

	
	

Android	Programming	Guide
	

Android	App	Development
Learn	In	A	Day!

	

	

	

	

	

	

	

	

2nd	Edition

By	Os	Swift

©	Copyright	2015	by	Os	Swift-	All	rights	reserved.

In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either	electronic	means	or	in	printed
format.	Recording	of	this	publication	is	strictly	prohibited	and	any	storage	of	this	document	is	not	allowed	unless	with
written	permission	from	the	publisher.	All	rights	reserved.

	

The	 information	provided	herein	 is	 stated	 to	be	 truthful	and	consistent,	 in	 that	any	 liability,	 in	 terms	of	 inattention	or
otherwise,	 by	 any	 usage	 or	 abuse	 of	 any	 policies,	 processes,	 or	 directions	 contained	within	 is	 the	 solitary	 and	 utter
responsibility	of	the	recipient	reader.	Under	no	circumstances	will	any	legal	responsibility	or	blame	be	held	against	the
publisher	for	any	reparation,	damages,	or	monetary	loss	due	to	the	information	herein,	either	directly	or	indirectly.

Respective	authors	own	all	copyrights	not	held	by	the	publisher.

	

Legal	Notice:

This	 book	 is	 copyright	 protected.	 This	 is	 only	 for	 personal	 use.	 You	 cannot	 amend,	 distribute,	 sell,	 use,	 quote	 or
paraphrase	any	part	or	the	content	within	this	book	without	the	consent	of	the	author	or	copyright	owner.	Legal	action
will	be	pursued	if	this	is	breached.

	

Disclaimer	Notice:

Please	note	 the	 information	contained	within	 this	document	 is	for	educational	and	entertainment	purposes	only.	Every
attempt	has	been	made	to	provide	accurate,	up	to	date	and	reliable	complete	information.	No	warranties	of	any	kind	are
expressed	or	implied.	Readers	acknowledge	that	the	author	is	not	engaging	in	the	rendering	of	legal,	financial,	medical
or	professional	advice.

	

By	 reading	 this	document,	 the	 reader	 agrees	 that	under	no	circumstances	 are	we	 responsible	 for	 any	 losses,	 direct	or
indirect,	which	 are	 incurred	 as	 a	 result	 of	 the	 use	 of	 information	 contained	within	 this	 document,	 including,	 but	 not
limited	to,	—errors,	omissions,	or	inaccuracies.

	

Contents
Introduction

Chapter	1:	Android	Overview

Chapter	2:	Android	Architecture

Chapter	3:	Android	Software	Development 	Rooting

Chapter	4	–	How	to	Become	an	Android	App	Developer	from	Scratch

Chapter	5	-	Getting	Started

Chapter	6	-	The	Android	SDK	Manager

Chapter	7	-	Let’s	Create	OMG	Android

Chapter	8	-	Important	Application	Files

Chapter	9	-	Running	Your	App	on	an	Emulator	or	Device

Chapter	10:	Organize	resources	in	Android	Studio

Chapter	11	-	Updating	With	the	SDK	Manager

Chapter	12	-	XML	Layout	Basics

Chapter	13	-	Buttons	and	Listeners

Chapter	14	-	Adding	Visual	and	Nested	Layouts

Chapter	15	-	Involving	the	Keyboard

Chapter	16	-	The	ListView

Chapter	17	-	Detecting	List	Selections

Chapter	18	-	The	Action	Bar

Chapter	19	-	Remembering	Your	Name

Chapter	20:	Android:	How	to	develop	a	simple	calculator

Chapter	21:	Android:	A	login	application

Chapter	22:	Android	Animations

Conclusion

	

Introduction
	

Right	now,	Android	app	development	is	in	huge	demand	and	the	result	is	that	the	platform
with	 the	 funny	 green	 robot	 is	 turning	 into	 one	 of	 the	 major	 options,	 instead	 of	 taking
second	place	to	Apple’s	iOS.

	

There	are	more	than	a	billion	Android	devices	activated	today,	making	it	an	exciting	place
to	 turn	 your	 dream	 into	 an	 app;	 an	 app	 that	 can	 help	 you	 to	 organize,	 communicate,
educate,	entertain,	or	anything	else	you	can	possibly	 think	of.	There	 really	are	no	 limits
when	it	comes	to	designing	an	app	for	the	Android	platform	and	turning	it	into	reality	is
not	much	more	difficult	than	coming	up	with	the	idea	in	the	first	place!

	

If	you	want	a	few	more	reasons	why	you	should	choose	Android,	try	these	on	for	size:

	

Android	has,	at	 the	 time	of	writing,	 the	biggest	market	share	of	smartphones	and
tablets	in	the	world.
Android	 has	 a	 policy	on	 app	provisioning	 and	 submission	 that	 s	way	more	open
that	iOS.	This	means	that,	once	your	app	is	complete	–	and	I	will	be	walking	you
through	your	 first	one	 in	 this	book	–	you	can	get	 it	out	 into	 the	market	and	onto
people’s	devices	immediately
It	 isn’t	 all	 about	 the	 iPhone	 anymore.	 There	 are	 so	 many	 more	 devices	 on	 the
market	 these	days	and	Android	is	 installed	on	a	very	large	number	of	 them.	That
makes	it	one	of	the	most	important	platforms	for	you	to	begin	your	journey	on.

	

So,	if	you	have	been	toying	with	the	idea	of	creating	an	app	for	Android,	this	is	the	book
for	you.	I	am	going	to	tell	you	exactly	how	to	get	started	and	show	you	how	to	create	your
very	first	app.

	
	

Chapter	1:	Android	Overview
	

Android	 is	 an	 operating	 system	 for	 mobiles	 developed	 by	 the	 Google	 Corporation.
Android	 is	 a	 Linux	 kernel	 based	 operating	 system.	 The	 user	 interface	 of	 the	 android
operating	system	is	direct	manipulation	based.	This	is	primarily	designed	for	touchscreen
smartphones	 and	 tablets.	 Apart	 from	 these,	 android	 can	 also	 be	 used	 for	 wristwatches
(Android	wear),	televisions	(Android	TV)	and	cars	(Android	auto).	The	operating	system
makes	 use	 of	 the	 touch	 inputs	which	 loosely	 correspond	 to	 the	 real	world	 actions,	 like
pinching,	tapping,	swiping	and	reverse	pinching	for	manipulating	the	virtual	keyboard	and
the	on-screen	objects.	This	 is	not	 all,	 android	 is	 also	used	with	digital	 cameras,	gaming
consoles,	personal	computers	and	a	few	other	electronics.	Of	all	the	operating	systems	in
the	market,	Android	holds	the	largest	installed	base.

	

Android	 is	 a	 customizable,	 ready-made	 and	 low-cost	 operating	 system	 that	 can	 be	 used
with	high-tech	devices	and	for	this	reason	it	is	popular	with	technology	companies.

Android	 is	 open	 source	 and	 this	 encouraged	 a	 huge	 community	 of	 enthusiasts	 and
developers	to	use	its	code	for	developing	community	driven	projects	with	which	they	can
add	additional	features	for	advanced	users.	They	can	also	install	android	on	devices	 that
run	on	other	OS.

	

Features	of	Android

Android	 is	 a	 flexible	 and	powerful	OS	 that	 is	 competing	with	 the	Apple	 iOS	and	other
such	operating	systems	like	Windows	8.1.	Few	of	its	features	are	given	below.

	

Feature Description

Beautiful	UI The	basic	screening	of	the	android	operating	system	provides	an	intuitive
and	beautiful	user	interface.

Connectivity CDMA,	 UMTS,	 GSM/EDGE,	 LTE,	 EV-DO,	 Wi-Fi,	 NFC,	 Bluetooth,
IDEN	and	WiMAX.

Storage Android	 uses	 a	 lightweight	 relational	 database	 called	 the	 SQLite	 for
storing	data.

Media
support

H.263,	 H.264,	 AMR,	 AMR-WB,	 MPEG-4	 SP,	 AAC	 5.1,	 AAC,	 HE-
AAC,	MIDI,		GIF,	WAV,		Ogg	Vorbis,		PNG,	MP3,	BMP	and	JPEG

Messaging MMS	and	SMS

Web
browser

The	web	browser	of	android	is	based	on	the	WebKit	layout	engine	and	is
coupled	with	the	V8	JavaScript	engine	of	chrome,	supporting	the	CSS3
and	HTML5.	The	WebKit	layout	engine	is	an	open	source	engine.

Multi-touch Multi	touch	is	natively	supported	by	android	and	it	was	available	initially
with	the	mobiles	like	HTC	hero.

Multi-
tasking

Users	 can	 navigate	 from	 one	 application	 to	 another	 application	 and
multiple	applications	can	be	run	simultaneously	at	the	same	time.

Resizable
widgets

The	default	widgets	and	the	widgets	you	download	can	be	resized.	They
can	be	made	smaller	to	save	space	or	they	can	be	expanded	to	show	more
content.

Multi-
Language

Single	and	bidirectional	text	is	supported	by	android.

GCM Using	the	Google	Cloud	messaging,	developers	can	send	short	messages
to	the	android	users.	This	doesn’t	need	a	proprietary	sink	solution.

Wi-Fi	Direct Wi-Fi	 Direct	 is	 a	 technology	 that	 lets	 applications	 to	 pair	 directly
enabling	a	high-speed	peer	to	peer	connection	after	discovering.

	

Android
Beam

Android	 Beam	 is	 based	 on	 the	 near	 field	 communication	 technology.
Users	can	share	data	instantly	just	by	touching	the	two	devices	which	has
NFC	enabled	on	them.

	

After	developing	an	android	application,	it	can	be	packaged	and	sold	easily	either	through
the	Google	play	store,	Mobango,	Amazon	Appstore,	slide	ME,	Opera	mobile	store	or	F-
droid.

	

Android	 is	 running	 currently	 on	 billions	 of	 devices	 that	 include	 tablets,	mobile	 phones,
TVs	etc.		It	is	used	in	almost	200	countries	around	the	globe.	Android	is	the	largest	mobile
platform	base	and	it	is	yet	growing	fast.	According	to	the	Google	Corporation,	more	than
1,000,000	new	android	devices	are	activated	daily.

	

What	is	API	level?

API	Level	is	the	number	given	to	the	framework	API	revision	for	its	unique	identification.
The	android	platform	offers	these.

	

Platform	Version API
Level

VERSION_CODE 	

Android	5.1 22 LOLLIPOP_MR1 	

Android	5.0 21 LOLLIPOP 	

Android	4.4W 20 KITKAT_WATCH KitKat	 for
Wearables	Only

Android	4.4 19 KITKAT 	

Android	4.3 18 JELLY_BEAN_MR2 	

Android	4.2,	4.2.2 17 JELLY_BEAN_MR1 	

Android	4.1,	4.1.1 16 JELLY_BEAN 	

Android	4.0.3,	4.0.4 15 ICE_CREAM_SANDWICH_MR1 	

Android	 4.0,	 4.0.1,
4.0.2

14 ICE_CREAM_SANDWICH 	

Android	3.2 13 HONEYCOMB_MR2 	

Android	3.1.x 12 HONEYCOMB_MR1 	

Android	3.0.x 11 HONEYCOMB 	

Android	2.3.4

Android	2.3.3

10 GINGERBREAD_MR1 	

Android	2.3.2

Android	2.3.1

Android	2.3

9 GINGERBREAD 	

Android	2.2.x 8 FROYO 	

Android	2.1.x 7 ECLAIR_MR1 	

Android	2.0.1 6 ECLAIR_0_1 	

Android	2.0 5 ECLAIR 	

Android	1.6 4 DONUT 	

Android	1.5 3 CUPCAKE 	

Android	1.1 2 BASE_1_1 	

Android	1.0 1 BASE 	

	

	

Interface

The	default	 android	 user	 interface	 is	 based	 on	 touch	 inputs,	 direct	manipulation	 actions
like	pinching,	 swiping,	 and	 reverse	pinching	 for	manipulating	 the	on-screen	objects	 and
virtual	keyboard.	Android	is	designed	in	such	a	way	that	the	response	to	the	user’s	input	is
immediate,	along	with	a	smooth	touch	interface.	The	android	operating	system	also	uses
the	 vibration	 feature	 of	 the	 device	 for	 providing	 the	 user	with	 haptic	 feedback.	 Internal
hardware	 like	 proximity	 sensors,	 gyroscopes	 and	 accelerometers	 can	 be	 used	 by	 the
applications.	This	internal	hardware	can	be	used	for	adjusting	the	screen	orientation	using
the	gyroscope;	Control	remote	controlled	using	the	accelerometer	etc.	 	Home	screen	can
be	made	up	of	different	pages,	which	the	user	can	select	and	add.	They	can	swipe	through
the	home	screens.	Users	can	add	additional	widgets	or	application	shortcuts	on	different
home	screens	matching	their	taste.

	

Memory	management

Most	of	 the	android	devices	or	all	of	 the	android	mobile	devices	 run	on	battery.	So,	 for
increasing	the	battery	life,	the	RAM	should	consume	as	less	power	as	possible	as	they	are
not	 like	 the	 desktop	 devices	which	 can	 have	 a	 continuous	 power	 supply.	Whenever	 an
android	 app	 is	 minimized	 or	 when	 it	 is	 no	 longer	 in	 use,	 it	 will	 be	 suspended	 in	 the
memory	automatically.	Technically	speaking,	these	applications	will	be	still	open	but	they
cannot	consume	the	system	resources.	They	will	wait	in	the	background	till	the	user	calls
for	 them	again.	This	gives	 the	users	a	benefit	where	 they	need	not	close	 the	application
and	start	everything	from	the	beginning.	The	second	benefit	of	this	is	that	the	applications
running	in	the	background	do	not	consume	system	resources	unnecessarily.

	

Android	 is	 very	 good	 with	 managing	 applications.	 If	 the	 memory	 is	 low,	 android	 will
simply	terminate	the	processes	and	applications	that	are	inactive.	It	will	perform	this	in	the
reverse	order	of	 their	 last	usage;	 the	oldest	applications	will	be	closed	first.	All	of	 these
processes	will	 be	 running	 in	 the	background	 and	 the	user	 cannot	 see	 it.	This	 leaves	 the
user	the	pain	of	managing	the	apps	as	Android	automatically	terminates	the	applications.

	

	

Open-source	community

The	 android	 community	 can	 be	 called	 as	 the	 most	 active	 community	 where	 many
enthusiasts	 and	 android	 developers	 use	 the	 source	 code	 of	 the	 Android	 Open	 Source
Project,	 AOSP.	 They	 use	 it	 for	 developing	 and	 distributing	 their	 own	 versions	 of	 the
modified	operating	system.	The	releases	made	in	the	community	are	often	faster	compared
to	the	official	releases.	The	updates	that	are	released	by	the	developers	are	not	extensively
tested	 like	 the	 official	manufacturer’s	 release	 versions.	There	 are	many	 developers	who
release	their	updates	for	devices	that	are	no	longer	supported	by	the	manufacturers.

	

Security	and	privacy

Android	applications	run	in	a	sandbox,	an	isolated	area	of	the	system	that	does	not	have
access	 to	 the	 rest	 of	 the	 system’s	 resources,	 unless	 the	 user	 explicitly	 grants	 access
permissions	when	the	application	is	installed.	Before	installing	an	application,	Play	Store
displays	all	required	permissions:	a	game	may	need	to	enable	vibration	or	save	data	to	an
SD	 card,	 for	 example,	 but	 should	 not	 need	 to	 read	 SMS	 messages	 or	 access	 the
phonebook.	After	 reviewing	 these	 permissions,	 the	 user	 can	 choose	 to	 accept	 or	 refuse
them,	 installing	 the	 application	 only	 if	 they	 accept.	 The	 sandboxing	 and	 permissions
system	 lessens	 the	 impact	 of	 vulnerabilities	 and	 bugs	 in	 applications,	 but	 developer
confusion	 and	 limited	 documentation	 has	 resulted	 in	 applications	 routinely	 requesting
unnecessary	permissions,	reducing	its	effectiveness.

	

The	advantages	of	the	android	are	many	and	the	android	operating	system	is	used	on	more
than	a	billion	tablets	and	smartphones.

	

Supports	2D,	3D	graphics

The	android	OS	supports	platforms	like	2D	and	3D.	Earlier,	we	only	used	to	watch	videos
or	play	games	in	2D.	The	situation	is	different	now	and	many	applications	are	using	the
3D	format	 for	better	user	experience.	The	android	operating	system	supports	3D	format
along	with	2D	 format,	 providing	 the	users	with	 a	better	 experience	when	using	gaming
and	video	applications.

	

Supports	Multiple	Languages

Android	supports	many	languages.	Almost	all	of	the	majorly	used	languages	are	supported
and	the	list	goes	more	than	100.	With	this	feature	android	can	easily	adapt

We	can	say	all	famous	languages	about	more	than	100.	By	using	this	feature	it	is	easy	to
adapt	 to	 different	 languages.	 Earlier	 in	 the	 feature	 phones	 English	 is	 to	 be	 the	 only

language	in	the	mobile	devices.

	

Java	Support

Android	 supports	 Java	 enabling	 the	 Java	 developers	 to	 add	 additional	 features.	 The
operating	can	be	deployed	as	it	supports	Java

	

Faster	Web	Browser

Android	operating	system	comes	with	preloaded	web	browser	that	can	be	used	for	surfing
the	Internet	without	complexity.	It	is	similar	to	that	of	a	computer.	Multimedia	on	the	web
pages	will	be	loaded	easily,	resulting	in	the	faster	web	browsing.

	

It	Supports	MP4,	3GP,	MPEG4,	MIDI

Different	video	formats	are	supported	by	the	Android	OS.	In	fact,	almost	all	of	the	video
formats	 are	 supported.	 This	 will	 rule	 out	 the	 pain	 of	 converting	 the	 video	 into	 a
computable	format.	Android	also	supports	a	wide	range	of	audio	formats.

	

Additional	Hardware	Support

A	new	hardware	can	be	connected	easily	with	devices	running	on	android.	A	device	can	be
connected	 internally,	 providing	 we	 use	 it	 with	 additional	 features.	 Android	 extends	 its
support	to	a	wide	range	of	hardware	devices.

	

Video	Calling

Video	calls	can	be	made	with	faster	data	connections.	The	new	generation	networks	and
bandwidth	can	be	taken	advantage	of	using	the	android	operating	system.

	

Open	Source	Framework

It	makes	 users	 to	make	 their	 own	 applications	 and	 to	make	 changes	 required	 for	 them.
Enthusiasts	can	make	Android	more	powerful	and	useful	by	developing	themselves.	As	it
is	an	open	source	operating	system,	we	can	use	it	easily	and	without	cost	in	the	equipment.

	

Uses	of	Tools	are	Very	Simple

In	 android,	 a	 single	 button	 can	 be	 used	 for	multiple	 purposes	 and	 it	 can	 perform	more
tasks	 than	 for	which	 it	 is	 assigned	 to.	 For	 instance,	 the	 volume	 button	 can	 be	 used	 for
capturing	a	photo	just	by	changing	a	simple	algorithm.

	

Availability	of	Apps

There	are	millions	of	 applications	available	 free	of	 cost	 in	 the	Google	play	 store.	Users
have	the	freedom	of	installing	applications	from	third-party	publishers.

	

Great	Social	Networking	Integration

Multiple	social	networking	websites	can	be	integrated	and	their	features	can	be	enhanced.
This	will	make	it	easy	for	a	user	to	check	his	social	networking	accounts	easily.	By	using
the	user	enabled	development,	users	can	customize	the	features	and	applications.

	

Better	Notification	System

Users	 can	 directly	 check	 the	 important	 notifications	 from	 the	 dashboard,	 making	 work
easier.	Earlier,	we	had	to	open	the	application	and	refresh	it	for	checking	updates.

	

Updated	User	Interface	Design

Interfacing,	the	user	to	device	interfacing	can	be	updated	in	the	android	operating	system.
The	 addition	 of	 touchscreen	 can	 be	 considered	 as	 a	 revolution	 and	 it	 changed	 the	way
people	using	mobiles.	Features	like	typing	and	can	be	effectively	performed	on	a	device
running	on	the	android	operating	system.

	

At	a	Time	Applications

Android	 allows	 users	 to	 run	multiple	 applications	 at	 the	 same	 time.	 This	 will	 help	 the
users	in	saving	their	efforts	and	time.

	

Low	Chance	of	Crashing

The	 android	 operating	 system	 is	 smooth	 and	 it	 is	 very	 easy	 to	 operate.	 The	 chances	 of
crashing	are	less.

	

	

Stability

The	 security	 and	 stability	 of	 the	 android	 OS	 is	 superior	 compared	 to	 the	 other	 mobile
operating	systems.	The	android	operating	system	is	based	on	the	Linux	kernel	and	it	is	the
reason	for	its	stability.	Any	operation	that	is	performed	will	go	into	the	command	mode.	If
there	are	any	security	 threats	detected,	 it	will	go	into	 the	basic	mode	and	stores	 to	other
applications	like	cloud	computing	and	it	will	crash	the	data	stored	on	the	device.

	

You	can	change	your	settings	quicker

The	 settings	can	be	changed	quickly.	By	using	different	 tasks	and	apps,	we	can	use	 the
android	OS.

	

More	options	with	limited	budget

Compared	to	other	operating	systems,	android	is	cheaper	and	it	gives	a	better	performance
at	the	same	time.	It	is	open	framework	and	open	source.

	

Android	provides	support	for	larger	resolutions	and	screens.

Users	can	enjoy	clear	and	bright	formats	with	android’s	support	for	different	screen	sizes
for	enhanced	resolutions	and	applications.

	

Copy	paste	functionalities	throughout	the	system

Earlier,	 we	 were	 only	 allowed	 to	 copy	 and	 paste	 in	 a	 single	 application.	 Developers
thought	of	changing	 this	and	planned	to	make	 the	whole	phone	operating	as	a	computer
based	OS.	For	 this,	 the	android	OS	came	with	 the	copy	and	paste	option	 throughout	 the
system.	Editing	is	made	simpler	with	this.

	

Redesigned	Multi	Touch	Software	Keyboard

Android	gave	users	more	 freedom	by	providing	 them	redesigned	keyboards	 like	Google
keyboard,	different	types	of	qwerty	keyboards	etc,.	There	are	a	number	of	smart	keyboards
available	now	that	made	vast	changes	in	the	way	users	type.	Typing	has	been	made	easy
by	using	the	dictionary	that	suggests	users	with	words	and	the	AutoCorrect	option	corrects
misspelled	words.	Additional	features	like	drag	and	detect	has	brought	a	revolution	in	the
area	of	mobile	typing.

	

Audio,	Graphical	and	Input	Enhancements	for	Game	Developers

A	 number	 of	 changes	 were	 made	 by	 android	 in	 the	 multimedia	 used	 for	 the	 mobile
devices.	Using	different	audio	enhancements	enhances	the	audio	quality	of	the	device.

	

Improved	Power	Management	and	Application	Control

The	 android	 application	 control	 and	 power	 management	 only	 allows	 currently	 running
application	to	use	the	RAM	memory	and	power.	All	the	other	applications	will	run	in	the
background	and	will	wait	for	the	user	to	use	them.	After	the	user	switching	to	a	different
application,	 the	 system	will	 allocate	 power	 and	memory	using	 this	method.	The	 system
memory	and	power	can	be	saved	using	the	improved	power	management	and	application

control.	The	enhanced	application	control	now	supports	multiple	cameras.

Chapter	2:	Android	Architecture
	

Before	 going	 deep	 into	 the	 android	 development,	 firstly	 you	 should	 know	 the	 basic
internal	 architecture.	 The	 application	 framework	 can	 be	 understood	 easily	 if	 you	 know
how	things	work	and	how	they	are	arranged.	Applications	can	be	designed	in	a	better	way
by	knowing	 these	 two	 things.	Since	 the	android	operating	system	 is	based	on	 the	Linux
OS,	it	is	very	much	similar	to	the	Linux	operating	system.	The	architecture	of	android	is
illustrated	 in	 the	 following	 figure.	OEMs	provide	 the	software	stocks	 that	are	above	 the
hardware.	The	applications	are	the	topmost	layer.
	

