

Rafael C. Gonzalez
University of Tennessee

Richard E. Woods
MedData Interactive

Steven L. Eddins
The MathWorks, Inc.

Upper Saddle River, NJ 07458

Digital Image
Processing
Using MATLAB®

Library of Congress Cataloging-in-Publication Data on File

Vice President and Editorial Director, ECS: Marcia Horton
Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi
Publisher: Tom Robbins
Editorial Assistant: Carole Snyder
Executive Managing Editor: Vince O’Brien
Managing Editor: David A. George
Production Editor: Rose Kernan
Director of Creative Services: Paul Belfanti
Creative Director: Carole Anson
Art Director: Jayne Conte
Cover Designer: Richard E. Woods
Art Editor: Xiaohong Zhu
Manufacturing Manager: Trudy Pisciotti
Manufacturing Buyer: Lisa McDowell
Senior Marketing Manager: Holly Stark

© 2004 by Pearson Education, Inc.
Pearson Prentice-Hall
Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
without permission in writing from the publisher.

Pearson Prentice Hall® is a trademark of Pearson Education, Inc.
MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their effectiveness.
The author and publisher shall not be liable in any event for incidental or consequential damages with, or
arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-008519-7

Pearson Education Ltd., London
Pearson Education Australia Pty., Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Education de Mexico, S.A. de C.V.
Pearson Education—Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey

v

Preface xi
Acknowledgments xii
About the Authors xiii

1 Introduction 1
Preview 1

1.1 Background 1
1.2 What Is Digital Image Processing? 2
1.3 Background on MATLAB and the Image Processing Toolbox 4
1.4 Areas of Image Processing Covered in the Book 5
1.5 The Book Web Site 6
1.6 Notation 7
1.7 The MATLAB Working Environment 7

1.7.1 The MATLAB Desktop 7
1.7.2 Using the MATLAB Editor to Create M-files 9
1.7.3 Getting Help 9
1.7.4 Saving and Retrieving a Work Session 10

1.8 How References Are Organized in the Book 11
Summary 11

2 Fundamentals 12
Preview 12

2.1 Digital Image Representation 12
2.1.1 Coordinate Conventions 13
2.1.2 Images as Matrices 14

2.2 Reading Images 14
2.3 Displaying Images 16
2.4 Writing Images 18
2.5 Data Classes 23
2.6 Image Types 24

2.6.1 Intensity Images 24
2.6.2 Binary Images 25
2.6.3 A Note on Terminology 25

2.7 Converting between Data Classes and Image Types 25
2.7.1 Converting between Data Classes 25
2.7.2 Converting between Image Classes and Types 26

2.8 Array Indexing 30
2.8.1 Vector Indexing 30
2.8.2 Matrix Indexing 32
2.8.3 Selecting Array Dimensions 37

Contents

vi � Contents

2.9 Some Important Standard Arrays 37
2.10 Introduction to M-Function Programming 38

2.10.1 M-Files 38
2.10.2 Operators 40
2.10.3 Flow Control 49
2.10.4 Code Optimization 55
2.10.5 Interactive I/O 59
2.10.6 A Brief Introduction to Cell Arrays and Structures 62
Summary 64

3 Intensity Transformations
and Spatial Filtering 65
Preview 65

3.1 Background 65
3.2 Intensity Transformation Functions 66

3.2.1 Function imadjust 66
3.2.2 Logarithmic and Contrast-Stretching Transformations 68
3.2.3 Some Utility M-Functions for Intensity Transformations 70

3.3 Histogram Processing and Function Plotting 76
3.3.1 Generating and Plotting Image Histograms 76
3.3.2 Histogram Equalization 81
3.3.3 Histogram Matching (Specification) 84

3.4 Spatial Filtering 89
3.4.1 Linear Spatial Filtering 89
3.4.2 Nonlinear Spatial Filtering 96

3.5 Image Processing Toolbox Standard Spatial Filters 99
3.5.1 Linear Spatial Filters 99
3.5.2 Nonlinear Spatial Filters 104
Summary 107

4 Frequency Domain Processing 108
Preview 108

4.1 The 2-D Discrete Fourier Transform 108
4.2 Computing and Visualizing the 2-D DFT in MATLAB 112
4.3 Filtering in the Frequency Domain 115

4.3.1 Fundamental Concepts 115
4.3.2 Basic Steps in DFT Filtering 121
4.3.3 An M-function for Filtering in the Frequency Domain 122

4.4 Obtaining Frequency Domain Filters from Spatial Filters 122
4.5 Generating Filters Directly in the Frequency Domain 127

4.5.1 Creating Meshgrid Arrays for Use in Implementing Filters
in the Frequency Domain 128

4.5.2 Lowpass Frequency Domain Filters 129
4.5.3 Wireframe and Surface Plotting 132

� Contents vii

4.6 Sharpening Frequency Domain Filters 136
4.6.1 Basic Highpass Filtering 136
4.6.2 High-Frequency Emphasis Filtering 138
Summary 140

5 Image Restoration 141
Preview 141

5.1 A Model of the Image Degradation/Restoration Process 142
5.2 Noise Models 143

5.2.1 Adding Noise with Function imnoise 143
5.2.2 Generating Spatial Random Noise with a Specified

Distribution 144
5.2.3 Periodic Noise 150
5.2.4 Estimating Noise Parameters 153

5.3 Restoration in the Presence of Noise Only—Spatial Filtering 158
5.3.1 Spatial Noise Filters 159
5.3.2 Adaptive Spatial Filters 164

5.4 Periodic Noise Reduction by Frequency Domain Filtering 166
5.5 Modeling the Degradation Function 166
5.6 Direct Inverse Filtering 169
5.7 Wiener Filtering 170
5.8 Constrained Least Squares (Regularized) Filtering 173
5.9 Iterative Nonlinear Restoration Using the Lucy-Richardson

Algorithm 176
5.10 Blind Deconvolution 179
5.11 Geometric Transformations and Image Registration 182

5.11.1 Geometric Spatial Transformations 182
5.11.2 Applying Spatial Transformations to Images 187
5.11.3 Image Registration 191
Summary 193

6 Color Image Processing 194
Preview 194

6.1 Color Image Representation in MATLAB 194
6.1.1 RGB Images 194
6.1.2 Indexed Images 197
6.1.3 IPT Functions for Manipulating RGB and Indexed Images 199

6.2 Converting to Other Color Spaces 204
6.2.1 NTSC Color Space 204
6.2.2 The YCbCr Color Space 205
6.2.3 The HSV Color Space 205
6.2.4 The CMY and CMYK Color Spaces 206
6.2.5 The HSI Color Space 207

6.3 The Basics of Color Image Processing 215
6.4 Color Transformations 216

viii � Contents

6.5 Spatial Filtering of Color Images 227
6.5.1 Color Image Smoothing 227
6.5.2 Color Image Sharpening 230

6.6 Working Directly in RGB Vector Space 231
6.6.1 Color Edge Detection Using the Gradient 232
6.6.2 Image Segmentation in RGB Vector Space 237
Summary 241

7 Wavelets 242
Preview 242

7.1 Background 242
7.2 The Fast Wavelet Transform 245

7.2.1 FWTs Using the Wavelet Toolbox 246
7.2.2 FWTs without the Wavelet Toolbox 252

7.3 Working with Wavelet Decomposition Structures 259
7.3.1 Editing Wavelet Decomposition Coefficients without

the Wavelet Toolbox 262
7.3.2 Displaying Wavelet Decomposition Coefficients 266

7.4 The Inverse Fast Wavelet Transform 271
7.5 Wavelets in Image Processing 276

Summary 281

8 Image Compression 282
Preview 282

8.1 Background 283
8.2 Coding Redundancy 286

8.2.1 Huffman Codes 289
8.2.2 Huffman Encoding 295
8.2.3 Huffman Decoding 301

8.3 Interpixel Redundancy 309
8.4 Psychovisual Redundancy 315
8.5 JPEG Compression 317

8.5.1 JPEG 318
8.5.2 JPEG 2000 325
Summary 333

9 Morphological Image Processing 334
Preview 334

9.1 Preliminaries 335
9.1.1 Some Basic Concepts from Set Theory 335
9.1.2 Binary Images, Sets, and Logical Operators 337

9.2 Dilation and Erosion 337
9.2.1 Dilation 338
9.2.2 Structuring Element Decomposition 341
9.2.3 The strel Function 341
9.2.4 Erosion 345

� Contents ix

9.3 Combining Dilation and Erosion 347
9.3.1 Opening and Closing 347
9.3.2 The Hit-or-Miss Transformation 350
9.3.3 Using Lookup Tables 353
9.3.4 Function bwmorph 356

9.4 Labeling Connected Components 359
9.5 Morphological Reconstruction 362

9.5.1 Opening by Reconstruction 363
9.5.2 Filling Holes 365
9.5.3 Clearing Border Objects 366

9.6 Gray-Scale Morphology 366
9.6.1 Dilation and Erosion 366
9.6.2 Opening and Closing 369
9.6.3 Reconstruction 374
Summary 377

10 Image Segmentation 378
Preview 378

10.1 Point, Line, and Edge Detection 379
10.1.1 Point Detection 379
10.1.2 Line Detection 381
10.1.3 Edge Detection Using Function edge 384

10.2 Line Detection Using the Hough Transform 393
10.2.1 Hough Transform Peak Detection 399
10.2.2 Hough Transform Line Detection and Linking 401

10.3 Thresholding 404
10.3.1 Global Thresholding 405
10.3.2 Local Thresholding 407

10.4 Region-Based Segmentation 407
10.4.1 Basic Formulation 407
10.4.2 Region Growing 408
10.4.3 Region Splitting and Merging 412

10.5 Segmentation Using the Watershed Transform 417
10.5.1 Watershed Segmentation Using the Distance Transform 418
10.5.2 Watershed Segmentation Using Gradients 420
10.5.3 Marker-Controlled Watershed Segmentation 422
Summary 425

11 Representation and Description 426
Preview 426

11.1 Background 426
11.1.1 Cell Arrays and Structures 427
11.1.2 Some Additional MATLAB and IPT Functions Used

in This Chapter 432
11.1.3 Some Basic Utility M-Functions 433

x � Contents

11.2 Representation 436
11.2.1 Chain Codes 436
11.2.2 Polygonal Approximations Using Minimum-Perimeter

Polygons 439
11.2.3 Signatures 449
11.2.4 Boundary Segments 452
11.2.5 Skeletons 453

11.3 Boundary Descriptors 455
11.3.1 Some Simple Descriptors 455
11.3.2 Shape Numbers 456
11.3.3 Fourier Descriptors 458
11.3.4 Statistical Moments 462

11.4 Regional Descriptors 463
11.4.1 Function regionprops 463
11.4.2 Texture 464
11.4.3 Moment Invariants 470

11.5 Using Principal Components for Description 474
Summary 483

12 Object Recognition 484
Preview 484

12.1 Background 484
12.2 Computing Distance Measures in MATLAB 485
12.3 Recognition Based on Decision-Theoretic Methods 488

12.3.1 Forming Pattern Vectors 488
12.3.2 Pattern Matching Using Minimum-Distance Classifiers 489
12.3.3 Matching by Correlation 490
12.3.4 Optimum Statistical Classifiers 492
12.3.5 Adaptive Learning Systems 498

12.4 Structural Recognition 498
12.4.1 Working with Strings in MATLAB 499
12.4.2 String Matching 508
Summary 513

Appendix A Function Summary 514

Appendix B ICE and MATLAB Graphical
User Interfaces 527

Appendix C M-Functions 552

Bibliography 594

Index 597

xi

Solutions to problems in the field of digital image processing generally require
extensive experimental work involving software simulation and testing with large sets
of sample images. Although algorithm development typically is based on theoretical
underpinnings, the actual implementation of these algorithms almost always requires
parameter estimation and, frequently, algorithm revision and comparison of candidate
solutions. Thus, selection of a flexible, comprehensive, and well-documented software
development environment is a key factor that has important implications in the cost,
development time, and portability of image processing solutions.

In spite of its importance, surprisingly little has been written on this aspect of the
field in the form of textbook material dealing with both theoretical principles and soft-
ware implementation of digital image processing concepts. This book was written for
just this purpose. Its main objective is to provide a foundation for implementing image
processing algorithms using modern software tools.A complementary objective was to
prepare a book that is self-contained and easily readable by individuals with a basic
background in digital image processing, mathematical analysis, and computer pro-
gramming, all at a level typical of that found in a junior/senior curriculum in a techni-
cal discipline. Rudimentary knowledge of MATLAB also is desirable.

To achieve these objectives, we felt that two key ingredients were needed. The
first was to select image processing material that is representative of material cov-
ered in a formal course of instruction in this field. The second was to select soft-
ware tools that are well supported and documented, and which have a wide range
of applications in the “real” world.

To meet the first objective,most of the theoretical concepts in the following chapters
were selected from Digital Image Processing by Gonzalez and Woods, which has been
the choice introductory textbook used by educators all over the world for over two
decades.The software tools selected are from the MATLAB Image Processing Toolbox
(IPT), which similarly occupies a position of eminence in both education and industrial
applications.A basic strategy followed in the preparation of the book was to provide a
seamless integration of well-established theoretical concepts and their implementation
using state-of-the-art software tools.

The book is organized along the same lines as Digital Image Processing. In this way,
the reader has easy access to a more detailed treatment of all the image processing
concepts discussed here, as well as an up-to-date set of references for further reading.
Following this approach made it possible to present theoretical material in a succinct
manner and thus we were able to maintain a focus on the software implementation as-
pects of image processing problem solutions. Because it works in the MATLAB com-
puting environment, the Image Processing Toolbox offers some significant advantages,
not only in the breadth of its computational tools, but also because it is supported
under most operating systems in use today.A unique feature of this book is its empha-
sis on showing how to develop new code to enhance existing MATLAB and IPT func-
tionality. This is an important feature in an area such as image processing, which, as
noted earlier, is characterized by the need for extensive algorithm development and
experimental work.

After an introduction to the fundamentals of MATLAB functions and program-
ming, the book proceeds to address the mainstream areas of image processing. The

Preface

xii � Preface

major areas covered include intensity transformations, linear and nonlinear spatial fil-
tering, filtering in the frequency domain, image restoration and registration, color
image processing, wavelets, image data compression, morphological image processing,
image segmentation, region and boundary representation and description, and object
recognition. This material is complemented by numerous illustrations of how to solve
image processing problems using MATLAB and IPT functions. In cases where a func-
tion did not exist, a new function was written and documented as part of the instruc-
tional focus of the book. Over 60 new functions are included in the following chapters.
These functions increase the scope of IPT by approximately 35 percent and also serve
the important purpose of further illustrating how to implement new image processing
software solutions.

The material is presented in textbook format, not as a software manual. Although
the book is self-contained, we have established a companion Web site (see Section 1.5)
designed to provide support in a number of areas. For students following a formal
course of study or individuals embarked on a program of self study, the site contains
tutorials and reviews on background material, as well as projects and image databases,
including all images in the book. For instructors, the site contains classroom presenta-
tion materials that include PowerPoint slides of all the images and graphics used in the
book. Individuals already familiar with image processing and IPT fundamentals will
find the site a useful place for up-to-date references, new implementation techniques,
and a host of other support material not easily found elsewhere.All purchasers of the
book are eligible to download executable files of all the new functions developed in
the text.

As is true of most writing efforts of this nature,progress continues after work on the
manuscript stops. For this reason, we devoted significant effort to the selection of ma-
terial that we believe is fundamental, and whose value is likely to remain applicable in
a rapidly evolving body of knowledge. We trust that readers of the book will benefit
from this effort and thus find the material timely and useful in their work.

Acknowledgments
We are indebted to a number of individuals in academic circles as well as in industry
and government who have contributed to the preparation of the book.Their contribu-
tions have been important in so many different ways that we find it difficult to ac-
knowledge them in any other way but alphabetically. We wish to extend our
appreciation to Mongi A. Abidi, Peter J. Acklam, Serge Beucher, Ernesto Bribiesca,
Michael W. Davidson, Courtney Esposito, Naomi Fernandes, Thomas R. Gest, Roger
Heady, Brian Johnson, Lisa Kempler, Roy Lurie, Ashley Mohamed, Joseph E.
Pascente,David.R.Pickens,Edgardo Felipe Riveron,Michael Robinson,Loren Shure,
Jack Sklanski, Sally Stowe, Craig Watson, and Greg Wolodkin. We also wish to ac-
knowledge the organizations cited in the captions of many of the figures in the book
for their permission to use that material.

Special thanks go to Tom Robbins, Rose Kernan, Alice Dworkin, Xiaohong
Zhu, Bruce Kenselaar, and Jayne Conte at Prentice Hall for their commitment to
excellence in all aspects of the production of the book. Their creativity, assistance,
and patience are truly appreciated.

RAFAEL C. GONZALEZ

RICHARD E. WOODS

STEVEN L. EDDINS

1

1 Introduction

Preview
Digital image processing is an area characterized by the need for extensive ex-
perimental work to establish the viability of proposed solutions to a given
problem. In this chapter we outline how a theoretical base and state-of-the-art
software can be integrated into a prototyping environment whose objective is
to provide a set of well-supported tools for the solution of a broad class of
problems in digital image processing.

Background

An important characteristic underlying the design of image processing sys-
tems is the significant level of testing and experimentation that normally is re-
quired before arriving at an acceptable solution. This characteristic implies
that the ability to formulate approaches and quickly prototype candidate solu-
tions generally plays a major role in reducing the cost and time required to
arrive at a viable system implementation.

Little has been written in the way of instructional material to bridge the gap
between theory and application in a well-supported software environment. The
main objective of this book is to integrate under one cover a broad base of the-
oretical concepts with the knowledge required to implement those concepts
using state-of-the-art image processing software tools.The theoretical underpin-
nings of the material in the following chapters are mainly from the leading text-
book in the field: Digital Image Processing, by Gonzalez and Woods, published
by Prentice Hall.The software code and supporting tools are based on the lead-
ing software package in the field: The MATLAB Image Processing Toolbox,†

1.1

†In the following discussion and in subsequent chapters we sometimes refer to Digital Image Processing
by Gonzalez and Woods as “the Gonzalez-Woods book,” and to the Image Processing Toolbox as “IPT”
or simply as the “toolbox.”

2 Chapter 1 � Introduction

from The MathWorks, Inc. (see Section 1.3). The material in the present book
shares the same design, notation, and style of presentation as the Gonzalez-
Woods book, thus simplifying cross-referencing between the two.

The book is self-contained. To master its contents, the reader should have
introductory preparation in digital image processing, either by having taken a
formal course of study on the subject at the senior or first-year graduate level,
or by acquiring the necessary background in a program of self-study. It is as-
sumed also that the reader has some familiarity with MATLAB, as well as
rudimentary knowledge of the basics of computer programming, such as that
acquired in a sophomore- or junior-level course on programming in a techni-
cally oriented language. Because MATLAB is an array-oriented language,
basic knowledge of matrix analysis also is helpful.

