4%i,4%i+3];
for (i =4;i<44; i++) {
temp = W[i-1];
if (i mod 4 ==0)
temp = SubWord(RotWord(temp)) & Rcon[i/4];
Wil = Wi-4] & temp;
}
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2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

2.21.

2.22.

*2.23.

Here functions SubWord, RotWord, and Rcon are defined as follows. Let W =
w, wywsw, be a word, where each w; is a byte. Then
SubWord(W) = S(w,)S(wy)S(ws)S(w,),
RotWord(W) = wywqw,w;.
Rcon[;] is a round constant, which is a word defined by (RC[j], 0, 0, 0), with

Ry~ (2O RCI 1) i1,
= o1, ifj=1.

Verify the following elements in matrix mic(A) (see Equality 2.16): a, , = 4d, a5 =
of,af, ; = d5.

Let (ag 9, a1 9,99, a3) = (8€,4d,a1,bc) be the first row in the state matrix A, com-
pute the first column in matrix mic ' (A); that is, compute (afj o, af o, af o, a3 o).

Let w, and w, be two 8-bit binary strings. Let A and B be two 4 x 4 byte matrices, that
is, each element in the matrix is an 8-bit binary string. Prove the following equalities:
() M(w; @ wy) = M(w;) D M(w,).

(b) mic (A ® B) = mic ' (A) ® mic '(B).

Let K =a0alb2b3c4c5d6d7 e8e9fafb0c0d 1e 1fbe an AES-128 encryption
key, represented in hexadecimal. Execute the first round of AES-128 on the plaintext
block 011223 34 4556 67 78 89 9a ab bc cd de ef f0. What is the state matrix A,
after the first round?

Let A be a state matrix. Show that shr~! and sub~' commute, that is,
shr~(sub™'(C,)) = sub™ (shr(C,)).
Let p(x) be a polynomial of degree n in GF'(2"™). Show that
2" mod p(x) = p(z) — z".
Complete the verification of Equality 2.28.
Prove Equalities 2.29 and 2.30.

Following the construction algorithm of the AES S-Box, find the fourth element in
the first row, that is, S0,35 in the S-Box S and the fourth element in the first row, that
is, 5 3, in the inverse S-Box s

Write a client-server program using socket API to implement AES-128 using an
encryption key known to both sides, which is stored in a file. The client program takes
a plaintext file and the encryption key file as input, encrypts the plaintext file using
AES-128, and sends ciphertext blocks to the server program one block at a time. The
server program uses the same encryption key from the encryption key file to decrypt
the blocks it receives, one block at a time, and writes the plaintext blocks to a file.
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2.24.

2.25.

RCS5 is a block cipher with a Feistel structure. Its block size, the number of rounds,
and key length may vary. In particular, RCS5 takes 2w-bit block as input, where w €
{16, 32,64}; runs for r rounds, where r € {0,1,---,255}; and uses b-byte keys,
where b € {0, 1, --,255}. It is customary to denote RC5-w/r /b an RC5 encryption
algorithm with parameters w, r, and b. For example, RC5-32/12/16 takes a 64-bit
block as input, runs for 12 rounds, and uses a 128-bit encryption key.

RCS5 uses t = 2r + 1 subkeys of length w : S, S, - - -, S,_;, generated by the fol-
lowing algorithm. Let K be a b-byte encryption key: K, - - -, K;,_;, where K; is the
ith byte in K. Let ¢ be the smallest integer that is greater than or equal to 8b/32. Let
LoL,---L,_, bea32c-bit binary string, where each L, is a 32-bit binary string. Copy
K to L from left to right. Pad the unoccupied locations in L (if any) with 0. Let

S, — P,
Fori=1tot — 1, let
S, (S, — 1+ Q,,) mod 2%
Leti«—j— A— B0
Execute the following statements for 3 x max {#,c} times:
A— S, —(S;+ A+ B) «<<3
B« L; « (L;+ A+ B) <<<(A+ B)
i+ (i+ 1) mod ¢
j+— (G +1)modec

where P, = Odd[(e — 2)2%], Q,, = Odd[(? — 1)2%], Odd(z) denotes the odd

number that is closest to x, @ is the golden ratio 1*—2\/5 and r <<< y denotes the

left-circular-shift operation on x for y bits. In particular, P, and (), are given as
follows (in hexadecimal):

w 16 32 64

P, b7e1 b7e15163 b7e151628aed2a6b
Q. 9e37 9e3779b9 9e3779b97f4a7c15

Write a program to generate RC5 keys.

RCS5 encryption and decryption are given as follows. Let M = LR, where L and R
are, respectively, w-bit binary strings.
RCS5 encryption:

L« (L+ S,) mod 2%

R« (R+ S,) mod 2%

Fori=1tor,let
L — (LD R) <<< R)+ 52i) mod 22
R« ((L® R) <<< L)+ S,i + 1) mod 2%
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2.26.

2.27.

RCS5 decryption:

For i =r down to 1, let
R~ ((R— Syi+ 1) mod 2**) >>> L)& L
L — ((L— S,i) mod 2°%) >>> R)® R
R« (R—S,) mod 2%
L « (L— S,) mod 2%

where z >>> y denotes the circular-right-shift operation on x for y bits.

(a) Prove the correctness of RCS decryption.

(b) Write a program to implement RC5 encryption and decryption, using Exercise
2.24 to generate encryption keys. Here the plain text is an ASCII file, while the
encryption keys and cipher text are stored in binary files. Note that RC5 follows
the little-endian format to store binary strings (see Exercise 2.26).

Current computer architecture is based on 32-bit or 64-bit CPU. These computers
store information by words and address memory locations by bytes. Thus, one word
has four addressable units, whose relative addresses are 0, 1, 2, 3. Let w = wywyw,w,
be a 4-byte binary string. We have two choices to store w in a word: store w; at relative
address ¢, or store it at relative address 3 — ¢, where 0 < ¢ < 3. The first choice is
referred to as little-endian storage, and the latter big-endian storage. In other words,
if bytes in a 4-byte string are read from left to right, then in the little-endian storage,
the first byte is stored in the location with the largest relative address in a word, the
second byte is stored in the location with the second largest relative address, and so
on; in the big-endian storage, the first byte is stored in the location with the smallest
relative address in a word, the second byte is stored in the location with the second
smallest relative address, and so on. Let w = 08040201 (hexadecimal), the following
shows how w is stored in the little-endian storage and in the big-endian storage:

For another example, on a 16-bit computer, the basic storage unit is a 2-byte mem-
ory unit, where each byte is addressable. Thus, to store UNIX, we get UNIX in the
big-endian storage, and we get NUXT in the little-endian storage.

Write a program that can exchange between the little-endian storage and the
big-endian storage.

Show that in the CBC mode, any error occurred in one cipher block during transmis-
sion will affect the correctness of two plaintext blocks at the receiving side.

Table 2.10 Little-endian storage and big-endian storage of

08040201

Relative address Little-endian Big-endian
0 01 08

1 02 04

2 04 02

3 08 01
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2.28.

2.29.

2.30.

2.31.
2.32.

*2.33.

*2.34.

*2.35.

2.36.

Suppose that we are using AES under the CFB mode with s = 8. If a transmission
error occurs in one cipher block, how many plaintext blocks will be affected at the
receiving side?

For each of the following cipher-block modes, draw a block diagram for encryption
and a block diagram for decryption.

(a) Electronic codebook mode (ECB).
(b) Cipher block chaining mode (CBC).
(c) Cipher feedback mode (CFB).

(d) Output feedback mode (OFB).

(e) Counter mode (CTR).

Show that the OCB decryption and tag verification described in Section 2.6.3 is
correct.

Draw a block diagram to describe OCB encryption and tag generation.
Draw a block diagram to describe OCB decryption and tag verification.

Give two examples to show that OCB has stronger security properties than standard
block cipher modes of operations introduced in Section 2.5.

In Exercise 2.23, you have written a client-server program to encrypt and decrypt data
using AES-128 under ECB. Rewrite this program using CBC, where the initial vector
is a pseudorandom binary string generated by BBS.

Let M, ---, M, be a sequence of plaintext blocks, where each M; is ¢-bit long for
1 <4 < k, £ is the input size of the underlying encryption algorithm F, and M, is
g-bit long for ¢ < £. Define a ciphertext stealing mode (CTS) as follows, where C; is
an /-bit initial vector and K an encryption key:

Ci:EK(Mi)EBOi—la i=1 k-2,
Co=Pg(Zi1): Zpoy=Ex(Yyy), Y =M &Cy,
Cro1 = Ex(Yy), Vi =21 @ MO0 .

(a) Describe how to decrypt C),_;, and C}, and prove the correctness of your
decryption.

(b) Draw a block diagram for encryption and a block diagram for decryption
under CTS.

Alice proposes the following method to verify that she and Bob share the same
AES-128 key. Alice generates a 128-bit binary string r using BBS, encrypts r,
and sends the ciphertext block 7,4 = Ej, (r) to Bob, where E is the AES-128
encryption algorithm and K 4 is Alice’s AES-128 encryption key. Bob decrypts 74
to get v’ = Dy (r4) and sends 7’ to Alice, where D is the AES-128 decryption
algorithm and K 5 is Bob’s AES-128 encryption key. Alice checks whether 7/ = r.
If so, then K , = K. Is this protocol secure? Justify your answer.
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2.37.

*2.38.

2.39.

2.40.

Modify RC4 as follows: shorten the array S from 256 cells in RC4 to eight cells
and replace each occurrence of 255 in RC4 with 7. This gives a simplified version of
RC4. Let K = 0110010110000011 be an encryption key. Use this simplified RC4 to
encrypt plaintext WHITEHAT.

Let M, = myymyy - - - my,, and My = miy;my, - - - My, be two binary strings that are
unknown to you, where each m,; is a binary bit. However, you know

M, & My = (myy @ myy)(Myy & Myy) - -+ (My,, B Myy,).
Describe how you may be able to deduce M, and M,.

Let p = 383 and ¢ = 503. Show that p = ¢ = 3 (mod 4). Then let s = 101355.
Write a program to implement BBS and produce the first 128 pseudorandom bits
b17 627 e ab128'

The following result can be used to check whether a PRNG is sufficiently random:
for any two positive integers « and y, if they are selected uniformly at random, then
the probability that ged(z,y) = 1 is equal to 6/72. Write a program to verify the
randomness of the PRNG supported by the operating system of your machine.
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Public-Key Cryptography and Key
Management

To use data encryption algorithms and key generation algorithms in network communications,
users involved in a communication must first agree on using the same secret keys. Before
public-key cryptography was invented, delivering secret keys from one user to another relied
on couriers. For example, one user would generate a secret key and then use a trusted courier
to deliver the key to the other users. Or the users would set up a meeting to determine a secret
key with all users present. Secret keys may also be delivered using a variety of communication
systems, including postal service, email service, and phone service. These methods, however,
are insecure and inflexible for network communication applications.

Invented in the 1970s, public-key cryptography (PKC) was a major breakthrough in cryp-
tography. It makes it possible, without sharing prior secrets, to distribute secret keys securely
and to authenticate data. The study of PKC also provides new applications to the seemingly
unrelated area of number theory. In this chapter, we first introduce the basic concepts of PKC.
We then describe several concrete public-key cryptosystems, including Diffie-Hellman key
exchange, Elgamal public-key cryptosystem, RSA public-key cryptosystem, and elliptic-curve
PKC. These methods use several results in number theory. For convenience, we include a
section reviewing these number theoretic results. Finally, we discuss how to transmit secret
keys using PKC without sharing prior secrets and how to manage keys. Data authentication
methods will be introduced in Chapter 4.

3.1 Concepts of Public-Key Cryptography

In the following sections, we refer to user A as Alice, user B as Bob, user C as Charlie, and
the attacker as Malice.

PKC is a new concept. It allows Alice and Bob to exchange secret keys securely and effi-
ciently over public networks without sharing prior secrets. Let us first look at an example.
Suppose that Alice wants to send a message M (e.g., M could be an AES-128 encryption key)

Introduction to Network Security: Theory and Practice, Second Edition. Jie Wang and Zachary A. Kissel.
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confidentially to Bob using the standard postal service. However, Alice and Bob do not share
prior secrets, and so if Alice uses a conventional encryption algorithm to encrypt M and sends
to Bob the encrypted M, Bob will have no way to decrypt it.

To overcome this obstacle, Bob comes up with the following scheme: Bob first sends an
empty box with a lock hasp and an open padlock to Alice. Bob keeps the key in a secure place.
After receiving the empty box and the open padlock from Bob, Alice places M in the box,
locks it with Bob’s padlock, and sends the locked box back to Bob. Bob uses his key to open
the lock and reads M. This is a basic idea of PKC. In this example, the open lock serves as the
public key used for encryption, which is open to the public. The key Bob keeps is the private
key used for decryption, which is to be kept private.

PKC transforms this idea to a mathematical form suitable for network communications.

Let us consider another example. Assume that Alice has defined two functions f, and f;
such that the following equality holds:

fl(f[)(a,y)vx):fl(f(](avx)ay)a 3.1

and that it is difficult to derive  from f;(a,«) and a. On the basis of these two functions,
Alice devises a public-key cryptosystem. The purpose of this system is for Alice and Bob to
calculate the same encryption key. In particular, let a be a public key known to Alice and Bob.
Alice randomly selects a positive number z, as her private key, calculates y;, = f;,(a,x,), and
sends y; to Bob. Meanwhile, Bob randomly selects a positive number x, as his private key,
calculates y, = f;(a,x,), and sends y, to Alice. Alice calculates K, = f;(y,, ;) and uses
K as her secret key for a conventional encryption algorithm. Bob calculates K, = f;(y;, x5)
and uses K, as his secret key for a conventional encryption algorithm. It follows from

J1(yg,7y) = f1(f0(07172)»171) = fl(fO(avxl)va) = f1(y1,3)

that K; = K,. Thus, Alice and Bob now share the same secret key K, although Alice does
not know z, and Bob does not know z,. Although Malice may eavesdrop ¥, and y,, she cannot
obtain x; or x,. Thus, it is difficult for Malice to calculate K| or K.

PKC provides mathematical constructions of functions f, and f,.

In 1976, two American mathematicians Whitfield Diffie and Martin Hellman published a
number-theoretic construction of functions f, and f;. About the same time, a British math-
ematician Malcolm J. Williamson, then employed by British Government Communications
Headquarters (GCHQ), also devised a similar key exchange scheme. However, Williamson’s
result was not published because of GCHQ regulations.

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman published a number-theoretic-
based public-key cryptosystem, which is referred to as the RSA public-key cryptosystem. RSA
can be used to encrypt and authenticate data. Rivest, Shamir, and Adleman were awarded
the 2002 Turing Award for this work. About the same time, a British mathematician Clifford
Cocks, then employed by GCHQ, also devised a similar public-key cryptosystem. However,
Cocks’s result was not published until 1997 because of GCHQ regulations.

In 1985, Neal Koblitz and Victor Miller proposed, independently, elliptic-curve cryptogra-
phy (ECC). Its functionalities are similar to those of RSA’s.

RSA and ECC both have an encryption algorithm and a decryption algorithm. In PKC we
still use E to denote an encryption algorithm and D a decryption algorithm. We use K* and
K" to denote, respectively, a public key and a private key. We often want a PKC to satisfy the
following three criteria:
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Forward Efficiency

Encryption C' = E. (M) and decryption M = D (C') must be easy to compute. Moreover,
it must be easy to generate a new key pair (K, K) so that key pairs may be changed from
time to time.

Backward Intractability

It must be computationally intractable to compute M from ciphertext C' and public key K.
In other words, the public key K™ must not leak out any useful information about the corre-
sponding private key K.

Commutability
The public key K™ and the private key K" must satisfy the following equalities:

M = Dy (Egu (M))
— Dy (Eer (M)
= Eru(Dger (M)
= Eyr (Dgu(M)).

The commutability requirement is needed for data authentications and digital signatures. It is
not necessary for key exchange.

Public-key cryptosystems often deal with positive integers, instead of arbitrary binary
strings as in conventional encryption algorithms. For any given binary string z, we can
always insert a digit 1 in the leftmost position to obtain a positive integer 1x. Let n be a
positive integer. We can divide M into a sequence of blocks such that the length of each
block is less than log,n — 1. Inserting a digit 1 in the leftmost position of each block yields a
positive integer less than n. Without loss of generality, we assume that each plaintext block is
a positive integer less than a certain value.

Number theory plays a major role in constructing PKCs. We introduce in the following
section some of the fundamental concepts and results in number theory.

3.2 Elementary Concepts and Theorems in Number Theory

Number theory is a mathematical branch devoted to studying properties of integers. Integers
are formed from prime numbers, and there are infinitely many prime numbers.
Let f(n) and g(n) be functions from positive integers to positive integers. We write f(n) ~
g(n)if
lim M =1.
n—o g(n)
The followings two results are fundamental theorems of integers:

The fundamental theorem of arithmetic. Any integer that is greater than 1 is a product of
prime numbers. Moreover, this product has a unique representation if prime numbers are listed
in nondecreasing order.

Prime number theorem. Let n be an integer greater than 1 and 7w(n) be the number of prime
numbers that are less than n. Then w(n) ~ n/In n.
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Let n be an integer greater than 1. According to the fundamental theorem of arithmetic, the
integer n can be uniquely represented by

n=p{ps? ... pt, 3.2)
where p; < p, < --- < p, are prime numbers, and each «;(i = 1,-- -, t) is a positive integer.
For example,

85 =517,
1200 = 2* - 3 5%,

11011 =7-11%-13.

3.2.1 Modular Arithmetic and Congruence Relations

Throughout this subsection, let a and b be integers and m a positive integer. Recall that @ mod
m represents the remainder of dividing a by m. Let || denote the largest integer that is less
than or equal to z. Then

a=|a/m|-m+ (amodm). (3.3)
Modular arithmetic has the following properties:

(a + b) mod m = (amod m + bmod m) mod m,
(a —b) mod m = (amod m — bmod m) mod m,

(a x b)mod m = (amod m x bmod m) mod m.

Let b be a given positive integer. Let ¢ and d be two positive integers with ¢ < d. Suppose
that we want to find an integer a € [c, d] such that a and b are relatively prime. This can be done
efficiently as follows: if b is an even number, then choose at random an odd number a € [c, d]
(likewise, if b is an odd number, then choose at random a number @ € [¢, d]) and check, using
Euclid’s algorithm, whether gcd(a, b) = 1. If not, repeat this procedure by selecting a that is
not previously chosen until ged(a,b) = 1.

Congruence is a basic relation between integers. In particular, a is said to be congruent
to b modulo m, denoted by a = b (mod m), if a — b is divisible by m. In other words,
a =b(modm) if and only if there is an integer k (positive or negative) such that
a=b+m-k.

For example, 29 = 4 (mod 5); —11 = —4 (mod 7); —4 = 3 (mod 7).

3.2.2 Modular Inverse

Let a and n be positive integers with a < n. If there is a positive integer b < n such that
a-b=1(mod n), then we say that b is a’s inverse modulo n, denoted by "' mod n. When
there is no confusion about the modulo 7, we use ¢! to denote a’s inverse.

Finding a modular inverse is the basic operation in RSA public-key cryptosystem. However,
modular inverse does not always exist. For example, let a = 2, n = 4, then a does not have a
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modular inverse modulo n. This is because for any integer b with 1 < b < 4, we have 2 - b #1
(mod 4).

Euler’s theorem states that if gcd(a,n) = 1, then a’s inverse modulo 7 is guaranteed to
exist. Moreover, it has a simpler form using Euler’s totient function ¢.

Let n be a positive integer. Euler’s totient function ¢(n) is defined to be the number of
positive integers that are less than or equal to n and relatively prime to n. For example,
®(9) = 6, because each of 1,2,4,5,7, 8 is relatively prime to 9, while 3 and 6 are not.

Write n in the form of Expression 3.2, then

¢(n) = [P (pr = DIP* (2 = D]+ [ (0 = D). (3.4)

For instance, ¢(72) = ¢(23-32) = 2512 - 1) .32 1(3—1) =4 .6 = 24.

Euler’s theorem. Let a be a positive integer and n an integer greater than 1 that is relatively
prime to a. Then a®™ = 1 (mod n).
It follows from Euler’s theorem that ! = a®™~' mod n if gcd(a,n) = 1 and n > 1.

Proof of Euler’s theorem. Note thatn > 1. Letxy, z,, - - -, Z4(,,) be an enumeration of all pos-
itive integers less than n that are relatively prime to n. As ged(a,n) = 1 and ged(z;,n) = 1,
we have ged(az;,n) = 1. Thus, ged(ax; mod n,n) = 1. In other words, ax, mod n is equal
to z; for some j. Note that z; # z; if and only if ax; mod n # ax; mod n. We have

{azymod n, azymod n, - -+, axy,y mod n} = {zy, Ty, +, Ty }-

Thus,
¢(n) é(n)
H x; = H az,; (mod n),
i=1 i=1

#(n) #(n)
H z; = a®™ H x; (mod n).
i=1 i=1

This implies that a®™ = 1 (mod n). This completes the proof.
When 7 is a prime number, Euler’s theorem is often referred to as Fermat’s little theorem.

Fermat’s little theorem. Let p be a prime number and a a positive number not divisible by p.
Then a?~! = 1(mod p).

If follows from Fermat’s little theorem that a~! = a?~? mod p, if ged(a,p) = 1 and pis a
prime number.

In addition to Euler’s theorem and Fermat’s little theorem, we can also calculate modular
inverse using the following two methods:

1. Let ¢ and u be positive integers withn > 1. Write a - u = n + 1, thena - u = 1 (mod n).
Thus, ¢! = umod n.
For instance, because 4 - 6 = 24 = 23 + 1, we know that 4~ mod 23 = 6.
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10 a

2. Let a and n be positive integers with n > 1. Let A = {0 1n

] . If A can be transformed

u v 1 . . .
to [w . y} using elementary matrix transformations, then we have au + nv = 1. Thus,

a-u=1(modn). Thatis, a !

= umod n.
103

For instance, leta = 3and n = 5. LetA = [0 15

} . Multiplying the first row by 2 and

then subtracting the second row, we get {(2) _11 é} . Thus, 3 'mod 5 = 2.

3.2.3 Primitive Roots

Let a and n be positive integers that are relatively prime, where n > 1. It follows from Euler’s
theorem that ®(™) = 1 (mod n). If a™ #1 (mod n) for any positive integer m < ¢(n), then
a is a primitive root modulo n. We also say that n has a primitive root a.

For instance, let n = 2 - 5 = 10. We have ¢(10) = 4 and 9* = 1 (mod 10). But 9 is not a
primitive root modulo 10, for 92 = 1 (mod 10). We can show that 10 has primitive roots 3
and 7.

It is straightforward to verify that if n has a primitive root a, then the following ¢(n) modular
exponentiations are different pairwise:

amod n, a>modn,---,a®™ mod n.

This is the longest cycle of exponentiations modulo n without repetition and forms a multi-
plicative group modulo n, denoted by Z). A primitive root a modulo 7 is also referred to as a
generator of the group Z'.

In particular, if n is prime, denoted by p, and p has a primitive root a, then the following
p — 1 modular exponentiations modulo p

amod p,a’mod p,---,a’ ' mod p

are different pairwise.

Not every integer n has a primitive root. For instance, 12 does not have a primitive root. It
can be shown that only the numbers of the following forms have primitive roots: 2,4, p®, and
2p®, where p is an odd prime number and « is a positive integer.

3.2.4  Fast Modular Exponentiation

Let a, x, n be positive integers with a < n. Calculating modular exponentiation a” mod n is
a common operation in PKC. If we compute y = a” first and then compute y mod n, then the
time complexity of this computation would be too high, for the value of y may be large. This
computation is unnecessary because a* mod n < n. Indeed, we can compute a” mod n much
more efficiently. To see how this can be done, we first assume that x is a power of 2; namely,
x = 2™ for some non-negative integer m. Let r(m) = a*" mod n. We have the following
recursive relation:

r?(m —1)mod n, if m >0,
r(m) = .
amod n, if m=0.
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Thus, we can start from ¢ = 0, square 7(i), and then take the modulo n to yield r(i + 1).
Repeating this procedure m times, we get r(m). It should be noted that (i) < n for each
1, which means that the squaring operation is always performed on positive integers smaller

than n.

Now let us assume that z is an arbitrary positive integer represented in the binary form

by - - byby, where k = |log,z|,b; € {0,1}. Then

x:bk.2k+...+b1.21_|_bo.202221.
bim1

Thus,

a*modn = a(ZbFIQi) mod n

[H a2i1 mod n
bi=1
[H (a2i mod n) ] mod n.

b;=1

On the basis of this, we can derive the following fast modular exponentiation algorithm, where

go (the output of the algorithm) is equal to a” mod n:

1. Let g;, = a.

2. For each integer ¢ from k£ — 1 down to O:
3. Letg, = (9,11 X 9;+1) mod n;

4. Ifb, = 1letg, = (g; x a)mod n.

This algorithm will undergo at most 2k = 2|log,z | multiplication operations on positive inte-

gers that are less than n.

For instance, let x = 37. Converting it to binary representation, we get x = 100101. Thus,

a*"mod n = (a25 ca” a)modn = [(a23 . a)22 - al mod n.

Applying the fast modular exponentiation algorithm, we get

g5 = amod n,

_ 2
g4 = a”mod n,

22

g3:g2m0dn:a mod n,

23

g, = ((g3mod n) - a) mod n = a* - amod n,

9, = g¢mod n = (a® - a)?mod n,

23

90 = [(97 mod n) - qmod n = [(a* - a)” - a]mod n.

Therefore, g, = a* modn. Let a =7 and n =11. Then g5 =7,g, = 7°mod 11 = 5,
g3 = 52mod 11 = 3, g, = [(3°mod 11) - 7Jmod 11 = 8, and g; = 82 mod 11 = 9. Hence,

7% mod 11 = [(9°mod 11) - 7Jmod 11 = 4 - Tmod 11 = 6.
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3.2.5 Finding Large Prime Numbers

Constructing a PKC often needs to use large prime numbers that consist of hundreds of bits.
Finding a prime number in a given range can be done by checking each odd number in the range
until a prime number is found. For example, we can find a k-bit prime number by checking
k-bit odd numbers one at a time until a prime number is found. Such binary numbers can be
represented as a regular expression of 1(0 4 1)*~21, where (0 + 1)¢ denotes any ¢-bit binary
string. It follows from the prime number theorem that we can expect at least one prime number
among any In 2! = (k + 1) In 2 consecutive k-bit binary positive integers. Thus, we could
find a k-bit prime number by checking (k + 1) In 2/2 many k-bit positive odd numbers. For
instance, if £ = 300, then we may be able to find a prime number by only checking about
301 -1In2/2 < 105 many 300-bit consecutive positive odd numbers. Such computations can
be carried out easily.

Therefore, the primary task becomes how to efficiently determine whether a given odd num-
ber n is prime. One way to do this is to use the classic sieve, which checks whether n has a
factor that is greater than 1 but less than or equal to /n. However, the time complexity of a
sieve is equal to O(y/n) = O(22'°8™), which is exponential of the length of n. So when 7 is
large, using sieve is not practical.

There exists a polynomial-time algorithm to determine whether a given integer is a prime
number, but it takes much more time to run than Miller—Rabin’s primality test. Miller—Rabin’s
primality test is a probabilistic algorithm that uses the following property of prime numbers to
determine whether a given integer is prime with large probability:

Let p be an odd prime number. It follows from the fundamental theorem of arith-
metic that there is a positive integer k such that p — 1 = 2¥q, where q is an odd
number. Let a be an integer with 1 < a < p — 1. Then either a? mod p =1 or
there is a non-negative integer j < k such that a** mod p = —1.

This property can be proven as follows. From Fermat’s little theorem, we know that a?~!
mod p = 1. That is, a> 9 mod p = 1. Let us consider the following sequence of integers:
k— k
a2 mod P, a2 % mod P, al ' mod p, a® Ymod p,
where the last integer is equal to 1 and each number in the sequence is a square of the previous
number modulo p, that is,

a¥%mod p = [a* "9)*mod p = [a* ¥ mod p]? mod p.

Thus, if a? mod p = 1, then every integer in this sequence is equal to 1. If a9 mod p # 1,
then as a2 9mod p = 1, there must be a non-negative 1nteger 7 < k such that a?' mod p # 1
and a?"'9mod p = 1. As [a?’9mod p]? mod p = ¢ "9 mod p = 1, we must have a¥’ ¢ mod
p=-L v

Thus, if there is an integer a with 1 < a < n — 1 such that a? mod n # 1 and a*'? mod
n # —1 for all j from 1 to k — 1, then n is not prime.

3.2.5.1 Miller-Rabin’s Primality Test

Let n be an odd number greater than 1. Let k be an integer in the expression n — 1 = 2F¢,
where ¢ is an odd number.
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1. Choose at random an integer a with 1 < a <n — 1.

2. Ifa?mod n # 1 and a* Ymod n # —1 for all j with 1 < j < k — 1, then output “n is not
prime” and halt.

3. Otherwise, output “n is likely to be prime”. Then choose at random another integer a with
1 < a <n—1, and repeat Step 2.

Aslong as it does not halt, that is, as long as it does not output “n is not prime,” this procedure
is repeated for m times, where m is a positive integer.

Miller—Rabin’s primality test returns false information only when it outputs “n is likely to be
prime” while n is not a prime number. It can be shown that the probability that this can happen
is less than 272 _If m = 20, then this probability is less than 27 < 107'2. Therefore, if one
runs Miller—Rabin’s primality test with a sufficiently large integer m and the test still does not
halt, then n will very likely be prime.

3.2.6 The Chinese Remainder Theorem

The Chinese remainder theorem, first studied by the ancient Chinese, finds a solution to a set
of simultaneous congruence equations.

Let i be a positive integer. Let Z; = {0,---,i — 1}. Let ny, n,, - - -, n,;, be positive integers
that are pairwise relatively prime. That is, ged(n;,n;) = 1 foralli # j with 1 <4, j < k. Let
=" XNy X -+ X1

The Chinese remainder theorem.. For any given set of simultaneous congruence equations
x = a; (mod n;), where i = 1,--- | k, it has the following unique solution in Z,,:

k
T = (Z aibi> mod n,

i=1
where b; = m;(m; ' mod n;) and m; = n/n,.

Note that m,; ' mod n,; exists because m; and n,; are relatively prime. As an example of using
the Chinese remainder theorem, let (ny,ny,n3) = (3,5,7), n =3 x5 x 7= 105. Then
the following set of simultaneous congruence equations of z = 2 (mod 3),z = 3 (mod 5),
and =2 (mod 7) has the unique solution & = 23 in Z,,; for the following reasons:
my =5XT7=235my,=3x7=21,and my =3 x 5= 15. Thus,

m; ' mod n; = 35 ' mod 3 = 2,
my ' mod ny = 21" mod 5 = 1,
my ! mod ny = 15 ' mod 7 = 1.
This implies that b; = 35 x 2 =70, b, = 21 x 1 = 21, and b; = 15 x 1 = 15. Hence,
(2 x 70+ 3 x 21 4 2 x 15) mod 105 = (35 + 63 4 30) mod 105 = 23.

The Chinese remainder theorem has a special form for the case of a; = a, = -+ = a;, = a.
It states that for all integers  and a, if = a (mod n;) fori = 1,- -+ k,thenz = a (mod n).

This result can be proven as follows. As © = a (mod n,) for all i from 1 to k, we know that
x — a is divisible by each of these n;’s. As n;’s are pairwise relatively prime, z — a must be
divisible by the product of these n;’s. Namely, © = a (mod n).
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3.2.7 Finite Continued Fractions

Finite continued fractions are fractional numbers of the following form:

1
ap + 1
ay + 1
az +
az + . )
Tay
where ay is an integer (which could be zero), and a, - - -, a;, are nonzero integers. It is custom-
ary to use [ag; ay, - - -, a;] to denote such a finite continued fraction.

Continued fractions are representations of real numbers. Given a real number x, we can
construct a continued fraction (possibly infinite) to represent x as follows.

3.2.7.1 Construction of Continued Fractions
. Set xy «— x,ay — |xy], i 0.
. If x; = a;, then halt. Otherwise, set

1
2
3. Liy1 < ﬁ’
4 Qi1 — @]
5

. Seti « ¢+ 1 and goto Step 2.

If this algorithm generates a finite sequence a,, a,,- -, a;, then
[ag; ay, -+, a] =,

and so x is a rational number. On the other hand, if x is a rational number, then the algo-
rithm will halt, producing a finite continued fraction [ay; a;, - - -, a;,] for some k such that z =
[ag; ay, -+, a;]. i weletz = m/n (where m and n are nonzero integers with ged(m, n) = 1),
then it can be shown that k£ < log,n.

If the algorithm generates an infinite sequence a, a,, - - -, then it can be shown that for any
k> 1and any 1 < j < k, the finite prefix [ag; a;, - -, a;] is closer to x than [ay; a;, - - -, a;].
The following are two examples that represent nonrational numbers as infinite continued
fractions:

1
\/521—1— 1 :[1;2a272a27"']’
24—
24
24 .
1
T=3+ - —[3:7,15,1,292,- - -].
15 + I
1+
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The following theorem states that if a rational number y is sufficiently close to x, then y
must be a prefix of ’s continued fraction representation.

Finite continued fraction approximation theorem. Let x be a real number and [a;
ay, - -] a continued fraction representation of x that may or may not be infinite. If there is a

fe
non-negative integer r and a positive integer s such that |x — ~| < (V/2s)%, then there must
s

r
be k such that — = [ag; aq,- -+, a).
s

3.3 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange protocol provides a concrete construction of functions f,
and f, defined in Section 3.1. It uses primitive roots and modular exponentiation operations.
In particular, it uses two global parameters (p,a) known to all parties involved in the commu-
nication, where p is a large prime number and a is a primitive root modulo p. The functions
fo and f; are defined as follows:
fo(p,a; ) = a® mod p,
fi(x,b) = 2P mod p,

where = and b are positive integers. We have

f1(fo(p,a;y), z) = (a¥ mod p)* mod p = a?* mod p = fy(p,a;z - y),
fl(fo(p,a;x),y) = (a” mod p)Y mod p = a®¥ mod p = f(](pva;x -y).

Thus, f,(fo(p,a;y),x) = f,(fo(p,a;x),y). This shows that the functions f;, and f, satisfy
Equality 3.1.

3.3.1 Key Exchange Protocol

Diffie-Hellman key exchange allows Alice and Bob to create a common secret key without
sharing prior secrets. The algorithm proceeds as follows: Alice randomly selects a positive
number X 4 < p as her private key and calculates

Y, = folp,a; X4) = a™* mod p

as her public key. In the meantime, Bob randomly selects a positive number X 5 < p as his
private key and calculates

Y = fy(p,a; Xp) = a™” mod p

as his public key. Alice then sends Y, to Bob and Bob sends Y to Alice. Finally, both Alice
and Bob independently perform secret key calculations. Alice calculates K 4, = f, (Y, X4) =
Yg*“ mod p, and Bob calculates K5 = f,(Y,, Xp) = YX(B mod p. We have already shown
in Section 3.1 that K, = K. Therefore, Alice and Bob now share the same secret key
K=K,=Kg.
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For example, let the global parameters be (p,a) = (541, 2). Suppose that Alice selects her
private key to be X , = 137 and sends her public key Y, = 237 mod 541 = 208 to Bob. Sup-
pose that Bob selects his private key to be X 3 = 193 and sends his public key Y = 2! mod
541 = 195 to Alice. Next, Alice and Bob calculate, respectively,

K, =Y5* mod 541 = (195)'7 mod 541 = 486,
Kp =Y ? mod 541 = (208)'* mod 541 = 486,

to obtain the same secret key K = 486.

As modular exponentiations can be calculated using the fast modular exponentiation algo-
rithm, Diffie-Hellman key exchange satisfies the efficiency requirement. Its intractability relies
on the difficulty of solving = from y = a” mod p, where & < p. This problem is referred to as
the discrete logarithm problem, or the discrete log problem for short. It is a common belief that
discrete log cannot be solved in polynomial time on conventional computing devices. Thus, as
long as the prime number p is sufficiently large, Diffie-Hellman key exchange is considered
secure. On the other hand, Peter Shor, an American scientist, showed in 1994 that discrete log
can be solved in polynomial time on a theoretical model of quantum computers. Discrete log
will be used again in Chapter 4 when we discuss digital signatures.

3.3.2 Man-in-the-Middle Attacks

Suppose that Malice eavesdrops Y4 or Y. As there are no known efficient algorithms that can
solve discrete log, Malice has no ways to solve X 4 or X 5. However, Malice could launch a
man-in-the-middle attack to establish a key K, , with Alice and a key K, 5 with Bob, while
Alice thinks that she shares K, , with Bob and Bob thinks that he shares K, ; with Alice.
Therefore, when Alice encrypts data using K, 4, Malice can decrypt it. Likewise, when Bob
encrypts data using K, 5, Malice can decrypt it.

To launch a man-in-the-middle attack, Malice selects at random a positive integer X,, < p
and calculates Y,, = a mod p. Malice places a sniffer on the communication channel used
by Alice and Bob. When she intercepts Y, sent from Alice to Bob and Y sent from Bob
to Alice, Malice sends Y,,, to Bob as it were Y, and sends Y, to Alice as it were Y (see
Figure 3.1).

Suppose that Alice does not know that Y5 has been replaced with Y,, and Bob does not know
that Y, has been replaced with Y, , . Following the Diffie-Hellman key exchange protocol, Alice
and Bob proceed to compute, respectively,

K, = Y,ffA mod p = a5 mod p,
Kp =Y X2 modp = a¥*# mod p.
Malice computes

K, 4= Yf’” mod p = a*4 ¥ mod p = K 4,

XB

K, 5 :Yé{mmodp:a 'Xmmodp:KB.
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E(Kipa,M)
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m,

AM')

~

Alice
(b)

Figure 3.1 Man-in-the-middle attack being carried out on the Diffie-Hellman key exchange. (a) Malice
intercepts Alice’s public key Y, and Bob’s public key Y. Malice then sends Y, to Bob as if it were
Y, and sends Y, to Alice as if it were Y. (b) Because Alice shares K, , with Malice and Bob shares
K, p with Malice, Malice can read encrypted data encrypted using K , or K 5

Thus, Alice and Bob have not established any common secret key. Instead, Malice has estab-
lished with Alice a secretkey K, , = K 4 and established with Bob a secretkey K,z = K.
When Alice encrypts M using encryption key K 4 and sends the ciphertext Cy = Ey , (M)
to Bob, Malice intercepts and decrypts it using K, 4 to obtain M. Malice then uses K, 5 to
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encrypt M and sends the ciphertext C,,, = Ey (M) to Bob. Bob then uses K to decrypt
C,, and get M. Likewise, Malice can read any encrypted message sent from Bob encrypted
using K 5. In addition, Malice may also modify or fabricate M.

