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Preface

This book entitled Computation, Cryptography, and Network Security brings
together a broad variety of mathematical methods and theories with several
applications from a number of disciplines. It discusses new directions for further
inventions in computation, cryptography, and network security.

It is hoped to provide some good understanding of the subject of security in
the broadest sense. It consists of papers written by eminent scientists from the
international mathematical community, who present important research works in
several theories and problems. These contributions focus on both old and new
developments of pure and applied mathematics with emphasis to the geometry of
the zeros of a polynomial, multivariate Birkhoff interpolation, variational principles
in vector spaces, parameterized Yang-Hilbert-type integral inequalities and their
operator expressions, operators preserving linear functions, integral estimates for the
composition of Green’s and bounded operators, asymptotic behavior of orthogonal
polynomials on the unit circle, generalized Laplace transform inequalities in
multiple weighted Orlicz spaces, and functional equations.

Furthermore, some survey papers are published in this volume, which are
particularly useful for a broader audience of readers, particularly in credential
technologies, cryptographic schemes, current challenges for IT security with fo-
cus on biometry, flaws in the initialization process of stream ciphers, entropy
and information measures, information theory, quantum analogues of Hermite-
Hadamard type inequalities for generalized convexity, producing fuzzy inclusion
and entropy measures, as well as applications on the unstable equilibrium points
and system separations in electric power systems, and a supply chain game theory
for cybersecurity investments subject to network vulnerability.

We would like to express our deepest thanks to all the contributors of papers who,
through their works, participated in this book. We would also wish to acknowledge
the superb assistance that the staff of Springer has provided for the publication of
this book.

Athens, Greece Nicholas J. Daras
Princeton, NJ, USA Michael Th. Rassias
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Transformations of Cryptographic Schemes
Through Interpolation Techniques

Stamatios-Aggelos N. Alexandropoulos, Gerasimos C. Meletiou,
Dimitrios S. Triantafyllou, and Michael N. Vrahatis

Abstract The problem of transforming cryptographic schemes using interpolation
techniques is studied. Firstly, explicit forms for the discrete logarithm and the
Diffie–Hellman cryptographic functions are given. Subsequently, the inverse Aitken
and Neville interpolation methods for the discrete logarithm and the Lucas logarithm
problems are presented. Next, the representation of cryptographic functions through
polynomials or algebraic functions as well as a special case of discrete logarithm
problem is given. Finally, a study of cryptographic functions using factorization of
matrices is analyzed.

Keywords: Public key cryptography • Discrete logarithm • Diffie Hellman
mapping • Polynomial interpolation techniques • Matrix factorization

1 Introduction

A basic task of cryptography is the transformation or encryption, of a given message
into another one which appears meaningful only to the intended recipient after the
process of decryption. Messages and cryptograms are represented as elements of
finite algebraic structures. Encryption and decryption processes are functions over
finite structures especially over finite fields.

It is well known that, in a finite field GF.q/, where q is a prime power, every
function can be represented as a polynomial through the Lagrangian interpolation.
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2 S.-A.N. Alexandropoulos et al.

Also, for every function, f W GF.q/! GF.q/, there exists a unique polynomial p.x/
of degree at most .q � 1/ that coincides with f .

One of the most basic aspects of the numerical analysis, with diverse applications
in the field of cryptography, is the interpolation techniques. It is worth noting that
the past three decades have witnessed an increasing interest in the application of
interpolation techniques of cryptographic functions. The Langrange’s, Hermite’s,
Aitken’s and Neville’s interpolation methods are widely used for the interpolation
process through which the encryption and decryption functions are approximated.

Interpolation is computationally attractive only in the case of a polynomial with
small number of nonzero coefficients. Since encryption and decryption functions are
defined as functions over finite fields, it is of great importance to attempt to express
them as polynomials and perform cryptanalysis by polynomial computation.

In the work at hand we study the problem of transforming cryptographic schemes
using interpolation techniques. In the second section we consider explicit forms
of cryptographic functions, such as the discrete logarithm and the Diffie–Hellman
functions. Subsequently, in the third section we present inverse interpolation meth-
ods, such as Aitken’s and Neville’s methods for the well-known discrete logarithm
problem as well as the Lucas logarithm problem. Next, in the fourth section
we present the representation of cryptographic functions through polynomials or
algebraic functions, while in the fifth section we give a special case of discrete
logarithm problem. Finally the chapter ends at the sixth section with a study of
cryptographic functions using factorization of matrices.

2 Explicit Forms of Cryptographic Functions

Definition 1. Consider the case of a prime field Zp, where p is a prime. For a
generator g of Z

�
p ; hgi D Z

�
p , the polynomial:

p.x/ D
p�2X

iD1

xi

1 � gi
;

represents the discrete logarithm of x to the basis g ; 8 x 2 Z
�
p .

Remark 1. Surprisingly enough the formulas of the coefficients are very
simple [24].

Proposition 1 ([17]). Using the discrete Fourier transform, we can also derive the
following matrix representation:

logg.x/ D �. 1 2 : : : p � 1 / �g�ij
�

0

BBBB@

x
x2

:::

xp�1

1

CCCCA
;

where .�g�ij/, 1 6 i; j 6 p � 1 is an .p � 1/� .p � 1/ matrix.
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It seems natural to generalize these results to logarithms where the base is not
necessarily a primitive element in a field of prime power order. To this end, we
recall the following result [16–20]:

Theorem 1. Let g 2 F
�
pn , g generator of the multiplicative group of the field, that is

hgi D F
�
pn ; gz D x 2 F

�
pn ; 1 6 z 6 pn � 1. Suppose that the numeral system with p

as a basis is used:

z D
n�1X

sD0
dsp

s; 0 6 ds 6 m:

Then, it holds that:

ds D
pn�2X

iD1

xi

.1 � gi/p
s :

Concerning the representations of the Diffie–Hellman key function Meidl and
Winterhof in [15] gave the following result:

Theorem 2. Assume that g 2 F
�
pn ; jhgij D m, m divides pn � 1 and 1 6 a; b 6 m.

Then the polynomial:

f .x; y/ D m�1
mX

i;jD1
gi�j xi yj;

satisfies the relation:

f
�
ga; gb

� D gab:

Proposition 2. Using the discrete Fourier transform, we can also derive the
following matrix representation:

f .x; y/ D m�1. y y2 : : : ym /
�
g�ij

�

0

BBBB@

x
x2

:::

xm

1

CCCCA
;

where .g�ij/ is an m �m matrix, 1 6 i; j 6 m.
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3 Interpolation and Inverse Interpolation Methods

Aitken’s and Neville’s interpolation techniques, as well as the Lagrange inter-
polation method, are well known and they are considered as the state of the
art for transforming of cryptographic functions over finite fields. In contrast to
the Lagrange method, Aitken’s and Neville’s methods are constructive in a way
that permits the addition of a new interpolation point directly and with low
computational cost. Thus, the interpolation procedure is initially applied to a small
number of points and unless the required polynomial is found, new interpolation
points are added sequentially to the previously obtained polynomial with low cost.
This advantage over the Lagrange interpolation method and the fact that Aitken’s
and Neville’s interpolation formulae can be applied in any field, have motivated the
investigation of their performance over finite fields. In this section, we study the
inverse Aitken and the inverse Neville interpolation methods over finite fields for
the discrete logarithm and the Lucas logarithm function.

3.1 The Aitken and Neville Interpolation and Inverse
Interpolation Methods

We study the Aitken and Neville interpolation methods by considering a function
f .x/ defined on a field F and xi 2 F be mutually different interpolation points. Also,
we assume that fi D f .xi/, with i D 0; 1; : : : ; n. Then, the Aitken polynomial is
defined as follows:

P 0;1;:::;m;i.x/ D 1

.xi � xm/

ˇ̌
ˇ̌
ˇ̌
P0;1;:::;m.x/ xm � x

P0;1;:::;m�1;i.x/ xi � x

ˇ̌
ˇ̌
ˇ̌ ;

where m D 0; 1; : : : ; n � 1, i D mC 1; : : : ; n and x0; x1; : : : ; xk are the interpolated
points.

Similarly, the Neville interpolation formula is given by:

Pi;1Ci;:::;iCm.x/ D 1

.xiCm � xi/

ˇ̌
ˇ̌
ˇ̌
Pi;iC1;:::;iCm�1.x/ xi � x

PiC1;iC2;:::;iCm.x/ xiCm � x

ˇ̌
ˇ̌
ˇ̌ ;

where m D 1; 2; : : : ; n, i D 0; 1; : : : ; n � m and where xi; xiC1; : : : ; xiCk are the
interpolated points.

The inverse interpolation problem [12] can be approached through Aitken’s and
Neville’s interpolation techniques using the corresponding formulae [3]. Specifi-
cally, the corresponding formulae of the inverse Aitken interpolation method and
the inverse Neville interpolation method are given as follows:
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P0;1;:::;m;i.y/ D 1

.yi � ym/

ˇ̌
ˇ̌
ˇ̌
P0;1;:::;m.y/ ym � y

P0;1;:::;m�1;i.x/ yi � y

ˇ̌
ˇ̌
ˇ̌ ;

where m D 0; 1; : : : ; n � 1, i D mC 1; : : : ; n and:

Pi;1Ci;:::;iCm.y/ D 1

.yiCm � yi/

ˇ̌
ˇ̌
ˇ̌
Pi;iC1;:::;iCm�1.y/ yi � y

PiC1;iC2;:::;iCm.y/ yiCm � y

ˇ̌
ˇ̌
ˇ̌ :

An interesting point is the approach on the values of the shifted exponential
function:

f .x/ D ˛x � b .mod p/; for p prime and ˛ 2 Zp;

using the inverse Aitken and the inverse Neville interpolations method. Selected
points of the function f are used to construct a polynomial that interpolates the value
f .x�/ D 0 .mod p/. The resulting polynomial is evaluated at zero by interpolating
two random values of x in the beginning. Every new point becomes a new interpolate
point, unless the value is the discrete logarithm of b over ˛ .mod p/.

As it has been presented in [12] the computational cost for tackling the problem
of discrete logarithm through both methods is high. Overall, Aitken’s method proved
slightly better than the Neville’s method. The performance of two methods implies
that the resulting polynomials were most often of low degree and in most cases there
exists a low degree polynomial that interpolates the discrete logarithm.

3.2 Inverse Interpolation Methods for the Lucas
Logarithm Problem

The Lucas function is a one-way function used in public key cryptography. The
security of cryptosystems based on the Lucas function relies on the difficulty
of solving the Lucas logarithm problem. In this subsection the Lucas logarithm
problem is studied using the inverse Aitken and Neville interpolation methods.
These methods are applied to values of the Lucas function to obtain a polynomial
that interpolates the Lucas logarithm.

Definition 2. Suppose that p is an odd prime and let Fp be the finite field of order p.
For a fixed element m 2 Fp consider the following second-order linear recurrence
relation:

8
ˆ̂<

ˆ̂:

V0.m/ D 2;
V1.m/ D m;

Vt.m/ D mVt�1.m/� Vt�2.m/; t > 2:
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Then the sequence fVt.m/g1tD0 is called Lucas sequence generated by m and the
mapping:

t 7! Vt.m/; t > 0;

is called Lucas function. Furthermore, given a prime p any m 2 Fp and z 2 fVt.m/g
then, the integer x which satisfies the relation Vx.m/ D z is called the Lucas
logarithm of z .

Remark 2. The security of cryptosystems based on the Lucas function relies on the
difficulty of addressing the Lucas logarithm problem.

Remark 3. It was shown in [20] that Vt.m/ D �t C ��t; t > 0, where � and
��1 are the roots of the characteristic polynomial of the above second-order linear
recurrence relation.

Remark 4. The roots of the following equation:

f .X/ D X2 � mX C 1;

are given by the expressions:

� D mCpm2 � 4
2

; ��1 D m �pm2 � 4
2

;

and if m2� 4 is zero or a quadratic residue modulo p, then both � and �� are in Fp,
otherwise they are in the extension field Fp2 .

Let us study the inverse Aitken and the inverse Neville interpolation methods
over the shifted Lucas function:

f .t/ D Vt.m/� z; t > 0;

with z 2 Fp; which is not a bijection. Specifically, a polynomial that interpolates
the function value f .t�/ D 0 is required. Both methods are constructive, thus the
interpolation procedure begins by interpolating two function values of the function
f .t/ for two random values of t. The resulting polynomial is evaluated at zero and
the obtained value t0 is verified by computing f .t0/. If f .t0/ D 0, then t0 is the Lucas
logarithm to the base m and the procedure is terminated, otherwise the value f .t0/
becomes a new interpolation point.

As it has been presented in [13] through several experiments, both Aitken’s and
Neville’s methods have similar behavior in finding the polynomial that interpolates
the Lucas logarithm value and require about one third of the field cardinality for
verifications to obtain the polynomial, which is not small.

In comparison with the results for the discrete logarithm problem [12], in the
case of Lucas logarithm problem the number of verifications required to find the
proper polynomial is smaller than the corresponding one for the discrete logarithm
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problem. Concerning the polynomial degree, the degrees of the polynomials that
interpolate the discrete logarithm value are higher [12] than that of the polynomials
that interpolate the Lucas logarithm value.

4 Interpolation of Cryptographic Functions
for a Given Set of Data

Another approach is to represent the cryptographic functions with polynomials
or algebraic functions coinciding with the functions over proper subsets of the
domain. However it has been shown that polynomials approximating cryptographic
transformations on sufficiently large sets must be of sufficiently large degree and
sparsity. To this end, lower bounds on the degrees and the sparsity (i.e., the
number of the nonzero coefficients) of polynomials interpolating the cryptographic
functions can be obtained.

It has been shown that even for polynomial representations of the discrete
logarithm over quite thin sets, the degree is still required to be high. These
results support the assumption of hardness of the aforementioned functions if
the parameters are properly chosen. The term “approximation” has been used for
polynomials which coincide with the cryptographic function over a subset of its
domain.

Concerning the discrete logarithm we have the result given by Coppersmith and
Shparlinski [7] and Shparlinski [21]:

Theorem 3. Let p be a prime, g 2 Z
�
p . Consider the subset S � f1; 2; : : : ; p �

1g; jSj D p � 1 � s; F.X/ 2 ZpŒX� a polynomial satisfying F.gx/ D x, 8 x 2 S.
Then it holds that:

deg.F/ > p � 2 � 2s .lower bound/:

Similar results can be derived for the Diffie–Hellman mapping:

Theorem 4. Let q be a prime power, g 2 F
�
q . Consider the subset A � ŒN C

1;N C h� � ŒN C 1;N C h�, where 2 6 h 6 q � 1 and jAj > 10h8=5. Assume that
F.U;V/ 2 FqŒX;Y� satisfies F.gx; gy/ D gxy for all .x; y/ 2 A. Then it holds that:

deg.F/ > jAj2
128h3

.lower bound/:

El Mahassni and Shparlinski in [10] gave for the decision Diffie–Hellman key
problem the following result:
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Theorem 5. Let q be a prime power, g 2 F
�
q D hgi. Consider the subset A �

ŒNC1;NCh�� ŒNC1;NCh�, where 2 6 h 6 q�1. The three variable polynomial
F.U;V;T/ 2 FqŒX;Y;Z� satisfies F.gx; gy; gxy/ D 0 for all .x; y/ 2 A. Then it holds
that:

deg.F/ > jAj
3h8=5

.lower bound/:

Furthermore, lower bounds have been computed for functions related to the
integer factoring problem and the RSA cryptosystem [1] as well as the Lucas
logarithm [2].

5 The Double Discrete Logarithm and the Root
of the Discrete Logarithm

Definition 3. Let G be a cyclic group of order t, jhgij D jGj D t and h 2 Z
�
t

be an element of order jhhij D m. The double discrete logarithm of an element
z D ghx 2 G to the bases g and h is the unique x W 0 6 x < m.

Remark 5. The parameters G; t; g, and h should be chosen such that computing
discrete logarithms in G to the base g and in Z

�
t to the base h are infeasible.

Remark 6. The double discrete logarithm is used as one-way function in several
cryptographic schemes, in particular in group signature schemes and publicity
verifiable secret sharing schemes.

The verifiable encryption of discrete logarithms is a typical example. Specifically
we have [22]:

1. Assume that jhgij D jGj D p, p is prime, p D 2qC 1; h 2 Z
�
p0 ; jhhij D q; q

prime.
2. A private key z 2 Zq is randomly chosen and the public-key y � hz.mod p/ is

published.
3. A message v is encrypted as .A;B/; A � h˛.mod p/ and B � v�1y˛.modp/

(El Gamal’s public key cryptosystem [9]).
4. The element w D gv becomes public.
5. Verifying that a pair .A;B/ encrypts the discrete logarithm of a public element

w D gv of the group G is equivalent to verifying that the discrete logarithm of
A to the base h is identical to the double discrete logarithm of wB to the bases g
and y.

Definition 4. Let G be a cyclic group of order t, jhgij D jGj D t, Y 2 G be an
element of the group G. A kth root of the discrete logarithm of Y to the base g is
an integer satisfying x W 0 6 x < t satisfying Y D gxk

if such an x exists.
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Remark 7. Existence and uniqueness of the kth root of the discrete logarithm are
not guaranteed. In the case

ˇ̌fx W gxk D ygˇ̌ > 2 branches of the kth root of the
discrete logarithm are defined.

Remark 8. Group G and parameters g and t can be chosen in such a way that
computing discrete logarithms to the base g is infeasible. Also, it can be chosen
such that obtaining kth roots modulo t is hard.

Remark 9. The kth root of the discrete logarithm is used as one-way function [4,
5, 14] in group signature schemes, publicly verifiable secret sharing schemes,
electronic cash, offline electronic cash systems, anonymity control in multi-bank
e-cash system, in history-based signatures, etc.

The following proposition gives an insight for the lower bounds of the polyno-
mial representation of the double discrete logarithm:

Proposition 3. Let t > 3 be an integer, p be a prime, p � 1.mod t/; g 2 F
�
p an

element of order m > 2, S � f0; 1; : : : ;m � 1g a set of order jSj D m � s and
f .x/ 2 FpŒx� a polynomial satisfying the following relation:

f .ghn
/ D n; 8 n 2 S:

Then it holds that:

deg.f / > m � 2s

2v
.lower bound/;

where v is the smallest integer in the set fhn.mod t/ W 1 6 n 6 mg.
Similar results can be obtained in the case of the multiplicative group of fields

of prime power order and groups derived from elliptic curves. Lower bounds can
also be computed for the degree of the polynomial which represents the root of the
discrete Logarithm:

Proposition 4. Let p be a prime number, g 2 Z
�
p ; jhg ij D t and let k > 1 be an

integer s.t. gcd.k; �.t// D 1. Let S � Z
�
t be a subset of order jSj D �.t/ � s. We

assume the existence of a polynomial F.X/ 2 ZpŒX� s.t. F.gxk
/ D x ; 8 x 2 S. Then

it holds that:

deg.F/ > �.t/� 2s

2
.lower bound/:

Remark 10. The exponent k is odd and relatively prime to �.t/ and the kth root
function becomes a bijection.

Remark 11. The main motivation stems from RSA. In this case k is the encryption
exponent e. In some applications the message m is encrypted as c � me.mod N/
and gme

becomes public. Recovering m from gme
, or verifying properties of m is

the problem. For proofs of knowledge of roots of discrete logarithms, we refer the
interested reader to [4].
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6 Matrix Factorization in Cryptography

Before we proceed to methods for the matrix representation of cryptographic
functions, we give some necessary definitions and theorems.

Definition 5. An m � n matrix whose row-entries are terms of a geometric
progression is called Vandermonde matrix and has the following expression:

V D

0

BBBBBBBB@

1 a1 a21 � � � an�1
1

1 a2 a22 � � � an�1
2

:::
:::

:::
: : :

:::

1 am�1 a2m�1 � � � an�1
m�1

1 am a2m � � � an�1
m

1

CCCCCCCCA

:

In order to extract useful pieces of information for a matrix, including the
rank, the eigenvalues and eigenvectors as well as the determinant among others,
its factorization can be used. In matrices with real or complex entries, the use of
orthogonal transformations such as Householder’s transformations for computing
the QR factorization or the singular value decomposition (SVD) [8] improves the
stability of the algorithms increasing simultaneously the floating point operations.
Non-orthogonal techniques such as LU factorization with partial or complete
pivoting [8] reduce the required computational complexity giving a higher, but
acceptable bound, for the norm of the error.

In the case of finite fields there is no error, thus the use of non-orthogonal
methods which are faster is more suitable. Since in cryptography the required
storage capacity of a method should not be greater than that of the initial data,
the QR factorization is not preferable. The LU factorization does not require extra
storage capacity and has less computational complexity.

Below we present the LU factorization with/without partial/complete pivoting of
a matrix.

Theorem 6 (LU Factorization without Pivoting [8]). Let A be an m � n matrix.
Then there are a lower triangular m � m matrix L with ones in its main diagonal
and an upper triangular m � n matrix such that A D L � U.

Theorem 7 (LU Factorization with Partial Pivoting [8]). Let A be an m � n
matrix. Then there are an m � m row permutation matrix P, a lower triangular
m�m matrix L with ones in its main diagonal and an upper triangular m�n matrix
such that P � A D L � U.

Theorem 8 (LU Factorization with Complete Pivoting [8]). Let A be an m �
n matrix. Then there are an m � m row permutation matrix P, an n � n column
permutation matrix Q, a lower triangular m � m matrix L with ones in its main
diagonal, and an upper triangular m � n matrix such that P � A � Q D L �U.
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Proposition 5. The required floating point operations of LU factorization of an
m � n matrix is O.n2.m � n

3
//.

Below, we present the error analysis for the LU factorization with partial
pivoting.

Proposition 6. The LU factorization is the exact factorization of the slightly
disturbed initial matrix A:

AC E D L � U; kEk1 6 n2 � u kAk1;

where � is the growth factor (in case of row pivoting) and u the unit round off.

Remark 12. The theoretical bound of the norm of the error matrix is unfortunately
large due to the growth factor.

Remark 13. It has been proved that in the case of Gaussian elimination with partial
pivoting holds that [8, 25]:

� 6 2n�1;

while in the case of Gaussian elimination with complete pivoting holds that:

� 6
�
n � 21 � 31=2 � 41=3 � � � n1=.n�1/�1=2 :

Remark 14. Although the theoretical bound for the norm of the error matrix in
LU factorization with partial pivoting is too high, in practice there are only a few
examples for which the error is not satisfactory. Thus, the LU factorization with
partial pivoting is one of the most popular matrix-factorization methods.

Next we present a high level description of the LU factorization with partial
pivoting algorithm:

Algorithm LU factorization with partial pivoting [8]

for k D 1 W minfm � 1; ng
Find r : jar;kj D maxk6i6mfjai;kjg
Interchange rows k and r
mik D �aik=akk; i D kC 1 W m
aij D aij C mik akj; i D kC 1 W m; j D kC 1 W n
Set ai;j D 0 if jai;jj 6 �t, i D k W mC n; j D k W mC n

Row interchanges can be saved in a vector p, where pi is the number of row
which is the maximum element in absolute value in column i for the rows i; i C
1; : : : ;m in step i of the algorithm. Let Pi be the permutation matrix in step i and
P D Pn�1 � � � P2 �P1, then the LU factorization with partial pivoting is P �A D L �U.
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6.1 Vandermonde Matrices

The Vandermonde matrices can be used for the representation of the discrete
logarithm function as well as the Diffie–Hellman mapping. These matrices are
derived from the interpolation process.

In [11, 18] LU-decomposition for Vandermonde matrices through Newton
polynomial has been elaborated and new forms of both these problems have been
provided. These new forms constitute an alternative approach to view and study the
equivalence of the two problems and evidence new ideas for the generation of new
cryptographic functions. The symmetric .p � 1/ � .p � 1/ Vandermonde matrix W
is used:

W D fWijg; i 6 i; j 6 p � 1; with Wij D w.i�1/.j�1/;

where w D g�1. The matrix W is a discrete Fourier transform, thus explicit forms
for the cryptographic function of Sect. 2 can be written as follows:

logg.x/ D �.p � 1; 1; 2; : : : ; p � 2/ W .x p�1; x; : : : ; x p�2/>; (1)

and

K.x; y/ D �.x p�1; x; x2; : : : ; x p�2/ W .y p�1; y; : : : ; y p�2/>; (2)

respectively. Then, using LU-decomposition, the matrix W can be factorized to W D
L � U, which equals to

U D

0

BBBBBBBBBBBBB@

1 1 1 1 : : : 1

0 w � 1 w2 � 1 w3 � 1 : : : wp�2 � 1
0 0 .w2 � 1/.w2 � w/ .w3 � 1/.w3 � w/ : : : .wp�2 � 1/.wp�2 � w/

0 0 0 ˘2
jD0.w3 � wj/ : : : ˘2

jD0.wp�2 � wj/

:::
:::

::: : : :
: : :

:::

0 0 0 : : : 0 ˘
p�3
jD0 .wp�2 � wj/

1

CCCCCCCCCCCCCA

:

Since the matrix W is symmetric, the upper triangular matrix U can also be
factorized to U = D � L>, where D D diag.U/.
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Thus, the matrix L assumes the form:

UD

0

BBBBBBBBBBBB@

1 0 0 0 : : : 0

1 1 0 0 : : : 0

1 .w2 � 1/.w � 1/�1 1 0 : : : 0

1 .w2 � 1/.w � 1/�1 .w3 � 1/.w3 � w/.w2 � 1/�1.w2 � w/�1 1 : : : 0

:::
:::

:::
:::
: : :

:::

1 .wp�2 � 1/.w� 1/�1 : : : : : : : : : 1

1

CCCCCCCCCCCCA

:

By setting F.x/ D L>x, with x> D .xp�1; x; : : : ; xp�2/ and by using the previous
factorization of the matrix W and taking into consideration the Eqs. (1) and (2), then
the discrete logarithm function can be written as follows:

��>LDL>x D ��>LDF.x/;

where �> D .p� 1; 1; 2; : : : ; p� 2/. Also, the Diffie–Hellman key function can be
written as follows:

�y>LDL>x D �F>.y/LDF.x/;

where y> D .yp�1; y; y2; : : : ; yp�2/. In the case of the Diffie–Hellman mapping
(where x D y), we obtain the following quadratic form:

�x> LDL>x D �F>.x/DF.x/;

which is computationally equivalent to the Diffie–Hellman function. The Diffie–
Hellman mapping can also be written as follows:

�c> LDL>y ; where c> D
�

g0; g1
2

; g2
2

; : : : ; g.p�2/2
�
:

6.2 LU Factorization in Cryptography

The LU factorization with partial pivoting can be applied in order to encrypt a
message [6, 23]. Let A 2 R

m�n (or A 2 C
m�n) be a matrix containing the initial

message. If L and U are lower and upper triangular matrices, respectively, and P
is a row permutation matrix as described previously, such that P � A D L � U, then
the initial message is efficiently encrypted in L and U. It has been proved that the
problem of restoring the initial message even though the matrix L or the matrix U is
known constitutes an NP-hard problem, i.e., it cannot be solved in a practical amount
of time [6]. If L is known from one person and U is known from another one, then
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the two persons have to meet together and multiply their matrices in order to decrypt
the initial message. Alternatively, the LU factorization with complete pivoting can
be applied in order to enforce the stability of the algorithm.

Below, we present an example implementing the LU factorization with complete
pivoting in order to encrypt an initial message. Then, the matrix multiplications is
used in order to restore the message.

Example 1. Let us assume the following matrix:

A D

0

BBBBB@

0:5688 0:1622 0:1656 0:6892

0:4694 0:7943 0:6020 0:7482

0:0119 0:3112 0:2630 0:4505

0:3371 0:5285 0:6541 0:0838

1

CCCCCA
:

We apply the LU factorization with complete pivoting to A.

Step 1:
The maximum element in absolute value in A is 0.7943 in the second row and
second column.
Interchange rows 1 and 2 and columns 1 and 2 of A.
Compute the multipliers Ai;1 � Li;1 � mi;1 D Ai;1

A1;1
; i D 2; 3; 4

Update the elements of A: Ai;j D Ai;j � Ai;1 � A1;j; i D 2; 3; 4; j D 1; 2; 3; 4

A.1/ D

0

BBBBB@

0:7943 0:4694 0:6020 0:7482

0 0:4730 0:0427 0:5365

0 �0:1720 0:0271 0:1574

0 0:0248 0:2535 �0:4140

1

CCCCCA
:

L D

0

BBBBB@

1:0000 0 0 0

0:2042 1:0000 0 0

0:3918 0 1:0000 0

0:6654 0 0 1:0000

1

CCCCCA
:

Step 2:
The maximum element in absolute value in A.1/i;j ; i D 2; 3; 4; j D 2; 3; 4 is
0.5365 in the second row and fourth column.
Interchange columns 2 and 4 of A.
Compute the multipliers Ai;2 � Li;2 � mi;2 D Ai;2

A2;2
; i D 3; 4

Update the elements of A: Ai;j D Ai;j � Ai;1 � A1;j; i D 3; 4; j D 2; 3; 4
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A D

0

BBBBB@

A.2/ D 0:7943 0:7482 0:6020 0:4694

0 0:5365 0:0427 0:4730

0 0 0:0146 �0:3108
0 0 0:2865 0:3898

1

CCCCCA
:

L D

0

BBBBB@

L D 1:0000 0 0 0

0:2042 1:0000 0 0

0:3918 0:2934 1:0000 0

0:6654 �0:7718 0 1:0000

1

CCCCCA
:

Step 3:
The maximum element in absolute value in A.2/i;j ; i D 3; 4; j D 3; 4 is 0.3898 in
the fourth row and fourth column.
Interchange rows 3 and 4 and columns 3 and 4 of A.
Interchange rows 3 and 4 of L except the diagonal entries.
Compute the multipliers Ai;3 � Li;2 � mi;3 D Ai;3

A3;3
; i D 4

Update the elements of A: Ai;j D Ai;j � Ai;1 � A1;j; i D 4; j D 3; 4

A D

0
BBBBB@

U � A.3/ D 0:7943 0:7482 0:4694 0:6020

0 0:5365 0:4730 0:0427

0 0 0:3898 0:2865

0 0 0 0:2430

1
CCCCCA
:

L D

0
BBBBB@

L D 1:0000 0 0 0

0:2042 1:0000 0 0

0:6654 �0:7718 1:0000 0

0:3918 0:2934 �0:7973 1:0000

1
CCCCCA
:

U � A

In order to reduce the required storage capacity we save the matrix U in the
upper triangular part of the initial matrix A, the matrix L (except the 1’s of the main
diagonal) to the lower triangular part of A, the row permutation matrix P as a vector
p D Œ2 1 4 3�, and the column permutation matrix Q as a vector q D Œ2 4 1 3�

(matrices P and Q are the identity matrix with interchanged their rows and columns,
respectively). Thus, P � A �Q D L �U. The use of A; p, and q instead of L; U; P; Q
keeps the storage capacity to O.n2/ which is the order of the storage capacity of the
initial data. Even knowing either U or L it is an NP-hard problem to obtain the initial
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data A. In order to restore the initial matrix A the following product P�1 � L �U �Q�1
must be computed. Due to the triangular form of L and U, only the required floating
point operations have to be computed reducing the computational complexity of
the multiplication. P and Q are permutation matrices, thus their inverses and their
product do not increase the complexity.

7 Synopsis

In the work at hand we studied the problem of transforming cryptographic schemes
using interpolation techniques.

We gave explicit forms for the discrete logarithm and Diffie–Hellman cryp-
tographic functions. Also, we presented inverse interpolation methods, such as
Aitken’s and Neville’s methods, for the well-known discrete logarithm problem as
well as the Lucas logarithm problem.

Furthermore, we gave the representation of cryptographic functions through
polynomials or algebraic functions and a special case of discrete logarithm problem.
Finally, we analyzed a study of cryptographic functions using factorization of
matrices.
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Flaws in the Initialisation Process of Stream
Ciphers

Ali Alhamdan, Harry Bartlett, Ed Dawson, Leonie Simpson,
and Kenneth Koon-Ho Wong

Abstract The initialisation process is a key component in modern stream cipher
design. A well-designed initialisation process should not reveal any information
about the secret key, or possess properties that may help to facilitate attacks. This
paper analyses the initialisation processes of shift register based stream ciphers and
identifies four flaws which lead to compression, state convergence, the existence
of slid pairs and possible weak Key-IV combinations. These flaws are illustrated
using the A5/1 stream cipher as a case study. We also provide some design
recommendations for the intialisation process in stream ciphers, to overcome these
and other flaws.

Keywords: Stream cipher • Initialisation • Slid pairs • Slide attack • Synchro-
nisation attack • State convergence • A5/1

1 Introduction

Symmetric stream ciphers are used to provide confidentiality in a wide range of
real-time applications such as the internet, pay TV and mobile phone transmissions.
In these applications, the information being transmitted should not be accessible
to unauthorised parties. The most common type of stream cipher is the binary
additive stream cipher, in which the plaintext (message) is regarded as a stream
of bits and encryption is performed by XORing the plaintext with a sequence of
keystream bits to obtain the ciphertext. The keystream is a pseudorandom binary
sequence produced by a deterministic finite state machine, known as a keystream
generator. An identical keystream must also be generated and used for decryption;
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Fig. 1 Binary additive stream cipher

the keystream is XORed with the ciphertext to recover the plaintext, as shown in
Fig. 1. Before the keystream generator can begin to produce an output sequence, it
must have an initial value or state. Using the inputs to the keystream generator to
form this initial value is known as initialisation.

For many applications, the communication is divided into sections known as
packets or frames, with a different keystream sequence required for each section
of the communication. Most modern keystream generators utilise two inputs: a
secret key and an initialisation vector (IV) or frame number [34]. The IVs are
assumed to be known information. Generally the same secret key is used for
the whole communication, but with different IVs for each packet or frame. For
each packet or frame, initialisation using the key and IV must be performed
before a sequence of keystream bits of the required length is generated and used
for encryption or decryption. This repetition of the initialisation process for the
keystream generator is referred to as reinitialising or “rekeying”. Examples of
packet sizes used in common applications are: digital video broadcasting (DVB),
184 bytes; advanced television systems committee (ATSC), 208 bytes; general
packet radio service (GPRS): 160, 240, 288 or 400 bits; and GSM mobile phone:
228 bits. The A5/1 cipher used to encrypt the frames of a GSM conversation is
rekeyed every 4.6 ms [17]. The short lengths of these keystream sequences illustrate
the importance of an efficient initialisation process for real-time applications such
as mobile and wireless communications [20]. Additionally, the requirement for
efficient initialisation should not compromise the security of the cipher.

The security provided by a stream cipher depends on the pseudorandom
keystream sequences appearing to be random [14, 17]. Most cryptanalysts focus
their security analysis on the keystream generation phase and do not consider the
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initialisation phase. However, the initialisation process is a necessary operation
before keystream generation and also affects the security of the cipher. A good
initialisation process should ensure that each key-IV pair generates a distinct
and unpredictable keystream and that multiple keystreams produced using the same
secret key with different IVs appear unrelated. Also, the initialisation process should
ensure that, even if the state of the keystream generator is revealed sometime during
keystream generation, relationships between the key-IV pair and the keystreams
are hard to establish so state recovery does not reveal any information about the
secret key.

This paper focuses on the initialisation process of shift register based keystream
generators for stream ciphers. Section 2 describes the phases of the initialisation
process for the keystream generators of stream ciphers. In Sect. 3 the security of
the initialisation process is investigated, and features of the cipher initialisation
process which reduce resistance to common forms of attack are identified. In Sect. 4,
these identified flaws are illustrated using the well-known A5/1 stream cipher as a
case study. This section is based on results reported by the authors in [2, 4, 5, 45].
Section 5 discusses the existence of these flaws in the initialisation processes of
certain other shift register based stream ciphers. Section 6 summarises our findings
and gives some design recommendations for the initialisation processes of shift
register based stream ciphers.

2 The Initialisation Process

In the initialisation process a secret key (necessary) and an IV (optional but very
common) are used to form an initial state for the keystream generator, before
keystream generation begins. In this paper we assume the use of an IV. The
initialisation process generally consists of two phases: a loading phase and a
diffusion phase. These are discussed in greater detail below.

2.1 Loading Phase

In the loading phase, the secret key and IV are loaded into the internal state of
the keystream generator. The key and IV loading may be performed sequentially
or simultaneously. For example, the A5/1 stream cipher [17] loads the secret key
first followed by the IV, whereas the Grain [31] and Trivium [23] ciphers load both
secret key and IV simultaneously into the internal state. In some cases, such as
the common scrambling algorithm stream cipher (CSA-SC) [47], the IV is loaded
during the diffusion phase but that approach is not common.

The size of the internal state relative to the lengths of the key and IV is a factor
in the loading options available. For many early stream ciphers, the keystream
generator state size is the same as the key length. For example, the A5/1 cipher



22 A. Alhamdan et al.

has a 64-bit state and uses a 64-bit key. For these ciphers, if an IV is used along
with the key, both values cannot be simultaneously placed into the state space; the
loading must be sequential. In a sequential process feedback functions are used to
introduce the key and IV bits into the state. These functions can be either linear or
nonlinear.

More recent stream ciphers generally have a state space that is at least the size
of the sum of the lengths of the key and IV; this permits both key and IV values to
be placed directly into the state simultaneously. Where the state size is larger than
the combined size of the key and IV, if the key and IV values are simultaneously
placed into stages in the internal state, predetermined values must be specified for
the “unused” stages, a practice known as padding. If the state consists of binary shift
registers, the loading phase must specify which stages will hold key bits, which will
hold IV bits, and which of the remaining stages will be set to 0 and 1, respectively.
The Trivium [23] and Sfinks [18] ciphers are examples of ciphers where the key
and IV are loaded simultaneously, and the remainder of the state padded (different
padding formats for each cipher). For ciphers like these, the padding specification
should be considered in the security analysis.

We refer to the state contents at the end of the loading phase as the cipher’s
loaded state for that particular key and IV pair. Note that in cases where the state
size is not greater than the sum of the key and IV lengths, the value of the internal
state at any time (during either initialisation or keystream generation) corresponds to
a loaded state for some key and IV pair. Where the state space is larger than the sum
of the lengths of the key and IV an internal state at any time will only correspond
to a legitimate loaded state if it meets the prescribed padding format. This is an
important factor in considering the application of slide attacks, discussed in greater
detail in Sects. 3.3 and 4.3 below.

2.2 Diffusion Phase

In the diffusion phase the internal state of the keystream generator is updated using a
specified initialisation state update function but no keystream is produced. The state
update function during the diffusion phase is usually a nonlinear function. This may
be implemented as Boolean functions or in some cases as S-boxes. We refer to the
state contents at the end of the diffusion phase as the cipher’s initial state for a
particular key and IV. Where one secret key is used for a communication, and initial
states for the various packets or frames are generated from the same key but different
IVs, the initial state may be referred to as a session key.

The objective of this phase is to diffuse the secret key and IV across the
internal state, so that a state recovery attack which identifies the initial state does
not compromise the secret key. That is, if an attacker recovers the initial state
(session key) of a stream cipher, then the initialisation process should be sufficiently
complicated to prevent them recovering the secret key by any means which is faster
than exhaustive key search. Then a state recovery attack must be repeated every time
the cipher is rekeyed.
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The number of iterations of the state update function performed during the
diffusion phase may affect both the security and efficiency of the cipher. If very few
iterations are performed, the relationships between key and IV bits and keystream
output may be simple and readily exploited in attacks, such as algebraic, differential
and correlation attacks. A common belief in symmetric key cryptography is
that increasing the number of iterations during a nonlinear initialisation process
increases the security provided by the cipher, as performing more mixing of the key
and IV should provide resistance to these attacks. However, this does not provide
security against all attacks for all keystream generators. If state convergence occurs
during the initialisation process, then increasing the number of iterations actually
decreases the number of obtainable initial states. This may actually leave the cipher
more vulnerable to other attacks such as time memory tradeoff (TMTO) attacks
aimed at recovering a session key. This is the situation for the A5/1 stream cipher,
discussed in Sect. 4.2. The probability of success of another form of attack, the
slide attack, is independent of the number of iterations of the state update function.
Finally, performing a greater number of iterations increases the time taken for
rekeying; that is, it decreases the efficiency of the initialisation process. This may
be critical in some real-time applications.

2.3 Keystream Generation

When the initialisation process is complete, the cipher is in its initial state and
keystream generation can begin. During keystream generation, the internal state is
updated using a prescribed state update function and the keystream is generated
from the internal state using an output function. The state update function used
during keystream generation may be the same as the state update function used in
the diffusion phase of the initialisation process. If it is different, there may be a
degree of similarity to the state update function used in the diffusion phase. This
is an important factor in considering the application of slide attacks, discussed in
Sect. 3.3.

3 Flaws in the Initialisation Process

We identified four common flaws in the initialisation processes of some shift register
based stream ciphers. These are compression, state convergence, the existence of
slid pairs and the existence of weak Key-IV combinations. These flaws are due to
either structural features of the keystream generator or properties of the initialisation
processes of these ciphers. In some cases, these flaws may be used to disclose
information about the secret key or the encrypted message.

For frame based communications, information may be obtained related to
multiple key and IV inputs. Possible cases to consider include input pairs which
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have the same secret key but different IVs, .K; IV/ and .K; IV0/; or different secret
keys but the same IV, .K; IV/ and .K0; IV/; or different secret keys and different IVs,
.K; IV/ and .K0; IV0/. Compromise in the first case is potentially the most serious,
as this is widely applicable in communications. For example, this would apply to a
phone call encrypted using A5/1.

3.1 Compression

We noted in Sect. 2.1 that some early stream ciphers had keystream generators with
a state space that was smaller than the sum of the key and IV lengths. In such cases,
it is clear that multiple key-IV pairs must correspond to the same loaded state and
therefore also produce the same initial state and consequently the same keystream
sequence. We refer to this situation as compression of the key-IV space. The degree
of compression can be computed as a ratio of the total number of key-IV pairs to
the state size. In these cases, the key and IV are loaded sequentially into the internal
state of the keystream generator. The feedback function used for the loading process
will determine the actual number of Key-IV pairs per loaded state.

If the feedback functions used to load the key and IV into the internal state are
simple (perhaps linear), then recovery of the loaded state may easily be extended to
key recovery. Additionally, where identical keystreams are produced for different
key IV pairs, the known differences in the IVs may reveal information about
corresponding differences in the keys.

If compression occurs, then the effective key-IV space is reduced, and the
security provided by the cipher is affected. The cipher may be vulnerable to TMTO
attacks aiming to recover the loaded state. Guidelines for appropriate internal state
sizes have increased over time. In 1997, Golić [29] advised an internal size larger
than the key size be used to prevent TMTO and in 2000, Biryukov and Shamir [15]
recommended a state size that was twice the key size. Hong and Sarkar [33, 34]
revised TMTO attacks and suggested that the IV size should be at least equal to the
key size. Dunkelman and Keller [25] state an IV size of at least 1.5 times the key
size is needed to prevent TMTO attacks. To satisfy this condition while avoiding
compression, a state size of at least 2.5 times the key size is needed.

3.2 State Convergence

State convergence occurs when a state transition function is not one-to-one. That is,
two or more distinct states at one time point are mapped to the same state at the next
time point. Note that state convergence is different to compression, discussed above.
In fact, it is possible for a cipher to exhibit both compression and state convergence.

For keystream generators state convergence may occur during the initialisation
process, during keystream generation, or both, depending on the state update
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functions used in these phases. Consider state convergence occurring during the
initialisation process. If the initialisation state update function is not one-to-one,
then state convergence can occur in each iteration. As the number of iterations
of the state update function increases, the number of obtainable initial states may
decrease. That is, different key and IV inputs result in distinct loaded states that,
through initialisation are mapped to the same initial state and therefore produce the
same keystream. Thus, similar to the case for compression outlined above, state
convergence reduces the effective size of the key-IV space. This is the case for
the A5/1 stream cipher. State convergence for A5/1 is discussed in Sect. 4.2. This
may leave the cipher vulnerable to attacks such as distinguishing attacks [41], time-
memory-data trade-off attacks [15] or other ciphertext-only attacks [22].

Clearly the efficiency of the initialisation process decreases as the number
of iterations of the state update function increases. Note that for ciphers where
state convergence occurs during initialisation, as the number of iterations of the
initialisation process increases, the entropy of the secret key is effectively decreased.
That is, increasing the number of iterations may actually be decreasing the effective
security. However, having few iterations during the diffusion phase may make the
cipher vulnerable to attacks such as correlation or algebraic attacks. For a given
stream cipher, the optimal number of iterations during the initialisation process
should be chosen carefully after extensive security analysis.

3.3 Slid Pairs and Shifted Keystream

The state update function of the initialisation process defines a path of transitions of
internal state values. The loaded state resulting from a key-IV pair (K, IV) represents
one point on such a path. If a later state in this path is the same as the loaded state
resulting from another key-IV pair (K0, IV 0), then the two loaded states associated
with the distinct input pairs (K, IV) and (K0, IV 0), respectively, are said to form a
slid pair.

If the state update functions for the diffusion phase and for keystream generation
are the same, then the keystream sequence obtained from the second key-IV pair
will simply be a phase-shifted version of the keystream sequence obtained from
the first key-IV pair [16, 24, 37, 40, 49]. Figure 2a illustrates the initialisation and
keystream generation processes for two distinct key-IV pairs, (K, IV) and (K0, IV 0),
where the corresponding loaded states are separated by ˛ iterations of the diffusion
state update function. The corresponding keystream sequences are shifted by � � ˛
bit(s) relative to one another, where � is a positive constant that depends on the
output function of the stream cipher. (For a bit based stream cipher, � D 1.)

If the update functions for diffusion and keystream generation are similar, but not
identical, then the keystream sequence obtained from the second key-IV pair may
be a phase shifted version of the keystream sequence obtained from the first key-IV
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Fig. 2 Slid pairs in stream ciphers. (a) Two slid pairs and shifted keystream. (b) Analysis of slid
pairs and shifted keystream

pair [16, 24, 37, 40, 49], with some probability. A slid pair is guaranteed to generate
shifted keystream when the following properties hold:

(a) The state update functions used for each iteration of the diffusion phase of
initialisation are the same as each other.

(b) The state update functions used for each iteration of the keystream generation
process are the same as each other.

(c) The state update functions used for the initialisation and keystream generation
processes are the same as one another.

Conditions (a) and (b) above hold for most stream ciphers. Condition (c) may
apply with probability less than one if there is some similarity between the two
state update functions. That is, the outputs of two similar functions may be the
same for a subset of input values. Therefore, the probability of obtaining a slid
pair that produces a correspondingly phase shifted keystream depends on the three
probabilities P1, P2 and P3, as shown in Fig. 2b and defined as follows:

– P1 is the probability that a legitimate loaded state occurs after ˛ iterations of
the initialisation process.

– P2 is the probability that the state updates for the final t2� .t1C˛/ iterations of
the diffusion phase for the loaded state corresponding to (K, IV) have the same
effect as the first t2 � .t1 C ˛/ iterations of the diffusion phase for the loaded
state corresponding to (K0, IV 0).

– P3 is the probability that the state updates for the first ˛ iterations of keystream
generation for the loaded state corresponding to (K, IV) have the same effect as
the state updates during the last ˛ iterations of the diffusion phase for the loaded
state corresponding to (K0, IV 0).
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The total probability that a randomly chosen key-IV pair has a corresponding
slid pair which produces a phase-shifted keystream for a slide distance of ˛ can
be calculated as the product of these three probabilities. Note that if condition (a)
holds, then P2 D 1, and if conditions (b) and (c) both hold, then P3 D 1.

The relationships between the multiple key-IV pairs that result in the loaded
states which are slid pairs, and which produce shifted keystreams may be exploited
in known plaintext slide attacks. These are sometimes referred to as slid pair attacks,
resynchronisation attacks [37, 48] or related key chosen IV attacks [38]. This form
of attack was first developed for block ciphers and has been applied to stream ciphers
based on block ciphers such as LEX [48] and WAKE-ROFB [16]. More recently it
has been applied to other stream ciphers such as Grain [24, 37, 49] and Trivium [40].
This property means that the applicability of slide attacks to shift register based
stream ciphers is independent of the number of iterations of the state update function
performed in the diffusion phase. Clearly, increasing the number of iterations of the
state update function in the diffusion phase does not increase the security of the
cipher with respect to these types of attack, although it does decrease the efficiency
of the initialisation process.

3.4 Weak Key-IV Combinations

For some shift register based stream ciphers, certain key-IV pairs result in internal
states in which one or more of the component registers have all zero contents. If
this occurs in the initial state of a component and that particular component is
autonomous during keystream generation, then it will remain in an all-zero state
throughout keystream generation. The component therefore contributes a constant
value to the output function throughout keystream generation, so that, for that
key-IV pair, the keystream generator is equivalent to another generator with fewer
components and a smaller internal state size. We refer to such key-IV pairs as weak
key-IV pairs.

The key and IV bits in each weak key-IV pair must satisfy certain relationships
in order for this result to occur. For some ciphers it is possible to distinguish
keystreams produced from keystream generators loaded with weak key-IV pairs.
If the keystream can be detected, an attacker may use their knowledge of the
relationships between key and IV bits which result in weak keys to recover
information about the secret key, given the known IV. This has previously been
observed in Grain v0, v1 and 128 [49]. In Sect. 4 we will show that it also occurs in
the A5/1 cipher.

4 Case Study: A5/1

In this section we demonstrate that the flaws in the initialisation processes of
stream ciphers, as discussed in Sect. 3, all exist in the A5/1 stream cipher. The
A5/1 stream cipher [17, 19, 29] is used to protect the privacy of GSM mobile
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telephone communications. Each telephone conversation uses one secret key for
all frames of that conversation, and the frame number is used to form an IV. For
each frame, the initialisation process is performed and then a 228-bit keystream is
generated and used to encrypt the frame (approximately 4.6 ms duration). A5/1 has
received much attention from cryptographers [10, 13, 17, 28–30]. However, most
of the analyses have looked at the keystream generation process rather than the
initialisation process. We primarily consider the initialisation process in this section.

A5/1 is a bit-based cipher that takes a 64-bit secret key and 22-bit IV (frame
number) as inputs into a 64-bit internal state. The state consists of the contents
of three binary linear feedback shift registers (LFSRs), denoted A, B and C, with
lengths of 19, 22 and 23 bits, respectively, as shown in Fig. 3. Each shift register has
a primitive feedback polynomial. We use S to denote the internal state of A5/1 and
SA, SB and SC to denote the internal states for the registers A, B and C, respectively.
Let si

a;t denote the content of the ith stage of register A at time t, (for 0 � i � 18).

Similarly, let sj
b;t and sk

c;t denote the jth stage of register B, (for 0 � j � 21) and the
kth stage of register C, (for 0 � k � 22), respectively, at time t.

The loading phase of A5/1 begins with the contents of all stages of the three
registers being set to zero. Each LFSR is then regularly clocked 64 times as the
key bits are XORed successively into the feedback bit of the register. Following
this, the 22-bit IV is loaded in the same manner [17]. Note that the state update
function during the loading phase is entirely linear, and that the key and then IV
have been loaded into each register separately. This produces the loaded state of the
A5/1 keystream generator. The contents of each stage in each register of the loaded
state are independent linear combinations of key and IV bits.

The diffusion phase consists of 100 iterations of a majority clocking mechanism.
To implement this, a clocking tap is designated in each register (namely, stages s8a,
s10b and s10c ). The contents of these stages at time t determine which registers will be
clocked in the next iteration, at time .t C 1/. More specifically, those registers for
which the clock control bits agree with the majority value are clocked. For example,
if s8a;t D 0, s10b;t D 1 and s10c;t D 0, then the majority value is 0 and registers A and
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C are clocked at time .t C 1/. Under this mechanism, either two or three registers
are clocked in each iteration. There is no output from the shift registers during the
diffusion phase.

After initialisation is complete, keystream generation begins. A further 228
iterations of the state update function are performed, using the same majority
clocking rule as in the diffusion phase. In each iteration, the keystream bit is
obtained by XORing the output bit of each of the three registers. That is, zt D s18a;t˚
s21b;t˚s22c;t. Note that the majority clocking mechanism used in both the diffusion phase
of initialisation and during keystream generation is the only nonlinear function in
the operation of A5/1.

4.1 Compression and A5/1

The loading phase of the A5/1 initialisation process transfers the 64-bit secret key
and 22-bit frame number (IV) into the internal state. Since the total size of the
secret key and IV (64 C 22 D 86 bits) exceeds the 64-bit state size, it is clear
that compression occurs. In fact, as the state-update function is linear during the
loading phase, and the three LFSR lengths are coprime, it can be shown that there
are 222 key-IV pairs corresponding to each possible loaded state.

Given the use of a 64-bit key and the 64-bit state size, it is clear that A5/1 is
vulnerable to a TMTO attack. The attack may be performed to recover either the
loaded state or the initial state of the cipher. Note that due to the linear loading
process, recovery of the loaded state (for a known IV) translates directly to key
recovery. Once the key is recovered for one frame, the contents of all frames in the
conversation can be revealed.

4.2 State Convergence in A5/1

For A5/1, state convergence occurs during both the diffusion phase of initialisation
and the subsequent keystream generation process. This is due to the majority
clocking scheme used for the state update function during these two processes.
Convergence after the first iteration of the diffusion phase was first reported by
Golić [29, 30], who also stated the extent of convergence at this iteration. Since then,
others have attempted to extend this analysis across the diffusion phase, using either
experimental or theoretical approaches. Biryukov et al. [17] used experimental data
from a random sample of A5/1 states to estimate that the set of possible initial states
contains only about 15 % of all possible 64-bit states. Alhamdan [1] performed an
exhaustive experimental evaluation on a scaled-down version of the A5/1 stream
cipher, and found similar proportions. Kiselev and Tokareva [36] used a theoretical
approach to extend Golic’s results, but obtained results which conflict with those
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clock

Fig. 4 Graphical representation of Golić’s A5/1 pre-image cases

Table 1 Proportions of
loaded states for each of
Golić’s cases

Case (i) (ii) (iii) (iv) (v) (vi)

Proportion of states 3
8

3
8

1
32

3
32

3
32

1
32

Number of pre-images 0 1 1 2 3 4

published previously. In this section, we outline these previous analyses, and also
provide our extension of Golić’s results, based on theory, to a larger number of
iterations.

Golić [30] considered the inverse mapping for the A5/1 majority clocking
function. He identified the format of states with no pre-image; that is, states which
cannot be reached from any loaded state in a single iteration. We refer to these as
inaccessible states. Note that these states may occur as loaded states, but cannot
occur at any time after that. These inaccessible states are of the format depicted as
case (i) in Fig. 4. In this figure, (Ri;Rj;Rk) is any permutation of the set fA;B;Cg
of registers and the shaded stage in each register is its clocking tap. The symbol
� represents either 0 or 1, while # represents the complement of �; a blank stage
represents a stage where the contents can take either value. States with this format
may occur as loaded states, but cannot be reached from any valid state after the
first iteration of the initialisation state update function. Golić demonstrated that
states with no preimage comprise 3

8
of the loaded states of the system. Thus, the

usable state space shrinks by a factor of 5
8

(from 264 to 5 � 261 	 263:32) after
the first iteration of the diffusion phase. Golić also identified the format of states
with unique pre-images and others with up to four pre-image states. Golić’s results
clearly demonstrate that the majority clocking process is not one-to-one and that
state convergence can occur in one iteration. Figure 4 presents a graphical summary
of the six cases identified by Golić. The proportion of loaded states for each of the
six cases depicted in Fig. 4 is presented in Table 1, along with the corresponding
number of pre-images.

In the diffusion phase, once the first iteration of the state update function has
occurred, it is not obvious what proportion of the remaining states will become
inaccessible in subsequent iterations. Clearly the proportions for the first iteration
will not hold for the second iteration, as all of the states of the format depicted as
case (i) in Fig. 4 have been removed from the pre-image space. Obtaining precise
figures for convergence across the 100 iterations of the diffusion phase using a
theoretical approach seems difficult. Biryukov et al. [17] used an experimental
approach to try to quantify the level of convergence across the diffusion phase. They
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Fig. 5 Counter-example to Kiselev and Tokareva (a) state claimed by Kiselev and Tokareva to be
inaccessible at second iteration; (b) inaccessible state at first iteration which clocks to state (a); (c)
accessible state at first iteration which also clocks to state (a)

took a random sample of 100,000,000 A5/1 states and then tried to work through
the state transition function in the reverse direction for 100 iterations, to form an
estimate of the proportion of all possible 64-bit states that could occur as loaded
states. Their results indicate that the set of loaded states contains only about 15 %
of all possible 64-bit states.

More recently, Kiselev and Tokareva [36] tried to extend Golić’s [30] work to
determine theoretically the effective key space reduction in each of the first eight
iterations of the diffusion phase. Their results for the number of inaccessible states
after the first iteration agree with previously reported results, but the results for
further iterations are inconsistent with the experimental results presented in [1, 17].
This is a result of a false assumption on their part: that any state which is accessible
from an inaccessible state is also inaccessible. In fact, many of these states can
be reached by clocking from other accessible states as well from the inaccessible
states. Thus, these authors have included many accessible states in their claimed
list of inaccessible states, for each iteration beyond the first. We provide a counter-
example to their claims. State (a) in Fig. 5 is one example of a state they claim
is inaccessible at the second iteration [36, Figure 4]. Their reasoning is that state
(a) can be obtained by clocking state (b), and given that state (b) is inaccessible
at the first iteration, they claim that state (a) must therefore be inaccessible at the
second iteration. However, state (a) can also be reached by clocking state (c), which
is accessible at the first iteration [see Fig. 4(iv)]. Therefore, state (a) is accessible at
the second iteration. Thus, Kiselev and Tokareva’s analysis is shown to be flawed.

The work summarised below takes a theoretical approach, and extends Golić’s
logic to identify the states which cannot be reached after each of the first six
iterations of the diffusion phase. It shows that state convergence continues with each
iteration, though not uniformly at each iteration, contrary to Golić’s assumptions
in [30].

Consider the first two iterations in the diffusion phase. Applying Golić’s logic
to identify loaded states of particular formats, a particular state will be inaccessible
after two iterations only if it either matches case (i) in Fig. 4 or has a preimage which
contains only states which match this case. Since case (i) cannot be reached after the
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Table 2 Proportion of available states after ˛ iterations

˛ (number of iterations) 1 2 3 4 5 6

New proportion 3
8

3
64

9
512

57
4096

423
32768

6453
524288

inaccessible

Cumulative proportion 0:375 0:422 0:439 0:453 0:466 0:479

inaccessible

Proportion accessible 0.625 0.578 0.561 0.547 0.534 0.521

Number of accessible 263:322 263:209 263:165 263:129 263:094 263:061

states

first iteration, a state which can only be reached from this case cannot be reached at
the second (or any subsequent) iteration. (Note: Case (i) is a valid loaded state.)

A similar process can be followed to identify patterns for inaccessible states after
˛ iterations. We have done this for 2 � ˛ � 6 and found a branching tree of
patterns for these inaccessible states: see [45] for some examples and further details.
Table 2 presents the cumulative proportion of inaccessible states (out of all possible
loaded states) after each of the first six iterations, together with the corresponding
proportion and number of accessible states.

The complexity and the number of distinct patterns obtained so far indicates
that obtaining a general expression for the number of accessible states after a
given number of iterations is not a simple task for large values. Extrapolating
from the known values in Table 2 provides an approximation. Using an exponential
extrapolation based on the proportion of accessible states as reported above for 2–6
iterations, we estimate that the proportion of accessible states after 100 iterations is
around 5 % of the number of loaded states. The extrapolation is based on a linear
regression fit to the logarithm of the proportion accessible [6]. The results presented
above for small numbers of iterations align closely with those from Alhamdan’s
exhaustive experimental analysis on a scaled-down version of A5/1 [1]. Table 3
shows a summary of the previous works and the current work. Alhamdan [1] found
the proportion of distinct states after 100 iterations was 19:2% of the original
loaded states. This is close to Biryukov, Shamir and Wagner’s experimental result
for A5/1, which is 15% [17]. Our extrapolation based on the results in Table 2 for
the proportion of accessible states is 5%.

As noted in Sect. 3.2, state convergence may leave a cipher vulnerable to
distinguishing attacks, time-memory-data trade-off attacks and other ciphertext-
only attacks. In fact, state convergence in A5/1 was one of the contributing factors
in Biryukov, Shamir and Wagner’s practical time-memory attack on this cipher [17].
In addition, the presence of state convergence in A5/1 may reduce the search space
for attacks such as the ciphertext-only attack we present in Sect. 4.4.
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Table 3 Comparison between the analysis of inaccessible states

Cumulative proportion of state reduction

No. of clocks 1 2 3 4 5 6 10 100

Golića [30] 0:375 – – – – – – –

BSWb [17] – – – – – – – 0:85

Alhamdanc [1] 0:375 0:422 0:439 – 0:466 – 0:524 0:81

KTa [36] 0:375 0:578 0:689 0:767 0:826 – – –

This worka 0:375 0:422 0:439 0:453 0:466 0:479 – 0:95d

aTheoretical analysis
bBased on 108 randomly simulated states
cExhaustive search for a scaled-down version
dBased on exponential extrapolation

4.3 Slid Pairs and Synchronisation Attacks

Since every state of A5/1 is a valid loaded state, it is clear that the internal state
obtained from any loaded state after some number ˛ of iterations is also a legitimate
loaded state. That is, for any key-IV pair and any ˛ > 0, it is always possible to find
a second key-IV pair such that the loaded state from the second pair can be obtained
from the loaded state of the first pair by applying ˛ iterations of the (diffusion) state
update function. Thus, the loaded states corresponding to these two key-IV pairs
form a slid pair separated by ˛ clocks. Further, since the update functions during
diffusion and keystream generation of A5/1 are identical, this slid pair will always
produce keystream sequences which are out of phase by ˛ bits.

We show below how the state update operations in A5/1 can be represented
in terms of matrix equations. An analysis of these equations then enables us to
identify the conditions under which a slid pair can occur. We particularly focus
on the scenario where the loaded states in the slid pair were both generated from the
same secret key (but necessarily with different IVs). As discussed in Sect. 3, this is
the most practical scenario for the frame-based communications context in which
A5/1 is used.

Since each register is loaded independently, we first develop the equations for
a single register. First note that the autonomous operation of any LFSR can be
described using a matrix equation [39, 46] of the form

StC1 D TSt

where the state transition matrix T shifts the contents of each stage of the register
to the subsequent stage and inserts the feedback bit into the relevant stage. This
equation can then be adapted to include loading of the key bits by writing:

StC1 D TSt ˚ �kt
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where � D Œ1 0 : : : 0�| indicates that the relevant key bit is XORed into the feedback
of the LFSR. Setting t D 	 to indicate the register state before loading commences,
iterating this equation 64 times and collecting terms then gives

S	C64 D T64S	 ˚ NK

where N D ŒT63� T62� : : : T� �� and K D Œk0 k1 : : : k62 k63�|. Using a
similar approach to represent the loading of the 22 IV bits, we obtain

S	C86 D T86S	 ˚ T22NK ˚MV

where M D ŒT21� T20� : : : T� �� and V D Œv0 v1 : : : v20 v21�
|. Finally,

noting that the state S	 for A5/1 contains all zeros and setting 	 D �86, so that
t D 0 corresponds to the loaded state of the register, we have

S0 D T22NK ˚MV (1)

The above result applies individually to each of the registers A, B and C of A5/1.
If we let TA, TB and TC denote the state transition matrices of these registers and
denote the corresponding � and N matrices for these registers as �A, �B, �C and NA,
NB, NC, respectively, then Eq. (1) can also be applied to the combined state of A5/1
by defining

T D
2

4
TA 0 0

0 TB 0

0 0 TC

3

5 , � D
2

4
�A

�B

�C

3

5 and N D
2

4
NA

NB

NC

3

5

Now consider the operation of A5/1 during the diffusion phase. In this phase, the
registers of A5/1 are clocked using a majority clocking rule, so there are now four
different cases to be considered at each iteration. These are:

Case 1. All registers are clocked
Case 2. Registers A and B are clocked
Case 3. Registers A and C are clocked
Case 4. Registers B and C are clocked

The state update process during diffusion can thus be represented as StC1 D TDSt,
where the state transition matrix TD depends on the case as follows:

Case 1: TD D T (as above) Case 2: TD D
2

4
TA 0 0

0 TB 0

0 0 I

3

5

Case 3: TD D
2

4
TA 0 0

0 I 0

0 0 TC

3

5 Case 4: TD D
2

4
I 0 0

0 TB 0

0 0 TC

3

5



Flaws in the Initialisation Process of Stream Ciphers 35

Table 4 Slid pairs after 1
clock

Case: 1 2 3 4

Free key bits 20 22 21 20

IV bits to specify 4 22 22 22

Now suppose that we are looking for slid pairs with a slide distance of ˛ D 1 in
which both loaded states arise from the same secret key. We have

S1 D TDS0 with S0 D T22NK ˚MV

If S1 is also a loaded state for the same key K and a different IV, V 0, we have

S1 D T22NK ˚MV 0

as well, and hence

MV ˚MV 0 D S0 ˚ S1

or M
 D .I ˚ TD/S0

D .I ˚ TD/.T
22NK ˚MV/ (2)

where
 D V ˚ V 0 D Œı0 ı1 : : : ı21�|.
For each of the cases of TD, we can use Eq. (2), together with the conditions

guaranteeing the relevant type of clocking, to determine a set of conditions on the
various bits of 
, K and V that must be satisfied in order for a slid pair to occur in
the manner described above. These equations have been analysed using Gaussian
elimination and the results show that the values of certain key bits (the “free” key
bits), together with known bits from V , fully determine the remaining key bits when
a slid pair of this type occurs. Table 4 presents the number of key and IV bits that
must be specified in order to determine the remaining key bits for each of the cases.

For example, in Case 1, there are 20 key bits and 4 IV bits that can be freely
chosen in order to form a 64-bit secret key for which two related IVs generate a slid
pair. For a particular choice of these 24 bits, the remaining 44 key bits are specified.
The rest of the IV bits do not affect the secret key. Considering all possible values
for the 20 free key bits and the 22 IV bits, the total number of slid pairs for Case
1 is 242. The probability that a randomly chosen key satisfies these equations for a
given IV is 2�44. The total number of slid pairs in each of Cases 2, 3 and 4 can be
calculated similarly, to obtain 244, 243 and 242 respectively. So the total number of
slid pairs with ˛ D 1 (for the 4 cases combined) is 245. Likewise, the probability
that a randomly chosen key satisfies the equations for any of these cases (for a given
IV) is found to be 2�41.

Table 5 gives two examples generated using the equations discussed above. In
each example, a secret key and two different IVs generate a slid pair when loaded,



36 A. Alhamdan et al.

Table 5 Examples of 1-bit shifted keystreams from the same secret key

Key 0x2D37B6F7292DFFFB

IV1 0x200000

IV2 0xE05A00

Keystream1 {0}0x5E449A6F3414F3CD76F567275D31CFE1A4F4AE4F4D3C954D3CB124D9A

Keystream2 0x5E449A6F3414F3CD76F567275D31CFE1A4F4AE4F4D3C954D3CB124D9A

Key 0xF77832CC89EFFFFB

IV1 0x200000

IV2 0x4001A4

Keystream1 {1}0xF798818F32A6B4772F5B2E55B8808541301E49CA76B11BC46F65C1494

Keystream2 0xF798818F32A6B4772F5B2E55B8808541301E49CA76B11BC46F65C1494

leading in turn to keystream sequences with a one bit phase shift. In each example,
the two 228-bit keystream sequences contain a common 227-bit sequence; note that
the final byte of keystream only contains three or four bits, which are treated as
MSBs in each case.

The above analysis can be readily extended to shifts of ˛ D 2; 3 or more. This
is done by including additional iterations of TD in the derivation of Eq. (2) and
considering the relevant combinations of cases for TD that may be involved.

4.3.1 Attack Algorithm

A ciphertext-only key recovery attack on A5/1 can be performed if a pair of frames
in a single conversation with one-bit phase shifted keystreams can be identified.
(Similar algorithms can also be developed for other phase shift values.) We identify
such a pair of frames by noting that the XOR of two frames encrypted with the
same keystream is just the XOR combination of the corresponding plaintext frames,
and that such a combination can be easily identified due to the redundancy of
plaintext [22]. In the following, we assume only that the attacker is able to get
enough encrypted speech (ciphertext) and that the IVs (frame numbers) of all frames
are known.

The attack algorithm is as follows:

Step 1: Divide the encrypted speech (ciphertext) into separate frames, each with its
known frame number (IV).

Step 2: Compare each encrypted frame with a one-bit shifted version of each other
encrypted frame, using the redundancy property to identify when a slid pair has
occurred.

Step 3: If a phase shifted keystream is identified, use the known IV with each
possible value of the free key bits to find the secret key. (Here we use the
equations discussed above Table 4 and check all four cases if required.)

Step 4: Use the secret key and known IVs to decrypt all frames and reveal the
plaintext of the entire conversation.
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Table 6 Complexity of
various length of conversation

No. of Conversation Comparison Probability
frames time complexity of success

214 1 min 16 s 228 2�35

216 5 min 2 s 232 2�31

218 20 min 6 s 236 2�27

220 1 h 21 min 240 2�23

222 5 h 22 min 244 2�19

As rekeying is performed in A5/1 every 4.6 ms, the total time needed to use all
222 possible frame numbers is around 5 h and 22 min. Table 6 gives some examples
of the number of frames used for various lengths of conversation, together with the
corresponding number of comparisons involved in the attack and the probability of
success for the attack on a conversation of that length. In a successful attack, up to
223 choices of free key-bits must be checked in Step 3.

4.4 Weak Key-IV Combinations

The registers of A5/1 operate nonautonomously during the loading phase, since
the new bit of each register during this phase depends on both the feedback and
an external value (the key or IV bit). During the diffusion phase and keystream
generation process, however, the feedback for each register is autonomous, as there
is no external input at these times. If any of the registers contains all-zero values
at the end of the loading phase, it will therefore remain in this state throughout the
subsequent diffusion phase and keystream generation process. Furthermore, if two
or three registers contain all-zero values at that time, then the keystream generated
for that frame will be constant: either all zeros or all ones. This flaw results in
sending a frame in clear text if the keystream is zeros or as the complement of
cleartext if the keystream is all ones.

Recall that the loading phase of A5/1 can be represented by Eq. (1). The
terms T22NK and MV which are XORed together can also be represented by
concatenating T22N and M and multiplying by a new vector KV , where KV D
Œk0 k1 : : : k62 k63 v0 v1 : : : v20 v21�

|, as follows

S0 D ŒT22NjjM�KV (3)

We now apply Eq. (3) to each register of A5/1 to investigate the conditions under
which that register will contain all zeros at the end of the loading phase. Writing
this equation separately for each register, we have:
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SA;0 D ŒT22A NAjjMA�KV
SB;0 D ŒT22B NBjjMB�KV
SC;0 D ŒT22C NCjjMC�KV

(4)

We consider two scenarios below: a single register containing all-zero values and
two registers containing all-zero values. The case with all three registers containing
all-zero values is treated as a special case of the scenario with two registers
containing all-zero values.

4.4.1 One Register All Zeros

This section focuses on the situation in which only one register contains all-zero
values after the loading phase. We denote the cases in which register A, B or C is
the all-zero register as Case 1, Case 2 and Case 3, respectively. Whether or not this
register is clocked at any iteration during keystream generation, its contribution to
the keystream bit will always be zero. At each iteration of keystream generation, at
least one of the other two registers will be clocked and the value of the keystream
bit will depend only on the output bits of those two registers. The keystream in these
circumstances will therefore contain both zeros and ones.

At this stage, we have been unable to find a way of distinguishing this keystream
from the normal keystream of A5/1, so it is not yet possible to mount an attack
based on this condition. However, as we show below, the case of a single register
containing all zeros at the end of loading is very common, so this would be a
widely applicable attack if a distinguisher could be found for the keystream from
this situation.

By setting any of the left-hand terms SA;0, SB;0 or SC;0 to zero in Eq. (4), we obtain
a corresponding set of conditions on the key and IV bits for that register to contain
all-zero values at the end of the loading phase. As in analysing the conditions for
slid pairs to occur, we find in each case that the known IV and a subset of the key bits
together determine the remaining key bits for that case. Table 7 presents the number
of key and IV bits that must be specified in order to determine the remaining key
bits for each of these cases.

From Table 7, the number of weak key-IV pairs for each of cases 1, 2 and 3 are
267, 264 and 263, respectively. Ignoring a minor degree of overlap, the total number
of weak key-IV pairs that result in freezing one register of A5/1 is 267:25, so the
probability that a randomly chosen key satisfies the equations for any of these cases
(for a given IV) is 2�18:75. For a conversation containing N frames, the probability

Table 7 Weak key-IV pairs
(one all-zero register)

Case: 1 2 3

Free key bits 45 42 41

IV bits to specify 22 22 22
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that at least one frame has a weak key-IV pair of this type is approximately 2�18:75N,
which is approximately 2�2:75 for a 5-min conversation (about 216 frames). Thus, we
see that this type of weak key-IV pair occurs very frequently in practice.

4.4.2 Two Registers All Zeros

We now focus on the situation in which two registers contain all-zero values after
performing the loading phase; we denote the cases in which the pair of all-zero
register is (A;B), (A;C) or (B;C) as Cases 4, 5 and 6, respectively. As the clocking
stage in each of these two registers will contain a zero, the majority value will be
zero and hence these two registers will be clocked every time. The third register will
be clocked until the content of its clocking stage has value “1”. Since the diffusion
phase consists of 100 clocking steps before producing any keystream bits and the
largest register has only 23 stages, this process will ensure that the third register
will be in its steady state before the keystream generation begins. Thus, the leftmost
stage of the non-zero register will be fixed and will be the value of the keystream bit.

By setting the relevant pair of left-hand terms SA;0, SB;0 or SC;0 to zero in Eq. (4),
we can again obtain a set of conditions on the key and IV bits for that pair of registers
to contain all-zero values at the end of the loading phase and find in each case that
the known IV and a subset of the key bits together determine the remaining key bits
for that case. Table 8 presents the number of key and IV bits that must be specified
in order to determine the remaining key bits for each of these cases, while Table 9
shows two examples of weak key-IV pairs (Case 4) that produce fixed keystream
(either all zeros or all ones). (In Table 9, underlining indicates the output stage of
each register, while bold face type indicates the stages used to control the register
clocking. The keystream is presented in hexadecimal notation.)

From Table 8, the number of weak key-IV pairs for each of cases 4, 5 and 6 are
245, 244 and 241 respectively. Therefore, the total number of weak key-IV pairs for
which two registers contain all-zeros is 245:64, so the probability that a randomly
chosen key satisfies the equations for any of these cases (for a given IV) is 2�40:36.
For a conversation containing N frames, the probability that at least one frame has
a weak key-IV pair of this type is approximately 2�40:36N, which is approximately
2�24:36 for a 5-min conversation. For a full set of 222 IVs with a fixed key, the
probability is 2�18:36.

4.4.3 Attack Algorithm

The fact that the keystream is constant for weak key-IV pairs of this sort allows us to
recognise when such a pair has been used and to mount a ciphertext-only attack that
enable the whole conversation to be decrypted. This attack also allows the secret key
to be determined, but this is not necessary to the success of the attack. The essence
of this attack is to recognise when such a key-IV pair has been used and then use the
relations discussed above to determine the loaded state for that frame. Once this has
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Table 8 Weak key-IV pairs
(two all-zero registers)

Case: 4 5 6

Free key bits 23 22 19

IV bits to specify 22 22 22

Table 9 Two examples of weak key-IV pairs (Case 4)

Key 0110100101000010100110111011101001001011011111111111111111111001

IV 1110000000000000000000

Loaded
state

A 0000000000000000000

B 0000000000000000000000

C 11111110110010110111001

Initial
state

A 0000000000000000000

B 0000000000000000000000

C 11111111011001011011100

Keystream 0x000000000000000000000000000000000000000000000000000000000

Key 1000001000101110111010101011001101100110111111111111111111111001

IV 1100000000000000000000

Loaded
state

A 0000000000000000000

B 0000000000000000000000

C 11101101110111110100111

Initial
state

A 0000000000000000000

B 0000000000000000000000

C 01110110111011111010011

Keystream 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

been confirmed, it is straightforward to decrypt all other frames of the conversation
and to recover the secret key, if required.

In this attack, we rely on the ability to recognise a frame of conversation that has
been sent as cleartext or the complement of cleartext. If such a frame is identified,
we then use the relations discussed above to determine the secret key from a reduced
candidate set. We present the attack in two phases:

Phase 1: Identify a weak frame in the conversation.
Phase 2: Recover the loaded state for that frame—and then for all other frames.

Phase 1: Identify a weak frame

Given an encrypted conversation:

1. Divide the ciphertext (encrypted speech) into separate frames.
2. For each frame, check whether the frame or its bitwise complement is

intelligible.
3. If such a frame is identified, proceed to Phase 2.

Phase 2: Recover weak loaded state

Given a weak frame and known frame number (IV):
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Table 10 Success
probability for various
lengths of conversation

No. of Conversation Probability of
frames time weak frame

214 1 min 16 s 2�26:36

216 5 min 2 s 2�24:36

218 20 min 6 s 2�22:36

220 1 h 21 min 2�20:36

222 5 h 22 min 2�18:36

1. Repeat until weak loaded state is identified:

– For Cases 1, 2 and 3 in turn, guess the free bits of the loaded state.
– Use previous or subsequent frame to check correctness of this guess:

(a) Complement last loaded bit in each register.
(b) Carry out diffusion phase and generate corresponding keystream.
(c) If known IV is odd (resp. even), attempt to decrypt previous (resp.

subsequent) frame using this keystream.
– If decrypted successfully, correct loaded state has been found;
– If not, repeat process for next guess.

2. Use the loaded state and known IV to determine

(a) the state contents immediately after key loading
(NK D T�22NK ˚MV); and (optionally)

(b) the secret key for this conversation.

3. Use the secret key or state contents (N K) and known IVs to decrypt all other
frames in the conversation.

From the previous discussion, the probability that Phase 1 succeeds is approxi-
mately 2�40:36N for a conversation containing N frames. If Phase 1 succeeds, Phase
2 requires us to guess and check up to 223:64 loaded states and will always succeed
in decrypting the conversation; the secret key K can also be determined, if required.
Table 10 presents the probability of success for Phase 1 for various lengths of
conversation.

5 Initialisation Flaws in Other Ciphers

In this section, we discuss the existence of flaws in the initialisation processes of
some other shift register based stream ciphers. For each flaw examined for A5/1,
compression, state convergence, slid pairs and weak key-IV pairs, we identify their
existence in these other ciphers and discuss the specific causes of these flaws.
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5.1 Compression

As discussed in Sect. 3.1, compression occurs during the loading phase of initial-
isation in many of the stream ciphers designed before the introduction of TMTO
attacks. This occurs whenever the state space is smaller than the key-IV space. Other
examples include the CSA-SC [12] and LILI-II [21].

The common scrambling algorithm (CSA) used for DVB is a current industrial
standard that exhibits key-IV space compression. The CSA-SC uses a 64-bit key and
a 64-bit IV to produce an 89-bit internal state (ignoring redundant storage). Thus
there are 2128 possible key-IV combinations, but only at most 289 possible loaded
states. On average, 239 key-IV pairs correspond to each loaded state, generating the
same keystream [11].

The LILI-II stream cipher, based on the NESSIE [35] stream cipher candidate
LILI-128, also exhibits compression [14]. If two key-IV pairs .K; IV/ and .K0; IV 0/
are such that K˚K0 D IV ˚ IV 0 D f1g128, then these two key-IV pairs produce the
same loaded state.

By the time of the eSTREAM project [26], larger state spaces were widely
accepted as a design requirement. Therefore, compression is not readily seen in
more recent proposals. For example, the eSTREAM candidates Trivium [23] and
Dragon [20] have much larger state spaces than the key-IV spaces, and hence
compression does not occur.

5.2 State Convergence

State convergence is the result of a many-to-one state update function, which can
have different causes. It can be due to a non-autonomous clocking mechanism as in
the A5/1 stream cipher. However, such clocking mechanism does not necessary lead
to state convergence. For example, state convergence does not exist in LILI-II [44].

The interaction among components of the state update function can also result
in many-to-one state updates even when the individual components are one-to-
one. For example, the SFINKS stream cipher [18] consists of a feedback shift
register and an S-Box that injects nonlinearly into several stages of the register.
While the register and the S-Box are one-to-one individually, the way in which
these two components interact results in many-to-one state updates. This leads to
state convergence during the initialisation process, which has been estimated to
occur with probability 2�6:9 at any given clock [3]. In the case of CSA-SC, where
compression occurs during the loading phase, the complex state update mechanism
leads to further state convergence from the compressed key-IV space during the
diffusion phase [11].

If the key-IV loading process involves state updates, state convergence can occur
during the loading phase. This is the case for the eSTREAM [26] candidate cipher
MICKEY v1 [7]. Although in MICKEY v1 the state space is potentially large
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enough to avoid compression, the cipher uses a nonlinear state update function to
progressively load the key and IV into the state. This results in a many-to-one state
updating and reduces the number of possible loaded states. (Hong and Kim [32]
identified this property in the keystream generation process of MICKEY, but it also
applies during both phases of initialisation.) The revised version, MICKEY 2.0 [8],
also exhibits state convergence, although the designers have deliberately increased
the state size in order to reduce the negative effects of this property.

To avoid the problem of state convergence, the state update function should be
one-to-one. However, a disadvantage of having a one-to-one state update function
is that state recovery leads to efficient key recovery, since the cipher can be clocked
backwards from an initial state to uniquely determine the key-IV pair used for the
session. Therefore, it is sometimes worthwhile to have a degree of state convergence
that is not detrimental to the overall security of a cipher.

5.3 Slid Pairs

For ciphers in which an l-bit key and j-bit IV are transferred directly into an internal
state of size s, where lC j < s, some stages of S remain unfilled. Padding is required
to fill these remaining stages to obtain the loaded state. The choice of padding
pattern may affect the probability of occurrence of slid pairs. For some ciphers,
it would also result in shifted keystreams for small phase shifts.

Consider the eSTREAM candidates Grain v1 [31], Trivium [23] and SFINKS [7].
Grain v1 has a 80-bit key and 64-bit IV, which is directly loaded into a 160-bit state.
This means that 144 bits of padding is necessary. It has been shown that related
key-IV pairs can be found such that such pairs produce shifted keystream 12 clocks
apart [9]. Similar results were found for variant Grain-128, but not for Grain-128a,
where the padding pattern has been modified to avoid these slid pairs. Similarly,
Trivium has an 80-bit key and 80-bit IV, which are directly loaded into three registers
totalling 288 bits. One of the registers with length 111 consists entirely of padding,
which gives rise to slid pairs occurring 111 clocks or more apart [40].

Slid pairs can also be found in the SFINKS stream cipher [18]. Related key-
IV pairs exists for 17 or more clocks, although with negligible probability [3].
Furthermore, it has been shown that even a slight modification from the current
design can result in slid pairs occurring after one clock with high probability.

5.4 Weak Key-IV Combinations

The various components in ciphers can operate either interdependently or au-
tonomously. Many of the desirable properties of sequences produced by these
components hold only under the condition that the components are operating
autonomously. For example, cycle lengths of linear feedback shift registers (LFSRs)



44 A. Alhamdan et al.

can be predetermined and all-zero states would not occur given any non-zero initial
state. However, when the register is not autonomous, the possibility of an all-zero
state cannot be discounted.

The non-autonomous feedback mechanism may result in an undesirable initial
state (session key) at the end of the diffusion phase. It may also result in all-zero
contents for the register that uses a non-autonomous feedback function. The key-IV
pairs that give rise to non-zero states are called weak key-IV combinations.

The existence of weak key-IV combinations has been discovered in the Grain
family of stream ciphers [9]. For example, there are 264 such combinations among
a total of 2144 possible key-IV pairs for Grain v1. Grain consists of a LFSR
and a nonlinear feedback shift register (NFSR). Using any of the weak key-IV
combinations results in an all-zero state in the LFSR, which renders the cipher
vulnerable to distinguishing attacks on the NFSR. MICKEY v1 [7] also has a
small class of weak key-IV pairs [32]. Weak key-IV combinations would also exist
theoretically in the case of CSA-SC [12], due to the non-autonomous feedback
during its initialisation process [2].

Weak key-IV combinations may also result when non-standard feedback mecha-
nisms are used. The RC4 stream cipher is a famous example of a stream cipher that
is not based on feedback shift registers [42]. Due to its special construction, RC4 has
been found to be susceptible to suboptimal initialisation with certain key-IV pairs.
It has been shown that some key-IV combinations allow recovery of state bits [27].
This weakness was used in a practical cryptanalysis of the wired equivalent privacy
(WEP) standard [43].

5.5 Summary

Table 11 summarises the existence of security flaws in the stream ciphers discussed
in this section. In this table, X indicates that the flaw does exist in the cipher and
x indicates that it does not. A blank entry denotes that, to the authors’ knowledge,

Table 11 Security flaws in initialisation of certain stream ciphers
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Notes: aTheoretically, there are slid pairs that lead to shifted
keystreams
bTheoretically, weak key-IV pairs exist due to non-
autonomous feedback during initialisation
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whether or not the flaw exists in the cipher is unknown. While all flaws presented in
this paper can be found in A5/1, most other ciphers only possess a subset of these
flaws.

For those entries not mentioned in this section, the reader is referred to [2, Table
6.1] for further details.

6 Conclusion

Stream cipher proposals usually include both design specifications, including an
initialisation or rekeying process, and an analysis section outlining resistance against
generic attacks. The focus of the security analysis is generally on keystream
generation. Less attention is paid to the analysis of the initialisation process,
though it is considered in some proposals. This paper recommends that stream
cipher designers consider carefully the initialisation process, and perform sufficient
analysis to ensure that both the loading and diffusion phases of this process are
secure against known attacks and avoid the known flaws discussed in this paper.

A well-designed initialisation process (comprising both loading and diffusion
phases) should not reveal any information about the secret key, or possess properties
that may help to facilitate attacks. The initialisation process should ensure that
performing a key recovery attack is hard even if state recovery has occurred, because
the mathematical relationships between the key-IV pair and the keystream are hard
to establish.

Considering both the A5/1 case study in Sect. 4 and the other examples given
in Sect. 5, we provide the following recommendations for initialisation process for
stream ciphers:

1. State, key and IV sizes. The state size should be larger than the sum of the key
and IV lengths, and the IV should be at least the same length as the key. This is
necessary to provide resistance to TMTO attacks.

2. Padding pattern. The padding pattern should not be a repetitive pattern. Given
a total state size which is larger than sum of the key and IV lengths, specifying
a means for loading contents into all stages in the state is likely to involve
padding. The padding pattern should not be a series of identical values (either
all-zeros or all-ones), or consist of repeated copies of a specific pattern (such
as 010101 or 001001), as slid pairs for small phase shifts are readily found in
such cases. Avoiding repetitive patterns will defer the occurrence of slid pairs
to the maximum possible shift, increase the complexity of finding slid pairs
and reduce the probability of obtaining phase shifted keystreams for small shift
values.

3. One-to-one functions. The state update function should be one-to-one. Both
the individual components and the combination of these components should
result in an update function that is one-to-one. This is required to prevent state
convergence. Conversely, the use of a one-to-one function leads to another
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problem: in the case of state recovery, it may be possible to clock back to the
loaded state and effect key recovery.

4. Dissimilar state update functions. The similarity of the state update functions
within and between the initialisation and keystream generation processes should
be reduced. This should reduce the occurrence of slid pairs and the corre-
sponding shifted keystreams for small shift values. However, implementing this
recommendation may have a negative effect on efficiency.

5. Non-autonomous feedback functions. The use of non-autonomous feedback
functions during either the loading or diffusion phases requires careful consid-
eration to prevent key-IV combinations resulting in weak session keys. Weak
session keys result in ineffective components; for that key-IV pair the keystream
generator is equivalent to another design with a smaller state. This may leave
the cipher vulnerable to attacks.

6. Nonlinear diffusion process. The diffusion process should ensure that both
the key and IV bits are distributed across the entire state, and combined in a
non-linear way. An appropriate diffusion process provides resistance against
differential and fault attacks.

7. Optimal number of iterations. The number of iterations of the state update
function to be performed during the diffusion phase requires careful con-
sideration. Increasing the number of iterations may increase the resistance
to some attacks (algebraic, differential, correlation) but this may leave the
cipher vulnerable to other potential attacks (such as TMTO attacks, if state
convergence is present). Increasing the number of iterations also decreases the
efficiency of the cipher. This process is a trade-off between the security aspects
and efficiency.
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Producing Fuzzy Inclusion and Entropy
Measures

Athanasios C. Bogiatzis and Basil K. Papadopoulos

Abstract Inclusion and entropy measurements are significant for a variety of
applications in fuzzy logic area. Several authors and researchers have tried to axiom-
atize fuzzy inclusion and entropy indicators. Others have introduced such measures
based on specific desired properties. Significant results have been obtained; results
that have led to a number of alternative solutions concerning several different
applications. Apart from these interesting and innovative ideas, open matters of
further discussion and research have occurred in these studies as well. Following
the work of these authors, we propose an alternative axiomatization of fuzzy
inclusion based on an already existing one. This allows us to introduce a category
of subsethood and entropy measures which contains well-known indicators as well
as new ones.

Keywords: Inclusion grade • Fuzzy entropy • Fuzzy implications • Fuzzy
subsethood

1 Introduction

There are two well-known axiomatizations concerning fuzzy inclusion. The first one
belongs to Sihna and Dougherty [13]. It has been proven that it can be reconstructed
with less axioms [2, 3] and that it can be covered by Willmott’s axioms, which
were earlier introduced in [15, 16]. The second axiomatization of fuzzy inclusion
was proposed by Young [17]. Young disagrees with some of Sihna–Dougherty’s
properties and chooses her axioms from a different point of view (in order to relate
them with fuzzy entropy as a continuity of Kosko’s work [9, 10]).

Fuzzy subsethood measures are mainly obtained by fuzzy implications, some-
thing consistent with classic logic. Thus, they are mainly the infimum (satisfying
S-D’s properties) or the mean value (i.e., Goguen’s inclusion measure [6]) of an
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implication operator ([7], [8]). Authors like Bandler and Kohout [1] or Willmott
[15, 16] deal with several such measures. There is also Kosko’s subsethood measure
which doesn’t seem to belong to either of these categories. Later, we will see how it
is included in our category of inclusion measures.

The main goals of this paper are the proposal of an alternative axiomatization of
fuzzy inclusion (based on Young’s original one), the introduction of a formula for
producing subsethood and their corresponding entropy measures, and the production
of such indicators (new or already known). There is also a first comparison between
them through some specific examples and graphs.

In Sect. 2, we briefly remind the axioms of fuzzy intersections and implications
as presented in [18] and [14]. Next, we remind the axioms of fuzzy entropy
measures, as presented by De Luca and Termini [4], and some main parts of Young’s
work. We also give some basic concepts of Kosko’s work [9–11] and its relation
with Young’s research. In Sect. 3, we present our alternative axiomatization and a
formula for producing fuzzy inclusion and entropy measures. We produce some new
possible measures as well. Section 4 consists of specific examples on these inclusion
operators and a brief comparison of their corresponding results. In Sect. 5, we do the
same for the entropy measures. These examples are accompanied by some figures as
well. We conclude in Sect. 6 with some matters of additional discussion and future
research.

2 Preliminaries and Notation

2.1 Basic Notation

We mainly keep Young’s notation which is quite common in the literature. So, let
X denote the universal set (which is a finite set) and F.X/ its power set. Members
of F.X/ are represented by capital letters A;B;C, etc., whereas their membership
functions are denoted as mA;mB;mC , respectively. Set A will be a refinement of set
B if mA.x/ 6 mB.x/ when mB.x/ 6 1

2
and mA.x/ > mB.x/ when mB.x/ > 1

2
. P

will be the fuzzy set whose membership function is equal to 1
2
, for all x 2 X . The

cardinality of a fuzzy set A will be jAj D P
x2X

mA.x/.

Furthermore, we call A a subset of B (we write A � B) if mA.x/ 6 mB.x/
for all x 2 X . Superscript c stands for the standard fuzzy complement, meaning
that the membership function of Ac is 1 � mA.x/ . Finally Anear will denote the set
whose membership value of x 2 X is 0 if mA.x/ < 1

2
and 1 otherwise. Afar will be

the complement of Anear.
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2.2 Fuzzy Intersections and Implications

Next, we recall the definition and basic properties of fuzzy intersections and
implications:

Definition 1. A function T W Œ0; 1� � Œ0; 1�! Œ0; 1� is a fuzzy intersection (t-norm)
if and only if it satisfies the following conditions for all a; b; d 2 Œ0; 1�:

T.a; 1/ D a (boundary condition) .t1/
b � d) T.a; b/ � T.a; d/ (monotonicity) .t2/
T.a; b/ D T.b; a/ (commutativity) .t3/
T.a;T.b; d// D T.T.a; b/; d/ (associativity) .t4/

Three of the most important additional requirements, which restrict the class of
fuzzy intersections, are the following:

T.a; a/ < a (subidempotency) .t5/
a1 < a2 and b1 < b2) T.a1; b1/ < T.a2; b2/ (strict monotonicity) .t6/
T is a continuous function (continuity) .t7/

A subidempotent, continuous t-norm is called Archimedean; if it is also strictly
monotonous, it is called strict Archimedean. An additional property of all fuzzy
intersections that will be needed later in the paper is that: T.a; 0/ D 0
Definition 2. A function I W Œ0; 1�� Œ0; 1�! Œ0; 1� is a fuzzy implication if and only
if it satisfies the following conditions for all a; b; d 2 Œ0; 1�:

a � b) I.a; d/ 
 I.b; d/ (monotonicity in first argument) .i1/
a � b) I.d; a/ � I.d; b/ (monotonicity in second argument) .i2/
I.0; a/ D 1 (dominance of falsity) .i3/
I.1; b/ D b (neutrality of truth) .i4/
I.a; a/ D 1 (identity) .i5/
I.a; I.b; d// D I.b; I.a; d// (exchange property) .i6/
I.a; b/ D 1, a � b (boundary condition) .i7/
I.a; b/ D I.c.b/; c.a// for a fuzzy complement c .i8/
I is a continuous function (continuity) .i9/

but not necessarily all of them—different applications demand different additional
attributes of I.

(Not all these axioms are independent. For instance, axioms (i3) and (i5) can be
derived from axiom (i7) but not vice versa. Anyway we mainly deal with axioms
(i1), (i2), and (i7) in this paper.)
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2.3 Fuzzy Entropy

According to De Luca and Termini:

Definition 3. A fuzzy entropy measure is a function E W F.X/ ! Œ0; 1� which
satisfies the following:

E.A/ D 0 if and only if mA.x/ 2 f0; 1g for all x 2 X .E1/
E.A/ D 1 if and only if A D P .E2/
E.A/ 6 E.B/ if A is a refinement of B .E3/
E.A/ D E.Ac/ .E4/

As Young states, these axioms have been further studied and supplemented by
other authors [5, 12]. In this paper, we will refer only to these four properties.

2.4 Young’s Axioms and Theorem

In [9], Kosko shows that the entropy of a fuzzy set A is the degree to which A [ Ac

is a subset of its complement A \ Ac. So, after examining the axioms of Sihna
and Dougherty and partially disagreeing with them, Young presents three axioms
for fuzzy inclusion which are sufficient to lead to entropy measures according to
Kosko’s proposition. Considering S is a function defined as S W F.X/ � F.X/ ! I,
these three axioms are:

– S.A;B/ D 1 if and only if A � B in Zadeh’s sense (S1)
– If P � A in Zadeh’s sense, then S.A;Ac/ D 0, A D X (S2)

if and only if A D X
– If B � A1 � A2, then S.A1;B/ > S.A2;B/ (S3)

and if B1 � B2 then S.A;B1/ 6 S.A;B2/
(From now on, let S3a denote the first half of S3 and S3b the second one).
The following theorem is then presented:

Theorem 1. If S is a fuzzy subsethood measure (meaning a function satisfying S1–
S3), then E defined as:

E.A/ D S.A[ Ac;A \ Ac/; A 2 F.X/

is a fuzzy entropy measure of fuzzy set A, where:

mA[Ac.x/ D max.mA.x/; 1 � mA.x// and mA\Ac.x/ D min.mA.x/; 1 � mA.x//

This way, we have an alternative axiomatization of fuzzy subsethood and a theorem
which “allows” every inclusion measure to produce a corresponding entropy
measure. In this category belong subsethood measures such as Kosko’s:
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SK.A;B/ D

8
<̂

:̂

P
x2X

min.mA.x/;mB.x//
P

x2X
mA.x/

D jA\B/j
jAj if A ¤ ¿

1 if A D ¿

or Goguen’s inclusion grade:

SI.A;B/ D 1

n

X

x2X

min.1; 1 �mA.x/C mB.x//; n D jXj

which is actually the mean value of Lukasiewicz’s implication. Their corresponding
entropy measures are:

EK.A/ D
P
x2X

min.1 � mA.x/;mA.x//

P
x2X

max.1 �mA.x/;mA.x/

and

EI.A/ D 2

n

X

x2X

min.mA.x/; 1 � mA.x//;

respectively.

3 Our Proposition

3.1 Basic Idea

Our basic idea was to introduce a category of subsethood measures based upon the
following:

Proposition 1. Let A; B 2 F.X/, and S W F.X/�F.X/! I be a function defined as:

S.A;B/ D

8
<̂

:̂

P
T.

x2X
I.mA.x/;mB.x//;mA.x//

P
x2X

mA.x/
if A ¤ ¿

1 if A D ¿

where T and I denote a fuzzy intersection and a fuzzy implication, respectively. If:

1. Implication I satisfies axioms (i1), (i2), (i7) and property:

For all x 2 X; If mA.x/ > 1
2
, then

.i�/
I.mA.x/; 1 � mA.x// D 0, mA.x/ D 1
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2. T and I (when combined) satisfy the following properties, for every x 2 X :

T.I.mA.x/;mB.x//;mA.x// D mA.x/, mA.x/ 6 mB.x/ .ti1/

mB.x/ � mA1 .x/ � mA2.x/) .ti2/
T.I.mA1 .x/;mB.x//;mA1.x// 
 T.I.mA2 .x/;mB.x//;mA2.x//

then S is a subsethood measure of set A into set B:

(These conditions are sufficient but not always necessary)

Proof. (S1): It’s obvious for A D ¿. Let A ¤ ¿ and S.A;B/ D 1. Then:

S.A;B/ D 1,
X

T.I.mA.x/;mB.x//;mA.x// D
X

x2X

mA.x/ ,

(since T.I.mA.x/;mB.x//;mA.x// 6 mA.x/)

T.I.mA.x/;mB.x//;mA.x// D mA.x/ for every x 2 X
property ti1,

mA.x/ 6 mB.x/ for every x 2 X ,

A � B

(S2): If P � A or mA.x/ > 1
2

for all x 2 X, then:

S.A;Ac/ D 0,

T.I.mA.x/; 1 � mA.x//;mA.x// D 0 for every x 2 X
mA.x/¤0,

I.mA.x/; 1 �mA.x// D 0 for every x 2 X
property i�,

mA.x/ D 1 for every x 2 X,

A D X

(axiom i4 is sufficient but not necessary for I to have property i�)
(S3): As far as property S3a is concerned:

B � A1 � A2) mB.x/ 6 mA1 .x/ 6 mA2.x// for all x 2 X
property ti2)

T.I.mA1 .x/;mB.x//;mA1 .x// 
 T.I.mA2.x/;mB.x//;mA2 .x// for all x 2 X )
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X

x2X

T.I.mA1 .x/;mB.x//;mA1 .x// 

X

x2X

T.I.mA2 .x/;mB.x//;mA2 .x//

and since
P
x2X

mA1.x/ �
P
x2X

mA2.x/ we’ll have:

P
x2X

T.I.mA1 .x/;mB.x//;mA1 .x//

P
x2X

mA1.x/
>

P
x2X

T.I.mA2 .x/;mB.x//;mA2 .x//

P
x2X

mA2.x/
)

S.A1;B/ > S.A2;B/

For S3b we have:

B1 � B2) mB1 .x/ 6 mB2.x/
axiom i2)

I.mA.x/;mB1 .x// 6 I.mA.x/;mB2.x//
axiom t2)

T.I.mA.x/;mB1 .x//;mA.x// 6 T.I.mA.x/;mB2 .x//;mA.x//)
P
x2X

T.I.mA.x/;mB1 .x//;mB1 .x//
P
x2X

mA.x/
6

P
x2X

T.I.mA.x/;mB2 .x//;mB2 .x//
P
x2X

mA.x/
)

S.A;B1/ 6 S.A;B2/

For the rest of the paper, let QI denote the set of all implications that satisfy i1, i2,
i7, and i�. Most common implications satisfy i1, i2, and i�. Some of these, like:

IGod.mA.x/;mB.x// D
(
1 if mA.x/ � mB.x/

mB.x/ if mA.x/ > mB.x/
(Gödel ’s)

IGog.mA.x/;mB.x// D min.1; mB.x/
mA.x/

/ (Goguen’s)

ILuc.mA.x/;mB.x// D min.1;mAc.x/C mB.x// (Lucasiewichz’s)

IWu.mA.x/;mB.x// D
(
1 if mA.x/ � mB.x/

min.mAc.x/;mB.x// if mA.x/ > mB.x/
(Wu’s)

satisfy axiom i7 as well, whereas others like:

IZ.mA.x/;mB.x// D max.mAc.x/;min.mA.x/;mB.x/// (Zadeh’s)
IKD.mA.x/;mB.x// D max.mAc.x/;mB.x// (Kleene-Dienes’)
IR.mA.x/;mB.x// D 1 � mA.x/C mA.x/mB.x/ (Reichenbach’s)
IY.mA.x/;mB.x// D ŒmB.x/�

mA.x/ (Yager’s)

don’t. However, these can be easily adjusted so that they satisfy axiom i7 in the
following sense:
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I�Z D I�KD.mA.x/;mB.x// D
(
1 if mA.x/ � mB.x/

max.mAc.x/;mB.x// if mA.x/ > mB.x/

I�R.mA.x/;mB.x// D
(
1 if mA.x/ � mB.x/

1 � mA.x/CmA.x/mB.x/ if mA.x/ > mB.x/

I�Y.mA.x/;mB.x// D
(
1 if mA.x/ � mB.x/

ŒmB.x/�
mA.x/ if mA.x/ > mB.x/

3.2 R-Implications and Kosko’s Measure

R-implications (along with Mamdani’s and Sugeno’s implications) are commonly
used in fuzzy logic controllers. R-implications are produced by the following
formula:

I.mA.x/;mB.x// D supfs 2 Œ0; 1�=T.mA.x/; s/ 6 mB.x/g

By using different t-norms T in this formula, we obtain different implications.
Goguen’s implication is obtained by using t-norm TP:

TP.mA.x/;mB.x// D mA.x/ � mB.x/

Lukasiewicz’s implication is obtained when we use bounded difference TBD:

TBD.mA.x/;mB.x// D max.0;mA.x/C mB.x/ � 1/

Gödel ’s implication is obtained when we use t-norm Tm:

Tm.mA.x/;mB.x// D min.mA.x/;mB.x//

TP; TBD, and Tm satisfy axioms t1, t2 and IGog; ILuc and IGod belong into QI. Moreover,
combinations (TP, IGog), (TBD, ILuc), and (Tm , IGod) satisfy properties ti1 and ti2 and
can be used in formula of Proposition 1. However, all three combinations return
nothing else but Kosko’s subsethood measure SK.A;B/ D jA\Bj

jAj .
Also, other fuzzy operators like Mamdani’s or Sugeno’s—which cannot be

considered as implications from a mathematical point of view and of course do not
satisfy i1 or i7—can be used in the formula. Specifically, if we combine Mamdani’s
operator with Tm, we obtain SK . Furthermore, Mamdani’s and Sugeno’s implications
could be applied along with TP in the formula of Proposition 1 and give us possible
inclusion measures. That’s why we outlined that conditions of Proposition 1 are
sufficient yet not always necessary. Function I could be any “proper” fuzzy operator
and not necessarily an implication. But this is something we’ll discuss in a future
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research. In this paper, we’ll only use fuzzy implications (or operators satisfying
the basic axioms of fuzzy implications, something consistent with classic logic)
and we’ll present some basic results. Similar discussion could be made concerning
operators T as well. Nevertheless, we will only use t-norms.

From what we’ve seen so far, the main question that rises is: “Can we produce
any other than Kosko’s inclusion and entropy measure using Proposition 1 and
Theorem 1?” It seems as if Kosko’s subsethood measure is the only one (apart from
measures based on the mean value of an implication) consistent with Young’s work
in the sense we described above. But that’s because Young’s axiom S3 is in fact
stricter than needed.

3.3 An Alternative Axiomatization

Axiom S3 is connected with axiom E3 in the following way:
If A is a refinement of B, then A \ Ac � B \ Bc � B [ Bc � A [ Ac and:

E.A/ D S.A[ Ac;A \ Ac/
.S3a/
6 S.B[ Bc;A \ Ac/

.S3b/
6 S.B [ Bc;B \ Bc/ D E.B/

What we see for property S3a is that it is stronger than needed in order for the above
to be valid. In fact S3 can be replaced by the following:

If Ac
2 � Ac

1 � A1 � A2, then S.A1;Ac
2/ > S.A2;Ac

2/ (S3�)
and if B1 � B2 then S.A;B1/ 6 S.A;B2/

without invalidating the rest of Young’s work (it goes without saying that
S3) S3�).

So using S1, S2, S3� as an axiomatization of fuzzy inclusion, Young’s theorem
is still valid and we can obtain new subsethood and their corresponding entropy
measures using the following:

Proposition 2. Let A;B 2 F. X/, and S W F.X/ � F.X/! I a function defined as:

S.A;B/ D

8
<̂

:̂

P
T.

x2X
I.mA.x/;mB.x//;mA.x//

P
x2X

mA.x/
if A ¤ ¿

1 if A D ¿

where T and I denote a fuzzy intersection and a fuzzy implication, respectively. If:

1. Implication I satisfies axioms i1, i2, i7 and property:

For all x 2 X; If mA.x/ > 1
2
, then

.i�/
I.mA.x/; 1 � mA.x// D 0, mA.x/ D 1
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2. T and I (when combined) satisfy the following properties for every x 2 X:

T.I.mA.x/;mB.x//;mA.x// D mA.x/, mA.x/ 6 mB.x/ .ti1/

1 �mA2 .x/ � 1 �mA1 .x/ � mA1.x/ � mA2 .x/) .ti2�/
T.I.mA1 .x/;mB.x//;mA1.x// 
 T.I.mA2 .x/;mB.x//;mA2.x//

then S is a subsethood measure of set A into set B and function
E W F.X/! I defined as:

E.A/ D S.A[ Ac;A \ Ac/

is a fuzzy entropy measure of set A.

Proof. What have changed since Proposition 1 are axiom S3 to S3� and property
ti2 to ti2�. So, we’ll just prove the first part of S3�:

Ac
2 � Ac

1 � A1 � A2)

1 �mA2 .x/ 6 1 �mA1 .x/ 6 mA1.x/ 6 mA2 .x/ for all x 2 X
property ti2�)

X

x2X

T.I.mA1 .x/;mAc
2
.x//;mA1 .x// 


X

x2X

T.I.mA2 .x/;mAc
2
.x//;mA2.x// )

P
x2X

T.I.mA1 .x/;mAc
2
.x//;mA1.x//

P
x2X

mA1.x/
6

P
x2X

T.I.mA2 .x/;mAc
2
.x//;mA2 .x//

P
x2X

mA2.x/
)

S.A1;A
c
2/ > S.A2;A

c
2/

3.4 New Measures

We’ve already seen that “couples” (TP, IGog), (TBD, ILuc), (Tm, IGod) apply to
Proposition 2 and that they all return Kosko’s inclusion and entropy measure. Two
other couples that can be used are:

– (TP, I�Z ) returning:

Spro�Z.A;B/ D

8
<̂

:̂

P
x2X

I�

Z .mA.x/;mB.x//�mA.x//
P

x2X
mA.x/

if A ¤ ¿

1 if A D ¿
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and

Epro�Z.A;B/ D

8
<̂

:̂

P
x2X

min.mAc .x/;mA.x//�max.mAc .x/;mA.x//
P

x2X
max.mAc .x/;mA.x//

if A ¤ P

1 if A D P

– (Tm, IWu) returning:

Smin�Wu.A;B/ D

8
<̂

:̂

P
x2X

min.IWu.mA.x/;mB.x//;mA.x//
P

x2X
mA.x/

ifA ¤ ¿

1 if A D ¿

and

Emin�Wu.A/ D EK.A/ D
P
x2X

min.mAc.x/;mA.x//

P
x2X

max.mAc.x/;mA.x//

So there you go. We have two new inclusion functions and one new entropy
indicator. In Sects. 4 and 5, we’ll have a first look at their values and their behavior.
We close this subsection by pointing out that axiom S3� can be loosened even more.
We know this; and this will probably allow us to have even more suitable (T; I)
combinations and their respective inclusion and entropy measures. It’s something
we’re currently working on. However, we would like to publish these results along
with a classification and a more profound study on all these inclusion and entropy
measures in a future paper.