The book is based on principles. It is organized and presented in a textbook
format, not as a manual. Thus, basic ideas of both theory and software are ex-
plained prior to the development of any new programming concepts. The ma-
terial is illustrated and clarified further by numerous examples ranging from
medicine and industrial inspection to remote sensing and astronomy. This ap-
proach allows orderly progression from simple concepts to sophisticated im-
plementation of image processing algorithms. However, readers already
familiar with MATLAB, IPT, and image processing fundamentals can proceed
directly to specific applications of interest, in which case the functions in the
book can be used as an extension of the family of IPT functions. All new func-
tions developed in the book are fully documented, and the code for each is
included either in a chapter or in Appendix C.

Over 60 new functions are developed in the chapters that follow. These
functions complement and extend by 35% the set of about 175 functions in
IPT. In addition to addressing specific applications, the new functions are clear
examples of how to combine existing MATLAB and IPT functions with new
code to develop prototypic solutions to a broad spectrum of problems in digi-
tal image processing. The toolbox functions, as well as the functions developed
in the book, run under most operating systems. Consult the book Web site (see
Section 1.5) for a complete list.

What Is Digital Image Processing?

An image may be defined as a two-dimensional function, where x and
y are spatial coordinates, and the amplitude of at any pair of coordinates

is called the intensity or gray level of the image at that point. When x, y,
and the amplitude values of are all finite, discrete quantities, we call the
image a digital image. The field of digital image processing refers to processing
digital images by means of a digital computer. Note that a digital image is com-
posed of a finite number of elements, each of which has a particular location
and value. These elements are referred to as picture elements, image elements,
pels, and pixels. Pixel is the term most widely used to denote the elements of a
digital image. We consider these definitions formally in Chapter 2.

f
1x, y2

f
f1x, y2,

1.2

1.2 � What Is Digital Image Processing? 3

Vision is the most advanced of our senses, so it is not surprising that images
play the single most important role in human perception. However, unlike hu-
mans, who are limited to the visual band of the electromagnetic (EM) spec-
trum, imaging machines cover almost the entire EM spectrum, ranging from
gamma to radio waves. They can operate also on images generated by sources
that humans are not accustomed to associating with images. These include ul-
trasound, electron microscopy, and computer-generated images. Thus, digital
image processing encompasses a wide and varied field of applications.

There is no general agreement among authors regarding where image pro-
cessing stops and other related areas, such as image analysis and computer vi-
sion, start. Sometimes a distinction is made by defining image processing as a
discipline in which both the input and output of a process are images. We be-
lieve this to be a limiting and somewhat artificial boundary. For example,
under this definition, even the trivial task of computing the average intensity
of an image would not be considered an image processing operation. On the
other hand, there are fields such as computer vision whose ultimate goal is to
use computers to emulate human vision, including learning and being able to
make inferences and take actions based on visual inputs. This area itself is a
branch of artificial intelligence (AI), whose objective is to emulate human in-
telligence. The field of AI is in its earliest stages of infancy in terms of devel-
opment, with progress having been much slower than originally anticipated.
The area of image analysis (also called image understanding) is in between
image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing
at one end to computer vision at the other. However, one useful paradigm is to
consider three types of computerized processes in this continuum: low-, mid-,
and high-level processes. Low-level processes involve primitive operations
such as image preprocessing to reduce noise, contrast enhancement, and image
sharpening.A low-level process is characterized by the fact that both its inputs
and outputs are images. Mid-level processes on images involve tasks such as
segmentation (partitioning an image into regions or objects), description of
those objects to reduce them to a form suitable for computer processing, and
classification (recognition) of individual objects.A mid-level process is charac-
terized by the fact that its inputs generally are images, but its outputs are at-
tributes extracted from those images (e.g., edges, contours, and the identity of
individual objects). Finally, higher-level processing involves “making sense” of
an ensemble of recognized objects, as in image analysis, and, at the far end
of the continuum, performing the cognitive functions normally associated with
human vision.

Based on the preceding comments, we see that a logical place of overlap be-
tween image processing and image analysis is the area of recognition of
individual regions or objects in an image.Thus, what we call in this book digital
image processing encompasses processes whose inputs and outputs are images
and, in addition, encompasses processes that extract attributes from images, up
to and including the recognition of individual objects. As a simple illustration

4 Chapter 1 � Introduction

to clarify these concepts, consider the area of automated analysis of text. The
processes of acquiring an image of the area containing the text, preprocessing
that image, extracting (segmenting) the individual characters, describing the
characters in a form suitable for computer processing, and recognizing those
individual characters, are in the scope of what we call digital image processing
in this book. Making sense of the content of the page may be viewed as
being in the domain of image analysis and even computer vision, depending on
the level of complexity implied by the statement “making sense.” Digital
image processing, as we have defined it, is used successfully in a broad range of
areas of exceptional social and economic value.

Background on MATLAB and the Image
Processing Toolbox

MATLAB is a high-performance language for technical computing. It inte-
grates computation, visualization, and programming in an easy-to-use environ-
ment where problems and solutions are expressed in familiar mathematical
notation. Typical uses include the following:

• Math and computation
• Algorithm development
• Data acquisition
• Modeling, simulation, and prototyping
• Data analysis, exploration, and visualization
• Scientific and engineering graphics
• Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that
does not require dimensioning. This allows formulating solutions to many
technical computing problems, especially those involving matrix representa-
tions, in a fraction of the time it would take to write a program in a scalar non-
interactive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was written
originally to provide easy access to matrix software developed by the LIN-
PACK (Linear System Package) and EISPACK (Eigen System Package) pro-
jects. Today, MATLAB engines incorporate the LAPACK (Linear Algebra
Package) and BLAS (Basic Linear Algebra Subprograms) libraries, constitut-
ing the state of the art in software for matrix computation.

In university environments, MATLAB is the standard computational tool for
introductory and advanced courses in mathematics, engineering, and science. In
industry, MATLAB is the computational tool of choice for research, develop-
ment, and analysis. MATLAB is complemented by a family of application-
specific solutions called toolboxes.The Image Processing Toolbox is a collection
of MATLAB functions (called M-functions or M-files) that extend the capabili-
ty of the MATLAB environment for the solution of digital image processing
problems. Other toolboxes that sometimes are used to complement IPT are the
Signal Processing, Neural Network, Fuzzy Logic, and Wavelet Toolboxes.

1.3

1.4 � Areas of Image Processing Covered in the Book 5

The MATLAB Student Version includes a full-featured version of
MATLAB. The Student Version can be purchased at significant discounts at
university bookstores and at the MathWorks’ Web site (www.mathworks.com).
Student versions of add-on products, including the Image Processing Toolbox,
also are available.

Areas of Image Processing Covered in the Book

Every chapter in this book contains the pertinent MATLAB and IPT material
needed to implement the image processing methods discussed. When a MAT-
LAB or IPT function does not exist to implement a specific method, a new
function is developed and documented. As noted earlier, a complete listing of
every new function is included in the book. The remaining eleven chapters
cover material in the following areas.

Chapter 2: Fundamentals. This chapter covers the fundamentals of MATLAB
notation, indexing, and programming concepts.This material serves as founda-
tion for the rest of the book.

Chapter 3: Intensity Transformations and Spatial Filtering. This chapter cov-
ers in detail how to use MATLAB and IPT to implement intensity transfor-
mation functions. Linear and nonlinear spatial filters are covered and
illustrated in detail.

Chapter 4: Processing in the Frequency Domain. The material in this chapter
shows how to use IPT functions for computing the forward and inverse fast
Fourier transforms (FFTs), how to visualize the Fourier spectrum, and how to
implement filtering in the frequency domain. Shown also is a method for gen-
erating frequency domain filters from specified spatial filters.

Chapter 5: Image Restoration. Traditional linear restoration methods, such as
the Wiener filter, are covered in this chapter. Iterative, nonlinear methods,
such as the Richardson-Lucy method and maximum-likelihood estimation for
blind deconvolution, are discussed and illustrated. Geometric corrections and
image registration also are covered.

Chapter 6: Color Image Processing. This chapter deals with pseudocolor and
full-color image processing. Color models applicable to digital image process-
ing are discussed, and IPT functionality in color processing is extended via im-
plementation of additional color models. The chapter also covers applications
of color to edge detection and region segmentation.

Chapter 7: Wavelets. In its current form, IPT does not have any wavelet trans-
forms.A set of wavelet-related functions compatible with the Wavelet Toolbox
is developed in this chapter that will allow the reader to implement all the
wavelet-transform concepts discussed in the Gonzalez-Woods book.

Chapter 8: Image Compression. The toolbox does not have any data compres-
sion functions. In this chapter, we develop a set of functions that can be used
for this purpose.

1.4

6 Chapter 1 � Introduction

Chapter 9: Morphological Image Processing. The broad spectrum of func-
tions available in IPT for morphological image processing are explained and
illustrated in this chapter using both binary and gray-scale images.

Chapter 10: Image Segmentation. The set of IPT functions available for
image segmentation are explained and illustrated in this chapter. New func-
tions for Hough transform processing and region growing also are developed.

Chapter 11: Representation and Description. Several new functions for ob-
ject representation and description, including chain-code and polygonal repre-
sentations, are developed in this chapter. New functions are included also for
object description, including Fourier descriptors, texture, and moment invari-
ants. These functions complement an extensive set of region property func-
tions available in IPT.

Chapter 12: Object Recognition. One of the important features of this chap-
ter is the efficient implementation of functions for computing the Euclidean
and Mahalanobis distances. These functions play a central role in pattern
matching. The chapter also contains a comprehensive discussion on how to
manipulate strings of symbols in MATLAB. String manipulation and matching
are important in structural pattern recognition.

In addition to the preceding material, the book contains three appendices.

Appendix A: Contains a summary of all IPT and new image-processing func-
tions developed in the book. Relevant MATLAB function also are included.
This is a useful reference that provides a global overview of all functions in the
toolbox and the book.

Appendix B: Contains a discussion on how to implement graphical user inter-
faces (GUIs) in MATLAB. GUIs are a useful complement to the material in
the book because they simplify and make more intuitive the control of inter-
active functions.

Appendix C: New function listings are included in the body of a chapter when
a new concept is explained. Otherwise the listing is included in Appendix C.
This is true also for listings of functions that are lengthy. Deferring the listing
of some functions to this appendix was done primarily to avoid breaking the
flow of explanations in text material.

The Book Web Site

An important feature of this book is the support contained in the book Web
site. The site address is

www.prenhall.com/gonzalezwoodseddins

This site provides support to the book in the following areas:

• Downloadable M-files, including all M-files in the book
• Tutorials

1.5

• Projects
• Teaching materials
• Links to databases, including all images in the book
• Book updates
• Background publications

The site is integrated with the Web site of the Gonzalez-Woods book:

www.prenhall.com/gonzalezwoods

which offers additional support on instructional and research topics.

Notation

Equations in the book are typeset using familiar italic and Greek symbols,
as in and All
MATLAB function names and symbols are typeset in monospace font, as in
fft2(f), logical(A), and roipoly(f, c, r).

The first occurrence of a MATLAB or IPT function is highlighted by use of
the following icon on the page margin:

function name

Similarly, the first occurrence of a new function developed in the book is high-
lighted by use of the following icon on the page margin:

function name

The symbol is used as a visual cue to denote the end of a function
listing.

When referring to keyboard keys, we use bold letters, such as Return and
Tab. We also use bold letters when referring to items on a computer screen or
menu, such as File and Edit.

The MATLAB Working Environment

In this section we give a brief overview of some important operational aspects
of using MATLAB.

1.7.1 The MATLAB Desktop
The MATLAB desktop is the main MATLAB application window. As Fig. 1.1
shows, the desktop contains five subwindows: the Command Window, the
Workspace Browser, the Current Directory Window, the Command History
Window, and one or more Figure Windows, which are shown only when the
user displays a graphic.

1.7

f1u, v2 = tan-13I1u, v2>R1u, v24.f1x, y2 = A sin1ux + vy2

1.6

1.7 � The MATLAB Working Environment 7

8 Chapter 1 � Introduction

FIGURE 1.1 The MATLAB desktop and its principal components.

The Command Window is where the user types MATLAB commands and
expressions at the prompt (>>) and where the outputs of those commands are
displayed. MATLAB defines the workspace as the set of variables that the
user creates in a work session. The Workspace Browser shows these variables
and some information about them. Double-clicking on a variable in the Work-
space Browser launches the Array Editor, which can be used to obtain infor-
mation and in some instances edit certain properties of the variable.

The Current Directory tab above the Workspace tab shows the contents of
the current directory, whose path is shown in the Current Directory Window.
For example, in the Windows operating system the path might be as follows:
C:\MATLAB\Work, indicating that directory “Work” is a subdirectory of
the main directory “MATLAB,” which is installed in drive C. Clicking on the
arrow in the Current Directory Window shows a list of recently used paths.
Clicking on the button to the right of the window allows the user to change the
current directory.

MATLAB Desktop

Figure Window

Current Directory Window

Workspace Browser

Command History

Command Window

1.7 � The MATLAB Working Environment 9

†Use of the term online in this book refers to information, such as help files, available in a local computer
system, not on the Internet.

MATLAB uses a search path to find M-files and other MATLAB-related
files, which are organized in directories in the computer file system. Any file
run in MATLAB must reside in the current directory or in a directory that
is on the search path. By default, the files supplied with MATLAB and
MathWorks toolboxes are included in the search path. The easiest way to
see which directories are on the search path, or to add or modify a search
path, is to select Set Path from the File menu on the desktop, and then use
the Set Path dialog box. It is good practice to add any commonly used di-
rectories to the search path to avoid repeatedly having the change the cur-
rent directory.

The Command History Window contains a record of the commands a user
has entered in the Command Window, including both current and previous
MATLAB sessions. Previously entered MATLAB commands can be selected
and re-executed from the Command History Window by right-clicking on a
command or sequence of commands. This action launches a menu from which
to select various options in addition to executing the commands. This is a use-
ful feature when experimenting with various commands in a work session.

1.7.2 Using the MATLAB Editor to Create M-files
The MATLAB editor is both a text editor specialized for creating M-files and
a graphical MATLAB debugger. The editor can appear in a window by itself,
or it can be a subwindow in the desktop. M-files are denoted by the extension
.m, as in pixeldup.m. The MATLAB editor window has numerous pull-down
menus for tasks such as saving, viewing, and debugging files. Because it per-
forms some simple checks and also uses color to differentiate between various
elements of code, this text editor is recommended as the tool of choice for
writing and editing M-functions.To open the editor, type edit at the prompt in
the Command Window. Similarly, typing edit filename at the prompt opens
the M-file filename.m in an editor window, ready for editing. As noted earli-
er, the file must be in the current directory, or in a directory in the search path.

1.7.3 Getting Help
The principal way to get help online† is to use the MATLAB Help Browser,
opened as a separate window either by clicking on the question mark symbol
(?) on the desktop toolbar, or by typing helpbrowser at the prompt in the
Command Window. The Help Browser is a Web browser integrated into the
MATLAB desktop that displays Hypertext Markup Language (HTML) docu-
ments. The Help Browser consists of two panes, the help navigator pane, used
to find information, and the display pane, used to view the information.
Self-explanatory tabs on the navigator pane are used to perform a search.
For example, help on a specific function is obtained by selecting the Search
tab, selecting Function Name as the Search Type, and then typing in the func-
tion name in the Search for field. It is good practice to open the Help Browser

10 Chapter 1 � Introduction

at the beginning of a MATLAB session to have help readily available during
code development or other MATLAB task.

Another way to obtain help for a specific function is by typing doc followed
by the function name at the command prompt. For example, typing doc format
displays documentation for the function called format in the display pane of
the Help Browser. This command opens the browser if it is not already open.

M-functions have two types of information that can be displayed by the
user. The first is called the H1 line, which contains the function name and a
one-line description. The second is a block of explanation called the Help text
block (these are discussed in detail in Section 2.10.1). Typing help at the
prompt followed by a function name displays both the H1 line and the Help
text for that function in the Command Window. Occasionally, this information
can be more up to date than the information in the Help browser because it is
extracted directly from the documentation of the M-function in question. Typ-
ing lookfor followed by a keyword displays all the H1 lines that contain that
keyword. This function is useful when looking for a particular topic without
knowing the names of applicable functions. For example, typing lookfor edge
at the prompt displays all the H1 lines containing that keyword. Because the
H1 line contains the function name, it then becomes possible to look at specif-
ic functions using the other help methods. Typing lookfor edge –all at the
prompt displays the H1 line of all functions that contain the word edge in ei-
ther the H1 line or the Help text block.Words that contain the characters edge
also are detected. For example, the H1 line of a function containing the word
polyedge in the H1 line or Help text would also be displayed.

It is common MATLAB terminology to use the term help page when refer-
ring to the information about an M-function displayed by any of the preceding
approaches, excluding lookfor. It is highly recommended that the reader be-
come familiar with all these methods for obtaining information because in the
following chapters we often give only representative syntax forms for MAT-
LAB and IPT functions. This is necessary either because of space limitations
or to avoid deviating from a particular discussion more than is absolutely nec-
essary. In these cases we simply introduce the syntax required to execute the
function in the form required at that point. By being comfortable with online
search methods, the reader can then explore a function of interest in more de-
tail with little effort.

Finally, the MathWorks’ Web site mentioned in Section 1.3 contains a large
database of help material, contributed functions, and other resources that
should be utilized when the online documentation contains insufficient infor-
mation about a desired topic.

1.7.4 Saving and Retrieving a Work Session
There are several ways to save and load an entire work session (the contents
of the Workspace Browser) or selected workspace variables in MATLAB. The
simplest is as follows.

To save the entire workspace, simply right-click on any blank space in the
Workspace Browser window and select Save Workspace As from the menu

� Summary 11

that appears.This opens a directory window that allows naming the file and se-
lecting any folder in the system in which to save it. Then simply click Save. To
save a selected variable from the Workspace, select the variable with a left
click and then right-click on the highlighted area. Then select Save Selection
As from the menu that appears. This again opens a window from which a fold-
er can be selected to save the variable. To select multiple variables, use shift-
click or control-click in the familiar manner, and then use the procedure just
described for a single variable. All files are saved in double-precision, binary
format with the extension .mat. These saved files commonly are referred to as
MAT-files. For example, a session named, say, mywork_2003_02_10, would ap-
pear as the MAT-file mywork_2003_02_10.mat when saved. Similarly, a saved
image called final_image (which is a single variable in the workspace) will
appear when saved as final_image.mat.