We note that this man-in-the-middle attack will fail if Alice and Bob can authenticate each
other. The RSA public-key cryptosystem introduced in Section 3.4 provides a mechanism for
authenticating users.

3.3.3 Elgamal PKC

Taher Elgamal, an Egyptian-American cryptographer, devised in 1985 a public-key cryptosys-
tem on the basis of the Diffie-Hellman key exchange protocol. It is often referred to as Elgamal
PKC. Note that “Elgamal” has also been written as “ElGamal” (with a capital G in the middle).
Elgamal PKC uses two global parameters p and a, just like those used in the Diffie-Hellman
key exchange protocol, where p is a prime number and a is a primitive root modulo p.

Alice randomly selects a positive integer X 4 < p as her private key and calculates
Y, = a4 mod p as her public key.

Bob randomly selects a positive integer Xz < p as his private key and calculates
Yy = a2 mod p as his public key.

Let M be a positive integer less than p that represents a block to be encrypted. Alice encrypts
M as follows:

1. Select a positive integer k at random with k < p;
2. Compute K = (Y5)* mod p;
3. Compute C; = a¥ mod p, Cy = (K - M) mod p, and send (C}, C,) to Bob.

After receiving (Cy, C,), Bob can decrypt it by calculating
M = (C, - (C* mod p)~!) mod p. (3.5)

The proof of its correctness is left to the reader (see Exercise 3.13).

3.4 RSA Cryptosystem

The basic operation of the RSA public-key cryptosystem is modular exponentiation. Decryp-
tion takes place by finding the modular inverse.

3.4.1 RSA Key Pairs, Encryptions, and Decryptions

Suppose that Alice wants to set up an RSA cryptosystem. She first selects two large prime
numbers p and ¢, and calculates n = p - q. She then selects a positive integer d such that
1 <d< ¢(n)and ged(d, ¢(n)) = 1. Finally, she computes the inverse of d modulo ¢(n),
denoted by e. That is, she finds e such that de = 1 (mod ¢(n)). Alice publishes (e,n) as her
public key. She keeps d, p, ¢, and ¢(n) secret and uses (d,n) as her private key.

Suppose that Bob wants to encrypt M (some positive integer less than n) and send the
encrypted message to Alice without sharing a prior secret key with Alice. Bob uses RSA
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encryption to encrypt M as follows:

RSA encryption : C' = M°mod n. (3.6)
After receiving C', Alice uses RSA decryption to decrypt C as follows:

RSA decryption : M = C%mod n. (3.7)

We now prove the correctness of RSA decryption; namely, we want to show that Equality 3.7
is true. We present two different proofs. One proof uses the Chinese remainder theorem, while
the other does not use it.

Proof 1: We prove Equality 3.7 using the Chinese remainder theorem. As n = p - q, we have
o(n)=(p—1)-(q¢—1). It follows from de = 1 (mod ¢(n)) that there is an integer k such
that

de =Fk-¢(n)+1.

Case 1: M isnotdivisible by p, thatis, ged(M, p) = 1. It follows from Fermat’s little theorem
that MP~! =1 (mod p). Hence,

M = MFEI A = (MPYHRaY A = (1)R@D M = M (mod p).

Case 2: M is divisible by p, that is, gcd(M,p) = p. Then M = 0 (mod p) and M = 0
(mod p). This implies that M9 = M (mod p). Hence, we always have M9 = M
(mod p).

Likewise, we can show that M ¢ = M (mod ). By the special form of the Chinese remain-
der theorem, we have M9 = M (mod pq). As M < n, we have M mod n = M. This
completes the proof.

Proof 2: If ged(n, M) = 1, then M is not divisible by p or ¢. Hence, by Euclid’s theorem,
we have M?™) mod n = 1. This implies that

k
M*™ mod n = (M¢<") mod n> mod n = 1¥ mod n = 1.

Thus,
C4mod n = (M*®mod n)% mod n
= M modn
= MF*MH mod n
= [(Mkd’(") mod n) - M mod n} mod n
= (1- M mod n) mod n
=M.

If ged(n, M) # 1, then it follows from M < n and n = p - ¢ that M is divisible either by
p or by g, but not by both p and ¢ (otherwise, M > n). Without loss of generality, assume that
M is divisible by p (the case that M is divisible by ¢ is similar). This implies that M is not
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divisible by ¢. Thatis, M = [ - p for a positive integer [ and gcd(M, q) = 1. By Fermat’s little
theorem, we have M7 ' mod ¢ = 1. Thus,

M) mod g = (M7 mod q)k(pfl) mod ¢
= 1"V mod ¢
=1.
Therefore, there is an integer u such that M ké(n) — 1 4 4 - q. As M =/ - p, we have
MFOT M 4+ M-u-g=M+1-u-p-q=M+1-u-n=Mmodn,
namely, M**(")*1 mod n = M. Thus,
C?mod n = M*™+ mod n = M.

This completes the proof.
For example, let p = 13, ¢ = 19. Then

n=p-q=247,
o(n) =12-18 = 216.
Choose d = 173 and compute e = 5, where de = 865 = 1 mod 216. Let M = 85. We have
C = M®mod n = 85° mod 247

= [((85% mod 247)? mod 247) - 85] mod 247

= ((62* mod 247) - 85) mod 247 = (139 - 85) mod 247

= 206.
On the other hand, C? mod n = 20617 mod 247. As

173=2"4+2° 428 4+ 22 41,

we have

C'™ modn = (((C* -C)* - C)*- ) - C) mod n.
Applying the fast modular exponentiation algorithm, we get
g; = C' =206,
g6 = g5 mod n = 206° mod 247 = 199,
g5 = (ge mod n - C)mod n = ((199? mod 247) - 206) mod n = 137,

g4 = g# mod n = 137* mod 247 = 244,
= ((g3mod n) - C) mod n = ((244% mod 247) - 206) mod 247 = 125,
= ((g2mod n) - C)mod n = ((1252 mod 247) - 206) mod 247 = 93,

g, = g3mod n = 93% mod 247 = 4,
= ((¢? mod n) - C)mod n = ((4? mod 247) - 206) mod 247 = 85 = M.
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From Section 3.2.5, we know that finding large prime numbers p and ¢ can be done effi-
ciently. Once p and ¢ are determined, finding a positive integer d such that ged(d, ¢(n)) =1
is straightforward using Euclid’s algorithm. From the discussions in Sections 3.2.2 and 3.2.3,
we can find e = d~! mod ¢(n) efficiently. Using the fast modular exponentiation algorithm,
we can carry out RSA encryption and decryption efficiently. Thus, RSA satisfies the efficiency
requirement.

RSA also satisfies the commutability requirement because

M =D, (E,,(M)) = (M°modn)*mod n
= E (D, (M)) = (M%mod n)° mod n
=D, ,(Ey,(M))

(M))

The intractability of RSA depends on the difficulty of integer factorization discussed in
Section 2.8.2. It is a consensus that if RSA parameters p, ¢, d are appropriately selected and
changed from time to time, then RSA cryptosystem is secure. How to select these parame-
ters appropriately to avoid possible attacks is an important issue. We discuss several common
parameter attacks in the following section.

3.4.2 RSA Parameter Attacks

This section discusses several common attacks on RSA that take advantage of inappropri-
ately selected parameters. This will serve as a guideline for choosing correct RSA parameters.
Attacks against RSA may use the following methods:

1. Try all possible parameters d to decrypt an encrypted block.

2. Factor n.

3. Conduct time analysis to find d.

4. Derive RSA parameters from partial information of these parameters.

The first method is a brute-force method, which is infeasible when n and d are sufficiently
large.

How to factor n efficiently is a long-standing open problem. Despite intensive efforts, it is
still not known whether integer factorization can be solved in polynomial time on a conven-
tional computer.

Time analysis on RSA execution is possible because the execution time of modular expo-
nentiation differs a great deal on the basis of the current bit in the exponent. This difference
may be exploited to deduce d. In particular, under fast modular exponentiation, d is represented
as a binary string d,, - - - d,d,,. Its execution time on d; = 1 is substantially more than that on
d; = 0. If this difference is measurable, then d could be derived. Executing a few redundant
instructions when d; = 0 could thwart this time analysis.

We discuss several methods that may breach RSA security if partial information of RSA
parameters is known.
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3.4.2.1 Small Exponent Attacks

Small values of e and d should be avoided. For example, assume that Alice and Bob happen
to use the same value of e = 2, but with different values of n, and np, where n4 and ng
happen to be relatively prime. Suppose that Charlie wants to send the same message M to Alice
and Bob using their public keys to encrypt them, where M < min{n 4, np}. Namely, Charlie
sends C'y = M?mod n 4 to Alice and C'z = M? mod n g to Bob. If Malice intercepts C' 4 and
C'p, then she can use the Chinese remainder theorem to solve the following two simultaneous
congruences:

x=Cy (modny),

x=Cpg(modng).

Let x, € Z,, be a solution, where n = n 4n . Then z, = M?mod n. As M? < n, we have
xg = M? and so M = \/z;.

For another example, assume that d < %nl/ 4 and ¢ < p < 2¢, then one can compute d in
polynomial time of log, n as follows:

We note that ¢> < p - ¢ = n, which means that ¢ < y/n. As

n—¢mn)=p-q—(p—-1)(¢g—1)=p+q-1

and ¢ < p < 2q, we have
4<n—¢(n)<3qg<3yn.

From de = 1 (mod ¢(n)), we know that there is a positive integer & such that de = k¢(n)
+ 1. As e < ¢(n), we have
1
p(n)k < de < §¢(n)nl/4.

This implies that k < 1n!/*. It follows from kn — de = k(n — ¢(n)) — 1 that

0 <kn—de<k(n—o¢n))< én1/4(3\/ﬁ) =n3/,

Dividing both sides of this inequality by dn, we get

0 ke 1 1 1
< E — E < W < @ < ﬁ
Hence, | e/n — k/d |< (v/2d)72.
By the finite continued fraction approximation theorem (see Section 3.2.7), we know that
k/d is a prefix of e/n’s continued fraction. Namely, if e/n = [ay; aq, - - -, a,,], then there is a
positive integer j < m such that

k/d= [ao;a1,~--,aj].

We can compute [ay; ay,- -+, a;],%9 = 1,---,m,using the continued fraction construction algo-
rithm introduced in Section 3.2.7 in polynomial time of log,n. Let A; /B, = [ay; ay,- -+, a;].
Then A,/ B, is a candidate of k/d. To determine whether A,/ B, = k/d, we first verify whether
C, = (eB; — 1)/ A, is an integer. If not, we choose the next . If C; = (eB; — 1)/ A, is an
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integer, then it is possible that A, = k and B; = d. To verify whether this is the case, we solve
the following quadratic equation:

> —(n—C,+ 1z +n=0. (3.8)

As C; > 0, solutions to Equation 3.8 cannot be equal to 1 or n. Let 7, r, be two solutions to
Equation 3.8 . That is,

22— (n—Ci+Dax+n=(x—7r)(r—ry).

If we let x = 0, then we get
n=r-ry.

If both r, and r, are integers, then we get {r,, 7.} = {p, ¢}, from which we can calculate ¢(n).
From ¢(n) and e, we can calculate d using Euclid’s algorithm. If r; or r, is not an integer, we
then choose the next 7 and repeat the aforementioned steps until d is found. Note that solving
Equation 3.8 can be done in polynomial time of log, . Thus, we can find d in polynomial time
of log, n.

3.4.2.2 Partial Information Attacks

When partial information of parameters p, ¢, and d leaks out, we must select new parameters,
because partial information of these parameters may be exploited by attackers. For example,
let the length of the decimal representation of n be m. It can be shown that if the prefix (or
suffix) m /4 bits of p (or ¢) leak out, then n can be factored efficiently. For another example,
it can be shown that if m /4 bits in the suffix of d leak out, then d can be found efficiently.

If the parameter d is compromised, then we must not use the original secret parameters p
and ¢ to generate a new pair of d and e, for p and ¢ may no longer be secret. This is because
from the compromised d and the corresponding e, we have

de =1 (mod ¢(n)).

Thus, there is a positive integer & such that de — 1 = k¢(n), from which we can factor n as
follows:

Let a be an arbitrary positive integer less than n. Compute ged(a,n) using Euclid’s algo-
rithm. If ged(a,n) > 1, then we know that ged(a,n) € {p,q}. If ged(a,n) =1, then it
follows from Euclid’s theorem a9¢~! = 1 (mod n). Let u = de — 1. Note that ¢(n) is an even
number. Thus, u = k¢(n) must be an even number. We have

(a*/? +1)(a"? —1) = 0 (mod n). (3.9)

If a*/? # =+ 1 (mod n), then ged ((a*/? + 1) mod n,n) or ged((a*/? — 1) mod n,n) is a
prime factor of n. Otherwise, we have the following three cases:

Case 1: a*/?> = —1 (mod n). That is, a*/?> = (n — 1) (mod n) and (a*/? + 1) mod n = 0.
Choose a different value for a and repeat the aforementioned procedure.

Case2: a*/?> = 1 (mod n) and u/2 is an odd number. Choose a different value for a and repeat
the aforementioned procedure.

Case 3: a*/> =1 (mod n) and u/2 is an even number. Set u < u/2 and start from Equal-
ity 3.9 until case 1 or case 2 occurs.
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3.4.2.3 Other Attacks

We should avoid encrypting plaintext M that contains a prime factor p or ¢. This is because
if M < n and n is not relative prime, then n can be factored efficiently. Without loss of gen-
erality, assume that gcd(M,n) = p. Thus, ged(C,n) = p. Using Euclid’s algorithm, we can
calculate p efficiently.

If M is short and M is a product of two integers whose lengths are close to each other, then
Malice can use meet-in-the-middle attack to compute M. For instance, let the length of binary
representation of M be ¢ and M = m, - m,, where m, and m,, are two integers, and the length
of m, and the length of m,, are all less than or equal to /2. Malice intercepts C' = M ¢ mod n,
computes the following two arrays of values, and then sorts them into nondecreasing order:

1. Array 1: For each positive integer 2 < 2¢/%*1, compute Cz~¢ (mod n).
2. Array 2: For each positive integer y < 2¢/2*!, compute y¢ (mod n).

If there are integers = and y such that
Cz™° (mod n) = y° (mod n),

then C' = (zy)® (mod n). Thus, M = C~ ¢ = zy (mod n).

The time of complexity of this attack is in the order of 2¢/>*2 which is much smaller than
the complexity of 2¢ in a brute-force attack. For instance, if M is a 128-bit encryption key
that is a product of two 64-bit integers, then Malice can compute M using meet-in-the-middle
attack in the order of 2% time. A simple way to combat meet-in-the-middle attack is to break
up the product. For example, one may throw in a few useless symbols at the beginning or at
the end of the plaintext message so that the new string cannot be written as the product of two
integers that have about the same length.

3.4.3 RSA Challenge Numbers

A number that is equal to the product of two prime numbers is often referred to as a
semiprime. The ultimate security of an RSA cryptosystem rests on how difficult it is to factor
semiprimes. To stimulate this line of research, the RSA designers and the RSA security
company publish, respectively, an old list and a new list of semiprimes, called RSA challenge
numbers, soliciting solutions from the public. These numbers contain from 100 to 617
decimal digits. Early published RSA challenge numbers were named by RSA-/;, where [ is
decimal length of the number. For instance, RSA-200 consists of 200 decimal digits, which
was factored in May 2005. Later published RSA challenge numbers were named by RSA-/,
where [; is the binary length of the number. For instance, RSA-576 consists of 576 bits, which
was factored in December 2003. RSA-640 was factored in November 2005. The following is
the decimal representation of RSA-640:

RSA-640: 31074182404900437213507500358885679300373460228427
27545720161948823206440518081504556346829671723286
78243791627283803341547107310850191954852900733772
4822783525742386454014691736602477652346609
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Table 3.1 Status of RSA challenge numbers

Challenge number Decimal length Prize (USD) Status Date
RSA-576 174 $10,000 Factored 2003-12-03
RSA-640 193 $20,000 Factored 2005-11-02
RSA-704 212 $30,000 Factored 2012-07-02
RSA-768 232 $50,000 Factored 2009-12-12
RSA-896 270 $75,000 Not factored

RSA-1024 309 $100,000 Not factored

RSA-1536 463 $150,000 Not factored

RSA-2048 617 $200,000 Not factored

Table 3.1 lists the status of RSA Factoring Challenge. RSA Security was acquired by EMC?
in 2007, but the prizes offered by RSA Security for factoring RSA challenge numbers are still
honored.

The competition of factoring RSA challenge numbers has led to two conclusions. Firstly, we
should change semiprimes from time to time, where a particular semiprime should only be used
in a time interval shorter than the time required to factor an RSA challenge number of a similar
length. Secondly, we should use semiprimes that consist of more than 200 decimal digits.

However, there is a practicality issue on the length of semiprimes: if semiprimes are required
to have long length to avoid being factored, then it may compromise the efficiency requirement.
Thus, finding an alternative becomes important. This effort has led to the development of
elliptic-curve cryptography.

3.5 Elliptic-Curve Cryptography

The mathematics used in elliptic-curve cryptography is deep. This section only provides a brief
introduction.
In general, an elliptic curve is a plane curve defined by an equation of the form

y2 +a;xy + ayy = x4 a3x2 + ayx + ay,

where coefficients a,, a,, as, a,, as are real numbers. Note that an elliptic curve may not have
the shape of an ellipse.

We are particularly interested in the following special form of elliptic curves, with a; =
ay = a; = 0 in Equation 3.10 and with a, renamed to a and a; to b (Fig. 3.2 provides two
examples):

v’ = 2% 4+ az + b, where 4a® + 27b° # 0. (3.10)

3.5.1 Commutative Groups on Elliptic Curves

Let E(a, b) denote the set of points on the elliptic curve defined by Equation 3.10 . Then E(a, b)
is additive. This property can be used to construct a commutative group. A commutative group,
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Figure3.2 @)y’ =2 —z.(b)y’ =2 -z +1

or Abelian group, is a set of elements GG with an addition operation “+” satisfying the following
five conditions:

1. Closure: (Vz, y € G)[z +y € G].
2. Associativity: (Vz, y, z € G)[z + (y+ 2) = (z +y) + z].
3. Unit element: There is an element in G, denoted by 0, such that

Ve e @)z +0=0+2=0]
4. Inverse: For any element x € G, there is an element 2’ € G such that
x4+ =2"+2=0,

where 2’ is often denoted by —z. We use © — y to denote = + (—y).
5. Commutativity: (Vo, y € Gz +y =y + .

In a commutative group, the unit element is also called the zero element.

Let X, Y € E(a,b). We have the following two cases.

Case 1: X # Y. Let L be a straight line connecting X and Y. If L is not perpendicular, then
L must intersect with a unique point Z in E(a, b), where Z # X and Z # Y.

Case 2: X =Y. Let L be a tangent line to the elliptic curve on point X. If L is not perpen-
dicular, then L must intersect with a unique point Z in E(a,b), where Z # X.

In either case, if L is perpendicular, then L will not intersect with any other point in E(a, ).
However, we introduce an imaginary point O that intersects with L at imaginary locations
infinitely far away. This imaginary point O will play the role of the unit element, called a
zero point.

Let E'(a,b) = E(a,b) U {O}. Define an addition operation “+” on points in E(a,b)’ as
follows:

1. Forany X € E'(a,b),let X + 0O = X.

2. Forany X, Y € E(a,b), if X # Y but they have the same x-coordinate, then it follows
from Equation 3.10 that X and Y are images on the x-axis; namely, X = (z,y) and
Y = (z,—y). Let X +Y = O. Thus, we have — X = (z, —y).
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3. Forany X,Y € E(a,b), if their z-coordinates are different, then let L be a straight line
connecting these two points.

(a) If Lisnot a tangent line to the curve, then L must intersect with a unique different third
point Z € E(a,b). Let X + Y = —Z, namely, X + Y is the image of Z on the z-axis.

(b) If L is a tangent line to the curve at point X, let X +Y = —X.

(c) If L is a tangent line to the curve at point Y, let X +Y = —Y.

4. Forany X € E(a,b), let Ly be a tangent line to the curve at point X. Let Y € E(a, b) be
another point thatis alsoon L. Let X + X = —Y.

It can be shown that (E'(a, b), +) is a commutative group (see Exercise 3.8.2).

3.5.2 Discrete Elliptic Curves

For the sake of encoding data, we only consider integral points (z,y) in E(a, b); namely, x
and y are both integers. Moreover, we consider integral points modulo a prime number p.
Let Z, = {0,1,---,p — 1}. If 4> + 27¢* mod p # 0, let

E,(a,b) =E(a,b) N {(z,y) |z € Z,,y € Z,}

P

E,(a,b) = E,(a,b) U{O}.

Define an addition operation “4” over E;(a, b) to be the same as the addition operation
over E'(a, b) for the first two conditions (i.e., replace E'(a, b) with E (a, b)). For the last two
conditions, because a straight line connecting two points in E,(a,b) may not intersect with
the curve at an integral point in Ep(a, b), we modify these two conditions as follows:

3'. For any X, Y € E,(a,b), if their x-coordinates are different, then let X +Y = (z3,y3),
where
g = (X* =) — x) mod p,
ys = (AM(z, — z3) — y;) mod p,
A=Y

= mod p.
Ty — T

4. Forany X = (z,y) € E,(a,b),let X + X = (2/,), where

' = (\? = 22) mod p,
y' = Az —2’) —y)mod p,

)\:3x2+b

mod p.

It can be shown that (E/,(a, b), +) is a commutative group.



116 Introduction to Network Security
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Figure 3.3 Point distribution in E,;(1, 0)

As an example, let p = 23, b = 1, and ¢ = 0. We have

{(o0,00), (0,0), (1,5), (1,18), (9,5), (9,18),
B (1.0) = (11,10), (11,13), (13,5), (13,18), (15,3), (15,20),
B (16,8), (16,15), (17,10), (17,13), (18,10), (18,13),
(19,1), (19,22), (20,4), (20,19), (21,6), (21,17)},
where O = (00, 00). Figure 3.3 displays how points in E,3(1, 0) are distributed.

3.5.3 ECC Encodings

To encrypt plaintext M, we first represent it as a positive integer as in RSA cryptography.
We then encode the integer representation as a pointin E,, (a,b) in a way that it can be reversed.
That is, M can be obtained from its point representation in e, (a, b). It is not known whether
there is a polynomial-time algorithm to generate such an encoding, but an encoding can be
obtained efficiently using a probabilistic algorithm. Although there is no guarantee that the
algorithm can always generate a valid encoding, it can be shown that the probability that the
algorithm fails to generate one is very small.
Suppose that M is a positive integer much smaller than p. Let x = M. Check whether

M3 +bM + ¢

is equal to the square of some integer modulo p. If not, append a few digits at the end of M,
and modify these digits if necessary, to obtain a new number M’ < p, so that M’® + bM’ + ¢
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is equal to the square of some integer modulo p. This can be done using the following proba-
bilistic algorithm.
Let ~y be a large integer such that
e=2""7

is very small, and (M + 1)y < p. Let

where 0 < j < «. For each j from 0 to v — 1, compute

Y, = \/(:c§ + bz ; + ¢) mod p.

If y; is an integer, let P\, = (z;,y,) be M’s encoding. Otherwise, increase the value of j and
repeat the same computation until an integral y; is found or j = ~. If j = ~, it means that the
algorithm failed to find an encoding for M. It can be shown that for each j, the probability
that y; is not an integer is approximately equal to 1 /2. Thus, the probability that the algorithm
fails to find an encoding for M is only about e. Given P,; = (z,y), it is easy to verify that
M = |x/v]. We will call v the encoding parameter.

For example, let (p, b, ¢,7y) = (179, 3,34,15). Then (4 - b* + 27 - ¢*) mod p = 174 # 0. It
follows from (M + 1)y < 176 that 1 < M < 12. Let M = 10. We have z; = M~y +j =
150 + 4, where 0 < j < 15. When j = 0, we have z, = 150 and (2} + bx, + ¢) mod p =
(150° 4 3 - 150 + 34) mod 179 = 81 = 92. Thus, y, = 9 is an integer. Hence, P, = (150,9)
is an encoding for M = 10 over E}.4(3,34). As [150/15] = 10, we can obtain M = 10 from
(150,9).

3.5.4 ECC Encryption and Decryption

It is customary to refer to elliptic-curve encryption as ECC encryption and to elliptic-curve
decryption as ECC decryption.
Let k be an integer greater than 1. For any X € E (a,b), let

kX = X + (k- 1)X.

The elliptic-curve logarithm problem is to find k from kX. There is no known efficient algo-
rithm to solve this problem. The security of ECC encryption rests on the difficulty of solving
this problem.

Similarly to Diffie-Hellman key exchange, ECC encryption also requires that Alice and
Bob share the same parameters. Let G € E,(a,b) and 7 be an encoding parameter. Let
(E,(a,b), G,~v) be the parameters shared by all parties.

Alice randomly selects a positive integer k4 as her private key. She then computes
P, = k4G as her public key and publishes P,. Suppose that Bob wants to encrypt a plaintext
block M using ECC encryption using Alice’s public key K 4, where M is a positive integer
satisfying (M + 1)y < p. Bob uses the following ECC encryption procedure.

Bob randomly selects a positive integer k, encodes M to a point Py, = (v, y) € E,(a,b),
and computes the following two points in Ep(a7 b) as the ciphertext of M:

C: (kG7 P]\/[+kPA).

For convenience, we use 7,(C') to denote kG and 7, (C') to denote Py, + kP.
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After receiving C' from Bob, Alice uses the following ECC decryption procedure to
decrypt C":

Py =m(C) = kymy(C) = (z,9). (3.11)

She then computes M = |z /7].
The correctness of Equality 3.11 is shown as follows:

T (C) = kamy(C) = (Pyy + kPy) — ka(KG)
= Py, + k(k,G) — k4 (kG)
=P,.

3.5.5 ECC Key Exchange

ECC can also be used to exchange keys. Similarly to ECC encryption, Alice and Bob must
agree on the same parameters (E, (b, c), G, ) in ECC key exchange. Let n be the smallest
positive integer satisfying nG = O.

To obtain the same secret key through ECC key exchange, Alice selects at random a positive
integer k4 < n as her private key. She then computes P4 = k,G € E,(a, b) as her public key
and sends P, to Bob. In the meantime, Bob selects at random a positive integer kz < n as his
private key, computes Py = kpG € E (a,b) as his public key, and sends Py to Alice. Alice
then computes K 4, = k4 Py as her secret key, and Bob computes K 5 = kz P, as his secret
key. It is easy to see that

Ky=kyPp= kA(kBG) = k?B(kAG) =kpPy = Kp.

This key exchange scheme is also referred to as the elliptic-curve Diffie-Hellman (ECDH)
scheme.

3.5.6 ECC Strength

The security of ECC rests on the difficulty of solving the elliptic-curve logarithm problem,
which has not been studied as intensively as the discrete logarithm problem. However, the
requirements of ECC parameters are not as rigid as those of RSA. In other words, using a
prime number p consisting of a few hundred bits appears to be sufficient in ECC, while in
RSA, the modulo n is required to have more than a thousand bits. On the other hand, ECC
cryptanalysis has not been conducted as deeply or broadly as RSA cryptanalysis has. And so,
our understanding of ECC is far less than that of RSA.

3.6 Key Distributions and Management

PKC takes substantially more time to encrypt data than conventional encryption algorithms,
and so PKC is not suitable for encrypting long data. PKC is often used to encrypt secret keys
for conventional encryption algorithms and other short messages. Suppose that Alice and Bob
have already agreed on a symmetric-key encryption algorithm. When Alice wants to exchange
confidential information with Bob; Alice generates a secret key K using a PRNG, encrypts K
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using Bob’s public key, and then sends the encrypted key C' to Bob. Bob uses his private key
to decrypt C' to obtain K.

3.6.1 Master Keys and Session Keys

Suppose that Alice and Bob have agreed on a secret key. If they use this secret key to encrypt
other secret keys during a certain period of time, then this key is referred to as a master key,
denoted by K,,,. To protect the master key from being compromised by Malice, Alice and Bob
should use it sparingly to reduce exposure of the master key. Instead, they should generate a
new secret key for each new communication session and use the master key to encrypt it for
distribution. Such keys are referred to as session keys, denoted by K. In particular, suppose
that Alice wants to send a confidential message to Bob, and they share a master key K. Alice
first generates a session key K, encrypts it using K, , and then sends E, (K ) to Bob. After
receiving Er; (K ), Bob decrypts it using ,,, and obtains /. From now on, Alice and Bob
will use K, to encrypt and decrypt data for the current communication session until the session
is terminated.

The lifetime of a session key is much shorter than that of a master key. A session key is
typically used to encrypt a message (e.g., an email message) or to encrypt packets in a particular
TCP connection from the time a TCP connection is established to the time the connection is
closed. The lifetime of a master key is longer, depending on the underlying applications.

For example, suppose that Alice wants to log on to her company’s computer from home
using a secure remote login application program. This is a client-server program that does,
among other things, the following: when Alice opens the client program on her home computer,
the program generates a master key K,,,, uses the public key of her company to encrypt K,,,,
and sends the encrypted K, to the server program. The server program decrypts the encrypted
master key sent from Alice using its private key to obtain K. The client program then gener-
ates a session key K, encrypts it using K, and sends E, (K) to the server program. This
session key K, will be used to encrypt all communications between the client program and the
server program for the current login session, including Alice’s user name, password, control
messages, and data. When Alice logs out, the session key K, becomes obsolete. However,
the master key K, remains valid for the next login session. The master key K, will become
obsolete when Alice exists the client program.

3.6.2 Public-Key Certificates

In addition to encrypting secret keys, RSA, as well as ECC, can also be used to authenticate
data. Authentication helps to maintain data integrity and data nonrepudiation. Suppose that
Alice wants to prove to Bob that a message M is indeed from her. She first uses her private
key K7 to encrypt M and sends (M, C ) to Bob, where C'y = Eyc (M). Bob uses Alice’s
public key K} to decrypt C 4 and then compare the decrypted message with M. If the two are
identical, then Bob is convinced that M is indeed from Alice, because only she knows K.
Using this procedure, Alice can prove her identity to Bob using a special message M that says
“T'am Alice.”

To use PKC to encrypt or authenticate data, one must first obtain the receivers’ public keys.
Public keys may be published and distributed in a number of ways. No matter what method
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is used, the user needs to be confident that a published public key really does belong to the
purported owner.

Public keys can be published at a special Website in the form of a directory, listing owner
names and their public keys. They also may be published at an owner’s own Websites or they
may be distributed in email messages. These methods are simple, but they are not secure,
because there is no way to ensure true ownership of a public key. For instance, Malice may
pretend to be Bob and lure Alice to use his public key as if it were Bob’s. Therefore, we need
to find a way to authenticate public keys. A common method is to use a trusted organization
as an authenticator. For example, similarly to the domain name service that provides IP
address lookups, a trusted organization may create a public-key service to provide public-key
lookups. This scheme may be practical if each IP address only has one public key. In reality,
however, the host of an IP address may be a machine with many user accounts, where each
user may have a number of public keys. Thus, this method will cause substantially more
network traffic, because each user might need to communicate with the public-key server for
the receiver’s public key. This high volume of potential network traffic makes the idea of a
public-key service impractical.

The use of public-key certificates is a practical and simple method to authenticate pub-
lic keys. Public-key certificates are also referred to as digital certificates. For simplicity, we
sometimes use certificates to denote public-key certificates. Public-key certificates are issued
by trusted organizations, which are referred to as certificate authorities, denoted by CAs. A
CA uses PKC to authenticate certificates. It publishes its public key on its Website. It issues a
certificate for each user, encrypted by CA’s private key for authentication. In particular, a cer-
tificate is a digital document including the following information: user name, user’s public key,
issue date, CA name, and valid period of the key. Because a certificate may be long, a CA typ-
ically only encrypts a hash value of the certificate using its private key. This process is known
as signing the certificate. When Alice needs to use Bob’s public key, she first asks Bob to send
her his certificate, and then uses CA’s public key to verify that the certificate is indeed issued
by the CA. From Bob’s certificate, Alice obtains Bob’s public key and its expiration period.

The use of public-key certificates helps to thwart data-repudiation attacks. If Bob possesses
adigital document encrypted by Alice’s private key and Alice’s certificate, then Alice will have
a difficult time denying that she did not sign the document, unless she can prove to the court
beyond reasonable doubt that her private key was already stolen before she digitally signed
the document.

We describe in Section 5.2 an industry standard of public-key certificates.

3.6.3 CA Networks

In addition to issuing certificates to users, a CA also needs to keep track of which certificates
are out of date and which certificates have been canceled. It may become a problem when a
CA has many users. To solve this problem, multiple CAs may be needed to form a CA chain.

We use CA(KY) to denote the certificate issued by CA to user X whose public key is K'%.

Let CA, and CA, denote two different CAs. Assume that Alice is CA,’s user, but not CA,’s
user. Alice possesses a certificate CA | (K'y) issued by CA,. Assume that Bob is CA,’user, but
not CA,’s user. Bob possesses a certificate CA,(K%) issued by CA,. Alice does not know
CA,’s public key or how to use it even if she did know it, for she is not CA;’s subscriber.
Likewise, Bob does not know CA,’s public key nor how to use it. Thus, Alice and Bob have
difficulties verifying each other’s certificate.
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To allow Alice to verify Bob’s certificate, we require that CAs be able to authenticate each
other’s public keys. That is, CA, issues a certificate CA; (K¢,,) for CA, and makes it avail-
able to its users. Also, CA, issues a certificate CA, (K, ) for CA; and makes it available to
its users. When Alice sends Bob her certificate CA,(K}), she also sends CA, (K¢, ) along
with it. Bob first uses CA,’s public key to verify CA,’s public key, then uses CA,’s public
key to verify Alice’s public key. Likewise, Bob sends to Alice two certificates CA,(K}) and
CA | (K{,,), so that Alice can first verify CA,’s public key and then use it to verify Bob’s
public key.

We can use a directed graph, called a CA network to represent the relations between CAs,
where a vertex represents a CA and an edge from vertex CA; to vertex CA; means that CA
is CA;’s user; namely, CA; has issued a certificate CAi<KTC‘AJ,) to CA;. We call a non-CA
user a regular user. Thus, the aforementioned example can be represented by the CA network
shown in Figure 3.4.

When a CA network consists of more than two CAs, we call a path from one CA to another
CA a certificate path. Figure 3.5 is such an example. In this example, the path from Alice
(denoted by A in the figure) to Bob (denoted by B in the figure) has two certificate paths:
CA, - CA; — CA, and CA; — CA; — CA; — CA,. However, from Bob to Alice, there
is only one certificate path CA;, — CA, — CA,.

In the CA network shown in Fig. 3.5, regular users of CA, and CA, can verify each other’s
certificate as follows: suppose that Alice is a regular user of CA, and Bob a regular user
of CA,. When Bob sends his certificate CA,(K}) to Alice, he must also send her all the
certificates of the CAs on a certificate path from CA, to CA,. In this case, there is only one
certificate path: CA; — CA, — CA, and so Bob needs to send CA, (K, ) and CA, (K¢y,)
to Alice, allowing Alice to use CA,’s public key to verify CA,’s public key, use CA,’s public
key to verify CA,’s public key, and finally use CA,’s public key to verify Bob’s public key.

Multiple certificate paths may exist from one CA to another CA. Naturally, we would like to
find the best certificate path, which should be the shortest and most trustworthy. However, these
two measures may compete with each other, for different CAs may adopt different security
policies and use different security protections, resulting in different levels of trust. Thus, a
longer certificate path may turn out to be more trustworthy. How to measure the trustworthiness
of a certificate path is a complex issue, which is beyond the scope of this book.

3.6.4 Key Rings

In a host computer, there may be many user accounts in which each user may have one or more
public and private key pairs. When a user in the system obtains public-key certificates of users
outside of the system, he should store these certificates and the corresponding public keys for

CA, regular users CA, regular users

Figure 3.4 A CA network consisting of two CAs that can verify each other’s public key
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CA| regular users

CA, regular users CA, regular users

CA, regular users CA, regular users

Figure 3.5 A CA network consisting of more than two CAs

Table 3.2 A sample private-key ring, where P, represents Alice’s login password and H(P,)
represents the secret key generated from P,

Key ID Owner’s name Public key Encrypted private key Time stamp

K% mod 2 Alice K Epp (K3 T,

later use for himself and for other users in the system, which avoids duplicate communications
and computations. Thus, we need to find ways to store and manage these public and private key
pairs. One way to do this is to use a centralized data structure to store all these pairs acquired by
the different users in the system. This data structure is referred to as public-key ring. Likewise,
for a particular security application, we may also use a centralized data structure to store all
the public and private key pairs of each user in the system. This data structure is referred to as
private-key ring.

3.6.4.1 Private-Key Rings

A private-key ring is a table (see Table 3.2) in which each row represents a record of a particular
user, which includes the following attributes: key ID, owner’s name, public key, encrypted
private key, and time stamp.
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The following are explanations of these attributes:

1. The key ID is an ¢-bit binary string for a fixed ¢ to identify a public key. For example, we
may use K% mod 2° to represent an /-bit ID of the public key K*.

2. The owner’s name is the user name who owns the public key in the record, which may be
represented by user’s login name or user’s email address.

3. The public key is the public-key component in the user’s public and private key pair.

4. The encrypted private key is the ciphertext of the private-key component in the user’s public
and private key pair, encrypted using a secret key generated from user’s login password.
The encrypted private key is to be decrypted using the user’s login password.

5. The time stamp is the date and time sequence when the public and private key pair was
generated.

A private-key ring may, of course, contain other attributes on the basis of the requirements
of a specific application.