Android	Architecture

	

Basic	Applications

For	 instance,	 four	basic	apps	 like	App	1,	App	2,	App	3	and	App	4are	depicted	 like	any
android	 user	 interface.	 Applications	 like	 camera,	 music	 player,	 Application	 for	 making
calls	and	so	on	are	some	of	the	apps.	These	applications	can	be	from	providers	other	than
Google,	Google	doesn’t	necessarily	provide	 these	apps.	By	using	 the	Google	play	store,
you	can	develop	an	application	and	can	place	it	there,	making	it	available	for	all.	You	can
develop	to	the	applications	in	Java	and	install	 them	directly	without	needing	to	integrate
with	the	android	operating	system.

	

Application	Framework

The	application	framework	is	used	for	developing	applications.	Developers	for	developing
applications	 use	 the	 framework.	 The	 framework	 offers	 a	 number	 of	 interfaces	 and	 the
developers	of	different	standards	use	these	interfaces.	By	using	the	frameworks	you	need
not	 code	 every	basic	 task.	There	 are	different	 entities	 in	 the	 framework	and	 they	 are	 as
follows.

	

Activity	Manager

The	 activity	 manager	 is	 responsible	 for	 managing	 the	 activities	 that	 control	 the	 app
lifecycle	and	 it	has	many	states.	The	applications	may	consist	of	multiple	activities	 that
include	their	own	application	life	cycle.	Whenever	an	app	is	launched,	one	main	activity

will	be	started.	A	window	is	usually	given	to	every	activity	in	an	app	that	has	got	its	own
user	interface	and	layout.

	

Notification	Manager

The	notification	manager	enables	the	apps	to	display	custom	alerts.

	

Views

Views	 are	 used	 for	 creating	 layouts	 that	 includes	 components	 like	 buttons,	 lists	 and	 the
grids.

	

Resource	Managers

The	 applications	 require	 external	 resources	 like	 external	 strings	which	 are	managed	 by
resource	 manager,	 graphics	 etc,.	 The	 resource	 managers	 allot	 these	 resources	 in	 a
standardized	way.

	

Content	Provider

Data	 is	 shared	by	 the	applications	whenever	 it	 is	 required.	Applications	sometimes	may
need	 the	data	 from	other	a.	The	calling	app	will	 require	access	 to	 the	contact	 list	of	 the
user.	The	content	provider	will	allow	the	access	to	the	data	of	other	applications.

	

Libraries

All	the	native	libraries	of	android	will	be	present	in	this	layer.	These	libraries	are	written
in	C	and	C++.	The	capabilities	of	these	libraries	are	similar	to	the	application	layer	present
on	the	topmost	layer	of	the	Linux	kernel.	Some	of	the	major	native	libraries	consist	of	the
following.

Surface	Manager:	The	compositing	window	in	manager	and	display.
Media	framework:	this	framework	consists	of	the	codecs	and	audio,	video	formats.
It	also	includes	their	recording	and	playback.
System	C	Libraries:	these	basic	C	libraries	are	targeted	for	the	embedded	devices	or
ARM.
OpenGL	ES	Libraries:	3D	and	2D	graphics.
SQLite:	SQLite	is	a	database	engine.

	

Android	Libraries

The	Java	libraries	that	are	specific	to	the	android	development	are	present	in	this	category.
The	 application	 framework	 libraries	 are	 an	 example	 to	 this	 library.	 The	 application

framework	library	is	an	additional	package	to	other	libraries	that	help	in	graphics	drawing,
user	 interface	building	and	database	access.	Some	of	 the	core	android	 libraries	and	 they
summaries	are	given	below.

android.app	 −	 Library	 is	 considered	 as	 the	 cornerstone	 for	 all	 the	 android
applications	and	it	also	provides	the	required	access	to	the	application	models.
android.content	−	Publishing,	 content	 access	 and	messaging	 in	between	apps	and
their	components	are	supported	by	this	library.
android.database	−	This	 library	will	allow	the	access	of	 the	data	 that	 is	published
by	content	providers.	This	library	also	includes	the	database	management	classes	of
SQLite
android.opengl	 −	 this	 library	 is	 the	 Java	 interface	 today	 3-D	 graphics	 rendering
API,	OpenGL	ES.
android.os	−	the	access	to	the	standard	OS	services	like	system	services,	messages
and	interposes	communication	are	provided	to	the	applications	by	this	library.
android.text	−	Text	can	be	rendered	and	manipulated	using	this	library	on	a	display
device.
android.view	−	the	application	user	 interface	building	blocks	are	provided	by	this
library.	These	building	blocks	are	the	fundamental	building	blocks.
android.widget	 −	 this	 library	 is	 a	 collection	 of	 UI	 components	 that	 are	 prebuilt.
These	include	radio	buttons,	layout	managers,	list	views,	labels,	buttons	etc.,.
android.webkit	 −	 this	 library	 consists	 of	 classes	which	 are	 intended	 to	 allow	 the
web	browsing	capabilities.	These	will	be	built	into	the	apps.

These	are	the	core	Java-based	library	is	used	in	the	android	runtime.	Now	we	will	look	at
the	C	and	C++	Best	libraries	that	are	present	in	this	Android	software	stack	layer.

	

Android	Runtime

The	runtime	of	the	android	consists	of	the	Dalvik	Virtual	Machine.	This	virtual	machine	is
used	 for	 embedded	 devices	 and	 like	 any	 other	 virtual	machine,	 this	 is	 also	 a	 bytecode
interpreter.	The	virtual	machines	 for	 the	embedded	systems	have	 low	memory.	They	are
also	 slow	 and	 are	 run	 on	 battery.	 The	 Java	 libraries,	 which	 are	 core	 libraries,	 are	 also
included	in	this	and	all	the	devices	can	use	them.

	

Kernel

The	Linux	Kernel	2.6	is	used	for	deriving	the	android	operating	system.	It	is	compiled	for
the	electronic	equipment.	The	process	Management	and	memory	management	are	similar
to	 the	 Linux	 operating	 system’s	 process	 management	 and	 a	 memory	 management.
Between	the	android	software	stack	and	the	hardware,	the	kernel	behaves	like	a	hardware
abstraction	 layer.	 The	 essential	 hardware	 drivers	 like	 display,	 keypad,	 camera	 etc.,	 are
included	in	this	and	it	provides	abstraction	between	the	hardware	to	an	extent.	The	kernel
also	 handles	 things	 like	 a	 vast	 array	 of	 device	 drivers	 and	 networking.	 The	 Linux
operating	 system	 is	 good	 at	 such	 things.	 This	 will	 help	 in	 interfacing	 to	 the	 hardware

(peripheral).

To	an	android	app,	the	essential	building	blocks	are	the	application	components	and	these
are	a	loosely	coupled	to	AndroidManifest.xml,	which	is	the	application	manifest	file.	This
file	describes	every	component	of	the	application	and	it	also	tells	you	how	they	interact.

	

Within	an	android	app,	four	components	can	be	used	and	they	are.

	

Components Description

Activities This	handles	the	user	interactions	with	the	smartphone	display	and	they
dictate	the	UI.

Services All	 the	 background	 process	 and	 that	 is	 associated	 with	 an	 android
application	are	handled	by	the	services.

Broadcast
Receivers

The	 broadcast	 receivers	 handle	 the	 communication	 between	 the
applications	and	the	android	operating	system.

Content
Providers

Content	 providers	 are	 the	 ones	 who	 handle	 the	 database	 management
issues	and	the	data.

	

Activities

An	activity	is	used	for	representing	a	single	screen,	with	a	user	interface.	The	actions	on
the	screen	are	performed	by	Activity,	in	short.	For	instance,	an	email	app	might	have	an
activity	 that	 displays	 the	 list	 of	 all	 the	 new	 emails,	 a	 different	 activity	 is	 used	 for
composing	 a	 new	 email	 and	 another	 for	 viewing	 the	 email.	 An	 application	 normally
consists	of	multiple	activities	and	in	such	cases	one	activity	will	be	used	for	representing
the	application	when	it	is	launched.

The	class	Activity	 can	be	used	 for	 implementing	an	activity.	All	 the	other	 activities	 are
considered	 as	 the	 subclasses	 of	 the	 Activity	 class.	 You	 can	 implement	 an	 activity	 as
follows:

public	class	MainActivity	extends	Activity	{

}

	

Services

Long	 running	 operations	 are	 performed	 by	 a	 component	 called	 Service	 that	 runs	 in	 the
background.	 For	 instance,	 a	 service	 might	 be	 playing	 music	 from	 your	 device	 in	 the
background	while	the	user	is	using	another	application.	A	service	might	be	fetching	data
from	a	network	without	interrupting	the	user	interaction	with	an	activity.

The	 class	 Service	 can	 be	 used	 for	 implementing	 a	 service.	 All	 the	 other	 services	 are
considered	as	the	subclasses	of	the	Service	class.	You	can	implement	a	service	as	follows:

public	class	MyService	extends	Service	{

}

	

Broadcast	Receivers

The	 broadcast	 receivers	 respond	 to	 the	 broadcast	messages	 sent	 from	 a	 system	or	 from
other	 applications.	 For	 instance,	 some	 applications	 send	 a	 broadcast	 messages	 to	 other
applications	and	lets	them	know	that	data	is	downloaded	and	can	be	used.	The	broadcast
receiver	will	intercept	this	message	and	they	can	initiate	appropriate	action.

The	class	BroadcastReceiver	can	be	used	for	 implementing	a	broadcast	 receiver.	All	 the
other	broadcast	receivers	are	considered	as	the	subclasses	of	the	BroadcastReceiver	class.
Every	message	will	 be	 broadcasted	 as	 an	 Intent	 object.	You	 can	 implement	 a	 broadcast
receivers	follows:

public	class	MyReceiver		extends		BroadcastReceiver	{
		
		public	void	onReceive(context,intent){}

}

	

Content	Providers

On	 request,	 the	content	provider	 component	will	 supply	 the	data	 from	an	application	 to
others.	 The	 ContentResolver	 class	 uses	 its	 methods	 for	 handling	 such	 requests.	 The
supplied	data	may	be	stored	in	a	database,	in	the	file	system	or	someplace	else	entirely.

All	 the	 content	 providers	 are	 considered	 as	 the	 subclasses	 of	 the	ContentProvider	 class.
For	 implementing	 a	 content	 provider	 you	must	 implement	 standard	 set	 of	APIs	which,
enables	other	apps	to	perform	transactions.

public	class	MyContentProvider	extends		ContentProvider	{
		
		public	void	onCreate
(){}

}

	

Additional	Components

There	 are	 a	 few	 additional	 components	 with	 which	 you	 can	 construct	 the	 mentioned
entities	above,	the	wiring	between	them	and	their	logic.	These	components	are.

	

Components Description

Fragments In	an	activity,	a	portion	of	the	user	interface	is	represented	by	fragments.

Views All	the	on-screen	drawn	UI	elements,	including	lists	forms,	buttons	etc.

Layouts These	 are	 the	 view	 hierarchies	 that	 control	 the	 appearance	 and	 screen
format	of	the	views.

Intents These	are	the	messages	that	wire	the	components	together.

Resources Resources	 are	 the	 external	 elements	 like	 drawable	 pictures,	 strings	 and
constants.

Manifest Manifest	is	the	application’s	configuration	file.

	
	

	

Chapter	3:	Android	Software	Development
	

The	android	software	development	is	nothing	but	a	process	with	which	you	can	create	new
applications	 for	 the	 android	 operating	 system.	Usually,	 Java	 is	 used	 for	 developing	 the
applications	with	the	android	SDK.	Don’t	worry	if	you	are	not	a	Java	user.	There	are	many
other	development	environments	available.	The	android	SDK	consists	of	a	comprehensive
set	 of	 tools	 for	 developing.	 These	 include	 libraries,	 debugger,	 QEMU	 based	 handset
emulator,	 tutorials,	sample	code	and	documentation.	The	development	platforms	that	are
supported	 currently	 include	 systems	 running	 on	 the	 Linux	 (any	 desktop	 distribution),
Windows	XP	or	a	later	and	Mac	OS	X	10.5.8	or	later.	For	editing	the	XML	and	Java	files,
developers	 can	 make	 use	 of	 any	 text	 editor	 and	 later	 use	 the	 command	 line	 tools	 for
creating,	 building	 and	 debugging	 the	 android	 apps.	The	 developers	 can	 also	 control	 the
attached	android	devices.	For	using	the	command	line	tools,	the	Apache	Ant	and	the	Java
Development	Kit	are	required.

	

With	 the	 android	 platform	 development,	 the	 enhancements	 to	 the	 android	 software
development	 kit	 go	 hand-in-hand.	 In	 cases	 where	 the	 developers	 wish	 to	 develop
Applications	 for	previous	versions	of	android,	 they	can	use	 the	previous	versions	of	 the
android	platform.	They	are	supported	by	the	SDK	as	well.	The	development	tools	can	be
downloaded	and	for	compatibility	testing,	previous	versions	of	the	platforms	and	tools	can
be	downloaded	after	the	latest	versions.

	

The	android	apps	will	be	packed	in	.apk	format.	And	they	will	be	stored	under	the	folder
/data/app	on	the	android	operating	system.		For	security	purposes,	this	folder	can	only	be
accessed	by	the	root	user.	The	APK	package	consists	of	the	resource	files,	.dex	files,	etc,.
The	.dex	files	are	compiled	in	bytecode	and	are	called	the	Dalvik	executables.

	

Android	SDK

We	all	 know	 that	 android	 operating	 system	 is	 an	 open	 source.	 It	means	 that	 the	 source
code	 of	 the	 android	 operating	 system	 is	 available	 to	 all	 and	 it	 is	 called	 as	 the	Android
SDK.	Anyone	can	download	 it,	work	on	android	and	build	a	number	of	different	ways.
There	is	no	need	to	download	all	of	it	if	you	only	wish	to	develop	an	android	application.
You	can	use	the	Android	Developer	Tools	ADT	plug-in	in	the	Eclipse	IDE.	You	can	select
a	specific	SDK	and	install	it.	You	can	launch	emulators,	create	projects	and	can	debug.

	

Memory	Requirements

Before	starting	a	project,	it	is	wise	to	look	at	the	memory	requirements.	The	android	SDK
is	8.5GB	in	size	and	for	building	it,	you	will	need	a	free	space	of	30GB.

	

Prerequisite	Installations

Before	 downloading	 the	 software	 development	 kit	 and	 are	 starting	 the	 cross	 compiling
there	 are	 a	 few	 prerequisites	 that	 you	 need	 to	 have.	You	 should	 send	 them	 first	 before
using	 the	 software	 development	 kit	 software.	 Compared	 to	 debugging,	 prevention	 is	 a
much	better	option.	Android	software	development	is	the	android	version	that	we	will	be
using.

	

Android	software	development

The	android	software	development	is	nothing	but	a	process	with	which	you	can	create	new
applications	 for	 the	 android	 operating	 system.	Usually,	 Java	 is	 used	 for	 developing	 the
applications	with	the	android	SDK.	Don’t	worry	if	you	are	not	a	Java	user.	There	are	many
other	development	environments	available.	The	android	SDK	consists	of	a	comprehensive
set	 of	 tools	 for	 developing.	 These	 include	 libraries,	 debugger,	 QEMU	 based	 handset
emulator,	 tutorials,	sample	code	and	documentation.	The	development	platforms	that	are
supported	 currently	 include	 systems	 running	 on	 the	 Linux	 (any	 desktop	 distribution),
Windows	XP	or	a	later	and	Mac	OS	X	10.5.8	or	later.	For	editing	the	XML	and	Java	files,
developers	 can	 make	 use	 of	 any	 text	 editor	 and	 later	 use	 the	 command	 line	 tools	 for
creating,	 building	 and	 debugging	 the	 android	 apps.	The	 developers	 can	 also	 control	 the
attached	android	devices.	For	using	the	command	line	tools,	the	Apache	Ant	and	the	Java
Development	Kit	are	required.

With	 the	 android	 platform	 development,	 the	 enhancements	 to	 the	 android	 software
development	 kit	 go	 hand-in-hand.	 In	 cases	 where	 the	 developers	 wish	 to	 develop
Applications	 for	previous	versions	of	android,	 they	can	use	 the	previous	versions	of	 the
android	platform.	They	are	supported	by	the	SDK	as	well.	The	development	tools	can	be
downloaded	and	for	compatibility	testing,	previous	versions	of	the	platforms	and	tools	can
be	downloaded	after	the	latest	versions.

The	android	apps	will	be	packed	in	.apk	format.	And	they	will	be	stored	under	the	folder

/data/app	on	the	android	operating	system.		For	security	purposes,	the	root	user	can	only
access	this	folder.	The	APK	package	consists	of	the	resource	files,	.dex	files,	etc,.	The	.dex
files	are	compiled	in	bytecode	and	are	called	the	Dalvik	executables.

	

Android	Debug	Bridge

The	Android	Debug	Bridge	or	the	ADB,	in	short	is	nothing	but	a	toolkit,	which	is	included
in	the	software	development	kit	package	for	android.	This	toolkit	contains	both	the	client
side	 and	 server	 side	 programs	 which	 can	 communicate	 with	 each	 other.	 The	 Android
Debug	Bridge	can	be	accessed	using	the	command	line	interface	and	a	number	of	GUIs.
Most	 of	 the	 developers	 only	 use	 the	 command	 line	 interface	 for	 accessing	 the	Android
Debug	Bridge.	For	issuing	commands,	the	following	format	is	used:

adb	[-d|-e|-s	<serialNumber>]	<command>

	

Fastboot

Diagnostic	 protocols	 are	 used	 for	 modifying	 the	 flash	 file	 system.	 Fastboot	 is	 such
diagnostic	 protocol.	 It	 is	 included	 in	 the	 software	 development	 kit	 package	 and	 it	 is
primarily	used	for	modifying	the	flash	filesystem.	This	is	done	through	a	USB	connection
from	the	host	system.	For	this,	the	device	must	be	started	on	a	Secondary	Program	Loader
mode	or	 in	a	boot	 loader.	Here,	only	the	basic	hardware	 initialization	can	be	performed.
Once	 the	 protocol	 is	 enabled	 on	 the	 device,	 it	 will	 accept	 a	 specific	 set	 of	 commands
which	can	be	sent	through	a	USB.	These	commands	will	be	sent	using	a	command	line.
Here	are	some	of	the	fastboot	commands,	which	are	frequently	used.

flash:	Flash	will	rewrite	a	partition	using	the	binary	image	which	is	stored	on	the
host	system.
erase:	Using	erase,	specific	partitions	can	be	erased.
reboot:	The	reboot	command	is	used	for	rebooting	the	device	into	its	boot	loader	or
into	the	main	OS	(the	recovery	partition	of	the	system).
format:	This	command	 is	used	 for	 formatting	a	 specific	partition.	For	 formatting,
the	partition’s	file	system	must	be	a	recognized	one.
devices:	 The	 device	 command	 will	 display	 the	 list	 of	 all	 the	 devices	 that	 are
connected	to	the	host	system	along	with	their	serial	numbers.

	

Android	Native	Development	Kit	(NDK)

Libraries	can	be	written	in	programming	languages	like	C,	C++	and	others,	these	libraries
can	 be	 compiled	 to	Microprocessor	without	 Interlocked	 Pipeline	 Stages	 (MIPS),	Acorn
RISC	Machine	(ARM)	or	the	x86	native	code.	These	compiled	library	is	can	be	installed
by	using	the	NDK.	From	the	Java	code,	the	native	classes	can	be	called	under	the	Dalvik
VM,	by	making	use	of	the	System.loadLibrary	call.	The	System.loadLibrary	call	is	a	part
of	the	standard	Android	Java	classes.

Are	using	the	traditional	development	tools,	you	can	compile	and	install	the	applications.
According	to	the	documentation,	the	native	development	kit	should	not	be	solely	used	for
application	development	as	the	developer	only	uses	C	or	C++.	This	will	only	increase	the
complexity	and	most	of	the	apps	would	not	benefit	using	it.

The	android	debug	Bridge	allows	you	to	use	a	root	shell	with	the	android	emulator.	With
this,	 you	 can	 upload	 and	 execute	 of	 the	 native	 code	 of	 x86,	MIPS	 and	ARM.	You	 can
compile	the	native	code	using	the	Intel	C++	compiler	or	GCC	if	you	are	using	a	common
PC.	 However,	 running	 this	 native	 code	 without	 using	 non-standard	 to	 C	 libraries	 is
complicated.	Skia	Graphics	Library	 (SGL),	 is	 the	graphic	 library	used	 to	 control	 access
and	arbitrate	 the	device.	This	 is	also	 released	under	 the	open	source	 license.	The	UNIX
and	Win32	 support	 Skia.	With	 this,	 cross-platform	 application	 development	 is	 possible.
This	is	also	the	graphics	engine	used	with	the	Google’s	Google	chrome	Web	browser.

The	 native	 development	 Kate	 is	 completely	 based	 on	 the	 command	 line	 tools.	 This	 is
different	from	the	Java	application	development,	which	is	based	on	IDE’s	like	eclipse.	The
command	 line	of	 the	native	development	 kit	 should	be	manually	 in	 deploying,	 building
and	 debugging	 the	 applications.	 There	 are	 a	 number	 of	 third-party	 tools	 that	 allow	 the
integration	of	the	native	development	kit	with	Visual	studio	and	Eclipse.

	

Android	Open	Accessory	Development	Kit

The	android	platform	3.1,	which	is	also	back	ported	to	the	platform	2.3.4,	introduced	the
android	open	accessory	support.	With	this,	external	hardware	like	USB	can	interact	with
the	 devices	 powered	 by	 android.	 For	 this,	 the	 device	 should	 be	 used	 in	 the	 accessory
mode.	When	 a	 device	 running	on	 android	 is	 used	 in	 the	 accessory	mode,	 the	 accessory
connected	 to	 it	 acts	 like	 the	 USB	 device.	 The	 USB	 exercise	 of	 android	 designed
specifically	to	attach	the	devices	running	on	android	with	a	simple	protocol	that	allows	the
detection	of	android	devices	supporting	the	accessory	mode.

	

Native	Go	support

From	 the	 1.4	 version	 of	 the	 programming	 language	 Go,	 Application	 development	 for
android	without	requiring	Java	code	is	supported.	However,	you	are	restricted	to	use	a	set
of	APIs.

	

Third-party	development	tools
	

App	Inventor	for	Android

The	app	inventor	for	android	is	a	visual	development	environment	based	on	the	web.	This
is	for	novice	programmers.	The	app	inventor	for	android	is	based	on	the	Open	Blocks	Java
Library	 of	MIT.	 This	 can	 provide	 access	 to	 the	 phone	 functions,	 GPS,	 orientation	 and
accelerometer	 data,	 speech	 to	 text	 conversion,	 web	 services,	 text	 messaging,	 persistent

https://en.wikipedia.org/wiki/Skia_Graphics_Engine

storage,	contact	data	etc,.	Twitter	and	Amazon	were	initially	included	too.	Google	released
the	source	code	in	the	second	half	of	2011	and	they	terminated	its	a	web	service.

	

Basic4android

Basic4android	 is	 a	 product	 commercially	 available	 in	 the	market.	 This	 is	 similar	 to	 the
simple	 and	 is	 inspired	 by	 the	 visual	 studio	 and	 a	Visual	Basic	 6	 of	Microsoft.	Android
programming	 is	 made	 simpler	 for	 Microsoft	 Visual	 Basic	 programmers	 who	 find	 it
difficult	to	code	in	Java.	Basic4android	has	a	very	strong	online	community	because	of	its
activeness.	Many	developers	offer	online	help	in	the	community.

	

Corona	SDK

The	corona	the	founder	of	Corona	labs	Inc	creates	SDK…	He	is	Mr.	Walter	Luh.	Using
the	Corona	Software	Development	Kit,	programmers	can	develop	applications	for	android
and	iOS	devices	like	iPad	and	iPhone.

By	 making	 use	 of	 the	 corona	 SDK	 Lua	 language,	 developers	 can	 create	 graphical
applications.	The	Lua	language	is	integrated	with	the	SDK.	It’s	a	language	is	on	top	of	the
openGL/C++	 layers.	 A	 subscription	 based	 purchased	 model	 is	 used	 by	 the	 SDK.	 No
branding	charges	or	per	app	royalty	are	required.