To load saved workspaces and/or variables, left-click on the folder icon on
the toolbar of the Workspace Browser window. This causes a window to open
from which a folder containing the MAT-files of interest can be selected.
Double-clicking on a selected MAT-file or selecting Open causes the contents
of the file to be restored in the Workspace Browser window.

It is possible to achieve the same results described in the preceding para-
graphs by typing save and load at the prompt, with the appropriate file names
and path information. This approach is not as convenient, but it is used when
formats other than those available in the menu method are required. As an
exercise, the reader is encouraged to use the Help Browser to learn more
about these two functions.

How References Are Organized in the Book

All references in the book are listed in the Bibliography by author and date, as
in Soille [2003]. Most of the background references for the theoretical content
of the book are from Gonzalez and Woods [2002]. In cases where this is not
true, the appropriate new references are identified at the point in the discus-
sion where they are needed. References that are applicable to all chapters,
such as MATLAB manuals and other general MATLAB references, are so
identified in the Bibliography.

Summary
In addition to a brief introduction to notation and basic MATLAB tools, the material
in this chapter emphasizes the importance of a comprehensive prototyping environ-
ment in the solution of digital image processing problems. In the following chapter we
begin to lay the foundation needed to understand IPT functions and introduce a set of
fundamental programming concepts that are used throughout the book. The material
in Chapters 3 through 12 spans a wide cross section of topics that are in the mainstream
of digital image processing applications. However, although the topics covered are var-
ied, the discussion in those chapters follows the same basic theme of demonstrating
how combining MATLAB and IPT functions with new code can be used to solve a
broad spectrum of image-processing problems.

1.8

65

3 Intensity Transformations
and Spatial Filtering

Preview
The term spatial domain refers to the image plane itself, and methods in this cat-
egory are based on direct manipulation of pixels in an image. In this chapter we
focus attention on two important categories of spatial domain processing:
intensity (or gray-level) transformations and spatial filtering. The latter approach
sometimes is referred to as neighborhood processing, or spatial convolution. In
the following sections we develop and illustrate MATLAB formulations repre-
sentative of processing techniques in these two categories. In order to carry a
consistent theme, most of the examples in this chapter are related to image en-
hancement. This is a good way to introduce spatial processing because enhance-
ment is highly intuitive and appealing, especially to beginners in the field.As will
be seen throughout the book, however, these techniques are general in scope and
have uses in numerous other branches of digital image processing.

Background

As noted in the preceding paragraph, spatial domain techniques operate di-
rectly on the pixels of an image. The spatial domain processes discussed in this
chapter are denoted by the expression

where is the input image, is the output (processed) image, and
T is an operator on defined over a specified neighborhood about point

In addition, T can operate on a set of images, such as performing the ad-
dition of K images for noise reduction.

The principal approach for defining spatial neighborhoods about a point
is to use a square or rectangular region centered at as Fig. 3.1 shows.

The center of the region is moved from pixel to pixel starting, say, at the top, left
1x, y2,1x, y2

1x, y2.
f,

g1x, y2f1x, y2

g1x, y2 = T3f1x, y24

3.1

66 Chapter 3 � Intensity Transformations and Spatial Filtering

y

x

Origin

(x, y)

Image f (x, y)

FIGURE 3.1 A
neighborhood of
size about a
point in an
image.

1x, y2
3 * 3

corner, and, as it moves, it encompasses different neighborhoods. Operator T is
applied at each location to yield the output, g, at that location. Only the
pixels in the neighborhood are used in computing the value of g at .

The remainder of this chapter deals with various implementations of the
preceding equation. Although this equation is simple conceptually, its compu-
tational implementation in MATLAB requires that careful attention be paid
to data classes and value ranges.

Intensity Transformation Functions

The simplest form of the transformation T is when the neighborhood in
Fig. 3.1 is of size (a single pixel). In this case, the value of g at de-
pends only on the intensity of at that point, and T becomes an intensity or
gray-level transformation function. These two terms are used interchangeably,
when dealing with monochrome (i.e., gray-scale) images. When dealing with
color images, the term intensity is used to denote a color image component in
certain color spaces, as described in Chapter 6.

Because they depend only on intensity values, and not explicitly on
intensity transformation functions frequently are written in simplified form as

where r denotes the intensity of and s the intensity of g, both at any corre-
sponding point in the images.

3.2.1 Function imadjust
Function imadjust is the basic IPT tool for intensity transformations of gray-
scale images. It has the syntax

g = imadjust(f, [low_in high_in], [low_out high_out], gamma)

As illustrated in Fig. 3.2, this function maps the intensity values in image f
to new values in g, such that values between low_in and high_in map to

1x, y2
f

s = T1r2

1x, y2,

f
1x, y21 * 1

3.2

1x, y2
1x, y2

imadjust

3.2 � Intensity Transformation Functions 67

low_in high_in

low_out

high_out

low_in high_inlow_in high_in

gamma � 1 gamma � 1 gamma � 1 FIGURE 3.2 The
various mappings
available in
function
imadjust.

EXAMPLE 3.1:
Using function
imadjust.

values between low_out and high_out. Values below low_in and above
high_in are clipped; that is, values below low_in map to low_out, and those
above high_in map to high_out. The input image can be of class uint8,
uint16, or double, and the output image has the same class as the input. All
inputs to function imadjust, other than f, are specified as values between 0
and 1, regardless of the class of f. If f is of class uint8, imadjust multiplies
the values supplied by 255 to determine the actual values to use; if f is of class
uint16, the values are multiplied by 65535. Using the empty matrix ([]) for
[low_in high_in] or for [low_out high_out] results in the default values
[0 1]. If high_out is less than low_out, the output intensity is reversed.

Parameter gamma specifies the shape of the curve that maps the intensity
values in f to create g. If gamma is less than 1, the mapping is weighted toward
higher (brighter) output values, as Fig. 3.2(a) shows. If gamma is greater than 1,
the mapping is weighted toward lower (darker) output values. If it is omitted
from the function argument, gamma defaults to 1 (linear mapping).

� Figure 3.3(a) is a digital mammogram image, f, showing a small lesion, and
Fig. 3.3(b) is the negative image, obtained using the command

>> g1 = imadjust(f, [0 1], [1 0]);

This process, which is the digital equivalent of obtaining a photographic nega-
tive, is particularly useful for enhancing white or gray detail embedded in a
large, predominantly dark region. Note, for example, how much easier it is to
analyze the breast tissue in Fig. 3.3(b). The negative of an image can be ob-
tained also with IPT function imcomplement:

g = imcomplement(f)

Figure 3.3(c) is the result of using the command

>> g2 = imadjust(f, [0.5 0.75], [0 1]);

which expands the gray scale region between 0.5 and 0.75 to the full [0, 1]
range. This type of processing is useful for highlighting an intensity band of
interest. Finally, using the command

>> g3 = imadjust(f, [], [], 2);

imcomplement

a b c

68 Chapter 3 � Intensity Transformations and Spatial Filtering

FIGURE 3.3 (a)
Original digital
mammogram.
(b) Negative
image. (c) Result
of expanding the
intensity range
[0.5, 0.75].
(d) Result of
enhancing the
image with
gamma = 2.
(Original image
courtesy of G. E.
Medical Systems.)

log
log2
log10

produces a result similar to (but with more gray tones than) Fig.3.3(c) by compress-
ing the low end and expanding the high end of the gray scale [see Fig. 3.3(d)]. �

3.2.2 Logarithmic and Contrast-Stretching Transformations
Logarithmic and contrast-stretching transformations are basic tools for dy-
namic range manipulation. Logarithm transformations are implemented using
the expression

g = c*log(1 + double(f))

where c is a constant.The shape of this transformation is similar to the gamma
curve shown in Fig. 3.2(a) with the low values set at 0 and the high values set to
1 on both scales. Note, however, that the shape of the gamma curve is variable,
whereas the shape of the log function is fixed.

log is the natural
logarithm. log2 and
log10 are the base 2
and base 10 loga-
rithms, respectively.

a b
c d

3.2 � Intensity Transformation Functions 69

One of the principal uses of the log transformation is to compress dynamic
range. For example, it is not unusual to have a Fourier spectrum (Chapter 4)
with values in the range [0,] or higher.When displayed on a monitor that is
scaled linearly to 8 bits, the high values dominate the display, resulting in lost
visual detail for the lower intensity values in the spectrum. By computing the
log, a dynamic range on the order of, for example, is reduced to approxi-
mately 14, which is much more manageable.

When performing a logarithmic transformation, it is often desirable to
bring the resulting compressed values back to the full range of the display. For
8 bits, the easiest way to do this in MATLAB is with the statement

>> gs = im2uint8(mat2gray(g));

Use of mat2gray brings the values to the range [0, 1] and im2uint8 brings
them to the range [0, 255]. Later, in Section 3.2.3, we discuss a scaling function
that automatically detects the class of the input and applies the appropriate
conversion.

The function shown in Fig. 3.4(a) is called a contrast-stretching transforma-
tion function because it compresses the input levels lower than m into a nar-
row range of dark levels in the output image; similarly, it compresses the
values above m into a narrow band of light levels in the output.The result is an
image of higher contrast. In fact, in the limiting case shown in Fig. 3.4(b), the
output is a binary image. This limiting function is called a thresholding func-
tion, which, as we discuss in Chapter 10, is a simple tool used for image seg-
mentation. Using the notation introduced at the beginning of this section, the
function in Fig. 3.4(a) has the form

where r represents the intensities of the input image, s the corresponding in-
tensity values in the output image, and E controls the slope of the function.
This equation is implemented in MATLAB for an entire image as

g = 1./(1 + (m./(double(f) + eps)).^E)

s = T1r2 =

1

1 + 1m>r2E

106,

106

s � T(r)

T(r)

r
m

D
ar

k

 L
ig

ht

Dark Light

s � T(r)

T(r)

r
m

D
ar

k

 L
ig

ht

Dark Light

FIGURE 3.4
(a) Contrast-
stretching
transformation.
(b) Thresholding
transformation.

a b

eps

70 Chapter 3 � Intensity Transformations and Spatial Filtering

Note the use of eps (see Table 2.10) to prevent overflow if f has any 0 values.
Since the limiting value of is 1, output values are scaled to the range [0, 1]
when working with this type of transformation. The shape in Fig. 3.4(a) was
obtained with E = 20.

� Figure 3.5(a) is a Fourier spectrum with values in the range 0 to
displayed on a linearly scaled, 8-bit system. Figure 3.5(b) shows the result ob-
tained using the commands

>> g = im2uint8(mat2gray(log(1 + double(f))));
>> imshow(g)

The visual improvement of g over the original image is quite evident. �

3.2.3 Some Utility M-Functions for Intensity Transformations
In this section we develop two M-functions that incorporate various aspects
of the intensity transformations introduced in the previous two sections. We
show the details of the code for one of them to illustrate error checking, to
introduce ways in which MATLAB functions can be formulated so that
they can handle a variable number of inputs and/or outputs, and to show
typical code formats used throughout the book. From this point on, detailed
code of new M-functions is included in our discussions only when the pur-
pose is to explain specific programming constructs, to illustrate the use of a
new MATLAB or IPT function, or to review concepts introduced earlier.
Otherwise, only the syntax of the function is explained, and its code is in-
cluded in Appendix C. Also, in order to focus on the basic structure of the
functions developed in the remainder of the book, this is the last section in
which we show extensive use of error checking. The procedures that follow
are typical of how error handling is programmed in MATLAB.

1.5 * 106,

T1r2

EXAMPLE 3.2:
Using a log
transformation to
reduce dynamic
range.

FIGURE 3.5 (a) A
Fourier spectrum.
(b) Result
obtained by
performing a log
transformation.

a b

3.2 � Intensity Transformation Functions 71

nargin

nargout

Handling a Variable Number of Inputs and/or Outputs

To check the number of arguments input into an M-function we use function
nargin,

n = nargin

which returns the actual number of arguments input into the M-function. Sim-
ilarly, function nargout is used in connection with the outputs of an M-
function. The syntax is

n = nargout

For example, suppose that we execute the following M-function at the prompt:

>> T = testhv(4, 5);

Use of nargin within the body of this function would return a 2, while use of
nargout would return a 1.

Function nargchk can be used in the body of an M-function to check if the
correct number of arguments were passed. The syntax is

msg = nargchk(low, high, number)

This function returns the message Notenoughinputparameters if number is less
than low or Too many input parameters if number is greater than high. If
number is between low and high (inclusive),nargchk returns an empty matrix.A
frequent use of function nargchk is to stop execution via the error function if the
incorrect number of arguments is input.The number of actual input arguments is
determined by the nargin function. For example, consider the following code
fragment:

function G = testhv2(x, y, z)...
error(nargchk(2, 3, nargin));...

Typing

>> testhv2(6);

which only has one input argument would produce the error

Not enough input arguments.

and execution would terminate.

nargchk

72 Chapter 3 � Intensity Transformations and Spatial Filtering

Often, it is useful to be able to write functions in which the number of input
and/or output arguments is variable. For this, we use the variables varargin
and varargout. In the declaration, varargin and varargout must be lower-
case. For example,

function [m, n] = testhv3(varargin)

accepts a variable number of inputs into function testhv3, and

function [varargout] = testhv4(m, n, p)

returns a variable number of outputs from function testhv4. If function
testhv3 had, say, one fixed input argument, x, followed by a variable number
of input arguments, then

function [m, n] = testhv3(x, varargin)

would cause varargin to start with the second input argument supplied by
the user when the function is called. Similar comments apply to varargout. It
is acceptable to have a function in which both the number of input and output
arguments is variable.

When varargin is used as the input argument of a function, MATLAB sets it
to a cell array (see Section 2.10.5) that accepts a variable number of inputs by the
user. Because varargin is a cell array, an important aspect of this arrangement is
that the call to the function can contain a mixed set of inputs. For example, as-
suming that the code of our hypothetical function testhv3 is equipped to handle
it, it would be perfectly acceptable to have a mixed set of inputs, such as

>> [m, n] = testhv3(f, [0 0.5 1.5], A, 'label');

where f is an image, the next argument is a row vector of length 3, A is a ma-
trix, and 'label' is a character string. This is indeed a powerful feature that
can be used to simplify the structure of functions requiring a variety of differ-
ent inputs. Similar comments apply to varargout.

Another M-Function for Intensity Transformations

In this section we develop a function that computes the following transforma-
tion functions: negative, log, gamma and contrast stretching.These transforma-
tions were selected because we will need them later, and also to illustrate the
mechanics involved in writing an M-function for intensity transformations. In
writing this function we use function changeclass, which has the syntax

g = changeclass(newclass, f)changeclass

changeclass is an
undocumented IPT
utility function. Its
code is included in
Appendix C.

varargin
varargout

3.2 � Intensity Transformation Functions 73

This function converts image f to the class specified in parameter newclass
and outputs it as g. Valid values for newclass are 'uint8', 'uint16',
and'double'.

Note in the following M-function, which we call intrans, how function op-
tions are formatted in the Help section of the code, how a variable number of
inputs is handled, how error checking is interleaved in the code, and how the
class of the output image is matched to the class of the input. Keep in mind
when studying the following code that varargin is a cell array, so its elements
are selected by using curly braces.

function g = intrans(f, varargin)
%INTRANS Performs intensity (gray-level) transformations.
% G = INTRANS(F, 'neg') computes the negative of input image F.
%
% G = INTRANS(F, 'log', C, CLASS) computes C*log(1 + F) and
% multiplies the result by (positive) constant C. If the last two
% parameters are omitted, C defaults to 1. Because the log is used
% frequently to display Fourier spectra, parameter CLASS offers the
% option to specify the class of the output as 'uint8' or
% 'uint16'. If parameter CLASS is omitted, the output is of the
% same class as the input.
%
% G = INTRANS(F, 'gamma', GAM) performs a gamma transformation on
% the input image using parameter GAM (a required input).
%
% G = INTRANS(F, 'stretch', M, E) computes a contrast-stretching
% transformation using the expression 1./(1 + (M./(F +
% eps)).^E). Parameter M must be in the range [0, 1]. The default
% value for M is mean2(im2double(F)), and the default value for E
% is 4.
%
% For the 'neg', 'gamma', and 'stretch' transformations, double
% input images whose maximum value is greater than 1 are scaled
% first using MAT2GRAY. Other images are converted to double first
% using IM2DOUBLE. For the 'log' transformation, double images are
% transformed without being scaled; other images are converted to
% double first using IM2DOUBLE.
%
% The output is of the same class as the input, except if a
% different class is specified for the 'log' option.

% Verify the correct number of inputs.
error(nargchk(2, 4, nargin))

% Store the class of the input for use later.
classin = class(f);

intrans

74 Chapter 3 � Intensity Transformations and Spatial Filtering

% If the input is of class double, and it is outside the range
% [0, 1], and the specified transformation is not 'log', convert the
% input to the range [0, 1].
if strcmp(class(f), 'double') & max(f(:)) > 1 & . . .

~strcmp(varargin{1}, 'log')
f = mat2gray(f);

else % Convert to double, regardless of class(f).
f = im2double(f);

end

% Determine the type of transformation specified.
method = varargin{1};

% Perform the intensity transformation specified.
switch method
case 'neg'

g = imcomplement(f);

case 'log'
if length(varargin) == 1

c = 1;
elseif length(varargin) == 2

c = varargin{2};
elseif length(varargin) == 3

c = varargin{2};
classin = varargin{3};

else
error('Incorrect number of inputs for the log option.')

end
g = c*(log(1 + double(f)));

case 'gamma'
if length(varargin) < 2

error('Not enough inputs for the gamma option.')
end
gam = varargin{2};
g = imadjust(f, [], [], gam);

case 'stretch'
if length(varargin) == 1

% Use defaults.
m = mean2(f);
E = 4.0;

elseif length(varargin) == 3
m = varargin{2};
E = varargin{3};

else error('Incorrect number of inputs for the stretch option.')
end
g = 1./(1 + (m./(f + eps)).^E);

otherwise
error('Unknown enhancement method.')

end

% Convert to the class of the input image.
g = changeclass(classin, g);

3.2 � Intensity Transformation Functions 75

EXAMPLE 3.3:
Illustration of
function intrans.