3.6.4.2 Public-Key Rings

A public-key ring is also a table in which each row represents a record of a particular user,
which includes the following attributes: key ID, owner’s name, public key, CA name, CA trust,
and time stamp. The first three attributes have the same meanings as those in a private-key ring.
The following are explanations of the rest of the attributes:

1. CA name is the name of the CA that issued the owner’s public-key certificate.
2. CA trust is a numerical value, indicating the degree of trust given to the CA.
3. Time stamp is a date and time sequence at which the record was created.

A public-key ring may contain other attributes on the basis of the requirements of a specific
application.

3.7 Closing Remarks

PKC is a major breakthrough in computer cryptography. It makes it possible to distribute secret
keys confidentially from one user to the other without requiring users to share prior secrets.
It also makes it possible to authenticate data. The security of PKC depends on the difficulties
of solving certain mathematical problems. These problems are believed to be intractable on
conventional computers, but there have been no formal proofs. The quest for a new and better
public-key cryptosystem will continue.

3.8 Exercises

3.8.1 Discussions

3.1. What is the major problem in distributing secret keys in network communications
and why does PKC solve the problem?
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3.2.

3.3.

34.

3.5.
3.6.

3.8.2

3.1.

3.2

3.3.

34.

3.5.

3.6.

3.7.

Comparing Diffie-Hellman with RSA as key distribution schemes, which one do you
think is better?

Comparing Elgamal PKC with RSA as encryption schemes, which one do you think
is better?

Comparing Diffie-Hellman with ECC as key exchange schemes, which one do you
think is better?

Comparing RSA with ECC as encryption schemes, which one do you think is better?

Discuss the concept of key chains.

Homework

Alice wants to send a plaintext file M to Bob confidentially. However, Alice and
Bob do not share any prior secret. What Alice has is a box with two lock hasps,
while Alice and Bob each have a lock with a key. Alice figures out a way to lock M
inside this box and transmit the locked box to Bob such that during the transmission,
the box is always locked. Bob can get M while no one else can, and no keys are
transmitted. Describe Alice’s method.

Let a, b, ¢, d, and n be integers with n # 0. Prove the following properties.
(a) a =a(modn).

(b) a =0 (mod n) if and only if n is divisible by a.

(¢) a=0b(mod n) if and only if b = a (mod n).

(d) Ifa =b(mod n) and b = ¢ (mod n), then a = ¢ (mod n).

(e) If a = b (modn) and ¢ = d (mod n), then

a+c=b+d(modn),a—c=b—d(modn), ac = bd (mod n).

Calculate ¢(12), and then find all positive integers a < ¢(12) such that a®(1?) = 1
(mod 12). Prove that there is no primitive root modulo 12.

Let p be a prime number and n < p be a positive integer. Show that a> mod p = 1
if and only if amod p = 1 or amod p = —1.

The basic operation in the fast modular exponentiation algorithm is the modular
squaring operation a” mod n. If we let a be an ¢-bit binary integer, then the length of
a” is about 2¢. If £ is close to log, n (the length of the binary representation of n), then
computing a? will require about 2log, n space. To reduce the memory requirement,
devise an algorithm to compute a®> mod n so that the binary representation of the
largest number during the computation has at most 3¢/2 bits.

Use the fast modular exponentiation algorithm to compute 1012 mod 110.

Write a program to implement the fast modular exponentiation algorithm.
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3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

Let 2 = m/n be a rational number, where m and n are positive integers and
ged(m,n) = 1. Let [ay; aq, - - -, a;,] be the finite continued fraction of x, generated
by the continued fraction construction algorithm. Show that £ < log, n.

If we let prime number p = 353 then a = 3 is a primitive root modulo p. Use these

two numbers to construct a Diffie-Hellman key exchange system.

(a) If Alice selects a private key X 4, = 97, what is the value of Alice’s public key
Y,?

(b) If Bob selects a private key X 5 = 233, what is the value of Bob’s public key
Ygp?

(c) What is the value of the secret key agreed on by both Alice and Bob?

Letp = 13.

(a) Show that a = 2 is a primitive root modulo p. Use these two parameters to con-
struct a Diffie-Hellman key exchange system.

(b) If Alice’s public key is Y, = 7, what is the value of her private key X 4?

(c) If Bob’s public key is Yz = 11, what is the value of his private key X ;?

Let p be a prime and a be a positive integer. Alice selects at random a private key
X 4 and uses Y, = X ¢ mod p for her public key. Bob selects at random a private
key X and uses Yz = X% mod p as his public key. How do Alice and Bob agree
on the same secret key? Is this method secure? Justify your answer.

Write a client-server program using the socket API to implement the Diffie-Hellman
key exchange protocol. To complete this problem, you should first complete Exercise
2.39 and Exercise 3.7.

Prove the correctness of Elgamal decryption. That is, prove Equality 3.5.

Can the man-in-the-middle attack that can be carried out against the Diffie-Hellman
key exchange be used successfully to attack Elgamal PKC? Justify your answer.

Letp = 61, ¢ = 53, d = 2753. Find e such that de = 1 mod ¢(pq).

Letn = 187 =11 x 17.

(a) Lete =7, M = 89. Calculate the RSA ciphertext C.

(b) From C calculated in (a), compute plaintext M.

(c) Let e =7, M = 88. Calculate the RSA ciphertext C. Can this C be used to
factor n = 187? Justify your answer.

Describe how to attack RSA if a small value of e = 3 is used. Can you come up a
simple way to prevent such attacks? Justify your answer.

Alice uses the following method to encrypt English plaintext messages, where only
capital letters are used: map each English capital letter to numbers from 100 to 125;
namely, map A to 100, B to 101, - - -, and Z to 125. She then encrypts such integers
one at a time. She uses large values of n and e. Is Alice’s method secure? Justify
your answer.
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3.19.

3.20.

3.21.

3.22.

*%3.23.

3.24.

3.25.
*3.26.
*3.27.

3.28.

3.29.

3.30.

If C = M*®mod n in RSA encryption, show that (2¢C)¢ = 2M mod n.

Assume that Alice encrypts a message M using RSA with public keys n = 437 and
e = 3, which yields ciphertext C' = 75. If someone tells Malice that M € {8,9},
then Malice can determine the true value of M without factoring n. How can Malice
do this?

Assume that Alice and Bob use the same RSA number n, where Alice’s public expo-
nent e, and Bob’s public exponent e are relatively prime. Now Charlie wants to
send a message M to both Alice and Bob. Charlie encrypts M using Alice’s pub-
lic key to get Cy = M4 mod n and encrypts M using Bob’s public key to get
Cp = M*°? mod n. He then sends C'4 to Alice and C'; to Bob. Malice intercepts
both C4 and C'g, which he uses to calculate M. How can Malice do this?

Write a client-server program to implement RSA encryption and decryption,
where RSA parameters are given. To do this exercise, you should first complete
Exercise 3.7.

RSA-576 and RSA-640 have been factored. Conduct a literature search and write a
paper describing how these numbers were factored.

Let y*> = 23 — o + 1 be an elliptic curve. Let X = (1,1)and Y = (—1, —1). Com-
pute X + Y and 2Y.

Compute E,3(0, 1) and E{;(1,1).

Show that (E'(a, b), +) defined in Section 3.5.1 is a commutative group.
Show that (E/,(a, b), +) defined in Section 3.5.2 is a commutative group.
Show that ECC encryption and decryption satisfy commutativity.

Let the global parameters of an ECC system be Eo5(1,1), G = (3,10), and v = 4.

Assume that Alice selects k4 = 5 as her private key.

(a) Compute Alice’s public key P,.

(b) Let M = 4. Compute M’s encoding P, using E,3(1,1).

(c) Bob selects k = 3 and encrypts P;; using Alice’s public key to get C'. What are
the values of the two coordinates in C'?

(d) Show how Alice decrypts C' to get M.

Let the global parameters of an ECC system be E,(1,6),G = (2,7), and v = 2.

Assume that Alice selects k4 = 6 as her private key.

(a) Compute Alice’s public key P,.

(b) Let M = 2. Compute M’s encoding P, in E;(1,6).

(c) Bob selects k = 5 and encrypts P;; using Alice’s public key to get C'. What are
the values of the two coordinates in C'?

(d) Show how Alice decrypts C' to get M.
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3.31.

3.32.

3.33.

Discuss whether it is useful to have a data structure of a secret-key ring in a system.
If yes, give an example to show that this is a useful concept.

The use of PKC and public-key certificates to distribute secret keys is a simple and
secure method. Without PKC, we can also use symmetric-key encryption algorithms
to distribute secret keys using a key distribution center (KDC). A KDC is a trusted
organization. Each user of a KDC must first register with the KDC and establish a
master key with the KDC. When Alice wants to communicate with Bob confiden-
tially, Alice first requests her KDC to generate a session key. After receiving such a
request from Alice, KDC generates a session key, encrypts it using the master key
shared with Alice, and sends it back to Alice.

(a) Devise a secure session key distribution protocol for a KDC.

*(b) Improve your protocol in (a) so that it can resist man-in-the-middle attacks and
message replay attacks and allows Alice and Bob to authenticate each other’s
identity. Moreover, your protocol should cut down communication overhead
as much as possible and incorporate TCP three-way handshake protocol to
establish a protected connection between Alice and Bob.

(c) How does the KDC manage all the master keys? Is a secret-key ring data struc-
ture useful in this application?

(d) Before using the KDC, each user must first register with the KDC, prove his
identity to the KDC, and then establish a shared master key. Without using
PKC, how can this be done?

(e) A KDC can easily become a bottleneck when it has to handle many requests
from many users in a short period of time. Design a hierarchical KDC system
to help solve this problem.

(f) Analyze the pros and cons of using a KDC to distribute secret session keys.

Similar to setting up a KDC for distributing secret keys, we can also establish a
public-key authority center (PKA) to obtain a user’s public key without using his
public-key certificate. A PKA is a trusted organization. To use PKA, each user must
first register his public key with the PKA.

(a) Devise a secure public-key distribution protocol for a PKA.

*(b) Improve your protocol in (a) so that it can resist man-in-the-middle attacks and
message replay attacks and allows Alice and Bob to authenticate each other’s
identity. Moreover, your protocol should cut down communication overhead
as much as possible, and incorporate the TCP three-way handshake protocol
to establish a protected connection between Alice and Bob.

(c) How does a PKA manage users’ public keys? Can a user prove his identity to
the PKA without registering with the PKA?

(d) Before using a PKA, each user must first register with the PKA and prove his
identity to the PKA. How can this be done?

(e) A PKA can easily become a bottleneck when it has to handle many requests
from many users in a short period of time. Design a hierarchical PKA system
to help solve this problem.

(f) Analyze the pros and cons of using a PKA to distribute public keys.
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*3.34.

*3.35.

Suppose that Alice knows an integer ¢ and Bob knows an integer j. They want to
know whether ¢ < 7 without revealing their own integers to each other. This is often
referred to as Yao’s millionaire problem. Devise a security protocol to solve this
problem.

Alice and Bob will go to two separate places in aregion governed by a dictator, where
the only way they can communicate is through a government-censored network. To
use this network, messages are not allowed to be encrypted because government
agents want to reveal the content of the messages. But the sender is allowed to sign
the message. Alice and Bob do share a secret key, but they will not be able to use any
encryption algorithms once they are there. They figure out a way to communicate
using the government-censored network, so that the real data is well protected with
confidentiality and integrity. This is often referred to as a subliminal channel. Try to
describe their method and justify your answer. Note: there are a number of ways to
build a subliminal channel. Alice and Bob should use a method that is cost-effective
and secure (if they were caught cheating, they might be executed).
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Data Authentication

Data authentication has two purposes: certify the origin of the data and convince the user that
the data has not been modified or fabricated. Data authentication is a critical mechanism to
maintain data integrity and nonrepudiation. Data authentication may be achieved either using
conventional encryption algorithms or using public-key cryptography.

Suppose that Alice and Bob share a common secret key /. Alice wants to send a data
string M to Bob and convince Bob that M does indeed come from her without being modified
during transmission. This can be done as follows: Alice sends M together with C' to Bob,
where C = Ej (M) and E is a conventional encryption algorithm agreed on by Alice and
Bob. Because only Alice and Bob know K, Bob can use K to decrypt C' to get M’. Bob
will be convinced that M indeed comes from Alice and that M has not been modified during
transmission if and only if M’ = M. This method, however, allows Alice to deny to Charlie
that M comes from her, for it could have come from Bob who shares the same secret key K
with her. Public-key cryptography overcomes this obstacle. Section 3.6.2 has introduced how
to use public-key cryptography to authenticate data and provide data nonrepudiation.

If M is short, one may encrypt M directly to authenticate it. However, if M is long, encrypt-
ing the entire M for the purpose of authenticating it may be overkill because it incurs extra
computation and traffic overhead. To authenticate a long data string M, it suffices to compute
a short representation h of M and encrypt h.

A short representation of M generated without using any secret key is often referred to
as a digital digest or a digital fingerprint, which can be obtained using a cryptographic hash
function. A short representation of M generated using a secret key is referred to as a message
authentication code (MAC) or a tag, which can be obtained using an encrypted checksum
algorithm. We can also combine a cryptographic hash function and an encrypted checksum
algorithm to generate a keyed-hash message authentication code (HMAC).

This chapter introduces hash function, MAC, and HMAC algorithms, as well as digital
signature standard algorithms. It also introduces a dual signature scheme for electronic trans-
actions and a blind signature scheme for producing electronic cash.

4.1 Cryptographic Hash Functions

A hash function takes a long string as input, breaks it into pieces, mixes them up, and produces
a new string with a short length. Not every hash function is suitable for generating a digital
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fingerprint. For example, let us look at a simple hash function H_, that uses the XOR operation
to transform an input string of arbitrary length to a 16-bit long output string. In particular, let
M = MM, --- M,, where each M; (except possibly the last block M} ) is a 16-bit binary
string. If the last block is shorter than 16 bits, pad it with 1’s to make it a 16-bit block. For
convenience, we still use M, to denote this block. Let

H (M)=M &M, ® &M,

This hash function is ill suited for generating fingerprints because it is easy to find sentences
with different meanings that have the same hash value under this hash function. For example,
consider the following two sentences with different meanings: “He likes you but I hate you”
and “He hates you but I like you”. Let S; and S, denote, respectively, the binary strings
obtained from the first and the second sentences by encoding English letters using 8-bit ASCII
codes and removing white spaces between words. It is straightforward to verify that H,,(S,) =
H..(S,).
To be well suited for generating fingerprints, a hash function must satisfy several criteria.

4.1.1 Design Criteria of Cryptographic Hash Functions

Let H be a hash function to be constructed. We first set an upper bound I for the length of
input strings (measured by bits), where I is a very large number. The output length ~ is fixed,
where v is much less than I'. For example, we may choose I" = 204 — 1 and v = 160. We
require that each -bit string be selected with the same likelihood as a hash value of the hash
function if input strings are selected uniformly and independently at random. Thus, it follows
from the pigeonhole principle that for any input string x, there must be several input strings
y with H(z) = H(y). To generate a good digital fingerprint, /' must possess the one-way
property and the computational uniqueness property. Such a hash function is referred to as a
cryptographic hash function (CHF).

4.1.1.1 One-Way Property

The one-way property assures that computing a digital fingerprint for a given string is easy
but finding a string that has a given fingerprint is hard. In other words, for any binary string x
with |z| < I, it is easy to compute H(x) (e.g., in linear time of |x|), but for any binary string
h with |h| = =, it is hard to find a binary string = such that h = H(x) (e.g., finding such an x
requires exponential time of |z).

4.1.1.2 Computational Uniqueness Property

The computational uniqueness property assures that it is computationally difficult to find two
different strings with the same fingerprint. There are two types of computational uniqueness;
they are collision resistance and strong collision resistance.
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Collision Resistance

A hash function H is collision resistant, if for any binary string  with || < I, it is compu-
tationally intractable (e.g., it requires exponential time of |z|) to find a different string y with
ly| < I' such that H(x) = H(y), although we know that such strings y exist.

Strong Collision Resistance

A hash function H is strongly collision resistant if it is computationally intractable to find two
binary strings = and y with || < I'and |y| < I (e.g., it requires exponential time of |x| + |y|)
such that H(x) = H (y) in practice for most situations.

It is straightforward to verify that if a hash function is not collision resistant, then it is not
strongly collision resistant. However, the opposite is not true. In other words, even if a hash
function is not strongly collision resistant, it may still be collision resistant in practice for most
situations.

4.1.2  Quest for Cryptographic Hash Functions

Despite intensive efforts, it is still not known whether cryptographic hash functions exist with
the one-way property and the computational uniqueness property. Over the years, several can-
didates of cryptographic hash functions have been constructed and used in practice, although
there is no mathematical proof that these hash functions indeed possess the desired properties.
These hash functions may contain subtle loopholes that are exploitable by the attacker. Thus,
it is important to identify such weaknesses to help devise stronger hash functions.

In 2004, for example, a Chinese mathematician Xiaoyun Wang and her group showed that
several widely used hash functions at that time, including MD4, MD5, HACAL-128, and
RIPEMD, do not satisfy the requirement of strong collision resistance. This is contrary to
prior beliefs. They also showed in 2005 that another commonly used hash function SHA-1’s
collision resistance is not as strong as people thought it was. They developed a method that
can find two different strings x and y, with time complexity in the order of 2%, such that
SHA-1(z) = SHA-1(y). Prior to this, it was commonly believed that the time complexity of
finding such a pair of strings is in the order of 2%” (see Section 4.4). Later that year, Xiaoyun
Wang, Andrew Yao (2000 Turing Award winner), and Francis Yao further reduced this time
complexity to the order of 203, These results again tell us what was believed to be strong and
secure may no longer be so because of advancements of technologies and methodologies. New
findings will stimulate new designs of hash functions to overcome the problems that have been
identified.

This section introduces two standard hash functions. They are SHA-512 and WHIRLPOOL.
They are strong candidates of cryptographic hash functions.

SHA stands for Secure Hash Algorithms. SHA-512 and SHA-1 hash functions were devised
by NSA and were made standards for cryptographic hash functions by NIST in, respectively,
1995 and 2002. Exercises 4.8 and 4.9 present a description of SHA-1. Between SHA-1 and
SHA-512, there are SHA-256 and SHA-384. The set of SHA-256, SHA-384, and SHA-512 is
also referred to as the SHA-2 series.

WHIRLPOOL, named after M51 (Whirlpool) Galaxy in Canes Venatici, was devised by a
Brazilian cryptographer Paulo SLM Barreto and a Belgium cryptographer Vincent Rijmen
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M, M. M,
1 H, jz Hy N

+ + + HM)=H,
H, H, H, Hyy Hy

Figure 4.1 The basic structure of hash functions, where M is a plaintext block, IV is an initial vector,
F'is a compression function, and “+” is some form of modular addition operation

(co-author of AES) in 2000, which was recommended by NESSIE and adopted by ISO and
the International Electrotechnical Commission (IEC) as part of the joint ISO/IEC international
standard in 2003.

4.1.3 Basic Structure of Standard Hash Functions

The SHA-1, SHA-2, and WHIRLPOOL hash algorithms all have the same basic structure. This
structure was proposed by Ralph C. Merkle in 1978. The heart of this basic structure is a
compression function F'. Different hash algorithms use different compression functions. The
basic structure is a CBC mode of repeated applications of F' without using secret keys (see
Figure 4.1).

4.1.4 SHA-512
In SHA-512, I = 2'28 — 1 and v = 512, whereas in SHA-1, I = 264 — 1 and v = 160.

4.1.4.1 Initial Process

Let M be a binary string with |M| < I'. Let L be the length of M. We represent L as a 128-bit
binary string and denote it by b;,5(L). We pad M to produce a new binary string M’ as follows:

M'= M || 10° || byys(L), £>0,

such that the length of M’ is divisible by 1024, where || represents concatenation. Let L’ denote
the length of M’. We have

LI'=L+(146)+128=1L+{+129.

It follows from Equality 3.3 that

L
L =1024- {@J + L mod 1024.
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Hence, we can determine ¢ as follows:

] 895 — L mod 1024, if 895 > L mod 1024,
© 1895 + (1024 — L mod 1024), if 895 < L mod 1024.

It is straightforward to verify that there is a positive integer N such that L' = 1024N. So we
can write

M = M,M,--- My,

where each M, is a 1024-bit binary string.

SHA-512 uses a 512-bit initial vector IV. Let 7,1y, 75,74,75,76, 77, and rg be variables,
each of which represents a 64-bit binary string. We view each r; as a 64-bit register. Their ini-
tial values are, respectively, the 64-bit binary string in the prefix of the fractional component

of v2,v/3,v5,V7,v/11,\/13,4/17, and \/19. Representing these values in hexadecimal,
we have

ry = 6a09e667f3bcc908, r; =510e527fade682d1,
ry = bb67ae8584caa73b, r; = 9b05688c2b3e6eClf,
ry = 3c6ef372fe94£f82b, r; = 1£83d9%abfb41bdéb,
ry = ab54ff53a5£1d36£f1, ry = 5be0cdl19137e2179.

All SHA algorithms store binary strings in the big-endian format (see Exercise 2.26 for the
definition of the big-endian format).

4.1.4.2 SHA-512 Compression Function

The compression function F' of SHA-512 takes two inputs; one is a 1024-bit plaintext block
M;, and the other is a 512-bit string H, ;, where 1 <7 < N and H,_, is the current content
IN 7 ToT Ty 5T 6T 7Tg.

Divide M, into sixteen 64-bit blocks Wy, W, --- , Wy, where

W, = M[64i,64i + 64],7 =0,1,--- |15
Then generate sixty-four 64-bit binary strings Wg, Wy, - -+, Wog as follows:
W, = [0y (Wy_) + W, 7+ 0g(W,_15) + Wy_yg]  mod 2%,
t=16,---,79,
o(W)=W=>1)e(W>8 & (W),
o (W)=W>19)o (W > 61)® (W <6),

where W > n denotes a shift operation that shifts W circularly to the right n times, and
W < n denotes a shift operation that shifts 1 linearly to the left n times (with the n-bit
suffix of W filled with 0’s).
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Let X =z,2y- -2, and Y = 4,y - - -y, be two binary strings of equal length, where
x;,y; € {0,1}. Define

XAY = (zy Ay (@ Ays) - (T AYp)s
XVY = (2, Vy)(z,Vyy) (2 VYp),
X =TTy Ty,
where A denotes the logical conjunction, that is,
0ON1=1A0=0A0=0,1A1=1;
V denotes the logical disjunction, that is,
OV1I=1v0=1Vv1=1,0v0=0;

and T denotes the logical negation, that is,

0=1,1=0.

Let Z = 2z, - - - z, be a binary string, where each z; is a bit. Let ch(X,Y, Z) denote the
conditional predicate “if X, then Y else Z.” That is,

ch(X,Y,Z)= (XA NY)V (X AZ).
Let maj(X,Y, Z) denote the majority predicate, that is,
maj(X,Y,Z)=(XANY)® (XNZ)s (Y AND).

Let K, K, --- , K,y denote the sequence of SHA-512 constants, where each constant is a
64-bit binary string (see Appendix B). Let 7} and T}, denote temporary variables representing
64-bit binary strings. Let r denote a 64-bit register. Let

Ay(r) = (r>>28) @ (r>> 34) @ (r > 39),
A(r)=(r>>14) @ (r >> 18) @ (r >> 41).
(M,

The SHA-512 compression function F'(M,, H; ;) for each 7 is executed 80 rounds of the
same operations. In particular, for ¢ from 0 to 79, it does the following:

T, — [rg + ch(rs,r6,77) + A (r5) + W, + K] mod 2%,
T, « [Ay(ry) +mag(ry, 9, 75)] mod 204,

Ts < T

T7 < Tos

Te < Tss

rs « (r, +T;) mod 2%,

Ty < T3,
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Ty <= T9,
TQ — T17
r — (T, +Ty) mod 2%

After 80 rounds of executions, the 512-bit string in 7,ryry7 75767775 1S the output of
F(M;, H; ).

4.1.4.3 SHA-512 Algorithm

Let X = X, X,--- X, and Y =Y|Y, - Y}, where each X, and Y is an /-bit binary string.
Generalize the bitwise-XOR operation to an /-bitwise-XOR operation as follows:

X@,Y = [(X, +Y;) mod 2°][(X, + Y;) mod 2] - - - [( X}, + Y},) mod 2°].

Clearly, @, is the standard bitwise-XOR operation &. Then M’s digital fingerprint is deter-
mined by H(M) = Hp, where H  is calculated recursively as follows:

H, =1V,
H; = H; ®aF(M;,H,;_,),
i=1,2-.. N

4.1.5 WHIRLPOOL
In WHIRLPOOL, I” = 226 — 1 and v = 512.

4.1.5.1 Initial Process

Let M be a binary string with | M| < 2%, Let L be the length of M. We represent L as a
256-bit binary string and denote it by b,z (L). Similarly to SHA-512, we pad M to produce a
new binary string M’ as follows:

M' = M || 10° || bysg(L), £>0,
such that the length of M’ is divisible by 512. Let L’ denote the length of M’. We have
L'=L+ (1+4¢)+256=L+{+257.

It follows from Equality 3.3 that

L
L =512 L)HJ + L mod 512.

Hence, we can determine ¢ as follows:

255~ L' mod 512, if 255 > L mod 512,
1255+ (512 — L mod 512), if 255 < L mod 512.
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It is straightforward to verify that there is a positive integer N such that L' = 512N. So we
can write
M = MM, --- My,

where each M is a 512-bit binary string.

4.1.5.2 Compression Function

The heart of the WHIRLPOOL compression function F' is an encryption algorithm W. It takes

a 512-bit plaintext block X and a 512-bit key K as input, manipulates X in a way similar

to AES, and produces a 512-bit output W (X, K). In this algorithm, a 512-bit binary string

is divided into a sequence of 64 bytes and is treated as an 8 X 8 state matrix of bytes, where

elements are listed row wise. Recall that AES deals with 4 x 4 matrices of bytes.
WHIRLPOOL’s compression function is defined as follows:

FX,K)=W(X,K)® X.
The WHIRLPOOL fingerprint of M is obtained using a CBC mode on M, defined as follows:
Hy = 072,
Hy=H; & F(M,;H;_,)
=H, & W(M;, H, )& M,
i=1,2,--- ,N,

where H(M) = Hy.
We describe in the following section how round keys are generated and how W (X, K) is
constructed.

Generating Round Keys

A total of eleven 512-bit round keys are generated from K, denoted by K, K, -+ , K{y. In
particular, K, = K and K,(1 <i < 10) is generated using the same sequence of four basic
operations on K;_;. These four operations are substitute-bytes, denoted by sub; shift-columns,
denoted by shc; mix-rows, denoted by mir; and add-round-constant, denoted by arc. In other
words, We will treat K; as an 8 x 8 state matrix of bytes for these operations and so we will
denote it by bolditalic K.

K, = arc(mir(she(sub(K,;_,))),RC;),

where RC; is an 8 x 8 state matrix RC); representing a 512-bit constant string obtained directly
from WHIRLPOOL’s S-Box (see Table 4.1). In particular, the first eight bytes in RC); are the ith
eight bytes in the S-Box, where the rest of the bytes are 0’s. That is, if we write RC; as a
sequence of bytes with RC,[j] denoting the jth byte in RC;, where 0 < j < 63, and list the
elements in WHIRLPOOL’s S-Box row wise as s\, 51, - , So55, then

00?

58(i—1)+j’ lf 0 S ] S 7,

RC;j] =
iU {00000000, if 8§ < j <63,
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X Round keys K

Round 1

Round 10

W(X,K)

Figure 4.2 Block diagram of W

where ¢ = 1,2, --- | 10. For instance, the first eight bytes in RC, are 18 23 c6 €8 87 b8 01
4f, and the first eight bytes in RC are e4 27 41 8b a7 7d 95 c8.

Encryption Structure
After the round keys are generated, the algorithm W writes the 64-byte string X in the form
of a state matrix A = (a,, , )35, Where

a’u,u = Lgu+tuvs

and u,v = 0,1,--- ,7. It then performs the add-round-key operation, denoted by ark, on A
and K|, to generate a new string A,. It repeats the same sequence of four operations for 10
rounds. In particular, for each round ¢ with 1 < ¢ < 10,

A, = ark(mir(she(sub(A;_4))), K;),
and W(X,K) =Ay,.
Figure 4.2 depicts the block diagram of W.

Substitute Bytes
WHIRLPOOL’s operation of substitute-bytes uses a 16 x 16 S-Box defined in Table 4.1.
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Table 4.1 WHIRLPOOL S-Box (in hexadecimal values)

0 1 2 3 4 5 6 7 8 9 a b c d e f

18 23 c¢6 e8 87 b8 01 4 36 a6 d2 5 79 6f 91 52
60 bc 9 8 a3 0Oc 7b 35 1d e0 d7 c2 2 4b fe 57
15 77 37 e5 9f f0 4a ca 58 c9 29 0O0a bl a0 6b 85
bd 5d 10 f4 cb 3e 05 67 e 27 41 8 a7 7d 95 c8
fo e 7¢c 66 dd 17 47 9e ca 2d bf 07 ad 5a 83 33
63 02 aa 71 8 19 49 c9 f2 e3 5b 8 9a 26 32 b0
e9 Of d5 80 be cd 34 48 ff 7a 90 5f 20 68 1a ae
b4 54 93 22 64 f1 73 12 40 08 ¢33 e db a1l 8d 3d
97 00 c 2b 76 82 d6 1b b5 af 6a 50 45 3 30 ef
3f 55 a2 ea 65 ba 2f cO de 1c fd 4d 92 75 06 8a
b2 e6 0Oe 1f 62 d4 a8 96 9 c¢c5 25 59 84 72 39 4c
be 78 38 8 c¢1 a5 e2 61 b3 21 9¢c 1e 43 <c¢7 fc 04
59 99 6d O0d fa df 7e 24 3b ab ce 11 8 4e b7 eb
3c 81 94 {7 b9 13 2c d3 e7 6e c4 03 56 44 7f a9
2a bb c1 58 dc Ob 9d 6c 31 74 6 46 ac 89 14 el
16 3a 69 09 70 b6 cO ed cc 42 98 a4 28 5¢c {8 86

T DO QOO T ®”L OONOOO~WN-—=-O

For the construction of WHIRLPOOL’s S-Box, the reader is referred to Exercises 4.9.10,
49.11, and 4.12.
LetA = (a; j)sxs be an 8 x 8 state matrix of bytes. Let

T = Tyl ToT3T Tl

be an eight-bit string, where each x; € {0, 1}. Let 7, (z) denote the decimal value of the binary
string @, z,24 and 7, () denote the decimal value of the binary string z,x;x¢z,. Define a
substitution function S on z by

S(x)=s

mi(x),ma(x)

where s, , is the byte at the uth row and the vth column in WHIRLPOOL’s S-Box and 0 <

u,v

u, v < 7. WHIRLPOOL’s operation sub of substitute-bytes is defined as follows:
sub(A) = (S(ai,j))SXB'

Shift Columns

The shift-columns operation skc in WHIRLPOOL is similar to the shift-rows operation shr in
AES, except that the columns rather than the rows are shifted. In particular, the jth column is
circularly shifted down j bytes, where j =0,1,--- | 7.

Mix Rows
The mix-rows operation mir in WHIRLPOOL is similar to the mix-columns operation mic in
AES. In particular, it uses the following constant matrix, where each row, starting from the
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second row, is a circular right shift of the previous row:

[01 01 04 01 08 05 02 09]
09 01 01 04 01 08 05 02
02 09 01 01 04 01 08 05
05 02 09 01 01 04 01 08
08 05 02 09 01 01 04 01
01 08 05 02 09 01 01 04
04 01 08 05 02 09 01 Of
01 04 01 08 05 02 09 01

Then mir is defined by
mir(A) =A - A,

where the scalar addition operation and the scalar multiplication operation on bytes are the
same as those defined in AES.

Add Round Constant and Add Round Key
The add-round-constant operation arc and the add-round-key operation ark in WHIRLPOOL are
the same as the add-round-key operation in AES. In particular,

arc(A,RC;) =A ®RC,,
ark(A,K,)) =A®K,,

where the @ operation on two matrices is the & operation on bytes of corresponding elements
in the matrices.

4.1.6 SHA-3 Standard

In 2007, NIST launched a competition to define a secure hash algorithm to provide an alterna-
tive to SHA-2. The SHA-2 hash functions are still considered secure by the NIST, and so NIST
required that the SHA-3 standard be drop-in compatible with any system that uses SHA-2. This
means that SHA-3 must support output sizes of 224, 256, 384, and 512 bits.

In 2012, NIST announced that the Keccak family of hash functions devised by Bertoni,
Daemen, Peeters, and Van Assche was selected as the SHA-3 standard. This construction devi-
ates from the traditional CBC mode of repeated applications of compression structure used by
SHA-2 and WHIRLPOOL. Instead, it uses a sponge construction originating from the work of
the KECCAK team.

4.1.6.1 Sponge Functions

A sponge function takes a variable length binary string as input and constructs an arbitrary
length binary string as output. The heart of a sponge function is a fixed length permutation. In
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particular, a sponge function consists of three phases: a setup phase, an absorb phase, and a
squeeze phase.

Let M be the input string and the hash output length be 7. Let b = 25 x 2¢ with 0 < ¢ < 6.
Thus, b € {25, 50, 100, 200, 400, 800, 1600}. Given a value of b, write b = r + ¢, where both
r and c are positive integers, r is called the rate, and c is called the capacity. In general, the
selection of r is arbitrary, but the capacity ¢ should be sufficiently large to make the hash
function secure. SHA-3 specifies that ¢ = 2+, where -y is the length of the hash value.

For example, if we want the hash value to have length v = 224, then we have ¢ = 2y = 448,
and so we may choose b = 800 with r = 352.

Setup

In the setup phase, we first pad M by appending at most » — 1 bits in the form of 10*1 for
a new string M’ such that | M|’ is divisible by . Let N = |M|'/r. Divide M’ into N blocks
such that each block is 7-bit long. Denote these blocks by

M,, M,,--- , My.

Let A be a b-bit string. Divide A into 25 substrings of length m = 2¢, and rewrite the 25
substrings into a 5 x 5 state matrix listed row wise, denoted by A = (a; ;)55- Leta, ; ; denote
the kth bitin a; ;.
Absorb
In the absorb phase, each block is absorbed by the XOR operation with the current state,
followed by the application of a fixed-length permutation f; on b-bit inputs, which will be
described later. In particular, let A, be the current state, which is a binary string from the
current state matrix A; by listing all the entries row wise. Initially, 4, = 0°. Let M, be the
current block. Recall that the size of M; is r, p,.(X) returns the r-bit prefix of string X, and

s.(X) returns the c¢-bit suffix of X. Then

A = fi((pr(M; @ Ai_y) [ 's.(A5-1)),
i=1,--- ,N.
Squeeze
In the squeeze phase, the permutation f; iterates itself a few times on the initial input of A

until the output string is at least as long as the desired hash value. Let n denote the number of
iterations. Each iteration generates a new string of length b as follows:

AN+i = fb(AN-H‘—l)a
i=1,--- ,n.
Let
h;, = PT(AN+2>1)7
i=1,--- ,n.

The output of the squeeze phase is h, - - - h,, with length rn. For example, suppose that the
length of the desired hash value is v = 224, then because in this case r > -, we can simply
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M Mo Mpn h1 hn—1 hn
., J\L J\L L... | ‘ ... ‘ J
fo Io Io fo fo
C — - —— — —
Absorb Squeeze

Figure 4.3 The sponge function construction using a b-bit permutation f,, where b = r + c. The state
is initially set to 0° and the result is an rn-bit string

choose n = 1. For another example, if v = 160, then ¢ = 2y = 320, then we may choose
b = 400 with » = 80. In this case, we may choose n = 2.

Basic Sponge Structure
Figure 4.3 depicts the basic structure of the sponge function.

Hash Value
Let H., denote the SHA-3 hash function with output length . Then
Ho (M) =p,(hy || -+ | hy)-

4.1.6.2 The KEccak Family of Permutations

We now describe the KEccak family of permutations f,, where b = 25 x 2¢ with 0 < ¢ < 6,
andb=r+c

The permutation f, takes a 5 x 5 state matrix A as input and carries out the following five
operations, where indices are computed modulo 4 and 2¢ where appropriate.

1. Diffusion: Forall0 <i,j < 4and 0 < k < 2¢ — 1, compute

4 4
W je = Qi D EB Qi1,y,k D @ Qit1,y,k—1-
y=0 y=0

2. Dispersion (of bits in words): This operation is the following sequence of 24 steps:
(a) Sett=1andj =0.
(b) Fort =0to 23 do
ia;;j=a;;®((t+1)(t+2)/2).
ii. Seti=jandj = (2i+ 3j) mod 5.
3. Dispersion (of words): For all 0 < 7,5 < 4, compute

@ (2i4+3§) mod 5 — 4 j5-
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Table 4.2 Round constants for the symmetry disruption phase of the f; for
¢ = 6. For ¢ < 6, use the prefix of these round constants to obtain the round
constants of appropriate length

[ Value l Value

0 0x0000000000000001 12 0x000000008000808B
1 0x0000000000008082 13 0x800000000000008B
2 0x800000000000808 A 14 0x8000000000008089
3 0x8000000080008000 15 0x8000000000008003
4 0x000000000000808B 16 0x8000000000008002
5 0x0000000080000001 17 0x8000000000000080
6 0x8000000080008081 18 0x000000000000800A
7 0x8000000000008009 19 0x800000008000000A
8 0x000000000000008 A 20 0x8000000080008081
9 0x0000000000000088 21 0x8000000000008080
10 0x0000000080008009 22 0x0000000080000001
11 0x000000008000000A 23 0x8000000080008008

4. Nonlinear Map: For each 0 < 7, 7 < 4, compute

a; ;= a; ;D (a(i+l) mod 5,5 N @(342) mod 5,]‘)'

This map provides resistance to linear cryptanalysis.
5. Symmetry Disruption: During the [th round, compute

ag o = ago D RO,

where RC; is the round constant for the /th round.
Table 4.2 lists the round constants for £/ = 6, where the length of each word is 64-bit long.