	

Delphi

You	 can	 use	 Delphi	 for	 creating	 object	 Pascal	 android	 applications.	 Embarcadero
developed	the	latest	Delphi	version	XE8.

	

HyperNext	Android	Creator

If	 you	 are	 a	 software	 developer	who	 is	 not	 very	 good	 at	 Java	 or	 if	 you	 cannot	 use	 the
Android	 SDK,	 you	 can	 create	 your	 own	 android	 applications	 using	 the	 software
development	system	called	 the	HyperNext	Android	Creator.	This	development	system	is
mainly	 aimed	 for	 programming	beginners.	We	all	 know	 that	 the	 applications	on	mobile
only	display	one	window	at	 a	 time.	This	 software	development	 system	 is	 based	on	 that
principle.	 It	makes	use	of	 the	HyperCard.	HyperCard	 treats	given	software	as	a	stack	of
cards.	At	a	given	point	of	time,	only	a	single	card	can	be	visible.	This	makes	it	suitable	for
mobile	applications.	The	main	programming	language	of	the	HyperNext	Android	Creator
is	 called	 HyperNext.	 HyperNext	 is	 based	 loosely	 on	 the	 HyperTalk	 language	 of
HyperCard.	It	is	English	like	interpreted	language.	It	offers	many	features	which	allow	the
developers	 in	 creating	 android	 applications.	 The	 HyperNext	 android	 creator	 supports	 a
wide	 range	 of	 android	 SDK	 which	 includes	 their	 own	 version	 of	 the	 graphical	 user
interface	control	types.	This	will	run	as	a	background	service	of	its	own	in	the	background
so	that	the	applications	can	process	information	and	continue	running	in	the	background.

https://en.wikipedia.org/wiki/Basic4android
https://en.wikipedia.org/wiki/Basic4android

	

Kivy

Kivy	is	natural	user	interface	application	software	used	for	developing	touch	applications.
This	is	a	python	library	and	is	open	source.	Using	Kivy,	it	is	possible	to	maintain	a	single
application	for	multiple	operating	systems.	This	follows	the	code	once	and	run	everywhere
concept.	 Kivy	 includes	 Buildozer,	 which	 is	 the	 development	 tool	 custom	 built	 for
deploying	mobile	apps.	Buildozer	is	only	available	for	the	Linux	operating	system.	It	is	an
alpha	software	and	compare	 that	 to	 the	older	deployment	methods	of	Kivy,	 it	 is	 far	 less
cumbersome.	 The	 applications	 that	 are	 programmed	 using	 Kivy	 can	 be	 used	 on	 any
mobile	App	distribution	platform	for	android.

	

Lazarus

You	can	develop	applications	using	the	object	Pascal	with	the	Lazarus	IDE.	This	is	based
on	the	Pascal	compiler	from	the	version	2.7.1.	This	is	available	free	of	cost.

	

Processing

This	 is	 a	 processing	 environment	 that	 uses	 Java.	 It	 started	 its	 support	 from	 the	 android
version	 1.5.	 You	 can	 use	 the	 Ketai	 library	 for	 integrating	 with	 the	 sensors	 and	 device
camera.

	

Qt	for	Android

The	Qt	is	a	framework	that	can	work	on	multiple	platforms	and	it	can	target	platforms	like
LINUX,	windows,	Sailfish	OS	and	android.	The	application	development	of	Qt	is	done	in
the	standard	QML	and	C++.	Qt	requires	both	the	android	SDK	and	NDK.

	

RubyMotion

For	writing	need	to	mobile	applications	in	Ruby,	the	RubyMotion	tool	chain	can	be	used.
From	 the	 3.0	 version	 of	 RubyMotion,	Android	 is	 supported.	 The	 entire	 set	 of	 the	 Java
android	APIs	can	be	called	by	 the	RubyMotion	Android	applications	from	Ruby.	Third-
party	Java	libraries	can	be	used	and	these	are	compiled	into	machine	code	statistically.

	

SDL

Besides	Java,	the	SDL	library	also	offers	the	development	possibilities	for	C	programming
and	simple	porting	for	native	C	applications	and	existing	SDL.	By	injecting	JNI	and	small
Java	shim,	it	is	possible	to	use	the	native	SDL	code.	This	allows	ports	like	the	video	game
Jagged	Alliance	2.

	

https://en.wikipedia.org/wiki/RubyMotion

Visual	Studio	2015

The	cross	platform	development	 is	 supported	by	 the	2015	Visual	studio.	With	 this,	C++
developers	 can	 create	 the	 projects	 using	 templates	 for	 the	 android	 native	 activity
applications.	 High-performance	 shared	 libraries	 can	 also	 be	 created	 and	 these	 can	 be
included	in	other	solutions.	Devices	deployment,	platform-specific	IntelliSense,	emulation
and	breakpoints	are	some	of	its	features.

	

Xamarin

Using	a	C#	shared	CodeBase,	the	developers	can	use	the	Xamarin	for	writing	the	native
android	 applications	 with	 native	 UI.	 Xamarin	 also	 shares	 the	 code	 across	 different
platforms.

	

Java	standards

Android	OS	doesn’t	use	the	Java	SE	and	ME,	which	are	established	Java	standards.	This
fact	is	an	obstacle	to	development.	The	compatibility	of	the	Java	applications	designed	for
other	 platforms	 is	 not	 possible.	 Android	 reuses	 the	 syntax	 and	 semantics	 of	 the	 tower
language.	Though	it	uses	them,	it	doesn’t	support	the	APIs	and	full	class	libraries	with	the
Java	ME	or	SE.	You	can	add	Java	MA	to	the	conversion	services	of	android	using	some
tools.	These	 tools	are	 released	 into	 the	market	by	companies	 like	UpOnTek	and	Myriad
group.

Rooting

Rooting	can	be	defined	as	the	process	which	provides	the	uses	of	tablets,	smartphones	and
other	 devices	 which	 runs	 on	 the	 android	 mobile	 OS,	 which	 gives	 the	 users	 privileged
control	 for	 different	 android	 systems.	This	 control	 is	 called	 root	 access.	As	 the	 android
operating	system	is	based	on	the	Linux	kernel,	similar	administrator	permissions	will	be
given	after	rooting	an	android	device.

If	 you	wish	 to	 overcome	 the	 limitations	 set	 by	 the	 carriers	 or	 hardware	manufacturers,
android	rooting	is	the	thing	to	do.	You	can	replace	or	alter	the	settings	and	applications	by
rooting.	You	will	have	permissions	at	admin	level	with	which	you	can	perform	operations
that	 cannot	 be	 performed	by	 normal	 users.	With	 the	 recent	 release,	 you	 can	 completely
replace	or	remove	the	operating	system	on	the	device	using	rooting.

Many	people	 think	 that	 rooting	 is	equivalent	 to	 jail	breaking	 the	Apple	 iOS.	This	 is	not
true	and	they	are	two	completely	different	concepts.	Jail	breaking	gives	the	users	access	to
prohibited	areas	which	may	include	modification	of	the	OS,	installing	applications	by	side
loading,	which	are	not	officially	approved	etc,.	On	the	other	hand,	android	routing	grants
the	user	with	elevated	admin	level	privileges.	Only	a	few	of	the	android	devices	prohibit
users	from	accessing	the	boot	loaders.	Most	of	the	vendors	like	Sony,	Google,	Asus	and
HTC	provide	 the	 ability	 to	 unlock	 the	 device	 explicitly.	The	users	 can	 even	 change	 the
operating	system	of	the	device	entirely.

Routing	allows	all	the	applications	installed	by	the	user	to	run	the	privileged	commands.
These	 privileged	 commands	 are	 not	 available	 for	 stock	 configuration	 devices.	 Rooting
requires	 potentially	 dangerous	 and	 advanced	 operations	 like	 deleting	 or	 modifying	 the
system	files,	uninstalling	manufacturer	or	carrier	 installed	applications	and	accessing	the
hardware	 (calibrating	 touch	 input,	 controlling	 status	 lights	 or	 rebooting).	 Any	 typical
rooting	installation	 installs	super	user	application.	This	super	user	application	supervises
all	the	other	applications	which	are	granted	with	the	super	user	or	root	rights.	Request	for
approval	will	be	granted	for	user	for	permissions.	The	device’s	boatload	patient	will	also
be	unlocked	and	it	is	required	to	replace	all	remove	the	operating	system	installed.

Compared	 to	 the	 jail	 breaking	of	 iOS,	Android	 routing	 is	 not	 necessary	 for	 running	 the
applications	published	by	developers	outside	the	play	store.	This	is	sometimes	called	side
loading.	This	feature	is	supported	by	the	android	operating	system	into	ways.	They	are	by
the	Android	Debug	Bridge	and	by	the	unknown	sources	option	present	in	the	settings.

Android	 routing	 allows	 the	 users	 to	 delete	 or	modify	 the	 system	 files.	 This	 allows	The
users	to	use	applications	which	require	root	access	and	to	perform	various	tweaks.

	

Advantages

Complete	control	over	the	feel	and	look	of	the	device	one	of	the	advantages	included	in
android	rooting.	The	user	will	become	a	super	user	and	he	is	allowed	to	access	the	system
files	on	the	device	and	he	can	also	customize	the	aspects	of	the	OS.	The	only	limitation	is
the	coding	expertise.	The	following	are	the	expected	advantages	of	android	rooting.

	

Super	users	are	given	full	theming	capabilities.	It	means	that	they	can	change	everything
from	the	look	of	Dialer,	the	look	of	the	contact	list,	colors	and	themes,	notification	lights,
battery	indicator	color	and	even	the	format	of	videos	that	he	can	play	on	the	device	while
the	device	boots.

The	user	gets	full	control	of	the	kernel	and	CPU.

Full	 control	 to	 the	 applications	 will	 be	 given	 which	 include	 the	 capability	 to	 restore,
backup,	remove	pre-installed	bloat	ware,	edit	batch	applications	etc,.

Applications	like	Tasker	can	be	used	for	automating	the	processes	on	the	device.

Android	rooting	permits	the	users	to	install	their	own	custom	firmware.	Custom	firmware
provides	 additional	 control	 on	 the	 device.	 Since	 the	 android	 operating	 system	 is	 open
source,	any	programmer	with	good	skills	can	customize	their	version	of	android.

	

Android	Dev	Phone

The	Android	Dev	Phone,	ADP,	is	nothing	but	a	boot	loader	unlocked	and	SIM	unlocked
device	running	on	android	designed	for	advanced	developers.	Developers	can	purchase	the
regular	android	devices	available	in	the	market	and	can	use	them	to	test	 the	applications

that	they	have	developed.	Most	of	the	developers	do	not	go	with	devices	on	the	market	as
they	are	locked.	Most	of	the	developers	prefer	using	an	unlocked	device.	The	Nexus	series
of	Google	is	now	providing	the	development	phones.	The	Nexus	devices	available	come
with	good	hardware	configurations.

Applications	 that	 are	 distributed	 on	 the	 Google	 play	 store	 can	 be	 copyrighted	 by	 the
publisher.	This	will	 prevent	 users	 from	using	 the	 application’s	 source	 code.	This	 action
will	 be	disabled	 in	 the	 case	of	 the	Android	Dev	Phones	 as	 they	 come	with	unrestricted
access	 to	 the	 operating	 system.	 Applications	 with	 copyright	 protection	 will	 not	 be
displayed	on	the	Google	play	store	for	the	Android	Dev	Phones.

You	can	start	developing	your	android	application	on	any	of	the	following	OSs.

Microsoft	Windows	XP	or	later	version.
Mac	OS	X	10.5.8	or	later	version	with	Intel	chip.
Linux	including	GNU	C	Library	2.7	or	later.

For	developing	android	applications,	you	will	be	requiring	all	the	tools	and	these	tools	are
available	free	of	cost	and	you	can	download	them	from	the	web.	The	list	of	software	that
are	required	for	android	application	programming	are	given	below.

Android	Development	Tools	(ADT)	Eclipse	Plug-in	(optional)
Java	Runtime	Environment	(JRE)	6
Java	JDK5	or	later	version
Android	SDK
Android	Studio
Eclipse	IDE	for	Java	Developers	(optional)

The	Eclipse	plug-in	and	the	eclipse	IDE	are	optional.	Using	them	on	the	system	running
Windows	 operating	 system	 will	 be	 helpful	 with	 the	 application	 development	 based	 on
Java.

Chapter	4	–	How	to	Become	an	Android	App	Developer	from	Scratch
	

You	 can’t	 just	 sit	 down	 one	 day	 and	 decide	 that	 you	 are	 going	 to	 develop	 and	 app	 for
Android.	There	are	certain	things	you	must	do	to	prepare	yourself,	so	here	goes:

	

1.	 Learn	How	a	Computer	Works

This	 is	 one	 of	 these	 unavoidable	 steps	 because,	 let’s	 face	 it,	 if	 you	 are	 going	 to	 be
developing	apps,	you	need	to	have	some	idea	of	how	a	computer	works.	Now,	you	don’t
need	to	know	everything	but	you	do	need	to	know	how	the	computer	actually	works,	how
a	program	works,	what	that	program	is	made	of	and	you	need	to	understand	some	of	the
basic	terminology	used	in	the	industry	–	bits,	bytes,	conditionals,	loops,	etc.	So,	your	first
step	is	to	do	a	little	research	and	familiarize	yourself	with	these	things.

	

2.	 Learn	Object	Oriented	Programming	and	Java

In	the	first	step,	you	should	have	learned	some	of	the	basics	so	now	it’s	time	to	dig	that
little	 bit	 deeper	 and	 find	 out	 how	 today’s	 programs	 have	 been	 written	 with	 speed	 and
efficiency	 in	 mind.	 You	 must	 learn	 Java	 programming	 because	 that	 is	 the	 core	 of	 the
Android	language.

	

Java	is	widely	used	so	you	won’t	find	it	difficult	to	get	a	handle	on	it	and,	once	you	have
learnt	some	it,	move	on	to	object	oriented	programming.	When	you	understand	how	both
of	these	work,	you	are	ready	to	start	narrowing	it	down	to	the	world	of	Android.

	

3.	 The	Android	SDK	and	the	Developers	Website

You	 now	 know	 a	 bit	 about	 how	 computers	 and	 programs	 work	 and	 you	 have	 learnt
something	about	Java	and	object	oriented	programming.	You	are	now	ready	to	get	into	the
finer	 points	 of	 developing	 an	 app	 for	 Android.	 One	 of	 the	 best	 things	 about	 Android
development	is	that	just	about	everything	you	need	is	packaged	up	neatly	into	one	SDK	or
Software	Development	Kit.	Like	other	platforms,	Android	also	comes	with	an	optimized
IDE	–	Integrated	Development	Environment	so	all	you	need	to	do	is	familiarize	yourself
with	the	methods	and	the	tools	that	Android	supplies	you.

	

The	most	important	thing,	something	that	is	very	effective,	is	learning	what	you	can	about
Android’s	architecture.	Each	platform	is	different	in	the	way	it	does	things	so	you	should
get	yourself	up	to	scratch	with	the	basics	–	it	will	help	your	efficiency	and	code	writing	in
the	future	as	well.

	

4.	 Practice	Makes	Perfect

Nothing	will	improve	your	skills	as	much	as	doing	as	many	projects	as	you	possibly	can.
Any	time	you	want	to	learn	something,	set	up	a	project	and	start	looking	at	it	in	parts.	That
way	 you	 will	 learn	 more	 and	 you	 can	 apply	 to	 the	 project	 directly	 from	 the	 learning
materials	that	are	supplied	for	you.	Not	only	will	this	give	you	a	learning	edge,	it	will	also
save	you	time.
	

Chapter	5	-	Getting	Started
	

So,	how	do	you	go	about	developing	for	Android?	First,	let’s	look	at	the	overview:

	

You	will	write	your	program,	whatever	you	want	your	app	to	do.	These	are	written
in	Java	and	then	your	layout	is	designed,	depending	on	how	you	want	that	app	to
look,	in	XML	files.
When	your	app	is	ready,	you	will	be	able	to	use	a	supplied	build	tool	to	put	all	the
files	together	into	one	.apk	file.	This	is	what	will	run	on	your	Android	device	and	is
what	you	send	to	Google	Play	for	acceptance	into	the	store.
Every	file	that	you	produced	is	manage	through	the	IDE	and	this	is	also	where	you
can	edit	code	files	as	well	as	managing	all	of	your	projects.
Eclipse	used	to	be	the	IDE	for	Android	but	this	is	gradually	being	phased	out	and
replaced	by	Android	Studio,	owned	by	Google

	

That’s	a	basic	overview	so	let’s	get	a	deeper	look	behind	the	scenes.	The	idea	of	this	next
part	of	the	book	I	to	have	you	download	the	necessary	software	and	set	up	a	very	simple
app	to	test	it	all	out,	as	well	as	making	a	couple	of	edits	to	that	app.	This	will	give	you	a
bit	of	hands	on	experience	so	that,	when	we	get	to	actually	building	an	app	you	will	know
what	 it’s	 all	 about.	 And	 yes,	 by	 the	 end	 of	 this	 book,	 you	 will	 have	 built	 an	 app	 that
records	any	message	that	you	care	to	type,	puts	it	in	a	list	and	saves	it,	before	sharing	it.
You	will	also	learn	how	to	configure	parts	of	the	user	interface.	Before	all	that,	we	need	to
get	the	software	downloaded.

	

Installing	Android	Studio

While	you	might,	be	getting	excited	and	want	 to	 jump	straight	 in	and	write	 some	code,
you	really	need	to	get	your	environment	set	up	first.	Take	your	time	with	this	section	and
make	sure	you	follow	each	step	exactly.	Even	doing	this,	you	might	still	have	a	few	small
issues	that	you	will	have	to	troubleshoot,	depending	on	the	product	versions	you	are	using
or	your	system	configuration.

	

At	this	stage,	it	is	very	important	that	you	do	not	let	anything	stop	you	from	progressing	in
your	quest	to	learn	Android	so	take	any	setbacks	in	your	stride	and	learn	from	them	before
you	move	on	to	the	next	stage.

So,	 the	 next	 step	 is	 to	 look	 and	 see	 if	 you	 have	 the	 JDK	 –	 Java	 Development	 Kit	 –
installed.	It	might	already	be	on	your	computer;	you	just	don’t	know	it!	To	check	this	out,
you	 need	 to	 use	 Terminal	 –	 this	 is	 how	 you	 get	 to	 know	 your	 computer,	 how	 you
command	 it	 to	do	what	you	want	and	 it’s	very	easy	 to	use.	How	do	you	find	 it	on	your
computer?

	

On	a	Mac,	use	Spotlight	to	search	for	Terminal	and	choose	the	top	search	result.
On	a	PC,	click	on	Start,	Run,	type	in	cmd	and	press	enter

	

It’s	as	easy	as	that.

	

Once	the	terminal	is	open,	at	the	command	prompt,	type	java-version.	You	will	see	one	of
twothings – either	 an	 output	 that	 tells	 you	 which	 version	 of	 Java	 you	 are	 running	 or	 a
message	 that	 says	 command	not	 found	– this	means	 that	 JDK	 is	 not	 installed	 on	 your
computer.	If	it	isn ’ t,	head	to	Oracle	and	download	the	JDK.

When	you	have	done	that,	head	to	Android	Studio	and	download	the	right	version	for	the
operating	system	you	are	running.

When	 Android	 Studio	 has	 downloaded	 successfully,	 open	 it	 up.	 You	 will	 get	 a	 Setup
Wizard	popup	appear	 the	first	 time	so	click	on	Next	 to	get	 to	 the	next	screen.	You	now
need	to	choose	the	setup	type	that	you	want,	click	on	standard	and	then	click	Next.	Click
to	 accept	 the	 license	 agreements	 and	 click	Next	 for	 the	 final	 time.	Android	Studio	will
now	download	all	the	extra	bits	and	pieces	that	you	need.	This	should	take	no	more	than	a
few	minutes.

	

Make	sure	that	you	are	running	the	latest	version	of	Android	Studio	by	clicking	on	Check
for	Updates	at	the	bottom	of	the	screen.	If	any	later	versions	appear,	click	on	Update	and

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://developer.android.com/sdk/index.html

Restart.

That ’ s	it!	Android	Studio	is	installed	and	ready	for	use.

	

Chapter	6	-	The	Android	SDK	Manager
	

Each	Android	version	contains	its	own	SDK	for	you	to	use	when	building	your	app.	The
setup	wizard	will	make	sure	that	you	are	able	to	access	the	most	up	to	date	version.	Now,
one	of	the	things	the	SDK	lets	you	do	is	to	set	up	an	AVD – Android	Virtual	Device.	This
is	what	you	can	 test	your	newly	built	app	on	and	you	can	customize	 it	 to	your	personal
configuration.	We ’ ll	 talk	 more	 about	 those	 later	 on	 but,	 first,	 let ’ s	 get	 to	 grips	 with
Android	Studio.

On	the	Welcome	screen,	click	on	Configure.	You	will	now	see	a	new	menu	with	lots	of
different	 options.	 The	 one	 you	want	 is	 called	SDK	Manager	 so	 click	 on	 it	 and	 a	 new
window	will	appear,	with	a	series	of	folders	and	checkboxes,	as	well	as	statuses.

You	should	already	be	running	the	latest	version	of	the	SDK	Tools,	Platform-Tools	and	the
Build-Tools.	Look	at	the	checkbox	beside	each	of	these	tools;	f	an	update	is	available,	the
box	will	be	ticked,	and	there	will	be	a	message	in	Status	telling	you	that	there	is	another
version	and	what	it	is.

For	 the	purposes	of	 this	 tutorial,	 I	want	you	 to	download	 the	previous	Android	version,
Android	 4.4.2.	 Click	 on	 the	 box	 next	 to	 the	 icon	 for	 4.4.2,	 thus	 selecting	 the	 entire
contents	of	the	directory	for	download.	Later	on,	you	can	come	back	to	SDK	Manager	to
delete	anything	that	you	don ’ t	need.

Click	 on	 Install	 x	 Packages	 (x	 denoted	 the	 number	 of	 packages	 that	 are	 selected	 for
download).	You	will	find	this	on	the	bottom	right	hand	side	of	the	SDK	Manager.	Another
window	will	 show	 up	 and	 that	 will	 have	 a	 drop	 down	menu,	 showing	 a	 list	 of	 all	 the
packages	you	are	installing.	All	you	do	here	is	click	on	the	root	of	the	drop	down	menu
and	 click	 on	Accept	 License	 – the	 button	 is	 down	 in	 the	 bottom	 right	 of	 the	 screen.
Depending	on	the	packages	you	are	downloading,	you	might	need	to	do	this	a	number	of
times.	Lastly,	click	on	Install,	bottom	of	the	window,	to	get	your	downloads	going.

The	window	will	shut	down	and	your	items	will	begin	to	download	and	install.	Leave	it	to
complete,	without	touching	anything.	Get	used	to	doing	this – it	will	be	a	regular	thing	so
that	you	can	stay	updated	with	all	the	right	package	versions.

As	soon	as	 the	SDK	Manager	has	finished	its	work,	you	are	ready	to	start	creating	your
very	first	app	for	Android.

	

Chapter	7	-	Let’s	Create	OMG	Android
	

It’s	 time	 to	 get	 started	 on	 your	 first	 project.	We’re	 going	 to	 start	 simple,	much	 like	 the
“Hello,	World!”	program	you	often	see	beginners	creating.	We	will	follow	the	tradition	of
that	program	and	make	a	few	edits	along	the	way	so	that	the	app	will	greet	you	personally,
by	name.	By	the	time	we	have	finished	you	will	be	able	to	load	the	app	onto	your	Android
device	and	show	it	off	to	your	friends!

	

Android	Studio	 includes	a	very	nice	step-by-step	 tool	 that	will	help	you	get	 this	project
underway	so,	to	start,	form	the	Welcome	screen	in	Studio,	click	on	Start	a	New	Android
Studio	Project.	You	will	be	presented	with	a	project	creation	screen.