3.5 A Noticeable Observation

As Kosko and Young mention in their respective presentations, SK and generally
subsethood measures under Young’s axiomatization are connected with conditional
probabilities. Since the previously introduced measures satisfy Young’s axioms
(although S3 is slightly altered) and are being produced according to Young’s work,
they are also connected with probability theory (not in all cases though). We will
not further examine this connection in this presentation but we wish to mention that
in the case of the “product-based” measures:

Proposition 3. All “product-based” subsethood measures satisfy the following—
respective to the additive law—property:

S.C;A [ B/ D S.C;A/C S.C;B/� S.C;A \ B/
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Proof. Let A D fmA.x1/; : : :;mA.xk/; : : :;mA.xn/g
B D fmB.x1/; : : :;mB.xk/; : : :;mB.xn/g
C D fmC.x1/; : : :;mC.xn/g be our fuzzy sets, where—without any loss of

generality—mA.xi/ 
 mB.xi/ for i D 1.1/k and mA.xi/ � mB.xi/ for i D k.1/n:
Then:

X

x2X

I .mC.x/; Œmax.mA.x/;mB.x//Cmin.mA.x/;mB.x//�/ � mC.x/

D
kX

iD1
I.mC.xi/;mA.xi// � mC.xi/C

nX

iDk

I.mC.xi/;mB.xi// � mC.xi/

C
kX

iD1
I.mC.xi/;mB.xi// � mC.xi/C

nX

iDk

I.mC.xi/;mA.xi// � mC.xi/

D
X

x2X

I.mC.x/;mA.x// � mC.x/C
X

x2X

I.mC.x/;mB.x// � mC.x/

)
P
x2X

I .mC.x/; Œmax.mA.x/;mB.x//Cmin.mA.x/;mB.x//�/ � mC.x/

P
x2X

mC.x/

D
P
x2X

I.mC.x/;mA.x// � mC.x/

P
x2X

mC.x/
C
P
x2X

I.mC.x/;mB.x// � mC.x/

P
x2X

mC.x/

) S.C;A [ B/C S.C;A \ B/ D S.C;A/C S.C;B/

Now we can show that:

S.B;A1 [ A2 [ A3/ D S.B;A1/C S.B;A2/C S.B;A3/

� S.B;A1 \ A2/� S.B;A1 \ A3/

� S.B;A2 \ A3/C S.B;A1 \ A2 \ A3/

Proof.

S.B;A1 [ A2 [ A3/

D S.B; .A1 [ A2/ [ A3/

D S.B;A1 [ A2/C S.B;A3/ � S.B; .A1 [ A2/ \ A3/

D S.B;A1/C S.B;A2/ � S.B;A1 \ A2/C S.B;A3/ � S.B; .A1 \ A3/ [ .A2 \ A3//

D S.B;A1/C S.B;A2/C S.B;A3/ � S.B;A1 \ A2/ � S.B;A1 \ A3/ � S.B;A2 \ A3/

C S.B;A1 \ A2 \ A3/

Then, we can generalize this for the inclusion grade of a set B into the union of n
sets Ai, i D 1.1/n and get the respective property of possibility theory.
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4 A First Comparison of The Inclusion Measures

Let’s see some examples:

Example 1. Let’s take the following fuzzy sets:

A1 D f0:9; 0:8; 0:5; 0:5; 0:2; 0:1g, A2 D f0:7; 0:7; 0:8; 0:5; 0:2; 0:1g,
A3 D f0:6; 0:7; 0:7; 0:8; 0:8; 1g, B D f0:5; 0:6; 0:7; 0:8; 0:9; 1g

The corresponding inclusion grades are:

S.A1;B/ S.A2;B/ S.A3;B/

SK 0.8 0.866667 0.956522

Spro�Z 0.743333 0.71 0.873913

Smin �Wu 0.533333 0.533333 0.869565

In the first case, SK and Spro�Z are quite close, whereas Smin�Wu is close to 1
2
.

Inequality mA.x/ � mB.x/ is violated two out of six times and it’s:

a D

P
x2X and mA.x/ >mB.x/

.mA.x/� mB.x//

P
x2X and mA.x/ <mB.x/

.mB.x/� mA.x//
D 6

21
D 28%

According to a, the value of Spro�Z.A1;B/ being close to 74% seems quite
reasonable. On the other hand, Smin�Wu sees set A as a subset of set B, almost as
much as it doesn’t. It seems that Smin�Wu is affected by fraction a in a “harsher” way.
In the second case, while a is the same, it is distributed among more elements of A.
Kosko’s measure gives a larger inclusion grade whereas Spro�Z a smaller one—a
fact quite reasonable in our opinion. Smin�Wu returns the same value, something that
could also seem justifiable to some. Finally, regarding S.A3;B/, Spro�Z and Smin�Wu

are almost equal. On the other hand, the fact that SK.A3;B/ is so close to 1 may
seem a little excessive since mA3.x1/ > mB.x1/ and mA3.x2/ > mB.x2/.

Example 2. Let’s examine now some smaller inclusion grades. Let

A1 D f0:9; 0:8; 0:5; 0:5; 0:2; 0:1g, A2 D f0:7; 0:7; 0:8; 0:5; 0:2; 0:1g

(same as above) and

A3 D f0:4; 0:5; 0:4; 0:4; 0:4; 0:5g (near set P), B D f0:1; 0:2; 0:2; 0:3; 0:4; 0:5g:
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The corresponding inclusion grades are:

S.A1;B/ S.A2;B/ S.A3;B/

SK 0.366667 0.366667 0.653846

Spro�Z 0.35 0.376667 0.719231

Smin �Wu 0.366667 0.366667 0.653846

SK and Smin�Wu return the exact same values. In the first case Spro�Z is very close
to them. As the fuzziness of set A1 is distributed among more of its elements (set
A2); SK.A2;B/ and Smin�Wu.A2;B/ remain the same while Spro�Z.A2;B/ gets a bit
larger. This again shows a sensitivity of indicator Spro�Z regarding the distribution
of fuzziness. The difference between Spro�Z and the other two measures gets larger
in the third case. Someone could say that SK returns a relatively low value, taking
into concern SK.A2;B/ of Example 1.

Now let’s see some cases where the differences between the indicators are more
noticeable:

Example 3. Sets are:

A1 D f0:8; 0:8; 0:8; 0:8; 0:8; 0:8g, A2 D f0:7; 0:9; 0:7; 0:9; 0:7; 0:9g,
A3 D f0:7; 0:7; 0:7; 0:7; 1; 1g, B D f0:3; 0:4; 0:5; 0:6; 0:7; 0:8g

and inclusion grades are:

S.A1;B/ S.A2;B/ S.A3;B/

SK 0.6875 0.6875 0.6875

Spro�Z 0.583333 0.6 0.575

Smin �Wu 0.375 0.333333 0.25

The first thing that one should notice is that SK returns the same value in all three
cases (maybe a rather large value, taking into concern fraction a and the number
of violations of mA.x/ � mB.x/). As before, Spro�Z shows a greater sensitivity and
seems to have “logical” variations. Once again, Smin�Wu is “stricter” and closer to
the concept of crisp inclusion. To some readers, values of Smin�Wu may seem more
logical than those of the others inclusion measures. Smin�Wu could be more suitable
concerning specific applications (having strict control rules). Finally let’s see some
examples where set A remains the same and set B doesn’t:

Example 4. Let’s take sets

A D f0:3; 0:4; 0:5; 0:6; 0:7; 0:8g, B1 D f0:2; 0:3; 0:4; 0:5; 0:6; 0:9g,
B2 D f0:6; 0:7; 0:4; 0:5; 0:3; 0:8g, B3 D f0:8; 0:7; 0:6; 0:5; 0:4; 0:3g
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We have:

S.A;B1/ S.A;B2/ S.A;B3/

SK 0.848485 0.818182 0.727273

Spro�Z 0.672727 0.684848 0.612121

Smin �Wu 0.727273 0.787879 0.636364

Here, we can see considerable differences between SK and Spro�Z, while Smin�Wu is
somewhere between them.

Example 5. Finally, let’s alter set A D f0:1; 0:2; 0:2; 0:8; 0:8; 0:9g (more crisp) and
keep sets B1, B2, and B3 the same as above. We have:

S.A;B1/ S.A;B2/ S.A;B3/

SK 0.833333 0.7 0.566667

Spro�Z 0.76 0.62 0.496667

Smin �Wu 0.6 0.333333 0.333333

Here measures behave in the same way though their respective values have
noticeable differences. Smin�Wu is once again the stricter one.

We could see the behavior of the indicators through some graphs as well. Below,
we can better see their similarities as well as their differences concerning several
cases of sets A and B. SK is represented by the dotted line, Spro�Z by the thick line,
and Smin�Wu by the dashed line:

S(A,B)

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0
i

Fig. 1 A D fi; : : :; i„ƒ‚…
10 times

g; i 2 Œ0; 1� and B D f0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1g
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S(A,B)
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i

Fig. 2 A D fi; : : :; i„ƒ‚…
10 times

g; i 2 Œ0; 1� and B D f0:9; 0:9; 0:8; 0:8; 0:7; 0:7; 0:6; 0:6; 0:5; 0:5g

S(A,B)
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i

Fig. 3 A D fi; : : :; i„ƒ‚…
10 times

g; i 2 Œ0; 1� and B D f0:1; 0:1; 0:2; 0:2; 0:3; 0:3; 0:4; 0:4; 0:5; 0:5g
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Fig. 4 A D fi; : : :; i„ƒ‚…
10 times

g; i 2 Œ0; 1� and B D f0:1; 0:1; 0:2; 0:2; 0:2; 0:8; 0:8; 0:8; 0:9; 0:9g



Producing Fuzzy Inclusion and Entropy Measures 67
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Fig. 5 A D f0:1; 0:1; 0:2; 0:2; 0:2; 0:8; 0:8; 0:8; 0:9; 0:9g and BD fi; : : :; i„ƒ‚…
10 times

g; i 2 Œ0; 1�
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Fig. 6 A D f0:4; 0:4; 0:4; 0:5; 0:5; 0:5; 0:5; 0:6; 0:6; 0:6g and BD fi; : : :; i„ƒ‚…
10 times

g; i 2 Œ0; 1�

To have an even better view of the three measures, here are their 3D plots
accompanied by their respective Contour plots when applied to sets A D fi; : : :; ig
and B D fj; : : :; jg, i; j 2 Œ0; 1�:

These examples and graphs are only indicative and not of course sufficient
to extensively study the behavior of the measures. We only wish to show some
differences and some similarities between the indicators concerning specific cases.
The graphics show these even more comprehensively. The main purpose of this
paper is to present a new formula of producing inclusion and entropy measures
accompanied by some specific applications and examples of this procedure. More-
over, no supremacy of one measure over the other is implied. It depends on what
application fuzzy inclusion is being used in, the rules and their strictness someone
is setting, each researcher’s different perspective, and many other factors. We
personally believe that different piece of information could be obtained by each
measure, whereas their combination (mean value, confidence intervals, etc.) could
give more suitable answers when it comes to applications. In any case, a further
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Fig. 7 3D plot of SK
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Fig. 8 Contour plot of SK

Fig. 9 3D plot of Spro�Z
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Fig. 10 Contour plot of Spro�Z

Fig. 11 3D plot of Smin �Wu
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Fig. 12 Contour plot of Smin �Wu
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theoretical study and comparison between them—as well as others produced using
different implications and intersections—is necessary. Then we need to see each
measure’s behavior as well as what their combination could offer us in specific
applications. All these are things we’re currently working on and their results will
be presented in future papers. Same things apply for their corresponding entropy
measures which we will see next.

5 Entropy Measures

Previously, we saw that our formula combined with Young’s theorem allowed us to
produce two entropy measures: EK (Kosko’s) and Epro�Z. However, when it comes
to applications, Epro�Z is practically useless since it can’t be larger than 1

2
(apart

from the case when A D P ). Nevertheless, we can easily turn it into a sufficient
entropy measure by doubling its value:

E1.A/ D 2Epro�Z.A/ D
2
P
x2X

min.mAc.x/;mA.x// �max.mAc.x/;mA.x//

P
x2X

max.mAc.x/;mA.x//

E1 is clearly an entropy measure (according to De Luca and Termini) and it’s

E1.A/ 
 EK.A/ for every A 2 F.X/

Furthermore, in contradiction with EK , E1 has a linear behavior. This can be clearly
seen in Fig. 13 where E1 is represented by the dashed line:

It also appears to be more “sensitive” than EK . That’s logical if we think
that algebraic product mA.x/ � mB.x/ is evaluated by both mA and mB, whereas
min.mA.x/;mB.x// simply returns one out of the two values. This means that E1
takes into consideration not just the distance of set A from Anear but the intersection

Fig. 13 EK.A/ and E1.A/
when A D fi; : : :; ig,i D Œ0; 1�
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of the distances of set A from both Anear and Afar. Thus, the quantity of elements
of A which have certain distances from Anear and Afar is playing a crucial role to its
entropy.

Let’s see what we mean through some brief examples:

Example 6. Let’s take fuzzy sets:

A D f0:25; 0:25; 0:25; 0:25; 0:25; 0:25g, B D f0:5; 0:5; 0:5; 1; 1; 1g,
C D f0:4; 0:3; 0:1; 0:3; 0:3; 0:1g, D D f0:5; 0:2; 0:1; 0:3; 0:3; 0:1g

Then:

A B C D

EK 0.333333 0.333333 0.333333 0.333333

E1 0.5 0.333333 0.466667 0.448889

These sets have six elements and the largest total amount of vagueness (meaningP
x2X

min.mA.x/; 1 � mA.x//) they can have is 3. In this case, both functions are of

course equal to 1.

All elements of A have half the fuzziest truth value. At a certain point, someone
would expect for an entropy indicator to return 1

2
. That’s true for E1, whereas

Kosko’s measure returns 1
3
. Kosko’s indicator is equal to 1

2
when truth values of

A are all 1
3

or 2
3
. The same applies to the case when truth values of A are all equal

to 0:75. So, what we see for E1 is that if all elements of a fuzzy set lose a certain
amount of their fuzziness (all elements having the same value), the same percentage
is also lost by its entropy value (Fig. 13).

Sets B and C have also a total amount of fuzziness equal to 1:5. Nevertheless, half
elements of set B have maximum fuzziness and half have zero. The total vagueness
of set C, though equal with that of set B, is distributed among more of its elements
(but not equally as in set A). We see that since the total fuzziness of sets A, B, and
C is the same, EK always returns the same value (although set B definitely contains
three elements). E1 doesn’t have this property. However, we doubt if this a negative
fact. We believe that there should be some difference in the entropy of sets A, B, and
C. We see that since set B definitely contains half of its elements, E1 considers it
less fuzzy than A or C. As far as set C is concerned, although its total vagueness is
equal with that of set A, 4 of its elements are more fuzzy and only two otherwise.
E1 seems to recognize this fact by giving set C a larger entropy value.

Sets D and C differ in only two truth values. First element of D is 0.1 more fuzzy
whereas its second is 0.1 less. In this case, we must give best to Kosko’s measure
since we believe we should have the same entropy for both sets. E1.D/ is slightly
smaller than E1.C/, at a percentage of 3.8 %.

Now, let’s see an example where sets have different total fuzziness:
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Example 7. These are:

A D f0:2; 0:3; 0:2; 0:4; 0:5; 0:3g, B D f0:2; 0:2; 0:8; 0:3; 0:8; 0:3g,
C D f1; 1; 1; 0:5; 0:45; 0:45g, D D f0:1; 0:2; 0:9; 0:8; 0:9; 0:3g

and we have:

A B C D

EK 0.463415 0.304348 0.304348 0.2

E1 0.6 0.46087 0.323913 0.32

Their sums of fuzziness are 1.8, 1.4, 1.4, and 1.0, respectively. The corresponding
fractions of the vagueness of the sets to the largest possible are:

f1 D 3

5
, f2 D 7

15
, f3 D 7

15
, f4 D 1

3

We can easily see that E1 returns values closer to f1, f2, and f4. That is not the case
for set C which has three elements with truth value equal to 1. Furthermore, the
percentage reductions in vagueness between sets A and B is 22:2%, B and D is
28:6%, A and D is 44:4%. The corresponding reductions in the entropy of the sets
are:

A and B B and D A and D

EK 34.3 % 34.3 % 56.84 %

E1 23.2 % 30.5 % 46.6 %

Once again, E1 seems to have more “normal” changes in its values concerning
the changes in the fuzziness of a set. However, this doesn’t happen when the change
is less “uniform,” like between sets A and C. Then the respective percentages
are 34.3 % for EK and 46 % for E1; something expected taking into consideration
Example 6. In other words E1 is affected by more parameters.

Finally, let’s have a set that gradually becomes more fuzzy:

Example 8. We have:

A D f0:1; 0:2; 0:1; 0:2; 0:1; 0:3g, B D f0:2; 0:2; 0:2; 0:3; 0:3; 0:3g,
C D f0:1; 0:2; 0:2; 0:5; 0:5; 0:5g, D D f0:4; 0:4; 0:3; 0:3; 0:1; 0:5g
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and

A B C D

EK 0.2 0.333333 0.5 0.5

E1 0.32 0.493333 0.58 0.62

Their sums of fuzziness are 1, 1.5, 2, and 2. Inclusion measures return:

A B C D

EK 0.2 0.333333 0.5 0.5

E1 0.32 0.493333 0.58 0.62

Once again, these results lead us to conclusions similar with those derived from the
previous examples. The increase in the entropy of a fuzzy set seems to be more
“normally” depicted by E1: There is only a difference between E1.C/ and E1.D/
which, however, is about 4 %.

Similar observations can be made through a variety of examples. We don’t intend
to argue whether EK or E1 is best when it comes to applications (especially when
we’ve seen just a few specific short examples). But we see that Kosko’s indicator
takes into concern only the total sum of fuzziness of a set, whereas E1 seems to be
more “sensitive” to the way that this vagueness is distributed among its elements
(something wishful to some cases). Sporadic changes seem to affect E1 which is
more stable when fluctuations in the vagueness of a set are more normally and
symmetrically distributed among its elements. Anyway, as with inclusion measures,
different entropy measures are not meant to be adversary. They can be cooperative
since the usage of different measures can give a more spherical view of the behavior
of fuzzy sets. Having a variety of indicators is something welcomed when it
comes to applications. We have more choices and we can have more information.
Something we are currently working on is making rules of choosing the proper
entropy measure for specific applications (image thresholds, decision making, etc.)

6 Conclusion

In this paper, we gave an alternative axiomatization of fuzzy inclusion (based on
Young’s axiomatization) and proposed a formula for producing inclusion and—their
corresponding—entropy measures. Then, we produced already known inclusion and
entropy indicators as well as possible new ones. We compared their results through
some examples and graphs.

As far as our future work is concerned, we are currently working on several
matters. Our next step will be the production of even more inclusion and entropy
measures by further loosening our axiomatization (specifically S3a). Other fuzzy
operators—apart from classic fuzzy implications and intersections—can be used
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in our formula and we would like to further examine this process and its results.
Apart from these, something truly significant would be to include to our propositions
necessary conditions as well. Finally, we intend to use all these possible measures in
specific applications (fuzzy controllers, image thresholds, etc.). This way, we could
compare and classify them more effectively, have a better look on their behavior,
and see if their combination could give us further information and better results.
Then, we could set some rules of choosing the “right” inclusion and entropy measure
depending on the application it is meant to be used in.
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On Some Recent Results on Asymptotic
Behavior of Orthogonal Polynomials
on the Unit Circle and Inserting Point Masses

Kenier Castillo and Francisco Marcellán

Abstract In the present paper, we formulate and reprove, in a brief and
self-contained presentation, some recent results concerning the asymptotic behavior
of orthogonal polynomials on the unit circle by inserting point masses recently
obtained by the authors and co-workers. In a first part, we deal with a spectral
transformation of a Hermitian linear functional by the addition of the first derivative
of a complex Dirac linear functional supported either in a point on the unit circle
or in two symmetric points with respect to the unit circle. In this case, outer
relative asymptotics for the new sequences of orthogonal polynomials in terms of
the original ones are obtained. Necessary and sufficient conditions for the quasi-
definiteness of the new linear functionals are given. The relation between the
corresponding sequence of orthogonal polynomials in terms of the original one is
presented. The second part is devoted to the study of a relevant family of orthogonal
polynomials associated with perturbations of the original orthogonality measure by
means of mass points: discrete Sobolev orthogonal polynomials. We compare the
discrete Sobolev orthogonal polynomials with the initially ones. Finally, we analyze
the behavior of their zeros.

Keywords: Orthogonal polynomials on the unit circle • Asymptotic behavior •
Inserting point masses

1 Orthogonal Polynomials on the Unit Circle

In this section, a brief introduction to orthogonal polynomials on the unit circle
(OPUC, in short) is given, in order to have a self-contained and accessible
presentation of the results for a reader who is not familiar with the OPUC theory
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[18, 22, 38, 39, 43]. We denote by � WD CŒz; z�1� the vector space of Laurent
polynomials in the variable z with complex coefficients. Associated with every pair
of integers .p; q/, p � q, we define the vector subspace�p;q of Laurent polynomials
of the form

qX

nDp

anzn; an 2 C:

The vector subspace of complex polynomials will be denoted by P WD CŒz� and we
write Pq � �0;q for the vector subspace of polynomials of degree (at most) q, while
P�1 � f0g is the trivial subspace.

Let L be a linear functional in � satisfying

cn D hL; zni D hL; z�ni D c�n; n 2 Z: (1)

L is said to be a Hermitian linear functional. A bilinear functional associated with
L can be introduced in P as follows:

hf ; giL D
˝L; f .z/g.z�1/˛ ; f ; g 2 P:

The complex numbers fcngn2Z are said to be the canonical moments of L and the
infinite matrix

T D �˝zi; zj
˛
L
�

i;j�0 D

2
6666664

c0 c1 � � � cn � � �
c�1 c0 � � � cn�1 � � �
:::

:::
: : :

:::

c�n c�nC1 � � � c0 � � �
:::

:::
:::
: : :

3
7777775
;

is the Gram matrix of the above bilinear functional in terms of the canonical basis
fzngn>0 of P. It is known in the literature as a Toeplitz matrix, a matrix in which each
descending diagonal from left to right is constant [21]. Subdiagonal perturbations
of Toeplitz matrices and their relation with OPUC are considered in [10]

If Tn, the .n C 1/ � .n C 1/ principal leading submatrix of T, is non-singular
for every n > 0, L is said to be quasi-definite, and there exists a sequence of monic
polynomials f˚ngn>0, orthogonal with respect to L,

h˚n; ˚miL D knın;m; kn ¤ 0; m > 0:

1.1 Recurrence Relations

The OPUC satisfy the following forward and backward recurrence relations

˚nC1.z/ D z˚n.z/C ˚nC1.0/˚�n .z/; n > 0; (2)

˚nC1.z/ D
�
1 � j˚nC1.0/j2

�
z˚n.z/C ˚nC1.0/˚�nC1.z/; n > 0; (3)



On Some Recent Results on Asymptotic Behavior of Orthogonal Polynomials 77

where ˚�n .z/ D zn˚ n.z�1/ D zn.˚n/�.z/ is the so-called reversed polynomial, and
the complex numbers f˚n.0/gn>1, with

j˚n.0/j ¤ 1; n > 1;

are known as Verblunsky, Schur, or reflection coefficients. The OPUC are therefore
completely determined by the sequence f˚n.0/gn�1. To obtain the recurrence
formula, we take into account the fact that the reversed polynomial ˚�n .z/ is
the unique polynomial of degree at most n orthogonal to zk, 1 6 k 6 n.
Equations (2) and (3) are called either the Szegő recurrence or Szegő difference
relations. Moreover, we have

h˚n; ˚niL D kn D det Tn

det Tn�1
; n 
 1; k0 D c0:

In a recent paper [7], new sequences of OPUC associated with finite perturbation
of (2) and (3) are considered.

We can derive a recurrence formula which does not involve the reversed
polynomials,

˚n.0/˚nC1.z/ D .z˚n.0/C˚nC1.0//˚n.z/�z.1�j˚n.0/j2/˚nC1.0/˚n�1.z/; n > 0;

if we assume ˚�1 D 0. The polynomials ˚nC1 can be found from ˚n�1 and ˚n, if
˚n.0/ ¤ 0. This is an analogue of the three-term recurrence relation for orthogonal
polynomials on the real line (OPRL, in short), except for the factor z in the last term.
In [5, 8], the authors show that similar recurrence relations are associated with the
para-orthogonal polynomials on the unit circle (POPUC, in short).

1.2 Integral Representation and Kernel Polynomials

If c0 D 1 and det Tn > 0, for every n > 0, then L is said to be positive definite and
it has the following integral representation

hL; f i D
Z

T

f .z/d�.z/; f 2 P;

where � is a non-trivial probability measure supported on the unit circle T. In such
a case, there exists a unique sequence of polynomials f�ngn>0; with positive leading
coefficients, such that

Z

T

�n.z/�m.z/d�.z/ D ım;n; m 
 0:



78 K. Castillo and F. Marcellán

f�ngn>0 is said to be the sequence of orthonormal polynomials with respect to d� .
Denoting by �n the leading coefficient of �n, ˚n D ��1n �n is the corresponding
OPUC of degree n. Moreover, h˚n; ˚niL D k˚nk2� D kn > 0.

Using the Pythagoras theorem, (2) yields

k˚nk2�
k˚n�1k2�

D 1 � j˚n.0/j2 > 0; n > 1:

This shows that in the positive definite case the Verblunsky coefficients always
satisfy

j˚n.0/j < 1; n > 1: (4)

In this situation, we have an analogous of the Favard theorem [36, 37, 46],
formulated as follows. Any sequence of complex numbers obeying (4) arises as
the Verblunsky coefficients of a unique non-trivial probability measure supported
on the unit circle. In the POPUC theory, the Favard Theorem was recently proved
in [8].

We use the notation �n D
p
1 � j˚n.0/j2 D k˚nk� =k˚n�1k� D �n�1=�n. Hence,

for the orthonormal polynomials �n, the recurrence relations (2)–(3) become

�nC1�nC1.z/ D z�n.z/ �˚nC1.0/��n .z/; n > 0;

�nC1.z/ D �nC1z�n.z/C ˚nC1.0/��nC1.z/; n > 0; (5)

In the case of OPUC we have a simple expression for the reproducing kernel
[1, 17, 38], similar to the Christoffel–Darboux formula for OPRL. The nth polyno-
mial kernel Kn.z; y/ associated with f˚ngn>0 is defined by

Kn.z; y/ D
nX

jD0

˚j.y/˚j.z/

kj
D ˚�nC1.y/˚�nC1.z/ � ˚nC1.y/˚nC1.z/

knC1.1 � yz/

D ��nC1.y/��nC1.z/ � �nC1.y/�nC1.z/
1 � yz

; (6)

and it satisfies the reproducing property,
Z

T

Kn.z; y/f .z/d�.z/ D f .y/; (7)

for every polynomial f of degree at most n. Taking into account ��nC1.0/ D
�nC1˚�nC1.0/ D �nC1, we get

˚�n .z/ D
1

�2n
Kn.z; 0/ D knKn.z; 0/; n 
 0;

which is an expression for the reversed polynomials as a linear combination of the
OPUC up to degree n.
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1.3 GGT Matrices

Using the forward recurrence formula (2), we are able to express z�n.z/ as a linear
combination of f�kgnC1kD0,

z�n.z/ D �n

�nC1
�nC1.z/ � 1

�n
˚nC1.0/

nX

kD0
�k˚k.0/�k.z/;

or, in the matrix form,

z�.z/ D H��.z/;

where �.z/ D Œ�0.z/; �1.z/; : : : �T , and the matrix H� is defined by

ŒH� �i;j D
˝
z�i; �j

˛
L D

8
ˆ̂<

ˆ̂:

� �j

�i
˚iC1.0/˚j.0/; j � i;

�i
�iC1

; j D iC 1;
0; j > iC 1:

This lower Hessenberg matrix [21], where the jth row has at most its first j C 1

components non-zero, is called GGT representation of the multiplication by z, after
[18, 20, 45].

In an analog way to the real line case, the zeros of the OPUC ˚n.z/ are the
eigenvalues of .H� /n, the n� n principal leading sub-matrix of the GGT matrix H� .
Hence, ˚n.z/ is the characteristic polynomial of .H� /n,

˚n.z/ D det .zIn � .H�/n/ :

1.4 Szegő Extremum Problem and S Class

The measure of orthogonality d� can be decomposed as the sum of a purely
absolutely continuous measure with respect to the Lebesgue measure and a singular
part. Thus, if we denote by � 0, the Radon–Nikodym derivative [35] of the measure
� supported in Œ�; �, then

d�.�/ D � 0.�/ d�

2
C d�s;

where �s is the singular part of � .
The Szegő extremum problem on the unit circle consists of finding

�.z/ D lim
n!1�n.z/;
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with

�n.z/ D inf
f .z/D1

�Z 

�

ˇ̌
f .ei� /

ˇ̌2
d�.�/I f 2 Pn

	
:

�.z/ is said to be the Christoffel function. The solution of this problem for jzj < 1

was obtained by Szegő in [41, 42].
In the literature, an important class of measures is the Szegő class S. We

summarize some relevant characterizations to the S class. Indeed, the following
conditions are equivalent:

(i) � 2 S. (ii)
Z 

�
log � 0.�/

d�

2
> �1:

(iii)
1X

nD0
j˚n.0/j2 <1. (iv) �.0/ D

1Y

nD0
.1 � j˚nC1.0/j2/ < C1.

From this we deduce that if the measure � does not belong to the S class, the GGT
matrix H� is unitary. In general, H� satisfies

(i) H�HH
� D I; (ii) HH

� H� D I � �.0/�.0/�.0/H.

As a part of the analysis when � 2 S, one can construct the Szegő function D,
defined in D as

D.z/ D exp



1

4

Z 

�
ei� C z

ei� � z
log � 0.�/d�

�
; z 2 D:

Thus, jDj2 D � 0 almost everywhere on T, and the solution of the Szegő extremum
problem is given by

�.z/ D .1 � jzj2/jD.z/j2; z 2 D:

1.5 N Class

We say that � belongs to the Nevai class N if

lim
n!1˚n.0/ D lim

n!1
�n.0/

�n
D 0:

The relation between the classes S and N can be viewed using the results in [30].
If � 2 S, then it has a normal L2-derivative behavior, i.e.,

lim
n!1

 Z 

�

ˇ̌
�0n.ei� /

ˇ̌2

n2
� 0.�/d�

! 1
2

D 1;
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and thus � 2 N . Furthermore, if � 2 N ,

ˇ̌
ˇ̌ ˚n.z/

˚n�1.z/
� z

ˇ̌
ˇ̌ 6 j˚n.0/j; z 2 C nD:

Thus,

lim
n!1

˚n.z/

˚n�1.z/
D z;

uniformly in compact subsets of C nD.
This result can be obtained under weaker conditions. A well-known result of

Rakhmanov (see [34]) states that any probability measure � with � 0 > 0; almost
everywhere on T; belongs to the class N . The converse is not true at all.

2 Adding the Derivative of a Dirac’s Delta

Let L be a Hermitian linear functional given by (1). Its derivative DL (see [44]) is
defined by

hDL; f i D �i
˝L; zf 0.z/

˛
; f 2 �:

In this section we first deal with r a perturbation of a linear functional L by the
addition of a derivative of a Dirac’s delta, i.e.,

hL1; f i D hL; f i C m hDı˛; f i ; m 2 R; j˛j D 1: (8)

Let LU be a linear functional such that

hLU; f i D hL; f i C mf .˛/; m 2 R; j˛j D 1:

We say that LU is the Uvarov spectral transformation of the linear functionalL [15].
The connection between the corresponding sequences of monic OPUC as well as
the associated GGT matrices using LU and QR factorization has been studied in
[15]. Asymptotic properties for the corresponding sequences of OPUC have been
obtained in [47]. Notice that the addition of a Dirac’s delta derivative (on a point
of the unit circle) to a linear functional can be considered as the limit case of two
Uvarov spectral transformations with equal masses and opposite sign, located on
two nearby points on the unit circle ˛1 D ei�1 and ˛2 D ei�2 , 0 6 �1; �2 6 2 , when
�1 ! �2, but the difficulties to deal with them yield a different approach.
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2.1 Mass Point on the Unit Circle

In terms of the associated bilinear functional (8) becomes

hf ; giL1 D hf ; giL � im
�
˛f 0.˛/g.˛/ � ˛f .˛/g0.˛/

�
: (9)

In the next theorem we obtain necessary and sufficient conditions for L1 to be a
quasi-definite linear functional, as well as an expression for its corresponding family
of OPUC.

Theorem 1 ([9]). Let us assume L is a quasi-definite linear functional and denote
by f˚ngn>0 its corresponding sequence of monic OPUC. Let us considerL1 as in (9).
Then, the following statements are equivalent:

.i/ L1 is quasi-definite.
.ii/ The matrix D.˛/C mKn�1.˛; ˛/, with

Kn�1.˛; ˛/ D
"

Kn�1.˛; ˛/ K.0;1/
n�1 .˛; ˛/

K.1;0/
n�1 .˛; ˛/ K.1;1/

n�1 .˛; ˛/

#
; D.˛/ D

�
0 �i˛

i˛�1 0


;

is non-singular, and

kn C mˆn.˛/
H .D.˛/C mKn�1.˛; ˛//�1ˆn.˛/ ¤ 0; n > 1:

Furthermore, the sequence f�ngn>0 of monic OPUC associated with L1 is given by

�n.z/ D ˚n.z/ �m

"
Kn�1.z; ˛/
K.0;1/

n�1 .z; ˛/

#T

.D.˛/C mKn�1.˛; ˛//�1ˆn.˛/; (10)

where ˆn.˛/ D
�
˚n.˛/; ˚

0
n.˛/

�T
.

Proof. Assume L1 is quasi-definite and denote by f�ngn>0 its corresponding family
of monic OPUC. Let us consider the Fourier expansion

�n.z/ D ˚n.z/C
n�1X

kD0
�n;k˚k.z/;

where, for n 
 1,

�n;k D h�n.z/; ˚k.z/iL
kk

D
im
�
˛� 0n.˛/˚k.˛/ � ˛�n.˛/˚

0
k.˛/

�

kk
; 0 � k � n � 1:
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Thus,

�n.z/ D ˚n.z/C
n�1X

kD0

im
�
˛� 0n.˛/˚k.˛/ � ˛�n.˛/˚

0
k.˛/

�

kk
˚k.z/;

D ˚n.z/C im
�
˛� 0n.˛/Kn�1.z; ˛/ � ˛�n.˛/K

.0;1/
n�1 .z; ˛/

�
: (11)

Taking the derivative with respect to z in the previous expression and evaluating at
z D ˛, we obtain the system of linear equations

�.i/
n .˛/ D ˚.i/

n .˛/C im
�
˛� 0n.˛/K

.i;0/
n�1 .˛; ˛/ � ˛�n.˛/K

.i;1/
n�1 .˛; ˛/

�
; i D 0; 1 ;

which yields

�
˚n.˛/

˚ 0n.˛/


D
"
1C im˛K.0;1/

n�1 .˛; ˛/ �im˛Kn�1.˛; ˛/

im˛K.1;1/
n�1 .˛; ˛/ 1 � im˛K.1;0/

n�1 .˛; ˛/

#�
�n.˛/

� 0n.˛/


;

and denoting Q D ŒQ;Q0�T , we get

ˆn.˛/ D .I2 C mKn�1.˛; ˛/D.˛//‰n.˛/:

Thus, the necessary condition for regularity is that I2 C mKn�1.˛; ˛/D.˛/ must be
non-singular. Taking into account D�1.˛/ D D.˛/ we have the first part of our
statement. Furthermore, from (11),

�n.z/ D ˚n.z/C m
�

Kn�1.z; ˛/;K.0;1/
n�1 .z; ˛/

� �
0 i˛
�i˛ 0

 �
�n.˛/

� 0n.˛/



D ˚n.z/ �m

"
Kn�1.z; ˛/
K.0;1/

n�1 .z; ˛/

#T

.D.˛/C mKn�1.˛; ˛//�1ˆn.˛/:

This yields (10). Conversely, if f�ngn>0 is given by (11), then, for 0 6 k 6 n � 1,

h�n; �kiL1 D
D
˚n.z/C im

�
˛� 0n.˛/Kn�1.z; ˛/ � ˛�n.˛/K

.0;1/
n�1 .z; ˛/

�
; �k.z/

E

L1

D
D
˚n.z/C im

�
˛� 0n.˛/Kn�1.z; ˛/ � ˛�n.˛/K

.0;1/
n�1 .z; ˛/

�
; �k.z/

E

L

� im
�
˛� 0n.˛/�k.˛/ � ˛�n.˛/�

0
k.˛/

�
D 0:

On the other hand, for n > 1,

Qkn D h�n.z/; �n.z/iL1 D h�n.z/; ˚n.z/iL1
D kn C mˆn.˛/

H .D.˛/C mKn�1.˛; ˛//�1ˆn.˛/ ¤ 0;
where we are using the reproducing property (7). As a conclusion, f�ngn>0 is the
sequence of monic OPUC with respect to L1. ut
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From the Christoffel–Darboux formula (6), another way to express (10) is the
following.

Corollary 1. Let f�ngn>0 be the sequence of monic OPUC associated with L1
defined as in (9). Then,

.z � ˛/2�n.z/ D A.z; n; ˛/˚n.z/C B.z; n; ˛/˚�n .z/; (12)

where A.z; n; ˛/ and B.z; n; ˛/ are polynomials of degree 2 and 1, respectively, in
the variable z, given by

A.z; n; ˛/ D .z � ˛/2 � m˛

kn
n�1

�
.Y1;1˚n.˛/C Y1;2˚

0
n.˛//˚n.˛/.z � ˛/

C �Y2;1˚n.˛/C Y2;2˚
0
n.˛//.˚n.˛/.z � ˛/C ˛˚n.˛/z/

�
;

B.z; n; ˛/ D m˛

kn
n�1

�
.Y1;1˚n.˛/C Y1;2˚

0
n.˛//˚

�
n .˛/

C
�

Y2;1˚n.˛/C Y2;2˚
0
n.˛//.˚

�
n .˛/

0
.z � ˛/C ˛˚�n .˛/z/

�
;

where Y1;1 D mK.1;1/
n�1 .˛; ˛/, Y1;2 D im˛K.0;1/

n�1 .˛; ˛/, Y2;1 D �im˛K.1;0/
n�1 .˛; ˛/,

Y2;2 D m˛Kn�1.˛; ˛/, and 
n�1 is the determinant of the matrix D.˛/ C
imKn�1.˛; ˛/.

2.2 Outer Relative Asymptotics

In this subsection we assume L is a positive definite linear functional, with
associated positive Borel measure � . We are interested in the asymptotic behavior
of the OPUC associated with the addition of the derivative of a Dirac’s delta on the
unit circle given in (12). We assume that � is regular in the sense of Stahl and Totik
[40], so that

lim
n!1 �

1=n
n D 1:

Regularity is a necessary and sufficient condition for the existence of nth root
asymptotics, i.e., lim

n!1 j�nj1=n < 1. It is easy to see that the existence of the outer

ratio asymptotics lim
n!1�n=�n�1 implies the existence of the root asymptotics, and,

in general, the converse is not true.
In particular, we study its outer relative asymptotics with respect to f˚ngn>0.

First, we state some results that are useful in our study.

Theorem 2 ([23]). Let � be a regular finite positive Borel measure supported on
.�; �. Let J � .�; / be a compact subset such that � is absolutely continuous
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in an open set containing J. Assume that � 0 is positive and continuous at each point
of J. Let i; j be non-negative integers. Then, uniformly for � 2 J, z D ei� ,

lim
n!1

zi�j

niCj

K.i;j/
n .z; z/

Kn.z; z/
D 1

iC jC 1 :

Lemma 1 ([19]). Let f ; g be two polynomials in P with degree at least j. Then

f .j/.z/

g.j/.z/
D g.j�1/.z/

g.j/.z/



f .j�1/.z/
g.j�1/.z/

�0
C f .j�1/.z/

g.j�1/.z/
:

Using the previous lemma, the outer ratio asymptotics for the derivatives of
orthonormal polynomials are deduced.

Lemma 2 ([12]). Let us assume that L is a positive definite linear functional,
with associated positive Borel measure � and denote by f�ngn>0 its corresponding
sequence of OPUC. If � 2 N , then uniformly in CnD

lim
n!1

�
.j/
nC1.z/
�
.j/
n .z/

D z; lim
n!1

�
.j/
n .z/

�
.jC1/
n .z/

D 0; j > 0:

Proof. According to Lemma 1,

�
.j/
nC1.z/
�
.j/
n .z/

D �
.j�1/
n .z/

�
.j/
n .z/

 
�
.j�1/
nC1 .z/
�
.j�1/
n .z/

!0
C �

.j�1/
nC1 .z/
�
.j�1/
n .z/

: (13)

Using induction in j, we get uniformly in CnD,

lim
n!1

 
�
.j�1/
nC1 .z/
�
.j�1/
n .z/

!0
D 1; lim

n!1
�
.j�1/
n .z/

�
.j/
n .z/

D 0:

Therefore, if n tends to infinity in (13), the result follows. ut
Corollary 2 ([12]). If � 2 N , then uniformly in CnD

lim
n!1

�
�.j/
n .z/

�
.j/
n .z/

D 0; lim
n!1

K.l;r/
n�1.z; y/

�
.i/
n .z/�

.j/
n .y/

D 0; 0 6 l < i; 0 6 r < j:

From the expression (12),

�n.z/

˚n.z/
D A.z; n; ˛/

.z� ˛/2 C
B.z; n; ˛/

.z � ˛/2
˚�n .z/
˚n.z/

:

Since, for z 2 C nD by Corollary 2,
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lim
n!1

˚�n .z/
˚n.z/

D 0;

it suffices to show that, for j˛j D 1,

lim
n!1

A.z; n; ˛/

.z� ˛/2 D 1:

Notice that lim
n!1˚n.˛/ D O.1/, lim

n!1˚
0
n.˛/ D O.n/, lim

n!1˚
�
n .˛/ D O.1/,

lim
n!1˚

�0
n .˛/ D O.n/, and lim

n!1Kn .˛; ˛/ D O.n/.

On the other hand, dividing the numerator and denominator of
A.z; n; ˛/

.z � ˛/2 � 1 by

n2Kn�1.˛; ˛/, and using Theorem 2, we obtain

lim
n!1

˚n.˛/Y2;1
n2Kn�1.˛; ˛/

D O.1=n/; lim
n!1

˚ 0n.˛/Y2;2
n2Kn�1.˛; ˛/

D O.1=n/;

lim
n!1

˚n.˛/Y1;1
n2Kn�1.˛; ˛/

D O.1/; lim
n!1

˚ 0n.˛/Y1;2
n2Kn�1.˛; ˛/

D O.1/:

As a consequence, the numerator of
A.z; n; ˛/

.z� ˛/2 � 1 behaves as O.1/. Similarly,

one can show that the denominator behaves as O.n/ and, therefore,

lim
n!1

A.z; n; ˛/

.z� ˛/2 D 1:

The same arguments can be applied to B.z; n; ˛/. Thus, we get

Theorem 3 ([9]). Let L be a positive definite linear functional, whose associated
measure � satisfies the conditions of Theorem 2. Let f�ngn>0 be the sequence of
monic OPUC associated with L1 defined as in (9). Then, uniformly in C nD,

lim
n!1

�n.z/

˚n.z/
D 1:

2.3 Mass Points Outside the Unit Circle

Now, consider a hermitian linear functional L2 such that its associated bilinear
functional satisfies

hf ; giL2 D hf ; giL C im
�
˛�1f .˛/g0.˛�1/� ˛f 0.˛/g.˛�1/

�

C im
�
˛f .˛�1/g0.˛/ � ˛�1p0.˛�1/q.˛/

�
; (14)
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with m; ˛ 2 C, j˛j ¤ 0, and j˛j ¤ 1. As in the previous section, we are interested
in the regularity conditions for this linear functional and the corresponding family
of OPUC. Assuming that L2 is a quasi-definite linear functional and following the
method used in the proof of Theorem 1, we get

�n.z/ D ˚n.z/C im
�
˛� 0n.˛/Kn�1.z; ˛�1/� ˛�1�n.˛/K

.0;1/
n�1 .z; ˛

�1/
�

C im
�
˛�1� 0n.˛�1/Kn�1.z; ˛/ � ˛�n.˛

�1/K.0;1/
n�1 .z; ˛/

�
: (15)

Evaluating the above expression and its first derivative in ˛ and ˛�1, we get the
following systems of linear equations

�
˚n.˛/

˚ 0n.˛/


D
"
1C im˛�1K.0;1/

n�1 .˛; ˛
�1/ �im˛Kn�1.˛; ˛�1/

im˛�1K.1;1/
n�1 .˛; ˛

�1/ 1 � im˛K.1;0/
n�1 .˛; ˛

�1/

#�
�n.˛/

� 0n.˛/



C
"

im˛K.0;1/
n�1 .˛; ˛/ �im˛�1Kn�1.˛; ˛/

im˛K.1;1/
n�1 .˛; ˛/ �im˛�1K.1;0/

n�1 .˛; ˛/

#�
�n.˛

�1/
� 0n.˛�1/


; (16)

�
˚n.˛

�1/
˚ 0n.˛�1/


D
"

im˛�1K.0;1/
n�1 .˛

�1; ˛�1/ �im˛Kn�1.˛�1; ˛�1/
im˛�1K.1;1/

n�1 .˛
�1; ˛�1/ �im˛K.1;0/

n�1 .˛
�1; ˛�1/

#�
�n.˛/

� 0n.˛/



C
"
1C im˛K.0;1/

n�1 .˛
�1; ˛/ �im˛�1Kn�1.˛�1; ˛/

im˛K.1;1/
n�1 .˛

�1; ˛/ 1 � im˛�1K.1;0/
n�1 .˛

�1; ˛/

#�
�n.˛

�1/
� 0n.˛�1/


;

(17)

which reads as a system of four linear equations with four unknowns

�
ˆn.˛/

ˆn.˛
�1/


D
�

I2 C mKn�1.˛; ˛
�1/D.˛/ mKn�1.˛; ˛/D.˛�1/

mKn�1.˛
�1; ˛�1/D.˛/ I2 C mKn�1.˛

�1; ˛/D.˛�1/

 �
‰n.˛/

‰n.˛
�1/


;

where .Q;R/T D .Q;Q0;R;R0/T . Thus, in order L2 to be a quasi-definite linear
functional, we need that the 4� 4 matrix defined as above must be non-singular. On
the other hand,

"
‰n.˛/

‰n.˛
�1/

#
D
"

I2 C mKn�1.˛; ˛�1/D.˛/ mKn�1.˛; ˛/D.˛�1/
mKn�1.˛�1; ˛�1/D.˛/ I2 C mKn�1.˛�1; ˛/D.˛�1/

#�1 "
ˆn.˛/

ˆn.˛
�1/

#
:
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As a consequence, from (15), we get

�n.z/ D ˚n.z/�m

"
Kn�1.z; ˛

�1/

K.0;1/
n�1 .z; ˛

�1/

#T

D.˛/‰ n.˛/�m

"
Kn�1.z; ˛/
K.0;1/

n�1 .z; ˛/

#T

D.˛�1/‰n.˛
�1/;

(18)

where‰n.˛/ and‰n.˛
�1/ can be obtained from the above linear system. Assuming

that the regularity conditions hold and following the method used in the proof of
Theorem 1, it is not difficult to show that f�ngn>0, defined as in (18), is the sequence
of monic OPUC with respect to L2.

The following result was proved in [16] using a different method, and it has been
generalized for rectifiable Jordan curves or arcs in [3]. We show here another proof
of the same result.

Lemma 3 ([12]). If � 2 N , then uniformly in CnD,

lim
n!1

K.i;j/
n�1.z; y/

�
.i/
n .z/�

.j/
n .y/

D 1

zy � 1; i; j > 0:

Proof. From the Christoffel–Darboux formula (6), we obtain

��n .z/�
�.j/
n .y/� �n.z/�

.j/
n .y/ D .1 � zy/K.0;j/

n�1 .z; y/� jzK.0;j�1/
n�1 .z; y/;

and, as a consequence,

��.i/n .z/��.j/n .y/ � �.i/n .z/�
.j/
n .y/ D .1 � zy/K.i;j/

n�1.z; y/ � kyK.i�1;j/
n�1 .z; y/

� j
�

zK.i;j�1/
n�1 .z; y/C kK.k�1;j�1/

n�1 .z; y/
�
:

Thus, dividing by �.i/n .z/�
.j/
n .y/ and using Corollary 2 when n tends to infinity, the

result follows. ut
It is possible to obtain a generalization of Theorem 3 for the sequence of monic

OPUC associated with (14). As above, we can express (18) as in (12). Using the
Christoffel–Darboux formula (6), we obtain

�n.z/ D
�
1C QA.z; n; ˛/�˚n.z/C QB.z; n; ˛/˚�n .z/;

with

QA.z; n; ˛/ D im˛�1 ˚
0

n.˛
�1/.1 � ˛�1z/C z˚n.˛

�1/

kn.1 � ˛�1/2
�n.˛/ � im˛

˚n.˛
�1/

kn.1 � ˛�1z/
� 0

n.˛/

C im˛
˚ 0

n.˛/.1 � ˛z/C z˚n.˛/

kn.1 � ˛/2 �n.˛
�1/ � im˛�1 ˚n.˛/

kn.1 � ˛z/
� 0

n.˛
�1/;
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QB.z; n; ˛/Dim˛
˚�

n .˛
�1/

kn.1 � ˛�1z/
� 0

n.˛/�im˛�1 ˚
0
�

n .˛
�1/.1 � ˛�1z/C z˚�

n .˛
�1/

kn.1 � ˛�1/2
�n.˛/

C im˛�1 ˚�

n .˛/

kn.1 � ˛z/
� 0

n.˛
�1/ � im˛

˚ 0
�

n .˛/.1 � ˛z/C z˚�

n .˛/

kn.1 � ˛/2 �n.˛
�1/;

where the values of �n.˛/; �
0
n.˛/; �n.˛

�1/, and� 0n.˛�1/ can be obtained by solving
the 4�4 linear system shown above. Denoting the entries of the 2�2matrices in (16),
(17) by fbi;jg; fci;jg; fai;jg and fdi;jg, respectively, we get

�n.˛/ D
�
d1;1˚n.˛/C d1;2˚

0
n.˛/C c1;1˚n.˛

�1/C c1;2˚
0
n.˛
�1/
�
=
;

� 0n.˛/ D
�
d2;1˚n.˛/C d2;2˚

0
n.˛/C c2;1˚n.˛

�1/C c2;2˚
0
n.˛
�1/
�
=
;

�n.˛
�1/ D �a1;1˚n.˛/C a1;2˚

0
n.˛/C b1;1˚n.˛

�1/C b1;2˚
0
n.˛
�1/
�
=
;

�n.˛
�1/ D �a2;1˚n.˛/C a2;2˚

0
n.˛/C b2;1˚n.˛

�1/C b2;2˚
0
n.˛
�1/
�
=
;

where 
 is the determinant of the 4 � 4 matrix. To get the asymptotic result, it
suffices to show that QA.z; n; ˛/! 0 and QB.z; n; ˛/! 0 as n!1. First, notice that
applying the corresponding derivatives to the Christoffel–Darboux formula (6), we
obtain

K.0;1/
n�1 .z; y/ D

˚�0

n .y/˚
�
n .z/ �˚ 0n.y/˚n.z/

kn.1 � yz/
C zKn�1.z; y/

1 � yz
;

K.1;0/
n�1 .z; y/ D

˚�n .y/˚�
0

n .z/ �˚n.y/˚ 0n.z/
kn.1 � yz/

C yKn�1.z; y/
1 � yz

;

K.1;1/
n�1 .z; y/ D

˚�0

n .y/˚
�0

n .z/ �˚ 0n.y/˚ 0n.z/
kn.1 � yz/

C zK.1;0/
n�1 .z; y/C yK.0;1/

n�1 .z; y/C Kn�1.z; y/
1 � yz

:

On the other hand, if L is positive definite and its corresponding measure � 2 N ,
then by Corollary 2 (see also [31]) we have ˚n.˛/ D O.˛n/, ˚ 0n.˛/ D O.n˛n/, and

lim
n!1

˚n.˛/

˚�n .˛/
D 0; j˛j < 1; lim

n!1
˚�n .˛/
˚n.˛/

D 0; j˛j > 1:

Assume, without loss of generality, that j˛j < 1. If j˛j < 1 and � 2 S, notice
that ˚n.˛/ and ˚�n .˛/ are O.˛n/, then lim

n!1Kn.˛; ˛/ < 1 and Kn.˛
�1; ˛�1/ D

O.j˛j�2n/, as well as Kn.˛; ˛
�1/ D Kn.˛

�1; ˛/ D O.n/. Observe that, except for
the entries containing Kn�1.˛; ˛/ and their derivatives, all other entries of the 4 � 4
matrix diverge, and thus its determinant diverges faster than any other term in the
expressions for �n.˛/; �

0
n.˛/; �n.˛

�1/ and � 0n.˛�1/, so that QA.z; n; ˛/ ! 0 and
QB.z; n; ˛/! 0 as n tends to1. As a consequence,
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Theorem 4 ([9]). Let L be a positive definite linear functional, whose associated
measure � 2 S. Let f�ngn>0 be the sequence of monic OPUC associated with L2
defined as in (14). Then, uniformly in C n T,

lim
n!1

�n.z/

˚n.z/
D 1:

3 Sobolev Inner Products

In the last few years, some attention has been paid to the asymptotic properties
of OPUC with respect to non-standard inner products. In particular, the algebraic
and analytic properties of orthogonal polynomials associated with a Sobolev inner
product have attracted the interest of many researchers, see [28] for an updated
overview with more than 300 references.

A discrete Sobolev inner product in C nD is given by

hf ; giS D
Z

T

f .z/g.z/d�.z/C f.Z/ A g.Z/H; (19)

where

f.Z/ D �f .˛1/; : : : ; f .l1/.˛1/; : : : ; f .˛m/; : : : ; f
.lm/.˛m/

�
;

A is an M�M positive semi-definite hermitian matrix, with M D l1C� � �C lmCm,
and j˛ij > 1, i D 1; : : : ;m. Since A is a positive semi-definite matrix, the inner
product (19) is positive definite. Therefore, there exists a sequence of polynomials
f ngn>0,

 n.z/ D �nzn C (lower degree terms); �n > 0;

which is orthonormal with respect to (19). We are interested in the outer relative
asymptotic behavior of f ngn>0 with respect to the sequence f�ngn>0 of OPUC with
respect to � . We show that if � 2 N and A is positive definite, then this outer
relative asymptotics follows. Similar results have been obtained when the measure
is supported on a bounded interval of the real line [25, 29].

3.1 Outer Relative Asymptotics

In [13, 16, 24, 26], the relative asymptotic behavior of orthogonal polynomials with
respect to a discrete Sobolev inner product on the unit circle was studied. In this
section, we propose a slightly modified outline.
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The nondiagonal structure of the matrix A makes the analysis of the situation
much more difficult. First of all, let us prove an important result which gives a
precise information about the matrix A.

Lemma 4 ([6]). The outer relative asymptotic behavior of orthogonal polynomials
with respect to the inner product (19) does not depend on the matrix A.

Proof. Let
˚ Q n

�
n>0 be the sequence of orthonormal polynomials with respect to the

inner product

hf ; giQS D
Z

T

f .z/g.z/d�.z/C f.Z/ B g.Z/H ;

where B is an arbitrary positive definite Hermitian matrix of order M. Expanding
 n in terms of f�ngn>0, we have

 n.z/ D �n

�n
�n.z/C

n�1X

kD0
�n;k�k.z/ (20)

where

�n;k D
Z

T

 n.z/�.z/d�.z/ D � n.Z/A�n.Z/:

Substituting this expression in (20), we obtain

 n.z/ D �n

�n
�n.z/�  n.Z/ A Kn.z;Z/

T ; (21)

where Kn.z;Z/ D .Kn.z; ˛1/; : : : ;K
.0;l1/
n .z; ˛1//; : : : ;Kn.z; ˛m/; : : :K

.0;lm/
n .z; ˛m//

and K.i;j/
n .z; y/ denotes the ith (resp. jth) partial derivative of Kn.z; y/ with respect to

the variable z (resp. y). In an analogous way, we get

Q n.z/ D Q�n

�n
�n.z/ � Q n.Z/ B Kn.z;Z/

T ; (22)

where Q�n is the leading coefficient of  n. From (21) and (22) and following the
method used in the proof of Theorem 1, we get [16, 24]

Q�n

�n

Q n.z/

 n.z/
D det .IC ATn/

det .IC BTn/

det .IC BKn/

det .IC AKn/
;


 Q�n

�n

�2
D det .IC BKn/

det .IC AKn/

det .IC AKnC1/
det .IC BKnC1/

;
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where Kn is a positive definite matrix of order M, n 
 M, which can be described
by blocks. The r, s block of Kn is the .lr C 1/ � .ls C 1/ matrix

�
K.i;j/

n .zr; zs/
�jD0;:::;ls

iD0;:::;lr ; r; s D 0; : : : ;m:

Tn is obtained through the following equation Tn D KnCVn; where Vn D � 1

�n.z/
Kn.z;Z/T�n.Z/. Since [16, 26]

lim
n!1

det .IC AKn/

det .IC BKn/
D lim

n!1
det .ICATn/

det .IC BTn/
D det A

det B
;

we can deduce that

lim
n!1

Q�n

�n

Q n.z/

 n.z/
D 1; lim

n!1


 Q�n

�n

�2
D 1;

and the lemma is proved. ut
For the discrete Sobolev inner product with a single mass point associated

with (19),

hf ; giS1 D
Z

T

f .z/g.z/d�.z/C �f .j/.˛/g.j/.˛/; j˛j > 1; (23)

we have

Lemma 5 ([6]). Let f nI1gn>0,  nI1 D �nI1zn C (lower degree terms) be the
sequence of orthonormal polynomials with respect to (23). If � 2 N , then

lim
n!1

�n;1

�n
D 1

j˛j :

Proof. From (21) we have

 nI1.z/ D �nI1
�n
�n.z/ � � .j/nI1.˛/K

.0;j/
n�1 .z; ˛/: (24)

Taking derivatives in (24) and evaluating at z D ˛, we get

 
.j/
nI1.˛/ D

�nI1=�n �
.j/
n .˛/

1C �K.j;j/
n�1.˛; ˛/

: (25)

Thus, (25) yields



ˇn

˛n

�2
D 1C �K.j;j/

n�1.˛; ˛/
1C �K.j;j/

n .˛; ˛/
:
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Using the previous identity and Lemma 2,

lim
n!1

�2n;1

�2n
D lim

n!1
1C �K.j;j/

n�1.˛; ˛/
1C �K.j;j/

n .˛; ˛/
D lim

n!1
j�.j/n�1.˛/j2
j�.j/n .˛/j2

D 1

j˛j2 ;

and the lemma is proved. ut
Using the previous lemma, we prove the relative asymptotics in CnD.

Theorem 5 ([6]). If � 2 N , then uniformly in CnD

lim
n!1

 nI1.z/
�n.z/

D B.zI˛/; B.zI˛/ D ˛.z � ˛/
j˛j.˛z � 1/ : (26)

Proof. From (24), we have

 nI1.z/
�n.z/

D �nI1
�n
� � .j/nI1.˛/�

.j/
n .˛/

K.0;j/
n�1 .z; ˛/

�n.z/�
.j/
n .˛/

: (27)

Using (25), we obtain

lim
n!1� 

.j/
nI1.˛/�

.j/
n .˛/ D



j˛j � 1

j˛j
�
: (28)

The outer relative asymptotics (26) follows letting n tends to infinity in (27), using
Lemmas 5, 3, and (28). ut

From Theorem 5 we can see that the outer relative asymptotic behavior of
orthogonal polynomials associated with (23) does not depend on the specific choice
of j and �.

Lemma 6 ([6]). � 2 N , then S1 2 N .

Proof. Assume, without loss of generality, that j D 0 and � D 1. From (24) and (25)
we get

 nI1.z/ D �nI1
�n
�n.z/ � �n.˛/

1C Kn�1.˛; ˛/
Kn�1.z; ˛/: (29)

The evaluation at z D 0 of this last expression yields

 nI1.0/
�nI1

D �n.0/

�n
� j�n.˛/j2
1C Kn�1.˛; ˛/

Kn�1.0; ˛/
�nI1�n.˛/

;

and using the Christoffel–Darboux formula (6), we obtain

Kn�1.0; ˛/
�nI1 �n.˛/

D �n

�nI1

 
��n .˛/
�n.˛/

� �n.0/

�n

!
:
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From Corollary 2, under our conditions, the following limit holds lim
n!1

��n .˛/
�n.˛/

D 0: Since Kn.˛; ˛/ is an increasing sequence and lim
n!1

1

�n.˛/
D 0; applying the

Stolz–Césaro criterion, we have

lim
n!1

j�n.˛/j2
1C Kn.˛; ˛/

D


1 � 1

j˛j2
�
: (30)

On the other hand, from (29) we can deduce the following identity

j�n.˛/j2
1C Kn.˛; ˛/

D 1 � 1C Kn�1.˛; ˛/
1C Kn.˛; ˛/

D 1 �


�nI1
�n

�2
:

Thus,

lim
n!1

Kn�1.0; ˛/
�nI1 �n.˛/

D 0

and the result follows. ut
We are now in a position to summarize the results obtained above. Indeed,

Theorem 6 ([6]). Let f ngn>0 be the sequence of monic orthogonal polynomials
associated with the inner product (19). Then, uniformly in C nD,

lim
n!1

 n.z/

�n.z/
D

mY

iD1
B.zI˛i/

liC1:

Proof. First of all, we prove the result for

f.Z/ D fm.Z/ D
�
f .l1/.˛1/; : : : ; f

.lm/.˛m/
�
;

and Am a positive definite Hermitian matrix of order m. Let f nImgn>0 be the
sequence of orthonormal polynomials with respect to (19) for f.Z/ D fm.Z/. We can
assume, without loss of generality, Am D Im by Lemma 4. Therefore, the relative
asymptotics can be written as follows:

lim
n!1

 nIm.z/
�n.z/

D lim
n!1

 nI1.z/
�n.z/

mY

iD2

 nIi.z/
 nIi�1.z/

;

which, using Lemma 6 and Theorem 5, immediately yields

lim
n!1

 nIm.z/
�n.z/

D
mY

iD1
B.zI˛i/:

Finally, the proof for a general f.Z/ is a straightforward consequence of the
previous analysis. ut
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3.2 Zeros

In this subsection we study the asymptotic behavior of the zeros of orthogonal
polynomials associated with the discrete Sobolev inner product (23). In contrast
with the real line case [2, 4, 11, 27, 33], there is not a well-developed theory for
zeros of discrete Sobolev OPUC.

The monic version of (27) is

�n.z/ D ˚n.z/ � �˚
.j/
n .˛/

1C �K.j;j/
n�1.˛; ˛/

K.0;j/
n�1 .z; ˛/: (31)

Thus,

2
6664

�0.z/
�1.z/
:::

�n�1.z/

3
7775 D Ln

2
6664

˚0.z/
˚1.z/
:::

˚n�1.z/

3
7775 ;

where Ln is an n � n lower triangular matrix with 1 as entries in the main diagonal,
and the remaining entries are given by (31), i.e.,

lm;k D � 1

k˚kk2�
�˚

.j/
m .˛/˚

.j/
k .˛/

.1C �K.j;j/
m�1.˛; ˛//

; 1 6 m 6 n; 0 6 k 6 m � 1:

One of our aims is to find a relation between H� , the Hessenberg matrix
associated with the monic orthogonal polynomials f�ngn>0, and H� . In particular,
we get

z

2

6664

˚0.z/
˚1.z/
:::

˚n�1.z/

3

7775 D .H�/n

2

6664

˚0.z/
˚1.z/
:::

˚n�1.z/

3

7775C˚n.z/

2

6664

0

0
:::

1

3

7775 ;

and, on the other hand,

z

2

6664

�0.z/
�1.z/
:::

�n�1.z/

3

7775 D .H�/n

2

6664

�0.z/
�1.z/
:::

�n�1.z/

3

7775C �n.z/

2

6664

0

0
:::

1

3

7775 : (32)



96 K. Castillo and F. Marcellán

Substituting in (32), we obtain

zLn

2

6664

˚0.z/
˚1.z/
:::

˚n�1.z/

3

7775 D .H� /nLn

2

6664

˚0.z/
˚1.z/
:::

˚n�1.z/

3

7775C ˚n.z/

2

6664

0

0
:::

1

3

7775C An

2

6664

˚0.z/
˚1.z/
:::

˚n�1.z/

3

7775 ;

where

An D

2

6664

0 : : : : : : 0
:::

:::

0 : : : : : : 0

ln;0 : : : : : : ln;n�1

3

7775 :

As a consequence,

z

2

6664

˚0.z/
˚1.z/
:::

˚n�1.z/

3

7775 D
�
L�1n .H�/nLn C L�1n An

�

2

6664

˚0.z/
˚1.z/
:::

˚n�1.z/

3

7775C ˚n.z/

2

6664

0

0
:::

1

3

7775 ;

so

.H� /n D L�1n .H� /nLn C L�1n An

and therefore, since

L�1n An D An;

we have

Theorem 7 ([12]). Let .H� /n and .H�/n be the n � n truncated GGT matrices
associated with f˚ngn>0 and f�ngn>0, respectively. Then,

.H� /n D Ln..H� /n � An/L�1n :

As a consequence, the zeros of �nC1 are the eigenvalues of the matrix .H� /n � An,
a rank one perturbation of the matrix .H� /n.

In the previous theorem we have characterized the eigenvalues of the GGT matrix
associated with the discrete Sobolev polynomials as the eigenvalues of a rank one
perturbation of the GGT matrix associated with the measure.
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Notice that An D .0; : : : ; 0; 1/T.ln;0; ln;1; : : : ; ln;n�1/ and, since ln;k D 0 for
k < j, then

An D �˚
.j/
n .˛/

1C �K.j;j/
n�1.˛; ˛/

2

6664

0
:::

0

1

3

7775

2

40; : : : ; 0;
˚
.j/
j .˛/

k˚jk2 ; : : : ;
˚
.j/
n�1.˛/
k˚n�1k2

3

5 :

As an example, if d�.�/ D d�

2
is the Lebesgue measure, it is not difficult to see

that in such a case, if ˛ D 0, then An D 0, n ¤ j, and

Aj D �.jŠ/2

1C �.jŠ/2

2

6664

0
:::

0

1

3

7775
�
0; : : : ; 0; 1; 0; : : : ; 0

�
;

where in the position j you have 1. On the other hand, if ˛ D 1, then for n > j,

An D
�

.n/Š
.n�j/Š

1C �
n�1X

kDj



kŠ

.k � j/Š

�2

2

6664

0
:::

0

1

3

7775

h
0; : : : ; 0; jŠ; .jC 1/Š; : : : ; .n�1/Š

.n�j�1/Š
i
:

Denote by f�n.�I d�jC1/gn>0 the corresponding sequence of OPUC with
respect to

d�j.z/ D jz � ˛j2.jC1/d�.z/; j 
 0:
For any j 
 0, the relation between �n.�I d�jC1/ and �n.�; d�/ is given by Marcellán
and Moral [26]

.z � ˛/jC1�n�j�1.z; d�jC1/ D �n�j�1
˛n

 
�n.z/ �

jX

kD0
�n;kK.0;k/

n�1 .z; ˛/
!
; (33)

where �n is the leading coefficient of �n.�; d�jC1/, and �n;k is the kth component of
the vector

h
�n.˛/ �

0
n.˛/ : : : �

.j/
n .˛/

i

2

66664

Kn�1.˛; ˛/ K.0;1/
n�1 .˛; ˛/ : : : K.0;j/

n�1 .˛; ˛/
K.1;0/

n�1 .˛; ˛/ K.1;1/
n�1 .˛; ˛/ : : : K.1;j/

n�1 .˛; ˛/
:::

:::
: : :

:::

K.j;0/
n�1 .˛; ˛/ K.j;1/

n�1.˛; ˛/ : : : K.j;j/
n�1.˛; ˛/

3

77775

�1

:
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If � 2 N , then [26]

lim
n!1

�n.zI d�jC1/
�nCjC1.z/

D


˛

j˛j
1

˛z � 1
�jC1

; (34)

holds uniformly in jzj > 1 if j˛j > 1, and in jzj > 1 if j˛j > 1.
On the other hand, by Theorem 5, for j˛j > 1,

lim
n!1

 n.z/

�n.z/
D ˛

j˛j
z � ˛
˛z � 1 ; (35)

uniformly on every compact subset of jzj > 1. From (34) and (35), we have


 j˛j
˛
.˛z � 1/

�j

.z � ˛/ lim
n!1

�n.zI d�jC1/
�nCjC1.z/

D lim
n!1

 nCjC1.z/
�nCjC1.z/

:

Hence,

lim
n!1

 n.z/

�n�j�1.zI d�jC1/
D

 j˛j
˛
.˛z � 1/

�j

.z � ˛/;

uniformly jzj > 1. The following result is a straightforward consequence of the
Hurwitz’s Theorem [14].

Theorem 8 ([12]). There is a positive integer n0 such that, for n > n0, the nth
Sobolev monic OPUC �n defined by (23), with j˛j > 1, has exactly one zero in
C nD accumulating in ˛, while the remaining zeros belong to D.

This result is analogous to the well-known result of Meijer [32] for Sobolev
OPRL, see also [11]. We now turn our attention to the case when � tends to
infinity. For a fixed n, j D 0 and � tends to infinity, n � 1 zeros of  n tend to
the zeros of �n�1.z; d�1/, and the remaining zero tends to z D ˛. On the other
hand, for j D 1, the zeros of  n tend to the zeros of a linear combination of ˚n.z/,
.z � ˛/˚n�1.z; d�1/, and .z � ˛/2˚n�2.z; d�2/ when � ! 1. This result can be
generalized for arbitrary j. Indeed, from (33), notice that

��n;jK
.0;j/
n�1 .z; ˛/ D .z� ˛/jC1�n�j�1.z; d�jC1/� �n�j�1

˛n
�n.z/C

j�1X

kD0
�n;kK.0;k/

n�1 .z; ˛/:

Applying the last formula recursively for k D 0; 1; : : : ; j � 1, we obtain

Theorem 9 ([12]). Let f ngn>0 be the sequence of orthonormal polynomials with
respect to (23), with j 
 0. Then  n.z/ is a linear combination of �n.z/,
.z � ˛/�n�1.z; d�1/, : : : , .z � ˛/jC1�n�j�1.z; d�jC1/. As a consequence, the zeros
of  n.z/ tend to the zeros of such a linear combination when �!1.
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On the Unstable Equilibrium Points
and System Separations in Electric Power
Systems: A Numerical Study

Jinda Cui, Hsiao-Dong Chiang, and Tao Wang

Abstract An equilibrium problem of electric power system is closely associated
with the system separations. An effective three-step scheme is developed to compute
the system separations subject to different contingencies. For illustrative purposes,
the proposed scheme is applied to small-sized power system testing models with
promising results. Simulations are performed on the models of electric power
systems, which demonstrate the effectiveness of the proposed scheme. This scheme
has the potential of being applied to the contingency analysis of large-scale systems.

Keywords: Electric power system • Stability analysis • Equilibrium problem
System separation • Numerical study

1 Introduction

Mathematical theory of variational inequalities was initially introduced for studying
the partial differential equations [1, 2] with the applications principally drawn
from mechanics. It has been extended to treat the equilibrium problems, which
are fundamental in various disciplines [3–9], ranging from economics, opera-
tions research, to civil and electrical engineering. Different methodologies and
approaches [10–15], including systems of algebraic equations, linear and nonlinear
optimization, complementary theory and fixed point theory, have been developed to
formulate the equilibrium problems and compute the solutions. This study focuses
on an equilibrium problem and its application to electric power systems.

Electric power systems are recognized as a class of the largest and physically
most complex nonlinear systems in the world. An electric power system is an
interconnected system consisting of generating stations that convert fuel energy into
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electricity, primary and secondary distribution substations that distribute power to
loads and consumers, and transmission lines that tie the generating stations and
distribution substation together. By nature, an electric power system continually
experiences disturbances/contingencies, which can be classified into two main
categories: event disturbances and load variations. Event disturbances and con-
tingencies refer to the loss of generating units or transmission components (e.g.,
lines, transformers, substations) due to short-circuits. Such disturbances can occur
as a single-equipment outage or as multiple simultaneous outages when the relay
actions are taken into account. On the other hand, load variations correspond to the
fluctuations of load demands at buses and/or power transfers among buses. Usually
the network configuration may remain unchanged after load variations.

To protect power systems from damage due to disturbances, protective relays
are placed strategically throughout a power system to detect faults/disturbances and
to trigger the opening of circuit breakers necessary to isolate faults [16]. These
relays are designed to detect defective lines and apparatus or other power system
conditions of an abnormal or dangerous nature and to initiate appropriate control
actions. Due to the action of these protective relays, a power system subject to an
event disturbance can be viewed as going through network configuration changes in
three stages: the pre-fault, the fault-on, and the post-fault systems. More precisely,
the pre-fault system refers to the undisturbed system; once the system undergoes
a fault (an event disturbance), it then moves into the fault-on system before the
fault is cleared by protective system operations; suppose the fault is cleared at
certain time/moment and no additional protective actions occur afterwards, the
system then is called the post-fault system. Generally speaking, during each stage
the system is governed by a dynamical system (i.e., a set of differential and algebraic
equations), and the system trajectory is named after the stage. For instance, the fault-
on trajectory refers to the system trajectory during the fault-on (system) stage, while
the post-fault trajectory is that during the post-fault stage.

In the past decades, researchers and engineers in the power engineering commu-
nity have growing interests in the theory of nonlinear dynamical systems, to analyze
nonlinear problems arising in electric power systems analysis and to develop
counter-measures/control schemes for power system instability prevention. Indeed,
the power systems nowadays have been pushed closer to the operation limits, due
to the increase in load demands and the pressure of economical operations. This
trend results in system-wide disturbances, or even worse cascading outages and
system blackouts. Furthermore, high penetration of renewable energy can aggravate
power systems stability. To maintain the overall stability, a controlled-islanding
technique can be adopted to prevent system-wide outage when large disturbance
occurs. That is, the entire network is split into a collection of smaller isolated power
systems (called power islands) by disconnecting certain transmission lines [17–20].
In general, there can be multiple admissible schemes for splitting the network. It
is worthwhile noting that the system separation of power system (i.e., a pattern
that the generators lose synchronism due to the faults cleared immediately after
the critical clearing time (CCT) [21]) is closely related to the controlling unstable
equilibrium point (controlling u.e.p) on the stability boundary [16, 22–25], which
can provide an index for evaluating these splitting schemes. Here the controlling
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u.e.p associated with a fault/contingency refers to the u.e.p whose stable manifold
contains the exit point (i.e., the intersection of the fault-on trajectory with the
stability boundary) [16].

The emphasis of the paper lies on the computer simulation of system separations
in an electric power system and the development of numerical scheme for com-
puting the number of system separations. For clarity, we review the mathematical
preliminaries in the theory of nonlinear dynamical systems, transient stability model
for electric power systems, and theoretical results on unstable equilibrium points
in Sect. 2. After that, numerical algorithms and simulation results are described in
Sect. 3. More precisely, we bring forward a three-step scheme that: line-fitting for
the asymptote of the post-fault trajectory at Step 1; generating coarse clusters by the
slopes of the fitting lines (for the asymptotes) at Step 2; and further computing the
final grouping result at Step 3 based on the coarse clusters obtained in the preceding
step. The proposed scheme is tested on different power systems at last, and the
simulation results for each step are illustrated and tabulated.

2 Mathematical Preliminary

2.1 Nonlinear Dynamical System and Equilibrium Point

Consider an autonomous nonlinear dynamical system of the general form

Px D f .x/; x 2 R
n; (1)

where the state vector x D .x1; : : : ; xn/, and f .x/ D .f1.x/; : : : ; fn.x//T . Naturally
the vector field f W Rn 7! R

n is assumed differentiable, and satisfies a sufficient
condition for the existence and uniqueness of the solution. The solution of (1)
starting from x0 at time t D 0 will be denoted by �.t; x0/, or by x.t/ when it is
clear from the context.

By convention, a point Ox is an asymptotically stable equilibrium point [26] of
the dynamical system (1), if it is Lyapunov stable and there exists ı > 0 such that
�.t; x0/ ! Ox as t ! 1, for all points x0 satisfying kx0 � Oxk < ı. In other words,
there exists a neighborhood of the equilibrium point such that every solution starting
in this neighborhood remains in a neighborhood and is attracted to the equilibrium
point as time tends to infinity. If ı can be chosen arbitrarily large, then every
trajectory is attracted to Ox, and thereby Ox is called a global asymptotically stable
equilibrium point. There are many physical systems containing asymptotically
stable equilibrium points, but not globally stable equilibrium points. Alternatively, a
useful concept is the stability region (also called the region of attraction or domain
of attraction). The stability region of an asymptotically stable equilibrium point xs is
the set of all points x such that �.t; x/! xs, as t!1. We will denote the stability
region of xs by A.xs/, and its closure by A.xs/, where

A.xs/
:D fx 2 R

nI lim t!1 �.t; x/ D xsg: (2)
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When it is clear from the context, we write A for A.xs/. From a topological point
of view, the stability region A.xs/ is an open, invariant, and connected set. The
boundary of stability region A.xs/ is called the stability boundary (also called
separatrix) of xs and will be denoted by @A.xs/.

In general, a point x� 2 R
n is said to be an equilibrium point of (1), if f .x�/ D 0.

Besides, we say that an equilibrium point x� 2 R
n is hyperbolic, if the Jacobian

matrix of f .�/ at x� has no eigenvalues with a zero real part. In addition, a type-k
equilibrium point refers to a hyperbolic equilibrium point at which the Jacobian has
exactly k eigenvalues with positive real part. In particular, the type-0 equilibrium
points are asymptotically stable equilibrium points, while the type-n equilibrium
points are called the source points. For a type-k equilibrium point x�, its stable
manifold Ws.x�/ and unstable manifold Wu.x�/ are defined, respectively, as

Ws.x�/ :D fx 2 R
n W limt!1 �.t; x/ D x�g;

Wu.x�/ :D fx 2 R
n W limt!�1 �.t; x/ D x�g;

where the dimension of Wu.x�/ and Ws.x�/ are k and .n � k/, respectively.
However, the structure of the boundary of the stability region A.xs/ can be very

complex for a general nonlinear system (1). An alternative study is the quasi-
stability boundary. The quasi-stability boundary @Ap.xs/ of a stable equilibrium
point xs is defined by @A.xs/ [23], where int.�/ refers to the interior of a set and
@ is the boundary. Clearly, the quasi-stability boundary @Ap.xs/ � @A.xs/.

Two stability regions are called neighboring to each other, if their closures have
nonempty intersection. Given two different stable equilibrium points xs and x0s, it
should be apparent that the stability regions .A.xs/ \ A.x0s// D ;, and .A.xs/ \
A.x0s// D .@A.xs/\@A.x0s//. Indeed, .@Ap.xs/\@Ap.x0s// D A.xs/\A.x0s/ D @A.xs/\
@A.x0s/: This implies that two stability regions are neighboring to each other, if and
only if their quasi-stability boundaries have nonempty intersection. In the sequel, a
stability boundary thus usually refers to @Ap, without causing any confusion.

Recall a set K � R
n is invariant regarding the dynamics at (1), if every trajectory

of (1) starting in K stays in K for all t 2 R. Clearly, the stability region is an invariant
set. Given two sub-manifolds M1 and M2 of a manifold M, we say that they meet
the transversality condition, if either (1) .M1 \ M2/ D ;, or (2) at every point
y 2 .M1 \M2/, the tangent spaces of M1 and M2 span the tangent spaces of M at y.

In the subsequent study the conditions below are assumed to be satisfied by (1).

(A1) All the equilibrium points are hyperbolic, and on a stability boundary they
are finite in number.

(A2) The stable and unstable manifolds of equilibrium points on the stability
boundary satisfy the transversality condition.

(A3) Every trajectory approaches an equilibrium point as t! C1.

Here (A1) and (A2) are generic properties for nonlinear dynamical systems while
(A3) is not generic, however it is satisfied by a large class of nonlinear dynamical
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systems, as the power system dynamics model for transient stability analysis. On
the stability boundary, the results below describe the structural characterization.

Theorem 1 (Complete Characterization of Quasi-Stability Boundary [23]).
Consider a stable equilibrium point xs of the nonlinear dynamical system (1)
satisfying the assumptions (A1)–(A3). Let xi

e; i 2 N be the equilibrium points on
the quasi-stability boundary @Ap.xs/. Then, the quasi-stability boundary

@Ap.xs/ D S
xi

e2@Ap.xs/
Ws.xi

e/:

Theorem 1 asserts that the union of the stable manifolds of the UEPs (unstable
equilibrium points) lying on the stability boundary equals the stability boundary.
This theorem however provides little information regarding the number and the type
of UEPs that can lie on the stability boundary.

Theorem 2 (Characterization of Quasi-Stability Boundary [23]). Consider a
stable equilibrium point xs of the nonlinear dynamical system (1) satisfying the
assumptions (A1)–(A3). Let �i; i 2 N be the type-one equilibrium points on the
quasi-stability boundary @Ap.xs/. Then, the quasi-stability boundary

@Ap.xs/ D S
�i2@Ap.xs/

Ws.�i/:

Theorem 2 asserts that the union of the closure of stable manifolds of type-one
UEPs lying on the stability boundary equals the stability boundary.

2.2 Power System and Transient Stability Model

We consider the classical model for transient stability analysis, for a power system
consisting of n generators. The dynamics of the ith generator is described by

� Pıi D !i

Mi P!i D �Di!i C Pmi � Pei.ı/
(3)

for 1 � i � n, where Di and Mi are damping ratio and inertia constant of machine i.
Here the loads have been modeled as constant impedances, and

Pei.ı/
:DPn

jD1EiEj �
˚
Bij sin.ıi � ıj/C Gij cos.ıi � ıj/

�
(4)

refers to the electrical power at machine i, while Ei is the constant voltage behind
direct axis transient reactance, Pmi is the machine power. More detailed and
sophisticated models for power system transient stability analysis can be found, for
example, in the book [16].
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The equations in (3) can be written in a number of reference frames, as in terms
of absolute angles, relative angles between machines, or relative to the center of
inertia. Here we use the relative angles between machines by fixing ıi (say i D 1)
as the reference angle, and define the set

H
:D f.ı; !/I ı 2 R

n; ı1 � 0; ! D 0g;
which is an .n � 1/-dimensional hyperplane of R2n. Clearly, if x� D .ı�; !�/ is an
equilibrium point of the system (3), one must have the point x� 2H .

Indeed, restricted to the hyperplane H , the system (3) is spatially periodic, in
the following sense. Let x

:D .ı; !/ D .ı1; : : : ; ın; !1; : : : ; !n/ 2 R
2n, with

Fi.x/
:D !iI FnCi.x/

:D .�Di!i C Pmi � Pei.ı//=Mi

for 1 � i � n. The system (3) can be reformulated as

Px D F.x/ D .F1.x/; : : : ;F2n.x//T ; x 2 R
2n:

The system is spatially periodic restricted to H , if there exist .n � 1/ constants
pk > 0 for 2 � k � n, such that Fj.x/ D Fj.xCpkek/ for all x 2 R

2n and 1 � j � 2n.
Here ek denotes the vector in R

2n with 1 in the kth coordinate and 0’s elsewhere. In
addition, an .n � 1/-tuple p� D .p�2 ; : : : ; p�n / is called the spatial periods, if each
p�k > 0 is the minimum positive number pk s.t. Fj.x/ D Fj.xC pkek/ for all x; j.

On the system (3), the following conditions are made.

(A4) The spatial-period p�k D 2 , for all 2 � k � n. Moreover, there is at most
one stable equilibrium point in each region of the form f.ı; !/I zi � ıi <

zi C 2; 2 � i � ng �H , for all zi 2 R.

It is worthwhile noting that, by applying a linear transformation on ı, any system (3)
always can be transformed to a spatially periodic system (restricted to H ) with
p�k D 2 for all 2 � k � n. The remainder of the assumption ensures that, if xs is a
stable equilibrium point of (3), then another stable equilibrium point Qxs can always
be represented by

Qxs D xs C .0; ˛2p�2 ; : : : ; ˛np�n ; 0; : : : ; 0/ D xs C 2 .0; ˛2; : : : ; ˛n; 0; : : : ; 0/

(5)

for some integer ˛k, 2 � k � n. Let P
:D f2 .0; ˛2; : : : ; ˛n; 0; : : : ; 0/ 2 R

2nI ˛k 2
Z; 2 � k � ng, where Z is the set of all integers. Then, two stable equilibrium points
of (3) always differ by a vector in P .

(A5) The intersection of the hyperplane H with every stability region is bounded.
Moreover, the closures of two neighboring stability regions share a boundary
of dimension .2n � 1/.

In general, a stability region of (3) is unbounded [16, 24, 25], but the intersection
with the hyperplane H is bounded as assumed in (A5). The second part assumes
that two neighboring stability regions are contiguous, instead of sharing a corner.
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Fig. 1 An illustration of the inclination lemma. The point xs indicates the stable equilibrium
point/state, and xco refers to the controlling unstable equilibrium point (controlling u.e.p) on
the stability boundary, where the fault-clearing point (f.c.p) is close to the exit point xe. If the
fault-clearing point lies inside the stability region, then the post-fault trajectory moves along the
stable manifold of the controlling u.e.p and then along the portion of unstable manifold of the
controlling u.e.p inside the stability region, and converges to the post-fault stable equilibrium point
xs eventually. On the other hand, if the f.c.p lies outside of the stability region, then the post-fault
trajectory moves along the stable manifold of the controlling u.e.p and then approach the portion
of unstable manifold (of the controlling u.e.p) outside the stability region

The aforesaid equilibrium problem refers to the problem of identifying the
number of controlling unstable equilibrium points on a stability boundary. This is
pertinent to the estimate of system separations [22]. Indeed, the system separation of
an electric power system indicates a pattern that the system deviates from the initial
state. As suggested by the inclination lemma [27], several facts are summarized
[22] for the connection between the critical unstable trajectory (i.e., the post-fault
trajectory with the fault being cleared right after CCT) and the controlling unstable
equilibrium point on the stability boundary (see Fig. 1), where the stable manifold
of the controlling unstable equilibrium point contains the point of intersection (i.e.,
exit point) of the fault-on trajectory with the stability boundary.

Fact 1: If the portion of unstable manifold of the controlling unstable equilibrium
point which lies outside of the stability region converges to a stable
equilibrium point, then the critical unstable trajectory converges to the same
stable equilibrium point.

Fact 2: If the portion of unstable manifold of the controlling unstable equilibrium
point which lies outside of the stability region becomes unbounded, then
the critical unstable trajectory also becomes unbounded.

Fact 3: All the critical unstable trajectories (of the same post-fault system) with
the same controlling unstable equilibrium point have the same asymptotical
behavior.

Fact 4: All the critical unstable trajectories (of the same post-fault system) with the
same controlling unstable equilibrium point which is of type-one have the
same system separation.
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In view of these facts, the number of controlling unstable equilibrium points
provides an upper bound for the number of different system separations. On the
system model (3) it is evident that if .ı�; !�/ is an equilibrium point of (3), one
must have !� D 0 and Pmi � Pei.ı

�/ D 0 for all i. In view of the expression (4) for
Pei, a system of 2n polynomial equations can be obtained for the system of equations
fPmi � Pei.ı/ D 0I i D 1; : : : ; ng by trigonometric substitutions, say

8
ˆ̂<

ˆ̂:

Pm1 DPn
jD1E1Ejf�B1jxj C G1jyjg; (6a)

Pmi DPn
jD1EiEjfBij.xiyj � yixj/C Gij.yiyj C xixj/g; 2 � i � n � 1; (6b)

1 D x2i C y2i ; 2 � i � n; (6c)

where the substitutions xi
:D sin.ıi � ı1/ and yi

:D cos.ıi � ı1/ are used, especially
x1 D 0 and y1 D 1. By Theorem 4.1 [28] and Theorem 3.1 [29], there are
exactly

�
2n�2
n�1

�
complex solutions to the system of equations consisting of (6a)–(6c).

Together with the multiplicity of stability regions sharing an equilibrium point, we
have the following estimate on the controlling unstable equilibrium points.

Theorem 3 ([30]). Consider a system (3) satisfying assumptions (A1)–(A5), then
there are totally no more than 2 � �2n�2

n�1
�

controlling unstable equilibrium points on
the stability boundary of a stable equilibrium point.

As mentioned earlier, the number of system separations is bounded from above
by the number of controlling or type-one unstable equilibrium points on the stability
boundary. Thus, Theorem 3 shows that there are at most 2 ��2n�2

n�1
�

system separations
for the power system (3) of n generators. For instance, for n D 3 there are at most
12 D 2 � �4

2

�
system separations, while for n D 4 the number of system separations

cannot exceed 40 D 2 � �6
3

�
.

It is worthwhile noting that the frequency/probability of occurrence varies
with system separation. The theoretical results, as Theorem 3, provide bounds on
the number of possible system separations, but give little information about the
frequency. This part will be also addressed by the numerical study in the next
section.

3 Numerical Scheme and Simulation Results

We propose a numerical scheme for computing the number of possible system
separations due to different contingencies. Two contingencies are said to yield
a same system separation, if their post-fault trajectories converge asymptotically,
where the fault-on trajectory refers to the trajectory �.t; x0/ following the dynamics
of the power system when a fault occurs, while the post-fault trajectory is that for
the system with the fault being cleared immediately after the CCT. Since there
can be numerous contingencies yielding a same system separation. The number of
system separations can be far less than that of contingencies. In this regard, a set
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of ‘N-1’ and ‘N-2’ contingencies are simulated, and a numerical scheme is devised
to compute the number of system separations. As described below, the numerical
scheme consists of three steps: line-fitting, pre-grouping, and sub-grouping.

Step 1: (line-fitting) Find the best-fitting line to the post-fault trajectory (due to a
contingency), which gives an approximation for the asymptote of trajectory.

Step 2: (pre-grouping) Group the contingencies by the slope of fitting line for the
post-fault trajectories, and generate the coarse clusters of contingencies.

Step 3: (sub-grouping) Generate the (final) groups by measuring Hausdorff distance
between any couple of post-fault trajectories for each cluster of contingen-
cies generated at Step 2. The number of groups indicates the number of
system separations, and each group contains the contingencies yielding a
same system separation.

The rationale for Step 2 is that asymptotically convergent post-fault trajectories
must have near same slopes for their asymptotes. Concerning the above three-step
scheme, some questions naturally arise.

� What is the importance of Steps 1 and 2?
� Or to ask, why not compute directly the pairwise Hausdorff distance for all

post-fault trajectories as Step 3 and use it to generate the groups?

The questions are answered using the following observation. First of all, the
number of contingencies can grow significantly, as the system size increases.
Moreover, for a time-domain simulation up to 40 s, the post-fault trajectory can
consist of more than 5000 points, and it consumes roughly four and half hours (using
a PC with i7 2.4 GHz Quad-Core CPU and 16G RAM), to compute the pairwise
Hausdorff distance for a collection of 93 post-fault trajectories that are generated
by simulating the contingencies for an electric power system having 4 generators
and 57 buses. On the other hand, by taking the proposed three-step scheme, the
computing time can be drastically reduced, approximately by 88:9%. That is,
the proposed scheme only takes about half an hour to produce the same result,
which motivates the design of above scheme adopting an overarching mechanism:
screening at Step 1, ranking/preprocessing at Step 2 and detailed analysis at Step 3.

Indeed, towards testing the proposed three-step scheme, one key prerequisite is
the time-domain simulation under contingencies and the computation of the CCT,
which can be performed according to the procedure illustrated in Fig. 2. Specifically,
CCT is computed below by Steps I–IV.

Step I: When a contingency in the contingency list occurs, the program first
invokes the power flow solver to obtain the initial state. Initially, a small
value near zero is assigned to the fault clearing time (FCT), to examine the
validity of the scenario. By the time-domain simulation that follows (using
the incumbent FCT), if the system appears unstable, the program outputs
a warning message and continues to simulate the subsequent contingency.
Otherwise, if the system turns out to be stable, we move on to the next
step.
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Fig. 2 Flow chart for the time-domain simulation and the computation of CCT

Step II: To capture the stable mode of the post-fault system, an initial guess
is assigned to the stable fault clearing time (SFCT). The time-domain
simulation is performed again using the incumbent SFCT.

� If the system is unstable, then the incumbent SFCT is decreased by
multiplying it with a reduction factor, and a time-domain simulation is
performed for another round with the updated incumbent SFCT.
� Otherwise, if it hits the maximum number of iterations but the system

is still unstable, then we reduce the incumbent SFCT (e.g., assigning
the half value of the sum of the incumbent SFCT and FCT, as the new
SFCT) and start the procedure again.

Eventually, the program will find a stable mode, and output the SFCT.
Step III: To capture the unstable mode of the system, an initial guess is assigned to

the unstable fault clearing time (NSFCT). The time-domain simulation is
performed using the incumbent NSFCT.

� If the system appears stable, the value of incumbent NSFCT is increased
by multiplying it by an amplification factor and a time-domain simula-
tion is carried out again with the updated incumbent NSFCT.
� Otherwise, if the maximum number of iterations is reached but the

system is still stable, this suggests that the effect of the fault is so
insignificant that the system can always restore the equilibrium state.
Then, the program terminates the search for NSFCT and moves on to
the simulation of the next contingency.
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Fig. 3 The one-line diagram of 3-generator 9-bus power system

Following above procedure, the valid SFCT and NSFCT will be output
finally, as soon as the simulation of the present contingency is not aborted
due to hitting the maximum number of iterations.

Step IV: Observe that CCT must be a value confined between SFCT (stable fault
clearing time) and NSFCT (unstable fault clearing time). So, a bisection
method can be utilized to find CCT.

To examine the effectiveness of the proposed three-step scheme, it was applied
to simulate two electric power systems: one has 3 generators and 9 buses, while
the other consists of 4 generators and 57 buses. The one-line diagrams are shown
in Figs. 3 and 4. Both systems are simulated subject to various contingencies, as
tabulated in Tables 1, 2, 3, and 4, where the simulation adopts the trapezoidal method
to compute the pre-fault trajectories (0 � 1:0 s), fault-on trajectories (1:0 s � FCT),
and post-fault trajectories (FCT� end) of the model (3), with fixed-time step 0:01 s.

For the 3-generator 9-bus model, the system under heavy and/or light-load
condition is simulated up to 40 s, and the time-domain simulation subject to certain
contingency is shown in Fig. 5. For clarity, the time-domain simulations for all
contingencies are presented together and illustrated in Fig. 6. Without applying
the three-step scheme, one can directly observe that, there are six different system
separations for the power system bearing heavy load, and nine system separations
for the lightly loaded system. The actual numbers of system separations are both
less than the upper bound 12 D 2 � �2�3�2

3�1
�

in Theorem 3.
For the power system having 4 generators and 57 buses, the post-fault trajectories

are shown in Figs. 7 and 8. Above all, for the power system under heavy-load
condition, the proposed three-step scheme provides more insights and achieves
significant efficiency. The results yielded from Steps 1 and 2 of the proposed scheme
are shown in Fig. 9, subject to the list of contingencies in Table 3. Indeed, there
are four coarse clusters in Table 5, by pre-grouping the contingencies according
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Fig. 4 The one-line diagram of 4-generator 57-bus power system

Table 1 Contingency list for 3-generator 9-bus system bearing heavy load, where FCT
refers to the fault clearing time and “i-k” means the line joining bus i and bus k

‘N-1’ contingency ‘N-2’ contingency

#
Fault
bus CCT (s) FCT (s)

Tripped
line #

Fault
buses CCT (s) FCT (s)

Tripped
lines

1 9 1.086685 1.086735 9-8 7 7, 5 1.041648 1.041698 7-5, 5-4

2 8 1.066602 1.066652 9-8 8 7, 4 1.031230 1.031280 7-5, 5-4

3 5 1.103224 1.103274 5-4 9 5, 4 1.047266 1.047316 7-5, 5-4

4 4 1.084212 1.084262 5-4 10 9, 6 1.046012 1.046062 9-6, 6-4

5 6 1.140343 1.140393 6-4 11 9, 4 1.041648 1.041698 9-6, 6-4

6 4 1.115959 1.116009 6-4 12 6, 4 1.059215 1.059265 9-6, 6-4

to the slopes of asymptotes, where the elements in different cluster are indicated
by a unique marker, e.g. square ‘�’, diamond ‘}’, ‘x’, and ‘C’ in Fig. 9 right.
The clusters are further grouped, and eventually it leads to 25 different groups of
contingencies as summarized in Table 5. In the simulation, two contingencies are
considered to yield a same system separation or belong to a same (final) group,
if the Hausdorff distance between the last portion of trajectories (i.e., the portion
of last 0:5 s before the end) is less than 2:0, where the system is simulated more
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Table 2 Contingency list for 3-generator 9-bus system under light-load condition

‘N-1’ contingency ‘N-2’ contingency

#
Fault
bus CCT (s) FCT (s)

Tripped
line #

Fault
buses CCT (s) FCT (s)

Tripped
lines

1 9 1.192853 1.192903 9-8 13 9, 7 1.155462 1.155512 9-8, 7-8

2 8 1.288580 1.288630 9-8 14 8, 7 1.190524 1.190574 9-8, 7-8

3 7 1.181565 1.181615 7-8 15 9, 8 1.194004 1.194054 9-8, 7-8

4 8 1.258949 1.258999 7-8 16 7, 5 1.202435 1.202485 7-5, 5-4

5 9 1.201368 1.201418 9-6 17 7, 4 1.193863 1.193913 7-5, 5-4

6 6 1.245604 1.245654 9-6 18 5, 4 1.231970 1.232020 7-5, 5-4

7 7 1.162426 1.162476 7-5 19 9, 6 1.227864 1.227914 9-6, 6-4

8 5 1.238862 1.238912 7-5 20 9, 4 1.180034 1.180084 9-6, 6-4

9 5 1.356447 1.356497 5-4 21 6, 4 1.220925 1.220975 9-6, 6-4

10 4 1.268502 1.268552 5-4

11 6 1.418502 1.418552 6-4

12 4 1.255854 1.255904 6-4

than 40 s and the trajectory of system dynamics usually has length greater than
1000. The number of system separations (which is 25) indeed is less than the upper
bound 40 D 2 � �2�4�2

4�1
�

as asserted in Theorem 3. In addition, the system separation
corresponding to Group XXV has the highest frequency of occurrence (i.e., 68 out
of 93), while the frequency of occurrence for each remaining one does not exceed
one thirtieth of that of Group XXV (see Table 5).

For the 4-generator 57-bus power system bearing light load, the three-step
scheme is utilized for the contingency analysis as well. As shown in Fig. 10, by
Steps 1–2 of the proposed scheme the contingencies in Table 4 are classified into
four coarse clusters, and the contingencies in each cluster are tabulated in Table 6.
The grouping result obtained at Step 3 is same as that at Step 2, tabulated in Table 6.
Thus there are four different system separations for the system under light-load
condition, which clearly meets the upper bound (40) presented in Theorem 3.

4 Conclusions and Final Remarks

We have presented an equilibrium problem in the electric power engineering, and
linked it to the system separations. Transient stability model and theoretical results
on the characterization of stability region and the unstable equilibrium point have
been reviewed. In particular, an upper bound for the number of system separations
has been summarized in Theorem 3. The main contribution of the present study lies
in bringing forward a three-step scheme to compute the system separations yielded
from different contingencies. The proposed scheme has been simulated on the
electric power systems of three/four generators, which can achieve better efficiency
and lead to roughly 90% reduction in computing time (as tested on a 4-generator
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Table 3 Contingency list for 4-generator 57-bus system bearing heavy load

‘N-1’ contingency ‘N-1’ contingency

#
Fault
bus CCT (s) FCT (s)

Tripped
line #

Fault
bus CCT (s) FCT (s)

Tripped
ine

1 1 1.100514 1.100564 1-2 48 18 1.758292 1.758342 18-19

2 2 1.172091 1.172141 1-2 49 20 2.860644 2.860694 19-20

3 1 1.096465 1.096515 1-15 50 23 1.410856 1.410906 22-23

4 15 1.128139 1.128189 1-15 51 22 1.303229 1.303279 22-38

5 1 1.114229 1.114279 1-16 52 24 2.149893 2.149943 23-24

6 16 1.271685 1.271735 1-16 53 26 2.834199 2.834249 26-27

7 1 1.120106 1.120156 1-17 54 27 2.072748 2.072798 27-28

8 17 1.329678 1.329728 1-17 55 28 1.693964 1.694014 28-29

9 2 1.166736 1.166786 2-3 56 29 1.538924 1.538974 28-29

10 3 1.144597 1.144647 3-4 57 52 3.152941 3.152991 29-52

11 15 1.172026 1.172076 3-15 58 35 2.115851 2.115901 35-36

12 4 1.256730 1.256780 4-6 59 40 1.846049 1.846099 36-40

13 6 1.256730 1.256780 4-6 60 49 1.306102 1.306152 38-49

14 5 1.401321 1.401371 5-6 61 41 1.451020 1.451070 41-42

15 6 1.193904 1.193954 5-6 62 42 3.354345 3.354395 41-42

16 6 1.182148 1.182198 6-7 63 41 1.454416 1.454466 41-43

17 7 1.191422 1.191472 6-7 64 43 1.524360 1.524410 41-43

18 6 1.167911 1.167961 6-8 65 41 1.451216 1.451266 56-41

19 8 1.095028 1.095078 6-8 66 42 3.587159 3.587209 56-42

20 7 1.166213 1.166263 7-8 67 45 1.392504 1.392554 44-45

21 8 1.089216 1.089266 7-8 68 46 1.366969 1.367019 46-47

22 8 1.056962 1.057012 8-9 69 49 1.306690 1.306740 48-49

23 9 1.081640 1.081690 8-9 70 49 1.308780 1.308830 49-50

24 9 1.145380 1.145430 9-10 71 50 1.431885 1.431935 49-50

25 10 1.265480 1.265530 9-10 72 51 1.518417 1.518467 50-51

26 9 1.148058 1.148108 9-11 73 55 1.507642 1.507692 54-55

27 11 1.230346 1.230396 9-11 74 57 2.164995 2.165045 57-56

28 9 1.139035 1.139085 9-12 75 4 1.248762 1.248812 4-18

29 12 1.080203 1.080253 9-12 76 18 1.717148 1.717198 4-18

30 9 1.147274 1.147324 9-13 77 7 1.193969 1.194019 7-29

31 13 1.149168 1.149218 9-13 78 29 1.369843 1.369893 7-29

32 10 1.239815 1.239865 10-12 79 9 1.137347 1.137397 9-55

33 12 1.074979 1.075029 10-12 80 55 1.440897 1.440947 9-55

34 11 1.227668 1.227718 11-13 81 10 1.242166 1.242216 10-51

35 13 1.148123 1.148173 11-13 82 51 1.473094 1.473144 10-51

36 12 1.049027 1.049077 12-13 83 11 1.214737 1.214787 11-41

37 13 1.087518 1.087568 12-13 84 41 1.424766 1.424816 11-41

38 12 1.084187 1.084237 12-16 85 11 1.219831 1.219881 11-43

39 16 1.269987 1.270037 12-16 86 43 1.501372 1.501422 11-43

(continued)
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Table 3 (continued)

40 12 1.085363 1.085413 12-17 87 13 1.133102 1.133152 13-49

41 17 1.334576 1.334626 12-17 88 14 1.187700 1.187750 14-46

42 13 1.149691 1.149741 13-14 89 46 1.349858 1.349908 14-46

43 14 1.205398 1.205448 13-14 90 15 1.157397 1.157447 15-45

44 13 1.151127 1.151177 13-15 91 45 1.375328 1.375378 15-45

45 15 1.174573 1.174623 13-15 92 24 2.358469 2.358519 24-26

46 14 1.206835 1.206885 14-15 93 57 2.136995 2.137045 39-57

47 15 1.174050 1.174100 14-15

Table 4 Contingency list for 4-generator 57-bus system under light-load condition

‘N-1’ contingency ‘N-1’ contingency

#
Fault
bus CCT (s) FCT (s)

Tripped
line #

Fault
bus CCT (s) FCT (s)

Tripped
line

1 1 1.491576 1.491626 1-2 24 9 1.685148 1.685198 9-11

2 2 3.312544 3.312594 1-2 25 11 3.102454 3.102504 9-11

3 1 1.313221 1.313271 1-15 26 9 1.677474 1.677524 9-12

4 15 1.438024 1.438074 1-15 27 12 1.298135 1.298185 9-12

5 1 1.287163 1.287213 1-16 28 9 1.682862 1.682912 9-13

6 1 1.298461 1.298511 1-17 29 13 1.749149 1.749199 9-13

7 2 3.616085 3.616135 2-3 30 12 1.318054 1.318104 10-12

8 3 2.282794 2.282844 3-4 31 11 3.102686 3.102736 11-13

9 4 1.309302 1.309352 3-4 32 13 1.809722 1.809772 11-13

10 3 1.443836 1.443886 3-15 33 12 1.329352 1.329402 12-13

11 15 1.901479 1.901529 3-15 34 12 1.311639 1.311689 12-16

12 4 2.474043 2.474093 4-5 35 12 1.296759 1.296809 12-17

13 4 2.298550 2.298600 4-6 36 13 1.809395 1.809445 13-14

14 6 1.791028 1.791078 4-6 37 14 2.354959 2.355009 13-14

15 6 1.792497 1.792547 5-6 38 13 1.810293 1.810343 13-15

16 6 1.796252 1.796302 6-7 39 15 1.846049 1.846099 13-15

17 7 2.066463 2.066513 6-7 40 14 2.358796 2.358846 14-15

18 6 1.788497 1.788547 6-8 41 15 1.909071 1.909121 14-15

19 8 1.388129 1.388179 6-8 42 9 1.668984 1.669034 9-55

20 7 1.719679 1.719729 7-8 43 11 3.097335 3.097385 11-41

21 8 1.413142 1.413192 7-8 44 11 3.102143 3.102193 11-43

22 8 1.342022 1.342072 8-9 45 13 1.791109 1.791159 13-49

23 9 1.680821 1.680871 9-10 46 14 2.346877 2.346927 14-46

47 15 1.853478 1.853528 15-45

57-bus power system) by adopting the mechanism: screening, ranking/preprocessing,
and detailed analysis. This scheme demonstrates great potential in the contingency
analysis (especially for large-scale electric power systems), and shows that the
upper bounds in Theorem 3 that 12 at n D 3 and 40 at n D 4, are quite tight for the
3-generator 9-bus system and the 4-generator 57-bus system.
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Fig. 5 Time-domain simulation for the 3-generator 9-bus system. Here the top plots the post-fault
trajectories (i.e. the machine angle at Bus-k over time t) for contingencies in Table 1 and the bottom
ones are for contingencies in Table 2. (a) for Contingency #4 in Table 1, (b) for Contingency #11
in Table 1, (c) for Contingency #10 in Table 2, (d) for Contingency #20 in Table 2
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Fig. 6 Time-domain simulations for 3-generator 9-bus system, where the left plots all post-fault
trajectories subject to the contingencies in Table 1 for the system under heavy-load condition,
while the right plots the post-fault trajectories subject to the contingencies in Table 2 for the lightly
loaded system. The horizontal and the vertical axes correspond to the machine angle of generator
at bus #2, bus #3, respectively
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Fig. 7 Time-domain simulation for generators in 4-generator 57-bus system (i.e., the machine
angle at Bus-k over time t). Here the top plots are simulations for contingencies in Table 3 for the
system under heavy-load condition and the bottom ones are for contingencies in Table 4 for the
system under light-load condition. (a) for Contingency #22 in Table 3, (b) for Contingency #83 in
Table 3, (c) for Contingency #22 in Table 4, (d) for Contingency #44 in Table 4

Fig. 8 Time-domain simulations for 4-generator 57-bus system, where the left plots all post-fault
trajectories subject to the contingencies in Table 3 for the system bearing heavy load, while the
right plots the post-fault trajectories subject to the contingencies in Table 4 for the lightly loaded
system. The x-y-z axes correspond the machine angle of generator at bus #1, bus #8, and bus #12,
respectively
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Fig. 9 An illustration for Step 1 (left plot, the value of slopes of asymptotes) and Step 2 (right
plot, the coarse clusters generated by pre-grouping) of proposed scheme applied to 4-generator
57-bus system (under heavy-load condition) in Fig. 8 left

Table 5 Pre-grouping result for 4-generator 57-bus system under heavy-load condition, and the
elements in the coarse cluster marked by the symbol of square ‘�’, plus-sign ‘C’, cross ‘x’ and
diamond ‘˘’, respectively, in Fig. 9 right

Cluster
marker Contingency #

Cluster
marker Contingency #

� 9, 10 C 49, 53

x 1, 2, 11, 12, 13, 14, 15,
16, 17, 18, 20, 21, 22,
25, 26, 39, 69, 74, 91,
92, 93

˘ 3, 4, 5, 6, 7, 8, 19, 23, 24, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44,
45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71,
72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90

Table 6 Grouping result at Step 3 for 4-generator 57-bus system bearing heavy load

Group No. Contingency # Group No. Contingency #

I 9, 10 II 49

III 53 IV 1

V 2 VI 11

VII 12 VIII 13

IX 14 X 15

XI 16 XII 17

XIII 18 XIV 20

XV 21 XVI 22

XVII 25 XVIII 26

XIX 39 XX 69

XXI 74 XXII 91

XXIII 92 XXIV 93

XXV 3, 4, 5, 6, 7, 8, 19, 23, 24, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48,
50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90
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Fig. 10 An illustration for Step 1 (left plot, the value of slopes of asymptotes) and Step 2 (right
plot, the coarse clusters generated by pre-grouping) of proposed scheme applied to 4-generator
57-bus system (under light-load condition) in Fig. 8 right

Table 7 Pre-grouping result for 4-generator 57-bus system under light-load condition,
and the elements in the coarse cluster marked by the symbol of square ‘�’, plus-sign ‘C’,
cross ‘x’ and diamond ‘˘’, respectively, in Fig. 10 right

Cluster
marker Contingency #

Cluster
marker Contingency #

� 12 C 1, 2, 3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47

x 5, 8 ˘ 30, 32, 33
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Security and Formation of Network-Centric
Operations

Nicholas J. Daras

Abstract After giving definitions and background information of key terms, we
report and analyze the multi-layer graph model of network centric operations
(NCOs), and we mention its advantages. Moreover, we investigate security problem
of NCOs by applying methods of vertex pursuit games. Finally, in Sect. 6 we take
up with the problem of network centric warfare strategic formation.