Generating Round Constants
The round constants for the permutation f; are generated using a Linear Feedback Shift Reg-
ister (LFSR). We call the initial value of the word, stored in the register, the seed.

A Galois LFSR is used to produce the round constants using a homomorphism

0 : GFQ2)[z]/(2® + 2 + 2° + 2* + 1) — GF(2).
In particular, let RC’L i denote the k-bit of RC). Then we have, for 0 < j </,
RCy 9y =7¢jm,
where ¢, is the output of the LFSR defined by
re, = (' mod 2® + 28 + 2° + 2 + 1) mod .

All other bits of RC,. are zero.
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For example, 7cg is computed as follows:

rcg:(xgmodm8+x6+x5+x4+l)m0d$

(—2® —2° — 2" — 2) mod
= (

2% 4 2° + ' 4 2) mod z

0.

4.2 Cryptographic Checksums

Checksums are commonly used to detect transmission errors in network communications. For
instance, the IP header in IPv4 contains a 16-bit 1’s complement sum and the Ethernet frame
contains a 32-bit Cyclic Redundancy Check (CRC). However, these checksums cannot be used
to authenticate data or be used as fingerprints, for it is easy to find a different string to have the
same checksum as that of the given string. We can, however, use symmetric-key encryption
algorithms to generate cryptographic checksums to authenticate data. Cryptographic check-
sums are also known as Message Authentication Codes (MAC).

4.2.1 Exclusive-OR Cryptographic Checksums

Let M = M, M, - - - M,, be a message, where each M, (after appropriate padding) is a 128-bit
binary string. Let F/ denote the AES-128 encryption algorithm and K an AES-128 secret
key. Let

H (M)=M &M, ®---®M,.

Then MAC(M) = Ey(H,(M)) is the MAC code for M. However, this method is insecure,
for it is vulnerable to a man-in-the-middle attack. For example, suppose that Alice and Bob
share the same AES-128 key K. If Alice sends (M, E(H(M))) to Bob to authenticate M
and Malice intercepts it, then Malice can use Ey (H,(M)) to impersonate Alice to authen-
ticate almost any message. This can be done as follows: let M’ =YY, - - - Y, be an arbitrary
message, where each Y (after appropriate padding) is a 128-bit binary string. Let

Y=Y, 0Y,® - @Y,®H, (M),
M" = M| Y.
Note that M" is basically the same message as M’. Malice sends
(M", Eye (H(M)))

to Bob to make him believe that M” comes from Alice as follows. According to the authenti-
cation protocol, Bob first computes

Hy(M") =1 &Y, & - 8Y, &Y = Hy(M).

He then decrypts E - (H(M)) to get H. (M) = H_(M"), and so Bob would have to believe
that M"” comes from Alice.
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4.2.2  Design Criteria of MAC Algorithms

Let MAC (M) denote M’s MAC code, where K is a secret key. We require that MAC ;- (M)
satisfy the following four criteria:

1. Forward efficiency: Computing MAC ;- (M) is easy and efficient.

2. Backward intractability: Tt is computationally difficult to compute M from MAC (M).

3. Computational uniqueness: It is computationally difficult to find M’ # M from
(M, MAC ;(M)) such that MAC (M') = MAC(M).

4. Uniform distribution: Let k be the length of the MAC code. Let M be a string selected
uniformly at random. Let M’ = M be a string, where M’ is either selected at random
independently of M or transformed from M (e.g., using a transformation function f such
that M’ = f(M)). Then the probability of MAC - (M') = MAC (M) is 27F.

Despite intensive efforts, there have been no known MAC algorithms proven to satisfy these
four criteria. We can, however, use standard encryption algorithms and standard hash functions
to construct message authentication codes to meet the needs in practical applications.

4.2.3 Data Authentication Algorithm

In 1985, the NIST established a data authentication code standard DAC. It is based on DES
under CBC mode.

Let M = M, M, - - - M, where each M, (after appropriate padding) is a 64-bit binary string.
Let K be a DES key and E be DES encryption algorithm. Let

C1 = EK(M1)7
C; = Ex(M; ®C;_y),
i=2, k.

Then DAC = (.
As DES is phasing out, DAC has been replaced with a new authentication scheme called
Keyed-Hash Message Authentication Code (HMAC).

43 HMAC

HMAC is an algorithmic scheme. It uses a hash function and a symmetric-key encryption
algorithm to generate authentication codes. The basic idea of HMAC is to embed the secret
information of the key into the data and then compute a hash value from it.

4.3.1 Design Criteria of HMAC

1. Any reasonable hash function can be deployed directly, that is, without any modification,
in HMAC.
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2. Any cryptographic hash function deployed in HMAC should maintain its basic properties,
including the one-way property (i.e., forward efficiency and backward intractability) and
the computational uniqueness property.

3. The use of secret keys is simple.

4. Analysis of the strength of a HMAC code can be obtained from analyzing the strength of
the hash function deployed.

4.3.2 HMAC Algorithm

HMAC takes the following parameters:

H a hash function to be embedded (e.g., SHA-512 and WHIRLPOOL).

v the initial vector of H.

M: the message to be authenticated.

L: the number of blocks of M.

14 the output length of H(M).

b the number of bits in a block, which is divisible by 8. It is required that b > /.

K the secret key with a length < b. (If | K'| > b, then let K < H (K) such that
K| =10)

K': K’ = 0""KIK is the prefix padding of K with |K’| = b.

ipad: ipad = (00110110)"/%.

opad: opad = (01011100)%/8.

K): Kj= K'® ipad. (K reverse one-half of the bits in K.)

K{: K] =K' @ opad. (K] also reverses one-half of the bits in K.)

The HMAC algorithm is given as follows:
HMAC(K, M) = H(K] || H(K) || M)). (4.1)

We use HMAC-SHA-512 to denote the HMAC implementation with SHA-512 as the
embedded hash function. Likewise, we use HMAC-WHIRLPOOL to denote the HMAC
implementation with WHIRLPOOL as the embedded hash function.

It can be shown that the strength of an HMAC implementation is closely related to that of
the underlying hash function it deploys.

4.4 Birthday Attacks

Suppose that we want to know whether in a group of people there are two persons who were
born on the same day in the same month. If each person has the same likelihood of being born
on any one of the 365 days in a year (for simplicity, we assume there are no leap years), we
can show that in a group of 23 people, the probability that there are at least two persons born
on the same day in the same month is greater than 1/2. To see why this is true, let us fix an
order to these 23 people. Then the probability that the second person’s birthday differs from
the first person’s is 364/365. Likewise, the probability that the ith person’s birthday differs
from any of the previous i — 1 persons’ birthdays is (365 — ¢ 4+ 1)/365. Thus, the probability
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that none of the 23 people has the same birthday is

364 363 343

Hence, the probability that in a group of 23 people there are at least two people with the
same birthday is greater than 1 — 0.493 = 0.507 > 1/2. We generalize this idea to study the
complexity upper bound of breaking the strong collision resistance of hash functions.

4.4.1 Complexity of Breaking Strong Collision Resistance

Let H be a hash function with a fixed output length. Thus, H has a fixed number of different
outputs. Without loss of generality, we assume that H has exactly n different outputs. Note
that n is a power of 2 if H is a cryptographic hash function, but it does not have to be so in
other cases.

Select k inputs uniformly and independently at random and list them as vy, ¥y, - , Yp.
Then the probability that there are two indexes i and j with j < i such that H(y;) = H(y;) is
(¢ — 1)/n. Hence, for any i with 2 < i < k, the probability that H (y,) differs from any H (y;)
with j < iis .

-2
n

Therefore, the probability that none of these k strings collides, that is, H (y;) # H (y;) for any

j<i<k,is
(-8 (-2
n n n

Let P(n, k) denote the probability that a collision occurs in k strings under H. Thatis, P(n, k)
is the probability that there are two strings y; and y; with i # j such that H(y;) = H(y;). Then

P(n,k)zl—(l—%) (1—%>-~-<1—k;1>. 4.2)

To compute P(n, k), we use the following inequality:

l—z<e™, 4.3)

where x is any positive real number. The proof of this inequality can be found in most college
calculus textbooks.
It follows from Equality 4.2 and Inequality 4.3 that

Pnk) > 1 — e Vne-2/n ... g~ (k=1)/n
E(k-1)

=1—e "2n .

Letl—e "2  =1/2.Thene 2 = 1/2. Thus,
k(k — 1)

=1In2. 4.4
o n 4.4
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Solving Quadratic Equation 4.4, we get

1++v/14+8In2-n

k= 4.5
5 4.5)
When n > 52, because 52 > 36/ In 2, we have
V8In2-n<1++v1+8m2-n<v9In2-n. (4.6)
Thus, from Equality 4.5 and Inequality 4.6 we get
Vv8In2-n v9In2-n
—<k< —, 4.7)
2 2
1.17v/n < k < 1.25v/n. (4.8)

This implies that when 1.17/n < k < 1.25,/n, the probability that a collision occurs in k

inputs under H is greater than 1/2. For example, when n = 356, we have 1.25v/365 < 23.89

and 1.17v/365 > 22.35. Any integer between 22.35 and 23.89 can only be 23. This verifies

what we showed at the beginning of this section: the probability of at least two persons who

were born on the same day and in the same month in a group of 23 people is greater than 1/2.
The computations in this section give rise to the following birthday paradox.

Birthday Paradox. From a basket of n balls of different colors, pick k (k < n) balls uni-
formly and independently at random and record their colors (i.e., after a ball is picked, record
its color, and put it back in the basket before the next ball is picked). If 1.17/n < k < 1.25\/n,
then with probability at least 1/2, there is at least one ball that is picked more than once.

Let H be a cryptographic hash function with output length ¢. Then n = 2. Thus, if we
select 1.25 - 2¢/2 ~ 2¢/2 input strings uniformly and independently at random, the probability
that there are two different strings = and y such that H(z) = H(y) is greater than 1/2. This
indicates that the complexity upper bound of the strong collision resistance of H does not
exceed the complexity of searching 2¢/2 random strings.

For example, the complexity upper bound of strong collision resistance for SHA-1 is
2160/2 — 230 and for SHA-512 is 2°1%/2 = 2256,

4.4.2 Set Intersection Attack

Suppose that we select uniformly and independently at random two sets of integers from
{1,2,--- ,n}, with k integers in each set, where & < n. What is the probability Q(n, k) that
these two sets intersect?

Let A ={ay,ay, -+ ,a,} and B = {by, by, -+ , b, } denote these two sets. As the proba-
bility that b, = a, is 1/n, we know that the probability that b, # a, is 1 — 1/n. Likewise, the
probability that none of the k elements in B equals a, is (1 — 1/n)¥. Thus, the probability
that B and A disjoin is
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where the inequality at the right-hand side follows from Inequality 4.3. Hence,

1\ )
Q(n,k)zl—(l——) >1—ek/m,
n

Let 1 — e */" =1/2. ThenIn 2 = k?/n. Hence, k = v/In 2 - n. That is,
0.69v/n < k < 0.7y/n. (4.9

In other words, if 0.69\/n < k < 0.7/n, then Q(n, k) > 1/2.

The set intersection attack is a form of birthday attack. In this attack, the attacker first uses a
legitimate document D to obtain AU’s signature, where AU is an authentication authority (e.g.,
a company CEO). That is, the attacker uses D to obtain C' = (H(D)) g , where (H (D)) 1
represents AU’s signed copy of H (D) using his private key K7 ;.

The attacker then produces a new document F that has different meanings from D
such that H(F) = H(D). The attacker can then use (F,C) to show that F is endorsed
by AU.

Suppose that AU is willing to sign any legitimate document. The attacker may launch a set
intersection attack as follows:

1. By assumption, AU will sign any legitimate document D or any document that has the same
meaning as D. Let the output length of H be ¢ bits, which is fixed regardless of the length
of the input. The attacker prepares a set S of 2¢/? different documents, all having the same
meaning as D. These documents can be obtained, for example, using one or more of the
following methods:

(a) Replace a word or a phrase in D with a synonym or a synonymic phrase.
(b) Rephrase sentences in D.

(c) Use different punctuation.

(d) Reorganize the structure of D.

(e) Change passive tense to active, or active to passive.

2. By assumption, AU will refuse to sign any malicious document. To obtain AU’s signature
on a malicious document F, the attacker prepares a set S, of 2¢/2 different documents, all
having the same meaning as F.

3. The attacker computes

H(S)) ={H(X)| X € 5},
H(S,) ={H(X)| X € 5,}.

Although the documents in S| (similarly in S,) are not generated uniformly or inde-
pendently at random, their hash values are distributed uniformly and independently.
This is the property of a cryptographic hash function. Thus, the probability that there
is a document D’ € S| and a document F’ € S, such that H(D') = H(F') is greater
than 1/2.

Assuming the attacker has found such two documents, he presents D’ to AU for AU’s
signature.

If such a pair of documents (D', ') does not exist in this round, the attacker repeats the
same procedure until he finds such a pair.
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The set intersection attack also indicates that the complexity of breaking the strong collision
resistance of any cryptographic hash function has an upper bound in the magnitude of 2¢/2.

4.5 Digital Signature Standard

PKC is the most effective mechanism to produce a digital signature for a given document.
Suppose that Alice wants to sign a document M. She first computes H (M), where H is
a cryptographic hash function. She then encrypts H (M) with her private key Ky to get
By (H(M)). For Bob to verify that she has signed the document M, Alice will present
(M, Egr (H(M))) to Bob, together with her public-key certificate CA(K}). Bob retrieves
K73 from Alice’s certificate, decrypts Ey. (H(M)) to get h using K3, computes H (M) on
the copy of M he receives, and verifies that h = H (M) to confirm Alice’s signature.

RSA and ECC would be natural choices of PKC for digital signatures. RSA, however, was
under patent protection from 1978 to 2000. NIST, being a government agency, should not
establish standards using patented algorithms to benefit patentees, and so it established a digital
signature standard (DSS) using a different digital signature algorithm. DSS was first published
in 1991. It was modified once in 1994 and once in 1996. After RSA’s patent protection ended
in 2000, NIST included RSA and ECC as part of DSS. The DSS algorithm introduced in this
section is the original DSS published in 1996.

Note that DSS can only be used to generate digital signatures. That is, it cannot be used
to encrypt data. DSS uses SHA-1 to compute a 160-bit hash value. The reader is referred to
Exercises 4.8 and 4.9 for a description of SHA-1. In particular, DSS uses the following three
global parameters:

p: aprime number with 2171 < p < 2%, where 512 < L < 1024
and L is divisible by 64.
¢: aprime number and a factor of p — 1, with 219 < ¢ < 2160,
g: g =hPY/9mod p, where 1 < h < p — 11is an integer with g > 1.

To use DSS, each user must first select at random a positive integer x < ¢ as a private key.
After this selection, the user then computes y = g* mod p as the public key and obtains a
public-key certificate CA (y) for y.

4.5.1 Signing

Suppose that Alice’s private key is x 4, and her public-key is y 4. To digitally sign a document
M, Alice first selects at random a positive integer k4, < ¢. She then computes

74 = (g"* mod p) mod g,
kit = k% mod g,
sa=[ky' - (H(M)+x,-7r,)] modg,

and uses (r4,s,) as M’s digital signature. We call this procedure a signing procedure or
simply signing.
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4.5.2  Signature Verifying

Suppose that Bob obtains (M’, (14, s'4)) from Alice and her certificate CA(y4). Bob first
obtains Alice’s public-key y 4, using CA’s public key to decrypt CA(y,). He then carries out
the following computations and verifies Alice’s digital signature:

w = (sy)
u = (H(M
Uy = (ry -

)7 mod g = (54)7? mod p,
!
A

) - w) mod g,

-1
!
'y - w) mod g,

v=[(¢" -yy) mod p ] mod q.

If v = r/,, then Bob can be confident that M/, does indeed bear Alice’s signature. This com-
putation is referred to as signature verification.

4.5.3 Correctness Proof of Signature Verification

We now prove the correctness of signature verification. That is, we show thatif M’ = M, r/, =
Ta,S84 = Sy, thenv =r/,.

Note that ged(h,p) = 1, for 1 < h < p — 1. It follows from Fermat’s little theorem that
h?~! mod p = 1. Hence,

g?mod p = (h(pfl)/q mod p)? mod p
= h? ' mod p
=1.

If m and n are positive integers and m = n mod ¢, then there is an integer k£ such that
m = n + kq. Hence,

¢™ mod p = ¢""* mod p
= (¢"g"") mod p
= [(¢g" mod p)(g? mod p)*] mod p
= (¢g" mod p) - 1" mod p

= ¢" mod p.
AsM' = M,s'y = sy, and ry = r 4, we have
w = 521 mod g, (4.10)
u; = (H(M) - w) mod g, (4.11)
Uy = (14 - w) mod q. (4.12)
It follows from Equality 4.11 that
g"“ mod p = g7 mod p.

It follows from Equality 4.12 that

Tp-U2=x,4 74 wmodgq.
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Thus,

TATA W

yy modp=g*“™ modp=g mod p.

‘We therefore have

u

" - y'¥) mod p] mod ¢

=[(
[ e P
KgH M)w | gwaa: w) mod q] mod p
[(g (M)teara) ) mod q} mod p.
As sy = [k (H(M)+z 4 -74)] mod g, we have

w = sy mod ¢ = [ky(H(M)+14-74)""] mod g.

This implies that (H (M) 4+ x4 - 74)w = k4 mod g. Therefore,

ka

v =(¢g" mod p) mod g =r4.

This completes the proof.

4.5.4  Security Strength of DSS

The security strength of DSS rests on the strength of SHA-1 and the difficulty of solving
discrete log. The complexity of breaking the strong collision resistance of SHA-1 has been
reduced from 2% to 263, However, breaking the collision resistance (i.e., given (M, H(M))
find M’ # M such that H(M') = H(M)) is harder. Intractability of discrete log ensures that
it is difficult to compute %k 4 or x 4 from r 4 and s 4.

4.6 Dual Signatures and Electronic Transactions

Suppose that Alice has a message I; and wants Bob to act according to what it says. So she
sends I; to Bob. However, for Bob to act on /;, he must wait for Charlie to tell him it is okay
to do so. Charlie, on the other hand, needs Alice to send him a separate message I, to convince
him that he can give Bob the go-ahead message in which I, must be linked with I;, but Charlie
is not allowed to see what I; is. Moreover, all messages must be properly authenticated and
remain confidential during transmissions.

Dual signature is an interactive authentication protocol for solving this problem. In partic-
ular, it allows Alice to encrypt both I; and I, sign them using her private key, and send them
to Bob. However, she only allows Bob to read I;. In other words, Bob cannot decrypt I,. Bob
verifies that he received both I; and [, from Alice. He then transmits them to Charlie, but he
only allows Charlie to read I,. Charlie verifies that both I; and I, come from Alice through
Bob. He then sends a receipt IR to Bob, telling Bob whether he approves I,. Bob verifies that
he received R from Charlie. He then sends a receipt Rz to Alice, telling Alice whether he
will act on I;.
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4.6.1 Dual Signature Applications

Dual signature may be used in online shopping applications to provide security and privacy
protections, where Alice is a customer, Bob a merchant, and Charlie a banker.

Alice browses Bob’s online store, creates an order list [, fills in her payment information
I, (credit card number, name, expiration date, etc.), and sends both I; and I, to Bob. Bob first
verifies that they indeed come from Alice. He then reads Alice’s order list /; and sends both I,
and I, (which he cannot read) to Charlie. Charlie first verifies that I; and I, come from Alice
through Bob. He then reads Alice’s payment information [,. Note that Charlie cannot read
Alice’s order list. Depending on whether the information provided in I, is correct and whether
Alice has a sufficient credit line, Charlie issues a receipt 12 and sends it to Bob, telling Bob
whether he will be paid for selling the items to Alice on her order list I;. Bob verifies that R
indeed comes from Charlie. If R says payment will be made, Bob creates a receipt 5 and
sends it to Alice, informing her that her order has been filled.

Requiring that both I; and I, be linked together prevents separation of a payment from
an order, so that nobody can use this payment to pay for a different order. Disallowing Bob
from reading I, and Charlie from reading I, gives Alice better privacy protection than what
the current practice provides. In the current practice, merchants can read customers’ credit
card information, and banks can find out what customers have purchased. Requiring that all
messages be authenticated and remain confidential during transmissions ensures that Malice
cannot obtain any useful information by eavesdropping and cannot modify or fabricate order
information or payment information.

Dual signature is used in the Secure Electronic Transaction Protocol (SET), which was
devised in 1996 by two major U.S. credit card companies: Visa and Mastercard. SET is a
complex protocol, which has not been deployed in practice.

4.6.2 Dual Signatures and Electronic Transactions

Alice, Bob, and Charlie first agree on a hash function H and a PKC encryption algorithm E
(e.g.,RSA).Let (K'Y, K7), (K}, K§),and (K%, K7.) be, respectively, the public—private key
pair for Alice, Bob, and Charlie. Moreover, they all know each other’s public key; for example,
they may pass their public-key certificates to each other. Let D be the decryption algorithm
of E.

Alice carries out the following steps:

1. Compute
SB = EKg(IDa
Sc = EKg(I2)7
hg = H(sp),
he = H(sc),

ds = DK:‘ (H(hp || he)),

where ds is a dual signature.
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2. Transmit (sp, S¢, ds) to Bob.
Wait for Bob’s receipt 125, which is in the form of Eyu (D (Rp)) (see Bob’s step 5).
4. Decrypt Efcy (D, (Rp)) using Alice’s private key to get Dy, (Rp), and verify Bob’s

e

signature using Bob’s public key to get R . This completes the protocol.
Bob carries out the following steps:

1. Compute H(H(sp) || h¢) and E . (ds), and check whether they are identical. If identical,
then it implies that (s, s, ds) indeed comes from Alice.

2. Compute Dy (sp) to get ;.

3. Transmit (Sg, S¢, ds) to Charlie.

4. Wait for Charlie’s receipt R, which is in the form of Ey. (Dg, (R¢)) (see Charlie’s
step 3).

5. Decrypt Egy (Dgy, (Rc)) using Bob’s private key to get Dy (R¢), and verify
Charlie’s signature using Charlie’s public key to get R.. Issue a receipt R and sends
By (Dgr, (Rp) to Alice.

Charlie carries out the following steps:

1. Compute H(H (sp) || H(s¢))and Eu (ds), and check whether they are identical. If iden-
tical, then it implies that (s, s, ds) indeed comes from Alice.

2. Compute Dy (s¢) to get .

3. Issue areceipt R and send By (D, (Rc)) to Bob.

Note that s ; can only be decrypted by Bob and s~ can only be decrypted by Charlie. In other
words, Bob cannot see I, and Charlie cannot see /. Because of the dual signature, Malice or
Bob cannot modify or fabricate Alice’s I, or I,. Likewise, Malice or Charlie cannot modify
or fabricate Alice’s I; or I, without being caught.

4.7 Blind Signatures and Electronic Cash

A Dblind signature is a signature signed on a message presented in an unintelligible form (i.e.,
the signer cannot review its content), but the signature can be verified against the original
message. In the nondigital world, for example, one can achieve this effect using an envelope:
Alice puts a message in an envelope, seals it, and presents the sealed envelope to Bob for him
to sign his name along the seal. Because the envelope is sealed before Bob signs it, this has
the effect that Bob signs Alice’s message enclosed in the envelop without being able to see the
content of the message. A digital blind signature can be achieved using the RSA cryptosystem
and a blind factor as follows, where a blind factor is used to make a message unintelligible.

4.7.1 RSA Blind Signatures

Let n, d, and e be Bob’s RSA parameters, where n and e are published. Suppose that Alice
wants Bob to sign her message M blind, where M < n. She chooses a pseudorandom number
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r < n as a blind factor with ged(n, r) = 1, calculates
M, = M - r® mod n,

and presents M. to Bob. (The 7 in this case is equivalent to a sealed envelop containing M)
Bob signs M. and produces a signature

_ gd
s, = M} mod n.

As de = 1( mod ¢(n)) and ged(n, r) = 1, it follows from Fermat’s little theorem that

7% = r(mod n),
and that 7! mod n exists. Thus, Alice can remove the blind factor from s, by calculating
(s, - r~1) mod n and obtain

_ -1
Sy =258, 1 modn

=M?*. ¥ . "t modn
=M% r.-r'modn

= M9 mod n.

Alice now obtains Bob’s signature on M, and Bob does not know the content of M.

4.7.2 Electronic Cash

Using credit cards to pay for goods or services will expose the identities of the credit card
holders. This is a major difference between using credit cards and cash, for cash does not link
to its owner. Cash payment is anonymous: cash can be owned by anyone, and cash does not
reveal its owner’s identity. In addition, cash can be circulated. Circulating from one owner to
another, cash leaves no obvious trace (except perhaps the owner’s fingerprints) to identify who
has owned it. Cash can also be divided into cash of smaller values.

Electronic cash is a note in a digital form issued by a bank. It circulates in the world of
networks, to be used to pay for goods and services. Anyone who owns electronic cash may
go to the bank that issues it to obtain paper money of the same value. Thus, electronic cash
should satisfy the following requirements:

1. Anonymous and untraceable: Electronic cash may be owned by anyone, and it does not
reveal its owner’s identity. Electronic cash circulated in the networks should leave no trace
to its owners. A person or a bank receiving electronic cash will not be able to identify who
has been the owner of it.

2. Secure: Electronic cash can be circulated safely in the networks. That is, it cannot be mod-

ified or fabricated.

. Convenient: Electronic cash payments do not need to go through any financial institution.

4. Nonreplicable: Electronic cash cannot be replicated. That is, there is only one true copy of
electronic cash. When electronic cash changes hands, the old owner can no longer use it
(although he might possess a digital replica).

w
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W

. Transferable: Electronic cash can be transferred from one owner to another.

6. Dividable: An electronic cash note with a larger value can be divided into several electronic
cash notes of smaller values such that the summation of these smaller values is equal to the
value of the original note.

Despite intensive efforts, no electronic cash protocols have been devised to satisfy all these
requirements. On the other hand, it is possible to devise a electronic cash protocol that satisfies
some of the most important requirements. For example, eCash is such a protocol. Devised by
David Chaum in the 1980s, eCash uses blind signatures to ensure that it is anonymous and
untraceable.

4.7.2.1 eCash

Let B denote a financial institution. Let n, d, and e be B’s RSA parameters. For convenience,
we assume that B only issues one-dollar-value eCash notes, called an eCash dollar, which is
equivalent to the worth of one dollar.

Suppose that Alice wants to obtain an eCash dollar from B. She and B perform the following
computations:

1. Alice generates a sequence number m to represent this eCash dollar and a pseudorandom
number 7 < n to be used as a blind factor. She then calculates

x = mr® mod n,

and sends both = and her bank account number to B.
2. B charges one dollar (plus a service fee) to Alice’s account, calculates

y =z ¢ mod n,
and sends y to Alice.
3. Alice calculates
z=y-r ' =m?(modn).

That is, z is m with B’s signature. Then (m, z) is an eCash dollar for Alice.

Note that B is not able to see m when it signs z, and so B is unable to link m to Alice.
This eCash dollar (m, z) is free to change hands. Any person who owns (m, z) may cash it for
a dollar from B. This can be done as follows. Suppose that Charlie has (m, z). He transmits
(m, z) to B. After receiving (m, z), B first verifies whether z has its signature. That is, B
verifies whether

2¢ = m® = m(mod n).
If the answer is yes and the sequence number m has not been presented, then B records m and
sends a dollar to Charlie. Otherwise, (m, z) is invalid.

If Alice pays Bob with this eCash dollar (m, z) to exchange for goods or service that Bob
is providing, then Bob should check with B whether z is a signed copy of m and m has not
been recorded. If the answer is yes, then Bob knows that this eCash dollar is good. Otherwise,
Bob should reject it.
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Because only Alice knows 7, B or any other person will not be able to connect m to z, and so
nobody knows Alice created m. After (m, z) changes hands, it leaves no trace to its previous
owner. Thus, eCash is anonymous and untraceable. However, Alice may still keep a copy of
(m, z) after she gives it to Bob, and so she may cash it before Bob does.

4.7.3 Bitcoin

Bitcoin is a network protocol. It can be viewed as a mining game, where players are awarded
for their successes with prizes. These prizes are called Bitcoins, which posses certain proper-
ties of currency. From the currency point of view, Bitcoin differs from eCash in the sense that
it is a completely decentralized currency. In other words, there is no trusted bank to maintain
balances or issue new currency. This means that there is no centralized trust in the currency. Bit-
coins, instead of using a trusted bank to give Bitcoins a real value, use a group of cooperating
players to form a peer-to-peer network called Bitcoin network. The Bitcoin network main-
tains a global distributed ledger of transactions. Each transaction itemizes a payment from one
player to another. This ledger is called the block chain. The Bitcoin network is also responsible
for verifying each transaction as it enters the block chain.

Bitcoin digitally signs individual transactions, not a particular Bitcoin, which differs from
eCash. Let BTC denote the Bitcoins unit. Suppose that Alice wants to pay Bob a certain amount
of BTC. To do so, she must collect transactions she owns that sum up to a value greater than or
equal to the amount she wishes to pay Bob. For example, suppose that Alice wants to pay Bob
with ¢ BTC. To do so, Alice must first gather transactions belonging to herself from the global
distributed ledger. These transactions must sum up to a value greater than or equal to ¢ BTC.
Alice then broadcasts a signed transaction message to all users in the Bitcoin network, listing
Bob — represented by Bob’s payment address — as the receiver of the payment. The payment
address is a function of Bob’s public key. The entire signed transaction message is called a
transaction record. This transaction becomes a new item in the global distributed ledger, and
consists of the following components:

e A list of transactions destined to Alice that sum to at least c. These transactions are lines in
the global distributed ledger.

e A hash of each transaction that Alice is going to use for payment.

e The payment address for Bob, along with how much BTC from the transactions should be
payed to Bob.

e The payment address for Alice, along with how much change Alice should receive from the
transaction.

e Finally, the above-mentioned items (except for the pay outs) are hashed and signed with
Alice’s private key.

A hash is needed in all cases. The Bitcoin protocol currently uses SHA-256. The new transac-
tion record, as previously mentioned, is broadcasted to all members of the network.

4.7.3.1 Mining

To obtain Bitcoins, players must first collect a certain set of transactions from the Bitcoin
network. These set of transactions is called a block, and this process is referred to as mining.
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H(H(H (b1) || H(b2)) || H(H(b3) || H(bs)))

N

H(H(b1) || H(b2)) H(H (bs) || H(ba))
H(b1) H(b2) H(b3) H(bs)

Figure 4.4 An example of Merkle tree, where H is a hash function and b, represents a block

The type of players who mine the Bitcoin network is referred to as miners. A block consists
of the following components:

A list of verified transactions.

A hash of those transactions.

A link to the previous transaction in the block chain.
A proof that the transactions have been verified.

Miners then need to add the new block to the block chain to be awarded a certain number
of Bitcoins.

The transactions listed in the new block have all been verified by the miner. To verify a
transaction, the miner checks that the signatures work and that no coins were spent twice.

The transactions in the new block are combined into a single hash value using a Merkle tree.
A Merkle tree is a hashing scheme that organizes blocks of data into a binary tree where only
the leaves contain the data. Every leaf node in the Merkle tree is a hash of the block at that
leaf, and every internal node is the hash of its two children (see Fig. 4.4).

To link the new block to the previous block in the block chain, the transaction must contain
a reference to the previous block, which is done using a proof-of-work (POW). A POW is,
intuitively, a value that is extremely hard to generate to meet a certain requirement but very
easy to verify. This scheme makes the process of acquiring Bitcoins from the Bitcoin network
immensely difficult, and so some people are willing to pay real money to acquire Bitcoins from
someone who own them. Some stores also accept Bitcoins as cash payments. In late 2013, a
bitcoin could sell for about 6000 Chinese yuan in the Chinese market (about 1000 US dollars).

Proof-of-Work
A POW p for a new block with a difficulty level of % is obtained as follows, where k is a
positive integer:

1. Letr be the root of the Merkle tree of the new block, 7’ the root of the Merkle tree of the pre-
vious block, and p a binary string. Let H be a hash function. Compute H o H (r, 7', p) = h,
where h is called a double hash.

2. If h begins with k consecutive 0’s, then use h as the hash value of the new block and the
number p as the proof. Both values are included in the block.

3. If h does not begin with k consecutive 0’s, then select a new p and go to Step 1.
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When £ is large, for example, when & = 100, the miner may have to try, in the worst case, at
least 2'%° > 10'° different values of p to find a proof, making it computationally intractable.
On the other hand, if a proof is given, then it is easy to verify that the double hash value is
equal to h.

Adding New Blocks

The new block, once constructed, is broadcasted to all other miners in the Bitcoin network.
This is done so that all users can agree on the new block being added to the block chain. In the
case where two miners each broadcast a new block and one block is a subset of the other, only
the block with more transactions is kept. In the rare case that these two blocks have the same
number of transactions (i.e., they are the same block), there is a temporary split in the block
chain that is eventually resolved by the Bitcoin network. The resolution occurs when one of the
forked chains contains more transactions than the competing chain, as miners would always
favor the longer chain.

Miners add new Bitcoins using a special transaction called a coinbase transaction. When
the miner is building a new transaction block, he adds this special coinbase transaction. This
transaction lists the miner as the recipient of a certain amount of Bitcoins. At the time of writing
this is 25 BTC. The source of this transaction is a special zero address. Recall that the miner
only gets paid if the new block gets added to the block chain.

4.8 Closing Remarks

The developments of PKCs, public-key infrastructures, and cryptographic hash functions have
made data authentications easy routines. This signature mechanism is more flexible and more
reliable than using shared secrets to authenticate data. Thus, it is natural to establish digital
signature standards using PKCs and cryptographic hash functions.

4.9 Exercises

4.9.1 Discussions
4.1. Why is PKC a better method to authenticate data?
4.2. Why do we want to compute cryptographic hashing?
4.3. What is the advantage of HMAC?
4.4. Why is birthday attack an efficient method for breaching security?
4.5. Can you think of a different application of blind signature?

4.6. Do you think that Bitcoin could become a popular electronic currency?

4.9.2 Homework

4.1. Find two English sentences with different meanings (substantially different from the
example given in Section 4.1), which have the same hash value under the 16-bit
XOR-hash function H,.
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4.2

4.3.

44.

4.5.

4.6.

*4.7.

4.8.

4.9.

Let h =1001101000111010 be a 16-bit binary string. Find four different binary
strings such that they have the same hash value A under the 16-bit XOR-hash
function H.,,.

In the initial process of SHA-512, it pads M to obtain a new string M’. Explain how
to obtain M from M’.

Draw a flow diagram of SHA-512 that transforms a 1024-bit block M, to eighty 64-bit
binary strings [0, 79].

Draw a flow diagram showing the computations of the SHA-512 compression
function F(M;, H;_,). You should show the first round, the last round, and the ith
round of computations, where ¢ represents a round between the first and the last
round.

Draw a flow diagram to show the computation in one round of the SHA-512 com-
pression function F'(M,, H; ).

How does SHA-512 attempt to achieve the one-way property and the computational
uniqueness property? Can you find any weakness? Justify your answers.

Let M be a L-bit binary string with L < 264, Pad M to yield the following new binary
string
M =M | 10° [ b1go(L), €=0

such that the length of M’ (measured by bits) is divisible by 512. How do you deter-
mine £?

SHA-1 is much simpler than SHA-512. In SHA-1, v = 160 bits and I" = 264 — 1
bits. Let M be an input string with | M| < I'. SHA-1 first pads M to produce a new
string M’ as described in Exercise 4.8, where each block is 512-bit long. There are 80
rounds of computations in the SHA-1 compression function, where basic operations
are on 32-bit binary strings. Let X, Y, and Z be 32-bit binary strings. Let

(XAY)V (X AZ), if 0<t<20,
XY Z if 20 <t < 40
FXY,Xx) =7 5085 L
(XAY)VXANZ)V(Y ANZ), if40<t <60,
XY DZ, if 60 <t < 80.
Define 80 constants K, K, --- , K4 as follows:

5a827999, if 0 <t < 20,
6ed9ebal, if 20 <t < 40,
8fibbcdc, if 40 <t < 60,
ca62c1d6, if 60 <t < 80.

K, =

Let ry, ry, 73, 74, and 75 be variables, each of which represents a 32-bit binary
string (160 bits totally), where their initial values are, in hexadecimal,
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r, = 67452301,
r, = efcdab89,
r, = 98badcfe,
r, = 10325476,
ry; = c3d2e1f0.

Let the initial vector IV of SHA-1 be the concatenation of the initial values of
T1,T9, T3, Ty, and 7.

Recall that |[M’'| = N x 512 bits, where N is a positive integer. Let M’ = M,
M, - - - My, where each M, is a 512-bit binary string. SHA-1 produces a hash value
SHA-1(M) = H using the following recurrence relation:

H; = H; &3 F(M;, H; ),
1=1,2,--- N,
Hy=1V,
where F'(M;, H,_;) is a compression function, defined as follows:

1. Let M; = W W, --- Wy;, where each W} is a 32-bit binary string.
2. For t from 16 to 79, let

Wy=[WsoW,_soW,_, & W,y <1
3. For t from 0 to 79, let

T « [(ry < 5) + F,(ry,73,7,) + 75 + W, + K,] mod 2%,
Ty <= Ty,

Ty < T3y

Ty 1y K 30,

Ty <= T,

ry —T.

(a) Draw a flow diagram of SHA-1 computation, including how W, is generated and
the computation of the SHA-1 compression function.

*#%(b) Explain why using the order of 2 computations with & < 80 could allow you
to find M, # M, such that SHA-1(M,) = SHA-1(M,).

The entries in WHIRLPOOL’s S-Box (see Table 4.3) are calculated using finite-field
operations defined on GF(2*) under an irreducible polynomial r(z) = 2* + z + 1.
In particular, let v be a hexadecimal digit. Let

3 u .
B(u) = (2 +2+1)" mod r(x), ?fu#f,
0, ifu=*f.



Data Authentication 161

*4.11.

4.12.

4.13.

4.14.

Table 4.3 The £ mini-box for constructing the S-Box of WHIRLPOOL

u 0 1 2 3 4 5 6 7 8 9 a b ¢c d e f
Ew) 1 b 9 ¢ d 6 f 3 e 8 7 4 a 2 5 0

Show that F is determined by Table 4.3.