� As an illustration of function intrans, consider the image in Fig. 3.6(a), which
is an ideal candidate for contrast stretching to enhance the skeletal structure.The
result in Fig. 3.6(b) was obtained with the following call to intrans:

>> g = intrans(f, 'stretch', mean2(im2double(f)), 0.9);
>> figure, imshow(g)

Note how function mean2 was used to compute the mean value of f directly
inside the function call. The resulting value was used for m. Image f was con-
verted to double using im2double in order to scale its values to the range
[0, 1] so that the mean would also be in this range, as required for input m. The
value of E was determined interactively. �

An M-Function for Intensity Scaling

When working with images, results whose pixels span a wide negative to posi-
tive range of values are common. While this presents no problems during in-
termediate computations, it does become an issue when we want to use an
8-bit or 16-bit format for saving or viewing an image, in which case it often is
desirable to scale the image to the full, maximum range, [0, 255] or [0, 65535].
The following M-function, which we call gscale, accomplishes this. In addi-
tion, the function can map the output levels to a specified range. The code for
this function does not include any new concepts so we do not include it here.
See Appendix C for the listing.

mean2

FIGURE 3.6 (a)
Bone scan image.
(b) Image
enhanced using a
contrast-stretching
transformation.
(Original image
courtesy of G. E.
Medical Systems.)

a b

m = mean2 (A)
computes the mean
(average) value of
the elements of
matrix A.

gscale

76 Chapter 3 � Intensity Transformations and Spatial Filtering

The syntax of function gscale is

g = gscale(f, method, low, high)

where f is the image to be scaled. Valid values for method are 'full8' (the de-
fault), which scales the output to the full range [0, 255], and 'full16', which
scales the output to the full range [0, 65535]. If included, parameters low and
high are ignored in these two conversions. A third valid value of method is
'minmax', in which case parameters low and high, both in the range [0, 1], must
be provided. If 'minmax' is selected, the levels are mapped to the range [low,
high]. Although these values are specified in the range [0, 1], the program per-
forms the proper scaling, depending on the class of the input, and then converts
the output to the same class as the input. For example, if f is of class uint8 and
we specify 'minmax' with the range [0, 0.5], the output also will be of class
uint8, with values in the range [0, 128]. If f is of class double and its range of
values is outside the range [0, 1], the program converts it to this range before
proceeding. Function gscale is used in numerous places throughout the book.

Histogram Processing and Function Plotting

Intensity transformation functions based on information extracted from image
intensity histograms play a basic role in image processing, in areas such as en-
hancement, compression, segmentation, and description. The focus of this sec-
tion is on obtaining, plotting, and using histograms for image enhancement.
Other applications of histograms are discussed in later chapters.

3.3.1 Generating and Plotting Image Histograms
The histogram of a digital image with L total possible intensity levels in the
range [0, G] is defined as the discrete function

where is the kth intensity level in the interval [0, G] and is the number of
pixels in the image whose intensity level is The value of G is 255 for images of
class uint8, 65535 for images of class uint16, and 1.0 for images of class double.
Keep in mind that indices in MATLAB cannot be 0, so corresponds to intensi-
ty level 0, corresponds to intensity level 1, and so on, with corresponding to
level G. Note also that for images of class uint8 and uint16.

Often, it is useful to work with normalized histograms, obtained simply by
dividing all elements of by the total number of pixels in the image, which
we denote by n:

 =

nk

n

 p1rk2 =

h1rk2

n

h1rk2

G = L - 1
rLr2

r1

rk .
nkrk

h1rk2 = nk

3.3

See Section 4.5.3 for
a discussion of 2-D
plotting techniques.

3.3 � Histogram Processing and Function Plotting 77

imhist

for From basic probability, we recognize as an estimate
of the probability of occurrence of intensity level

The core function in the toolbox for dealing with image histograms is
imhist, which has the following basic syntax:

h = imhist(f, b)

where f is the input image, h is its histogram, and b is the number of bins
used in forming the histogram (if b is not included in the argument, b = 256 is
used by default). A bin is simply a subdivision of the intensity scale. For exam-
ple, if we are working with uint8 images and we let b = 2, then the intensity
scale is subdivided into two ranges: 0 to 127 and 128 to 255. The resulting his-
togram will have two values: equal to the number of pixels in the image
with values in the interval [0, 127], and equal to the number of pixels with
values in the interval [128, 255].We obtain the normalized histogram simply by
using the expression

p = imhist(f, b)/numel(f)

Recall from Section 2.10.3 that function numel(f) gives the number of ele-
ments in array f (i.e., the number of pixels in the image).

� Consider the image, f, from Fig. 3.3(a). The simplest way to plot its his-
togram is to use imhist with no output specified:

>> imhist(f);

Figure 3.7(a) shows the result. This is the histogram display default in the tool-
box. However, there are many other ways to plot a histogram, and we take this
opportunity to explain some of the plotting options in MATLAB that are rep-
resentative of those used in image processing applications.

Histograms often are plotted using bar graphs. For this purpose we can use
the function

bar(horz, v, width)

where v is a row vector containing the points to be plotted, horz is a vector
of the same dimension as v that contains the increments of the horizontal
scale, and width is a number between 0 and 1. If horz is omitted, the hori-
zontal axis is divided in units from 0 to length(v). When width is 1, the
bars touch; when it is 0, the bars are simply vertical lines, as in Fig. 3.7(a).
The default value is 0.8. When plotting a bar graph, it is customary to reduce
the resolution of the horizontal axis by dividing it into bands. The following
statements produce a bar graph, with the horizontal axis divided into
groups of 10 levels:

h122
h112

h1rk2,

rk .
p1rk2k = 1, 2, Á , L.

EXAMPLE 3.4:
Computing and
plotting image
histograms.

bar

78 Chapter 3 � Intensity Transformations and Spatial Filtering

0

� 104

50 100 150 200 250

0

1

2

3

4

5

6

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

FIGURE 3.7
Various ways to
plot an image
histogram.
(a) imhist,
(b) bar,
(c) stem,
(d) plot.

>> h = imhist(f);
>> h1 = h(1:10:256);
>> horz = 1:10:256;
>> bar(horz, h1)
>> axis([0 255 0 15000])
>> set(gca, 'xtick', 0:50:255)
>> set(gca, 'ytick', 0:2000:15000)

Figure 3.7(b) shows the result. The peak located at the high end of the intensi-
ty scale in Fig. 3.7(a) is missing in the bar graph as a result of the larger hori-
zontal increments used in the plot.

The fifth statement in the preceding code was used to expand the lower
range of the vertical axis for visual analysis, and to set the orizontal axis to the
same range as in Fig. 3.7(a). The axis function has the syntax

axis([horzmin horzmax vertmin vertmax])

which sets the minimum and maximum values in the horizontal and vertical
axes. In the last two statements, gca means “get current axis,” (i.e., the axes of
the figure last displayed) and xtick and ytick set the horizontal and vertical
axes ticks in the intervals shown.

Axis labels can be added to the horizontal and vertical axes of a graph using
the functions

set
gca
xtick
ytick

a b
c d

axis

3.3 � Histogram Processing and Function Plotting 79

xlabel('text string', 'fontsize', size)
ylabel('text string', 'fontsize', size)

where size is the font size in points. Text can be added to the body of the fig-
ure by using function text, as follows:

text(xloc, yloc, 'text string', 'fontsize', size)

where xloc and yloc define the location where text starts. Use of these three
functions is illustrated in Example 3.5. It is important to note that functions
that set axis values and labels are used after the function has been plotted.

A title can be added to a plot using function title, whose basic syntax is

title('titlestring')

where titlestring is the string of characters that will appear on the title,
centered above the plot.

A stem graph is similar to a bar graph. The syntax is

stem(horz, v, 'color_linestyle_marker', 'fill')

where v is row vector containing the points to be plotted, and horz is as de-
scribed for bar. The argument,

color_linestyle_marker

is a triplet of values from Table 3.1. For example, stem(v, 'r– –s') produces
a stem plot where the lines and markers are red, the lines are dashed, and the
markers are squares. If fill is used, and the marker is a circle, square, or dia-
mond, the marker is filled with the color specified in color. The default color
is black, the line default is solid, and the default marker is a circle. The
stem graph in Fig. 3.7(c) was obtained using the statements

>> h = imhist(f);
>> h1 = h(1:10:256);

xlabel
ylabel

text

title

stem

Symbol Color Symbol Line Style Symbol Marker

k Black – Solid + Plus sign
w White – – Dashed o Circle
r Red : Dotted * Asterisk
g Green –. Dash-dot . Point
b Blue none No line x Cross
c Cyan s Square
y Yellow d Diamond
m Magenta none No marker

TABLE 3.1
Attributes for
functions stem and
plot. The none
attribute is
applicable only to
function plot, and
must be specified
individually. See the
syntax for function
plot below.

See the stem help
page for additional
options available for
this function.

80 Chapter 3 � Intensity Transformations and Spatial Filtering

>> horz = 1:10:256;
>> stem(horz, h1, 'fill')
>> axis([0 255 0 15000])
>> set(gca, 'xtick', [0:50:255])
>> set(gca, 'ytick', [0:2000:15000])

Finally, we consider function plot, which plots a set of points by linking
them with straight lines. The syntax is

plot(horz, v, 'color_linestyle_marker')

where the arguments are as defined previously for stem plots. The values of
color, linestyle, and marker are given in Table 3.1.As in stem, the attributes
in plot can be specified as a triplet. When using none for linestyle or for
marker, the attributes must be specified individually. For example, the command

>> plot(horz, v, 'color', 'g', 'linestyle', 'none', 'marker', 's')

plots green squares without connecting lines between them. The defaults for
plot are solid black lines with no markers.

The plot in Fig. 3.7(d) was obtained using the following statements:

>> h = imhist(f);
>> plot(h) % Use the default values.
>> axis([0 255 0 15000])
>> set(gca, 'xtick', [0:50:255])
>> set(gca, 'ytick', [0:2000:15000])

Function plot is used frequently to display transformation functions (see
Example 3.5). �

In the preceding discussion axis limits and tick marks were set manually. It
is possible to set the limits and ticks automatically by using functions ylim and
xlim, which, for our purposes here, have the syntax forms

ylim('auto')
xlim('auto')

Among other possible variations of the syntax for these two functions (see on-
line help for details), there is a manual option, given by

ylim([ymin ymax])
xlim([xmin xmax])

which allows manual specification of the limits. If the limits are specified for
only one axis, the limits on the other axis are set to 'auto' by default. We use
these functions in the following section.

plot

ylim
xlim

See the plot help
page for additional
options available for
this function.

3.3 � Histogram Processing and Function Plotting 81

Typing hold on at the prompt retains the current plot and certain axes
properties so that subsequent graphing commands add to the existing graph.
See Example 10.6 for an illustration.

3.3.2 Histogram Equalization
Assume for a moment that intensity levels are continuous quantities normal-
ized to the range [0, 1], and let denote the probability density function
(PDF) of the intensity levels in a given image, where the subscript is used for
differentiating between the PDFs of the input and output images. Suppose
that we perform the following transformation on the input levels to obtain
output (processed) intensity levels, s,

where is a dummy variable of integration. It can be shown (Gonzalez and
Woods [2002]) that the probability density function of the output levels is
uniform; that is,

In other words, the preceding transformation generates an image whose in-
tensity levels are equally likely, and, in addition, cover the entire range [0, 1].
The net result of this intensity-level equalization process is an image with in-
creased dynamic range, which will tend to have higher contrast. Note that
the transformation function is really nothing more than the cumulative dis-
tribution function (CDF).

When dealing with discrete quantities we work with histograms and call
the preceding technique histogram equalization, although, in general, the
histogram of the processed image will not be uniform, due to the discrete na-
ture of the variables. With reference to the discussion in Section 3.3.1, let

denote the histogram associated with the intensity lev-
els of a given image, and recall that the values in a normalized histogram are
approximations to the probability of occurrence of each intensity level in the
image. For discrete quantities we work with summations, and the equaliza-
tion transformation becomes

for where is the intensity value in the output (processed)
image corresponding to value in the input image.rk

skk = 1, 2, Á , L,

 = a
k

j = 1

nj

n

 = a
k

j = 1
 pr1rj2

 sk = T1rk2

j = 1, 2, Á , L,pr1rj2,

ps1s2 = b1
0

for 0 … s … 1
otherwise

w

s = T1r2 = L
r

0
 pr1w2 dw

pr1r2

hold on

82 Chapter 3 � Intensity Transformations and Spatial Filtering

histeq

Histogram equalization is implemented in the toolbox by function histeq,
which has the syntax

g = histeq(f, nlev)

where f is the input image and nlev is the number of intensity levels specified
for the output image. If nlev is equal to L (the total number of possible levels
in the input image), then histeq implements the transformation function,

directly. If nlev is less than L, then histeq attempts to distribute the
levels so that they will approximate a flat histogram. Unlike imhist, the de-
fault value in histeq is nlev = 64. For the most part, we use the maximum
possible number of levels (generally 256) for nlev because this produces a
true implementation of the histogram-equalization method just described.

� Figure 3.8(a) is an electron microscope image of pollen, magnified approx-
imately 700 times. In terms of needed enhancement, the most important fea-
tures of this image are that it is dark and has a low dynamic range. This can be
seen in the histogram in Fig. 3.8(b), in which the dark nature of the image is ex-
pected because the histogram is biased toward the dark end of the gray scale.
The low dynamic range is evident from the fact that the “width” of the his-
togram is narrow with respect to the entire gray scale. Letting f denote the
input image, the following sequence of steps produced Figs. 3.8(a) through (d):

>> imshow(f)
>> figure, imhist(f)
>> ylim('auto')
>> g = histeq(f, 256);
>> figure, imshow(g)
>> figure, imhist(g)
>> ylim('auto')

The images were saved to disk in tiff format at 300 dpi using imwrite, and the
plots were similarly exported to disk using the print function discussed in
Section 2.4.

The image in Fig. 3.8(c) is the histogram-equalized result. The improve-
ments in average intensity and contrast are quite evident. These features also
are evident in the histogram of this image, shown in Fig. 3.8(d).The increase in
contrast is due to the considerable spread of the histogram over the entire in-
tensity scale.The increase in overall intensity is due to the fact that the average
intensity level in the histogram of the equalized image is higher (lighter) than
the original. Although the histogram-equalization method just discussed does
not produce a flat histogram, it has the desired characteristic of being able to
increase the dynamic range of the intensity levels in an image.

As noted earlier, the transformation function is simply the cumulative
sum of normalized histogram values.We can use function cumsum to obtain the
transformation function, as follows:

>> hnorm = imhist(f)./numel(f);
>> cdf = cumsum(hnorm);

T1rk2

T1rk2,

EXAMPLE 3.5:
Histogram
equalization.

cumsum

If A is a vector,
B = cumsum(A)
gives the sum of its
elements. If A is a
higher-dimensional
array,
B = cumsum(A, dim)
given the sum along
the dimension speci-
fied by dim.

3.3 � Histogram Processing and Function Plotting 83

0 50 100 150 200 250

� 104

� 104

0 50 100 150 200 250

0

2

1

4

3

6

5

7

8

0

2

1

4

3

6

5

7

8

FIGURE 3.8
Illustration of
histogram
equalization.
(a) Input image,
and (b) its
histogram.
(c) Histogram-
equalized image,
and (d) its
histogram. The
improvement
between (a) and
(c) is quite visible.
(Original image
courtesy of Dr.
Roger Heady,
Research School
of Biological
Sciences,
Australian
National
University,
Canberra.)

A plot of cdf, shown in Fig. 3.9, was obtained using the following commands:

>> x = linspace(0, 1, 256); % Intervals for [0, 1] horiz scale. Note
% the use of linspace from Sec. 2.8.1.

>> plot(x, cdf) % Plot cdf vs. x.
>> axis([0 1 0 1]) % Scale, settings, and labels:
>> set(gca, 'xtick', 0:.2:1)
>> set(gca, 'ytick', 0:.2:1)
>> xlabel('Input intensity values', 'fontsize', 9)
>> ylabel('Output intensity values', 'fontsize', 9)
>> % Specify text in the body of the graph:
>> text(0.18, 0.5, 'Transformation function', 'fontsize', 9)

We can tell visually from this transformation function that a narrow range of
input intensity levels is transformed into the full intensity scale in the output
image. �

a b
c d

84 Chapter 3 � Intensity Transformations and Spatial Filtering

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Input intensity values

O
ut

pu
t i

nt
en

si
ty

 v
al

ue
s

Transformation function

FIGURE 3.9
Transformation
function used to
map the intensity
values from the
input image in
Fig. 3.8(a) to the
values of the
output image in
Fig. 3.8(c).

3.3.3 Histogram Matching (Specification)
Histogram equalization produces a transformation function that is adaptive, in
the sense that it is based on the histogram of a given image. However, once the
transformation function for an image has been computed, it does not change un-
less the histogram of the image changes. As noted in the previous section, his-
togram equalization achieves enhancement by spreading the levels of the input
image over a wider range of the intensity scale. We show in this section that this
does not always lead to a successful result. In particular, it is useful in some appli-
cations to be able to specify the shape of the histogram that we wish the
processed image to have. The method used to generate a processed image that
has a specified histogram is called histogram matching or histogram specification.

The method is simple in principle. Consider for a moment continuous levels
that are normalized to the interval [0, 1], and let r and z denote the intensity
levels of the input and output images. The input levels have probability densi-
ty function and the output levels have the specified probability density
function We know from the discussion in the previous section that he
transformation

results in intensity levels, s, that have a uniform probability density function,
Suppose now that we define a variable z with the property

H1z2 = L
z

0
 pz1w2 dw = s

ps1s2.

s = T1r2 = L
r

0
 pr1w2 dw

pz1z2.
pr1r2

3.3 � Histogram Processing and Function Plotting 85

Keep in mind that we are after an image with intensity levels z, which have the
specified density From the preceding two equations, it follows that

We can find from the input image (this is the histogram-equalization
transformation discussed in the previous section), so it follows that we can use
the preceding equation to find the transformed levels z whose PDF is the spec-
ified as long as we can find When working with discrete variables,
we can guarantee that the inverse of H exists if is a valid histogram (i.e.,
it has unit area and all its values are nonnegative), and none of its components
is zero [i.e., no bin of is empty].As in histogram equalization, the discrete
implementation of the preceding method only yields an approximation to the
specified histogram.

The toolbox implements histogram matching using the following syntax in
histeq:

g = histeq(f, hspec)

where f is the input image, hspec is the specified histogram (a row vector of
specified values), and g is the output image, whose histogram approximates
the specified histogram, hspec. This vector should contain integer counts cor-
responding to equally spaced bins. A property of histeq is that the histogram
of g generally better matches hspec when length(hspec) is much smaller
than the number of intensity levels in f.