Keywords: Network centric operations • Multi-layer graph model • Vertex
pursuit game • Network centric warfare strategic formation • Network centric
operations-graphs • Operational utility function

1 Introduction

This paper explores various concepts related to the Network Centric Warfare
framework and investigates security and formation aspects of network centric
operations (NCOs). It is divided into six sections. Section 2 deals with definitions
and background information of key terms such as Cyber Warfare, Information
Warfare, C4ISR, and Network Centric. Special emphasis is given to NCOs Con-
ceptual Framework. Section 3 briefly reports and analyzes the three main thematic
NCO-pillars: Net Centric Theoretical Foundations/Mathematical Modeling, Net
Centric Technologies and Related Issues and Operational Experiences. Next, in
Sect. 4 we apply graph theory concepts to NCO. To do so, we consider Wong-
Jiru’s multi-layer graph model of NCO and we describe interlayer relationships.
Our analysis proceeds with definitions and implications of several NCO-layered
metrics (out-degree, in-degree, density, reachability, point connectivity, distance,
number of geodesics, maximum flow, network centrality, Freeman degree centrality,
betweenness centrality, closeness centrality, edge betweenness, flow betweenness).
The section ends with the mention of key advantages of the multi-layer NCO model.
Section 5 investigates the security problem of NCOs by applying methods of vertex
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pursuit games. Specifically, we suppose an intruder (or attacker) has invaded into
the complex process of a NCO with the intention to destroy or cause sabotage at the
vertices of one or more of its five layers (Processes, People, Applications, Systems,
Physical Network). The intruder could represent virus or hacker, or other malicious
agents intent on avoiding capture. A set of searchers are attempting to capture the
intruders. Although placing a searcher on each vertex of a layer guarantees the
capture of the intruders, we discuss and investigate the more interesting (and more
difficult) problem to find the minimum number of searchers required capturing the
intruders. A motivation for minimizing the number of searchers comes from the fact
that fewer searchers require fewer resources. NCOs that require a smaller number
of searchers may be viewed as more secure than those where many searchers are
needed. Finally, in Sect. 6 we take up with the problem of network centric warfare
strategic formation. After introducing distance-based operational utility functions,
we keep to the study of two layer distance-based operational utilities and of best
response NCO-graphs. Then, we consider pairwise operational stability in the NCOs
and we conclude with a study of the NCOs formation with arbitrary operational
utility functions.

2 Background Information

This section deals with definition and background information of key terms such as
Cyber Warfare, Information Warfare, C4ISR, and Network Centric Warfare.

2.1 Cyber Warfare

Definition 1.

i. Cyberspace is the notional environment in which digitized information is
communicated over computer networks.

ii. Cyber Warfare is the use of existing and emerging internet-based technologies
to conduct warfare in cyberspace with the aim of attacking and disrupting
information systems and communication networks.

2.2 Information Warfare

The term Information Warfare or IW is similar in meaning to Cyber warfare though
with a more streamlined goal of achieving competitive advantage. As per the
Institute for Advanced Study of Information Warfare (IASW),
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Definition 2 ([19]). Information warfare is the offensive and defensive use of
information and information systems to deny, exploit, corrupt, or destroy an
adversary’s information, information-based processes, information systems, and
computer-based networks while protecting one’s own. Such actions are designed
to achieve advantages over military, political, or business adversaries.

Information Warfare is generally subdivided into Information Assurance and
Information Denial:

Definition 3.

i. Information Assurance focuses on assuring the flow of mission critical
information in the event of any attack on the information infrastructure.

ii. Information Denial is the offensive part of Information Warfare wherein
the focus is to disrupt the adversary’s mission critical operations to get a
competitive advantage.

Remark 1. Information Assurance is not limited to assuring the availability of
information but deals with all the information security goals of not only preserving
the CIA (confidentiality, integrity, and availability) of information systems but also
ensuring proper authentication and non-repudiation of critical information.

Based on the target audience, Information Warfare can be classified into three
classes [25, 26]:

Definitions 4.

i. Personal Information Warfare is known as Class I Information Warfare
and is aimed against individual privacy involving attacks on personal and
confidential data.

ii. Commercial Information Warfare is known as Class II Information War-
fare and involves industrial espionage and broadcasting of false information
against business rivals using the internet.

iii. Global Information Warfare is known as Class III Information Warfare and
is aimed at countries, political alliances/spheres of influence, global economic
forces, sensitive national information systems and infrastructure.

2.3 C4ISR Concept of Command, Control, Communications,
Computers, Intelligence, Surveillance, and Reconnaissance

Definition 5 ([20]). C4ISR is a term used for effective interfacing of Command,
Control, Communications, Computers, Intelligence, Surveillance, and Reconnais-
sance technologies and procedures to deliver a decisive war fighting advantage
(Fig. 1).



126 N.J. Daras

Operational
View

Technical
View

Systems
View

Identifies Warfighter
Relationships and Information Needs

Prescribes Standards
and Conventions

Relates Capabilities and
Characteristics to Operational Requirements

Specific Capabilities Identified
to Satisfy Information-
Exchange Levels and Other
Operational Requirements

Processing and Levels of

Inform
ation Exchange

Requirem
ents

Basic Technology

Supportability and New

Capabilities

Technical Criteria Governing
Interoperable Implementation/
Procurement of the Selected
System Capabilities

Sy
st

em
s 

As
so

cia
tio

ns
 to

Nod
es

, A
ct

ivi
tie

s,
Nee

dl
in

es
,

an
d 

Req
ui

re
m

en
tsPr

oc
es

sin
g 

an
d 

In
te

rm
od

al

Le
ve

ls 
of

 In
fo

rm
at

io
n

Ex
ch

an
ge

 R
eq

ui
re

m
en

ts
.

Fig. 1 The C4ISR framework

2.4 Network Centric Warfare

Definition 6 ([15]). Network Centric Warfare (or Net Centric Warfare or
NCW) is a term which broadly describes the combination of emerging tactics,
techniques, and procedures that a fully or even partially networked force can
employ to create a decisive war fighting advantage.

Remark 2. Network Centric Warfare is also referred to as Network Centric Opera-
tions or NCOs.

Remark 3. The C4ISR framework refers specifically to the military’s implementa-
tion of a Network Centric Warfare framework.

The objectives of Network Centric Warfare include [16, 17, 27]:

1. Better synchronization of geographically dispersed combat units
2. More effective combat power by networking sensors, weapons, and decision

makers
3. Increased speed of executing command and control procedures
4. Seamless interoperability between coalition forces
5. Access to real-time information at every echelon of the military hierarchy
6. Increased survivability and greater lethality in combat operations.

The integration of various weapons and sensors and other combat systems in
the three dimensions of land, sea, and air warfare (including support by space-
based satellite communication and surveillance) is depicted schematically in Fig. 2
below. This NCW integration includes not only conventional military systems but
also specialized systems.
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Fig. 2 NCW implementation
[17]

Fig. 3 NCO conceptual framework [2, 21]

Figure 3 above depicts the Conceptual Framework as found in NCO-CF Ver-
sion 2.0.

3 The Main Thematic Pillars of NCO Approach

There are three central thematic NCO-pillars: Net Centric Theoretical Founda-
tions/Mathematical Modeling, Net Centric Technologies and Related Issues
and Operational Experiences. Each of these thematic pillars can be further
analyzed in individual major sub-issues as follows [28] (Tables 1, 2, and 3).
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Table 1 The first thematic NCO-pillar

Net centric theoretical foundations/mathematical modeling issues

(i) NCO scientific theory and tests

(ii) NCO architecture formation

(iii) Overconfidence about the effectiveness of NCO

(iv) Reduced effectiveness for urban counter-insurgency operations

(v) Underestimating our adversaries

(vi) Overreliance on information

(vii) Management of information overload

(viii) Increasing complexity of military systems

(ix) NCO security problem, that is the problem of secure protection from vulnerabil-
ities of military software and data (common Internet threats and vulnerabilities and
attacks aimed at destroying the operational capability of critical infrastructure and
espionage) and form vulnerabilities of military equipment to electronic warfare

Table 2 The second thematic NCO-Pillar

Net centric technologies and related issues

(i) Command, control, communications, computers, and intelligence

(ii) Interoperability

(iii) Space dominance

(iv) Networked weapons

(v) Bandwidth limitations

(vi) Unmanned robotic vehicles (UVs)

(vii) Sensor technology

(viii) Software design

Table 3 Third thematic
NCO-pillar

Operational experiences’ issues

(i) Network communications

(ii) Sensors

(iii) Satellites

(iv) Bandwidth and latency

(v) Air dominance

(vi) Operations with coalition forces

In what follows we will restrict ourselves to the first central thematic NCO-pillar
and investigate the NCO Architecture Formation (the problem of network formation
among a set of nodes where each node forms links with other nodes in the network
to maximize some operational utility), as well as the NCO Security problem (secure
protection from Vulnerabilities of Military Software and Data and Vulnerabilities of
Military Equipment to Electronic Warfare).
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4 Applying Graph Theory Concepts to NCO

4.1 The Multi-Layer Graph Model of NCOs

4.1.1 Foundations of the General Theory

If the entities (people, processes, technology) that enable NCO can be considered
nodes (or vertices) in a network (resp. graph) or a series of networks (resp. graphs),
then one has to understand the network structures, characteristics, and dynamics
of those networks (graphs).

How a network is structured and its characteristics are fundamental to under-
standing what the network is potentially capable of.

To begin, a multi-layer model of NCO, as depicted in Fig. 4, is proposed in [29].

Definition 7. In a multi-layer NCO model:

1. Each family of contributor to NCO is designated as a layer. (Thus, People,
Applications, Systems, etc., each plays a part in the success of some Process
that supports NCO.)

2. At each layer, the family of contributor is represented graphically as a
network.

3. The nodes represent individual contributors.
4. The edges between the nodes represent a layer-specific relationship.

Table 4 defines the nodes and edges representation of each layer [29].

Fig. 4 Layered model of
network centric operations
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Table 4 Layer, node, and edge definitions for the multi-layer NCO model

Layer name Layer definition Node definition Edge definition

Processes Series of tasks in the
process of interest that
lead to a mission
objective. These
processes are based on
higher level guidance,
such as doctrine or
ROEs

Each node represents
one task in the series
of tasks

Edge between tasks represents
the transition of one task to
another. By default, the edge
also represents the order in
which the tasks are
accomplished. A node can
have multiple edges if tasks
are accomplished concurrently

People Actors that perform
tasks

Each node represents a
person or a group of
persons

Edges between persons
represent working
relationships where specific
information is sent or
received. A “human network”

Applications Tools that send, receive,
and/or process
information. These tools
may be automated or
require an operator
interface

Each node represents
an application. A
separate node may be
used to designate one
copy of an application
if multiple copies exist
in the network of
interest

Edges between applications
represent data-specific
interoperability between
systems. The edge is specific
to the data that is passed, since
systems may be partially
interoperable

Systems Platform which houses
the application(s) (i.e.,
an aircraft platform
could be grounded but
its applications may still
function)

Each node represents a
system

Edges between systems
represent communications
interoperability

Physical
network

Communications
infrastructure

Each node represents
routers, servers,
radios, etc.

Edges between nodes
represent communications
pathways. These edges
include both wired and
wireless pathways

A summary of the interlayer relationships is shown in Fig. 5.
For this model to be useful for analysis the interlayer relationships must be

further defined and a representation for these relationships must be established. Like
the node and edge definitions in Table 4, the interlayer relations also have definitions
relevant to NCO. These definitions are found in Table 5.

4.1.2 Further Description of Layer and Interlayer Relationships

A. Task Allocation in the Processes Layer. Using graph theory, we can represent
any allocating sequential process with several tasks. For instance, in Fig. 6, the
tasks are performed in the following order: first “a”, then “b”, etc., ending with
task “e”. The arrows help depict this order. Hence, such any process layer is a
directed graph.
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Fig. 5 Interlayer relationships of the multi-layer NCO model [29]

Table 5 Definitions of interlayer relationships of the multi-layer NCO model [29]

Mapping Node to node mapping Edge to edge mapping

Process–people Allocates task to person(s) Order or route of process tasks through
people

People–
applications

Identifies the applications used
by person(s)

Route of information transactions through
applications

Applications–
systems

Identifies which systems
support which applications. For
some, the system and
application are the same

Route of information from application to
application through supporting systems.
For cases where multiple applications are
supported by one system, there may be
edges from the application layer that
“roll-up” into a system node and do not
exist on the mapping

Systems–physical
network

Identifies which entry points
into the communications
infrastructure is accessed by
which system

Route of communications from one system
to another. From a wireless
communications perspective, this could
represent the route of data transmitted from
an aircraft via a radio to a ground node to a
radio and back to another aircraft’s radio
through the physical infrastructure

Fig. 6 A process layer

B. Working Relationships in the People Layer. Using graph theory, we can
describe people’s engagements in working relationships. For instance, in Fig. 7,
the people layer shows four people who engage in a working relationship.
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Fig. 7 A people layer

This graph is bi-directed—the edges can be traversed in either direction. In
the context of human behavior in a working environment, if Miltiades works
with Achilles, then it is assumed that Achilles also works with Miltiades. This
graph also depicts that certain persons do not work with each other. For instance,
Epaminondas and Xenophon do not work together directly.

C. The Process–People Mapping.

Definition 8.

i. In a Multi-layer NCO Model, any process of “allocating” will be termed
“mapping.”

ii. The intermediary layer between the process and people layers is termed the
“process–people mapping.”

Remark 4. The process–people map (allocation) will reflect “who did what” and
“when.”

Example 1 ([29]). Having regard to the data of Figs. 6 and 8, the process–people
mapping in Fig. 8, below, shows the nodal mapping as well as edge mapping. From
a nodal perspective, the graph shows that Miltiades is responsible for task “a”,
Achilles does task “b”, and so on. As depicted, Achilles is actually responsible
for two tasks, “b” and “d”. The edge mapping shows the order or “route” of the
process as it progresses through the responsible persons. While each layer provides
information about each homogenous entity, the mapping provides a graphical
representation of the interaction and relationships between the entities.

To perform the analysis, each layer and mapping is represented by a series of
matrices. Both adjacency and incidence matrices are used.

To accomplish the mapping, two matrices are used.

(a) In the first matrix, one correlates the vertices of one layer to desired
vertices of another layer.

(b) Likewise, in the second matrix the edges of both layers are correlated.

Definition 9. These two comprehensive mapping matrices then served as the
model-wide mapping, up and down the stack of layers.
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Fig. 8 A process–people mapping

The comprehensive mapping vertices matrix is then used to trace the all vertices
associated with one vertex throughout the entire model. The same occurs for the
comprehensive edge matrix. Thus, a vertex or edge at any layer of the model may
be altered and the effects of that alteration may be traced throughout the other layers.
The column and row labels are duplicated because this allows traceability of each
node or vertex.

Example 2 (Suite). Continuing with the data of Example 1, as it is represented in
Figs. 6, 7 and 8, let us see how the comprehensive vertex and edge matrix for the
given two layers would be constructed. Edge labels have been added (Fig. 9).

4.2 Definition of NCO-Layered Graph Metrics

The following quantifiable characteristics or graph metrics will be used in the
NCO analysis. Following each definition is a discussion of the possible implication
of that metric to NCO analysis, tying the definitions’ theoretical meaning to the
practical application. These metrics will be used to objectively extend the current
NCO Conceptual Framework. While the term “vertex” is used in the formal, graph
theoretical definitions, the term “node” will be used throughout the majority of the
analysis because of its common use in network analysis. Further discussion of each
graph metrics can be found in [19].

4.2.1 Out-Degree

Definition 10. For a directed graph with vertex v; the out-degree d� .v/ of v is the
number of edges with tail v (see page 58 in [27]).
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Fig. 9 Comprehensive vertices and edge mapping matrices; (a) shows mapping of vertices to
vertices, (b) shows mapping of edges to edges, and (c) the graphical depiction of the mappings

NCW Implication ([29]) A vertex serves as an information source within a
network. From a collaboration viewpoint, a vertex with a high d� .v/ may indicate
network node with a high level of collaboration with the nodes around them and
carries a greater potential to influence its neighbors and the rest of the network.
For example, should this node pass inaccurate data into network, more nodes would
be affected than if a node with lower d� .v/ had passed on that data. Referencing
the layered NCW model, at the People layer, this node may characterize a
commander’s position as a commander may be giving orders to multiple
supporting commanders. At the Process layer, such a node may indicate that
many processes rely on this task in order to proceed.

4.2.2 In-Degree

Definition 11. For a directed graph with vertex v, the in-degree dC .v/ of v is the
number of edges with head v1 (see page 58 in [27]).

NCW Implication ([29]) A vertex serves as an information sink within a network.
A vertex with high dC .v/ may be a critical convergence point for some activity.

1Douglas B. West, Introduction to Graph Theory. Upper Saddle River, NJ: Prentice Hall, 2001.
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A high dC .v/ may also be a sign of potential information overload or, since it
receives many different inputs, it may be a potential point of conflict. At the
Application layer, a node with high dC .v/ may indicate an application that
may benefit from an improvement to its data processing functions to increase
efficiency.

Remark 5. How does one interpret a vertex with both high in- and out-degree?
This vertex may be a bottleneck to the overall operations or could benefit from
improvements to increase efficiency. For example, these improvements could be
increased manning at the People layer, increased automation at the Applications
layer. On the other hand, perhaps certain routing or switching systems may also
exhibit these characteristics by design.

4.2.3 Density

Definition 12. For a graph G with n vertices and e edges, the density d .G / of G
is the ratio of the number of edges to number of vertices (see pages 435 and 519
in [27]):

d .G / WD e .G /=n .G /:

NCW Implication ([29]) For the System layer, the measure of an N-node net-
work’s “N2-connectedness” would be the density. In “Power to the Edge,” the N2

approach is an ill-fated solution to system interoperability in which system A can
be interoperable with all other systems if system A understands the same language,
protocol, etc., with every other system. This scheme would hold true for every
system in the network, resulting in a network where every system must be connected
to every other system to communicate across the network. This approach results in
a very unsustainable network. Measuring density at the System layer would provide
a quantifiable network characteristic.

4.2.4 Reachability

Definition 13. The reachability of a vertex pair .u; v/ in a graph G is a value 1 or
0, provided that there exists or not a path from u to v. The value is 1 if a path exists,
0 if it does not (see page 142 in [9]).

NCW Implication ([29]) Reachability at all layers indicates if there are any
unconnected nodes in the network. Reachability at the Applications, Systems and
Physical Network layers can also be an indication of the level of interoperabil-
ity. A fully interoperable network would earn value 1 between every pair of nodes.
A network may be considered “weak” if few nodes are reachable from few others,
“strong” if many nodes are reachable from many others.
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4.2.5 Point Connectivity

Definition 14. The size of the vertex cut of graph G between two nonadjacent
vertices, u and v is point connectivity. The vertex cut is defined as the smallest set
S � V .G /, such that .G nS/ has more than one component (see page 149 in [27]).
The point connectivity is another term for the size of the vertex cut.

NCW Implication ([29]) For any layer in the multi-layer graph model of NCO,
point connectivity indicates vulnerability of a network between two nodes of
interest. For instance, if the point connectivity of node A to node B is three, there are
three nodes whose removal would completely disrupt the communication between
A and B. Inspection of the network graph would reveal those three specific nodes
and a course of action can be developed to prevent any disruptions. Though point
connectivity does not explicitly indicate the nodes that compose the vertex cut, it
can point to potential problem areas.

4.2.6 Distance

Definition 15. The distance d .u; v/, also known as the geodesic distance, between
two vertices in a graph is defined to be minimum distance of the path from vertex u
to vertex v (pages 70 and 520 in [27]).

Remark 6. Distance is measured by summing the value of each edge connecting
each internal vertex along the .u; v/ path. The value used here is 1, but may be
weighted with other values depending on the context of the graph. For instance,
if the edges represented physical distance, the value of each edge may represent
mileage between vertices. This metric is an important macrocharacteristic, because
it analyzes each possible path across the network between each u and v for all u
and v.

NCW Implication ([29]) At the People layer, a high distance d .u; v/may reflect
the reach of the circle of influence or social network of a person A [19]. If
person B is d .u; v/ D 2 away from person A, he/she is “someone who knows
someone who knows person A.” Person A’s influence is further diluted as d .u; v/
increases. The exertion of influence is important both to passing on commander’s
intent and collaboration between persons. At the Application layer, a high
d .u; v/ may indicate that data originating from application A is undergoing
d transformations before it is finally usable by application B. At the System
layer, long distances may indicate a lack of communications interoperability, if
the message being sent from system A must be translated by protocol gateways
at each intermediate platform before the destination system can accept it. At
the Physical layer, a long distance between nodes may indicate a longer overall
network delay as data packets travel through the infrastructure. In all these
cases, the distance metric may be used to streamline for increased efficiency at each
layer.
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4.2.7 Number of Geodesics

Definition 16. The number of geodesics in a graph is the number of shortest paths
connecting any pairs of vertices in the graph (see page 141 of [9]).

NCW Implication ([29]) This metric is a measure of redundancy at any layer
of the NCW model. Multiple paths indicate that two nodes have several ways of
reaching each other.

4.2.8 Maximum Flow

Definition 17. In a graph G , the value of each edge can represent a capacity. Let
c.x/ denote the capacity of each edge x of a graph G . A flow in G between two
nodes s and t is a function f such that

0 � f .x/ � c .x/ for every edge x:

The maximum flow between s and t is the sum of the flow along all paths leaving s
and arriving at t (see page 143 in [9]).

NCW Implication ([29]) For every layer, maximum flow reflects the network
wide connectivity, or strength of overall connections, between two nodes.
However, the meaning of that connectivity varies for each layer. At the People
layer, maximum flow contributes to the maximum collaborative reach between
two persons. For example, if person A issues an order to all his/her neighbors and
those neighbors pass that order on, the maximum flow at person B will be the sum
of all the previous connections that order passed through before it reached person B.
The greater the value of the maximum flow, the greater the number of persons
across the entire network that received that order. For the Application, System, and
Physical layers, the maximum flow is a network-wide snapshot of how widely
information could be disseminated throughout the network.

4.2.9 Network Centrality

The concept of network centrality comes from the study of network structure
and the desire to understand how the relative placement of a node in a network
may inherently constrain or aid the node’s behavior. There are three basic facets
of centrality, or network placement: degree centrality, closeness centrality, and
betweenness centrality.
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4.2.10 Freeman Degree Centrality

As it is already stated in Definitions 7 and 8, for a vertex v in a directed graph G ,
the in-degree centrality is dC .v/ and the out-degree centrality is d� .v/.

Definitions 18.

i. For a vertex v in a directed graph G , the in-degree centrality of v is simply the
number dC .v/, while the out-degree centrality of v is simply d� .v/.

ii. For a bidirectional graph, the degree centrality of a vertex v is simply the degree
of v:

d .v/ WD dC .v/ � d� .v/ :

Remark 7. The degree centrality reflects the direct relationships of a node with
others in a graph adjacent to it (see page 167 of [9]). It measures the relative
importance of a node within the graph.

The network centrality based on degree is also a useful metric. It provides
the measure of variability of the degree centrality across the entire network as
measured against an ideal star network of the same size.

Definitions 19.

i. The Freeman degree centrality

c .vi/

is the degree centrality divided by the maximum possible degree centrality cmax,
expressed as a percentage.

ii. For a given network with vertices

v1; : : : ; vn

and maximum degree centrality cmax, the network degree centralization
measure, defined for any vertex i, is

nX

iD1
Œcmax � c .vi/�

divided by the maximum value possible

p WD max fŒcmax � c .v1/� ; : : : ; Œcmax � c .vn/�g

(see page 167 in [9]).

NCW Implication See in-degree and out-degree.
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4.2.11 Betweenness Centrality

Definition 20.

i. Let bx;z D gxyz=gxz be the proportion of all geodesics g, linking vertex x and
vertex z which pass through vertex y. The betweenness by of vertex y is the sum
of all bx;z where x, y, and z are distinct, i.e.,

by D
X

x;z

bx;z:

Betweenness is therefore a measure of the number of times vertex y occurs on
a geodesic.

ii. The betweenness centrality c .vi/ is the betweenness divided by the maximum
possible betweenness expressed as a percentage.

iii. For a given network with vertices v1; v2; : : : ; vn and maximum betweenness
centrality cmax, the network betweenness centralization measure is the sum

nX

iD1
.cmax � c .vi//

divided by the maximum value possible cmax (see page 171 of [9]).

NCW Implication ([29]) In general, for all layers, if node A has a high between-
ness centrality, it has the greater capacity to facilitate or limit interaction between
the nodes it links than other nodes. The criticality of node A is based on which other
nodes must use the path that upon which node A lies. From an NCO viewpoint,
such a node could become a roadblock or single point of failure. Based upon
this criticality, the design of the network at a layer, particularly the Applications,
Systems, and Physical Network layers, may require adjustments to address such
issues.

4.2.12 Closeness Centrality

Definition 21. The closeness centrality c .u/ of vertex u is the sum of geodesic
distances to all other nodes in graph G:

c .u/ D
 
X

v

d .u; v/

!�1
(see page 169 of [9]).

NCW Implications ([29]) In general, for all layers, closeness centrality measures
the ability for nodes to access all nodes in the network more quickly than anyone
else. The nodes with highest closeness centrality scores would have the shortest
paths to the other nodes. For the People layer, this person may be best positioned
in the network to disseminate data quickly to others, assuming the applications
layer is optimal. These persons may also be best to monitor others in the network
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most efficiently. For the Application and System layer, a node with low closeness
centrality may signal a node that has low interoperability with other applications
and systems.

4.2.13 Edge Betweenness

Definition 22. Let bi;j;k be the proportion of all geodesics linking vertex j and vertex
k which pass through edge i. The betweenness of edge i is the sum of all bi;j;k where
j and k are distinct. Betweenness is therefore a measure of the number of times an
edge occurs on a geodesic (see page 173 of [9]).

NCW Implication ([29]) In general, for all layers, an edge with a high edge
betweenness indicates a critical relationship since many paths contain this edge. For
the People layer, this measure will indicate a very important relationship, perhaps
one that has a high collaboration potential. For the Application layer, this measure
will highlight a critical interoperability link. For the System and Physical Network
layer, an edge with high edge betweenness could indicate a more heavily used
communications and infrastructure link, respectively.

4.2.14 Flow Betweenness

Definition 23. Let mi;j;k be the amount of flow between vertex j and vertex k which
must pass through i for any maximum flow. The flow betweenness of vertex i is the
sum of all mi;j;k where i, j, and k are distinct and j < k. The flow betweenness is
therefore a measure of the contribution of a vertex to all possible maximum flows
(see page 177 of [9]).

Remark 8. The flow betweenness centrality c .vi/ of a vertex i is the flow between-
ness of i divided by the total flow through all pairs of points where i is not a
source or sink. For a given network with vertices v1; v2; : : : ; vn and maximum flow
betweenness centrality cmax, the network flow betweenness centralization measure
is the sum

Pn
iD1 .cmax � c .vi// divided by the maximum value possible cmax, where

c .vi/ is the flow betweenness centrality of vertex vi (see page 177 of [9]).

NCW Implication ([29]) For all layers, the flow betweenness is a measure of the
possible workload performed by each node if all maximum flows were utilized.

4.3 Advantages of the Multi-Layer NCO Model

The advantages of this layered model are the following [29].

1. Network analysis metrics may be applied at any level, allowing each layer to
be analyzed
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2. The mapping between layers allows the traceability of cause-and-effect from
either bottom-up (i.e., effect of loss of people on the completion of the process)
or top-down (i.e., consolidation of application on the type of platform supporting
it.

3. Upholds and provides additional insight to the concepts in the NCO-CF (see
pages 63 and 64 of [9])

4. Integrally accounts for the accomplishment of commander’s intent via the
processes layer into the model. Thus, objective operational effectiveness
measures on completion of processes can be made to support assessments.

5. Allows flexibility for the audience to determine the amount of detail at each
layer. Layers, vertices, and edges may be defined to suit the level of analysis
desired.

6. When vertices and edges are specifically labeled, commanders can trace the
specific effect to a cause in the NCO system as a whole.

7. The layered model, coupled with the above metrics, produces a holistic view
of the networks involved for the successful execution of a mission objective at
the Process layer.

(a) Individual nodes/edges. For the applied metrics, nodes and edges produce
individual characteristics, allowing a detailed look at each contributor to the
network.

(b) Individual layer. The network at each layer produces characteristics which
can be collected into a view depicted in a radar chart. Each layer is then
assigned a composite network score, which is calculated by normalizing
the area under the curve of the radar graph.

(c) Network Centricity Score. The network centricity score, NC, provides a
holistic score for all the layers. For i layers, NC D Q

i Ni. The initial NC
score may be used as a baseline. When changes are made to any layer(s),
the recalculated NC score will indicate the relative merit of those changes.

(d) Mission Effectiveness. The measure of mission effectiveness resides at the
Process layer, since the lower layers support the completion of a process.
The Process layer consists of tasks (nodes) and transitions (edges). Both
the task and transition must be accounted for in this measure, because a
task may be completed but not successfully transitioned to the next task.
Therefore, the degree of mission effectiveness could be expressed as the
sum of the ratio of tasks and edges completed.

5 Security of NCOs

5.1 Vertex Pursuit Games in NCO Security Modeling

Suppose a number of intruders (or attackers) have invaded into the complex process
of a NCO with the intention to destroy or cause sabotage at the vertices of one
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or more of its five layers (Processes, People, Applications, Systems, Physical
Network). The intruders could represent viruses or hackers, or some other malicious
agents intent on avoiding capture. A set of searchers are attempting to capture
the intruders. Although placing a searcher on each vertex of a layer guarantees
the capture of the intruders, it is a more interesting (and more difficult) problem
to find the minimum number of searchers required to capture the intruders.
A motivation for minimizing the number of searchers comes from the fact that fewer
searchers require fewer resources. NCOs that require a smaller number of searchers
may be viewed as more secure than those where many searchers are needed.

In this paper, we assume that the number of intruders has been limited in number
one at each layer and that the invasion has taken place in at least one layer of the
NCO. Of course, the same approach can be applied when an intruder penetrates
every layer. Then, the solution will be given below can be applied easily to each
layer separately. However, the general problem in which several intruders are loose
on the vertices of one or more layers is open and can be the subject of other scientific
investigations.

Vertex pursuit games would be a suitable model for such simplified network
security problems with only one-layer-intruder [23, 24]. To see this, observe that
the five layers of an NCO (Processes’ layer, People’s layer, Applications’ layer,
Systems’ layer and Physical Network’s layer) may be viewed as five undirected,
simple, and finite graphs G1, G2, G3, G4, and G5. The ki NCO-searchers begin by
occupying a set of ki vertices in Gi (i D 1; 2; 3; 4; 5). The intruder in the i NCO-
layer then chooses a vertex of the Gi, and the ki NCO-searchers and intruder in the
i NCO-layer move in alternate rounds. The NCO-controllers (or NCO-supervisors)
use edges to move the ki NCO-searchers from vertex to vertex in the Gi. More than
one NCO-searcher is allowed to occupy such a vertex, and the NCO-controllers
may remain on their current vertex. The NCO-controllers know each other’s current
locations and can remember all the previous moves. The ki NCO-searchers win if
at least one of the ki NCO-searchers can eventually occupy the same vertex as the
intruder; otherwise, the intruder wins. It is understood that the whole process should
last a predetermined duration. As placing a ki NCO-searcher on each vertex of the Gi

guarantees that the ki NCO-searchers win, we may define the NCO-search number
in Gi, written

s .Gi/ ;

which is the minimum number of ki NCO-searchers needed to win on Gi. Such a
number was first introduced by Aigner and Fromme [1] who proved (among other
things) that if Gi were planar, then s .Gi/ � 3. For a survey of results on vertex
pursuit games, the reader is directed to the surveys [3, 15, 18]. While searchers and
intruders have been extensively studied in highly structured deterministic graphs
such as graph products (see [22]), the work [8] is the first to consider such vertex
pursuit games in random models of complex networks [5, 10], such as NCO.
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We will consider random NCO-graphs (in the sense of Erdös-Rényi) and
their generalizations used to model complex networks. The random NCO-graph
Gi .NiI pi/ in the i-layer (i D 1; 2; 3; 4; 5) consists of the probability space

.�i;Fi;P/ ;

where �i is the set of all NCO-graphs in the i-layer with vertex set Ni (with
jNij D ni), Fi is the family of all subsets of �i, and, for every Gi 2 �i,

P .Gi/ D pi
jE.Gi/j.1 � pi/

0

@ni

2

1

A�jE.Gi/j
:

This space may be viewed as



ni

2

�
independent coin flips, one for each pair of

vertices, where the probability of success (that is, drawing an edge) is equal to p.
Note that pi D pi.ni/ can tend to zero with ni.

All asymptotics throughout are as ni !1. We say that an event in a probability
space holds asymptotically almost surely (a.a.s.) if the probability that it holds tends
to 1 as ni goes to infinity. For p 2 .0; 1/ or p D p.ni/ tending to 0 with ni, define

Lini WD log
1

1 � pi
ni:

According to [6], the following result holds.

Theorem 1. Let i D 1; 2; 3; 4; 5 and 0 < pi < 1 be fixed. For every real � > 0

a.a.s. for Gi 2 Gi .NiI pi/

.1� �/Lini � s .Gi/ � .1C �/Lini:

The problem of determining the NCO-search number of Gi .NiI pi/ where pi D
pi .ni/ is a function of n was left open in [6]. However, it can be showed that the
NCO-search number of Gi .NiI pi/ is always bounded from above by ni

.1=2/Co(1) and
this bound is achieved for sparse random graphs. More precisely, it can be showed
that

s .Gi .NiI pi// � 160; 000pni log ni; whenever nipi � 2:1 log ni and

s .Gi .NiI pi// 
 1

.nipi/
2

ni

1
2

log log.nipi/�2
log log.nipi/ ; for nipi !1:

Since “if either nipi D ni
o(1) or nipi D ni

.1=2/Co(1) , then a.a.s. s .Gi .NiI pi// D
ni
.1=2/Co(1),” it would be natural to “assume that the NCO-searcher number of

Gi .NiI pi/ is close to
p

ni also for nipi D ni
˛Co(1), where 0 < ˛ < 1.”
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Fig. 10 The “zigzag”
function f

It can be shown that the actual behavior of s .Gi .NiI pi// is more complicated. In
fact, the function

f W .0; 1/ > R Wx 7! f .x/ D logE
�
s
�
Gi
�
NiINi

x�1���

log ni
I

f has an unexpected zigzag shape; see Fig. 10 above. Here

E
�
s
�
Gi
�
NiINi

x�1���

denotes the expected value of the NCO-searcher number for Gi .NiI pi/. A main
result is that

In the next subsection, we will show that if nipi D ni
˛Co(1), where .1=2/ < ˛ �

1, then
s .Gi .NiI pi// D .log .ni=pi// D ni

1�˛Co(1) and s
�
Gi
�
NiI ni

�.1=2/Co(1)
�� D

ni
.1=2/Co(1) a.a.s.
Recent work by Chung and Lu [10, 11] supplies an extension of the Gi .NiI pi/

random NCO-graphs to random NCO-graphs Gi
�
w.i/

�
in the i-layer with given

expected degree sequence w.i/: For example, if w.i/ follows a power law distribution
in the i-layer, then Gi

�
w.i/

�
supplies a model for NCO. We determine bounds on the

NCO-searcher number of random power law NCO-graphs as discussed in the next
subsection.

5.2 Results

We now consider the NCO-searcher number s .Gi/ of a classical random NCO-
graph Gi .NiI pi .ni// in the i-layer, when pi .ni/ is a function of ni D jNij. We will
abuse notation and refer to pi rather than pi .ni/. The main results are summarized
as follows (see also [7]).

Theorem 2 ([7]).

(1) In an NCO, suppose that i D 1; 2; 3; 4; 5 and pi 
 p.0/i where p.0/i is the smallest
pi for which
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�
p2i =40

� 
 log
��

log2ni
�
=pi
�

log ni

holds. Then a.a.s. the graph Gi 2 Gi .NiI pi/ in the i-layer of the NCO satisfies

Lini � Li
��

p�1i Lini
�
.log ni /

� � s .Gi/ � Lini � Li ..Lini/ .log ni //C 2:

(2) If
�
.2 log ni/=

p
ni
� � pi D o(1) and ! .ni/ is any function tending to infinity,

then a.a.s the graph Gi 2 Gi .NiI pi/ in the i-layer of satisfies

Lini � Li
��

p�1i Lini
�
.log ni /

� � s .Gi/ � Lini C Li .! .ni// :

By Theorem 2, we have the following corollary.

Corollary 1 ([7]). If i D 1; 2; 3; 4; 5 and pi D ni
�o.1/ < 1, then a.a.s. Gi 2

Gi .NiI pi/ satisfies

s .Gi/ D .1 C o .1//Lini:

Indeed, from part (1) it follows that if pi is a constant, then

s .Gi/ D Lini � 2Lilog ni C .1/ D .1 C o .1//Lini:

From part (2), for pi D ni
�o.1/ tending to zero with ni, the lower bound is

Lini � L
��

p�1i Lini
�
.log ni /

� D Lini � 2Li
�
.1 C o .1// p�1i log ni

�

D Lini � 2Li

�
ni

o.1/
�
D .1 C o .1//Lini:

Note that for pi D ni
�˛.1Co.1// (0 < a < .1=2/) we do not have a concentration

for s .Gi/ but the following bounds hold

.1 C o .1// .1 � 2a/Lini � s .Gi/ � .1 C o .1//Lini W

Let us finally describe results for the NCO-searcher number s .Gi/ of random

power law NCO-graphs in the i-layer (i D 1; 2; 3; 4; 5). Let w.i/ D
�

w.i/1 ; : : : ;w
.i/
`

�

be any finite sequence of ` nonnegative real numbers. We define a random NCO-
graph model in the i-layer, written Gi

�
w.i/

�
, as follows. Typically, vertices are

integers in the vertex set Ni. Each potential edge between a and b is chosen
independently with probability p.i;` /a;b D w.i/a w.i/b �i;`, where

�i;` WD 1=
X̀

�D1
w.i/� :
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We will always assume that

max�
h
w.i/�

i2
<
X̀

�D1
w.i/�

which implies that p.i;` /a;b 2 Œ0; 1Œ. The model Gi
�
w.i/

�
is referred to as random

NCO-graphs in the i-layer with given expected degree sequence w.i/. Observe that
Gi .NiI pi/may be viewed as a special case of Gi

�
w.i/

�
by taking w.i/ to be equal the

constant `-sequence .pini; pini; : : : ; pini/.
Given ˇ > 2, d > 0, and a function M D M.ni/ D o .pini/ (with M tending to

infinity with ni), let us consider the random graph in the i-layer with given expected
degrees w.i/� > 0, where

w.i/� D ci �
�1=.ˇ�1/ (1)

for � satisfying �0 � � < ni C �0. The term ci depends on i, ˇ and d, and �0
depends also on M; namely,

ci D


ˇ � 2
ˇ � 1

�
d ni

1=.ˇ�1/ and �0 D ni



d

M



ˇ � 2
ˇ � 1

� �ˇ�1
: (2)

It is not hard to show (see [10, 11]) that

Proposition 1. Asymptotically almost surely, the random NCO-graphs in the i-
layer with the expected degrees satisfying (1) and (2) follow a power law degree
distribution with exponent ˇ, average degree .1C o .1// d, and maximum degree
.1C o .1//M.

The next theorem shows that the NCO-searcher number of random power law
graphs in the i-layer is a.a.s. .ni/, and so is of much larger order than the logarithmic
NCO-searcher number of Gi .NiI pi/ random NCO-graphs in the i-layer. Hence,
these results are suggestive that in power law NCO-graphs in the i-layer, on average
a large number of NCO-searcher are needed to secure the network.

Theorem 3 ([7]). Let i D 1; 2; 3; 4; 5. For a random power law NCO-graph
Gi 2 Gi

�
w.i/

�
in the i-layer with exponent ˇ > 2 and average degree d, a.a.s.

the following hold.

(1) If X is the random variable denoting the number of isolated vertices in Gi
�
w.i/

�

and � .�; �/ is the incomplete gamma function, then

s .Gi/ 
 X D .1C o .1// ni

Z 1

0

exp



�d

ˇ � 2
ˇ � 1 x�1=.ˇ�1/

�
dx

D .1C o .1// .d .ˇ � 2//ˇ�1.ˇ � 1/2�ˇ ni �



1 � ˇ; d

ˇ � 2
ˇ � 1

�
:
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Table 6 Bonato et al. [7]: upper and lower bounds for the
NCO-searcher number of Gi .w/ for various values of d (top
row) and ˇ (left column)

10 20

2.1 0:1806=0:2940 0:5112 � 10�1=0:1265

2.7 0:4270 � 10�2=0:1895 0:4205 � 10�4=0:8261 � 10�1

(2) For u 2 �0; 1Œ, define

f .u/ WD uC
Z 1

u
exp



�d

ˇ � 2
ˇ � 1 u.ˇ�2/=.ˇ�1/ x�1=.ˇ�1/

�
dx W

Then

s .Gi/ � .1C o .1// ni min0<u<1f .u/ :

We note that integrals in the statement of Theorem 3 do not possess closed-form
solutions in general. As in [7], numerical values may be supplied for lower/upper
bounds of the NCO-searcher number of G .w/ when d D 10; 20 and ˇ D 2:1; 2:7
(Table 6) (note that the values of d D 10 and ˇ D 2:1 coincide with earlier
experimental results found in the web graph; see, for example, the survey [5]).

While Theorem 3 suggests a large number of ki NCO-searchers are needed
to secure complex networks against intruders, by item (1) it is the abundance of
isolated vertices in Gi that makes the cop number equal to .ni/. To overcome the
issue with isolated vertices, we consider restricting the movements of the cops and
robber to the subgraph induced by sufficiently high degree vertices.

Fix ˇ 2 �2; 3Œ. Define the core of the NCO-graph Gi, written

bGi;

as the subgraph induced by the set of vertices of degree at least ni
1=log log ni . Random

power law graphs with ˇ 2 �2; 3Œ are referred to as octopus graphs in [5], since the
core is dense with small diameter .log log ni/ and the overall diameter is .log ni/.
For Gi 2 Gi

�
w.i/

�
, since the expected degree of vertex � in Gi is

w.i/� D
ˇ � 2
ˇ � 1 d ni

1=.ˇ�1/��1=.ˇ�1/;

vertices with expected degree at least ni
1=log log ni have labels at most

�ƒi D


ˇ � 2
ˇ � 1 d

�ˇ�1
ni
1�.ˇ�1/=log log ni :
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The order of the core is written ƒi. By the Chernoff’s bound,

ƒi D .1C o .1// iƒi � i0 D .1C o .1// iƒi D
�

ni
1�.ˇ�1/=log log ni

�
;

provided that

log M  log ni

log log ni
:

Thus,

ni D ƒi
1C.ˇ�1/=log log niC .1/=log2logƒi : (3)

We consider the NCO-searcher number of the ki searchers of random power law
NCO-graphs in the i-layer (so the cop and robber are restricted to movements within
the core). As vertices in the core informally represent the hubs of the network, one
would suspect that the NCO-searcher number of the core is of smaller order than the
core itself. This intuition is made precise by the following theorem, which provides
a sublinear upper bound for the NCO-searcher number of the core in the i-layer.

Theorem 4 ([7]). Let i D 1; 2; 3; 4; 5. For a random power law NCO-graph Gi 2
Gi .w/ in the i-layer with power law exponent ˇ 2 �2; 3Œ a.a.s. the NCO-searcher
number of the core bGi of Gi satisfies

ƒi
.1Co.1//.3�ˇ/=log logƒi � s

�
bGi

�
� ƒi

1�.1Co.1//.ˇ�1/.3�ˇ/=.ˇ�2/log logƒi :

As the asymptotic bounds in Theorem 4 are not tight, it is an interesting open
problem to determine the asymptotic value of the cop number of the core of random
power law graphs.

6 Network Centric Strategic Formation

6.1 Distance-Based Operational Product Utility of NCO

As usual, the five layers of an NCO (Processes’ layer, People’s layer, Applications’
layer, Systems’ layer, and Physical Network’s layer) may be viewed as five
undirected, simple, and finite graphs

G1 D.N1IE1/;G2 D .N2IE2/;G3 D .N3IE3/;G4 D .N4IE4/; and G5 D .N5IE5/:

A canonical problem in NCO formation involves distance-based utilities in each
layer [12]. In this multi-layer case, there is a net benefit of

bi .k/
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to the central NCO-designer for each pair of vertices in the i-layer that are k hops
away from each other in the i-layer of NCO, where bi .�/ is a decreasing nonnegative
function with bi .1/ D 0 (i.e., vertices in the i-layer that are further away provide
smaller benefits). Let

Ni .with jNij D ni/

denote the set of NCO-vertices in the i-layer and let

Gni

be the set of all NCO-graphs on ni nodes. The outcome of the NCO-formation
process in the i-layer is a graph

Gi D .NiIEi/ 2 Gni :

An NCO-graph Gi in the i-layer has an associated (or operational value function)
ui W Gni ! R given by

ui .Gi/ D
X

a;b2NWi¤j

bi .dGi .a; b//� ci jEij; (4)

where

ci > 0

is a uniform cost for each edge in the i-layer of NCO.
With this formulation, there is an inherent trade-off faced by the NCO-designer:

adding edges to a larger number of the i-layer’s NCO-vertices yields a larger benefit
(by reducing the distances between i-layer’s NCO-vertices), but also a larger cost
invested in edges. To this end, we may introduce the following definition.

Definition 24. An NCO

G D .G1;G2;G3;G4;G5/ 2
Y

n1;n2;n3;n4;n5

.Gn1 �Gn2 �Gn3 �Gn4 �Gn5 /

is efficient with respect to the operational product utility

.u1; u2; u3; u4; u5/ ;

if it has the highest operational utility in all of its layers separately. In other words, if

ui .Gi/ 
 ui .Gi/ ; 8Gi D .NiIEi/ 2 Gni

whenever ni D 0; 1; 2; : : : and i D 1; 2; 3; 4; 5.
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A representative result in this setting is that there are only a few different kinds
of efficient NCO, depending on the relative values of the i-layer edge costs and
connection benefits: the empty NCO (for high edge costs), the star NCO (for
medium edge costs), and the fully connected NCO (for low edge costs) (see [14]
and [12]).

6.2 Two-Layer Distance-Based Operational Utilities: Best
Response NCO-Graphs

We will now design operationally compatible NCO-layer graphs. To this end we will
investigate the distance-based NCO-formation according to Shahrivar-Sundaram’s
multi-layer setting in [26]. Specifically, we will suppose Gi D .NiIEi/ is a given
graph in the i-layer of an NCO, where the edge set Ei specifies a type of relationship
between the vertices in Ni. In order to simplify the situation, we will assume that
any other j-layer graph Gj D .NjIEj/ has the same number of vertices with the
given graph Gi D .NiIEi/ , i.e., jNij D

ˇ̌
Nj

ˇ̌
. This allows us to identify the vertices

of the new graphs with the vertices of the given one:

NW D Ni � Nj; whenever j D 1; 2; 3; 4; 5:

In particular, the set of all the edges .a; b/i 2 Ei of the given i-layer graph Gi D
.NIEi/ can be imbedded into the set of all the edges .a; b/j 2 Ej of any other j-layer
graph Gj D .NIEj/. Following this, our objective consists in designing another
j-layer graph Gj D .NIEj/ on the same set of vertices N, with operational utility

uj
�
Gj=Gi

� D
X

.a;b/2Ei

bj
�
dGj .a; b/

� � cj

ˇ̌
Ej

ˇ̌
: (5)

Here dGj .a; b/ denotes the shortest path between vertices a and b in graph Gj, when
the edge .a; b/ 2 Ei is viewed as an edge lying in Ej.

This operational utility function captures the idea that only distances between
certain pairs of vertices (specified by the edge set Ei) matter in the new graph Gj, as
opposed to the distances between all pairs of vertices, as in the traditional distance
based network formation model described in Eq. (4). Indeed the traditional distance-
based operational utility function in (4) is obtained when Gi is the complete graph.

Optimal design of Ej with respect to Ei is a maximization problem for the
operational utility function in relation (5).

Definition 25. In an NCO, if G�j D
�
NIE�j

�
is the j-layer that maximizes (5), then

G�j is called the best response j-layer graph to Gi or, equivalently, the efficient
j-layer graph with respect to the operational utility function (5).
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Remark 9. It is justifiable to speculate that the best response j-layer graph G�j
relatively to the layer graph Gi is always a subgraph of Gi. This is trivially true
when Gi is the complete graph, but, in general, the conjecture fails [26].

We will now characterize certain properties of best response layer graphs. We start
with the following useful result.

Lemma 1 ([26]). In an NCO, if G�j is the best response j-layer graph to Gi, then
the number of edges in G�j is less than or equal to the number of edges in Gi, with
equality if and only if G�j D Gi.

The next lemma provides the best response layer graphs relatively to the subgraphs
of Gi.

Lemma 2 ([26]). In an NCO, suppose G�j is the best response j-layer graph to Gi

and G�j is not connected. Let G�jk D
�
Nk; E

�
jk

�
, k D 1; : : : ;K, be the components of

G�j . Let Gik D .Nk;Eik/, k D 1; : : : ;K, be the subgraphs induced by vertex sets Nk

on Gi. Then G�jk is the best response jk-layer graph to Gik for all k D 1; : : : ;K.

In general, the solution to the optimization problem (5) depends on both Gi and the
relative sizes of the operational utility function and edge cost. In the following, we
characterize the best response NCO-layer graph in certain cases.

Proposition 2 ([26]). In an NCO, suppose the graph Gi D .NIEi/ is connected. If

bj .1/ > cj;

then the best response j-layer graph to Gi is also connected.

Proof. Assume the best response j-layer graph G�j D
�
NIE�j

�
is not connected.

Then 9 .a; b/ 2 Ei such that dG�

j
.a; b/ D 1. For G�0j D

�
NIE�0j

�
with E

�0
j D

E
�
j [ f.a; b/g, uj

�
G�0j =Gi

�
� uj

�
G�j =Gi

�

 bj .1/ � cj > 0. This contradicts the

assumption that G�j is the best response j-layer graph to Gi.

The next two propositions describe the best response network with respect to a
general network in two specific cases (see [26]).

Proposition 3. In an NCO, suppose Gi D .NIEi/ be an arbitrary graph. If

bj .1/� cj > bj .2/ ;

then the best response j-layer graph to Gi is G�j D Gi.

Proof. Suppose that G�j D
�
NIE�j

�
is the best response j-layer graph and G�j ¤ Gi.

By Lemma 1, we know that the number of edges in G�j is less Gi. So, there are two
vertices a and b such that .a; b/ 2 Ei and d G�

j
.a; b/ > 1. Adding the edge .a; b/
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to E
�
j increases the utility by at least bj .1/ � cj � bj .2/ > 0 which contradicts the

assumption that G�j ¤ Gi is the best response j-layer graph. Therefore, the best
response j-layer graph must be equal to Gi.

Proposition 4. In an NCO, if

bj .1/ < cj;

then the best response j-layer graph to the i-layer graph Gi D .NIEi/ is not Gi,
unless Gi is empty.

Proof. If G�j D Gi ¤ ;, then uj

�
G�j =Gi

�
D jEij

�
bj .1/� cj

�
< 0 due to the

assumption that bj .1/ < cj. Thus it must be the case that G�j ¤ Gi, or Gi is the
empty network.

The above results lead to the following complete characterizations of the best
response i-layer graph when Gi is a tree or a forest.

Corollary 2. Suppose Gi D .NIEi/ is a tree in an NCO. If

bj .1/ > cj;

the best response j-layer graph G�j D
�
NIE�j

�
with respect to Gi is G�j D Gi.

Otherwise if

bj .1/ < cj;

G�j is the empty graph.

Proof. For bj .1/ > cj, by Proposition 1, G�j must be a connected graph, and thus
has at least jNj � 1 edges. By Lemma 1 and the fact that Gi is a tree and has jNj � 1
edges [13], G�j has exactly jNj � 1 edges, and thus G�j D Gi. If bj .1/ < cj, then, by
Proposition 3, the best response j-layer graph G�j is not equal to Gi. By Lemma 1,

G�j cannot be a connected graph and thus has components G�jk D
�
Nk; E

�
jk

�
. Denote

the induced subgraphs of Gi on vertex sets Nk by Gik D .Nk;Eik /. By Lemma 2, G�jk
is the best response jk-layer graph to Gik . If G�j is not the empty graph, jNkj > 2

for some component G�jk . Since Gi is a tree, Gik has jNkj � 1 or fewer edges. Thus,
by Lemma 1 and Proposition 3, G�jk must have fewer than jNkj � 1 edges. This
contradicts the fact that G�jk is a component, and thus G�j must be the empty graph
whenever bj .1/ < cj.

Corollary 3. Let G1 be a forest in an NCO. Then G�j D Gi is the best response
j-layer graph to Gi if

bj .1/ > cj:
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Otherwise, if

bj .1/ < cj;

the empty network is the best response to Gi.

Proof. Denote the induced subgraphs of Gi on vertex sets Nk by Gik D .Nk;Eik/ for
k D 1; : : : ;K , where K 
 2. By Lemma 1, G�j is a disconnected graph. It suffices
to show that the induced subgraphs of G�j are the same as the induced subgraphs
of Gi if bj .1/ > cj. Denote the induced subgraphs of G�j on vertex sets N` by

G�j` D
�
N`; E

�
j`

�
for ` D 1; : : : ;L . Suppose that there exists a N` consisting of

vertices from multiple Nk. Denote the induced subgraph of Gi on N` by cGik . From
Lemma 2, it follows that G�jk is the best response jk-layer graph to cGik . But we know

that cGik is a forest with more than one tree and, consequently, G�jk is not a connected
graph, contradicting our assumption that G�jk is a component of G�j . Next, we show
that N` cannot be a strict subset of Nk. By way of contradiction, suppose that N` is a
strict subset of Nk. Then there must exist an N`0 that is also a strict subset of Nk, such
that there is an edge in Ei between some vertex in N` and some vertex in N`0 (since
the graph Gik is connected). Since bj .1/ > cj, as in the proof of the Proposition 1,

adding this edge to G�j increases the operational utility uj

�
G�j =Gi

�
, contradicting

the assumption that G�j is the best response j-layer graph. Thus the vertex sets of
the components of G�j are the same as the vertex sets of the components of Gi. By
Lemma 2 and Corollary 1, each component of G�j is equal to the corresponding
component of Gi, and thus G�j D Gi.

If bj .1/ < cj, the same argument as in Corollary 1 shows that each N` is a single
vertex and as a result, the best response j-layer graph to Gi is the empty graph,
which proves the claim. In both of the above cases, G�j is equal to the union of the
best response NCO-layer graphs to each of the Gik .

6.3 Pairwise Operational Stability in NCO

In the previous section, we assumed that a centralized NCO-designer chooses the
best response NCO-layer graph to a given NCO-layer graph. In this section, we
study the satisfaction of the individual vertices in the network with the decision
of the central NCO-designer. Specifically, let Gi D .NIEi/ be a given NCO-
layer graph, and let Uj=i denote the set of all possible operational utility functions
uj
�
Gj=Gi

�
for the NCO-layer graph Gj D .NIEj/ based on the j-layer graph Gi.

As in the previous section we suppose NWDNi � Nj. Let n D jNj. For each vertex
a 2 N, define the allocation rule

Aa;j
�
Gj; Gi; uj

� W Gn �Gn �Uj=i ! R
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specifying the amount of operational utility that is allocated to the a-vertex from
the overall operational utility generated by the formed NCO-layer graph Gj. For
simplicity, we will use the notation Aa

�
Gj
�

when Gi and Uj=i are fixed.
For a given best response j-layer graph Gj and individual operational utility

functionsAa, it may be the case that a certain vertex can improve its own operational
utility by removing one or more of its incident edges in Gj, or by adding additional
edges from itself to other vertices.

As in [8], it is assumed that any vertex can remove any of its incident edges
unilaterally, but that adding an edge to another vertex requires the consent of that
vertex. This motivates the following definition of pairwise stability of a given NCO
[14]. In this definition, when Œa; b� … G, G C Œa; b� denotes the NCO-layer graph
obtained by adding an edge between a and b in G. Similarly, G � Œa; b� represents
the NCO-layer graph obtained by deleting the edge Œa; b� when Œa; b� 2 G.

Definition 26 ([14]). An NCO-layer graph G D .NIE/ is said to be pairwise
stable if

8 Œa; b� 2 E; Aa .G/ 
 Aa .G � Œa; b�/ and Aa .G/ 
 Aa .G � Œa; b�/ ;

and

8 Œa; b� … E; if Aa .GC Œa; b�/ > Aa .G/ then Aa .GC Œa; b�/ < Aa .G/ :

The graph is pairwise unstable if it is not pairwise stable.

In words, pairwise stability of an NCO-layer graph corresponds to the situation
where no vertex has any incentive to change any (one) of its connections in the
NCO-layer graph. This is a modification of the notion of a Nash equilibrium in
network formation, capturing the concept of negotiation and agreement between
the endpoints prior to forming the edge. Various versions of this notion have been
studied in the network formation literature (see, for example, [4, 12, 13]).

We now investigate the pairwise stability properties of the best response NCO-
layer graphs. Consider the allocation rule

Aa
�
Gj=Gi

� D 1

2

X

Œa;b�2Ei

bj
�
dGj .a; b/

� � cj

2
dega

�
Gj
�
; (6)

where dega

�
Gj
�

is the degree of vertex i in the NCO-layer graph Gj. Note that the
total utility in (5) satisfies

uj
�
Gj=Gi

� D
X

a2N
Aa
�
Gj=Gi

�
:

It is not hard to show that for any a; b 2 N where Gj D .NIEj/, if Œa; b� … Ej,
then it would not be beneficial for at least one of the vertices a or b to add the edge
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.a; b/ to the NCO-layer graph Gj. By way of contradiction assume that

Aa
�
Gj C Œa; b�

� 
 Aa
�
Gj
�

and Ab
�
Gj C Œa; b�

� 
 Ab
�
Gj
�

with one of the inequalities strict. Then,

Aa
�
Gj C Œa; b�

�CAb
�
Gj C Œa; b�

�
> Aa

�
Gj
�CAb

�
Gj
�
:

However, this means that uj
�
Gj C Œa; b�=Gi

�
> uj

�
Gj=Gi

�
which contradicts the

assumption that Gj is the optimal NCO-layer graph. This immediately implies that
if the empty NCO-layer graph is the best response to an NCO-layer graph, it is
pairwise stable. For a general NCO-layer graph, to conclude that the best response
NCO-layer graph G2 is pairwise stable, we also need to show that removing any
of the edges from NCO-layer graph G2 is not beneficial for any of its endpoints.
However, this is not true in general.

Proposition 5. In an NCO, if the best response j-layer graph with respect to a i-
layer graph Gi is Gj D Gi, then Gj is pairwise stable.

Proof. As argued above, adding an edge is not beneficial to any vertex. Thus it
suffices to show that removing any of the edges is unrewarding for both of its
endpoints. Since Gj D Gi, edge Œa; b� is only useful for the connection between
vertices a and b. Consequently, removing the edge Œa; b� increases the utility of Gj.
This contradicts the fact that Gj D Gi is the best response to Gi.

Remark 10. Note that the above result encompasses cases where Gi is an arbitrary
NCO-layer graph and bj .1/� cj > bj .2/ (by Proposition 2), and where Gi is a tree
(by Corollary 3).

6.4 NCO-Formation with Arbitrary Operational
Utility Functions

So far we have discussed the construction of one NCO-layer graph with respect
to another layer graph of the same NCO based on the distance operational utility
function, and how vertices of the NCO-layer graphs evaluate decisions made by the
central NCO-designer. In this section, we consider the scenario where there is no
central NCO-designer and vertices themselves establish multiple different types of
relationships with other vertices over time; each type of relationship corresponds
to a different layer (or edge set) on the set of N vertices. The operational utility of
the vertices is a function of their status in both NCO-layer graphs G1 and G2. We
will start by briefly reviewing the concept of an improving path [12] for single-layer
network formation. Note that we are not assuming distance-based utility functions
in this section and the analysis is applicable to any operational utility function.

A five layer NCO G 2 .Sn/5 is represented as G D .G1;G2;G3 ;G4;G5/, where
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Gi D .N;Ei/ .n D jNj/

is the graph of the i-layer. With this notation, G1 is the graph of the Processes’ layer,
G2 is the graph of the People’s layer, G3 is the graph of the Applications’ layer, G4 is
the graph of the Systems’ layer, and G5 is the graph of the Physical Network’s layer.
The NCO-designer may decide about the connections in different layers based on
the operational utility which is a function of connections in the NCO layers.

For any s 2 f1; 2; 3; 4; 5g, let us consider the operational utility function

v
�
Gq1 ; : : : ;Gqs

� W .Sn/s � Sn � � � � �Sn
„ ƒ‚ …

s�times

! R

that evaluates
�
Gq1 ; : : : ;Gqs

�
and assigns to it a (positive) real number.

The allocation rule in .Sn/s at a vertex a 2 N will be denoted by

Ya
�
Gq1 ; : : : ;Gqs I v

� W .Sn/s �U � Sn � � � � �Sn
„ ƒ‚ …

s�times

�U ! R:

For simplicity, we will omit the argument v and simply denote it as

Ya
�
Gq1 ; : : : ;Gqs

�
:

Definition 27. Let s 2 f1; 2; 3; 4; 5g. In an NCO, the two subsets of s-layer graphs�
Gq1 ; : : : ;Gqs

�
and

�
G0q1 ; : : : ;G

0
qs

�
are said to be adjacent if one could reach the new

set of s NCO-graphs
�
G00q1 ; : : : ;G

00
qs

�
with at most one change in one of the graphs

Gq1 ; : : : ;Gqs . In other words,

G0qr
D Gqr ˙ Œa; b� for only one r 2 f1; : : : ; sg :

We also use the notation

�
G0q1 ; : : : ;G

0
qs

� D �Gq1 ; : : : ;Gqs

�˙ Œa; b�i fori 2 f1; 2; 3; 4; 5g ;

depending on the i-layer from which we add or remove the edge Œa; b�.

Definition 28. Let s 2 f1; 2; 3; 4; 5g. In an NCO, the set of s layer graphs�
G0q1 ; : : : ;G

0
qs

�
defeats the set of s layer graphs

�
Gq1 ; : : : ;Gqs

�
if they are adjacent

and one of the following conditions holds.

1.
�
G0q1 ; : : : ;G

0
qs

� D �Gq1 ; : : : ;Gqs

�C Œa; b�i for some i 2 f1; 2; 3; 4; 5g, with
Ya

�
G0q1 ; : : : ;G

0
qs

� 
 Ya
�
Gq1 ; : : : ;Gqs

�
and Ya

�
G0q1 ; : : : ;G

0
qs

� 
 Ya�
Gq1 ; : : : ;Gqs

�
,

where at least one of the above inequalities is strict.
2.
�
G0q1 ; : : : ;G

0
qs

� D �Gq1 ; : : : ;Gqs

� � Œa; b�i for some i 2 f1; 2; 3; 4; 5g, with
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Ya
�
G0q1 ; : : : ;G

0
qs

�
> Ya

�
Gq1 ; : : : ;Gqs

�
and Ya

�
G0q1 ; : : : ;G

0
qs

�
> Ya�

Gq1 ; : : : ;Gqs

�
.

If the set of s layer graphs
�
Gq1 ; : : : ;Gqs

�
is not defeated by any other adjacent set

of five NCO-graphs, we say it is intra-layer pairwise stable.

Let us now consider a directed graph � s with the s layer graphs
�
Gq1 ; : : : ;Gqs

� 2
.Sn/s as its vertices. There is an edge from vertex

�
Gq1 ; : : : ;Gqs

�
to vertex�

G0q1 ; : : : ;G
0
qs

�
, if they are adjacent (i.e., if one could reach the new set of s layer

graphs
�
G00q1 ; : : : ;G

00
qs

�
with at most one change in one of the graphs Gq1 ; : : : ;Gqs )

and the former set of five NCO-graphs is defeated by the latter.

Definition 29. In an NCO, an improving path in � s is a chain of sets of s layer
graphs

�
G.1/

q1 ; : : : ;G
.1/
qs

�
; : : : ;

�
G.k/

q1 ; : : : ;G
.k/
qs

�
;

where there is an edge from vertex
�
G.i/

q1
; : : : ;G.i/

qs

�
to vertex

�
G.iC1/

q1
; : : : ;G.iC1/

qs

�
.

We have the following general result.

Lemma 3 ([13]). In an NCO, for any value function v and allocation rule Ya, there
exists at least one pairwise stable layer graph or a closed set of layer graphs.

Applying Lemma 3 we infer

Proposition 6. In an NCO, for any v and Ya there exists at least one intra-layer
pairwise stable graph or a closed set of s layer graphs in � s.

The following lemma relates intra-layer pairwise stable networks to stability
properties of the individual layers when the utility function has a special form. We
will use the following definition.

Definition 30 ([26]). A function f W R � R ! R is said to be increasing in its
arguments (IA) if and only if 8x; y; z; u 2 R,

1. f .x; y/ > f .z; y/” x > z.
2. f .x; y/ > f .x; u/” y > u.

Proposition 7. In an NCO, suppose that the operational utility function of each
vertex a has the form

Ya
�
Gq1 ; : : : ;Gqs

� D f
�
Y.q1/

a ; : : : ;Y.qs/
a

�

where

1. Y.qr/
a W Sn � U ! R is the operational utility function of vertex a in layer qr

and
2. f is an IA function.

Then the following statements are equivalent.

1. The layer graphs G?
q1 D

�
N;E?q1

�
, . . . , G?

qs
D �N;E?qs

�
are pairwise stable.



158 N.J. Daras

2.
�
G?

q1 ; : : : ;G
?
qs

�
is intra-layer pairwise stable.

Proof. Assume that statement 1 is true. By way of contradiction suppose that�
G?

q1
; : : : ;G?

qs

�
is not intra-layer pairwise stable. Then one of the following cases

must happen.

• 9 Œa; b� 2 E
?
qr

with r 2 f1; ; : : : ; sg such that

Ya
��

G?
q1 ; : : : ;G

?
qs

� � Œa; b�qr

�
> Ya

�
G?

q1 ; : : : ;G
?
qs

�
:

Since we are making a change in only one of the layers and the amount of utility
that vertices receive from each of their layers is a function of the edge set in only
that layer and f is an increasing in its arguments function, we can conclude that

Y.qr/
a

�
G?

qr
� Œa; b�� > Y.qr/

a

�
G?

qr

�
:

However, this is impossible due to the assumption that G�qr
is pairwise stable.

• 9 Œa; b� … E
?
qr

such that

Ya
��

G?
q1 ; : : : ;G

?
qs

�C Œa; b�qk

� 
 Ya
�
G?

q1 ; : : : ;G
?
qs

�

and

Ya
��

G?
q1 ; : : : ;G

?
qs

�C Œa; b�q`
� 
 Ya

�
G?

q1 ; : : : ;G
?
qs

�

with one of the inequalities strict. Again since the change is in only one of the
layers and using the IA property, we can conclude that

Y.qk/
a

�
G?

qk
C Œa; b�� > Y.qk/

a

�
G?

qk

�
and Y

.qk/
b

�
G?

qk
C Œa; b�� > Y

.qk/
b

�
G?

qk

�

with one of the inequalities strict. However, this contradicts the assumption that
G?

qk
is pairwise stable.

Next we show that if statement 2 is true, statement 1 is also true. Again by
way of contradiction suppose that

�
G?

q1
; : : : ;G?

qs

�
is intra-layer pairwise stable

but G?
q1

is not pairwise stable. Then one of the following cases must happen.
• 9 Œa; b� 2 E

?
q1

such that

Y.q1/
a

�
G?

q1 � Œa; b�
�
> Y.q1/

a

�
G?

q1

�
:

Then, based on the IA of f , we must have

f
�
Y.q1/

a

�
G?

q1 � Œa; b�
�
; : : : ;Y.qk/

a

�
G?

qk

��
> f

�
Y.q1/

a

�
G?

q1

�
; : : : ;Y.qk/

a

�
G?

qk

��

)
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Ya
��

G?
q1 ; : : : ;G

?
qs

� � Œa; b�q1
�
> Ya

�
G?

q1 ; : : : ;G
?
qs

�

which contradicts the intra-layer pairwise stability assumption of
�
G?

q1 ; : : :;G
?
qs

�
.

• 9 Œa; b� … E
?
q1 such that

Y.q1/
a

�
G?

q1 C Œa; b�
� 
 Y.q1/

a

�
G?

q1

�
:

and

Y
.q1/
b

�
G?

q1 C Œa; b�
�
> Y

.q1/
b

�
G?

q1

�
:

with one of the inequalities strict. Then, using the IA property, we can conclude
that

Y.q1/
a

��
G?

q1
; : : : ;G?

qs

�C Œa; b�q1
� 
 Y.q1/

a

�
G?

q1
; : : : ;G?

qs

�

and

Y
.q1/
b

��
G?

q1 ; : : : ;G
?
qs

�C Œa; b�q1
� 
 Y

.q1/
b

�
G?

q1 ; : : : ;G
?
qs

�

with one of the inequalities strict, which again contradicts the intra-layer
pairwise stability assumption of

�
G?

q1
; : : : ;G?

qs

�
.

The same holds for G?
q2
; : : : ;G?

qs
and therefore the proof is complete.
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A Bio-Inspired Hybrid Artificial Intelligence
Framework for Cyber Security

Konstantinos Demertzis and Lazaros Iliadis

Abstract Confidentiality, Integrity, and Availability of Military information is a
crucial and critical factor for a country’s national security. The security of military
information systems (MIS) and Networks (MNET) is a subject of continuous
research and design, due to the fact that they manage, store, manipulate, and
distribute the information. This study presents a bio-inspired hybrid artificial
intelligence framework for cyber security (bioHAIFCS). This framework combines
timely and bio-inspired Machine Learning methods suitable for the protection of
critical network applications, namely military information systems, applications and
networks. More specifically, it combines (a) the hybrid evolving spiking anomaly
detection model (HESADM), which is used in order to prevent in time and accu-
rately, cyber-attacks, which cannot be avoided by using passive security measures,
namely: Firewalls, (b) the evolving computational intelligence system for malware
detection (ECISMD) that spots and isolates malwares located in packed executables
untraceable by antivirus, and (c) the evolutionary prevention system from SQL
injection (ePSSQLI) attacks, which early and smartly forecasts the attacks using
SQL Injections methods.

1 Introduction

Application of high protection level measures by the army, in order to secure its
information systems (IS), can offer a serious advantage in the evolution of a crisis,
in tactical and operational level. It is a fact that the necessity to ensure secrecy
of military IS and Confidentiality of information control and management systems
(C4I) is a critical stabilization factor between opposite forces and a matter of honor
for each side. The opposite can have serious consequences difficult to estimate in
terms of material or moral cost. Thus, the development of network security systems
following military specifications and demands is absolutely necessary. They could
combine smart techniques capable of preventing attacks of zero-day nature.
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The most popular attack techniques aiming to gain access in important or
sensitive data use one of the methods below:

• Direct invasion to the system with attacks of DoS,
• Dispersion and installation of malware software
• Exploitation of potential weaknesses in the security of the system and mainly

in the security of the network applications with attacks of SQL Injections type.

In the case of direct attack in a network, the usual security measures are the
installation of a Firewall, in order to prevent non-authorized access in certain
services and the installation of an intrusion detection system (IDS). The IDS are
network and event monitoring and analysis systems. The target is to spot indications
of potential intrusion efforts or efforts aiming to deviate the security mechanisms by
external non-authorized users or users with limited authorization. The protection in
this case is based on passive measures that use statistical analysis of events. There
are network based (NIDS) and host based (HIDS) IDSs. Some of them are looking
for specific signatures of known threats, whereas others are spotting anomalies by
comparing traffic patterns against a baseline [1].

There are three basic approaches for designing and building IDS, namely: the
Statistical, the Knowledge based, and the Machine Learning one which has been
employed in this research effort. The concept of the statistical-based systems (SBID)
is simple: it determines “normal” network activity and then all traffic that falls
outside the scope of normal is flagged as anomalous (abnormal). These systems
attempt to learn network traffic patterns on a particular network. This process of
traffic analysis continues as long as the system is active, so, assuming network
traffic patterns remain constant, the longer the system is on the network, the more
accurate it becomes. The knowledge based intrusion detection systems (KBIDES)
classify the data vectors based on a carefully designed Rule Set or they use models
obtained from past experience in a heuristic mode. The Machine Learning approach
automates the analysis of the data vectors, and they result in the implementation of
systems that have the capacity to improve their performance as time passes.

This research effort aims in the development and application of an innovative
hybrid evolving spiking anomaly detection model (HESADM) [2], which employs
classification performed by evolving spiking neural networks (eSNN), in order to
properly label a potential anomaly (PAN) in the net. On the other hand, it uses a
multi-layer feed forward (MLFF) ANN to classify the exact type of the intrusion.

The second attack approach is the dispersion and installation of malwares which
are untraceable by the usual antivirus systems. Malware is a kind of software
used to disrupt computer operation, gather sensitive information, or gain access to
private computer systems. To identify already known malware, existing commercial
security applications search a computer’s binary files for predefined signatures.
However, obfuscated viruses use software packers to protect their internal code
and data structures from detection. Antivirus scanners act like file filters, inspecting
suspicious file loading and storing activities. Malicious programs with obfuscated
content can bypass antivirus scanners. Eventually, they are unpacked and executed
in the victim’s system [3].
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Code packing is the dominant technique used to obfuscate malicious code, to
hinder an analyst’s understanding of the malware’s intent and to evade detection
by Antivirus systems. Malware developers transform executable code into data, at
a post-processing stage in the whole implementation cycle. This transformation
uses static analysis and it may perform compression or encryption, hindering an
analyst’s understanding. At runtime, the data or hidden code is restored to its
original executable form, through dynamic code generation using an associated
restoration routine. Execution then resumes as normal to the original entry point,
which marks the entry point of the original malware, before the code packing
transformation is applied. Finally, execution becomes transparent, as both code
packing and restoration have been performed. After the restoration of one packing,
control may transfer another packed layer. The original entry point is derived from
the last such layer [4].

Code packing provides compression and software protection of the intellectual
properties contained in a program. It is not necessarily advantageous to flag all
occurrences of code packing as indicative of malicious activity. It is advisable to
determine if the packed contents are malicious, rather than identifying only the fact
that unknown contents are packed. Unpacking is the process of stripping the packer
layers off packed executables to restore the original contents in order to inspect
and analyze the original executable signatures. Universal unpackers, introduce a
high computational overhead, low convergence speed, and computational resource
requirements. The processing time may vary from tens of seconds to several minutes
per executable. This hinders virus detection significantly, since without a priori
knowledge on the nature of the executables to be checked for malicious code all
of them would need to be run through the unpacker. Scanning large collections of
executables may take hours or days. This research effort aims in the development
and application of an innovative, fast, and accurate evolving computational intelli-
gence system for malware detection (ECISMD) [5] approach for the identification
of packed executables and detection of malware by employing eSNN. A multilayer
evolving classification function (ECF) model has been employed for malware
detection, which is based on fuzzy clustering. Finally, an evolutionary genetic
algorithm (GA) has been applied to optimize the ECF network and to perform
feature extraction on the training and testing datasets. A main advantage of ECISMD
is the fact that it reduces overhead and overall analysis time, by classifying packed
or not packed executables.

The third way widely used to overcome the security measures by exploiting
the gaps in the control systems is the SQL injections one. This approach tries to
exploit vulnerabilities in the security of network applications. SQL injection is a
code injection technique, used to attack data driven applications, in which malicious
SQL statements area SQL injection attack consists of insertion or “injection” of a
SQL query via the input data from the client to the application. A successful SQL
injection exploit can read sensitive data from the database, modify database data
(Insert/Update/Delete), execute administration operations on the database (such as
shutdown the DBMS), recover the content of a given file present on the DBMS file
system, and in some cases issue commands to the operating system. SQL injection



164 K. Demertzis and L. Iliadis

attacks are a type of injection attack, in which SQL commands are injected into
data-plane input in order to effect the execution of predefined SQL commands [6].
This study proposes a bio-inspired Artificial Intelligence model named evolutionary
prevention system from SQL injection (ePSSQLI) Αttacks. It combines the use
of MLFF ANN with optimization techniques of genetic algorithms (evolutionary
optimization), in order to handle the potential intrusion attacks, based on SQL
injection type.

2 Literature Review

Artificial Intelligence and data mining algorithms have been applied as intrusion
detection methods in finding new intrusion patterns [7–10], such as clustering
(unsupervised learning) [11–13] or classification (supervised learning) [14–17].
Also, a few hybrid techniques were proposed like Neural Networks with Genetic
Algorithms [18] or Radial Based Function Neural Networks with Multilayer
Perceptron [19, 20]. Besides, other very effective methods exist such as Sequential
Detection [21], State Space [22], Spectral Methods [23], and combinations of those.

Dynamic unpacking approaches monitor the execution of a binary in order
to extract its actual code. These methods execute the samples inside an isolated
environment that can be deployed as a virtual machine or an emulator [24].
The execution is traced and stopped when certain events occur. Several dynamic
unpackers use heuristics to determine the exact point where the execution jumps
from the unpacking routine to the original code. Once this point is reached, the
memory content is bulk to obtain an unpacked version of the malicious code. Other
approaches for generic dynamic unpacking have been proposed that are not highly
based on heuristics such as PolyUnpack [25] Renovo [26], OmniUnpack [27], or
Eureka [28].

However, these methods are very tedious and time consuming, and cannot
counter conditional execution of unpacking routines, a technique used for anti-
debugging and anti-monitoring defense [29]. Another common approach is using
the structural information of the executables to train supervised machine-learning
classifiers to determine if the sample under analysis is packed or if it is suspicious
of containing malicious code (e.g., PEMiner [30], PE-Probe [31], and Perdisci et al.
[32]). These approaches that use this method for filtering, previous to dynamic
unpacking, are computationally more expensive and time consuming and less
effective to analyze large sets of mixed malicious and benign executables [33–35].

Artificial Intelligence and data mining algorithms have been applied as malicious
detection methods and for the discovery of new malware patterns [36]. In the
research effort of Babar and Khalid [29], boosted decision trees working on n-grams
are found to produce better results than Naive Bayes classifiers and support vector
machines (SVMs). Ye et al. [37] use automatic extraction of association rules
on Windows API execution sequences to distinguish between malware and clean
program files. Chandrasekaran et al. [38] used association rules, on honeytokens
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of known parameters. Chouchan et al. [39] used Hidden Markov Models to detect
whether a given program file is (or is not) a variant of a previous program file. Stamp
et al. [40] employ profile hidden Markov Models, which have been previously used
for sequence analysis in bioinformatics. Artificial Neural Networks (ANN) to detect
polymorphic malware is explored in [41]. Yoo [42] employs Self-Organizing Maps
to identify patterns of behavior for viruses in Windows executable files. These
methods have low accuracy as a consequence, packed benign executables would
likely cause false alarm, whereas malware may remain undetected.

Vulnerability pattern approach is used by Livshits et al. [43], they propose static
analysis approach for finding the SQL injection attack. The main issue of this
method is that it cannot detect the SQL injection attack patterns that are not known
beforehand. Also, AMNESIA mechanism to prevent SQL injection at run time is
proposed by Halfond et al. [44]. It uses a model based approach to detect illegal
queries before it sends for execution to database. The mechanism which filters
the SQL Injection in a static manner is proposed by Buehrer et al. [45]. The SQL
statements by comparing the parse tree of a SQL statement before and after input
and only allowing to SQL statements to execute if the parse trees match. Marco
Cova et al. [46] proposed a Swaddler, which analyzes the internal state of a web
application and learns the relationships between the application’s critical execution
points and the application’s internal state.

There exists machine learning related works in the wild [47–51]. In this work
we focus on the detection at the spot between application and database, detecting
anomalous SQL statements (the SQL statement returns a result set of records from
one or more tables), which are malicious in the sense that they include parts of
injected code or differ from the set of queries usually issued within an application.
Valeur et al. [52] proposed the use of an IDS based on a machine learning technique
which identifies queries that do not match multiple models of typical queries at
runtime, including string model and data type-independent model. It is trained by
a set of typical application queries, and the quality depends on the quality of the
training set. Wang et al. presented a novel method for learning SQL statements
and apply machine learning techniques, such as one class classification, in order to
detect malicious behavior between the database and application [53]. The approach
incorporates the tree structure of SQL queries as well as input parameter and
query value similarity as characteristic to distinguish malicious from benign queries.
Rawat et al. use SVM for classification and prediction of SQL-Injection attack [54].
This work contains the idea that compares SQL query strings and blocks suspicious
SQL-query and passes original SQL-query. Huang et al. present a new method
to prevent SQLI attack based on machine learning [55]. This approach identifies
SQL injection codes by HTTP parameters’ attributes and the Bayesian classifier.
This technique depends on the choices of patterns’ attributes and the quality of the
training set. They choose two values as attributes of patterns, and invent a way to
generate the real-world patterns automatically. In addition Huang et al. designed
a system based on machine learning for preventing SQL injection attack, which
utilizes pattern classifiers to detect injection attacks and protect web applications
[56]. The system captures parameters of HTTP requests, and converts them into
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numeric attributes. Numeric attributes include the length of parameters and the
number of keywords of parameters. Using these attributes, the system classifies
the parameters by Bayesian classifier for judging whether parameters are injection
patterns.

3 Methodologies Comprising the bioHAIFCS

The bioHAIFCS uses three biologically inspired Artificial Intelligence methods,
namely: eSNN, MLFF, and ECF and their corresponding optimization approach
with GA, in order to create a high level security framework. It acts in a smart
and preemptive manner to spot the threats by making the minimum consumption of
resources. These methods are presented below:

3.1 Evolving Spiking Neural Networks

The eSNN that has been developed and discussed herein is based on the “Thorpe”
neural model [57] which intensifies the importance of the spikes taking place in
an earlier moment, whereas the neural plasticity is used to monitor the learning
algorithm by using one-pass learning. In order to classify real-valued data sets, each
data sample is mapped into a sequence of spikes using the rank order population
encoding (ROPE) technique [58, 59]. The topology of the developed eSNN is strictly
feed-forward, organized in several layers and weight modification occurs on the
connections between the neurons of the existing layers.

The details of eSNN architecture described below:

3.1.1 Rank Order Population Encoding

The ROPE method [58, 59] is an alternative to conventional rate coding scheme
that uses the order of firing neuron’s inputs to encode information which allows
the mapping of vectors of real-valued elements into a sequence of spikes. Neurons
organized into neuronal maps which share the same synaptic weights. Whenever
the synaptic weight of a neuron is modified, the same modification is applied to the
entire population of neurons within the map. Inhibition is also present between each
neuronal map. If a neuron spikes, it inhibits all the neurons in the other maps with
neighboring positions. This prevents all the neurons from learning the same pattern.
When propagating new information, neuronal activity is initially reset to zero. Then,
as the propagation goes on, neurons are progressively desensitized each time one of
their inputs fires, thus making neuronal responses dependent upon the relative order
of firing of the neuron’s afferents. More precisely, let AD {a1, a2, a3 . . . am-1, am} be
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the ensemble of afferent neurons of neuron i and W ={w1,i, w2,i, w3,i. . . wm-1,i, wm,i}
the weights of the m corresponding connections; let mod 2 [0,1] be an arbitrary
modulation factor. The activation level of neuron i at time t is given by Eq. (1):

Activation(i,t)D
X

j2[1,m]

modorder(aj) wj,i (1)

where order(aj) is the firing rank of neuron aj in the ensemble A. By convention,
order(aj)DC8 if a neuron aj is not fired at time t, sets the corresponding term in
the above sum to zero. This kind of desensitization function could correspond to
a fast shunting inhibition mechanism. Whenever a neuron reaches its threshold, it
spikes and inhibits neurons at equivalent positions in the other maps so that only
one neuron will respond at any particular location. Every spike also triggers a time
based Hebbian-like learning rule that adjusts the synaptic weights. Let te be the date
of arrival of the excitatory postsynaptic potential (EPSP) at synapse of weight W
and ta the date of discharge of the postsynaptic neuron.

if te < ta then dW = a(1-W)e-|�o|� (2)

else dW = -aWe-|�o|�

where
o is the difference between the date of the EPSP and the date of the neuronal
discharge (expressed in terms of order of arrival instead of time), as is a constant that
controls the amount of synaptic potentiation and depression [58].

ROPE technique with receptive fields allows the encoding of continuous values
by using a collection of neurons with overlapping sensitivity profiles [60]. Each
input variable is encoded independently by a group of one-dimensional receptive
fields (Fig. 2). For a variable n, an interval [ In

min; In
max] is defined. The Gaussian

receptive field of neuron i is given by its center �i:

�i = In
min +

2i-3

2

In
max - In

min

M-2
(3)

The width � is given by Eq. (4):

� =
1

ˇ

In
max - In

min

M-2
(4)

where 1�ˇ �2 and the parameter ˇ directly controls the width of each Gaussian
receptive field.

Figure 1 depicts an example encoding of a single variable. For the diagram
(ˇD 2) the input interval [ In

min, In
max] was set to [�1.5, 1.5] and MD5 receptive

fields were used. For an input value vD0.75 (thick straight line in left figure) the
intersection points with each Gaussian is computed (triangles), which are in turn
translated into spike time delays (right figure).
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Fig. 1 The evolving spiking
neural network (eSNN)
architecture [23]
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Fig. 2 Population encoding based on Gaussian receptive fields [23]

3.1.2 One-Pass Learning

The aim of the one-pass learning method is to create a repository of trained output
neurons during the presentation of training samples. After presenting a certain input
sample to the network, the corresponding spike train is propagated through the
SANN which may result in the firing of certain output neurons. It is also possible
that no output neuron is activated and in this case the network remains silent and
the classification result is undetermined. If one or more output neurons have emitted
a spike, the neuron with the shortest response time among all activated output
neurons is determined. The label of this neuron represents the classification result
for the presented input sample. The procedure is described in detail in the following
Algorithm 1 [23, 60] (Fig. 2).

For each training sample i with class label l 2 L a new output neuron is created
and fully connected to the previous layer of neurons resulting in a real-valued weight
vector w.i/with w.i/

j 2R denoting the connection between the pre-synaptic neuron j
and the created neuron i. In the next step, the input spikes are propagated through
the network and the value of weight w.i/

j is computed according to the order of spike

transmission through a synapse j: w(i)
j =(ml) order(j), 8jjj pre-synaptic neuron of i.

Parameter ml is the modulation factor of the Thorpe neural model. Differently
labeled output neurons may have different modulation factors ml. Function order(j)
represents the rank of the spike emitted by neuron j. The firing threshold �.i/ of the
created neuron I is defined as the fraction cl 2 R, 0 < cl < 1, of the maximal possible
potential u.i/max :
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Algorithm 1 Training an Evolving Spiking Neural Network (eSNN) [23]
Require: ml, sl, cl for a class label l 2 L
1: initialize neuron repository Rl = {}
2: for all samples X.i/ belonging to class l do
3: w(i)

j  (ml) order(j), 8 j | j pre-synaptic neuron of i

4: u(i)
max 

P
j w(i)

j (ml) order(j)

5: � (i) clu(i)
max

6: if min(d( w.i/, w.k/)) < sl, w.k/ 2Rl then
7: w(k) merge w(i) and w(k) according to Eq. (6)
8: � (k) merge � (i) and � (k) according to Eq. (7)
9: else
10: Rl Rl [\\{w(i)\\}
11: end if
12: end for

�.i/  clu
.i/
max (5)

u(i)
max  

X

j

w(i)
j (ml)order(j) (6)

The fraction cl is a parameter of the model and for each class label l 2 L
a different fraction can be specified. The weight vector of the trained neuron
is then compared to the weights corresponding to neurons already stored in the
repository. Two neurons are considered too “similar” if the minimal Euclidean
distance between their weight vectors is smaller than a specified similarity threshold
sl (the eSNN object uses optimal similarity threshold sD0.6). All parameters
modulation factor ml, similarity threshold sl, PSP fraction cl, l 2 L of ESNN which
were included in this search space, are optimized according to the versatile quantum-
inspired evolutionary algorithm (vQEA) [61]. In this case, both the firing thresholds
and the weight vectors are merged according to Eqs. (7) and (8):

w(k)
j  

w(i)
j +Nw(k)

j

1+N
;8j | j pre-synaptic neuron of i (7)

�.k/  �.i/+N�.k/

1+N
(8)

It must be clarified that integer N denotes the number of samples previously used
to update neuron k. The merging is implemented as the (running) average of the
connection weights, and the (running) average of the two firing thresholds. After
the merging, the trained neuron i is discarded and the next sample processed. If no
other neuron in the repository is similar to the trained neuron i, the neuron i is added
to the repository as a new output neuron.
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3.2 Multilayer Feed-Forward Neural Network

Artificial neural networks are biologically inspired classification algorithms that
consist of an input layer of nodes, one or more hidden layers, and an output layer.
Each node in a layer has one corresponding node in the next layer, thus creating the
stacking effect [62]. Artificial neural networks are the very versatile tools and have
been widely used to tackle many issues [63–67].

Feed-forward neural networks (FNN) are one of the popular structures among
artificial neural networks. These efficient networks are widely used to solve complex
problems by modeling complex input–output relationships [68, 69]. Each neuron in
one layer has directed connections to the neurons of the subsequent layer. In many
applications the units of these networks apply a sigmoid function as an activation
function.

The universal approximation theorem for neural networks states that every
continuous function that maps intervals of real numbers to some output interval
of real numbers can be approximated arbitrarily closely by a multi-layer perceptron
with just one hidden layer. This result holds only for restricted classes of activation
functions, e.g. for the sigmoidal functions.

Feed-forward networks often have one or more hidden layers of sigmoid neurons
followed by an output layer of linear neurons. Multiple layers of neurons with
nonlinear transfer functions allow the network to learn nonlinear relationships
between input and output vectors. The linear output layer is most often used for
function fitting (or nonlinear regression) problems.

Multi-layer networks use a variety of learning techniques, the most popular being
back-propagation. Here, the output values are compared with the correct answer to
compute the value of some predefined error-function. By various techniques, the
error is then fed back through the network. Using this information, the algorithm
adjusts the weights of each connection in order to reduce the value of the error
function by some small amount. After repeating this process for a sufficiently large
number of training cycles, the network will usually converge to some state where
the error of the calculations is small. In this case, one would say that the network
has learned a certain target function. To adjust weights properly, one applies a
general method for nonlinear optimization that is called gradient descent. For this,
the derivative of the error function with respect to the network weights is calculated,
and the weights are then changed such that the error decreases (thus going downhill
on the surface of the error function).

3.3 Evolving Connectionist Systems

Evolving connectionist systems (ECOS) [70] are multi-modular, connectionist ar-
chitectures that facilitate modeling of evolving processes and knowledge discovery
[60]. An ECOS may consist of many evolving connectionist modules. An ECOS



A Bio-Inspired Hybrid Artificial Intelligence Framework for Cyber Security 171

Input Hidden Layer Output Layer

a1= tansig (IW1,1p1 +b1) a2= purelin (LW2,1a1 +b2) 

P1

b1

2 4 3

1 1

4 x 1

4 x 1

4 x 1
3 x 4

3 x 1

3 x 1

3 x 1
4 x 2

2 x 1
IW1,1 LW2,1

n1

a1

n2

a3-y

b2

Fig. 3 Architecture of the multilayer feed-forward artificial neural network (http://www.
mathworks.com/)

is a neural network that operates continuously in time and adapts its structure and
functionality through a continuous interaction with the environment and with other
systems according to:

• a set of parameters that are subject to change during the system operation;
• an incoming continuous flow of information with unknown distribution;
• a goal (rational) criterion (also subject to modification) that is applied to

optimize the performance of the system over time.

The ECOS evolve in an open space, using constructive processes, not necessarily of
fixed dimensions. Moreover, they learn in on-line incremental fast mode, possibly
through one pass of data propagation. Life-long learning is a main attribute of this
procedure. They operate as both individual systems and as part of an evolutionary
population of such systems. They learn locally and locally partition the problem
space, thus allowing for a fast adaptation and tracing processes over time. They
facilitate different kinds of knowledge representation and extraction, mostly—
memory based statistical and symbolic knowledge [60, 71, 72] (Fig. 3).

ECOS are connectionist structures that evolve their nodes (neurons) and connec-
tions through supervised incremental learning from input–output data pairs.

Their architecture comprises of five layers: input nodes, representing input
variables; input fuzzy membership nodes, representing the membership degrees
of the input values to each of the defined membership functions; rule nodes,
representing cluster centers of samples in the problem space and their associated
output function; output fuzzy membership nodes, representing the membership
degrees to which the output values belong to defined membership functions; and
output nodes, representing output variables [60, 71, 72].

ECOS learn local models from data through clustering of the data and associating
a local output function for each cluster. Rule nodes evolve from the input data
stream to cluster the data, and the first layer W1 connection weights of these nodes
represent the coordinates of the nodes in the input space. The second layer W2
represents the local models (functions) allocated to each of the clusters.

http://www.mathworks.com/
http://www.mathworks.com/
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Clusters of data are created based on similarity between data samples either in
the input space or in both the input space and the output space. Samples that have
a distance to an existing cluster center (rule node) N of less than a threshold Rmax
are allocated to the same cluster Nc. Samples that do not fit into existing clusters
form new clusters as they arrive in time. Cluster centers are continuously adjusted
according to new data samples and new clusters are created incrementally. The
similarity between a sample S D (x, y) and an existing rule node N D (W1, W2)
can be measured in different ways, the most popular of them being the normalized
Euclidean distance:

d.S;N/ D 1

n

"
nX

i=1

|xi-W1N|2
# 1
2

(9)

where n is the number of the input variables.
ECOS learn from data and automatically create a local output function for each

cluster, the function being represented in the W2 connection weights, thus creating
local models. Each model is represented as a local rule with an antecedent—the
cluster area, and a consequent—the output function applied to data in this cluster.

The following is a corresponding example of such a local Rule:

• IF (data is in cluster Nc), THEN (the output is calculated with a function Fc)
• In the case of DENFIS [32], first order local fuzzy rule models are derived

incrementally from data. The following rule is a characteristic example:
• IF (the value of x1 is in the area defined by a Gaussian function with a center at

0.7 and a standard deviation of 0.1) AND (the value of x2 is in the area defined
by a Gaussian function with a center at 0.5 and a deviation of 0.2), THEN (the
output value y is calculated with the use of the formula y= 3.7 + 0.5x1�4.2x2).

3.3.1 Evolving Classification Function

ECF, a special case of ECOS used for pattern classification, generates rule nodes
in an N dimensional input space and associate them with classes. Each rule node is
defined with its center, radius (influence field), and the class it belongs to. A learning
mechanism is designed in such a way that the nodes can be generated.

The ECF model used here is a connectionist system for classification tasks
that consists of four layers of neurons (nodes). The first layer represents the
input variables; the second layer—the fuzzy membership functions; the third layer
represents clusters centers (prototypes) of data in the input space; and the fourth
layer represents classes [60, 70–72].
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3.4 Genetic Algorithm

The genetic algorithm (GA) is a method for solving both constrained and
unconstrained optimization problems that is based on natural selection, the
process that drives biological evolution (http://www.mathworks.com/). The GA
repeatedly modifies a population of individual solutions. At each step, the GA
selects individuals at random from the current population to be parents and uses
them to produce the children for the next generation. Over successive generations,
the population “evolves” toward an optimal solution. You can apply the GA to
solve a variety of optimization problems that are not well suited for standard
optimization algorithms, including problems in which the objective function is
discontinuous, nondifferentiable, stochastic, or highly nonlinear. Also the GA can
address problems of mixed integer programming, where some components are
restricted to be integer-valued.

The GA uses three main types of rules at each step to create the next generation
from the current population:

• Selection rules select the individuals, called parents, that contribute to the
population at the next generation.

• Crossover rules combine two parents to form children for the next generation.
• Mutation rules apply random changes to individual parents to form children.

The GA differs from a classical, derivative-based, optimization algorithm in two
main ways, as follows:

• Classical Algorithm

– Generates a single point at each iteration. The sequence of points
approaches an optimal solution.

– Selects the next point in the sequence by a deterministic computation.

• Genetic Algorithm

– Generates a population of points at each iteration. The best point in the
population approaches an optimal solution.

– Selects the next population by computation which uses random number
generators.

3.4.1 Genetic Algorithm for Offline ECF Optimization

A GA is applied to a population of solutions to a problem in order to “breed”
better solutions. Solutions, in this case the parameters of the ECF network, are
encoded in a binary string and each solution is given a score depending on how
well it performs. Good solutions are selected more frequently for breeding, and are
subjected to crossover and mutation (loosely analogous to those operations found
in biological systems). After several generations, the population of solutions should
converge on a “good” solution.

http://www.mathworks.com/
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Given that the ECF system is a neural network that operates continuously in
time and adapts its structure and functionality through a continuous interaction with
the environment and with other systems according to a set of parameters P that
are subject to change during the system operation; an incoming continuous flow of
information with unknown distribution; a goal (rationale) criteria (also subject to
modification) that is applied to optimize the performance of the system over time.

The set of parameters P of an ECOS can be regarded as a chromosome of “genes”
of the evolving system and evolutionary computation can be applied for their
optimization. The GA algorithm for offline ECF Optimization runs over generations
of populations and standard operations are applied such as: binary encoding of
the genes (parameters); roulette wheel selection criterion; multi-point crossover
operation for crossover. Genes are complex structures and they cause dynamic
transformation of one substance into another during the whole life of an individual,
as well as the life of the human population over many generations.

Micro-array gene expression data can be used to evolve the ECF with inputs
being the expression level of a certain number of selected genes and the outputs
being the classes. After the ECF is trained on gene expression rules can be
extracted that represent [73]. The ECF model and the GA algorithm for Offline
ECF Optimization are parts from NeuCom software (http://www.kedri.aut.ac.nz/)
which is a Neuro-Computing Decision Support Environment, based on the theory
of ECOS [60, 70–72].

4 Description of the Proposed Hybrid Framework

Considering that the aim of the partial proposed systems is to carry out acts in a
common environment, the architecture of the bioHAIFC can be simulated by a dis-
tributed multi-agent AI system. The agents are the three proposed Machine Learning
systems, namely: (HESADM, ECISMD and ePSSQLI). These systems dynamically
control the predefined sectors with a potential threat [74]. The synchronization of
the Agents is achieved either with negotiation or with cooperation, as none of them
has the full information package, there is no central control in the system, the data
are distributed and the calculations are done in an asynchronous manner. The Agent
communication and information exchange is done by a hybrid system of temporal
programming in order to phase (in an optimal way) the potential contradiction of
intensions and contradiction in the management of resources, based on priorities
related to the extent of the threat and risk.

The results of the characterization of a threat are sent to the administrator of
the network in a form of logs. The administrator tries to take necessary prevention
actions in order to avoid the risk. Also the framework automates the potential direct
termination of the TCP connection operation with the attacker for higher security
and control (e.g., tcpkill host 192.168.1.2 or tcpkill host host12.blackhut.com).

The analytical description of the partial systems of the bioHAIFCS is described
below:

http://www.kedri.aut.ac.nz/
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4.1 Hybrid Evolving Spiking Anomaly Detection Model

The HESADM methodology uses eSNN classification approach and Multi-Layer
Feed Forward ANN in order to classify the exact type of the intrusion or anomaly
in the network with minimum computational power. The dataset which used and the
general algorithm are described in detail below:

4.1.1 Data

The KDD Cup 1999 data set [75] was used to test the herein proposed approach.
This data set was created in the LincolnLab of MIT and it is the most popular free
data set used in evaluation of IDS. It contains recordings of the total network flow of
a local network which was installed in the Lincoln Labs and it simulates the military
network of the USA air force. The method of events’ analysis includes a connection
between a source IP address and a destination IP, during which a sequence of TCP
packages is exchanged, by using a specific protocol and a strictly defined operation
time.

The KDD Cup 1999 data includes 41 characteristics which are organized in
the following four basic categories: Content Features, Traffic Features, Time-based
Traffic Features, Host-based Traffic Features. Also the attacks are divided into four
categories, namely: DoS, r2l, u2r, and probe.

Using the eSNN Traf_Red_Full.data In the first classification case, all (41)
features were used. The data were classified as normal or abnormal. The dataset
Traf_Red_Full.data has 145,738 records and the 75 % (109,303 rec.) used as
train_data and the 25 % (36,435 rec.) used as test_data.

Using the SNN normalFull.data In the second classification case, the relevant
normal features comprising of 11 features were used. The data were classified as
normal or abnormal. The dataset normalFull.data has 145,738 records and the 75 %
(109,303 rec.) were used as train_data and the 25 % (36,435 rec.) as test_data.

4.1.2 Algorithm

• Step 1

We choose to use the traffic oriented data, which is related to only nine features.
We import the required classes that use the variable Population Encoding. This
variable controls the conversion of real-valued data samples into the corresponding
time spikes. The encoding is performed with 20 Gaussian receptive fields per
variable (Gaussian width parameter betaD1.5). We also normalize the data to the
interval [�1,1] and so we indicate the coverage of the Gaussians using i_min and
i_max. For the normalization processing the following function 10 was used:
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x1norm D 2�



x1 � xmin

xmax � xmin

�
� 1; x2R (10)

The data is classified into two classes namely: class 0 which contains the normal
results and class 1 which comprises of the abnormal ones (DoS, r2l, u2r and probe).
The eSNN object using modulation factor mD0.9, firing threshold ratio cD0.7 and
similarity threshold sD0.6 in agreement with the vQEA algorithm [23, 61].

• Step 2

We train the eSNN with 75 % of the dataset vectors (train_data) and we test the
eSNN with 25 % of the dataset vectors (test_data). The training process is described
in Algorithm 1.

• Step 3

If the result of the classification is normal, the eSNN classification process is
repeated but this time the relevant normal data vectors are used. These vectors are
comprised of 11 features [9]. If the result is normal, then the process is terminated. If
the result of the classification is abnormal, a two-layer feed-forward neural network
with sigmoid function both in hidden and output layer with scaled conjugate
gradient backpropagation as the learning algorithm is used to perform pattern
recognition of the attack type with all features of KDD dataset (41 inputs and 5
outputs).

The outcome of the pattern recognition process is submitted in the form of an
Alert signal to the network administrator. A Graphical display of the complete
HESADM methodology can be seen in Fig. 4.

The performance metric used is the mean squared error (MSE). The MLFF ANN
was developed with 41 input neurons, corresponding to the 41 input parameters of
the KDD cup 1999 dataset, 33 neurons in the Hidden Layer, and 5 in the output
one corresponding to the following output parameters: DoS, r2l, u2r, Probe, normal.
In the hidden layer 33 neurons are used, based on the following empirical function
11 [76]:
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Rule 1:if
X1 is (2: 0.50)

X3 is (1: 0.95)
X4 is (1: 0.95)
X5 is (1: 0.94)
X6 is (1: 0.52)
X7 is (1: 0.95)
X8 is (2: 0.87)
X9 is (2: 0.82)
then Class is [1]
Radius = 0.022719 , 20 in node

X2 is (1: 0.69)

Fig. 4 Rule of the evolving connectionist system [60, 70–72]
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The KDD cup 1999 dataset was divided randomly into 70 % (102,016 rec.) the
train_data, 15 % (21,861 rec.) as test_data and the rest 15 % (21,861 records) as
validation_data.

4.2 Evolving Computational Intelligence System
for Malware Detection

The proposed herein, hybrid ECISMD methodology uses an eSNN classification
approach to classify packed or unpacked executables with minimum computational
power combined with the ECF method in order to detect packed malware. Finally it
applies Genetic Algorithm for ECF Optimization, in order to decrease the level of
false positive and false negative rates (Fig. 5).

The dataset which used and the general algorithm are described below:

4.2.1 Dataset

The full_dataset comprised of 2598 packed viruses from the Malfease Project
dataset (http://malfease.oarci.net), 2231 non-packed benign executables collected
from a clean installation of Windows XP Home plus, several common user applica-
tions and 669 packed benign executables.

The dataset was divided randomly into two parts:

• A training dataset containing 2231 patterns related to the non-packed benign
executable and 2262 patterns related to the packed executables detected using
unpacked software

• A testing dataset containing 1005 patterns related to the packed executables that
even the best known unpacked software was not able to detect. These datasets
are available at http://roberto.perdisci.googlepages.com/code [32].

The virus dataset containing 2598 malware and 669 benign executables is divided
into two parts:

• A training dataset containing 1834 patterns related to the malware and 453
patterns related to the benign executables

• A test dataset containing 762 patterns related to the malware and 218 benign
executables. In order to translate each executable into a pattern vector Perdisci
et al. [32] use binary static analysis, to extract information such as the name of
the code and data sections, the number of writable-executable sections, the code
and data entropy.

http://malfease.oarci.net
http://roberto.perdisci.googlepages.com/code
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Fig. 5 Bio-inspired hybrid artificial intelligence framework for cyber security

In the first classification performed by the ECISMD, the eSNN approach was
employed in order to classify packed or not packed executables.

In the second classification performed by the ECISMD, the ECF approach was
employed in order to classify malware or benign executables.

4.2.2 Algorithm

• Step 1

The train and test datasets are determined and formed, related to n features. The
required classes (packed and unpacked executables) that use the variable Population
Encoding are imported. This variable controls the conversion of real-valued data
samples into the corresponding time spikes. The encoding is performed with 20
Gaussian receptive fields per variable (Gaussian width parameter betaD1.5). The
data are normalized to the interval [�1,1] and so the coverage of the Gaussians is
determined by using i_min and i_max. For the normalization processing function
10 is used (Fig. 6).
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Fig. 6 The hybrid evolving spiking anomaly detection model (HESADM) methodology

The data is classified into two classes, namely: Class 0 which contains the
unpacked results and Class 1 which comprises of the packed ones. The eSNN
object using modulation factor mD0.9, firing threshold ratio cD0.7, and similarity
threshold sD0.6 in agreement with the vQEA algorithm [23, 61].

• Step 2

The eSNN is trained with the packed_train dataset vectors and the testing
is performed with the packed_test vectors. The training process is described in
Algorithm 1.
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• Step 3

If the result is unpacked, then the process is terminated and the executable file
goes to the antivirus scanner. If the result of the classification is packed, the new
classification process is initiated employing the ECF method. This time the malware
data vectors are used. These vectors comprise of nine features and two classes
malware and benign.

The learning algorithm of the ECF according to the ECOS is as follows:

• If all input vectors are fed, finish the iteration; otherwise, input a vector from
the data set and calculate the distances between the vector and all rule nodes
already created using Euclidean distance.