Let £ denote the inverse function of E defined in Exercise 4.9.2. Show that £~ ! is
determined by Table 4.4.

Table 4.4 The E~! mini-box for constructing the S-Box of WHIRLPOOL

u 0 1 2 3 4 5 6 7 8 9 a b c¢c d e f
E'w) f 0 d 7 b e 5 a 9 2 ¢ 1 3 4 8 6
Let R be a random permutation of 0, 1, - - - , f defined in Table 4.5.

Table 4.5 The R mini-box for constructing the S-Box of WHIRLPOOL

u 0 1 2 3 4 5 6 7 8 9 a b c d e f
Ru 7 ¢ b d e 4 9 f 6 3 8 a 2 5 1 0

The entry s; ; in WHIRLPOOL’s S-Box is calculated using the following tweaked
procedure:

,j=0,1,--- . f
y=E@)®E()),
z = R(y) @ E(i),
z, = R(y) ® E'(j),
Si5 = E(z)E ™ (2y),

where ¢ and j are four-bit binary strings.
For example, consider s, ,. We have

y = £(0000) & E~(0000) = 0001 & 1111 = 1110.

We further have R(1110) = 0001, z, = 0001 & 0001 = 0000, z, = 0001 & 1111 =
1110. Thus, we have ss, , = £(0000)E~'(1110) = 18.
Compute the fifth row of WHIRLPOOL’s S-Box (see Table 4.1). That is, compute

54,05 54,15 5 S48

s

What is the value of rc;y?

Write a program to implement SHA-3 for ¢ = 6.
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4.15.
4.16.
4.17.
4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

4.24.

4.25.

Draw a flow diagram of HMAC computations.
Show that Equality 2.33 is true.
Show that Equality 2.34 is true.
Show that Equality 2.35 is true.

Find the value of k so that in a group of k£ randomly selected people, the probability
that there are at least two persons who were born on the same date in the same month
is greater than 3/4? For convenience, assume that there are no leap years.

Randomly select k students from the first grade, second grade, and the third grade
students. How big must k be to ensure that the probability of at least two students
among the selected having the same birthday (i.e., they were born on the same date,
in the same month, and in the same year) is greater than 1/2? Assume that students in
the same grade were born in the same year, and none of them was born in a leap year.

In Section 4.4.1, we have determined that if we randomly select /n strings, then the
probability that there are at least two strings  # y such that H (x) = H (y) is greater
than 1/2, where H is a hash function and n is the number of different hash values.

Let = be fixed. Then select k strings randomly and independently. What is the
probability that there is at least one string y # = in the selected strings such that
H(y) = H(x)? What should % be for the probability to be greater than 1/2?

Prove that when n > 52, Inequality 4.6 holds. That is,

1+V1+8mn2-n< V92 n
Give a concrete application of the set intersection attack.

Let E be a symmetric-key encryption algorithm, where it takes a /-bit data block and
a (-bit key as input. Let M = M, M, - - - M, where each M, is a (-bit binary string
(after appropriate padding if necessary). Define a hash function H as follows:

H, = ¢ —Dbit initial vector,

H; :EHH(Mi)a
1= 1727"' 7N7
H(M) = Hy.

Show that if Malice can obtain one pair (M’, H(M')), then she can find a message
M" # M’ such that H(M") = H(M') using the method of set intersection attack.

The UNIX operating system (as well as Linux) uses a symmetric-key encryption algo-
rithm named crypt(3) to hash users passwords and store the hash values in a file. An
early version of crypt(3) transforms a user password w to a 56-bit binary string k,,
as a secret key for DES. It then randomly selects a 12-bit binary string s, referred to
as salt. It modifies DES to obtain a new encryption algorithm DES[s], where s is the
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*4.26.

*4.27.

salt value and DES[s] does everything the same as in DES except in the output of the
expansion permutation EP (see Section 2.2.4 for a description of EP): If the sth bit in
s is 1, swap the ith bit with the (i + 24)th bit in the output of EP. crypt(3) computes
w’s hash value h ,, as follows

Cy= DES[S]kw (064)7

¢, = DES[S]kw (Ci,—l)a
1=1,2,--- ,24,

The operating system stores h, ,, and its salt value s according to user names in a
file (see Table 4.6)

Table 4.6 File structure for storing user passwords

User name Salt Hash value of user password

Alice s h

ER

After a user enters his user name u and user password w, the operating system
computes a 56-bit secret key k,, of w. It searches for u’s record in the password file
and finds the salt value s associated with w. It then computes h, ,, and compares it
with the hash value stored in the record. The user is allowed to log on if and only if
these two values are identical.

(a) Explain why salt values are needed.
(b) Under crypt(3), how long is the effective length of a user’s password?
(c) Analyze the security strength of crypt(3).

Early versions of crypt(3) did not support users selecting passwords with arbitrary
length, which makes it vulnerable to dictionary attacks. To improve security, crypt(3)
was later modified to compute hash values of user passwords using MDS5, which
allows users to select passwords with arbitrary length.

(a) Search the literature for a detailed description of the modified crypt(3) algorithm.
Then write a short paper (about 4000 words) describing this algorithm and ana-
lyzing its security strength.

(b) MDS5 has been shown to have a weakness (i.e., it does not satisfy the requirement
of strong collision resistance). Will this mean that using MD5 in crypt(3) is no
longer secure? Justify your answer.

Microsoft Windows XP, unlike UNIX or Linux, stores user names and user passwords
in the registry. Search the literature for a detailed description of how this is done and
write a short paper (about 4000 words) describing this algorithm and analyzing its
security strength.
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4.28.

4.29.

4.30.

*4.31.

4.32.

*4.33.

4.34.

4.35.

*4.36.

4.37.

4.38.

Draw a flow diagram of the DSS signing algorithm and a flow diagram of the DSS
signature verifying algorithm.

If Alice’s random number k4 used to sign a document using DSS is stolen, what
would happen?

In addition to securing online shopping, can you think of any other applications for
which dual signatures can be used?

Can you modify the eCash scheme presented in Section 4.7.2 so that it also satisfies
the dividability requirement? Justify your answer.

Explain which requirements of electronic cash listed in Section 4.7.2 is met by eCash
and which requirements is not met by eCash.

Alice creates an electronic document and wants her boss Bob to sign it using RSA.
However, Alice does not want Bob to see the document he is asked to sign. Bob, on
the other hand, agrees to sign any legitimate document Alice presents to him. Devise
a blind signature scheme to solve this problem.

Devise a double signature scheme using RSA to sign a document with two signa-
tures. In particular, the two signatures are signed sequentially. Only after the second
signatory verifies the first signature should he sign the document with the first signa-
tory’s signature. The document must be verifiable by the public that it indeed has two
signatures.

The double signature scheme described in Exercise 4.34 is a special application of
multiple-key public-key cryptography (MKPKC). An MKPKC encryption algorithm
uses several keys, some of which are public keys, while the remaining keys are private.
Generalize RSA from one public key and one private key to a multiple public-key
RSA. Justify your answer. That is, prove the correctness of the multiple public-key
RSA decryption algorithm.

An undeniable signature is a signature signed on a document using signer’s private
key such that the signature cannot be verified without signer’s permission. More-
over, the signer can prove forged signatures so that he cannot falsely deny a genuine
signature of his.

The first property allows the signer to restrict who may verify his signature; so that
if an authorized user obtains a copy of the document, he will be unable to verify the
signature.

In 1989, David Chaum and Hans van Antwerpen devised a scheme for undeniable
signatures. Do a literature search and write a paper of up to 4000 words to describe
their scheme.

How does the Bitcoin network prevent a miner from adding fake blocks in the block
chain? Justify your answer.

Does the number of Bitcoins have an upper bound? Justify your answer.
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Network Security Protocols
in Practice

Computer cryptography provides building blocks for constructing network security protocols.
These building blocks include symmetric-key encryption algorithms, public-key encryption
algorithms, key-generation and key-exchange algorithms, cryptographic hash functions,
authentication algorithms, digital signatures, and public-key infrastructures. We call these
building blocks cryptographic algorithms.

To protect network communications, one may deploy cryptographic algorithms at any layer
in the network architecture. The use of cryptographic algorithms at different layers offers
different degrees of protection. This technique of placing algorithms within the different net-
work layers is the first issue discussed in this chapter.

We then introduce common network security protocols used in practice. These protocols
include the X.509 public-key infrastructure (PKI), the IP security protocol at the network
layer (IPsec), the Secure Sockets Layer protocol at the transport layer (SSL/TLS), and
several application-layer security protocols, including Pretty Good Privacy (PGP), Secure/
Multipurpose Internet Mail Extension (S/MIME), Kerberos, Secure Shell (SSH), and an
electronic voting protocol.

5.1 Crypto Placements in Networks

TCP/IP is the dominant networking technology today. It is a five-layer architecture. These
layers are, from top to bottom, the application layer, the transport layer (TCP), the network
layer (IP), the data-link layer, and the physical layer. In addition to TCP/IP, there also are
other networking technologies. For convenience, we use the OSI network model to represent
non-TCP/IP network technologies. Different networks are interconnected using gateways. A
gateway can be placed at any layer.

The OSI model is a seven-layer architecture. The OSI architecture is similar to the TCP/IP
architecture, except that the OSI model specifies two additional layers between the application
layer and the transport layer in the TCP/IP architecture. These two layers are the presentation
layer and the session layer. Figure 5.1 shows the relation between the TCP/IP layers and the

Introduction to Network Security: Theory and Practice, Second Edition. Jie Wang and Zachary A. Kissel.
© Higher Education Press. All rights reserved. Published 2015 by John Wiley & Sons Singapore Pte Ltd.
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TCP/IP Gateway OSI
Application  [=----»|  Application
Application |[=—-—--» Application

Presentation Presentation

Session Session

TCP [————> TCP

Transport | — — — — > Transport

1P <————> 1P Network [<————> Network

Data link [ ————> Data link Data link [ ————> Data link

Physical Physical Physical Physical

23 (et

Figure 5.1 Correspondence between layers of the TCP/IP architecture and the OSI model. Also shown
are placements of cryptographic algorithms in network layers, where the dotted arrows indicate actual
communications of cryptographic algorithms

OSI layers. The application layer in TCP/IP corresponds to the application layer and the pre-
sentation layer in OSI. The transport layer in TCP/IP corresponds to the session layer and the
transport layer in OSI. The remaining three layers in the TCP/IP architecture are one-to-one
correspondent to the remaining three layers in the OSI model.

The functionalities of OSI layers are briefly described as follows:

1. The application layer serves as an interface between applications and network programs.
It supports application programs and end-user processing. Common application-layer pro-
grams include remote logins, file transfer, email, and Web browsing.

2. The presentation layer is responsible for dealing with data that is formed differently. This
protocol layer allows application-layer programs residing on different sides of a communi-
cation channel with different platforms to understand each other’s data formats regardless
of how they are presented.

3. The session layer is responsible for creating, managing, and closing a communication con-
nection.

4. The transport layer is responsible for providing reliable connections, such as packet
sequencing, traffic control, and congestion control.

5. The network layer is responsible for routing device-independent data packets from the cur-
rent hop to the next hop.

6. The data-link layer is responsible for encapsulating device-independent data packets into
device-dependent data frames. It has two sublayers: logical link control and media access
control.

7. The physical layer is responsible for transmitting device-dependent frames through some
physical media.

Starting from the application layer, data generated from an application program is passed
down layer-by-layer to the physical layer. Data from the previous layer is enclosed in a new
envelope at the current layer, where the data from the previous layer is also just an envelope
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containing the data from the layer before it. This is similar to enclosing a smaller envelope in
a larger one. The envelope added at each layer contains sufficient information for handling the
packet. Application-layer data are divided into blocks small enough to be encapsulated in an
envelope at the next layer.

Application data blocks are “dressed up” in the TCP/IP architecture according to the fol-
lowing basic steps. At the sending side, an application data block is encapsulated in a TCP
packet when it is passed down to the TCP layer. In other words, a TCP packet consists of
a header and a payload, where the header corresponds to the TCP envelope and the payload
is the application data block. Likewise, the TCP packet will be encapsulated in an IP packet
when it is passed down to the IP layer. An IP packet consists of a header and a payload, which
is the TCP packet passed down from the TCP layer. The IP packet will be encapsulated in
a device-dependent frame (e.g., an Ethernet frame) when it is passed down to the data-link
layer. A frame has a header, and it may also have a trailer. For example, in addition to having a
header, an Ethernet frame also has a 32-bit cyclic redundancy check (CRC) trailer. When it is
passed down to the physical layer, a frame will be transformed to a sequence of media signals
for transmission. Figure 5.2 demonstrates this process.

At the destination side, the medium signals are converted by the physical layer into a frame,
which is passed up to the data-link layer. The data-link layer passes the frame payload (i.e.,

Application layer

Data block

TCP layer

!

TCP packet | TCP hdr | data block |

!

IP layer

IP packet | 1Phdr | TCP hdr | data block

Data-link layer

Frame | frm hdr| IP hdr |TCP hdr| data block | frm trlr |

Physical layer

#

A sequence of medium signals

Figure 5.2 Flow diagram of packet generation
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the IP packet encapsulated in the frame) up to the IP layer. The IP layer passes the IP payload,
namely, the TCP packet encapsulated in the IP packet, up to the TCP layer. The TCP layer
passes the TCP payload, namely, the application data block, up to the application layer. When
a packet arrives at a router, it only goes up to the IP layer, where certain fields in the IP header
are modified (e.g., the value of TTL is decreased by 1). This modified packet is then passed
back down layer-by-layer to the physical layer for further transmission.

Deploying cryptographic algorithms at different layers has different security effects.
For convenience, we use the term crypto placement to mean deployment of cryptographic
algorithms.

5.1.1 Crypto Placement at the Application Layer

Deploying cryptographic algorithms at the application layer provides end-to-end security
protection. Data is encrypted or authenticated at this layer. The encrypted or authenticated
data then goes through each layer below as if it were normal data. That is, it does not need to
be decrypted or checked for signatures at any layer.

On the other hand, TCP headers and IP headers are not encrypted or authenticated because
these headers are added within the lower layers, making it possible for an attacker to analyze
traffic and modify header information. For example, Malice may change the destination IP
address in the IP header to have the modified packet delivered to a different person.

5.1.2  Crypto Placement at the Transport Layer

Deploying cryptographic algorithms at the transport layer provides security protections for
TCP packets. The payload of a TCP packet or the entire TCP packet itself (i.e., both header
and payload) can be encrypted or authenticated at this layer.

Crypto placement at the transport layer does not affect the application data received from
the application layer. Therefore, users do not need to modify any application programs.

The IP header encapsulating the encrypted or authentication TCP packet is not encrypted,
making it possible for the attacker to analyze traffic using information from IP headers. If
the TCP header is not encrypted, the attacker may further obtain additional information such
as TCP sequencing numbers. This makes it possible for the attacker to figure out how TCP
sequencing numbers might be generated. This information is needed if the attacker wants to
hijack a TCP connection.

5.1.3 Crypto Placement at the Network Layer

Deploying cryptographic algorithms at the network layer provides link-to-link security
protection. At this layer, the payload of the IP packet or the entire IP packet itself (i.e., both
headers and payloads) can be encrypted or authenticated. Applying cryptographic algorithms
on payloads does not affect the routing functionality, and it is referred to as the transport mode
application. Applying cryptographic algorithms on the entire packet requires a network-layer
gateway to route tunnel mode IP packets, which is equivalent to hiding the whole IP packets
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inside the gateway, and it is referred to as the tunnel mode application. In particular, when a
tunnel-mode IP packet arrives, the gateway first deciphers the encrypted IP packet (or verifies
its signature). This allows the gateway to read the IP header. If the gateway is not in the
destination edge network, the gateway re-encrypts (or re-authenticates) the whole IP packet,
adds a plaintext IP header of its own, and routes the new IP packet to the next [P gateway.
Thus, the IP packets are visible to the gateways at the end points of a tunnel but remain
invisible inside the tunnel that may contain other routers.

Unlike the encryption that takes place within an application layer where applications need
to incorporate cryptographic algorithms specifically, deploying cryptographic algorithms at
the network layer does not require modifications to the existing application programs. Thus,
implementing link-to-link security protection places no extra work on application programs.

A transport-mode IP packet leaves the original IP header in plaintext format, but its payload,
that is, the TCP header and the TCP payload, is encrypted, making it possible for the attacker
to analyze network traffic. However, the attacker will not be able to obtain TCP sequenc-
ing numbers or other information contained in the TCP header. A tunnel-mode IP packet
might leave the IP header of the gateway in plaintext format, and so the attacker can only
observe traffics between IP gateways, instead of between users. This can be further protected
using nested tunnels, that is, a tunnel wrapping around another tunnel, to make traffic analysis
more difficult.

5.1.4 Crypto Placement at the Data-Link Layer

Deploying cryptographic algorithms at the data-link layer provides security protections for
frames. Payloads of the frames are encrypted or authenticated at this layer. Deploying cryp-
tographic algorithms at the data-link layer also does not require modifications to the exist-
ing application programs. We note that frames travel only one link. Thus, traffic analysis on
encrypted frames would not yield much information.

In this chapter, we focus on crypto placements at the network layer, at the transport layer,
and at the application layer. We introduce crypto placements at the data-link layer in Chapter 6
in the context of wireless security.

5.1.5 Implementations of Crypto Algorithms

Cryptographic algorithms may be implemented on hardware, using Application Specific
Integrated Circuit (ASIC) technologies, or in software. In general, it is common to implement
cryptographic algorithms at the application layer using software and at the data-link
layer using hardware. Implementations of cryptographic algorithms at other layers can
be performed using software, or hardware, or both. Hardware implementations offer the
best performance, but they are inflexible to change, hard to port to different platforms,
and may cost more to develop. Software implementations, on the other hand, are flexible
to change, easier to port, and may cost less to develop, but their performance will not
match the performance of hardware implementations. Recent advances of programmable
network processors (e.g., Intel IXP network processors), however, may offer both hardware
performance and software flexibility.
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5.2 Public-Key Infrastructure

To deploy cryptographic algorithms in network applications, we need a way to distribute secret
keys using open networks. Public-key cryptography is the best way to distribute these secret
keys. In order to use public-key cryptography, we need to build a public-key infrastructure
(PKI) to support and manage public-key certificates and certificate authority (CA) networks.
In particular, PKIs are set up to perform the following functions:

Determine the legitimacy of users before issuing public-key certificates to them.

Issue public-key certificates upon user requests.

Extend public-key certificates valid time upon user requests.

Revoke public-key certificates upon users’ requests or when the corresponding private keys
are compromised.

Store and manage public-key certificates.

Prevent digital signature signers from denying their signatures.

7. Support CA networks to allow different CAs to authenticate public-key certificates issued
by other CAs.

b .

oW

5.2.1 X.509 Public-Key Infrastructure

Recommended by the Internet Engineering Task Force (IETF), X.509 is a public-key infras-
tructure established by the Telecommunication Standardization Sector of the International
Telecommunication Union (ITU) in 1988. It is also referred to as the ITU-T PKI standard,
and we denote it by PKIX. PKIX consists of the following four basic components: end entity,
certificate authority (CA), registration authority (RA), and repository. An entity means any
user of public-key certificates or any device (e.g., servers and routers) that supports PKIX.
These components have the following functionalities:

1. The CA is responsible for issuing and revoking public-key certificates.

2. The RA is responsible for verifying identities of owners of public-key certificates.

3. The Repository is responsible for storing and managing public-key certificates and certifi-
cate revocation lists (CRLs). A CRL is a list of certificates revoked by CA.

Figure 5.3 shows the architecture of PKIX.
Transaction management between the end entity, CA, RA, and repository includes the fol-
lowing items:

1. Registration: Users register with CA or RA before certificates are issued to them. Users
may register their certificates directly or indirectly through RA.

2. Initialization: Users obtain initial information, including public keys of CAs and RAs, sig-
nature algorithms, and information.

3. Certificate issuing and publication: CA or RA issues and publishes certificates in the repos-
itory for users.

4. Key recovery: CA or RA provides necessary mechanisms for users to recover lost private
keys.

5. Key generation: CA or RA periodically generates new key pairs for users.
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Figure 5.3 PKIX architecture

. Certificate revocation: Users inform CA or RA to revoke their certificates if they lose private

keys, if they change names/addresses, or in case of any other events that may jeopardize
the security of their private keys.

Cross-certification: Different CAs should be able to authenticate certificates issued by each
other.

5.2.2 X.509 Certificate Formats

X.509 certificate formats have gone through three different versions. X.509 version 1 was first
released in 1988. X.509 version 2 was not used widely. X.509 version 3 was released in 1996
and is the most common certificate format used today. An X.509 certificate consists of the
following components:

~N N B

. Version: It indicates which version the certificate is using.
. Serial number: It is a unique number assigned to the certificate within the same CA.
. Algorithm: It lists the name of the hash function and the public-key encryption algorithm

used to generate the signature for the certificate. For example, the name sha1RSA indicates
that the signature of the certificate is generated by applying RSA on the hash value of the
certificate produced by SHA-1.

. Issuer: It gives the issuer’s name.

. Validity period: 1t gives a time interval when the certificate is valid.

. Subject: Tt gives the certificate owner’s name.

. Public key: 1t gives the subject’s public-key information and parameter information (if any)

and what algorithm this key is to be used with.

. Extension: It gives other information such as what the subject’s key is used for. Only version

3 offers this component.

. Properties: It gives the encrypted hash value of the certificate using CA’s private key (i.e.,

the signature of the certificate) and other information.
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Table 5.1 An X.509 certificate generated by Adobe Acrobat Pro, where c, email, ou, o, and cn are
X.509 names, representing, respectively, certificate owner’s country, email address, organization,
employer, and name

Name Value

Key usage Sign transaction, Encrypt document

SHAT digest of public key C2139EEOB1CD6C22F485650EASB1EB23D2882487
Public key RSA (1024 bits)

30 81 9F 30 OD 06 09 2A 86 48 86 F7 0D 01
01 01 05 00 03 81 8D 00 30 81 89 02 81 81
00 C5 DD 2D 97 2F 1F A5 4E 16 6A 32 FE 37
77 44 4C 0C 2F 03 EO 02 05 64 AB C3 52 FO
A9 5E 4F 32 1A E6 3E 77 83 C7 56 8F B8 Al
FF 1F 15 F5 9C DA 7E DF C3 F3 92 80 A0 B7
EB 2B 14 3E 6C 6D CA D2 4F 92 Cl1 7C 7F 43
B4 F6 15 63 07 ED CO 7E 5A F7 4F OE 13 75
2C 9C 9E 59 FD DA 4F 71 F3 BO 35 0B EA FO
60 D2 33 45 BD 5A DA DD 09 42 AF EB C4 40
38 4A FO DC 42 79 05 56 BC DE A5 CF 50 8D
8A C5 02 03 01 00 01

Validity ends 2017/12/11 19:48:34 -04°00°

Validity starts 2012/12/11 19:48:34 -04°00°

Serial number 47 D2 ED 7D 82 FF 40 21 08 F5
Issuer ¢ = US, email = wangecs .uml . edu

ou = Department of Computer Science

o = UMass Lowell, cn = Jie Wang
Subject ¢ = US, email = wang@cs.uml .edu

ou = Department of Computer Science

o = UMass Lowell, cn = Jie Wang
Signature algorithm SHA1 RSA (1.2.840.113549.1.1.5)
Version 3

Table 5.1 shows an example of the components in an X.509 certificate generated by Adobe
Acrobat X Pro, which can be found in option of Details under the Adobe Acrobat Pro Certifi-
cate Viewer.

Suppose that Alice wants to send a master key K 4 5 to Bob and prove to Bob that it indeed
comes from Alice without being modified during transmission. Alice first obtains from PKIX
Bob’s certificate CA(K'},), verifies CA’s signature, and extracts Bob’s public key K}, from
the certificate. Alice then sends the following message to Bob:

D, (M) || CA(KG) || M, (5.1

where
M=t,|lrs | IDg || Exu(Kap),

FE is a public-key encryption algorithm agreed on by both Alice and Bob with D being its
decryption algorithm, (K%, K7, ) is Alice’s public-private key pair, ¢ 4 is a time stamp, 4 is a
nonce, D is Bob’s identity, and CA(KY) is Alice’s certificate.
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After receiving Message 5.1, Bob first verifies the signature of Alice’s certificate using CA’s
public key. If confirmed, Bob retrieves Alice’s public key K from the certificate and uses K
to encrypt Dy (M) to get M. Bob then extracts from M the time stamp, the nonce, 1D,
and Epeu (K 45). If IDp is correct, and the time stamp and the nonce are valid, then Bob uses
his own private key K2 to decrypt B(K%, K ,p) to get K 4 5.

5.3 1IPsec: A Security Protocol at the Network Layer

IPsec is a major security protocol at the network layer. Some authors write it as IPSec. It is
written as IPsec in RFC documents. IPsec provides a potent platform for constructing virtual
private networks (VPN). VPNs are private networks overlayed on public networks.

As mentioned in Section 5.1, the purpose of deploying cryptographic algorithms at the
network layer is to encrypt or authenticate IP packets (either just the payloads or the whole
packets). IPsec specifies how this is to be done. IPsec also specifies how to exchange keys.
Thus, [Psec consists of authentication protocols, encryption protocols, and key exchange pro-
tocols. They are referred to, respectively, as authentication header (AH), encapsulating secu-
rity payload (ESP), and Internet key exchange (IKE).

1. AH is an authentication format. It is used to authenticate the origin of the IP packet and
ensure its integrity. In addition, AH uses the sliding window technique to detect message
replays. Values in certain fields in the IP header (e.g., TTL) are updated at each hop during
transmission, but values in most of the fields remain unchanged. For each IP packet to
be authenticated, AH authenticates its payload and the fields with unchanged values in its
header.

2. ESP is an encryption format. It is used to encrypt IP packets, either just their payloads or
the whole packets. It can also be used to authenticate IP packets.

3. IKE is a key exchange format. It is used to establish secret keys for the sender and the
receiver.

IPsec supports a number of encryption algorithms for users to choose from. When Alice
wants to communicate with Bob using IPsec, Alice must first select a set of encryption algo-
rithms and parameters and then inform Bob about her selection. Bob may accept Alice’s
selection or negotiate with Alice for a different set of algorithms and parameters. Once the
algorithms and parameters are selected, IPsec establishes a security association (SA) between
Alice and Bob for the rest of the session.

5.3.1 Security Association

A security association provides the following information:

1. Security parameters index (SPI): It is a 32-bit binary string used to identify a particular set of
algorithms and parameters, as well as a particular communication session. SPI is included
in AH and ESP to ensure that both sides will use the same algorithms and parameters.

2. IP destination address: It specifies which host the underlying SA is established for.

3. Security protocol identifier: It specifies whether the underlying SA is established for AH
or ESP. IPsec disallows AH and ESP to use the same SA simultaneously.
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A SA has a particular lifetime. SAs for different communication sessions that use the same
set of algorithms and parameters, with the same IP destination address and security protocol
identifier, are different SAs that are specified with different SPIs.

SAs can be established dynamically by IKE or statically by the IPsec manager of the host
computer.

When both ESP and AH are applied to an IP packet, IPsec applies ESP before authentication.
That is, AH is in front of the ESP header. The reason for this is that deciphering a packet would
take more time than verifying a signature of it. If authentication fails in the first place, then
there is no need to decipher the packet in the second place. This means that the authentication
SA comes in front of the ESP SA. A sequence of SAs is referred to as an SA bundle.

IPsec has several built-in mechanisms to facilitate the use of SAs. They are security asso-
ciation database (SAD), security policy database (SPD), and SA selectors (SAS).

5.3.1.1 Security Association Database

In order to facilitate searching (after an SA relation is established between users), IPsec stores
the SA information in the SAD at a user’s local machine. Therefore, including SPI in the
IPsec packet header allows IPsec to look for the SA information within the SAD to process
the packets.

5.3.1.2 Security Policy Database

IPsec is placed at the network layer, and so it needs to handle TCP packets from different users.
Not every packet needs encryption or authentication. For IPsec on the sending host to know
what to do when a TCP packet is passed down from the transport layer, the [Psec manager at
the host computer must create and maintain a list of rules, which is referred to as the security
policy. To facilitate searching, a security policy is stored in the SPD at the host computer.
On the basis of the information contained in the TCP header, IPsec finds the corresponding
security policy in the SPD. On the basis of this security policy, IPsec will encrypt the packet,
authenticate the packet, or do nothing.

5.3.1.3 SA Selectors

IPsec allows users to assign a set of rules to an SA that determines which packets the SA is
applied to. Such a set of rules is referred to as an SA selector. For example, one may give a
certain SA a selector so that the SA only handles packets whose destination IP addresses fall
into a certain range.

SAs are directional. Some SAs can handle outgoing packets, some can only be used to
handle incoming packets, and others can handle both.

5.3.2  Application Modes and Security Associations

IPsec supports the transport-mode and the tunnel-mode applications of cryptographic
algorithms.
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Establishing SAs in transport mode is straightforward. For each outbound TCP packet
passed down to the network layer at the sending host, IPsec checks the security policy stored
in the local SPD. If the TCP packet is to be encrypted, IPsec encrypts it, adds an ESP header
in front of the encrypted TCP packet, and specifies an SA. Likewise, if the TCP packet is to
be authenticated, IPsec signs it with a digital signature, adds an authentication header in front
of it, and specifies an SA. A normal IP header will then be added to the resulting packet for
transmission. IPsec at the receiving host finds the SA in its SAD according to the SPI in the
ESP header or in the authentication header and processes the packet accordingly.

Establishing SAs in tunnel mode is more involved. It depends on how many [Psec gateways
there are on the path from the sending host to the receiving host. Between adjacent IPsec
gateways, there could be other routers.

5.3.2.1 Single Tunnel

The simplest tunnel-mode SA is a one-layer tunnel. For each outbound IP packet that asks
for tunnel-mode encryption (the case for tunnel-mode authentication is similar), the IPsec
gateway G, at the sending side encrypts the entire IP packet, adds an IP header of its own,
and forwards the resulting packet to the next IPsec gateway ;. In order for it to forward the
resulting packet, G, needs to establish a security association SA; | with G to ensure that G,
knows how to decipher the IP packet it receives. G; checks the IP header of the deciphered IP
packet, obtains its destination IP address, and finds the next IPsec gateway G, to forward this
packet to. GG, then encrypts the entire IP packet, adds an IP header of its own, and forwards
the resulting packet to GG,. To carry out this forwarding action, (G; needs to establish a security
association SA, , with 5. This process continues until the destination IPsec gateway G, is
reached.

5.3.2.2 Nested Tunnels

In the above-mentioned example, the original IP packet can be read by each of the IPsec gate-
ways on the path. To disallow reading of the original IP packets by certain [Psec gateways,
IPsec can wrap another tunnel around the tunnel. For example, assume that G, G, and G,
are three IPsec gateways between host A and host B, where G is the sending-side gateway,
G| is the next gateway of G, and G 4, the destination gateway, is the next gateway of G;. Sup-
pose that G, supports encryption algorithms .4, and A,, G, supports encryption algorithms
A, and A, and G; supports encryption algorithms A; and A;, where 4, is the weakest algo-
rithm. Suppose that host A needs to send an IP packet P to host B using the strongest possible
encryption algorithms during transmission but does not want GG to read P, where P’s header
has host A’s IP address as the source and host B’s IP address as the destination. This objective
can be achieved using nested tunnels as follows (see Figure 5.4):

1. G, establishes a security association SA, ; with G, specifying that A; is the chosen
encryption algorithm. G, encrypts P using A, to get an ESP packet denoted by A, (P).
This creates a tunnel ¢, between G and G ;. G adds an IP header IPh, ; in front of A, (P),
with G,’s IP address as the source and G;’s IP address as the destination. Let P’ denote
this new packet. That is,

P = IPh, 4 | Ay (P).
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Figure 5.4 A demonstration of multiple layers of nested tunnels, where R, denotes other routers on
the path from IPsec gateway G to IPsec gateway (i, and R, denotes other routers on the path from
IPsec gateway G, to IPsec gateway G,

2. G establishes a security association SA,; with G, specifying that A, is the chosen
encryption algorithm. G encrypts P’ using A, to get an ESP packet denoted by A, (P’).
This creates a tunnel ¢; between G, and G ; that wraps around tunnel ¢,. G, adds an IP
header IPh, ; in front of A, (P'), with G’s IP address as the source and G ’s IP address
as the destination. Let P; denote this new packet, that is,

Pl = IPhs,l || A2(Pl)~

G, forwards P,. (Note that P, may go through other routers between G, and G,.)

3. On receiving P, Gy first uses A,, obtained from S A, ; through the SPI contalned in the
ESP header of A, (P’), to decipher P, to get P’. Reahzlng from IPh, , that the payload of
P, that is, A, (P), is to be forwarded to G, G, establishes a security association SA; ,
with G, specifying that A; is the chosen encryption algorithm. G, encrypts P’ using A,
to get an ESP packet denoted by A (P’). This creates a tunnel ¢, between G, and G; that
wraps around tunnel ¢,. G, adds an IP header IPh, , in front of A;(P’), with G;’s IP
address as the source and ;s IP address as the destination. Let P, denote this new packet,
that is,

Py =1Ph, 4 | Ag(P).

G, forwards P, to G;. (Note that P, may go through other routers between G, and G;.)

4. On receiving P, G, first uses A;, obtained from SA, , through the SPI contained in the
ESP header of A;(F’), to decipher P, to get P'. Realizing from IPh, , that G, is the
final destination for the payload of P, G ; uses A;, obtained from SA, , through the SPI
contained in the ESP header of A, (P), to decipher the encrypted .Al( ) to get P, and
forwards P to host B.

5.3.3 AH Format

Figure 5.5 shows IPsec’s authentication header format, where each field is defined as follows:

The field of “next header” is used to indicate the type of header immediately after the authen-
tication header. For example, if an ESP header is immediately after the AH header, then this
field is used to indicate the type of ESP.

The field of “payload length” is used to specify the number of words in the field of “integrity
check value” (ICV) plus 1. For example, if the ICV is a 96-bit HMAC code, then the value in
the “payload length” field equals [96/32] + 1 = 4, where [z] denotes the smallest integer
greater than or equal to . Equivalently, the payload length is equal to the number of words
contained in the header minus 2.
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Figure 5.5 Authentication header format

The field of “RESERVED” is reserved for future applications, which is occupied with O’s at
the current version.

The field of SPI has already been explained in Section 5.3.1.

The field of “sequence number” is used to identify an authentication header, where the
sequence number is a 32-bit counter. It is used to foil message replays.

In particular, the sending host sets the sequence number to 0 when it establishes an SA with
the receiving host. The number is increased by 1 each time the SA is used until it is equal to
232 _ 1, at which time, the SA must be terminated. A new SA must be established if there still
are packets to be sent in the same session.

5.3.3.1 Sliding Window

To resist message replay attacks, IPsec at the receiving host uses a sliding window to determine
which packets should be processed and which packets should be dropped. A sliding window is
a buffer that can hold w sequence numbers; the default value of w is 64. IPsec at the destination
host sets up a sliding window SW 1, w] for each SA it creates. Initially, STV[i] is unmarked
for all 7 from 1 to w.

When the first packet associated with the SA arrives, the right end of the window SWw] is
marked, representing the highest sequence number received so far. Let n represent this number.

After receiving a packet with sequence number 7, the destination IPsec finds the SA window
the packet belongs to and does the following:

1. Ifn — w+ 1 < i < n,thatis, if i is within the window, check if SW[i + w — n] is marked.
If it is marked, the packet is a replay; drop the packet. If it is not marked, check the signa-
ture of the packet. If the signature is valid, mark ST [i + w — n] and process the packet;
otherwise, drop the packet.

2. If 1 < n — w, the packet is old; drop the packet.

3. If 7 > n, check the signature of the packet. That is, unmark everything that is shifted out of
the window. If the signature is valid, shift everything in the window to the left : — n times,
set n «— 4, mark STW[w], and unmark every SW{j] with w —n —i < j < w — 1. If the
signature is not valid, drop the packet.



178 Introduction to Network Security

5.3.3.2 Integrity Check Value

The field of “integrity check value (ICV)” holds a hash value of the data to be authenticated.
IPsec at the receiving host decrypts the authenticated data, computes the hash value of the
decrypted data, and compares it against the ICV to verify its signature. In the transfer mode,
the data to be authenticated is the IP payload, and the authentication header is placed between
the IP header and the TCP header. In the tunnel mode, it is the entire IP packet, except the fields
in the IP header whose values (such as TTL and checksum) are updated dynamically during
the transmission. The authentication header is placed in front of the entire IP packet. ICV may
be a prefix of the value of a standard hash function. For example, under HMAC-SHA-1-96,
ICV is the 96-bit prefix of the hash value produced by HMAC-SHA-1.

5.3.4 ESP Format

Figure 5.6 shows the ESP format.

The SPI field has the same meaning as the SPI field in the authentication header (see Section
5.3.3).

The “sequence number” field has the same meaning as the “sequence number” field found
in the authentication header.

Within the “payload data” field, data is placed to be encrypted. Under the transport mode, the
encrypted data is the IP payload, that is, the TCP packet. Under the tunnel mode, the encrypted
data is the entire IP packet.

The “padding” field is used to pad the encrypted data to the desirable length according to
the underlying encryption algorithms.

The “pad length” field is used to indicate how many bytes are included in the “padding”
field.

The “next header” field points to the first header succeeding the ESP header.

0 8 16 24 31
Security parameters index (SPI)
Header
Sequence number
S
&
-
B o
i %" Payload data (variable length)
g fn
%’5) _ﬂg Payload
s =
< B
g I Padding (0 to 255 bytes)
l ¢ Pad length Next header
Authentication data (variable length) Trailer

Figure 5.6 ESP format
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The length of the binary string
payload data || padding || pad length || next header

must be divisible by 32. This binary string is to be encrypted, and we call the encrypted string
the encrypted component of the ESP packet.
The ““authentication data” field stores the ICV value of the following binary string:

SPI || sequence number || payload data || padding || pad length || next header.

Its length is divisible by 32. It is used to check the integrity of the encrypted component of the
ESP packet.