In	the	field	for	Application	Name,	type	in	OMG	Android.	You	can	put	your	own	name
into	 the	Company	Domain	 field.	 As	 you	 type,	 notice	 that	Package	Name	 changes	 to
make	a	reverse	domain	name,	based	on	your	Company	Domain	and	Application	Name.

This	name	is	used	as	a	unique	identifier,	so	that	your	app	can	be	found	in	amongst	all	the
others.	This	way,	the	work	that	is	done	on	the	app,	on	a	particular	Android	device,	knows
its	 particular	 source	 and	 there	 is	 no	 confusion	 between	 two	 apps	 that	 may	 be	 named
similarly	or	the	same.

Set	Project	Location	to	your	chosen	hard	drive	location	and	then	click	on	Next	to	go	on
to	the	next	but	of	the	project.

This	next	screen	 is	where	you	start	 to	select	 the	operating	systems	and	devices	 that	you
want	 to	 target	 your	 app	 to.	You	don ’ t	 have	 to	 build	 an	 app	 that	works	 on	 all	Android
devices;	you	could	narrow	it	down	and	make	it	just	for	tablets	and/or	smartphones	if	you
wanted	to.	For	this	tutorial,	you	are	going	to	target	an	Android	phone	and	you	will	see	that
this	option	is	already	selected	by	default,	alongside	Minimum	SDK.

The	menu	for	Minimum	SDK	sets	the	minimum	Android	version	that	is	needed	for	your
app	to	run.	When	you	do	your	own	projects,	selecting	the	value	is	a	balancing	act	between
the	devices	you	want	your	app	 to	 support	 and	 the	SDK	capabilities	 that	you	want.	This
time,	we	will	stick	with	using	the	default	selection,	API	16 – Android	4.1	Jelly	Bean.

Click	on	Next	and	another	screen	will	appear,	to	let	you	choose	an	activity	for	your	app.
Think	 of	 the	 activity	 as	 being	 a	 window	 in	 your	 app	 that	 shows	 content	 that	 the	 user
interacts	with.	The	activity	can	be	a	popup	or	it	can	be	an	entire	window.

On	this	template,	the	range	of	activities	goes	from	a	blank	one	that	has	an	Action	Bar	to
one	that	includes	an	embedded	Map	View.There	will	be	a	lot	of	these	so	it ’ s	good	to	get
used	to	them.

For	this	project,	select	Blank	Activity	and	then	click	Next.

You	are	now	on	 the	 last	 screen	before	you	start	 to	get	 into	 the	actual	coding.	To	hasten
things	a	long	a	little,	we	will	use	the	pre-populated	default	values	but	first,	let ’ s	look	at
what	is	done	with	the	values:

Activity	Name – this	gives	your	activity	a	name	that	can	be	referred	to	in	the	code.
Once	 you	 have	 finished	with	 the	 project	 setup,	 Studio	 is	 going	 to	 create	 a	 .java
class	and	the	contents	of	the	Activity	Name	is	what	will	give	that	class	its	name.
Layout	 Name – Your	 activity	 is	 going	 to	 be	 defined	 in	 Java	 but	 the	 layout	 is
defined	in	an	Android	XML.	We	will	be	talking	about	those	later	on.

Click	on	Finish	and	Studio	will	go	off	and	do	some	stuff	behind	the	scenes	to	create	your
first	 project.	 Every	 now	 and	 again,	 it	 will	 throw	 out	 some	 descriptions	 and	 you	might
notice	your	project	name	and	also	a	word	that	says	Gradle	and	Maven.One	of	the	biggest
benefits	to	using	Studio,	or	other	modern	IDE ’ s	is	that	much	is	done	for	you.	However,	it
is	 still	 a	good	 idea	 to	 learn	 exactly	what	 these	 things	mean	 so	you	know	what	Android
Studio	is	doing:

Gradle	-	this	is	a	new	build-tool	that	is	dead	easy	to	use.	It	has	a	lot	of	advanced
options	 for	 those	who	want	 to	dig	deeper.	Gradle	 takes	your	 Java	code	and	your
XML	 layouts	 and	 creates	 an	 APK	 file	 using	 the	 latest	 build	 tools.	 You	 can
customize	 the	 configurations	 to	 created	 different	 versions	 of	 your	 app	 that	work
differently	and	you	can	also	add	in	dependencies	for	third	party	libraries.
Maven	 – this	 is	 another	 build-tool	 that	 is	 also	 easy	 to	 use.	 In	 conjunction	 with
Gradle,	you	can	add	all	kinds	of	 functionality	 in	 from	 the	Android	Development
Community.

Given	a	couple	of	minutes,	Studio	will	finish	the	build	of	your	project.	At	this	stage,	your
project	is	pretty	much	empty	but	contains	all	that	it	needs	to	be	launched	on	an	emulator	or
Android	device.

There	 are	 now	 three	 windows	 in	 Android	 Studio.	 On	 the	 left	 is	 your	 project	 folder
structure,	in	the	middle	is	a	preview	on	a	Nexus	5	of	what	your	layout	looks	like	and	the
last	 window	 shows	 the	 layout	 hierarchy	 and	 the	 attributes	 if	 part	 of	 your	 hierarchy	 is
selected.	Before	you	start	any	real	programming	though,	we	want	to	get	this	app	running.
Let ’ s	go	and	say “ Hello,	World! ”
	

Chapter	8	-	Important	Application	Files
	

The	below	topic	will	give	you	an	overview	on	some	of	the	important	application	files.

	

The	Main	Activity	File

The	main	activity	cold	is	nothing	but	MainActivity.java,	a	java	file.	This	application	file
will	modify	 your	 application	 by	 converting	 into	Dalvik	 executable.	Given	 below	 is	 the
default	code	that	is	generated	by	the	application	wizard	for	the	application	Hello	World!

package	com.example.helloworld;

import	android.os.Bundle;
import	android.app.Activity;
import	android.view.Menu;
import	android.view.MenuItem;
import	android.support.v4.app.NavUtils;

public	class	MainActivity	extends	Activity	{
		@Override
		public	void	onCreate(Bundle	savedInstanceState)	{
					super
.onCreate(savedInstanceState);
					setContentView(R.layout.activity_main);
		}
		
		@
Override
		public	boolean	onCreateOptionsMenu(Menu	menu)	{
					getMenuInflater
().inflate(R.menu.activity_main,	menu);
					return	true;
		}
}

In	this	application,	R.layout.activity_main	is	used	for	referring	the	activity_main.xml	file
present	in	the	res/layoutfolder.

The	method	onCreate()	is	one	of	the	many	available	methods	fired	during	the	loading	of
the	application.

	

The	Manifest	File

Any	 component	 that	 is	 the	 developer	 develops	 as	 a	 part	 of	 the	 application,	 must	 be

declared	 in	 the	manifest.xml.	This	 is	 it	 located	 in	 the	Application	project	directory	 root.
This	will	act	as	an	interface	between	your	application	and	the	android	operating	system.	If
your	components	are	not	declared	in	this	file,	they	won’t	be	considered	by	the	operating
system.	Here	is	an	example	showing	a	default	manifest	file.

<manifest	xmlns:android=“http://schemas.android.com/apk/res/android”
		package=“com.example.helloworld”
		android:versionCode=“1”
		android:versionName=“1.0”	>
		
		<uses-sdk
					android:minSdkVersion=“8”
					android:targetSdkVersion=“22”	/>
		
		<application
					android:icon=”@drawable/ic_launcher”
					android:label=”@
string/app_name
”
					android:theme=”@style/AppTheme”	>
					<activity
								android:name=”.MainActivity”
								android:label=”@
string/title_activity_main
”	>
					
								<intent-filter>
											<action	android:name=“android.intent.action.MAIN”	/>
											<category	android:name=“android.intent.category.LAUNCHER”/>
								</intent-filter>
					
					</activity>
					
		</application>
</manifest>

	

In	this	example,	<application>…</application>	tags	are	used	for	enclosing	the	application
related	 components.	 The	 android:icon	 find	 the	 available	 application	 icon	 present	 in	 the
res/drawable-hdpi.	An	image	named	ic_launcher.png	will	be	used	by	the	application.	This
image	will	be	present	in	the	drawable	folders.

The	tag	<activity>	is	used	for	specifying	an	activity.	The	attribute	android:name	is	it	used
for	specifying	a	fully	qualified	class,	which	is	a	subclass	of	the	activity	subclass.	You	can
use	the	<activity>	tags	for	specifying	the	multiple	activities.

The	action	 for	 the	 intent	 filter	 is	named	android.intent.action.MAIN	 to	 indicate	 that	 this
activity	 serves	 as	 the	 entry	 point	 for	 the	 application.The	 category	 for	 the	 intent-filter	 is
named	 android.intent.category.LAUNCHER	 to	 indicate	 that	 the	 application	 can	 be
launched	from	the	device’s	launcher	icon.

The	 @string	 refers	 to	 the	 strings.xml	 file	 explained	 below.Hence,
@string/app_namerefersto	 the	 app_name	 string	 defined	 in	 the	 strings.xml	 file,	 which
is”HelloWorld”.Similar	way,	other	strings	get	populated	in	the	application.

You	will	use	the	following	set	of	tags	for	specifying	various	components	of	the	Android
application	in	your	manifest	file.

<activity>elements	for	activities
<service>	elements	for	services
<receiver>elements	for	broadcast	receivers
<provider>elements	for	content	providers

	

The	Strings	File

The	file	strings.xml	is	present	in	the	folder	res/values.	All	the	text	that	your	app	uses	will
be	contained	in	that	file.	For	instance,	default	text,	labels,	buttons	and	similar	strings	will
be	contained	in	this	file.	The	strings.xml	file	is	responsible	for	the	textual	content	of	your
application.	The	default	string	file	is	shown	in	the	given	example.

<resources>
		<string	name=“app_name”>HelloWorld</string>
		<string	name=“hello_world”>Hello	world!</string>
		<string	name=“menu_settings”>Settings</string>
		<string	name=“title_activity_main”>MainActivity</string>
</resources>

	

The	Layout	File

The	layout	file,	activity_main.xml	is	available	in	the	directory	res/layout.	Whenever	your
app	is	building	its	interface,	this	file	will	be	referred.	For	changing	the	layout	of	your	app,
you	 will	 need	 to	 modify	 this	 file	 frequently.	 For	 the	 application	 hello	 world!,	 The
following	content	will	be	in	the	layout	file	by	default,	it	 is	given	in	the	examples	shown
below.

<RelativeLayout	xmlns:android=“http://schemas.android.com/apk/res/android”
		xmlns:tools=“http://schemas.android.com/tools”
		android:layout_width=“match_parent”
		android:layout_height=“match_parent”	>

		<TextView

					android:layout_width=“wrap_content”
					android:layout_height=“wrap_content”
					android:layout_centerHorizontal=“true”
					android:layout_centerVertical=“true”
					android:padding=”@dimen/padding_medium”
					android:text=”@string/hello_world”
					tools:context=”.MainActivity”	/>

</RelativeLayout>

This	is	a	simple	relativelayout	example	and	we	will	look	at	it	in	later	chapters.

An	android	control	called	TextView	is	used	for	building	the	graphical	user	interface.	It	has
many	attributes	 like	android:layout_height,	android:layout_width,	etc,	attributes	are	used
for	setting	the	height	and	width	etc.	The	@string	is	used	for	referring	the	strings.XML	file.
It	 is	 located	 in	 the	 folder	 res/values.	 The	 hello	 string	 is	 referred	 by	 the
@string/hello_world,	which	is	defined	in	the	file	strings.xml	file.	That	is	in	turn	the	“Hello
World!”.

Chapter	9	-	Running	Your	App	on	an	Emulator	or	Device

OK,	you	have	Android	studio	and	you	have	created	your	first	app.	How	are	you	going	to
run	it?	If	you	have	an	Android	device	at	your	disposal,	you	can	use	that	but	you	can	also
use	an	emulator.

Android	Studio	 includes	 the	ability	 to	set	up	a	software-based	device	on	your	computer.
This	allows	you	to	run	apps,	look	through	websites,	and	debug	your	app	and	all	sorts	of
other	things.	It ’ s	called	the	Android	Emulator.

You	can	set	up	more	than	one	emulator	on	your	computer	and	you	can	set	each	one	to	a
specific	 screen	 size	 and	 platform	 version.	 This	 is	 a	 good	 thing	 because	 the	 Android
platform	 is	 so	 diverse	 that,	 without	 this	 ability,	 you	 would	 need	 to	 have	 hundreds	 of
different	devices	in	front	of	you	for	testing	purposes.

If	 you	 followed	 the	 instructions	 for	 running	 through	 the	 setup	 wizard	 earlier,	 you	 will
already	have	an	emulator	ready	to	use.	However,	so	that	you	know	how	to,	we	are	going	to
set	up	a	new	emulator.

Click	on	AVD	Manager	– look	in	the	toolbar	for	an	icon	that	shows	the	Android	popping
up	its	head,	beside	a	device	that	has	a	purple	display.	Android	Studio	already	has	one	of
these	set	up	for	you	to	use,	you	can	see	some	details	about	it – the	type	of	emulator,	 the
CPU	instruction	set	it	uses,	and	the	API	it	uses.

To	 create	 a	 new	AVD,	 click	 on	Create	Virtual	Device.	 Now	 you	 need	 to	 make	 some
choices,	 the	 first	 one	 being	 what	 device	 type	 you	 want	 it	 to	 emulate.	 On	 the	 left	 is	 a
category	list	that	shows	all	the	different	types	of	device	that	can	be	emulated.	If	you	click
on	each	option	in	turn,	you	can	see	what	devices	are	available	in	each	category.	For	this,
we	want	to	select	a	phone-sized	device	so	click	on	Phone	category	and	the	choose	Nexus
S.	Click	on	Next.

Next,	you	have	to	decide	on	the	Android	version	you	want	to	use.	There	will	already	be	a
couple	 available	 so	 click	 on	Lollipop	 and	 check	 that	 the	ABI	column	 shows	 the	 value
x86.	This	is	to	ensure	that	the	emulator	runs	as	fast	as	it	can	on	an	x86	computer.	Click	on
Next	to	go	on	to	the	last	screen.

This	is	simply	a	confirmation	screen,	showing	your	choices	and	giving	you	the	option	to
configure	 other	 device	 properties,	 such	 as	 the	 device	 name,	 RAM	 size	 and	 startup
orientation.	For	now,	just	stick	to	the	default	selections	and	click	on	Finish.

You	have	now	created	a	new	virtual	device	to	test	out	your	app	on.

Shut	down	AVD	Manager	and	go	back	to	the	main	screen	on	Android	Studio.	There	is	just
one	final	step – click	on	Run.	The	button	looks	like	a	typical “ play ” icon.

Another	window	will	show	up	and	you	will	be	asked	to	pick	the	device	that	you	want	to
test	 the	app	on.	At	 this	stage,	you	don ’ t	have	any	devices	 running	so	you	can	start	 the
AVD	you	created	earlier.	Make	sure	the	button	for	Launch	Emulator	is	checked	and	that
your	AVD	has	been	selected	from	the	drop	down	menu;	click	on	OK.

Wait	a	while	 to	give	 the	emulator	 time	to	 load	and	be	prepared	to	have	to	do	this	a	few
times	until	the	emulator	gets	it	right.	Once	it ’ s	finished	you	will	be	able	to	see	what	there
is	of	your	app	running.

Let’s	Put	the	Personal	Touch	to	Your	App

So,	you	have	your	first	app	but,	let’s	be	honest	here,	what	I	the	one	thing	you	would	like	to
do,	something	you	would	want	to	do	with	any	of	your	work?	Put	your	name	to	it!

	

Go	to	res/values/strings.xml	and	then	double	click	on	the	file.	Now	we	are	going	to	change
the	hello_world	string	–	this	is	the	one	that	is	actually	displayed	on	your	screen	so	we	need
to	change	it	to	something	personal,	something	that	has	your	name	in	it.	Something	along
the	lines	of:

	

<string	name=“hello_world”>Darryl	is	learning	Android!</string>

	

Obviously,	you	would	insert	your	own	name	here.

	

Click	on	Run	and	when	your	 app	has	 launched,	you	will	 see	your	own	message	on	 the
screen.

	

Congratulations!	 You	 have	 successfully	 built	 an	 app,	 and	 edited	 it	 to	 show	 off	 a
personalized	message.

Chapter	10:	Organize	Resources	In	Android	Studio
	

There	are	several	other	items	that	you	can	make	use	for	building	an	android	application.
You	 can	 manage	 other	 resources	 apart	 from	 your	 application	 code,	 like	 the	 resources.
These	 resources	 include	animation	 instructions,	user	 interface	strings,	 layout	definitions,
colors,	bitmaps,	etc,.	All	of	these	resources	will	be	maintained	in	separate	subdirectories.
They	will	be	placed	in	the	directory	res/	of	your	project.

MyProject/
			src/
														main/
														java/
																MyActivity.java		
			res/
							drawable/		
											icon.png		
							layout/		
											activity_main.xml
											info.xml
							values/		
											strings.xml	
	

Alternative	Resources

Alternative	 resources	 should	 be	 provided	 by	 your	 application	 for	 supporting	 specific
device	 configurations.	For	 instance,	 alternate	drawable	 resources	 should	be	 included	 for
supporting	 different	 resolutions	 of	 different	 screens,	 you	 should	 provide	 different	 string
resources	 as	 alternatives	 for	 different	 languages.	Android	will	 detect	 the	 current	 system
configuration	 during	 runtime	 and	will	 load	 the	 required	 resources	 for	 the	 application	 to
run.

Here	is	an	example	where	the	images	are	given	specifically	for	default	screen	resolution.
Alternate	images	are	also	given	for	screens	with	higher	resolutions.

MyProject/
		src/
														main/
														java/
																MyActivity.java		
						res/
									drawable/		
											icon.png
											background.png
							drawable-hdpi/		
											icon.png
											background.png		
							layout/		
											activity_main.xml
											info.xml
							values/		
											strings.xml

	

In	the	below	example,	a	specific	layout	is	given	for	the	default	language	and	for	Arabic,
an	alternate	layout	is	given.

MyProject/
		src/
														main/
														java/
																MyActivity.java		
					res/
								drawable/		
											icon.png
											background.png
							drawable-hdpi/		
											icon.png
											background.png		

							layout/		
											activity_main.xml
											info.xml
							layout-ar/
											main.xml
							values/		
											strings.xml

	

	

Accessing	Resources

You’ll	 need	 to	 access	 different	 defined	 resources	 during	 the	 development	 of	 your
application	 in	your	XML	 file	 layout	 or	 in	 the	 app’s	 code.	This	 section	will	 explain	you
how	your	resources	can	be	accessed	in	the	two	scenarios.

	

Accessing	Resources	in	Code

After	the	compilation	of	your	Android	application,	a	class	R	will	be	generated	and	it	will
have	the	resource	IDs	for	all	of	the	available	resources	present	in	your	res/	directory.	You
can	make	use	of	the	R	class	for	accessing	those	resources	by	providing	the	resource	ID	or
by	giving	the	subdirectory	and	resource	name.		Here	is	an	example.

Example

For	accessing	res/drawable/myimage.png	and	for	setting	an	ImageView	you	will	use	 the
code	given	below.

ImageView	imageView	=	(ImageView)	findViewById(R.id.myimageview);
imageView.setImageResource(R.drawable.myimage);

The	 first	 line	 of	 the	 above	 code	 will	 use	 the	 	 R.id.myimageview	 for	 getting	 the
	ImageView	that	is	defined	with	id	myimageview	from	the	layout	file.	In	the	second	line,
the	R.drawable.myimage	is	used	for	getting	the	myimage	image.	This	will	make	the	image
available	under	the	/res	drawable	subdirectory.	Here	is	an	example.

Example

Consider	the	following	examples	where	res/values/strings.xml		has	the	given	definition.

<?xml	version=“1.0”	encoding=“utf-8”?>
<resources>
			<string		name=“hello”>Hello,	World!</string>
</resources>

Using	the	ID	msg	or	resource	ID,	text	can	be	set	on	the	TextView	object.	The	code	is
given.

TextView	msgTextView	=	(TextView)	findViewById(R.id.msg);
msgTextView.setText(R.string.hello);

Example

Consider	the	layout	res/layout/activity_main.xml	with	the	given	definition.

<?xml	version=“1.0”	encoding=“utf-8”?>
<LinearLayout	xmlns:android=“http://schemas.android.com/apk/res/android”
		android:layout_width=“fill_parent”	
		android:layout_height=“fill_parent”	

		android:orientation=“vertical”	>
		
		<TextView	android:id=”@+id/text”
					android:layout_width=“wrap_content”
					android:layout_height=“wrap_content”
					android:text=”
Hello,	I	am	a	TextView
”	/>

		<Button	android:id=”@+id/button”
					android:layout_width=“wrap_content”
					android:layout_height=“wrap_content”
					android:text=”
Hello,	I	am	a	Button
”	/>
					
</LinearLayout>

This	layout	will	be	loaded	by	the	application	code	for	an	activity.	This	will	be	loaded	in
the	method	onCreate(),	as	given	below.

public	void	onCreate(Bundle	savedInstanceState)	{
		super.onCreate(savedInstanceState);
		setContentView(R.layout.main_activity);
}

	

Accessing	Resources	in	XML

For	this	example,	we	will	consider	the	given	resource	file,	res/values/strings.xml.	A	string
resource	and	a	colour	resource	are	included	in	that	file.

<?xml	version=“1.0”	encoding=“utf-8”?>
<resources>
		<color	name=“opaque_red”>#f00</color>
		<string	name=“hello”>Hello!</string>
</resources>

You	 can	 now	use	 of	 these	 resources	 in	 the	 layout	 file	 given	 below	 and	 can	 set	 the	 text
string	and	text	color	as	follows.

<?xml	version=“1.0”	encoding=“utf-8”?>
<EditText	xmlns:android=“http://schemas.android.com/apk/res/android”
			android:layout_width=“fill_parent”
			android:layout_height=“fill_parent”
			android:textColor=”@color/opaque_red”
			android:text=”@string/hello”	/>
	

Chapter	11	-	Updating	With	the	SDK	Manager
	

This	is	going	to	work	no	matter	what	SDK	version	you	downloaded	but	it	is	good	practice
to	 keep	 your	 versions	 up	 to	 date.	To	 open	 the	SDK	Manager	 from	within	 your	 project,
click	on	the	button	that	shows	a	downward	arrow	with	an	Android	peeking	above	it.	By
the	time	you	have	completed	this	section,	you	will	have	an	app	that	has:

A	PNG	image
A	text	field	that	is	editable	so	you	can	write	a	message
A	button	that	lets	you	submit	your	input
A	text	view	that	will	display	the	last	message
A	list	displaying	all	messages
The	option	 to	 share	your	message	on	Social	Networking	 sites,	 such	as	Facebook
and	Twitter,	through	email	and	though	SMS.
A	greeting	that,	whenever	you	open	the	app,	will	retrieve	your	name

At	this	point,	you	should	have	the	“Hello,	World!”	app	open	and	running	on	your	device
or	the	emulator,	showing	off	your	personalized	message.	Let’s	take	it	to	the	next	level.

	

Getting	Started

Let’s	just	look	ahead	for	a	minute	–	the	very	first	thing	you	have	to	do	is	make	sure	that
your	 app	 is	 going	 to	 be	 as	 simple	 as	 it	 possibly	 can.	 There	 is	 no	 need	 at	 this	 stage	 to
introduce	any	extra	complexity	unless	it	is	absolutely	necessary	–	it	takes	more	time	and
more	work	and	that’s	something	you	don’t	need	at	the	moment.

	

First	of	all,	open	up	app/res/layout/activity_main.xml	–	can	you	see	 the	raw	.raw	.xml
fie?	If	you	can	all	is	well;	if	not	you	will	need	to	switch	to	Text	mode	that	you	can	do	at
the	bottom	of	the	screen.