• If all distances are greater than a max-radius parameter, a new rule node is
created. The position of the new rule node is the same as the current vector in
the input data space and the radius of its receptive field is set to the min-radius
parameter; the algorithm goes to step 1; otherwise it goes to the next step.

• If there is a rule node with a distance to the current input vector less than or
equal to its radius and its class is the same as the class of the new vector, nothing
will be changed; go to step 1; otherwise.

• If there is a rule node with a distance to the input vector less than or equal to its
radius and its class is different from those of the input vector, its influence field
should be reduced. The radius of the new field is set to the larger value from the
two numbers: distance minus the min-radius; min radius. New node is created
as in to represent the new data vector.

• If there is a rule node with a distance to the input vector less than or equal to
the max-radius, and its class is the same as of the input vector’s, enlarge the
influence field by taking the distance as a new radius if only such enlarged field
does not cover any other rule nodes which belong to a different class; otherwise,
create a new rule node in the same way as in step 2, and go to step 1 [77].

• Step 4

To increase the level of integrity the Offline ECF Optimization with GA is used.

• Step 5

If the result of the classification is benign, the executable file goes to antivirus
scanner and the process is terminated. Otherwise, the executable file is marked as
malicious, it goes to the unpacker, to the antivirus scanner for verification and finally
placed in quarantine and the process is terminated (Fig. 7).

4.3 Evolutionary Prevention System from SQL Injection

The proposed ePSSQLI model uses an MFFNN which has optimized with a GA.
Generally, there are three methods of using a GA for training MFFNNs. Firstly, GA
is utilized for finding a combination of weights and biases that provide the minimum
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Fig. 7 Graphical display of the ECISMD algorithm

error for an MFFNN. Secondly, GA is employed to find a proper architecture for
an MFFNN in a particular problem. The last method is to use a GA to tune the
parameters of a gradient-based learning algorithm, such as the learning rate and
momentum. In the first method, the architecture does not change during the learning
process. The training algorithm is required to find proper values for all connection
weights and biases in order to minimize the overall error of the MFFNN. In the
second approach, the structure of the MFFNNs varies. In this case, a training
algorithm determines the best structure for solving a certain problem. Changing the
structure can be accomplished by manipulating the connections between neurons,
the number of hidden layers, and the number of hidden nodes in each layer. In this
study the GA is applied to minimize the error of MFFNN in order to classify SQL
injections with high accuracy.

The dataset which used and the general algorithm are described below:
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4.3.1 Dataset

The dataset used includes a list of 13,884 SQL statements that have been selected by
various sources. Actually, 12,881 of them are malicious (SQL Injections) and 1003
are legit. With the help of the SQLparse module (https://github.com/andialbrecht/
sqlparse) in Python, which is a non-validating SQL one, we have searched the way
of syntax and use of certain SQL symbols in the construction of SQL injections
commands. Also we investigated the correlation of SQL statements with the attacks
of SQL injections’ type.

Finally, the n-gram technique was used to search the correlation of the SQL
statements sequence, with the syntax of the SQL injections commands (https://
github.com/ClickSecurity/data_hacking). In the fields of computational linguistics
and probability, an n-gram is a contiguous sequence of n items from a given
sequence of text or speech. The items can be phonemes, syllables, letters, words,
or base pairs according to the application. The n-grams in this case are collected
from an SQL statements.

Various malicious και legit scores constitute the statistical output of the SQL
statements and they were used as features. In information theory, entropy is a
measure of the uncertainty associated with a random variable. The term by itself
in this context usually refers to the Shannon entropy, which quantifies, in the
sense of an expected value, the information contained in a message, usually in
units such as bits. Equivalently, the Shannon entropy is a measure of the average
information content one is missing when one does not know the value of the random
variable [78].

After its adjustment, the dataset includes the following parameters:

• Length
• Entropy
• Malicious_score
• Legit_score
• Difference_score
• Class

In the pre-processing of data remove extreme values and outliers. The extreme
value is a point which is far away from the average value of a parameter. The
distance is measured based on a threshold which is a multiplicand of the standard
deviation (Fig. 8).

We know that for a random parameter that is under normal distribution, the
95 % of all the values fall up to the value of 2*stdev whereas 99 % fall up to
the value of 3*stdev. Extreme values cause significant errors in a potential model.
Things become even worse when these extreme values are noise results during
measurements procedure. If the number of extreme values is small, then they are
removed from the data set.

The estimation of the extreme values was done under the Inter Quartile Range
method [79]. This method spots extreme values and outliers based on (InterQuartile
Ranges—IQR). The IQR is the difference between the third (Q3) and the first (Q1)

https://github.com/andialbrecht/sqlparse
https://github.com/andialbrecht/sqlparse
https://github.com/ClickSecurity/data_hacking
https://github.com/ClickSecurity/data_hacking
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Fig. 8 Graphical display of inter quartile range method

quartile, IQRD Q3 – Q1. The quartiles divide the data into four equal parts. The
IQR includes the imtermediate 50 % of the data whereas the rest 25 % is less than
Q1 and the rest 25 % is higher than Q3 [2]. The calculation of the Extreme values
was done as follows:

• Outliers:

– Q3 C OF*IQR < x <D Q3 + EVF*IQR or Q1 - EVF*IQR <D x < Q1 -
OF*IQR

• Extreme values:

– x > Q3 + EVF*IQR or x < Q1 - EVF*IQR

Key: Q1D25 % quartile, Q3D75 % quartile, IQRDInterquartile Range difference
between Q1 and Q3, OFDOutlier Factor, EVFDExtreme Value Factor.

With the use of the above method 12 outliers and three extreme values were
removed from the data set which was reduced to 13,869 cases (12,881 malicious,
988 legit).

Also the data were Normalized so that they can have the proper input for the
Learning Algorithms in the interval [�1;C1].

After a relative observation we can realize that we have created an imbalanced
dataset which includes 13,869 cases from which 12,881 are malicious and 988 legit
(0.0723 %). Imbalanced data sets are a special case for classification problem where
the class distribution is not uniform among the classes. Typically, they are composed
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by two classes: The majority (negative) class and the minority (positive) class. The
problem with class imbalances is that standard learners are often biased towards the
majority class. That is because these classifiers attempt to reduce global quantities
such as the error rate, not taking the data distribution into consideration. As a result
examples from the overwhelming class are well classified whereas examples from
the minority class tend to be misclassified.

To resolve the certain problem we use the technique synthetic minority over-
sampling technique (SMOTE) in order to resample the dataset. [80]. Re-sampling
provides a simple way of biasing the generalization process. It can do so by
generating synthetic samples accordingly biased and controlling the amount and
placement of the new samples. SMOTE is a technique which combines Informed
oversampling of the minority class with random undersampling of the majority
class. SMOTE is a technique which is combines Informed oversampling of the
minority class with random undersampling of the majority class and produce
the best results as far as re-sampli ng and modifying the probabilistic estimate
techniques.

For each minority sample, SMOTE works as follows:

• Find its k-nearest minority neighbors.
• Randomly select j of these neighbors.
• Randomly generate synthetic samples along the lines joining the minority

sample and its j selected neighbors (j depends on the amount of oversampling
desired).

By applying the SMOTE approach we re-created the dataset, which includes 21,773
cases, from which 12,881 are malicious and 8892 are legit.

4.4 Algorithm

The MLFF ANN was developed with five input neurons, corresponding to the five
input parameters of the dataset, five neurons in the Hidden Layer and two in the
output one corresponding to the following output parameters: malicious or legit. In
the hidden layer five neurons are used, based on the empirical function 11.

This adds a greater degree of integrity to the rest of security infrastructure MFF
ANN, optimized with GA. The following outline summarizes how the GA works:

• The algorithm begins by creating a random initial population.
• The algorithm then creates a sequence of new populations. At each step, the

algorithm uses the individuals in the current generation to create the next
population.

• To create the new population, the algorithm performs the following steps:

– Scores each member of the current population by computing its fitness
value.
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– Scales the raw fitness scores to convert them into a more usable range of
values.

– Selects members, called parents, based on their fitness.
– Some of the individuals in the current population that have lower fitness are

chosen as elite. These elite individuals are passed to the next population.
– Produces children from the parents. Children are produced either by making

random changes to a single parent—mutation—or by combining the vector
entries of a pair of parents—crossover.

– Replaces the current population with the children to form the next genera-
tion.

– The algorithm stops when one of the stopping criteria is met.

5 Results

Each subsystem was tested based on multiple scenarios and different datasets
were used for each case of threat. The results obtained are very encouraging as
the accuracy is as high as 99 %, resulting in a reduction of the false alarms to
the minimum. This fact, combined with the flexibility of the proposed system and
with its generalization ability and the spotting of zero-day threats, makes its use
suitable for critical applications like the one of military networks protection. The
results of each case are presented below:

5.1 Hybrid Evolving Spiking Anomaly Detection Model

5.1.1 eSNN Approach

• In the first classification using the eSNN Traf_Red_Full.data the data classified
as normal or abnormal. The results are shown below:

– Classification Accuracy: 97.7 %
– No. of evolved neurons: Class 0: 794 neurons, Class 1: 809 neurons
– The average accuracy after applying tenfold Classification in the

Traf_Red_Full.data was as high as 97.2 %.

• In the second classification case using the SNN normalFull.data, the relevant
normal features comprising of 11 features were used. The data were classified
as normal or abnormal. The results are shown below:

– Classification Accuracy: 99.99 %
– No. of evolved neurons: Class 0: 646 neurons, Class 1: 136 neurons
– The average accuracy after applying tenfold Classification in the normal-

Full.data was as high as 99.76 %.
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Fig. 9 ROC analysis

Fig. 10 Confusion matrix

5.1.2 MLFF ANN Approach

The classification accuracy is as high as 99.9% and all the performance metrics
support the high level of convergence of the model.

In Fig. 9 the colored lines in each axis represent the ROC curves. The ROC
curve is a plot of the true positive rate (sensitivity) versus the false positive rate
(1-specificity) as the threshold is varied. A perfect test would show points in the
upper-left corner, with 100 % sensitivity and 100 % specificity. For this problem,
the network performs very well.

Figure 10 shows the confusion matrices for training, testing, and validation, and
the three kinds of data combined. The network outputs are very accurate, by the
high numbers of correct responses in the green squares and the low numbers of
incorrect responses in the red squares. The lower right blue squares illustrate the
overall accuracies.
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5.2 ECISMD Results

Table 1 reports the average accuracy which computed over tenfold cross-validation
obtained with RBF ANN, Naïve Bayes, multi layer perceptron (MLP), Support
Vector Machine (SVM), k-Nearest-Neighbors (k-NN), and eSNN. The best results
on the testing dataset were obtained by using the eSNN classifier, to classify packed
or not packed executables.

Table 2 reports the results obtained with six classifiers and optimized ECF
network (RBF Network, Naïve Bayes, MLP, Lib SVM, k-NN, ECF, and optimized
ECF). The best results on the testing dataset were obtained by using the optimized
ECF which classifies virus or benign executables (Table 3).

5.3 ePSSQLI Results

5.3.1 MFF ANN

The classification accuracy of the MFF ANN that uses tenfold Cross Validation
before the optimization is equal to 97.7 %. The rest of the measurements and the
confusion matrix are presented below (Table 4):

Table 1 Comparison of
various approaches for the
packed dataset

Packed dataset

Classifier Train accuracy (%) Test accuracy (%)

RBFNetwork 98.3085 98.0859

NaiveBayes 98.3975 97.1144

MLP 99.5326 96.2189

LibSVM 99.4436 89.8507

k-NN 99.4436 96.6169

eSNN 99.8 99.2

Table 2 Comparison of
various approaches for the
virus dataset

Virus dataset

Classifier Train accuracy (%) Test accuracy (%)

RBFNetwork 94.4031 93.0612

NaiveBayes 94.0533 92.3469

MLP 97.7551 97.289

LibSVM 94.6218 94.2857

k-NN 98.1198 96.8367

ECF 99.05 95.561

Optimized ECF 99.87 97.992
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Table 3 Metrics of the MFF ANN

TP rate FP rate Precision Recall F-measure ROC area Class

0.986 0.034 0.976 0.986 0.981 0.986 Malicious
0.966 0.014 0.980 0.966 0.973 0.986 Legit

Table 4 Confusion matrix of
the MFF ANN

Malicious Legit
12,702 179

306 8586

Table 5 Metrics of the MFF ANN with GA

TP rate FP rate Precision Recall F-measure ROC area Class

0.997 0.003 0.998 0.997 0.997 0.998 Malicious
0.997 0.003 0.996 0.997 0.996 0.998 Legit

Table 6 Confusion matrix of
the MFF ANN with GA

Malicious Legit

12,845 36

31 8861

5.3.2 MFF ANN Optimized with GA

The initial parameters of GA are as below (Table 5):

• Selection: Roulette wheel
• Crossover: Single point (probabilityD 1)
• Mutation: Uniform (probabilityD 0.01)
• Population size: 200
• Maximum number of generations: 250

The classification accuracy of the MFF ANN that uses tenfold Cross Validation after
its optimization with GA is 99.6 %. The rest of the measurements and the confusion
matrix are presented below (Table 6):

The good performance and reliability of the proposed scheme that uses MFF
ANN with GA is shown in Table 7 below. Table 7 presents the results of the
categorization with the same dataset and by employing tenfold Cross Validation
and other Machine Learning approaches.

6 Discussion: Conclusions

This paper proposes the use of a Bio-Inspired Hybrid Artificial Intelligence
Framework for Cyber Security, which is based on the combination of three timely
methods of Artificial Intelligence.
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Table 7 Comparison of
various approaches for the
SQLI dataset

SQLI dataset

Classifier Accuracy (%)

MFF ANN with GA 99.6

RBFNetwork 97.3

fNaiveBayes 95.6

BayesNet 98.7

SVM 98.5

k-NN 98.3

Random forest 99.1

The function of the subsystems aims in the time spotting of the cyber-attacks
which are untraceable with the classical passive protection approaches.

More specifically, this paper proposes the HESADM system, which spots
potential anomalies of a network and the attacks that might bypass the firewall and
the IDS. The second subsystem is ECISMD which scans the packed executable files
and then spots malicious code untraceable by antivirus. The third one is ePSSQLI
which spots in time the SQL Injections attacks. The result of each categorization is
sent to the administrator of the system so that he/she can impose proper actions. An
automatic disconnection from the attacker is also included.

The combination of the subsystems under the proposed framework takes place
based on a temporal scheduling which succeeds the optimal distribution of the
resources and the maximum availability and performance of the system. The use of
the proposed systems can be done regardless of the framework.

The testing has resulted in an accuracy level of 99 %. Also a comparative analysis
has revealed that the proposed algorithm outperforms the existing ones.

As a future direction, aiming to improve the efficiency of biologically realistic
ANN for pattern recognition, it would be important to evaluate the eSNN model with
ROC analysis and to perform feature minimization in order to achieve minimum
processing time. Other coding schemes could be explored and compared on the same
security task. Also, the ECISMD could be improved towards a better online learning
with self-modified parameter values. Finally, the MFF ANN with GA which used
in the ePSSQLI system could be compared with other optimization schemes like
particle swarm optimization.
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Integral Estimates for the Composition
of Green’s and Bounded Operators

Shusen Ding and Yuming Xing

Abstract We develop integral estimates for the composition of Green’s operator
and a bounded operator applied to differential forms. These results give the higher
integrability of this composite operator.

Keywords: Green’s operator • Differential forms • Norm inequalities
• A-harmonic equations

1 Introduction

Let G be Green’s operator and F be a general bounded operator defined on the
space of smooth differential forms. The purpose of this chapter is to establish some
integral estimates for the composition G ıF of Green’s operator G and the bounded
operator F. Many different versions of Lp-norm inequalities and estimates for
operators and their compositions have been developed during the recent years, see
[1–8]. These results provide effective tools for some areas of mathematics, including
partial differential equations, harmonic analysis, and operator theory. The estimates
obtained in this chapter will give the higher integrability of the composite operator
G ı F. Specifically, we will estimate the Ls norm of G ı F.u/ in terms of Lp norm
of u, where u is a smooth differential form and the integral exponent s of G ı F.u/
could be much larger than p, the integral exponent of the smooth differential form u.

In this chapter, we keep using the same notations appearing in [1]. Let ˝ � Rn,
n 
 2 be a domain with j˝j < 1, B and �B be the balls with the same
center and diam.�B/ D �diam.B/. We do not distinguish the balls from cubes
in this chapter. Differential forms are extensions of differentiable functions in Rn.
A function u.x1; x2; � � � ; xn/ is called a 0-form. A k-form u.x/ is generated by
fdxi1 ^ dxi2 ^ � � � ^ dxikg, k D 1; 2; � � � ; n, that is,
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u.x/ D
X

I

!I.x/dxI D
X

!i1 i2���ik.x/dxi1 ^ dxi2 ^ � � � ^ dxik ;

where I D .i1; i2; � � � ; ik/, 1 � i1 < i2 < � � � < ik � n. If all coefficients
functions!i1i2���ik .x/ are differentiable, then u.x/ is called a differential k-form. Much
progress has been made for differential forms satisfying some versions of harmonic
equations, see [9–12] for example. Let ^l D ^l.Rn/ be the set of all l-forms in
Rn, D0.˝;^l/ be the space of all differential l-forms in ˝ , and Lp.˝;^l/ be the
l-forms u.x/ DP

I uI.x/dxI in ˝ satisfying
R
˝
juIjp <1 for all ordered l-tuples I,

l D 1; 2; � � � ; n. We denote the exterior derivative by d and the Hodge star operator
by ?. The Hodge codifferential operator d? is given by d? D .�1/nlC1 ? d?,
l D 1; 2; � � � ; n. For u 2 D0.˝;^l/, the vector-valued differential form

ru D


@u

@x1
; � � � ; @u

@xn

�

consists of differential forms @u
@xi
2 D0.˝;^l/; where the partial differentiation is

applied to the coefficients of u. Let jEj be the n-dimensional Lebesgue measure of a
set E � Rn. For a function u, the average of u over B is defined by uB D 1

jBj
R

B udx.

All integrals involved in this paper are the Lebesgue integrals. We use C1.˝;^l/

to denote the space of smooth l-forms on ˝ and the Green’s operator G be defined
on C1.˝;^l/ by assigning G.u/ to be a solution of the Poisson’s equation


G.u/ D u �H.u/;

where H is the harmonic projection operator, see [1] and [6] for more results about
Green’s operator. In this chapter, we always assume that F is any operator bounded
from Lp.˝;^/ to itself for some p, 1 < p <1, i.e.,

kF.u/kp;˝ � Ckukp;˝

for u 2 ^, where C is a constant independent of u. For example, F can be the
potential operator P, or the homotopy operator T. For any subset E � Rn and p > 1,
we use W1;p.E;^l/ to denote the Sobolev space of l-forms which equals Lp.E;^l/\
Lp
1.E;^l/ with norm

kukW1;p.E/ D kukW1;p.E;^l/ D diam.E/�1kukp;E C krukp;E: (1)

From [13], we know that for each differential form u, we have the decomposition

u D d.Tu/C T.du/: (2)

and

kr.Tu/kp;˝ � Cj˝jkukp;˝; and kTukp;˝ � Cj˝jdiam.˝/kukp;˝; (3)

where T is the homotopy operator.
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The nonlinear differential equation for differential forms

d?A.x; du/ D B.x; du/ (4)

is called non-homogeneous A-harmonic equation, where A W ˝�^l.Rn/! ^l.Rn/

and B W ˝ � ^l.Rn/! ^l�1.Rn/ satisfy the conditions:

jA.x; �/j � aj�jp�1; A.x; �/ � � 
 j�jp and jB.x; �/j � bj�jp�1

for almost every x 2 ˝ and all � 2 ^l.Rn/. Here a; b > 0 are constants and
1 < p < 1 is a fixed exponent associated with (4). A solution to (4) is an element
u of the Sobolev space W1;p

loc .˝;^l�1/ such that
Z

˝

A.x; du/ � d' C B.x; du/ � ' D 0

for all ' 2 W1;p
loc .˝;^l�1/ with compact support. If u is a function (0-form) in Rn,

the Eq. (4) reduces to

divA.x;ru/ D B.x;ru/:

If the operator B D 0, the Eq. (4) becomes

d?A.x; du/ D 0

which is called the (homogeneous) A-harmonic equation. See [1] for more recent
progress made in the study of the A-harmonic equation.

2 Local Estimates

In this section, we prove the local norm inequalities for the composite operator GıF.
We will need the following lemmas.

Lemma 1 ([13]). Let u 2 D0.Q;^l/ and du 2 Lp.Q;^lC1/. Then, u � uQ is in
Lnp=.n�p/.Q;^l/ and


Z

Q
ju � uQjnp=.n�p/dx

�.n�p/=np

� Cp.n/


Z

Q
jdujpdx

�1=p

(5)

for Q a cube or a ball in Rn, l D 0; 1; � � � ; n � 1; and 1 < p < n.

Lemma 2 ([6]). Let u be a smooth differential form defined in ˝ and 1 < s <1.
Then, there exists a positive constant C D C.s/, independent of u, such that

kdd�G.u/ks;B Ckd�dG.u/ks;B C kdG.u/ks;B C kd�G.u/ks;B C kG.u/ks;B � C.s/kuks;B

(6)

for any ball B � ˝ .
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Lemma 3 ([12]). Let u be a solution of the A-harmonic equation (4) in a domain
˝ and 0 < s; t <1. Then, there exists a constant C, independent of u, such that

kuks;B � CjBj.t�s/=stkukt;�B (7)

for all balls B with �B � ˝ for some � > 1.

Combining the second inequality in (3) and Lemma 2, we have the following
Lemma 4 immediately.

Lemma 4. Let u 2 D0.˝;^l/, l D 1; 2; � � � ; n, F be a bounded operator and
G be Green’s operator. Then, for any constant p > 1, there exists a constant C,
independent of u, such that

kG.F.u//kp;B � Ckukp;B (8)

for all balls B � ˝ .

We first prove the following local norm inequality, which gives the higher integra-
bility of G ı F applied to differential form u.

Theorem 1. Let u 2 D0.˝;^l/, l D 1; 2; � � � ; n, 1 < p < n, and F be a bounded
operator and G be Green’s operator. Then, for any constant s with 0 < s < np=
.n � p/, there exists a constant C, independent of u, such that

kG.F.u//� .G.F.u///Bks;B � CjBj1=sC1=n�1=pkukp;�B (9)

for all balls B with �B � ˝ for some � > 1.

Proof. Let B � ˝ be any ball. For any constant p > 1 and any differential form u,
applying Lemma 1 to G.F.u//, Lemma 2 and noticing that F is bounded, we obtain


Z

B
jG.F.u//� .G.F.u///Bjnp=.n�p/dx

�.n�p/=np

� C1


Z

B
jdG.F.u//jpdx

�1=p

D C2


Z

B
jF.u/jpdx

�1=p

� C3


Z

B
jujpdx

�1=p

: (10)

Using the monotonic property of the Lp-norms, for any s with 0 < s < np=.n� p/,
we obtain



1

jBj
Z

B
jG.F.u//� .G.F.u///Bjsdx

�1=s

�


1

jBj
Z

B
jG.F.u//� .G.F.u///Bjnp=.n�p/dx

�.n�p/=np

: (11)
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Combining (10) and (11) yields


Z

B
jG.F.u//� .G.F.u///Bjsdx

�1=s

� C9jBj1=sC1=n�1=p


Z

B
jujpdx

�1=p

:

We have completed the proof of Theorem 1.

We should note that the above inequality (9) can be written as the following version



1

jBj
Z

B
jG.F.u//� .G.F.u///Bjsdx

�1=s

� CjBj1=n



1

jBj
Z

B
jujpdx

�1=p

: (12)

It should also be noticed that in both (9) and (12), the integral exponent s on the
left-hand side could be much larger than the integral exponent p on the right-hand
side since np=.n � p/!1 as p! n�, which gives the higher integrability of the
composite operator G.F.u// � .G.F.u///B for the case 1 < p < n. Next, we prove
the similar higher integrability of G.F.u//� .G.F.u///B for the case p 
 n.

Theorem 2. Let u 2 D0.˝;^l/, l D 1; 2; � � � ; n, p 
 n, and F be a bounded
operator and G be Green’s operator. Then, for any s > 0, there exists a constant C,
independent of u, such that



1

jBj
Z

B
jG.F.u//� .G.F.u///Bjsdx

�1=s

� CjBj1=n



1

jBj
Z

�B
jujpdx

�1=p

(13)

for all balls B with �B � ˝ for some � > 1.

Note that (12) can also be written as the norm version

kG.F.u//� .G.F.u///Bks;B � CjBj1=sC1=n�1=pkukp;�B (14)

Proof. Choose k D maxf1; s=pg and q D knp=.nC kp/. Since n� p � 0 now, then

q � p D p.k.n� p/� n/

nC kp
< 0; (15)

that is, q < p. Also, 1 < q D knp=.nC kp/ < n. Applying Lemma 1 to G.F.u//
and noticing the monotonic property of the Lp space, we have


Z

B
jG.F.u//� .G.F.u///Bjnq=.n�q/dx

�.n�q/=nq

� C2


Z

B
jdG.F.u//jqdx

�1=q

D C3


Z

B
j.F.u//jqdx

�1=q
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� C4


Z

B
jujqdx

�1=q

� C5jBj1=q�1=p


Z

B
jujpdx

�1=p

:

(16)

Note that nq=.n� q/ D kp > s, using the monotonic property of the Lp space again,
and (16),


Z

B
jG.F.u//� .G.F.u///Bjsdx

�1=s

� jBj1=s�1=kp


Z

B
jG.F.u//� .G.F.u///Bjnq=.n�q/dx

�.n�q/=nq

� C6Bj1=q�1=pC1=s�1=kp


Z

B
jujpdx

�1=p

(17)

� C6Bj1=nC1=s�1=p


Z

B
jujpdx

�1=p

;

that is,



1

jBj
Z

B
jG.F.u//� .G.F.u///Bjsdx

�1=s

� C6jBj1=n



1

jBj
Z

B
jujpdx

�1=p

:

The proof of Theorem 2 has been completed.

Let ' be a strictly increasing convex function on Œ0;1/ with '.0/ D 0, and u be a
differential form in a bounded domain D � Rn such that '.k.jujCjuDj// 2 L1.DI�/
for any real number k > 0 and �.fx 2 D W ju � uDj > 0g/ > 0, where � is a Radon
measure defined by d� D w.x/dx for a weight w.x/. It has been proved that for any
positive constant a, it follows that

Z

D
'.
1

2
ju � uDj/d� � C1

Z

D
'.ajuj/d� � C2

Z

D
'.2aju� uDj/d�; (18)

where C1 and C2 are some positive constants. Choosing '.t/ D tp, p > 1, w.x/ D 1
and D to be a ball B in (18), we know that the norms kukp;B and ku � uBkp;B are
comparable, that is,

ku � uBkp;B � C1kukp;B � C2ku � uBkp;B (19)

for any ball B with jfx 2 B W ju � uDj > 0gj > 0. We prove the local higher
integrability of G ı F in the following theorem.
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Theorem 3. Let u 2 D0.˝;^l/, l D 1; 2; � � � ; n, 1 < p < n, and F be a bounded
operator and G be Green’s operator. If u 2 Lp

loc.˝;^l/, then G.F.u// 2 Ls
loc.˝;^l/

for any 0 < s < np=.n � p/. Specifically, there exists a constant C, independent of
u, such that

kG.F.u//ks;B � CjBj1=sC1=n�1=pkukp;�B (20)

for all balls B with �B � ˝ for some � > 1.

Proof. We may assume that the measure

jfx 2 B W jG.F.u//� .G.F.u///Bj > 0gj > 0:

Otherwise, if jfx 2 B W jG.F.u// � .G.F.u///Bj > 0gj D 0; then G.F.u// D
G.F.u///B almost everywhere in B. Therefore, G.F.u// is a closed form. Thus,
G.F.u// is a solution of the A-harmonic equation (4). By Lemma 3, for any
differential form u and any m; k > 0, there exists a constant C1, independent of
u, such that

kukm;B � C1jBj.k�m/=kmkukk;�B (21)

for all balls B with �B � ˝ for some � > 1. Particularly, for G.F.u// and s; p
appearing in our theorem, we have

kG.F.u//ks;B � C1jBj.p�s/=spkG.F.u//kp;�B: (22)

From (22) and Lemma 4, we have

kG.F.u//ks;B � C1jBj.p�s/=spkG.F.u//kp;�B

� C2jBj.p�s/=spjBj1C1=nkukp;�B

D C2jBj1=sC1=n�1=pjBjkukp;�B (23)

D C2jBj1=sC1=n�1=pj˝jkukp;�B

D C3jBj1=sC1=n�1=pkukp;�B;

that is, inequality (20) holds. Next, we may assume that

jfx 2 B W jG.F.u//� .G.F.u///Bj > 0gj > 0:

Hence, we can use (18). Choosing '.t/ D tnp=.n�p/ in (18), we find that for any
differential form v


Z

B
jvjnp=.n�p/dx

�.n�p/=np

� C4


Z

B
jv � vBjnp=.n�p/dx

�.n�p/=np

: (24)
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Replacing v by G.F.u// in (24) it follows that


Z

B
jG.F.u//jnp=.n�p/dx

�.n�p/=np

� C5


Z

B
jG.F.u//� .G.F.u///Bjnp=.n�p/dx

�.n�p/=np

: (25)

By the monotonic property of the Lp-space, for any s with 0 < s < np=.n� p/, we
obtain



1

jBj
Z

B
jG.F.u//jsdx

�1=s

�


1

jBj
Z

B
jG.F.u//jnp=.n�p/dx

�.n�p/=np

: (26)

Combining (26), (25) and using (10), we find that



1

jBj
Z

B
jG.F.u//jsdx

�1=s

�


1

jBj
Z

B
jG.F.u//jnp=.n�p/dx

�.n�p/=np

� C6



1

jBj
Z

B
jG.F.u//� .G.F.u///Bjnp=.n�p/dx

�.n�p/=np

� C7jBj1=n



1

jBj
Z

B
jujpdx

�1=p

; (27)

that is,


Z

B
jG.F.u//jsdx

�1=s

� CjBj1=sC1=n�1=p


Z

B
jujpdx

�1=p

: (28)

The above inequality (28) shows that if u 2 Lp
loc.˝;^l/, then G.F.u// 2

Ls
loc.˝;^l/: We have completed the proof of Theorem 3.

It should be noticed that the inequality (20) can be written as the following version



1

jBj
Z

B
jG.F.u//jsdx

�1=s

� CjBj1=n



1

jBj
Z

B
jujpdx

�1=p

: (29)

As we noticed earlier, in both (20) and (29), the integral exponent s on the left-
hand side could be much larger than the integral exponent p on the right-hand side
because of np=.n � p/ ! 1 as p ! n�, which gives the higher integrability of
the composite operator G ı F for the case 1 < p < n. In the following theorem, we
prove the higher integrability of G ı F for the case p 
 n.
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Theorem 4. Let u 2 D0.˝;^l/, l D 1; 2; � � � ; n, p 
 n, and F be a bounded
operator and G be Green’s operator. If u 2 Lp

loc.˝;^l/, then G.F.u// 2 Ls
loc.˝;^l/

for any s > 0. Moreover, there exists a constant C, independent of u, such that



1

jBj
Z

B
jG.F.u//jsdx

�1=s

� CjBj1=n



1

jBj
Z

�B
jujpdx

�1=p

(30)

for all balls B with �B � ˝ for some � > 1.

Notice that (30) can also be written as the norm version

kG.F.u//ks;B � CjBj1=sC1=n�1=pkukp;�B (31)

Proof. First, assume that the measure jfx 2 B W jG.F.u// � .G.F.u///Bj >
0gj D 0. By the same method developed in the proof of Theorem 3, we can show
inequality (30) holds for any ball B with �B � ˝ for some � > 1. Next, we assume
that jfx 2 B W jG.F.u// � .G.F.u///Bj > 0gj > 0. Set k D maxf1; s=pg and
q D knp=.nC kp/. Since n � p � 0 now, then

q � p D p.k.n� p/� n/

nC kp
< 0; (32)

that is, q < p. Also, 1 < q D knp=.nC kp/ < n. Applying Lemma 1 to G.F.u//
and from the monotonic property of the Lp norm, we find that


Z

B
jG.F.u//� .G.F.u///Bjnq=.n�q/dx

�.n�q/=nq

� C2


Z

B
jdG.F.u//jqdx

�1=q

D C3


Z

B
j.F.u//Bjqdx

�1=q

� C4


Z

B
jF.u/jqdx

�1=q

� C5


Z

B
jujqdx

�1=q

(33)

� C5jBj1=q�1=p


Z

B
jujpdx

�1=p

:

Since the measure jfx 2 B W jG.F.u// � .G.F.u///Bj > 0gj > 0 now, then we can
use (18). Choosing '.t/ D tnq=.n�q/ in (18), we find that for any differential form !


Z

B
j!jnq=.n�q/dx

�.n�q/=nq

� C6


Z

B
j! � !Bjnq=.n�q/dx

�.n�q/=nq

: (34)
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Replacing ! by G.F.u// in (34), we have


Z

B
jG.F.u//jnq=.n�q/dx

�.n�q/=nq

� C7


Z

B
jG.F.u//� .G.F.u///Bjnq=.n�q/dx

�.n�q/=nq

: (35)

Note that nq=.n � q/ D kp > s, using the monotonic property of the Lp norm
again, (35) and (33),


Z

B
jG.F.u//jsdx

�1=s

� jBj1=s�1=kp


Z

B
jG.F.u//jnq=.n�q/dx

�.n�q/=nq

� C7jBj1=s�1=kp


Z

B
jG.F.u//� .G.F.u///Bjnq=.n�q/dx

�.n�q/=nq

� C7Bj1=q�1=pC1=s�1=kp


Z

B
jujpdx

�1=p

(36)

� C7Bj1=nC1=s�1=p


Z

B
jujpdx

�1=p

;

that is,



1

jBj
Z

B
jG.F.u//jsdx

�1=s

� C5jBj1=n



1

jBj
Z

B
jujpdx

�1=p

:

The proof of Theorem 4 has been completed.

Now, we prove the higher order imbedding theorems of the composite operator GıF
in the following theorem.

Theorem 5. Let u 2 D0.˝;^l/ be a solution of A-harmonic equation (4),
l D 1; 2; � � � ; n, and F be a bounded operator and G be Green’s operator. Then,
or any constant s > 0, there exists a constant C, independent of u, such that

kG.F.u//� .G.F.u///BkW1;s.B/ � CjBj1C1=s�1=pkukp;�B (37)

for all balls B with �B � ˝ for some � > 1.

Proof. For any differential form v, the decomposition

v D Tdv C dTv (38)
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holds. Applying (38) to differential form G.F.u//

G.F.u// D dT.G.F.u///C Td.G.F.u///: (39)

Noticing the fact that dT.G.F.u/// D .G.F.u///B for any differential form u, and
using (39), (3), Lemma 2 and Lemma 3, we obtain

kG.F.u//� .G.F.u///BkW1;s.B/

D kTd.G.F.u///kW1;s.B/

D .diam.B//�1kTd.G.F.u///ks;BC krTd.G.F.u///ks;B
� .diam.B//�1C1jBjdiam.B/kdG.F.u//ks;BC C2jBjkdG.F.u//ks;B
� C3jBjkF.u/ks;B
D C4jBjkuks;B
� C5jBj1C1=s�1=pkukp;B: (40)

We have completed the proof of Theorem 5.

3 Global Estimates

In this section, we prove the global higher integrability theorems for the composition
G ı F.

Lemma 5. Each domain˝ has a modified Whitney cover of cubes V D fQig such
that

[i Qi D ˝;
X

Qi2V
�p 5

4Qi
� N�˝ (41)

and some N > 1, and if Qi \ Qj 6D ;, then there exists a cube R (this cube need not
be a member of V ) in Qi \ Qj such that Qi [ Qj � NR. Moreover, if ˝ is ı-John,
then there is a distinguished cube Q0 2 V which can be connected with every cube
Q 2 V by a chain of cubes Q0;Q1; � � � ;Qk D Q from V and such that Q � �Qi,
i D 0; 1; 2; � � � ; k, for some � D �.n; ı/.
Theorem 6. Let u 2 D0.˝;^l/, l D 1; 2; � � � ; n, 1 < p < n, and F be a bounded
operator and G be Green’s operator. If u 2 Lp.˝;^l/, then G.F.u// 2 Ls.˝;^l/

for any 0 < s < np=.n�p/. Moreover, there exist constants C1 and C2, independent
of u, such that

kG.F.u//ks;˝ � C1j˝j1=sC1=n�1=pkukp;˝ ; (42)
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and

kG.F.u//� .G.F.u///˝ks;˝ � Cj˝j1=sC1=n�1=pkukp;˝ (43)

for any bounded and convex domain˝ � Rn.

Proof. First, we prove that inequality (42) holds. Using the Cover Lemma and
Theorem 3, and noticing 1=s C 1=n � 1=p > 0 since 0 < s < np=.n � p/, we
have

kG.F.u//ks;˝ �
X

B2V
kG.F.u//ks;B

�
X

B2V

�
C1jBj1=sC1=n�1=pkukp;�B

�

�
X

B2V

�
C1j˝j1=sC1=n�1=pkukp;�B

�

� C2j˝j1=sC1=n�1=pNkukp;˝

� C3j˝j1=sC1=n�1=pkukp;˝ ; (44)

that is, inequality (42) holds. Next, we show that inequality (43) also holds. It is well
known that for any differential form ! and any bounded and convex domain D, we
have

k!Dks;D � C4k!ks;D: (45)

Replacing ! by G.F.u// and D by ˝ in (45), we obtain

k.G.F.u///˝ks;˝ � C4kG.F.u//ks;˝: (46)

Hence, using (46) and (44), we have

kG.F.u// � .G.F.u///˝ks;˝ � kG.F.u//ks;˝ C k.G.F.u///˝ks;˝

� kG.F.u//ks;˝ C C5kG.F.u//ks;˝

� .1C C5/kG.F.u//ks;˝

� C6j˝j1=sC1=n�1=pkukp;˝ ;

which indicates that (43) holds. The proof of Theorem 6 has been completed.

We have proved the global higher integrability of G ı F for the case 1 < p < n.
Using Theorem 4 and the same method as we did in the proof of Theorem 6, we can
prove the global higher integrability of G ı F for the case p 
 n in the following
theorem.
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Theorem 7. Let u 2 D0.˝;^l/, l D 1; 2; � � � ; n, p 
 n, and F be a bounded
operator and G be Green’s operator. If u 2 Lp.˝;^l/, then G.F.u// 2 Ls.˝;^l/

for any s > 0. Moreover, there exist constants C1 and C2, independent of u, such
that

kG.F.u//ks;˝ � C1j˝j1=sC1=n�1=pkukp;˝ ; (47)

and

kG.F.u//� .G.F.u///˝ks;˝ � Cj˝j1=sC1=n�1=pkukp;˝ (48)

for any bounded and convex domain˝ � Rn.

Remark. (1) We only extend some local results to the global cases. We can also
extend the other local results to the global versions. Considering the length of the
chapter, we only include a few global versions here. (2) We think that the global
results can be proved in more general domains, such as the Lp-averaging domains
[14] and L'.�/-averaging domains [15]. (3) Our norm inequalities can be extended
into the weighted cases by routine procedure.
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A Survey of Reverse Inequalities
for f -Divergence Measure in Information Theory

S.S. Dragomir

Abstract In this paper we survey some discrete inequalities for the f -divergence
measure in Information Theory by the use of recent reverses of the celebrated
Jensen’s inequality. Applications in connection with Hölder’s inequality and for
particular measures such as Kullback–Leibler divergence measure, Hellinger dis-
crimination, �2-distance and variation distance are provided as well.

Keywords: Convex functions • Jensen’s inequality • Reverse of Jensen’s
inequality • Reverse of Hölder’s inequality • f -Divergence measure • Kullback–
Leibler divergence measure • Hellinger discrimination • �2-Distance • Variation
distance • Grüss’ type inequality

1 Introduction

Given a convex function f W RC ! RC; the f -divergence functional, or f -divergence
measure

If .p; q/ WD
nX

iD1
qif



pi

qi

�
(1)

was introduced by Csiszár in [13, 14] as a generalized measure of information, a
“distance function” on the set of probability distributions Pn.

The restriction to discrete distributions is only for convenience, similar results
hold for more general distributions.

The definition (1) can be extended for nonconvex function, however in this case
the positivity property of If .p; q/ is not always assured.
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As in Csiszár [14], we interpret the following, otherwise undefined expressions,
as indicated:

f .0/ D lim
t!0C f .t/ ; 0 f



0

0

�
D 0,

0 f
�a

0

�
D lim

"!0C f
�a

"

�
D a lim

t!1
f .t/

t
; a > 0:

The immediately following results were essentially given by Csiszár and
Körner [15].

Theorem 1 (Csiszár and Körner [15]). If f W RC ! R is convex, then If .p; q/ is
jointly convex in p and q.

The following lower bound for the f -divergence functional also holds.

Theorem 2 (Csiszár and Körner [15]). Let f W RC ! RC be convex, then for
every p; q 2 R

nC, we have the inequality:

If .p; q/ 

nX

iD1
qi f


Pn
iD1 piPn
iD1 qi

�
: (2)

If f is strictly convex, equality holds in (2) iff

p1
q1
D p2

q2
D � � � D pn

qn
: (3)

Corollary 1. Let f W RC ! R be convex and normalized, i.e.,

f .1/ D 0; (4)

then, for any p; q 2 R
nC with

nX

iD1
pi D

nX

iD1
qi; (5)

we have the inequality,

If .p; q/ 
 0: (6)

If f is strictly convex, equality holds in (6) iff pi D qi for all i 2 f1; : : : ; ng.
In particular, if p; q are probability vectors, then (5) is assured. Corollary 1 then

shows that, for strictly convex and normalized f W RC ! R,

If .p; q/ 
 0 for all p; q 2 P
n: (7)

The equality holds in (7) iff p D q.
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These are “distance properties”, however, If is not a metric since it violates
the triangle inequality, and is asymmetric, i.e., for general p; q 2 R

nC; If .p; q/ ¤
If .q; p/.

2 Some Examples

In the examples below we obtain, for suitable choices of the kernel f , some of the
best known distance functions If used in mathematical statistics, information theory
and signal processing, see [1–12, 16, 32–52, 52–60] and [65–92].

Example 1 (Kullback–Leibler). For

f .t/ WD t log t; t > 0 (8)

the f -divergence is

If .p; q/ D KL .p; q/ D
nX

iD1
pi log



pi

qi

�
; (9)

called the Kullback–Leibler distance [63, 64].

Example 2 (Hellinger). Let

f .t/ D 1

2

�
1 �pt

�2
; t > 0: (10)

Then If gives the Hellinger distance [70]

If .p; q/ D h2 .p; q/ D 1

2

nX

iD1

�p
pi �pqi

�2
; (11)

which is symmetric.

Example 3 (Renyi). For ˛ > 1; let

f .t/ D t˛; t > 0: (12)

Then

If .p; q/ D D˛ .p; q/ D
nX

iD1
p˛i q1�˛i ; (13)

which is the ˛-order entropy [80].
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Example 4 (�2-Distance). Let

f .t/ D .t � 1/2 ; t > 0: (14)

Then

If .p; q/ D D�2 .p; q/ D
nX

iD1

.pi � qi/
2

qi
(15)

D
nX

iD1

p2i
qi
� 2Pn C Qn

 
D

nX

iD1

p2i � q2i
qi

if Pn D Qn

!

is the �2-distance between p and q, where Pn DPn
iD1 pi and Qn DPn

iD1 qi:

Finally, we have

Example 5 (Variation Distance). Let f .t/ D jt � 1j ; t > 0. The corresponding
f -divergence, called the variation distance, is symmetric,

V .p; q/ D
nX

iD1
jpi � qij :

For other examples of divergence measures, see the paper [61] by J.N. Kapur,
where further references are given (see also [62]).

For other examples of divergence measures and further references, see [61]
and [85].

In this paper we survey some discrete inequalities for the f -divergence measure
in Information Theory by the use of recent reverses of the celebrated Jensen’s
inequality. Applications in connection with Hölder’s inequality and for particular
measures such as Kullback–Leibler divergence measure, Hellinger discrimination,
�2-distance and variation distance are provided as well.

3 A Reverse Inequality Due to Dragomir and Ionescu

If xi; yi 2 R and wi 
 0 .i D 1; : : : ; n/ with Wn WD Pn
iD1 wi D 1, then we may

consider the Čebyšev functional

Tw .x; y/ WD
nX

iD1
wixiyi �

nX

iD1
wixi

nX

iD1
wiyi: (16)
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The following result is known in the literature as the Grüss inequality

jTw .x; y/j � 1

4
.� � �/ .
 � ı/ ; (17)

provided

�1 < � � xi � � <1; �1 < ı � yi � 
 <1 (18)

for i D 1; : : : ; n:
The constant 1

4
is sharp in the sense that it cannot be replaced by a smaller

constant.
If we assume that �1 < � � xi � � < 1 for i D 1; : : : ; n; then by the Grüss

inequality for yi D xi and by the Schwarz’s discrete inequality, we have

nX

iD1
wi

ˇ̌
ˇ̌
ˇ̌xi �

nX

jD1
wjxj

ˇ̌
ˇ̌
ˇ̌ �

2

64
nX

iD1
wix

2
i �

0

@
nX

jD1
wjxj

1

A
2
3

75

1
2

� 1

2
.� � �/ : (19)

In order to provide a reverse of the celebrated Jensen’s inequality for convex
functions, S.S. Dragomir obtained in 2002 [28] the following result:

Theorem 3. Let f W Œm;M� ! R be a differentiable convex function on .m;M/ : If
xi 2 Œm;M� and wi 
 0 .i D 1; : : : ; n/ with Wn WD Pn

iD1 wi D 1; then one has the
counterpart of Jensen’s weighted discrete inequality:

0 �
nX

iD1
wif .xi/� f

 
nX

iD1
wixi

!
(20)

�
nX

iD1
wif
0 .xi/ xi �

nX

iD1
wif
0 .xi/

nX

iD1
wixi

� 1

2

�
f 0 .M/ � f 0 .m/

� nX

iD1
wi

ˇ̌
ˇ̌
ˇ̌xi �

nX

jD1
wjxj

ˇ̌
ˇ̌
ˇ̌ :

Remark 1. We notice that the inequality between the first and the second term
in (20) was proved in 1994 by Dragomir and Ionescu, see [49].

On making use of (19), we can state the following string of reverse inequalities

0 �
nX

iD1
wi f .xi/� f

 
nX

iD1
wixi

!
(21)
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�
nX

iD1
wi f 0 .xi/ xi �

nX

iD1
wi f 0 .xi/

nX

iD1
wixi

� 1

2

�
f 0 .M/ � f 0 .m/

� nX

iD1
wi

ˇ̌
ˇ̌
ˇ̌xi �

nX

jD1
wjxj

ˇ̌
ˇ̌
ˇ̌

� 1

2

�
f 0 .M/ � f 0 .m/

�
2

64
nX

iD1
wix

2
i �

0

@
nX

jD1
wjxj

1

A
2
3

75

1
2

� 1

4

�
f 0 .M/ � f 0 .m/

�
.M �m/ ;

provided that f W Œm;M� � R! R is a differentiable convex function on .m;M/,
xi 2 Œm;M� and wi 
 0 .i D 1; : : : ; n/ with Wn WDPn

iD1 wi D 1:
Remark 2. We notice that the inequality between the first, second, and last term
from (21) was proved in the general case of positive linear functionals in 2001 by
S.S. Dragomir in [24].

For various Jensen’s type inequalities, see [17–51].

4 Further Reverse Inequalities

The following reverse of the Jensen’s inequality holds:

Theorem 4 (Dragomir [43]). Let f W I ! R be a continuous convex function on
the interval of real numbers I and m;M 2 R, m < M with Œm;M� � VI, VI is the
interior of I: If xi 2 Œm;M� and wi 
 0 .i D 1; : : : ; n/ with Wn WD Pn

iD1 wi D 1,
then

0 �
nX

iD1
wi f .xi/� f

 
nX

iD1
wixi

!
(22)

�
�
M �Pn

iD1 wixi
� �Pn

iD1 wixi �m
�

M � m
�f

 
nX

iD1
wixiIm;M

!

�
�
M �Pn

iD1 wixi
� �Pn

iD1 wixi �m
�

M � m
sup

t2.m;M/
�f .tIm;M/

�
 

M �
nX

iD1
wixi

! 
nX

iD1
wixi � m

!
f 0� .M/ � f 0C .m/

M �m

� 1

4
.M �m/

�
f 0� .M/ � f 0C .m/

�
;
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where �f .�Im;M/ W .m;M/! R is defined by

�f .tIm;M/ D f .M/ � f .t/

M � t
� f .t/ � f .m/

t � m
:

We also have the inequality

0 �
nX

iD1
wi f .xi/� f

 
nX

iD1
wixi

!
(23)

�
�
M �Pn

iD1 wixi
� �Pn

iD1 wixi �m
�

M � m
�f

 
nX

iD1
wixiIm;M

!

� 1

4
.M �m/ �f

 
nX

iD1
wixiIm;M

!

� 1

4
.M �m/ sup

t2.m;M/
�f .tIm;M/

� 1

4
.M �m/

�
f 0� .M/ � f 0C .m/

�
;

provided that
Pn

iD1 wixi 2 .m;M/ :
Proof. By the convexity of f we have that

nX

iD1
wi f .xi/ � f

 
nX

iD1
wixi

!
(24)

D
nX

iD1
wi f

�
m .M � xi/CM .xi �m/

M � m



� f

 
nX

iD1
wi

�
m .M � xi/CM .xi �m/

M � m

!

�
nX

iD1
wi
.M � xi/ f .m/C .xi �m/ f .M/

M � m

� f

 
m
�
M �Pn

iD1 wixi
�CM

�Pn
iD1 wixi � m

�

M � m

!



216 S.S. Dragomir

D
�
M �Pn

iD1 wixi
�

f .m/C �Pn
iD1 wixi �m

�
f .M/

M � m

� f

 
m
�
M �Pn

iD1 wixi
�CM

�Pn
iD1 wixi � m

�

M � m

!
WD B:

By denoting


f .tIm;M/ WD .t �m/ f .M/C .M � t/ f .m/

M �m
� f .t/ ; t 2 Œm;M�

we have


f .tIm;M/ D .t � m/ f .M/C .M � t/ f .m/� .M �m/ f .t/

M � m
(25)

D .t � m/ f .M/C .M � t/ f .m/� .M � tC t � m/ f .t/

M � m

D .t � m/ Œf .M/ � f .t/� � .M � t/ Œf .t/ � f .m/�

M � m

D .M � t/ .t � m/

M � m
�f .tIm;M/

for any t 2 .m;M/ :
Therefore we have the equality

B D
�
M �Pn

iD1 wixi
� �Pn

iD1 wixi � m
�

M �m
�f

 
nX

iD1
wixiIm;M

!
(26)

provided that
Pn

iD1 wixi 2 .m;M/ :
For

Pn
iD1 wixi D m or

Pn
iD1 wixi D M the inequality (22) is obvious. IfPn

iD1 wixi 2 .m;M/, then

�f

 
nX

iD1
wixiIm;M

!
� sup

t2.m;M/
�f .tIm;M/

D sup
t2.m;M/

�
f .M/ � f .t/

M � t
� f .t/ � f .m/

t � m



� sup
t2.m;M/

�
f .M/ � f .t/

M � t


C sup

t2.m;M/

�
� f .t/ � f .m/

t �m
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D sup
t2.m;M/

�
f .M/ � f .t/

M � t


� inf

t2.m;M/

�
f .t/ � f .m/

t � m



D f 0� .M/ � f 0C .m/

which by (24) and (26) produces the desired result (22).
Since, obviously

�
M �Pn

iD1 wixi
� �Pn

iD1 wixi � m
�

M �m
� 1

4
.M � m/ ;

then by (24) and (26) we deduce the second inequality (23). The last part is clear.

Corollary 2. Let f W I ! R be a continuous convex function on the interval of real
numbers I and m;M 2 R, m < M with Œm;M� � VI. If xi 2 Œm;M�, then we have the
inequalities

0 � 1

n

nX

iD1
f .xi/ � f

 
1

n

nX

iD1
xi

!
(27)

�
�
M � 1

n

Pn
iD1 xi

� �
1
n

Pn
iD1 xi � m

�

M �m
�f

 
1

n

nX

iD1
xiIm;M

!

�
�
M � 1

n

Pn
iD1 xi

� �
1
n

Pn
iD1 xi � m

�

M �m
sup

t2.m;M/
�f .tIm;M/

�
 

M � 1
n

nX

iD1
xi

! 
1

n

nX

iD1
xi � m

!
f 0� .M/ � f 0C .m/

M �m

� 1

4
.M �m/

�
f 0� .M/ � f 0C .m/

�
;

and

0 � 1

n

nX

iD1
f .xi/ � f

 
1

n

nX

iD1
xi

!
(28)

�
M � 1

n

Pn
iD1 xi

� �
1
n

Pn
iD1 xi � m

�

M �m
�f

 
1

n

nX

iD1
xiIm;M

!

� 1

4
.M �m/ �f

 
1

n

nX

iD1
xiIm;M

!
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� 1

4
.M �m/ sup

t2.m;M/
�f .tIm;M/

� 1

4
.M �m/

�
f 0� .M/ � f 0C .m/

�
;

where 1
n

Pn
iD1 xi 2 .m;M/ :

Remark 3. Define the weighted arithmetic mean of the positive n-tuple x D
.x1; : : :; xn/ with the nonnegative weights w D .w1; : : :;wn/ by

An .w; x/ WD 1

Wn

nX

iD1
wixi

where Wn WDPn
iD1 wi > 0 and the weighted geometric mean of the same n-tuple, by

Gn .w; x/ WD
 

nY

iD1
xwi

i

!1=Wn

:

It is well known that the following arithmetic mean–geometric mean inequality
holds true

An .w; x/ 
 Gn .w; x/ :

Applying the inequality between the first and third term in (27) for the convex
function f .t/ D � ln t; t > 0 we have

1 � An .w; x/

Gn .w; x/
� exp

�
1

Mm
.M � An .w; x// .An .w; x/ � m/


(29)

� exp

"
1

4

.M �m/2

mM

#
;

provided that 0 < m � xi � M <1 for i 2 f1; : : :; ng :
Also, if we apply the inequality (28) for the same function f , we get that

1 � An .w; x/

Gn .w; x/
(30)

�
"


M

An .w; x/

�M�An.w;x/ 
 m

An .w; x/

�An.w;x/�m
#� 1

4
.M�m/

� exp

"
1

4

.M � m/2

mM

#
:

The following result also holds:
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Theorem 5 (Dragomir [43]). With the assumptions of Theorem 4, we have the
inequalities

0 �
nX

iD1
wif .xi/� f

 
nX

iD1
wixi

!
(31)

� 2max

�
M �Pn

iD1 wixi

M �m
;

Pn
iD1 wixi � m

M �m

	

�
�

f .m/C f .M/

2
� f



mCM

2

�

� 1

2
max

(
M �

nX

iD1
wixi;

nX

iD1
wixi � m

)
�
f 0� .M/ � f 0C .m/

�
:

Proof. First of all, we recall the following result obtained by the author in [36] that
provides a refinement and a reverse for the weighted Jensen’s discrete inequality:

n min
i2f1;:::;ng

fpig
"
1

n

nX

iD1
f .xi/� f

 
1

n

nX

iD1
xi

!#
(32)

� 1

Pn

nX

iD1
pif .xi/� f

 
1

Pn

nX

iD1
pixi

!

n max
i2f1;:::;ng

fpig
"
1

n

nX

iD1
f .xi/� f

 
1

n

nX

iD1
xi

!#
;

where f W C ! R is a convex function defined on the convex subset C of the linear
space X; fxigi2f1;:::;ng � C are vectors and fpigi2f1;:::;ng are nonnegative numbers with
Pn WDPn

iD1 pi > 0:

For n D 2 we deduce from (32) that

2min ft; 1 � tg
�

f .x/C f .y/

2
� f



xC y

2

�
(33)

� tf .x/C .1 � t/ f .y/� f .txC .1 � t/ y/

� 2max ft; 1 � tg
�

f .x/C f .y/

2
� f



xC y

2

�

for any x; y 2 C and t 2 Œ0; 1� :
If we use the second inequality in (33) for the convex function f W I ! R and

m;M 2 R, m < M with Œm;M� � VI; we have for t D M�Pn
iD1 wixi

M�m that
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�
M �Pn

iD1 wixi
�

f .m/C �Pn
iD1 wixi �m

�
f .M/

M � m
(34)

� f

 
m
�
M �Pn

iD1 wixi
�CM

�Pn
iD1 wixi �m

�

M � m

!

� 2max

�
M �Pn

iD1 wixi

M � m
;

Pn
iD1 wixi �m

M � m

	

�
�

f .m/C f .M/

2
� f



mCM

2

�
:

Utilizing the inequality (24) and (34) we deduce the first inequality in (31).
Since

f .m/Cf .M/
2

� f
�

mCM
2

�

M � m

D 1

4

"
f .M/ � f

�
mCM
2

�

M � mCM
2

� f
�

mCM
2

� � f .m/
mCM
2
�m

#

and, by the gradient inequality, we have that

f .M/� f
�

mCM
2

�

M � mCM
2

� f 0� .M/

and

f
�

mCM
2

� � f .m/
mCM
2
�m


 f 0C .m/ ;

then we get

f .m/Cf .M/
2

� f
�

mCM
2

�

M �m
� 1

4

�
f 0� .M/ � f 0C .m/

�
: (35)

On making use of (34) and (35) we deduce the last part of (31).

Corollary 3. With the assumptions in Corollary 2, we have the inequalities

0 � 1

n

nX

iD1
f .xi/� f

 
1

n

nX

iD1
xi

!
(36)

� 2max

(
M � 1

n

Pn
iD1 xi

M �m
;

1
n

Pn
iD1 xi �m

M �m

)
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�
�

f .m/C f .M/

2
� f



mCM

2

�
(37)

� 1

2
max

(
M � 1

n

nX

iD1
xi;
1

n

nX

iD1
xi �m

)
�
f 0� .M/� f 0C .m/

�
:

Remark 4. Since, obviously,

M �Pn
iD1 wixi

M � m
;

Pn
iD1 wixi �m

M � m
� 1;

then we obtain from the first inequality in (31) the simpler, however coarser
inequality, namely

0 �
nX

iD1
wif .xi/ � f

 
nX

iD1
wixi

!
(38)

� 2
�

f .m/C f .M/

2
� f



mCM

2

�
:

This inequality was obtained in 2008 by S. Simic in [84].

Remark 5. With the assumptions in Remark 3 we have the following reverse of the
arithmetic mean–geometric mean inequality

1 � An .w; x/

Gn .w; x/
�



A .m;M/

G .m;M/

�2max
n

M�An.w;x/
M�m ;

An.w;x/�m
M�m

o

; (39)

where A .m;M/ is the arithmetic mean while G .m;M/ is the geometric mean of the
positive numbers m and M.

5 Applications for the Hölder Inequality

If xi; yi 
 0 for i 2 f1; : : :; ng ; then the Hölder inequality holds true

nX

iD1
xiyi �

 
nX

iD1
xp

i

!1=p  nX

iD1
yq

i

!1=q

;

where p > 1; 1p C 1
q D 1:

Assume that p > 1: If zi 2 R for i 2 f1; : : :; ng, satisfies the bounds

0 < m � zi � M <1 for i 2 f1; : : :; ng
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and wi 
 0 .i D 1; : : : ; n/ with Wn WDPn
iD1 wi > 0; then from (22) we have

0 �
Pn

iD1 wiz
p
i

Wn
�

Pn

iD1 wizi

Wn

�p

(40)

�
�

M �
Pn

iD1 wizi

Wn

� �Pn
iD1 wizi

Wn
�m

�

M �m
Bp .m;M/

� p
Mp�1 �mp�1

M �m



M �

Pn
iD1 wizi

Wn

�
Pn
iD1 wizi

Wn
� m

�

� 1

4
p .M � m/

�
Mp�1 �mp�1� ;

where �p .�Im;M/ W .m;M/! R is defined by

�p .tIm;M/ D Mp � tp

M � t
� tp � mp

t � m

while

Bp .m;M/ WD sup
t2.m;M/

�p .tIm;M/ : (41)

From (23) we also have the inequality

0 �
Pn

iD1 wiz
p
i

Wn
�

Pn

iD1 wizi

Wn

�p

(42)

� 1

4
.M �m/ �p


Pn
iD1 wizi

Wn
Im;M

�
� 1

4
p .M � m/

�
Mp�1 � mp�1� :

Proposition 1 (Dragomir [43]). If xi 
 0; yi > 0 for i 2 f1; : : :; ng,
p > 1; 1p C 1

q D 1 and there exists the constants �; � > 0 and such that

� � xi

yq�1
i

� � for i 2 f1; : : :; ng ;

then we have

0 �
Pn

iD1 xp
iPn

iD1 yq
i

�

Pn

iD1 xiyiPn
iD1 yq

i

�p

(43)

� Bp .�; � /

� � �


� �

Pn
iD1 xiyiPn
iD1 yq

i

�
Pn
iD1 xiyiPn
iD1 yq

i

� �
�
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� p
� p�1 � �p�1

� � �


� �

Pn
iD1 xiyiPn
iD1 yq

i

�
Pn
iD1 xiyiPn
iD1 yq

i

� �
�

� 1

4
p .� � �/ �� p�1 � �p�1� ;

and

0 �
Pn

iD1 xp
iPn

iD1 yq
i

�

Pn

iD1 xiyiPn
iD1 yq

i

�p

(44)

� 1

4
.� � �/ �p


Pn
iD1 xiyiPn
iD1 yq

i

I �; �
�
� 1

4
p .� � �/ �� p�1 � �p�1� ;

where Bp .�; �/ and �p .�I �; �/ are defined above.

Proof. The inequalities (43) and (44) follow from (40) and (42) by choosing

zi D xi

yq�1
i

and wi D yq
i :

The details are omitted.

Remark 6. We observe that for p D q D 2 we have �2 .tI �; � / D � � � D
B2 .�; � / and then from the first inequality in (43) we get the following reverse of
the Cauchy–Bunyakovsky–Schwarz inequality:

nX

iD1
x2i

nX

iD1
y2i �

 
nX

iD1
xiyi

!2
(45)

�


� �

Pn
iD1 xiyiPn
iD1 y2i

�
Pn
iD1 xiyiPn
iD1 y2i

� �
� nX

iD1
y2i

!2

provided that xi 
 0; yi > 0 for i 2 f1; : : :; ng and there exists the constants �; � > 0

such that

� � xi

yi
� � for i 2 f1; : : :; ng :

Corollary 4 (Dragomir [43]). With the assumptions of Proposition 1 we have the
following additive reverses of the Hölder inequality

0 �
 

nX

iD1
xp

i

!1=p  nX

iD1
yq

i

!1=q

�
nX

iD1
xiyi (46)
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�
�

Bp .�; � /

� � �
1=p 


� �
Pn

iD1 xiyiPn
iD1 yq

i

�1=p 
Pn
iD1 xiyiPn
iD1 yq

i

� �
�1=p

�
nX

iD1
yq

i

� p1=p



� p�1 � �p�1

� � �
�1=p 


� �
Pn

iD1 xiyiPn
iD1 yq

i

�1=p 
Pn
iD1 xiyiPn
iD1 yq

i

� �
�1=p

�
nX

iD1
yq

i

� 1

41=p
p1=p .� � �/1=p �� p�1 � �p�1�1=p

nX

iD1
yq

i

and

0 �
 

nX

iD1
xp

i

!1=p  nX

iD1
yq

i

!1=q

�
nX

iD1
xiyi (47)

� 1

41=p
.� � �/1=p �1=p

p


Pn
iD1 xiyiPn
iD1 yq

i

Im;M
� nX

iD1
yq

i

� 1

41=p
p1=p .� � �/1=p �� p�1 � �p�1�1=p

nX

iD1
yq

i

where p > 1 and 1
p C 1

q D 1:
Proof. By multiplying in (43) with

�Pn
iD1 yq

i

�p
we have

nX

iD1
xp

i

 
nX

iD1
yq

i

!p�1
�
 

nX

iD1
xiyi

!p

� Bp .�; � /

� � �


� �

Pn
iD1 xiyiPn
iD1 yq

i

�
Pn
iD1 xiyiPn
iD1 yq

i

� �
� nX

iD1
yq

i

!p

� p
� p�1 � �p�1

� � �


� �

Pn
iD1 xiyiPn
iD1 yq

i

�
Pn
iD1 xiyiPn
iD1 yq

i

� �
� nX

iD1
yq

i

!p

� 1

4
p .� � �/ �� p�1 � �p�1�

 
nX

iD1
yq

i

!p

;
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which is equivalent to

nX

iD1
xp

i

 
nX

iD1
yq

i

!p�1
(48)

�
 

nX

iD1
xiyi

!p

C Bp .�; � /

� � �


� �

Pn
iD1 xiyiPn
iD1 yq

i

�
Pn
iD1 xiyiPn
iD1 yq

i

� �
�

�
 

nX

iD1
yq

i

!p

�
 

nX

iD1
xiyi

!p

C p



� �

Pn
iD1 xiyiPn
iD1 yq

i

�
Pn
iD1 xiyiPn
iD1 yq

i

� �
�

�
 

nX

iD1
yq

i

!p
� p�1 � �p�1

� � �

�
 

nX

iD1
xiyi

!p

C 1

4
p .� � �/ �� p�1 � �p�1�

 
nX

iD1
yq

i

!p

:

Taking the power 1=p with p > 1 and employing the following elementary
inequality that state that for p > 1 and ˛; ˇ > 0;

.˛ C ˇ/1=p � ˛1=p C ˇ1=p

we have from the first part of (48) that

 
nX

iD1
xiyi

!1=p  nX

iD1
yq

i

!1� 1
p

(49)

�
nX

iD1
xiyi C

�
Bp .�; � /

� � �
1=p 


� �
Pn

iD1 xiyiPn
iD1 yq

i

�1=p 
Pn
iD1 xiyiPn
iD1 yq

i

� �
�1=p

�
nX

iD1
yq

i

and since 1� 1
p D 1

q we get from (49) the first inequality in (46). The rest is obvious.
The inequality (47) can be proved in a similar manner, however the details are

omitted.

If zi 2 R for i 2 f1; : : :; ng, satisfies the bounds

0 < m � zi � M <1 for i 2 f1; : : :; ng
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and wi 
 0 .i D 1; : : : ; n/ with Wn WD Pn
iD1 wi > 0; then from (31) we also have

the inequality

0 �
Pn

iD1 wiz
p
i

Wn
�

Pn

iD1 wizi

Wn

�p

(50)

� 2
�

mp CMp

2
�



mCM

2

�p

�max

8
<

:
M �

Pn
iD1 wizi

Wn

M � m
;

Pn
iD1 wizi

Wn
� m

M � m

9
=

;

� 1

2
p
�
Mp�1 �mp�1�max

�
M �

Pn
iD1 wizi

Wn
;

Pn
iD1 wizi

Wn
� m

	
:

From the inequality (50) we can state:

Proposition 2 (Dragomir [43]). With the assumptions of Proposition 1 we have

0 �
Pn

iD1 xp
iPn

iD1 yq
i

�

Pn

iD1 xiyiPn
iD1 yq

i

�p

(51)

� 2 �
�pC� p

2
�
�
�C�
2

�p

� � � max

�
� �

Pn
iD1 xiyiPn
iD1 yq

i

;

Pn
iD1 xiyiPn
iD1 yq

i

� �
	

� 1

2
p
�
� p�1 � �p�1�max

�
� �

Pn
iD1 xiyiPn
iD1 yq

i

;

Pn
iD1 xiyiPn
iD1 yq

i

� �
	
:

Finally, the following additive reverse of the Hölder inequality can be stated as
well:

Corollary 5 (Dragomir [43]). With the assumptions of Proposition 1 we have

0 �
 

nX

iD1
xp

i

!1=p  nX

iD1
yq

i

!1=q

�
nX

iD1
xiyi (52)

� 21=p �
0

@
�pC� p

2
�
�
�C�
2

�p

� � �

1

A

1=p

�max

(

� �

Pn
iD1 xiyiPn
iD1 yq

i

�1=p

;


Pn
iD1 xiyiPn
iD1 yq

i

� �
�1=p

)
nX

iD1
yq

i
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� 1

21=p
p1=p max

(

� �

Pn
iD1 xiyiPn
iD1 yq

i

�1=p

;


Pn
iD1 xiyiPn
iD1 yq

i

� �
�1=p

)

� �� p�1 � �p�1�1=p
nX

iD1
yq

i :

Remark 7. As a simpler, however coarser inequality we have the following result:

0 �
 

nX

iD1
xp

i

!1=p  nX

iD1
yq

i

!1=q

�
nX

iD1
xiyi (53)

� 21=p �
�
�p C � p

2
�


� C �
2

�p1=p nX

iD1
yq

i ;

where xi and yi are as above.

6 Applications for f -Divergence

Consider the f -divergence

If .p; q/ WD
nX

iD1
qif



pi

qi

�
(54)

defined on the set of probability distributions p; q 2 P
n, where f is convex on .0;1/.

It is assumed that f .u/ is zero and strictly convex at u D 1. By appropriately defining
this convex function, various divergences are derived.

The following result holds:

Proposition 3 (Dragomir [43]). Let f W .0;1/ ! R be a convex function with
the property that f .1/ D 0: Assume that p; q 2 P

n and there exists the constants
0 < r < 1 < R <1 such that

r � pi

qi
� R for i 2 f1; : : :; ng : (55)

Then we have the inequalities

0 � If .p; q/ � .R � 1/ .1 � r/

R � r
sup

t2.r;R/
�f .tI r;R/ (56)

� .R � 1/ .1 � r/
f 0� .R/� f 0C .r/

R � r

� 1

4
.R � r/

�
f 0� .R/� f 0C .r/

�
;
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and �f .�I r;R/ W .r;R/! R is defined by

�f .tI r;R/ D f .R/ � f .t/

R � t
� f .t/ � f .r/

t � r
:

We also have the inequality

If .p; q/ � 1

4
.R � r/

f .R/ .1 � r/C f .r/ .R � 1/
.R � 1/ .1 � r/

(57)

� 1

4
.R � r/

�
f 0� .R/ � f 0C .r/

�
:

The proof follows by Theorem 4 by choosing wi D qi; xi D pi
qi
; m D r and

M D R and performing the required calculations. The details are omitted.
Utilising the same approach and Theorem 5 we can also state that:

Proposition 4 (Dragomir [43]). With the assumptions of Proposition 3 we have

0 � If .p; q/ � 2max

�
R � 1
R � r

;
1 � r

R � r

	
(58)

�
�

f .r/C f .R/

2
� f



rC R

2

�

� 1

2
max fR � 1; 1� rg �f 0� .R/ � f 0C .r/

�
:

The above results can be utilized to obtain various inequalities for the divergence
measures in Information Theory that are particular instances of f -divergence.

Consider the Kullback–Leibler divergence

KL .p; q/ D
nX

iD1
pi log



pi

qi

�
; p; q 2 P

n:

For the convex function f W .0;1/! R, f .t/ D � ln t we have

If .p; q/ WD
nX

iD1
qif



pi

qi

�
D �

nX

iD1
qi ln



pi

qi

�
D

nX

iD1
qi ln



qi

pi

�
D KL .q; p/

If p; q 2 P
n such that there exists the constants 0 < r < 1 < R <1 with

r � pi

qi
� R for i 2 f1; : : :; ng ; (59)
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then we get from the second inequality in (56) that

0 � KL .q; p/ � .R � 1/ .1� r/

rR
; (60)

from the first inequality in (57) that

0 � KL .q; p/ � 1

4
.R � r/ ln

h
R�

1
R�1 r�

1
1�r

i

and from the first inequality in (58) that

0 � KL .q; p/ � 2max

�
R � 1
R � r

;
1 � r

R � r

	
ln



A .r;R/

G .r;R/

�
(61)

where A .r;R/ is the arithmetic mean and G .r;R/ is the geometric mean of the
positive numbers r and R:

For the convex function f W .0;1/! R, f .t/ D t ln t we have

If .p; q/ WD
nX

iD1
qif



pi

qi

�
D KL .p; q/ :

If p; q 2 P
n such that there exists the constants 0 < r < 1 < R < 1 with the

property (59), then we get from the second inequality in (56) that

0 � KL .p; q/ � .R � 1/ .1� r/

L .r;R/
; (62)

where L .r;R/ is the Logarithmic mean of r; R; namely

L .r;R/ D R � r

ln R � ln r
:

From the first inequality in (57) we also have:

0 � KL .p; q/ � 1

4
.R � r/

R � rC ln
�
R1�rrR�1�

.R � 1/ .1 � r/
: (63)

Finally, by the first inequality in (58) we have

0 � KL .p; q/ � 2max

�
R � 1
R � r

;
1 � r

R � r

	
ln

"
G
�
rr;RR

�

ŒA .r;R/�A.r;R/

#
: (64)
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7 More Reverse Inequalities

For the Lebesgue measurable function g W Œ˛; ˇ� ! R we introduce the Lebesgue
p-norms defined as

kgkŒ˛;ˇ�;p WD
 Z ˇ

˛

jg .t/jp dt

!1=p

if g 2 Lp Œ˛; ˇ� ;

for p 
 1 and

kgkŒ˛;ˇ�;1 WD ess sup
t2Œ˛;ˇ�

jg .t/j if g 2 L1 Œ˛; ˇ� ;

for p D1.
The following result also holds:

Theorem 6 (Dragomir [44]). Let ˚ W I ! R be a continuous convex function on

the interval of real numbers I and m;M 2 R, m < M with Œm;M� � VI, VI is the
interior of I: If xi 2 I and wi 
 0 for i 2 f1; : : :; ng with

Pn
iD1 wi D 1, denote

Nxw WDPn
iD1 wixi 2 I; then we have the inequality

0 �
nX

iD1
wi˚ .xi/� ˚ .Nxw/ (65)

� .M � Nxw/
R Nxw

m j˚ 0 .t/j dtC .Nxw �m/
R M
Nxw
j˚ 0 .t/j dt

M �m
WD �˚ .NxwIm;M/ ;

where �˚ .NxwIm;M/ satisfies the bounds

�˚ .NxwIm;M/ (66)

�

8
ˆ̂̂
<

ˆ̂̂
:

�
1
2
C jNxw�mCM

2 j
M�m

 R M
m j˚ 0 .t/j dt

h
1
2

R M
m j˚ 0 .t/j dtC 1

2

ˇ̌
ˇ
R M
Nxw
j˚ 0 .t/j dt � R Nxw

m j˚ 0 .t/j dt
ˇ̌
ˇ
i
;

�˚ .NxwIm;M/ (67)

� .Nxw � m/ .M � Nxw/

M � m

h��˚ 0
��
ŒNxw;M�;1 C

��˚ 0
��
Œm;Nxw�;1

i

� 1

2
.M � m/

k˚ 0kŒ Nwp;M�;1 C k˚ 0kŒm; Nwp�;1
2

� 1

2
.M �m/

��˚ 0
��
Œm;M�;1
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and

�˚ .NxwIm;M/ (68)

� 1

M �m

h
.Nxw � m/ .M � Nxw/

1=q
��˚ 0

��
ŒNxw;M�;p

C .M � Nxw/ .Nxw �m/1=q
��˚ 0

��
Œm;Nxw�;p

i

� 1

M �m
Œ.Nxw �m/q .M � Nxw/C .M � Nxw/

q .Nxw � m/�1=q ��˚ 0
��
Œm;M�;p

where p > 1; 1p C 1
q D 1:

Proof. By the convexity of ˚ we have that

nX

iD1
wi˚ .xi/�˚ .Nxw/ (69)

D
nX

iD1
wi˚

�
m .M � xi/CM .xi �m/

M � m


� ˚ .Nxw/

�
nX

iD1
wi
.M � xi/˚ .m/C .xi � m/ ˚ .M/

M �m
�˚ .Nxw/

D .M � Nxw/ ˚ .m/C .Nxw � m/ ˚ .M/

M � m
�˚ .Nxw/ D B:

By denoting

�˚ .tIm;M/ WD .t �m/ ˚ .M/C .M � t/ ˚ .m/

M �m
� ˚ .t/ ; t 2 Œm;M�

we have

�˚ .tIm;M/ D .t � m/˚ .M/C .M � t/ ˚ .m/

M �m
�˚ .t/ (70)

D .t � m/˚ .M/C .M � t/ ˚ .m/ � .M � m/ ˚ .t/

M � m

D .t � m/˚ .M/C .M � t/ ˚ .m/ � .M � tC t �m/ ˚ .t/

M � m

D .t � m/ Œ˚ .M/ � ˚ .t/� � .M � t/ Œ˚ .t/ � ˚ .m/�
M �m



232 S.S. Dragomir

for any t 2 Œm;M� : Also

B D �˚ .NxwIm;M/ :

Taking the modulus on (70) and, noticing that, by the convexity of ˚ we have

�˚ .tIm;M/

D .t �m/ ˚ .M/C .M � t/ ˚ .m/

M � m
� ˚



.t � m/M C .M � t/m

M � m

�

 0

for any t 2 Œm;M� ; then we have

�˚ .tIm;M/ � .t �m/ j˚ .M/ �˚ .t/j C .M � t/ j˚ .t/ �˚ .m/j
M � m

(71)

D
.t � m/

ˇ̌
ˇ
R M

t ˚ 0 .s/ ds
ˇ̌
ˇC .M � t/

ˇ̌R t
m ˚
0 .s/ ds

ˇ̌

M � m

� .t �m/
R M

t j˚ 0 .s/j dsC .M � t/
R t

m j˚ 0 .s/j ds

M �m

for any t 2 Œm;M� :
Finally, if we write the inequality (71) for t D Nxw 2 Œm;M� and utilize the

inequality (69), we deduce the desired result (65).
Now, we observe that

.t �m/
R M

t j˚ 0 .s/j dsC .M � t/
R t

m j˚ 0 .s/j ds

M � m
(72)

�

8
<̂

:̂

max ft � m;M � tg R M
m j˚ 0 .t/j dt

max
nR M

t j˚ 0 .s/j ds;
R t

m j˚ 0 .s/j ds
o
.M �m/

D

8
<̂

:̂

�
1
2
.M �m/C ˇ̌t � mCM

2

ˇ̌� R M
m j˚ 0 .t/j dt

h
1
2

R M
m j˚ 0 .s/j dsC 1

2

ˇ̌
ˇ
R M

t j˚ 0 .s/j ds� R t
m j˚ 0 .s/j ds

ˇ̌
ˇ
i
.M �m/

for any t 2 Œm;M� : This proves the inequality (66).
By the Hölder’s inequality we have

Z M

t

ˇ̌
˚ 0 .s/

ˇ̌
ds �

8
<̂

:̂

.M � t/ k˚ 0kŒt;M�;1

.M � t/1=q k˚ 0kŒt;M�;p if p > 1; 1p C 1
q D 1
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and

Z t

m

ˇ̌
˚ 0 .s/

ˇ̌
ds �

8
<̂

:̂

.t � m/ k˚ 0kŒm;t�;1

.t � m/1=q k˚ 0kŒm;t�;p if p > 1; 1p C 1
q D 1;

which give that

.t � m/
R M

t j˚ 0 .s/j dsC .M � t/
R t

m j˚ 0 .s/j ds

M �m
(73)

� .t � m/ .M � t/ k˚ 0kŒt;M�;1 C .M � t/ .t �m/ k˚ 0kŒm;t�;1
M � m

D .t �m/ .M � t/

M �m

h��˚ 0
��
Œt;M�;1 C

��˚ 0
��
Œm;t�;1

i

� 1

2
.M � m/

k˚ 0kŒt;M�;1 C k˚ 0kŒm;t�;1
2

� 1

2
.M � m/max

n��˚ 0
��
Œt;M�;1 ;

��˚ 0
��
Œm;t�;1

o
D 1

2
.M �m/

��˚ 0
��
Œm;M�;1

and

.t �m/
R M

t j˚ 0 .s/j dsC .M � t/
R t

m j˚ 0 .s/j ds

M �m
(74)

� .t � m/ .M � t/1=q k˚ 0kŒt;M�;p C .M � t/ .t �m/1=q k˚ 0kŒm;t�;p
M �m

� 1

M � m

h�
.t �m/ .M � t/1=q

�q C
�
.M � t/ .t � m/1=q

�qi1=q

�
h��˚ 0

��p
Œt;M�;p

C ��˚ 0��p
Œm;t�;p

i1=p

D 1

M � m
Œ.t �m/q .M � t/C .M � t/q .t �m/�1=q ��˚ 0

��
Œm;M�;p

for any t 2 Œm;M� :
These prove the desired inequalities (67) and (68).

Remark 8. Define the weighted arithmetic mean of the positive n-tuple x D
.x1; : : :; xn/ with the nonnegative weights w D .w1; : : :;wn/ by

An .w; x/ WD 1

Wn

nX

iD1
wixi



234 S.S. Dragomir

where Wn WDPn
iD1 wi > 0 and the weighted geometric mean of the same n-tuple, by

Gn .w; x/ WD
 

nY

iD1
xwi

i

!1=Wn

:

It is well known that the following arithmetic mean–geometric mean inequality
holds true

An .w; x/ 
 Gn .w; x/ :

On applying the inequality (65) for the convex function ˚ .t/ D � ln t; we have the
following reverse of the arithmetic mean–geometric mean inequality

1 � An .w; x/

Gn .w; x/
�



An .w; x/

m

�M�An.w;x/ 
 M

An .w; x/

�An.w;x/�m

: (75)

8 Applications for the Hölder Inequality

If xi; yi 
 0 for i 2 f1; : : :; ng ; then the Hölder inequality holds true

nX

iD1
xiyi �

 
nX

iD1
xp

i

!1=p  nX

iD1
yq

i

!1=q

;

where p > 1; 1p C 1
q D 1:

Assume that p > 1: If zi 2 R for i 2 f1; : : :; ng, satisfies the bounds

0 < m � zi � M <1 for i 2 f1; : : :; ng
and wi 
 0 .i D 1; : : : ; n/ with Wn WDPn

iD1 wi > 0; then from Theorem 6 we have
amongst other the following inequality

0 �
Pn

iD1 wiz
p
i

Wn
�

Pn

iD1 wizi

Wn

�p

(76)

� .Mp � mp/

�
1

2
C 1

M � m

ˇ̌
ˇ̌
Pn

iD1 wizi

Wn
� mCM

2

ˇ̌
ˇ̌

:

From this inequality we can state that:

Proposition 5 (Dragomir [44]). If xi 
 0; yi > 0 for i 2 f1; : : :; ng, p > 1; 1pC 1
q D

1 and there exists the constants �; � > 0 and such that

� � xi

yq�1
i

� � for i 2 f1; : : :; ng ;
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then we have

0 �
Pn

iD1 xp
iPn

iD1 yq
i

�

Pn

iD1 xiyiPn
iD1 yq

i

�p

(77)

� .� p � �p/

�
1

2
C 1

� � �
ˇ̌
ˇ̌
Pn

iD1 xiyiPn
iD1 yq

i

� � C �
2

ˇ̌
ˇ̌

:

Finally, the following additive reverse of the Hölder inequality can be stated as
well:

Corollary 6 (Dragomir [44]). With the assumptions of Proposition 5 we have

0 �
 

nX

iD1
xp

i

!1=p  nX

iD1
yq

i

!1=q

�
nX

iD1
xiyi (78)

� .� p � �p/1=p
�
1

2
C 1

� � �
ˇ̌
ˇ̌
Pn

iD1 xiyiPn
iD1 yq

i

� � C �
2

ˇ̌
ˇ̌
1=p nX

iD1
yq

i :

Remark 9. We observe that for p D q D 2 we have from the first inequality in (77)
the following reverse of the Cauchy–Bunyakovsky–Schwarz inequality

nX

iD1
x2i

nX

iD1
y2i �

 
nX

iD1
xiyi

!2
(79)

� �� 2 � �2�
�
1

2
C 1

� � �
ˇ̌
ˇ̌
Pn

iD1 xiyiPn
iD1 y2i

� � C �
2

ˇ̌
ˇ̌
  nX

iD1
y2i

!2

provided that xi 
 0; yi > 0 for i 2 f1; : : :; ng and there exists the constants �; � > 0

such that

� � xi

yi
� � for i 2 f1; : : :; ng :

9 Applications for f -Divergence

Consider the f -divergence

If .p; q/ WD
nX

iD1
qi f



pi

qi

�
(80)
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defined on the set of probability distributions p; q 2 P
n, where f is convex on .0;1/.

It is assumed that f .u/ is zero and strictly convex at u D 1. By appropriately defining
this convex function, various divergences are derived.

Proposition 6 (Dragomir [44]). Let f W .0;1/ ! R be a convex function with
the property that f .1/ D 0: Assume that p; q 2 P

n and there exists the constants
0 < r < 1 < R <1 such that

r � pi

qi
� R for i 2 f1; : : :; ng : (81)

Then we have the inequalities

0 � If .p; q/ � Bf .r;R/ (82)

where

Bf .r;R/ WD .R � 1/ R 1r jf 0 .t/j dtC .1 � r/
R R
1 jf 0 .t/j dt

R � r
: (83)

Moreover, we have the following bounds for Bf .r;R/

Bf .r;R/ (84)

�

8
ˆ̂̂
<

ˆ̂̂
:

�
1
2
C j1�

rCR
2 j

R�r

 R R
r jf 0 .t/j dt

h
1
2

R R
r jf 0 .t/j dtC 1

2

ˇ̌
ˇ
R R
1 jf 0 .t/j dt � R 1r jf 0 .t/j dt

ˇ̌
ˇ
i
;

and

Bf .r;R/ (85)

� .1 � r/ .R � 1/
R � r

h��f 0
��
Œ1;R�;1 C

��f 0
��
Œr;1�;1

i

� 1

2
.R � r/

kf 0kŒ1;R�;1 C kf 0kŒr;1�;1
2

� 1

2
.R � r/

��f 0
��
Œr;R�;1

and

Bf .r;R/ (86)

� 1

R � r

h
.1 � r/ .R � 1/1=q

��f 0
��
Œ1;R�;p

C .R � 1/ .1 � r/1=q
��f 0
��
Œr;1�;p

i

� 1

R � r
Œ.1 � r/q .R � 1/C .R � 1/q .1 � r/�1=q ��f 0

��
Œr;R�;p

where p > 1; 1p C 1
q D 1:
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The proof follows by Theorem 6 by choosing wi D qi; xi D pi
qi
; m D r and

M D R and performing the required calculations. The details are omitted.
The above results can be utilized to obtain various inequalities for the divergence

measures in information theory that are particular instances of f -divergence.
Consider the Kullback–Leibler divergence

KL .p; q/ D
nX

iD1
pi log



pi

qi

�
; p; q 2 P

n:

For the convex function f W .0;1/! R, f .t/ D � ln t we have

If .p; q/ WD
nX

iD1
qif



pi

qi

�
D �

nX

iD1
qi ln



pi

qi

�
D

nX

iD1
qi ln



qi

pi

�
D KL .q; p/

If p; q 2 P
n such that there exists the constants 0 < r < 1 < R <1 with

r � pi

qi
� R for i 2 f1; : : :; ng ; (87)

then we get from the inequality (83)

0 � KL .q; p/ � ln



R1�r

rR�1

� 1
R�r

: (88)

For ˛ > 1; let

f .t/ D t˛; t > 0:

Then

If .p; q/ D D˛ .p; q/ D
nX

iD1
p˛i q1�˛i ;

which is the ˛-order entropy.
If p; q 2 P

n such that (87) holds true, then by (83) we have

0 � D˛ .p; q/ � .R � 1/ .1 � r ˛/C .1 � r/ .R˛ � 1/
R � r

:
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10 A Refinement and Another Reverse

For a real function g W Œm;M� ! R and two distinct points ˛; ˇ 2 Œm;M� we recall
that the divided difference of g in these points is defined by

Œ˛; ˇI g� WD g .ˇ/� g .˛/

ˇ � ˛ :

Theorem 7 (Dragomir [41]). Let f W I ! R be a continuous convex function on
the interval of real numbers I and m;M 2 R; m < M with Œm;M� � VI, VI the
interior of I: Let Na D .a1; : : : ; an/ ; Np D .p1; : : : ; pn/ be n-tuples of real numbers
with pi 
 0 .i 2 f1; : : : ; ng/ and

Pn
iD1 pi D 1: If m � ai � M; i 2 f1; : : : ; ng ; withPn

iD1 piai ¤ m;M; then

ˇ̌
ˇ̌
ˇ̌

nX

iD1
pi

ˇ̌
ˇ̌
ˇ̌f .ai/� f

0

@
nX

jD1
pjaj

1

A

ˇ̌
ˇ̌
ˇ̌ sgn

0

@ai �
nX

jD1
pjaj

1

A

ˇ̌
ˇ̌
ˇ̌ (89)

�
nX

iD1
pif .ai/ � f

 
nX

iD1
piai

!

� 1

2

 "
nX

iD1
piai;MI f

#
�
"

m;
nX

iD1
piaiI f

#!
nX

iD1
pi

ˇ̌
ˇ̌
ˇ̌ai �

nX

jD1
pjaj

ˇ̌
ˇ̌
ˇ̌

� 1

2

 "
nX

iD1
piai;MI f

#
�
"

m;
nX

iD1
piaiI f

#!2

64
nX

iD1
pia

2
i �

0

@
nX

jD1
pjaj

1

A
2
3

75

1=2

:

If the lateral derivatives f 0C .m/ and f 0� .M/ are finite, then we also have the
inequalities

0 �
nX

iD1
pif .ai/ � f

 
nX

iD1
piai

!
(90)

� 1

2

 "
nX

iD1
piai;MI f

#
�
"

m;
nX

iD1
piaiI f

#!
nX

iD1
pi

ˇ̌
ˇ̌
ˇ̌ai �

nX

jD1
pjaj

ˇ̌
ˇ̌
ˇ̌

� 1

2

�
f 0� .M/� f 0C .m/

� nX

iD1
pi

ˇ̌
ˇ̌
ˇ̌ai �

nX

jD1
pjaj

ˇ̌
ˇ̌
ˇ̌
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� 1

2

�
f 0� .M/� f 0C .m/

�
2

64
nX

iD1
pia

2
i �

0

@
nX

jD1
pjaj

1

A
2
3

75

1=2

:

Proof. We recall that if f W I ! R is a continuous convex function on the interval
of real numbers I and ˛ 2 I then the divided difference function f˛ W I n f˛g ! R,

f˛ .t/ WD Œ˛; tI f � WD f .t/ � f .˛/

t � ˛
is monotonic nondecreasing on I n f˛g :

For Nap WDPn
jD1 pjaj 2 .m;M/, we consider now the sequence

fNap .i/ WD
f .ai/ � f

�Nap
�

ai � Nap
:

We will show that fNap .i/ and hi WD ai � Nap, 2 f1; : : : ; ng are synchronous:
Let i; j 2 f1; : : : ; ng with ai; aj ¤ Nap: Assume that ai 
 aj; then by the

monotonicity of f˛ we have

fNap .i/ D
f .ai/ � f

�Nap
�

ai � Nap
(91)


 f
�
aj
� � f

�Nap
�

aj � Nap
D fNap .j/

and

hi 
 hj (92)

which shows that

�
fNap .i/ � fNap .j/

� �
hi � hj

� 
 0: (93)

If ai < aj; then the inequalities (91) and (92) reverse but the inequality (93) still
holds true.

Utilising the continuity property of the modulus we have

ˇ̌�ˇ̌
fNap .i/

ˇ̌ � ˇ̌fNap .j/
ˇ̌� �

hi � hj
�ˇ̌ � ˇ̌�fNap .i/� fNap .j/

� �
hi � hj

�ˇ̌

D �fNap .i/� fNap .j/
� �

hi � hj
�

for any i; j 2 f1; : : : ; ng :
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Multiplying with pi; pj 
 0 and summing over i and j from 1 to n we have

ˇ̌
ˇ̌
ˇ̌

nX

iD1

nX

jD1
pipj

�ˇ̌
fNap .i/

ˇ̌ � ˇ̌fNap .j/
ˇ̌� �

hi � hj
�
ˇ̌
ˇ̌
ˇ̌ (94)

�
nX

iD1

nX

jD1
pipj

�
fNap .i/ � fNap .j/

� �
hi � hj

�
:

A simple calculation shows that

1

2

nX

iD1

nX

jD1
pipj

�ˇ̌
fNap .i/

ˇ̌� ˇ̌fNap .j/
ˇ̌� �

hi � hj
�

(95)

D
nX

iD1
pi

ˇ̌
fNap .i/

ˇ̌
hi �

nX

iD1
pi

ˇ̌
fNap .i/

ˇ̌ nX

iD1
pihi

D
nX

iD1
pi

ˇ̌
ˇ̌
ˇ
f .ai/� f

�Nap
�

ai � Nap

ˇ̌
ˇ̌
ˇ
�
ai � Nap

�

�
nX

iD1
pi

ˇ̌
ˇ̌
ˇ
f .ai/ � f

�Nap
�

ai � Nap

ˇ̌
ˇ̌
ˇ

nX

iD1
pi
�
ai � Nap

�

D
nX

iD1
pi

ˇ̌
ˇ̌
ˇ
f .ai/� f

�Nap
�

ai � Nap

ˇ̌
ˇ̌
ˇ
�
ai � Nap

�

D
nX

iD1
pi

ˇ̌
f .ai/� f

�Nap
�ˇ̌

sgn
�
ai � Nap

�

and

1

2

nX

iD1

nX

jD1
pipj

�
fNap .i/ � fNap .j/

� �
hi � hj

�
(96)

D
nX

iD1
pifNap .i/ hi �

nX

iD1
pifNap .i/

nX

iD1
pihi

D
nX

iD1
pi

 
f .ai/ � f

�Nap
�

ai � Nap

!
�
ai � Nap

�

�
nX

iD1
pi

 
f .ai/� f

�Nap
�

ai � Nap

!
nX

iD1
pi
�
ai � Nap

�
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D
nX

iD1
pi

 
f .ai/ � f

�Nap
�

ai � Nap

!
�
ai � Nap

�

D
nX

iD1
pif .ai/� f

 
nX

iD1
piai

!
:

On making use of the identities (95) and (96) we obtain from (94) the first inequality
in (89).

Now, since Nap WDPn
jD1 pjaj 2 .m;M/ then we have by the monotonicity of fNap .i/

that

�
m; NapI f

� D f
�Nap
� � f .m/

Nap �m
� fNap .i/ (97)

� f .M/ � f
�Nap
�

M � Nap
D �Nap;MI f

�

for any i 2 f1; : : : ; ng :
Applying now the Grüss’ type inequality obtained by Cerone and Dragomir in [9]

ˇ̌
ˇ̌
ˇ

nX

iD1
wixiyi �

nX

iD1
wixi

nX

iD1
wiyi

ˇ̌
ˇ̌
ˇ �

1

2
.� � �/

nX

iD1
wi

ˇ̌
ˇ̌
ˇ̌xi �

nX

jD1
wjxj

ˇ̌
ˇ̌
ˇ̌

provided

�1 < ı � yi � 
 <1 (98)

for i D 1; : : : ; n; we have that

nX

iD1
pif .ai/� f

 
nX

iD1
piai

!

� 1

2

��Nap;MI f
� � �m; NapI f

�� nX

iD1
pi

ˇ̌
ˇ̌
ˇ̌ai �

nX

jD1
pjaj

ˇ̌
ˇ̌
ˇ̌ ;

which proves the second inequality in (89).
The last bound in (89) is obvious by Cauchy–Bunyakovsky–Schwarz discrete

inequality.
If the lateral derivatives f 0C .m/ and f 0� .M/ are finite, then by the convexity of f

we have the gradient inequalities
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f .M/ � f
�Nap
�

M � Nap
� f 0� .M/

and

f
�Nap
� � f .m/

Nap � m

 f 0C .m/ ;

where Nap 2 .m;M/ : These imply that

�Nap;MI f
� � �m; NapI f

� � f 0� .M/ � f 0C .m/

and the proof of the third inequality in (90) is concluded.
The rest is obvious.

Remark 10. Define the weighted arithmetic mean of the positive n-tuple x D
.x1; : : :; xn/ with the nonnegative weights w D .w1; : : :;wn/ by

An .w; x/ WD 1

Wn

nX

iD1
wixi

where Wn WDPn
iD1 wi > 0 and the weighted geometric mean of the same n-tuple, by

Gn .w; x/ WD
 

nY

iD1
xwi

i

!1=Wn

:

It is well known that the following arithmetic mean–geometric mean inequality
holds

An .w; x/ 
 Gn .w; x/ :

Applying the inequality (90) for the convex function f .t/ D � ln t; t > 0 we have
the following reverse of the arithmetic mean–geometric mean inequality

1 � An .w; x/

Gn .w; x/
(99)

�

2

64

�
An.w;x/

m

�An.w;x/�m

�
M

An.w;x/

�M�An.w;x/

3

75

1
2An.w;jx�An.w;x/j/

� exp

�
1

2

M �m

mM
An .w; jx � An .w; x/j/


;

provided that 0 < m � xi � M <1 for i 2 f1; : : :; ng :
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11 Applications for the Hölder Inequality

If xi; yi 
 0 for i 2 f1; : : :; ng ; then the Hölder inequality holds true

nX

iD1
xiyi �

 
nX

iD1
xp

i

!1=p  nX

iD1
yq

i

!1=q

;

where p > 1; 1p C 1
q D 1:

Assume that p > 1: If zi 2 R for i 2 f1; : : :; ng, satisfies the bounds

0 < m � zi � M <1 for i 2 f1; : : :; ng

and wi 
 0 .i D 1; : : : ; n/ with Wn WDPn
iD1 wi > 0; then from Theorem 7 we have

amongst other the following inequality

ˇ̌
ˇ̌
ˇ
1

Wn

nX

iD1

ˇ̌
ˇ̌zp

i �

Pn

iD1 wizi

Wn

�pˇ̌
ˇ̌wisgn

�
zi �

Pn
iD1 wizi

Wn


d�

ˇ̌
ˇ̌
ˇ (100)

�
Pn

iD1 wiz
p
i

Wn
�

Pn

iD1 wizi

Wn

�p

� 1

2


�Pn
iD1 wizi

Wn
;MI .�/p


�
�

m;

Pn
iD1 wizi

Wn
I .�/p

�
QDw .z/

� 1

2


�Pn
iD1 wizi

Wn
;MI .�/p


�
�

m;

Pn
iD1 wizi

Wn
I .�/p

�
QDw;2 .z/

� 1

4


�Pn
iD1 wizi

Wn
;MI .�/p


�
�

m;

Pn
iD1 wizi

Wn
I .�/p

�
.M �m/ ;

where
Pn

iD1 wizi

Wn
2 .m;M/ and

QDw .z/ WD 1

Wn

nX

iD1
wi

ˇ̌
ˇ̌
ˇzi �

Pn
jD1 wjzj

Wn

ˇ̌
ˇ̌
ˇ

while

QDw;2 .z/ D
"Pn

iD1 wiz2i
Wn

�

Pn

iD1 wizi

Wn

�2# 1
2

:

The following result related to the Hölder inequality holds:
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Proposition 7 (Dragomir [41]). If xi 
 0; yi > 0 for i 2 f1; : : :; ng, p > 1; 1p C
1
q D 1 and there exists the constants �; � > 0 and such that

� � xi

yq�1
i

� � for i 2 f1; : : :; ng ;

then we have
ˇ̌
ˇ̌
ˇ

nX

iD1

ˇ̌
ˇ̌
ˇ
xp

i

yq
i

�
 Pn

jD1 xjyjPn
jD1 yq

j

!pˇ̌
ˇ̌
ˇ yq

i sgn

"
xi

yq�1
i

�
Pn

jD1 xjyjPn
jD1 yq

j

#ˇ̌
ˇ̌
ˇ (101)

�
Pn

iD1 xp
iPn

iD1 yq
i

�

Pn

iD1 xiyiPn
iD1 yq

i

�p

� 1

2


�Pn
iD1 xiyiPn
iD1 yq

i

; � I .�/p

�
�
�;

Pn
iD1 xiyiPn
iD1 yq

i

I .�/p
�
QDyq



x

yq�1

�

� 1

2


�Pn
iD1 xiyiPn
iD1 yq

i

; � I .�/p

�
�
�;

Pn
iD1 xiyiPn
iD1 yq

i

I .�/p
�
QDyq;2



x

yq�1

�

� 1

4


�Pn
iD1 xiyiPn
iD1 yq

i

; � I .�/p

�
�
�;

Pn
iD1 xiyiPn
iD1 yq
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�
.� � �/ ;

where

QDyq



x

yq�1

�
D 1Pn

iD1 yq
i

nX

iD1
yq

i

ˇ̌
ˇ̌
ˇ

xi

yq�1
i

�
Pn

jD1 xjyjPn
jD1 yq

j

ˇ̌
ˇ̌
ˇ

and

QDyq;2



x

yq�1

�
D
2

4 1Pn
iD1 yq

i

nX

iD1

x2i
yq�2

i

�
 Pn

jD1 xjyjPn
jD1 yq

j

!23

5

1
2

:

Proof. The inequalities (102) follow from (100) by choosing

zi D xi

yq�1
i

and wi D yq
j :

The details are omitted.

Remark 11. We observe that for p D q D 2 we have from the first inequality
in (101) the following reverse of the Cauchy–Bunyakovsky–Schwarz inequality
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ˇ̌
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 Pn
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jD1 y2j

!2ˇ̌ˇ̌
ˇ̌ y2i sgn
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yi
�
Pn

jD1 xjyjPn
jD1 y2j

!ˇ̌
ˇ̌
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.� � �/ 1Pn
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yi
�
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� 1

2
.� � �/

2

4 1Pn
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 Pn
jD1 xjyjPn
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!23

5

1
2

� 1

4
.� � �/2 ;

provided that there exists the constants �; � > 0 such that

� � xi

yi
� � for i 2 f1; : : :; ng :

12 Applications for f -Divergence

Consider the f -divergence

If .p; q/ WD
nX

iD1
qif



pi

qi

�
(103)

defined on the set of probability distributions p; q 2 P
n, where f is convex on .0;1/.

It is assumed that f .u/ is zero and strictly convex at u D 1.

Proposition 8 (Dragomir [41]). Let f W .0;1/ ! R be a convex function with
the property that f .1/ D 0: Assume that p; q 2 P

n and there exists the constants
0 < r < 1 < R <1 such that

r � pi

qi
� R for i 2 f1; : : :; ng : (104)

Then we have

0 � If .p; q/ � 1

2
.Œ1;RI f �� Œr; 1I f �/Dv .p; q/ (105)

� 1

2

�
f 0� .R/� f 0C .r/

�
Dv .p; q/
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� 1

2

�
f 0� .R/� f 0C .r/

� �
D�2 .p; q/

�1=2

� 1

4
.R � r/

�
f 0� .R/� f 0C .r/

�
;

where Dv .p; q/ DPn
iD1 jpi � qij and D�2 .p; q/ D

Pn
iD1

p2i
qi
� 1:

Proof. From (90) we have

0 �
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iD1
qif



pi

qi

�
� f .1/

� 1

2
.Œ1;RI f �� Œr; 1I f �/
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qi
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ˇ̌pi

qi
� 1
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� 1

2

�
f 0� .R/� f 0C .r/

� nX

iD1
qi
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ˇ̌pi

qi
� 1

ˇ̌
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� 1

2
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f 0� .R/� f 0C .r/

�
 

nX

iD1

p2i
qi
� 1

!1=2
� 1

4
.R � r/

�
f 0� .R/� f 0C .r/

�

i.e., the desired result (105).

Remark 12. The inequality

If .p; q/ � 1

4
.R � r/

�
f 0� .R/� f 0C .r/

�
(106)

was obtained for the discrete divergence measures in 2000 by S.S. Dragomir, see
[32].

Proposition 9 (Dragomir [41]). With the assumptions in Proposition 8 we have

ˇ̌
Ijf j.sgn.�/�1/ .p; q/

ˇ̌ � If .p; q/ (107)

� 1

2
.Œ1;RI f �� Œr; 1I f �/Dv .p; q/

� 1

2
.Œ1;RI f �� Œr; 1I f �/ �D�2 .p; q/

�1=2

� 1

4
.Œ1;RI f �� Œr; 1I f �/ .R � r/ ;

where Ijf j.sgn.�/�1/ .p; q/ is the generalized f -divergence for the non-necessarily
convex function jf j .sgn .�/� 1/ and is defined by
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� 1

�
: (108)

Proof. From the inequality (89) we have
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2
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nX

iD1
qi

ˇ̌
ˇ̌pi

qi
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ˇ̌
ˇ̌

� 1

2
.Œ1;RI f �� Œr; 1I f �/

 
nX

iD1

p2i
qi
� 1

!1=2

� 1

4
.Œ1;RI f �� Œr; 1I f �/ .R � r/

from where we get the desired result (107).

The above results can be utilized to obtain various inequalities for the divergence
measures in information theory that are particular instances of f -divergence.

Consider the Kullback–Leibler divergence

KL .p; q/ D
nX

iD1
pi log



pi

qi

�
; p; q 2 P

n:

For the convex function f W .0;1/! R, f .t/ D � ln t we have

If .p; q/ WD
nX

iD1
qif



pi

qi

�
D �

nX

iD1
qi ln



pi

qi

�
D

nX

iD1
qi ln



qi

pi

�
D KL .q; p/ :

If p; q 2 P
n such that there exists the constants 0 < r < 1 < R <1 with

r � pi

qi
� R for i 2 f1; : : :; ng ; (109)

then we get from the first inequality in (105) that

0 � KL .q; p/ � 1

2
Dv .p; q/ ln



1

RR�1r1�r

�
:
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For the convex function f W .0;1/! R, f .t/ D t ln t we have

If .p; q/ WD
nX

iD1
qif



pi

qi

�
D KL .p; q/ :

If p; q 2 P
n are such that there exists the constants 0 < r < 1 < R < 1 with the

property (109), then we get from the first inequality in (105) that

0 � KL .p; q/ � 1

2
Dv .p; q/ ln

�
R

R
R�1 r

r
1�r

�
:
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On Geometry of the Zeros of a Polynomial

N.K. Govil and Eze R. Nwaeze

Abstract Let p.z/ D a0 C a1z C a2z2 C a3z3 C � � � C anzn be a polynomial of
degree n; where the coefficients ak may be complex. The problem of locating the
zeros of a polynomial p.z/ is a long-standing classical problem which has frequently
been investigated. These problems, besides being of theoretical interest, have
important applications in many scientific specialization areas, such as coding theory,
cryptography, combinatorics, number theory, mathematical biology, engineering,
signal processing, communication theory, and control theory, and for this reason
there is always a need for better and sharper results.

This paper is expository in nature, and here we make an attempt to provide a
systematic study of these problems by presenting some results starting from the
results of Gauss and Cauchy, who we believe were the earliest contributors in this
subject, to some of the most recent ones. When possible, we have tried to present the
proofs of some of the theorems. Also, included here are some results on evaluating
the quality of bounds by using numerical methods or MATLAB.

Keywords: Complex polynomials • Location of zeros of polynomials • Complex
zeros • Inequalities • Trinomials and quadrinomials

1 Introduction

Let p.z/ D a0 C a1z C a2z2 C a3z3 C � � � C anzn be a polynomial of degree n.
By the Fundamental Theorem of Algebra (historically, the first important result
concerning the roots of an algebraic equation), p.z/ has exactly n zeros in the
complex plane, counting multiplicity. But this Theorem does not say anything
regarding the location of zeros of polynomial, that is, the region which contains
some or all of the zeros of a polynomial. Problems involving location of the zeros of
a polynomial, besides being of theoretical interest, find applications in many areas
of applied mathematics such as coding theory, cryptography, combinatorics, number
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theory, mathematical biology, and engineering [5, 12, 37, 53, 58, 60]. Especially,
the polynomial zeros play an important role, for example, in solving digital audio
signal processing problems [75], control engineering problems [11], and eigenvalue
problems in mathematical physics [64]. Since Abel and Ruffini proved that there is
no general algebraic solution to polynomial equations of degree five or higher, the
problem of finding a region containing all the zeros of a polynomial became much
more interesting, and over a period a large number of results have been provided in
this direction.

It may be remarked that there are methods, for example Ehrlich–Aberth’s type
(see [1, 29, 57]) for the simultaneous determination of the zeros of algebraic poly-
nomials, and there are studies to accelerate convergence and increase computational
efficiency of these methods (for example, see [51, 54]). These methods which are of
course very useful, because they give approximations to the zeros of a polynomial
can possibly become more efficient when combined with the results dealing with the
region containing all the zeros of a polynomial, because an accurate estimate of the
region or annulus containing all the zeros of a polynomial can considerably reduce
the amount of work needed to find exact zeros, and so there is always a need for
better and better estimates for the region containing all the zeros of a polynomial.
Several books, and monographs have been written on this subject and related subject
of approximation theory (for example, see [49, 52, 53, 61]).