Thus, an ESP packet has a header, a payload, and a trailer. The header consists of SPI and
the sequence number; the payload consists of the payload data, padding, pad length, and next
header; and the trailer consists of the authentication data.

5.3.5 Secret Key Determination and Distribution

To use encryption algorithms to create ESP packets and to use HMAC authentication
algorithms to authenticate packets, the sending host and the receiving host must first agree
on using the same secret keys. This involves key determination and key distribution. Secret
keys are set up automatically using key exchange protocols, although they can also be set
up manually by system administrators. IPsec uses Oakley key determination protocol (KDP)
and Internet security association and key management protocol ISAKMP). Oakley KDP
is Diffie-Hellman key exchange with authentication and several other security measures.
However, it does not specify formats. ISAKMP, on the other hand, specifies key exchange
formats, but it does not specify key exchange algorithms.

5.3.5.1 Oakley KDP

We have shown in Section 3.3.2 that the Diffie-Hellman key exchange scheme is vulnerable
to the man-in-the-middle attack. However, this attack can be prevented if all parties involved
in a key exchange can authenticate each other. Oakley KDP uses authentication methods to
combat man-in-the-middle attacks.

In addition to the man-in-the-middle attack, the Diffie-Hellman key exchange scheme is also
vulnerable to the clogging attack. The clogging attack is a form of denial-of-service attacks. It
forces users to engage in a large number of expensive operations with the purpose of crashing
their computer systems. In the context of Diffie-Hellman key exchange, the attacker sends
to the victim a large number of public keys Y, in crafted IP packets, where the source IP
addresses contained in the crafted packets are IP addresses of unreachable hosts, forcing the
victim’s computer to compute secret keys K, = Y;X mod p. Because modular exponentiations
are expensive computations, computing a large number of modular exponentiations at the same
time would use up the CPU cycles of the computer.

Oakley KDP uses cookie exchange to resist clogging attacks. In particular, suppose that
Alice receives a message from Bob, which may contain Bob’s Diffie-Hellman public-key Y},



180 Introduction to Network Security

requesting to use Diffie—Hellman key exchange to determine a secret key. In this example, Bob
is the initiator and Alice the responder. Instead of carrying out the exponentiation Yé( 4 mod
p right away, Alice generates a (pseudo) random number, called a cookie, sends it to Bob, and
waits for Bob’s acknowledgement. Only after she receives the acknowledgement will Alice
carry out the exponentiation operation. Because in a crafted packet the host on the source IP
address used in a clogging attack is not reachable, the victim’s computer will not receive any
acknowledgement of the cookie it sent, and so it will not execute the exponentiation operations
it was asked to perform. To save time, the initiator will send a cookie along with his initial
request. A cookie can be extended to include extra information. Thus, a cookie is a string that
contains arandom number as a substring, and the rest of the string represents other information.

Cookie exchange, Diffie-Hellman key exchange, and authentication are the three major
components in Oakley KDP. In addition to these three components, Oakley KDP also uses
nonce to thwart message-replay attacks.

To describe how Oakley KDP users exchange information, we define the following
notations.

1. CKY; denotes the initiator’s cookie, and CKYy denotes the receiver’s cookie.

2. OK_KEYX denotes that the underlying message is for key exchange.

3. NIDP denotes that the succeeding part in the message is not encrypted, while IDP denotes
that the succeeding part in the message is encrypted.

4. GRP denotes Diffie—Hellman parameters p and a, where p is a prime number and a is a
primitive root modulo p. Note that Oakley KDP provides default values of p and a, but it
also allows the initiator and the responder to negotiate a new set of parameters.

5. ¢* and g¥ denotes, respectively, a® mod p and a¥ mod p, where p and a are specified in
GRP.

6. EHAO denotes the list of encryption algorithms, hash functions, and authentication algo-
rithms supported by the initiator. EHAO is provided to the responder.

7. EHAS denotes the encryption algorithm, hash function, and the authentication algorithm
selected by the responder from EHAO.

8. ID; and IDy denote, respectively, the initiator’s name and the responder’s name.

9. N; and Ny, denote, respectively, the initiator’s nonce and the responder’s nonce.

10. Sgr(X) and Sg,(X) denote, respectively, the initiator’s signature of X and the respon-

der’s signature of X.

The following are the basic interactions between the initiator and the responder using Oakley
KDP:

I-R: CKY;, OK_KEYX, GRP, ¢*, EHAO, NIDP, ID, IDy, Ny,
SKI’" (ID; || IDg [ N; || GRP [| g || EHAO).

R—1: CKYyg, CKY;, OK_KEYX, GRP, g%, EHAS, NIDP, IDy,, ID;, Ny, N,
Sk (IDg [ IDy || Ng [| Ny || GRP || g% || g” || EHAS).

I-R: CKY;,CKYy, OK_KEYX, GRP, g*, EHAS, NIDP, ID;, IDy, Ny, Ny,
Sgy(IDy [ IDg || Ny || Ng || GRP [ g* || ¥ || EHAS).
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Figure 5.7 ISAKMP header

5.3.5.2 ISAKMP Formats and Exchanges

ISAKMP specifies packet formats used for key exchange and other types of information
exchange. An ISAKMP packet consists of a header and a payload. ISAKMP supports several
types of payloads.

ISAKMP Header Format
Figure 5.7 shows the ISAKMP header format.

The 64-bit “cookie” field (of the initiator’s or the responder’s) contains, in addition to a
random number, information to establish, notify, or delete a security association.

The 8-bit “next payload” field indicates the type of the first payload in the message.

The 4-bit “major version” field indicates the major version of ISAKMP being used. Like-
wise, the 4-bit “minor version” field indicates the minor version of ISAKMP being used.

The 8-bit “exchange type” field indicates the type of exchange.

The 8-bit “flags” field is used to specify options.

The 32-bit “message ID” field is a unique identifier of the underlying message.

The 32-bit “length” field specifies the number of bytes in the entire packet (i.e., header and
all payloads).

ISAKMP Payload Types

ISAKMP specifies a number of payload types. They are SA, proposal, transform, key-
exchange, identification, certificate-request, certificate, hash, signature, nonce, notification,
and delete payloads.

. The SA payload is used to establish a security association.

. The proposal payload is used to negotiate an SA.

. The transform payload specifies encryption and authentication algorithms.
. The key-exchange payload specifies a key-exchange algorithm.

. The identification payload carries information for identifying peers.

. The certificate-request payload is used to request a public-key certificate.

AN N AW N
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The certificate payload contains a public-key certificate.

The hash payload contains the hash value of a hash function.

The signature payload contains the output of a digital signature function.

The nonce payload contains a nonce.

The notification payload notifies the status of the other types of payloads (e.g., “invalid
signature” is a notification).

12. The delete payload is used to notify the receiver that the sender has deleted an SA or
several SAs.

— —
N

The payload in an ISAKMP packet may be one type of payload or a sequence of payloads
of different types. For more information about these payload types, the reader is referred to
RFC 2408 and other relevant RFC documents.

Each type of payload begins with a payload header of the same form (see Figure 5.8).

The 8-bit “next payload” field specifies the type of the succeeding payload. It is equal to O
if it is the last payload.

The 16-bit “payload length” field specifies the number of bytes in the current payload and
its payload header (i.e., not the payloads before or after it).

A Sample ISAKMP Exchange
The following is an ISAKMP payload exchange example:

1. I — R: SA, proposal, transfer, nonce
2. R — I: SA, proposal, transfer, nonce
3. I — R: key-exchange, identification, signature
4. R — I: key-exchange, identification, signature

In this example of payload exchange, the initiator first sends an SA payload, a proposal
payload, a transfer payload, and a nonce payload to the responder for the purpose of setting
up a security association. The responder selects an encryption algorithm and an authentication
algorithm from the list provided by the initiator (i.e., the algorithms contained in the initiator’s
transfer payload). The responder then sends an SA payload, a proposal payload, a transfer pay-
load, and a nonce payload to the initiator for the purpose of completing a security association.
The initiator then sends a key-exchange payload, an identification payload (with the initiator’s
identity), and a signature payload (for authentication) to the responder for the purpose of deter-
mining a secret key. The responder sends a key-exchange payload, an identification payload
(with the responder’s identity), and a signature payload (for authentication) to the initiator to
complete the key exchange procedure.

This example is the basic type of exchange. There are other types of exchange described in
relevant RFC documents.

8-bit 8-bit 16-bit
next payload RESERVED payload length

Figure 5.8 ISAKMP payload header
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5.3.5.3 Internet Key Exchange

The IKE is heavily influenced by Oakley KDP. It has two distinct versions called version 1
and version 2. We only describe version 1, which is documented in RFC 2409.

The IKE protocol consists of two distinct phases. Phase one is responsible for authenticating
and establishing session keys. Phase two is responsible for setting up SAs.

Phase one consists of two different authentication methods called the Main Mode and the
Aggressive Mode. The Main Mode method must be implemented by all IKE software. Phase
one is designed on top of the ISAKMP specification. The sample ISAKMP exchange described
in the previous section is exactly phase one of IKE version 1. The key exchange used by IKE
is Diffie-Hellman.

Phase two, sometimes called Quick Mode, is a three-message protocol used to establish an
SA given the association created in Phase one. In particular, the SA established in Phase one
is used to protect Quick Mode communications. The messages exchanged are all encrypted
using the SA established in Phase one. The exchange of messages is as follows:

1. I — R: Propose cryptographic parameters for the SA. This message contains the SPI for I,
a proposal, and a nonce.

2. R — I: Acceptance of the cryptographic proposal for the SA. This message contains the
SPI for R, acceptance of the cryptographic parameters, and a nonce.

3. I — R: Acknowledgment by I that R has accepted the cryptographic parameters.

5.4 SSL/TLS: Security Protocols at the Transport Layer

The SSL and the TLS are common transport-layer security protocols used in practice. Designed
and developed by Netscape in 1994, SSL is used to protect World-Wide-Web applications and
electronic transactions. The World Wide Web is a client-server application program. Thus,
placing cryptographic algorithms at the transport layer (i.e., just below the application layer)
to protect Web applications is a reasonable choice. TLS is a revised version of SSL version
3, which was published in 1999 as the transport-layer security standard by The Internet Engi-
neering Task Force (IETF). There are only minor differences between TLS and SSLv3. This
section describes SSL.

SSL consists of two components. The first component is referred to as the record proto-
col, which is placed on top of transport-layer protocols. The second component consists of
the handshake protocol, the change-cipher-spec protocol, and the alert protocol. The second
component is placed between application-layer protocols (such as HTTP) and the record pro-
tocol. Figure 5.9 shows how the SSL protocol structure exists between the application-layer
protocol (in this case, HTTP) and the transport-layer protocol within the TCP/IP protocol stack.
In particular, HTTPS specifies the HTTP protocol over SSL.

The handshake protocol establishes cryptographic algorithms, a compression algorithm,
and parameters to be used by both sides during the encrypted exchange. After this, the record
protocol takes over the communications. In particular, it is responsible for dividing a message
into blocks, compressing each block, authenticating them, encrypting them, adding a record
header to each block, and then transmitting the resulting blocks. The change-cipher-spec
protocol allows communicating parties to change algorithms or parameters during a com-
munication session. The alert protocol is a management protocol; it notifies communicating
parties when problems occur.
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HTTP

SSL handshake SSL change cipher spec SSL alert
protocol protocol protocol

SSL record protocol Transport layer

TCP

1P

Figure 5.9 SSL structure

Data can often be compressed to reduce size without losing information. ZIP is a widely
used data compression algorithm in network communications. Invented by Phil Katz in the
mid-1980s, ZIP is based on an universal algorithm for sequential data compression devised
by Jacob Ziv and Abraham Lempel in 1977. This universal algorithm is often referred to as
the LZ77 compression algorithm. Published as open format in 1989, ZIP has since been used
in various popular data compression products, including PKZIP, WinZip, WinRAR, and gzip.
See Appendix C for a detailed description of data compression using ZIP.

54.1 SSL Handshake Protocol

The handshake protocol is a complicated protocol. It allows the client and the server to negoti-
ate and select a set of cryptographic algorithms and to exchange keys. It also allows the client
and the server to authenticate each other. Because of the complexity of the protocol, we use an
example of online shopping to describe the handshake protocol. The client program and the
server program exchange information in four phases.

For convenience, we use “client” to denote “the client program” or “the user of the client
program”. Likewise, we use “server” to denote “the server program”. In SSL applications of the
World Wide Web, the client program is the Web browser and the server program a Web server.

5.4.1.1 Phase 1: Select Cryptographic Algorithms

The client initiates a conversation with a client hello message to the server, and the
server responds with a server hello message to the client. The client hello mes-
sage consists of the following information:

1. Version number v,: It is the highest SSL version installed at the client-side computer (e.g.,
v, = 3.)

2. Pseudorandom string r_.: It is a 32-byte string consisting of a 4-byte time stamp and a
28-byte nonce generated by a pseudorandom number generator at the client-side computer.
This string is used to resist message-replay attacks.

3. Session ID S : The value of S, may be any number. If S, = 0, it means that the client wants
to start a new SSL connection using a new session. An SSL connection is determined by
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the cryptographic algorithms, parameters, and hash functions agreed on by the client and
the server. If S, # 0, it means that the client wants to start a new SSL connection using the
current session, or update the parameters of the current SSL connection.

4. Cipher suite: It is a list of public-key encryption algorithms, symmetric-key encryption
algorithms, and hash functions supported by the client-side system, listed in decreasing
order of preference. For example, the client may supply the following cipher suite:

{ RSA, ECC, Diffie-Hellman, Elgamal;
AES-128, 3DES/3, MARS, RC6, Serpent, Twofish;
SHA-512, Whirlpool, SHA-384, SHA-256, SHA-1 ).

Each item in the list also comes with a description of how to use it.

5. Compression method: It is a list of compression algorithms supported by the client-side
system, listed in decreasing order of preference. For example, the client may supply the
following list of compression methods:

( ZIP, WinZip, PKZIP ).

The server hello message contains the cryptographic algorithms selected by the
server. In particular, it consists of the following information:

1. Version number v,: v, = min{v,, v}, where v is the highest SSL version installed at the
server-side computer.

2. Pseudorandom string r: It is a 32-byte string consisting of a 4-byte time stamp and a
28-byte nonce generated by a pseudorandom number generator at the server-side computer.

3. Session ID S,: If S, = 0, then S| is equal to the new session ID; otherwise, S, = S..

4. Cipher suite: It is a list of a public-key encryption algorithm, a symmetric-key encryption
algorithm, and a hash function selected by the server from the client’s cipher suite. For
example, the server may select

( RSA, AES-128, WHIRLPOOL )

as its cipher suite.

5. Compression method: It is a compression method selected by the server from the list of
client’s compression methods. For example, the server may select WinZip as its compres-
sion method.

5.4.1.2 Phase 2: Authenticate Server and Exchange Key

The server sends the following information to the client:

1. Server’s public-key certificate.

2. Server’s key-exchange information.

3. Server’s request of client’s public-key certificate.
4. Server’s closing statement of server_hello.
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Because the client may not have a public-key certificate, and because the client’s iden-
tity can be verified through the client’s credit card information and the standard methods of
authenticating credit card holders, Step 3 is often omitted. If the server selects RSA to exchange
keys, then Step 2 can also be omitted.

5.4.1.3 Phase 3: Authenticate Client and Exchange Key

The client responds to the server with the following information:

1. Client’s public-key certificate.
2. Client’s key-exchange information.
3. Client’s ICV of its public-key certificate.

The key-exchange information between the server and the client is used to generate a master
key between them.

If the server did not ask for the client’s public-key certificate, then the first item and the third
item are omitted in the client’s reply.

If the server in Phase 1 chooses RSA to exchange secret keys, then the client generates and
exchanges a secret key as follows: the client first verifies the signature of the server’s public-key
certificate. If verified, the client obtains the server’s public key K'Y'. It then generates a 48-byte
pseudorandom string s,,,,, referred to as a pre-master secret. It then uses the server’s public
key K¢ toencrypt s, using RSA and sends the ciphertext string as key-exchange information
to the server. Thus, the client and the server both have the following strings:

As s, 1s encrypted before it is transmitted, only the end users, namely, the client and the
server, know the value of Spm-
The client and the server calculate the master secret s,,, as follows:

S = Hy (S [| Ho('A || 8 (7 11 725)) |l
Hy (s | Hy('BB' || sy [ 7 [ 7)) |l
Hy (s | Ho((CCOC || sy [ 7 [l 7)),
where H, and H, are hash functions (note that SSL uses MD5 as the default hash function for

H, and SHA-1 as the default hash function of H,),’A’, 'BB’, and’CCC" denote, respectively,
the ASCII code of A, BB, and CCC.

5.4.1.4 Phase 4: Complete Handshake

The client and the server send to each other a change cipher spec message and a
finish message to close the handshake protocol. Both sides determine whether they have
calculated the same master secret. For this purpose, the £ inish message sent from each side
must contain a hash value of the master secret s,,, it has calculated.
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After the handshake protocol is ended, both sides calculate a secret-key block K, using the
same method for calculating the master secret s,,,. The only difference is to replace s, with
S, That is,

Ky = H(sp, | Hy('A s 7 [170)) |

Hy (s, || Hy(BB' || s 17 7)) |

Hy (s || Hy(CCC || 5, [ 7 [ 75)) |l
Hy(s,, | Hy(DDDD' || s, || 7, [I75)) |

m

SSL then divides K, into six blocks, each of which forms a secret key. The six secret keys
that are obtained are put into two groups:

Group It (K, K5, K3)

Group II: (K, Ky, K 3)

That is,
Kb = Kcl || KCQ || Kc3 H Ksl H Ks2 H K83 H Z7

where Z is the remaining substring. The first group of secret keys is used to protect packets
from the client to the server, denoted by

(Kch KcQ’ Kc3) = (KC,HMAC7 KC,E7 IVC)7

where K y\ac 1s used as the secret key for an HMAC algorithm, K, ; as the secret key for a
symmetric-key encryption algorithm, and IV, as the initial vector for running the encryption
algorithm under the CBC mode. The second group of secret keys is used to protect packets
from the server to the client, denoted by

(K

sl

Ko, Kg3) = (KS,HMACa Ks,EJVs)-

The usage of each of these keys is the same as that of the corresponding key for the client.

The handshake protocol is responsible for establishing a secure communication session
between the client and the server. After this, the client and the server will use the SSL record
protocol to protect their communications.

5.4.2 SSL Record Protocol

The handshake protocol determines what encryption algorithms, parameters, secret keys, and
compression algorithms are to be used in the underlying communication session. The record
protocol uses these algorithms, parameters, secret keys, and compression algorithms to protect
data. Let M be a message to be sent from the client to the server. The SSL record protocol at
the client site will first divide M into a sequence of data blocks

M,, My, -, M,.
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Application data | M |

Data block | M, | | M, | Mkj

Compress block M
I {
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Attach HMAC to compressed block M’; | HMAC (M’;)
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I I
Encrypt compressed block and HMAC C;

Add SSL record header to encrypted block | | I

Figure 5.10 SSL record protocol

It will then compress, authenticate, and encrypt each data block (see Figure 5.10) and transmit
encrypted blocks to the server.

In particular, let CX, H, and E be, respectively, the compression algorithm, the HMAC
algorithm, and the symmetric-key algorithm selected by both sides during the SSL handshake

protocol. For each data block M;,7 = 1,2,--- | k, the client does the followings:
1. Compress M, to get M = CX (M,).

2. Authenticate M; to get M = M} || Hy . (M]).

3. Encrypt M} to get C; = By (M]).

4. Encapsulate C; to get P; = [SSL record header] || C;.

5. Transmit P; to the server.

When the server receives a P, from the client, it first extracts C; from P,. It then decrypts C;
to get M}, extracts M; and Hy_ . (M), verifies the authentication code, and decompress
M to get M;.

Under SSL, any data sent from the server to the client also goes through the same process.
This provides data confidentiality and integrity for data transmitted between the client and
the server.

5.5 PGP and S/MIME: Email Security Protocols

There are a number of security protocols at the application layer. The most used of these
protocols are email security protocols and remote login security protocols. The former includes
PGP and S/MIME. The latter includes SSH. In addition, Kerberos authentication for local area
networks is also popular.

Simple Mail Transfer Protocol (SMTP) and Post Office Protocol (POP) are the basic email
protocols. Both SMTP and POP are TCP protocols. POP3 is the commonly used version of
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Figure 5.11 SMTP and POP3 flow diagram

POP, where POP3 and POP use different port numbers. Other than this, we use POP and POP3
interchangeably in this book, unless otherwise stated. SMTP is responsible for transmitting
email, while POP3 is responsible for receiving email (see Figure 5.11).

SMTP was designed to transmit text messages encoded using 7-bit ASCII codes. This
presents a problem, for encrypted email messages are in binary format. To solve this problem,
one needs to devise a method to convert a binary string to a character string for transmission
and convert it back to the original binary string at the destination.

As certain binary strings represent ASCII control codes, it is difficult to represent binary
strings directly using ASCII codes. However, it is possible to represent a binary string using
hexadecimal digits, because the basic storage of binary data is byte. Each hexadecimal digit is
represented by an ASCII code. This method, however, is not economical (see Exercise 5.23).
As the number of characters used in English is over 20 but less than 27, using a 6-bit binary
string to represent an English character becomes a natural choice. This gives rise to Base64
encoding, a.k.a. Radix-64 encoding. For a detailed description of Base64 encoding, the reader
is referred to Appendix D.

5.5.1 Basic Email Security Mechanisms

Email security is a classic application of cryptographic algorithms. Let £ and D denote a
symmetric-key encryption algorithm and its decryption algorithm. Let E and D denote a
public-key encryption algorithm and its decryption algorithm. When there is no confusion
in the context, the hat may be omitted.

Suppose that Alice wants to prove to Bob that a certain email message M he receives is
from Alice. She can do so by sending the following string to Bob:

M || By (H(M)) || CA(K),
where K} and Kj are Alice’s public key and private key, respectively. After receiving
M || Sy || CA(KT)

from Alice, where S}, is the signed copy of M using Alice’s private key. Bob first verifies
CA’s signature on the public-key certificate CA (K'Y ) and extracts K 4 from it. He then extracts
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M and verifies whether S, = EKZ (H(M)). If so, then Bob is convinced that M is indeed
from Alice.

Suppose that Alice wants to ensure that M remains confidential during transmission and
she knows Bob’s public key K'7;. She sends the following string to Bob:

By, (M) || By (K 1),

where K, is Alice’s secret key. After receiving this string from Alice, Bob first decrypts
B K (K 4) using his private key to obtain K 4; that is, he computes

DK;B(EK;; (K4)) = K,.
He then uses K 4 to decrypt Ey, (M) to obtain M that is, he computes
DKA (EKA (M)) = M'

Phil Zimmermann incorporated cryptographic algorithms and mechanisms in an email sys-
tem he called PGP and made it easy to use. He published the PGP source code in 1991. Today,
PGP is owned by PGP Corporation, which continues the tradition of publishing the source code
of each new version of PGP for peer review. This practice helps to ensure product integrity.
PGP is now owned by Symantec Corporation.

5.5.2 PGP

PGP implements all major cryptographic algorithms, the ZIP compression algorithm, and the
Base64 encoding algorithm. It can be used to authenticate a message, encrypt a message, or
both. PGP follows the following general format: authentication, ZIP compression, encryption,
and Base64 encoding. The Base64 encoding procedure makes the message ready for SMTP
transmission. Figure 5.12 shows the general format of a PGP message Alice sends to Bob.

Alice and Bob each maintain a public-key ring and a private-key ring.

The secret-key component consists of Alice’s session key K 4 encrypted using Bob’s public
key K% and the key ID of K'},. The encryption ensures the confidentiality of K 4, and the key
ID informs which public key in his key ring Bob should use to decrypt it.

The signature component consists of a time stamp when Alice signs the message, the key
ID of Alice’s public key K to inform Bob which key in his key ring he should use to verify
Alice’s signature, the first two bytes of the message digest of Alice’s message for Bob to verify
the message digest, and the encrypted message digest using Alice’s private key K that serves
as Alice’s signature on the message.

The message component consists of the file name of the message, the time stamp for when
the message was created, and the message itself.

The signature component and the message component are compressed using ZIP and
encrypted using the session key K 4, Alice generated. The new binary string produced by this
process is then attached to the secret-key Component, and the whole string is converted to a
Base64 string. This format is used for Alice to provide authentication and confidentiality of
her message. If she only wants to authenticate her message, Alice does not need to include
the secret-key component and the encryption part using the session key. If she only wants
to provide confidentiality of the message, Alice does not need to include the signature
component.
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Figure 5.12 The general format of a PGP message Alice sends to Bob

5.5.3 S/MIME

SMTP can only handle 7-bit ASCII text messages. While POP can handle other content types
besides 7-bit ASCII, POP may, under a common default setting, download all the messages
stored in the mail server to the user’s local computer. After that, POP will remove these mes-
sages from the mail server. This makes it difficult for the user to read his messages from
multiple computers. Neither SMTP nor POP3 can authenticate or encrypt email messages.

The Multipurpose Internet Mail Extension protocol (MIME) was designed to support send-
ing and receiving email messages in various formats, including nontext files generated by
word processors, graphics files, sound files, and video clips. Moreover, MIME allows a single
message to include mixed types of data in any combination of these formats.

The Internet Mail Access Protocol (IMAP), operated on TCP port 143, stores incoming
email messages in the mail server until the user deletes them deliberately. This allows the
user to access his mailbox from multiple machines and download messages to a local machine
without deleting it from the mailbox in the mail server.

To solve the third problem and to support multimedia email messages at the same time, RSA
Security extended MIME in 1999 to include cryptographic algorithms for authenticating and
encrypting messages. The new protocol is referred to as S/MIME. S/MIME version 3 was des-
ignated by IETF to be the email security standard. In terms of security functionality, S/MIME
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is similar to PGP. It can automatically authenticate, encrypt, or authenticate and encrypt all
outgoing email message. It can also authenticate, encrypt, or authenticate and encrypt a spe-
cific email message. However, unlike PGP, S/MIME requires signatories to possess public-key
certificates.

S/MIME specifies encryption algorithms and encoding formats. It uses X.509 PKI and
public-key certificates. It supports standard symmetric-key encryption algorithms, public-key
encryption algorithms, digital signature algorithms, cryptographic hash algorithms, and com-
pression functions. S/MIME uses MIME formats to enclose encrypted messages.

5.6 Kerberos: An Authentication Protocol

The use of public-key certificates is arguably the best method to authenticate users across
networks. This method, however, requires a PKI, which incurs substantial overhead costs. For
users in the same local area network, this method is not necessary, because users in the local
area networks have their user names and password information stored in the local server, which
are used to authenticate users. Kerberos, named after a monstrous three-headed, snake-tailed
guard dog of Hades in Greek mythology, is an authentication protocol designed for users in
the same local area network without using public-key cryptography.

5.6.1 Basic Ideas

Kerberos was designed and developed in the late 1980s by a research team at Massachusetts
Institute of Technology, led by Steve Miller and Clifford Neuman, as part of Project Athena.
The goal of Kerberos is to make it easy for users to authenticate themselves to various servers
at the local network (e.g., email server, Web server, and file server) for obtaining services,
without needing to type in their passwords every time before they use the service. When a
user wants to use a certain service provided by a server in his local network, he needs to prove
to the server that he is a legitimate user. On the other hand, servers should also authenticate
themselves to users so that users know that they are using a legitimate service. While users
may use their user names and passwords to authenticate themselves to a server each time
they are using it, this practice is obviously cumbersome. In the meantime, each server must
also maintain an up-to-date record of user names and passwords, which makes it arduous to
manage. Kerberos uses symmetric-key encryption algorithms and electronic passes to solve
this problem. An electronic pass is referred to as a ticket.

A ticket is used to authenticate its holder’s identity. Kerberos uses two different types of
tickets and two special servers to issue tickets to users. One is called authentication server
(AS), and the other is called the ficket-granting server (TGS). AS manages users; it keeps and
maintains records of user login names and their password information (e.g., cryptographic
hash values of the passwords). TGS manages servers; it shares a different master key with
each server. TGS knows the names of all the users, which can be made public in the local
network, but only AS knows user password information.

When first logging on to the network, the user must prove to AS his identity by typing his
user name and password. After AS authenticates the user, AS issues a TGS-ticket to the user.
When he wants to use a service provided by server V, the user presents his TGS-ticket to TGS.
TGS verifies the legitimacy of the TGS-ticket and issues a V-ticket to the user. This type of
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Figure 5.13 Single-realm Kerberos, where the three dash lines indicate, respectively, the first-phase,
the second-phase, and the third-phase communications

ticket is referred to as a server ticket, which is tied to that specific server. The user uses his
V-ticket to request service from V.

Kerberos can be used in a single LAN with one AS and one TGS. It can also be used across
several local LANS. The first kind is referred to as single-realm Kerberos and the latter as
multiple-realm Kerberos. In other words, a Kerberos realm is a set of users and servers, all
using the same AS for authentication.

5.6.2 Single-Realm Kerberos

Figure 5.13 shows the flow diagram of single-realm Kerberos protocol, which consists of three
phases. In the first phase, the user requests a TGS-ticket. In the second phase, the user requests
a server ticket. In the third phase, the user presents his server ticket to the server to obtain
service.

We use the notations specified in Table 5.2 to describe Kerberos protocol steps.

5.6.2.1 Phase 1: AS Issues a TGS-Ticket to User

2. AS—U: E_Kl;(KU,TGS | IDrgs || to || LTy || Ticketrqs),
Ticketras = Ex, o (Ky ras || Dy || ADy || IDygs || By || LT5).

5.6.2.2 Phase 2: TGS Issues a Server Ticket to User

Authy pgs = EKU,TGS(IDU | _ADU Il £3);
2. TGS — U: E_Ku,ms(KU,V | IDy | t, || Tickety),
Tickety = Ex. (Kyv || IDy || ADy || IDy | ty || LT}).

5.6.2.3 Phase 3: User Requests Service from Server
1. U — V: Tickety || Authy y,

Authy y = By, (IDy || ADy || t5);
2.V —=U: By (85 +1).
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Table 5.2 Notations and their meanings used to describe Kerberos protocol

steps

Notation Meaning

U User

v Server

ID, U’s ID

ID g TGS’s ID

t, Time stamp

Ey Symmetric-key encryption with secret key K

Ky The secret key derived from user U’s password

Ky res The session key generated by AS to be used by U and TGS
Koieg The master key shared by AS and TGS

K The master key shared by TGS and V

Kyvy The session key generated by TGS to be used by U and V
LT, Expiration time

Ticket, g TGS-ticket issued to U by AS

Ticket,, Server ticket for using server V issued to U by TGS

ADy U’s MAC address

Authy rag Authentication code generated using secret key Ky 1qg
Authy Authentication code generated using secret key K y

5.6.2.4 Dissection

In the first phase, the request sent from U to AS is not encrypted, where the time stamp is used
to resist message replay attacks. We note that Kerberos is mainly used in local area networks
and that in local area networks it is reasonable to assume that all the clocks on networked
computers are synchronized. Thus, time stamps alone are sufficient to resist message replay
attacks. On the basis of what it receives, AS finds user’s password F;;. It then computes a
secret key K7y on the basis of P;;. AS then generates a session key Ky r¢g for U and TGS and
encrypts it using the master key K'q shared by AS and TGS. AS encrypts

Ky ras | IDy || ADy || IDygg || £ || LT,

and generates a TGS-ticket, where IDy; is U’s ID, used to show TGS U’s login name; ADy;
is U’s MAC address, used to specify that this TGS-ticket can only be used by the computer
whose MAC address is ADy;. Time stamp ¢, and expiration time L7}, are used to prevent
eavesdroppers from reusing this TGS-ticket.

After receiving

By (Kyras || IDrgs || o || LT || Ticketygs)

from AS, U uses the same method used by AS to compute K7; from F;; (where U needs to type
in P on the computer with MAC address ADy;). U then uses K; to decrypt what he received
from AS to get the session key Ky p¢g and TGS-ticket Ticketrgg. U uses the TGS-ticket
to request a server ticket from TGS. He can repeat this request as many times as he wants
before LT, expires. For example, U may want to send an email message, browse a Website,
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and fetch a file. Therefore, he needs to authenticate himself to the local email server, the local
Webserver, and the local file server. Suppose that U wants to obtain service from server V. He
is now entering the second phase of Kerberos.

In the second phase, U sends his ID, V’s ID, his TGS-ticket, and the encrypted string, using
the session key Ky; g, of his ID, his MAC address, and a new time stamp ¢4 to TGS. TGS
checks that the TGS-ticket is still valid by checking the time stamp and the expiration time
contained in it. TGS then verifies U’s ID and U’s MAC address against those contained in the
TGS-ticket, and that the time stamp ¢, did not occur before. TGS then generates a session key
Ky y for U and V and a server ticket Tickety, for V. The server ticket is encrypted using the
master key Ky shared by TGS and V, which will allow V to authenticate that the ticket indeed
was issued by TGS.

In the third phase, U sends to V the TGS-ticket Tickety, he obtained from TGS, and the
encrypted string of U’s ID, U’s MAC address, and a new time stamp ¢5. V then verifies all the
information to determine whether U is a legitimate user. V then adds ¢; by 1, encrypts it using
the session key K, v, and sends the encrypted string to U to indicate that authentication is
completed and U is going to receive the service he has requested.

5.6.3 Multiple-Realm Kerberos

Suppose that the Department of Computer Science and the Department of Computer Engineer-
ing at the same university occupy two buildings nearby and have each installed single-realm
Kerberos in their LANs, both of which are connected to the university network. Suppose that
the Department of Computer Science has installed a new software package and several com-
puter engineering professors and students want to use it, which is covered by the licensing
agreement. However, the computer engineering professors and students need to be authenti-
cated to the computer science server. This may be done by creating new accounts for these
professors and students in the computer science Kerberos, which would add to the system
management burden, or by using multiple-realm Kerberos through mutual authentication of
each department’s TGS.

Multiple-realm Kerberos is based on single-realm Kerberos with a slight modification. Sup-
pose that a user U in a single-realm Kerberos A wants to use a service provided in a different
but nearby single-realm Kerberos. The proximity ensures time synchronization needed in the
protocol. Multiple-realm Kerberos consists of four phases. In the first phase, U sends a request
to the local AS for a ticket of the local TGS. After verifying that U is a legitimate user, the local
AS grants U’s request. In the second phase, U uses the local TGS-ticket to request the local
TGS to grant him a TGS-ticket of the neighboring TGS. The local TGS issues a TGS-ticket
of the neighboring TGS. In the third phase, U uses his TGS-ticket of the neighboring TGS to
request a server ticket for the server in the neighboring network. TGS in the neighboring net-
work issues a server ticket to U. In the forth phase, U uses the server ticket of the neighboring
network to obtain service provided in the neighboring network.

Figure 5.14 shows a flow diagram of multiple-realm Kerberos.

We use AS to denote the authentication server in the local realm and AS’ the authentication
server in the neighbor realm, and we call them, respectively, local authentication server and
neighbor authentication server. We define TGS and TGS’ in a similar manner. Multiple-realm
Kerberos consists of four phases.
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Figure 5.14 Flow diagram of multiple-realm Kerberos

5.6.3.1 Phase 1: Local AS Issues a Local TGS-Ticket to User

2. AS = U: By (Kyrgs | IDrgs | ta || LT, || Ticketygs),
Ticketras = Ex, o (Kures | Dy || ADy || IDpes || £ || LT5).

5.6.3.2 Phase 2: Local TGS Issues a Neighbor TGS-Ticket to User

1. U — TGS I.DV H T|CketTGS || AuthUﬁTGs,
Authy ros = By, TGS(IDU | ADy || t3)s
2. TGS — Ut Eg, o (Kyrcy | 1Dras ||t || Ticketygg),
Ticketrgy = B, (Kyras | IDy | ADy || IDrgg [ 2y || LT)).

5.6.3.3 Phase 3: Neighbor TGS’ Issues a Server Ticket to User

1. U— TGS": IDy | Ticketyqg || Authy 1qgs
Authy ray = B, (IDy [| ADy || £5);
2 TGS~ U: By, (Kuy | 1Dy | 1 || Tickety ).
Tickety = Ex, (Kyy || IDy || ADy || IDy || t; || LT).
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5.6.3.4 Phase 4: User Requests Service from Neighbor Server

1. U— V: Tickety | Authy v,
AUthU;V = EKI:,V (IDU || ADU ” t?);
2. Vo U: By (8 +1).

Dissection of multiple-realm Kerberos is left as exercise (see Exercise 5.32).

5.7 SSH: Security Protocols for Remote Logins

Telnet, rlogin, rsh, rcp, and FTP were once popular application-layer protocols for users to
log on to a remote computer and to transfer or copy files between different computers. These
protocols, however, transmit data in plaintext without any cryptographic protection, and so they
are vulnerable to password sniffing, eavesdropping, IP spoofing, and other types of security
attacks.

To protect remote logins from security attacks, a Finnish researcher Tatu Ylonen devised in
1995 a security protocol called SSH. SSH creates a secure connection between two computers
using authentication and encryption algorithms. It also supports data compression. SSH also
provides security protection for file transfers (SFTP) and file copy (SCP).

SSH is a client-server application protocol. It is divided into three layers that are housed in
the application layer of the TCP/IP network model. They are the connection layer, the user
authentication layer, and the transport layer. Figure 5.15 shows the SSH architecture.

The SSH transport layer is the bottom layer. It is used to authenticate server, exchange
keys in the initial phase, and set up encryption and compression algorithms. The user’s com-
puter ensures that it is connecting to the same server computer during subsequent sessions.
Subsequent packets transmitted between the client and the server are all encrypted using a
symmetric-key encryption algorithm.

SSH connection

SSH user authentication Application layer

SSH transport

TCP

1P

Data link

Physical

Figure 5.15 SSH architecture
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The SSH user authentication layer is the next layer on top of the SSH transportation layer. It
is used to authenticate the user (i.e., the client) to the server. The user may authenticate himself
using password or public-key cryptography.

The SSH connection layer is the highest layer. It is used to set up multiple channels for
different applications in a single SSH connection, each transferring data in both directions.

As SSH encrypts everything it sends and receives, SSH provides data confidentiality and
data integrity between the client computer and the server computer and resists IP spoofing
attacks.