� Figure 3.10(a) shows an image, f, of the Mars moon, Phobos, and
Fig. 3.10(b) shows its histogram, obtained using imhist(f).The image is dom-
inated by large, dark areas, resulting in a histogram characterized by a large
concentration of pixels in the dark end of the gray scale. At first glance, one
might conclude that histogram equalization would be a good approach to en-
hance this image, so that details in the dark areas become more visible. How-
ever, the result in Fig. 3.10(c), obtained using the command

>> f1 = histeq(f, 256);

shows that histogram equalization in fact did not produce a particularly good
result in this case. The reason for this can be seen by studying the histogram of
the equalized image, shown in Fig. 3.10(d). Here, we see that that the intensity
levels have been shifted to the upper one-half of the gray scale, thus giving the
image a washed-out appearance. The cause of the shift is the large concentra-
tion of dark components at or near 0 in the original histogram. In turn, the cu-
mulative transformation function obtained from this histogram is steep, thus
mapping the large concentration of pixels in the low end of the gray scale to
the high end of the scale.

pz1z2

pz1z2
H-1.pz1z2,

T1r2

z = H-11s2 = H-13T1r24

pz1z2.

EXAMPLE 3.6:
Histogram
matching.

86 Chapter 3 � Intensity Transformations and Spatial Filtering

0 50 100 150 200 250

0

1

2

3

4

5

6

� 104

0 50 100 150 200 250

0

1

2

3

4

5

6

� 104

FIGURE 3.10
(a) Image of the
Mars moon
Phobos.
(b) Histogram.
(c) Histogram-
equalized image.
(d) Histogram
of (c).
(Original image
courtesy of
NASA).

One possibility for remedying this situation is to use histogram matching,
with the desired histogram having a lesser concentration of components in the
low end of the gray scale, and maintaining the general shape of the histogram
of the original image. We note from Fig. 3.10(b) that the histogram is basically
bimodal, with one large mode at the origin, and another, smaller, mode at the
high end of the gray scale. These types of histograms can be modeled, for ex-
ample, by using multimodal Gaussian functions. The following M-function
computes a bimodal Gaussian function normalized to unit area, so it can be
used as a specified histogram.

function p = twomodegauss(m1, sig1, m2, sig2, A1, A2, k)
%TWOMODEGAUSS Generates a bimodal Gaussian function.
% P = TWOMODEGAUSS(M1, SIG1, M2, SIG2, A1, A2, K) generates a bimodal,
% Gaussian-like function in the interval [0, 1]. P is a 256-element
% vector normalized so that SUM(P) equals 1. The mean and standard
% deviation of the modes are (M1, SIG1) and (M2, SIG2), respectively.
% A1 and A2 are the amplitude values of the two modes. Since the

twomodegauss

a b
c d

3.3 � Histogram Processing and Function Plotting 87

% output is normalized, only the relative values of A1 and A2 are
% important. K is an offset value that raises the "floor" of the
% function. A good set of values to try is M1 = 0.15, SIG1 = 0.05,
% M2 = 0.75, SIG2 = 0.05, A1 = 1, A2 = 0.07, and K = 0.002.

c1 = A1 * (1 / ((2 * pi) ^ 0.5) * sig1);
k1 = 2 * (sig1 ^ 2);
c2 = A2 * (1 / ((2 * pi) ^ 0.5) * sig2);
k2 = 2 * (sig2 ^ 2);
z = linspace(0, 1, 256);

p = k + c1 * exp(–((z – m1) .^ 2) ./ k1) + ...
c2 * exp(–((z – m2) .^ 2) ./ k2);

p = p ./ sum(p(:));

The following interactive function accepts inputs from a keyboard and plots
the resulting Gaussian function. Refer to Section 2.10.5 for an explanation of
the functions input and str2num. Note how the limits of the plots are set.

function p = manualhist
%MANUALHIST Generates a bimodal histogram interactively.
% P = MANUALHIST generates a bimodal histogram using
% TWOMODEGAUSS(m1, sig1, m2, sig2, A1, A2, k). m1 and m2 are the means
% of the two modes and must be in the range [0, 1]. sig1 and sig2 are
% the standard deviations of the two modes. A1 and A2 are
% amplitude values, and k is an offset value that raises the
% "floor" of histogram. The number of elements in the histogram
% vector P is 256 and sum(P) is normalized to 1. MANUALHIST
% repeatedly prompts for the parameters and plots the resulting
% histogram until the user types an 'x' to quit, and then it returns the
% last histogram computed.
%
% A good set of starting values is: (0.15, 0.05, 0.75, 0.05, 1,
% 0.07, 0.002).

% Initialize.
repeats = true;
quitnow = 'x';

% Compute a default histogram in case the user quits before
% estimating at least one histogram.
p = twomodegauss(0.15, 0.05, 0.75, 0.05, 1, 0.07, 0.002);

% Cycle until an x is input.
while repeats

s = input('Enter m1, sig1, m2, sig2, A1, A2, k OR x to quit:', 's');
if s == quitnow

break
end

% Convert the input string to a vector of numerical values and
% verify the number of inputs.
v = str2num(s);
if numel(v) ~= 7

manualhist

88 Chapter 3 � Intensity Transformations and Spatial Filtering

disp('Incorrect number of inputs.')
continue

end

p = twomodegauss(v(1), v(2), v(3), v(4), v(5), v(6), v(7));
% Start a new figure and scale the axes. Specifying only xlim
% leaves ylim on auto.
figure, plot(p)
xlim([0 255])

end

Since the problem with histogram equalization in this example is due pri-
marily to a large concentration of pixels in the original image with levels near 0,
a reasonable approach is to modify the histogram of that image so that it does
not have this property. Figure 3.11(a) shows a plot of a function (obtained with
program manualhist) that preserves the general shape of the original his-
togram, but has a smoother transition of levels in the dark region of the
intensity scale. The output of the program, p, consists of 256 equally spaced
points from this function and is the desired specified histogram. An image with
the specified histogram was generated using the command

>> g = histeq(f, p);

0 50 100 150 200 250

0

1

2

3

4

5

6

� 104

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

FIGURE 3.11
(a) Specified
histogram.
(b) Result of
enhancement by
histogram
matching.
(c) Histogram
of (b).

a b
c

3.4 � Spatial Filtering 89

Figure 3.11(b) shows the result. The improvement over the histogram-
equalized result in Fig. 3.10(c) is evident by comparing the two images. It is of
interest to note that the specified histogram represents a rather modest
change from the original histogram. This is all that was required to obtain a
significant improvement in enhancement. The histogram of Fig. 3.11(b) is
shown in Fig. 3.11(c). The most distinguishing feature of this histogram is how
its low end has been moved closer to the lighter region of the gray scale, and
thus closer to the specified shape. Note, however, that the shift to the right was
not as extreme as the shift in the histogram shown in Fig. 3.10(d), which corre-
sponds to the poorly enhanced image of Fig. 3.10(c). �

Spatial Filtering

As mentioned in Section 3.1 and illustrated in Fig. 3.1, neighborhood process-
ing consists of (1) defining a center point, (2) performing an operation
that involves only the pixels in a predefined neighborhood about that center
point; (3) letting the result of that operation be the “response” of the process
at that point; and (4) repeating the process for every point in the image. The
process of moving the center point creates new neighborhoods, one for each
pixel in the input image. The two principal terms used to identify this opera-
tion are neighborhood processing and spatial filtering, with the second term
being more prevalent. As explained in the following section, if the computa-
tions performed on the pixels of the neighborhoods are linear, the operation is
called linear spatial filtering (the term spatial convolution also used); otherwise
it is called nonlinear spatial filtering.

3.4.1 Linear Spatial Filtering
The concept of linear filtering has its roots in the use of the Fourier transform
for signal processing in the frequency domain, a topic discussed in detail in
Chapter 4. In the present chapter, we are interested in filtering operations that
are performed directly on the pixels of an image. Use of the term linear spatial
filtering differentiates this type of process from frequency domain filtering.

The linear operations of interest in this chapter consist of multiplying each
pixel in the neighborhood by a corresponding coefficient and summing the re-
sults to obtain the response at each point If the neighborhood is of size

coefficients are required.The coefficients are arranged as a matrix,
called a filter, mask, filter mask, kernel, template, or window, with the first three
terms being the most prevalent. For reasons that will become obvious shortly,
the terms convolution filter, mask, or kernel, also are used.

The mechanics of linear spatial filtering are illustrated in Fig. 3.12. The
process consists simply of moving the center of the filter mask from point to
point in an image, At each point the response of the filter at that
point is the sum of products of the filter coefficients and the corresponding
neighborhood pixels in the area spanned by the filter mask. For a mask of size

we assume typically that and where a and bn = 2b + 1,m = 2a + 1m * n,

1x, y2,f.
w

mnm * n,
1x, y2.

1x, y2;

3.4

90 Chapter 3 � Intensity Transformations and Spatial Filtering

are nonnegative integers.All this says is that our principal focus is on masks of
odd sizes, with the smallest meaningful size being (we exclude from our
discussion the trivial case of a mask). Although it certainly is not a re-
quirement, working with odd-size masks is more intuitive because they have a
unique center point.

There are two closely related concepts that must be understood clearly
when performing linear spatial filtering. One is correlation; the other is
convolution. Correlation is the process of passing the mask by the image
array in the manner described in Fig. 3.12. Mechanically, convolution is the
same process, except that is rotated by 180° prior to passing it by These
two concepts are best explained by some simple examples.

f.w
f

w

1 * 1
3 * 3

f (x�1, y) f (x�1, y�1)

f (x, y�1) f (x, y) f (x, y�1)

f (x�1, y�1) f (x�1, y) f (x�1, y�1)

f (x�1, y�1)

x

Image f (x, y)

Mask coefficients, showing
coordinate arrangement

Pixels of image
section under mask

Mask

Image origin

y

w(1, 0) w(1, 1)

w(0, �1) w(0, 0) w(0, 1)

w(�1, �1) w(�1, 0) w(�1, 1)

w(1, �1)

FIGURE 3.12 The
mechanics of linear
spatial filtering.
The magnified
drawing shows a

mask and
the corresponding
image
neighborhood
directly under it.
The neighborhood
is shown displaced
out from under the
mask for ease of
readability.

3 * 3

3.4 � Spatial Filtering 91

Figure 3.13(a) shows a one-dimensional function, and a mask, The ori-
gin of is assumed to be its leftmost point. To perform the correlation of the
two functions, we move so that its rightmost point coincides with the origin
of as shown in Fig. 3.13(b). Note that there are points between the two func-
tions that do not overlap. The most common way to handle this problem is to
pad with as many 0s as are necessary to guarantee that there will always be
corresponding points for the full excursion of past This situation is shown
in Fig. 3.13(c).

We are now ready to perform the correlation. The first value of correlation
is the sum of products of the two functions in the position shown in
Fig. 3.13(c).The sum of products is 0 in this case. Next, we move one location
to the right and repeat the process [Fig. 3.13(d)]. The sum of products again is
0. After four shifts [Fig. 3.13(e)], we encounter the first nonzero value of the
correlation, which is If we proceed in this manner until moves
completely past [the ending geometry is shown in Fig. 3.13(f)] we would get
the result in Fig. 3.13(g). This set of values is the correlation of and Note
that, had we left stationary and had moved past instead, the result
would have been different, so the order matters.

wfw
f.w

f
w122112 = 2.

w

f.w
f

f,
w

f
w.f,

Correlation Convolution

'full' correlation result

(a) 0 0 0 1 0 0 0 0 1 2 3 2 0
Origin

Starting position alignment

Zero padding

f w

(b) 0 0 0 1 0 0 0 0
1 2 3 2 0

Position after one shift

(c) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 2 3 2 0

(d) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 2 3 2 0

Position after four shifts

(e) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 2 3 2 0

Final position

(f) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 2 3 2 0

(g) 0 0 0 0 2 3 2 1 0 0 0 0

'same' correlation result
(h) 0 0 2 3 2 1 0 0

'full' convolution result

(i)0 0 0 1 0 0 0 0 0 2 3 2 1
Origin f w rotated 180�

 0 0 0 1 0 0 0 0
0 2 3 2 1

(j)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 2 3 2 1

(k)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 2 3 2 1

(l)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 2 3 2 1

(m)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 2 3 2 1

(n)

0 0 0 1 2 3 2 0 0 0 0 0 (o)

'same' convolution result
0 1 2 3 2 0 0 0 (p)

FIGURE 3.13
Illustration of
one-dimensional
correlation and
convolution.

92 Chapter 3 � Intensity Transformations and Spatial Filtering

The label 'full' in the correlation shown in Fig. 3.13(g) is a flag (to be dis-
cussed later) used by the toolbox to indicate correlation using a padded image
and computed in the manner just described. The toolbox provides another op-
tion, denoted by 'same' [Fig. 3.13(h)] that produces a correlation that is the
same size as This computation also uses zero padding, but the starting posi-
tion is with the center point of the mask (the point labeled 3 in) aligned with
the origin of The last computation is with the center point of the mask
aligned with the last point in .

To perform convolution we rotate by 180° and place its rightmost point at
the origin of as shown in Fig. 3.13(j). We then repeat the sliding/computing
process employed in correlation, as illustrated in Figs. 3.13(k) through (n). The
'full' and 'same' convolution results are shown in Figs. 3.13(o) and (p), re-
spectively.

Function in Fig. 3.13 is a discrete unit impulse function that is 1 at one
location and 0 everywhere else. It is evident from the result in Figs. 3.13(o) or
(p) that convolution basically just “copied” at the location of the impulse.
This simple copying property (called sifting) is a fundamental concept in lin-
ear system theory, and it is the reason why one of the functions is always ro-
tated by 180° in convolution. Note that, unlike correlation, reversing the
order of the functions yields the same convolution result. If the function
being shifted is symmetric, it is evident that convolution and correlation
yield the same result.

The preceding concepts extend easily to images, as illustrated in Fig. 3.14.
The origin is at the top, left corner of image (see Fig. 2.1). To perform
correlation, we place the bottom, rightmost point of so that it coin-
cides with the origin of as illustrated in Fig. 3.14(c). Note the use of 0
padding for the reasons mentioned in the discussion of Fig. 3.13. To perform
correlation, we move in all possible locations so that at least one of its
pixels overlaps a pixel in the original image This 'full' correlation is
shown in Fig. 3.14(d). To obtain the 'same' correlation shown in Fig. 3.14(e),
we require that all excursions of be such that its center pixel overlaps
the original

For convolution, we simply rotate by 180° and proceed in the same
manner as in correlation [Figs. 3.14(f) through (h)]. As in the one-dimensional
example discussed earlier, convolution yields the same result regardless of
which of the two functions undergoes translation. In correlation the order
does matter, a fact that is made clear in the toolbox by assuming that the filter
mask is always the function that undergoes translation. Note also the impor-
tant fact in Figs. 3.14(e) and (h) that the results of spatial correlation and con-
volution are rotated by 180° with respect to each other. This, of course, is
expected because convolution is nothing more than correlation with a rotated
filter mask.

The toolbox implements linear spatial filtering using function imfilter,
which has the following syntax:

g = imfilter(f, w, filtering_mode, boundary_options, size_options)

w1x, y2
f1x, y2.

w1x, y2

f1x, y2.
w1x, y2

f1x, y2,
w1x, y2

f1x, y2

w

f

f,
w

f
f.

w
f.

imfilter

3.4 � Spatial Filtering 93

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0 1 2 3
0 0 0 0 0 4 5 6
0 0 0 0 0 7 8 9

Origin of f(x, y)

w(x, y)

Initial position for w

(a)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Padded f

(b)

1 2 3 0 0 0 0 0 0
4 5 6 0 0 0 0 0 0
7 8 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(c)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 9 8 7 0 0 0
0 0 0 6 5 4 0 0 0
0 0 0 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

'full' correlation result

(d)

0 0 0 0 0
0 9 8 7 0
0 6 5 4 0
0 3 2 1 0
0 0 0 0 0

'same' correlation result

(e)

Rotated w
9 8 7 0 0 0 0 0 0
6 5 4 0 0 0 0 0 0
3 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(f)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 2 3 0 0 0
0 0 0 4 5 6 0 0 0
0 0 0 7 8 9 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

'full' convolution result

(g)

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

'same' convolution result

(h)

FIGURE 3.14
Illustration of
two-dimensional
correlation and
convolution. The
0s are shown in
gray to simplify
viewing.

where f is the input image, w is the filter mask, g is the filtered result, and the
other parameters are summarized in Table 3.2. The filtering_mode specifies
whether to filter using correlation ('corr') or convolution ('conv'). The
boundary_options deal with the border-padding issue, with the size of the
border being determined by the size of the filter. These options are explained
further in Example 3.7. The size_options are either 'same' or 'full', as
explained in Figs. 3.13 and 3.14.

The most common syntax for imfilter is

g = imfilter(f, w, 'replicate')

This syntax is used when implementing IPT standard linear spatial filters.
These filters, which are discussed in Section 3.5.1, are prerotated by 180°, so we
can use the correlation default in imfilter. From the discussion of Fig. 3.14,
we know that performing correlation with a rotated filter is the same as per-
forming convolution with the original filter. If the filter is symmetric about its
center, then both options produce the same result.

94 Chapter 3 � Intensity Transformations and Spatial Filtering

rot90(w, k) ro-
tates w by k*90 de-
grees, where k is an
integer.

When working with filters that are neither pre-rotated nor symmetric, and
we wish to perform convolution, we have two options. One is to use the syntax

g = imfilter(f, w, 'conv', 'replicate')

The other approach is to preprocess by using the function rot90(w, 2) to
rotate it 180°, and then use imfilter(f, w, 'replicate'). Of course these
two steps can be combined into one statement.The preceding syntax produces
an image g that is of the same size as the input (i.e., the default in computation
is the 'same' mode discussed earlier).

Each element of the filtered image is computed using double-precision,
floating-point arithmetic. However, imfilter converts the output image to
the same class of the input. Therefore, if is an integer array, then output ele-
ments that exceed the range of the integer type are truncated, and fractional
values are rounded. If more precision is desired in the result, then should be
converted to class double by using im2double or double before using
imfilter.

� Figure 3.15(a) is a class double image, f, of size pixels. Consider
the simple filter

>> w = ones(31);

31 * 31
512 * 512

f

f

wrot90

Options Description

Filtering Mode
'corr' Filtering is done using correlation (see Figs. 3.13 and 3.14). This is

the default.
'conv' Filtering is done using convolution (see Figs. 3.13 and 3.14).
Boundary Options
P The boundaries of the input image are extended by padding with a

value, P (written without quotes). This is the default, with value 0.
'replicate' The size of the image is extended by replicating the values in its

outer border.
'symmetric' The size of the image is extended by mirror-reflecting it across its

border.
'circular' The size of the image is extended by treating the image as one

period a 2-D periodic function.
Size Options
'full' The output is of the same size as the extended (padded) image

(see Figs. 3.13 and 3.14).
'same' The output is of the same size as the input. This is achieved by

limiting the excursions of the center of the filter mask to points
contained in the original image (see Figs. 3.13 and 3.14). This is
the default.

TABLE 3.2
Options for
function
imfilter.

EXAMPLE 3.7:
Using function
imfilter.