	

All	 we	 are	 going	 to	 do	 here	 is	 get	 rid	 of	 some	 of	 the	 padding	 attributes	 that	 Studio
generates	in	your	.xml	file	automatically.	They	will	look	a	little	like	this:

	

android:paddingLeft=”@dimen/activity_horizontal_margin”
android:paddingRight=”@dimen/activity_horizontal_margin”
android:paddingTop=”@dimen/activity_vertical_margin”
android:paddingBottom=”@dimen/activity_vertical_margin”

	

Delete	all	of	these	lines;	your	activity.xml	file	should	look	like	this	now:

	

<RelativeLayout	xmlns:android=“http://schemas.android.com/apk/res/android”
xmlns:tools=“http://schemas.android.com/tools”
android:layout_width=“match_parent”
android:layout_height=“match_parent”
tools:context=”.MainActivity”>
	
<TextView
android:text=”@string/hello_world”
android:layout_width=“wrap_content”
android:layout_height=“wrap_content”	/>
	
</RelativeLayout>

	

Double	click	on	Mainactivity.java	-	you	will	find	it	on	the	left	pane	in	Studio	–	and	let’s
take	a	look	at	your	very	first	piece	of	code.	You	will	need	to	remove	the	following	lines:

	

@Override

public	boolean	onOptionsItemSelected(MenuItem	item)	{
//	Handle	action	bar	item	clicks	here.	The	action	bar	will
//	automatically	handle	clicks	on	the	Home/Up	button,	so	long
//	as	you	specify	a	parent	activity	in	AndroidManifest.xml.
int	id	=	item.getItemId();
	
//noinspection	SimplifiableIfStatement
if	(id	==	R.id.action_settings)	{
return	true;
}
	
return	super.onOptionsItemSelected(item);
}

	

Be	extra	careful	that	you	leave	the	last	curly	brace	in	place	–	this	is	the	one	that	closes	the
class.

	

Now	 that	 you	have	 finished	your	housekeeping,	 it	 really	 is	 time	 to	get	 started	 and	give
your	Activity	a	life	of	its	own.

Chapter	12	-	XML	Layout	Basics
	

Android	 layouts	are	all	 in	 the	XML	format,	which	 looks	 like	a	 tree	with	one	 root	and	a
hierarchy	of	views.	This	hierarchy	is	straightforward	and	it	is	strict	–	each	view	is	called
the	Parent	of	all	the	views	contained	in	it	and	the	Child	of	the	view	that	contains	it.

Open	up	res/layout/activity_main.xml	 –	 this	 is	where	 you	will	 see	 your	 activity	XML
here.	There	is	a	parent	called	Relative	Layout	and	a	child	called	TextView.

Have	a	look	at	TextView.	You	should	be	able	to	see	that	it	has	three	attributes	in	t	–	two	of
these	 will	 be	 in	 every	 view	 you	 will	 ever	 use	 in	 an	 Android	 layout	 and	 they	 are
layout_width	 and	 layout_height.	The	 values	 for	 both	 of	 these	 may	 take	 a	 number	 of
forms:

	

wrap_content	–	this	is	a	constant	value	that	specifies	the	view	will	be	big	enough
to	just	fit	in	what	is	required	to	go	in	it,	be	it	a	text,	image	or	child	view.
match_parent	–	this	is	another	constant	that	will	set	the	view	to	be	as	large	as	its
parent
Explicit	values	-	you	can	set	the	dimension	to	a	set	number	of	pixels,	i.e.	5px,	but
it	you	should	really	use	density	independent	pixels,	for	example	5dp.	On	a	medium
density	 device,	 a	 dp	 is	 a	 pixel.	 The	 actual	 amount	 of	 pixels	will	 scale	 for	 those
devices	that	are	designated	and	high	density,	low	density,	extra	high	density,	etc.

	

In	 other	words,	 if	 you	 used	 straight	 pixels,	 your	 views	would	 be	 all	manner	 of	 strange
sizes,	 depending	 on	whether	 the	 device	 it	 is	 on	 is	 160	 pixels	 per	 inch	 (ppi)	 or	 300,	 or
anything	in	between.	Allow	the	system	to	sort	out	the	scaling	and	use	dp.

	

The	third	attributes	called	text	and	this	is	when	the	text	that	will	be	displayed	is	specified.
This	is	an	excellent	example	of	how	a	different	view	will	respond	to	a	different	attribute.
If	you	added	in	a	text	attribute	to	Space	or	a	RelativeLayout,	it	would	make	no	difference
whatsoever	because,	they	would	not	know	what	to	do	with	it,	unlike	the	TextView,	which
would.

	

However,	the	attribute	value,	@string/hello_world	is	not	what	is	on	show,	Whatever	you
specify	 n	 the	 layout	 file	 does	 not	 translate	 to	 the	 string	 that	 s	 displayed,	 instead	 it	 is	 a
string	ID	that	identifies	the	proper	text.	This	way,	you	can	keep	all	of	your	app	copy	in	one
single	place	–	in	res/values/strings/xl.

Next,	we	are	going	to	look	at	the	RelativeLayout	parent	node	in	XML.

	

Relative	Layouts

When	Android	Studio	created	your	default	project,	it	set	you	up	with	a	very	useful	layout,
called	RelativeLayout.	This	is	the	parent	layout	and	the	TextView	element	is	the	child.

	

Linear	Layouts

LinearLayout	should	have	specified	orientations,	either	vertical	or	horizontal.	Once	that
has	been	done,	it	will	line	up	all	of	its	children	in	the	chosen	orientation,	in	the	order	the
XML	specifies.

	

LinearLayout	children	do	not	respond	to	attributes	like	Layout_toRightOf;	instead,	they
will	 respond	 to	 layout_weight	 and	 layout_gravity.	When	you	 specify	 a	 layout_weight
you	are	expanding	the	view	to	a	set	proportion	of	the	parent.	In	this	way,	the	weight	of	the
parent	 is	equal	 to	 the	sum	of	all	 the	child	weights.	Confused?	Read	on	and	I	will	 try	 to
explain	this	a	bit	better.

	

Look	at	how	the	height	of	 the	parent	view	is	split	between	all	 the	child	views,	based	on
whatever	weight	is	assigned	to	a	particular	child.	If	you	were	to	assign	a	layout_gravity
to	 a	 view,	 you	 would	 be	 setting	 the	 vertical	 and	 horizontal	 positions	 in	 the	 parent
LinearLayout.	For	 example,	one	view	may	have	a	Layout_gravity	 attribute	 that	 has	 a
value	like	left,	right	and	center	vertical.	You	can	also	combine	previous	values,	like	this	-
top|center_horizontal.	And	then	there	is	gravity,	which	you	should	not	get	confused	with
layout_gravity.

	

The	latter	is	where	you	place	the	view	but	the	attribute	gravity	defines	how	the	content	of
the	view	 is	 placed	 in	 the	view.	 If	 you	want	 your	 text	 to	 be	 set	 in	 a	 particular	way,	 i.e.,
centered,	left	or	right,	you	need	to	use	gravity.

	

There	is	one	handy	thing	you	should	know	and	that	is	that	you	can	nest	layouts	inside	one
another.	However,	you	do	not	want	your	layouts	to	be	too	layered	so	if	yours	begin	to	look
as	though	they	are	getting	out	of	hand,	switch	over	to	a	relative_layout.

	

Before	you	move	on,	open	up	res/layout/activity_main.xml	and	we	are	going	to	make	a
change	her.	The	root	node	must	be	changed	from	a	RelativeLayout	–	defined	by	Android
Studio	as	default	–	to	a	LinearLayout.	You	need	to	replace	the	following	lines:

	

<RelativeLayout	xmlns:android=“http://schemas.android.com/apk/res/android”
xmlns:tools=“http://schemas.android.com/tools”
android:layout_width=“match_parent”
android:layout_height=“match_parent”
tools:context=”.MainActivity”>

	

And	this	one	that	you	will	find	at	the	very	end	of	the	file:

	

</RelativeLayout>

	

With	this:

	

<LinearLayout	xmlns:android=“http://schemas.android.com/apk/res/android”
xmlns:tools=“http://schemas.android.com/tools”
android:layout_width=“match_parent”
android:layout_height=“match_parent”
android:orientation=“vertical”
tools:context=”.MainActivity”>
</LinearLayout>

	

Accessing	Views	From	Within	Java

Ok,	 so	 Layouts	 are	most	 the	 domain	 of	 the	 XML	 fil	 but	 there	 are	 lots	 of	 other	 visual
elements	that	you	might	want	to	create,	change,	even	destroy	from	your	Java	code.

First,	we	need	to	edit	the	TextView	that	you	will	find	in	activity-main.xml	so	that	it	looks
like	this:

	

<TextView
android:id=”@+id/main_textview”
android:layout_width=“wrap_content”
android:layout_height=“wrap_content”
android:layout_marginLeft=“20dp”
android:layout_marginTop=“20dp”
android:text=”@string/hello_world”/>

	

Did	you	notice	that	we	added	in	a	new	attribute	-	 id.	By	using	this	attribute,	or	 tag,	you
can	access	the	specified	View	from	your	code	and	this	lets	you	manipulate	that	view	via
your	code	in	the	future.

	

We	also	need	to	make	a	change	in	the	text	tag.	The	string	resource	name	is	hello_world,
which	is	a	bit	outdated	to	be	far.	So,	right	click	on	@string/hello_world	(it’s	only	a	part
of	the	line	so	click	on	the	right	bit)	and	then	select	Refactor	and	Rename.

	

Next,	type	the	world	textview	in	and	click	on	Refactor.

	

This	 is	going	 to	do	 two	things	–	change	 the	resource	ID	name	in	 the	 layout	 file	and	 the
original	 resource	ID	that	 is	 in	your	strings.xml	 file.	 It	will	also	change	 the	name	of	 the
resource	wherever	else	it	shows	up	throughout	your	project.

	

Open	 up	MainActivity.java	 and	 add	 in	 the	 following	 line	 –	 make	 sure	 it	 goes	 above
onCreate	method	and	below	the	MainActivity	class	declarations:

	

TextView	mainTextView;

At	this	point,	we	have	not	yet	imported	the	TextView	class	into	MainActivity.java	so	it	is
not	aware	of	what	a	TextView	is.	That	is	easily	fixed	with	Android	Studio.	All	you	need	to
do	is	tap	Alt+Enter	on	your	computer	keyboard	while	the	error	message	popup	is	on	the
screen	–	this	will	import	TextView	for	you.

	

The	 next	 thing	 to	 do	 is	 add	 the	 following	 code	 into	 onCreate,	 inserting	 it	 after	 the	 two
lines	of	code	that	are	already	in	there:

	

//	1.	Access	the	TextView	defined	in	layout	XML
//	and	then	set	its	text
mainTextView	=	(TextView)	findViewById(R.id.main_textview);
mainTextView.setText(“Set	in	Java!”);

	

Take	a	look	at	the	MainActivity.java	file	–	it	should	look	like	this:

	

public	class	MainActivity	extends	ActionBarActivity	{
	
TextView	mainTextView;
	
@Override
protected	void	onCreate(Bundle	savedInstanceState)	{
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
	
//	1.	Access	the	TextView	defined	in	layout	XML
//	and	then	set	its	text
mainTextView	=	(TextView)	findViewById(R.id.main_textview);
mainTextView.setText(“Set	in	Java!”);
}
	
@Override
public	boolean	onCreateOptionsMenu(Menu	menu)	{
	
//	Inflate	the	menu;	this	adds	items	to	the	action	bar	if	it	is	present.
getMenuInflater().inflate(R.menu.menu_main,	menu);
return	true;
}
}

Lastly,	run	your	app	again	and	look	at	what	you	have	done.

You	 should	 see	 the	 text	 set	 via	 Java	 and,	 as	 a	 recap,	 this	 is	what	 you	 did	 to	make	 that
happen	like	that:

You	added	a	new	attribute	to	the	View	in	XML	–	the	ID	attribute
You	used	that	new	attribute	to	get	into	the	view	through	your	code
You	called	a	method	on	View	so	that	you	could	change	the	value	of	the	text.

Chapter	13	-	Buttons	and	Listeners
	

Now	it	is	time	to	do	some	work	on	building	up	TextView	and	making	things	a	little	more
interactive.	 To	 do	 that,	 we	 are	 going	 to	 add	Button	 in	 to	 you	 activity_main.xml	 file,
straight	after	TextView:

	

<!—	Set	OnClickListener	to	trigger	results	when	pressed	—>
<Button
android:id=”@+id/main_button”
android:layout_width=“wrap_content”
android:layout_height=“wrap_content”
android:layout_marginTop=“20dp”
android:layout_marginLeft=“20dp”
android:text=”@string/button”	/>

	

Did	you	spot	the	XML	comment	above	the	Button?	This	is	a	reminder	on	how	to	trigger
results.

	

Look	at	 the	 layout_margin	attributes	–	 they	have	added	 in	20	density	 independent	 (dp)
pixels	 of	 space	 to	 the	 left	 and	 above	 the	 Button	 so	 that	 the	 layout	 doesn’t	 appear
overloaded	and	cramped.	Remember,	that	value	of	20	will	be	scaled	by	the	density	of	the
screen	on	whichever	device	it	is	on.

	

You	may	also	have	noticed	@string/button	has	appeared	in	red	underneath	the	button	text
property.	Hover	your	mouse	over	 the	red	and	you	will	see	 that	 this	 is	because	 there	 is	a
symbol	that	cannot	be	resolved	–	the	reason	for	that	is	because	we	haven’t	defined	it	yet.
To	do	that,	open	up	strings.xml	and	add	in	this	line	at	the	bottom:

	

<string	name=“button”>Update	The	TextView</string>

	

Now	open	up	MainActivity.java	and	ad	in	the	following	line,	underneath	the	last	line	you
added	to	put	a	variable	in	for	the	TextView:

	

Button	mainButton;

	

The	line	of	code	below	needs	to	be	added	to	the	end	of	onCreate,	right	after	the	code	that
you	added	in	before:

	

//	2.	Access	the	Button	defined	in	layout	XML
//	and	listen	for	it	here
mainButton	=	(Button)	findViewById(R.id.main_button);
mainButton.setOnClickListener(this);

	

Once	again,	you	did	the	same	three	steps	as	you	did	when	you	added	in	the	code	to	gain
access	to	TextView:

	

You	added	the	id	attribute	to	View	in	XML,	r,	this	time,	you	added	in	a	view	that
has	an	id	attribute
That	View	can	be	accessed	in	code	with	the	id	attribute
You	can	call	methods	on	the	View

	

This	time,	the	method	you	have	called	is	setOnClickListener.	Now,	this	raises	a	question
as	to	what	object	will	respond	when	the	button	is	pressed	and	the	answer	lies	in	whatever
you	put	inside	the	parentheses	of	the	method.	To	answer	the	question,	all	you	need	to	do	is
add	 in	 this,	which	 although	 it	may	 seem	 somewhat	 unspecific,	 is	 correct	 because	 Java
knows	 that	 this	means	 that	 your	 intended	 listener	 is	MainActivity	 and	 this	means	 that
MainActivity	must	implement	the	interface	for	View.onClickListener.

	

Now,	Android	Studio	is	pretty	smart	and	will	help	you	with	the	implementation.	All	you
do	is	click	on	this,	which	you	will	see	underlined	in	red	–	this	indicates	there	is	an	error,
which,	in	his	case,	is	that	MainActivity	doesn’t	yet	support	the	interface.	When	you	see	a
red	light	bulb	at	the	start	of	the	line,	click	it	and	choose	Make	‘MainActivity’	implement
‘android.view.View.onClickListener.

Now	click	on	OK	on	the	next	screen	and	Studio	will	generate	the	code	you	need	to	make
MainActivity	qualify	as	a	certified	onClickListener.

	

First	of	all,	we	added	the	following	to	the	class	declaration,	thus	indicating	that	Activity	is
to	implement	a	specific	interface:

	

public	 class	 MainActivity	 extends	 ActionBarActivity	 implements
View.OnClickListener
	

	

Secondly,	 Studio	 added	 in	 a	 stub	 for	 a	 method	 that	 has	 to	 be	 implemented	 to	 get	 the

license	 for	 the	onClickListener	 –	 the	method	 is	 called	onClick	 and	will	 fire	when	 that
Button	is	pressed.

	

@Override
public	void	onClick(View	v)	{
	
}

	

At	 the	 moment,	 the	 method	 does	 not	 do	 anything	 so	 we	 need	 to	 add	 in	 this	 code	 to
onClick	so	it	actually	does	something:

	

//	Test	the	Button
mainTextView.setText(“Button	pressed!”);

Now	the	app	will	change	the	text	that	is	in	TextView	when	the	Button	is	pressed.
	

Chapter	14	-	Adding	Visual	and	Nested	Layouts
	

It	 is	 always	nice	 to	 see	 some	pictures	 in	 an	 app	 interface	 so	we	 are	 going	 to	 add	 in	 an
ImageView	so	that	we	can	get	a	small	icon	to	show	up.	You	will	also	see	how	the	nested
LinearLayout	works.

	

First	of	all	though,	what	image	are	you	going	to	have	displayed?	The	easiest	way	to	start	is
with	the	image	you	got	given	as	default.	It’s	already	there	in	your	project	and	waiting	to	be
used.	All	 you	have	 to	do	 is	 find	 it.	Use	 the	Project	Navigator	 and	 expand	 the	directory
called	res/drawable

	

As	you	can	see,	there	is	a	folder	that	contains	a	number	of	copies	of	the	same	image	in	res.
All	the	file	names	have	what	looks	like	screen	density	abbreviations	in	brackets	at	the	end.
Those	abbreviations	do	indeed	relate	to	the	pixel	density	buckets	that	are	used	to	classify
Android	devise	in	dpi,	or	dots	per	inch.

	

mdpi:	medium
hdpi:	high
xhdpi:	extra	high
xxhdpi:	extra	extra	high

	

Take	 a	 look	 inside	 the	 drawable	 directories	 and	 you	 should	 see	 a	 file	 called
ic_launcher.png.	 This	 is	 the	 default	 launch	 image	 in	 a	 number	 of	 different	 sizes	 for
different	screens.	The	system	will	make	sure	the	right	one	is	picked	for	the	device.

Head	back	to	activity_main.xml	and	replace	this	section:

	

<!—	Set	OnClickListener	to	trigger	results	when	pressed	—>
<Button
android:id=”@+id/main_button”
android:layout_width=“wrap_content”
android:layout_height=“wrap_content”
android:layout_marginTop=“20dp”
android:layout_marginLeft=“20dp”
android:text=”@string/button”	/>

With	this:

<!—	This	nested	layout	contains	views	of	its	own	—>
<LinearLayout
android:layout_width=“wrap_content”

android:layout_height=“wrap_content”
android:orientation=“horizontal”>
<!—	Set	OnClickListener	to	trigger	results	when	pressed	—>
<Button
android:id=”@+id/main_button”
android:layout_width=“wrap_content”
android:layout_height=“wrap_content”
android:layout_marginTop=“20dp”
android:layout_marginLeft=“20dp”
android:text=”@string/button”	/>
<!—	Shows	an	image	from	your	drawable	resources	—>
<ImageView
android:layout_width=“wrap_content”
android:layout_height=“wrap_content”
android:layout_marginTop=“20dp”
android:layout_marginLeft=“20dp”
android:src=”@drawable/ic_launcher”	/>
<!—	Closing	tag	for	the	horizontal	nested	layout	—>
</LinearLayout>

	

What	you	have	done	here	is	add	a	LinearLayout	inside	the	root	LinearLayout	tool	that
already	exists,	directly	under	the	TextView	as	 its	new	sibling.	You	have	also	shifted	 the
Button	to	the	new	nested	layout	and	added	in	a	new	ImageView.

	

What	you	have	achieved,	by	putting	your	Button	inside	another	horizontal	LinearLayout
is	the	ability	to	put	a	Button	and	an	ImageView	horizontally	side	by	side,	even	though	the
root	layout	is	a	vertical	orientation.

	

The	important	attribute	in	ImageView	is	src,	which	is	what	you	give	your	drawable	image
resource	 to.	Note	 the	 format	 that	 you	 have	 used	 to	 reference	 the	 drawable	 image.	Your
image	file	name	(without	the	file	type)	must	be	prefixed	with	‘drawable/’.

	

Now	run	the	app	on	your	device	or	emulator	again	and	you	will	see	the	image	appear.
	

Chapter	15	-	Involving	the	Keyboard
	

What	about	adding	in	some	user	input?		We	do	this	by	introducing	an	EditText	to	the	mix.
This	is	a	subclass	of	TextView	that	will	display	the	keyboard	and	shows	what	the	user	is
typing	as	content.

	

We	 are	 going	 to	 add	 EditText	 XML	 t	 activity_main.xml	 –	 it	 will	 be	 a	 sibling	 of
TextView	and	LinearLayout	(the	horizontal	one).	Do	watch	that	you	don’t	catch	it	inside
the	nested	 layout	 though.	You	need	 to	add	 it	 in	after	 the	closing	of	 the	embedded	 linear
layout	and	before	the	closing	of	the	root	linear	layout:

	

<!—	Displays	keyboard	when	touched	—>
<EditText
android:id=”@+id/main_edittext”
android:layout_width=“wrap_content”
android:layout_height=“wrap_content”
android:layout_marginTop=“20dp”
android:layout_marginLeft=“20dp”
android:hint=”@string/hint”	/>

	

We	added	a	new	special	attribute	in	here	–	hint.	This	is	a	placeholder	in	the	input	field	and
it	will	be	overwritten	by	the	app	as	soon	as	the	user	begins	typing.	As	per	usual,	you	must
define	the	string	resource	for	the	hint	in	res/values.string.xml.

	

<string	name=“hint”>A	Name</string>

	

Open	up	MainActivity.java	and	add	in	a	new	variable	for	EditText	(underneath	the	other
two	existing	variables	in	the	file).

	

EditText	mainEditText;

	

Now	put	the	following	code	at	the	end	of	onCreate

	

//	3.	Access	the	EditText	defined	in	layout	XML
mainEditText	=	(EditText)	findViewById(R.id.main_edittext);

	

This	code,	in	much	the	same	way	as	the	previous	code,	receives	a	reference	to	EditText
control	and	saves	it	in	the	variable	that	has	been	assigned.

Now	we	have	 the	reference	 to	EditText	control,	 it’s	 time	 to	do	something	with	 the	user
input.	We	are	going	to	replace	the	contents	of	onClick	with	this:

	

//	Take	what	was	typed	into	the	EditText
//	and	use	in	TextView
mainTextView.setText(mainEditText.getText().toString()
+	”	is	learning	Android	development!”);

	

Now,	when	MainButton	 is	 clicked,	 the	mainTextView	will	 display	 a	 string	of	 test	 that
includes	 the	 contents	 of	 mainEditText	 together	 with	 “is	 learning	 Android
Development!”

	

Run	your	app	and	see	what	happens.

	

You	should	be	getting	user	input	with	an	EditText,	submitted	with	a	Button	and	displayed
in	a	TextView.

	

Chapter	16	-	The	ListView
	

This	is	a	very	useful	control	that	shows	a	lot	of	items	visually.	A	ListView	is	defined	the
same	way	 as	 any	 other	 view	 in	XML.	We	 are	 going	 to	 add	 a	ListView	 as	 a	 sibling	 to
TextView,	LinearLayout	horizontal	and	EditText	in	activity_main.xml	by	adding	in	the
following	code	after	the	code	for	EditText	control:

	

<!—	List	whose	dataset	is	defined	in	code	with	an	adapter	—>
<ListView
android:id=”@+id/main_listview”
android:layout_width=“match_parent”
android:layout_height=“0dp”
android:layout_weight=“1”
android:layout_marginTop=“20dp”/>

	

Just	hold	on	a	minute!	How	could	it	possibly	work,	setting	layout_height	to	0dp?	It	does
not	matter	what	device	you	are	using,	how	big	or	small	the	screen	is,	0dp	can	only	scale	to
0dp.

	

Now	have	a	look	at	what	comes	after	it.	We	have	a	layout_weight	and,	because	nothing
else	in	the	layout	has	been	given	a	weight	just	yet,	the	ListView	will	expand	out	to	fill	up
as	much	space	as	it	can,	regardless	of	the	value	you	have	given	layout_height.

	

So	as	a	rule,	the	practice	is	to	use	a	value	of	0	so	that	the	layout	inflator	doesn’t	have	to
think	about	a	new	dimension	and	the	whole	job	gets	done	quicker.