The problems concerning the location of the zeros of a polynomial can mainly
be divided into two categories, namely:

• Given an integer k; 1 � k � n; find a region R D R.a0; a1; a2; : : : ; an/

containing at least k or exactly k zeros of p.z/: In other words, one would
like to find the smallest circle jzj D r which will enclose the k zeros of
the polynomial. Such results are very useful for solving practical problems in
numerical analysis, for example in finding the roots of an algebraic equation
by using Newton–Raphson Method, and in finding eigenvalues. Note that when
dealing with the problems of finding eigenvalues often one is not interested in
computing all eigenvalues precisely.

• Given a region R; to find the number k D k.a0; a1; a2; : : : ; an/ such that k
number of zeros lie in the region R: In particular, to find the number k of zeros
whose moduli do not exceed some prescribed value, say r:

The subject of location of zeros of a polynomial has been studied extensively
dating back to Gauss and Cauchy to some of the more recent ones. Due to the
limited space, it would not be possible to include all the results in this subject, and
therefore many important results in this area, which we would have liked to include,
had to be excluded (for a more detailed study of the subject, we refer, in particular,
to the monograph and books written by Dieudonné [27], Marden [49], Milovanović
et al. [53], and Rahman and Schmeisser [61]).

This paper contains five sections. Section 1 being on Introduction where we
present a brief introduction and justification to study this subject of Geometry of
the Zeros of Polynomials. In Sect. 2, we give a brief history of the subject of
the Geometry of Zeros of Polynomials starting with the earliest results of Gauss
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and Cauchy on this subject and then develop it by presenting some results in this
direction. In Sect. 3, presented are some results concerning the Location of the Zeros
of Composite Polynomials, on Linear Combination of Polynomials, and also some
results of Peretz and Rassias in this direction. Section 4 deals with the Location of
the Zeros of Lacunary Polynomials, along with some recent results concerning the
Zeros of Trinomials and Quadrinomials, and finally in Sect. 5 some recent results
concerning Cauchy Theorem on the Location of the Zeros of a Polynomial, both
in terms of disks and annuli containing all the zeros of a polynomial, have been
presented. When possible, we have tried to present proofs of some of the results
presented in this paper.

Also, presented in this section are some examples of polynomials to compare
bounds obtained by different results, and this has been done by using numerical
methods or MATLAB.

2 Results Due to Gauss, Cauchy, and Bounds for Zeros
as Functions of All the Coefficients

The earliest result concerning the location of the zeros of a polynomial is probably
due to Gauss who incidental to his proofs of the Fundamental Theorem of Algebra
showed in 1816 that a polynomial

p.z/ D a0 C a1zC a2z
2 C a3z

3 C � � � C anzn;

with all aj real, has no zeros outside certain circles jzj D R; where

R D max
1�j�n

.n21=2jajj/1=j:

However, in the case of arbitrary real or complex aj; Gauss [33] in 1849 showed
that R may be taken as the positive root of the equation

zn � 21=2.ja1jzn�1 C � � � C janj/ D 0:

As a further indication of Gauss’ interest in the location of the zeros of a
polynomial, we have his letter (see collected works of Gauss) to Schumacher dated
April 2, 1833, in which he tells of having written enough on this topic to fill
several volumes, but the only results he published are those in Gauss [33]. Even,
his important result, Theorem 2.1 stated below on the mechanical interpretation of
the zeros of the derivative of a polynomial comes to us only by a brief entry he made
presumably around 1836 in a notebook otherwise devoted to astronomy.



256 N.K. Govil and E.R. Nwaeze

Theorem 2.1. The zeros of the function F.z/ D
kX

jD1

mj

z � zj
; where all mj are real,

are the points of the equilibrium in the field of force due to the system of k masses
mj at the fixed points zj repelling a unit movable mass at z according to the inverse
distance law.

Around 1829, Cauchy [14] (also, see the book of Marden [49, Theorem 27.1,
p. 122] ) derived more exact bounds for the moduli of the zeros of a polynomial than
those given by Gauss, by proving the following:

Theorem 2.2. Let p.z/ D zn C
n�1X

jD0
ajz

j be a complex polynomial, then all the zeros

of p.z/ lie in the disc

fz W jzj � �g � fz W jzj < 1C Ag; (1)

where

A D max
0�j�n�1 jajj;

and � is the unique positive root of the real coefficient equation

zn � jan�1jzn�1 � jan�2jzn�2 � � � � � ja1jz� ja0j D 0: (2)

The result is best possible and the bound is attained when p.z/ is the polynomial on
the left-hand side of (2).

The proof follows easily from the inequality

jp.z/j 
 jzjn � .jan�1jjzjn�1 C jan�2jjzjn�2 C � � � C ja1jjzj C ja0j/ D 0; (3)

which can be derived easily on applying Triangle Inequality to p.z/ D znC
n�1X

jD0
ajz

j:

If one applies the above Theorem 2.2 of Cauchy to the polynomial P.z/ D
znp.1=z/ and combine it with Theorem 2.2, one easily gets

Theorem 2.3 (Cauchy). All the zeros of the polynomial p.z/ D a0Ca1zC�Canzn,
an ¤ 0, lie in the annulus r1 � jzj � r2, where r1 is the unique positive root of the
equation

janjzn C jan�1jzn�1 C � C ja1jz � ja0j D 0; (4)

and r2 is the unique positive root of the equation
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ja0j C ja1jzC � C jan�1jzn�1 � janjzn D 0: (5)

Although the above result of Cauchy gives an annulus containing all the zeros of a
polynomial, it is implicit, in the sense, that in order to find the annulus containing all
the zeros of a polynomial, one needs to compute the zeros of two other polynomials.
From the inequality (3) as well follows the following result which is also due to
Cauchy [14].

Theorem 2.4. Let p.z/ D
nX

jD0
ajz

j be a complex polynomial with an ¤ 0; then all

the zeros of p.z/ lie in the disc

T D
n
z W jzj < 1C max

0�j�n�1

ˇ̌
ˇ

aj

an

ˇ̌
ˇ
o
:

To prove Theorem 2.4, note that if M D max
0�j�n�1

ˇ̌
ˇ

aj

an

ˇ̌
ˇ, and if jzj > 1, we get from

inequality (3) that

jf .z/j 
 janjjzjn
(
1 �M

nX

jD1
jzj�j

)

> janjjzjn
(
1 �M

1X

jD1
jzj�j

)

> janjjzjn
(
1 � M

jzj � 1

)

D janjjzjn
(
jzj � 1 �M

jzj � 1

)
:

Hence, if jzj 
 1CM; then jf .z/j > 0; implying that the only zeros of f .z/ in jzj > 1
are those in T (as defined in Theorem 2.4). But, as all the zeros of f .z/ in jzj � 1
belong to T also, we have fully established Theorem 2.4.

The inequality (3) also yields the following result due to Birkhoff [10], which
was later proved independently by Cohn [15] and by Berwald [7].

Theorem 2.5. The zero z1 of largest modulus of p.z/ D a0 C a1zC a2z2 C a3z3 C
� � � C anzn; an ¤ 0; satisfies the inequalities

.21=n � 1/r � ˛ � jz1j � r � ˛

.21=n � 1/ ; (6)

where r is the positive root of (2) and ˛ is defined as:
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˛ D max
1�j�n

ˇ̌
ˇ

an�j

anCn
j

ˇ̌
ˇ
1=j � jz1j:

Here, as usual, Cn
j are the binomial coefficients defined by

Cn
j D

nŠ

jŠ.n � j/Š
; 0Š D 1: (7)

The following result is due to Kuniyeda [45] (also, see [22]), Montel [55], and
Tôya [68].

Theorem 2.6. For any p and q such that

p > 1; q > 1;
1

p
C 1

q
D 1; (8)

the polynomial p.z/ D a0C a1zC a2z2C a3z3C� � �C anzn; an ¤ 0; has all its zeros
in the circle

jzj <
(
1C

"
n�1X

jD0

ˇ̌
ˇ

aj

an

ˇ̌
ˇ
p
#q=p) 1=q

� .1C nq=pMq/1=q; (9)

where M D max
0�j�n�1 jaj=anj:

In particular, if we take p D q D 2 in inequality (9), we get that p.z/ in
Theorem 2.6 has all its zeros in

jzj <
(
1C

n�1X

jD0

ˇ̌
ˇ

aj

an

ˇ̌
ˇ
2

) 1=2
: (10)

The above inequality (10) has been derived in Carmichael–Mason [13], Kelleher
[42], and Fujiwara [32].

Note that as p ! 1, the right side of (9) approaches the limit .1 C M/ and
thus Theorem 2.4 can be obtained as a special case of Theorem 2.6. If we apply
inequality (10) to the polynomial .1 � z/.a0 C a1z C a2z2 C a3z3 C � � � C anzn/;

an ¤ 0; we easily get the following result of Williams [70].

Theorem 2.7. All the zeros of the polynomial p.z/ D a0Ca1zCa2z2Ca3z3C� � �C
anzn; an ¤ 0; lie in the disk

jzj �
"
1C

ˇ̌
ˇ
a0
an

ˇ̌
ˇ
2 C

ˇ̌
ˇ
a1 � a0

an

ˇ̌
ˇ
2 C � � � C

ˇ̌
ˇ
an � an�1

an

ˇ̌
ˇ
2

#1=2
: (11)

In the paper that contains Theorem 2.6, Kuniyeda [45] also proved.
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Theorem 2.8. For any p > 0; the polynomial p.z/ D a0 C a1z C a2z2 C a3z3 C
� � � C anzn; an ¤ 0; has all its zeros in the disk

jzj �
(
1C 1

janj
pC1

p

"
nX

jD1
jan�jj1Cp

#1=p) p
pC1

: (12)

Next, we mention the following result due to Walsh [69], Markovitch [50],
Kojima [44], and Joyal et al. [40].

Theorem 2.9 (Walsh [69]). All the zeros of the polynomial p.z/ D a0 C a1z C
a2z2 C a3z3 C � � � C anzn; an ¤ 0; lie in the disk

jzj �
nX

jD1

ˇ̌
ˇ
aj�n

an

ˇ̌
ˇ
1=j
: (13)

Theorem 2.10 (Markovitch [50]). All the zeros of the polynomial h.z/ D
nX

jD0
ajbjz

j lie in the disk jzj � Mr; where r is the positive root of the equation

ja0j C ja1jzC � � � C jan�1jzn�1 � janjzn D 0; (14)

and M D max
0�j�n�1

ˇ̌
ˇ

bj

bj�1

ˇ̌
ˇ
1=n�j

:

Theorem 2.11 (Kojima [44]). All the zeros of the polynomial p.z/ D a0 C a1zC
a2z2 C a3z3 C � � � C anzn; an ¤ 0; lie in the disk

jzj � max
1�j�n�1

 
ja0j
ja1j ; 2

jajj
jajC1j

!
: (15)

Theorem 2.12 (Joyal et al. [40]). For any p and q such that

p > 1; q > 1;
1

p
C 1

q
D 1; (16)

the polynomial p.z/ D a0C a1zC a2z2C a3z3C� � �C anzn; an ¤ 0; has all its zeros
in the circle

jzj <
(
1

2

h
1C

q
1C 4Mq

p

i) 1=q

; (17)

where Mq
p D

 
nX

jD1

ˇ̌
ˇ
an�1an�j � anan�j�1

a2n

ˇ̌
ˇ
p
!1=p

; a�1 D 0:
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3 Zeros of Composite Polynomials, Linear Combination
of Polynomials, and Some Results of Peretz and Rassias

3.1 Grace’s Apolarity Theorem and Its Applications to Zeros
of Polynomials

In the beginning of the last century, Grace [36] introduced the following concept of
apolar polynomials.

Definition 3.1. Two polynomials p.z/ D
nX

jD0
ajC

n
j zj and q.z/ D

nX

jD0
bjC

n
j zj are said

to be apolar if their coefficients satisfy the apolarity condition

nX

jD0
.�1/jCn

j ajbn�j D 0: (18)

In the same paper, Grace [36] also proved the following result, known as Grace’s
Apolarity Theorem, or simply Grace’s Theorem, which has been found to be of
great use, and applications. Before we state this result of Grace we would like to
introduce the definition of circular domain used in this paper.

Definition 3.2 (See, Rahaman and Schmeisser [61, p. 96]). Let OC be the extended
complex plane. The rational functions of degree one, usually called Möbius
transformations or linear transformations,

 W
8
<

:

OC! OC
z 7! ˛zC ˇ

�zC ı .˛; ˇ; �; ı 2 C; ˛ı � �ˇ ¤ 0/

are also bijective. Let C denote the set of all circles and all straight lines in the plane.
Then every  maps an element of C onto an element of C. Since the mappings  
are bijective, it follows that, in OC, every domain whose boundary belongs to C is
mapped onto a domain of the same type. Such domains are called circular domains
provided that they are open or closed. Thus, not only a disc (open or closed), but also
its compliment with respect to OC, is also a circular domain, and so is a half-plane.

Theorem 3.1. Let the polynomials p.z/ D
nX

jD0
ajC

n
j zj and q.z/ D

nX

jD0
bjC

n
j zj be

apolar. Then any circular domain that contains all the zeros of the polynomial p.z/
must contain at least one zero of the polynomial q.z/:

Szegö [67] gave an alternative proof of the above theorem of Grace [36], and also
gave several applications. Another proof of this theorem was given by Goodman
and Schoenberg [34] (also, see Milovanović et al. [53, p. 188]) for which they use
induction on n.
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The following applications of Grace’s Theorem can be found in Szegö [67]
(also in the book of Marden [49], Milovanović et al. [53, p. 191] and in paper of
Schur [65]).

Theorem 3.2. If all the zeros of the polynomial p.z/ D
nX

jD0
ajC

n
j zj lie in jzj < r and

all the zeros of the polynomial q.z/ D
nX

jD0
bjC

n
j zj lie in jzj � �; then all the zeros of

the polynomial
nX

jD0
Cn

j ajbjz
j are in jzj < r�:

Theorem 3.3 (Schur-Szegö Composite Theorem). If all the zeros of the polyno-

mial p.z/ D
nX

jD0
ajC

n
j zj lie in a closed and bounded convex domain D and all the

zeros of the polynomial q.z/ D
nX

jD0
bjC

n
j zj lie in Œ�1; 0�; then all the zeros of the

zeros of the polynomial
nX

jD0
Cn

j ajbjz
j are in D:

By using Theorem 3.1 of Grace, Szegö [67] in his paper, has obtained.

Theorem 3.4. Suppose the polynomial p.z/ D znC
n�1X

jD0
ajz

j has no zeros in the disk

jzj � R: Then the “section” q.z/ D p.z/� zn D
n�1X

jD0
ajz

j has no zeros in the circular

region jzj � R=2:

3.2 Zeros of Linear Combination of Polynomials

By using Grace Theorem [36], Rubinstein [63] proved several results for the linear
combination of polynomials with complex coefficients, and here we begin with the
following.

Theorem 3.5. Let the polynomials f .z/ D zn C � � � ; and g.z/ D zr C � � � ; n D 2r;
have zeros in the circles jz�aj � r1 and jz�bj � r2; respectively, then all the zeros
of the polynomial

f .z/ � �g.z/ (19)

are in the union of the n circles
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ˇ̌
ˇz� a � 1

2
�2=n C �1=n

�
a � bC 1

4
�2=n

�1=2ˇ̌
ˇ � .r1 C r2/

1=2j�j1=n C r1; (20)

where �1=n assumes all the nth roots of �:

Proof. The equation f .z/ � �g.z/ D 0 can be replaced by Grace’s theorem by the
equation .z� ˛/n � �.z� ˇ/n=2 D 0; where j˛ � aj � r1; and jˇ � bj � r2:

Solving for z we obtain

z D ˛ C 1

2
�2=n ˙ �1=n

h
.˛ � ˇ/C 1

4
�2=n

i1=2
:

Denoting generically the region jz � cj � R by C.c;R/ we have

˛ � ˇ 2 C.a � b; r1 C r2/;

implying

�
˛ � ˇ C 1

4
�2=n

�1=2 2 C
�
˙
�

a � bC 1

4
�2=n

�
; .r1 C r2/

1=2
�
:

Hence

z 2 C
�

aC 1

2
�2=n ˙ �1=n

�
a � bC 1

4
�2=n

�1=2
; .r1 C r2/

1=2j�j2=n C r1
�
:

and (20) follows, since by assumption n is an even number. The result is sharp for
� D 0; and for a D b: ut

For the general case Rubinstein proved, in the same paper

Theorem 3.6. 1Let f .z/ D zn C � � � ; and g.z/ D zr C � � � ; n > r; have zeros in
the circles jz � aj � r1 and jz � bj � r2; respectively. Then all the zeros of the
polynomial f .z/ � �g.z/ are in the circle

jz� aj � r1 C d;

where d is the positive root of the equation

dn=r �Md � N D 0 (21)

with M D j�j1=r; N D j�j1=r.ja� bj C r1 C r2/:

Proof. Consider the equation

.z � ˛/n D �.z � ˇ/r; ja � ˛j � r1; jb � ˇj � r2:

1Theorem 3.6 was proved independently and by a different method by Mishael Zedek [72].
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For z0 satisfying .z0 � ˛/n D �.z0 � ˛/r; .z0 � ˛/n=r�1 D �1=rŒ.z0 � ˇ/=.z0 � ˛/�:
Let d1 be a positive number satisfying

dn=r
1 �Md1 � N > 0:

For jz0 � ˛j 
 d1; .z0 � ˇ/=.z0 � ˛/ belongs to the circle jz � 1j � j˛ � ˇj=d1I
hence

ˇ̌
ˇ̌
ˇ�
1=r z0 � ˇ

z0 � ˛

ˇ̌
ˇ̌
ˇ � j�j

1=r

 
1C j˛ � ˇj

d1

!
;

but

jz0 � ˛jn=r�1 
 dn=r�1
1 > j�j1=r

 
1C j˛ � ˇj

d1

!
;

for all ˛; ˇ such that j˛ � aj � r1; and jˇ � bj � r2: We get a contradiction, which
proves that jz0 � ˛j < d1:

It is worthwhile to remark that if M C N > 1 an estimate for the positive zero d
is the expression

.n � r/.M C N/n=n�r C rN

.n � r/.M C N/C rN
� .M C N/r=n�r:

For M C N < 1 a bound for the same is Œ.n � rC rN/=.n � rM/� � 1: ut
Different estimates can be obtained by means of estimates similar to those used in

the proof of Theorem 3.6, which are sharp for � D 0 or asymptotically for �!1:
We indicate some of them which are of a relatively simple form.

Theorem 3.7. Let f .z/ and g.z/ be as in Theorem 3.6. All the zeros of the
polynomial f .z/ � �g.z/ are in each of the following regions:

jzj � jaj � r1
d.jaj � r1/� 1

�
.jbj C r2/dC 1

�
; (22)

where r > n; d D j�j1=r.r1 C jaj/�n=r; and d.jaj � r1/ � 1 > 0:

jz� bj � r2 C 2max
h
j�j�.1=r�n/; .ja � bj C r1 C r2/

n=rj�j�.1=r/
i
; (23)

where r D nk; k 
 2:
ˇ̌
ˇz � ıkb

ık � 1
ˇ̌
ˇ � mC jıkj.r2 C 1/

jık � 1j ; k D 1; : : : ; n (24)
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where n > r; wn
k D �; ın

k D �=.1� �/; k D 1; : : : ; nI

m D max
1�k�n

1

j1� wkj .ja � wkbj C r1 C jwkjr2/:

For the proof of inequalities (22)–(24), see [63].
We continue presenting some more results due to Rubinstein [63] concerning

zeros of the linear combination of polynomials.

Theorem 3.8. At least n zeros of the polynomial .z � ˛/n � �.z � ˇ/r are in the
circle

jz� ˛j �
8
<

:

n

r � n
j˛ � ˇj; n < r � 2n;

j˛ � ˇj; r 
 2n;

and at most n zeros of the above polynomial are in the circle

jz� ˛j �
8
<

:
j˛ � ˇj; n < r � 2n;

n

r � n
j˛ � ˇj; r 
 2n;

for all complex �:

The following theorem, which is also due to Rubinstein [63], generalizes a result
due to Biernacki and Jankowski (see [9, 39]).

Theorem 3.9. Let P.z/ D apzpCap�szp�sC� � �Ca0;Q.z/ D bqzqCbq�tzq�tC� � �C
b0; apbq ¤ 0; q > p; s 
 1; t 
 1 have all their zeros in the circles jzj � R1 and
jzj � R2; respectively. Let r D min.s; t/ 
 1: Then at least p zeros of the polynomial

P.z/C �Q.z/

are in the circle

jzj � max

( 
qRr

1 C pRr
2

q � p

!1=r

; R2

)
:

We conclude this section by stating the following result, which can be found in
the book of Milovanović et al. [53].

Theorem 3.10. If all the zeros of a polynomial p.z/ D
nX

jD0
ajz

j lie in a circle jzj �

R; then for any a all the zeros of the polynomial p.z/ � a lie in the disk jzj �
RC ja=anj1=n:
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3.3 Some Results of Peretz and Rassias

In his book, Marden [49, p. 68–70] states two theorems which are supposed to be
restatements of his results in Marden [48].

Theorem 3.11. Let P.z/ D
mX

jD0
ajz

j; Q.z/ D
nX

jD0
bjz

j; and R.z/ D
mX

jD0
aj �Q.j/zj: If

all the zeros of the polynomial P.z/ lie in the ring

R0 D
˚
z W 0 � r1 � jzj � r2 � 1

�
; (25)

and if all the zeros of the polynomial Q.z/ lie in the ring

A D ˚z W 0 � �1 � jzj=jz�mj � �2 � 1
�
; (26)

then all the zeros of the polynomial R.z/ lie in the ring

Rn D
˚
z W 0 � r1 min.1; �n

1/ � jzj � r2 max.1; �n
1/
�
: (27)

Theorem 3.12. Let P.z/ D
mX

jD0
ajz

j; Q.z/ D
nX

jD0
bjz

j; and R.z/ D
mX

jD0
aj � Q.j/zj:

If all the zeros of the polynomial P.z/ lie in the ring R0 D
˚
z W 0 � r1 � jzj � r2 �

1�; then all the zeros of the polynomial R.z/ lie in the ring

r1 min
�
1; jQ.0/=Q.m/j� � jzj � r2 max

�
1; jQ.0/=Q.m/j�: (28)

Theorem 3.11 is a part of Marden’s corollary in [48] whereas Theorem 3.12 is
not included there.

In 1992, Peretz and Rassias [59] proved that Theorem 3.12 is, in fact, false. For
this, they constructed a counterexample, by taking P.z/ D 1C 2zC z2 D .1C z/2

and Q.z/ D 1C 2z � z2: For these polynomials n D m D 2; Q.0/ D 1; Q.1/ D 2;

and Q.2/ D 1; and therefore R.z/ D 1C4zC z2: Note that P.z/ has a double zero at
z D �1 and so we can take r1 D r2 D 1: Since Q.0/=Q.2/ D 1; by Theorem 3.12
all the zeros of the polynomial R.z/ should lie on jzj D 1 while, as can be easily
seen, its zeros are �2Cp3 and �2 �p3; which obviously do not lie on jzj D 1:

After establishing that Theorem 3.12 is false, in the same paper Peretz and
Rassias [59] prove a correct version of Theorem 3.12, for which they introduced
the following definition.
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Definition 3.3. Let Q.z/ D .ˇ1 � z/ � � � .ˇn � z/ and m a positive integer. Then

QC.z/ D
Y

1�j�n;
Re.ˇj/�m=2

.ˇj � z/; Q�.z/ D
Y

1�j�n;
Re.ˇj/<m=2

.ˇj � z/; (29)

with the understanding that QC or Q� takes the value 1, if one of the products is
empty.

Note that Q.z/ D QC.z/Q�.z/; and the zeros of QC are those zeros of Q for
which jˇ=.ˇ � m/j 
 1:

Now, with the above definition, the following theorem of Peretz and Rassias
[59] (also see [53, Theorem 1.4.26 on p. 202]) provides a correct version of
Theorem 3.12.

Theorem 3.13. Let P.z/ D
mX

jD0
ajz

j; Q.z/ D
nX

jD0
bjz

j; and R.z/ D
mX

jD0
aj � Q.j/zj:

If all the zeros of the polynomial P.z/ lie in the ring R0 D fz W 0 � r1 � jzj � r2 �
1g; then all the zeros of the polynomial R.z/ lie in the ring

r1
ˇ̌
Q�.0/=Q�.m/

ˇ̌ � jzj � r2
ˇ̌
QC.0/=QC.m/

ˇ̌
: (30)

4 Location of Zeros for Lacunary Polynomials,
and Trinomials and Quadrinomials

4.1 Results Due to Dehmer Concerning Special Lacunary
Polynomial

Dehmer and Mowshowitz [21] proved the following results for special classes of
lacunary polynomials.

Theorem 4.1. If the real polynomial

p.z/ D zn � zn�1 � a1zC a0; a1; a0 > 0; n > 2; (31)

has two positive zeros, then its largest positive zero ı satisfies

ı < 1Cpa1: (32)

The following is an immediate consequence of the theorem above

Corollary 4.2. If the real polynomial

p.z/ D zn � zn�1 � a1zC a0; a1; a0 > 0; n > 2; (33)
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has two positive zeros, then its largest positive zero ı satisfies

ı < 2: (34)

Theorem 4.3. If the real polynomial

p.z/ D zn � a1zC a0; a1; a0 > 0; n > 2; (35)

has two positive zeros, then its largest positive zero ı satisfies

ı <
1

2
C
p
4a1 C 1
2

: (36)

Theorem 4.4. If the real polynomial

p.z/ D zn � zC a0; a0 > 0; n > 2; (37)

has two positive zeros, then its largest positive zero ı satisfies

ı <
1

2
C
p
5

2
: (38)

Based on the foregoing, we can determine the locations of all zeros of complex
lacunary polynomials.

Theorem 4.5. Let

p.z/ D zn � zn�1 � a1zC a0; a1a0 ¤ 0; n > 2; (39)

be a complex polynomial. All zeros of p.z/ lie in

jzj � ı;

where ı > 1 is the largest positive root of the equation

znC1 � 2zn � ja1jz2 C .ja1j � ja0j/zC ja0j D 0: (40)

Theorem 4.6. Let

p.z/ D zn � zn�1 � a1zC a0; a1a0 ¤ 0; n > 2; (41)

be a complex polynomial. All zeros of p.z/ lie in

jzj � ı;
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where ı > 1 is the largest positive root of the equation

znC1 � 2zn �M4z
2 CM4 D 0; (42)

where M4 WD max.ja1j; ja0j/:
Applying a classical result of Cauchy [49], one can obtain the following explicit

zeros bounds, which are given in Dehmer and Mowshowitz [21].

Theorem 4.7. Let

p.z/ D zn � zn�1 � a1zC a0; a1a0 ¤ 0; n > 2; (43)

be a complex polynomial. All zeros of p.z/ lie in

jzj � 1C ja0j C ja1j: (44)

Theorem 4.8. Let

p.z/ D zn � zn�1 � a1zC a0; a1a0 ¤ 0; n > 2; (45)

be a complex polynomial. All zeros of p.z/ lie in

jzj � 1

2
C
p
1C 4ja1j C 4ja0j

2
: (46)

Theorem 4.9. Let

p.z/ D zn � a1zC a0; a1a0 ¤ 0; n > 2; (47)

be a complex polynomial. All zeros of p.z/ lie in

jzj � max.1; ı/;

where ı is the unique positive root of the equation

zn � ja1jz� ja0j D 0: (48)

Theorem 4.10. Let

p.z/ D zn � a1zC a0; a1a0 ¤ 0; n > 2; (49)

be a complex polynomial with arbitrary coefficients. All zeros of p.z/ lie in

jzj � max.1; ı/;
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where ı is the unique positive root of the equation

zn �M4z �M4 D 0; (50)

where M4 WD max.ja1j; ja0j/:
Theorem 4.11. Let

p.z/ D zn � a1zC a0; a1a0 ¤ 0; n > 2; (51)

be a complex polynomial. All zeros of p.z/ lie in

jzj � ja1j
2
C
pja1j2 C 4ja0j C 4

2
: (52)

4.2 Location of Zeros of Trinomials and Quadrinomials

Quite a few results giving bound for all the zeros of a polynomial p.z/ D
nX

jD0
ajz

j

were expressed (see [49, 61]) as functions of all the coefficients. It seems natural
to ask whether there exist some bounds for the k zeros of smallest modulus, k <
n; which would be independent of certain coefficients aj: Laudau first raised this
question in connection with his study of the Picard’s Theorem. In [46, 47], Laudau
proved that every trinomial

anzn C a1zC a0; a1an ¤ 0; n 
 2;

has at least one zero in

jzj � 2
ˇ̌
ˇ
a0
a1

ˇ̌
ˇ (53)

and every quadrinomial

anzn C amzm C a1zC a0; a1aman ¤ 0; 0 � m < n;

has at least one zero in

jzj � 17

3

ˇ̌
ˇ
a0
a1

ˇ̌
ˇ: (54)

For every n 
 2; as a refinement of (53) the trinomial

anzn C a1zC a0; a1an ¤ 0;
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is well known [30] to have a zero in both the regions

ˇ̌
ˇzC a0

a1

ˇ̌
ˇ �

ˇ̌
ˇ
a0
a1

ˇ̌
ˇ and

ˇ̌
ˇzC a0

a1

ˇ̌
ˇ 


ˇ̌
ˇ
a0
a1

ˇ̌
ˇ: (55)

Joyal et al. [40] gave an alternative proof of this fact by using Gauss-Lucas the-
orem. In literature, there exist several results about zeros distribution of trinomials
equations, for example see [4, 31]. In 2013, Aziz and Rather [6] proved certain
results for quadrinomials and gave a simpler proof of (55), independent of Gauss-
Lucas theorem. Here are their results

Theorem 4.12. At least one zero of the quadrinomial

anzn C amzm C a1zC a0; a1aman ¤ 0; 2 � m < n;

lie in

jzj � 2n

n � 1
ˇ̌
ˇ
a0
a1

ˇ̌
ˇ � 3

ˇ̌
ˇ
a0
a1

ˇ̌
ˇ: (56)

Applying this result to the polynomial znp.1=z/ where p.z/ D a0 C apzp C
an�1zn�1 C zn; they obtained the following:

Corollary 4.13. At least one zero of the quadrinomial

a0 C apzp C an�1zn�1 C zn; a0apan�1 ¤ 0; 1 � p � n � 2;

lie in

jzj 
 n � 1
2n
jan�1j: (57)

Theorem 4.14. For every n 
 3; the quadrinomial

anzn C a2z
2 C a1zC a0; a2an ¤ 0;

has at least one zero in both

jzj �
"

n

n � 2
ˇ̌
ˇ
a0
a2

ˇ̌
ˇ
#1=2

(58)

and
ˇ̌
ˇzC a1

2a2

ˇ̌
ˇ 


ˇ̌
ˇ

a1
2a2

ˇ̌
ˇ: (59)
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5 Some Recent Results Concerning Cauchy Theorem
on the Location of Zeros of a Polynomial

5.1 Disk Containing All the Zeros of a Polynomial

In recent times there have been many improvements and generalizations of the
Cauchy Theorem. We start by stating the following result due to Jain [38].

Theorem 5.1. All the zeros of the polynomial p.z/ D a0Ca1zCa2z2Ca3z3C� � �C
anzn; an ¤ 0; lie in the disk

jzj �
max

 
jan�1j
janj ; 2

jan�2j
jan�1j ; 3

jan�3j
jan�2j ; : : : ; n

ja0j
ja1j

!

ln 2
: (60)

Further recent results concerning upper bounds have been obtained by Kalantari
[41]. He has found a family of zeros bounds for analytic functions that has been
proven powerful when comparing the resulting bounds with classical ones by using
complex polynomials. In this regard, he proved the following results

Theorem 5.2. Let m 
 2 and let rm 2 Œ1=2; 1/ be the positive root of the
polynomial

q.t/ WD tm�1 C t � 1:

For m D 2 and r2 D 1=2; all the zeros of the polynomial p.z/ D a0 C a1zC a2z2 C
a3z3 C � � � C anzn; anan�1 ¤ 0; lie in the disk

jzj � 2 max
1�j�n

 ˇ̌
ˇ̌
ˇ
an�j

an

ˇ̌
ˇ̌
ˇ

!1=j

: (61)

Theorem 5.3. Let m 
 2 and let rm 2 Œ1=2; 1/ be the positive root of the
polynomial

q.t/ WD tm�1 C t � 1:

For m D 3 and r3 D 2p
5C 1; all the zeros of the polynomial p.z/ D a0 C a1zC

a2z2 C a3z3 C � � � C anzn; anan�1 ¤ 0; lie in the disk

jzj �
p
5C 1
2

max
2�j�nC1

 ˇ̌
ˇ̌
ˇ
an�1an�jC1 � anan�j

a2n

ˇ̌
ˇ̌
ˇ

!1=j

; a�1 D 0: (62)
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Dehmer [20, 21] proved the following implicit zero bound results

Theorem 5.4. All the zeros of the polynomial p.z/ D a0Ca1zCa2z2Ca3z3C� � �C
anzn; anan�1 ¤ 0; lie in the disk

jzj � max.1; ı2/; (63)

where ı2 (besides ı1 D 1) denotes the positive root of the equation

znC1 � .1CM2/z
n CM2 D 0;

and M2 WD max
0�j�n�1

ˇ̌
ˇ

aj

an

ˇ̌
ˇ: The bound is sharp for all polynomials of the form

p.z/ D azn � bŒzn�1 C � � � C zC 1�; a; b > 0:

Theorem 5.5. All the zeros of the polynomial p.z/ D a0Ca1zCa2z2Ca3z3C� � �C
anzn; anan�1 ¤ 0; lie in the disk

jzj � max.1; ı2/; (64)

where ı2 (besides ı1 D 1) denotes the positive root of the equation

znC1 �
�
1C

ˇ̌
ˇ
an�1
an

ˇ̌
ˇ
�

zn C
�ˇ̌
ˇ
an�1
an

ˇ̌
ˇ �M1

�
zn�1 CM1 D 0;

and M1 WD max
0�j�n�2

ˇ̌
ˇ

aj

an

ˇ̌
ˇ: The bound is sharp for all polynomials of the form

p.z/ D azn � bzn�1 � cŒzn�2 C � � � C zC 1�; a; b > 0; c 
 0:
Theorem 5.6. Let

M3 WD max
2�j�n

ˇ̌
ˇ
an�1an�j � an�1an�j�1

a2n

ˇ̌
ˇ; a�1 D 0;

and

�1 D ja
2
n�1 � anan�2j
janj2 :

In addition, let p.z/ D a0Ca1zCa2z2Ca3z3C� � �Canzn; anan�1 ¤ 0; be a complex
polynomial. Then all the zeros of p.z/ lie in the closed disk

jzj � ı;

where ı > 1 is the largest positive root of the equation

z3 � z2 � .M3 C �1/zC �1 D 0:
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Moreover,

1 < ı < 1CpM3 C �1:

In 2011, Dehmer and Mowshowitz [21] proved the following explicit bounds.

Theorem 5.7. All the zeros of the polynomial p.z/ D a0Ca1zCa2z2Ca3z3C� � �C
anzn; anan�1 ¤ 0; lie in the disk

jzj � 1C �2
2
C
p
.�2 � 1/2 C 4M1

2
; (65)

where �2 WD
ˇ̌
ˇ
an�1
an

ˇ̌
ˇ and M1 WD max

0�j�n�2

ˇ̌
ˇ

aj

an

ˇ̌
ˇ:

The next Theorem gives a bound for polynomials with restrictions on the
coefficients. Dehmer [20] has shown that such bounds can be more precise and
often lead to better results when locating the zeros of polynomials.

Theorem 5.8. Let p.z/ D a0Ca1zCa2z2Ca3z3C� � �Canzn; anan�1 ¤ 0: Suppose
that jajj < 1; 0 � j � n � 2: All zeros of p.z/ lie in the disk

jzj � 1C �2
2
C

s

.�2 � 1/2 C 4

janj
2

; (66)

where �2 WD
ˇ̌
ˇ
an�1
an

ˇ̌
ˇ: The bound is sharp for all polynomials of the form p.z/ D

azn � bzn�1 � Œzn�2 C � � � C zC 1�; a; b > 0:

Dehmer and Mowshowitz [21] also considered examples to illustrate the quality
of bounds given by Theorems 5.4–5.8, and here we present just one of them.

Example 5.1. Consider the following polynomials

p1.z/ D �z5 C 5z4 � 0:2230z3 C 9:548 � 10�5z2 C 7:851 � 10�5z � 6:515 � 10�7;

p2.z/ D z5 � 4z3 C 3z:

For p1.z/; the conditions jajj � 1; 0 � j � n � 2 are fulfilled to apply the bound
given by Theorem 5.8. The zeros of p1.z/ and p2.z/ are

z1 D 4:9550; z2 D 0:0187; z3 D 0:0339; z4 D 0:0110; z5 D �0:0187

and

z1 D 0; z2 D 1:7321; z3 D 1; z4 D �1:7321; z5 D �1;
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respectively. We see that these polynomials only possess real zeros. Now consider
the polynomials

p3.z/ D z3 C 5z2 � 15zC 1; p4.z/ D z3 C 4z2 C 1000zC 99:

The zeros of p3.z/ and p4.z/ are

z1 D 2:0567; z2 D �7:1249; z3 D 0:0682

and

z1 D �0:0990; z2 D �1:950� 31:556i; z3 D �1:950C 31:556i;

respectively. To gain additional insight into the determination of bounds, we
examine two polynomials whose coefficients have, respectively, small and large
moduli. The polynomial p4.z/ has two complex zeros, so let � WD max

1�j�n
jzjj

for a given polynomial. Let A, B, C, D, and E represent the bound obtained
by Theorems 5.4–5.8, respectively. The values of �; A, B, C, D, and E for all
polynomials defined above can be found in Table 1 below. Notice that Theorem 5.8
does not apply to p2; p3; p4 since the special conditions for the coefficients are not
satisfied.

We close this part by giving the following results due to Zeheb [73], and Z̃ilović
et al. [74]

Theorem 5.9. All the zeros of the real polynomial p.z/ D zn C
n�1X

kD0
akzk lie in the

circle jzj < 1CmaxfAijg; where

Aij D jaiaj�1 � ajai�1j
jaij C jajj ; i; j D 0; � � � ; nI j > i

an � 1; a�1 � 0:

Table 1 Evaluation of zero
bounds for p1.z/; p2.z/;
p3.z/; and p4.z/

p1.z/ p2.z/ p3.z/ p4.z/

A 5.9994 4.9987 15.9963 1000.9999

B 5.0549 2.7728 7.3267 34.1447

C 5.1581 2.9254 11.1137 70.8927

D 5.0550 2.5615 7.3588 34.1583

E 5.2361 � � �
� 4.955 1.7321 7.1249 31.6160
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Theorem 5.10. All the zeros of the complex polynomial p.z/ D zn C
n�1X

kD0
akzk lie in

the disk

fz 2 C W jzj < p1C Ag;

where A D max
0�k�n�1

˚ja2k C 2.�1/k.B � C/j� ; B D P
0�i<j�Œn=2�

iCjDk

a2ia2j;

and C D P
0�i<j�Œ.n�1/=2�

iCjDk�1

a2iC1a2jC1:

Here an D 1 and as usual Œk� denotes the integer part of k.

5.2 Annuli Containing All the Zeros of a Polynomial

We begin by presenting the result of Datt and Govil [19] (see also Dewan [23]).

Theorem 5.11. Let p.z/ D zn C an�1zn�1 C � � � C a1z C a0; be a polynomial of
degree n and

A D max
0�j�n�1 jajj:

Then p(z) has all its zeros in the ring shaped region

ja0j
2 .1C A/n�1 .AnC 1/ � jzj � 1C �0A; (67)

where �0 is the unique positive root of the equation x D 1 � 1= .1C Ax/n in the
interval .0; 1/. The upper bound 1 C �0A in the above given region (68) is best
possible and is attained for the polynomial p.z/ D zn � A

�
zn�1 C � � � C zC 1� :

In case we do not wish to solve the equation x D 1� 1= .1C Ax/n, then in order
to apply the above result of Datt and Govil [19], we can apply the following result
also due to Datt and Govil [19], which in every case clearly gives an improvement
over Theorem 2.2 of Cauchy [14].

Theorem 5.12. Let p.z/ D zn C an�1zn�1 C � � � C a1z C a0; be a polynomial of
degree n and

A D max
0�j�n�1 jajj:

Then p(z) has all its zeros in the ring shaped region
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ja0j
2 .1C A/n�1 .AnC 1/ � jzj � 1C

 
1 � 1

.1C A/n

!
A: (68)

Since, always

 
1 � 1

.1C A/n

!
< 1; the above Theorem 5.12 in every situation

sharpens Theorem 2.2 due to Cauchy.
Although, since the beginning, binomial coefficients defined by Cn

k D
nŠ

kŠ.n�k/Š ; 0Š D 1 have appeared in the derivation or as a part of closed expressions
of bounds, the Fibonacci’s numbers defined by F0 D 0, F1 D 1, and for j 
 2,
Fj D Fj�1 C Fj�2 have not appeared either in implicit bounds or explicit bounds
for the moduli of the zeros. Diaz-Barrero [25] proved the following result, which
gives circular domains containing all the zeros of a polynomial where binomial
coefficients and Fibonacci’s numbers appear. He also gives an example of a
polynomial for which the above theorem gives a better bound than the bound
obtainable from Theorem 2.2 of Cauchy [14].

Theorem 5.13. Let p.z/ D Pn
jD0 ajzj (aj ¤ 0; 0 � j � n) be a complex monic

polynomial. Then all its zeros lie in the disk C1 D fz 2 C W jzj � r1g or C2 D fz 2
C W jzj � r2g, where

r1 D max
1�k�n

8
<

:
k

s
2n�1CnC1

2

k2Cn
k

jan�kj
9
=

; ;

r2 D max
1�k�n

(
k

s
F3n

Cn
k2

kFk
jan�kj

)
:

The proof of the above theorem depends on the identities

nX

kD1
k2Cn

k D 2n�2n.nC 1/ (69)

and

nX

kD1
Cn

k2
kFk D F3n; (70)

where Fj are the Fibonacci’s numbers, and Cn
k the binomial coefficients.

The following result, which provides an annulus region containing all the zeros
of a polynomial is also due to Diaz-Barrero [24].

Theorem 5.14. Let p.z/ D Pn
jD0 ajzj (aj ¤ 0; 0 � j � n) be a nonconstant

complex polynomial. Then all its zeros lie in the annulus C D fz 2 C W r1 � jzj �
r2g, where
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r1 D 3

2
min
1�j�n

n2nFjCn
j

F4n

ˇ̌
ˇ
a0
aj

ˇ̌
ˇ
o1=j

;

r2 D 2

3
max
1�j�n

n F4n

2nFjCn
j

ˇ̌
ˇ
an�j

an

ˇ̌
ˇ
o1=j

:

Here Fj being the Fibonacci’s numbers, and Cm
j the binomial coefficients.

The following result of Kim [43], whose proof depends on the use of the identity

nX

kD0
Cn

k D 2n � 1 (71)

also provides an annulus containing all the zeros of a polynomial.

Theorem 5.15. Let p.z/ D Pn
kD0 akzk (ak ¤ 0; 0 � k � n) be a nonconstant

polynomial with complex coefficients. Then all the zeros of p.z/ lie in the annulus
A D fz W r1 � jzj � r2g; where

r1 D min
1�k�n

�
Cn

k

2n � 1
ˇ̌
ˇ̌a0
ak

ˇ̌
ˇ̌
	 1=k

; r2 D max
1�k�n

�
2n � 1

Cn
k

ˇ̌
ˇ̌an�k

an

ˇ̌
ˇ̌
	 1=k

: (72)

Here again, as usual, Cn
k denote the binomial coefficients.

Theorem 2.2 of Cauchy has also been refined by Sun and Hsieh [66], who proved

Theorem 5.16. All the zeros of the complex polynomial

p.z/ D zn C
n�1X

jD0
ajz

j

lie in the disk

fz W jzj < �g � fz W jzj < 1C ı3g � fz W jzj < 1C Ag ;

where ı3 is the unique positive root of the equation,

Q3.x/ � x3 C .2 � jan�1j/x2 C .1 � jan�1j � jan�2j/x � A D 0; (73)

and

A D max
0�j�n�1 jajj:

Using the method similar to that of Sun and Hsieh [66], Jain [38] refined the
above result of Sun and Hsieh [66], and proved.
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Theorem 5.17. All the zeros of the complex polynomial

p.z/ D zn C
n�1X

jD0
ajz

j

lie in the disk

fz W jzj < �g � fz W jzj < 1C ı4g � fz W jzj < 1C ı3g � fz W jzj < 1C Ag ;

where ı4 is the unique positive root of the equation,

Q4.x/ � x4 C .3 � jan�1j/ x3 C .3 � 2jan�1j � jan�2j/ x2

C .1 � jan�1j � jan�2j � jan�3j/ x � A D 0; (74)

and A D max
0�j�n�1 jajj, is same as in Theorem 5.16.

In 2009, Affane-Aji, Agarwal, and Govil [2] proved the following result which
not only includes the above results of Cauchy [14], Sun and Hsieh [66], and Jain
[38] as special cases but also provides a tool for obtaining sharper bounds for the
location of the zeros of a polynomial.

Theorem 5.18. All the zeros of the polynomial

p.z/ D zn C
n�1X

jD0
ajz

j

lie in the disks

fz W jzj < 1C ıkg � fz W jzj < 1C ık�1g � � �
� fz W jzj < 1C ı1g � fz W jzj < 1C Ag ;

where ık is the unique positive root of the kth degree equation

Qk.x/ � xk C
kX

�D2

2

4Ck�1
k�� �

��1X

jD1
Ck�j�1

k�� jan�jj
3

5 xkC1�� � A D 0: (75)

Here

A D max
0�j�n�1 jajj; aj D 0 if j < 0;

and for k, a positive integer, Cm
k are the binomial coefficients.
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As is easy to verify, for k D 1 the above theorem reduces to Theorem 2.2 due to
Cauchy [14], for k D 3 to the result of Sun and Hsieh [66], and for k D 4 it reduces
to the result due to Jain [38]. Further, by choosing k sufficiently large we can make
1C ık in the bound close to the actual bound.

Note that by combining the above Theorem 5.18 with Theorem 5.12 of Datt and
Govil [19] one can easily obtain the following result, which is a refinement of the
above Theorem 5.18.

Theorem 5.19. All the zeros of the polynomial

p.z/ D zn C
n�1X

jD0
ajz

j

lie in the annulus

ja0j
2.1C A/n�1.nAC 1/ � jzj � fz W jzj < 1C ıkg � fz W jzj < 1C ık�1g � � �

� fz W jzj < 1C ı1g � fz W jzj < 1C Ag ;

where ık is as defined in Theorem 5.18, and A D max
0�j�n�1 jajj.

Similarly, one can obtain a refinement of Theorem 5.18 by combining Theo-
rem 5.18 with Theorem 5.14 of Diaz-Barrero [24].

Later in 2010, Affane-Aji, Biaz, and Govil [3] proved the following refinement
of Theorem 5.18, and constructed examples to show that for some polynomials
their theorem, stated below, gives much better bounds than obtainable from
Theorem 5.19. More precisely, their result is

Theorem 5.20. All the zeros of the polynomial

p.z/ D zn C
n�1X

jD0
ajz

j

lie in the disks

R1 � jzj � fz W jzj < 1C ıkg � fz W jzj < 1C ık�1g � � �
� fz W jzj < 1C ı1g � fz W jzj < 1C Ag ;

where ık is as defined in Theorem 5.18, and

R1 D �R2ja1j.M � ja0j/C
p
4R2M3ja0j C fR2ja1j.M � ja0j/g2
2M2

: (76)

Here M D RnC1C.A�1/Rn�AR
.R�1/ with R D 1C ık and A D max

0�j�n�1 jajj.
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Note that R D 1C ık > 1; so for every positive integer k, we have M > 0 and
R > 0. It is obvious that, in general, Theorem 5.20 sharpens Theorem 5.18.

In the same paper Affane-Aji, Biaz, and Govil [3] prove some more refinements
of Theorem 5.18, which in some cases gives bounds that are sharper than obtainable
from Theorems 5.12, 5.14, and 5.19. This they have shown by constructing some
examples of polynomials.

The following two results by Diaz-Barrero and Egozcue [26] also provide annuli
containing all the zeros of a polynomial.

Theorem 5.21. Let p.z/ D Pn
kD0 akzk .ak ¤ 0; 1 � k � n/ be a non-constant

complex polynomial. Then for j 
 2, all its zeros lie in the annulus C D
fz W r1 � jzj � r2g where

r1 D min1�k�n

(
C.n; k/AkBk

j .bBj�1/n�k

Ajn

ˇ̌
ˇ̌a0
ak

ˇ̌
ˇ̌
) 1=k

(77)

and

r2 D max1�k�n

(
Ajn

C.n; k/AkBk
j .bBj�1/n�k

Ajn

ˇ̌
ˇ̌an�k

an

ˇ̌
ˇ̌
) 1=k

: (78)

Here, Bn D Pn�1
kD0 rksn�1�k and An D crn C dsn, where c, d are real constants and

r,s are the roots of the equation x2�ax�b D 0 in which a,b are strictly positive real
numbers. For j 
 2; we have Ajn D Pn

kD0 C.n; k/.bBj�1/n�kBk
j Ak. Furthermore,

C.n; k/ is the binomial coefficient.

Theorem 5.22. Let p.z/ D Pn
kD0 akzk .ak ¤ 0; 1 � k � n/ be a non-constant

polynomial with complex coefficients. Then, all its zeros lie in the ring shaped region
C D fz W r1 � jzj � r2g where

r1 D min1�k�n

�
2nPkC.n; k/

P3n

ˇ̌
ˇ̌a0
ak

ˇ̌
ˇ̌
	 1=k

(79)

and

r2 D max1�k�n

�
P3n

2nPkC.n; k/

ˇ̌
ˇ̌an�k

an

ˇ̌
ˇ̌
	 1=k

: (80)

Here Pk is the kth Pell number, namely, P0 D 0; P1 D 1 and for k 
 2; Pk D
2Pk�1 C Pk�2. Furthermore, C.n; k/ D nŠ

kŠ.n�k/Š are the binomial coefficients.

Recently, Dalal and Govil [16] unified the above results by proving the following.

Theorem 5.23. Let Ak > 0 for 1 � k � n, and be such that
Pn

kD1 Ak D 1. If
p.z/ DPn

kD0 akzk .ak ¤ 0; 1 � k � n/ is a non-constant polynomial with complex



On Geometry of the Zeros of a Polynomial 281

coefficients, then all the zeros of p.z/ lie in the annulus C D fz W r1 � jzj � r2g,
where

r1 D min1�k�n

�
Ak

ˇ̌
ˇ̌a0
ak

ˇ̌
ˇ̌
	 1=k

(81)

and

r2 D max1�k�n

�
1

Ak

ˇ̌
ˇ̌an�k

an

ˇ̌
ˇ̌
	 1=k

: (82)

The above theorem, by appropriate choice of the numbers Ak > 0 for 1 � k � n,
includes as special case Theorems 5.13–5.15, 5.21 and 5.22, and this has been shown
in Table 1 in the paper of Dalal and Govil [16, p. 9612].

Also Dalal and Govil [16, p. 9612] show that their theorem is capable of
generating infinite number of results. In particular, as corollaries they obtained

Corollary 5.24. Let p.z/ D Pn
kD0 akzk .ak ¤ 0; 1 � k � n/ be a non-constant

polynomial with complex coefficients. Then all the zeros of p(z) lie in the annulus
C D fz W r1 � jzj � r2g , where

r1 D min1�k�n

�
Lk

LnC2 � 3
ˇ̌
ˇ̌a0
ak

ˇ̌
ˇ̌
	 1=k

(83)

and

r2 D max1�k�n

�
LnC2 � 3

Lk

ˇ̌
ˇ̌an�k

an

ˇ̌
ˇ̌
	 1=k

: (84)

Here, Lk is the kth Lucas number defined by L0 D 2; L1 D 1, and LnC2 D LnCLnC1,
if n 
 0.

Corollary 5.25. Let p.z/ D Pn
kD0 akzk .ak ¤ 0; 1 � k � n/ be a non-constant

polynomial with complex coefficients. Then all the zeros of p.z/ lie in the annulus
C D fz W r1 � jzj � r2g, where

r1 D min1�k�n

�
Ck�1Cn�k

Cn

ˇ̌
ˇ̌a0
ak

ˇ̌
ˇ̌
	 1=k

(85)

and

r2 D max1�k�n

�
Cn

Ck�1Cn�k

ˇ̌
ˇ̌an�k

an

ˇ̌
ˇ̌
	 1=k

; (86)

where Ck is the kth Catalan number.
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Also, Dalal and Govil [16] developed MATLAB code, and use this to construct
some examples of polynomials for which the annuli containing all the zeros of the
polynomials obtainable by their Corollaries 5.24 and 5.25 are considerably sharper
than the annuli obtainable from the known results, Theorems 5.14 and 5.15. Due to
limitation in space here we mention only two of their examples.

Example 5.2. Let p.z/ D z4 C 0:01z3 C 0:1z2 C 0:2zC 0:4
Result r1 r2 Area of annulus
Theorem 5.14 0.1945 1.1289 3.8835
Theorem 5.15 0.4041 1.5650 7.1786
Corollary 5.24 0.1333 0.9621 2.8512
Corollary 5.25 0.6147 1.1186 2.7427
Actual bound 0.7190 0.8801 0.8093

Although both the Corollaries 5.24 and 5.25 give bounds better than those
obtainable from Theorems 5.14 and 5.15 but, as is evident from the above table,
Corollary 5.25 gives the best bounds in terms of area, with over 29% improvement
in the area obtainable by Theorem 5.14, and with over 61% improvement in the area
obtainable by Theorem 5.15. In fact, if one combines the results of Corollaries 5.24
and 5.25 one obtains that all the zeros lie in the annulus 0:6147 � jzj � 0:9621,
and the annulus obtained this way is quite close to the actual annulus 0:7190 �
jzj � 0:8801, in terms of radii r1 and r2. Note that the area in this case comes
out to be 1:7209 which is an improvement of about 56% over the area obtainable
by Theorem 5.14, and improvement of about 76% over the area obtainable by
Theorem 5.15.

Example 5.3. Let p.z/ D z5 C 0:006z4 C 0:01z3 C 0:2z2 C 0:3zC 1
Result r1 r2 Area of annulus
Theorem 5.14 0.1182 1.4097 6.1964
Theorem 5.15 0.5031 1.9873 11.6064
Corollary 5.24 0.1282 1.1877 4.3779
Corollary 5.25 0.7715 1.2805 3.2801
Actual bound 0.9526 1.0607 0.6873

Again, here also, although both the corollaries give bounds better than those
obtained from Theorems 5.14 and 5.15, but in particular Corollary 5.25 gives
the best bounds in terms of area. As can be seen from the above table, in this case
there is an improvement of about 47% in the area obtained by Theorem 5.14, and
of about 71% in the area obtained by Theorem 5.15. Again, if one combines the
results of Corollaries 5.24 and 5.25 one gets that all the zeros lie in the annulus
0:7715�jzj� 1:1877. The area in this case is about 2:5617which is an improvement
of about 59% over the area obtained by Theorem 5.14, and improvement of about
78% over the area obtained from Theorem 5.15.
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Note that Theorem 5.23 of Dalal and Govil [16] implies that infinitely many
annuli containing all the zeros of a complex polynomial P.z/ D Pn

kD0 akzk .ak ¤
0 for 1 � k � n/ can be obtained from infinitely many sequences of positive
numbers, fAkgnkD1, such that

Pn
kD1 Ak D 1. Then, it is natural to ask which sequence

of positive numbers, fAkgnkD1, with
Pn

kD1 Ak D 1 gives the best result. Over the
years, mathematicians have compared their bounds with the existing bounds in the
literature by generating some examples, and thus showing that in some special cases
their bound gives better results than some known results.

In the following two theorems, Dalal and Govil [17] show that no-matter what re-
sult one obtains as a corollary of Theorem 5.23, one can always generate examples in
which the bound obtained by this obtained corollary is better than the existing ones.

Theorem 5.26. Let fAkgnkD1 and fBkgnkD1 be sequences of positive numbers such
that

Pn
kD1 Ak D 1 and

Pn
kD1 Bk D 1. Then, there always exists a polynomial for

which rA
1 > rB

1 and vice versa, where rA
1 and rB

1 are the inner radii of the annulus
obtained from the Theorem 5.23 by using the sequences fAkgnkD1 and fBkgnkD1,
respectively.

Theorem 5.27. Let fAkgnkD1 and fBkgnkD1 be sequences of positive numbers such
that

Pn
kD1 Ak D 1 and

Pn
kD1 Bk D 1. Then, there always exists a polynomial for

which rA
2 > rB

2 and vice versa, where rA
2 and rB

2 are the outer radii of the annulus ob-
tained from the Theorem 5.23 by using sequences fAkgnkD1 and fBkgnkD1, respectively.

In the same paper, Dalal and Govil [17] also proved the following result
which always improves any bound r1; r2 obtainable from any of the corollaries of
Theorem 5.23, if Dr1 > 0 and Dr2 > 0.

Theorem 5.28. Suppose
Pn

kD1 Bk D 1; with Bk > 0 for 1 � k � n, and
P.z/ DPn

kD0 akzk .ak ¤ 0; 1 � k � n/ be a non-constant polynomial with complex
coefficients. Let r1; r2 be any positive numbers such that Dr1 
 0 and Dr2 
 0. Then,
all the zeros of P.z/ lie in the annulus C D ˚z W r01 � jzj � r02

�
where

r01 D min1�k�n

�
rk
1 C Dr1Bk

ˇ̌
ˇ̌a0
ak

ˇ̌
ˇ̌
	 1=k

; (87)

and

r02 D max1�k�n

�
1

rk
2

C Dr2Bk

ˇ̌
ˇ̌ an

an�k

ˇ̌
ˇ̌
	�1=k

: (88)

Finally, Dalal and Govil [17] by using MATLAB constructed a polynomial to
compare the results obtained by Theorem 5.28 with the existing results in the
literature, and subsequently showed the importance of such a theorem. We present
here the following example used by Dalal and Govil [17].
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Example 5.4. Let p.z/ D z3 C 0:1z2 C 0:1zC 0:7 .

In the following table, they used Theorem 5.14, taking Ak D C.n;k/2kFk
F3n

, to get inner
radii r1 and outer radii r2, and use Theorem 5.28 with Bk D 1=3 for 1 � k � 3 to
compute the corresponding r01 and r02:

Result Inner radii (r1 or r01) Outer radii (r2 or r02) Area of annulus
Theorem 5.14 0.6402 1.2312 3.4730
Theorem 5.28 0.6576 1.094 2.4027
Actual bound 0.8840 0.8899 0.0328

In the table below, they used Theorem 5.13, taking Ak D k2C.n;k/
2n�1C.nC1;2/ , to get the

inner radii r1 and outer radii r2, and use Theorem 5.28 with Bk D 1=3 for 1 � k � 3
to compute the corresponding r01 and r02.

Result Inner radii (r1 or r01) Outer radii (r2 or r02) Area of annulus
Theorem 5.13 0.4641 1.6984 8.382
Theorem 5.28 0.5002 1.2076 3.7957
Actual bound 0.8840 0.8899 0.0328

It is clear from the above tables that Theorem 5.28 gives the best bounds in terms
of inner and outer radii of the annulus, and as well in terms of area of the annulus
containing all the zeros of the polynomial.

In 2011, Bidkham and Shashahani [8] made use of t-Fibonacci numbers, defined
by Ft;n D tFt;n�1 C Ft;n�2, for n 
 2, with Ft;0 D 0;Ft;1 D 1, where t is any
positive real number, and obtained the following result that gives annulus in terms
of t-Fibonacci numbers, containing all the zeros of a polynomial.

Theorem 5.29. Let p.z/ D Pn
kD0 akzk .ak ¤ 0; 0 � k � n/ be a non-constant

complex polynomial of degree n. Then all the zeros of p.z/ lie in the annulus
C D fz W r1 � jzj � r2g , where

r1 D min1�k�n

(
.t3 C 2t/k.t2 C 1/nFt;k

�n
k

�

.t2 C 1/kFt;4n

ˇ̌
ˇ̌a0
ak

ˇ̌
ˇ̌
) 1=k

(89)

and

r2 D max1�k�n

(
.t2 C 1/kFt;4n

.t3 C 2t/k.t2 C 1/nFt;k
�n

k

�
ˇ̌
ˇ̌an�k

an

ˇ̌
ˇ̌
) 1=k

: (90)

For t D 1, the above theorem reduces to Theorem 5.14 due to Diaz-Barrero [24].
Later in 2013, Rather and Mattoo [62] considered generalized Fibonacci num-

bers [71], and proved a result, which generalizes the above Theorem 5.29 due to
Bidkham and Shashahani [8].

Recently Dalal and Govil [18] further generalized the concept of generalized
Fibonacci numbers and obtained result that generalizes result of Rather and
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Mattoo [62], and therefore Theorem 5.29 of Bidkham and Shashahani [8], and
Theorem 5.14 due to Diaz-Barrero [24].

We conclude this paper by adding that recently by using Theorem 5.23 of Dalal
and Govil [16], Govil and Kumar [35] have obtained several results providing annuli
containing all the zeros of a polynomial. Their bounds are in terms of Narayana
numbers [56], Motzkin numbers (see [28]), and special combination of binomial
coefficients. Also, by using MATLAB they construct examples to show that in
special cases their results give sharper bounds than obtainable from some of the
known results.

References

1. Aberth, O.: Iteration methods for finding all zeros of a polynomial simultaneously. Math.
Comput. 27, 339–344 (1973)

2. Affane-Aji, C., Agarwal, N., Govil, N.K.: Location of zeros of polynomials. Math. Comput.
Model. 50, 306–313 (2009)

3. Affane-Aji, C., Biaz, S., Govil, N.K.: On annuli containing all the zeros of a polynomial.
Math. Comput. Model. 52, 1532–1537 (2010)

4. Ahn, Y.J., Kim, S-H.: Zeros of certain trinomials equations. Math. Inequal. Appl. 9, 225–232
(2006)

5. Anai, H., Horimoto, K.: Algebraic biology 2005. In: Proceedings of the 1st International
Conference on Algebraic on Algebraic Biology, Tokyo, Japan (2005)

6. Aziz, A., Rather, N.A.: Location of zeros of trinomials and quadrinomials. Math. Inequal.
Appl. 17, 823–829 (2014)

7. Berwald, L.: Elementare Sätze uber die Abgrenzung der Wursln einer algebraischen
Gleichung. Acta. Sci. Math. Litt. Sci. Szeged 6, 209–221 (1934)

8. Bidkham, M., Shashahani, E.: An annulus for the zeros of polynomials. Appl. Math. Lett. 24,
122–125 (2011)

9. Biernacki, M.: Sur les équations algébriques contenant des paramètres arbitraires. Bull. Acad.
Polon. Sci. Sér. A, III, 541–685 (1927)

10. Birkhoff, G.D.: An elementary double inequality for the roots of an algebraic equation having
greatest value. Bull. Am. Math. Soc. 21, 494–495 (1914)

11. Bissel, C.: Control Engineering, 2nd edn. CRC Press, Boca Raton (2009)
12. Borwein, P., Erdelyi, T.: Polynomials and Polynomial Inequalities. Springer, Berlin (1995)
13. Carmichael, R.D., Mason, T.E.: Note on the roots of algebraic equations. Bull. Am. Math.

Soc. 21, 14–22 (1914)
14. Cauchy, A.L.: Excercises de Mathematiques. IV Annee de Bure Freres, Paris (1829)
15. Cohn, A.: Über die Anzahl der Wurzeln einer algebraischen Gleichung in einen Kreise. Math.

Z. 14, 110–148 (1922)
16. Dalal, A., Govil, N.K.: On region containing all the zeros of a polynomial. Appl. Math.

Comput. 219, 9609–9614 (2013)
17. Dalal, A., Govil, N.K.: Annulus containing all the zeros of a polynomial. Appl. Math.

Comput. 249, 429–435 (2014)
18. Dalal, A., Govil, N.K.: Generalization of some results on the annulus containing all the zeros

of a polynomial (preprint)
19. Datt, B., Govil, N.K.: On the location of zeros of polynomials. J. Approx. Theory 24, 78–82

(1978)
20. Dehmer, M.: On the location of zeros of complex polynomials. J. Inequal. Pure Appl. Math.

7(1), 1–27 (2006)



286 N.K. Govil and E.R. Nwaeze

21. Dehmer, M., Mowshowitz, A.: Bounds on the moduli of polynomial zeros. Appl. Math.
Comput. 218, 4128–4137 (2011)

22. Dehmer, M., Tsoy, Y.R.: The quality of zero bounds for complex polynomials. PLoS ONE
7(7) (2012). Doi:10.1371/journal.pone.0039537

23. Dewan, K.K.: On the location of zeros of polynomials. Math. Stud. 50, 170–175 (1982)
24. Diaz-Barrero, J.L.: An annulus for the zeros of polynomials. J. Math. Anal. Appl. 273,

349–352 (2002)
25. Diaz-Barrero, J.L.: Note on bounds of the zeros. Mo. J. Math. Sci. 14, 88–91 (2002)
26. Diaz-Barrero, J.L., Egozcue, J.J.: Bounds for the moduli of zeros. Appl. Math. Lett. 17,

993–996 (2004)
27. Dieudonné, J.: La théorie analytique des polynômes d’une variable. Mémor. Sci. Math. 93,

1–71 (1938)
28. Donaghey, R., Shapiro, L.W.: Motzkin numbers. J. Comput. Theor. 23, 291–301 (1977)
29. Ehrlich, L.W.: A modified Newton method for polynomials. Commun. ACM 10, 107–108

(1967)
30. Fejér, L.: Üeber Kreisgebiete, in denen eine Wurzel einer algebraischen Glieichung liegt. Jber.

Deutsch. Math. Verein. 26, 114–128 (1917)
31. Fell, H.: The geometry of zeros of trinomials equations. Rend. Circ. Mat. Palermo 28(2),

303–336 (1980)
32. Fujiwara, M.: A Ueber die Wurzeln der algebraischen Gleichungen. Tôhoku Math. J. 8, 78–85

(1915)
33. Gauss, K.F.: Beiträge zur Theorie der algebraischen Gleichungen. Abh. Ges. Wiss. Göttingen

4; Ges. Werke 3, 73–102 (1850)
34. Goodman, A.W., Schoenberg, I.J.: A proof of Grace’s theorem by induction. Honam Math. J.

9, 1–6 (1987)
35. Govil, N.K., Kumar, P.: On the annular regions containing all the zeros of a polynomial

(preprint)
36. Grace, J.H.: The zeros of a polynomial. Proc. Camb. Philos. Soc. 11, 352–357 (1901)
37. Heitzinger, W., Troch, W.I., Valentin, G.: Praxisnichtlinearer Gleichungen. Carl Hanser

Varlag, München-Wien (1985)
38. Jain, V.K.: On Cauchy’s bound for zeros of a polynomial. Turk. J. Math. 30, 95–100 (2006)
39. Jankowski, W.: Sur les zéros dún polynomial contenant un paramètres arbitraires. Ann. Polon.

Math. 3, 304–311 (1957)
40. Joyal, A., Labelle, G., Rahman, Q.I.: On the location of zeros of polynomials. Can. Math.

Bull. 10, 53–63 (1967)
41. Kalantari, B.: An infinite family of bounds on zeros of analytic functions and relationship to

smale’s bound. Math. Comput. 74, 841–852 (2005)
42. Kelleher, S.B.: Des limites des zéroes d’une polynome. J. Math. Pures Appl. 2, 167–171

(1916)
43. Kim, S.-H.: On the moduli of the zeros of a polynomial. Am. Math. Mon. 112, 924–925

(2005)
44. Kojima, J.: On the theorem of Hadamard and its applications. Tôhoku Math. J. 5, 54–60

(1914)
45. Kuniyeda, M.: Notes on the roots of algebraic equation. Tôhoku Math. J. 9, 167–173 (1916)
46. Laudau, E.: Über den Picardschen Satz, Vierteijahrsschrift Naturforsch. Gesellschaft Zürich

51, 252–318 (1906)
47. Laudau, E.: Sur quelques généralisations du théorème de M. Picard. Ann. École Norm (3) 24,

179–201 (1907)
48. Marden, M.: The zeros of certain composite polynomials. Bull. Am. Math. Soc. 49, 93–100

(1943)
49. Marden, M.: Geometry of Polynomials. Mathematical Surveys and Monographs, vol. 3.

American Mathematical Society, Providence, RI (1966)
50. Markovitch, D.: On the composite polynomials. Bull. Soc. Math. Phys. Serbie 3(3–4), 11–14

(1951)



On Geometry of the Zeros of a Polynomial 287
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Approximation by Durrmeyer Type Operators
Preserving Linear Functions

Vijay Gupta

Abstract In the present article, we propose a new sequence of linear positive
operators having different basis, which are generalizations of Bernstein basis func-
tions. We establish some convergence estimates which include link convergence,
asymptotic formula, and direct estimates in terms of usual and Ditzian–Totik
modulus of continuity.

Keywords: Bernstein polynomials • Modulus of continuity • Rising factorial
• Direct results

1 Introduction

For f 2 CŒ0; 1� Bernstein polynomials are defined as

Pn.f ; x/ WD
nX

kD0
pn;k.x/f



k

n

�
; x 2 Œ0; 1�; (1)

where

pn;k.x/ D



n
k

�
xk.1 � x/n�k:

For all n 
 1, Bn.f ; 0/ D f .0/; Bn.f ; 1/ D f .1/ so that a Bernstein polynomial for
f interpolates f at both endpoints of the interval Œ0; 1�: In the year 1968, Stancu
[21] introduced a generalization of the Bernstein polynomials based on Polya
distribution. The generalized operators P.˛/n W CŒ0; 1� ! CŒ0; 1�; introduced in [21]
are positive linear operators and depend on a non-negative parameter ˛, which are
defined as
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P.˛/n .f ; x/ D
nX

kD0
f



k

n

�
p.˛/n;k .x/ ; (2)

where p.˛/n;k .x/ is the Polya distribution with density function given by

p.˛/n;k .x/ D
 

n

k

!Qk�1
�D0.xC �˛/

Qn�k�1
�D0 .1 � xC �˛/

Qn�1
�D0.1C �˛/

; x 2 Œ0; 1�:

In case ˛ D 0 these operators reduce to the classical Bernstein polynomials. For
˛ D 1=n a special case of the operators (2) was considered by Lupaş and Lupaş
[16], which can be represented in an alternate form as

P.1=n/
n .f ; x/ D 2.nŠ/

.2n/Š

nX

kD0

 
n

k

!
f



k

n

�
.nx/k.n � nx/n�k; (3)

where the rising factorial is given as .x/n D x.xC 1/.xC 2/ : : : .xC n� 1/: In order
to approximate Lebesgue integrable functions on Œ0; 1� Durrmeyer [7] in the year
1967 introduced the integral modification of the classical Bernstein polynomials
(1), which were also studied in [2]. Twenty years later in the year 1987 Chen [4]
and Goodman and Sharma [10] simultaneously introduced the genuine Bernstein
polynomials, which preserve linear functions. Suppose LBŒ0; 1� denote the space of
bounded Lebesgue integrable functions on Œ0; 1� and

Q
n the space of polynomials

of degree at most n 2 N: The genuine operators Dn W LBŒ0; 1� ! Q
n; n 
 1 are

defined as

Dn.f ; x/ D .n � 1/
n�1X

kD1
pn;k.x/

Z 1

0

pn�2;k�1.t/f .t/dt (4)

C .1 � x/nf .0/C xnf .1/; f 2 LBŒ0; 1�:

Some other generalizations of Bernstein polynomials have been introduced and
studied in [1, 8, 11, 13–15, 19] and [18], etc., but they only reproduce constant
functions. For f 2 LBŒ0; 1� and x 2 Œ0; 1�, Pǎltǎnea in the year 2007 gave the
modification of the operators (4) based on certain parameter � > 0 as

D�
n.f ; x/ D

n�1X

kD1
pn;k.x/

Z 1

0

�
�
n;k.t/f .t/dt (5)

C .1 � x/nf .0/C xnf .1/; f 2 LBŒ0; 1�;

where

�
�
n;k .t/ WD

tk�Cm�1.1 � t/.n�k/��1

B.k�; .n � k/�/
:

These operators were studied in detail by Gonska and Pǎltǎnea in [9], where some
direct results in simultaneous approximation have also been discussed. We propose
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here a genuine integral type modification of the operators (3), with the weights of
�
�
n;k .t/ considered in (5) as

D.1=n;�/
n .f ; x/ D

n�1X

kD1
p.1=n/

n;k .x/
Z 1

0

�
�
n;k .t/ f .t/ dt (6)

C p.1=n/
n;0 .x/f .0/C p.1=n/

n;n .x/f .1/;

where

p.1=n/
n;k .x/ D 2.nŠ/

.2n/Š

 
n

k

!
.nx/k.n � nx/n�k

and for 1 � k � n � 1;

�
�
n;k .t/ WD

tk�Cm�1.1 � t/.n�k/��1

B.k�; .n � k/�/
:

Obviously the operators (6) are linear positive operators and preserve the linear
functions, we may call such operators as genuine operator. In the limiting case of
these operators, we recapture the operators (3). In the recent years many approxi-
mation properties have been discussed, we mention some of them as [3, 12, 20]. We
estimate some direct results for these operators.

2 Basic Results

In the sequel, we shall need the following basic results:

Lemma 1 (Miclaus [17]). For the operators defined by (3) with ei.t/ D ti; i D
0; 1; 2 we have

P.1=n/
n .e0; x/ D 1;P.1=n/

n .e1; x/ D x

and

P.1=n/
n .e2; x/ D nx2 C 2x � x2

nC 1 D x2 C 2x.1 � x/

nC 1 :

Lemma 2. For the operators defined by (6), we have

D.1=n;�/
n .e0; x/ D 1;D.1=n;�/

n .e1; x/ D x
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D.1=n;�/
n .e2; x/ D n2�x2 C 2n�x� n�x2 C nxC x

.nC 1/.n�C 1/ :

Proof. Using the definition of Beta functions of first kind, it follows that

Z 1

0

�
�
n;k .t/ tmdt D 1

B.k�; .n � k/�/

Z 1

0

tk�Cm�1.1 � t/.n�k/��1dt (7)

D B..k�C m; .n � k/�/

B.k�; .n � k/�/
D � .k�C m/

� .n�C m/
:
� .n�/

� .k�/
:

Thus

Z 1

0

�
�
n;k .t/ tdt D k

n

and

Z 1

0

�
�
n;k .t/ t2dt D .k�C 1/k

.n�C 1/n D
n�

.n�C 1/
k2

n2
C 1

.n�C 1/
k

n
:

Obviously D.1=n;�/
n .e0; x/ D 1: Next using (7) and applying Lemma 1, we have

D.1=n;�/
n .e1; x/ D

n�1X

kD1
p.1=n/

n;k .x/
k

n
C p.1=n/

n;n .x/ D x:

Finally

D.1=n;�/
n .e2; x/ D

nX

kD0
p.1=n/

n;k .x/

�
n�

.n�C 1/
k2

n2
C 1

.n�C 1/
k

n



D n�

.n�C 1/P.1=n/
n .e2; x/C 1

.n�C 1/P.1=n/
n .e1; x/

D n�

.n�C 1/ :
nx2 C 2x � x2

nC 1 C x

.n�C 1/

D n2�x2 C 2n�x� n�x2 C nxC x

.nC 1/.n�C 1/ :

Remark 1. If we denote T�n;r.x/ D D.1=n;�/
n ..t � x/r; x/, then we get

T�n;1.x/ D 0;T�n;2.x/ D
.2n�C nC 1/x.1� x/

.nC 1/.n�C 1/ :
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Moreover, we have

T�n;m.x/ D O.n�Œ.mC1/=2�/;

where Œa� denote the integral part of a:

Lemma 3. For f 2 C Œ0; 1�, we have
���D.1=n;�/

n .f ; x/
��� � kfk ; where jj:jj is the sup-

norm on Œ0; 1�:

Proof. From the definition of operator and Lemma 2, we get

ˇ̌
D.1=n;�/

n .f ; x/
ˇ̌ � kfkD.1=n;�/

n .1; x/ D kfk :

Lemma 4. For n 2 N, we have

D.1=n;�/
n

�
.t � x/2 ; x

�
� 2�C 1

n�C 1ı
2
n .x/ ;

where ı2n .x/ D '2 .x/C 1
nC1 ; where '2 .x/ D x.1 � x/:

Proof. By Remark 1, we have

D.1=n;�/
n

�
.t � x/2 ; x

�
D .2n�C nC 1/x.1� x/

.nC 1/.n�C 1/ � 2�C 1
n�C 1

�
'2 .x/C 1

nC 1

;

which is desired.

3 Convergence Estimates

In this section, we present some convergence estimates of the operators D.1=n/
n .f ; x/ :

Theorem 1. For any f 2 CŒ0; 1�, we have

lim
�!1D.1=n;�/

n .f ; x/ D P.1=n/
n .f ; x/; uniformly.

Proof. Let f 2 CŒ0; 1� and suppose n 2 N be fixed. For fixed k and n with 1 � k �
n � 1, it suffices to show that

lim
�!1F�n;k.f / D lim

�!1

�Z 1

0

�
�
n;k.t/f .t/dtC f .0/C f .1/


D f



k

n

�
:

But this is a consequence of well-known Korovkin’s theorem, applied to the
situation F�n;k.f / W CŒ0; 1� ! CŒk=n; k=n�: By Lemma 2, we have F�n;k.e1/ D k=n
and F�n;k.e2/ D k2=n2 for sufficiently large �. Hence F�n;k.f /! f .k=n/ as �!1:
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Theorem 2. Let f 2 CŒ0; 1� and if f 00 exists at a point x 2 Œ0; 1�; then

lim
n!1 n

�
D.1=n;�/

n .f ; x/ � f .x/
� D .2�C 1/x .1 � x/

2
f 00.x/:

Proof. By Taylor’s expansion of f ; we have

f .t/ D f .x/C .t � x/f 0.x/C .t � x/2

2
f 00.x/C ".t; x/.t � x/2;

where ".t; x/ ! 0 as t ! x: Applying D.1=n;�/
n on above Taylor’s expansion and

using Remark 1, we have

D.1=n/
n . f ; x/ � f .x/ D f 0.x/D.1=n;�/

n ..t � x/; x/C 1

2
f 00.x/D.1=n;�/

n ..t � x/2; x/

C D.1=n;�/
n .".t; x/.t � x/2; x/:

Thus

lim
n!1 n

�
D.1=n;�/

n .f ; x/ � f .x/
�

D lim
n!1 n

1

2
f 00 .x/D.1=n;�/

n ..t � x/2; x/C lim
n!1 nD.1=n;�/

n .".t; x/.t � x/2; x/

D .2�C 1/x .1 � x/

2
f 00 .x/C lim

n!1 nD.1=n;�/
n

�
" .t; x/ .t � x/2 ; x

�

DW .2�C 1/x .1 � x/

2
f 00 .x/C F:

In order to complete the proof, it is sufficient to show that F D 0: By Cauchy–
Schwarz inequality, we have

F D lim
n!1 nD.1=n;�/

n

�
"2 .t; x/ ; x

�1=2
D.1=n;�/

n

�
.t � x/4 ; x

�1=2
: (8)

Furthermore, since "2 .x; x/ D 0 and "2 .:; x/ 2 CŒ0; 1�, it follows that

lim
n!1 nD.1=n;�/

n

�
"2 .t; x/ ; x

� D 0; (9)

uniformly with respect to x 2 Œ0; 1�. Thus from (8), (9) and application of Remark 1,
we get

lim
n!1 nD.1=n;�/

n

�
"2 .t; x/ ; x

�1=2
D.1=n;�/

n

�
.t � x/4 ; x

�1=2 D 0:

Thus, we have
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lim
n!1 n

�
D.1=n;�/

n .f ; x/� f .x/
� D .2�C 1/x .1 � x/

2
f 00 .x/ ;

which completes the proof.

To prove the next direct result, we need the following auxiliary function viz. Peetre’s
K-functional which for W2 D fg 2 C Œ0; 1� W g0; g00 2 C Œ0; 1�g is defined as:

K2 .f ; ı/ D inf
˚kf � gk C ı ��g00

�� W g 2 W2
�
.ı > 0/ ;

where k:k is the uniform norm on C Œ0; 1� :

Theorem 3. For the operators D.1=n;�/
n , there exists a constant C > 0 such that

ˇ̌
D.1=n;�/

n .f ; x/ � f .x/
ˇ̌ � C!2

�
f ; .nC 1/�1 ın .x/

�
;

where f 2 C Œ0; 1�, ın .x/ D
�
'2 .x/C 1

nC1
�1=2

, '.x/ D p
x.1 � x/ and x 2 Œ0; 1�

and the second order modulus of continuity is given by

!2 .f ; �/ D sup
0<h��

sup
x;xC2h2Œ0;1�

jf .xC 2h/� 2f .xC h/C f .x/j :

Proof. By Taylor’s formula, we can write

g .t/ D g .x/C .t � x/ g0 .x/C
Z t

x
.t � u/ g00 .u/ du:

Applying the above Taylor’s formula, we have

D.1=n;�/
n .g; x/ D g .x/C D.1=n;�/

n


Z t

x
.t � u/ g00 .u/ du; x

�
:

Hence

ˇ̌
D.1=n;�/

n .g; x/� g .x/
ˇ̌ � D.1=n;�/

n


Z t

x
jt � uj ˇ̌g00 .u/ˇ̌ du; x

�

� D.1=n;�/
n

�
.t � x/2 ; x

� ��g00
�� :

For f 2 C Œ0; 1� and g 2 W2; using Lemmas 2 and 3 we have

ˇ̌
D.1=n;�/

n .f ; x/ � f .x/
ˇ̌

� ˇ̌D.1=n;�/
n .f � g; x/� .f � g/.x/

ˇ̌C ˇ̌D.1=n;�/
n .g; x/� g .x/

ˇ̌

� 2 kf � gk C 3

nC 1ı
2
n .x/

��g00
�� :
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Taking infimum over all g 2 W2; we obtain

ˇ̌
D.1=n;�/

n .f ; x/� f .x/
ˇ̌ � 3K2



f ;

1

nC 1ı
2
n .x/

�
:

Using the inequality due to DeVore and Lorentz [5], there exists a positive
constant C > 0 such that

K2 .f ; ı/ � C!2
�

f ;
p
ı
�
;

we get at once

ˇ̌
D.1=n;�/

n .f ; x/ � f .x/
ˇ̌ � C!2

�
f ; .nC 1/�1 ın .x/

�
;

so the proof is completed.

Let f 2 C Œ0; 1� and ' .x/ D p
x.1 � x/, x 2 Œ0; 1�: The second order

Ditzian–Totik modulus of smoothness and corresponding K-functional are given
by, respectively,

!
'
2

�
f ;
p
ı
�
D sup

0<h�pı
sup

x˙h'.x/2Œ0;1�
jf .xC h' .x//� 2f .x/C f .x � h' .x//j ;

NK2;' .f ; ı/ D inf
˚kf � gk C ı ��'2g00��C ı2 ��g00

�� W g 2 W2 .'/
�
.ı > 0/ ;

where W2 .'/ D ˚
g 2 C Œ0; 1� W g0 2 ACloc Œ0; 1� ; '

2g00 2 C Œ0; 1�
�

and g0 2
ACloc Œ0; 1� means that g is differentiable and g0 is absolutely continuous on every
closed interval Œa; b� � Œ0; 1� : We know from Theorem 1.3.1 of [6] that there exists
a positive constant C > 0; such that

NK2;' .f ; ı/ � C!'2

�
f ;
p
ı
�
: (10)

Our next direct estimate is in terms of the Ditzian–Totik modulus of continuity.

Theorem 4. Let f 2 C Œ0; 1�. Then for x 2 Œ0; 1�; we have

��D.1=n;�/
n f � f

�� � C!'2

�
f ; .nC 1/�1=2

�
;

where C > 0 is an absolute constant and ' .x/ Dpx.1 � x/:
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Proof. By Taylor’s formula, we can write

g .t/ D g .x/C .t � x/ g0 .x/C
Z t

x
.t � u/ g00 .u/ du:

Using the definition of the operator D.1=n;�/
n and Lemma 2, we obtain

ˇ̌
D.1=n;�/

n .gI x/� g .x/
ˇ̌ � D.1=n;�/

n


Z t

x
jt � uj ˇ̌g00 .u/ˇ̌ duI x

�
:

Moreover, ı2n is a concave function on x 2 Œ0; 1�; for u D �x C .1 � �/ t, � 2
Œ0; 1� ; we get

jt � uj
ı2n .u/

D � jt � xj
ı2n .�xC .1 � �/ t/

� � jt � xj
�ı2n .x/C .1 � �/ ı2n .t/

� jt � xj
ı2n .x/

:

Thus we have

ˇ̌
D.1=n;�/

n .g; x/� g .x/
ˇ̌ � 1

ı2n .x/

���ı2ng
00

���D.1=n;�/
n

�
.t � x/2 ; x

�
:

By using Lemma 4, we have

ˇ̌
D.1=n;�/

n .g; x/� g .x/
ˇ̌ � 2�C 1

n�C 1
��ı2ng00

�� : (11)

Applying Lemma 3 and (11), we have for f 2 C Œ0; 1�,

ˇ̌
D.1=n;�/

n .f ; x/ � f .x/
ˇ̌ � ˇ̌D.1=n;�/

n .f � g; x/
ˇ̌C ˇ̌D.1=n;�/

n .g; x/� g .x/
ˇ̌

Cjg .x/� f .x/j

� 4 kf � gk C 2�C 2
nC 1

��'2g00
��C 2�C 2

.nC 1/2
��g00

�� :

Taking infimum over all g 2 W2; we obtain

ˇ̌
D.1=n;�/

n .f ; x/ � f .x/
ˇ̌ � C NK2;'



f ;

1

nC 1
�
: (12)

Therefore, from (10) and (12) we obtain

��D.1=n;�/
n f � f

�� � C!'2

�
f ; .nC 1/�1=2

�
;

which is the desired result.
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(CM) method for constructing elliptic curves with a given number of points. In the
core of this method, there is a special polynomial called Hilbert class polynomial
which is constructed with input a fundamental discriminant d < 0. The construction
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and thus the use of several alternative polynomials has been proposed in previous
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1 Introduction

Complex Multiplication (CM) method is a well-known and efficient method for the
construction of elliptic curves with a given number of points. In cryptographic appli-
cations, it is required that the order of the elliptic curves satisfies several restrictions
and thus CM method is a necessary tool for them. Essentially, CM method is a way
to use elliptic curves defined over the field of complex numbers in order to construct
elliptic curves defined over finite fields with a given number of points. Therefore, we
will begin our article by giving a brief introduction to the theory of elliptic curves
over a field K, which for our purposes will be either the finite field Fp or the field of
complex numbers C.

We describe the CM method using first the classical j-invariant and its cor-
responding Hilbert polynomial. Hilbert polynomial is constructed with input a
fundamental discriminant d < 0. The disadvantage of Hilbert polynomials is that
their coefficients grow very large as the absolute value of the discriminant D D jdj
increases and thus their construction requires high precision arithmetic and a huge
amount of disk space to store and manipulate them.

Supposing that f is a modular function, such that f .	/ for some 	 2 Q.
p�D/

generates the Hilbert class field of Q.
p�D/, then its minimal polynomial can

substitute the Hilbert polynomial in the CM method and the value f .	/ is called
class invariant. These minimal polynomials are called class polynomials, their
coefficients are much smaller than their Hilbert counterparts and their use can
considerably improve the efficiency of the whole CM method. Some well-known
families of class polynomials are: Weber polynomials [15, 23], MD;l.x/ polyno-
mials [21], Double eta (we will denote them by MD;p1;p2 .x/) polynomials [6] and
Ramanujan polynomials [17]. The logarithmic height of the coefficients of all these
polynomials is smaller by a constant factor than the corresponding logarithmic
height of the Hilbert polynomials and this is the reason for their much more efficient
construction.

In what follows, we will present our contribution on finding alternative class
invariants (instead of the classical j-invariant) which can considerably improve the
efficiency of the CM method. Also we will see how the choice of the discriminant
can affect the efficiency of the class polynomials’ construction.

2 Preliminaries

The theory of elliptic curves is a huge object of study and the interested reader is
referred to [2, 25] and references within for more information. An elliptic curve
defined over a field K of characteristic p > 3 is the set of all points .x; y/ 2 K � K
(in affine coordinates) which satisfy an equation

y2 D x3 C axC b (1)
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where a; b 2 K satisfy 4a3 C 27b2 ¤ 0, together with at special point OE which is
called the point at infinity. The set E.K/ of all points can be naturally equipped with
a properly defined addition operation and it forms an abelian group, see [3], [38] for
more details on this group.

An elliptic curve E.Fq/ defined over a finite field Fq is then a finite abelian group
and as such it is isomorphic to a product of cyclic groups:

E.Fq/ Š
sY

iD1
Z=niZ:

The arithmetic complexity of this elliptic curve is reduced to the smallest cyclic
factor of the above decomposition. For example, we can have an elliptic curve of
huge order which is the product of a large amount of cyclic groups of order 2. The
discrete logarithm problem is trivial for this curve. For cryptographic algorithms,
we would like to have elliptic curves which do not admit small cyclic factors and
even better elliptic curves which have order a large prime number. This forces the
curve to consist of only one cyclic factor.

In order to construct an elliptic curve with a proper order, we can either generate
random elliptic curves, compute their order and then check their properties or we
can use a method which constructs elliptic curves with a given order which we
known beforehand that satisfies our restrictions. In this article we will use the second
approach and present the method of Complex Multiplication. This method uses
the theory of elliptic curves defined over the field of complex numbers in order
to construct elliptic curves over finite fields having the desired order.

Definition 1. A lattice L in the field of complex numbers is the set which consists
of all linear Z-combinations of two Z-linearly independent elements e1; e2 2 C.

Given a lattice L Weierstrass defined a function } depending on the lattice L

} W C! C

by the formula:

}.z;L/ D 1

z2
C

X

�2L�f0g



1

.zC �/2 �
1

�2

�
:

The function } satisfies the differential equation

} 0.z/2 D 4}.z/3 � g2.L/}.z/ � g3.L/:

Therefore the pair .x; y/ D .}.z/; } 0.z// parametrizes the elliptic curve

y2 D 4x3 � g2.L/x � g3.L/:
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Remark 1. The transcendental functions .x; y/ D .sin.x/; cos.x// D .sin.x/; sin0.x//
satisfy the equation x2 C y2 D 1, therefore they parametrise the unit circle.

The function } is periodic with period the lattice L, i.e.

.}.zC �/; } 0.zC �// D .}.z/; } 0.z// for every � 2 L:

At the level of group theory this means that

C

L
Š E.C/:

From the topological viewpoint, this means that the fundamental domain of the
lattice, i.e. the set

z D ae1 C be2 W 0 � a; b < 1

covers the elliptic curve while the border is glued together giving to the elliptic curve
the shape of a “donut”.

The functions g2.L/; g3.L/ depend on the lattice L, and are given by the formula

g2.L/ D 60
X

�2L�f0g

1

�4
g3.L/ D 140

X

�2L�f0g

1

�6
:

2.1 Algebraic Theory of the Equation y2 D x3 C ax C b

In this paragraph we will study certain invariants of the elliptic curve given by the
equation:

y2 D x3 C axC b:

For every polynomial of one variable f .x/ we can define the discriminant. This is a
generalization of the known discriminant of a quadratic polynomial and is equal to
zero if and only if the polynomial f has a double root.

For the special case of the cubic polynomial x3CaxCb the discriminant is given
by the formula: �16.4a3 C 27b2/. We observe that by definition all elliptic curves
have non-zero discriminant.

The j-invariant of the elliptic curve is defined by:

j.E/ D .4a/3

4a3 C 27b2
D � 4a3


.E/
:
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Proposition 1. Two elliptic curves defined over an algebraically closed field are
isomorphic if and only if have the same j-invariant.

This proposition does not hold if the elliptic curves are considered over a non-
algebraically closed field k. They became isomorphic over a quadratic extension
of k.

Proposition 2. For every integer j0 2 K there is an elliptic curve E defined over K
with j-invariant equal to j0.

Proof. If j ¤ 0; 1728, then the elliptic curve defined by

E W y2 C xy D x3 � 36

j0 � 1728x � 1

j0 � 1728
has discriminant


.E/ D j30
.j0 � 1728/3 and j.E/ D j0:

When j0 D 0 we consider the elliptic curve:

E W y2 C y D x3; with 
.E/ D �27 and j D 0

while for j0 we consider the elliptic curve:

E W y2 D x3 C x; with 
.E/ D �64 and j D 1728:

Proposition 3. Every element in the finite field Fp is the j-invariant of an elliptic
curve defined over Fp. For j ¤ 0; 1728 this elliptic curve is given by

y2 D x3 C 3kc2xC 2kc3;

for k D j=.1728�j/ and c an arbitrary element in Fp. There are two non-isomorphic
elliptic curves E, E0 over Fp which correspond to different values of c. They have
orders

jEj D pC 1 � t and jEj D pC 1C t:

In this section we consider the lattices generated by 1; 	 , where 	 D aC ib is a
complex number with b > 0. The set of such 	’s is called the hyperbolic plane and
it is generated by H. In this setting the Eisenstein series, the discriminant and the
j-invariant defined above (which depend on L) can be seen as functions of 	 .

Proposition 4. The functions g2; g3;
; j seen as functions of 	 2 H remain
invariant under transformations of the form:
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	 7! a	 C b

c	 C d
;



a b
c d

�
2 SL.2;Z/:

In particular these functions remain invariant under the transformation 	 7! 	 C 1
so they are periodic. Hence they admit a Fourier expansion. In the coefficients of
the Fourier expansion there is “hidden arithmetic information”. For example, the
Fourier expansion of the j-invariant function is given by:

j.	/ D 1

q
C 744C 196884qC 21493760q2C 864299970q3C � � � ;

where q D e2 i	 .

Definition 2. We will say that the function f W E ! E is an endomorphism of
the elliptic curve if it can be expressed in terms of rational functions and moreover
f .OE/ D OE, where OE is the neutral element of the elliptic curve.

The set of endomorphisms will be denoted by End.E/ and it has the structure
of a ring where addition is the natural addition of functions and multiplication is
composition of functions.

If we fix an integer n 2 Z, then we can define the endomorphism sending P 2 E to
nP. In this way Z becomes a subring of End.E/.

For most elliptic curves defined over fields of characteristic 0, End.E/ D Z. For
elliptic curves defined over the finite field Fq, there is always an extra endomorphism
the so-called Frobenious endomorphism �, which is defined as follows:

The element P 2 E with coordinates .x; y/ is mapped to the element �.P/ with
coordinates .xq; yq/. This endomorphism is interesting because we know that x 2 NFq

is an element in Fq if and only if xq D x. So the elements which remain invariant
under the action of the Frobenious endomorphism are exactly the points of the
elliptic curve over the finite field Fp.

Proposition 5. The Frobenious endomorphism˚ satisfies the relation

�2 � t� C q D 0; (2)

where t is an integer called the “trace of Frobenious”.

Theorem 1 (H. Hasse). The trace of Frobenious satisfies

jtj � 2pq:

Proposition 6. For a general elliptic curve if there is an extra endomorphism �

then it satisfies an equation of the form:

�2 C a� C b D 0;



Revisiting the Complex Multiplication Method for the Construction of Elliptic Curves 305

with negative discriminant (the term “complex multiplication” owes his name to
this fact).

Remark 2. The bound of Hasse is equivalent to the fact that the quadratic equation
(2) satisfied by Frobenious has negative discriminant.

Let 	 2 H, for example the one which satisfies the relation

	2 � t	 C q D 0

for a negative discriminant D. The theorem of complex multiplication asserts that
j.	/ satisfies an a polynomial f .x/ 2 ZŒx� end that the elliptic curve E	 , has
j-invariant j.	/ end endomorphism ring End.E	 / D ZŒ	 �.

Moreover, if we reduce the polynomial f .x/ modulo p, then the roots of the
reduced polynomials are j-invariants which correspond to elliptic curves Fp with
Frobenious endomorphisms � satisfying �2 � t� C q D 0.

K.F. Gauss in his work Disquisitiones Arithmeticae [8] studied the quadratic
forms of discriminant D of the form

ax2 C bxyC cy2I b2 � 4ac D �D; a; b; c 2 Z .a; b; c/ D 1;

up to the following equivalence relation which in modern language can be defined
as: two quadratic forms f .x; y/ and g.x; y/ are equivalent if there is a transformation
	 2 SL.2;Z/ such that

	 D



a b
c d

�
and f .x; y/ D g.axC by; cxC dy/:

For more information on this classical subject, we refer to [5].
A full set of representatives CL.D/ of the equivalence classes are the elements

.a; b; c/ such that

jbj � a �
r

D

3
; a � c; .a; b; c/ D 1; b2 � 4ac D �D

if jbj D a or a D c then b 
 0.

Theorem 2. Consider 	 2 H which satisfies a monic quadratic polynomial in ZŒx�.
Consider the elliptic curve E	 D C=.ZC 	Z/ which has j-invariant j.	/.

The complex number j.	/ satisfies an algebraic equation given by:

HD.x/ D
Y

Œa;b;c�2CL.D/

 
x � j

 
�bCp�D

2a

!!
2 ZŒx�:
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Moreover a root of the reduction of the polynomial HD.x/ modulo p corresponds
to an elliptic curve with Frobenious endomorphism sharing the same characteristic
polynomial with 	 .

Example. For D D 491 we have compute the following equivalence classes for
quadratic forms of discriminant �491

CL.D/ D Œ1; 1; 123�; Œ3;˙1; 41�; Œ9;˙7; 15�; Œ5;˙3; 25�; Œ11;˙9; 3�:

For each of the above Œa; b; c� we compute the root

� D �bC i
p
491

2s
;

of positive imaginary part.

This computation is summarized to the following table:

Œa; b; c� Root j-invariant

Œ1; 1; 123� �1 D .�1C i
p
491/=2 �1:7082855E30

Œ3; 1; 41� �2 D .�1C i
p
491/=6 5.977095 E9 + 1.0352632 E10I

Œ3;�1; 41� �3 D .1C i
p
491/=6 5.9770957 E9 � 1.0352632 E10I

Œ9; 7; 15� �4 D .�7C i
p
491/=18 �1072.7816 + 1418.3793I

Œ9;�7; 15� �5 D .7C i
p
491/=18 �1072.7816 �1418.3793I

Œ5; 3; 25� �6 D .�3C i
p
491/=10/ �343205.38 + 1058567.0I

Œ5;�3; 25� �7 D .3C i
p
491/=10 �343205.38 � 1058567.0I

Œ11; 9; 13� �8 D .�9C i
p
491/=22 6.0525190 + 170.50800I

Œ11;�9; 13� �9 D .9C i
p
491/=22 6.0525190 � 170.50800I

We can now compute the polynomial

f .x/ D
9Y

iD1
.x � j.�i//

with 100-digit precision and we arrive at (computations by magma algebra
system [3])

x^9 + (1708285519938293560711165050880.0 + 0.E-105*I)*x^8 +
(-20419995943814746224552691418802908299264.0 + 5.527 E-76*I)*x^7 +
(244104497665432748158715313783583130211556702289920.0 - 3.203 E-66*I)*x^6 +
(168061099707176489267621705337969352389335280404863647744.0 - 8.477 E-61*I)*x^5 +
(302663406228710339993356777425938984884433281603698934574743552.0 + 1.179E-53*I)*x^4 +
(645485900085616784926354786035581108920923697188375949395393249280.0 + 5.552 E-50*I)*x^3 +
(957041138046397870965520808576552949198885665738183643750394920697856.0 - 1.530 E-47*I)*x^2 +
(7322862871033784419236596129273250845529108502221762556507445472002048.0 + 4.458 E-45*I)*x +
(27831365943253888043128977216106999444228139865055751457267582234307592192.0 - 3.587 E-43*I)

which we recognize as a polynomial with integer coefficients (all complex coeffi-
cients multiplied by 10�40 or a smaller power are considered to be zero and are just
floating point approximation garbage).
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3 Complex Multiplication Method and Shimura
Reciprocity Law

We would like to construct an elliptic curve defined over the finite field Fp with
order pC 1�m. For this case, we must construct the appropriate j 2 Fp. The bound
of Hasse gives us that Z WD 4p � .pC 1 � m/2 
 0. We write Z D Dv2 as a square
v2 times a number D which is squarefree.

The equation 4p D u2 C Dv2 for some integer u satisfies m D p C 1˙ u. The
negative integer�D is called the CM-discriminant for the prime p.

We have x2 � tr.�/xC p 7! 
 D �.F/2 � 4p D �Dv2:
Algorithm:

1. Select a prime p. Select the least D together with u; v 2 Z such that 4p D
u2 C Dv2.

2. If one of the values pC 1� u, pC 1C u is a prime number, then we proceed to
the next steps, otherwise we go back to step 1.

3. We compute the Hilbert polynomial HD.x/ 2 ZŒx� using floating approxima-
tions of the j-invariant.

4. Reduce modulo p and find a root of HD.x/modp. This root is the desired j-
invariant. The elliptic curve corresponding to j-invariant j ¤ 0; 1728 is

y2 D x3 C 3kc2xC 2kc3; k D j=.1728� j/; c 2 Fp:

To different values of c correspond two different elliptic curves E;E0 which
have orders pC 1˙ t. One is

y2 D x3 C axC b

and the other is

y2 D x3 C ac2xC bc3;

where c is a quadratic non-residue in Fp. In order to select the elliptic curve
with the correct order we choose a point P in one of them and we compute its
order, i.e. the natural number n such that nP D OE. This order should divide
either pC 1 � t or pC 1C t.

The CM method for every discriminant D requires the construction of polynomial
HD.x/ 2 ZŒx� (called the Hilbert polynomial)

HD.x/ D
Y

	

.x � j.	//;

for all values 	 D .�b C p�D/=2a for all integers Œa; b; c� running over a set of
representatives of the group of equivalent quadratic forms.
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Let h be the order of Cl.D/. It is known that the bit precision required of the
generation of HD.x/ (see [20]):

H � Prec.D/ Š ln 10

ln 2
.h=4C 5/C 

p
D

ln.2/

X

	

1

a
:

The most demanding step of the CM-method is the construction of the Hilbert
polynomial, as it requires high precision floating point and complex arithmetic. As
the value of the discriminant D increases, the coefficients of the grow extremely
large and their computation becomes more inefficient.

In order to overcome this difficulty, alternative class functions were proposed by
several authors. It was known in the literature [13, 27, 28] that several other complex
valued functions can be used in order to construct at special values the Hilbert class
field. Usually one tries functions of the form

�.p	/

�.	/
or
�.p	/�.q	/

�.pq	/�.	/
;

where � is the Dedekind zeta function defined by

�.	/ D e2 i	=24
Y

n�1
.1 � qn/; 	 2 C; Im.	/ > 0; q D e2 i	 :

All such constructions have the Shimura reciprocity law as ingredient or can be
written in this language. This technique was proposed by Shimura [24], but it was
Gee and Stevenhagen [9–11, 26] who put it in form suitable for applications. In
order to define Shimura reciprocity law, we have to define some minimum amount
of the theory of modular functions.

Consider the group SL.2;Z/ consisted by all 2 � 2 matrices with integer entries
and determinant 1. It is known that an element

� WD



a b
c d

�
2 SL.2;Z/

acts on the upper complex plane H WD fz 2 C W Im.z/ > 0g by Möbious
transformations by

�z D azC b

czC d
:

Moreover it is known that SL.2;Z/ can be generated by the elements S W z 7! � 1z
and T W z 7! zC 1. Let � .N/ be the kernel of the map SL.2;Z/ 7! SL .2;Z=NZ/.

Let H� be the upper plane H[P
1.Q/. One can show that the quotient � .N/nH�

has the structure of a compact Riemann surface which can be described as an
algebraic curve defined over the field Q.#N/, where #N is a primitive N-th root of
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unity. We consider the function field FN of this algebraic curve defined over Q.#N/.
The function field FN is acted on by

� .N/=f˙1g Š Gal.FN=F1.#N//:

For an element d 2 � Z

NZ

��
we consider the automorphism �d W #N 7! #d

N . Since the
Fourier coefficients of a function h 2 FN are known to be in Q.#N/, we consider the
action of �d on FN by applying �d on the Fourier coefficients of h. In this way we
define an arithmetic action of

Gal.F1.#N/=F1/ Š Gal.Q.#N/=Q/ Š



Z

NZ

��
;

on FN . We have an action of the group GL
�
2; Z

NZ

�
on FN that fits in the following

short exact sequence.

1! SL



2;

Z

NZ

�
! GL



2;

Z

NZ

�
det�!



Z

NZ

��
! 1:

The following theorem by A. Gee and P. Stevehagen is based on the work of
Shimura:

Theorem 3. Let O D ZŒ�� be the ring of integers of an imaginary quadratic
number field K of discriminant d < �4. Suppose that a modular function h 2 FN

does not have a pole at � and Q.j/ � Q.h/. Denote by x2 C BxC C the minimum
polynomial of � over Q. Then there is a subgroup WN;� � GL

�
2; Z

NZ

�
with elements

of the form:

WN;� D
�


t � Bs �Cs
s t

�
2 GL



2;

Z

NZ

�
W t� C s 2 .O=NO/�

	
:

The function value h.�/ is a class invariant if and only if the group WN;� acts trivially
on h.

Proof. [9, cor. 4].

The above theorem can be applied in order to show that a modular function gives
rise to a class invariant and was used with success in order to prove that several
functions were indeed class invariants. Also A. Gee and P. Stevenhagen provided us
with an explicit way of describing the Galois action of Cl.O/ on the class invariant
so that we can construct the minimal polynomial of the ring class field.

The authors have used in [16] this technique in order to prove a claim of
S. Ramanujan that the function

R2.	/ D �.3	/�.	=3C 2=3/
�2.	/
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gives rise to class invariants. Ramanujan managed somehow (we are only left with
the final result written in his notebook) to compute the first class polynomials
corresponding to this class invariant and many years later, Berndt and Chan [4]
proved that these first polynomials where indeed class invariants and the class
polynomials written by Ramanujan were correct. We would like to notice that
these Ramanujan invariants proved to be one of the most efficient invariants for
the construction of prime order elliptic curves [17, 18] if one uses the CM method.

We will present now an algorithm which will allow us not only to check that a
modular function is a class invariant but also to find bases of vector spaces of them.
Let V be a finite dimensional vector space consisting of modular functions of level
N so that GL.2;Z=NZ/ acts on V .

Example 1 (Generalized Weber Functions). An example of such a vector space of
modular form is given by the generalized Weber functions defined as:

�N;0 WD
p

N

� ı



N 0

0 1

�

�
and �k;N WD

� ı


1 k
0 N

�

�
; 0 � k � N � 1: (3)

These are known to be modular functions of level 24N [10, th5. p.76]. Notice thatp
N 2 Q.#N/ � Q.#24�N/ and an explicit expression of

p
N in terms of #N can be

given by using Gauss sums [7, 3.14 p. 228].
The group SL.2;Z/ acts on the .N C 1/-th dimensional vector space generated

by them. In order to describe this action we have to describe the action of the two
generators S;T of SL.2;Z/ given by S W z 7! � 1z and T W z 7! zC 1. Keep in mind
that

� ı T.z/ D #24�.z/ and � ı S.z/ D #�18
p

iz�.z/:

We compute that (see also [10, p.77])

�N;0 ı S D �0;N and �N;0 ı T D #N�1
24 �N;0;

�0;N ı S D �N;0 and �0;N ı T D #�124 �1;N ;

for 1 � k < N � 1 and N is prime

�k;N ı S D
��c

n

�
i
1�n
2 #

N.k�c/
24 and �k;N ı T D #�124 �kC1;N ;

where c D �k�1 mod N. The computation of the action of S on � is the most
difficult, see [13, eq. 8 p.443].

Notice that every element a 2 GL.2;Z=NZ/ can be written as b �


1 0

0 d

�
,

d 2 Z=NZ
� and b 2 SL.2;Z=NZ/. The group SL.2;Z=NZ/ is generated by
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the elements S and T. The action of S on functions g 2 V is defined to be
g ı S D g.�1=z/ 2 V and the action of T is defined g ı T D g.zC 1/ 2 V .