3.4 � Spatial Filtering 95

FIGURE 3.15
(a) Original image.
(b) Result of using
imfilter with
default zero padding.
(c) Result with the
'replicate'
option. (d) Result
with the
'symmetric'
option. (e) Result
with the 'circular'
option. (f) Result of
converting the
original image to
class uint8 and then
filtering with the
'replicate'
option.A filter of
size with
all 1s was used
throughout.

31 * 31

which is proportional to an averaging filter. We did not divide the coefficients
by to illustrate at the end of this example the scaling effects of using
imfilter with an image of class uint8.

Convolving filter w with an image produces a blurred result. Because the fil-
ter is symmetric, we can use the correlation default in imfilter. Figure 3.15(b)
shows the result of performing the following filtering operation:

>> gd = imfilter(f, w);
>> imshow(gd, [])

where we used the default boundary option, which pads the border of the image
with 0’s (black). As expected the edges between black and white in the filtered
image are blurred, but so are the edges between the light parts of the image and
the boundary. The reason, of course, is that the padded border is black. We can
deal with this difficulty by using the 'replicate' option

>> gr = imfilter(f, w, 'replicate');
>> figure, imshow(gr, [])

As Fig. 3.15(c) shows, the borders of the filtered image now appear as ex-
pected. In this case, equivalent results are obtained with the 'symmetric'
option

>> gs = imfilter(f, w, 'symmetric');
>> figure, imshow(gs, [])

13122

a b c
fd e

96 Chapter 3 � Intensity Transformations and Spatial Filtering

Figure 3.15(d) shows the result. However, using the 'circular' option

>> gc = imfilter(f, w, 'circular');
>> figure, imshow(gc, [])

produced the result in Fig. 3.15(e), which shows the same problem as with zero
padding. This is as expected because use of periodicity makes the black parts
of the image adjacent to the light areas.

Finally, we illustrate how the fact that imfilter produces a result that is of
the same class as the input can lead to difficulties if not handled properly:

>> f8 = im2uint8(f);
>> g8r = imfilter(f8, w, 'replicate');
>> figure, imshow(g8r, [])

Figure 3.15(f) shows the result of these operations. Here, when the output was
converted to the class of the input (uint8) by imfilter, clipping caused
some data loss. The reason is that the coefficients of the mask did not sum to
the range [0, 1], resulting in filtered values outside the [0, 255] range. Thus, to
avoid this difficulty, we have the option of normalizing the coefficients so that
their sum is in the range [0, 1] (in the present case we would divide the coeffi-
cients by so the sum would be 1), or inputting the data in double for-
mat. Note, however, that even if the second option were used, the data usually
would have to be normalized to a valid image format at some point (e.g., for
storage) anyway. Either approach is valid; the key point is that data ranges
have to be kept in mind to avoid unexpected results. �

3.4.2 Nonlinear Spatial Filtering
Nonlinear spatial filtering is based on neighborhood operations also, and the
mechanics of defining neighborhoods by sliding the center point
through an image are the same as discussed in the previous section. However,
whereas linear spatial filtering is based on computing the sum of products
(which is a linear operation), nonlinear spatial filtering is based, as the name
implies, on nonlinear operations involving the pixels of a neighborhood. For
example, letting the response at each center point be equal to the maximum
pixel value in its neighborhood is a nonlinear filtering operation. Another
basic difference is that the concept of a mask is not as prevalent in nonlinear
processing. The idea of filtering carries over, but the “filter” should be visual-
ized as a nonlinear function that operates on the pixels of a neighborhood, and
whose response constitutes the response of the operation at the center pixel of
the neighborhood.

The toolbox provides two functions for performing general nonlinear filter-
ing: nlfilter and colfilt. The former performs operations directly in 2-D,
while colfilt organizes the data in the form of columns. Although colfilt
requires more memory, it generally executes significantly faster than nlfilter.

m * n

13122,

3.4 � Spatial Filtering 97

colfilt

@ (function handle)

†A always has mn rows, but the number of columns can vary, depending on the size of the input. Size se-
lection is managed automatically by colfilt.

In most image processing applications speed is an overriding factor, so
colfilt is preferred over nlfilt for implementing generalized nonlinear
spatial filtering.

Given an input image, f, of size and a neighborhood of size
function colfilt generates a matrix, call it A, of maximum size ,† in
which each column corresponds to the pixels encompassed by the neighbor-
hood centered at a location in the image. For example, the first column corre-
sponds to the pixels encompassed by the neighborhood when its center is
located at the top, leftmost point in f. All required padding is handled trans-
parently by colfilt (using zero padding).

The syntax of function colfilt is

g = colfilt(f, [m n], 'sliding', @fun, parameters)

where, as before, m and n are the dimensions of the filter region, 'sliding' in-
dicates that the process is one of sliding the region from pixel to pixel
in the input image f, @fun references a function, which we denote arbitrarily
as fun, and parameters indicates parameters (separated by commas) that
may be required by function fun. The symbol @ is called a function handle, a
MATLAB data type that contains information used in referencing a function.
As will be demonstrated shortly, this is a particularly powerful concept.

Because of the way in which matrix A is organized, function fun must oper-
ate on each of the columns of A individually and return a row vector, v, con-
taining the results for all the columns. The kth element of v is the result of the
operation performed by fun on the kth column of A. Since there can be up to

columns in A, the maximum dimension of v is
The linear filtering discussed in the previous section has provisions for

padding to handle the border problems inherent in spatial filtering. When
using colfilt, however, the input image must be padded explicitly before fil-
tering. For this we use function padarray, which, for 2-D functions, has the
syntax

fp = padarray(f, [r c], method, direction)

where f is the input image, fp is the padded image, [r c] gives the number of
rows and columns by which to pad f, and method and direction are as ex-
plained in Table 3.3. For example, if f = [1 2; 3 4], the command

>> fp = padarray(f, [3 2], 'replicate', 'post')

1 * MN.MN

m * n

mn * MN
m * n,M * N,

padarray

98 Chapter 3 � Intensity Transformations and Spatial Filtering

EXAMPLE 3.8:
Using function
colfilt to
implement a
nonlinear spatial
filter.

prod

produces the result

fp =

1 2 2 2
3 4 4 4
3 4 4 4
3 4 4 4
3 4 4 4

If direction is not included in the argument, the default is 'both'. If method
is not included, the default padding is with 0’s. If neither parameter is included
in the argument, the default padding is 0 and the default direction is 'both'.
At the end of computation, the image is cropped back to its original size.

� As an illustration of function colfilt, we implement a nonlinear filter
whose response at any point is the geometric mean of the intensity values of
the pixels in the neighborhood centered at that point.The geometric mean in a
neighborhood of size is the product of the intensity values in the neigh-
borhood raised to the power First we implement the nonlinear filter
function, call it gmean:

function v = gmean(A)
mn = size(A, 1); % The length of the columns of A is always mn.
v = prod(A, 1).^(1/mn);

To reduce border effects, we pad the input image using, say, the 'replicate'
option in function padarray:

>> f = padarray(f, [m n], 'replicate');

1>mn.
m * n

prod(A) returns the
product of the ele-
ments of A. prod
(A, dim) returns the
product of the
elements of A along
dimension dim.

Options Description

Method
'symmetric' The size of the image is extended by mirror-reflecting it across its

border.
'replicate' The size of the image is extended by replicating the values in its

outer border.
'circular' The size of the image is extended by treating the image as one

period of a 2-D periodic function.
Direction
'pre' Pad before the first element of each dimension.
'post' Pad after the last element of each dimension.
'both' Pad before the first element and after the last element of each

dimension. This is the default.

TABLE 3.3
Options for
function
padarray.

3.5 � Image Processing Toolbox Standard Spatial Filters 99

Finally, we call colfilt:

>> g = colfilt(f, [m n], 'sliding', @gmean);

There are several important points at play here. First, note that, although
matrix A is part of the argument in function gmean, it is not included in the
parameters in colfilt. This matrix is passed automatically to gmean by
colfilt using the function handle. Also, because matrix A is managed auto-
matically by colfilt, the number of columns in A is variable (but, as noted ear-
lier, the number of rows, that is, the column length, is always mn).Therefore, the
size of A must be computed each time the function in the argument is called by
colfilt. The filtering process in this case consists of computing the product of
all pixels in the neighborhood and then raising the result to the power
For any value of the filtered result at that point is contained in the ap-
propriate column in v.The function identified by the handle,@, can be any func-
tion callable from where the function handle was created.The key requirement
is that the function operate on the columns of A and return a row vector con-
taining the result for all individual columns. Function colfilt then takes those
results and rearranges them to produce the output image, g. �

Some commonly used nonlinear filters can be implemented in terms of
other MATLAB and IPT functions such as imfilter and ordfilt2 (see
Section 3.5.2). Function spfilt in Section 5.3, for example, implements the
geometric mean filter in Example 3.8 in terms of imfilter and the MATLAB
log and exp functions. When this is possible, performance usually is much
faster, and memory usage is a fraction of the memory required by colfilt.
Function colfilt, however, remains the best choice for nonlinear filtering
operations that do not have such alternate implementations.

Image Processing Toolbox Standard Spatial Filters

In this section we discuss linear and nonlinear spatial filters supported by IPT.
Additional nonlinear filters are implemented in Section 5.3.

3.5.1 Linear Spatial Filters
The toolbox supports a number of predefined 2-D linear spatial filters, ob-
tained by using function fspecial, which generates a filter mask, w, using the
syntax

w = fspecial('type', parameters)

where 'type' specifies the filter type, and parameters further define the
specified filter. The spatial filters supported by fspecial are summarized in
Table 3.4, including applicable parameters for each filter.

3.5

1x, y2,
1>mn.

fspecial

100 Chapter 3 � Intensity Transformations and Spatial Filtering

Type Syntax and Parameters

'average' fspecial('average', [r c]). A rectangular averaging filter of
size r × c. The default is A single number instead of
[r c] specifies a square filter.

'disk' fspecial('disk', r). A circular averaging filter (within a
square of size 2r + 1) with radius r. The default radius is 5.

'gaussian' fspecial('gaussian', [r c], sig). A Gaussian lowpass filter
of size r × c and standard deviation sig (positive). The defaults
are and 0.5. A single number instead of [r c] specifies a
square filter.

'laplacian' fspecial('laplacian', alpha). A Laplacian filter whose
shape is specified by alpha, a number in the range [0, 1]. The
default value for alpha is 0.5.

'log' fspecial('log', [r c], sig). Laplacian of a Gaussian (LoG)
filter of size r × c and standard deviation sig (positive). The
defaults are and 0.5. A single number instead of [r c]
specifies a square filter.

'motion' fspecial('motion', len, theta). Outputs a filter that, when
convolved with an image, approximates linear motion (of a
camera with respect to the image) of len pixels. The direction of
motion is theta, measured in degrees, counterclockwise from the
horizontal. The defaults are 9 and 0, which represents a motion of
9 pixels in the horizontal direction.

'prewitt' fspecial('prewitt'). Outputs a Prewitt mask, wv, that
approximates a vertical gradient. A mask for the horizontal
gradient is obtained by transposing the result: wh = wv'.

'sobel' fspecial('sobel'). Outputs a Sobel mask, sv, that
approximates a vertical gradient. A mask for the horizontal
gradient is obtained by transposing the result: sh = sv'.

'unsharp' fspecial('unsharp', alpha). Outputs a unsharp filter.
Parameter alpha controls the shape; it must be greater than 0 and
less than or equal to 1.0; the default is 0.2.

3 * 3

3 * 3

3 * 3

5 * 5

3 * 3

3 * 3

3 * 3.

� We illustrate the use of fspecial and imfilter by enhancing an image
with a Laplacian filter. The Laplacian of an image denoted
is defined as

Commonly used digital approximations of the second derivatives are

and

0
2

 f

0y2 = f1x, y + 12 + f1x, y - 12 - 2f1x, y2

0
2

 f

0x2 = f1x + 1, y2 + f1x - 1, y2 - 2f1x, y2

§
2

 f1x, y2 =

0
2f1x, y2

0x2 +

0
2

 f1x, y2

0y2

§
2f1x, y2,f1x, y2,

EXAMPLE 3.9:
Using function
imfilter.

TABLE 3.4
Spatial filters
supported by
function
fspecial.

3.5 � Image Processing Toolbox Standard Spatial Filters 101

so that

This expression can be implemented at all points in an image by con-
volving the image with the following spatial mask:

An alternate definition of the digital second derivatives takes into account di-
agonal elements, and can be implemented using the mask

Both derivatives sometimes are defined with the signs opposite to those shown
here, resulting in masks that are the negatives of the preceding two masks.

Enhancement using the Laplacian is based on the equation

where is the input image, is the enhanced image, and c is 1 if the
center coefficient of the mask is positive, or if it is negative (Gonzalez and
Woods [2002]). Because the Laplacian is a derivative operator, it sharpens the
image but drives constant areas to zero. Adding the original image back re-
stores the gray-level tonality.

Function fspecial('laplacian', alpha) implements a more general
Laplacian mask:

which allows fine tuning of enhancement results. However, the predominant
use of the Laplacian is based on the two masks just discussed.

We now proceed to enhance the image in Fig. 3.16(a) using the Laplacian.
This image is a mildly blurred image of the North Pole of the moon. En-
hancement in this case consists of sharpening the image, while preserving as
much of its gray tonality as possible. First, we generate and display the
Laplacian filter:

a

1 + a

1 - a

1 + a

a

1 + a

1 - a

1 + a

-4
1 + a

1 - a

1 + a

a

1 + a

1 - a

1 + a

a

1 + a

-1
g1x, y2f1x, y2

g1x, y2 = f1x, y2 + c3§2
 f1x, y24

1
1
1

1
-8
1

1
1
1

0
1
0

1
-4
1

0
1
0

1x, y2

§
2

 f = 3f1x + 1, y2 + f1x - 1, y2 + f1x, y + 12 + f1x, y - 124 - 4f1x, y2

102 Chapter 3 � Intensity Transformations and Spatial Filtering

FIGURE 3.16
(a) Image of the
North Pole of the
moon.
(b) Laplacian
filtered image,
using uint8
formats.
(c) Laplacian
filtered image
obtained using
double formats.
(d) Enhanced
result, obtained
by subtracting (c)
from (a).
(Original image
courtesy of
NASA.)

>> w = fspecial('laplacian', 0)
w =

0.0000 1.0000 0.0000
1.0000 –4.0000 1.0000
0.0000 1.0000 0.0000

Note that the filter is of class double, and that its shape with alpha = 0 is the
Laplacian filter discussed previously.We could just as easily have specified this
shape manually as

>> w = [0 1 0; 1 –4 1; 0 1 0];

a b
c d

3.5 � Image Processing Toolbox Standard Spatial Filters 103

EXAMPLE 3.10:
Manually
specifying filters
and comparing
enhancement
techniques.

Next we apply w to the input image, f, which is of class uint8:

>> g1 = imfilter(f, w, 'replicate');
>> imshow(g1, [])

Figure 3.16(b) shows the resulting image. This result looks reasonable, but has
a problem: all its pixels are positive. Because of the negative center filter coef-
ficient, we know that we can expect in general to have a Laplacian image with
negative values. However, f in this case is of class uint8 and, as discussed in
the previous section, filtering with imfilter gives an output that is of the
same class as the input image, so negative values are truncated. We get around
this difficulty by converting f to class double before filtering it:

>> f2 = im2double(f);
>> g2 = imfilter(f2, w, 'replicate');
>> imshow(g2, [])

The result, shown in Fig. 3.15(c), is more what a properly processed Laplacian
image should look like.

Finally, we restore the gray tones lost by using the Laplacian by subtracting
(because the center coefficient is negative) the Laplacian image from the orig-
inal image:

>> g = f2 – g2;
>> imshow(g)

The result, shown in Fig. 3.16(d), is sharper than the original image. �

� Enhancement problems often require the specification of filters beyond
those available in the toolbox. The Laplacian is a good example. The toolbox
supports a Laplacian filter with a in the center. Usually, sharper en-
hancement is obtained by using the Laplacian filter that has a in the
center and is surrounded by 1s, as discussed earlier. The purpose of this exam-
ple is to implement this filter manually, and also to compare the results ob-
tained by using the two Laplacian formulations. The sequence of commands is
as follows:

>> f = imread('moon.tif');
>> w4 = fspecial('laplacian', 0); % Same as w in Example 3.9.
>> w8 = [1 1 1; 1 –8 1; 1 1 1];
>> f = im2double(f);
>> g4 = f – imfilter(f, w4, 'replicate');
>> g8 = f – imfilter(f, w8, 'replicate');
>> imshow(f)
>> figure, imshow(g4)
>> figure, imshow(g8)

-83 * 3
-43 * 3

104 Chapter 3 � Intensity Transformations and Spatial Filtering

FIGURE 3.17 (a)
Image of the North
Pole of the moon.
(b) Image
enhanced using the
Laplacian
filter 'laplacian',
which has a in
the center. (c)
Image enhanced
using a Laplacian
filter with a in
the center.

-8

-4

Figure 3.17(a) shows the original moon image again for easy comparison.
Fig. 3.17(b) is g4, which is the same as Fig. 3.16(d), and Fig. 3.17(c) shows g8.
As expected, this result is significantly sharper than Fig. 3.17(b). �

3.5.2 Nonlinear Spatial Filters
A commonly-used tool for generating nonlinear spatial filters in IPT is func-
tion ordfilt2, which generates order-statistic filters (also called rank filters).
These are nonlinear spatial filters whose response is based on ordering (rank-
ing) the pixels contained in an image neighborhood and then replacing the
value of the center pixel in the neighborhood with the value determined by the

a
b c

3.5 � Image Processing Toolbox Standard Spatial Filters 105

median

†Recall that the median, of a set of values is such that half the values in the set are less than or equal
to and half are greater than or equal to j.j,

j,

ranking result.Attention is focused in this section on nonlinear filters generat-
ed by ordfilt2. A number of additional nonlinear filters are developed and
implemented in Section 5.3.

The syntax of function ordfilt2 is

g = ordfilt2(f, order, domain)

This function creates the output image g by replacing each element of f by the
order-th element in the sorted set of neighbors specified by the nonzero ele-
ments in domain. Here,domain is an matrix of 1s and 0s that specify the
pixel locations in the neighborhood that are to be used in the computation. In
this sense, domain acts like a mask. The pixels in the neighborhood that corre-
spond to 0 in the domain matrix are not used in the computation. For example,
to implement a min filter (order 1) of size we use the syntax

g = ordfilt2(f, 1, ones(m, n))

In this formulation the 1 denotes the 1st sample in the ordered set of sam-
ples, and ones(m, n) creates an matrix of 1s, indicating that all samples
in the neighborhood are to be used in the computation.