	

Now.	Open	up	MainActivity.java	 and	 add	 the	 following	 code	 variables	 underneath	 the
ones	that	you	added	in	the	onCreate	method:

	

ListView	mainListView;
ArrayAdapter	mArrayAdapter;
ArrayList	mNameList	=	new	ArrayList();
	

The	ListView	variable	makes	perfect	sense	but	what	are	the	others	all	about?	They	are,	t
put	it	simply,	to	supply	ListView	with	the	data	it	will	display.	Bear	with	me	on	that	one;
first,	I	want	you	to	add	this	code	to	end	of	onCreate:

	

//	4.	Access	the	ListView
mainListView	=	(ListView)	findViewById(R.id.main_listview);
	
//	Create	an	ArrayAdapter	for	the	ListView
mArrayAdapter	=	new	ArrayAdapter(this,
android.R.layout.simple_list_item_1,
mNameList);
	
//	Set	the	ListView	to	use	the	ArrayAdapter
mainListView.setAdapter(mArrayAdapter);

	

Some	of	this	should	look	familiar	by	now	because	you	are	going	to	be	finding	ListView
by	using	its	id.	But	something	else	is	going	on	here.

	

mArrayAdaptor	is	a	go	between	so	that	ListView	can	get	hold	of	the	data	that	it	needs.
When	you	create	this	adaptor,	you	must	specify	the	Context	or	the	target	XML	view	for
the	data	–	simple_list_item_1	-	and	the	data	source,	which	is	mNameList.	But	let’s	just
back	 up	 a	 minute	 Do	 you	 remember	 writing	 any	 code	 that	 had	 an	 id	 of
simple_list_item_1?	Where	did	that	come	from?	And	just	what	is	a	Context?

	

Have	a	look	at	android.R.layout	 just	before	simple_list_item_1.	There	are	a	number	of
very	 important	 concepts	 in	 here	 but	 let’s	 break	 this	 down	 and	 look	 at	R	 first.	 This	 is	 a
dynamically	 created	 class	 that	 will	 allow	 you	 access	 to	 the	 resources	 that	 are	 in	 your
project.	The	R	class	can	be	used	to	get	a	resource	ID	and	to	do	that	you	specify	a	resource
name	 and	 type.	 The	 type	would	 be	 somewhere	 along	 the	 lines	 of	 string,	 drawable	 or
layout	and	this	would	be	a	match	to	the	resource	types	in	your	project.	And,	as	such,	the
layout	 bit	 in	 android.R.layout.simple_list_item_1	 specifies	 that	 you	 are	 referencing	 a
layout	resource,	nothing	more,	nothing	less.

But	what	about	 the	android	prefix?	Why	has	 that	appeared?	That	 is	purely	an	 indicator
that	 it	 wasn’t	 you	who	 created	 that	 view	 and	 that	 it	 is	 a	 part	 of	 the	Android	 platform,
merely	representing	a	TextView	that	any	default	list	cell	can	draw	on	and	use.

	

Context	 is	an	object	that	is	representing	the	state	of	your	app	at	the	current	time.	If	you
need	to	access	a	particular	service	for	use	in	your	app	then	context	is	the	one	for	you.	It	is
used	 to	create	 the	views	 that	are	 residing	 in	your	ListView.	Cast	your	mind	back	 to	 the
layout	resource	you	referred	to	–	this	is	what	the	Context	will	take	and	convert	to	a	view
and	the	adapter	simply	populates	the	views	with	a	value	that	it	takes	from	its	data	source.

	

In	this	case,	the	data	source	is	mNameList,	which	is	nothing	more	than	a	list	of	strings.	It
is	empty	but	 it	has	been	initialized	so	we	need	to	add	in	a	bit	of	data	 that	ListView	can

display.	Add	in	this	code	to	the	end	of	onClick:

	

//	Also	add	that	value	to	the	list	shown	in	the	ListView
mNameList.add(mainEditText.getText().toString());
mArrayAdapter.notifyDataSetChanged();

	

All	you	do	is	add	in	whatever	was	typed	by	the	user	into	EditText	to	the	names	list	and
then	push	out	a	signal	to	the	adaptor	that	it	can	update	what	is	shown	in	ListView.

	

Now	you	can	run	your	app	again.

	

You	should	be	able	to	type	in	a	name	to	EditText	and	then	see	it	shown	in	TextView	as
well	as	being	added	into	a	new	row	in	ListView	when	you	press	the	Button.

	

Chapter	17	-	Detecting	List	Selections
	

Ok,	so	it’s	great	to	be	able	to	look	at	the	items	in	a	list	but	you	want	some	interactivity	in
your	app.	So,	now	we	are	going	to	set	up	a	way	for	your	app	to	detect	user	selections	from
that	 list.	 First,	 we	 have	 to	 make	 a	 modification	 to	 the	 class	 definition	 in
MainActivity.java	in	order	to	add	in	some	support	for	another	interface.	This	line	has	to
be	modified:

	

public	 class	 MainActivity	 extends	 ActionBarActivity	 implements
View.OnClickListener	{
	

To	look	like	this:

	

public	 class	 MainActivity	 extends	 ActionBarActivity	 implements
View.OnClickListener,	AdapterView.OnItemClickListener	{
	

	

So,	 all	 you	 have	 done	 is	 add	 in	 support	 for	 the	 new	 interface,	 called
AdapterView.OnItemClickListener.	What	this	does,	as	the	name	tells	you,	is	listens	for
selections	of	items	from	ListView.

	

You	should	also	see	a	red	 line	 that	 is	highlighting	the	 line	you	just	added	your	 interface
into.	This	 is	 just	Android	Studio	 telling	you	that	you	have	not	actually	 implemented	 the
interface	 just	 yet.	 This	 is	 easily	 fixed	 –	 click	 the	 highlighted	 line,	 press	 on	Alt+Enter,
click	on	Implement	Method	and	then	click	OK.

	

Your	next	job	is	to	ad	in	this	line	of	code	to	the	endo	of	onCreate:

	

//	5.	Set	this	activity	to	react	to	list	items	being	pressed
mainListView.setOnItemClickListener(this);

	

This	code	 is	setting	MainActivity	 to	 listen	 for	 item	clicks	 that	occur	on	mainListView.
So,	now	you	need	to	replace	onItemClick	method,	the	one	that	was	generated	by	default
for	you,	with	this	code:

	

	

@Override
public	void	onItemClick(AdapterView<?>	parent,	View	view,	int	position,	long	id)
{
	
//	Log	the	item’s	position	and	contents
//	to	the	console	in	Debug
Log.d(“omg	android”,	position	+	“:	”	+	mNameList.get(position));
}

	

Congratulations!	You	have	set	your	MainActivity	class	 to	 implement	onItemClick	 so	 it
can	live	up	to	its	well-earned	name	as	an	onItemClickListener.

What	is	going	on	inside	of	onItemClick	though?	There	is	a	strange	Log.d	showing	up	and
there	is	something	that	has	a	get	(position)	in	there	as	well.

	

Have	 a	 closer	 look	 at	 what	 you	 are	 passing	 to	 onItemClick.	 Specifically,	 look	 at	 int
position.	This	is	an	integer	that	is	equal	to	the	index	of	the	item	that	the	user	clicked	on
the	list	–	integers	count	up	from	0.

	

What	has	happened	here	is	that	you	have	taken	the	position	and	the	index	item	from	your
names	 list	 and	 you	 have	 logged	 them.	 Logging	 is	 pretty	 basic	 but	 it	 is	 a	 very	 useful
technique	for	debugging.

	

Run	your	app	on	your	device	or	emulator,	input	a	couple	of	values	and	then	add	them	to
your	list.	Now	select	any	item	–	note	that	you	do	not	see	any	visible	effect	at	this	point.
Keep	the	app	running	but	look	at	the	section	at	the	bottom	of	Android	Studio.	This	section
holds	information	about	the	device	or	the	emulator	you	are	running,	which	processes	and
logs	of	what	is	going	on	in	the	processes.	These	logs	show	up	in	a	console	named	logcat.
It	will	reel	off	loads	of	information	from	your	emulator	or	device	and,	to	be	honest,	most
of	it	is	irrelevant	to	you	at	this	stage.	The	log	statements	that	you	generated	earlier	are	in
here	somewhere	but	there	is	a	bit	too	much	going	on	to	see	where	they	are.

	

To	filter	things	out	a	bit,	so	you	can	see	only	what	you	want	to	see,	look	for	an	option	at
the	top	of	the	screen	called	Log	Level.	When	you	input	the	Log	command	into	the	code,
you	specified	t	as	Log.d.	The	d	stands	for	“debug”	level	–	the	other	levels	are:

	

V	-		Verbose
D	-	Debug
I	-	Info
W	-	Warning

E	-	Error

	

When	you	choose	a	specific	log	level	for	logcat	it	shows	only	the	messages	that	relate	to
that	 level	or	higher.	Verbose	 is	 the	 lowest	 level,	with	Error	being	the	highest.	So,	 if	you
selected	the	Warning	level,	you	will	see	only	those	for	Warnings	and	for	Errors.

In	the	meantime,	you	can	also	use	the	text	box,	which	is	at	the	right	of	the	log	level	drop
down	menu,	 to	pop	 in	a	 filter	and	show	 the	messages	 that	contain	 just	 the	 text	 that	you
typed	in.	So,	you	can	now	set	the	level	to	Debug	and	type	in	the	text	box	omg	android.

	

You	 should	 now	 see	 a	 list	 of	 statements	 that	 relate	 to	 that	 and	 you	will	 be	 able	 to	 see
exactly	when	an	item	is	picked	from	your	list.
	

Chapter	18	-	The	Action	Bar
	

Now	your	app	has	a	number	of	different	views	so	it’s	time	to	start	thinking	about	how	else
you	 can	 add	 in	 functionality.	 On	 the	 older	 Android	 devices,	 there	 was	 a	Menu	 device
button	that	would	show	a	load	of	options,	depending	on	what	the	situation	was,	but	since
2011,	when	Honeycomb	was	released,	the	Action	Bar	is	used	to	display	the	items	for	the
current	view.

	

The	Action	bar	 is	 familiar,	 a	 good	base	 for	 your	 users	 and,	 because	 it	 is	 present	 across
apps,	using	this	bar	makes	good	sense	in	terms	of	the	functionality	of	your	app.	On	the	flip
side,	 if	 you	 opted	 not	 to	 use	 it,	 you	 could	 end	 up	 confusing	 a	 lot	 of	 users	who	would
expect	to	see	it	working.

	

The	Action	Bar	is	already	there	in	your	app	there	just	aren’t	any	options	attached	just	yet
so	that	is	the	first	thing	we	are	going	to	look	at	doing.

	

Sharing

Very	soon,	using	your	own	app,	you	will	be	able	to	show	off	the	fact	that	you	are	learning
Android	development	and	you	are	going	to	do	this	by	using	an	intersection	of	the	Intent
concept	and	the	Action	Bar	–	this	is	known	as	the	ShareActionProvider.

An	Intent	has	a	number	of	advantages,	one	of	which	 is	 the	ability	for	you	 to	be	able	 to
construct	 it	 in	an	explicit	or	 implicit	manner.	When	you	defined	 the	 Intent	 that	 allows
your	app	to	launch,	you	used	an	example	of	the	explicit	type.	The	manifest	identifies	that
as	MainActivity.	 Now	 we	 are	 going	 to	 look	 at	 the	 implicit	 type	 and	 this	 is	 where	 a
generic	Intention	is	really	going	to	come	into	play.

	

You	see,	some	people	want	to	share	everything	they	do	with	everyone	and	others	with	just
the	select	few.	Instead	of	wondering	which	social	network	is	a	favorite	of	a	particular	user,
and	then	integrating	them	one	by	one,	you	can	tell	the	device	that	you	want	to	share	some
content,	expressing	an	Intent,	and	Android	will	do	the	rest.

	

Go	 to	 res/menu/menu_main.xml	 and	 open	 it.	 You	 will	 see	 some	 XML	 that	 has	 been
automatically	generated	but	it	isn’t	needed.	As	such,	you	can	replace	the	entire	thing	with
this	code:

	

<!—	Defines	the	menu	item	that	will	appear	on	the	Action	Bar	in	MainActivity	—
>
<menu	xmlns:android=“http://schemas.android.com/apk/res/android”
xmlns:omgandroid=“http://schemas.android.com/apk/res-auto”>
<!—	Share	item	—>
<item
android:id=”@+id/menu_item_share”
android:title=“Share”
omgandroid:showAsAction=“ifRoom”
omgandroid:actionProviderClass=
“android.support.v7.widget.ShareActionProvider”	/>
</menu>

	

Your	 app	 is	 going	 to	 be	 running	 on	 lower	 versions	 of	 Android	 than	 Lollipop	 so,	 quite
often,	you	will	need	to	use	features	that	will	not	exist	on	these	older	versions.	This	means
that	 you	 have	 to	 either	 build	 your	 own	 functionality	 to	 make	 sure	 your	 users	 enjoy	 a
seamless	experience	across	a	range	of	different	devices	or	you	use	third	party	libraries	to
provide	it.	Google	has	a	number	of	App	Compatibility	libraries	that	you	can	use	to	try	to
cut	down	on	this	fragmentation	problem.

	

In	the	above	XML	note	that	you	are	using	android.support.v7	libraries.	Sing	the	support
library	means	 that	 the	 code	 you	 are	 going	 to	 implement	will	 work	 on	Android	 v7	 and
above.

	

Go	to	MainActivity.java	and	add	in	this	variable	under	the	variable	you	added	last	time:

	

ShareActionProvider	mShareActionProvider;

	

Now	you	should	add	in	 these	two	methods	to	class.	The	first	 is	onCreateOptionsMenu
and	 it	 may	 already	 have	 been	 implemented.	 If	 that	 is	 the	 case,	 just	 replace	 the
implementation	with	this	one:

	

@Override
public	boolean	onCreateOptionsMenu(Menu	menu)	{
	
//	Inflate	the	menu.
//	Adds	items	to	the	action	bar	if	it	is	present.
getMenuInflater().inflate(R.menu.menu_main,	menu);
	
//	Access	the	Share	Item	defined	in	menu	XML
MenuItem	shareItem	=	menu.findItem(R.id.menu_item_share);
	
//	Access	the	object	responsible	for
//	putting	together	the	sharing	submenu
if	(shareItem	!=	null)	{
mShareActionProvider	=	(ShareActionProvider)
MenuItemCompat.getActionProvider(shareItem);
}
	
//	Create	an	Intent	to	share	your	content
setShareIntent();
	
return	true;
}
	
private	void	setShareIntent()	{
	
if	(mShareActionProvider	!=	null)	{
	
//	create	an	Intent	with	the	contents	of	the	TextView
Intent	shareIntent	=	new	Intent(Intent.ACTION_SEND);

shareIntent.setType(“text/plain”);
shareIntent.putExtra(Intent.EXTRA_SUBJECT,	“Android	Development”);
shareIntent.putExtra(Intent.EXTRA_TEXT,	mainTextView.getText());
	
//	Make	sure	the	provider	knows
//	it	should	work	with	that	Intent
mShareActionProvider.setShareIntent(shareIntent);
}
}

One	important	note	here	–	if	you	see	an	implementation	of	onOptionsItemsSelcted	in	the
class,	you	must	take	it	out.

	

Add	 in	 your	 import	 that	 the	Activity	 recognizes	 them.	onCreateOptionsMenu	 will	 be
called	once	when	that	activity	is	first	started.

	

In	a	similar	way	to	how	you	specified	the	layout	XML	file	for	 the	activity	in	onCreate,
you	now	need	to	direct	the	menu	inflator	so	that	it	 looks	at	menu_main.xml	 to	look	for
the	items	that	need	to	go	on	the	Action	Bar.

	

Now	you	can	access	the	menu	item	that	you	previously	defined	in	XML	by	using	its	 id,
which	is	menu_item_share	and	you	can	then	gain	access	to	the	action	provider.	Earlier,
you	specified	that	the	action	provider	for	this	item	was	a	ShareActionProvider.	Because
of	 that,	 you	 can	 safely	 cast	 to	 the	 type	 in	 the	 code	 and	 hold	 on	 to	 a	 reference	 via	 the
mShareActionProvider	variable.

	

The	next	step	is	to	call	setShareIntent.	This	is	going	to	create	an	Intent	but	not	just	any
old	one.	It	will	create	and	Intent	that	has	an	action	you	set	to	ACTION	SEND.	This	is	a
generic	action	and	simply	tells	Android	that	you	want	to	send	something.	From	here,	you
should	 set	 the	 content	 type	of	 the	 Intent	 as	 subject,	which	 is	 commonly	 used	 by	 email
programs,	and	Text.	The	text	will	match	whatever	is	showing	in	TextView.

	

Once	everything	has	been	done,	you	can	pair	 Intent	with	mShareActionProvider.	The
code	will	work	but	only	sort	of.	As	it	is,	setShareIntent	is	only	called	once,	at	the	creation
of	the	menu.	It	would	be	so	much	better	if	we	could	have	the	Intent	update	every	time	the
TextView	changed;	otherwise,	that	initial	message	will	be	there	forevermore.	To	do	that,
add	this	code	to	the	end	of	onClick:

	

//	6.	The	text	you’d	like	to	share	has	changed,
//	and	you	need	to	update

setShareIntent();

	

What	you	have	done	here	is	ensure	that	the	share	intent	is	always	current.

	

Run	the	app	and	test	out	the	sharing	feature.	Tap	on	the	share	icon	on	Action	Bar	and	see
if	it	shows	up	a	range	of	choices,	depending	entirely	on	what	your	emulator	or	device	has
installed	on	it.

	

The	ShareActionProvider	will	 automatically	pull	 up	 a	 range	of	possible	 share	 avenues
based	 on	 the	 apps	 installed	 on	 the	 current	 device.	 If	 you	 are	 using	 an	 emulator,	 expect
there	to	be	less	options	whereas	you	may	already	have	things	like	Facebook	and	Twitter
installed	on	your	device.

	

Chapter	19	-	Remembering	Your	Name
	

So	far	everything	that	you	have	done,	relating	to	user	input,	will	only	persist	when	the	app
is	 running.	 But	what	 happens	 in	 between	 sessions?	Now	we	want	 to	 add	 in	 some	 data
persistence,	with	a	brand	new	feature	that	is	going	to	remember	your	name	whenever	you
log	in	by	recording	it.

	

There	 are	 a	 few	 options	 in	 Android	 doe	 this	 but	 the	 easiest	 one	 to	 use	 is	 called
SharedPreferences.	This	stores	the	data	in	key	value	pairs,	which	means	that	you	specify
the	name,	which	is	the	key,	for	a	specific	piece	of	data,	which	is	the	value.	When	you	save
it,	you	can	then	retrieve	it	by	using	the	original	key.	Let’s	see	how	this	works.

First,	you	need	to	add	in	these	constants	and	the	variable	to	MainActivity.java.	We	will
do	this	where	the	last	variables	were	placed.

	

private	static	final	String	PREFS	=	“prefs”;
private	static	final	String	PREF_NAME	=	“name”;
SharedPreferences	mSharedPreferences;

	

This	now	puts	PREF	and	PREF	NAME	right	to	the	top	of	the	class.	PREF	will	be	used
as	a	file	name	so	that	you	can	keep	your	SharedPreferences	in	one	place.	PREF	NAME
will	be	used	to	store	your	name	in	shared	preferences.

	

The	last	 line	adds	 in	a	variable	called	mSharedPreferences	 for	 the	purpose	of	storing	a
particular	reference	to	the	shared	preference	class.	You	will	only	need	access	to	this	in	a
few	places	but	hang	on	to	it	anyway.	Add	in	the	import	to	the	class	if	you	haven’t	already
done	so	and	then	add	these	lines	to	the	end	of	onCreate:

	

//	7.	Greet	the	user,	or	ask	for	their	name	if	new
displayWelcome();

	

This	 new	 code	 is	 calling	 the	 method	 displayWelcome	 so	 you	 can	 implement	 that	 by
putting	this	method	at	the	end	of	the	class:

	

public	void	displayWelcome()	{
	
//	Access	the	device’s	key-value	storage
mSharedPreferences	=	getSharedPreferences(PREFS,	MODE_PRIVATE);

	
//	Read	the	user’s	name,
//	or	an	empty	string	if	nothing	found
String	name	=	mSharedPreferences.getString(PREF_NAME,	””);
	
if	(name.length()	>	0)	{
	
//	If	the	name	is	valid,	display	a	Toast	welcoming	them
Toast.makeText(this,	 “Welcome	 back,	 ”	 +	 name	 +	 “!”,
Toast.LENGTH_LONG).show();
}
}

	

With	 this	new	method,	 the	 first	 thing	you	are	doing	 is	accessing	SharedPreferences	by
using	MODE	PRIVATE.	This	means	 that	 the	 only	 app	 that	 can	 access	 the	 data	 that	 is
stored	 here	 is	 your	OMG	Android	 app.	 This	 also	means	 that	 the	 data	 you	 have	 saved
cannot	be	overwritten	by	any	other	application	that	could	have	used	the	exact	same	key.

	

Next,	 you	 as	 the	preferences	object	 for	 the	value	 that	 has	been	 stored	using	key	PREF
NAME.	The	second	parameter	may	be	used	to	set	up	a	default	value	that	is	returned	in	the
case	that	there	is	no	value	stored	with	that	key.	In	this	case,	you	can	use	an	empty	string
as	the	value.

	

Lastly,	you	need	 to	check	 that	 the	string	has	content	and,	 if	 it	does,	 it	should	display	an
output.	Your	message	is	going	to	be	Toast,	which	will	pop	up	and	then	fade	away.	Toast
should	be	given	a	message	that	is	can	display	and	you	should	specify	a	built-in	length	of
time	to	stay	on	the	screen.	Then	just	tell	it	to	show.	That’s	all	there	is	to	that.

	

Displaying	the	Name	Dialog

What	you	have	so	far	will	show	your	name	only	if	the	app	can	get	it	from	the	preferences.
However,	that	is	little	use	to	you	at	the	moment	because	you	haven’t	put	anything	in	place
to	allow	you	to	save	your	name.

	

To	do	that,	we	need	a	Dialog,	which	is	a	small	window	that	will	alert	the	user.	They	may
have	choices	for	the	user	to	make.	In	this	case,	we	are	going	to	use	an	AlertDialog.

	

Add	in	this	code	to	the	end	of	displayWelcome,	which	is	going	to	create	an	else	branch
for	the	existing	if	condition:

	

}	else	{
	
//	otherwise,	show	a	dialog	to	ask	for	their	name
AlertDialog.Builder	alert	=	new	AlertDialog.Builder(this);
alert.setTitle(“Hello!”);
alert.setMessage(“What	is	your	name?”);
	
//	Create	EditText	for	entry
final	EditText	input	=	new	EditText(this);
alert.setView(input);
	
//	Make	an	“OK”	button	to	save	the	name
alert.setPositiveButton(“OK”,	new	DialogInterface.OnClickListener()	{
	
public	void	onClick(DialogInterface	dialog,	int	whichButton)	{
	
//	Grab	the	EditText’s	input
String	inputName	=	input.getText().toString();
	
//	Put	it	into	memory	(don’t	forget	to	commit!)
SharedPreferences.Editor	e	=	mSharedPreferences.edit();
e.putString(PREF_NAME,	inputName);
e.commit();
	
//	Welcome	the	new	user
Toast.makeText(getApplicationContext(),	“Welcome,	”	+	inputName	+	“!”,
Toast.LENGTH_LONG).show();
}
});
	

//	Make	a	“Cancel”	button
//	that	simply	dismisses	the	alert
alert.setNegativeButton(“Cancel”,	new	DialogInterface.OnClickListener()	{
	
public	void	onClick(DialogInterface	dialog,	int	whichButton)	{}
});
	
alert.show();
}

	

The	app	will	reach	the	else	condition	only	if	there	isn’t	a	name	that	is	valid,	saved	using
the	PREF	NAME	key.	You	will	use	an	AlertDialog.uilder	 to	provide	a	 title,	a	message
and	an	EditText	to	the	AlertDialog.	You	will	then	add	in	a	positive	and	a	negative	button
to	AlertDialog.	First,	you	must	define	the	text	that	is	going	to	be	shown	on	the	buttons	–
use	 “OK”	 and	 “Cancel”	 for	 the	 sake	 of	 simplicity	 and	 second,	 you	 must	 define	 an
OnClickListener	for	each	button.