So in order to define the action of SL.2;Z=NZ/ we first use the decomposition
based on Chinese remainder theorem:

GL.2;Z=NZ/ D
Y

pjN
GL.2;Z=pvp.N/Z/;

where vp.N/ denotes the power of p that appears in the decomposition in prime
factors. Working with the general linear group over a field has advantages and
one can use lemma 6 in [9] in order to express an element of determinant one in
SL.2;Z=pvp.N/Z/ as word in elements Sp;Tp where Sp and Tp are 2 � 2 matrices
which reduce to S and T modulo pvp.N/ and to the identity modulo qvq.N/ for prime
divisors q of N, p ¤ q.

This way the problem is reduced to the problem of finding the matrices Sp;Tp

(this is easy using the Chinese remainder Theorem), and expressing them as
products of S;T. For more details and examples, the reader is referred to the article
of the second author [19].

The action of the matrix



1 0

0 d

�
is given by the action of the elements

�d 2 Gal.Q.#N/=Q/

on the Fourier coefficients of the expansion at the cusp at infinity [9].

4 Class Invariants and Invariant Theory

Since every element in SL.2;Z=NZ/ can be written as a word in S;T we obtain a
function �

(4)

where � is the natural homomorphism given by Theorem 3.
The map � defined above is not a homomorphism but a cocycle. Indeed, if

e1; : : : ; em is a basis of V , then the action of � is given in matrix notation as

ei ı � D
mX

�D1
�.�/�;ie�;

and then since .ei ı �/ ı 	 D ei ı .�	/ we obtain
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ei ı .�	/ D
mX

�;�D1
�.�/	�;i�.	/�;�e�:

Notice that the elements �.�/�;i 2 Q.#N/ and 	 2 GL.2;Z=NZ/ acts on them as
well by the element �det.	/ 2 Gal.Q.#N/=Q/. So we arrive at the following:

Proposition 7. The map � defined in Eq. (4) satisfies the cocycle condition

�.�	/ D �.	/�.�/	 (5)

and gives rise to a class in H1.G;GL.V//, where G D .O=NO/�. The restriction of
the map � in the subgroup H of G defined by

H WD fx 2 G W det.�.x// D 1g

is a homomorphism.

The basis elements e1; : : : em are modular functions. There is a natural notion
of multiplication for them so we consider them as elements in the polynomial
algebra Q.#N/Œe1; : : : ; em�. The group H acts on this algebra in terms of the linear
representation � (recall that � when restricted to H is a homomorphism).

Classical invariant theory provides us with effective methods (Reynolds operator
method,linear algebra method [14]) in order to compute the ring of invariants
Q.#N/Œe1; : : : ; em�

H . Also there is a well-defined action of the quotient group G=H Š
Gal.Q.#N/=Q/ on Q.#N/Œe1; : : : ; em�

H .
Define the vector space Vn of invariant polynomials of given degree n:

Vn WD fF 2 Q.#N/Œe1; : : : ; em�
H W deg F D ng:

The action of G=H on Vn gives rise to a cocycle

�0 2 H1.Gal.Q.#N//=Q/;GL.Vn//:

The multidimensional Hilbert 90 theorem asserts that there is an element P 2
GL.Vn/ such that

�0.�/ D P�1P� : (6)

Let v1; : : : ; v` be a basis of Vn. The elements vi are by construction H invariant. The
elements wi WD viP�1 are G=H invariant since

.viP
�1/ ı � D .vi ı �/.P�1/� D vi�.�/.P

�1/� D viP
�1P� .P�1/� D viP

�1:

The above computation together with Theorem 3 allows us to prove
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Proposition 8. Consider the polynomial ring Q.#N/Œe1; : : : ; em� and the vector
space Vn of H-invariant homogenous polynomials of degree n. If P is a matrix such
that Eq. (6) holds, then the images of a basis of Vn under the action of P�1 are class
invariants.

For computing the matrix P so that Eq. (6) holds one can use the probabilistic
algorithm of Glasby-Howlett [12]. In this method one starts with the sum

BQ WD
X

�2G=H

�.�/Q� : (7)

We have to find 2 � 2 matrix in GL.2;Q.#N// such that BQ is invertible then
P WD B�1Q . Indeed, we compute that

B	Q D
X

�2G=H

�.�/	Q�	 ; (8)

and the cocycle condition �.�	/ D �.�/	�.	/, together with Eq. (8) allows us to
write:

B	Q D
X

�2G=H

�.�	/�.	/�1Q�	 D BQ�
�1
	

i.e.

�.	/ D BQ
�
B	Q
��1

:

We feed Eq. (8) with random matrices Q until BQ is invertible. Since non invertible
matrices form a Zariski closed subset in the space of matrices practice shows that
we obtain an invertible BQ almost immediately. For examples on this construction
we refer to [19].

This method does not give us only some class invariants but whole vector spaces
of them. For example for the space of the generalized Weber functions g0; g1; g2; g3
defined in the work of Gee in [10, p. 73] as

g0.	/ D
�. 	

3
/

�.	/
; g1.	/ D #�124

�. 	C1
3
/

�.	/
; g2.	/ D

�. 	C2
3
/

�.	/
; g3.	/ D

p
3
�.3	/

�.	/
;

which are the functions defined in Example 1 for N D 3. We find first that the
polynomials

I1 WD g0g2 C #672g1g3; I2 WD g0g3 C .�#1872 C #672/g1g2
are indeed invariants of the action of H. Then using our method
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Table 1 Minimal polynomials using the g0; : : : ; g3 functions

Invariant Polynomial

Hilbert t5 C 400497845154831586723701480652800t4C
818520809154613065770038265334290448384t3C
4398250752422094811238689419574422303726895104t2�
16319730975176203906274913715913862844512542392320tC
15283054453672803818066421650036653646232315192410112

e1 t5 � 936t4 � 60912t3 � 2426112t2 � 40310784t � 3386105856
e2 t5 � 1512t4 � 29808t3 C 979776t2 C 3359232t � 423263232

e1 W D .�12#1872 C 12#672/g0g3 C 12#672g0g3 C 12g1g2 C 12g1g3;
e2 W D 12#672g1g2 C .�12#1872 C 12#672/g0g3 C .�12#1272 C 12/g1g3 C 12#1272g1g3

generate a Q-vector space of class invariants. All Q linear combinations of the form
�1e1 C �2e2 also provide class invariants. Finding the most efficient class invariant
among them is a difficult problem which we hope to solve in the near future. For
comparison we present in Table 1 the polynomials generating the Hilbert class field
using the j invariant and the two class functions we obtained by our method.

5 Selecting the Discriminant

We have seen in the previous sections that the original version of the CM method
uses a special polynomial called Hilbert class polynomial which is constructed with
input a fundamental discriminant d < 0. A discriminant d < 0 is fundamental if
and only if d is free of any odd square prime factors and either �d � 3 .mod 4/ or
�d=4 � 1; 2; 5; 6 .mod 8/. The disadvantage of Hilbert class polynomials is that
their coefficients grow very large as the absolute value of the discriminant D D jdj
increases and thus their construction requires high precision arithmetic.

According to the first main theorem of complex multiplication, the modular
function j.�/ generates the Hilbert class field over K. However, the Hilbert class field
can also be generated by modular functions of higher level. There are several known
families of class polynomials having integer coefficients which are much smaller
than the coefficients of their Hilbert counterparts. Therefore, they can substitute
Hilbert class polynomials in the CM method and their use can considerably
improve its efficiency. Some well-known families of class polynomials are: Weber
polynomials [23], MD;l.x/ polynomials [21], Double eta (we will denote them by
MD;p1;p2 .x/) polynomials [6] and Ramanujan polynomials [17]. The logarithmic
height of the coefficients of all these polynomials is smaller by a constant factor
than the corresponding logarithmic height of the Hilbert class polynomials and this
is the reason for their much more efficient construction.
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A crucial question is which polynomial leads to the most efficient construction.
The answer to the above question can be derived by the precision requirements
of the polynomials or (in other words) the logarithmic height of their coefficients.
There are asymptotic bounds which estimate with remarkable accuracy the precision
requirements for the construction of the polynomials. The polynomials with the
smallest (known so far) asymptotic bound are Weber polynomials constructed with
discriminants d satisfying the congruence D D jdj � 7 .mod 8/. Naturally, this
leads to the conclusion that these polynomials will require less precision for their
construction than all other class polynomials constructed with values D0 close
enough to the values of D.

In what follows, we will show that this is not really true in practice. Clearly,
the degrees of class polynomials vary as a function of D, but we will see that on
average these degrees are affected by the congruence of D modulo 8. In particular,
we prove theoretically that class polynomials (with degree equal to their Hilbert
counterparts) constructed with values D � 3 .mod 8/ have three times smaller
degree than polynomials constructed with comparable in size values of D that satisfy
the congruence D � 7 .mod 8/. Class polynomials with even discriminants (e.g.,
D � 0 .mod 4/) have on average two times smaller degree than polynomials
constructed with comparable in size values D � 7 .mod 8/. This phenomenon
can be generalized for congruences of D modulo larger numbers. This leads to
the (surprising enough) result that there are families of polynomials which seem to
have asymptotically larger precision requirements for their construction than Weber
polynomials with D � 7 .mod 8/, but they can be constructed more efficiently than
them in practice (for comparable values of D).

The degree of every polynomial generating the Hilbert class field equals the class
number hD which for a fundamental discriminant �D < 4 is given by [22, p. 436]

hD D
p

D

2
L.1; �/ D

p
D

2

Y

p



1 � �.p/

p

��1
;

where � is the quadratic character given by the Legendre symbol, i.e. �.p/ D
�
�D

p

�
.

Let us now consider the Euler factor



1 � �.p/

p

��1
D

8
ˆ̂<

ˆ̂:

1 if p j D
p

p�1 if
�
�D
p

�
D 1

p
pC1 if

�
�D
p

�
D �1:

(9)

Observe that smaller primes have a bigger influence on the value of hD. For example,
if p D 2, then we compute



1 � �.2/

2

��1
D
8
<

:

1 if 2 j D
2 if D � 7 .mod 8/
2
3

if D � 3 .mod 8/:
(10)
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This leads us to the conclusion that on average the degree of a class polynomial with
D � 3 .mod 8/ will have three times smaller degree than a polynomial constructed
with a comparable value of D � 7 .mod 8/. Similarly, the degree of a polynomial
constructed with even values of D � 0 .mod 4/ will have on average two times
smaller degree than a polynomial with D � 7 .mod 8/.

Going back to Eq. (9), we can see that for discriminants of the same congruence
modulo 8, we can proceed to the next prime p D 3 and compute



1 � �.3/

3

��1
D
8
<

:

1 if 3 j D
3
2

if
��D
3

� D 1
3
4

if
��D
3

� D �1:

This means that for values of D such that
��D
3

� D �1 the value of hD is on average
two times smaller than class numbers corresponding to values with

��D
3

� D 1.
Consider for example, the cases D � 3 .mod 8/ and D � 7 .mod 8/. If we
now include in our analysis the prime p D 3, then we can distinguish 6 different
subcases D � 3; 11; 19 .mod 24/ and D � 7; 15; 23 .mod 24/. Having in mind

the values
�
1 � �.2/

2

��1
and

�
1 � �.3/

3

��1
, we can easily see, for example, that the

polynomials with D � 19 .mod 24/ will have on average 6 times smaller degrees
than the polynomials with D � 23 .mod 24/.

What happens if we continue selecting larger primes p? Equation (9) implies that

if we select a discriminant �D such that for all primes p < N we have
�
�D

p

�
D

�1 then the class number corresponding to D has a ratio that differs from other
discriminants by a factor of at most

Y

p<N



p � 1
pC 1

�
D
Y

p<N



1 � 2

pC 1
�
: (11)

Since the series
P

p
2

pC1 diverges (p runs over the prime numbers), the product in
Eq. (11) diverges as well [1, p.192 th. 5]. Therefore, the product in Eq. (11) can have
arbitrarily high values for sufficiently large values of N. This also means that if D is
sufficiently big we can choose discriminants that correspond to class numbers that
have an arbitrarily high ratio with respect to other discriminants of the same size.

6 Conclusions

In this paper, we have given a detailed overview of the CM method for the construc-
tion of elliptic curves. We have presented the necessary theoretical background and
we have described our published results on finding new class invariants using the
Shimura reciprocity law. The proper selection of a suitable discriminant D for the
construction of class polynomials, combined with the above results, will hopefully
lead us to more efficient constructions in the future using new families of class
polynomials.
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Generalized Laplace Transform Inequalities
in Multiple Weighted Orlicz Spaces

Jichang Kuang

Abstract In this paper we use quite different new methods to establish some new
generalized Laplace transform inequalities in the multiple weighted Orlicz spaces.
They are significant improvements and generalizations of many famous results.

Keywords: Laplace transform inequality • Weighted Orlicz space • Norm
inequality

1 Introduction

Given a function f on .0;1/ such that e�˛yjf .y/j is integrable over the interval
.0;1/ for some real ˛, we define F.z/ as

F.z/ D
Z 1

0

e�zyf .y/dy; (1)

where we require that Re.z/ > ˛ so that the integral in (1) converges. F is called the
(one-sided) Laplace transform of f . We consider only one-sided Laplace transforms
with the real parameter x, that is,

F.x/ D
Z 1

0

e�xyf .y/dy; x > ˛; (2)

as these play the most important role in the solution of initial and boundary
value problems for partial differential equations (see [1–3]). We use the standard
notations:

Lp
!.0;1/ D ff W kfkp;! <1g; kfkp;! D


Z 1

0

jf .x/jp!.x/dx

�1=p

:
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If !.x/ � 1, we will denote kfkp:1by kfkp. � .˛/ is the Gamma function:

� .˛/ D
Z 1

0

x˛�1exdx .˛ > 0/:

In asymptotic analysis , we often study functions f whose has N C 1 continuous
derivatives while f .NC2/ is piecewise continuous on .0;1/, then by ([4]), we have

F.x/ D
Z 1

0

e�xyf .y/dy �
NX

kD0
x�.kC1/f k.0/

represents an asymptotic expansion of F, as x ! 1, to N C 1 terms. But the
following Hardy’s result of being neglected ([5]):

Theorem 1. If f 2 Lp
!.0;1/; 1 < p < 1; !.x/ D xp�2, then F is defined by (2)

satisfies

kFkp � � .1=p/kfkp;! :

It is important to note that x appears in (2) only through the product xy, this suggests
that, as a generalization, we might consider the wider class of integral operators

T.f ; x/ D
Z

R
n
C

K.kxk�1 � kyk�2 /f .y/dy; (3)

where x 2 R
nC D f.x1; : : : ; xn/ W xk 
 0; 1 � k � ng; kxk D .Pn

kD1 jxkj2/1=2, �1; �2
are real numbers and �1 � �2 ¤ 0: In particular, if n D 1; �1 D �2 D 1, then

T.f ; x/ D
Z 1

0

K.xy/f .y/dy; x 2 R
1C: (4)

In this case, we say that T.f / is the generalized Laplace transform of f . In [5], Hardy
proved the following two theorems:

Theorem 2. Let K be a non-negative and measurable function on .0;1/. If f be
a non-negative and not null, 1 < p < 1, then the integral operator T is defined
by (4): T W Lp

!.0;1/! Lp.0;1/ exists as a bounded operator and

kTfkp � C.1=p/kfkp;!; (5)

where !.x/ D xp�2 and

C.1=p/ D
Z 1

0

K.t/t.1=p/�1dt: (6)
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This is an immediate consequences of the following Theorem 3:

Theorem 3. Let K be a non-negative and measurable function on .0;1/. Let f ; g
are non-negative and neither f nor g is null,1 < p < 1; 1p C 1

q D 1: If f 2
Lp
!.0;1/; g 2 Lq.0;1/, then

Z 1

0

Z 1

0

K.xy/f .x/g.y/dxdy < C.1=p/kfkp;!kgkq; (7)

where !.x/ D xp�2 and C.1=p/ is defined by (6). If the measurable function p W
R

n ! Œ1;1/ as exponential function, by Lp.x/.Rn/ we denote the Banach function
space of the measurable function f W Rn ! R

1 such that

kfkLp.�/ .Rn/ D inff� > 0 W
Z

Rn
j f .x/
�
jp.x/dx � 1g <1: (8)

For the basic properties of spaces Lp.x/.Rn/, we refer to [6–11]. The variable
exponent Lebesgue spaces Lp.x/.Rn/ and the corresponding variable Sobolev spaces
Wk;p.�/.Rn/ are of interest for their applications to modeling problems in physics
and to the study of variational integrals and partial differential equations with
nonstandard growth condition. It is well-known that the Orlicz spaces are the
generalizations of Lp spaces and play an important role in mathematical physics.
In 2008, Kuang and Debnath obtained in [15] the Hilbert’s inequalities with
the homogeneous kernel on the one-dimensional weighted Orlicz spaces. For the
basic results of the one- dimensional Orlicz spaces, we refer to [13, 14]. In
2014, the author [16] introduce the new multiple weighted Orlicz spaces, they are
generalizations of the variable exponent Lebesgue spaces Lp.x/.RnC/. The main aim
of this paper is to establish some new generalized Laplace transform inequalities in
the new multiple weighted Orlicz spaces. Here we use quite different methods and
techniques. They are significant improvements and generalizations of many famous
results.

2 Definitions and Statement of the Main Results

In what follows, we write

kfkp;! D
 Z

R
n
C

jf .x/jp!.x/dx

!1=p

;Lp.!/ D ff W f is measurable; jjf jjp;! <1g:

Definition 1 (See [13, 14]). We call ' a Young’s function if it is a non-negative
increasing convex function on .0;1/ with '.0/ D 0; '.u/ > 0; u > 0, and
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lim
u!0

'.u/

u
D 0; lim

u!1
'.u/

u
D 1:

To Young’s function ' we can associate its convex conjugate function denoted
by  D '� and defined by

 .v/ D '�.v/ D supfuv � '.u/ W u 
 0g; v 
 0:

We note that  D '� is also a Young’s function and  � D .'�/� D ': From the
definition of  D '�, we get Young’s inequality

uv � '.u/C  .v/; u; v > 0: (9)

Let '�1 be inverse function of ', we have

v � '�1.v/ �1.v/ � 2v; v 
 0: (10)

Definition 2 (See [16]). Let ' be a Young’s function on .0;1/, for any measurable
function f and non-negative weight function ! on R

nC, the multiple weighted
Luxemburg norm is defined as follows:

kfk';! D inff� > 0 W
Z

R
n
C

'.
jf .x/j
�

/!.x/dx � 1g: (11)

The multiple weighted Orlicz space is defined as follows:

L'.!/ D ff W kfk';! <1g: (12)

In particular, if '.u/ D up.x/; then L'.!/ is the weighted variable exponent
Lebesgue spaces Lp.�/.!/; if the exponents p.x/; q.x/ are constant, for example,
'.u/ D up; 1 < p < 1; then L'.!/ is the weighted Lebesgue spaces Lp.!/ on
RnC; if '.u/ D u.log.u C c//q; q 
 0; c > o; then L'.!/ is the weighted spaces
L.!/.log L.!//q on RnC.

Definition 3 (See [13]). We call the Young’s function ' on .0;1/ sub-
multiplicative, if

'.uv/ � '.u/'.v/ (13)

for all u; v 
 0.

Remark 1. If ' satisfies (13), then ' also satisfies Orlicz r2� condition, that is,
there exists a constant C > 1 such that

'.2u/ � C'.u/

for all u 
 0.
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Our main result is the following theorem:

Theorem 4. Let K be a non-negative and measurable function on RnC�RnC. Let the
conjugate Young’s functions '; on .0;1/ sub-multiplicative, and

!1.x/ D kxk�
.n�1/
�2 ; !2.y/ D kyk�

.n�2/
�1 ;

where �1; �2 are real numbers and �1 � �2 ¤ 0. Let f 2 L'.!1/; g 2 L .!2/ and
kfk';!1 > 0; kgk ;!2 > 0. If

C1 D n=2

2n�1� .n=2/�2
�
Z 1

0

K.u/ �1.u/u.
n
�2
/�1du <1I (14)

C2 D n=2

2n�1� .n=2/�1
�
Z 1

0

K.u/ 



1

'�1. �1.u//

�
� u.

n
�1
/�1du <1; (15)

then
Z

R
n
C

Z

R
n
C

K.kxk�1 � kyk�2 / � f .x/g.y/dxdy � C.';  /kfk';!1kgk ;!2 ; (16)

where C.';  / D C1 C C2 is defined by (14) and (15).

We obtain the following Corollary 1 by taking '.u/ D up.x/x,  .v/ D vq.x/ in
Theorem 4, where 1 < p.x/ <1; 1

p.x/ C 1
q.x/ D 1; x 2 RnC, and p� D essinffp.x/ W

x 2 RnCg, pC D esssupfp.x/ W x 2 RnCg, 1 < p� � pC <1.

Corollary 1. Let K; �1; �2; !1, and !2 satisfy the conditions of Theorem 4. If
f 2 Lp.�/.!1/, g 2 Lq.�/.!2/, then

Z

Rn
C

Z

Rn
C

K.kxk�1 � kyk�2 /f .x/g.y/dxdy � c.p; q/kfkp.�/;!1kgkq.�/;!2 ; (17)

where

c.p; q/ D n=2

2n�1� .n=2/

�
1

�2
�
Z 1

0

K.u/u
. 1

q
C

C n
�2
�1/

duC
Z 1

1

K.u/u.
1

q�

� n
�2
�1/du/

C 1

�1


Z 1

0

K.u/u.�
1

p�

C n
�1
�1/duC

Z 1

1

K.u/u
. 1

p
C

C n
�1
�1/

du

�	
: (18)

In particular, if n D 1, in Corollary 1, then

Z 1

0

Z 1

0

K.x�1y�2/f .x/g.y/dxdy � c.p; q/kfkp.�/;!1kgkq.�/;!2 ; (19)
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where !1.x/ D x�
�1
�2 , !2.y/ D y�

�2
�1 , and

C.p; q/ D 1

�2


Z 1

0

K.u/u
. 1

q
C

� 1
�2
�1/

duC
Z 1

1

k.u/u.
1

q�

� 1
�2
�1/du

�

C 1

�1


Z 1

0

K.u/u.�
1

p�

C 1
�1
�1/duC

Z 1

1

k.u/u
.� 1

p
C

C 1
�1
�1/

du

�
: (20)

We obtain the following Corollary 2 by taking '.u/ D up,  .v/ D vq, 1 < p,
q <1, 1p C 1

q D 1, in Theorem 4:

Corollary 2. Let K; �1; �2; !1, and !2 satisfy the conditions of Theorem 4. If f 2
Lp.!1/, g 2 Lq.!2/, 1 < p <1, 1p C 1

q D 1, then

Z

R
n
C

Z

R
n
C

K.kxk�1 � kyk�2/f .x/g.y/dxdy � C.p; q/kfkp;!1kgkq;!2 ; (21)

where

C.p; q/ D n=2

2n�1� .n=2/

�
1

�2
�
Z 1

0

K.u/u.
1
qC 1

�2
�1/du

C 1

�1

Z 1

0

K.u/u.�
1
pC n

�1
�1/du

	
(22)

In particular, if �1 D �2 D 1, in Corollary 2, then

Z

R
n
C

Z

R
n
C

K.kxk � kyk/f .x/g.y/dxdy � C.p; q/kfkp;!kgkq;! ; (23)

where !.x/ D kxk�n, and

C.p; q/ D n=2

2n�1� .n=2/

�Z 1

0

K.u/u.n�
1
p /du

Z 1

0

K.u/u.�
1
pCn�1/du

	
: (24)

If n D 1 in (23), then

Z 1

0

Z 1

0

K.xy/f .x/g.y/dxdy �

Z 1

0

K.u/.u1=q C u�.1=p//du

�
kfkp;!kgkq;! ;

(25)

where !.x/ D x�1.

Remark 2. Take K.u/ D e�u in (21), if �1 2 .0; pn/; �2 2 .�1;�qn/
S
.0;1/;

then
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Z

R
n
C

Z

R
n
C

e�.kxk�1 �kyk�2 /f .x/g.y/dxdy � C.p; q/kfkp;!1kgkq;!2 ; (26)

where

C.p; q/ D n=2

2n�1� .n=2/
�
�
1

�2
�



1

q
C n

�2

�
C 1

�1
�



n

�1
� 1

p

�	
: (27)

In particular, if �1 D �2 D 1; then

C.p; q/ D n=2

2n�1� .n=2/
�
�
�



1

q
C n

�
C �



n � 1

p

�	
: (28)

So that if taking K.u/ D e�u in (25), we get
Z 1

0

Z 1

0

e�xyf .x/g.y/dxdy �


�



1

q

�
C �



1C 1

q

��
kfkp;!kgkq;! : (29)

Defining other forms of K, we can obtain new results of interest.

3 Proof of Theorem 4

We require the following lemmas to prove our result:

Lemma 1 (See [14, 18]). If ak; bk; pk > 0; 1 � k � n, f be a measurable function
on [0,1]. Let D D f.x1; x2; : : : ; xn/ WPn

kD1.
xk
ak
/bk � 1; xk 
 0g, then

Z

D
f

 
nX

kD1



xk

ak

�bk
!

xp1�1
1 � � � xpn�1

n dx1 : : : dxn

D
Qn

kD1 apk
kQn

kD1 bk
�
Qn

kD1 �
�

pk
bk

�

�
�Pn

kD1
pk
bk

� �
Z 1

0

f .t/t.
Pn

kD1
pk
bk
�1/dt: (30)

Let E D f.x1; x2; : : : ; xn/ WPn
kD1.

xk
ak
/bk 
 1; xk 
 0g, then

Z

E
f

 
nX

kD1



xk

ak

�bk
!

xp1�1
1 : : : xpn�1

n dx1 : : : dxn

D
Qn

kD1 apk
kQn

kD1 bk
�
Qn

kD1 �
�

pk
bk

�

�
�Pn

kD1
pk
bk

� �
Z 1

1

f .t/t.
Pn

kD1
pk
bk
�1/dt: (31)
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From (30) and (31), we have the following lemma:

Lemma 2. Let f be a measurable function on Œ0;1/, then

Z

R
n
C

f .kxk2/dx D n=2

2n� .n=2/

Z 1

0

f .t/t.n=2/�1dt; (32)

where kxk D .Pn
kD1 jxkj2/1=2.

Proof of Theorem 4. Applying (10) and Young’s inequality (9), we obtain

Z

R
n
C

Z

R
n
C

K.kxk�1 � kyk�2/ � f .x/g.y/dxdy

�
Z

R
n
C

Z

R
n
C

fjf .x/j'�1.K.kxk�1 � kyk�2 //gfjg.y/j �1.K.kxk�1 � kyk�2 //gdxdy

D
Z

R
n
C

Z

R
n
C

fjf .x/j'�1.K.kxk�1 � kyk�2//'�1. �1.kxk�1 � kyk�2 //g

� fjg.y/j �1.K.kxk�1 � kyk�2 // 1

'�1. �1.kxk�1 � kyk�2 //gdxdy

�
Z

R
n
C

Z

R
n
C

'fjf .x/j'�1.K.kxk�1 � kyk�2 //'�1. �1.kxk�1 � kyk�2 //gdxdy

C
Z

R
n
C

Z

R
n
C

 fjg.y/j �1.K.kxk�1 � kyk�2 // 1

'�1. �1.kxk�1 � kyk�2 //gdxdy

D I1 C I2: (33)

Since ' on .0;1/ is sub-multiplicative, we have

'fjf .x/j'�1.K.kxk�1 � kyk�2 // � '�1. �1.kxk�1 � kyk�2 //g
� '.jf .x/j/'f'�1.K.kxk�1 � kyk�2 // � '�1. �1.kxk�1 � kyk�2 //g
� '.jf .x/j/K.kxk�1 � kyk�2 / �  �1.kxk�1 � kyk�2 /: (34)

Then, we have

I1 �
Z

R
n
C

Z

R
n
C

'.jf .x/j/ � K.kxk�1 � kyk�2 / �  �1.kxk�1 � kyk�2 /dxdy

D
Z

R
n
C

'.jf .x/j/ �
(Z

R
n
C

K.kxk�1 � kyk�2 / �  �1.kxk�1 � kyk�2 /dy

)
dx:

(35)
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By (32), we have

Z

R
n
C

K.kxk�1 � kyk�2 / �  �1.kxk�1 � kyk�2 /dy

D n=2

2n� .n=2/

Z 1

0

K.kxk�1 t �22 / �  �1.kxk�1 � t �22 /t.n=2/�1dt: (36)

Let u D kxk�1 � t �22 ; and by (35), (36), and (14), we get

I1 � n=2

2n�1� .n=2/�2
�
Z

R
n
C

Z 1

0

'.jf .x/j/ � kxk� n�1
�2 � K.u/ �1.u/u

n
�2
�1dudx

D n=2

2n�1� .n=2/�2
�
�Z 1

0

K.u/ �1.u/u
n
�2
�1du

	
�
( Z

R
n
C

'.jf .x/j/kxk.� n�1
�2
/dx

)

D C1

Z

R
n
C

'.jf .x/j/!1.x/dx: (37)

Similarly, we have

 

�
jg.y/j �1.K.kxk�1 � kyk�2 // � 1

'�1. �1.kxk�1 � kyk�2 //
	

�  .jg.y/j/K.kxk�1 � kyk�2 / �  
�

1

'�1. �1.kxk�1 � kyk�2 //
	
: (38)

By (32), we have

Z

R
n
C

K.kxk�1 � kyk�2 / �  
�

1

'�1. �1.kxk�1 � kyk�2 //
	

dx

D n=2

2n� .n=2/

Z 1

0

K.t
�1
2 kyk�2 / �  

(
1

'�1. �1.t
�1
2 kyk�2 //

)
� t

n
2�1dt:

(39)

Let u D t.
�1
2 / � kyk�2 ; and by (38), (39), (32) and (15) we get

I2 D
Z

R
n
C

Z

R
n
C

 fjg.y/j �  �1.K.kxk�1 � kyk�2 //

� 1

'�1. �1.kxk�1 � kyk�2 //gdxdy
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D n=2

2n�1� .n=2/�1

�Z 1

0

K.u/ �  
�

1

'�1. �1.u//

	
u.

n
�1
/�1du

	

�
Z

R
n
C

 .jg.y/j/kyk.� n�2
�1
/dy

D C2

Z

R
n
C

 .jg.y/j/!2.y/dy: (40)

Thus, by (37) and (40), we obtain

Z

R
n
C

Z

R
n
C

K.kxk�1 � kyk�2 / � f .x/g.y/dxdy

� C1

Z

R
n
C

'.jf .x/j/!1.x/dxC C2

Z

R
n
C

 .jg.y/j/!2.y/dy: (41)

It follows that
Z

R
n
C

Z

R
n
C

K.kxk�1 � kyk�2/ �



f .x/

kfk';!1

�

g.y/

kgk ;!2

�
dxdy

� C1

Z

R
n
C

'


 jf .x/j
kfk';!1

�
!1.x/dxC C2

Z

R
n
C

 


 jg.y/j
kgk ;!2

�
!2.y/dy

� C1 C C2 D C.';  /:

Hence,

Z

R
n
C

Z

R
n
C

K.kxk�1 � kyk�2 / � f .x/g.y/dxdy � C.';  /kfk';!1kgk ;!2 :

The proof is complete.
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Abstract Secret sharing schemes have been well studied and widely used in
different aspects of real life applications. The original secret sharing scheme was
proposed by Adi Shamir in 1979. A similar scheme was also invented independently
in the same year by George Blakley. Shamir’s scheme is based on Lagrange
interpolation while Blakley’s approach uses principles of hyperplane geometry. In
2007, Tamir Tassa proposed a hierarchical secret sharing scheme through univariate
Birkhoff interpolation (a generalization of Lagrangian and Hermitian interpolation).
In the contribution at hand we investigate the idea of generalizing Tassa’s scheme
through multivariate Birkhoff interpolation. We consider the problem of finding
secret sharing schemes with multilevel structures and partially ordered sets of levels
of participants. In order to ensure that our scheme meets the necessary requirements,
we use totally nonsingular matrices.
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1 Introduction

A secret sharing scheme is a methodology to distribute appropriately a piece of
information of a secret, called share, to each element of a specific set, called
participant, so that the secret can be reconstructed after the revelation of the
shares of specific subsets of the set of participants. Since these specific subsets of
participants depend on the secret sharing problem that has to be solved, a plethora
of different schemes have been proposed.

Secret sharing schemes are very important, since they are used in various sig-
nificant applications including cryptographic key distribution and sharing, e-voting,
secure online auctions, information hiding as well as secure multiparty computation,
among others. Shamir in [20] and Blakley in [5] invented independently, in 1979,
the idea of secret sharing schemes. Shamir’s approach is based on Lagrange
interpolation while Blakley’s method uses principles of hyperplane geometry. Tassa
in [22] generalized Shamir’s construction for a hierarchical threshold secret sharing
scheme. His approach solves the problem of an efficient hierarchical threshold secret
sharing scheme with a totally ordered set of levels of participants and is based on
univariate Birkhoff interpolation. Birkhoff interpolation is a generalization of the
Hermite case, obtained by relaxing the requirement of consecutive derivatives at the
nodes.

In the contribution at hand we investigate the idea of generalizing Tassa’s scheme
through multivariate Birkhoff interpolation. We consider the problem of finding
secret sharing schemes with multilevel structures and partially ordered sets of levels
of participants. In order to ensure that our scheme meets the necessary requirements,
we use totally nonsingular matrices.

In Sect. 2 of the work at hand we present basic concepts and background
material related to secret sharing and threshold secret sharing schemes. Also, we
briefly describe Blakley’s scheme as well as we present Shamir’s scheme based
on Lagrange interpolation. Subsequently, in Sect. 3 we give some basic definitions
related to Birkhoff interpolation. Next, in Sect. 4 we give a brief description of
Tassa’s secret sharing scheme based on univariate Birkhoff interpolation. In Sect. 5
we detail our ideas for constructing partially ordered secret sharing schemes through
multivariate Birkhoff interpolation, we discuss the obtained results and open up
some perspectives for our future work. The chapter ends in Sect. 6 with a synopsis.

2 Secret Sharing and Threshold Secret Sharing Schemes

In this section, basic concepts and background material related to secret sharing
and threshold secret sharing schemes are given. Also, Blakley’s scheme is briefly
described. Furthermore, Shamir’s scheme based on Lagrange interpolation is
presented.
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2.1 Secret Sharing Schemes

Stinson in his survey article for secret sharing schemes [21] gives a detailed
description of the basic concepts of a secret sharing scheme.

Let P be a set of n participants that a secret is distributed to and � be the set
of subsets of P such as � � 2P . The set � contains every subset of participants
that should be able to compute the secret. Thus, � is called an access structure and
the subsets in � are called authorized subsets. An access structure must satisfy the
monotonicity property. Suppose that B 2 � and B � C � P . Then the subset C
can determine the value of secret key K. Formally we can say that [3, 21]:

if B 2 � and B � C �P ; then C 2 �:

If � is an access structure, then B 2 � is a minimal authorized subset of A … �
whenever A � B. The set of minimal authorized subsets of � is denoted by �0 and
is called the basis of � .

Let D be a participant, called dealer, who does not belong to the set P . The
dealer chooses the value of the secret and distributes the shares of the secret secretly
so that no participant knows the share given to another participant. Also, let K be
the key set and S be the share set. When the dealer D wants to share a secret key
K 2 K he gives each participant a share from S .

A simple approach for the definition of a secret sharing scheme is given in [6].
Given a set of n participants and an access structure � , a secret sharing scheme for
� is a method of distributing shares to each of the participants such that:

1. Any subset of the participants in � can determine the secret.
2. Any subset of the participants that does not belong in � cannot determine the

secret.

The share of a participant refers specifically to the information that the dealer
D sends in private to the participant. If any subset of participants that does not
belong in � cannot determine any information about the secret, then the secret
sharing scheme is said to be perfect. Given a secret sharing scheme we define the
information rate � of the scheme as follows:

� D log2 jK j
log2 jS j

: (1)

If � D 1, then the scheme is called ideal.

Remark 1. The first property implies that the shares given to an authorized subset
uniquely determine the value of the secret. Accessibility and correctness are terms
that are used alternatively to describe this property. The second property ensures
that the shares given to an unauthorized subset reveal no information as to the value
of the secret. Perfect security and privacy are terms that are used alternatively to
describe this property.
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The construction of a secret sharing scheme can be divided into the following three
phases:

1. Initialization phase: The dealer chooses the secret key K.
2. Secret sharing phase: The dealer shares the secret key K among the set P of

n participants giving each participant a share from S secretly.
3. Secret reconstruction phase: At a later time, a subset B of participants with

B �P will pull their shares in an attempt to recompose the secret key K.

2.2 Threshold Secret Sharing Schemes

One of the most common class of secret sharing schemes is the class of threshold
secret sharing schemes which implies that the reconstruction of the secret can be
achieved by the contribution of a minimum number of participants of the set which
we call threshold.

Threshold secret sharing schemes were initially proposed for key management
purposes. Let us recall an example from [21]:

Example 1. Assume that there is a vault in a bank that must be opened every
day. The bank employs three senior tellers, but it is not desirable to entrust the
combination to a unique person. We want to design a system whereby any two of
the three senior tellers can gain access to the vault, but no individual can do so.

According to Shamir [20] a threshold secret sharing scheme can be defined as
follows:

Definition 1. A .k; n/ threshold secret sharing scheme is a method which gives
efficient solution to the problem of the division of a piece of data K into n pieces
K1;K2; : : : ;Kn with the following two constraints:

1. K can be easily retrieved with the knowledge of k or more Ki pieces.
2. No information can be revealed about K with the knowledge of any k � 1 or

fewer Ki pieces.

Remark 2. In other words, a .k; n/ threshold secret sharing scheme is a method of
sharing a secret key K among a finite set P of n participants in such a way that any
k participants can compute the value of K, but no one group of k � 1 participants
can do so.

A .k; n/ threshold secret sharing scheme realizes the access structure:

A D fB �P W jBj > kg:

Such an access structure is called a threshold access structure. It is obvious that
in the case of a threshold access structure, the basis of the structure consists of all
subsets of exactly k participants.
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According to Blakley’s scheme [5, 13] the secret is a point in a k-dimensional
subspace over a finite field and the coefficients of the hyperplanes that intersect
at this point are used to construct the shares. For the implementation of a .k; n/
threshold secret sharing scheme, to each one of the n participants is given a
hyperplane equation. In order to obtain the secret, a system of linear equations
Ax D y must be solved, where the matrix A and the vector y are derived from the
hyperplane equations. When k participants come together, they can solve the system
to find the intersection point of the hyperplanes in order to obtain the secret.

As we have mentioned before, Shamir [20] constructed a threshold secret
sharing scheme using Lagrange interpolation. Also, Tassa [22] generalized Shamir’s
construction for a hierarchical threshold secret sharing scheme. His approach was
based on univariate Birkhoff interpolation which solves the problem of an efficient
hierarchical threshold secret sharing scheme with totally ordered set of levels of
participants.

In our approach we investigate the construction of secret sharing schemes with
the usage of multivariate Birkhoff interpolation. In this case, the structure that results
is multilevel but the set of levels of participants is partially ordered.

Various threshold secret sharing schemes have been applied in many fields of
information science [2] including threshold cryptography [10] and ad-hoc networks
[1] among others.

2.3 Shamir’s Scheme Through Lagrange Interpolation

As we have already mentioned, Shamir in [20] introduced the idea of a threshold
secret sharing scheme through polynomial interpolation. His idea was based on
Lagrange interpolation. More specifically, he exploited the fact that given k points
on a 2-dimensional plane .x1; y1/; .x2; y2/; : : : ; .xk; yk/ with distinct xi, there exists
one and only one polynomial g.x/ of k � 1 degree such that g.xi/ D yi for all
i D 1; 2; : : : ; k.

Thus, in order to divide and share a secret S he considered a random polynomial
g.x/ of k � 1 degree as following:

g.x/ D a1xC a2x
2 C � � � C ak�1xk�1 C S: (2)

A polynomial interpolating value g.xi/ D yi is a share that can be given to a
participant. A set of k shares are enough to define the unique polynomial g.x/ and
obviously reveal S while k � 1 or less shares do not suffice for the calculation of S.

Shamir’s .k; n/ threshold secret sharing scheme can be described by the following
algorithm:



336 V.E. Markoutis et al.

Algorithm 1
1. Initialization phase: The dealer chooses n distinct nonzero elements from a finite field Fq,
fx1; x2; : : : ; xng, and gives xi to the i-th participant pi. In other terms participant pi is identified
to the field element xi.

2. Secret sharing phase: The dealer secretly chooses k�1 elements from Fq, fa1; a2; : : : ; ak�1g,
and considers the following polynomial:

g.x/ D
k�1X

iD1

aix
i C S; (3)

where S is the constant term of the polynomial which represents the secret. The dealer computes
the n shares yi D g.xi/ and gives each share to the corresponding participant.

3. Secret reconstruction phase: A subset B of k participants fpi1 ; pi2 ; : : : ; pikg will pull their
shares and attempt to reconstruct S. Suppose that the k shares yij D g.xij /, 1 6 j 6 k are
revealed. Then, the coefficients of polynomial g.x/ can be evaluated by Lagrange interpolation.
Consequently secret S is obtained by the evaluation S D g.0/.

3 Birkhoff Interpolation

The problem of interpolating a function f W R! R by a univariate polynomial from
the values of f and some of its derivatives on a set of sample points is one of the
main questions in Numerical Analysis and Approximation Theory [18].

Birkhoff interpolation [4, 15, 17, 19] is a generalization of Lagrange and Hermite
polynomial interpolation. It amounts to the problem of finding a polynomial f .x/ of
degree k � 1 such that certain derivatives have specified values at specified points:

f .ni/.xi/ D yi; for i D 1; 2; : : : ; k; (4)

where the data points .xi; yi/ as well as the nonnegative integers ni are given.

Remark 3. In contrast to Lagrange and Hermite interpolation problems which are
well posed, Birkhoff interpolation problems do not always have unique solution.

Definition 2. Let X D fx1; x2; : : : ; xng be an ordered set of real numbers such that
x1 < x2 < � � � < xn and I � f1; 2; : : : ; ng � f0; 1; : : : ; rg be the set of pairs .i; j/
such that the value fi;j D f .j/.xi/ is known. The problem of determining the existence
and uniqueness of a polynomial Q in RŒX� of degree bounded by r such that:

8 .i; j/ 2 I ; Q.j/.xi/ D fi;j ; (5)

is called the Birkhoff interpolation problem.

The multivariate Birkhoff interpolation problem is more complicated. A formal
definition of this problem can be given as follows [8, 14]:

Definition 3. A multivariate Birkhoff interpolation scheme, .E;Ws/, consists of
three components:
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1. A set of nodes Z :

Z D ˚z t
�m

tD1 D f.xt;1; xt;2; : : : ; xt;d/gmtD1 : (6)

2. An interpolation space Ws:

Ws D
n
W W W.z/ D W.x1; x2; : : : ; xd/ D

X

i2S

aix
i1
1 ; : : : ; x

id
d

o
; (7)

where S is a lower subset of Nd
0. A subset A of Nd

0 is a lower set if 0 6 jk 6 ik,
k D 1; 2; : : : ; d and i 2 S implies that j 2 S.

3. An incidence .dC 1/-dimensional matrix E:

E D fet;˛g; t D 1; 2; : : : ;m ; ˛ 2 S; (8)

where et;˛ D 0 or et;˛ D 1.

Given these components, the multivariate Birkhoff interpolation problem is, for
given real numbers ct;˛ for those t; ˛ with et;˛ D 1, to find a polynomial W 2 Ws

satisfying the interpolation conditions:

@˛1C˛2C���C˛d

@x˛11 @x˛22 � � � @x˛d
d

W .z t/ D ct;˛ ; (9)

for those t; ˛ with et;˛ D 1.

Remark 4. The aforementioned schemes are interpolations over the real numbers.
In cryptographic applications finite fields are used and derivatives (ordinary and
partial) are replaced with formal derivatives of polynomials. Since we deal with

polynomials it is always true that @2f
@x1@x2

D @2f
@x2@x1

.

4 Tassa’s Scheme Through Univariate Birkhoff Interpolation

Tassa in [22] proposed a perfect and ideal secret sharing scheme for a multilevel
totally ordered structure. His approach is based on univariate Birkhoff interpolation.
Since Tassa’s scheme is the basis of our scheme, we detail his following definition
for a hierarchical threshold secret sharing scheme.

Definition 4. Let P be a set of n participants and assume that P is composed of
levels, i.e., P D [m

iD0Pi where Pi \Pj D ; for all 0 6 i < j 6 m. Let � D
fkigmiD0 be a monotonically increasing sequence of integers, 0 < k0 < k1 < � � � < km.
Then, the .�; n/ hierarchical threshold access structure is given as follows:

� D
n
B �P W ˇ̌B \ �[i

jD0Pj
�ˇ̌

> ki ; 8 i 2 f0; 1; : : : ;mg
o
: (10)
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Algorithm 2
1. Initialization phase: The dealer chooses n distinct nonzero elements from a finite field Fq,
fx1; x2; : : : ; xng, and gives xi to the i-th participant pi. In other terms the dealer identifies each
participant p 2 P with an element of the field Fq. For simplicity, the field element is also
denoted by p.

2. Secret sharing phase: The dealer secretly chooses k�1 elements from Fq, fa1; a2; : : : ; ak�1g,
and considers the following polynomial:

g.x/ D
k�1X

iD1

aix
i C S; (11)

where S is the constant term of the polynomial which represents the secret. Every participant p
of the i-th level of the hierarchy receives the share:

y D



dki�1 g

dxki�1

�

p
D g.ki�1/.p/;

where g.ki�1/.p/ is the ki�1-th formal derivative of g.x/ at x D p with k�1 D 0.
3. Secret reconstruction phase: An authorized subset B of k participants will pull their shares

and attempt to reconstruct S. Then, the coefficients of polynomial g.x/ can be evaluated by
univariate Birkhoff interpolation. Consequently secret S is obtained by the evaluation S D g.0/.

A corresponding .�; n/ hierarchical secret sharing scheme is a scheme that realizes
the above access structure; namely, a method of assigning each participant Pl 2P ,
with 0 6 l < n, a share �.Pl/ of a given secret S such that authorized subsets B 2 �
may recover the secret from the shares possessed by their participants, �.B/ D
f�.Pl/ W Pl 2 Bg, while the shares of unauthorized subsets B … � do not reveal any
information about the value of the secret.

Remark 5. For the construction of a hierarchical threshold secret sharing scheme,
Tassa used k-order derivatives and constructed shares for each level according to the
order of the derivative. In this way he ensured that the participants of an upper
hierarchically level possess more amount of information to their share than the
participants of a lower level. The calculation of the polynomial coefficients during
the secret reconstruction phase was based on the univariate Birkhoff interpolation.

Tassa’s .�; n/ hierarchical threshold secret sharing scheme with � D fkigmiD0 and
k D km can be described by the following algorithm:

5 The Proposed Approach

As we have already mentioned, in our approach we investigate the construction of
secret sharing schemes with the usage of multivariate Birkhoff interpolation. In this
case, the structure that results is multilevel but the set of levels of participants is
partially ordered. In Tassa’s scheme, the shares of two participants pa and pb of
different levels have, by necessity, at least one of the following two properties:
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(a) The share of pa can substitute the share of pb.
(b) The share of pb can substitute the share of pa.

In our case this is not always true due to the partial order of the levels of participants
and this is the main difference with Tassa’s scheme.

We illustrate our ideas through some examples and we propose a construction
for the simple linear case of a threshold multilevel partially ordered secret sharing
scheme. However, a generalized case of a partially ordered set should be an object
of a much more complicated effort. At this point, it must be noted that a partially
ordered secret sharing scheme is not hierarchical, since a hierarchical structure
presupposes a totally ordered set of participants [11, 12].

5.1 The Main Idea of Our Approach

We consider the multivariate polynomial g.x1; x2; : : : ; xd/ with coefficients from
a finite field. The constant term of the polynomial denotes the secret S, that is
g.0; 0; : : : ; 0/ D S. Some participants receive shares of the following form:

yt D g.x t;1; x t;2; : : : ; x t;d/ D g.z t/;

and they consist of the (top) level P0 (the d-tuples are nodes as they are described in
Definition 3). Some participants receive shares of the form @

@x1
g.z t/ and they belong

to the level P1. In a similar way we define P2;P3; : : : The level P1;1 is related
to the shares of the form @2

@x21
g.z t/ while the level P1;2 is related to the shares of the

form @2

@x1@x2
g.z t/. Since @2

@x1@x2
g.z t/ D @2

@x2@x1
g.z t/, the level P1;2 coincides with the

level P2;1. Thus, an ordered set of levels is derived which have the form Pj1;j2;:::;jn .
For d D 2 and d D 3 the obtained multilevel structures are exhibited in Figs. 1

and 2, respectively.

Fig. 1 The structure of a secret sharing scheme that can be constructed from a polynomial g.x1; x2/
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Fig. 2 The structure of a secret sharing scheme that can be constructed from a polynomial
g.x1; x2; x3/

Table 1 The distributed
shares for the participants of
the scheme that can be
constructed from the
polynomial g1

Level of participant Type of share

P0 g1.x1; x2/ D a1x21 C a2x22 C a3x1x2 C S

P1
@g1
@x1
D 2a1x1 C a3x2

P2
@g1
@x2
D 2a2x2 C a3x1

P1;1
@2g1
@x21
D 2a1

P1;2
@2g1
@x1@x2

D a3

P2;2
@2g1
@x22
D 2a2

Remark 6. In order to reconstruct S from the shares we have to tackle the
multivariate Birkhoff interpolation problem. The set of levels is a partially ordered
set, namely an upper semilattice. The level P is “greater” (or “higher”) than the level
Q, P � Q means that a participant from P can replace a participant from Q.

The main idea of our approach is illustrated in the following examples.

5.2 Illustrative Examples

We consider the following polynomial:

g1.x1; x2/ D a1x
2
1 C a2x

2
2 C a3x1x2 C S: (12)

By taking the first-order partial derivatives of the polynomial g1 we get the
polynomials that give the shares of the Pi, i D 1; 2 level participants. Subsequently,
by taking the second-order partial order derivatives we get the values of the shares
of the Pi;j, i; j D 1; 2 level participants. The shares that are distributed to the
participants are exhibited in Table 1 while the consequent structure is the same as
exhibited in Fig. 1.
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Working in the same manner, we are able to construct a plethora of structures
that represent the hierarchical relationship between participants in a secret sharing
scheme. For example, we consider the following polynomial:

g2.x1; x2; x3/ D a1x1x2 C a2x2x3 C a3x1x3 C S: (13)

The partial derivatives of the polynomial g2 are used as the distributed shares of
Table 2. The structure of the resulted secret sharing scheme is exhibited in Fig. 3.

Next, we present two additional illustrative examples by considering the polyno-
mials:

g3.x1; x2; x3/ D �.x21 C x22 C x23/C a1x1 C a2x2 C a3x3 C S; (14)

and

g4.x1; x2/ D ax31 C bx21 C cx1 C ax22 C dx2 C S: (15)

Table 2 The distributed shares for the participants of the scheme that
can be constructed from the polynomial g2

Level of participant Type of share

P0 g2.x1; x2; x3/ D a1x1x2 C a2x2x3 C a3x1x3 C S

P1
@g2
@x1
D a1x2 C a3x3

P2
@g2
@x2
D a1x1 C a2x3

P3
@2g2
@x3
D a2x2 C a3x1

P1;2
@2g2
@x1@x2

D a1

P2;3
@2g2
@x2@x3

D a2

P1;3
@2g2
@x1@x3

D a3

Fig. 3 The structure of a secret sharing scheme that can be constructed from the polynomial g2
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Table 3 The distributed shares for the participants that can be constructed from the
polynomial g3

Level of participant Type of share

P0 g3.x1; x2; x3/ D �.x21 C x22 C x23/C a1x1 C a2x2 C a3x3 C S

P1
@g3
@x1
D 2�x1 C a1

P2
@g3
@x2
D 2�x2 C a2

P3
@g3
@x3
D 2�x3 C a3

Pxx DP1;1 DP2;2 DP3;3
@2g3
@x21
D @2g3

@x22
D @2g3

@x23
D 2�

Table 4 The distributed shares for the participants that can be constructed
from the polynomial g4

Level of participant Type of share

P0 g4.x1; x2/ D ax31 C bx21 C cx1 C ax22 C dx2 C S

P1
@g4
@x1
D 3ax21 C 2bx1 C c

P11
@2g4
@x21
D 6ax1 C 2b

P2
@g4
@x2
D 2ax2 C d

P0 DP1;1;1 DP2;2
@3g4
@x31
D 3

@2g4
@x22
D 6a

Fig. 4 The structure of a secret sharing scheme that can be constructed from the polynomial g3

In Tables 3 and 4 we present, respectively, the shares that are distributed to the
participants. The corresponding structures are exhibited in Figs. 4 and 5.

5.3 The Linear Polynomial Case

In this subsection we present a threshold .n C 1/-level partially ordered secret
sharing scheme. To this end, we consider the scheme that is derived from an
n-variable linear polynomial of the following form:
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Fig. 5 The structure of a secret sharing scheme that can be constructed from the polynomial g4

Fig. 6 The structure of a partially ordered .�; 2nC 1/ threshold secret sharing scheme with � D
.1; nC 1/

g.x1; x2; : : : ; xn/ D a1x1 C a2x2 C � � � C anxn C S; (16)

where a1; a2; : : : ; an are the coefficients of the polynomial g and S is the constant
term of the polynomial that represents the secret key. The partial order which is
defined has the structure exhibited in Fig. 6.

The information piece (share) for participants from P0 is unique. Therefore,
without loss of generality we assume that Pj has exactly one participant jPjj D 1.
Also, without loss of generality we assume that P0 contains n C 1 participants,
which determines the minimal number for reconstructing the secret S.

The specific structure has two important properties:

(a) None of the participants of a level Pj, j ¤ 0 can replace a participant of a level
Pi, i ¤ 0; j. Thus, we say that we have a partially ordered structure.

(b) Participants of the level P0 can replace whichever participant of the structure
such that an authorized subset can be constructed.
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The following algorithm describes the corresponding secret sharing scheme:

Algorithm 3
1. Initialization phase: The dealer selects the following polynomial:

g.x1; x2; : : : ; xn/ D a1x1 C a2x2 C � � � C anxn C S; (17)

where ai are elements that are chosen randomly from a finite field Fq and q is a large prime
power. The participants are identified by the dealer so that each participant from P0 is
identified with the n-tuple

�
x1;k; x2;k; : : : ; xn;k

� 2 F
n
q after a suitable selection of the xi;k and

each participant from Pj, 1 6 j 6 n is identified with the index j.
2. Secret sharing phase: The dealer distributes the shares so that each participant from P0

receives the value:

yk D g.x1;k; x2;k; : : : ; xn;k/ 2 Fq; (18)

and each participant from Pj receives the value:

aj D @g

@xj
: (19)

3. Secret reconstruction phase: A subset B of participants will pull their shares and attempt to
reconstruct S. This can be done by solving a system of linear equations. The unknowns are the
coefficients ai as well as the element S. The participants from P0 will pull their equation:

yk D
nX

iD1

aixi;k C S: (20)

The participants from Pj, 1 6 j 6 n will pull the value:

aj D @g

@xj
: (21)

If the xi;k with 1 6 i 6 n and 1 6 k 6 nC 1 are suitably chosen from a finite field, then a
unique solution exists for S if B is an authorized subset, jBj > nC 1.

Next, we define a class of matrices on which our scheme is based.

Definition 5. An n � n matrix is called a principally nonsingular matrix if every
principal submatrix is nonsingular. Also, an n � n matrix is said to be a totally
nonsingular matrix if all its square submatrices are nonsingular.

Remark 7. This class of matrices contains the totally negative matrices, whose the
determinant of the corresponding minors is strictly negative, and the totally positive
matrices whose the determinant of the corresponding minors is strictly positive. If
we allow the existence of null minors, these classes can be extended to the totally
nonpositive matrices as well as to the totally nonnegative matrices.
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The following theorem gives necessary and sufficient conditions for accessibility
and perfect security of the scheme:

Theorem 1. Consider the following .nC 1/ � .nC 1/ matrix:

X1 D

0

BBBBBBBB@

x1;1 x2;1 � � � xn;1 1

x1;2 x2;2 � � � xn;2 1

:::
:::

: : :
:::

:::

x1;n x2;n � � � xn;n 1

x1;nC1 x2;nC1 � � � xn;nC1 1

1

CCCCCCCCA

: (22)

Then, the accessibility and perfect security are satisfied iff the matrix X1 is totally
nonsingular.

Proof. Let us denote by X the following matrix:

X D

0
BBBBBBBB@

x1;1 x2;1 � � � xn;1

x1;2 x2;2 � � � xn;2

:::
:::

: : :
:::

x1;n x2;n � � � xn;n

x1;nC1 x2;nC1 � � � xn;nC1

1
CCCCCCCCA

: (23)

We consider the following cases:

Case 1: All participants belong to the level P0.

According to the assumptions of the theorem all the rows of X and X1 are linearly
independent. Retrieving the secret S amounts to the solution of the following system:

nX

iD1
aixi;j C S D yj; j D 1; 2; : : : ; nC 1: (24)

The matrix X1 is the coefficient matrix of the system and the elements
a1; a2; : : : ; an; S are the unknowns. The condition det.X1/ ¤ 0 implies existence
of a unique solution and the secret S can be retrieved. Thus, the accessibility is
satisfied.

Let B be a set of participants with jBj D n. It corresponds to a set of n rows of
X, namely f.x1;jk ; x2;jk ; : : : ; xn;jk/g, k D 1; 2; : : : ; n. The unknown S can be treated as
a parameter. For any randomly chosen value S0 of S we derive the following linear
system:
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nX

iD1
aixi;jk D yjk � S0; k D 1; 2; : : : ; n: (25)

Its coefficient matrix is an n � n minor of X. According to the assumptions it has
exactly one solution for all S0, therefore no information can be revealed about S.
Thus, the perfect security is satisfied.

For a set B of m participants, jBj D m 6 n the same technique can be used. The
corresponding set of rows of X is f.x1;jk ; x2;jk ; : : : ; xn;jk /g, k D 1; 2; : : : ;m, which
are linearly independent due to the assumption. The following linear system of m
equations:

nX

iD1
aixi;jk D yjk � S0; k D 1; 2; : : : ;m; (26)

has exactly qn�m solutions (where q is the cardinality of the finite field Fq) and no
information can be obtained about S.

For the inverse part of the proof, let us assume that the conditions of accessibility
and perfect security are satisfied. On the contrary, assume that det.X1/ D 0. Also,
let us assume that the linear system (24) has more than one solutions and a unique
value can be found for the unknown S, which is possible. This implies that at least
one of the equations of the system (24) can be removed and that n or less than n
participants can reveal the secret S, which is a contradiction to the assumption of
perfect security. Therefore, the rows of X1 are linearly independent.

Again, on the contrary, assume that m rows of X, m < n C 1 are linearly
dependent, namely the rows f.x1;jk ; x2;jk ; : : : ; xn;jk /g, k D 1; 2; : : : ;m. However the
corresponding rows f.x1;jk ; x2;jk ; : : : ; xn;jk1; 1/g, k D 1; 2; : : : ;m of X1 are linearly
independent and S can be retrieved from m participants which is a contradiction to
the assumption of perfect security.

We conclude that matrix X1 is invertible and that all submatrices n � n minors
of X are invertible.

Case 2: Some of the participants belong to the levels P1;P2; : : : ;Pn.

This case can be treated as the Case 1. Assume that r participants, r 6 n, belong
to the levels Pt1 ;Pt2 ; : : : ;Ptr , where ft1; t2; : : : ; trg � f1; 2; : : : ; ng and that the
remaining nC1� r participants belong to the level P0. The share of the participant
of the level Ptl , 1 6 l 6 r, is atl D @g

@xtl
and the tl-th column has to be deleted from

the matrix X1. The new obtained matrix X01 has n C 1 � r rows corresponding to
the n C 1 � r participants from P0, and nC 1 � r columns after the deletion of r
columns. The new matrix X0 is .nC 1� r/� .n� r/. The rest of the proof is similar
to the Case 1.

Thus the theorem is proved. ut
Remark 8. Obviously, the scheme is also ideal, since every participant receives a
field element, just like the secret.
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Remark 9. For the implementation of the scheme a totally nonsingular matrix is
required which can be obtained from a totally positive matrix [7] over the reals. The
well-known Hilbert matrix:

H D

0

BBBBBBBBBB@

1
1

2
� � � 1

n

1

2

1

3
� � � 1

nC 1
:::

:::
: : :

:::

1

n

1

nC 1 � � �
1

2n� 1

1

CCCCCCCCCCA

; (27)

is totally positive [16]. Also, totally nonsingular matrices can be derived from the
Vandermonde matrix under specific conditions [9].

Next, we present an illustrative example. To this end, we consider the structure
exhibited in Fig. 7 with which we represent a .�; 7/ four-level threshold partially
ordered secret sharing scheme with � D .1; 4/. In order to construct the scheme we
use the Hilbert matrix. For this case the corresponding algorithm of our approach is
the following:

5.4 Perspectives for Future Work

Multivariate Birkhoff interpolation over large degree polynomials is a challenge
to build multilevel threshold secret sharing schemes with partially ordered sets of
levels. The ordered set, exhibited in Fig. 8, represents the structure of a multilevel
partially ordered threshold secret scheme.

Observing this special structure a general question has to be answered: Given a
scheme with a partially ordered set of levels as above, is it always feasible to find a
multivariate polynomial, such that the order is derived from the polynomial ?

Fig. 7 The structure of a
partially ordered .�; t/
four-level threshold secret
sharing scheme with
�D .1; 4/
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Algorithm 4
1. Initialization phase: The dealer selects a polynomial of the form:

g.x1; x2; x3/D
3X

iD1

aixi C S; (28)

where ai are chosen randomly over a finite field Fq. Let us assume that a1 D 2, a2 D 4, a3 D 5

and q D 11. Suppose further that the secret S is 8. Participants are identified by the dealer so
that each participant from P0 is identified with the first 3 elements of a row of the 4� 4matrix
which has been resulted after the transformation, with row multiplication, of the last column of
the 4 � 4 Hilbert matrix to a vector of ones, and each participant from Pj, 1 6 j 6 3 with the
index j.

2. Secret sharing phase: The dealer distributes the shares so that each participant from P0

receives the value:

yk D g.x1;k; x2;k; x3;k/ 2 F11; (29)

and each participant from Pj receives the value:

aj D @g

@xj
: (30)

The distributed shares are shown in Table 5.
3. Secret reconstruction phase: Suppose now that we have an authorized set which consists of
2 participants of the level P0 and 2 participants of the levels Pj, 1 6 j 6 3. For example we
assume that we have the subset fp10; p30; p1; p2g. Since p1; p2 are elements of the specific subset,
a1 and a2 are the coefficients that we can obtain directly. Due to the presence of participants p10
and p30 in the set, we obtain the following linear system:

a1x1;1 C a2x2;1 C a3x3;1 C S D y1;

a1x1;3 C a2x2;3 C a3x3;3 C S D y3;

a1 D 2;

a2 D 4:

By substituting xi;k with the corresponding elements of the transformed Hilbert and yj with the
values of the shares, we rewrite the system as follows:

4a1 C 2a2 C 5a3 C S D 5;

2a1 C 7a2 C 10a3 C S D 2;

a1 D 2;

a2 D 4:

By computing the inverses over finite field F11 we finally get S D 8 which is the correct value.
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Table 5 The distributed
shares for the participants of
the scheme of Fig. 7

Participant Value of share

p10 5

p20 3

p30 2

p40 9

p1 2

p2 4

p3 5

Fig. 8 The structure of a partially ordered threshold secret sharing scheme

6 Synopsis

In the work at hand, we investigated the adaptation of multivariate Birkhoff inter-
polation problem for the construction simple secret sharing schemes. The resulted
structures consist of partially ordered levels of participants. For a simple linear
polynomial with n variables, the secret sharing scheme that can be constructed is
perfect with the usage of totally nonsingular matrices which ensure both correctness
and perfect security.

Finally we posed the analogous generalized problem, which implies the con-
struction of specific structures with polynomials through the multivariate Birkhoff
interpolation problem.
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Advanced Truncated Differential Attacks
Against GOST Block Cipher and Its Variants

Theodosis Mourouzis and Nicolas Courtois

Abstract GOST block cipher, defined in the GOST 28147-89 standard, is a well-
known 256-bit symmetric cipher that operates on 64-bit blocks. The 256-bit level
security can be even more increased by keeping the specifications of the S-boxes
secret. GOST is implemented in many standard libraries such as OpenSSL and
it has extremely low implementation cost and as a result of this it could be
considered as a plausible alternative for AES-256 and 3-DES. Furthermore, nothing
seemed to threaten its high 256-bit security [CHES 2010] and in 2010 it was
submitted to ISO 18033-3 to become a worldwide industrial standard. During the
period of submission many new attacks of different types were presented by the
cryptographic communities against full 32-rounds of GOST. We have algebraic
complexity reduction attacks, advanced differential attacks, attacks using reflection
property, and many others. However, all of these attacks were against the version of
GOST which uses the standard set of S-boxes. In this paper, we study the security
of many variants of GOST against advanced forms of differential attacks which
are based on truncated differentials techniques. In particular we present an attack
against full GOST for the variant of GOST which is supposed to be the strongest one
and uses the set of S-boxes proposed in ISO 18033-3. Our attack is of Depth-First
key search style constructed by solving several underlying optimization problems
and has time complexity 2245:4 and 264 memory and data complexity. It is very
interesting to note that this attack is unoptimized with respect to several aspects and
can be immediately improved by discovering more efficient ad-hoc heuristics which
could eventually lead to the discovery of better truncated differential properties.

1 Introduction

GOST 28147-89 encryption algorithm is the state standard of the Russian Fed-
eration and it is expected to be widely used in Russia and elsewhere [28]. It
was standardized in 1989 as an official standard for the protection of confidential
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information. However, the specification of the cipher was kept confidential until
1994 when it was declassified, published [35], and translated to English [24].
According to the Russian standard, GOST is safe to be used for encrypting classified
and secret information without any limitation [24]. Until 2010 most researchers
would agree that despite considerable cryptanalytic efforts spent in the past 20 years,
GOST is still not broken. Moreover, its large military-grade key size of 256 bits and
its amazingly low implementation cost made it a plausible alternative to absolutely
all standard encryption algorithms such as 3-DES or AES [28]. It appears that never
in history of industrial standardization, we had such a competitive algorithm in terms
of cost vs. claimed security level.

Accordingly in 2010 GOST was submitted to ISO 18033-3 to become a
worldwide industrial standard. The submission has stimulated intense research and
lead to the development of many interesting new cryptanalytic attacks. There are
two main categories of attacks on GOST; attacks with complexity reduction which
reduce the attack to an attack on a smaller number of rounds which can be solved by
algebraic or software techniques at the final step [5, 6, 15], and advanced differential
attacks which reduce the attack to the problem of distinguishing a certain number
of rounds of GOST from a random permutation [7, 9, 12, 13].

In this paper, we present fundamental methodology for constructing general
families of distinguishers on reduced-round GOST which can be eventually trans-
lated to attacks against the full 32 rounds of GOST and can be applied to all
variants. By variants we mean the usage of different set of S-boxes. The design
of the distinguisher is a highly nontrivial optimization problem which needs to
be solved in order to be able to find a working differential attack against the
complete full round cipher. Unhappily the number of potential attacks with sets
of differential is very large and there is no hope to explore it systematically. In order
to tackle the astronomical complexity of this task we introduce the new notion of
general open setsİ, which allows us to consider similar differentials together. It is a
compromise between the study of individual differentials (infeasible) and truncated
differentials [21] which are already too large. Our new notion is a major refinement
of truncated differential cryptanalysis of practical importance which allows for
efficient discovery of better advanced differential distinguisher attacks on GOST.

The rest of this paper consists of four chapters. In the first chapter we introduce
the reader to the GOST block cipher and we describe the low level design specifica-
tions of GOST. In third chapter we discuss some existing attacks on full GOST block
cipher and make an introduction to the technique of differential cryptanalysis and in
particular of truncated differential cryptanalysis. In fourth chapter we describe our
methodology of computing transitional probabilities between truncated differentials
which is similar to a Poisson process. Finally, in fifth chapter we present attacks
against full 32 rounds of GOST cipher for three major variants.
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2 GOST Block Cipher

GOST is a 256-bit symmetric-key block cipher that operates on 64-bit blocks
and it was designed by the former Soviet Union [35]. It is an acronym for
“Gosudarstvennyi Standard” or Government Standard, as translated in English [24].
This standard was given the number 28147-89 by the Government Committee for
Standards of the USSR [14, 16].

GOST was developed in the 1970s and was classified as “Top Secret.” In 1989,
it was standardized for being used as an official standard for the protection of
confidential information, but its specification remained confidential [35]. In 1990, it
was downgraded to “Secret” and finally it was declassified and published in 1994,
a short period after the dissolution of the USSR. Then, the standard was published
and translated to English [24, 35].

According to the Russian standard, GOST is safe to be used for the encryption of
secret and classified information, without any security limitation. At the beginning
of the standard it states that “GOST satisfies all cryptographic requirements and
does not limit the grade of security of information to be protected.”

According to Schneier, there is no evidence that GOST was used for classified
traffic, like classified military communications or if it was just used for civilian
encryption. However, there are some claims which state that it was initially used for
high-grade communication, including military communications [31].

It seems that GOST was considered by the Soviets as an alternative to DES
but also a replacement of the rotor encryption machine FIALKA which was
successfully cryptanalyzed by the Americans [31]. At the end of this chapter, we
make an extensive comparative study between GOST and DES and we list all
major differences. Schneier stated that designers of GOST tried to achieve a balance
between efficiency and security and thus they modified the existing US DES to
design an algorithm, which has a better software implementation. The same source
states that the designers were not so sure of their algorithm’s security and they
have tried to ensure high-level security by using a large key, keeping the set of
S-boxes secret and doubling the number of rounds from 16 to 32. However, it is
not true that GOST was just a Soviet alternative to DES since DES is a commercial
algorithm used for short-term security for encrypting unclassified documents, while
GOST has a very long 256-bit key which offers military-grade security. According
to Moore’s law computing power doubles every 18–24 months, thus a 256-bit key
cipher will remain secure for many years if no other shortcut attacks could be
found assuming computing power allows to recover approximately 80-bit keys at
the moment. Additionally, GOST has been shown to have a very efficient hardware
implementation and this makes it a plausible alternative for AES-256 and triple
DES.

A comparison among several versions of GOST and other industrial ciphers in
terms of Gate Equivalence (GE) (cf. Definition 1) is presented in [28] and in Table 1.

Definition 1 ([Informal], More Details in [28]). One Gate Equivalent (GE) is
equivalent to the silicon area of a 2-input NAND gate.
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Table 1 The GE required for
the implementation of
different block ciphers

Set name Gate equivalent

GOST-PS 651

GOST-FB 800

DES 4000

AES-128 3400

PRESENT-128 1900

As we observe from Table 1, a variant of GOST called GOST-PS, which is
a fully Russian standard compliant variant (where the S-boxes of PRESENT are
used) requires only 651 GE. The Russian Central Bank version called GOST-FB
needs 800 GE. On the other hand, AES-128 and DES require 3400 and 4000 GE,
respectively. Thus, it is not surprise the fact that it is implemented in many standard
crypto libraries such as OpenSSL, Crypto++, RSA security products, and in many
recent Internet Standards [16, 27].

GOST was studied by many cryptographers such as Schneier, Biham, Biryukov,
Dunkelman, Wagner, and ISO cryptography experts [15, 28, 31]. All researchers
always seemed to agree that it could be or should be secure, since no better way
to break it except brute force was discovered. As a result of consensus among the
cryptographic community, in 2010 GOST was submitted to ISO 18033 to become an
international standard. Until 2010, all researchers in the cryptographic community
claimed that “ Despite considerable cryptanalytic efforts spent in the past 20 years,
GOST is still not broken” [28].

Shortly after the submission, two attacks were published. One single-key at-
tack against the full GOST block cipher was presented by Takanori Isobe at
FSE 2011 [18]. Then, Courtois suggested a new general paradigm for effective
symmetric cryptanalysis called Algebraic Complexity Reduction [6] and using this
methodology, he constructed many more efficient attacks against GOST.

2.1 Structure of GOST

The GOST block cipher is a 32-round Feistel structure of 256-bit level security. It
uses its 256-bit key to encrypt 64-bit blocks (cf. Fig. 1).

A given 64-bit block P is split into its left and right halves PL;PR, respectively.
Given the key ki for round i, the plaintext P is mapped to

.PL;PR/! .PR;PL ˚ Fi.PR//; (1)

where Fi is the GOST round function. Given the round key ki, the round function
consists of the following sub-functions (cf. Fig. 2).

Firstly, the 32-bit right half is added with ki (modulo 232). Then, the result is
divided into eight 4-bit consecutive blocks and each block is given as input to a
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Fig. 1 The Feistel-like
structure of GOST. It consists
of 32 iterations of a round
function which involves
several bit level operations.
The box S-box denotes
concatenation of eight 4-bit to
4-bit S-boxes

S-box

k1

k2

k32

S-box

29 more rounds

S-box

<<<11

<<<11

<<<11

Fig. 2 Detailed description
of the round function used in
GOST. The initial input is
initially added with the key
bits modulo 232. Then, we
have eight applications of
4-bit to 4-bit S-boxes and
finally the 32-bit output
undergoes a left rotation by
11 positions

Function F (round i)

Input

32

32

32

32

32

Output

4 4 4 4

4 4 4 4

k1

S1 S2 S3 S8. . .

<<<11

different S-box. The first 4 bits go into the first S-box S1, bits 5–8 go into S2 and
so on. Then, the 32-bit output undergoes a 11-bit left circular shift and finally the
result is xored to the left 32-bit half of the data.
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Table 2 Key Schedule
Algorithm in GOST. A
256-bit word is split into 8
32-bit words

Rounds 1–8 Rounds 9–16

k0; k1; k2; k3; k4; k5; k6; k7 k0; k1; k2; k3; k4; k5; k6; k7
Rounds 17–24 Rounds 25–32

k0; k1; k2; k3; k4; k5; k6; k7 k7; k6; k5; k4; k3; k2; k1; k0

2.2 Key Schedule Algorithm

GOST has a relatively simple key schedule and this is exploited in several
cryptanalytic attacks like in [5]. Its 256-bit key K is divided into eight consecutive
32-bit words k0; k1; ::; k7. These subkeys are used in this order for the first 24 rounds,
while for the rounds 24–32 they are used in the reverse order (Table 2). Note that
decryption is the same as encryption but with keys ki used in the reverse order.

2.3 Addition Modulo 232

In addition to S-boxes, the GOST cipher uses addition modulo 232 for key insertion.
Modular addition is another source of introducing non-linearity in the cipher.
There are ciphers which do not have S-boxes and the only non-linearity is via
modular additions, like ARX ciphers [19]. The modular addition of two n-bit words
x; y is algebraically described as follows:

.x; y/! z D .xC y/mod2n (2)

The resulting n-bit word .zn�1; ::; z0/ is given by,8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

z0 D x0 C y0

z1 D x1 C y1 C c1

z2 D x2 C y2 C c2

:

:

zi D xi C yi C ci

:

:

zn�1 D xn�1 C yn�1 C cn�1
where,
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8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

c1 D x0:y0

c2 D x1:y1 C c1:.x1 C y1/

:

:

ci D xi�1:yi�1 C ci�1.xi�1 C yi�1/
:

:

cn�1 D xn�2:yn�2 C cn�2.xn�2 C yn�2/
As we will explain in a later section, Multiplicative Complexity (MC), or

equivalently the required number of multiplications, can be seen as a measure for
the non-linearity of the cipher. The importance of MC is also discussed in [3]. The
MC of the addition modulo 232 is computed in Theorem 1.

Theorem 1. The modular 2n addition can be computed using precisely n � 1
multiplications. In other words its Multiplicative Complexity is n � 1.

Proof. In characteristic 2 we have that

xyC .xC y/c D .xC c/.yC c/C c

Thus, we can compute the variables ci, 1 � i � n using 1 multiplication for each,
so n � 1 in total.

On the other hand, each ci contains a multiplication of two new variables so at
least one multiplication is needed per ci.

Thus, the multiplicative complexity of this operation is exactly n � 1.

The existence of modular addition 232 makes the study of the cipher with respect
to known forms of cryptanalytic attacks such as LC and DC much more complex.
We refer explicitly to DC in a later chapter.

2.4 S-Boxes and Variants of GOST

The Russian standard GOST 28147-89 does not give any recommendation regarding
the generation of the S-boxes [16]. On the one hand, the fact that the S-boxes can
be kept secret adds an extra security layer with approximately 354 extra bits of
security (cf. Lemma 2). On the other hand, some problems might arise if the set
of S-boxes is kept secret. For example, the generation and implementation of a set
of S-boxes which is not cryptographically good would make the cipher less secure.
Additionally, different algorithm implementations can use different set of S-boxes
and thus can be incompatible with each other.

Even though the set of S-boxes can be kept secret, there are techniques to extract
them from a chip very efficiently. We can reveal the values of the secret S-boxes by a
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simple black-box chosen-key attack with approximately 232 encryptions [17, 30]. In
all of the attacks we describe, we assume that the S-boxes are known to the attacker.

Theorem 2. Suppose that the 8 4-bit to 4-bit S-boxes in GOST block cipher are
kept secret. Then, the effective key size becomes 610 bits.

Proof. Each S-box is a bijective Boolean function S of the form

S W F42 ! F
4
2: (3)

Thus, each function S is a permutation on the set f0; 1; 2; 3; : : : ; 15g.
There are in total 16Š such permutations.
If all 8 S-boxes are kept secret, this is equivalent of log2.2

8:16Š/ D 354 bits of
secret information. Thus, the effective key size is increased to 610 bits from 256.

One set of S-boxes called “id-GostR3411-94-CryptoProParamSet,” was pub-
lished in 1994, as part of the Russian standard hash function specification GOST
R 34.11-94. Schneier claims that this set of S-boxes is used by the Central Bank
of the Russian Federation [31]. At least two sets of S-boxes have been identified as
being used by two major Russian banks and institutions [31].

We are aware of the following sets of S-boxes,

1. Gost-R-3411-94-TestParamSet: (Table 3) This set is used by the Central Bank of
the Russian Federation [31].

2. Gost28147-TestParamSet: This set is used when GOST is used to process large
amounts of data, e.g. in CBC Mode [27].

3. GostR3411-94-SberbankHashParamset: This set was used by a large bank, as
part of the Russian standard hash function specification GOST R 34.11-94.

4. GostR3411-94-CryptoProParamSet: As appearing in RFC4357, this set was
published in 1994 as a part of the Russian standard hash function specification
GOST R 34.11-94 [16]. It has another four versions: A, B, C, D.

5. GOST ISO 18033-3: This set is specified in 1WD ISO/IEC 18033-3/Amd1 and
was submitted for standardization [29]. This is claimed by Russian cryptologists

Table 3 Gost-R-3411-94-
TestParamSet

S-boxes GostR3411-94-TestParamSet

S1 4,10,9,2,13,8,0,14,6,11,1,12,7,15,5,3

S2 14,11,4,12,6,13,15,10,2,3,8,1,0,7,5,9

S3 5,8,1,13,10,3,4,2,14,15,12,7,6,0,9,11

S4 7,13,10,1,0,8,9,15,14,4,6,12,11,2,5,3

S5 6,12,7,1,5,15,13,8,4,10,9,14,0,3,11,2

S6 4,11,10,0,7,2,1,13,3,6,8,5,9,12,15,14

S7 13,11,4,1,3,15,5,9,0,10,14,7,6,8,2,12

S8 1,15,13,0,5,7,10,4,9,2,3,14,6,11,8,12
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Fig. 3 Connections between GOST for 1 round

to be the most secure version to use [29]. However, in the last chapter we show
that an attack faster than brute-force can be applied also to this version and there
is no evidence that it is more secure.

2.5 Internal Connections in GOST

Figure 3 describes the flow of certain differences of a particular type inside
GOST for one round. This structure is inherited to the left 11-bit rotation and we
particularly refer to this in a later chapter.

3 Cryptanalysis of GOST

3.1 Brute-Force Attack on 256-Bit GOST Keys

Brute-force attack is a non-trivial attack in cases where the length of the key exceeds
the size of the block since many false positives are expected when trying to recover
the key. For example in GOST, given one .P;C/ pair, we expect that 2256�64 D 2192
keys (out of the total 2256) will satisfy Ek.P/ D C. We can apply brute-force attack
in GOST using the Depth-First search approach as follows.

Given a pair .P1;C1/, we start testing keys k 2 K if they satisfy Ek.P1/ D C1.
During this stage, we discard a key k if it does not satisfy this relation and try a
different key, otherwise we keep testing the same key k by requesting a new pair
.P2;C2/. Given this new pair, we check again if k satisfies Ek.P2/ D C2. If the
answer is positive, we request another distinct pair, otherwise we discard it and go
again to the first stage of the attack. The first pair will reduce the space to 2192

possible key candidates, the second one to 2128 and the third one to 264. Using the
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first pair, we expect that we will go through 2255 encryptions on average, then with
the second pair we will go through 2127 encryptions on average and finally with
the third one we will go through 263 on average. Finally, a fourth pair is used to
determine the key.

The expected (average) for the total time complexity in terms of GOST encryp-
tions is given by 2255 C 2191 C 2127 C 263 C 1 ' 2255.

3.2 Existing Attacks on Full GOST

Gabidulin et al. were the first who conducted a basic assessment of the security
of GOST against linear and differential cryptanalysis [33, 34]. As they claim, five
rounds are sufficient to secure GOST against LC at the security level of 2256,
while only six are enough even if the S-boxes are replaced by the Identity map.
Additionally, they claim that seven rounds are sufficient for a 128-bit level security
against naive DC.

Before the submission to ISO, no attack which was disputing the 256-bit level
security was known. In the same year of submission, many attacks faster than
brute force were developed; we have reflection attacks, attacks based on double
reflections, related-key attacks, and advanced differential attacks [5–7, 10, 15, 32].

Ten years earlier, the Japanese researchers Seki and Kaneko developed an attack
on 13 rounds of GOST using 251 chosen plaintexts based on truncated differentials
[32]. The notion of truncated differentials (partitioning type) allows us to reduce the
influence of the round keys on the transitional probabilities and thus simplifies a
lot the analysis. In the same paper, they have proved that naive DC always fails in
GOST. This is because propagation of single differences for one round occurs with
very low probability for the majority of the keys and as the number of rounds
increases we expect this probability to vanish for most keys.

Isobe presented at FSE 2011 the first single-key attack against the full 32
rounds by developing a new attack framework called Reflection-Meet-in-the-Middle
(RMITM) attack [18]. His method combines techniques of the reflection and the
Meet-in-the-Middle attack in an optimized way. This attack has time complexity
2225 GOST encryptions and requires 232 known plaintexts.

In parallel many other attacks based on different frameworks were developed.
Courtois presented attacks based on the notion of algebraic complexity reduction,
which allows one to reduce the problem of attacking the full cipher to a problem
of attacking a reduced version of the same cipher [5]. This reduction takes into
account many algebraic and structural properties of the cipher, such as the weak
key schedule and the poor diffusion for limited number of rounds and makes use
of software such as SAT solvers at the final solving stage for solving for the key a
system that describes a reduced version (with less rounds) of the cipher [5, 6, 9].

In addition, advanced differential attacks were developed and successfully
applied against the full block cipher. The first differential attack against full
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Table 4 State-of-the-art in cryptanalysis of GOST

Author Type Time Data Scenario

Isobe [18] RMITM 2224 264 Single key

Dinur et al. [15] 2DMITM, fixed points 2192 264 Single key

Courtois [5] 2DMITM, fixed points 2191 264 Single key

Courtois [7] Differential 2179 264 Single key

Courtois [5] Algebraic-differential 2101 232 per key Multiple key

32-rounds of GOST was developed by Courtois and Misztal. The most complex
task involved in this attack is the construction of a 20-round distinguisher. By the
same year, an improved differential attack with complexity 2179 GOST encryptions
was presented by Courtois [7].

Furthermore, Courtois studied the multiple-key scenario, where .P;C/ pairs from
randomly selected keys are available. This scenario is very realistic, as in real-
life applications we expect encryptions with random keys rather than a fixed key.
He proved that one such key can be revealed in approximately 2101 encryptions,
provided that approximately 232 pairs are available for each key.

Table 4 summarizes the state-of-the-art regarding cryptanalysis of full GOST for
both single and multiple key scenarios. The reference point for the time complexity
is the number of required GOST encryptions.

All the attacks presented so far are based on the most popular implementation
of GOST, which uses the set of S-boxes GostR3411-94-TestParamSet. There was
no attempt so far to find an attack against any other variant of GOST and provide
a general methodology which would be able to work in all cases. The first who
introduced such a method are Courtois and Mourouzis [11], who introduced the
fundamental notion of general open sets, which are special forms of sets of
differentials dictated by the structure of GOST and allows one to explore efficiently
this space and obtain surprisingly good truncated differential properties which can
be used to in some cases mount differential attacks against the full cipher. We
introduce this notion in the next section.

3.3 Differential Cryptanalysis and GOST

Differential Cryptanalysis (DC) is a general form of probabilistic or statistical
cryptanalytic technique that is primarily applicable to block ciphers but also to
stream ciphers and cryptographic hash functions. It belongs to the category of
chosen-plaintext attacks and its discovery was attributed to Eli Biham and Adi
Shamir in the later 1980s, who were the first to publish a differential attack against
DES [1, 2].

However, around 1994, Don Coppersmith as a member of the original IBM
DES team confirmed that the technique of DC was known to IBM, as early as



362 T. Mourouzis and N. Courtois

1974. In addition, he said that one of the security criteria used to design DES was
the resistance against this particular type of attack and this attack was known as
“T-attack” or “Tickle attack” [4]. However, IBM after discussion with NSA decided
to keep confidential the technique of DC as such a publication could be used against
many other ciphers and cryptographic primitives that are widely used by the industry
and possibly the government.

In this type of attack, the main task is to study the propagation of differences (cf.
Definition 2) of inputs from round to round inside the cipher, and discover specific
differences that propagate with comparatively higher probability as the probability
expected assuming a uniform distribution. In this way, an attacker discovers where
the cipher exhibits non-random behavior and by exploiting these properties further
can recover parts of the secret key or the full key with time complexity lower than
an exhaustive search on the key length which is the reference time complexity in
case of block ciphers.

Definition 2 (Difference).
Let .G;˝/ be a finite abelian group with respect to the operator˝ and x1; x2 2 G

be two elements of the group. The difference between x1; x2 w.r.t operator ˝ is
defined as
x D 
.x1; x2/ D x1˝x12, where x12 is the inverse of x2 with respect to˝.

In the majority of the cases in cryptanalysis, we use as operator˝ the exclusive-
or operator ˚ since in the greater majority of block ciphers the application of the
key in the round function is a simple XOR operation. Note that any element is self-
inverse with respect to XOR operation. The fact that in the greater majority the
key is inserted via the XOR operation, that implies the key addition preserves the
differences and this simplifies a lot our analysis. In particular, for two elements x1
and x2, we have that .x1˚k/˚.x2˚k/ D x1˚x2. However, in ciphers where the key
is inserted via other operations, such as modular addition, as in the case of GOST
which is the major subject of our study in this thesis, the application of differential
cryptanalysis is not straightforward at all and many other tricks need to be employed
to overcome the complexity of key insertion via other operations other than XOR.

In the rest of this section we analyze how DC can be used to obtain key bits
for iterated block ciphers. Given an iterated cipher, we study the propagation
of differences though different number of rounds. Then, individual differences
are joined to form a differential characteristic for a larger number of rounds
(cf. Definition 3). Constructing the best possible differential characteristic by
combining several one-round characteristics is a non-trivial optimization task.

Definition 3 (Differential Characteristic, Fig. 4).
An s-round characteristic is an .s C 1/-tuple of differences .˛0; : : : ; ˛s/, where

˛i is the anticipated difference 
ci after i rounds of encryption. The initial input
difference
m D 
c0 is denoted by ˛0.
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Fig. 4 A differential characteristic and a differential over r rounds

3.4 Computing the Probability of a Differential Characteristic

In differential attacks, the first task is to find series of input and output differences
over several rounds, which appear with relatively high probability. For each pair
of input–output difference, we need to determine the probability of propagation for
each round individually. For the linear components, we can predict the propagation
of the difference with probability one. However, in non-linear components, such as
S-boxes, a probabilistic analysis is needed. This is a very similar task as in LC.

We call an S-box active if its input difference is non-zero, while we call it inactive
or passive if the input difference is zero. Clearly, a zero input difference gives a zero
output difference for an inactive S-box with probability 1. In the substitution layer
of a cipher, S-boxes are applied in parallel to different chunks of data and thus
they are independent and hence corresponding probabilities are multiplied. Another
non-trivial optimization task for the attacker is to carefully select which S-boxes
are taken as active in each round such that the overall differential characteristic
has a relatively good probability of propagation. Many ad-hoc heuristics can be
discovered by studying the structure of the rounds function of a cipher which might
suggest how to select which differences are interesting to study.

In the rest of this section, we study how we can compute the probability of
a differential characteristic for an iterated block cipher. Given an .s C 1/-round
characteristic .˛0 : : : ˛s/, the probability of propagation over all keys and plaintexts
is given by,

PK ;P.
cs D ˛s; 
cs�1 D ˛s�1; : : : ; 
c1 D ˛1j
c0 D ˛0/
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Thus, we need to compute it on average over all key and plaintext space. This is
difficult to determine for a certain class of ciphers since the model of computation
does depend on the cipher. For example, in some ciphers it may be infeasible to
compute it since it may depend on the key and the plaintext in a very complex way,
while on some other ciphers this dependency may not be so complex and thus we
may be able to enumerate all possible differential attacks. However, for the class
of Markov ciphers (cf. Definition 4), this can be computed by simply computing
transitional probabilities for each round and then multiplying them. The notion of a
Markov cipher simplifies a lot the model of computation.

Definition 4 (Markov Cipher, [23]).
An iterated cipher round function Y D f .X;Z/ is a Markov cipher, if there is a

group operation ˝ for defining differences such that, for all choices of ˛ .˛ ¤ e/
and .ˇ ¤ e/,

P.
Y D ˇj
X D ˛;X D �/;

is independent of � when the subkey Z is uniformly random.

For a Markov cipher, the probability of a one-round characteristic taken over all
the key and plaintext space is independent of the plaintext space and thus it can be
computed over the key space only.

Moreover, for an iterated r-round Markov cipher with r independent round
keys chosen uniformly at random, the sequence of differences 
c0; ::; 
cr forms
a homogeneous Markov chain (Definition 5).

Definition 5 (Markov Chain, [23]). A sequence of r random variables X0,
X1; ::;Xr , is called a Markov chain if

P.XiC1 D ˇiC1jXi D ˇi; ::;X0 D ˇ0/ D P.XiC1 D ˇiC1jXi D ˇi/;

for all 0 � i � r.

Such a Markov chain is homogeneous if

P.XiC1 D ˇjXi D ˛/ D P.Xi D ˇjXi�1 D ˛/

Thus, the probability of a s-round characteristic for a Markov cipher with
independent round keys can be computed as follows [22].

P.
cs D ˛s; : : : ; 
c1 D ˛1j
c0 D ˛0/ D
Y

1�i�s

P.
ci D ˛i; 
ci�1 D ˛i�1/

(4)
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3.5 Differentials vs. Differential Characteristics

An adversary does not have so much freedom to determine if the input difference
follows a given differential characteristic in each step. However, he can choose the
input difference and may be able to check the corresponding output difference after
s rounds. An s-round characteristic is constructed by concatenating s one-round
differentials.

In practice, it is very time consuming to find a really good differential character-
istic over a sufficient number of rounds. The collection of all s-round characteristics
with input ˛0 and output difference ˛s is called a differential (Definition 6).

Definition 6 (Differential, [22]).
An s-round differential is a pair of differences .˛0; ˛s/, also denoted as ˛0 ! ˛s,

where ˛0 is the chosen input difference and ˛s the expected output difference
cs

Given an s-round differential .˛0; ˛s/, the probability of such differential on
average over key space and all plaintexts is given by,

PK;P.
cs D ˛sj
c0 D ˛0/ D ˙˛1 : : :˙as�1PK;P.
cs D ˛s; : : : ;
c1 D ˛1j
c0 D ˛0/

In an attack the key is fixed and only the plaintext can be variable. Thus,
in practice we may need to compute it over a fixed key which is not known
to the attacker. Computing the following probability is enough to mount many
cryptographic attacks,

PP.
ci D ˛ij
ci�1 D ˛0;K D k/:

However, the key is unknown, and thus we cannot compute this probability unless
we consider the assumption of stochastic equivalence (Definition 7).

Definition 7 (Hypothesis of Stochastic Equivalence).
Consider an r-round iterated cipher, then for all highly probable differentials,

s � r, .˛; ˇ/,

PP.
cs D ˇj
c0 D ˛;K D k/ D PP;K .
cs D ˇj
c0 D ˛/;

holds for a substantial fraction of the key space K .

3.6 Key Recovery Attacks

In this section, we describe how to derive some key bits using differential attacks.
Consider a differential .˛; ˇ/ over r�1 rounds, which holds with probability p for a
r-round iterated block cipher. By partial decryption of the last round, we can recover
some bits of the last key faster than brute-force.
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Firstly, we encrypt N pairs of plaintexts .P;P0/, such that 
P D ˛ and get the
corresponding ciphertext pairs .C;C0/. Given these pairs, we guess some bits of
the last round key and we partially decrypt the last round. Then, we check if the
difference after r � 1 rounds is obtained. If this difference is obtained we say that
.P;P0/ suggests a candidate kG. We expect approximately p:N pairs to result in pairs
with difference ˇ in round before the last round. Such pairs are called right pairs
(cf. Definition 8).

Definition 8 (Right Pair).
A pair .P;P0/ with 
P D ˛ and associated ciphertexts .C;C0/ is called a right

pair with respect to the .r � 1/-round differential .˛; ˇ/ if 
cr�1 D ˇ. Otherwise,
it is called a wrong pair.

In order to launch a successful differential attack, we need at least one right pair.
First, in an attack we want to identify a right pair. However, we have also wrong pairs
that do not follow our constructed characteristic and this is referred to as noise, while
right pairs is the signal. Thus, wrong pairs should be filtered in a very early stage of
our attack if it is possible. Often wrong pairs can be eliminated by considering the
associated ciphertexts. This process is called filtering. Note that there are no general
rules how to perform the filtering step and it depends on the cipher.

Algorithm below describes an attack on an r-round iterated block cipher using
an r�1 differential characteristic. This attack can be used to obtain some bits of the
last round key using a differential characteristic of the form .˛0; : : : ; ˛r�1/, which
holds with probability p.

1. Let Tj a counter for (parts of) possible last round key guesses kj

2. For i D 1; ::N do

(a) Choose Pi at random and compute P0i D Pi ˚ ˛0. Obtain the corresponding
ciphertexts .Ci;C0i/.

(b) Use filtering. If .Pi;P0i/ is a wrong pair, discard it and continue with the next
iteration. Otherwise do the following.

(c) For each key guess kj, partly decrypt the last round and get .c.r�1/i ; c
0.r�1/
i /

i. Increase Tj, if c.r�1/i ˚ c
0.r�1/
i D ˛r�1

3. Find l, such that Tl D maxi.Ti/

4. Return kl as the guess for the correct key

In most cases after applying the method of DC, one pair might suggest several
key candidates fk1; k2; : : : ; klg. On the contrary, a wrong pair is expected to suggest
a set of candidates which do not include the correct key. The attack is successful, if
the correct key value is suggested significantly more often than the other candidates.
This is expected for a differential of probability p if approximately c

p plaintexts are
selected uniformly at random, where c a small constant depending on the cipher
[22]. In the rest of this section, we discuss some advanced forms of DC, such as
truncated and impossible differentials.
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3.7 Truncated Differentials and GOST

Truncated Differential Cryptanalysis is a generalization of differential cryptanalysis
developed by Lars Knudsen [21]. Usually, in DC we study the propagation of
single differences between two plaintexts, while in truncated DC we consider
differences that are partially determined (i.e. we are interested only in some parts
of the difference). This technique has been successfully applied to many block
ciphers such as SAFER, IDEA, Skipjack, Twofish, and many others. We define the
truncation TRUNC.a/ of an n-bit string a as in Definition 9.

Definition 9 (Truncation, [21]).
Let a D a0a1 : : : an�1 be an n-bit string, then its truncation is the n-bit string b

given by b0b1::bn�1 D TRUNC.a0a1::an�1/, where either bi D ai or bi D �, for all
0 � i � n � 1 and � is an unknown value

The notion of truncated differentials (cf. Definition 10) extends naturally to
differences.

Definition 10 (Truncated Differentials, [21]).
Let .˛; ˇ/ be an i-round differential, then if ˛0 and ˇ0 are subsequences of ˛ and

ˇ, respectively, then .˛0; ˇ0/ is an i-round truncated differential.

For example, the truncated differential on 8 bytes of the form 0000000000 �
00000, where � D x1x2x3x4, is the set of differences of size 16 � 1 (excluding zero
difference).

Given an s-round characteristic 
0 ! 
1 ! : : : ! 
s, then 
00 ! 
01 !
: : : ! 
0s is a truncated characteristic, if 
0i D TRUNC.
i/ for 0 � i � s.
A truncated characteristic predicts only part of the difference in a pair of texts
after each round of encryption. A truncated differential is a collection of truncated
characteristics. Truncated differentials proved to be a very useful cryptanalytic
tool against many block ciphers which at first glance seem secure against basic
differential cryptanalysis.

3.7.1 General Open Sets

As we have already mentioned, truncated differential cryptanalysis is a generaliza-
tion of differential cryptanalysis against block ciphers developed by Lars Knudsen
in 1984 [20]. The basic idea is to consider propagation of sets of differences
instead of single differences and thus the attack works on making predictions of
only some of the difference bits instead of a full block. Intuitively, in this way we
hope to succeed in finding sets of differences which propagate with a comparatively
higher probability than in the case of a random permutation by “gluing” differences
together.

Even though truncated differential cryptanalysis was successfully applied in
ciphers where naive differential cryptanalysis failed, like SAFER, IDEA, Skipjack,
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E2, Twofish, Camellia, CRYPTON and even the stream cipher Salsa20, the explo-
ration of the space of truncated differentials is computationally a very big overhead
since the space is exponentially large. In order to speed up the process of discovery
of interesting propagations in the space of truncated differentials we need to discover
some ad-hoc heuristics suggested by the structure of the particular cipher we study
which capture this structure and lead to the discovery of propagations we high bias.

In the case of GOST block cipher, we observe that the rotation by 11 bits to
the left of the output bits from the S-boxes is enough to describe the connections
between round to round inside the cipher.

In this section, we introduce a new type of sets of differences, which we name
general open sets and are dictated by the structure of the GOST cipher. They can be
seen as a refinement of Knudsen’s truncated differentials [21]. The main difficulty
in attacks using truncated differentials is the exploration of the exponentially large
space of possible sets of differences and how to discover interesting truncated
differential properties.

However, if we consider special sets which are dictated by the structure of the
encryption algorithm that we study we may be able to explore this subspace and
discover interesting properties. We follow this idea in case of GOST and we consider
some special sets, which we name general open sets (cf. Definition 11) and these
sets are constructed based on the connections between the S-boxes from round to
round.

Definition 11 (General Open Sets, [11]).
We define a General Open Set X as a set of differences on 64 bits with additional

constraints as follows. A General Open Set is represented by a string Q of 16
characters on the alphabet f0; 7; 8;Fg in the following way:

1. differences in X are “under” Q, by which we mean that for all x 2 X Sup.x/ �
Sup.Q/, where Sup.x/ is the set of bits at 1 in x, Sup.x/ � f0; 1; : : : :; 63g.

2. AND in each of the up to 16 non-zero characters in string Q which may be any
of 7; 8;F, there is at least one “active” bit at 1 in x for all x 2 X.

3. In the case of F the most significant bit is always active for each x 2 X and for
each position in Q which is at F.

The main reason why we have this very special alphabet f0; 7; 8;Fg is the internal
connections of the GOST cipher and in particular the 11-bit rotation to the left after
the substitution layer. Informally, we can say that we group together bits which
are likely to be flipped together. F is used to make the sets disjoint such that each
difference x belongs to only one general open set.

Given a general open set represented by the string Q, we define the closure of
this set as in Definition 12.

Definition 12 (Closure of Differential Sets).
The closure of a differential set Q is denoted by ŒQ� and it is the set that contains

all the differences that are under the string Q with the only rule to exclude the zero
difference on the 64 bits. A set P such that P D ŒQ� will be called a closed set.
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Consider the general open set represented by 8070070080700700. Then,
this set contains in total .23 � 1/4. The closure of Q, denoted by ŒQ�,
contains 214 � 1 elements. This is because due to Definitions 11 and 12,
in general open set 8 can be only 1000 and 7 any difference in the set
f0111; 0100; 0010; 0001; 0110; 0101; 0011g, while in case of a closed set 8 can
be any element in the set f0000; 1000g and the character 7 can be any element
in the set f0000; 0111; 0100; 0010; 0001; 0110; 0101; 0011g provided that the zero
difference on 64-bits is excluded.

For example, in Fig. 3, we illustrate the connections for the study of truncated
differential or closed set Œ8070070080700700�. We observe that the 3 least signifi-
cant bits from S3 are entering S6 and this is denoted by 7 in the differential, while
the most significant bit from S6 is entering S8 and this is denoted by 8.

It is a non-trivial task to define such sets in general since some heuristics
suggested by the structure of the algorithm need to be discovered. Note that the same
idea can be applied to any cipher. In the next section, we study the diffusion inside
GOST aiming to illustrate that in particular for the first eight rounds the diffusion is
really poor.

4 Propagation of Differentials in GOST

In order to compute the probability of a transition we use a simple Algorithm which
just runs a large number of events and counts the events of our interest until the
probability of transition converges up to some desired precision. We assume that
the distribution of the number of events of our interest follows (approximately) a
Poisson distribution. We use this distribution as we have experimentally observed
that for all cases we have tried,

• We have a discrete distribution of small integers
• In all cases we have tried and are included in this thesis the variance is relatively

close to the mean. The Poisson distribution has a variance equal to the mean.

Thus, for a sample of size N if x denotes the number of events that were observed
(approximated by Poisson with parameter Np where p is the true mean), then the
approximated Standard Deviation (SD) of the variable x

N , where N is assumed to be

constant and p0 the observed mean, is given by
p

Np0

N D
q

p0

N . This is because the
variance equals to the mean in case of a Poisson distribution.

Denote by p0 the approximated mean, then SD0 D
q

p0

N . Then, for example with

about 99% confidence interval, the true mean is within ˙3:
q

p0

N of the observed
mean.

Let I1 be the interval Œp0 � t
q

p0

N ; p
0 C t

q
p0

N �. In our simulations we would like
this interval I1 to be contained in the interval I2 D Œp0:2�a; p0:2a�, where a is an error
we allow in the exponent of the mean as a power of 2.
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Table 5 Time taken to
compute the mean of a
Poisson process up to some
precision

Probability Number of rounds Time taken

2�13:8 4 2 s

2�16:5 6 15 s

2�24:0 8 2.3 h

2�24:0 10 2.8 h

2�25:0 8 2.3 h

2�25:0 10 2.8 h

We assume that the true mean that we are aiming to approximate by simulations
is bigger than some probability value p0 (for example 2�26:0) in order to ensure that
the algorithm terminates in reasonable time. The inclusion of sets I1 � I2 implies
that we need to run about N > N0 simulations, where N0 is given by

N0 D . .2a/t

.2a � 1//
2:
1

p0
(5)

in order to compute an approximated mean with the desired precision. For
smaller values of probabilities we need to use different values for parameters a; t
such that it is computationally feasible to run beyond this bound. Most of the later
results which are less than approximately 2�26:0 are inexact results and were taken
by setting a D 0:3 and t D 5 in most cases.

In an Intel i7 1.73 GHz PC with 4.00 GB RAM computer, we can run around 222

full GOST encryptions per second per CPU. For probabilities above 2�26:0 we set
t D 3 and a D 0:1, while for smaller probabilities we allow a to be around 0.3 or
even higher and thus the results are inexact. In Table 5 we present the time taken
to compute some probabilities that are presented in this thesis with some precision
a D 0:1 and t D 3.

4.1 Statistical Distinguishers

In cryptanalysis, we very often study the problem of distinguishing distributions,
one distribution that describes the variable of the number of certain events that
occur at random and another distribution that describes the same variable but due to
propagation inside the cipher. Thus, we would like to design a clever distinguisher
which would be able to distinguish a given a cipher from a random permutation by
capturing as much as possible of its mathematical structure. Such a distinguishing
attack might reveal information which can be used to reduce the space of the key
candidates and thus lead to an attack faster than exhaustive search. In cryptographic
literature, there are several examples of successful attacks against either the full
block cipher or some reduced-round version or more frequently against stream
ciphers such as in [12, 13, 25, 26] where distinguishing attacks against block cipher
GOST and stream cipher RC4 are described.
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Thus, this can be seen as a hypothesis testing problem of distinguishing the
two distributions as shown in Fig. 5. Suppose that a source is used to generate
independent random samples in some given finite set with some distribution P ,
which is either P D P0 or P D P1. A distinguisher is a construction used
to determine which one is the most likely the one which was used to generate
the sample. Hence, the overall attack based on the distinguishers considers the
following underlying statistical hypothesis testing problem, where we have either
a null hypothesis H0 WP DP0 or an alternative hypothesis H1 WP DP1.

Our scope is to study this hypothesis problem applied to differential cryptanalysis
and its variants. The variable of our interest is the number of plaintext pairs whose
output difference after r rounds lies in a particular truncated differential set 
Y
given that their difference lies in another truncated differential set
X. We aim to use
particular sets of differences which capture the mathematical structure of the cipher
and these are known as general open sets and we described them in the previous
section.

Assuming that we have two random variables W and R which are described by
Gaussian distributions with parameters .E.W/;V.W//, and .E.R/;V.R//, respec-
tively. Our task is given a measurement of the variable of our interest to determine
from which distribution this sample is more likely to be taken. Thus, we have
the following hypothesis testing problem, H0 W P D W and H1 W P D R. For
cryptanalytic purposes, we assume that distribution W corresponds to a wrong
key, while R corresponds to the right key. In case of a Gaussian distribution, the
probability density function of distribution W is given by the following equation,

fW .x/ D 1p
2V.W/

exp�
1

2V.W/ .x�E.W//2
: (6)

Assume that we were given a sample P from which we can observe x events of
our interest, in the particular case of differential cryptanalysis is the number of pairs
which follow the differential ˛ ! ˇ after r rounds. Then, from Fig. 5 we observe
that if x is greater than E.R/ then we can assume that this observation corresponds
to the right key with probability set to 1

2
. On the other hand, the probability of a false

positive, for example accepting the key as correct while it is wrong, which is also
known as Type I error, is represented by the red-shaded region in Fig. 5 and given
by the following formulae,

P.W > R/ D
Z 1

E.R/
fW .x/dx D 1

2
.1 � erf.

E.R/� E.W/p
2V.W/

/ (7)

where erf.x/ is the Gaussian error function given by

erf.x/ D 2p


Z x

0

exp�t2 dt: (8)
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Fig. 5 Computation of advantage represented by the red-shaded area which represents the
probability of Type I error for distinguishing the distributions W and R

In the next section, following precisely this idea we construct distinguishers
which allow us to distinguish 20 rounds of GOST from a random permutation and
use this construction to launch attacks against full 32 rounds of the cipher. The basic
idea behind our constructions is to distinguish the following two scenarios:

1. Propagation: 20 rounds of GOST with particular intermediate differences
2. Natural Occurrence: It could be 20 rounds of GOST, or more rounds of GOST

or a random permutation

4.2 20-Round Distinguishers in GOST

Following the idea of the previous section we construct 20 round distinguishers for
three variants of GOST.

Theorem 3 (20-Round Distinguisher on GOSTR3411-94-TestParamSet).

8780070780707000

# .10R/

Œ8070070080700700�

# .10R/

80707000087800707
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is a 20 rounds distinguisher where Œ8070070080700700� is a closed set, and satisfies
the following properties,

1. If the 20 rounds are replaced by a random permutation, then out of the total of
277 pairs of plaintexts .Pi;Pj/ such that Pi˚Pj 2 8780070780707000, we expect
on average 227:1 to satisfy also the output difference at the end of the 20 rounds.

2. Among all input pairs with input difference in the set 8780070780707000,
we expect on average 218:1 C 227:1 after 20 rounds to follow the differential
characteristic 10+10 shown above.

3. The advantage of the distinguisher is 25.8 standard deviations

Proof. For a typical permutation on 64 bits (which does not have to be a random
permutation, it can be GOST with more rounds) out of total 277 plaintext pairs
.Pi;Pj/ which satisfy the specified input difference, we expect on average 227:1

such pairs to satisfy also the output difference after 20 rounds. The distribution
of the expected number of pairs which satisfy both input and output difference is
approximated by a Normal distribution N .227:1; 213:55/.