In the terminology of statistics, a min filter (the first sample of an ordered
set) is referred to as the 0th percentile. Similarly, the 100th percentile is the last
sample in the ordered set, which is the sample.This corresponds to a max
filter, which is implemented using the syntax

g = ordfilt2(f, m*n, ones(m, n))

The best-known order-statistic filter in digital image processing is the
median† filter, which corresponds to the 50th percentile.We can use MATLAB
function median in ordfilt2 to create a median filter:

g = ordfilt2(f, median(1:m*n), ones(m, n))

where median(1:m*n) simply computes the median of the ordered sequence
Function median has the general syntax

v = median(A, dim)

where v is vector whose elements are the median of A along dimension dim.
For example, if dim = 1, each element of v is the median of the elements along
the corresponding column of A.

1, 2, Á , mn.

mnth

m * n
mn

m * n

m * n

ordfilt2

106 Chapter 3 � Intensity Transformations and Spatial Filtering

Because of its practical importance, the toolbox provides a specialized im-
plementation of the 2-D median filter:

g = medfilt2(f, [m n], padopt)

where the tuple [m n] defines a neighborhood of size m × n over which the
median is computed, and padopt specifies one of three possible border
padding options: 'zeros' (the default), 'symmetric' in which f is extended
symmetrically by mirror-reflecting it across its border, and 'indexed', in
which f is padded with 1s if it is of class double and with 0s otherwise. The de-
fault form of this function is

g = medfilt2(f)

which uses a neighborhood to compute the median, and pads the border
of the input with 0s.

� Median filtering is a useful tool for reducing salt-and-pepper noise in an
image. Although we discuss noise reduction in much more detail in Chapter 5,
it will be instructive at this point to illustrate briefly the implementation of
median filtering.

The image in Fig. 3.18(a) is an X-ray image, f, of an industrial circuit board
taken during automated inspection of the board. Figure 3.18(b) is the same
image corrupted by salt-and-pepper noise in which both the black and white
points have a probability of occurrence of 0.2. This image was generated using
function imnoise, which is discussed in detail in Section 5.2.1:

>> fn = imnoise(f, 'salt & pepper', 0.2);

Figure 3.18(c) is the result of median filtering this noisy image, using the
statement:

>> gm = medfilt2(fn);

Considering the level of noise in Fig. 3.18(b), median filtering using the de-
fault settings did a good job of noise reduction. Note, however, the black
specks around the border. These were caused by the black points surrounding
the image (recall that the default pads the border with 0s). This type of effect
can often be reduced by using the 'symmetric' option:

>> gms = medfilt2(fn, 'symmetric');

The result, shown in Fig. 3.18(d), is close to the result in Fig. 3.18(c), except that
the black border effect is not as pronounced. �

3 * 3

imnoise

medfilt2

EXAMPLE 3.11:
Median filtering
with function
medfilt2.

� Summary 107

FIGURE 3.18
Median filtering,
(a) X-ray image.
(b) Image
corrupted by salt-
and-pepper noise.
(c) Result of
median filtering
with medfilt2
using the default
settings.
(d) Result of
median filtering
using the
'symmetric'
image extension
option. Note the
improvement in
border behavior
between (d) and
(c). (Original
image courtesy
of Lixi, Inc.)

Summary
In addition to dealing with image enhancement, the material in this chapter is the foun-
dation for numerous topics in subsequent chapters. For example, we will encounter spa-
tial processing again in Chapter 5 in connection with image restoration, where we also
take a closer look at noise reduction and noise-generating functions in MATLAB.
Some of the spatial masks that were mentioned briefly here are used extensively in
Chapter 10 for edge detection in segmentation applications. The concept of convolu-
tion and correlation is explained again in Chapter 4 from the perspective of the fre-
quency domain. Conceptually, mask processing and the implementation of spatial
filters will surface in various discussions throughout the book. In the process, we will
extend the discussion begun here and introduce additional aspects of how spatial filters
can be implemented efficiently in MATLAB.

a b
c d

514

A Function Summary
APPENDIX

Preview
Section A.1 of this appendix contains a listing of all the functions in the Image Processing Toolbox,
and all the new functions developed in the preceding chapters.The latter functions are referred to as
DIPUM functions, a term derived from the first letter of the words in the title of the book. Section A.2
lists the MATLAB functions used throughout the book.All page numbers listed refer to pages in the
book, indicating where a function is first used and illustrated. In some instances, more than one loca-
tion is given, indicating that the function is explained in different ways, depending on the application.
Some IPT functions were not used in our discussions. These are identified by a reference to online
help instead of a page number. All MATLAB functions listed in Section A.2 are used in the book.
Each page number in that section identifies the first use of the MATLAB function indicated.

IPT and DIPUM Functions

The following functions are loosely grouped in categories similar to those found in IPT documenta-
tion. A new category (e.g., wavelets) was created in cases where there are no existing IPT functions.

Function Category Page or Other
and Name Description Location

Image Display

colorbar Display colorbar (MATLAB). online
getimage Get image data from axes. online
ice (DIPUM) Interactive color editing. 218
image Create and display image object (MATLAB). online
imagesc Scale data and display as image (MATLAB). online
immovie Make movie from multiframe image. online
imshow Display image. 16
imview Display image in Image Viewer. online

A.1

GONZappA-514-526v3 11/4/03 10:04 AM Page 514

A.1 ■ IPT and DIPUM Functions 515

montage Display multiple image frames as rectangular montage. online
movie Play recorded movie frames (MATLAB). online
rgbcube (DIPUM) Display a color RGB cube. 195
subimage Display multiple images in single figure. online
truesize Adjust display size of image. online
warp Display image as texture-mapped surface. online

Image file I/O

dicominfo Read metadata from a DICOM message. online
dicomread Read a DICOM image. online
dicomwrite Write a DICOM image. online
dicom-dict.txt Text file containing DICOM data dictionary. online
dicomuid Generate DICOM unique identifier. online
imfinfo Return information about image file (MATLAB). 19
imread Read image file (MATLAB). 14
imwrite Write image file (MATLAB). 18

Image arithmetic

imabsdiff Compute absolute difference of two images. 42
imadd Add two images, or add constant to image. 42
imcomplement Complement image. 42, 67
imdivide Divide two images, or divide image by constant. 42
imlincomb Compute linear combination of images. 42, 159
immultiply Multiply two images, or multiply image by constant. 42
imsubtract Subtract two images, or subtract constant from image. 42

Geometric transformations

checkerboard Create checkerboard image. 167
findbounds Find output bounds for geometric transformation. online
fliptform Flip the input and output roles of a TFORM struct. online
imcrop Crop image. online
imresize Resize image. online
imrotate Rotate image. 472
imtransform Apply geometric transformation to image. 188
intline Integer-coordinate line drawing algorithm. 43

(Undocumented IPT function).
makeresampler Create resampler structure. 190
maketform Create geometric transformation structure (TFORM). 183
pixeldup (DIPUM) Duplicate pixels of an image in both directions. 168
tformarray Apply geometric transformation to N-D array. online
tformfwd Apply forward geometric transformation. 184
tforminv Apply inverse geometric transformation. 184
vistformfwd (DIPUM) Visualize forward geometric transformation. 185

Image registration

cpstruct2pairs Convert CPSTRUCT to valid pairs of control points. online
cp2tform Infer geometric transformation from control point pairs. 191
cpcorr Tune control point locations using cross-correlation. online
cpselect Control point selection tool. 193
normxcorr2 Normalized two-dimensional cross-correlation. online

GONZappA-514-526v3 11/4/03 10:04 AM Page 515

516 Appendix A ■ Function Summary

Pixel values and statistics

corr2 Compute 2-D correlation coefficient. online
covmatrix (DIPUM) Compute the covariance matrix of a vector population. 476
imcontour Create contour plot of image data. online
imhist Display histogram of image data. 77
impixel Determine pixel color values. online
improfile Compute pixel-value cross-sections along line segments. online
mean2 Compute mean of matrix elements. 75
pixval Display information about image pixels. 17
regionprops Measure properties of image regions. 463
statmoments (DIPUM) Compute statistical central moments of an image histogram. 155
std2 Compute standard deviation of matrix elements. 415

Image analysis (includes segmentation, description, and recognition)

bayesgauss (DIPUM) Bayes classifier for Gaussian patterns. 493
bound2eight (DIPUM) Convert 4-connected boundary to 8-connected boundary. 434
bound2four (DIPUM) Convert 8-connected boundary to 4-connected boundary. 434
bwboundaries Trace region boundaries. online
bwtraceboundary Trace single boundary. online
bound2im (DIPUM) Convert a boundary to an image. 435
boundaries (DIPUM) Trace region boundaries. 434
bsubsamp (DIPUM) Subsample a boundary. 435
colorgrad (DIPUM) Compute the vector gradient of an RGB image. 234
colorseg (DIPUM) Segment a color image. 238
connectpoly (DIPUM) Connect vertices of a polygon. 435
diameter (DIPUM) Measure diameter of image regions. 456
edge Find edges in an intensity image. 385
fchcode (DIPUM) Compute the Freeman chain code of a boundary. 437
frdescp (DIPUM) Compute Fourier descriptors. 459
graythresh Compute global image threshold using Otsu’s method. 406
hough (DIPUM) Hough transform. 396
houghlines (DIPUM) Extract line segments based on the Hough transform. 401
houghpeaks (DIPUM) Detect peaks in Hough transform. 399
houghpixels (DIPUM) Compute image pixels belonging to Hough transform bin. 401
ifrdescp (DIPUM) Compute inverse Fourier descriptors. 459
imstack2vectors (DIPUM) Extract vectors from an image stack. 476
invmoments (DIPUM) Compute invariant moments of image. 472
mahalanobis (DIPUM) Compute the Mahalanobis distance. 487
minperpoly (DIPUM) Compute minimum perimeter polygon. 447
polyangles (DIPUM) Compute internal polygon angles. 510
princomp (DIPUM) Obtain principal-component vectors and related quantities. 477
qtdecomp Perform quadtree decomposition. 413
qtgetblk Get block values in quadtree decomposition. 413
qtsetblk Set block values in quadtree decomposition. online
randvertex (DIPUM) Randomly displace polygon vertices. 510
regiongrow (DIPUM) Perform segmentation by region growing. 409
signature (DIPUM) Compute the signature of a boundary. 450
specxture (DIPUM) Compute spectral texture of an image. 469
splitmerge (DIPUM) Segment an image using a split-and-merge algorithm. 414
statxture (DIPUM) Compute statistical measures of texture in an image. 467

GONZappA-514-526v3 11/4/03 10:04 AM Page 516

A.1 ■ IPT and DIPUM Functions 517

strsimilarity (DIPUM) Similarity measure between two strings. 509
x2majoraxis (DIPUM) Align coordinate x with the major axis of a region. 457

Image Compression

compare (DIPUM) Compute and display the error between two matrices. 285
entropy (DIPUM) Compute a first-order estimate of the entropy of a matrix. 288
huff2mat (DIPUM) Decode a Huffman encoded matrix. 301
huffman (DIPUM) Build a variable-length Huffman code for symbol source. 290
im2jpeg (DIPUM) Compress an image using a JPEG approximation. 319
im2jpeg2k (DIPUM) Compress an image using a JPEG 2000 approximation. 327
imratio (DIPUM) Compute the ratio of the bytes in two images/variables. 283
jpeg2im (DIPUM) Decode an IM2JPEG compressed image. 322
jpeg2k2im (DIPUM) Decode an IM2JPEG2K compressed image. 330
lpc2mat (DIPUM) Decompress a 1-D lossless predictive encoded matrix. 312
mat2huff (DIPUM) Huffman encodes a matrix. 298
mat2lpc (DIPUM) Compress a matrix using 1-D lossless predictive coding. 312
quantize (DIPUM) Quantize the elements of a UINT8 matrix. 316

Image enhancement

adapthisteq Adaptive histogram equalization. online
decorrstretch Apply decorrelation stretch to multichannel image. online
gscale (DIPUM) Scale the intensity of the input image. 76
histeq Enhance contrast using histogram equalization. 82
intrans (DIPUM) Perform intensity transformations. 73
imadjust Adjust image intensity values or colormap. 66
stretchlim Find limits to contrast stretch an image. online

Image noise

imnoise Add noise to an image. 106
imnoise2 (DIPUM) Generate an array of random numbers with specified PDF. 148
imnoise3 (DIPUM) Generate periodic noise. 152

Linear and nonlinear spatial filtering

adpmedian (DIPUM) Perform adaptive median filtering. 165
convmtx2 Compute 2-D convolution matrix. online
dftcorr (DIPUM) Perform frequency domain correlation. 491
dftfilt (DIPUM) Perform frequency domain filtering. 122
fspecial Create predefined filters. 99
medfilt2 Perform 2-D median filtering. 106
imfilter Filter 2-D and N-D images. 92
ordfilt2 Perform 2-D order-statistic filtering. 105
spfilt (DIPUM) Performs linear and nonlinear spatial filtering. 159
wiener2 Perform 2-D adaptive noise-removal filtering. online

Linear 2-D filter design

freqspace Determine 2-D frequency response spacing (MATLAB). online
freqz2 Compute 2-D frequency response. 123
fsamp2 Design 2-D FIR filter using frequency sampling. online
ftrans2 Design 2-D FIR filter using frequency transformation. online
fwind1 Design 2-D FIR filter using 1-D window method. online
fwind2 Design 2-D FIR filter using 2-D window method. online

GONZappA-514-526v3 11/4/03 10:04 AM Page 517

518 Appendix A ■ Function Summary

hpfilter (DIPUM) Computes frequency domain highpass filters. 136
lpfilter (DIPUM) Computes frequency domain lowpass filters. 131

Image deblurring (restoration)

deconvblind Deblur image using blind deconvolution. 180
deconvlucy Deblur image using Lucy-Richardson method. 177
deconvreg Deblur image using regularized filter. 175
deconvwnr Deblur image using Wiener filter. 171
edgetaper Taper edges using point-spread function. 172
otf2psf Optical transfer function to point-spread function. 142
psf2otf Point-spread function to optical transfer function. 142

Image transforms

dct2 2-D discrete cosine transform. 321
dctmtx Discrete cosine transform matrix. 321
fan2para Convert fan-beam projections to parallel-beam. online
fanbeam Compute fan-beam transform. online
fft2 2-D fast Fourier transform (MATLAB). 112
fftn N-D fast Fourier transform (MATLAB). online
fftshift Reverse quadrants of output of FFT (MATLAB). 112
idct2 2-D inverse discrete cosine transform. online
ifanbeam Compute inverse fan-beam transform. online
ifft2 2-D inverse fast Fourier transform (MATLAB). 114
ifftn N-D inverse fast Fourier transform (MATLAB). online
iradon Compute inverse Radon transform. online
para2fan Convert parallel-beam projections to fan-beam. online
phantom Generate a head phantom image. online
radon Compute Radon transform. online

Wavelets

wave2gray (DIPUM) Display wavelet decomposition coefficients. 267
waveback (DIPUM) Perform a multi-level 2-dimensional inverse FWT. 272
wavecopy (DIPUM) Fetch coefficients of wavelet decomposition structure. 265
wavecut (DIPUM) Set to zero coefficients in a wavelet decomposition structure. 264
wavefast (DIPUM) Perform a multilevel 2-dimensional fast wavelet transform. 255
wavefilter (DIPUM) Create wavelet decomposition and reconstruction filters. 252
wavepaste (DIPUM) Put coefficients in a wavelet decomposition structure. 265
wavework (DIPUM) Edit wavelet decomposition structures. 262
wavezero (DIPUM) Set wavelet detail coefficients to zero. 277

Neighborhood and block processing

bestblk Choose block size for block processing. online
blkproc Implement distinct block processing for image. 321
col2im Rearrange matrix columns into blocks. 322
colfilt Columnwise neighborhood operations. 97
im2col Rearrange image blocks into columns. 321
nlfilter Perform general sliding-neighborhood operations. 96

Morphological operations (intensity and binary images)

conndef Default connectivity. online
imbothat Perform bottom-hat filtering. 373
imclearborder Suppress light structures connected to image border. 366

GONZappA-514-526v3 11/4/03 10:04 AM Page 518

A.1 ■ IPT and DIPUM Functions 519

imclose Close image. 348
imdilate Dilate image. 340
imerode Erode image. 347
imextendedmax Extended-maxima transform. online
imextendedmin Extended-minima transform. online
imfill Fill image regions and holes. 366
imhmax H-maxima transform. online
imhmin H-minima transform. 374
imimposemin Impose minima. 424
imopen Open image. 348
imreconstruct Morphological reconstruction. 363
imregionalmax Regional maxima. online
imregionalmin Regional minima. 422
imtophat Perform tophat filtering. 373
watershed Watershed transform. 420

Morphological operations (binary images)

applylut Perform neighborhood operations using lookup tables. 353
bwarea Compute area of objects in binary image. online
bwareaopen Binary area open (remove small objects). online
bwdist Compute distance transform of binary image. 418
bweuler Compute Euler number of binary image. online
bwhitmiss Binary hit-miss operation. 352
bwlabel Label connected components in 2-D binary image. 361
bwlabeln Label connected components in N-D binary image. online
bwmorph Perform morphological operations on binary image. 356
bwpack Pack binary image. online
bwperim Determine perimeter of objects in binary image. 445
bwselect Select objects in binary image. online
bwulterode Ultimate erosion. online
bwunpack Unpack binary image. online
endpoints (DIPUM) Compute end points of a binary image. 354
makelut Construct lookup table for use with applylut. 353

Structuring element (STREL) creation and manipulation

getheight Get strel height. online
getneighbors Get offset location and height of strel neighbors. online
getnhood Get strel neighborhood. online
getsequence Get sequence of decomposed strels. 342
isflat Return true for flat strels. online
reflect Reflect strel about its center. online
strel Create morphological structuring element. 341
translate Translate strel. online

Region-based processing

histroi (DIPUM) Compute the histogram of an ROI in an image. 156
poly2mask Convert ROI polygon to mask. online
roicolor Select region of interest, based on color. online
roifill Smoothly interpolate within arbitrary region. online
roifilt2 Filter a region of interest. online
roipoly Select polygonal region of interest. 156

GONZappA-514-526v3 11/4/03 10:04 AM Page 519

520 Appendix A ■ Function Summary

Colormap manipulation

brighten Brighten or darken colormap (MATLAB). online
cmpermute Rearrange colors in colormap. online
cmunique Find unique colormap colors and corresponding image. online
colormap Set or get color lookup table (MATLAB). 132
imapprox Approximate indexed image by one with fewer colors. 198
rgbplot Plot RGB colormap components (MATLAB). online

Color space conversions

applycform Apply device-independent color space transformation. online
hsv2rgb Convert HSV values to RGB color space (MATLAB). 206
iccread Read ICC color profile. online
lab2double Convert L*a*b* color values to class double. online
lab2uint16 Convert L*a*b* color values to class uint16. online
lab2uint8 Convert L*a*b* color values to class uint8. online
makecform Create device-independent color space transform structure. online
ntsc2rgb Convert NTSC values to RGB color space. 205
rgb2hsv Convert RGB values to HSV color space (MATLAB). 206
rgb2ntsc Convert RGB values to NTSC color space. 204
rgb2ycbcr Convert RGB values to YCBCR color space. 205
ycbcr2rgb Convert YCBCR values to RGB color space. 205
rgb2hsi (DIPUM) Convert RGB values to HSI color space. 212
hsi2rgb (DIPUM) Convert HSI values to RGB color space. 213
whitepoint Returns XYZ values of standard illuminants. online
xyz2double Convert XYZ color values to class double. online
xyz2uint16 Convert XYZ color values to class uint16. online

Array operations

circshift Shift array circularly (MATLAB). 433
dftuv (DIPUM) Compute meshgrid arrays. 128
padarray Pad array. 97
paddedsize (DIPUM) Compute the minimum required pad size for use in FFTs. 117

Image types and type conversions

changeclass Change the class of an image (undocumented IPT function). 72
dither Convert image using dithering. 199
gray2ind Convert intensity image to indexed image. 201
grayslice Create indexed image from intensity image by thresholding. 201
im2bw Convert image to binary image by thresholding. 26
im2double Convert image array to double precision. 26
im2java Convert image to Java image (MATLAB). online
im2java2d Convert image to Java buffered image object. online
im2uint8 Convert image array to 8-bit unsigned integers. 26
im2uint16 Convert image array to 16-bit unsigned integers. 26
ind2gray Convert indexed image to intensity image. 201
ind2rgb Convert indexed image to RGB image (MATLAB). 202
label2rgb Convert label matrix to RGB image. online
mat2gray Convert matrix to intensity image. 26
rgb2gray Convert RGB image or colormap to grayscale. 202
rgb2ind Convert RGB image to indexed image. 200

GONZappA-514-526v3 11/4/03 10:04 AM Page 520

A.2 ■ MATLAB Functions 521

Miscellaneous

conwaylaws (DIPUM) Apply Conway’s genetic laws to a single pixel. 355
manualhist (DIPUM) Generate a 2-mode histogram interactively. 87
twomodegauss (DIPUM) Generate a 2-mode Gaussian function. 86
uintlut Compute new array values based on lookup table. online

Toolbox preferences

iptgetpref Get value of Image Processing Toolbox preference. online
iptsetpref Set value of Image Processing Toolbox preference. online

MATLAB Functions

The following MATLAB functions, listed alphabetically, are used in the book. See the pages indi-
cated and/or online help for additional details.