SSH is a widely used security protocol with several free downloads (see Exercise 5.35).

5.8 Electronic Voting Protocols

The goal of electronic voting protocols is to allow a group of distributed parties to vote in
an election. These elections somewhat parallel traditional elections. In a traditional election,
voters must be registered with the municipality. On the voting day, a voter must authenticate
himself to a trusted third party, which then provides the voter with a ballot. The voter then
goes into a cubicle and indicates his selection. The voter places the completed ballot through
a machine that adds the ballot to the tally.

In electronic voting, a similar experience is provided. Voters must still authenticate to the
system. However, the ballots are protected through the use of cryptography. Moreover, the
election is publicly auditable at every step in the process. Electronic voting protocols generally
seek to provide the following two guarantees:

1. Ballot casting assurance: Each voter gains personal assurance that his ballot is correctly
cast.
2. Universal verifiability: Any observer can verify that all ballots are properly tallied.

Traditionally, electronic voting protocols are divided into two main phases: ballot prepara-
tion and ballot tallying. In the ballot preparation phase, a voter prepares an encrypted ballot
that represents his choice. In the ballot tallying phase, the set of encrypted ballots is crypto-
graphically processed to produce a tally and a proof of correctness of that tally. To help satisfy
the security guarantees outlined previously, every encrypted ballot and the associated voter
identification are posted to a public bulletin board for easy auditing.

To understand the details of electronic voting protocols, we must first understand the follow-
ing three cryptographic primitives: interactive proofs, re-encryption schemes, and threshold
cryptography. We describe each topic in turn and conclude with a discussion of electronic
voting protocol constructions.

5.8.1 Interactive Proofs

An interactive proof is a protocol that consists of two parties named Peggy and Victor. Peggy
is in possession of some secret. Victor wants to be convinced that Peggy actually possesses
the secret. However, Peggy does not want to just reveal the secret. In order for Peggy to prove
to Victor that she knows the secret, she agrees to interact with Victor. Victor will repeatedly
challenge Peggy to answer queries that she would be able to answer only if she knew the
secret. Once Peggy has succeeded a polynomial number of times, then Victor is convinced that
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Peggy knows the secret. Victor and Peggy are subject to a polynomial-time bound (possibly
probabilistic).

We explain the ideas of interactive proofs using the canonical example of the graph iso-
morphism problem. Two graphs G, = (V;, E) and G, = (V,, E,) are isomorphic if there is
a bijection ¢ : V; — V,. A mapping ¢ is called a bijection if it is injective (one-to-one) and
surjective (onto). A map is injective if every element of the domain is mapped to a distinct
element in the range. A map is surjective if every element y in the range has a corresponding
element z in the domain such that ¢(x) = y. When ¢ is a bijection for the graph isomorphism
problem, it must additionally be the case that for all vertices in V;, the edge (u, w) € F if and
only if (¢(u), p(w)) € Ej.

Assume for the moment that Peggy knows that graph G| and G, are isomorphic, denoted
by G|, ~ G,, which implies that Peggy knows the associated bijection . Peggy wishes to
convince Victor that she knows that G; ~ GG,. The following is one round of the interactive
protocol Peggy and Victor:

1. Setup: Peggy constructs a graph H such that G; ~ H. By construction Peggy knows the
bijection ¢’ : G; — H. Using ¢ and ¢’ Peggy constructs two maps: o, = ¢’ and oy =
¢’ o o~ !, Peggy finishes by sending H to Victor.

2. Selection: Victor flips a fair coin and sends the digit 1 to Peggy if the coin comes up head.
If the coin comes up tail, Victor sends the digit O to Peggy.

3. Verification: Peggy sends to Victor o, where ¢ is the value Victor generated in the selection
step. Victor then verifies that o, is a valid bijection that shows G, | ~ H.

With a little effort, we can verify that if Peggy does in fact know the correct bijection ¢ that
shows G| >~ G,, then no matter how Victor’s coin lands, he will obtain the correct result.
In the case that Victor’s coin comes up tails, Peggy sends the bijection o, to Victor and by
construction G; ~ H. In the case that Victor’s coin comes up heads, Peggy sends the bijection
o, = ¢' o ¢~ L. As Victor is trying to show that G, ~ H, we apply o, to G, map G, to G and
then use the isomorphism ¢’ to map G, to H.

5.8.2  Re-encryption Schemes

Re-encryption is a cryptographic primitive used in electronic voting protocols. A re-encryption
scheme seeks to allow users to create a new ciphertext whose plaintext is equivalent to an
existing ciphertext’s plaintext. Moreover, this new ciphertext can be created without knowing
the plaintext message.

We can construct a re-encryption scheme using the Elgamal encryption system. Recall from
Chapter 3 that the Elgamal cryptographic system works over the multiplicative group Z,, for
a prime number p. As a primitive root of p is a generator of the multiplicative group Z7, it is
also customary to use g to denote a generator. We use this notation here (as opposed to the use
of a in Chapter 3).

The public key for the scheme is g mod p, and the private key is X < p, which is randomly
selected. An example encryption of a message M < pis

(C,Cy) = (gk mod p, M ¢g** mod p) ,

where k& < p is a number chosen at random.
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To re-encrypt an Elgamal ciphertext, it is sufficient to select a new random value &’ and
produce from the ciphertext (C]CY) a new ciphertext

(019 CQQXM)

It remains to show that the re-encryption scheme does produce a ciphertext with plaintext
equivalent to (C}, C,). We have

(C1,Cy) C,g" mod p, Crg™*¥ mod p)

(gkgk, mod p, MgX*g XK mod p)
<gk+k’ mod p, Mg¥*+X¥ mod p)
= (g’”k, mod p, M gX*%) mod p) .

Note that k+ k' is still a random number, This lends evidence to the fact that these
re-encryption schemes produce ciphertexts that have the same plaintexts. In addition, if
the party executing the re-encryption protocol were to reveal k', then it would be publicly
verifiable that the two ciphertexts represent the same plaintext messages. In fact, under this
notion, the integer &’ can be thought of as a proof.

5.8.3  Threshold Cryptography

Threshold cryptography is a form of PKC, where a predetermined number of parties must
cooperate to decrypt a ciphertext. To construct a system of this form, the participating parties
must jointly produce a public key. Each participant begins by generating and publishing an
encryption key. These keys are then aggregated in some way to form a public key, which will
be published to the world.

We use an Elgamal-based system to demonstrate a construction of this primitive. To under-
stand this primitive, one must first understand the notion of a secret sharing scheme. A secret
sharing scheme is a cryptographic primitive that allows n parties to share a secret and at some
later time allows m parties (m < n) to cooperate and recover the secret (technically, this is
called a threshold scheme).

The following secret sharing scheme was devised by Adi Shamir in 1979. Let s be a secret
to be shared by n parties, where s is a number. Construct an (m — 1)-degree polynomial with
m < n:

P(&) = Q@™ G52 gt s,

A special party, called the dealer, sets up this polynomial and is responsible for distributing
the shares of the secret. To each of the n parties in the system, the dealer provides a point on
the curve generated by the m — 1 degree polynomial. For example, party 3 may be given the
point (3, p(3)). Once this process is complete, the dealer destroys the polynomial.

To recover the secret, at least m parties must cooperate to reconstruct the polynomial. In
particular, these m parties use interpolation to recover the polynomial and then evaluate the
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recovered polynomial at z = 0 to obtain s. The common interpolation technique is called
Lagrange Interpolation. The Lagrange Interpolation process is given by the following two
equations:

L(z) =Y _£; A(2)y;, (5.2)
jeA
- xr — xk
la@) =] — — (5.3)
keA TJ
k#j

where A is a set of point indices and each point is of the form (z;,y;). The number £;(z) is
commonly called the Lagrange coefficient.

Combining the Shamir Secret Sharing scheme and the Elgamal PKC in a certain way known
as the Pedersen system, we achieve a threshold cryptographic scheme. The Pedersen system
consists of a key-selection phase and a key distribution phase.

In the key-selection phase, each user P; selects a random number r; < p and publishes

3

h; = ¢g"*. Once all users have published their values, the public key for the threshold system

is derived by
h=1]h=]]s"
i=1 i=1

Let r be the private key associated with h.
In the distribution phase, a group of users works collectively to distribute shares of r to all
users using the Shamir secret sharing scheme. The process is described as follows:

1. User P, chooses a random polynomial f;(z) of degree m — 1, where m is the minimum
number of users who have to cooperate to recover r. Define f; by

fz(z) = fi,m—lzm71 + fi,m—22m72 ot fi,lz + Ty

Clearly, f;(0) = r,;, which is user P;’s share of r.

2. User P; computes and broadcasts F; ; = glis forall 1 <

3. User P, secretly sends a signed message containing s,; =
with j # 1.

4. User P, verifies the share received from P; by first checking the signature and then verifying
the equality

j<m-—1.
fi(j) touser P; forall1 < j <n

k—1 L kol
o =TT 0" =11 (o)
t=0 t=0

for all j # 1.
5. Once satisfied with the signatures and the equality for all j, user P, computes her share s;
of rass;, = Z?Zl s,; and signs / to mark her agreement with the public key for the group.
To decrypt the ciphertext (C, C,), users must cooperate in the following way:

1. Each user P, broadcasts w, = C}*.
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2. Each user computes
Gy

i A(0)°
H J eij]
where A is the set of user identifiers involved in the decryption. Recall that every user can

compute the Lagrange coefficient as x; = j for all j. Therefore, the computation of £; 5 (0)
is well defined.

M =

5.8.4 The Helios Voting Protocol

We describe the Helios voting protocol as a concrete example of electronic voting protocols.
The Helios consists of the following five phases:

1. Vote phase: Each voter, represented by Alice, needs to confirm that the device she is using
to encrypt her vote is operating correctly. When she is satisfied, she can cast her encrypted
ballot. To have her ballot counted, Alice must authenticate herself to the system.

2. Publish phase: The system posts Alice’s encrypted vote along with her name to a public
bulletin board. This way, Alice, and everyone else, can confirm that Alice did indeed vote.

3. Shuffle phase: The shuffle phase is performed after the voting has concluded. The system
decouples the votes from the names and mixes the votes.

4. Tally phase: The system first tallies the votes in the public view (e.g., on the bulletin board)
and then destroys the votes.

5. Audit phase: This is an optional phase where any auditor may choose to download all the
election data and verify the shuffle and tally phases.

5.8.4.1 Vote and Publish

In the voting phase, Alice is presented with a list of candidates she could select and confirm.
Once the selection is confirmed, the device she is using encrypts her ballot using the Threshold
Elgamal system. Alice is then given a hash (e.g., SHA-256) of her encrypted vote as a com-
mitment from the system. Alice is then provided with an option to audit or cast her ballot. If
Alice chooses to audit her ballot, then she will be provided with the ciphertext of her ballot
and the random number used in the Elgamal encryption.

To cast a vote after auditing, Alice must re-vote and obtain a new ciphertext and hash. The
system then discards all random values it generated for the Threshold Elgamal encryption.
Alice will then be prompted to authenticate herself to the system. Helios is currently imple-
mented as a Webpage and uses username and password to authentical users. Once Alice has
authenticated herself, the system will post the encrypted ballot with Alice’s identifier to the
bulletin board.

5.8.4.2 Shuffle

A mix network is used to preserve the anonymity of ballots. A mix network, or mixnet, is a
network of servers called mix servers, where each server takes in a set of data items, mixes
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(permutes) the set, and passes the resulting set to the next server. Every mix server is further
required to prove that its resulting mix is genuine using interactive proof.

Assume that the ballots have all been collected in a set . The mixnet proceeds as follows
for each mix server:

1. Re-encrypt each ballot B, € B using the Elgamal re-encryption scheme to produce
ballot B;.

2. Shuffle (permute) the set of re-encrypted ballots { B}, B, - - - , B, } to form a ballot set 53

3. Construct m additional random Ballot sets 3, B,, - - - B3,,,, processed in the same way as
B’. Note that in Step 1, B; starts as .

4. Interact with a user to get a random sequence of length m of challenge bits: c;cycy - - ¢,

5. Forall1 <+¢ < m, where ¢, = 0, show that the ballot set B, is equivalent to the ballot set .
To do so, it suffices to reveal the permutation and the re-encryption random values for every
ballot. Note that the ballot itself may be leaked, but nor what the ballot contains!

6. Forall 1 <14 < m, where ¢; = 1, show the ballot set 53, is equivalent to the ballot set 5’ by

(a) computing the pairwise difference of the re-encryption data used to produce B’ and B;;
and

(b) computing the composition of the inverse permutation used to produce B, and the per-
mutation used to produce 5’

Both compositions are then furnished to the verifier.

The transcripts of the proofs are posted to the bulletin board.

5.8.4.3 Tally

In the tally phase, the ballots are decrypted and tallied. This tally as well as proof of the decryp-
tion is posted to the bulletin board. To prove that the threshold encrypted ballots are decrypted
correctly, an interactive proof strategy is used. In particular, this protocol is called the proof of
decryption protocol.

The proof of decryption protocol used in the Helios voting protocol is the following
Chaum-Pedersen protocol, which proves that for a given Elgamal ciphertext («, 3) and the
plaintext claim M, we have 5

log,(g*) = log, <M) -

The following protocol between Peggy and Victor can be used to demonstrate the veracity of
that statement.

. Selection: Peggy selects aw € Z and sends A = g and B = .

. Challenge: Victor challenges Peggy with a random number ¢ € Z,,.

. Response: Peggy responds with t = w + xc.

. Verification: Victor check that g* = Ag® and o = B (%)
If it does match, then Victor agrees that the decryption was correct. Otherwise, Victor does
not agree on the decryption.

c

RS R S
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To see why this proof works, it suffices to note that for Peggy to construct ¢, she would
either be the owner of the private key x or have to solve the discrete log problem to compute
x from the public key g”. Because discrete log is intractable according to common beliefs, we
conclude that Peggy is the owner of the private key, and thus her decryption is correct. The
proof is then posted to the bulletin board.

5.9 Closing Remarks

How to construct practical security protocols to protect network communications is a critical
issue in network security. Security flaws in security protocols are often caused by improper
handling of a cryptographic algorithm, not by the algorithm itself. Improper key management
and careless implementations of security protocols are common reasons that security loopholes
exist. Whether a security protocol will do exactly what it is intended to do can only be tested
through practice. This is a process of discovering defects, patching loopholes, and devising
new security protocols. The security protocols we described in this chapter are for the three top
layers of the Internet (i.e., above the data-link layer). We introduce wireless network security
protocols at the data-link layer in the following chapter.

5.10 Exercises

5.10.1 Discussions

5.1. In your opinion, should the construction of PKI facilities be under close control of
the government?

5.2. Do you think that the development of global economy will demand the establishment
of a global PKI authority? How do you imagine such a system will work?

5.3. Provide an example attack that [Psec cannot protect against.

5.4. From your experience, if a Website uses SSL to transmit your credit card information
when you do online shopping, how much do you trust that it is secure in the scale
from 1 to 10 with 10 being 100% secure. What security problems would you be
concerned about?

5.5. From your experience, why do you think one must use a secure remote login proto-
col. Even if SSH is used, how much do you trust that it is secure in the scale from 1
to 10 with 10 being 100% secure. What security problems would you be concerned
about?

5.6. Which network security protocols do you use more often than the others? What
security protocols do you wish to have that are not currently available?

5.10.2 Homework

5.1. Placing cryptographic algorithms in the transport layer has a different security
impact than placing them in the network layer. Explain the differences.
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5.2

5.3.

54.

5.5.

5.6.

5.7.

5.8.

5.9.

Placing cryptographic algorithms in the application layer has a different security
impact than placing them in the data-link layer. Explain the differences.

Suppose that cryptographic algorithms are deployed at the IP layer. Thus, when
a TCP packet is passed down to the IP layer, its payload or the entire packet is
encrypted or authenticated. Does it make sense to encrypt or authenticate only the
header? Justify your answer.

Suppose that a TCP header is encrypted at the TCP layer. Can this TCP packet be
delivered to the destination without using some type of TCP gateway? When does
the encrypted TCP header need to be deciphered? Justify your answers.

Explain why one may want to encrypt the entire frame at the data-link layer. What
can one get from performing traffic analysis on such frames?

Explain why one may want to authenticate the entire frame at the data-link layer.

If only the payloads of frames are encrypted (i.e., frame headers and trailers are not
encrypted), what can one get from performing traffic analysis on such frames?

Users of Microsoft Windows XP may look at the public-key certificates and the list
of revoked certificates stored in the system following these instructions: Click Start
then Run. Enter mmc and click OK. In the popup window titled “Console1” click in
succession File, Add/Remove Snap-in, Add, Certificate, Add, My user account
(skip it if it is already selected), Finish, Close, and OK. Click the “+” sign at the
left-hand side of the Certificate — Current User window and answer the following
questions.

(a) What does each item mean?

(b) In which items do revoked certificates appear? Which certificates have been

revoked?

If you have Adobe Acrobat version 6.0 or a later version installed on your computer,
you can create public-key certificates and use public keys to authenticate documents.
Suppose that the document you want to sign is a PDF file. Open this file using Acro-
bat. Click Advanced then Manage Digital IDs. Point the mouse to My Digital ID
Files, then click in succession Select My Digital ID File, New Digital ID File, and
Continue. Fill in the blank box with relevant information. Click Create. A win-
dow titled The New Self-Sign Digital ID File will pop up. This is your public-key
certificate. Click Save.

Click in succession Advanced, Manage Digital IDs, My Digital ID Files, My
Digital ID File Settings, and Export. Select Save the data to a file. This is your
public key. Select a directory and a file name, then click in succession Save, OK,
and Close.

Click in succession File, Save as Certified Document, and OK. Select Disallow
any changes to the document, then click Next. Select Do not show Certification
on document, then click in succession Next, Add Digital ID, Create a self-signed
digital ID, and Continue. Select Add as a “Windows Trusted Root” Digital ID,
then click Create and OK. Select the public-key certificate you just created, and
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5.10.
5.11.

5.12.

5.13.

5.14.

5.15.

5.16.
5.17.

5.18.

5.19.

*%5.20.

5.21.

click OK and View digital ID. You will see a certificate similar to Table 5.1. List
your certificate and explain each item.
Finally, click Close and Sign and Save as. Enter the file name and click OK.

Describe the differences between [Psec transport mode and the IPsec tunnel mode.

Download the latest version of OpenSSL (available for both Windows and Linux)
from http://www.openssl.org and use it to create a self-signed certificate
for use as a CA and then create a user certificate signed by the CA.

Can you load the CA certificate into the Windows and use the client certificate to
send S/MIME emails?

The early versions of OpenSSL suffered from the Heartbleed bug attack that allows
anyone on the Internet to read the memory of the systems protected by the early
versions of OpenSSL, including the memory of the secret keys. Conduct a research
on Heartbleed bug and write a report of up to 4000 words on your findings.

Use the “Heartbleed Bug checker” at https://filippo.io/Heartbleed/
to check if your OpenSSL server is still vulnerable to the Heartbleed bug.

Use the “LastPass’ SSL date checker” at https://lastpass.com/heart
bleed/ to check if your OpenSSL server has updated its SSL certificate. If the
update was done after April 4, 2014, then it is likely that the system administrator
of your OpenSSL server has patched the Heartbleed bug vulnerability.

The IPsec transport mode and the IPsec tunnel mode can be mixed together. Describe
the pros and cons of different combinations of these two modes.

Describe using a diagram the working of the sliding window in AH.
Explain the meanings in the basic interactions in Oakley KDP.

The following is an ISAKMP payload exchange example:

I — R: SA, proposal, transfer, nonce

R — I: SA, proposal, transfer, nonce

I — R: key-exchange, nonce

R — I: key-exchange, nonce

I — R: identification (of I), signature

R — I: identification (of R), signature

Explain what this exchange is trying to accomplish.

A e

IPsec has been implemented with IPv4 and IPv6. However, it is easier to implement
IPsec with IPv6. Explain why this is the case.

Can you design a network protocol so that IPsec can be implemented in a more
natural way than IPv6? Justify your answer.

The later versions of Linux includes IPsec. If you are running Linux, install IPsec
on your Linux machine.


http://www.openssl.org
https://filippo.io/Heartbleed/
https://lastpass.com/heart
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5.22.

5.23.

5.24.
5.25.
5.26.

5.27.

5.28.

Translate the following binary strings to Base64 strings:
(a) 10010010

(b) 1010110110010010

(c) 101100100110110110100011

(e) 01001101100100100101110010110010

Because binary data is a full 8-bit per byte, it is possible to convert a binary string
to a text string using hexadecimal digits. That is, one can represent each byte using
two hexadecimal digits, where each hexadecimal digit is represented by an ASCII
code. Explain why this method is not economical.

According to your experience of online shopping, describe how SSL is executed.
Draw a flow diagram describing the SSL handshake protocol.
Describe how the receiving site of SSL executes the SSL record protocol.

Use Wireshark to identify packets used for executing the SSL handshake pro-
tocol. (Note: you should finish Exercise 1.5 first.) If your bank supports online
banking, use Wireshark to obtain your login packets and check whether they are
encrypted.

In this hands-on drill, you will install PGP on a PC and use PGP with Outlook
Express to send secure email messages. Firstly, download PGP Freeware 8.0 (or
the latest version) from
http://www.pgpi.org/products/pgp/versions/freeware

for your operating system. For example, for Windows XP, go to

http://www.pgpi.org/products/pgp/versions/freeware

/winxp.

Click the file you downloaded and install it. Select I am a New User, and
enter your name and organization. Select PGPMail for Microsoft Outlook Express
and press the Next button. After PGP is installed, do the followings:

(a) Generate a public/private key pair: click the PGPtray icon and select PGP -
keys. Then select keys and New Key. Now you will enter the PGP key
generation wizard. Click Next. Enter your name and your email address. The
key pair you will generate will be associated with the name and the email address
you enter here. Select algorithm (e.g., RSA) and key length (select a number
between 1024 and 4096). Then enter an expiration date. Click the Next button
and enter a pass phrase of your choice (you need to remember this pass phrase).
Click Finish. Now a public key should be shown on your screen.

(b) Distribute your public key: send your public key to your correspondents (e.g.,
your classmates). You may simply drag the key to the body of a mail message
and send it.

(c) Obtain your correspondent’s public key: ask your correspondent to mail you
his key and put it in your key ring. To do so, click PGPtray (the PGP exe-
cutable), select Current Window and Decrypt and Verify. You may


http://www.pgpi.org/products/pqp/versions/freeware
http://www.pgpi.org/products/pqp/versions/freeware
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5.29.

5.30.

5.31.

5.32.
5.33.
5.34.

5.35.

*5.36.

also obtain your correspondent’s public key from the key server (if your corre-
spondent has sent his public key to it). Validate your correspondent’s public key
and sign the key. To sign a key, select Keys from PGPtray, then click New
Keys and Sign. Now you are ready to use your correspondent’s public key.

(d) Send an authenticated email message or an encrypted email message to your
correspondent: at the top right “new message” window of Outlook Express, you
will see two buttons: Encrypt Message Before Sending and Sign
Message Before Sending. Choose accordingly (e.g., choose either one
of them or both). Then send the message.

(e) Receive an authenticated email message or an encrypted email message: Simply
select the decrypt and verify option.

Microsoft Office Outlook and Outlook Express both support S/MIME. To set it
up, one must first install a digital ID (i.e., a digital certificate) following these
steps: Open Office Outlook or Outlook Express, then click in succession Tools,
Options, Security, and Get a Digital ID. Select your country or region. Click
VeriSign Web Site then Click here (for 60-day free trial). Enter your email
address, and click in succession Accept and OK. If Get a Digital ID does not
work, go to the VeriSign Website directly using the following URL: https:
//digitalid.verisign.com/cgi-bin/OEenroll.exe?name

=& email=, and obtain a free-trial digital ID from there. After you receive your

digital ID, click in succession Continue, Install, and Yes.

(a) Follow these steps to sign a message: Open Office Outlook or Outlook Express.
Click in succession Tools, Options, Security, Add digital signature to out-
going message, and OK. Send a message to yourself. Click Send then OK.
Describe how to authenticate a sender’s identity.

(b) Follow these steps to encrypt a message: Open Office Outlook or Outlook
Express. Click in succession Message, New Message, and Encrypt. Send a
message to yourself and explain how to decrypt a message.

Explain the advantages of separating AS and TGS into two entities in Kerberos.

Explain why Authy; g is added in Phase 3 of single-realm Kerberos. What attacks
can it help protect?

Provide a dissection of multiple-realm Kerberos protocol steps.
Draw a flow diagram to describe single-realm Kerberos dialogs.
Draw a flow diagram to describe multiple-realm Kerberos dialogs.

You will need to use two networked computers running Microsoft Windows to do
this exercise. Download from http://www.ssh.com the evaluation version of
the latest SSH client program and SSH server program. Install the client program on
one machine, install the server program on the other machine, and run SFTP.

SSH has two different versions. The original version is called SSH1, and the revised
version is called SSH2. These are two different protocols. Search the literature and


http://www.ssh.com
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5.38.
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write a short paper of up to 4000 words describing these two versions of SSH.
Explain why SSH2 is more secure than SSH1.

Visit the Helios voting protocol Webpage: https://vote.heliosvoting
.org/, and describe potential security flaws in deploying the voting protocol for a
student government election.

In the electronic voting protocol described in Problem 5.37, is it really necessary for
Alice to verify the voting machine correctly encrypted her ballot?

Describe an interactive proof protocol between Peggy and Victor where Peggy,
knowing the three coloring of a graph, can prove this fact to Victor. As in the text,
Peggy does not want to actually reveal the three coloring to Victor.


https://vote.heliosvoting
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Wireless Network Security

Wireless computer networks are playing a major role in modern communications. Laptop com-
puters, cell phones, and embedded systems in common appliances and automobiles may be
connected to form an ad hoc network or to a fixed network infrastructure such as the Internet
through wireless access points. Wireless access points have been installed in office buildings,
homes, airports, hotels, highway service stations, and other facilities, providing people with
unprecedented conveniences and flexibilities to exchange information and enjoy online enter-
tainment. People today, for example, can connect their laptop computers to the Internet while
sitting in their own backyards or while waiting for flights in the airports. Wireless computer
networks have started a new revolution in the information industry.

This chapter introduces the IEEE 802.11 wireless network standard for wireless local area
networks (WLANSs), wireless network security vulnerabilities, and common wireless secu-
rity protocols. The latter includes the Wired Equivalent Privacy (WEP) protocol, the Wi-Fi
Protected Access (WPA) protocol, WPA2, the IEEE 802.11i protocol, and the IEEE 802.1X
authentication protocol. This chapter also introduces the Bluetooth protocol and the ZigBee
protocol for wireless personal area networks (WPANSs) and their security mechanisms. Finally,
it introduces several security issues in wireless mesh networks (WMNSs).

6.1 Wireless Communications and 802.11 WLAN Standards

Wireless networks transmit data in the air via radio waves of various frequencies. Transmitting
radio waves in the open air, however, makes it easy for any person on the street to intercept
wireless data, to connect his computing devices to a nearby wireless network, or to inject
new packets to existing wireless networks. To do these, what the attacker needs is a radio
transmitter and receiver with the same radio frequency of the underlying wireless network.
The attacker may also jam a particular wireless channel using a jamming device. Channel
jamming may also be unintentional, for common wireless networks are operated on the same
frequency.

Media access in wireless networks is fundamentally different from the media access mech-
anisms in wired networks, where one has to hook up a computing device to a network cable
for transmitting and receiving data, and the cables are physically protected by walls, ceilings,
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doors, pipes, and other forms of physical structures. Thus, how to provide wired equivalent
media access in wireless networks becomes a unique security issue.

Providing physical-layer security protections for wireless networks is difficult, for anyone
may disturb or jam a selected radio frequency. Jamming a radio frequency is in a way equivalent
to cutting a network cable in a wired network. Attacks of this kind are easy to implement by the
attacker but difficult to prevent by the defender. To counter such attacks, the spread spectrum
technology has been developed to make radio signals more difficult to detect and more difficult
to jam.

Most wireless security protocols deal with media access at the data-link layer, including
implementations of encryption algorithms, authentication algorithms, and integrity-check
algorithms. This approach provides network access with WEP. With security mechanisms
implemented at the data-link layer, higher-layer protocols and applications can be used
without any modification.

The IEEE 802.11 standards specify a suite of protocols and specifications for WLAN com-
munications at the physical layer with appropriate security protections at the data-link layer.

6.1.1 WLAN Architecture

A WLAN may attach itself to a wired infrastructure. Such WLANS are referred to as infrastruc-
ture WLANs. A WLAN may also be formed without attaching itself to a fixed infrastructure.
Such WLANS are referred to as ad hoc WLANS (or peer-to-peer WLANS).

6.1.1.1 Infrastructure WLANs

An infrastructure WLAN consists of one or more wireless access points (WAP) and a num-
ber of wireless-enabled computing devices (e.g., laptop computers, tablets, and smartphones).
WAP is often referred to as AP in short. A wireless-enabled computing device is referred to as a
mobile station (STA) or a wireless node (WN). An AP is equipped with a radio transmitter and
receiver, an antenna, and a standard port for wired connection. At one end of an AP is a wired
link connected to a wired LAN. At the other end of an AP is a radio transmitter and receiver
used to establish radio connections between the AP and an STA. A single AP may establish
wireless connections with multiple STAs at the same time through time division multiplexing
access. Thus, an AP in a WLAN is similar to a switch in a LAN, and an infrastructure WLAN
is similar to a traditional star network. Figure 6.1 shows a schematic of infrastructure WLANS.

The AP in an infrastructure WLAN is fixed, which serves as the center of the network. An
STA will need to select an AP within its communication range and connect itself to the AP to
become a new member of the WLAN.

Each STA in the 802.11 standards is identified by a 48-bit MAC address. APs can be con-
figured so that they can be accessed only by STAs from a given list of MAC addresses. This
is called MAC-address filtering.

Each AP is associated with a Service Set Identifier (SSID), which serves as the name of the
WLAN. Each AP announces regularly its SSID and other information needed for an STA to
establish a connection with it. This process is known as beaconing. An STA waits for a beacon
frame from an AP and joins a WLAN by sending a request frame to the corresponding AP
with the AP’s SSID it receives. This process is known as scanning.
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Figure 6.1 A schematic of infrastructure wireless local area networks

6.1.1.2 Wi-Fi Networks

WLANSs that meet the 802.11 standards may be certified as Wi-Fi networks by the Wi-Fi
Alliance. Wi-Fi stands for Wireless Fidelity. The Wi-Fi Alliance, established in 1999, is a
nonprofit organization for promoting the worldwide adoption of the IEEE 802.11 standards
for high-speed WLAN:S.

6.1.1.3 Wi-Fi Hotspots

The geographic region covered by a Wi-Fi AP is often referred to as a Wi-Fi hotspot . The AP
is connected to the Internet, allowing STAs in the hotspot to connect to the Internet through
the AP.

6.1.1.4 Ad Hoc WLANSs

An ad hoc WLAN is formed without using any fixed wired infrastructure, where an STA may
communicate with another STA directly within communication range. If the destination STA
is not within the communication range of the source STA, the source STA will use interme-
diate STAs to relay data to the destination STA. Thus, an ad hoc WLAN is similar to a wired
peer-to-peer network.

6.1.2 802.11 Essentials

802.11 is the wireless counterpart of 802.3 and 802.5 in the IEEE 802 protocol family, where
802.3 is the IEEE standard for Ethernet LANs and 802.5 is the IEEE standard for token
ring LANs. The data-link layer consists of the logical-link control (LLC) sublayer and the
media-access (MAC) sublayer. 802.11 specifies communications and security mechanisms for
WLAN at the MAC sublayer and at the physical layer. Figure 6.2 shows the schematic of the
IEEE 802 family.
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Figure 6.2 A schematic of the IEEE 802 family

The MAC sublayer of 802.11 uses the carrier sense multiple access with collision avoidance
(CSMA/CA) scheme. 802.11 consists of a series of protocols. The first protocol was named
802.11, and the subsequent protocols were named 802.11 followed by a lower-case letter,
which ranged from 802.11a to 802.11u. Of these subprotocols, 802.11a, 802.11b, 802.11g,
and 802.11i have been used widely, where 802.11b supports a data rate of up to 11 Mbps with
a transmission range of about 35 m indoor and about 110 m outdoor, while 802.11g supports
a data rate of up to 54 Mbps with the same transmission range as 802.11b. WEP is defined in
802.11b, and WPA?2 is defined on the basis of 802.11i.

802.11b and 802.11g operate on the same radio frequency of 2.4 GHz, while 802.11a oper-
ates on frequency of 5 GHz. As most cordless phones operate on the frequency of 2.4 GHz,
802.11a will not be interfered with by cordless phones, microwaves, or Bluetooth devices. In
addition, 802.11a channels do not overlap with 802.11b and 802.11g channels. In the United
States, 802.11b and 802.11g consist of 11 useable channels, where channels 12—14 are reserved
for emergency responders.

Built on previous 802.11 standards, 802.11n supports devices with multiple-input
multiple-output (MIMO) capacity. These devices use multiple transmitter and receiver
antennas to improve system performance.

In ad hoc WLANS, network bandwidths are often reduced by a factor of 2, for receiving
nodes need to forward data toward the destination.

6.1.3 Wireless Security Vulnerabilities

Wireless technologies have the following weaknesses:

1. Wireless communications could be easily sniffed.

2. Radio signals could be easily disturbed or injected to the network.

3. Wireless hand-held computing devices and embedded systems may not have sufficient com-
puting resources or power supply to carry out complex computations that require fast CPUs
and large memory space.

These weaknesses make wireless communications vulnerable to eavesdropping attacks,
denial-of-service attacks, message-replay attacks, STA-spoofing attacks, and AP-spoofing
attacks.
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STAs and APs in early wireless network protocols were identified only by MAC addresses.
MAC addresses were transmitted in plaintext, and so impersonating STAs and APs was
straightforward. The attacker may impersonate a legitimate user and deliberately inject
certain malicious packets to the network for the purpose of achieving false authentication or
breaking existing wireless connections between legitimate STAs and legitimate APs.

6.2 Wired Equivalent Privacy

The WEP protocol, published in 1999, is the security component at the data-link layer of
802.11b.

WEP requires that all STAs and APs in the same WLAN share the same preset secret key K,
referred to as the WEP key. A WEP key may be 40-bit or 104-bit long. Some WEP products
may even support 232-bit WEP keys. WEP allows each WLAN device to share more than one
WEP key. WEP keys are identified using a 1-byte key ID, denoted by keyID.

WEP does not specify how to generate or distribute secret keys. Thus, secret keys are often
selected by the system administrator and distributed using land-line communications or other
methods. In general, WEP keys are not changed once they are installed.

6.2.1 Device Authentication and Access Control

WEP uses a challenge-response authentication scheme to authenticate STAs. That is, for an
STA to get access to an AP, the STA must authenticate itself to the AP as follows:

1. Request: The STA transmits a request for connection to the AP in the WLAN.
2. Challenge: The AP generates 128-bit pseudorandom string

cha = ajay - - ay,

where each a; is an 8-bit string for 1 < ¢ < 16, and sends cha to the STA.

3. Response: The STA generates a 24-bit initialization vector V' and encrypts cha using RC4
with key V' || K. That is, the STA applies RC4 on V' || K to generate a subkey stream
ky,ky, -+ , ks where each k; is an 8-bit string. It then computes r;, = a, ® k; for i =
1,2,--- ,16. The STA sends

res=V | riry- -1

to the AP.
4. Verification: The AP applies RC4 on V' || K to generate the same subkey stream k, ks,
-+, ky4, computes a;, = r; @ k;, and verifies whether a;, = a,, where i = 1,2,--- | 16. If

yes, the STA is authenticated and the connection request is granted. If not, the STA is denied
access to the AP.

6.2.2 Data Integrity Check

Let M be the packet passed down from the network layer to the data-link layer for transmission.
WEP at the LLC sublayer calculates a 32-bit Cyclic Redundancy Check (CRC-32) value of
M as the integrity check value.
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6.2.2.1 Cyclic Redundancy Check

CRC is a simple binary polynomial division procedure that takes a binary string as input and
outputs a binary string of a fixed length as error-detection code. WEP uses CRC to check
data integrity. In particular, let M be an n-bit binary string. Let P be a binary polynomial of
degree k appropriately chosen, represented as a (k + 1)-bit binary string. To obtain a k-bit
CRC value, treat M 0" as a binary polynomial of degree at most n 4 k — 1. Divide M 0* by P
to obtain a k-bit remainder R, which is the CRC value, denoted by CRC,,(M). IEEE 802.3
selects
P =100000100110000010001110110110111

to be the CRC-32 polynomial, that is,
Pla) =2+ 2" +2® + 2?4+ 20+ 2P 42 42+ T+ et a4 L

The new polynomial M || CRC, (M) is divisible by P. This can be proved as follows.
Firstly, write M as a polynomial M (x) of degree at most n — 1. Then MO represents the
polynomial M (x)z*. We have

M (z)z* mod P(z) = R(x),

where R = CRC,(M). Thus, because adding binary coefficients is the same as exclusive-OR,
we have

(M (z)z* + R(x)) mod P(z)
= (R(z) + R(z)) mod P(x)
= 0mod P(x)
=0.

Thus, if M | CRC, (M) is not divisible by P, it implies that M/ has been modified.

To calculate a CRC value, let ' = M, align P to T at the leftmost bit that is 1, and perform
XOR on P and the corresponding bits in 7'. Let T denote the new string. Repeat the same
procedure until P goes out of the right-hand side of 7. The rightmost & bits are the remainder,
which is used as the integrity check value (ICV).

We use an example to demonstrate the CRC procedure. For simplicity, let n = 8 and k = 4.
The standard CRC, polynomial is 2* 4+ 2z + 1. Thatis, P = 10011. Let M = 11001010, then

CRC, (M) = 0100 (see Figure 6.3).

6.2.3 LLC Frame Encryption

Let M be an 802.11b LLC frame to be transmitted by the sender, which includes the
LLC-frame header and the packet passed down from the upper layer. An LLC frame is also
referred to as MAC Service Data Unit (MSDU).