For 20 rounds of GOST and for a given random key, we expect such pairs to
occur both by accident (naturally occurring as in a random permutation) and due to
propagation in GOST. This is because the length of the key is larger than the size of
the block.

Let X denote the distribution of expected number of pairs occurring naturally
andZ the distribution of expected number of pairs occurring due to propagation. By
computer simulations, we have obtained the probability of the following transition

8780070780707000! Œ8070070080700700�

after 10 rounds of GOST and was found approximately equal to 2�29:4 (this result is
inexact). That implies that the mean of the distribution Z is 218:2.

In case of a random permutation, the expected number of pairs which have
this additional middle difference is 227:1�29:4�29:4 D 2�31:7 (no pairs in practice).
Thus, this middle difference property can be seen as an artificial assumption which
separates the two sets.

Hence, the distribution Y D X C Z has mean approximately 227:1 C 218:2.
Thus, the advantage of the distinguisher is given by 218:2

213:55
, which is approximately

25:8 standard deviations.
If we set 227:1C 218:2 as a threshold to accept the key as correct, then the guess is

correct with probability set at 1
2
. The probability of a false positive (Type I error) is

given by,

P.Y > 227:1 C 218:1/ D 1

2
.1 � erf.

25:8p
2
// ' 2�485
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Theorem 4 (20-Round Distinguisher on GOST28147-CryptoProParamSetA).

0770070077777770

# .10R/

Œ7007070070070700�

# .10R/

7777777007700700

is a 20 rounds distinguisher where Œ7007070070070700� is a closed set, and satisfies
the following properties,

1. If 20 rounds are replaced by a random permutation, we expect on average 255:1

to satisfy both input-output differences after 20 rounds.
2. Among all input pairs with input difference in the set 0770070077777770,

we expect on average 233:0 C 255:1 after 20 rounds to follow the differential
characteristic

3. The advantage of the distinguisher is 42.2 standard deviations

Proof. For a typical permutation on 64 bits out of the total plaintext pairs .Pi;Pj/

with this input difference we expect 255:1 such pairs to satisfy also the desired output
difference. The distribution of the expected number of pairs is approximated by a
Normal distribution of the form N .255:1; 227:55/.

We have computed the probability of transition

Œ7007070070070700�! 7777777007700700

and found to be approximately equal to 2�24:01 after ten rounds.
Again the two sets are entirely disjoint for same reasons explained in the previous

theorem.
Thus, the distribution Y DX CZ has mean 255:1C233:0. The advantage of the

distinguisher is approximately 42:24 standard deviations and corresponds to Type I
error 2�1290.

Theorem 5 (20-Round Distinguisher on GOST ISO 18033-3).

8000070770700000

# .6R/

Œ7078000070000700�

# .8R/

Œ7000070070780000�

# .6R/
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7070000080000707

is a 20 rounds distinguisher where Œ7000070070780000� is a closed set, and satisfies
the following properties,

1. If 20 rounds are replaced by a random permutation, we expect on average 221:5

to satisfy both input-output differences after 20 rounds.
2. Among all input pairs with input difference in the set 8000070770700000,

we expect on average 215:9 C 221:5 after 20 rounds to follow the differential
characteristic

3. The advantage of the distinguisher is 35.09 standard deviations

Proof. For a typical permutation on 64 bits, we have the distributionN .221:5; 210:75/.
By computer simulations we have obtained the following transitional probabilities
after six and eight rounds, respectively,

P.Œ7078000070000700�! 8000070770700000/D 2�16:47

P.Œ7007070070070700�! Œ7000070070780000�/D 2�27:20

Hence, out of the total 277 pairs with the input difference as specified in the 20-
round construction, we expect approximately 277�17:47�27:20�16:47 D 215:9 (The size
of the set 8000070770700000 is half the size of the set Œ7078000070000700� and
thus we can assume that the probability is halved in the reverse direction). Thus, the
mean of the distribution Z (due to propagation) is 215:9.

In case of a random permutation, the expected number of pairs which have in
addition this specific middle difference is 221:5�17:47�16:47 D 2�12:44 (no pairs in
practice).

Thus, the distribution Y DX CZ has mean 215:9C221:5. The advantage of the
distinguisher is given by 215:9

210:75
, which is approximately 35:09 standard deviations

and this corresponds to Type I error 2�894.

5 Parametric Attacks against Full GOST

In this chapter, we present attacks against full 32 rounds of GOST by using the
20-round distinguisher constructions described in the previous chapter. Our attack
in order to succeed takes into account several optimizations related to low-level
structure of GOST. Theorem 6 summarizes our results.

Theorem 6 (20-R Distinguisher Xi ! Xj, Transitions X0i ! Xi and Xj ! X0j for
6 � x Rounds).

1. For each guess of the k key bits for the first x (x � 5) rounds, do the following
steps.

2. For all 264 pairs .Pl;Cl/ (full 32-R):
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Compute P0l D Gx;k.Pl/ and C0l D Gx;k.Cl/, where Gx;k is the encryption for the
first x rounds using key k (which is the same for the last x rounds due to the Key
Schedule). At this step we have computed all the .P0l;C0l/ for the middle 32 � 2x
rounds.
Store a list of .32 � 2x/-round .P0l;C0l/ pairs in a hash table, sorted by their
128 � log2.jX0i j/ � log2.jX0j j/ inactive bits. While we are computing a .P0;C0/
pair for the middle .32 � 2x/ rounds, we check if for a new pair computed we
have a collision on the inactive bits. If such a collision is found, this corresponds
to pair of plaintexts .P0l;P0m/ such that P0l ˚ P0m 2 X0i and C0l ˚ C0m 2 X0j after
.32�2x/ rounds (Because we do it for fixed number of rounds which is 20 rounds
we assume the complexity of hash table construction is constant).
This list requires memory of about 264 � 64 D 270 bits.
The time complexity of this step in terms of GOST encryptions is

T1.x/ D 232x � 264 � 2x

32
' 260C32xClog2.x/ (9)

and it returns about
jX0

i j�jX0

j j
2

triples .k; .P0i;C0i/; .P0j;Cj//.

3. For the total of
jX0

i j�jX0

j j
2

collisions of the form ..P0m;C0m/; .P0n;C0n// which have
been computed in the previous step, we want to count the number of pairs,
which satisfy both input and output difference as specified by the middle 20-
R distinguisher. Let T be the number of such pairs which satisfy the required
constrained imposed by the distinguisher.
We compute T by guessing the remaining 192 � 32x bits for the remaining
6 � x rounds and each time the new pair ..P00m;C00m/; .P00n ;C00n // for the middle
20 rounds satisfy the required property we increase the counter by 1. This has
time complexity in terms of GOST encryptions given by,

T2.x/ D 232x � 232.6�x/� jX
0
i j � jX0j j
2

� 12 � 2x

32
' 2187Clog2.6�x/Clog2 jX0

i jClog2 jX0

j j

(10)
If the counter T > c, then we accept the 192-bit key assumption as correct,
otherwise we reject it.

4. If the Type I error equals to 2�y, this implies that we are left with approximately
2192�y possible key candidates on the 192 bits of the key. The remaining 256 �
192 D 64 can be found using additional pairs for the full 32-rounds.
The complexity of this step is given by,

T3.y/ D 2192�yC64 D 2256�y (11)

The overall time complexity CT (in terms of GOST encryptions) is given by,

CT D 2 � .T1.x/C T2.x/C T3.y// (12)

since the Type II error is set to 1
2
.
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Table 6 Best 1-round transitions in absolute value between general open sets for the three
variants of GOST of our interest

Set Xj X0

j p.Xj ! X0

j / ADVfilter

TestParamSet 8070700087800707 8780070780787777 2�5:34 0.6

CryptoParamSet 7777777007700700 07700700F77F7777 2�3:73 3.2

ISO 7070000080000707 8000070770787780 2�3:27 3.6

Table 7 T1; T2; T3;CT values
in terms of GOST encryptions

Set x T1 T2 T3 CT

TestParamSet 5 2222:3 2231:9 2255:1 2256:1

CryptoParamSet 5 2222:3 2248:8 2252:2 2253:2

ISO 5 2222:3 2220:7 2244:4 2245:4

In the rest of this section we study the three variants of GOST of our interest.
Using computer simulations we have computed some sufficiently good propagations
which can be used in the filtering step for extending the 20-round distinguisher to a
22-round filter. Filtering which will allow us to gain four rounds was not achieved
so far by our methodology. Table 6 presents our best results found so far by our
heuristic discovery method.

Based on these transitions we have computed the associated Type I error for each
of the three cases and they are found to be 2�0:9, 2�9:51, and 2�11:62, respectively.
Table 7 presents the complexity for each step of our attack and the complexity of
the overall attack for each variant of GOST.

As we observe from Table 7, the attack is not good against the GOST variant
which uses the set of S-boxes TestParamSet, since its complexity exceeds brute-
force. However, there are already plenty of attacks on this variant [5, 7, 8]. Using
our technique, we can break the other two variants of GOST which use the sets
CryptoParamSet and ISO in time complexity approximately 2253:2 (slightly faster
than brute-force but not significantly) and 2245:4 GOST encryptions, respectively.
The ISO version was supposed to be the strongest one and was proposed for
standardization.

5.1 Conclusions and Further Research

GOST is an important government and industrial block cipher with a 256-bit key
which is widely used implemented in standard crypto libraries such as OpenSSL
and Crypto++ [28]. Several attacks on GOST have been found since 2010, the
best of which are advanced differential attacks in which the main problem for
the attacker is the design of an effective distinguisher for some 20 Rounds of
GOST. In this paper we have proposed a methodology which allows for efficient
discovery of İgoodİ attacks of this type. In order to achieve this we have introduced a
fundamental notion of general open sets, which are special sets which are dictated by
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Fig. 6 Parametric Attack on Full GOST. A parametric attack against full GOST which is
essentially a Depth-first search approach combined with an additional filtering step
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the structure of GOST and by specific patterns which dominated earlier attacks and
which allow to refine them. Then, we have developed a method to construct complex
differential distinguishers for more rounds as a combination of disjoint paths. Our
methodology is validated by the construction of very good distinguishers for 20
rounds for two variants of GOST; GostR3411-94-TestParamSet, and Gost28147-
CryptoProParamSet which are more powerful than expected. Then, we convert these
20-round constructions to full attacks against full 32 rounds of GOST.
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A Supply Chain Game Theory Framework
for Cybersecurity Investments Under Network
Vulnerability
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Abstract In this paper, we develop a supply chain game theory framework
consisting of retailers and consumers who engage in electronic transactions via
the Internet and, hence, may be susceptible to cyberattacks. The retailers compete
noncooperatively in order to maximize their expected profits by determining their
optimal product transactions as well as cybersecurity investments in the presence
of network vulnerability. The consumers reveal their preferences via the demand
price functions, which depend on the product demands and on the average level of
security in the supply chain network. We prove that the governing Nash equilibrium
conditions of this model can be formulated as a variational inequality problem,
provide qualitative properties of the equilibrium product transaction and security
investment pattern, and propose an algorithm with nice features for implementation.
The algorithm is then applied to two sets of numerical examples that reveal the
impacts on the equilibrium product transactions, the security levels, the product
prices, the expected profits, and the retailer vulnerability as well as the supply
chain network vulnerability, of such issues as: increased competition, changes in
the demand price functions, and changes in the security investment cost functions.
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1 Introduction

As supply chains have become increasingly globalized and complex, there are new
risks and vulnerabilities associated with their IT infrastructure due to a spectrum
of cyberattacks with greater exposure for both firms and consumers. Coupled with
cyberattacks are associated costs, in the form of financial damages incurred by
the supply chain firms, the loss of their reputations, as well as opportunity costs,
etc. Consumers may also be affected financially by cyberattacks and suffer from
the associated disruptions. Cyberattacks can affect numerous different industrial
sectors from financial services, energy providers, high tech firms, and retailers to the
healthcare sector as well as governments. As noted in [16], the Center for Strategic
and International Studies [3] reports that the estimated annual cost to the global
economy from cybercrime is more than $400 billion with a conservative estimate
being $375 billion in losses, more than the national income of most countries.

For example, the 2013 breach of the major US-based retailer, Target, was
accomplished when the cyberattacker entered a vulnerable supply chain link by
exploiting the vulnerability in the remote diagnostics of the HVAC system supplier
connected to the Target’s IT system. In the attack, an estimated 40 million payment
cards were stolen between November 27 and December 15, 2013 and upwards
of 70 million other personal records compromised (cf. [10]). Target suffered not
only financial damages but also reputational costs. Other cyber data breaches have
occurred at the luxury retailer Neiman Marcus, the restaurant chain P.F. Chang’s,
and the media giant Sony (cf. [17]). The Ponemon Institute [22] calculates that
the average annualized cost of cybercrime for 60 organizations in their study is
$11.6 million per year, with a range of $1.3 million to $58 million. According to
The Security Ledger [25], cyber supply chain risk escapes notice at many firms.
Mandiant [11] reports that 229 was the median number of days in 2013 that threat
groups were present on a victim’s network before detection.

Given the impact of cybercrime on the economy and society, there is great
interest in evaluating cybersecurity investments. Each year $15 billion is spent
by organizations in the United States to provide security for communications
and information systems (see [8, 13]). Nevertheless, breaches due to cyberattacks
continue to make huge negative economic impacts on businesses and society at-
large. There is, hence, growing interest in the development of rigorous scientific
tools that can help decision-makers assess the impacts of cybersecurity investments.
What is essential to note, however, is that in many industries, including retail,
investments by one decision-maker may affect the decisions of others and the
overall supply chain network security (or vulnerability). Hence, a holistic approach
is needed and some are even calling for a new discipline of cyber supply chain risk
management [2].

In this paper, we develop a supply chain game theory model consisting of two
tiers: the retailers and the consumers. The retailers select the product transactions
and their security levels so as to maximize their expected profits. The probability
of a successful attack on a retailer depends not only on that retailer’s investment
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in security but also on the security investments of the other retailers. Hence, the
retailers and consumers are connected. In our previous work (see [17]), we assumed
that the probability of a successful attack on a seller depended only on his own
security investments. We know that in retail, which we consider in a broad sense here
from consumer goods to even financial services, including retail banks, decision-
makers interact and may share common suppliers, IT providers, etc. Hence, it is
imperative to capture the network effects associated with security investments and
the associated impacts.

In our model, retailers seek to maximize their expected profits with the prices
that the consumers are willing to pay for the product being a function not only of
the demand but also of the average security in the supply chain which we refer to
as the cybersecurity or network security. The retailers compete noncooperatively
until a Nash equilibrium is achieved, whereby no retailer can improve upon his
expected profit by making a unilateral decision in changing his product transactions
and security level. Our approach is inspired, in part, by the work of Shetty et al.
[24], but it is significantly more general since the retailers, that is, the firms, are
not identical and we explicitly also capture the demand side of the supply chain
network. Moreover, the retailers may be faced with distinct security investment cost
functions, given their existing IT infrastructure and business scope and size, and they
can also be spatially separated. Our framework can handle both online retailers and
brick and mortar ones. In addition, the retailers are faced with, possibly, different
financial damages in the case of a cyberattack. For simplicity of exposition and
clarity, we focus on a single type of attack. For a survey of game theory, as applied
to network security and privacy, we refer the reader to Manshaei et al. [12]. For
highlight of optimization models for cybersecurity investments, see [9].

The supply chain game theory model is developed in Sect. 2. The behavior of
the retailers is captured, the Nash equilibrium defined and the variational inequality
formulation derived. We also provide some qualitative properties of the equilibrium
product transaction and security level pattern. In Sect. 3, we outline the algorithm
that we then utilize in Sect. 4 to compute solutions to our numerical examples. In
two sets of numerical supply chain network examples, we illustrate the impacts of
a variety of changes on the equilibrium solution, and on the retailer and supply
chain network vulnerability. In Sect. 5, we summarize our results and present the
conclusions along with suggestions for future research.

2 The Supply Chain Game Theory Model of Cybersecurity
Investments Under Network Vulnerability

In the model, we consider m retailers that are spatially separated and that sell
a product to n consumers. The retailers may be online retailers, engaging with
consumers through electronic commerce, and/or brick and mortar retailers. Since
our focus is on cybersecurity, that is, network security, we assume that the
transactions in terms of payments for the product occur electronically through
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Fig. 1 The network structure
of the supply chain game
theory model

credit cards and/or debit cards. Consumers may also conduct searches to obtain
information through cyberspace. We emphasize that here we consider retailers in
a broad sense, and they may include consumer goods retailers, pharmacies, high
technology product outlets, and even financial service firms as well as retail banks.
The network topology of the supply chain model, which consists of a tier of retailers
and a tier of consumers, is depicted in Fig. 1.

Since the Internet is needed for the transactions between retailers and consumers
to take place, network security is relevant. Each retailer in our model is susceptible
to a cyberattack through the supply chain network since retailers may interact
with one another as well as with common suppliers and also share consumers.
The retailers may suffer from financial damage as a consequence of a successful
cyberattack, losses due to identity theft, opportunity costs, as well as a loss in
reputation, etc. Similarly, consumers are sensitive as to how secure their transactions
are with the retailers.

We denote a typical retailer by i and a typical consumer by j. Let Qij denote the
nonnegative volume of the product transacted between retailer i and consumer j.
Here si denotes the network security level, or, simply, the security of retailer i. The
strategic variables of retailer i consist of his product transactions fQi1; : : : ;Qing and
his security level si. We group the product transactions of all retailers into the vector
Q 2 RmnC and the security levels of all retailers into the vector s 2 RmC. All vectors
here are assumed to be column vectors, except where noted.

We have si 2 Œ0; 1�, with a value of 0 meaning no network security and a value
of 1 representing perfect security. Therefore,

0 � si � 1; i D 1; : : : ;m: (1)

The network security level of the retail-consumer supply chain is denoted by Ns
and is defined as the average network security where

Ns D 1

m

mX

iD1
si: (2)
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Let pi denote the probability of a successful cyberattack on retailer i in the
supply chain network. Associated with the successful attack is the incurred financial
damage Di. Distinct retailers may suffer different amounts of financial damage as
a consequence of a cyberattack due to their size and their existing infrastructure
including cyber infrastructure. As discussed in [23] and [24], but for an oligopoly
model with identical firms and no demand side represented in the network, pi

depends on the chosen security level si and on the network security level Ns as in (2).
Using similar arguments as therein, we also define the probability pi of a successful
cyberattack on retailer i as

pi D .1 � si/.1 � Ns/; i D 1; : : : ;m; (3)

where the term .1�Ns/ represents the probability of a cyberattack in the supply chain
network and the term .1� si/ represents the probability of success of such an attack
on retailer i. The network vulnerability level Nv D 1� Ns with retailer i’s vulnerability
level vi being 1 � si; i D 1; : : : ;m.

In terms of cybersecurity investment, each retailer i, in order to acquire security
si, encumbers an investment cost hi.si/with the function assumed to be continuously
differentiable and convex. Note that distinct retailers, because of their size and
existing cyber infrastructure (both hardware and software), may be faced with
different investment cost functions. We assume that, for a given retailer i, hi.0/ D 0
denotes an entirely insecure retailer and hi.1/ D1 is the investment cost associated
with complete security for the retailer (see [23, 24]). An example of a suitable hi.si/

function is

hi.si/ D ˛i.
1p

.1 � si/
� 1/ with ˛i > 0: (4)

The term ˛i allows for different retailers to have distinct investment cost functions
based on their size and needs.

The demand for the product by consumer j is denoted by dj and it must satisfy
the following conservation of flow equation:

dj D
mX

iD1
Qij; j D 1; : : : ; n; (5)

where

Qij 
 0; i D 1; : : : ;mI j D 1; : : : ; n; (6)

that is, the demand for each consumer is satisfied by the sum of the product
transactions between all the retailers with the consumer. We group the demands
for the product for all buyers into the vector d 2 RnC.
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The consumers reveal their preferences for the product through their demand
price functions, with the demand price function for consumer j, �j, being:

�j D �j.d; Ns/; j D 1; : : : ; n: (7)

Observe that the demand price depends, in general, on the quantities transacted
between the retailers and the consumers and the network security level. The
consumers are only aware of the average network security level of the supply chain.
This is reasonable since consumers may have information about a retail industry
in terms of its cyber investments and security but it is unlikely that individual
consumers would have information on individual retailers’ security levels. Hence,
as in the model of Nagurney and Nagurney [17], there is information asymmetry
(cf. [1]).

In view of (2) and (5), we can define O�j.Q; s/ � �j.d; Ns/, 8j. These demand price
functions are assumed to be continuous, continuously differentiable, decreasing
with respect to the respective consumer’s own demand and increasing with respect
to the network security level.

The revenue of retailer i; i D 1; : : : ;m, (in the absence of a cyberattack) is:

nX

jD1
O�j.Q; s/Qij: (8)

Each retailer i; i D 1; : : : ;m, is faced with a cost ci associated with the processing
and the handling of the product and transaction costs cij.Qij/; j D 1 : : : ;m, in dealing
with the consumers. His total cost, hence, is given by:

ci

nX

jD1
Qij C

nX

jD1
cij.Qij/: (9)

The transaction costs, in the case of electronic commerce, can include the costs
of transporting/shipping the product to the consumers. The transaction costs can
also include the cost of using the network services, taxes, etc. We assume that the
transaction cost functions are convex and continuously differentiable.

The profit fi of retailer i; i D 1; : : : ;m (in the absence of a cyberattack and
security investment) is the difference between the revenue and his costs, that is,

fi.Q; s/ D
nX

jD1
O�j.Q; s/Qij � ci

nX

jD1
Qij �

nX

jD1
cij.Qij/: (10)

If there is a successful cyberattack, a retailer i; i D 1; : : : ;m, incurs an expected
financial damage given by

Dipi; (11)

where Di takes on a positive value.
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Using expressions (3), (10), and (11), the expected utility, E.Ui/, of retailer i;
i D 1; : : : ;m, which corresponds to his expected profit, is:

E.Ui/ D .1� pi/fi.Q; s/C pi.fi.Q; s/ �Di/ � hi.si/: (12)

We group the expected utilities of all the retailers into the m-dimensional vector
E.U/ with components: fE.U1/; : : : ;E.Um/g.

Let Ki denote the feasible set corresponding to retailer i, where Ki �
f.Qi; si/jQi 
 0; and 0 � si � 1g and define K � Qm

iD1 Ki.
The m retailers compete noncooperatively in supplying the product and invest

in cybersecurity, each one trying to maximize his own expected profit. We seek to
determine a nonnegative product transaction and security level pattern .Q�; s�/ for
which the m retailers will be in a state of equilibrium as defined below. Nash [19, 20]
generalized Cournot’s concept (see [4]) of an equilibrium for a model of several
players, that is, decision-makers, each of which acts in his/her own self-interest, in
what has been come to be called a noncooperative game.

Definition 1 (A Supply Chain Nash Equilibrium in Product Transactions and
Security Levels). A product transaction and security level pattern .Q�; s�/ 2 K is
said to constitute a supply chain Nash equilibrium if for each retailer iI i D 1; : : : ;m,

E.Ui.Q
�
i ; s
�
i ;
cQ�i ; Os�i // 
 E.Ui.Qi; si;cQ�i ; Os�i //; 8.Qi; si/ 2 Ki; (13)

where

cQ�i � .Q�1 ; : : : ;Q�i�1;Q�iC1; : : : ;Q�m/I and bs�i � .s�1 ; : : : ; s�i�1; s�iC1; : : : ; s�m/:
(14)

According to (13), an equilibrium is established if no retailer can unilaterally
improve upon his expected profits by selecting an alternative vector of product
transactions and security levels.

2.1 Variational Inequality Formulations

We now present alternative variational inequality formulations of the above supply
chain Nash equilibrium in product transactions and security levels.

Theorem 1. Assume that, for each retailer i; i D 1; : : : ;m, the expected profit
function E.Ui.Q; s// is concave with respect to the variables fQi1; : : : ;Qing, and si,
and is continuous and continuously differentiable. Then .Q�; s�/ 2 K is a supply
chain Nash equilibrium according to Definition 1 if and only if it satisfies the
variational inequality



388 A. Nagurney et al.

�
mX

iD1

nX

jD1

@E.Ui.Q�; s�//
@Qij

� .Qij � Q�ij/�
mX

iD1

@E.Ui.Q�; s�//
@si

� .si � s�i / 
 0;

8.Q; s/ 2 K; (15)

or, equivalently, .Q�; s�/ 2 K is a supply chain Nash equilibrium product
transaction and security level pattern if and only if it satisfies the variational
inequality

mX

iD1

nX

jD1

"
ci C

@cij.Q�ij/
@Qij

� O�j.Q
�; s�/�

nX

kD1

@ O�k.Q�; s�/
@Qij

� Q�ik

#
� .Qij � Q�ij/

C
mX

iD1

2

4@hi.s�i /
@si

� .1 �
mX

jD1

s�j
m
C 1 � s�i

m
/Di �

nX

kD1

@ O�k.Q�; s�/
@si

�Q�ik

3

5

� .si � s�i / 
 0;
8.Q; s/ 2 K: (16)

Proof. (15) follows directly from Gabay and Moulin [7] and Dafermos and
Nagurney [5].

In order to obtain variational inequality (16) from variational inequality (15), we
note that, at the equilibrium:

� @E.Ui/

@Qij
D ciC

@cij.Q�ij/
@Qij

� O�j.Q
�; s�/�

nX

kD1

@ O�k.Q�; s�/
@Qij

�Q�ikI 8i;8j; (17)

and

� @E.Ui/

@si
D @hi.s�i /

@si
� .1 �

mX

jD1

s�j
m
C 1 � s�i

m
/Di �

nX

kD1

@ O�k.Q�; s�/
@si

� Q�ikI 8i:

(18)

Making the respective substitutions using (17) and (18) in variational inequality
(15) yields variational inequality (16) ut

We now put the above Nash equilibrium problem into standard variational
inequality form, that is: determine X� 2 K � RN , such that

hF.X�/;X � X�i 
 0; 8X 2 K ; (19)

where F is a given continuous function from K to RN and K is a closed and convex
set.
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We define the .mn C m/-dimensional vector X � .Q; s/ and the .mn C m/-
dimensional vector F.X/ D .F1.X/;F2.X// with the .i; j/th component, F1ij, of
F1.X/ given by

F1ij.X/ � �
@E.Ui.Q; s//

@Qij
; (20)

the ith component, F2i , of F2.X/ given by

F2i .X/ � �
@E.Ui.Q; s//

@si
; (21)

and with the feasible set K � K. Then, clearly, variational inequality (15) can be
put into standard form (19).

In a similar way, one can prove that variational inequality (16) can also be put
into standard variational inequality form (19). �

Additional background on the variational inequality problem can be found in the
books by Nagurney [14] and Nagurney et al. [19].

2.2 Qualitative Properties

It is reasonable to expect that the expected utility of any seller i, E.Ui.Q; s//, would
decrease whenever his product volume has become sufficiently large, that is, when
E.Ui/ is differentiable, @E.Ui.Q;s//

@Qij
is negative for sufficiently large Qij. Hence, the

following assumption is not unreasonable:

Assumption 1. Suppose that in our supply chain game theory model there exists a
sufficiently large M, such that for any .i; j/,

@E.Ui.Q; s//

@Qij
< 0; (22)

for all product transaction patterns Q with Qij 
 M.

We now give an existence result.

Proposition 1. Any supply chain Nash equilibrium problem in product transactions
and security levels, as modeled above, that satisfies Assumption 1 possesses at least
one equilibrium product transaction and security level pattern.

Proof. The proof follows from Proposition 1 in Zhang and Nagurney [26]. ut
We now present the uniqueness result, the proof of which follows from the basic

theory of variational inequalities (cf. [14]).



390 A. Nagurney et al.

Proposition 2. Suppose that F is strictly monotone at any equilibrium point of the
variational inequality problem defined in (19). Then it has at most one equilibrium
point.

3 The Algorithm

For computational purposes, we will utilize the Euler method, which is induced by
the general iterative scheme of Dupuis and Nagurney [6]. Specifically, iteration 	 of
the Euler method (see also [14]) is given by:

X	C1 D PK .X	 � a	F.X
	 //; (23)

where PK is the projection on the feasible set K and F is the function that enters
the variational inequality problem (19).

As proven in [6], for convergence of the general iterative scheme, which induces
the Euler method, the sequence fa	g must satisfy:

P1
	D0 a	 D 1, a	 > 0, a	 ! 0,

as 	 ! 1. Specific conditions for convergence of this scheme as well as various
applications to the solutions of other network-based game theory models can be
found in [15, 16], and the references therein.

3.1 Explicit Formulae for the Euler Method Applied to the
Supply Chain Game Theory Model

The elegance of this procedure for the computation of solutions to our model is
apparent from the following explicit formulae. In particular, we have the following
closed form expression for the product transactions i D 1; : : : ;mI j D 1; : : : ; n:

Q	C1
ij D maxf0;Q	

ijCa	 . O�j.Q
	 ; s	 /C

nX

kD1

@ O�k.Q	 ; s	 /

@Qij
Q	

ik�ci�
@cij.Q	

ij/

@Qij
/g; (24)

and the following closed form expression for the security levels i D 1; : : : ;m:

s	C1
i D

maxf0;minf1; s	i C a	 .
nX

kD1

@ O�k.Q	 ; s	 /

@si
Q	

ik �
@hi.s	i /

@si
C .1 �

mX

jD1

sj

m
C 1 � si

m
/Di/gg:

(25)

We now provide the convergence result. The proof is direct from Theorem 5.8
in [18].
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Theorem 2. In the supply chain game theory model developed above let
F.X/=�rE.U.Q; s// be strictly monotone at any equilibrium pattern and assume
that Assumption 1 is satisfied. Also, assume that F is uniformly Lipschitz continuous.
Then there exists a unique equilibrium product transaction and security level pattern
.Q�; s�/ 2 K and any sequence generated by the Euler method as given by (23),
with fa	g satisfies

P1
	D0 a	 D 1, a	 > 0, a	 ! 0, as 	 ! 1 converges to

.Q�; s�/.

In the next section, we apply the Euler method to compute solutions to numerical
game theory problems.

4 Numerical Examples

We implemented the Euler method, as discussed in Sect. 3, using FORTRAN
on a Linux system at the University of Massachusetts Amherst. The convergence
criterion was � D 10�4. Hence, the Euler method was considered to have converged
if, at a given iteration, the absolute value of the difference of each product
transaction and each security level differed from its respective value at the preceding
iteration by no more than �.

The sequence fa	g was: 0:1.1; 1
2
; 1
2
; 1
3
; 1
3
; 1
3
: : :/. We initialized the Euler method

by setting each product transaction Qij D 1:00, 8i; j, and the security level of each
retailer si D 0:00, 8i.

We present two sets of numerical examples. Each set of examples consists of an
example with four variants.

Example Set 1. The first set of examples consists of two retailers and two con-
sumers as depicted in Fig. 2. This set of examples begins with the baseline
Example 1, followed by four variants. The equilibrium solutions are reported in
Table 1.

The cost function data for Example 1 are:

c1 D 5; c2 D 10;
c11.Q11/ D :5Q2

11 C Q11; c12.Q12/ D :25Q2
12 C Q12;

c21.Q21/ D :5Q2
21 C 2; c22.Q22/ D :25Q2

22 C Q22:

Fig. 2 Network topology for
Example Set 1
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Table 1 Equilibrium solutions for Examples in Set 1

Solution Ex. 1 Var. 1.1 Var. 1.2 Var. 1.3 Var. 1.4

Q�

11 24:27 49:27 49:27 24:27 24:26

Q�

12 98:30 98:30 8:30 98:32 98:30

Q�

21 21:27 46:27 46:27 21:27 21:26

Q�

22 93:36 93:36 3:38 93:32 93:30

d�

1 45:55 95:55 95:55 45:53 45:52

d�

2 191:66 191:66 11:68 191:64 191:59

s�

1 0:91 0:91 0:88 0:66 0:73

s�

2 0:91 0:92 0:89 0:72 0:18

Ns� 0:91 0:915 0:885 0:69 0:46

�1.d
�

1 ; Ns�/ 54:55 104:55 104:54 54:54 54:52

�2.d
�

2 ; Ns�/ 104:35 104:35 14:34 104:32 104:30

E.U1/ 8136:45 10894:49 3693:56 8121:93 8103:09

E.U2/ 7215:10 9748:17 3219:94 7194:13 6991:11

The demand price functions are:

�1.d; Ns/ D �d1C 0:1. s1 C s2
2

/C 100; �2.d2; Ns/ D �0:5d2C 0:2. s1 C s2
2

/C 200:

The damage parameters are: D1 D 50 and D2 D 70with the investment functions
taking the form:

h1.s1/ D 1p
.1 � s1/

� 1; h2.s2/ D 1p
.1 � s2/

� 1:

As can be seen from the results in Table 1 for Example 1, the equilibrium demand
for Consumer 2 is over four times greater than that for Consumer 1. The price that
Consumer 1 pays is about one half of that of Consumer 2. Both retailers invest in
security and achieve equilibrium security levels of 0.91. Hence, in Example 1 the
vulnerability of Retailer 1 is 0.09 and that of Retailer 2 is also 0.09, with the network
vulnerability being 0.09.

In the first variant of Example 1, Variant 1.1, we change the demand price
function of Consumer 1 to reflect an enhanced willingness to pay more for the
product. The new demand price function for Consumer 1 is:

�1.d; Ns/ D �d1 C 0:1. s1 C s2
2

/C 200:

The product transactions to Consumer 1 more than double from their correspond-
ing values in Example 1, whereas those to Consumer 2 remain unchanged. The
security level of Retailer 2 increases slightly whereas that of Retailer 1 remains
unchanged. Both retailers benefit from increased expected profits. The vulnerability
of Retailer 2 is decreased slightly to 0.08.
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Variant 1.2 is constructed from Variant 1.1. Consumer 2 no longer values the
product much so his demand price function is

�2.d2; Ns/ D �0:5d2 C 0:2. s1 C s2
2

/C 20;

with the remainder of the data as in Variant 1.1. The product transactions decrease by
almost an order of magnitude to the second consumer and the retailers experience
reduced expected profits by about 2/3 as compared to those in Variant 1.1. The
vulnerability of Retailer 1 is now 0.12 and that of Retailer 2: 0.11 with the network
vulnerability being: 0.115.

Variant 1.3 is constructed from Example 1 by increasing both security investment
cost functions so that:

h1.s1/ D 100. 1
p
.1 � s1/

� 1/; h2.s2/ D 100. 1
p
.1 � s2/

� 1/

and having new damages: D1 D 500 and D2 D 700. With the increased costs
associated with cybersecurity investments both retailers decrease their security
levels to the lowest level of all the examples solved, thus far. The vulnerability of
Retailer 1 is now 0.34 and that of Retailer 2: 0.28 with the network vulnerability
=0.31.

Variant 1.4 has the same data as Variant 1.3, but we now further increase Retailer
2’s investment cost function as follows:

h2.s2/ D 1000. 1p
.1 � s2/

� 1/:

Retailer 2 now has an equilibrium security level that is one quarter of that in Variant
1.3. Not only do his expected profits decline but also those of Retailer 1 do.

The vulnerability of Retailer 1 is now: 0.27 and that of Retailer 2: 0.82.
The network vulnerability for this example is: 0.54, the highest value in this set
of examples. The cybersecurity investment cost associated with Retailer 2 is so
high that he greatly reduces his security level. Moreover, the network security is
approximately half of that obtained in Example 1.

Example Set 2. The second set of numerical examples consists of three retailers
and two consumers as shown in Fig. 3.

In order to enable cross comparisons between the two example sets, we construct
Example 2, which is the baseline example in this set, from Example 1 in Set 1.
Therefore, the data for Example 2 is identical to that in Example 1 except for the
new Retailer 3 data as given below:

c3 D 3; c31.Q31/ D Q2
31 C 3Q31; c32.Q32/ D Q2

32 C 4Q32;

h3.s3/ D 3. 1p
.1 � s3/

� 1/; D3 D 80:
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Fig. 3 Network topology for
Example Set 2

Table 2 Equilibrium solutions for Examples in Set 2

Solution Ex. 2 Var. 2.1 Var. 2.2 Var. 2.3 Var. 2.4

Q�

11 20:80 20:98 20:98 11:64 12:67

Q�

12 89:45 89:45 89:82 49:62 51:84

Q�

21 17:81 17:98 17:98 9:64 10:67

Q�

22 84:49 84:49 84:83 46:31 48:51

Q�

31 13:87 13:98 13:98 8:73 9:50

Q�

32 35:41 35:41 35:53 24:50 25:59

d�

1 52:48 52:94 52:95 30:00 32:85

d�

2 209:35 209:35 210:18 120:43 125:94

s�

1 0:90 0:92 0:95 0:93 0:98

s�

2 0:91 0:92 0:95 0:93 0:98

s�

3 0:81 0:83 0:86 0:84 0:95

Ns� 0:87 0:89 0:917 0:90 0:97

�1.d
�

1 ; Ns�/ 47:61 47:95 47:96 40:91 44:01

�2.d
�

2 ; Ns�/ 95:50 95:50 95:83 80:47 83:77

E.U1/ 6654:73 6665:88 6712:29 3418:66 3761:75

E.U2/ 5830:06 5839:65 5882:27 2913:31 3226:90

E.U3/ 2264:39 2271:25 2285:93 1428:65 1582:62

The equilibrium solutions for examples in Set 2 are reported in Table 2. With the
addition of Retailer 3, there is now increased competition. As a consequence, the
demand prices for the product drop for both consumers and there is an increase in
demand. Also, with the increased competition, the expected profits drop for the two
original retailers. The demand increases for Consumer 1 and also for Consumer 2,
both at upwards of 10 %.

The vulnerability of Retailer 1 is 0.10, that of Retailer 2: 0.09, and that of Retailer
3: 0.19 with a network vulnerability of: 0.13. The network vulnerability, with the
addition of Retailer 3 is now higher, since Retailer 3 does not invest much in security
due to the higher investment cost.
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Variant 2.1 is constructed from Example 2 with the data as therein except for
the new demand price function for Consumer 1, who now is more sensitive to the
network security, where

�1.d1; Ns/ D �d1 C . s1 C s2 C s3
3

/C 100:

The expected profit increases for all retailers since Consumer 1 is willing to pay
a higher price for the product.

The vulnerability of Retailer 1 is now 0.08, that of Retailer 2: 0.08, and that of
Retailer 3: 0.17 with a network vulnerability of: 0.11. Hence, all the vulnerabilities
have decreased, since the retailers have higher equilibrium security levels.

Variant 2.2 is constructed from Variant 2.1. The only change is that now
Consumer 2 is also more sensitive to average security with a new demand price
function given by:

�2.d2; Ns/ D �0:5d2 C . s1 C s2 C s3
3

/C 200:

As shown in Table 2, the expected profits are now even higher than for Variant 2.1.
The vulnerability of Retailer 1 is now 0.05, which is the same for Retailer 2, and with
Retailer 3 having the highest vulnerability at: 0.14. The network vulnerability is,
hence, 0.08. Consumers’ willingness to pay for increased network security reduces
the retailers’ vulnerability and that of the supply chain network.

Variants 2.1 and 2.2 demonstrate that consumers who care about security can
also enhance the expected profits of retailers of a product through their willingness
to pay for higher network security.

Variant 2.3 has the identical data to that in Variant 2.2 except that the demand
price functions are now:

�1.d1; Ns/ D �2d2C. s1 C s2 C s3
3

/C100; �2.d2; Ns/ D �d2C. s1 C s2 C s3
3

/C100:

As can be seen from Table 2, the product transactions have all decreased
substantially, as compared to the respective values for Variant 2.2. Also, the demand
prices associated with the two consumers have decreased substantially as have the
expected profits for all the retailers.

The vulnerabilities of the retailers are, respectively: 0.07, 07, and 0.16 with the
network vulnerability equal to 0.10.

Variant 2.4 is identical to Variant 2.3 except that now the demand price function
sensitivity for the consumers has increased even more so that:

�1.d1; Ns/ D �2d2C10. s1 C s2 C s3
3

/C100; �2.d2; Ns/ D �d2C10. s1 C s2 C s3
3

/C100:

All the equilibrium product transactions now increase. The demand prices have
both increased as have the expected profits of all the retailers.
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In this example, the vulnerabilities of the retailers are, respectively: 0.02, 0.02,
and 0.05, yielding a network vulnerability of 0.03. This is the least vulnerable supply
chain network in our numerical study.

5 Summary and Conclusions

Cybercrime is affecting companies as well as other organizations and establish-
ments, including governments, and consumers. Recent notable data breaches have
included major retailers in the United States, resulting in both financial damage
and a loss in reputation. With companies, many of which are increasingly global
and dependent on their supply chains, seeking to determine how much they should
invest in cybersecurity, a general framework that can quantify the investments in
cybersecurity in supply chain networks is needed. The framework should also be
able to illuminate the impacts on profits as well as a firm’s vulnerability and that of
the supply chain network.

In this paper, we develop a supply chain network game theory model consisting
of a tier of retailers and a tier of consumers. The retailers may be subject to a
cyberattack and seek to maximize their expected profits by selecting their optimal
product transactions and cybersecurity levels. The firms compete noncooperatively
until a Nash equilibrium is achieved, whereby no retailer can improve upon
his expected profits. The probability of a successful attack on a retailer, in our
framework, depends not only on his security level, but also on that of the other
retailers. Consumers reveal their preferences for the product through the demand
price functions, which depend on the demand and on the network security level,
which is the average security of the supply chain network.

We derive the variational inequality formulation of the governing equilibrium
conditions, discuss qualitative properties, and demonstrate that the algorithm that we
propose has nice features for computations. Specifically, it yields, at each iteration,
closed form expressions for the product transactions between retailers and con-
sumers and closed form expressions for the retailer security levels. The algorithm is
then applied to compute solutions to two sets of numerical examples, with a total of
ten examples. The examples illustrate the impacts of an increase in competition,
changes in the demand price functions, changes in the damages incurred, and
changes in the cybersecurity investment cost functions on the equilibrium solutions
and on the incurred prices and the expected profits of the retailers. We also provide
the vulnerability of each retailer in each example and the network vulnerability.

The approach of applying game theory and variational inequality theory with
expected utilities of decision-makers to network security/cybersecurity that this
paper adopts is original in itself. The results in this paper pave the way for a range
of investigative questions and research avenues in this area. For instance, at present,
the model considers retailers and consumers in the supply chain network. However,
it can be extended to include additional tiers, namely, suppliers, as well as transport
service providers, and so on. The complexity of the supply chain network would
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then make it even more susceptible to cyberattacks, wherein a security lapse in one
node can affect many others in succession. Moreover, to account for the fact that the
exchange of data takes place through multiple forms, the model could be extended
to include multiple modes of transactions.

While the solution equilibrium in the context of competition does moderate
investments, the model can also be extended to explicitly include constraints on
cybersecurity investments subject to expenditure budgets allocated to cybersecurity.
The numerical examples section dealt with multiple retailer and consumer scenarios
and their variants to validate the ease of adoption and practicality of the model.
A case study and empirical analysis can further corroborate the cogency of the
model and assist in the process of arriving at investment decisions related to
cybersecurity. This could also provide insights as to how to strike a balance between
effectiveness of service and security. We leave the above research directions for
future work.
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A Method for Creating Private and Anonymous
Digital Territories Using Attribute-Based
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Abstract In this paper, the privacy aspect of the Digital Territory concept is
considered within the general domain of Ambience Intelligence. Digital Territories
(or DTs for short) are digital, artificial entities that are dynamically created by their
owners as they move about in a physical space. In brief, a Digital Territory is defined
as a subset of physical space which is created by some technological means. It has
semipermeable boundaries and properties defined by its owners. An example of a
Digital Territory is the range defined by a WiFi access point or the access range of
a bluetooth device. Since Digital Territories are created in the open space, a major
issue that arises during their creation and lifetime is their security and privacy, in
terms of what entities can have access to them and with which access rights. In
this work a generic privacy preserving architecture is proposed for DTs of any kind
based on a new Privacy Enhancing Technology, the Privacy-ABCs.
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1 Introduction

A Digital Territory is an artificial entity that is dynamically created and destroyed,
upon its creator’s will, in order to fulfill certain goals. It has certain access properties
and interacts with its environment through a well-defined interface. In this sense,
it can be likened with a magnet that creates a territory/field around it which can
interact with metal objects within a certain range depending on the strength of the
magnet. Since its inception, the Digital Territory concept has attracted attention
both in terms of defining its conceptual framework and its real life implementation.
The concept of a Digital Territory, DT for short, seems to combine two other
well-known concepts: Artificial Life and Artificial Intelligence. However, Digital
Territories are of a different nature from these popular “artificial” concepts. Their
study touches on mathematical techniques ranging from formal logic (when one
needs to formally describe their properties and interrelationships) to random graphs
(when large, interacting communities of Digital Territories are investigated) as well
as on technological advances in the Information and Communication Technologies
(ICTs) with respect to their realization.

The DT discipline involves mobile, interacting agents which co-exist in complex
domains (e.g., physical space or in the Internet) which, also, exhibit intelligence
while interacting. A very informative account Digital Territories can be found
in [13].

As a DT is specifically created to exist in the open space and it can be
accessible from its environment, it is natural that its existence and operation are
beset with privacy and security threats, both for its creator and those who access
it, as well as the DT itself. Moreover, recent advances in the Internet as well as
the capabilities of portable devices have opened up DT creation and maintenance
possibilities unforeseen a decade ago, when DT principles were being developed.
We are on the verge of being surrounded by DTs wherever we happen to be,
created from devices ranging from smart phones and environment sensors to smart
houses and autonomous vehicles. All these ubiquitous networked devices with smart
capabilities can give rise to DTs of widely varying properties. However, all privacy
and security issues that beset these devices and the networking environment, most
often a local network or the Internet, are carried over to the created DTs, within
the communication range of the devices, themselves. In this paper we focus on the
privacy aspect of DTs and attempt to delineate a general framework within which it
can be properly handled. As discussed in [12], privacy is one of the main issues of
a Digital Territory and its creator.

Almost all applications and services based on computer systems, and DTs also
fall in this category, require some form of user authentication to establish trust
relations or service access rights, either for only one endpoint of communication
or for both. One widely used mechanism for this is password-based authentication.
Given the weaknesses of such a simple authentication method, multiple alternate
techniques have been developed to provide a higher degree of access control.
Cryptographic certificates are one known example of this. Although such certificates
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can offer sufficient security for many purposes, they do not typically handle privacy
adequately because they reveal completely the identity of a person. Any usage of
such a certificate exposes the identity of the certificate holder to the party (usually a
service) requesting authentication. There are many scenarios where the use of such
certificates reveals, unnecessarily, the identity of the holder. For example, this is the
case for scenarios where a service platform only needs to verify the age of a user
but not his/her actual identity. Revealing more information than necessary not only
harms the privacy of the users but also increases the risk of abuse of information
such as identify theft when information revealed falls in the wrong hands.

Over the past 10–15 years, a number of technologies have been developed to
build Attribute Based Credential (ABC) systems in a way that they can be trusted,
much like normal cryptographic certificates, while at the same time protecting the
privacy of their holder (e.g., hiding the real holder’s identity). Such certificates,
called Attribute Based Credentials are issued just like ordinary credentials (e.g.,
the X.509 credentials commonly employed in Public Key Infrastructures) using a
digital (secret) signature key. However, ABCs allow their holder to transform them
into a new credential that contains only a subset of the attributes contained in the
original credential. Still, these transformed credentials can be verified like ordinary
cryptographic credentials (using the public verification key of the issuer) and offer
the same strong security.

The rest of the paper is organized as follows. In Sect. 2 we briefly discuss the
Digital Territory concept as well as its related concepts in order to define our target
privacy domain. In Sect. 3, we discuss the main privacy threats for DTs and the
risks they pose to individuals accessing DTs while in Sect. 4, we further discuss the
threats in DTs but this time from the point of view of the emerging Semantic Web
(or Web 3.0). We show that the Semantic Web, as useful as it will be in locating and
semantically processing information and knowledge on the Web, it can nevertheless
threaten individuals’ privacy as their data and personal information will be more
easily amenable to automatic processing and inferencing. In Sect. 5 we present
our main privacy preserving tool, the Privacy-ABC technology, which we will
employ in order to protect individuals and DT owners’ privacy when accessing and
creating DTs, respectively. In this section we, also, present our approach towards
the deployment of the Privacy-ABC technology in the DT domain while in Sect. 6
we discuss our approach and provide thoughts for further investigation.

2 Digital Territories

For our purposes, a Digital Territory is a transient, in general, Ambient Intelligent
space: it is created in space (ambience) for a specific purpose and integrates the
intention of its creator (either a human being, most often, or a machine). Ambient
Intelligence, or AmI for short, is also named pervasive computing, ubiquitous
computing and embedded intelligence among other well-known synonymous terms
and concepts. An AmI space is composed of available ICTs, network infrastructures,
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services that cover any conceivable human activity domain ranging from a smart
home to a car. Existing in an AmI environment entails a number of prerequisites
that include freedom of action, access to data and information, protection of privacy,
security of personal information, and trust towards the AmI environment. In other
words, such an environment should be highly personalized and privacy respecting.
One approach, which we advocate in this paper, towards achieving these goals is
to employ special technologies, termed Privacy Enhancing Technologies, or PETs
for short. Using these technologies one may build such environments establishing
boundaries to what can be known about individuals or AmI spaces with an eye
towards preserving privacy and establishing trust.

A Digital Territory, which is the realization of an AmI space, is a virtual entity
created by a group of entities or an individual entity towards the realization of
specific goals (e.g. a public service or data gathering application). A DT has a
number of salient characteristics such as its infrastructure, its access properties, the
offered services as well as auxiliary entities or objects. The Digital Territory, being
a form of territory, is defined and enclosed by borders.

Boundaries are points where interactions occur between the interior and exterior
of the DT. Boundaries are defined by negotiations for interaction between involved
parties. Some examples of fundamental boundaries are the following (see the papers
in [11]):

– disclosure boundary (between private/public)
– identity boundary (between self/others)
– time boundary (between past/future)

Borders, in turn, are the realization of the boundaries. The goal is to be visualized,
externally, in a clear and well-understood way. Border access is controlled by the
DT creator, who can impose access restrictions and control mechanisms of varying
levels.

In order negotiations to take place, interaction must be possible. Multi-lateral
interaction requires individual internal interaction and interpretation mechanisms,
individual goals, a commonly understood protocol (concepts, interface and lan-
guage) and a negotiable boundary.

A Digital Territory (DT) exists in both physical (e.g., a public WiFi access
point) and digital spaces (e.g., the information concerning an individual or a
service provider). It is a place wherein information processing and storage happens;
it causes information communication across its borders; it perceives and affects
its environment through the management of its boundaries. In essence, it is an
information processing entity.

Markers are the means defining the borders and the points of negotiation and
crossing between DTs and individuals. Thus, a marker can be defined as a set
of landmarks with associated constraints, both of which denoted by symbols.
Markers are the technical means of realizing the borders as intuitive interfaces. They
can be expanded to include interfaces, authorization, access control, information
visualization, affordances, semantics, functionality.
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A bubble is a frequently used metaphor for the visualization of a DT. It has an
owner (visualized at the DT center), a radius (that defines the DT’s range), and
duration (it is ephemeral). Its enclosing membrane can be set to different degrees of
opacity.

3 Privacy Threats and Protection Strategies

As it happens with any visit of an entity to a publicly available digital space (a DT is
such a space), digital traces are left during the interaction of the entity with the DT.
These traces are, usually, not under the control or, even, knowledge of the visiting
entity. Thus, most individuals visiting a DT are concerned about possible privacy
violations, such as the preservation and sharing of personal information such as
their preferences or beliefs as well as other personal or identifying information.

In general, the most important privacy related threats in DTs are the following:

– Traffic data and exchanged information may be disclosed to third parties during a
transaction or even stored by the DT owner for further processing or distribution.
The distribution of such data may result to spam communications as well as their
exploitation for illegal actions by third parties.

– Personal life violation may occur.
– Location data of the DT visitors may be inferred by monitoring their transactions

with a DT.
– Identity appropriation may result from disclosure of identity information and

authentication credentials.
– Visitor profiling is possible through recording and analyzing transaction data.

Such profiling may include choices, product preferences, reading habits, beliefs,
etc.

– In general, these transaction traces may remain intact for an indefinite period of
time and their association with an individual may result to never ending privacy
violations whose source may be difficult to locate.

With respect to privacy protection, there are some generally agreed upon strate-
gies that one can adopt to impose privacy protection during DT-visitor interactions.
These strategies include the following:

– A privacy policy should be designed and enforced, addressing appropriately
the handling of personal data. This policy should be compliant with local and
international legislations so as to protect the rights of the individuals accessing
DTs.

– Security measures should be adopted by DT owners for protecting personal data
residing within the DT. This protection targets loss of data or unauthorized data
access, malicious or accidental data modification, data deletion or disclosure
and identity theft among others. Technical protection measures include au-
thentication, role-based access and access control, accountability, cryptography,
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anonymity, pseudonymity, and action unlinkability. Administrative protection
measures include privacy strategic planning and development of suitable privacy
policies.

– Personal communication data and pseudonymity are protected. Only under
exceptional and clearly defined cases, data and identity can be uncovered.

– Personal data collection should be limited only to the absolutely necessary
data for accessing a DT and accomplishing a transaction (minimal disclosure
principle).

– The uses of collected data should be clearly defined in a policy accessible by DT
visitors. Later use of data should strictly adhere to the principles stated in the
policy.

– Individuals must be informed about the collection of their personal data when
data is collected. Use of data should be performed only upon the data owner’s
consent.

– Individuals should be able to know what a DT knows about them as well as access
this data upon suitable authentication.

– Processors of personal information should comply with legislation and best
practices. Auditing should be in effect in order to ascertain that this is respected.

– The data controller should give individuals the possibility to report complaints
and demand remedial actions, if data misuse is suspected.

Identity theft is a privacy related threat which may result in fraudulent actions
against individuals. We may differentiate between real identities, i.e. information
used for the real identification of an individual, and on-line (digital) identities, i.e.
real identities or partial information or pseudonyms used by individual entities
or their proxies in their interactions in different digital territories. Examples of
partial identities are driver’s license number, frequent flier number, home phone
number, credit card number, health registration number, e-mail addresses, cookies
etc. On the other hand, we may differentiate between on-line and off-line identities.
Then, examples of on-line identities are usernames, pseudonyms, e-mail addresses,
cookies, etc., and of off-line identities, a driver’s license number, frequent flier
number, home phone number, credit card number and health registration number.
However, off-line identities may also be used as on-line identities.

Identity management is of crucial importance in deploying and operating DTs
since their acceptance and usefulness will depend on building and maintaining trust
relationships between all involved entities. There are at least the following three
requirements stated in the literature, regarding identity management [1]:

– Reliability and dependability. A digital entity must protect users against forgery
and related attacks while guaranteeing to other entities that users can meet
transaction related obligations.

– Controlled information disclosure. Users must have control over which identity
to use in specific circumstances, as well as over its secondary use and the possible
replication of any identity information revealed in a transaction.
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– Mobility support. Mobile computing infrastructure and components of DTs
must be able to apply multiple and dependable digital identities, i.e. to remove
technical limits that do not allow applying such identity management solutions.

Multiple and dependable digital identities could be based on a public key
infrastructure and trusted third parties, much like Privacy ABCs, which we are going
to describe in Sect. 5.

4 The Semantic Web and Its Implications
on Individuals’ Privacy

It is not hard to see that most of DTs are bound to rely on the Web for their creation
and service delivery, much like other Web services. If not Web itself, at least on
some local network or wireless connection protocol which, indirectly, may connect
to the Web in order to enhance outreach and visibility. In this section, we will outline
an important concern one should have in mind when creating a DT within the Web
infrastructure with respect to privacy and personal information protection.

Since its inception, the Web was, initially, destined for use by human beings by
storing information directly in a text format, searchable (indexed) by suitable algo-
rithms. As it is organized today, the Web does not provide appropriate processing
facilities for machines, that is facilities that allow computer algorithms to quickly
combine existing information, derive new information thereof, reach conclusions
and, in general, produce new knowledge. Since the vastness of information in the
Web should be amenable to fast machine based processing in order to be possible to
extract information. The goal, thus, should be to make a Web friendlier to machines
and algorithms than it currently is.

One approach is to have a Web that stores information in a way that a machine can
easily “understand” and process. This gave rise to the Semantics Web initiative that
was, first, proposed in [1], a work coauthored by Tim Berners-Lee himself, the
invertor of the Web. The Semantic Web initiative aims at extending the existing
capabilities of the Web for human–machine interaction so as to include, also,
machines, which will be able to “understand” and process Web information more
efficiently. Thus, they will be able to derive more information than the information
existing in the web in explicit (e.g., text or XML) form.

According to this initiative, all information residing in the Web (including, also,
all types of personal information of individuals that is exposed either inadvertently
or on purpose) is indexed and described based on the architecture which appears
in Fig. 1. This architecture, called the Semantic Web Stack, was presented by Tim
Berners-Lee’s talk at the conference XML2000. It forms the basis of all enhance-
ments that are currently being studied and evaluated by involved researchers, mainly
the World Wide Web Consortium (W3C).

When this architecture is fully implemented (Web 3.0 to Web 4.0) searching
machines will be able to index, locate, and “understand” this information, deriving
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Fig. 1 The semantic web
stack

more facts from the existing ones, not explicitly appearing before. These algorithms
are foreseen to be offered to their users by all devices connected on the Web (in
the unified“Internet of Things” or IoT) and will offer all Web entities to manipulate
the information contained in the Semantic Web (including, also, stored personal
information). Consequently, all entities will be able to describe and use information
based on available semantic descriptions (languages) so as drawing conclusions or
deriving new information will be a commonplace Web functionality. In conclusion,
the Semantic Web initiative aspires to interconnect all information existing in the
Web into a unified semantics-based description that can be used by machines
in order to search, locate, and process information in such a way to enable the
production of new knowledge, information, and facts which may, possibly, not be
stored in explicit form.

A positive aspect of the Semantic Web initiative is that entities will be able to
locate, accurately and fast, what is known about them, by the Web. This is strongly
related to privacy since individuals will have a way to see if personal information
is directly or indirectly stored in the Web or the visited services. Therefore, at
least theoretically, one may employ (using suitable applications) the Semantic Web
to, periodically or even on a daily basis, search for existing or derivable personal
information on the Web.

There is a negative aspect of this, however. With the new Web, profiling and
personal information processing procedures will be easier and more informative.
More individuals will be able to build other people’s profiles and link their actions,
threatening their privacy. As the Web never forgets, as it is now, maybe it will be
even harder to forget when it reaches the Semantic Web state.

Our proposal is to handle the privacy issues that will beset the Semantic Web, as
well as any service (DTs included), using PETs, such as the one discussed in Sect. 5.
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5 A New Privacy Preserving Authentication Technology

In this section, we will describe the employment of a new privacy preserving authen-
tication technology, called Privacy ABC, involving a special kind of credentials. In
what follows, we explain these credentials’ functionality as well as applicability in
the development of a privacy preserving DT environment. Initially, we will describe
a generic ABC system.

5.1 A Generic ABC Architecture

Just like any other identity management and authentication service, ABC systems
typically involve a number of mandatory actors as well as some additional optional
actors, depending on the specific features an application requires. The User is one
actor who can be any holder, customer, citizen, or participant of an ABC system.
The Verifier (also Relying Party, Service Provider) and an Issuer (also: Identity
Service Provider) are necessary. However, some additional actor roles are foreseen
for ABC systems, which are optional. In particular, these are the Revocation Service
and the Inspector.

The Issuer generates and provides credentials containing Attributes to the User.
On request, the Issuer generates the credential during the issuance protocol and
provides it to the User. Depending on the use case, the credential information may
be provided either by the User herself or the Issuer, if he already holds the respective
information in the attribute database. Ideally, the Issuer can provide the information
he attests directly, being an authoritative source. In doing so, he should have the
right to assign the relevant attribute to various entities. Examples would be assigning
attributes of the User to the university for the student status, to the bar association
for the attribute of being an advocate, or to the trade register for the company status.
Finally, attributes may also be generated jointly at random, e.g. where this may be
useful for specific uses or cryptographic processes.

The User issues the credentials while interacting with the Issuer enabling her to
provide proof of certain attributes towards the Verifier. The User acts in different
roles. She receives credentials from the Issuer and provides a proof for certain
requested attributes towards the Verifier. In some cases, additional information
needed for inspection are provided as well.

The Verifier receives a presentation token from the User allowing him to check
that the User has certain attributes. The Verifier usually provides some kind of access
restricted service to the User to which the User needs to authenticate and stipulates
a policy for access. This will require the User to either reveal or to proof possession
of certain attributes values.

The Inspector reveals the identity or other encrypted attribute values of a User
(e.g., lifting anonymity) upon legitimate request. For this, the Inspector has to
examine the legitimacy according to the previously declared inspection grounds.
The Inspector is an optional entity in an ABC system.
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Fig. 2 Building blocks and domains

A Revocation Service is responsible for revoking issued credentials. After
revocation, the credentials cannot produce valid presentation tokens (i.e., proofs
about credentials). The Revocation Service is an optional component of an ABC
system. Often, the entity offering the Revocation Service is the same as that offering
the Issuer service, which can be assumed to have the most accurate information
about users’ attributes and credentials. In Fig. 2, we can see the architecture of a
generic ABC system based on the services described above.

5.2 A Privacy Preserving ABC Architecture for DTs

In order to provide privacy to the entities involved in the creation and use of an ABC
based DT, the main goal is to build, for all involved parties, electronic identities
based on some type of Privacy Preserving Technology or, briefly, PET.

In general, the commonly used entity authentication and service registration
methods (e.g., PKI-based) that are employed today for controlling access to Internet
services most often fall short with regard to respecting users’ privacy. This situation
arises in services in which only a subset of a user’s full identity profile is necessary to
allow access to a service or the users can, simply, use the service using a pseudonym
(i.e., full anonymity). Such services range from accessing online libraries, where
there is no need to give full identity profile to access books but only a proof that
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you are subscribed to the library, to online borrowing of movies, where you may
have to prove that you are of appropriate age (e.g., older than 18) in order to watch
particular films. In such types of applications there is, clearly, a need for a partial,
and not complete, revelation of the user’s identity.

Privacy Attribute Based Credentials or Privacy-ABCs, for short, is a technology
that enables privacy preserving and partial authentication of users. Privacy-ABCs
are issued just like normal electronic credentials (e.g., those based on currently
employed PKIs) using a secret signature key owned by the credential issuer.

However, and this is a key feature of this technology, the user is in position to
transform the credentials into a new form, called presentation token, that reveals
only the information about him which is really necessary in order to access a service.
This new token can be verified with the issuer’s public key.

As we have already noted, a credential is a set of attributes issued, and certified,
by the credential Issuer to a User. By issuing a credential, the Issuer certifies for
the correctness of the attributes it contains. These attributes are identity elements
and information about the User and a Service. After issuance, the User can use the
credential in order to produce presentation tokens (i.e., proofs) that uncover to
other entities, the Verifiers, partial information about the attributes contained in
the credential. Although attributes can be of any type (e.g., integers, strings, etc.)
they must eventually be mapped onto integers in order to be suitably encoded into
a credential. This mapping, along with the list and type of encoded credentials, is
defined in the credentials specification of the Issuer.

A User can provide certified information to Verifiers in order, for instance, to
authenticate herself towards a service, using one or more of her credentials to
produce a presentation token which is, then, sent to the Verifier. A presentation token
can combine information from any subset of the credentials possessed by the User.
Thus, the presentation token can: (i) reveal the values of a subset of the attributes
contained in the credentials (e.g., IDcard.firstname = “John”), (ii) show that a
credential value satisfies a predicate, such as an inequality (e.g., IDcard.birthdate
< 1993/01/01), and (iii) the values of two different credentials satisfy a predicate
(e.g., IDcard.lastname = creditcard.lastname).

In addition to revealing information about attributes, a presentation token can,
also, sign an application-specific message as well as a random nonce, if necessary,
to guarantee freshness. Moreover, presentation tokens support a number of advanced
features such as pseudonyms, device binding, inspection, and revocation that were
described earlier.

A Verifier announces in its presentation policy which credentials from which
Issuers it accepts and which information the presentation token must reveal from
these credentials. The Verifier can cryptographically verify the authenticity of a
received presentation token using the credential specifications and issuer parameters
of all credentials involved in the token. The Verifier must obtain the credential
specifications and issuer parameters in a trusted manner, e.g., by using a traditional
PKI to authenticate them or retrieving them from a trusted location.
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Presentation tokens based on privacy-ABCs are in principle cryptographically
unlinkable and untraceable, meaning that Verifiers cannot tell whether two presen-
tation tokens were derived from the same or from different credentials, and that
Issuers cannot trace a presentation token back to the issuance of the underlying
credentials.

Actually, the basic idea in a Privacy-ABC based DT is the Issuer to create
credentials to potential DT users so that they can authenticate themselves towards
the DT, revealing only the information they want or need to reveal that is prove only
their eligibility to enter a DT and nothing else. Now, the Issuer will be a simple user
registration service requiring, from participants, the relative information through a
Web form channeled over secure SSL connection to the user device.

After registration, the issuer (which may be even be a DT owner) sends to the
registered mobile device a registration token signed by the issuer, that the device will
use later in order to communicate with the platform and send data. The Verifier,
which can be any DT, receives data from the user along with the registration token,
which proves that the device sending the data is a registered device. The verifier will
check the registration token for validity and then store the corresponding data along
with the demographic information associated with the user of the device (without
any identifying information, however).

In general, the ultimate goal of using Privacy-ABC systems is to provide Users
with the ability of acting fully anonymously while using services of different kinds.
By deploying an Inspector entity, the purviews he is assigned to cannot be fully
anonymous anymore. Therefore, a Privacy-ABC system involving an Inspector
entity are to be considered as pseudonymous only, with the correlating consequences
for legal data protection requirements. Therefore, the use of an Inspector building
block should not be the default setting but based on a well-considered decision.
Where the alternative is that data controllers collect the identifying information of
all Users not as these are necessary for the normal service provision but just for
the case that something goes wrong (unpaid bill, upload of illegal content, etc.)
inspection may offer a more privacy-preserving solution. With this data controller
can effectively hide the personal data from themselves. But as identification is
possible this fact as well as the reasons that would allow user identification must
be made clear to the users. Presently, we do not see any role for the Inspector and
Revocation entities in the context of Digital Territories.

Research has led to different techniques of how to realize anonymous credentials
[3, 8, 9] which are based on different number-theoretic problems and also differ
somewhat in the functionality that they offer. There are two leading anonymous
credentials systems: Idemix of IBM and U-prove of Microsoft. These two systems
provide nearly the same functionality, using different cryptographic primitives.
Idemix relies on the hardness of the strong RSA problem while U-prove relies on
the difficulty of discrete logarithms. Also, credentials are represented in different
formats within these two systems. The ABC4Trust project unified these two
credential formats into one, with an eye towards interoperability and efficiency.
Some of the outcomes of this project may be found in [2] (reference architecture
and implementation) and [14] (pilot application).
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These two credential types provide the necessary functionality for supporting
user credentials with the following properties:

– Unforgeability (issuing).
– Selective disclosure with the user controlling the disclosed information set.
– Soundness (no false claims about the validity of a credential).
– Untraceability (showings, with respect to issuing).
– Unlinkability (between different showings).

Technical descriptions, for the interested reader, are given in [3] and [4] which
have been incorporated in Microsoft’s U-prove system as well as the other credential
technologies described in [5–7] which have been implemented into IBM’s Idemix
ABCs system (see [10]).

6 Conclusions

In this paper we have made a first step towards integrating the DT and Ambience
Intelligence framework with a Privacy framework, based on the Privacy-ABC
technology. Today’s technological advances are certainly beyond limits. Nearly
every seemingly impossible idea involving mobile and sensor devices is easy
to become a reality. The increase in computing speed and memory capacity of
electronic components, along with their miniaturization, has made possible the
creation of autonomous devices able to accomplish a variety of very demanding
tasks.

On a more optimistic angle of view, we already have primitive DT examples
which can show the way of implementing the more sophisticated DT concepts. We
already have ad-hoc, sensor networks performing useful collective computations
based on the signals they sense from their environment. These networks contain
units which can also be mobile and move autonomously. On the other hand, we
also have human carrying wireless devices with them all the time. We have smart
homes containing wireless networks connected to the Internet. We have a very wide
frequency spectrum (from 0 to 30 GHz) wisely divided into zones dedicated to
specific uses, leaving much space for free communication (no licensing required
to operate approved devices), the ISM (Industrial Scientific Medical) zone. We have
a great variety of broadband services too 3G or WiMax networks and we will
have much more in 4G. We also have an abundance of “hot spots” created by other
people or even moving vehicles. As usual, the missing ingredient of exploiting the
available technological wealth is people’s awareness in privacy issues and political
will to regulate, with a focus on the people, the DT concept and its implementation
using the technology.
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Quantum Analogues of Hermite–Hadamard
Type Inequalities for Generalized Convexity

Muhammad Aslam Noor, Khalida Inayat Noor, and Muhammad Uzair Awan

Abstract In this chapter, we discuss quantum calculus and generalized convexity.
We briefly discuss some basic concepts and results regarding quantum calculus.
Some quantum analogues of derivatives and integrals on finite intervals are dis-
cussed. After this we move towards generalized convexity. Examples are given to
illustrate the importance and significance of generalized convex sets and generalized
convex functions. We establish some quantum Hermite–Hadamard inequalities for
generalized convexity. Results proved in this paper may stimulate further research
activities.

Keywords: Generalized convexity • Integral inequalities • Quantum inequality •
Hermite-Hadmard inequalities • Simpson inequalities • Examples

1 Introduction

Quantum calculus or q-calculus is the study of calculus without limits. The
study of quantum calculus had been started by Euler (1707–1783), which first
introduced the q in tracks of Newton’s infinite series. However it started formerly
in early twentieth century with the work of F.H. Jackson. In quantum calculus, we
establish q-analogues of mathematical objects which can be recaptured as q ! 1.
There are two types of q-addition, the Nalli-Ward-Al-Salam q-addition (NWA)
and the Jackson-Hahn-Cigler q-addition (JHC). The first one is commutative and
associative, while the second one is neither. That is why sometimes more than one
q-analogue exists. It has been noticed that quantum calculus is subfield of time scale
calculus. Time scale calculus provides a unified framework for studying dynamic
equations on the both discrete and continuous domains. In quantum calculus, we are
concerned with a specific time scale, called the q-time scale. The quantum calculus
can be treated as bridge between Mathematics and Physics. It has large applications
in different mathematical areas such as number theory, combinatorics, orthogonal

M.A. Noor (�) • K.I. Noor • M.U. Awan
COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
e-mail: noormaslam@gmail.com; khalidanoor@hotmail.com; awan.uzair@gmail.com

© Springer International Publishing Switzerland 2015
N.J. Daras, M.Th. Rassias (eds.), Computation, Cryptography,
and Network Security, DOI 10.1007/978-3-319-18275-9_18

413

mailto:noormaslam@gmail.com
mailto:khalidanoor@hotmail.com
mailto:awan.uzair@gmail.com


414 M.A. Noor et al.

polynomials, basic hypergeometric functions and in other sciences such as quantum
theory, mechanics and in theory of relativity. Due its applications in Mathematics
and Physics, this subject has received special attention by many researchers.
As a result, quantum calculus has emerged as interdisciplinary subject. For some
useful details on quantum calculus, interested readers are referred to [1–7, 14–
18, 20–22, 31, 33, 37–40].

The modern analysis directly or indirectly involves the applications of convexity.
In theory of convexity we basically study about convex sets and convex functions.
In recent years several researchers extended and generalized the classical concepts
of convex sets and convex functions in different directions, see [10]. Youness [41]
introduced the g-convex sets and g-convex functions. Youness with the help of
examples remarked that g-convex sets and g-convex functions are significantly
different from convex sets and convex functions, respectively. Noor [25] has shown
that optimality conditions of the differentiable g-convex functions can be charac-
terized by a class of variational inequality, which he called as general variational
inequality. Inspired by this ongoing research Noor [27] introduced generalized
convex sets and generalized convex functions. He studied basic properties of these
concepts. Noor has shown that these generalized convex sets and generalized
convex functions are nonconvex sets and nonconvex functions, respectively, but
enjoys some nice properties which the convex sets and convex functions have. He
also introduced another class of variational inequalities that is general non-linear
variational inequality. He also noticed that general non-linear variational inequality
is quite different from the class of variational inequality introduced and studied
by Noor [25]. Cristescu et al. [8, 9] explored some fascinating applications of
generalized convexity and also shown that generalized convexity is quite different
from g-convexity.

In [36] authors have remarked that, since the publications of the two papers in
1905 and 1906 by J.L.W.V. Jensen, the celebrated Danish engineer and mathemati-
cian, the theory of convex functions has experienced a rapid development. This can
be attributed to several causes: first, a great many areas in modern analysis directly
or indirectly involve the application of convex functions; secondly, convex functions
are closely related to the theory of inequalities, and many important inequalities are
consequences of the applications of convex functions. For example, the important
AG inequality or the general inequality between means of orders r and s, such as
Holder’s and Minkowski’s inequalities, are all consequences of Jensen’s inequality
for convex functions.

On November 22, 1881, Hermite (1822–1901) sent a letter to the journal
Mathesis, which was published letter in Mathesis 3 (1883, p. 82). In this letter
Hermite has given following inequalities:

.b � a/f



aC b

2

�
<

bZ

a

f .x/dx < .b � a/
f .a/C f .b/

2
I (1)
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.b � a/f



aC b

2

�
>

bZ

a

f .x/dx > .b � a/
f .a/C f .b/

2
: (2)

It is interesting to note that this short note of Hermite is nowhere mentioned in
mathematical literature, and that these important inequalities (of Hermite) are not
widely known as Hermites result. The term convex also stems from this classical
note of Hermite. In the booklet on Hermite by Jordan and Mansion (1901), Mansion
published a bibliography of Hermite’s writings, but this note in Mathesis was not
included [23]. Prof. Beckenbach, a leading expert on the history and theory of
complex functions, wrote that the inequality (1) was proved by Hadamard in 1893
and apparently was not aware of Hermite’s result. Throughout this chapter, we
acknowledge this inequality as Hermite–Hadamard’s inequality. In recent years,
Hermite–Hadamard’s inequality has been extensively studied by many researchers.
This inequality can be viewed as necessary and sufficient condition for function to
be convex. For some recent extensions and generalizations of Hermite–Hadamard’s
inequality, see [11–13, 19, 24, 26, 28–36, 38, 40].

Motivated by this ongoing research, we in this chapter discuss quantum cal-
culus, generalized convexity and Hermite–Hadamard type inequalities. We review
some basic concepts and results of quantum calculus regarding q-derivative and
q-antiderivatives. We introduce the concept of generalized convexity. We define
generalized convex sets and generalized convex functions, which are mainly due
to Noor [27]. We give the examples which are mainly due to Cristescu et al. [8, 9] to
show the importance of generalized convexity. We derive some quantum Hermite–
Hadamard inequalities for generalized convexity. It is expected that the readers may
find this brief chapter useful in their future study and research.

2 Preliminaries of Quantum Calculus

In this section, we discuss some basic known concepts and results pertaining to
quantum calculus. For further details of this section, readers may consult [17, 22].

2.1 q-Differentiation

Let us consider

lim
x!x0

f .x/ � f .x0/

x � x0
D df

dx
;

the above expression gives the derivative of a function f .x/ at x D x0.
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If x D qx0 where 0 < q < 1 is a fixed number and do not take limits, then we
enter in the fascinating world of Quantum calculus. The q-derivative of xn is Œn�xn�1,
where

Œn� D qn � 1
q � 1 ;

is the q-analogue of n in the sense that n is the limit of Œn� as q! 1.
Now we give the formal definition of q-derivative of a function f .

Definition 1. The q-derivative is defined as

Dq f .x/ D f .qx/ � f .x/

.q � 1/x : (3)

Note that when q! 1, then we have ordinary derivative.
q-derivative has also some nice properties as ordinary derivative:

1. Dq.˛f .x/C ˇg.x// D ˛Dqf .x/C ˇDqg.x/I
2. Dq.f .x/g.x// D f .qx/Dqg.x/C g.x/Dqf .x/;

by symmetry, we can write
Dq.f .x/g.x// D f .x/Dqg.x/C g.qx/Dqf .x/;

3. Dq

�
f .x/
g.x/

�
D g.qx/Dqf .x/�f .qx/Dqg.x/

g.x/g.qx/ .

Now one can ask a question that what is the q-analogue of chain rule for derivatives?
The answer is the there doesn’t exist a general chain rule for q-derivatives.

Let us elaborate the definition of q-derivative with the help of an example, that
is, how to compute the derivative of f .x/ D xn in quantum calculus? Where n is a
positive integer.

Dqxn D .qx/n � xn

.q � 1/x xn�1 D Œn�xn�1;

which resembles to the ordinary derivative of xn as q! 1,

Œn� D qn�1 C � � � C 1 D 1C 1C � � � C 1 D n:

It is worth to mention here that Œn� plays the same role in quantum calculus as n
plays the role in ordinary calculus.

2.2 q-Antiderivatives

Now we move to words q-antiderivatives of function f .
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Definition 2. The function F.x/ is a q-antiderivative of f .x/ if DqF.x/ D f .x/. It is
denoted by

Z
f .x/dqx: (4)

Remark 1. It is worth to mention here that we have written “a” q-antiderivative
instead of “the” q-antiderivative, because, as in ordinary calculus, an antiderivative
is not unique.

Proposition 1. Let 0 < q < 1. Then, up to adding a constant, any function f .x/ has
at most one q-antiderivative that is continuous at x D 0.

We now give the definition of Jackson integral.

Definition 3. The Jackson integral of f .x/ is defined as

Z
f .x/dqx D .1 � q/x

1X

jD0
qjf .qjx/: (5)

It is evident from above definition that

Z
f .x/Dqg.x/dqx D .1 � q/x

1X

jD0
qjf .qjx/Dqg.qjx/

D .1 � q/x
1X

jD0
qjf .qjx/

g.qjx/ � g.qjC1x/
.1 � q/qjx

:

Theorem 1. Suppose 0 < q < 1. If jf .x/x˛j is bounded on the interval .0;A� for
some 0 � ˛ < 1, then the Jackson integral defined by (3) converges to a function
F.x/ on .0;A�, which is a q-antiderivative of f .x/. Moreover, F.x/ is continuous at
x D 0 with F.0/ D 0.

Proof. Let

jf .x/x˛j < M on A:

Then, for any 0 < x � A, j 
 0;

jf .qjx/j < M.qjx/�˛:

This implies for 0 < x � A, we have

jqjf .qjx/j < Mx�˛.q1�˛/j: (6)
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Since 1�˛ > 0 and 0 < q < 1, thus our series is majorized by convergent geometric
series. Hence the right-hand side of (5) converges pointwise to some function F.x/.
From (5) it is clear that F.0/ D 0. The fact that F.x/ is continuous at x D 0, that is,
F.x/! 0 as x! 0, is clear if we consider using (4),

ˇ̌
ˇ̌
ˇ̌.1 � q/x

1X

jD0
qjf .qjx/

ˇ̌
ˇ̌
ˇ̌ <

M.1 � q/x1�˛

1 � q1�˛
; 0 < x � A:

Let us q-differentiate it:

DqF.x/ D 1

.1 � q/x

0

@.1 � q/x
1X

jD0
qjf .qjx/ � .1� q/qx

1X

jD0
qjf .qjC1x/

1

A

D
1X

jD0
qjf .qjx/ �

1X

jD0
qjC1f .qjC1x/

D
1X

jD0
qjf .qjx/ �

1X

jD1
qjf .qjx/ D f .x/:

It is very much clear that if x 2 .0;A� and 0 < q < 1, then qx 2 .0;A� and the
q-differentiation is valid. This completes the proof. ut
Now we give an example where Jackson integral fails.

Example 1. Consider f .x/ D 1
x , then

Dq log x D log.qx/� log.x/

.q � 1/x D log q

q � 1
1

x
;

and
Z
1

x
dqx D q � 1

log q
log x:

However, the Jackson formula gives

Z
1

x
dqx D .1 � q/

1X

jD0
1 D1:

We now define the definite q-integral.
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Definition 4. Let 0 < a < b. The definite q-integral is defined as

bZ

0

f .x/dqx D .1 � q/b
1X

jD0
qjf .qjb/; (7)

provided the sum converge absolutely.

A more general formula for definite integrals is given as

bZ

0

f .x/dqg.x/ D
1X

jD0
f .qjb/.g.qjb/� g.qjC1b//:

Remark 2. From above definition of definite q-integral in a generic interval Œa; b� is
given by

bZ

a

f .x/dqx D
bZ

0

f .x/dqx �
aZ

0

f .x/dqx:

Remark 3. Note that the above definition conforms the fact that the Jackson integral
vanishes at x D O. Geometrically, the integral in (7) corresponds to the area of the
union of an infinite number of rectangles.

Definition 5. The improper q-integral of f .x/ on Œ0;C1/ is defined to be

Z 1

0

f .x/dqx D
1X

jD�1

qjZ

qjC1

f .x/dqx; (8)

where 0 < q < 1.
Also

Z 1

0

f .x/dqx D
1X

jD�1

qjC1Z

qj

f .x/dqx; (9)

when q > 1.

Proposition 2. The improper q-integral defined above converges if f .x/ is bounded
in a neighborhood of x D 0 with some ˛ < 1 and for sufficiently large x with some
˛ > 1.
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In ordinary calculus, a derivative is defined as the limit of a ratio, and a definite
integral is defined as the limit of an infinite sum. Their subtle and surprising relation
is given by the Newton–Leibniz formula, also called the fundamental theorem of
calculus. Now we give the q-analogue of fundamental theorem of calculus.

Theorem 2. If F.x/ is an antiderivative of f .x/ and F.x/ is continuous at x D 0,
we have

bZ

a

f .x/dqx D F.b/� F.a/; (10)

where 0 � a < b � 1.

Proof. Let F.x/ is continuous at x D 0, since F.x/ is given by the Jackson formula,
up to adding a constant, that is,

F.x/ D .1 � q/x
1X

jD0
qjf .qjx/C F.0/:

This implies

aZ

0

f .x/dqx D .1 � q/a
1X

jD0
qjf .qja/

D F.a/� F.0/: (11)

Similarly

bZ

0

f .x/dqx D F.b/� F.0/: (12)

From (11) and (12), we have

bZ

a

f .x/dqx D F.b/� F.a/:

This completes the proof. ut
Remark 4. Putting a D qjC1 (or qj ) and b D qj (or qjC 1 ), where 0 < q < 1

(or q > 1), and considering the definition of improper q-integral, we notice that (10)
is true for b D1 as well provided if F.x/ exists.
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Corollary 1. If f 0.x/ exists in a neighborhood of x D 0 and is continuous at x D 0,
where f .x/ denotes the ordinary derivative of f .x/, we have

bZ

a

Dq f .x/dqx D f .b/ � f .a/: (13)

Proof. Using L’Hospital’s rule, we have

lim
x!0Dqf .x/ D lim

x!0
f .qx/� f .x/

.q � 1/x

D lim
x!0

qf 0.qx/� f 0.x/
q � 1 D f 0.0/:

Hence Dqf .x/ can be made continuous at x D 0 if we define .Dqf /.0/ D f 0.0/,
and (13) follows from the fundamental theorem of calculus. ut
Remark 5. An important difference between the definite q-integral and its ordinary
counterpart is that even if we are integrating a function on an interval like Œ1; 2�, we
have to care about its behavior at x D 0. This has to do with the definition of the
definite q-integral and the condition for the convergence of the Jackson integral.

Remark 6. Now suppose f .x/ and g.x/ are two functions whose ordinary derivatives
exist in a neighborhood of x D 0 and are continuous at x D 0. Using the product
rule, we have

Dq. f .x/g.x// D f .x/Dqg.x/C g.qx/Dq f .x/:

Since the product of differentiable functions is also differentiable, so using Corol-
lary 1, we have

bZ

a

f .x/dqg.x/ D f .b/g.b/� f .a/g.a/�
bZ

a

g.qx/dq f .x/:

This above formula is for q-integration by parts. Note that b D1 is allowed as well.

2.3 Riemann-Type q-Integral

Rajkovic et al. [37] defined Riemann type q-integrals as:

Rq. f I a; b/ D .b � a/.1 � q/
1X

kD0
f .aC .b � a/qk/qk: (14)
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Taf et al. [38] extended the above definition by dividing the integral as:

2

b � a

bZ

a

f .x/dR
q x

D .1 � q/
1X

kD0



f



aC b

2
C qk



b � a

2

��
C f



aC b

2
� qk



b � a

2

���
qk:

(15)

Using q-Jackson integral, we have

2

b � a

bZ

a

f .x/dR
q x

D
1Z

�1
f



1 � t

2
aC 1C t

2
b

�
dqtC

1Z

�1
f



1C t

2
aC 1 � t

2
b

�
dqt: (16)

3 Quantum Calculus on Finite Intervals

Now we recall the basic definitions and results of quantum calculus on finite
intervals. These results are mainly due to Tariboon et al. [39, 40].

Let J D Œa; b� � R be an interval and 0 < q < 1 be a constant. The q-derivative
of a function f W J ! R at a point x 2 J on Œa; b� is defined as follows.

Definition 6. Let f W J ! R be a continuous function and let x 2 J. Then
q-derivative of f on J at x is defined as

aDqf .x/ D f .x/ � f .qxC .1 � q/a/

.1 � q/.x � a/
; x ¤ a: (17)

It is obvious that aDqf .a/ D lim
x!a

aDqf .x/.

A function f is q-differentiable on J if aDqf .x/ exists for all x 2 J. Also if a D 0
in (17), then 0Dqf D Dqf , where Dq is the q-derivative of the function f [17, 22]
defined as

Dqf .x/ D f .x/ � f .qx/

.1 � q/x
:
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Remark 7. Let f W J ! R is a continuous function. Let us define the second-order
q-derivative on interval J, which is denoted by aDfqf , provided aDqf is
q-differentiable on J with aDf 2q f Da Dq.aDqf / W J ! R. Similarly, one can
define higher order q-derivative on J, aDn

q W Jk ! R.

Let us elaborate above definitions with the help of an example.

Example 2. Let x 2 Œa; b� and 0 < q < 1. Then, for x ¤ a, we have

aDqx2 D x2 � .qxC .1 � q/a/2

.1� q/.x � a/

D .1C q/x2 � 2qax � .1 � q/x2

x � a

D .1C q/xC .1 � q/a:

Note that when x D a, we have lim
x!a

.aDqx2/ D 2a.

Definition 7. Let f W J ! R is a continuous function. A second-order q-derivative
on J, which is denoted as aD2

qf , provided aDqf is q-differentiable on J is defined as

aD2
qf Da Dq.aDqf / W J ! R. Similarly higher order q-derivative on J is defined by

aDn
qf DW Jk ! R.

Lemma 1. Let ˛ 2 R, then

aDq.x � a/˛ D
�1 � q˛

1 � q

�
.x � a/˛�1:

Tariboon et al. [39, 40] defined the q-integral as follows:

Definition 8. Let f W I � R! R be a continuous function. Then q-integral on I is
defined as

xZ

a

f .t/adqt D .1 � q/.x � a/
1X

nD0
qnf .qnxC .1 � qn/a/; (18)

for x 2 J.

If a D 0 in (18), then we have the classical q-integral, that is

xZ

0

f .t/0dqt D .1� q/x
1X

nD0
qnf .qnx/; x 2 Œ0;1/:

For more details, see [17, 22].
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Moreover, if c 2 .a; x/, then the definite q-integral on J is defined by

xZ

c

f .t/adqt D
xZ

a

f .t/adqt �
cZ

a

f .t/adqt

D .1 � q/.x � a/
1X

nD0
qnf .qnxC .1 � qn/a/

D .1 � q/.c � a/
1X

nD0
qnf .qncC .1 � qn/a/:

Example 3. Let a constant c 2 J, then

bZ

c

.t � c/adqt D
bZ

a

.t � c/adqt �
cZ

a

.t � c/adqt

D
"
.t � a/.tC qa/

1C q
� ct

#b

a

�
"
.t � a/.tC qa/

1C q
� ct

#c

a

D b2 � .1C q/bcC qc2

1C q
� a.1� q/.b� c/

1C q
:

Note that when q! 1, then the above integral reduces to the classical integration

bZ

c

.t � c/dt D .b � c/2

2
:

Theorem 3. Let f W I ! R be a continuous function, then

1. aDq

xR
a

f .t/ adqt D f .x/

2.
xR

c
aDqf .t/adqt D f .x/ � f .c/ for x 2 .c; x/.

Theorem 4. Let f ; g W I ! R be a continuous functions, ˛ 2 R, then x 2 J

1.
xR

a
Œf .t/C g.t/� adqt D

xR
a

f .t/ adqtC
xR

a
g.t/ adqt

2.
xR

a
.˛f .t//.t/ adqt D ˛

xR
a
Œf .t/C g.t/� adqt

3.
xR

a
f .t/ adqt

xR
a

g.t/ adqt D .fg/jxc �
xR

c
g.qtC .1 � q/a/aDqf .t/adqt for x 2 .a; x/.
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Lemma 2. Let ˛ 2 R n f�1g, then

xZ

a

.t � a/˛a dqt D
� 1 � q

1 � q˛C1
�
.x � a/˛C1:

Proof. Let f .x/ D .x � a/˛C1, x 2 J and ˛ 2 R n f�1g, then by definition, we have

aDqf .x/ D .x � a/˛C1 � .qxC .1 � q/a� a/˛C1

.1 � q/.x � a/

D .x � a/˛C1 � q˛C1.x � a/˛C1

.1 � q/.x � a/

D
 
1 � q˛C1

1 � q

!
.x � a/˛: (19)

Applying q-integral on J for (19), we obtain the required result. ut
Example 4. Let f .x/ D x for x 2 J, then, we have

xZ

a

f .t/adqt D
xZ

a

tadqt D .1 � q/.x � a/
1X

nD0
qn.qnxC .1 � qn/a/

D .x � a/.xC qa/

1C q
:

4 Basic Concepts and Results for Generalized Convexity

In this section, we recall the concept of generalized convex sets and generalized
convex functions, respectively.

Definition 9 ([27]). Let K' be any set in H. The set K' is said to be generalized
convex with respect to an arbitrary function ' W H ! H such that

.1 � t/uC t'.v/ 2 K'; 8u; v 2 H W u; '.v/ 2 K'; t 2 Œ0; 1�:

If ' D I, the identity function, then the definition of generalized convex set
coincides with the definition of classical convex set.

Note that the generalized convex sets are distinctly different than that of
Youness’s generalized convex set [41].

Now we give some examples which are mainly due to Cristescu et al. [8, 9].
These examples show the significance of generalized convex sets.
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Example 5 ([8]). One of the most important goals of the International Union of
Railways (U.I.C.) is to enable the railway companies to measure the impact of
their activity on the environment (see the U.I.C. guide). The environment indicators
in the domain of railway transport defined under U.I.C. and presented into the
above-mentioned guide include the level of noise, which should be, in normal
conditions, in the interval Œ0; 50�db.A/. The actual noise level produced by wagons
is Œ125; 130�db.A/. The noise level around the railway stations located in towns
is represented by the set Œ0; 50� [ Œ125; 130�. By relocating the railway transport
system outside the towns, the resulted level of noise becomes Œ0; 50�. Let us denote
by ' W R! R the function defined by

'.x/ D
�

x if x 2 Œ0; 50�
0 otherwise

(20)

which is the function describing the efforts of kipping the normal level of sound,
which works under this project. Then the set Œ0; 50� [ Œ125; 130� is generalized
convex.

Other examples are easy to find in the domain of image processing, in which
a transformation of the real plane R

2 into a set of grid-points, Z2 for example,
is necessary. In order to present this type of examples we need to choose a
transformation of the space, which performs the space digitization. The general
definition of this kind of transformations is

Definition 10. A function f W Rn ! Z
n is said to be a method of digitization of Rn

into Z
n if f .x/ D x whenever x 2 Z

n.

In what follows we assume that n D 2 and ' D E D f is the digitization
method used in black and white picture processing by Rosenfeld (1969) and in
colored image processing by Chassery (1978). It is defined by f W R2 ! Z

2,
f .x; y/ D .i; j/; i 2 Z; j 2 Z whenever .x; y/ 2 Œi�1=2; iC1=2/� Œj�1=2; jC1=2/.
Example 6 ([8]). The set A WD B[ < .i; j/; .iCm; j/ >, whenever i 2 Z; j 2 Z;m 2
Z and B � Œi� 1=2; iCmC 1=2/� Œj� 1=2; jC 1=2/ is a union of triangles having
one side < .i; j/; .iC m; j/ > is generalized convex. Indeed, considering two points
x; y 2 A, there are two numbers k 2 Z and l 2 Z such that x 2 ŒiC k � 1=2; iC kC
1=2/ � Œj � 1=2; jC 1=2/ and y 2 Œi C l � 1=2; iC l C 1=2/ � Œj � 1=2; jC 1=2/.
Therefore '.y/ D .iC l; j/. Then for any t 2 Œ0; 1�, there is the integer s between k
and l such that txC .1� t/'.y/ 2 ŒiC s� 1=2; iC sC 1=2/� Œj� 1=2; jC 1=2/ � A
since B is an union of triangles having one side < .i; j/; .iCm; j/ >. It means that A
is generalized convex. In the same manner one can take vertical columns of pixels
and obtain generalized convex sets.

Definition 11 ([27]). A function f W K' ! H is said to be generalized convex, if
there exists an arbitrary function ' W H ! H such that

f ..1 � t/uC t'.v// � .1 � t/f .u/C tf .'.v//;

8u; v 2 H W u; '.v/ 2 K'; t 2 Œ0; 1�: (21)
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Definition 12 ([27]). The function f W K' ! H is said to be generalized quasi
convex, if there exists an arbitrary function ' W H ! H such that

f ..1 � t/uC t'.v// � maxff .u/; f .'.v//g;
8u; v 2 H W u; '.v/ 2 K'; t 2 Œ0; 1�: (22)

Noor [26] extended the classical Hermite–Hadamard inequality for generalized
convex functions.

Theorem 5 ([26]). Let f W Œa; '.b/� ! R be a generalized convex function with
respect to an arbitrary function ' W H ! H. Then, we have

f



aC '.b/

2

�
� 1

'.b/� a

'.b/Z

a

f .'.x//d'.x/ � f .a/C f .'.b//

2
:

Theorem 6 ([26]). Let f ;w W Œa; '.b/� ! R be generalized convex functions with
respect to an arbitrary function ' W H ! H. Then for all t 2 Œ0; 1�, we have

2f



aC '.b/

2

�
w



aC '.b/

2

�
�
�
1

6
M.a; '.b//C 1

2
N.a; '.b//



� 1

'.b/� a

'.b/Z

a

f .'.x//w.'.x//d'.x/ � 1

3
M.a; '.b//C 1

6
N.a; '.b//;

where

M.a; '.b// D f .a/w.a/C f .'.b//w.'.b//; (23)

and

N.a; '.b// D f .a/w.'.b//C f .'.b//w.a/: (24)

5 Some Quantum Estimates of Hermite–Hadamard Type
Inequalities Via Generalized Convexity

In this section, we establish some quantum estimates of Hermite–Hadamard type
inequalities via generalized convexity.
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Theorem 7. Let f W Œa; '.b/�! R be generalized convex continuous function with
respect to an arbitrary function ' W H ! H. Then

f



aC '.b/

2

�
� 1

'.b/� a

'.b/Z

a

f .'.x//dR
q'.x/ �

f .a/C f .'.b//

2
:

Proof. Since f is generalized convex function, then, we have

f



aC '.b/

2

�
� 1

2

�
f



1 � t

2
aC 1C t

2
'.b/

�
C f



1C t

2
aC 1 � t

2
'.b/

�
:

Riemann type q-integrating above inequality with respect to t on Œ�1; 1�, we have

f



aC '.b/

2

�
� 1

'.b/� a

'.b/Z

a

f .'.x//dR
q'.x/: (25)

Also

f



1 � t

2
aC 1C t

2
'.b/

�
�


1 � t

2

�
f .a/C



1C t

2

�
f .'.b//:

Riemann type q-integrating above inequality with respect to t on Œ�1; 1�, we have

1

'.b/� a

'.b/Z

a

f .'.x//dR
q'.x/ �

f .a/C f .'.b//

2
: (26)

Combining (25) and (26) completes the proof. ut
Next we derive some quantum estimates of Hermite–Hadamard type inequalities via
generalized convexity on finite intervals.

Theorem 8. Let f W J D Œa; '.b/�! R be generalized convex continuous function
on J with respect to an arbitrary function ' W H ! H. Then for 0 < q < 1, we have

f



aC '.b/

2

�
� 1

'.b/� a

'.b/Z

a

f .t/adqt � qf .a/C f .'.b//

1C q
: (27)

Proof. Let f be a generalized convex function on Œa; '.b/�, then by taking
q-integration with respect to t on Œ0; 1�, we have
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f



aC '.b/

2

�
D

1Z

0

f



.1� t/aC t'.b/C taC .1 � t/'.b/

2

�
0dqt

� 1

2

2

4
1Z

0

f ..1 � t/aC t'.b//0dqtC
1Z

0

f .taC .1 � t/'.b//0dqt

3

5

D 1

'.b/� a

'.b/Z

a

f .t/adqt

D
1Z

0

f ..1 � t/aC t'.b//0dqt

� f .a/

1Z

0

.1 � t/0dqtC f .'.b//

1Z

0

t 0dqt

D qf .a/C f .'.b//

1C q
;

where by definition, we have

1Z

0

f ..1 � t/aC t'.b//0dqt

D .1 � q/
1X

nD0
qnf ..1 � qn/aC qn'.b//

D .1 � q/.'.b/� a/

'.b/� a

1X

nD0
qnf ..1 � qn/aC qn'.b//

D 1

'.b/� a

'.b/Z

a

f .t/adqt;

and

1Z

0

t0dqt D 1

1C q
;

1Z

0

.1 � t/0dqt D q

1C q
:

This completes the proof. ut
Note that when ' D I, the identity function, our result coincides with Theorem
3.2 [40].
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Theorem 9. Let f ;w W I D Œa; '.b/�! R be generalized convex functions, then

1

'.b/� a

'.b/Z

a

f .'.x//w.'.x//adq'.x/

� �1f .a/w.a/C �2N.a; '.b//C �3f .'.b//w.'.b//;
where

�1 D q.1C q2/

.1C q/.1C qC q2/
I

�2 D q2

.1C q/.1C qC q2/
I

�3 D 1

1C qC q2
;

and

N.a; '.b// D f .a/w.'.b//C f .'.b//w.a/:

Proof. Since f and w are generalized convex functions, then

f ..1 � t/aC tg.b// � tf .a/C .1 � t/f .'.b//;

w..1 � t/aC tg.b// � tw.a/C .1 � t/w.'.b//:

Multiplying above inequalities, we have

f ..1 � t/aC tg.b//w..1� t/aC tg.b//

� .1 � t/2f .a/w.a/C t.1 � t/ff .a/w.'.b//
Cf .'.b//w.a/g C t2f .'.b//w.'.b//:

Taking q-integral of both sides of above inequality with respect to t on Œ0; 1�, we
have

1Z

0

f ..1 � t/aC t'.b//w..1 � t/aC t'.b//0dqt

� f .a/w.a/

1Z

0

.1 � t/20dqtC ff .a/w.'.b//C f .'.b//w.a/g
1Z

0

t.1 � t/0dqt

C f .'.b//w.'.b//

1Z

0

t20dqt:
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This implies that

1

'.b/� a

'.b/Z

a

f .'.x//w.'.x//adq'.x/

�
�

q.1C q2/

.1C q/.1C qC q2/


f .a/w.a/

C
�

q2

.1C q/.1C qC q2/


ff .a/w.'.b//C f .'.b//w.a/g

C
�

1

1C qC q2


f .'.b//w.'.b//:

This completes the proof. ut
Theorem 10. Since f and w are generalized convex functions, then

2f



aC '.b/

2

�
w



aC '.b/

2

�
� 2q2M.a; '.b//C .1C 2qC q3/N.a; '.b//

2.1C q/.1C qC q2/

� 1

.'.b/� a/

'.b/Z

a

f .'.x//w.'.x//adqx;

where M.a; '.b// and N.a; '.b// are given by (23) and (24), respectively.

Proof. Since f and w are generalized convex function, then

f



aC '.b/

2

�
w



aC '.b/

2

�

� 1

4
Œf ..1 � t/aC t'.b//C f .taC .1 � t/'.b//

Cw..1 � t/aC t'.b//C w.taC .1 � t/'.b//�

� 1

4
Œf ..1 � t/aC t'.b//w..1 � t/aC t'.b//

Cf .taC .1 � t/'.b//w.taC .1 � t/'.b//

CŒf .a/w.a/C f .'.b//w.'.b//�f2t.1� t/g
CŒf .a/w.'.b//C f .'.b//w.a/�ft2 C .1 � t/2g�:
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Applying q-integration with respect to t on Œ0; 1�, we have

f



aC '.b/

2

�
w



aC '.b/

2

�

� 1

4

" 1Z

0

Œf ..1 � t/aC t'.b//w..1 � t/aC t'.b//

Cf .taC .1 � t/'.b//w.taC .1� t/'.b//� 0dqt

CŒ f .a/w.a/C f .'.b//w.'.b//�

1Z

0

f2t.1 � t/g0dqt

CŒ f .a/w.'.b//C f .'.b//w.a/�

1Z

0

ft2 C .1 � t/2g0dqt

#

D 1

2.'.b/� a/

'.b/Z

a

f .'.x//w.'.x//adqx

C1
4

�
2q2f f .a/w.a/C f .'.b//w.'.b//g

.1C q/.1C qC q2/

C .1C 2qC q3/Œf .a/w.'.b//C f .'.b//w.a/�

.1C q/.1C qC q2/


:

This completes the proof. ut
We now derive the following auxiliary result, which will be useful in proving our
main results.

Lemma 3. Let f W I D Œa; '.b/� � R! R be a q-differentiable function on Iı (the
interior of I) with aDq be continuous and integrable on I where 0 < q < 1, then

1

'.b/� a

'.b/Z

a

f .'.x//adq'.x/� qf .a/C f .'.b//

1C q

D q.'.b/� a/

1C q

1Z

0

.1 � .1C q/t/aDqf ..1 � t/aC t.'.b/// 0dqt:
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Proof. From Definitions 6 and 8, we have

1Z

0

.1 � .1C q/t/aDqf ..1 � t/aC t.'.b///0dqt

D
1Z

0

.1 � .1C q/t/

 
f ..1 � t/aC t.'.b///� f ..1 � tq/aC qt.'.b///

.1 � q/.'.b/� a/t

!

0dqt

D 1

'.b/� a

( 1X

nD0
f ..1 � qn/aC qn'.b//�

1X

nD0
f ..1 � qnC1/aC qnC1'.b//

)

� 1C q

'.b/� a

( 1X

nD0
qnf ..1 � qn/aC qn'.b//

�
1X

nD0
qnf ..1 � qnC1/aC qnC1'.b//

)

D f .'.b//� f .a/

'.b/� a
� 1C q

'.b/� a

1X

nD0
qnf ..1 � qn/aC qn'.b//

� 1C q

q.'.b/� a/

1X

nD1
qnf ..1 � qn/aC qn'.b//

D f .'.b//� f .a/

'.b/� a
� 1C q

'.b/� a

1X

nD0
qnf ..1 � qn/aC qn'.b//

� 1C q

q.'.b/� a/
f .'.b//C 1C q

q.'.b/� a/

1X

nD0
qnf ..1 � qn/aC qn'.b//

D �f .'.b//� qf .a/

q.'.b/� a/
C 1C q

q.'.b/� a/2

'.b/Z

a

f .'.x//adq'.x/:

Multiplying both sides by q.'.b/�a/
1Cq completes the proof. ut

Theorem 11. Let f W I D Œa; '.b/� � R ! R be a q-differentiable function on Iı
(the interior of I) with aDq be continuous and integrable on I where 0 < q < 1.
If jaDqf jr, r 
 1 is generalized convex function, then

ˇ̌
ˇ̌
ˇ

1

'.b/� a

'.b/Z

a

f .'.x//adq'.x/� qf .a/C f .'.b//

1C q

ˇ̌
ˇ̌
ˇ



434 M.A. Noor et al.

� q.'.b/� a/

1C q

 
q.2C qC q3/

.1C q/3

!1� 1
r

�
"

q.1C 4qC q2/

.1C qC q2/.1C q/3
jaDqf .a/jr

C q.1C 3q2 C 2q3/

.1C qC q2/.1C q/3
jaDqf .'.b//jr

# 1
r

:

Proof. Since jaDqf jr is generalized convex function, so from Lemma 3 and using
power mean inequality, we have

ˇ̌
ˇ̌
ˇ

1

'.b/� a

'.b/Z

a

f .'.x//adq'.x/ � qf .a/C f .'.b//

1C q

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
q.'.b/� a/

1C q

1Z

0

.1 � .1C q/t/aDqf ..1 � t/aC t.'.b/// 0dqt

ˇ̌
ˇ̌
ˇ

� q.'.b/� a/

1C q

 1Z

0

j1 � .1C q/tj 0dqt

!1� 1r

�
 1Z

0

j1� .1C q/tjjaDqf ..1 � t/aC t.'.b///jr 0dqt

! 1
r

� q.'.b/� a/

1C q

 
q.2C qC q3/

.1C q/3

!1� 1r

�
 1Z

0

j1� .1C q/tjŒ.1 � t/jaDqf .a/jr C tjaDqf .'.b//jr� 0dqt

! 1
r

D q.'.b/� a/

1C q

 
q.2C qC q3/

.1C q/3

!1� 1r

�
"

q.1C 4qC q2/

.1C qC q2/.1C q/3
jaDqf .a/jr

C q.1C 3q2 C 2q3/

.1C qC q2/.1C q/3
jaDqf .'.b//jr

# 1
r

:

This completes the proof. ut
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Theorem 12. Let f W I D Œa; '.b/� � R ! R be a q-differentiable function on Iı
(the interior of I) with aDq be continuous and integrable on I where 0 < q < 1. If
jaDqf jr is generalized convex function where p; r > 1, 1p C 1

r D 1, then

ˇ̌
ˇ̌
ˇ
qf .a/C f .'.b//

1C q
� 1

'.b/� a

'.b/Z

a

f .'.x//adq'.x/

ˇ̌
ˇ̌
ˇ

� q.'.b/� a/

1C q

 
q.2C qC q3/

.1C q/3

! 1
p

�
"

q.1C 4qC q2/

.1C qC q2/.1C q/3
jaDqf .a/jr C q.1C 3q2 C 2q3/

.1C qC q2/.1C q/3
jaDqf .'.b//jr

# 1
r

:

Proof. Since jaDqf jr is generalized convex function, so from Lemma 3 and using
Holder’s inequality, we have

ˇ̌
ˇ̌
ˇ
qf .a/C f .'.b//

1C q
� 1

'.b/� a

'.b/Z

a

f .'.x//adq'.x/

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
q.'.b/� a/

1C q

1Z

0

.1 � .1C q/t/aDqf ..1 � t/aC t.'.b///0dqt

ˇ̌
ˇ̌
ˇ

�
ˇ̌
ˇ̌
ˇ
q.'.b/� a/

1C q

1Z

0

.1� .1C q/t/1� 1r

.1 � .1C q/t/
1
r aDqf ..1 � t/aC t.'.b///0dqt

ˇ̌
ˇ̌
ˇ

� q.'.b/� a/

1C q

 1Z

0

j1 � .1C q/tj0dqt

! 1
p

�
 1Z

0

j1 � .1C q/tjjaDqf ..1 � t/aC t.'.b///jr0dqt

! 1
r

D q.'.b/� a/

1C q

 
q.2C qC q3/

.1C q/3

! 1
p
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�
"

q.1C 4qC q2/

.1C qC q2/.1C q/3
jaDqf .a/jr

C q.1C 3q2 C 2q3/

.1C qC q2/.1C q/3
jaDqf .'.b//jr

# 1
r

:

This completes the proof. ut
Theorem 13. Let f W I D Œa; '.b/� � R ! R be a q-differentiable function on Iı
(the interior of I) with aDq be continuous and integrable on I where 0 < q < 1. If
jaDqf jr is quasi generalized convex function where p; r > 1, 1p C 1

r D 1, then

ˇ̌
ˇ̌
ˇ
qf .a/C f .'.b//

1C q
� 1

'.b/� a

'.b/Z

a

f .'.x//adq'.x/

ˇ̌
ˇ̌
ˇ

� q.'.b/� a/

1C q

 
q.2C qC q3/

.1C q/3

! 1
p

�
 

q.2C qC q3/

.1C q/3

h
supfjaDqf .a/j; jaDqf .'.b//jg

i! 1
r

:

Proof. Using Lemma 3, Holder’s inequality and the fact that jaDqf jr is quasi-
generalized convex function, we have

ˇ̌
ˇ̌
ˇ
qf .a/C f .'.b//

1C q
� 1

'.b/� a

'.b/Z

a

f .'.x//adq'.x/

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
q.'.b/� a/

1C q

1Z

0

.1 � .1C q/t/aDqf ..1 � t/aC t.'.b///0dqt

ˇ̌
ˇ̌
ˇ

�
ˇ̌
ˇ̌
ˇ
q.'.b/� a/

1C q

1Z

0

.1� .1C q/t/1�
1
r

.1 � .1C q/t/
1
r aDqf ..1 � t/aC t.'.b///0dqt

ˇ̌
ˇ̌
ˇ

� q.'.b/� a/

1C q

 1Z

0

j1 � .1C q/tj0dqt

! 1
p
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�
 1Z

0

j1 � .1C q/tjjaDqf ..1 � t/aC t.'.b///jr0dqt

! 1
r

D q.'.b/� a/

1C q

 
q.2C qC q3/

.1C q/3

! 1
p

�
 

q.2C qC q3/

.1C q/3

h
supfjaDqf .a/j; jaDqf .'.b//jg

i! 1
r

:

This completes the proof. ut
Theorem 14. Let f W I D Œa; '.b/� � R ! R be a q-differentiable function on Iı
(the interior of I) with aDq be continuous and integrable on I where 0 < q < 1. If
jaDqf jr is quasi generalized convex function where r > 1, then

ˇ̌
ˇ̌
ˇ
qf .a/C f .'.b//

1C q
� 1

'.b/� a

'.b/Z

a

f .'.x//adq'.x/

ˇ̌
ˇ̌
ˇ

� q2.'.b/� a/.2C qC q3/

.1C q/4

 
supfjaDqf .a/j; jaDqf .'.b//jg

! 1
r

:

Proof. Using Lemma 3, power mean inequality and the fact that jaDqf jr is quasi-
generalized convex function, we have

ˇ̌
ˇ̌
ˇ
qf .a/C f .'.b//

1C q
� 1

'.b/� a

'.b/Z

a

f .'.x//adq'.x/

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
q.'.b/� a/

1C q

1Z

0

.1 � .1C q/t/aDqf ..1 � t/aC t.'.b///0dqt

ˇ̌
ˇ̌
ˇ

� q.'.b/� a/

1C q

 1Z

0

j1 � .1C q/tj0dqt

!1� 1r

�
 1Z

0

j1� .1C q/tjjaDqf ..1 � t/aC t.'.b///jr0dqt

! 1
r

D q2.'.b/� a/.2C qC q3/

.1C q/4

 
supfjaDqf .a/j; jaDqf .'.b//jg

! 1
r

:

This completes the proof. ut
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A Digital Signature Scheme Based
on Two Hard Problems

Dimitrios Poulakis and Robert Rolland

Abstract In this paper we propose a signature scheme based on two intractable
problems, namely the integer factorization problem and the discrete logarithm
problem for elliptic curves. It is suitable for applications requiring long-term
security and provides smaller signatures than the existing schemes based on the
integer factorization and integer discrete logarithm problems.