	

On	 this	 occasion,	 your	 OnClickListeners	 are	 going	 to	 be
DialogInterface.OnClickListeners	 and	 you	 will	 define	 them	 straight	 away.	 The
parameters	 for	 OnClick	 are	 a	 little	 different.	 On	 the	 positive	 button,	 OnClick	 is
responsible	for	quite	a	bit.	First,	it	will	read	the	name	that	has	been	typed	into	EditText	by
the	user.	 It	will	 then	 save	 that	name	 to	SharedPreferences	 by	way	of	 a	helper	 called	 a
SharedPreferencesEditor.	All	you	have	to	do	is	tell	the	editor	what	it	needs	to	save	and
where	it	should	save	it,	tell	it	to	commit	those	changes	and	that	is	it.

	

Lastly,	it	will	display	a	Toast	that	is	the	same	as	the	other	Welcoming	one.

The	negative	button	is	somewhat	simpler	because	it	doesn’t	have	to	do	anything.

Run	your	app	and	check	out	what’s	going	on.	You	should	be	able	to	type	in	your	name,
press	 on	OK	 and	 see	 the	 greeting.	 From	 here	 on	 in,	 that	 app	will	 now	 remember	 your
name	and	you	will	be	personally	greeted	every	time	you	open	it.
	

Chapter	20:	Android:	How	to	Develop	a	Simple	Calculator
	

Here,	 in	 this	 tutorial	 we	 will	 be	 developing	 an	 android	 calculator.	 For	 your	 better
understanding,	 we	 will	 stick	 with	 the	 basic	 calculator.	 We	 use	 the	 android	 studio	 for
developing	this	application.

	

Step	1:

Create	 a	 new	 android	 application	 project	with	 the	 name	 of	 the	 project	 as	 “Calculator”.
Give	the	name	“com.javahelps.calculator”	as	the	name	of	the	application.

	

Step	2:

By	default,	android	will	be	using	a	green	robot	icon.	You	can	use	custom	application	icons
for	 your	 projects	 and	 for	 using	 them,	 you	 should	 first	 delete	 the	 ic_launcher	 icon.	This
icon	will	be	in	the	folder	named	mipmap.	For	all	the	applications,	this	is	the	launcher	by
default.

	

	

Step	3:

A	PNG	image	file	can	be	used	as	icon	for	the	application.	It	is	advised	that	you	use	a	file
with	a	minimum	pixel	size	of	256x256.	This	selected	image	will	be	set	as	the	application
icon	in	the	Google	play	store	and	in	the	application.

Step	4:

Right	click	on	the	“mipmap”	folder	and	select	New	and	Image	Asset	from	New.

	

	

Step	5:

Browse	for	your	icon	from	your	computer	and	select	the	file.	Click	on	the	Next	and	Finish
buttons.	 Ensure	 that	 the	 name	 of	 the	 resource	 is	 ic_launcher	 before	 selecting	Next	 and
Finish.

	

	

Step	6:

Use	 the	following	code	 to	 replace	 the	content	 in	 the	file	activity_main.xml.	A	TextView
will	 be	 created	 by	 this	 code	 for	 the	 necessary	 buttons	 and	 the	 number	 screen	 of	 the
calculator.	For	preventing	the	manual	user	input	with	the	android	a	default	keypad,	we	will
use	the	TextView	in	place	of	the	EditText.	Not	all	of	the	common	properties	are	given	in
this	code.	You	should	make	sure	that	the	given	four	attributes	for	the	buttons	are	included
in	your	code.

android:layout_width=“0dp”
android:layout_height=“match_parent”
android:layout_weight=“1”

android:textSize=“30sp”

<RelativeLayout	xmlns:android=“http://schemas.android.com/apk/res/android”
			xmlns:tools=“http://schemas.android.com/tools”
			android:layout_width=“match_parent”
			android:layout_height=“match_parent”
			tools:context=”.MainActivity”>

			<TextView
							android:id=”@+id/txtScreen”
							android:layout_width=“match_parent”
							android:layout_height=“wrap_content”
							android:layout_alignParentTop=“true”
							android:layout_centerHorizontal=“true”
							android:gravity=“right|center_vertical”
							android:maxLength=“16”
							android:padding=“10dp”
							android:textAppearance=”?android:attr/textAppearanceLarge”
							android:textSize=“30sp”
							android:typeface=“serif”	/>

			<LinearLayout
							android:layout_width=“match_parent”
							android:layout_height=“match_parent”
							android:layout_below=”@+id/txtScreen”
							android:orientation=“vertical”>

							<LinearLayout
											android:layout_width=“match_parent”
											android:layout_height=“0dp”
											android:layout_weight=“1”>
											<Button
															android:id=”@+id/btnSeven”
															android:text=“7”	/>

<Button
															android:id=”@+id/btnEight”
															android:text=“8”	/>
											<Button
															android:id=”@+id/btnNine”
															android:text=“9”/>
											<Button
															android:id=”@+id/btnDivide”
															android:text=”/”/>
							</LinearLayout>

							<LinearLayout
											android:layout_width=“match_parent”
											android:layout_height=“0dp”
											android:layout_weight=“1”>
											<Button
															android:id=”@+id/btnFour”
															android:text=“4”/>
											<Button
															android:id=”@+id/btnFive”
															android:text=“5”	/>
											<Button
															android:id=”@+id/btnSix”
															android:text=“6”	/>
											<Button
															android:id=”@+id/btnMultiply”
															android:text=”*”	/>
							</LinearLayout>

							<LinearLayout
											android:layout_width=“match_parent”
											android:layout_height=“0dp”
											android:layout_weight=“1”>
											<Button
															android:id=”@+id/btnOne”
															android:text=“1”	/>
											<Button
															android:id=”@+id/btnTwo”
															android:text=“2”	/>
											<Button
															android:id=”@+id/btnThree”
															android:text=“3”	/>
											<Button
															android:id=”@+id/btnSubtract”
															android:text=”-”	/>
							</LinearLayout>

							<LinearLayout
											android:layout_width=“match_parent”
											android:layout_height=“0dp”
											android:layout_weight=“1”>
											<Button
															android:id=”@+id/btnDot”
															android:text=”.”	/>

											<Button
															android:id=”@+id/btnZero”
															android:text=“0”	/>
											<Button
															android:id=”@+id/btnClear”
															android:text=“C”	/>
											<Button
															android:id=”@+id/btnAdd”
															android:text=”+”	/>
							</LinearLayout>

							<Button
											android:id=”@+id/btnEqual”
											android:text=”=”	/>
			</LinearLayout>
</RelativeLayout>

	

Step	7:

Select	New	by	right	clicking	on	the	folder “ drawable”	and	then	select	Drawable	resource
file.

	

	

Step	8:

Now	create	a	drawable	file	and	name	it	as	“button”.

	

	

Step	9:

Now,	use	the	following	code	for	replacing	the	button.xml	file’s	content.	For	decorating	the
calculator	buttons,	this	drawable	resource	will	be	used.	In	this	code,	two	gradient	shapes
are	given.	One	gradient	 shape	 is	used	 for	 the	normal	 state	of	 the	button	and	 the	 second
gradient	shape	is	used	for	the	button	pressed	state.

<?xml	version=“1.0”	encoding=“utf-8”	?>
<selector	xmlns:android=“http://schemas.android.com/apk/res/android”>
			<item	android:state_pressed=“true”>
							<shape>
											<gradient	android:angle=“90”	android:endColor=”#FFFFFF”
android:startColor=”#9EB8FF”	android:type=“linear”	/>
											<padding	android:bottom=“0dp”	android:left=“0dp”	android:right=“0dp”
android:top=“0dp”	/>
											<size	android:width=“60dp”	android:height=“60dp”	/>
											<stroke	android:width=“1dp”	android:color=”#ff3da6ef”	/>
							</shape>
			</item>
			<item>
							<shape>
											<gradient	android:angle=“90”	android:endColor=”#FFFFFF”
android:startColor=”#ffd9d9d9”	android:type=“linear”	/>
											<padding	android:bottom=“0dp”	android:left=“0dp”	android:right=“0dp”
android:top=“0dp”	/>
											<size	android:width=“60dp”	android:height=“60dp”	/>
											<stroke	android:width=“0.5dp”	android:color=”#ffcecece”	/>
							</shape>
			</item>

</selector>

	

Step	10:

Add	the	property	“android:background”	to	all	of	the	activity_main.xml	buttons.

android:background=”@drawable/button”

	

Step	11:

The	library	exp4J	is	used	to	evaluate	the	arithmetic	expressions	in	this	project.	From	the
Gradle	scripts,	select	the	file	“build.gradle	(Module:	app)”.	A	dependency
‘net.objecthunter:exp4j:0.4.4’	will	now	be	added	to	the	project.	It	is	shown	in	the	code
given	below.

dependencies	{
			compile	fileTree(dir
:	‘libs’,	include:	[‘*.jar’])
			compile	‘com.android.support:appcompat-v7:21.0.3’
			compile	‘net.objecthunter:exp4j:0.4.4’
}

You	will	be	asked	to	sync	the	project	by	the	android	studio	after	saving	your	file.	Click	on
the	 link	 present	 on	 the	 top	 left	 corner	 for	 syncing	 your	 project.	 For	 downloading	 the
Gradle	libraries,	you	should	be	connected	to	the	Internet.

	

	

Step	12:

From	the	provided	code,	modify	the	MainActivity.java.	The	description	for	the	code	is
added	in	the	comments.

	

http://www.objecthunter.net/exp4j/

package	com.javahelps.calculator;
import	android.os.Bundle;
import	android.support.v7.app.ActionBarActivity;
import	android.view.View;
import	android.widget.Button;
import	android.widget.TextView;

import	net.objecthunter.exp4j.Expression;
import	net.objecthunter.exp4j.ExpressionBuilder;

public	class	MainActivity	extends	ActionBarActivity	{
			//	IDs	of	all	the	numeric	buttons
			private	int[]	numericButtons	=	{R.id.btnZero,	R.id.btnOne,	R.id.btnTwo,	R.id.btnThree,
R.id.btnFour,	R.id.btnFive,	R.id.btnSix,	R.id.btnSeven,	R.id.btnEight,	R.id.btnNine};
			//	IDs	of	all	the	operator	buttons
			private	int[]	operatorButtons	=	{R.id.btnAdd,	R.id.btnSubtract,	R.id.btnMultiply,
R.id.btnDivide};
			//	TextView	used	to	display	the	output
			private	TextView	txtScreen;
			//	Represent	whether	the	lastly	pressed	key	is	numeric	or	not
			private	boolean	lastNumeric;
			//	Represent	that	current	state	is	in	error	or	not
			private	boolean	stateError;
			//	If	true,	do	not	allow	to	add	another	DOT
			private	boolean	lastDot;

			@Override
			protected	void	onCreate(Bundle	savedInstanceState)	{
							super.onCreate(savedInstanceState);
							setContentView(R.layout.activity_main);
							//	Find	the	TextView
							this.txtScreen	=	(TextView)	findViewById(R.id.txtScreen);
							//	Find	and	set	OnClickListener	to	numeric	buttons
							setNumericOnClickListener();
							//	Find	and	set	OnClickListener	to	operator	buttons,	equal	button	and	decimal	point
button
							setOperatorOnClickListener();
			}

			/**
				*	Find	and	set	OnClickListener	to	numeric	buttons.
				*/
			private	void	setNumericOnClickListener()	{

							//	Create	a	common	OnClickListener
							View.OnClickListener	listener	=	new	View.OnClickListener()	{
											@Override
											public	void	onClick(View	v)	{
															//	Just	append/set	the	text	of	clicked	button
															Button	button	=	(Button)	v;
															if	(stateError)	{
																			//	If	current	state	is	Error,	replace	the	error	message
																			txtScreen.setText(button.getText());
																			stateError	=	false;
															}	else	{
																			//	If	not,	already	there	is	a	valid	expression	so	append	to	it
																			txtScreen.append(button.getText());
															}
															//	Set	the	flag
															lastNumeric	=	true;
											}
							};
							//	Assign	the	listener	to	all	the	numeric	buttons
							for	(int	id	:	numericButtons)	{
											findViewById(id).setOnClickListener(listener);
							}
			}

			/**
				*	Find	and	set	OnClickListener	to	operator	buttons,	equal	button	and	decimal	point
button.
				*/
			private	void	setOperatorOnClickListener()	{
							//	Create	a	common	OnClickListener	for	operators
							View.OnClickListener	listener	=	new	View.OnClickListener()	{
											@Override
											public	void	onClick(View	v)	{
															//	If	the	current	state	is	Error	do	not	append	the	operator
															//	If	the	last	input	is	number	only,	append	the	operator
															if	(lastNumeric	&&	!stateError)	{
																			Button	button	=	(Button)	v;
																			txtScreen.append(button.getText());
																			lastNumeric	=	false;
																			lastDot	=	false;				//	Reset	the	DOT	flag
															}
											}
							};
							//	Assign	the	listener	to	all	the	operator	buttons

							for	(int	id	:	operatorButtons)	{
											findViewById(id).setOnClickListener(listener);
							}
							//	Decimal	point
							findViewById(R.id.btnDot).setOnClickListener(new	View.OnClickListener()	{
											@Override
											public	void	onClick(View	v)	{
															if	(lastNumeric	&&	!stateError	&&	!lastDot)	{
																			txtScreen.append(“.”);
																			lastNumeric	=	false;
																			lastDot	=	true;
															}
											}
							});
							//	Clear	button
							findViewById(R.id.btnClear).setOnClickListener(new	View.OnClickListener()	{
											@Override
											public	void	onClick(View	v)	{
															txtScreen.setText(””);		//	Clear	the	screen
															//	Reset	all	the	states	and	flags
															lastNumeric	=	false;
															stateError	=	false;
															lastDot	=	false;
											}
							});
							//	Equal	button
							findViewById(R.id.btnEqual).setOnClickListener(new	View.OnClickListener()	{
											@Override
											public	void	onClick(View	v)	{
															onEqual();
											}
							});
			}

			/**
				*	Logic	to	calculate	the	solution.
				*/
			private	void	onEqual()	{
							//	If	the	current	state	is	error,	nothing	to	do.
							//	If	the	last	input	is	a	number	only,	solution	can	be	found.
							if	(lastNumeric	&&	!stateError)	{
											//	Read	the	expression
											String	txt	=	txtScreen.getText().toString();
											//	Create	an	Expression	(A	class	from	exp4j	library)

											Expression	expression	=	new	ExpressionBuilder(txt).build();
											try	{
															//	Calculate	the	result	and	display
															double	result	=	expression.evaluate();
															txtScreen.setText(Double.toString(result));
															lastDot	=	true;	//	Result	contains	a	dot
											}	catch	(ArithmeticException	ex)	{
															//	Display	an	error	message
															txtScreen.setText(“Error”);
															stateError	=	true;
															lastNumeric	=	false;
											}
							}
			}
}

	

Step	13:

Run	the	application	after	saving	the	changes.

	

	

Chapter	21:	Android:	A	login	Application
	

A	login	application	is	nothing	but	a	screen	that	asked	for	your	login	credentials	for	logging
into	application.	You	must	be	familiar	with	such	 login	applications	from	social	websites
like	Twitter,	Facebook,	etc,.

This	 chapter	 will	 explain	 you	 how	 a	 login	 screen	 is	 created	 and	 how	 the	 security	 is
managed	in	case	of	false	attempts.

Two	 TextViews	 should	 be	 defined	 asking	 for	 the	 user’s	 username	 and	 password.	 The
TextView	of	 the	password	must	have	its	 inputType	on	password.	The	syntax	for	 them	is
given	below.

Syntax

<EditText
		android:id=”@+id/editText2”
		android:layout_width=“wrap_content”
		android:layout_height=“wrap_content”
		android:inputType=“textPassword”	/>

<EditText
		android:id=”@+id/editText1”
		android:layout_width=“wrap_content”
		android:layout_height=“wrap_content”
/>

	

A	button	should	be	defined	with	login	text	and	its	property	should	be	set	to	onClick.	After
this,		the	function	mentioned	below	should	be	defined	in	the	Java	file’s	onClick	property.

<Button
		android:id=”@+id/button1”
		android:layout_width=“wrap_content”
		android:layout_height=“wrap_content”
		android:onClick=“login”
		android:text=”@string/Login”	
/>

	

Get	The	text	of	the	username	and	password	inside	the	onClick	method	of	the	Java	file	by
using	the	methods	getText()	and	toString().	Now	by	using	the	equals()	function,	match	the
text.

EditText	username	=	(EditText)findViewById(R.id.editText1);
EditText	password	=	(EditText)findViewById(R.id.editText2);																												
public	void	login(View	view){

		if(username.getText().toString().equals(“admin”)	&&
password.getText().toString().equals(“admin”)){
		
		//correct	password
		}else{
		//wrong	password
}													

	

Now,	for	the	last	thing,	you	should	provide	a	security	mechanism	for	preventing	unwanted
attempts.	 For	 this,	 you	 should	 initialize	 available	 and	 it	 should	 be	 decrement	with	 each
false	attempt.	The	login	button	should	be	disabled	when	the	count	reaches	zero.

int	counter	=	3;
counter—;
if(counter==0){
//this	will	disable	the	button	and	closes	the	application

}

	

Example

An	 example	 is	 given	 below	 demonstrating	 a	 login	 application.	 This	will	 create	 a	 basic
application	and	it	will	only	give	you	3	attempts	for	logging	in.

You	can	use	this	code	on	an	emulator	are	on	an	actual	device	to	test	it.

Steps Description

1 For	creating	an	android	application	we	will	use	the	android	studio	and	the
package	com.example.sairamkrishna.myapplication.	You	should	make	sure	that
you	are	getting	the	software	development	kit	and	you	should	compile	it	with	the
most	recent	version	of	the	SDK	while	creating	the	project,	so	that	you	can	use
the	APIs	of	higher	level.

3 For	adding	the	necessary	code,	modify	the	file	src/MainActivity.java

4 For	adding	the	respective	XML	components,	modify	the	file
res/layout/activity_main

5 You	can	run	the	application	by	installing	it	on	a	running	android	device	and	can
verify	the	results.

	

The	file	modified	is	src/MainActivity.java.	The	modified	main	activity	file’s	content	is
given	below.

package	com.example.sairamkrishna.myapplication;

import	android.app.Activity;
import	android.graphics.Color;
import	android.os.Bundle;

import	android.view.Menu;
import	android.view.MenuItem;
import	android.view.View;

import	android.webkit.WebView;
import	android.webkit.WebViewClient;

import	android.widget.Button;
import	android.widget.EditText;
import	android.widget.TextView;
import	android.widget.Toast;

import	java.io.FileInputStream;
import	java.io.FileOutputStream;

public	class	MainActivity	extends	Activity		{
		Button	b1,b2;
		EditText	ed1,ed2;
		
		TextView	tx1;
		int	counter	=	3;
		
		@Override
		protected	void	onCreate(Bundle	savedInstanceState)	{
					super.onCreate(savedInstanceState);
					setContentView(R.layout.activity_main);
					
					
b1=(Button)findViewById(R
.id.button);
					ed1=(EditText)findViewById(R.id.editText);
					ed2=(EditText)findViewById(R.id.editText2);
					
					

b2=(Button)findViewById(R
.id.button2);
					tx1=(TextView)findViewById(R.id.textView3);
					tx1.setVisibility(View.GONE);
					
					b1.setOnClickListener(new	View.OnClickListener()	{
								@Override
								public	void	onClick(View	v)	{
											if(ed1.getText().toString().equals(“admin”)	&&
								
											ed2.getText().toString().equals(“admin”))	{
														Toast.makeText(getApplicationContext(),
“Redirecting…”,Toast.LENGTH_SHORT).show();
											}
											else{
														Toast.makeText(getApplicationContext(),	“Wrong
Credentials”,Toast.LENGTH_SHORT).show();
														
														tx1.setVisibility(View.VISIBLE);
														tx1.setBackgroundColor(Color.RED);
														counter—;
														tx1.setText(Integer.toString(counter));
											
														if	(counter	==	0)	{
																	b1.setEnabled(false);
														}
											}
								}
					});
					
					b2.setOnClickListener(new	View.OnClickListener()	{
								@Override
								public	void	onClick(View	v)	{
											finish();
								}
					});
		}
		
		@
Override
		public	boolean	onCreateOptionsMenu(Menu	menu)	{
					//	Inflate	the	menu
;
this	adds	items	to	the	action	bar	if	it	is	present

.
					getMenuInflater().inflate(R.menu.menu_main,	menu);
					return	true;
		}
		
		@
Override
		public	boolean	onOptionsItemSelected(MenuItem	item)	{
					//	Handle	action	bar	item	clicks	here
.	The	action	bar	will
					//
automatically	handle	clicks	on	the	Home/Up	button,	so	long
					//	as	you	specify	a	parent	activity	in	AndroidManifest
.xml.
					
					int	id	=	item.getItemId();
					
					//
noinspection	SimplifiableIfStatement
					if	(id	==	R.id.action_settings)	{
								return	true
;
					}
					return	super.onOptionsItemSelected(item);
		}
}

	

res/layout/activity_main.xml	is	the	modified	XML	file	and	its	content	is	given	below.

<RelativeLayout	xmlns:android=“http://schemas.android.com/apk/res/android”
		xmlns:tools=“http://schemas.android.com/tools”	android:layout_width=“match_parent”
		android:layout_height=“match_parent”	android:paddingLeft=”@
dimen/activity_horizontal_margin
”
		android:paddingRight=”@dimen/activity_horizontal_margin”
		android:paddingTop=”@
dimen/activity_vertical_margin
”
		android:paddingBottom=”@dimen/activity_vertical_margin”
tools:context=”.MainActivity”>
		
		<TextView	android:text=“Login”	android:layout_width=“wrap_content”
					android:layout_height=“wrap_content”
					android:id=”@+id/textview”

					android:textSize=“35dp”
					android:layout_alignParentTop=“true”
					android:layout_centerHorizontal=“true”	/>
					
		<TextView
					android:layout_width=“wrap_content”
					android:layout_height=“wrap_content”
					android:text=“welcome”
					android:id=”@+id/textView”
					android:layout_below=”@+id/textview”
					android:layout_centerHorizontal=“true”
					android:textColor=”#ff7aff24”
					android:textSize=“35dp”	/>
					
		<EditText
					android:layout_width=“wrap_content”
					android:layout_height=“wrap_content”
					android:id=”@+id/editText”
					android:hint=“Enter	Name”
					android:focusable=“true”
					android:textColorHighlight=”#ff7eff15”
					android:textColorHint=”#ffff25e6”
					android:layout_marginTop=“46dp”
					android:layout_below=”@+id/imageView”
					android:layout_alignParentLeft=“true”
					android:layout_alignParentStart=“true”
					android:layout_alignParentRight=“true”
					android:layout_alignParentEnd=“true”	/>
					
		<ImageView
					android:layout_width=“wrap_content”
					android:layout_height=“wrap_content”
					android:id=”@+id/imageView”
					android:src=”@drawable/abc”
					android:layout_below=”@+id/textView”
					android:layout_centerHorizontal=“true”	/>
					
		<EditText
					android:layout_width=“wrap_content”
					android:layout_height=“wrap_content”
					android:inputType=“textPassword”
					android:ems=“10”
					android:id=”@+id/editText2”
					android:layout_below=”@+id/editText”

					android:layout_alignParentLeft=“true”
					android:layout_alignParentStart=“true”
					android:layout_alignRight=”@+id/editText”
					android:layout_alignEnd=”@+id/editText”
					android:textColorHint=”#ffff299f”
					android:hint=“Password”	/>
					
		<TextView
					android:layout_width=“wrap_content”
					android:layout_height=“wrap_content”
					android:text=“Attempts	Left:”
					android:id=”@+id/textView2”
					android:layout_below=”@+id/editText2”
					android:layout_alignParentLeft=“true”
					android:layout_alignParentStart=“true”
					android:textSize=“25dp”	/>
					
		<TextView
					android:layout_width=“wrap_content”
					android:layout_height=“wrap_content”
					android:text=“New	Text”
					android:id=”@+id/textView3”
					android:layout_alignTop=”@+id/textView2”
					android:layout_alignParentRight=“true”
					android:layout_alignParentEnd=“true”
					android:layout_alignBottom=”@+id/textView2”
					android:layout_toEndOf=”@+id/textview”
					android:textSize=“25dp”
					android:layout_toRightOf=”@+id/textview”	/>
					
		<Button
					android:layout_width=“wrap_content”
					android:layout_height=“wrap_content”
					android:text=“login”
					android:id=”@+id/button”
					android:layout_alignParentBottom=“true”
					android:layout_toLeftOf=”@+id/textview”
					android:layout_toStartOf=”@+id/textview”	/>
					
		<Button
					android:layout_width=“wrap_content”
					android:layout_height=“wrap_content”
					android:text=“Cancel”
					android:id=”@+id/button2”

					android:layout_alignParentBottom=“true”
					android:layout_toRightOf=”@+id/textview”
					android:layout_toEndOf=”@+id/textview”	/>

</RelativeLayout>

	

The	res/values/string.xml	file’s	content	is	given	below.