WEP calculates the CRC,, (M) and encrypts M || CRC;, (M) at the MAC sublayer using
the RC4 stream cipher. In particular,



Wireless Network Security 217

1 1 0 0 1 0 1 0 0 0 0 0
2 1 0 0 1 1
1 0 1 0 0 1 0 0 0 0 0
2] 1 0 0 1 1
1 1 1 1 0 0 0 0 0
S2) 1 0 0 1 1
1 1 0 1 0 0 0 0
2 1 0 0 1 1
1 0 0 1 0 0 0
3] 1 0 0 1 1
0 1 0 0
Figure 6.3 A sample CRC, calculation
802.11b hdr v klfg data IcV
RC4 encrypted
Figure 6.4 802.11b MAC sublayer frame layout
. Let

M || CRC35(M) = mymy - - - my,

where each m, is an 8-bit binary string.
. The sender’s MAC sublayer generates a 24-bit initialization string V', and uses RC4 on
input V' || K to generate a sequence of 8-bit subkeys ky, ko, - -+ , k. Let

c, =m; Dk,
. The sender’s MAC sublayer adds a header to the payload
V|| keyID | cicy--- ¢y

and transmits it in the air for the receiver. Figure 6.4 shows the layout of an 802.11b MAC
sublayer frame.

For convenience, we denote this encryption algorithm by

C = (M| CRCy(M))® RCA(V || K).
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The initialization string V' is used to produce a different subkey stream for a different LLC
frame. The initialization string is typically referred to as initialization vector. Thus, the key
V|| K is also referred to as a per-frame key. Note that the initialization vector V' is transmitted

in plaintext, which is used by the receiver to calculate the same subkey sequence ky, ko, - -+ , k;
for decrypting c; to get m,. Removing the rightmost 32 bits from m, m,, - - - , m,, the receiver
gets M.

WEP encryption is intended to provide WEP protection. WEP does not provide confiden-
tiality against legitimate STAs in the network. Thus, application-layer encryptions are needed
to provide confidentiality for user data against STAs.

6.2.4 Security Flaws of WEP

WEP, although used widely, was a hastily designed security protocol. It contains serious secu-
rity flaws in device authentication, frame integrity check, frame encryption, and access control.

6.2.4.1 Authentication Flaws

The challenge-response authentication scheme used in WEP is a simple exclusive-OR scheme,
which is vulnerable to the known-plaintext attack as described in Section 2.1.2. In particular,
the attacker may use a sniffer to intercept a challenge—response pair (cha, res) between the
AP and a legitimate STA, where

cha = ajay - - ay,

res =V || ryry - 16,

r;, =a; Bk,
i=1,2,--- 16.
Thus, Malice, the attacker, can compute k;, = a, ® r; fori = 1,2,--- | 16. This allows Malice

to authenticate her device to the AP as follows:

1. Send a request to the AP.

2. Wait for the challenge string cha’ from the AP.

3. Use the previously computed key streams &y, ko, - - - , k15 to XOR the challenge string cha’
to get a response string res’.

4. Send the previously captured initialization vector V" and the response string res’ to the AP.

The AP applies RC4 to V' || K to generate the same key stream ky, ko, - - - , k4, verifies that
kiky - kyg @ res’ = cha/, and authenticates Malice’s device.

6.2.4.2 Integrity Check Flaws

CRC has been widely used at the data-link layer to detect transmission errors in data frames,
but it is a poor choice for checking frame integrity. This is because CRC has the following two
weaknesses:
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1. Linear property: For any two strings x and y,
CRC(z @y) = CRC(z) @ CRC(y). (6.1)

The proof of this property is straightforward (see Exercise 6.7).
2. No secret key involved: CRC is generated without using secret keys.

The first weakness allows the attacker to modify a message so that the CRC of the modified
message is the same as that of the original message. The second weakness allows the attacker
to inject new messages.

Message Tampering
Suppose that M is the original packet that Alice wants to send to Bob. According to the encryp-
tion scheme, Alice’s STA sends the following string C' to Bob’s STA:

C = (M || CRCy(M)) & RCA(V || K).

Suppose that Malice intercepts C'. Then Malice can modify C' in anyway she wants to, and
the modification cannot be detected by integrity check. This can be done as follows. Let I" be
an arbitrary frame. Malice modifies C' by

C' = (I'| CRCy(T)) & C,
and sends it to Bob. It follows from Equality 6.1 that

= (I'| CRCy,(IN) @ C

[(I" | CRCx» (1) @ (M || CRCy,(M))] @ RCA(V || K)
[(I"® M) || (CRCy,(I') @ CRCy,(M))] @ RCA(V || K)
[
= (M

(I'® M) || (CRCyy(I'® M))] @ RCA(V || K)
"I CRCy (M) & RCA(V || K),

where M’ = I' ® M. Thus, Bob will receive a new message M’ with the correct integrity
check value of CRCs,(M').

Message Injections

RC4 is vulnerable to the known-plaintext attack. That is, if a legitimate plaintext—ciphertext
pair (M, C') is known, then performing M @ C will yield the subkey stream used to encrypt
M. As the initialization string V' is transmitted in plaintext and CRC is generated without
using any secret key, the attacker can inject a message and have it authenticated if the same
initialization vector can be reused. What he needs to do is to generate a message © he wants to
inject to the network, compute CRC3,(©), encrypt CRC,,(0) || © using the subkey stream
he obtains from a known-plaintext attack, and inject

V[ (€ || CRCy»(0)) ® RCy(V || K)

to the network.
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Fragmentation Attacks

The fragmentation attack takes advantage of the unique structure in the 802.11b LLC frame
header to inject messages to the network. In particular, the first eight bytes in the header of any
LLC frame have the following fixed values (represented in hexadecimal):

AA AA 03 00 00 00 08 00

if it is an IP packet, or
AA AA 03 00 00 00 08 06

if it is an ARP packet, where each ARP packet has a fixed length of 36 bytes. Thus, it is
straightforward to distinguish an ARP packet from an IP packet.
These eight bytes are the first to be encrypted. Thus, the attacker may obtain the first eight
subkeys
Eyykyy - kg

from any intercepted MAC frame by performing a simple XOR operation. Let V' be the ini-
tialization string.

The 802.11b MAC sublayer may divide an LLC frame up to 16 segments. Thus, the attacker
may inject a 64-byte LLC frame by segmenting it into sixteen 4-byte fragments, use ' and the
subkey stream ky, ko, - - - , kg to encrypt each 4-byte fragment and its 4-byte integrity check
value (ICV), put it in a MAC frame, and inject it to the network.

6.2.4.3 Confidentiality Flaws

Recall that RC4 (see Section 2.7.1) is a stream cipher that first expands the encryption key to
generate an initial permutation of a 256-byte array, then keeps swapping elements in the array
to generate subkey streams.

Repeating Initialization Vectors
In Section 2.7.2, we have discussed that the RC4 stream cipher is vulnerable to the
related-plaintext attack if a subkey stream is reused. To avoid regenerating the same subkey
stream, WEP generates independently at random a 24-bit initialization string V' for each
frame to form a frame key V' || K, which allows RC4 to generate a different subkey stream.
However, as there are only 2> = 16, 777, 216 different initialization vectors, it follows from
the birthday paradox (see Section 4.4.1) that after 1.25v/22% = 5120 frames, the chance that
there is at least one initialization vector appearing more than once is greater than 50%.
Moreover, as 802.11b has a bandwidth of 11 Mbps, it is easy to have more than 224 frames
transmitted in a busy network in a short period of time, during which some initialization vectors
will be repeated.

RC4 Weak Keys

In Section 2.7.2, we have discussed that knowing the initial permutation is equivalent to break-
ing RC4 encryption. Even if the initial permutation is partially revealed, the attacker may still
be able to obtain information about the encryption key. Thus, it is important to select a suitable
encryption key to produce a secure initial permutation. But selecting a suitable encryption key
may be difficult, for many binary strings form weak encryption keys.
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In WEP, the 24 bits of the initialization vector in the per-frame encryption key are open to
the public. The Fluhrer—-Mantin—Shamir (FMS) attack described in Section 2.7.2 collects weak
initialization vectors used with the same WEP key (i.e., these vectors are almost 2?-conserving
for 1 < ¢ < 8) and uses them to deduce the WEP key.

A number of WEP cracking software tools have since been developed on the basis of
the FMS attack. These tools include WEPCrack, WEPLab, WEPWedgie, WEPAttack,
AirSnort, Airdack, and AirCrack. Appendix E describes a WEPCrack experiment to crack
WEP keys.

6.3 Wi-Fi Protected Access

The WPA protocol, published in 2003 by the Wi-Fi Alliance, was designed on the basis of an
early version (draft 3) of the IEEE 802.11i standard. WPA has three major objectives. The first
objective is to correct all the security problems found in WEP. The second objective is to make
the existing hardware that supports WEP also support WPA. The third objective is to ensure
that WPA is compatible with the 802.11i standard to be announced.

In particular, WPA uses a specifically designed integrity check algorithm, called the Michael
algorithm, to produce Message Integrity Code (MIC) for preventing forgeries. Although it
still uses RC4 to encrypt LLC frames, WPA uses a new key structure to generate per-frame
keys that prevents message replays and de-correlates public initialization vectors from weak
RC4 keys. The new key structure uses a new initialization vector generation scheme and a
key mixing algorithm. All of these mechanisms are specified in the Temporal Key Integrity
Protocol (TKIP).

6.3.1 Device Authentication and Access Controls

WPA supports two methods for authenticating STAs. The first method uses a preset secret key
in the same way as WEP. This method is intended to secure home and small-office WLANS.
Thus, this method is referred to as Home-and-Small-Office WPA. The second method is more
sophisticated, which is intended to secure corporate WLANSs. Thus, it is also referred to as
Enterprise WPA. It uses an authentication server (AS) and a preshared secret between the AS
and an STA, where different STAs share different preshared secrets with the AS. Preshared
secrets are often presented in the form of passwords.

Enterprise WPA adopts the 802.1X Port-Based Network Access Control protocol to authen-
ticate STAs. The AS is connected to a wired local area network. The AS may be a sepa-
rate server or implemented inside an AP. 802.1X was originally developed for authenticating
dial-up devices. Using the early terminology of 802.1X, an STA is also referred to as a sup-
plicant, an AP an authenticator, and the AS a Remote Authentication Dial-In User Service
(RADIUS) server.

6.3.1.1 802.1X in A Nutshell

802.1X specifies a procedure for authenticating an STA when the STA wants to obtain access
to a local area network (see Figure 6.5).
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Figure 6.5 Schematic of 802.1X authentication steps, where dash lines represent the actual connec-
tions. Connections 2 and 3 are through the AP

1. The STA sends a request to the AP it wants to get access to. The AP asks for the identity
of STA.

2. The STA sends to the AP its identity and its signature using its master key shared with
the AS. The AP passes it to the AS. AS verifies STA’s signature and grants the access
permission to the STA if the signature is validated and passes its decision to AP. The AP
then informs the STA about AS’s decision.

3. The STA is granted access to the WLAN.

6.3.2 TKIP Key Generations

Suppose that an STA and an AP have completed the 802.1X authentication process with an
AS, where the STA shares a presecret key with the AP and the AP shares a presecret key with
the AS. The AS generates a 256-bit pairwise master key (PMK) and sends it confidentially
to the AP using the preshared secret key between the AS and the AP. The AP then sends the
PMK confidentially to the STA using the preshared secret key between the AP and the STA.
In the case where 802.1X authentication is not required, the preshared master key between the
STA and the AP is used to generate a PMK directly at both sides.

Different STA shares with the AP a different PMK. In the case where several STAs want to
use the same master key for group communication, the key is referred to as a group master key
(GMK), or simply a group key.

TKIP first generates a PMK for each STA. It then generates, on the basis of PMK and other
information about the devices involved, four 128-bit secret pairwise transient keys (PTKSs).

6.3.2.1 Pairwise Transient Keys

When an STA wants to connect to the AP, TKIP generates four 128-bit temporal subkeys for
data encryptions, data integrity checks, EAPoL encryptions, and EAPoL integrity checks to
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be used in the connection, where EAPoL stands for “Extensible Authentication Protocol over
LAN”. They are the Data Encryption key, the Data MIC key, the EAPoL Encryption key, and
the EAPoL MIC key. These four subkeys are referred to as the pairwise transient keys (PTK).
In particular, the first two keys are used to encrypt data and produce MIC of the data. The last
two keys are used to secure communications between the AP and the STA during the initial
handshake procedure. PTKs are temporal, for they are generated with different values each
time an STA is associated with the AP. In other words, PTKSs are session keys.

PTKSs are generated using a pseudorandom number generator on the seed value made up of
PMK, the MAC address of the STA, the MAC address of the AP, the nonce generated by the
STA, and the nonce generated by the AP. We use AMAC and ANonce to denote, respectively,
the MAC address and the nonce of the AP. Likewise, we use SMAC and SNonce to denote,
respectively, the MAC address and the nonce of the STA.

6.3.2.2 Four-Way Handshakes

Both of the STA and the AP must have the same input to generate the same PTK. That is, the
STA and the AP must exchange their MAC addresses and nonces after the STA is authenti-
cated using 802.1X. TKIP uses the following four-way handshake procedure to complete this
exchange.

802.1X introduces the notion of robust security networks (RSN) and the notion of security
network associations (RSNA). RSNA specifies that in an RSN, APs can only be connected by
RSN-enabled STAs.

Assume that the AS has informed the AP that the STA is authenticated and the PMK has
been computed. Now the STA sends a special packet called robust security network infor-
mation element (RSN 1IE) RSNIE ¢, to the AP, where RSN IE contains authentication and
pairwise cipher suite selectors, group key cipher suite selector, RSN capabilities, and other
RSNA parameters. The AP responds to the STA with an RSN IE RSNIE 4 » to inform the STA
which algorithms and parameters it wants to use. Figure 6.6 shows a schematic of a typical
RSN IE, where AKM stands for authentication and Key management algorithms.

Step 1: AP Sends ANonce to STA
The AP generates an ANonce, a sequence number sz, and sends

message; = (AMAC, ANonce, sn) (6.2)

in plaintext to the STA. The STA generates an SNonce and computes the PTK from the PMK,
SMAC, SNonce, AMAC, and ANonce.

Group |Pairwise|Pairwise| AKM
Length |Version| cipher | cipher | cipher | suite
suite suite |suite list| count

AKM RSN PMKID | PMKID
suite list| capabilities | count list

Element
ID

Figure 6.6 Schematic of an RSN IE
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Step 2: STA Sends SNonce to AP
The STA computes MIC of (SNonce, sn) using the EAPoL. MIC key it generated in Step 1 and
sends

message, = (SMAC, SNonce, sn) || MIC(SNonce, sn) || RSNIE ¢ (6.3)

to the AP. The MIC ensures that the AP and the STA have the same PMK.

Step 3: AP Acknowledges STA

The AP extracts SNonce and SMAC from message, it receives from the STA and computes
the PTK using the PMK shared with the STA, SMAC, SNonce, AMAC, and ANonce. It then
uses the EAPoL. MIC key to validate the MIC it receives. If the validation fails, the AP stops
the handshake procedure. Otherwise, the AP sends the following acknowledgement message
to the STA:

message; = (AMAC, ANonce, sn + 1) ||
MIC(ANonce, sn + 1) || RSNIE , . (6.4)

This message indicates that the AP is ready to use the new PTK.

Step 4: STA Acknowledges AP
After receiving the acknowledgement message; the AP sends to the STA in Step 3, the STA
sends the following acknowledgement to the AP:

message, = (SMAC, sn+ 1) || MIC(sn + 1) (6.5)

This message indicates that the STA is also ready to use the new PTK. This completes the
four-way handshake procedure.

After the four-way handshake is completed, the AP and the STA will each generate and
install PTK. Figure 6.7 shows a schematic of the four-way handshake procedure.

In addition to the MAC addresses, nonces, and the sequence numbers, the STA in step 2 will
also send to the AP an RSN IE to establish security relation.

6.3.3 TKIP Message Integrity Code

TKIP uses the Michael algorithm to generate MIC. Michael, designed solely for WPA by a
Dutch cryptographic engineer Niels Ferguson, generates a 64-bit message authentication code
using a 64-bit secret key. In particular, one half of the Data MIC key is used as the 64-bit secret
key for authenticating messages sent from the AP to the STA, and the other half is used as the
64-bit secret key for authenticating messages sent from the STA to the AP.

TKIP stores strings in the little-endian storage format. For convenience, we assume that
items (bits, bytes, words, etc.) with small indexes are stored in low memory locations.

Let K be a 64-bit secret key shared between the STA and the AP. Divide K into two halves
K, and K of equal length. Let

M=M, M,

be an LLC frame to be transmitted, where each M; is a 32-bit block.
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Figure 6.7 Schematic of a 4-way handshake procedure

Michael generates MIC for M using K as follows:
(L1, Ry) = (Ko, Ky),
(Lip1s Riyy) = F(L; @ M, R;),
1=1,2,--- ,n
MIC = L’I’L+1R’n+1’

where F' is a Feistel type of substitution. Let [ and r be two 32-bit strings. Then F'(I,r) is
defined as follows:

r=1,® (I, < 17),
Iy = ly®s3yry,

ry = 1, & XSWAP(I,),
ly = [, @31y,

r3 =1y @ (I, K 3),

I3 = ly®3y13,

T, =13 @ (3> 2),
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ly = 13®5ry,
F(l,’l") = (l4,7“4),

where [Dq,r = (I 4 7) mod 23, XSWAP(1) swaps the left-half of [ with the right-half of [.
For example, representing numbers in hexadecimal, we have

XSWAP(12345678) = 56781234.

Michael as an MIC is much more secure than CRC,,, for Michael uses a 64-bit secret
key on a Feistel encryption structure. But Michael MIC is still vulnerable to security attacks.
For example, the attacker could create any message and attach a 64-bit binary string to it as
a possible MIC, trying to find the correct MIC without knowing the secret key. Trying all
of the 254 strings will surely find the correct MIC for the message. While 264 is large, there
is a differential cryptanalysis attack that requires only 2% tries. To prevent the attacker from
keeping trying, TKIP specifies that if two failed forgeries are detected within a second, the
STA should delete its keys and disengage with the AP. And the STA should wait for a minute
before connecting to the AP again.

6.3.4 TKIP Key Mixing

TKIP generates a per-frame key using a key mixing algorithm for each frame that an STA
wants to send to the AP. Key mixing uses a 48-bit initialization string V', generated for each
frame using a 48-bit counter, which is referred to as the TKIP sequence counter (TSC). Divide
V into three 16-bit blocks V;, V}, V..

The key mixing algorithm consists of two mixing phases, denoted by mix; and mix,, where
mix, takes a 128-bit input and outputs an 80-bit string, while miz, takes a 128-bit input and
outputs a 128-bit string. Each mixing phase is a Feistel structure, involving a sequence of
additions, XORs, and substitutions. The substitution function, denoted by .S, uses two S-boxes,
each of which is a table consisting of 256 bytes. Let a’ denote the 48-bit MAC address of the
transmitter (i.e., the source device), k' the 128-bit data encryption key of the transmitter, pk,
the output of mix,, and pk, the output of mix,. Then

pky = mixl(ata VaVi, kt)v
pky = miz,(pky, Vos kt)ﬂ

where pk, is a 128-bit per-frame key for RC4.

6.3.4.1 S-Boxes

TKIP uses two S-boxes S, and .S, to substitute a 16-bit string with a 16-bit string. In particular,
divide X into two bytes: X, and X. That is, X = X, X|,. Treat X; and X each as an index
value from 0 to 255. Use S, to substitute X, the lower byte of X; and use .S, to substitute X,
the upper byte of X. Then S; (X)) is the value in S| at index X (see Table 6.1), and S,(X|)
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Table 6.1 S|: the TKIP S-box for the upper byte
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95 46
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c5 4f
77 af
19 9e
bd 43
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59 09

f6
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Table 6.2 S;: the TKIP S-Box for the lower byte
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is the value in the S, at index X, (see Table 6.2). S| is also referred to as the TKIP S-Box for

the upper byte and .S, the TKIP S-Box for the lower byte. Define S(X) by

6.3.4.2 Computation of Phase 1

S(X) = 51<X1)50(X0)-

For example, let X = 0102, then S(X) = 5,(01)S,(02) = f899.

We use the following notations to describe the computation of phase 1 and phase 2:

t
n

kt

n

a

Divide pk; into five 16-bit blocks as

pky = pki4pky3pkyopky1 Pk,

: then th byte ofa?, whereag is the highest byte andaé the lowest byte
: then th byte of k?, Wheresz5 is the highest byte andk{, the lowest byte
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where each pky;(i =0,1,--- ,4) is a 16-bit binary string. The phase 1 function
mixy((at, V,V,, k) is defined as follows:

Pkyy — Vi
pkyy —V,
pk,, — ajag
pkyy — ajal
pky, + afaj

fori <— 0to 3 do
pkyy < ki @16 S[pky, & (kikp)]
pkyy — pkyy @16 S[pky, © (kik])]
pkyy < pkyy 5 Sk, © (k kt)}
(kiskt,
@ (kikg)

)

pkyy — pkiy @16 Slpky, @ (kiy _
ko) + @41

pky, < pky, @ S[pk,3 ©

pkyy — ki @16 S[pky, & (k3k5)]

pkyy < pkyy @6 S[pk,, © (kiks)]

Py < Pk @1 S[pky, @ (ki k)]
Py < ki3 @16 S[pky, ® (kisk,)]

pkyy — pky, @15 S[pkyy @ (kSk5)] + @620 @41

6.3.4.3 Computation of Phase 2

Let pt denote an 80-bit binary string as a temporary variable. Divide pt into 16-bit blocks as

pt = ptspt,ptsplyapt pty,

where each pt; is a 16-bit string.

Let X = X, X, be a 16-bit string, where X, and X, are bytes. Denote by ub(X) = X, and
h(X) =X,

Let RC4Key denote the 128-bit output of mix,(pk,, V;, k'), which is the per-frame key
for RC4 to generate subkey stream. Divide RC4Key into 16 bytes as

RC4Key = RC4Key,; RC4Key,, - - - RC4Key,,.
RC4Key is computed as follows:

for i — 0 to 5 do
pt; < pky;
for i — O to 5 do
pl; — pti@lﬁs[pt(5+z‘) mod 6 P (klerlk;z)}
for i — O to 1 do
pt; pti@16([pt(5+i) mod 6 D (Kyi13K5,110)] >> 1)
for i — 2to 5 do
pt; — pt;®(pt,_; > 1)

RC4Key, «— ub(V;)
RC4Key, < (ub(V,) V 00100000) A 01111111



Wireless Network Security 229

RC4Key, — Ib(V;)
RC4Key, «— lb(pty @ [(k1k{)»1])
for i < 0 to 5 do
RC4Key,, , < Ib(pt,)
RC4Key,, ; < Ib(pt,)

Note that the lowest three bytes of RC4Key, denoted by 1V, are
IV = ub(Vy) | U || Ib(Vy), (6.6)

where U = Ovy31v;, - - - vg. IV is to be transmitted as the initialization vector in WEP, where
ub(V}) is to be transmitted first. The remaining 104-bit string is used as a WEP key.

6.3.5 WPA Encryption and Decryption

At the transmission end, WPA encrypts MSDU (i.e., an LLC frame) by reusing the WEP
encryption block. In particular, the ICV of an MSDU is computed first and then attached at the
end of the MSDU. This new string is then fragmented into several smaller blocks according
to the MAC sublayer specification. The initialization vector V,V;V}, is included in the MAC
Protocol Data Unit (MPDU) (i.e., the MAC sublayer frame) and transmitted in the public,
where V}, can be obtained from /V by removing the middle byte U. The middle byte U in the
WEP [V is used to avoid a certain type of RC4 weak keys. Figure 6.8 shows a schematic of
WPA encryption.

At the receiving end, WPA strips off the MAC sublayer header, extracts the initialization
vector V', and computes the transient keys. It then decrypts fragmented MSDU and reassembles
them back to the original MSDU and its ICV.

The transmitter increments its initialization vector by 1, starting from 0, for each fragmented
MSDU to be sent. Out-of-order frames will be dropped at the destination. The TSC counter
for the initialization vector will be reset to O for a new connection with a new data encryption
key. This mechanism prevents message replays.

6.3.6 WPA Security Strength and Weaknesses

WPA is superior to WEP in a number of ways. WPA uses 802.1X to authenticate devices
and uses TKIP to generate temporal keys for encrypting LLC frames and producing MICs of
the frames to be sent. TKIP, in particular, is the major security product that reuses the WEP
encryption mechanism. Users may be able to upgrade their existing WEP devices to run WPA
with minimal costs.

However, the security strength of TKIP has not been analyzed, and so flaws unknown of at
this point may be discovered later to attack WPA.

WPA is vulnerable to DoS attacks. Let M be an LLC frame. WPA computes the MIC of M
and includes it in the payload. WPA then computes fragments of M || ICV (M) to F, Fy, - - -,
according to the MAC sublayer protocol. For each fragment F;, WPA generates a 48-bit initial-
ization vector V; and uses it to generate a WEP initialization vector and a WEP key. Because the
values of the initialization vector are always increased and because it is transmitted in plaintext,
the attacker may intercept an MAC frame and replace the initialization vector contained in it
with a larger value. As it cannot be decrypted correctly, the encrypted frame will be discarded.
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Figure 6.8 A schematic of WPA encryption, where only the major components in an MPSU are shown

This will cause legitimate MAC frames that arrive at a later time to be rejected because the
value of its initialization vector has already been used.

Another type of DoS attacks takes advantage of the TKIP specification with MIC verifica-
tions. Recall that if two MSDUs with forged MICs are detected within a second, TKIP will
discard these MSDUs and disconnect the STA from the AP. Thus, the attacker may simply
keep sending forged MSDU s to prevent legitimate STAs from being connected to the AP.

6.4 IEEE 802.11i/WPA2

WPA, published in 2002, was a rush solution directed at solving urging security problems in
WEP using existing WEP hardware. WPA was based on draft 3 of IEEE 802.11i. In 2004,
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IEEE published the official version of the 802.11i standard. The Wi-Fi Alliance subsequently
published WPA?2 on the basis of 802.111i, which is interoperable with 802.11i. This section is
focused on 802.111.

802.11i defines a counter mode-CBC MAC protocol (CCMP) using AES-128 to encrypt
data and compute the MIC of the data. 802.11i also uses 802.1X to authenticate STAs.

As AES-128 is used for both encryption and authentication, encryption keys can be
reused. Thus, initialization vectors transmitted in plaintext are no longer needed to generate
per-frame keys.

However, unlike WPA that can reuse WEP cards to support WPA, most existing Wi-Fi WPA
cards cannot be upgraded to support 802.11i, for 802.11i uses AES as its underlying encryption
algorithm.

6.4.1 Key Generations

IEEE 802.11i has the same key hierarchy as WPA. That is, 802.11i generates a 256-bit PMK
and four temporal 128-bit PTKs for WPA. In addition, 802.11i also generates a 384-bit tempo-
ral key for each session between an STA and the AP, used to carry out CCMP operations. This
384-bit key is generated using a pseudorandom number generator on the STA’s MAC address,
the STA’s nonce, the AP’s MAC address, and the AP’s nonce, which are exchanged following
a 4-way handshake protocol as in WPA.

The 384-bit key is then divided into three 128-bit transient keys, two of which are used
to establish connection between the STA and the AP. The other is used as a session key for
carrying out the AES-128 encryption algorithm.

6.4.2 CCMP Encryptions and MIC

CCMP uses AES counter mode to encrypt MSDUs. That is, it uses an 128-bit counter Ctr,
starting from an initial value and increases 1 each time. Let M be an MSDU. Divide M into
a sequence of 128-bit blocks:

M =M, M,---M,.

Let C'tr, denote the initial value of the counter. Let K denote the 128-bit AES encryption key
and AES-128,.(X) the AES-128 encryption algorithm on 128-bit string X with key K. Then
the encryption of M is carried out as follows:

Ctr = Ctry,
C; = AES-128,(Ctr + 1) & M,,
i=1,---, k.

CCMP uses cipher-block chaining message authentication code (CBC-MAC) to authenti-

cate MSDUs and perform integrity checks. CBC-MAC using AES-128 is defined as follows:
C, = 028

C; = AES-128,(C,_, @ M,),

i=1,2,-,k
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Unlike in WPA that the MIC is calculated on an MSDU before it is fragmented at the MAC
sublayer, 802.11i fragments the MSDU first. In particular, 802.11i calculates the CBC-MAC
of each fragment and appends the MIC to the fragment. It then encrypts each fragment together
with its MIC.

6.4.3 802.11i Security Strength and Weaknesses

The cryptographic algorithms and security mechanism used in 802.11i are superior to those
used in WPA and WEP. 802.11i eliminates the use of public initialization vectors in generat-
ing session keys. In addition to using CCMP for encryption and authentication, 802.11i also
recommends using the mode of OCB (described in Section 2.6) as an alternative for encryp-
tion and authentication. However, OCB is patented, and so adopting it officially in an industry
standard is inappropriate.

While CCMP is believed to be secure, 802.11i is still vulnerable to a number of security
attacks. Most of the security vulnerabilities in 802.11i are from communication protocols.
For example, 802.11i is vulnerable to rollback attacks, and the four-way handshake proto-
col is vulnerable to RSN IE poisoning attacks. Moreover, as we mentioned earlier, wireless
networks are vulnerable to DoS attacks, and 802.11i is no exception. Most DoS attacks are tar-
geted at MAC-layer protocols. We describe in this subsection three DoS attacks: the rollback
attacks, the RSN IE poisoning attacks, and the de-association attacks. The reader is referred
to Exercises 6.18, 6.19, and 6.20 for several other possible DoS attacks.

6.4.3.1 Rollback Attacks

IEEE 802.11i is meant to establish only RSNs. However, to accommodate existing WEP and
WPA devices, 802.11i allows RSN devices to communicate with pre-RSN devices. This makes
rollback attacks possible, for the attacker may be able to trick an RSN device to roll back to
WEP. For example, the attacker may impersonate a legitimate RSN AP to broadcast a message
announcing that it is a WEP AP, or impersonate a legitimate RSN STA to request a WEP
connection with an RSN AP.

To counter rollback attacks, we may configure RSN APs to decline WEP or WPA connec-
tions. This countermeasure, however, will block WEP or WPA devices from using RSN APs.
Thus, a better measure would be for RSN APs to decline WEP or WPA connections for criti-
cal applications where security is a primary concern and allow WEP or WPA connections for
applications where weaker security protections are acceptable.

6.4.3.2 RSN IE Poisoning Attacks

RSN IE poisoning is a DoS attack against the four-way handshake protocol. Recall that
message, sent by the STA to the AP in Step 2 of the four-way handshake protocol (see
Message 6.3) contains RSNIEgp,. The AP verifies MIC and discards message, if the MIC
is incorrect. Otherwise, the AP compares bit-by-bit RSNIEq;, with the local record the
AP received prior to the handshake. If they are not identical, the AP stops the handshake
procedure and de-authenticates the STA.
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In Step 3, the AP sends RSNIE,p to the STA in message;. The STA then checks the RSN
IE before verifying MIC. If the received RSN IE is not identical to the local record, the STA
stops the handshake procedure and de-authenticates the AP. Checking RSN IE before verifying
MIC presents a design flaw, for the attacker can forge message; with the wrong RSN IE and
force the STA to disconnect from the AP.

6.4.3.3 De-Association Attacks

De-association attacks use forged MAC-layer management frames to break an existing con-
nection between an STA and an AP. For example, suppose that an STA has already established
a connection with an AP. The attacker sends a forged de-authentication frame to the AP to
de-associate the STA from the AP. The AP, however, believes that the connection still exists,
making it possible for the attacker to impersonate the STA to connect to the AP.

6.5 Bluetooth Security

Bluetooth is a communication technology for building ad hoc WPANSs. It allows wireless
devices with low power, for example, cellular phones, PDAs, and embedded systems, to com-
municate with each other within a short range. The IEEE 802.15 standard for WPAN:Ss is based
on the Bluetooth technology.

On the basis of the Mobile Communication architecture developed by Ericsson, Bluetooth
was proposed in 1998 as an industrial standard by the Special Interest Group (SIG) formed by
Ericsson, Intel, IBM, Nokia, and Toshiba. Bluetooth allows wireless devices of different plat-
forms made by different vendors to communicate with each other. It was named after Harald
Bluetooth, the 10th century Danish king, who advocated negotiations to solve regional con-
flicts. Designed to support wireless devices with low power, that is, with limited computing
capabilities and power supplies, Bluetooth is restricted to cryptographic algorithms that do not
require much computing resources to execute.

6.5.1 Piconets

Bluetooth is implemented on piconets, which are self-configured and self-organized ad hoc
wireless networks. Piconets are formed dynamically, allowing new devices to join in and cur-
rent devices to leave at will without using access points or other infrastructure devices. In
particular, a piconet may consist of up to eight active devices that use the same physical chan-
nel. All devices in a piconet are peers, that is, they can communicate with each other directly.
Exactly one of these peers is designated as the master node for the purpose of synchronizing
other nodes. The other nodes are referred to as the slave nodes. Slave nodes are synchronized
with the master node.

A Bluetooth device may also be in the parked state. A device in the parked state can become
active quickly. Other devices are said to be in the standby state. A standby device takes a longer
time to become active. A piconet may consist of up to 255 parked devices. Figure 6.9 shows a
schematic of a piconet.
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Figure 6.9 Piconet schematic. M denotes the “master node,” S “slave nodes,” P “parked-state devices”
and SB “standby devices”

Figure 6.10 Scatternet schematic

When a Bluetooth device wants to set up a piconet, it sends out a special packet and becomes
the master node of the piconet. When a Bluetooth device wants to join an existing piconet, it
sends out a special request-to-join packet and becomes a slave node.

Several piconets may overlap, which form a scatternet. Figure 6.10 shows a schematic of a
scatternet. A device can only belong to one piconet at a time.
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6.5.2 Secure Pairings

Suppose that two Bluetooth devices D 4 and Dy in the same piconet want to communicate
securely. For convenience, we will assume that D 4 is the device that initiates the communi-
cation. Initially, D 4 and Dz must share a personal identification number (PIN). A PIN code
is a string of characters of up to 16 characters, which may be entered by the user or prestored
in a device if the device has no input functions.

D, and Dp will then generate shared secret keys to authenticate each other. This is
referred to as a secure pairing. Thus, authentication is the most important part of a secure
pairing.

At the beginning of a secure pairing session, Bluetooth generates a 128-bit initialization
key for each device on the basis of the PIN code and other information. The devices then
each generate a 128-bit link key, also called a combination key. Bluetooth uses the link key to
authenticate devices and generate encryption keys to encrypt packets.

Bluetooth uses a stream cipher called E|, to encrypt packet payloads, which is
re-synchronized for each payload to be encrypted. Bluetooth uses a block cipher SAFER+
and a modified version of SAFER+ to construct three algorithms, denoted by F,, E,,, and
E,,, to generate subkeys and authenticate devices.

This section is focused on Bluetooth authentication.

6.5.3 SAFER+ Block Ciphers

SAFER-+ is a block cipher used to authenticate Bluetooth devices in secure pairings. SAFER+
is an enhancement of SAFER devised by James L. Massey in 1993. SAFER, standing for
Secure And Fast Encryption Routine, is a Fiestel cipher with a 64-bit block size. SAFER+ is
a Fiestel cipher with a 128-bit block size. As in AES, SAFER+ allows 128-bit, 192-bit, and
256-bit key lengths. Bluetooth uses SAFER+ with 128-bit keys, denoted by SAFER+ K-128.

As in any Fiestel cipher, SAFER+ K-128 consists of a key scheduling component and an
encryption component. The SAFER+ K-128 encryption component consists of eight identical
rounds and an output transformation, which need a total of 17 subkeys: two for each round and
one for the output transformation.

6.5.3.1 SAFER- Subkeys

For convenience, for any k-byte string X = x;x, - - - 21, we use X [i] to denote the ith byte x;
and X[i : j] to denote the substring x; - - - z;, where 0 <7 < j < k and z; is a byte.

Let K = kqk, - - - k;5 be a 128-bit encryption key, where k; is a byte for i =0, 1,---,15.
Let

kig = ko @k @ -+ D Ky

Let X be a byte. Recall that LS, (X) denotes the new string obtained by shifting X circularly
to the left k& times. SAFER+- generates seventeen 128-bit subkeys K, Ky, - - - , K, as follows:
The first subkey K is K. Let

K‘_Knkw
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Figure 6.11 Schematic of SAFER+ subkey generation

be a 17-byte expanded key. To generate each of the remaining subkeys K, ¢ = 2, --- , 17, first
perform LS, on each byte of the expanded key. Then select 16 bytes from the resulting string
in a left-circular shift manner, and perform an XOR operation on the selected 16-byte string
and a constant 16-byte string B,, called a bias vector to produce K, where B, is obtained as
follows:

Bylj] = (45(45””"“ mod 257) 16 257) mod 256,
j=0,1,--- 15,
B; = B;[0]B;[1] - - - B;[15],
i =23, 17

The following procedure generates K (see Figure 6.11):

Ky = koky oKy
for j =0,1,--- ,16 do

k; — LSy(k;)
Ky = kyky - ky ©g By
fori=3,4,---,17do

for j =0,1,---,16 do

k; — LSy(k;)
Ky =k gk Ryghy -k ©g By
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where @y denotes bytewise addition mod 2%. That is, let X =z z,---2, and
Y =y,y, -y, be two strings, where x, and y; are bytes, i = 1,2,---, k. Then

X®gY = 1@y | 29Dsys || -+ || 24 Dsyy,-

6.5.3.2 SAFER+ Encryption

SAFER+ K-128 encrypts a 128-bit plaintext block through eight identical rounds of operations
and one output transformation.

Encryption Rounds

Operations in each round consist of Pseudo Hadamard Transform (PHT), Armenian Shuffles

(ArS), table lookups on two S-boxes e and [, and the @ and @g operations with two subkeys.
PHT takes two bytes x and y as input and produces two-byte output as follows:

PHT(z,y) = (22 4+ y) mod 2° || (z + y) mod 2°.
Let X = x,x, - Ty,_, %9, be a string, where each z; is abyte, i = 1,2, - - -, 2k. Define
PHT(X) = PHT (), xy) || PHT (z5,24) || -+ | PHT (29 1, wy)-

ArS