MATLAB Function Description Pages

A
abs Absolute value and complex magnitude. 112
all Test to determine if all elements are nonzero. 46
ans The most recent answer. 48
any Test for any nonzeros. 46
axis Axis scaling and appearance. 78

B
bar Bar chart. 77
bin2dec Binary to decimal number conversion. 300
blanks A string of blanks. 499
break Terminate execution of a for loop or while loop. 49

C
cart2pol Transform Cartesian coordinates to polar or cylindrical. 451
cat Concatenate arrays. 195
ceil Round toward infinity. 114
cell Create cell array. 292
celldisp Display cell array contents. 293, 428
cellfun Apply a function to each element in a cell array. 428
cellplot Graphically display the structure of cell arrays. 293
cellstr Create cell array of strings from character array. 499
char Create character array (string). 61, 499
circshift Shift array circularly. 433
colon Colon operator. 31, 41
colormap Set and get the current colormap. 132, 199
computer Identify information about computer on which MATLAB 48

is running.
continue Pass control to the next iteration of for or while loop. 49
conv2 Two-dimensional convolution. 257

A.2

GONZappA-514-526v3 11/4/03 10:04 AM Page 521

522 Appendix A ■ Function Summary

ctranspose Vector and matrix complex transpose. 41
(See transpose for real data.)

cumsum Cumulative sum. 82

D
dec2base Decimal number to base conversion. 508
dec2bin Decimal to binary number conversion. 298
diag Diagonal matrices and diagonals of a matrix. 239
diff Differences and approximate derivatives. 373
dir Display directory listing. 284
disp Display text or array. 59
double Convert to double precision. 24

E
edit Edit or create an M-file. 40
eig Find eigenvalues and eigenvectors. 478
end Terminate for, while, switch, try, and if statements 31

or indicate last index.
eps Floating-point relative accuracy. 48, 69
error Display error message. 50
eval Execute a string containing a MATLAB expression. 501
eye Identity matrix. 494

F
false Create false array. Shorthand for logical(0). 38, 410
feval Function evaluation. 415
fft2 Two-dimensional discrete Fourier transform. 112
fftshift Shift zero-frequency component of DFT to center of spectrum. 112
fieldnames Return field names of a structure, or property names of an object. 284
figure Create a figure graphics object. 18
find Find indices and values of nonzero elements. 147
fliplr Flip matrices left-right. 472
flipup Flip matrices up-down. 472
floor Round towards minus infinity. 114
for Repeat a group of statements a fixed number of times. 49
full Convert sparse matrix to full matrix. 396

G
gca Get current axes handle. 78
get Get object properties. 218
getfield Get field of structure array. 540
global Define a global variable. 292
grid Grid lines for two- and three-dimensional plots. 132
guidata Store or retrieve application data. 539
guide Start the GUI Layout Editor. 528

H
help Display help for MATLAB functions in Command Window. 39
hist Compute and/or display histogram. 150
histc Histogram count. 299
hold on Retain the current plot and certain axis properties. 81

GONZappA-514-526v3 11/4/03 10:04 AM Page 522

A.2 ■ MATLAB Functions 523

I
if Conditionally execute statements. 49
ifft2 Two-dimensional inverse discrete Fourier transform. 114
ifftshift Inverse FFT shift. 114
imag Imaginary part of a complex number. 115
int16 Convert to signed integer. 24
inpolygon Detect points inside a polygonal region. 446
input Request user input. 60
int2str Integer to string conversion. 506
int32 Convert to signed integer. 24
int8 Convert to signed integer. 24
interp1q Quick 1-D linear interpolation. 217
inv Compute matrix inverse. 403
is* See Table 2.9. 48
iscellstr Determine if item is a cell array of strings. 48, 501
islogical Determine if item is a logical array. 25

L
ldivide Array left division. (See mldivide for matrix left division.) 41
length Length of vector. 51
linspace Generate linearly spaced vectors. 32
load Load workspace variables from disk. 309
log Natural logarithm. 68
log10 Base 10 logarithm. 68
log2 Base 2 logarithm. 68
logical Convert numeric values to logical. 25
lookfor Search for specified keyword in all help entries. 40
lower Convert string to lower case. 62

M
magic Generate magic square. 38
mat2str Convert a matrix into a string. 507
max Maximum element of an array. 42
mean Average or mean value of arrays. 362
median Median value of arrays. 105
mesh Mesh plot. 132
meshgrid Generate X and Y matrices for three-dimensional plots. 55
mfilename The name of the currently running M-file. 533
min Minimum element of an array. 42
minus Array and matrix subtraction. 41
mldivide Matrix left division. (See ldivide for array left division.) 41
mpower Matrix power. (See function power for array power.) 41
mrdivide Matrix right division. (See rdivide for array right division.) 41
mtimes Matrix multiplication. (See times for array multiplication). 41

N
nan or NaN Not-a-number. 48
nargchk Check number of input arguments. 71
nargin Number of input function arguments. 71
nargout Number of output function arguments. 71

GONZappA-514-526v3 11/5/03 9:50 AM Page 523

524 Appendix A ■ Function Summary

ndims Number of array dimensions. 37
nextpow2 Next power of two. 117
norm Vector and matrix norm. 485
numel Number of elements in an array. 51

O
ones Generate array of ones. 38

P
patch Create patch graphics object. 196
permute Rearrange the dimensions of a multidimensional array. 486
persistent Define persistent variable. 353
pi Ratio of a circle’s circumference to its diameter. 48
plot Linear 2-D plot. 80
plus Array and matrix addition. 41
pol2cart Transform polar or cylindrical coordinates to Cartesian. 451
pow2 Base 2 power and scale floating-point numbers. 300
power Array power. (See mpower for matrix power.) 41
print Print to file or to hardcopy device. 23
prod Product of array elements. 98

R
rand Uniformly distributed random numbers and arrays. 38, 145
randn Normally distributed random numbers and arrays. 38, 147
rdivide Array right division. (See mrdivide for matrix right division.) 41
real Real part of complex number. 115
realmax Largest floating-point number that your computer can represent. 48
realmin Smallest floating-point number that your computer can represent. 48
regexp Match regular expression. 502
regexpi Match regular expression, ignoring case. 503
regexprep Replace string using regular expression. 503
rem Remainder after division. 256
repmat Replicate and tile an array. 264
reshape Reshape array. 300
return Return to the invoking function. 49
rot90 Rotate matrix multiples of 90 degrees. 94
round Round to nearest integer. 22

S
save Save workspace variables to disk. 301
set Set object properties. 78
setfield Set field of structure array. 546
shading Set color shading properties. We use the interp mode 135

in the book.
sign Signum function. 326
single Convert to single precision. 24
size Return array dimensions. 15
sort Sort elements in ascending order. 293
sortrows Sort rows in ascending order. 433

GONZappA-514-526v3 11/4/03 10:04 AM Page 524

A.2 ■ MATLAB Functions 525

sparse Create sparse matrix. 395
spline Cubic spline data interpolation. 218
sprintf Write formatted data to a string. 52
stem Plot discrete sequence data. 79
str* String operations. See Table 12.2. 500
str2num String to number conversion. 60
strcat String concatenation. 503
strcmp Compare strings. 62, 504
strcmpi Compare strings ignoring case. 504
strfind Find one string within another. 505
strjust Justify a character array. 505
strmatch Find possible matches for a string. 505
strncmp Compare the first n characters of two strings. 504
strncmpi Compare first n characters of strings ignoring case. 316, 505
strread Read formatted data from a string. 61
strrep String search and replace. 506
strtok First token in string. 506
strvcat Vertical concatenation of strings. 504
subplot Subdivide figure window into array of axes or subplots. 249
sum Sum of array elements. 35
surf 3-D shaded surface plot. 134
switch Switch among several cases based on expression. 49

T
text Create text object. 79
tic, toc Stopwatch timer. 57
times Array multiplication. (See mtimes for matrix multiplication.) 41
title Add title to current graphic. 79
transpose Matrix or vector transpose. (See ctranspose for complex data.) 30, 41
true Create true array. Shorthand for logical(1). 38, 410
try...catch See Table 2.11. 49

U
uicontrol Create user interface control object. 534
uint16 Convert to unsigned integer. 24
uint32 Convert to unsigned integer. 24
uint8 Convert to unsigned integer. 24
uiresume Control program execution. 540
uiwait Control program execution. 540
uminus Unary minus. 41
uplus Unary plus. 41
unique Unique elements of a vector. 433
upper Convert string to upper case. 62

V
varargin Pass a variable number of arguments. 72
vararout Return a variable number of arguments. 72
version Get MATLAB version number. 48
view Viewpoint specification. 132

GONZappA-514-526v3 11/4/03 10:04 AM Page 525

526 Appendix A ■ Function Summary

W
warning Display warning message. 159
while Repeat statements an indefinite number of times. 49
whitebg Change background color. 198
whos List variables in the workspace. 16

X
xlabel Label the x-axis. 79
xlim Set or query x-axis limits. 80
xor Exclusive or. 46
xtick Set horizontal axis tick. 78

Y
ylabel Label the y-axis. 79
ylim Set or query y-axis limits. 80
ytick Set vertical axis tick. 78

Z
zeros Generate array of zeros. 38

GONZappA-514-526v3 11/4/03 10:04 AM Page 526

Digital Image Processing Using MATLAB
Gonzalez, Woods, and Eddins

Prentice Hall
© 2004

NOTE: Depending on the country in which you purchase the book, your copy may have most of the
following errors corrected. To tell which printing of the book you have, look on the page (near the
beginning of the book) that contains the Library of Congress Catalog card. Toward the bottom of that
page, you will see a line that says: “Printed in the United States of America.” Below that line there is
a series of numbers, starting with 10 on the left. The last number on the right is the printing of your
book (e.g., if it is a 1, then you have the first printing of the book, a 2 indicates that you have the
second printing, and so on). The first column of each row in the following table indicates the
printing(s) to which the corrections shown in that row apply. Note: The printing house failed to
update the printing history for the second printing of the book. To determine if you have the second
printing, please check page 100. If the 2nd and 3rd lines from the bottom in Table 3.4 read ” . . . it
must be greater than or equal to 0 and . . ." as opposed to ". . . it must be greater than 0 . . . " then
you have the second printing.

July 17, 2006

BOOK CORRECTIONS

Printing

Page Reads Should Read

1 xii, 8th line from bottom of page David. R. . . . David R. . . . (remove period after David)

1-3 25, second parag. unit8 uint8
1, 2 43, 7th line of function improd . . . unit16 uint16 . . .

1 100, Table 3.4, 2nd line from
bottom . . it must be greater than 0 and . . . it must be greater than or equal to 0 and

1 103, 14th line from top. The result, shown in Fig. 3.15(c) . . . The result, shown in Fig. 3.16(c) . . .

1 109, 6th line from bottom (,)(,) (,) j u vF u v F u v e φ−= (,)(,) (,) j u vF u v F u v e φ=

1 131, function lpfilter
Function call was revised. All revised M-functions can be downloaded from the Book
Updates section of the book web site. This fix also has been incorporated in the DIPUM
Toolbox, starting with Version 1.1.2.

1 152, function imnoise3
Help block was revised. All revised M-functions can be downloaded from the Book
Updates section of the book web site. This fix also has been incorporated in the DIPUM
Toolbox, starting with Version 1.1.2.

1, 2 144, 5th line of Example 5.1 To find z we solve the equation where b > 0. To find z we solve the equation

1, 2 144, 8th line of Example 5.1 ln(1)z a b w= + − ln(1)z a b w= + − −

Various 145, top line . . . generalized to an "blank" array generalized to an M N× array. . .

1, 2 145, 3rd line from top >> R = a + sqrt(b*log. . . >> R = a + sqrt(-b*log. . .

1, 2 145, 9th line from top ln(1)z a b w= + − ln(1)z a b w= + − −

1, 2 146, last cell in 5th row of table ln[1 (0,1)]z a b U= + − ln[1 (0,1)]z a b U= + − −

1-7 146, last cell in 4th row of table (0,1)bNz ae= (0,1)bN az e +=
Various 148, function imnoise2 Corrected bug in lognormal computation.

1, 2 158, 2nd line from top . . . statmoments(h, 2); . . . statmoments(p, 2);

1, 2 201, middle of page threshold values in v must between . . . threshold values in v be must between . .

1 224, Example 6.6, 10th line samples for visual assessments . . . for visual assessments . . . (remove "samples")

1 247, icon labeled wavefun
Icon is aligned with second instance of
function wavefun.

Align icon with the first instance of function
wavefun.

Gonzalez/Woods/Eddins
Digital Image Processing Using MATLAB
Errata Sheet
Page 2 of 2
17 July, 2006

1, 2 249, 2nd line below H =
subplot(m,n,p) Both m and n must be greater than 1. Both m and n must be greater than or equal to

1.
1, 2 256, 13th line from bottom ... ~isnumeric(x) ... ~isnumeric(x))

1 267, lines 2 and 3 from top
. . . function wave2gray performs
this subimage compositing—and both
scales . . .

. . . function wave2gray performs asimilar
subimage compositing; it scales . . .

1 271, icon labeled waverec2
Icon is aligned with second instance of
function waverec2.

Align icon with the first instance of function
waverec2.

Various 319, function im2jpeg
Corrected bug in end-of-block computation. All revised M-functions can be downloaded
from the Book Updates section of the book web site. This fix also has been incorporated
in the DIPUM Toolbox, starting with Version 1.1.4.

1 331, Example 8.9, line 3 . . . an 88:1; encoding. . . . an 88:1 encoding.

1 331, Example 8.9, line 6 . . . bit-plane-oriented bit-plane oriented . . .

1 331, Example 8.9, line 9 Since the 42:1, compression . . . Since the 42:1 compression . . .

1-4 346, Equation . . . ≠ ∅ . . . = ∅

1-2 435, 560, function bsubsamp

Function was revised to correct addressing errors that occurred under some conditions. All
revised M-functions can be downloaded from the Book Updates section of the book web
site. This fix also has been incorporated in the DIPUM Toolbox, starting with Version
1.1.2.

1, 2 438, 5th line from top >> b = B{1}; >> b = B{k};

1, 2 445 Figs. 11.6(c) and (d) There are several 2x2 white blocks inside the boundary that can be combined into larger
blocks.

1 456, 15th line from bottom . . . coordinates for the endpoints coordinates for the end points . . .

1, 2 459, 460, function ifrdescp
Help block was revised. All revised M-functions can be downloaded from the Book
Updates section of the book web site. This fix also has been incorporated in the DIPUM
Toolbox, starting with Version 1.1.2. Corrected typo in Help text in Version 1.1.4.

Various 487, function mahalanobis Corrected typo in help text.

1, 2 493-495 function bayesgauss
Function was optimized. All revised M-functions can be downloaded from the Book
Updates section of the book web site. This fix also has been incorporated in the DIPUM
Toolbox, starting with Version 1.1.3. Corrected typo in Help text in Version 1.1.4

1, 2 506, 13th line from bottom >> delim = ['x']; >> delim = [' '];

1 529, 7th line tag. For example, . . . tag. For example, . . .

1-2 539, 5th line from bottom If handles.input is . . . If handles.colotype . . .

1-2 560-562 function bsubsamp
Function was changed. All revised M-functions can be downloaded from the Book
Updates section of the book web site. This fix also has been incorporated in the DIPUM
Toolbox, starting with Version 1,1,2.

Various 582, function pixeldup Corrected typo in comment.

1 591, function statxture
Function call was changed. All revised M-functions can be downloaded from the Book
Updates section of the book web site. This fix also has been incorporated in the DIPUM
Toolbox, starting with Version 1.1.2.

1 596, 2nd line from bottom. Wolbert, G. [1990] . . . Wolberg, G. [1990] . . .

1 600, Index letter E Endpoints, 350, 358, . . . Endpoints, 350, 353, 358, . . .

1 601, Index Insert "notch, 166" under entry "M-functions for filtering, 122".

Various 604, Index Insert the following under M: mahalanobis, 487
1 605 Insert "notch filter, 166" under entry NOT, 45, 337

	Image.PDF
	Image (2).PDF
	Image (3).PDF
	Image (4).PDF