<resources>
		<string	name=“app_name”>My	Application</string>
		<string	name=“hello_world”>Hello	world!</string>
		<string	name=“action_settings”>Settings</string>
</resources>

	

The	AndroidManifest.xml	file’s	content	is	given	below.

<?xml	version=“1.0”	encoding=“utf-8”?>
<manifest	xmlns:android=“http://schemas.android.com/apk/res/android”
		package=“com.example.sairamkrishna.myapplication”	>
		
		<uses-permission	android:name=“android.permission.INTERNET”	/>
		
		<application
					android:allowBackup=“true”
					android:icon=”@mipmap/ic_launcher”
					android:label=”@string/app_name”
					android:theme=”@style/AppTheme”	>
					
					<activity
								android:name=”.MainActivity”
								android:label=”@string/app_name”	>
								
								<intent-filter>
											<action	android:name=“android.intent.action.MAIN”	/>
											<category	android:name=“android.intent.category.LAUNCHER”	/>
								</intent-filter>
								
					</activity>
					
		</application>

	

Chapter	22:	Android	Animations
	

Using	animations

From	 the	 android	 version	 3.0,	 the	 properties	 animation	 API	 is	 introduced.	 Over	 the
predefined	time	interval,	this	allowed	the	change	of	the	object	properties.

The	arbitrary	properties	 to	an	object	can	be	defined	using	the	API.	This	attribute	can	be
given	a	start	value	and	end	value.	Time	based	changes	can	also	be	given	to	this	attribute.

1.2.	Animator	and	AnimatorListener

The	Animator	 class	 is	 the	 superclass	 of	 the	 animation	API.	 For	modifying	 the	 object’s
attributes,	the	ObjectAnimator	class	is	typically	used.

An	AnimatorListener	 class	 can	 also	 be	 added	 to	 your	Animator	 class.	 During	 different
phases	 of	 the	 animation	 this	 listener	 will	 be	 called.	 This	 listener	 can	 be	 used	 for
performing	actions	after	or	before	an	animation.	For	example,	it	can	be	used	for	adding	or
removing	a	View	from	a	certain	ViewGroup.

	

1.3.	ViewPropertyAnimator

From	 the	 android	 version	 3.1,	 the	 ViewPropertyAnimator	 was	 introduced.	 This	 class
provides	simpler	access	to	the	animations	that	are	performed	on	views.

A	 ViewPropertyAnimator	 will	 be	 returned	 by	 the	 animate()	 method.	 Simultaneous
animations	 are	 allowed	 to	 perform	 by	 this	 object.	 It	 allows	 you	 to	 set	 the	 duration	 of
animation	and	it	has	got	a	fluent	API.

The	ViewPropertyAnimator	is	designed	with	the	main	purpose	of	providing	a	simpler	API
for	typical	animations.

This	method’s	usage	is	shown	in	the	example	given	below.

//	Using	hardware	layer
myView.animate().translationX(400).withLayer();

By	allowing	the	ViewPropertyAnimator	use	the	hardware	layout,	the	performance	can	be
optimised.

//	Using	hardware	layer
myView.animate().translationX(400).withLayer();

A	runnable	can	be	directly	defined	for	executing	it	during	the	beginning	and	ending	of	the
animation.

//	StartAction
myView.animate().translationX(100).withStartAction(new	Runnable(){
	public	void	run(){
			viewer.setTranslationX(100-myView.getWidth());
			//	do	something
	}
});

//	EndAction
myView.animate().alpha(0).withStartAction(new	Runnable(){
	public	void	run(){
			//	rRemove	the	view	from	the	parent	layout
			parent.removeView(myView);
	}
});

You	 can	 define	 objects	 of	 the	 type	 TimeInterpolator	 using	 the	 setInterpolator().	 The
TimeInterpolator	is	used	for	defining	the	value	changed	over	time.	It	is	a	linear	standard.
There	are	a	few	default	ones	defined	by	the	android	platform.	The	rate	of	change	for	them
is	slow	at	the	start	and	the	end	but	it	accelerates	in	the	middle.

The	objects	of	the	TypeEvaluator	type	can	we	set	using	the	setEvaluator	method.	With	the
TypeEvaluator,	animations	can	be	created	on	arbitrary	property	types.	Custom	evaluators
should	be	provided	for	the	ones	that	cannot	be	understood	and	used	automatically	by	the
animation	system.

	

Layout	animations

On	a	layout	container,	you	can	set	animations	using	the	LayoutTransition	class.	The
container’s	change	on	the	view	hierarchy	will	be	animated.

	

package	com.example.android.layoutanimation;

import	android.animation.LayoutTransition;
import	android.app.Activity;
import	android.os.Bundle;
import	android.view.Menu;
import	android.view.View;
import	android.view.ViewGroup;
import	android.widget.Button;

public	class	MainActivity	extends	Activity	{

	private
ViewGroup	viewGroup;

	@Override
	public	void	onCreate(Bundle	savedInstanceState)	{
			super.onCreate(savedInstanceState);
			setContentView(R.layout.activity_main);
			LayoutTransition	l	=	new	LayoutTransition();
			l.enableTransitionType(LayoutTransition.CHANGING);
			viewGroup	=	(ViewGroup)	findViewById(R.id.container);
			viewGroup.setLayoutTransition(l);

	}

	
public	void	onClick(View	view
)	{
			viewGroup.addView(new	Button(this));
	}

	@Override
	public	boolean	onCreateOptionsMenu(Menu	menu)	{
			getMenuInflater().inflate(R.menu.activity_main,	menu);
			return	true;
	}

}

	

Animations	for	Activity	transition

We	all	know	that	the	animations	can	be	applied	on	views.	But	it	is	not	limited	to	them.
Animations	can	be	applied	on	transition	between	activities	too.

The	customer	or	default	animations	can	be	defined	using	the	ActivityOptions	class.

public	void	onClick(View	view)	{
	Intent	intent	=	new	Intent(this
,	SecondActivity.class);
	ActivityOptions	options	=	ActivityOptions.makeScaleUpAnimation(view,	0,
					0,	view.getWidth(),	view.getHeight());
	startActivity(intent,	options.toBundle());
}

	

	

View	Animation

The	below	description	is	given	that	you	already	have	some	basic	knowledge	on	android
development.

In	this	tutorial	will	look	at	the	properties	of	the	animation	API	and	its	usage.

Now,	create	a	new	project	and	name	it	com.vogella.android.animation.views	and	the
activity	AnimationExampleActivity.	The	default	layout	file	will	be	the	main.xml.	You
should	change	that	file	to	be	given	code.

<?xml	version=“1.0”	encoding=“utf-8”?>
<RelativeLayout	xmlns:android=“http://schemas.android.com/apk/res/android”
			android:id=”@+id/layout”
			android:layout_width=“match_parent”
			android:layout_height=“match_parent”
			android:orientation=“vertical”	>

			<LinearLayout
							android:id=”@+id/test”
							android:layout_width=“wrap_content”
							android:layout_height=“wrap_content”	>

							<Button
											android:id=”@+id/Button01”
											android:layout_width=“wrap_content”
											android:layout_height=“wrap_content”
											android:onClick=“startAnimation”
											android:text=“Rotate”	/>

							<Button
											android:id=”@+id/Button04”
											android:layout_width=“wrap_content”
											android:layout_height=“wrap_content”
											android:onClick=“startAnimation”
											android:text=“Group”	>
							</Button>

							<Button
											android:id=”@+id/Button03”
											android:layout_width=“wrap_content”
											android:layout_height=“wrap_content”
											android:onClick=“startAnimation”
											android:text=“Fade”	/>

							<Button

											android:id=”@+id/Button02”
											android:layout_width=“wrap_content”
											android:layout_height=“wrap_content”
											android:onClick=“startAnimation”
											android:text=“Animate”	/>

			</LinearLayout>

			<ImageView
							android:id=”@+id/imageView1”
							android:layout_width=“wrap_content”
							android:layout_height=“wrap_content”
							android:layout_centerHorizontal=“true”
							android:layout_centerVertical=“true”
							android:src=”@drawable/icon”	/>

			<TextView
							android:id=”@+id/textView1”
							android:layout_width=“wrap_content”
							android:layout_height=“wrap_content”
							android:layout_above=”@+id/imageView1”
							android:layout_alignRight=”@+id/imageView1”
							android:layout_marginBottom=“30dp”
							android:text=“Large	Text”
							android:textAppearance=”?android:attr/textAppearanceLarge”	/>

</RelativeLayout>

Create	the	following	menu	resource.

<?xml	version=“1.0”	encoding=“utf-8”?>
<menu	xmlns:android=“http://schemas.android.com/apk/res/android”	>

			<item
							android:id=”@+id/item1”
							android:showAsAction=“ifRoom”
							android:title=“Game”>
			</item>

</menu>

Change	your	activity	to	the	following.

package	com.vogella.android.animation.views;

import	android.animation.AnimatorSet;

import	android.animation.ObjectAnimator;
import	android.app.Activity;
import	android.content.Intent;
import	android.graphics.Paint;
import	android.os.Bundle;
import	android.view.Menu;
import	android.view.MenuItem;
import	android.view.View;
import	android.widget.ImageView;
import	android.widget.TextView;

public	class	AnimationExampleActivity
extends	Activity	{

	

/**	Called	when	the	activity	is	first	created.	*/

	@Override
	public	void	onCreate(Bundle	savedInstanceState)	{
			super.onCreate(savedInstanceState);
			setContentView(R.layout.main);

	}

	public	void	startAnimation(View	view)	{
			float	dest	=	0;
			ImageView	aniView	=	(ImageView)	findViewById(R.id.imageView1);
			switch	(view.getId())	{

			case	R.id.Button01:
					dest	=	360;
					if	(aniView.getRotation()	==	360)	{
							System.out.println(aniView.getAlpha());
							dest	=	0;
					}
					ObjectAnimator	animation1	=	ObjectAnimator.ofFloat(aniView,
									“rotation”,	dest);
					animation1.setDuration(2000);
					animation1.start();
					//	Show	how	to	load	an	animation	from	XML
					//	Animation	animation1	=	AnimationUtils.loadAnimation(this,
					//	R.anim.myanimation);
					//	animation1.setAnimationListener(this);

					//	animatedView1.startAnimation(animation1);
					break;

			case	R.id.Button02:
					//	shows	how	to	define	a	animation	via	code
					//	also	use	an	Interpolator	(BounceInterpolator)
					Paint	paint	=	new	Paint();
					TextView	aniTextView	=	(TextView)	findViewById(R.id.textView1);
					float	measureTextCenter	=	paint.measureText(aniTextView.getText()
									.toString());
					dest	=	0	-	measureTextCenter;
					if	(aniTextView.getX()	<	0)	{
							dest	=	0;
					}
					ObjectAnimator	animation2	=	ObjectAnimator.ofFloat(aniTextView,
									“x”,	dest);
					animation2.setDuration(2000);
					animation2.start();
					break;

			case	R.id.Button03:
					//	demonstrate	fading	and	adding	an	AnimationListener

					dest	=	1;
					if	(aniView.getAlpha()	>	0)	{
							dest	=	0;
					}
					ObjectAnimator	animation3	=	ObjectAnimator.ofFloat(aniView,
									“alpha”,	dest);
					animation3.setDuration(2000);
					animation3.start();
					break;

			case	R.id.Button04:

					ObjectAnimator	fadeOut	=	ObjectAnimator.ofFloat(aniView,	“alpha”,
									0f);
					fadeOut.setDuration(2000);
					ObjectAnimator	mover	=	ObjectAnimator.ofFloat(aniView,
									“translationX”,	-500f,	0f);
					mover.setDuration(2000);
					ObjectAnimator	fadeIn	=	ObjectAnimator.ofFloat(aniView,	“alpha”,
									0f,	1f);
					fadeIn.setDuration(2000);

					AnimatorSet	animatorSet	=	new	AnimatorSet();

					animatorSet.play(mover).with(fadeIn).after(fadeOut);
					animatorSet.start();
					break;

			default:
					break;
			}

	}

	@Override
	public	boolean	onCreateOptionsMenu(Menu	menu)	{
			getMenuInflater().inflate(R.menu.mymenu,	menu);
			return	super.onCreateOptionsMenu(menu);
	}

	@Override
	public	boolean	onOptionsItemSelected(MenuItem	item)	{
			Intent	intent	=	new	Intent(this,	HitActivity.class);
			startActivity(intent);
			return	true;
	}
}

Create	a	new	activity	called	HitActivity.

package	com.vogella.android.animation.views;

import	java.util.Random;

import	android.animation.Animator;
import	android.animation.AnimatorListenerAdapter;
import	android.animation.AnimatorSet;
import	android.animation.ObjectAnimator;
import	android.app.Activity;
import	android.os.Bundle;
import	android.view.View;
import	android.widget.Button;

public	class	HitActivity	extends	Activity	{
	private	ObjectAnimator	animation1;
	private	ObjectAnimator	animation2;
	private	Button	button;

	private	Random	randon;
	private	int	width;
	private	int	height;
	private	AnimatorSet	set;

	@Override
	protected	void	onCreate(Bundle	savedInstanceState)	{
			super.onCreate(savedInstanceState);
			setContentView(R.layout.target);
			width	=	getWindowManager().getDefaultDisplay().getWidth();
			height	=	getWindowManager().getDefaultDisplay().getHeight();
			randon	=	new	Random();

			set	=	createAnimation();
			set.start();
			set.addListener(new	AnimatorListenerAdapter()	{

					@Override
					public	void	onAnimationEnd(Animator	animation)	{
							int	nextX	=	randon.nextInt(width);
							int	nextY	=	randon.nextInt(height);
							animation1	=	ObjectAnimator.ofFloat(button,	“x”,	button.getX(),
											nextX);
							animation1.setDuration(1400);
							animation2	=	ObjectAnimator.ofFloat(button,	“y”,	button.getY(),
											nextY);
							animation2.setDuration(1400);
							set.playTogether(animation1,	animation2);
							set.start();
					}
			});
	}

	public	void	onClick(View	view)	{
			String	string	=	button.getText().toString();
			int	hitTarget	=	Integer.valueOf(string)	+	1;
			button.setText(String.valueOf(hitTarget));
	}

	private	AnimatorSet	createAnimation()	{
			int	nextX	=	randon.nextInt(width);
			int	nextY	=	randon.nextInt(height);
			
button	=	(Button)	findViewById(R

.id.button1);
			animation1	=	ObjectAnimator.ofFloat(button,	“x”,	nextX);
			animation1.setDuration(1400);
			animation2	=	ObjectAnimator.ofFloat(button,	“y”,	nextY);
			animation2.setDuration(1400);
			AnimatorSet	set	=	new	AnimatorSet();
			set.playTogether(animation1,	animation2);
			return	set;
	}
}

By	pressing	different	buttons	after	running	this	example,	the	animation	will	be	started.
You	can	navigate	to	the	other	activity	using	the	ActionBar.

	

Animations	for	fragment	transitions

Animations	can	be	defined	during	fragment	transactions	and	they	should	be	used	to	basing
on	the	Animation	API	property	through	the	method	setCustomAnimations().

Android	provides	many	standard	animations	and	you	can	use	those	are	using	the	method
call	setTransition().	The	FragmentTransaction.TRANSIT_FRAGMENT_*	constraints	are
used	for	a	defining	them.

You	can	define	entry	and	exit	animations	using	any	of	the	two	methods.

	

Activity	animations	in	Android	with	shared	views

Animations	can	be	done	between	activities	from	the	android	version	5.0.	Between	these
activities	they	can	have	shared	views.	If	shared	part	is	defined,	the	old	you	will	start
animating	into	the	size	and	position	of	the	new	one.

You	can	create	a	top-level	package	project	for	testing	it.
calledcom.vogella.android.activityanimationwithsharedviews.

Create	two	activities	with	different	layouts.	Both	of	them	should	contain	the	same
android:transitionNameproperty	in	the	ImageView			

activity_main.xml

<LinearLayout	xmlns:android=“http://schemas.android.com/apk/res/android”
			xmlns:tools=“http://schemas.android.com/tools”
			android:layout_width=“match_parent”
			android:layout_height=“match_parent”
			android:paddingBottom=”@dimen/activity_vertical_margin”
			android:paddingLeft=”@dimen/activity_horizontal_margin”
			android:paddingRight=”@dimen/activity_horizontal_margin”
			android:paddingTop=”@dimen/activity_vertical_margin”
			tools:context=”.MainActivity”>

			<ImageView
							android:id=”@+id/sharedimage”
							android:layout_width=“match_parent”
							android:layout_height=“wrap_content”
							android:scaleType=“centerCrop”
							android:src=”@drawable/ic_sharedimage”
							/>

</LinearLayout>

activity_second.xml

<RelativeLayout	xmlns:android=“http://schemas.android.com/apk/res/android”
			xmlns:tools=“http://schemas.android.com/tools”
			android:layout_width=“match_parent”
			android:layout_height=“match_parent”
			android:paddingBottom=”@dimen/activity_vertical_margin”
			android:paddingLeft=”@dimen/activity_horizontal_margin”
			android:paddingRight=”@dimen/activity_horizontal_margin”
			android:paddingTop=”@dimen/activity_vertical_margin”
			tools:context=“com.vogella.android.activityanimationwithsharedviews.SecondActivity”>

			<ImageView
							android:id=”@+id/sharedimage”

							android:layout_width=“match_parent”
							android:layout_height=“wrap_content”
							android:src=”@drawable/ic_sharedimage”
							android:layout_alignParentBottom=“true”
							android:layout_alignParentEnd=“true”	/>

			<TextView
							android:layout_width=“wrap_content”
							android:layout_height=“wrap_content”
							android:text=”@string/hello_world”
							android:id=”@+id/textView”	/>

			<Button
							android:layout_width=“wrap_content”
							android:layout_height=“wrap_content”
							android:text=“New	Button”
							android:id=”@+id/button”
							android:transitionName=“sharedImage”
							android:layout_below=”@+id/textView”
							android:layout_alignParentStart=“true”
							android:layout_marginTop=“54dp”	/>

</RelativeLayout>

Adjust	your	activity	code.

package	com.vogella.android.activityanimationwithsharedviews;

import	android.app.Activity;
import	android.app.ActivityOptions;
import	android.content.Intent;
import	android.os.Bundle;
import	android.view.View;
import	android.widget.ImageView;

public	class	MainActivity	extends	Activity	{

			@Override
			protected	void	onCreate(Bundle	savedInstanceState)	{
							super
.onCreate(savedInstanceState);
							setContentView(R.layout.activity_main);
							final	ImageView	sharedImage	=	(ImageView)	findViewById(R.id.sharedimage);
							sharedImage.setOnClickListener(new	View.

OnClickListener()	{
											@Override
											public	void	onClick(View	view
)	{
															//This	is	where	the	magic	happens.	
													//	makeSceneTransitionAnimation	takes	a	context,	view,
													//	a	name	for	the	target	view.
															ActivityOptions	options	=	
																			ActivityOptions.
																		makeSceneTransitionAnimation(MainActivity.this,	sharedImage,
“sharedImage”);
															
Intent	intent	=	new	Intent(MainActivity
.this,	SecondActivity.class);
															startActivity(intent,	options.toBundle());
											}
							});

			}

}

package	com.vogella.android.activityanimationwithsharedviews;

import	android.app.Activity;
import	android.os.Bundle;

public	class	SecondActivity	extends	Activity
{

			@Override
			protected	void	onCreate(Bundle	savedInstanceState)	{
							super.onCreate(savedInstanceState);
							setContentView(R.layout.activity_second);
			}
}

After	running	the	application,	if	you	click	on	the	image	view,	it	will	be	animated	with	the
same	property	android:transitionName	and	it	is	the	button	in	this	case.

Conclusion
	

There	you	have	it,	a	simple	Android	app	that	you	can	develop	yourself	and	astound	your
friends	with.	There	is	so	much	further	you	can	go	with	this	but	 that	 is	getting	into	more
advanced	waters.

	

Keep	 on	 practicing	 and	 you	will	 soon	 be	 in	 a	 position	 to	 advance	 on	 to	more	 complex
coding	 and	 writing	 deeper	 programs	 that	 do	 more.	 Don’t	 just	 practice	 your	 Android
development	 though;	go	back	to	 the	roots	and	make	sure	you	keep	up	to	date	with	your
Java	language	as	well	because	this	is	an	important	part	of	the	development	process.

	

Good	luck	and	don ’ t	forget	to	have	fun!

You	May	Enjoy	My	Other	Books!
	

	
PYTHON:	Programming	Guide	For	Beginners:	LEARN	IN	A
DAY!
hyperurl.co/python
	
	
C	++	Programming	:	Programming	Language	For	Beginners:
LEARN	IN	A	DAY!
hyperurl.co/cplusplus
	
	
JAVA:	Java	Programming,	JavaScript,	Coding:	Programming
Guide:	LEARN	IN	A	DAY!
hyperurl.co/javaos
	
	
SQL:	Programming	Guide:	Javascript	and	Coding:	LEARN	IN
A	DAY!
hyperurl.co/sql
	
	
Programming	HTML:	Programming	Guide:	Computer
Programming:	LEARN	IN	A	DAY!

http://hyperurl.co/python
http://hyperurl.co/cplusplus
http://hyperurl.co/javaos
http://smarturl.it/sql

hyperurl.co/html
	
	
Programming	Swift:	Create	A	Fully	Functioning	App:	Learn	In
A	Day!
hyperurl.co/swift
	
	

http://hyperurl.co/html
http://hyperurl.co/swift

	© Copyright 2015 by Os Swift- All rights reserved.
	ContentsIntroductionChapter 1: Android OverviewChapter 2: Android ArchitectureChapter 3: Android Soft...
	Introduction
	Chapter 1: Android Overview
	Chapter 2: Android Architecture
	Chapter 3: Android Software Development
	Chapter 4 – How to Become an Android App Developer from Scratch
	Chapter 5 - Getting Started
	Chapter 6 - The Android SDK Manager
	Chapter 7 - Let’s Create OMG Android
	Chapter 8 - Important Application Files
	Chapter 9 - Running Your App on an Emulator or Device
	Chapter 10: Organize Resources In Android Studio
	Chapter 11 - Updating With the SDK Manager
	Chapter 12 - XML Layout Basics
	Chapter 13 - Buttons and Listeners
	Chapter 14 - Adding Visual and Nested Layouts
	Chapter 15 - Involving the Keyboard
	Chapter 16 - The ListView
	Chapter 17 - Detecting List Selections
	Chapter 18 - The Action Bar
	Chapter 19 - Remembering Your Name
	Chapter 20: Android: How to Develop a Simple Calculator
	Chapter 21: Android: A login Application
	Chapter 22: Android Animations
	Conclusion
	You May Enjoy My Other Books!PYTHON: Programming Guide For Beginners: LEARN IN A DAY!