Keywords: Digital signature • Integer factorization • Elliptic curve discrete
logarithm • Supersingular elliptic curves • Pairing • Map to point function
• Long-term security

1 Introduction

Many applications of the Information Technology, such as encryption of sensitive
medical data or digital signatures for contracts, need long-term cryptographic secu-
rity. Unfortunately, today’s cryptography provides strong tools only for short-term
security [5]. Especially, digital signatures do not guarantee the desired long-term
security. In order to achieve this goal Maseberg [20] suggested the use of more than
one sufficiently independent signature schemes. Thus, if one of them is broken,
then it can be replaced by a new secure one. Afterward the document has to be re-
signed. Again we have more than one valid signatures of our document. Of course,
a drawback of the method is that the document has to be re-signed.

In order to avoid this problem, it may be interesting for applications with long-
term, to base the security of cryptographic primitives on two difficult problems, so if
any of these problems is broken, the other will still be valid and hence the signature
will be protected. We propose in this paper an efficient signature scheme built taking
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into account this constraint. The following signature scheme is based on the integer
factorization problem and the discrete logarithm problem on a supersingular elliptic
curve. Remark that these two problems have similar resistance to attack, thus they
can coexist within the same protocol. The use of a supersingular curve allows us to
easily build a pairing that we use to verify the signature.

Several signature schemes combining the intractability of the integer factoriza-
tion problem and integer discrete logarithm problem were proposed but they have
proved either to be enough to solve the one of two problems for breaking the system
or to have other security problems [6, 9, 16–19, 22, 27]. An interesting scheme based
on the above problems is GPS [8]. Furthermore, some recent such schemes are given
in [12, 13, 19, 24, 25, 27].

In Sect. 2 we describe the infrastructure for the implementation of the scheme.
Then we present the key generation, the generation of a signature and the verifi-
cation. In Sect. 3 we show how to build an elliptic curve adapted to the situation
and how to define a valuable pairing on it. In Sect. 4 we address the problem of the
map to point function and give a practical solution. We deal with the performance
of our scheme and compare it with others in Sect. 5. In Sect. 6 we give a complete
example that shows that the establishment of such a system can be made in practice.
In Sect. 7 we study the security of the scheme. Finally Sect. 8 concludes the paper.

2 The Proposed Signature Scheme

In this section we present our signature scheme.

2.1 Public and Private Key Generation

A user A , who wants to create a public and a private key selects:

1. primes p1 and p2 such that the factorization of n D p1p2 is unfeasible;
2. an elliptic curve E over a finite field Fq, a point P 2 E.Fq/ with ord.P/ D n and

an efficiently computable pairing en such that en.P;P/ is a primitive nth root of
1;

3. g 2 f1; : : : ; n � 1g with gcd.g; n/ D 1, a 2 f1; : : : ; �.n/ � 1g and computes
Q D gaP;

4. two one-way, collision-free hash functions, h W f0; 1g� ! f0; : : : ; n � 1g and
H W f0; 1g� !< P >; where < P > is the subgroup of E.Fq/ generated by P.

A publishes the elliptic curve E, the pairing en, and the hash functions h and H. The
public key of A is .P;Q; g; n/ and his private key .a; p1; p2/.
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2.2 Signature Generation

The user A wants to sign a message m 2 f0; 1g�. Then he chooses at random
k; l 2 f1; : : : ; �.n/� 1g such that kC l D a. Next, he computes

s D kC h.m/C n mod �.n/ and S D glH.m/:

Let x.S/ be the x-coordinate of S and b a bit determining S. The signature of m is
.s; x.S/; b/.

2.3 Verification

Suppose that .s; x; b/ is the signature of m. The receiver uses b in order to determine
y such that S D .x; y/ is a point of E.Fq/. He accepts the signature if and only if

en.g
sP; S/ D en.g

h.m/CnQ;H.m//:

Proof of Correctness of Verification. Suppose that the signature .x; s; b/ is valid and
S D .x; y/ is a point of E.Fq/. Then we get

en.g
sP; S/ D en.g

kCh.m/CnP; glH.m// D en.g
h.m/CnQ;H.m//:

Suppose now we have a couple .s; S/, where s 2 f1; : : : ; �.n/g and S 2< P >,
such that

en.g
sP; S/ D en.g

h.m/CnQ;H.m//:

Since H.m/; S 2< P >, there are u; v 2 f0; : : : ; n � 1g such that S D uP and
H.m/ D vP. Thus we get

en..g
su � gh.m/CnCav/P;P/ D 1:

The element en.P;P/ is a primitive nth root of 1 and so, we obtain

uv�1 � gaCh.m/Cn�s .mod n/;

Putting l D aC h.m/C n � s mod �.n/ and k D a � l mod �.n/, we get

s D kC h.m/C n mod �.n/ and S D glH.m/:

It follows that .s; x.S/; b/ is the signature of m (where b is a bit determining S).
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3 The Elliptic Curve and the Pairing

In this section we show how we can construct an elliptic with the desired properties
in order to implement our signature scheme. This task is achieved by the following
algorithm:

1. select two large prime numbers p1 and p2 such that the factorization of p1 �
1, p2 � 1 are known and the computation of the factorization of n D p1p2 is
unfeasible;

2. select a random prime number p and compute m D ordn.p/;
3. find, using the algorithm of [4], a supersingular elliptic curve E over Fp2m with

trace t D 2pm;
4. return Fp2m and E.

Since the trace of E is t D 2pm, we get jE.Fp2m/j D .pm�1/2. On the other hand,
we have m D ordn.p/, whence njpm�1, and so n is a divisor of jE.Fp2m/j. Therefore
E.Fp2m/ contains a subgroup of order n.

By Bróker [4, Theorem 1.1], we obtain, under the assumption that the Gen-
eralized Riemman Hypothesis is true, that the time complexity of Step 3 is
QO..log p2m/3/. Furthermore, since the factorization of �.n/ D .p1 � 1/.p2 � 1/
is known, the time needed for the computation of m is O..log n/2= log log n/
[15, Section 4.4].

For the implementation of our signature scheme we also need a point P with
order n and an efficiently computable pairing en such that en.P;P/ is a primitive
nth root of 1. The Weil pairing does not fulfill this requirement and also, in many
instances, the Tate pairing; the same happens for the eta pairing (the eta and omega
pairings can be computed only on the ordinary elliptic curves) [1, 10, 28]. Let �n be
one of the previous pairings on EŒn�. Following the method introduced by Verheul
[23], we use a distortion map � such that the points P and �.P/ is a generating set
for EŒn� and we consider the pairing en.P;Q/ D �n.P; �.Q//: The algorithm of [7,
Section 6] provides us a method for the determination of P and �.

Another method for the construction of the elliptic curve E which is quite
efficient in practice is given by the following algorithm:

1. draw at random a prime number p1 of a given size l (for example, l is 1024 bits);
2. draw at random a number p2 of size l;
3. repeat p2 D NextPrime.p2/ until 4p1p2 � 1 is prime;
4. return p D 4p1p2 � 1.

It is not proved that this algorithm will stop with a large probability. This is an
open problem which is for p1 D 2 the Sophie Germain number problem. But in
practice we obtain a result p which is a prime of length 2l.

Since p � 3 .mod 4/, the elliptic curve defined over Fp by the equation

y2 D x3 C ax;
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where �a is not a square in Fp, is supersingular with p C 1 D 4p1p2 points.
By Vladut [26, Theorem 2.1], the group E.Fp/ is either cyclic or E.Fp/ '
Z=2p1p2Z � Z=2Z. In each case the group E.Fp/ has only one subgroup of order
n D p1p2, and this subgroup is cyclic.

If �n is one of the Weil, Tate, or eta pairings on EŒn�, then we use the distortion
map �.Q/ D �.x; y/ D .�x; iy/ with i2 D �1 (cf. [14]) and so, we obtain the
following pairing: en.P;Q/ D �n.P; �.Q//:

4 The Map to Point Function

Let G be the subgroup of order n D p1p2 of E.Fq/ introduced in the previous section.
In order to sign using the discrete logarithm problem on this group, we have to define
a hash function into the group G, namely a map to point function. This problem was
studied by various authors giving their own method, for example in [3] or [11]. We
give here the following solution. Let us denote by jnj D blog2.n/c C 1 the size of
n. Let h be a key derivation function, possibly built using a standard hash function.
We recall that h maps a message M and a bitlength l to a bit string h.M; l/ of length
l. Moreover we will suppose that h acts as a good pseudo-random generator. Let Q
be a generator of the group G. Let us denote by .Ti/i�0 the sequence of bit strings
defined by T0 D 0 and for i 
 1

Ti D au � � � a0;

where i DPu
jD0 aj2

j and au D 1.
To map the message m to a point H.m/ we run the following algorithm:
i WD 0;

Repeat
k WD h.mjjTi; jnj/;
i WD iC 1;
Until k < n;
Output H.M/ D k:Q;

This Las Vegas algorithm has a probability zero to never stop. In practice this
algorithm stops quickly, namely as 2jnj�1 < n < 2jnj then the expected value of
the number of iterations is <2. If one can find a collision for H it is easy to find a
collision for h.

5 Performance Analysis

In this section we analyze the performance of our scheme. The computation of
s requires two additions modulo �.n/. The computation of S needs a modular
exponentiation gl .mod n/ and the computations of H.m/ and glH.m/. Note that
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the computation of gl mod n and k C n mod �.n/ can be done off-line. Thus, the
signature generation requires only a modular addition and a point multiplication on
the elliptic curve. The signature verification needs two modular exponentiations,
two points multiplications on the elliptic curves, and two pairing computations.
Moreover note that the length of the signature of a message is the double of its
length.

The signature generation in the GPS scheme [8] needs only one modular
exponentiation and the signature verification two. The signature length is the triple
of the message length. The most efficient of the schemes given in [12, 13, 19, 24,
25, 27] requires three modular exponentiations for the signature generation and four
modular exponentiations for the signature verification. The signature length of the
above schemes is larger than the double of the message length.

Hence we see that the signature length in our scheme is smaller than that in GPS
and the other schemes. Moreover, the performance of the proposed algorithm is
competitive to the performance of the above schemes.

6 Example

In this section we give an example of our signature scheme. We consider the 1024-
bits primes

p1 WD 61087960575038789816988536114150792266377636351843177587564
31924627119957041754060999158399749767833896533906296859311

25485163415231551275212583044052150577614828617005803730389

43877400689242960278845109703690843026188873847913442234432

36591255684234493362159572100747699404245339214008078743836

7162669180839

and

p2 WD 950794575789036193985289494100238271764913649341936446441081

377072500578035754538268902518142982960234055319718348171564

531835348013169675598575434394528269729126327128190711758193

487088395696503090307111303433870155114599617217105648040005

344506796898422897977489196110610260665664553656001074068087

13249343:

We take n D p1p2. The number q D 4n� 1 is a prime. Since q � 3 .mod 4/, the
elliptic curve E defined by the equation y2 D x3 C x over Fq is supersingular. The
point P D .x.P/; y.P//, where x.P/ D 21500 C 2 and

y.P/ D 92629334720096485394250229023531473128561210303747369871170
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532503591346084781038053790347765721405539373837575715741111302632

222520728502603977901582753916707479492439228918725855423715991340

003621514555505206507732534242013847767107764800751435936328543137

789247911179152023276247696951339536945505339588067200491193957998

044975563046555194785086909103272771864842171753848435480722850484

547366650914307823107502201128733622163636510656608071825566283432

994640380462713709910638633429178083083878848700277309884412794341

026781057881112432733889255328105052291841518470922081921433382412

472012678120546125640726148962:

has order n. We take g D 2,

a D 2256 C 29 C 1 D 11579208923731619542357098500868790785326998466
5640564039457584007913129640449

and we compute

ga mod n D 291246612437704212466554616370488460582482345
412043139387071627568366461190658309237330580043030838224854789252

968050905018578440545530480131761225347896913705349073419345335895

868832920014327349522957752032149784650672578527400186028060209053

035728070430079944852013985987562947197675511448867860271390438151

997510376157277527652722786834963496843487625119512000324307142997

876216044005309541179123902262183075125684914484636806915549910481

194533920018176890664864601123368083711476432553316859751469426810

204461407620204756483516542976417259702626996120442929825569733396

7126221051950952443115939209262561714767443:

Next, we compute Q D gaP D .x.Q/; y.Q//, where

x.Q/ D 492906626963089094011867684016548035835802792163377707597056
795455537761970341320418289803336076175870732053896841006011789243

411173491601076264818884432777686675649566399360544060115589059409

495626348669253033853643920668587107209662122339196308521380419432
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395876777001037759129809826188826444792896302483531297500328577661

115644137663377694781584798800831919655207788055426633821916253648

545542264181819923868715936604077661019515870909292645145292612582

082056454491673626406957411250447615805464800603537427266421084067

068889942487927367826706242600925470755091415792336658258887358233

6648011173165127581579893233

and

y.Q/ D 925164000667984941436213463843562867132842692526639503713623
100761058759325653912386860742637828197211675023371765292190166225

688907658763278636042952123928199605188431021730950523522172176061

249916336352942245517540928470987327163690899169971423566730046146

040131461711982514952573761305725771859092373093590718229549775728

318091393459721685022050067573052541368464407556329663187692087325

785318806656273634451502898900933909082715458588013832847281982918

045250406217417892195982283414569723280463029281881025844011710313

003637423244716948430928877376648184124169704330493421073010959904

2000468957343998962535886947:

Therefore .P;Q; 2; n/ and .a; p1; p2/ are a public key and the corresponding private
key for our signature scheme. Moreover, we can use the Tate pairing with the
distortion map �.x; y/ D .�x; iy/ with i2 D �1.

7 Security of the Scheme

In this section we shall discuss the security of our system. First, we remark that if
an attacker wants to compute the private key .a; p1; p2/ from the public key, he has
to factorize n and to compute the discrete logarithm ga of Q to the base P and next
to calculate the discrete logarithm a of ga to the base g in the group Zn. Note that
an algorithm which computes the discrete logarithm modulo n implies an algorithm
which breaks the Composite Diffie–Hellman key distribution scheme for n and any
algorithm which breaks this scheme for a non-negligible proportion of the possible
inputs can be used to factorize n [2, 21].
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In order to study the security of the scheme we are going to look at the two worst
cases:

1. the factorization problem is broken but the elliptic curve discrete logarithm
problem is not;

2. the elliptic curve discrete logarithm problem is broken but the factorization
problem is not.

In each case we will prove that if an attacker is able to generate a valid signature
for any given message m, then it is able to solve, in the first case the elliptic curve
discrete logarithm problem and in the second case the factorization problem.

1. Let us suppose that the attacker is able to factorize n. Then he can compute �.n/.
But he is unable to compute a since a is protected by the elliptic curve discrete
logarithm problem and by the discrete logarithm problem modulo n, because the
only known relation involving a is Q D gaP. So, in order to produce a valid
signature of a message m the attacker has only two possibilities: he can arbitrary
choose k, and then he can compute s but not S, or choose arbitrary l and he can
compute S but not s.

2. Let us suppose now that the attacker is able to solve the elliptic curve discrete
logarithm problem. Then he can compute ga but as the factorization problem
is not broken the discrete logarithm problem modulo n is not broken and
consequently he cannot compute a (cf. the beginning of this section). Then as
in (1) he cannot compute simultaneously s and S.

8 Conclusion

In this paper we defined a signature system based on two difficult arithmetic
problems. In the framework chosen, these problems have similar resistance to
known attacks. We explained how to implement in practice all the basic functions
we need for the establishment and operation of this system. This strategy has an
interest in any application that includes a signature to be valid for long. Indeed, it is
hoped that if any of the underlying problems is broken, the other will still be valid.
In this case, the signature should be regenerated with a new system, without the
chain of valid signatures being broken. Finally, the signature length of our scheme
is smaller than that of the schemes based on integer factorization and integer discrete
logarithm problems, and its performance is competitive to that of these schemes.
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Randomness in Cryptography

(Invited Talk)

Robert Rolland

Abstract This talk is a short overview [This overview is partially based on the
paper (Ballet and Rolland, Cryptogr. Commun. 3(4), 189–206, 2011)] on the use of
randomness in cryptography. Firstly we give some indications on building and using
the randomness and pseudo randomness in a cryptographic context. In the second
step, we study more formally the notion of pseudo-random sequence. We introduce
the notion of distinguisher and prediction algorithms and we compare these two
notions.

Keywords: Cryptography • Distinguisher • Prediction • Pseudo-random
generator • Ramdomness • Seed • Yao theorem

1 Introduction

Randomness is among the main tools in cryptography. Many cryptographic prim-
itives or protocols include a random part. It is the case for stream ciphers,
construction of keys, key exchange in the Ephemeral Unified Model, construction of
an initial value, etc. Usually, randomness is simulated by a pseudo-random generator
or occasionally, when we only need a small number of isolated values, by a built-in
physical generator.

We must distinguish between two typical mode of use. On the one hand, the
random draw of a number of medium size, for example a secret key, on the other
hand the random draw of a very large sequence of bits as, for example, in the case
of a stream cipher. In the first case we can use a primitive of general interest, such
as a hash function or a block cipher. The second case is more difficult. Indeed,
a typical application leading to this situation is the stream cipher for which the
main interest is speed. Then we must build a system faster than usual block ciphers
without compromising security, which is difficult because we must treat each bit
upon arrival. Then we cannot, in order to increase the security, iterate a round

R. Rolland (�)
Institut de Mathématiques de Marseille, Université d’Aix-Marseille, Case 907,
13288 Marseille Cedex 9, France
e-mail: robert.rolland@acrypta.fr

© Springer International Publishing Switzerland 2015
N.J. Daras, M.Th. Rassias (eds.), Computation, Cryptography,
and Network Security, DOI 10.1007/978-3-319-18275-9_20

451

mailto:robert.rolland@acrypta.fr


452 R. Rolland

function as in the case of a block cipher. For this case we refer to the following
European Project eSTREAM:

http://www.ecrypt.eu.org/stream/
In the first part of this talk we present a practical study of the concept of

randomness in cryptography. This includes a practical way to construct a seed and
a pseudo-random generator for medium size data in a Linux environment.

The second part is theoretical. In that part we precisely define the notion of
pseudo-random generator. Then we define the notion of distinguisher and the notion
of prediction. Yao’s theorem [7] gives an equivalence between the indistinguisha-
bility of a pseudo-random generator and the unpredictability of the next bit from
an asymptotic point of view. In this paper we present modified versions of Yao’s
theorem (see [1]) which can be of interest for the study of practical cryptographic
primitives. In particular we consider non-asymptotic versions. We study the case
of one pseudo-random generator, then the case of a family of pseudo-random
generators with the same fixed length, and finally we consider the asymptotic case.
We compute in each case the cost of the reduction (in the sense of complexity
theory) between the two algorithms.

Some books on pseudo-random generators as well as probabilistic algorithms
and proofs are given in [2–4].

2 Pseudo-Random Number Generator

2.1 How to Generate a Seed

Generally, operating systems provide a physical source of randomness based on
different component behaviors: keyboard, mouse, clock, processes, etc. As this
source of randomness does not contain a large amount of bits, it is only used to
generate an occasional number as a seed. For example, under a linux system the
device /dev/random plays this role. Then to get a (printable) seed under linux we
can give the following instructions:

head -c 128 /dev/random j
openssl dgst -sha256 -binary j

openssl enc -base64 > seed.b64

The first line extracts 128 bits of the /dev/random device and sends them in the
pipe. The second line reads the pipe, hashes these 128 bits, and returns the 256 bits
of the hash in the pipe (binary format). The third line reads the pipe and transforms
in base64 format the 256 bits in 44 symbols included the symbol “=” at the end in
order to have a printable result.

http://www.ecrypt.eu.org/stream/


Randomness in Cryptography 453

Note that the linux device /dev/random can be improved by using the haveged
deamon based on the Havege algorithm (see [5]).

2.2 Example: How to Construct a Pseudo-Random Generator

Let H be a hash function (for example sha256). From a seed s (at least 128 bits) we
construct the following pseudo-random sequence Sn of bits :

s0 D h.s/; s1 D h.sjjs0/; � � � ; sn D h.sjjsn�1/; � � �
Sn D s1jjs2jj � � � jjsn

It is also possible to use AES (as for counter mode) to construct a pseudo-random
generator. Let us remark that this type of pseudo-random generator is also called a
key derivation function as its main interest is building cryptographic keys. We refer
to the standard ISO 18033-2 to see how to implement in practice such a system
(see [6]).

However, as remarked before, for stream ciphers it is mandatory to use a specific
construction if a faster encryption device than AES is hoped (beware the attacks
against stream ciphers).

3 Theoretical Point of View

3.1 Definition of a Pseudo-Random Number Generator

Definition 1. Let k and n be two integers such that n > k. A pseudo-random
generator (prng) is a function f from a subset U of f0; 1gk into f0; 1gn:

f W U � f0; 1gk ! f0; 1gn;
mapping a seed X0 2 U to a pseudo-random finite sequence

f .X0/ D .x1; x2; : : : ; xn/:

We shall denote by .f ;U; k; n/ this prng.

A typical case is when u is a bijection from U onto itself, Xi is a secret internal
state built recursively from X0 by Xi D u.Xi�1/ and the bit xi is extracted from Xi by
a function v: xi D v.Xi/:

f .X0/ D
�
v ı u.X0/; v ı u2.X0/; : : : ; v ı un.X0/

�
:
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3.2 Distinguisher

Roughly speaking a distinguisher is a probabilistic algorithm able to distinguish
a true random sequence of a pseudorandom one. Let us specify this informal
definition. Let .f ;U; k; n/ be a prng. Let A be a probabilistic algorithm that applies
to a binary vector Y D .Y1; : : : ;Yn/ and which outputs one bit.

True randomness experiment:

Let us denote by pf ;0 the probability of the following event:
we draw at random an element Y of f0; 1gn and A .Y/ is 1.

Pseudo randomness experiment:

Let us denote by pf ;n the probability of the following event:
we draw at random an element of U, compute Y D f .U/ and A .Y/ is 1.

Now we can define the Advantage of a distinguisher:

The Advantage of A to distinguish a true random sequence of n bits from the
pseudo-random sequence given by f is

Advdist
f .A / D jpf ;0 � pf ;nj:

Then, we define a .T; �/-distinguisher:

Definition 2. Let f be a pseudo-random generator. Let T and � be positive real
numbers. A .T; �/-distinguisher for f is a probabilistic algorithm A such that

1. the maximal running time of A is � T,
2. the input of A is an element of f0; 1gn,
3. the output of A is a bit b,
4. the algorithmA can distinguish the pseudo-random generator from the uniform

distribution, namely

Advdist
f .A / > �:
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3.3 Prediction

Let f a pseudo-random generator whose image is in f0; 1gl. A prediction algorithm
is a probabilistic algorithm which has the ability to predict the next bit of a finite
sequence. Let us specify this informal definition. Let 1 � s < l. The following
random experiment involves a probabilistic algorithmB having for input a sequence
of s bits and for output a bit.

Experiment B:

Exptpred
f;s .B/

X0  U � f0; 1gk
X  f .X0/ (notation : X D .x1; � � � ; xl/)
Y  .x1; x2; � � � ; xs/

b B.Y/
if b D xsC1

then return 1
else return 0

fi
End:

Let rf ;s be the probability that the experiment Exptpred
f;s .B/ returns 1.

Definition 3. The advantage of the algorithm B to predict the bit of index .sC 1/
computed by f is:

Advpred
f ;s .B/ D

ˇ̌
ˇ̌rf ;s � 1

2

ˇ̌
ˇ̌ :

Definition 4. Let f be a pseudo-random generator. Let T and � be positive real
numbers and s be an integer such that 1 � s < l. A .T; s; �/-prediction algorithm B
is a probabilistic algorithm such that:

1. the maximal running time of B is � T,
2. the input of B is an element of f0; 1gs,
3. the output of B is a bit,
4. the algorithm B can predict the next bit, namely

Advpred
f ;s .B/ > �:

We define now the notion of .T; s; �/-unpredictable pseudo-random generator.
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Definition 5. Let f be a pseudo-random generator and s an integer such that 1 �
s < l. The generator f is .T; s; �/-unpredictable, if there does not exist any .T; s; �/-
prediction algorithm.

3.4 A Static Version of Yao’s Theorem

We give here two theorems that summarize in a static context the relations between
prediction algorithms and distinguishers. These results are proved in [1].

Theorem 1. We consider the following pseudo-random generator:

f W U � f0; 1gk ! f0; 1gl:

If we have a

.T; s; �/-prediction algorithm

for f , we can build a

.T C c; �/-distinguisher;

where c is the constant time needed to compare two bits.

Theorem 2. Let f be a pseudo-random generator:

f W U � f0; 1gk ! f0; 1gl:

Let us suppose that there is a .T; �/-distinguisher for f , then there exist a s such that
1 � s � l and a .TC.c1lCc2/; s; �=l/-prediction algorithm where c1 is the constant
time needed to draw one bit at random, and c2 is the constant time needed to test
the value of a bit and then return a bit depending upon the result of the test.

3.5 Family of Pseudo-Random Generators

In a realistic situation we must, in the random experiment which defines the
attacker’s advantage, draw at random the function f from a family � according
to a probability law ı. For example, let us define the family of Blum, Blum, Shub
generators. Let us choose two Blum prime p and q, namely p and q are such that
p � 3mod4 and q � 3mod4. From a secret seed s0 we construct a sequence such
that sk D s2k�1mod.pq/. Note that sk is an internal state which must remain secret.
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Then the bit xk of the pseudo random sequence is the last bit of sk. If we fix a size for
the product pq, we can consider the family of pseudo-random generators constructed
with all the couple .p; q/ of distinct primes such that pq has the required size.

If we slightly modify the definitions according to this new context, we obtain
similar results.

Theorem 3. Let � be a family of pseudo-random generators having the same size
where each f 2 � is a function

f W Uf � f0; 1gk ! f0; 1gl:
If we have a

.T; s; �/-prediction algorithm for �

we can build a

.T C c; �/-distinguisher for �;

where c is the constant time needed to compare two bits.

Theorem 4. Let � be a family of pseudo-random generators having the same size
where each f 2 � is a function

f W Uf � f0; 1gk ! f0; 1gl:

If we have a

.T; �/-distinguisher algorithm for �

we can build a

.T C c1lC c2; s; �=l/-prediction algorithm for �

for some value of s (1 � s < l), where c1 is the constant time needed to draw one
bit at random, and c2 is the constant time needed to test the value of a bit and then
to return a bit.

3.6 Asymptotic Behavior

As a consequence of the previous results for fixed k and l, we can deduce results
on the asymptotic theory of the pseudo-random generators, namely k growing to
infinity and l D l.k/ > k a polynomial function of k.
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Let k be a positive integer (the security parameter) and l.k/ a polynomial function
of k such that l.k/ > k. For any k we have a set �k of deterministic functions such
that

1. if f 2 �k, then f is a function from a subset Uf of f0; 1gk into f0; 1gl.k/;
2. there exists a polynomial function t.k/ such that for any k, any f 2 �k and any

X 2 Uf the computation time of f .X/ is upper-bounded by t.k/;
3. for any k we provide a probability ık on the set �k.

The asymptotic notions of indistinguishability and unpredictability are derived
from the previous definitions. We define now a distinguisher A to be a probabilistic
polynomial algorithm having for inputs the security parameter k, a function f 2 �k

and a vector Y 2 f0; 1gl.k/, and which outputs a bit. Let k be an integer, we will
denote by Ak the probabilistic algorithm obtained from A by fixing the first entry
to the value k.

Definition 6. The family � D .�k/k>0 of sets of pseudo-random generators is said
asymptotically secure if for any polynomial S.k/, any positive integer u and any
distinguisher A with running time � S.k/, the advantage of the algorithm Ak is a
negligible function of 1

ku , namely

lim
k!C1 ku Advdist

�k
.Ak/ D 0:

Let s D .sk/k�1 be an increasing sequence of positive integers such that 1 �
sk < l.k/. We define now an s-prediction algorithm to be a probabilistic polynomial
algorithm B having for inputs the security parameter k, a function f 2 �k and a
vector Z 2 f0; 1gsk , and which outputs a bit. Let k be an integer, we will denote
by Bk the probabilistic algorithm obtained from B by fixing the first entry to the
value k.

Definition 7. The family � D .�k/k>0 of sets of pseudo-random generators is said
asymptotically unpredictable if for any polynomial S.k/, any sequence s and any
s-prediction algorithm B with running time � S.k/, the advantage of the sk-
prediction algorithm Bk is a negligible function of 1

ku , namely

lim
k!C1 ku Advpred

�k;sk
.Ak/ D 0:

We can now state the asymptotic version of the Yao’s theorem:

Theorem 5. Let l.k/ be a polynomial function of one integer variable k such that
l.k/ > k. Let � D .�k/k>0 a family of sets, where any set �k is a probability set of
random generators mapping a subset of f0; 1gk into f0; 1gl.k/ (more precisely, each
f 2 �k has its own definition subset Uf � f0; 1gk). The family � is asymptotically
secure if and only if it is asymptotically unpredictable.

Proof. See [1].
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Current Challenges for IT Security
with Focus on Biometry
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Abstract In this paper we give a survey of biometrical applications in security
context. We start with a brief overview of the different biometric modalities which
are most frequently used and compare their security contribution with classical
cryptographic primitives. We then consider the case of fingerprints when used
as password surrogates. We discuss the main security concerns of biometry in
more detail on this practical example and make a point that the false accept error
probability should be considered as the de facto measure of security.
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1 Introduction

Confidential communication is a request with an old tradition, mostly with military
applications. Two parties wish to communicate in such a way that no unauthorized
(by them) third party may have a slight chance to reveal the content of the
communication. Some side-requirements in such a setting are

• The request for secure authentication.
• The request for provable signatures, or, more generally, insurance of the

impossibility to repudiate the origin of a message.

A common answer to these requirements was provided by cryptography. A log-
ical art for dealing with this problem is known from early Antiquity; until recent
times. It was commonly accepted that for confidentiality, one needed some secret
keys that were shared only by the authorized parties. The algorithm by which these
secret keys were used should also preferably contain some private tricks to make it
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more reliable. Since the ideas for encryption were based on a common collection
of techniques, one could not require completely private algorithms; but it was
assumed that by adding some special tricks and complexity, an algorithm would
become more resistant to attacks. The general attitude in this respect was completely
reversed in modern cryptography, and since decades we prefer to use publically
known algorithms, that have resisted the scrutiny of a world-wide community of
specialists, thus proving their reliability. It is believed that additional private tricks
can often lead to providing a false impression of security, which may lead to errors
and attacks.

Transposing the alphabet of a spoken language into a sequence of numeric codes
is always useful for discussing cryptographic ideas. Suppose thus that the Latin
alphabet a; b; : : : ; z is encoded in ascending order by the numbers 0; 1; : : : ; 25. The
idea of permuting the letters cyclically by a constant � was purportedly used by
Caesar in the Gallic wars—hence the name of Caesar code. For instance, for � D 4,
the word

ATHENS

becomes

EYLIRW:

For decryption, use � D 25 � 4 D 21. The main idea of this approach to
confidentiality, which is based on the sharing of a secret key—hence the term secret
key algorithms—is some kind of key triggered permutation. One may permute
the very alphabet in which the message is written—the seminal idea used in the
so-called Caesar Code. More sophisticated variants will first translate the written
text by means of a code, and then use chains of key-driven permutations for
encryption. This approach is applied even by modern secret key algorithms such
as the internationally used data encryption algorithm DEA. While confidentiality is
obtained by protecting the secret key, the authenticity of the peer is only deduced
from the fact that he possess the secret key which should not be obtained by any
other person. And there is no possible means to bind messages to the identity of
their issuer in secret key mode—by the very fact that at least two peers must share
the same key for communication, it becomes obvious that there is no individual
information available for identifying the author of a message (Fig. 1).

Therefore, secret key cryptography may still be used successfully even in modern
computer times, for protecting the message’s content. At the advent of computer
networks, the alternative of public key cryptography was invented independently by
two groups of young American researchers involved in the incipient ARPA net of
the 1970s and by an engineer working for the MI5, who was allowed to disclose
his discovery in the year 2000. The common idea is to split the key of a peer,
say A, for Alice, in two parts, a private part S.A/ and a public part P.A/ ¨ S.A/,
which is available to the world. Encryption does work both ways like in the secret
case. Only, for writing to A, peers B will use the public key, creating messages that



Current Biometric Security 463

Fig. 1 Caesar code

19
18

17

16

15
14 13 12

11

10

9
8

7
6

5

4

3

2
1025

24

23

22

21
20

T
S

R

Q
P

O N M
L

K

J
I

H
G

F
E

D
C

BAZ
Y

X

W
V

U

TS
R

Q

P
O

N
M

L
K

J
I

H G F
E

D

C
B

A
Z

Y
X

W
V

U

can only be decrypted using the private key S.A/. In addition, Alice will now be
able to authenticate herself, by encrypting any public message—for instance “hello
world”—with her private key. Since nobody else should be able to find the private
key of Alice, upon description with the public key, Bob or anyone else, can be
convinced of the fact that it was indeed Alice that generated the encryption—in this
situation, the encryption with the private key stands for something like a handwritten
signature; it is therefore also called digital signature. The same procedure is used to
obtain non-repudiation of the origin of a message. These facilities are essential for
private secure electronic communication.

Therefore public key cryptography has found its exponential spread at the time
of the opening of the world wide web to the large public, in the mid-1990s. While
public key cryptography is found in more and more applications, several new
important problems arise

1. The reliability of public keys obtained in the public domain.
2. The multitude of secret key protections required.
3. The very reliability of hardware used in transactions that require personal

authentication.
4. User-friendliness.

The purpose of this paper is to discuss these challenges of modern IT security.
We shall focus hereby on a new facility which receives increasing attention and
use in this context, namely the use of biometric traits for identifying humans.
After explaining the context in which new challenges to information security arise
and discussing the possibilities and limitations of cryptography, we give a brief
introduction to the classical aspects of biometry, related to image identification.
After that we approach the core subject of this survey, which is the application
of biometry to secure applications, giving an overview of attempts that have
been done in this direction, their limitations, and discussing some new algorithms
that circumvent problems and vulnerabilities found with some state-of-the-art
algorithms.
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2 Trends and Challenges in Information Security

In the last three decades, cryptology has become a major field of research, together
with its Janus—faced duality: cryptography, for the design of algorithms and
protection principles and cryptanalysis for investigation of possible attacks against
these algorithms. The primitive algorithms are divided into:

A. Secret Key Algorithms
B. Public Key Algorithms
C. One way functions, hashes and
D. Key management.

We have already discussed briefly the first two. One way functions or hashes
have the paradoxical property of being highly non-injective maps, since they map
the realm of all possible messages to fixed length blocks, of, say, 192 bits. Such
a hash would be a map � W N ! Z=.192 � Z/. However, the size of the image
set is large enough to ensure that it is not computationally feasible to find even
one collision, i.e. x ¤ y with �.x/ D �.y/. Little to say about a match, which
would require to find, for a given hash of an unknown value, say h D �.x/ a value
y 2 N with �.y/ D h. The collision problem is easier, since it only requires two
random hashes to match; in the second case, one hash value is already fixed. One
way functions must fulfill certain properties related to the conditions discussed. If
they do, they are used both for saving passwords in a protected way, without the
use of encryption: just substitute a password by its hash value, so that the stored
data will reveal no information about the initial password. Hash words are also used
in connection with digital signatures: Messages to bind to a digital signature are
sometimes very large, so one prefers to replace them by their unique hash value and
place a digital signature on this hash value.

Key management is less of a cryptographic primitive and more of a set of
requirements for the privacy and reliability of keys and passwords used in secure
communication. Key management draws on standards of key-authentication, as
well as hardware token such as chip cards or other devices, carrying sensitive
keys, etc. It is the task of key management to provide not only for secure key
storage—either on encrypted memory or chip cards or similar devices—but also
for trust diffusion. By this we mean that two peers, say Alice and Bob, who
start communication by exchanging public keys, should be provided with means
to trust that the received public key does indeed belong to either Alice or Bob.
Avoiding attacks by masquerading false keys is thus an important task of key
management. The provisions for this task are a mixture of cryptography and protocol
administration.

It is probably the most important achievement of modern cryptography, that the
problems of secure information exchange have been reduced to primitives, endowed
with well-defined properties, and security is asserted on the base of such properties
which can be verified by the cryptologist in the whole world. Hence, the possibility
of attacks to a cryptographically secured environment can be also grouped in types
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of attacks based on well-defined attack scenarios. It is the presence of these attack
scenarios which helps establish the trust into cryptographic solutions, which end up
being standardized and used world-wide. A typical, very important standard in this
context is the TLS/SSL standard, which is the cryptographic standard of the world
wide web and provides secure communication facilities based on variable tool-kit
primitives.

One may conclude that the first decades of public key cryptography provided a
reliable system of well-scrutinized primitives for addressing each of the problems
A–D. The algorithms for public key encryption, hashes, and secret key algorithms
as well as the protocols for key management of the last decades are resistant to direct
attacks, beyond reasonable doubt.1

At the present day, cryptology offers protocols and primitives that are

C1. Reliable: They are well researched and secure within any reasonable doubt.
C2. Providing scalable security in the sense that it is possible in any of the

primitives, to adapt to increased performance of computers, by modifying the
length of keys in such a way that the expected time necessary to perform well-
defined attacks on a given primitive stays unchanged.

C3. deterministic in the sense that on the same input they will always produce the
same output. The notion of security if based on the provision that an attack on
a primitive should require computation time which stretches beyond hundreds
of years, under the most favorable circumstances and using the best algorithms
to date. Even the lowest accepted level of security is beyond doubt, and the
primitives are rejected as soon as theoretical advances show any vulnerability
allowing for attacks which can be performed in less than decades or even
centuries.

2.1 Recent Evolution

After these achievements were completed in the 1990s, the challenges of security
moved to more volatile topics. The most important ones being:

H1. The definition of trust: in an open environment, who should security protect
against whom? Can one trust the user more or the vendor providing some token
or hardware, that requires secure identification, which may be stolen?

H2. Viruses and denial of service attacks: both are attacks against an operation
system that can either spread over the whole internet or focus on certain target
intranets, leading to a blockage of their functionality by overload.

1We should not mistake beyond reasonable doubt with provable certainty. There is no mathemat-
ical proof for the lack of efficient attacks to the state-of-the-art primitives, and even if such one
would be provided, it would always be connected to a fixed context of application. But new attacks
can be invented, which were not thought of. Confidence relays on the intensive long time research
in the public academic domain, spent on the related cryptologic questions.
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H3. Hacker intrusions of intranets. These are often performed with the purpose of
commercial espionage and use any kind of vulnerabilities of operating system,
security implementations of even individual authentic users of the intranet.

Developing countermeasures to these very real and corrosive kinds of attacks is an
endeavor that requires all the apparatus of cryptology but reaches well beyond: it is
the modern task of security engineering.

One may thus observe that cryptology has offered its best and became now part of
the more complex task of IT security engineering. Paradoxically, the development
and spread of secure applications lead at the opposite end of complexity to new
challenges. Since applications are mostly independent and coming from various
vendors, the typical user of a large intranet becomes soon confronted with the
requirement to secure his identification with respect to a multitude of software,
each requiring safe passwords from him. This challenges human memory and it
mostly happens that users choose to bypass security prescriptions for passwords,
by either writing them down or using multiple passwords. This leads to user-driven
vulnerabilities.

2.2 The Advent of Biometry

In this context, biometry entered the scene by raising an expectation which is best
reflected in the paradigm you are what you are as opposed to you are what you know
or what you have. Indeed, in a cryptographical frame, the user is authenticated either
by knowledge of some secret, such as the password of some key, or by means of a
token which carries this secret information for him. Assuming she has control on
this access modalities, cryptology guarantees secure use. However, the control is
relativized by the reasons presented above. Therefore biometry suggests to identify
a person physically, by some unique traits that distinguish him uniquely. This can be
fingerprints or iris, face or writing mechanics, vein geometry or voice—a multitude
of physical and behavioral traits have been proposed and investigated in order to
uniquely identify a person. The wish becomes one to remove the responsibility for
identification information from the user and defer it to technology. The user presents
his physical appearance and trusts the system that it may well identify him and
not allow intrusions or any other kind of abuse of information related to him. The
approach was motivated by the success achieved in image processing during the
previous decades, which made the identification by means such as fingerprinting,
iris, or face recognition quite reliable. However, the advent of biometry and its
increasing actual use in security contexts raises a series of important questions.

B1. Unlike cryptographic authentication, the biometric one is not deterministic.
It is based on comparing real time acquired data—such as images of fingers,
iris, or a face, against templates stored in a database. It is certainly likely that
the new data best matches the one of the template of the individual stored in
the database; this is however only true within a certain stochastic measure of
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Fig. 2 Iris and fingerprint recognition

Fig. 3 Face recognition

doubt. The actual deterministic certainty is replaced by an error distribution of
false acceptances and false rejects. By deciding acceptance scores, the system
can adjust false accepts against false rejects—it will not be able though, to
remove any probability of error. This is the stochastic nature of biometric
identification (Figs. 2 and 3).

B2. Unlike passwords, which can be replaced when compromised, biometric traits
cannot be changed. As a consequence, the world wide system using one kind
of biometry cannot be reliably factored into more secure areas, by use of
advanced and expensive technology: a template acquired in a weak system
can be used for impersonating a user in any other system.

B3. Most important, the presence of a non-vanishing probability of false accep-
tance becomes the de facto measure of active information entropy present in
some type of biometric recognition. We describe in this paper some attacks we
performed, which confirm practically what one can well imagine by common
sense: in presence of a certain probability of false acceptance, one can use
databases of templates for successfully impersonating a stranger.
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Although these concerns raise serious caveats for the use of biometry, its user
friendliness leads to a continuous propagation of the idea of using it in secure
applications. Certainly, the concerns are known, but the vague idea of application
of lower or medium security concerns was brought as an argument. This breaks
the fundamental principle C3. of security: suddenly one seems willing to accept
secure contexts, in which attacks can be performed in very short time, yet expecting
that the outcome is not sufficiently important for motivating such attacks. It is a
defendable point of view, when the security context is a small intranet in which
users are satisfied with a formal protection; or when biometry protects access to
some protected areas or institutions. However, the consequences in view of B2,
namely the uniqueness and irreplaceability of biometric traits are poorly thought
through.

As an alternative, a separate branch of activity has been dedicated to a mixture
of cryptography and biometry, in which cryptography is supposed to well protect
the templates of biometry. However, this quite theoretical area of research operates
with the questionable notion of biometric traits being public data. This assumption
does take into account B2 and the possibility of compromising biometric traits—it
is though questionable, what the overall amount of security based on public data
may be. Most problematic is the fact that despite intense work, the possibility to
uncouple biometric from cryptographic security in these settings, and thus breaking
the weakest part in the chain has received no convincing answer yet.

Another approach, which we shall discuss in more detail in this paper, considers
biometry as some kind of passwords. They allow access to resources, and, like
passwords, should be stored under some one way transformation. This works
without problem in the deterministic context: the user presents a password, and
its hash value is stored. The hash value for one specific password will always be
the same, but an attacker cannot recover the password from knowing the hash. In
biometry though, any transformation of the template that can allow both to hide
the data from intruders and to perform identification will lead to a notable loss
of accuracy in the identification process, as compared to identification by means
of “cleartext templates.” Therefore, even in the context in which clear template
matching provides quite low entropy and thus protection levels, the requirement
for password protection leads to an additional loss of entropy, and thus even lower
security.

These questions are actively discussed in the literature of the last decade.
However, the community of biometry security is a mixed one, ranging from
engineers with good expertise in image processing and practical implementations of
biometrical matching systems, to specialists of information theory and cryptology
who bring new ideas from their domains, while treating biometry as a black box
yielding an amount of entropy. The responsibility that the entropy be measurable
and sufficient is deferred to applicants—which often are not trained for establishing
such complex measures. In fact no mathematical or statistical stringent definition
of entropy can be accurately applied in the context. It is one of the points which
shall make in this paper, that the de facto entropy of some biometric template is
simply given by the equal error rate of the system, i.e. the balanced probability of
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false accepts and false rejects. It is a realistic, albeit quite low quantity. A further
concern of the incipient biometric security research should be the one of giving
some accurate definitions of attacks. Like in the case of cryptographic security, these
attacks should specify clearly:

A1. What resources one assumes that the intruder may dispose of.
A2. What advantage the intruder wishes to gain.

After providing a brief overview of the currently most frequently used types of
biometric identification, we shall focus on the oldest and most spread fingerprint
recognition. We shall discuss in this context more in depth the various concerns
listed above and provide some partial answers.

3 Overview of Biometry

In our context, biometry is the scientific domain which is concerned with measure-
ments and images of (parts of the) human body, that are to high extent reproducible
and may also practically be used for the identification of individuals. In order to be
useful in applications, biometry should enjoy some fundamental properties, like

BM1. Universality, meaning that all potential users should possess this biometric
trait.

BM2. Uniqueness, in the sense that the biometric trait is different from person
to person, and thus helps distinguish individuals and authenticate them
correctly.

BM3. Permanence, meaning that the trait will not change in time, and thus, an
individual can be identified even on base of templates gathered long periods
of time before.

BM4. Some practical properties, such as performance, acceptability, and lack
of circumvention. The processing time for identification should be low
for reach “acceptable” recognition rates. The acceptability addresses a
subjective, social issue: it should be accepted by the bulk of society that
presenting one’s biometric traits is acceptable. For instance, in some culture,
showing the face of a woman and taking pictures of it, might appear as
unacceptable, and even presenting one’s eye into a camera may require
some preparation. Biometric traits may often be imitated by fakes, so it is
a requirement mainly for the authentication system, that it be capable of
distinguishing between artificial fakes and living biometric sources.

3.1 Fingerprints

It was established already before the turn of the last century, that the fingerprints
of humans contain sufficient information for distinguishing between any two
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Fig. 4 Distinguishing fingerprints

individuals (Fig. 4). Since, in addition, human leave everywhere there fingerprint,
due to the sweat and skin fat, the fingerprint became an important identification
method in forensics: techniques for gathering latent fingerprints from crime sites
developed, together with the science of dactyloscopy, which is the craft of finger-
print recognition, in the practice. The fingerprint can be seen as an overall picture
of a flaw of ridge lines, induced, in detail with natural endings and bifurcations
of the lines. These are called minutiae—while cores and delta, visible points of
maximal curvature, respectively, of divergence of the ridge flaw, are in general easily
identified and used for orientation of fingerprint images and templates. George
Dalton classified the types of ridge flaws in five main types: left and right loops,
whirls and arches, which may be plain or tented. Experience shows that both
fingerprints help distinguish even one eyed twins, and the combination of types
for the ten fingers is also highly individual. Therefore a first step in matching
fingerprints out of large data bases will always begin with a matching of the 10-
tuple of types of the ten fingers. This will lead to a small selection within which
a detailed identification based on matching of minutiae can be performed by the
specialized dactyloscopist. It is agreed that a reliable matching of between twelve
and eighteen minutiae is an acceptable base in court, for acknowledging the identity
of a person (Fig. 5). The precise number of identical minutiae may vary slightly
from country to country, and one may even encounter some other classifications of
ridge flaws than the one of Dalton—but the main features are the same.

With the advent of computers, the machine-identification of fingerprints became
a task of study in image processing; dedicated methods were developed and
towards the turn of the century sufficiently reliable plaintext matching system had
been developed. For very good quality pictures, an error rate of around 0:1%
is frequent, while for pictures of poor quality, even an accuracy of 0.5–1.0 % is
acceptable in practice. Encouraged by the improving quality of matching, the idea
of applying the password paradigm to biometry was brought in the field, first by
Juels and Wattenberg [1] and then again by Juels and Sudan [2, 3]. In this paradigm,
biometric templates—fingerprint or others—should be stored in the hashed way, and
identification should happen on base of hash values. While in deterministic mode,
this approach is very natural, the stochastic nature of biometric matching poses
series of problems, and the invention of fuzzy vaults in [2, 3] was the most successful
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Fig. 5 Fingerprint matching

approach for satisfying this requirement. This comes however together with a loss of
matching accuracy that may pose serious problems and leads to a difficult decision
problem, pondering security against accuracy of matching. As mentioned above, the
last is, in the end, also a matter of security—since one must estimate the entropy by
the de facto error rate of the system, so when the error rate increases, the security
drops too. We shall discuss these issues in more detail in the following chapters.

3.2 Iris

While fingerprint recognition has an old, forensic born history, the identification
based on the human iris is a one-man show. It was the mathematician John
Daugman, presently teaching at Cambridge, who recognized the identification
potential in the human iris and developed after a lot of work the algorithms and
patents for turning this insight into a practical biometrical identification procedure.
The human iris has the advantage of a perfect crown-circular geometry, making its
localization in images an easy task. The base for recognition are a system of log-
like lines which are different in thickness and frequency, from person to person.
Daugman had the bright idea of performing plain Fourier transforms on the iris
picture, after having processed it and enhanced image qualities, while unfolding the
circle along a line. The result of the analysis is a code of 256which was standardized
and patented by Daugman, as the iris code. Claims are that between 20 % and 30 %
of identical bits in this code helps ascertain the identity of a person with error rates
with in the one per million. Iris has been implemented at various airports, due to
its claimed accuracy. Since biometry is not a deterministic science, as soon as iris
recognition went public and entered scrutiny of various university research groups,
new questions were raised, the claimed recognition rate slightly dropped and even
the question was raised, if the iris imprint is permanent in time and if it did not
chance after diseases and other organic disturbances. After all, the permanence
of the fingerprint had been empirically watched in forensics over more than
100 years, while iris identification is only two decades old. Despite these dis-
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Fig. 6 Palm recognition

cussions, iris recognition is certainly among the leading biometric identification
resources, and it has possibly the most impressive accuracy among all. On the other
hand, fingerprint recognition can easily improve its performance by using multiple
finger recognition.

3.3 Palm

Palm recognition is a good alternative to fingers, which gained much popularity in
the last decade. The identification artifacts are similar to those for the fingers, but
the advantages stem from the fact that palms are easy orientable, better protected
from scars and optical disturbances which are a source of poor image quality for
fingers, and, finally, have a high amount of information (Fig. 6).

3.4 Face

Face recognition is an application as old as computers. There are multiple ap-
proaches to face recognition, from flat, two dimensional images, to three dimen-
sional simulations gained by the use of multiple cameras and angles of image
acquisition. However, the challenges are very high, since face is the biometrics with
the highest dynamics—it may vary due to momentary expression, but also to usual
changes, such as make up, eyelid enhancements for women, or beard growing for
men. As a consequence, an identification error rate below 5% is quite rare for face
recognition. The practical applications are less in the authentication context, and
more for the identification of faces in moved contexts and real life scenes.
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Fig. 7 Hand veins
identification

3.5 Hand Veins

Hand veins are the youngest type of biometric identification method. It has been
claimed that comparing hand vein geometry can lead to identification rates much
superior to the one of fingerprints, and reaching in the area of accuracy known from
the iris recognition. Picture of hand veins can be taken by means of infrared cameras,
which became affordable in the last years, due to technological development. Since
hand veins are not exposed, the pictures are very stable and uninfluenced by wounds
or physical condition of the scanners. These facts speak in favor of deployment
of hand veins as biometrical identification method. Unfortunately, producers of
vein-scanners have started a new trend by producing also their proprietary, system
embedded, matching algorithms. As a consequence, the academic research with
hand veins is at most incipient, and encountering practical problems, being reduced
to develop own hard- and software (Fig. 7).

3.6 Various Other Biometries

The above are the most important and widely spread biometric traits used for
identification. However, numerous other typical and distinctive traits have been
researched, for the purpose of biometric identification. Voice has an important role
in applications of telephony and its potential has thus been thoroughly studied.
Thermoscans of hands or other parts of the body can also be used for identification,
as well as can the mechanics of human gait help recognize individuals with a certain
accuracy. Inspired by the hand signature, engineers have built special purpose pens
which integrate the writing mechanics of individuals, while, for instance, writing
down their signature. It is then the mechanical plot and not the actual signature
which is used for identification. These and other biometric investigation either
have specific ranges of application where they can be of use, or are a matter of
pure research. Their identification rate is in general quite poor, in the range of face
recognition.
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3.7 Present Applications

In the last two decades, the applications of biometry reached most diverse areas of
social life. In several countries, the drivers’ license or id card carries a fingerprint for
identification. Meanwhile ATM machines using biometry for identification, based
either on iris, palm or fingerprint, are used in several, mostly Asian countries.
Fingerprints are used as replacement for signatures especially in third world
countries with a high rate of illiteracy. The same kind of biometric traits may also
be used for access control in hotels, museums, clubs or lounges, as car openers
or weapon activators, etc. In the area of surveillance techniques, face and gait
recognition naturally play an important role. While the introduction of biometry in
international passports is being pushed ahead world wide, it becomes more and more
important to achieve some reliable security standard in the domain of biometric
applications in security contexts.

4 “Hashes” for Biometry

Cryptographic password hashes are common solutions for storing passwords in a
protected form, while enabling verification of genuine users. However, as discussed
above, merely relying on a person’s ability to reproduce a password in order to
verify her authenticity leads to certain problems—e.g., key management. For this
reason, biometry came to be considered as an alternative, possibly in combination
to passwords. While the requirements for biometric template protection solutions
are similar to those for user password protection, they are more difficult to achieve:
Passwords are deterministic whereas biometric templates, at the contrary, are
typically subjected to noise, i.e., multiple matching samples are expected to be
different while they also have some reasonable similarity. These differences can
be usefully conceptualized as errors. In this way, biometric template protection
schemes have been proposed, that combine techniques known from traditional
cryptography with techniques from the discipline of error-correcting codes to allow
error-tolerant verification.

4.1 The Fuzzy Commitment Scheme

One of the conceptually simplest approaches for generating protected data from
biometric templates that allows error-tolerant verification was proposed by Juels
and Wattenberg in 1999 as the fuzzy commitment scheme [1].
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Let F be a finite field and assume that we are given the decoder of an error-
correcting code C � Fn,2 that is a function

dec W Fn ! C [ fFAILUREg;

for which there exists an integer � 
 0 such that dec.v/ D c for all c 2 C and
v 2 Fn, if the Hamming distance fulfills jc � vj � �.3

4.1.1 Enrollment

On enrollment, given a biometric template encoded as an n-length bit feature vector
x 2 Fn, its cryptographic hash value h.x/ is computed. Then, a codeword c 2 C is
chosen at random and the offset cC x is computed. Finally, the hash value together
with the offset is stored as the private template .h.x/; cC x/.

4.1.2 Verification

On verification, given a query template x0 2 Fn of the (alleged) same user, an
attempt for recovering the protected vector x is performed by computing .cCx/�x0.
If x0 differs in no more than � positions from x, i.e., if jx � x0j � �, then
dec..c C x/ � x0/ D c due to the error-correcting property of the decoder. If in
this way the correct codeword c can be recovered, then the correct feature vector
can be computed according to x D .c C x/ � c. The correctness of the result can
be verified by using its hash value h.x/. Otherwise, if jx � x0j 
 �, any verification
attempt results, with high probability, in FAILURE or, otherwise, the decoder may
output another candidate for the correct feature vector; in both cases, the verification
attempt is rejected.

4.1.3 Security

If we assume that the feature vectors x are distributed uniformly and independently
among all elements from Fn, then the complexity of the operation of recovering the
correct feature set A from a fuzzy commitment xC c is provably of O.jFjk/—or the
complexity of breaking the hash h.x/ [1]. However, it is not realistic to assume in

2For more details on error-correcting codes, we refer the reader to [4] or any other good textbook
on the subject.
3Here j � j denotes the Hamming weight of a vector in Fn, i.e., the number of positions at which the
vector has non-zero entries.
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biometric disciplines that the templates are distributed uniformly within the feature
space. We will later emphasize that optimistically estimating security using i.i.d.
assumptions easily leads to a severe overestimation of effective security (Sect. 4.4).

4.1.4 Designing Problems

In order for the fuzzy commitment scheme to be applicable for protecting biometric
templates of a certain biometric modality, the following conditions have to be
fulfilled:

(1) It must be possible to encode biometric templates as fixed-length feature vectors
from Fn.

(2) The similarity between biometric templates must be correlated with the Ham-
ming distance of their corresponding feature vectors.

(3) An error-correcting code C � Fn of sufficient size for which there is a known
efficient decoder dec must exist.

Encoding biometric templates as fixed-length feature vectors is usually not a big
problem for it is possible to adopt the binary representation of the biometric
templates thereby working in the field with two elements. However, ensuring that
this binary representation allows comparison via the Hamming distance represents
one of the main challenges when designing fuzzy commitment-based biometric
template protection. Furthermore, a generic consideration of the concept of error-
correcting is not sufficient for implementing a practical fuzzy commitment scheme.
First, the code must have a sufficient size in order to allow a certain protection
against reversibility attacks; second, it is not known whether there exist codes with
efficient decoders for arbitrary block length n.

Even though the generic concept of the fuzzy commitment scheme is very simple,
yet clever, the design of a certain fuzzy commitment-based biometric template
protection may be challenging. In fact, we have to focus on the specific biometric
modalities for which biometry hashes is to be implemented. Thereby, we set our
focus to fingerprints even though similar but individual problems exist for other
modalities.

4.2 Fingerprints and its Minutiae

A fingerprint is given by the traces that the ridges of a finger leave on a surface.
In these modern days, digital scanners can be used (including specific fingerprint
sensors) to obtain a digitized image, i.e., the fingerprint image of these traces (see
Fig. 8a for an example). Typically, features are extracted from fingerprint images on
which base two fingerprints can be compared. A standardized type of fingerprint
features are minutiae, i.e., the positions at which a fingerprint ridge ends abruptly
or where it bifurcates, i.e., a minutiae ending or minutiae bifurcation, respectively.
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Fig. 8 A fingerprint (a) and its minutiae (b)

Furthermore, these minutiae positions are typically attached with a minutia angle
(see Fig. 8b for a visualization of an example). Given two minutiae feature sets,
i.e., two minutiae templates, comparison may be performed through the adoption of
two-dimensional point registering methods accounting for the minutia angles. For
further details as well as for a comprehensive overview on fingerprints, we refer the
reader to [5].

4.2.1 Fuzzy Commitment Scheme for Fingerprint Minutiae

In order to apply the fuzzy commitment scheme for protecting a fingerprint’s
minutiae template it is necessary to find an encoding of a minutiae set to a space
of fixed-length feature vectors in which similarity between minutiae sets is reflected
by the Hamming distance. The probably simplest approach to extract a binary n-
length feature vector from a minutiae template may work as follows:

(1) The fingerprint image is partitioned into n disjoint regions and each region is
attached with a unique index varying between 0 and n � 1;

(2) For the feature vector x D .x0; : : : ; xn�1/ we set xi D 1 if a minutia is contained
in the i-th grid region and, otherwise, if no minutia is contained in the i-th
region, then xi D 0.

The above approach is, however, not very eligible for fingerprint minutiae since
usable binary error-correcting codes typically must have a block length n that
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matches a certain form, e.g., 2m � 1 for BCH codes. This explicitly and implicitly
leads to limitations when designing fuzzy commitment scheme-based template
protection for fingerprint minutiae. There exists an implementation of the fuzzy
commitment scheme to fingerprint minutiae [6]; nevertheless, the scheme is better
tailored for use in other biometric modalities, such as human irises [7].

4.3 The Fuzzy Vault Scheme

In 2002, Juels and Sudan [2, 3] have proposed the fuzzy vault scheme solving
some of the problems that we may encounter when attempting to implement a
fuzzy commitment scheme for fingerprint minutiae. Like in the case of the fuzzy
commitment scheme, the fuzzy vault scheme uses techniques from coding theory
in order to conceptualize differences between biometric samples and it has been
formulated in quite general terms.

In the following, we shall restrict our considerations to the fingerprint modality.
Roughly speaking, the vault works as follows in this case: The minutiae of
the to-be-hashed fingerprint, called genuine minutiae, are hidden within a large
number of randomly chosen non-authentic minutiae, called chaff minutiae (see
Fig. 9a). The genuine minutiae are attached with some information by means of
Reed-Solomon error-correcting codes while the chaff minutiae are attached with
random information deemed to be indistinguishable from the information with

Fig. 9 (a) A fingerprint and its genuine minutiae (red) hidden among a large number of chaff
minutiae (gray). (b) Visualization of the genuine minutiae being bound to a Reed-Solomon
codeword
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which genuine minutiae are constituted thereby providing a certain protection
against recovery of the genuine minutiae set from the »minutiae cloud«, i.e., vault
minutiae. On verification, the minutiae of the query fingerprint are used to extract
the unlocking minutiae, i.e., those vault minutiae with which query minutiae are
of reasonable agreement; if the query fingerprint stems from the same finger, then
we may have reason to assume that the unlocking minutiae dominantly consists
of genuine minutiae in which case we can recover the entire genuine minutiae
set exploiting the error-correcting property; otherwise, if the query minutiae stem
from another finger, the unlocking minutiae is expected to contain too few genuine
minutiae for recovery.

The eligibility of protecting minutiae with the fuzzy vault scheme has been
analyzed by Clancy et al. in 2003 [8] which resulted in a series of minutiae-based
fuzzy vault implementations [9–12]. In the following, we present the functioning of
a minutiae-based fuzzy vault mainly following the description of Nandakumar, Jain,
and Pankanti [12].

4.3.1 Enrollment

On enrollment, a minutiae template is given that we want to protect. These minutiae,
called genuine minutiae, are mapped to an encoding of a fixed finite field F by
some fixed convention such that there is a one-to-one correspondence between
minutiae and the finite field element encoding them.4 We thus obtain the so-called
set of genuine features, also called feature set A � F, encoding the minutiae to be
protected. We assume that the number of minutiae, namely the size of the feature set,
is public and denote it by t D jAj. A secret polynomial f 2 FŒX� of degree smaller
k is chosen uniformly at random and will be later dismissed. Using f , the genuine
pairs G D f.x; f .x// j x 2 A /g are computed; this produces a binding of the genuine
template to the secret polynomial f . After this, a random set of n � t chaff features
is generated Achaff � F which should be indistinguishable from genuine features A.
Finally, chaff pairs C are generated; they are pairs .x; y/ 2 F�F, in which x 2 Achaff

and y is chosen uniformly among all elements in F with the constraint that f .x/ ¤ y.
The union V D G [ C finally builds the vault of size n, to which one typically
attaches a cryptographic hash h.f / of the secret polynomial, in order to allow secure
verification. Consequently, the protected record is given by the pair .V; h.f //.

4For example, the integral encodings of the abscissa coordinate, ordinate coordinate and angle
of a minutia can be concatenated thereby obtaining a single integer that can be used to encode
an element of the finite field if of sufficient size. It is important to note that from the finite field
element encoded by an integer, the minutia coordinates and minutia angles can be recovered.
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4.3.2 Verification

Upon verification, a query feature set B � F encoding a query minutiae set is
provided. Based upon this set, vault pairs are extracted from V, such that the
abscissae (encoding a genuine/chaff vault minutia) are well approximated. The
unlocking pair set U � F � F is thus determined. If we assume that the query
minutiae stem from the same finger as the protected minutiae, then we may
expect that a significant amount of query minutiae agree with the genuine minutiae
protected by the vault record. In such case, U may consist of a significant amount of
genuine pairs .x; y/ 2 G, which lie on the graph of the secret polynomial f 2 FŒX�,
i.e., f .x/ D y. In particular, if U consists of at least .jUj C k/=2 genuine pairs, then
the secret polynomial can be efficiently recovered using an algorithm for decoding
Reed-Solomon codes [4].

4.3.3 Brute-Force Security

An intruder who has intercepted a vault record .V; h.f // may attempt to guess k
vault pairs from V and hope that they are genuine. In case they are genuine, their
interpolation polynomial will reveal the correct polynomial of which correctness can
be verified with h.f /.5 There are

�n
k

�
possibilities for an attacker to choose vault pairs

of which
�t

k

�
will reveal the correct polynomial. Hence, with probability

� t
k

� � �n
k

��1

an attacker can guess the correct polynomial. This yields a notion of brute-force
security.

It is important to note that the brute-force attack is based on the unrealistic
assumption that minutiae are distributed uniformly and independently from each
other. We later emphasize that merely relying on brute-force security as a notion
for the security of a fuzzy vault will yield a strong overestimation of the effective
security (Sect. 4.4).

4.3.4 Pre-alignment

A very delicate problem with which implementations of minutiae-based fuzzy vault
schemes have to cope with is the problem of fingerprint alignment during a genuine
verification process. A common approach is to store unprotected helper data of
the protected fingerprint (e.g., points of high ridge curvature) along with the vault
records which can be used on verification to pre-align the query templates coarsely
in a preliminary step [10–14]. Then, the query minutiae may be adjusted to the vault
minutiae to obtain the final alignment with which the unlocking set is extracted
[12–14].

5Even if the hash were not available, an intruder has still the opportunity to check whether the
candidate polynomial interpolates t D jAj vault pairs; a wrong candidate polynomial will with
overwhelming probability not fulfill this requirement for parameters that we expect to encounter in
practice, thereby yielding a reliable criteria to an attacker to identify the correct secret polynomial.
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From a security perspective, the use of public auxiliary alignment data is
problematic because it does leak information about the protected fingerprints. Li
et al. [15] proposed to use features from the fingerprint that do not depend on the
fingers rotation and placement; for instance, features derived from minutiae triangle
constellations, thereby removing the issue of information leakage from auxiliary
alignment data.

4.3.5 Implementations

One of the first automatic implementations of a fingerprint-based fuzzy vault has
been presented by Uludag and Jain in 2006 [11]. They bound the number of
minutiae that are protected in the vault by n D 18 and bind them to a polynomial
of degree smaller than k D 9, thereby yielding a brute-force security of 2�36.
The genuine acceptance rate that the authors achieved was 73% at which no false
accepts have been observed.

In 2007, Nandakumar, Jain, and Pankanti [12] improved the genuine acceptance
rate to 86% (again, for no observed false accepts) in which at most t D 24

genuine minutiae bounded to a polynomial of degree smaller than k D 11 are
protected within n D 224 vault minutiae thereby yielding a brute-force security
of 2�39. Nandakumar, Nagar, and Jain suggested that the security of their vault
implementation can be furthermore improved via a user password [13].

In 2010, Nagar, Nandakumar, and Jain showed how additional features of the
fingerprint can be used to improve brute-force security by protecting the vaults’
ordinate values with a fuzzy commitment scheme [14]. In particular, they showed
that a genuine acceptance rate of 92% is achievable at a brute-force security of
approximately 2�40.

The above three implementations all require a preliminary alignment step which
is supported by public auxiliary alignment data stored along with the vault records.
Public data which does leak information can also be exploited by an adversary
to improve attacks. Therefore, Li et al. designed a fuzzy vault for fingerprints
protecting features that do not depend on the fingerprint’s alignment. In this
implementation, t D 40 genuine features bound to a polynomial of degree smaller
than k D 14 are hidden within n D 440 vault features; this yields a brute-force
security of 2�52. The authors measured a genuine acceptance rate of 92%, again at
no observed false accepts.

4.4 Fundamental Security Limit

Above, the security analyses of the respective fuzzy vault implementations are
based on the assumptions that fingerprint features are distributed uniformly and
independently from each other in the vault. In this section we give simple but yet
irrefutable arguments why brute-force security is not even a close measure of the
implementation’s effective security.
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We start with a simple exemplary observation. Consider the implementation of
Nandakumar, Pankanti, and Jain [12]. For the parameter configuration in which
n D 224 vault minutiae hide at most t D 24 genuine minutiae being bound to
a secret code polynomial of degree smaller than k D 9, the genuine acceptance
rate evaluates as 91% while the false acceptance rate estimates as FAR 	 0:01%.
Now, an intruder who has intercepted a vault that he aims to break, i.e., recover the
genuine minutiae from it, may establish a large database containing real fingerprints.
With these fingerprints he may simulate verification attempts successively until he
successfully breaks the vault. Given the computational complexity for simulating an
impostor’s verification attempt IDT the adversary can expect to break the vault after
a time of

IDT � log.0:5/

log.1 � FAR/
(1)

yielding the notion of false-accept security. In [12] it has been reported that a
verification lasted

IDT 	 33 “Lagrange interpolations”: (2)

Consequently, in terms of Lagrange interpolation for k D 9 the false accept security
is estimated as approximately

218 “Lagrange interpolations” (3)

which, however, strongly contrasts with an estimated brute-force security of 231

Lagrange interpolations as a realistic measure for the implementation’s overall
security.

Even in case that no false accepts have been observed during performance
evaluation, this does not imply that the false acceptance rate is negligible or
even zero: The false acceptance rate is not negligible and the above observation
emphasizes more than clearly that brute-force security is not more than a coarse
upper bound for the security of current biometric template protection schemes such
as fuzzy vault. Each measure that significantly overestimates false-accept security
should be seriously questioned.

The situation is quite serious. Even a barely usable protection scheme for
single finger typically only provides quite-a-low brute-force security of order 231,
say, which is very weak from a cryptographic point of view: It is absolutely no
problem to reveal the protected minutiae templates from such a vault within a
few minutes. The situation is even worse as an attacker can exploit the statistics
of fingerprint minutiae features. An indication of the maximal achievable security
bound is given by the false-accept attack. The complexity of such attacks can be
estimated to be in the order of 218: this amount of operation is a matter of only
a few seconds for the attacker—even when using personal computers. In view of
these observations, it seems questionable whether there exists sufficient information
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on a finger in order to achieve a reasonable amount of security. The methods of
fingerprint feature extraction and matching have been upgraded, so, one expects
substantial improvements of the security. But even if the false acceptance rate can be
reduced to the half—a tremendous improvement, indeed—the false-accept security
only slightly improves by a single bit. One can thus hardly expect that fingerprint
recognition can evolve in such a way that template protection of single fingerprints
may become secure in a cryptographically acceptable way. It is important to note
that also for other biometric modalities, such as a human’s iris, that can provide
higher genuine acceptance rates at lower false acceptance rates than fingerprints,
have a security that is still rather low from a cryptographic point of view [7].

4.4.1 Combination with Passwords

A possible countermeasure may be to combine passwords with a biometric template,
e.g., fingerprint minutiae, to improve security. Such an approach has been imple-
mented and tested in which the minutiae-based fuzzy vault implementation [12]
was additionally protected via a 64 bit user password [13]: Using a user password,
the vault minutiae are shuffled and on verification given the correct user password,
the vault minutiae can be transformed back to their original position. One may argue
that the incorporation of user passwords may result in key management problems
that were meant to be resolved with biometry: Again, the user of a system has to
remember passwords which can be forgotten or, if written down, drop security. On
the other hand, biometry can be used to improve password security by a certain
amount, for example, 18 bits in case fingerprint minutiae are used—even for easily
memorable passwords such as 4-digit person identification numbers PINs, say. The
weak security of 13 bits provided by a 4-digit PIN can consequently be improved
to 32 D 13 C 18 bits using a single fingerprint’s minutiae. For such an approach
it must be guaranteed that correctly decrypted vault data is indistinguishable from
falsely decrypted vault data—which, in fact, was not guaranteed in [13].

4.4.2 Slow-Down Functions

Another approach to improving the low security of biometric template protection is
to implement slow-down mechanisms. In a password-based scheme, the password
hashes may be hashed multiple, say a million, times. This yields virtual 20 bits of
additional security while also increasing the verification time which is, especially in
view of genuine verification attempts, a disadvantage.

In biometric template protection schemes, such as fuzzy vault, merely repeating
the hashing process of the secret key’s data bound to the template would not be a
valid solution. An attacker running a false-accept attack may most likely be able to
distinguish the correct secret polynomial from false polynomials without computing
its hash. The correct polynomial is of known degree k interpolating t  k vault
pairs; other query templates will most likely not fulfill this requirement. Similar
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observations apply to the fuzzy commitment scheme and other constructions based
on error-correcting codes [1, 16]. Note that this observation has not been accounted
for an iris-based fuzzy commitment scheme implementation which was proposed by
Hao, Anderson, and Daugman [7]. There, the possibility of repeated hashing of the
secret codeword has in fact been proposed for improving the security. Nevertheless,
this measure yields virtually no additional security due to typically negligible sphere
packing densities6 of most error-correcting codes [4].

The following may be a valid approach to artificially slow-down the verifi-
cation process in which the possibility of additionally encrypting the protected
biometric templates with password is exploited. A quiz � 2 f0; : : : ;K � 1g is
chosen at random during the generation of a protected template and is used to
encrypt it. The data of the quiz q is then dismissed. Herewith, the verification
process can be artificially slowed down—in particular an impostor verification
attempt. Upon a failing impostor verification attempt, since the correct quiz q is
unknown, all possible quizzes q0 D 0; : : : ;K � 1 must be used to temporarily
decrypt the protected reference template and against each temporarily decrypted
protected reference template a verification is performed. Consequently, the false-
accept security increases by log2.K/ bits while, on average, the genuine decoding
complexity is also increased by a factor of K=2. Thus, the slow-down factor K
must be chosen carefully in order to achieve sufficient security while still keeping
genuine verification feasible. Consequently, the relation between system security
and genuine verification time cannot be changed by slow-down measures, i.e., the
security factor remains unaffected and is potentially low.

4.4.3 Multiple Fingerprint/Multiple Biometric Modalities

To overcome the problem of low security factors in a fingerprint-based fuzzy vault,
we may consider to fuse multiple fingerprints acquired from a user and protect them
with the fuzzy vault scheme. On genuine verification, more than one fingerprint may
be required for an accept. On the other hand, breaking a fuzzy vault to multiple
fingerprints may also be more secure against attacks, in particular, false-accept
attacks. An implementation of a multi-finger fuzzy vault has been proposed by
Merkle et al. in 2011 [17]. It is important to note that the implementation has not
been evaluated in terms of genuine acceptance rate and false acceptance rate and it
is still unclear how a multi-finger implementation can perform.

It is also possible to fuse multiple biometric modalities of which the fusion of
fingerprints is a special case. In 2012, Nagar et al. [18] analyzed fusion strategies
of fingerprints, irises, and face using the fuzzy vault and fuzzy commitment scheme
and reported that it is possible to achieve a 75% genuine acceptance rate at a security
level of 53 bits. In principle, this is an interesting result. It remains, however, unclear
if and in which applications a fusion of fingerprints, iris, and face, which may be

6Sphere packing density: jFjn�k
P�

jD0.jFj � 1/j
�

k
j

�
where k D dim.C/.
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related with several inconveniences for users, will be of interest. Especially under
the circumstance that the moderately high security of 53 bits is compensated by the
very low genuine acceptance rate of merely 75%.

4.5 Attacks Via Record Multiplicity

Even if we can assume that it is possible to implement a usable biometric template
protection scheme, possibly based on multiple fingerprints or more generally
on multiple biometric modalities, there are, however, other risks that must be
considered. In addition to mere off-line attack in which an adversary aims at
revealing the protected templates from intercepted data, there exist another serious
scenario in which an adversary who has intercepted two (or more) protected records
attempts to decide whether they stem from the same finger, say, i.e., whether they are
related. The process of distinguishing related from unrelated records is commonly
called cross-matching and is a privacy risk with which an intruder having intercepted
the content of multiple application’s database could trace particular users activity.
For this reason international standards explicitly require from biometric template
protection schemes to be unlinkable, i.e., cross-matching must not be possible
(ISO/IEC IS 24745 [19]).

4.5.1 Correlation Attack in a Fuzzy Vault Scheme

In general, the fuzzy vault scheme is vulnerable to a very serious cross-matching
attack [20]. Observe that in a fuzzy vault, the genuine features stem from a biometric
sample while the chaff features have been generated at random. If two fuzzy vault
record can be intercepted by an intruder protecting templates that stem from the
same instance (e.g., finger) we may observe that the genuine vault features in the
first record (e.g., red-colored minutiae in Fig. 10a) well agree with the genuine vault
features in the second record (blue-colored in Fig. 10b), i.e., the correlate well as
compared to the chaff features (Fig. 10c, d). This property can be exploited by an
intruder to distinguish related from unrelated vault correspondences. Even worse, an
intruder who has intercepted two related vault records may even unlock the vaults
using the candidate sets of genuine vault features. In fact, for a minutiae-based fuzzy
vault implementation, Kholmatov and Yanikoglu [21] demonstrated that an intruder
can break two related vault correspondences with success probability of order 60%,
which is much too high for a system to fulfill the unlinkability and irreversibility
requirement. The possibility of running the so-called correlation attack calls for a
valid countermeasure.
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Fig. 10 Visualization of the correlation attack process in a minutiae-based fuzzy vault: those vault
minutiae of two related vaults (a) and (b) are correlated (c) and those vault minutiae that well agree
have a quite good chance to be genuine minutiae (d) being colored red and blue for the first and
second vault, respectively

4.5.2 Decodability Attack in a Fuzzy Commitment Scheme

At a glance the serious vulnerability of the fuzzy vault scheme not to fulfill the
unlinkability requirement advocates to base the protection on the fuzzy commitment
scheme (see Sect. 4.1). However, the fuzzy commitment scheme is vulnerable to a
linkability attack, too. With the notation of Sect. 4.1, assume that an intruder has
intercepted two related records of the fuzzy commitment scheme cC x and c0 C x0,
i.e., where c; c0 2 C are random elements of a linear code C � Fn and x; x0 2 Fn are
feature vectors with Hamming distance within the code’s error-correcting capability
�, i.e., jx � x0j � �. The intruder has the possibility to compute the difference

.cC x/ � .c0 C x0/ D .c � c0/C .x � x0/ (4)

and exploit the observation that c � c0 is a codeword, due to the linearity of C,
and the bound jx � x0j � �. Hence, the difference can be decoded to the codeword
c � c0 given two related records of the fuzzy commitment scheme. For non-related
records, i.e., where jx � x0j > �, the difference may be decodable with probability
equal to the sphere packing density of C; this is typically negligible for most
linear codes used in implementations of the fuzzy commitment scheme. Thus, just
from decodability of the difference, an intruder may distinguish related from non-
related records thereby conflicting with the unlinkability requirement. It is known
that capturing two related records based on the linear code brings no advantage
for breaking the fuzzy commitment scheme. But if an intruder has intercepted two
related records based on different linear codes, the irreversibility requirement cannot
be guaranteed [22].
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In a binary fuzzy commitment scheme, Kelkboom et al. [23] proposed to pass the
feature vectors through a record-specific but public permutation process, in order
to prevent the decodability attack. Unfortunately, it has been overlooked that by
implementing the measure, two related records of the fuzzy commitment scheme
being subjected to different public permutation processes can be considered as
having been built by means of different linear codes. This makes them susceptible
to the reversibility attack mentioned above [24]. It has furthermore been shown in
[24] that in a binary fuzzy commitment scheme, the problem cannot be solved by
passing the feature vectors through a public transformation process that preserves
the Hamming distance between two feature vectors. Fortunately, there may exist
such transformations for a non-binary fuzzy commitment scheme. However, most
implementations of the fuzzy commitment scheme are used to protect binary
biometric feature vectors and thus the problem of designing an effective binary
template protection scheme remains a challenge.

4.5.3 Unlinkable Minutiae-Based Fuzzy Vault

The correlation attack in a fuzzy vault scheme yields an advantage to an attacker in
linking and breaking two related records due to the fact that the chaff is generated at
random while the genuine features stem from the same instance thereby essentially
being fixed (up to tolerable noise). We may avoid this inconvenience in a fuzzy vault
scheme by a simple yet effective variation, which we describe next, in informal
terms, for fingerprint minutiae. A grid (e.g., rectangular or hexagonal) is laid over
the fingerprint image; each genuine minutiae is rounded to grid coordinates that are
then used to build the genuine features, thereby passing the genuine minutia through
a quantization scheme (we may also quantize the minutiae angles in a similar
manner). All other, unoccupied grid coordinates are used as the chaff. Consequently,
there is no correlation that can be exploited in an attack, since the feature sets are
equal for any two records (Fig. 11).

Some challenges remain with this approach. Upon verification, it is not possible
to adjust query minutiae to vault minutiae in order to unlock the vault with a pre-
aligned minutiae set. Alternatively, we have to ensure that the genuine minutiae and
the query minutiae can be represented w.r.t. an intrinsic coordinate system that can
be robustly extracted from a fingerprint. This introduces new error sources. In fact,
the estimation of intrinsic coordinate system and an alignment-free representation of
minutiae, i.e., absolutely pre-aligned minutiae, is a challenging problem for which
no definite solution has been found [5].

Recently, some progress in automatic absolute minutiae pre-alignment has been
presented [25] and evaluated for an unlinkable minutiae-based fuzzy vault. The
genuine acceptance rate that is currently achievable with such an approach is of
order 80% at which no false accept has been observed while in a traditional
minutiae-based fuzzy vault the genuine acceptance rate has been measured as 86%
on the same database. Consequently, the unlinkability requirement can be fulfilled
at a genuine acceptance rate well comparable to a traditional approach which,
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Fig. 11 Visualization of how to make a minutiae-based fuzzy vault resistant against the correlation
attack: (a) the genuine minutiae are rounded/quantized as coordinates of a (for example) hexagonal
grid (b) and all other unoccupied grid coordinates are used as the chaff (c)

however, is prone to record multiplicity attacks. It is important to note that both
implementations following the traditional approach and by applying a quantization
scheme to the minutiae are subject to the fundamental security limit discussed in
Sect. 4.4. However, by incorporating a quantization scheme and robust methods
for absolute fingerprint pre-alignment we may eventually obtain an unlinkable
biometric template protection scheme for multiple fingerprints and/or even multiple
biometric modalities. It remains to be seen how implementations for multiple
fingerprints will be able to perform regarding verification performance and security.

4.5.4 A Compact Fuzzy Vault Scheme

Passing absolutely pre-aligned minutiae through a quantization process has another
advantage, beyond merely achieving resistance against the correlation attack. We
can apply a modified fuzzy vault construction proposed by Dodis et al. [16] for
protecting quantized minutiae sets. This has the advantage of producing significantly
more compact record sizes.

As above, the quantized minutiae are encoded as a subset A of the underlying
finite field F. Furthermore, as before, let f 2 FŒX� be a secret polynomial of degree
smaller than k. Instead of chaff generation thereby yielding a set of vault pairs
explicitly, they are encoded by the following polynomial
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V.X/ D f .X/C
Y

x2A

.X � x/: (5)

If x 2 A, then V.x/ D f .x/ and thus .x;V.x// is a genuine pair lying on the graph of
the secret polynomial; otherwise, if x … A, then V.x/ ¤ f .x/ and then .x;V.x// is a
chaff pair. Consequently, by a single compact polynomial, genuine and chaff pairs
are encoded in a smart manner. Note that V.X/ is a monic polynomial of degree
t D jAj. It only requires t � log2.jFj/ storage bits, while the traditional vault would
need 2 � .tC jCj/ � log2.jFj/ bits for storing the vault pairs explicitly.

On the other hand, the following fact can be shown. Suppose that two related
records of the compact fuzzy vault scheme can be intercepted:

V.X/ D f .X/C
Y

x2A

.X � x/ (6)

W.X/ D g.X/C
Y

x2B

.X � x/; (7)

and these records are protecting the feature sets A;B bound to the polynomials f ; g 2
FŒX� both of degree smaller than k, respectively. Here, without loss of generality, we
assume that jAj 
 jBj and jA \ Bj 
 .jAj C k/=2 is fulfilled. Then the differences
AnB and BnA can be recovered explicitly and efficiently by applying the extended
Euclidean algorithm to V.X/ and W.X/. We refer to [26] for a proof of this fact.
This would again conflict with the unlinkability requirement of effective biometric
template protection calling for a countermeasure. Fortunately, by passing the feature
elements through a record-specific random but public permutation F ! F is a
promising solution for preventing the extended Euclidean algorithm-based record
multiplicity attack [26].

A record-specific random bit permutation process was considered to be incor-
porated in a fuzzy commitment scheme, in order to prevent the decodability attack
[23]. In view of the fact that this measure has been shown to be forgeable [25], it
would be highly desirable to prove or disprove the validity of the countermeasure
in a reductionist sense, say. Yet, there is currently no attack known that can break
two related records of the compact fuzzy vault scheme being subjected to a record-
specific permutation process significantly better than breaking one of the records
individually.

4.6 The Future of Biometric “Hashes”

The major issue in providing information security for biometric templates may lay
in the design of implementations. In particular, for specific biometric modalities
suitable feature extractions have to be developed that can decrease the most limiting
factor false acceptance rate at a maintained and preferably high genuine acceptance
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rate. However, even if the false acceptance rate can be reduced to its half for a certain
biometric modality which would be a breakthrough, the security only increases by a
single bit. Even though reducing false acceptance rates is certainly worth its trouble,
it seems more reasonable to rely on the fusion of multiple biometric systems to
achieve an acceptable amount of security. First steps have already been made [18],
but they leave space for improvement.
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Generalizations of Entropy and Information
Measures

Thomas L. Toulias and Christos P. Kitsos

Abstract This paper presents and discusses two generalized forms of the Shannon
entropy, as well as a generalized information measure. These measures are applied
on a exponential-power generalization of the usual Normal distribution, emerged
from a generalized form of the Fisher’s entropy type information measure, essential
to Cryptology. Information divergences between these random variables are also
discussed. Moreover, a complexity measure, related to the generalized Shannon
entropy, is also presented, extending the known SDL complexity measure.

Keywords: Fisher’s entropy type information measure • Shannon entropy •
Rényi entropy • Generalized normal distribution • SDL complexity

1 Introduction

Since the time of Clausius, 1865, Entropy plays an important role in linking
physical experimentation and statistical analysis. It was later in 1922, when Fisher
developed in [9] the Experiment Design Theory, another link between Statistics
with Chemistry, as well as in other fields. For the principle of maximum entropy,
the normal distribution is essential and eventually it is related with the energy and
the variance involved.

The pioneering work by Shannon [28] related Entropy with Information Theory
and gave a new perspective to the study of information systems and of Cryptography,
see [1, 14] among others. Shannon entropy (or entropy) measures the average
uncertainty of a random variable (r.v.). In Information Theory, it is the minimum
number of bits required, on the average, to describe the value x of the r.v. X. In
Cryptography, entropy gives the ultimately achievable error-free compression in
terms of the average codeword length symbol per source. There are two different
roles of entropy measures: (a) positive results can be obtained in the form of security
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proofs for (unconditionally secure) cryptographic systems, and (b) lower bounds
on the required key sizes are negative results, in some scenarios, and follow from
entropy-based arguments. See also [14].

Recall that the relative entropy or discrimination or information divergence
between two r.v., say X and Y, measures the increase, or decrease, of information,
about an experiment, when the probability Pr.X/ (associated with the knowledge
of the experiment) is changed to Pr.Y/. Relative entropy is the underlying idea of
the Authentication Theory which provides a level of assurance to the receiver of a
message originating from a legitimate sender.

A central concept of Cryptography is that of information measure or information,
as cryptographic scenarios can be modelled with information-theoretic methods.
There are several kinds of information measures which all quantify the uncertainty
of an outcome of a random experiment, and, in principle, information is a measure
of the reduction of uncertainty.

Fisher’s entropy type information measure is a fundamental one, see [5]. Poincaré
and Sobolev Inequalities play an important role in the foundation of the generalized
Fisher’s entropy type information measure. Both classes of inequalities offer a
number of bounds for a number of physical applications. The Gaussian kernel or the
error function (which produce the normal distribution) usually has two parameters,
the mean and the variance. For the Gaussian kernel an extra parameter was then
introduced in [15], and therefore a generalized form of the Normal distribution was
obtained. Specifically, the generalized Gaussian is obtained as an extremal for the
Logarithm Sobolev Inequality (LSI), see [4, 30], and is referred here as the � -order
Normal Distribution, or N� . In addition, the Poincaré Inequality (PI), offers also
the “best” constant for the Gaussian measure, and therefore is of interest to see how
Poincaré and Sobolev inequalities are acting on the Normal distribution.

In this paper we introduce and discuss two generalized forms of entropy and their
behavior over the generalized Normal distribution. Moreover, the specific entropy
measures as collision and the mean-entropy are discussed. A complexity measure
for an r.v. is also evaluated and studied.

2 Information Measures and Generalizations

Let X be a multivariate r.v. with parameter vector � D .�1; �2; : : : ; �p/ 2 R
p and

p.d.f. fX D fX.xI �/, x 2 R
p. The parametric type Fisher’s Information Matrix

IF.XI �/ (also denoted as I� .X/) defined as the covariance ofr� log fX.XI �/ (where
r� is the gradient with respect to the parameters �i, i D 1; 2; : : : ; p) is a parametric
type information measure, expressed also as

I� .X/ D Cov .r� log fX.XI �// D E�
�r� log fX � .r� log fX/

T�

D E�
�kr� log fXk2

�
;

where k�k is the usualL 2.Rp/ norm, while E� Œ�� denotes the expected value operator
applied to random variables, with respect to parameter � .
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Recall that the Fisher’s entropy type information measure IF.X/, or J.X/, of
an r.v. X with p.d.f. f on R

p, is defined as the covariance of r.v. r log f .X/, i.e.
J.X/ WD EŒkr log f .X/k2�, with EŒ�� now denotes the usual expected value operator
of a random variable with respect to the its p.d.f. Hence, J.X/ can be written as

J.X/ D
Z

Rp

f .x/kr log f .x/k2dx D
Z

Rp

f .x/�1krf .x/k2dx

D
Z

Rp

rf .x/ � r log f .x/dx D 4
Z

Rp

���r
p

f .x/
���
2

dx: (1)

Generally, the family of the entropy type information measures I.X/, of a
p-variate r.v. X with p.d.f. f , are defined through the score function of X, i.e.

U.X/ WD kr log f .X/k;

as

I.X/ WD I.XI g; h/ WD g .EŒh.U.X//�/ ;

where g and h being real-valued functions. For example, when g D i:d: and
h.X/ D X2 we obtain the entropy type Fisher’s information measure of X as in (1),
i.e.

IF.X/ D EŒkr log f .X/k2�: (2)

Besides IF, other entropy type information measures as the Vajda’s, Mathai’s,
and Boeke’s information measures, denoted with IV, IM, and IB, respectively, are
defined as:

IF.X/ WD I.X/; with g WD id. and h.U/ WD U2;

IV.X/ WD I.X/; with g WD id. and h.U/ WD U�; � 
 1;
IM.X/ WD I.X/; with g.X/ WD X1=� and h.U/ WD U�; � 
 1;
IB.X/ WD I.X/; with g.X/ WD X��1 and h.U/ WD U

�
��1 ; � 2 RC n 1:

The notion of information “distance” or divergence of a p-variate r.v. X over a
p-variate r.v. Y is given by

D.X;Y/ D D.X;YI g; h/ WD g

0

@
Z

Rp

h.fX; fY/

1

A ;

where fX and fY are the probability density functions (p.d.f) of X and Y, respectively.
Some known divergences, such as the Kullback–Leibler DKL, the Vajda’s DV, the
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Kagan DK, the Csiszar DC, the Matusita DM, as well as the Rényi’s DR divergence,
see also [8], are defined as follows:

DKL.X;Y/ WD D.X;Y/; with g WD id. and h.fX ; fY / WD fX log.fX=fY/;
DV.X;Y/ WD D.X;Y/; with g WD id. and h.fX ; fY / WD fX j1 � .fY=fX/j� ; � 
 1;
DK.X;Y/ WD D.X;Y/; with g WD id. and h.fX ; fY / WD fX j1 � .fY=fX/j2 ;
DC.X;Y/ WD D.X;Y/; with g WD id. and h.fX ; fY / WD fY�.fX=fY/; � convex;

DM.X;Y/ WD D.X;Y/; with g.A/ WD pA and h.fX ; fY / WD
�p

fX �pfY
�2
;

DR.X;Y/ WD D.X;Y/; with g.A/ WD log A
1��

and h.fX ; fY / WD f �X f 1��Y ; � 2 RC n 1:

Consider now the Vajda’s parametric type measure of information IV.XI �; ˛/,
which is in fact a generalization of IF.XI �/, defined as, [8, 33],

IV.XI �; ˛/ WD E� Œkr� log f .X/k˛�; ˛ 
 1: (3)

Similarly, the Vajda’s entropy type information measure J˛.X/ generalizes Fisher’s
entropy type information J.X/, defined as

J˛.X/ WD EŒkr log f .X/k˛�; ˛ 
 1; (4)

see [15]. We shall refer to J˛.X/ as the generalized Fisher’s entropy type information
measure or ˛-GFI. The second-GFI is reduced to the usual J, i.e. J2.X/ D J.X/.
Equivalently, from the definition of the ˛-GFI above we can obtain

J˛.X/ D
Z

Rp

kr log f .x/k˛ f .x/dx D
Z

Rp

krf .x/k˛f 1�˛.x/dx

D ˛˛
Z

Rp

krf 1=˛.x/k˛dx: (5)

The Blachman–Stam inequality [2, 3, 31] still holds through the ˛-GFI measure
J˛ , see [15] for a complete proof. Indeed:

Theorem 1. For two given p-variate and independent random variables X and Y,
it holds

J˛
�
�1=˛X C .1 � �/1=˛Y

� � �J˛.X/C .1 � �/J˛.Y/; � 2 .0; 1/: (6)

The equality holds when X and Y are normally distributed with the same covariance
matrix.

As far as the superadditivity of J˛ is concerned, the following Theorem it can be
stated, see [19] for a complete proof.
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Theorem 2. Let an orthogonal decomposition R
p D R

r ˚ R
s, p D sC t, with the

corresponding marginal densities of a p.d.f. f on R
p being f1 on R

s and f2 on R
t, i.e.

f1.x/ D
Z

Rs

f .x; y/dsy; f2.y/ D
Z

Rt

f .x; y/dtx; (7)

Then, for r.v. X, X1 and X2 following f , f1 and f2, it holds

J˛.X/ 
 J˛.X1/C J˛.X2/; (8)

with the equality holding when f .x; y/ D f1.x/f2.y/ almost everywhere.

The Shannon entropy H.X/ of a continuous r.v. X with p.d.f.f is defined as, [5],

H.X/ WD EŒlog f .X/� D
Z

Rp

f .x/ log f .x/dx; (9)

(we drop the usual minus sign) and its corresponding entropy power N.X/ is
defined as

N.X/ WD �e
2
p H.X/

; (10)

with � WD .2e/�1. The generalized entropy power N˛.X/, introduced in [15], is of
the form

N˛.X/ WD �˛e
˛
p H.X/

; (11)

with normalizing factor �˛ given by the appropriate generalization of �, namely

�˛ WD
�
˛�1
˛e

�˛�1
�

˛
2

"
�
� p
2
C 1�

�
�
p ˛�1

˛
C 1�

# ˛
p

; ˛ 2 R n Œ0; 1�: (12)

For the parameter case of ˛ D 2, (11) is reduced to the known entropy power N.X/,
i.e. N2.X/ D N.X/ and �2 D �.

The known information inequality J.X/N.X/ 
 p still holds under the general-
ized entropy type Fisher’s information, as J˛.X/N˛.X/ 
 p, ˛ > 1, see [15]. As a
result the Cramér–Rao inequality, J.X/Var.X/ 
 p, can be extended to

h
2e

p Var.X/
i1=2 h

�˛
p J˛.X/

i1=˛ 
 1; ˛ > 1; (13)

see [15]. Under the normality parameter ˛ D 2, (13) is reduced to the usual Cramér–
Rao inequality.
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Furthermore, the classical entropy inequality

Var.X/ 
 pN.X/ D p
2e e

2
p H.X/

; (14)

can be extended, adopting our extension above, to the general form

Var.X/ 
 p.2e/
˛�4
˛ �2=˛˛ N2=˛

˛ .X/; ˛ > 1: (15)

Under the “normal” parameter value ˛ D 2, the inequality (15) is reduced to the
usual entropy inequality as in (14).

Through the generalized entropy power N˛ a generalized form of the usual
Shannon entropy can be produced. Indeed, consider the Shannon entropy of which
the corresponding entropy power is N˛ (instead of the usual N), i.e.

N˛.X/ D � expf 2p H˛.X/g; ˛ 2 R n Œ0; 1�: (16)

We shall refer to the quantity H˛ as the generalized Shannon entropy, or
˛-Shannon entropy, see for details [17]. Therefore, from (11) a linear relation
between the generalized Shannon entropy H˛.X/ and the usual Shannon entropy
H.X/ is obtained, i.e.

H˛.X/ D p
2

log �˛
�
C ˛

2
H.X/; ˛ 2 R n Œ0; 1�: (17)

Essentially, (17) represents a linear transformation of H.X/ which depends on the
parameter ˛ and the dimension p 2 N. It is also clear that the generalized Shannon
entropy with ˛ D 2 is the usual Shannon entropy, i.e. H2 D H.

3 Entropy, Information, and the Generalized Gaussian

For a p-variate random vector X the following known Proposition bounds the
Shannon entropy using only the covariance matrix of X.

Proposition 1. Let the random vector X have zero mean and covariance matrix †.
Then

H.X/ � 1
2

log f.2e/pj det†jg ;

with equality holding if and only if X �N .0;†/.

This Proposition is crucial and denotes that the entropy for the Normal dis-
tribution is depending, eventually, only on the variance–covariance matrix, while
equality holds when X is following the (multivariate) normal distribution, a result
widely applied in engineering problems and information systems.
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A construction of an exponential-power generalization of the usual Normal
distribution can be obtained as an extremal of (an Euclidean) LSI. Following [15],
the Gross Logarithm Inequality with respect to the Gaussian weight, [13], is of
the form

Z

Rp

kgk2 log kgk2dm � 1


Z

Rp

krgk2dm; (18)

where kgk2 WD
R
Rp kg.x/k2dx D 1 is the norm in L 2.Rp; dm/ with dm WD

expf�jxj2gdx. Inequality (18) is equivalent to the (Euclidean) LSI,

Z

Rp

kuk2 log kuk2dx � p
2

log

8
<

:
2
pe

Z

Rp

kruk2dx

9
=

; ; (19)

for any function u 2 W 1;2.Rp/ with kuk2 D 1, see [15] for details. This inequality
is optimal, in the sense that

2
pe D inf

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Z

Rp

kruk2dx

exp

0

@ 2
n

Z

Rp

kuk2 log kuk2dx

1

A

W u 2 W 1;2.Rp/; kuk2 D 1

9
>>>>>>=

>>>>>>;

;

see [34]. Extremals for (19) are precisely the Gaussians

u.x/ D .�=2/�p=4 exp

�
�
ˇ̌
ˇx � ��

ˇ̌
ˇ
2
	
;

with � > 0 and � 2 R
p, see [3, 4] for details.

Now, consider the extension of Del Pino and Dolbeault in [6] for the LSI as
in (19). For any u 2 W 1;2.Rp/ with kuk� D 1, the � -LSI holds, i.e.

Z

Rp

kuk� log kukdx � p
�2

log

8
<

:K�

Z

Rp

kruk�dx

9
=

; ; (20)

with the optimal constant K� being equal to

K� D �

p .
��1

e /��1��=2
"

�.
p
2
C 1/

�.p ��1
�
C 1/

#�=p

; (21)

where �.�/ is the usual gamma function.
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Inequality (20) is optimal and the equality holds when u.x/ WD fX.x/, x 2 Rp

where X is an r.v. following the multivariate distribution with p.d.f. fX defined as

fX.x/ D fX.xI �;†; �/ WD Cp
� .†/ exp

n
� ��1

�
Q� .x/

�
2.��1/

o
; x 2 Rp; (22)

with normalizing factor

Cp
� .†/ WD

.
��1
�
/

p ��1
�

p=2
pj det†j

"
�. p

2
C 1/

�.p ��1
�
C 1/

#
D max fX; (23)

and p-quadratic form Q� .x/ WD .x � �/†�1.x � �/T, x 2 Rp where � WD .�;†/ 2
Rp�.p�p/. The function �.�/ D fX� .x/

1=� with† D .�2=˛/2.��1/=�Ip corresponds to
the extremal function for the LSI due to [6]. The essential result is that the defined
p.d.f fX works as an extremal function to a generalized form of the Logarithmic
Sobolev Inequality.

We shall write X� � N p
� .�;†/ where N p

� .�;†/ is an exponential-power
generalization of the usual p-variate Normal distribution N p.�;†/ with location
parameter vector � 2 R1�p and positive definite scale matrix † 2 Rp�p, involving
a new shape parameter � 2 R n Œ0; 1�. These distributions shall be referred to as
the � -order Normal distributions. It can be easily seen that the parameter vector
� is, indeed, the mean vector of the N p

� distribution, i.e. � D EŒX� � for all
parameters � 2 R n Œ0; 1�, see [20]. Notice also that for � D 2 the second-ordered
Normal N p

2 .�;†/ is reduced to the usual multivariate Normal N p.�;†/, i.e.
N p
2 .�;†/ D N p.�;†/. One of the merits of the � -order Normal distribution

defined above belongs to the symmetric Kotz type distributions family, [21], as
N p
� .�;†/ DKm;r;s.�;†/ with m WD 1, r WD .� � 1/=� and s WD �=.2� � 2/.
It is worth noting that the introduced univariate � -order Normal N� .�; �

2/ WD
N 1
� .�; �

2/ coincides with the existent generalized normal distribution introduced
in [23], with density function

f .x/ D f .xI �; a; b/ WD b

2a�.1=b/
exp

n
� ˇ̌ x��

a

ˇ̌bo
; x 2 R;

where a D �Œ�=.� � 1/�.��1/=� and b D �=.� � 1/, while the multivariate
case of the � -order Normal N p

� .�;†/ coincides with the existent multivariate
power exponential distribution PE p.�;†0; b/, as introduced in [10], where †0 D
22.��1/=�† and b WD 1

2
�=.� � 1/. See also [11, 22]. These existent generalizations

are technically obtained (involving an extra power parameter b) and there are not
resulting from a strong mathematical background, as the Logarithmic Sobolev
Inequalities offer. Moreover, they cannot provide application to the generalized
Fisher Information or entropy power, etc. as their form does not really contribute
to technical proofs we have already provided, see [15, 18, 20].
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Denote with E� the area of the p-ellipsoid Q� .x/ � 1, x 2 R
p. The family of

N p
� .�;†/, i.e. the family of the elliptically contoured � -order Normals, provides

a smooth bridging between the multivariate (and elliptically countered) Uniform,
Normal and Laplace r.v. U, Z and L, i.e. between U � U p.�;†/, Z � N p.�;†/

and Laplace L � L p.�;†/ r.v. as well as the multivariate degenerate Dirac
distributed r.v. D � Dp.�/ (with pole at the point �), with density functions

fU.x/ D fU.xI �;†/ WD
8
<

:

�. p
2
C 1/

p=2
pjdet†j ; x 2 E� ;

0; x … E� ;

(24)

fZ.x/ D fZ.xI �;†/ WD 1

.2/p=2
pjdet†j exp

˚� 1
2
Q� .x/

�
; x 2 Rp; (25)

fL.x/ D fL.xI �;†/ WD
�. p

2
C 1/

pŠp=2
pjdet†j exp

n
�pQ� .x/

o
; x 2 Rp; (26)

fD.x/ D fD.xI �/ WD
� C1; x D �;
0; x 2 Rp n �; (27)

respectively, see [20]. That is, the N p
� family of distributions generalizes not only

the usual Normal but also two other significant distributions, as the Uniform and
Laplace ones. The above discussion is summarized in the following Theorem, [20].

Theorem 3. The elliptically contoured p-variate � -order Normal distribution
N p
� .�;†/ for order values of � D 0; 1; 2;˙1 coincides with

N p
� .�;†/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

Dp.�/; for � D 0 and p D 1; 2;
0; for � D 0 and p 
 3;
U p.�;†/; for � D 1;
N p.�;†/; for � D 2;
L p.�;†/; for � D ˙1:

(28)

Remark 1. Considering the above Theorem, the definition values of the shape
parameter � of N p

� distributions can be extended to include the limiting extra values
of � D 0; 1;˙1, respectively, i.e. � can now be considered as a real number outside
the open interval .0; 1/. Particularly, when X� � N

p
� .�;†/, � 2 Rn.0; 1/[f˙1g,

the r.v. X0, X1 � U p.�;†/ and X˙1 � L p.�;†/ can be defined as

X0 WD lim
�!0�

X� ; X1 WD lim
�!1C

X� ; X˙1 WD lim
�!˙1X� : (29)

Eventually, the Uniform, Normal, Laplace and also the degenerate distribution N
p
0

(like the Dirac one for dimensions p D 1; 2) can be considered as members of the
“extended”N p

� , � 2 Rn.0; 1/[f˙1g, family of generalized Normal distributions.
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Notice also that N 1
1 .�; �/ coincides with the known (continuous) Uniform

distribution U .���; �C�/. Specifically, for every Uniform distribution expressed
with the usual notation U .a; b/, it holds that U .a; b/ D N 1

1 .
aCb
2
; b�a

2
/ D

U 1.�; �/. Also N2.�; �
2/ D N .�; �2/, N˙1.�; �2/ D L .�; �/ and finally

N0.�; �/ D D.�/. Therefore the following holds.

Corollary 1. For order values � D 0; 1; 2;˙1, the univariate � -ordered Normal
distributions N 1

� .�; �
2/ coincides with the usual (univariate) degenerate Dirac

D.�/, Uniform U .� � �; � C �/, Normal N .�; �2/, and Laplace L .�; �/

distributions, respectively.

Recall now the cumulative distribution function (c.d.f.)ˆZ.z/ of the standardized
normally distributed Z � N .0; 1/, i.e.

ˆZ.z/ D 1
2
C 1

2
erf. z

2
/; z 2 R; (30)

with erf.�/ being the usual error function. For the c.d.f. of the N� family of
distributions the generalized error function Erf�=.��1/.�/ or the upper (or comple-
mentary) incomplete gamma function �.�; �/ is involved, [12]. Indeed, the following
holds, [19].

Theorem 4. Let X be a � -order normally distributed r.v., i.e. X � N� .�; �
2/ with

p.d.f. f� . If FX is the c.d.f. of X andˆZ the c.d.f. of the standardized Z D 1
�
.X��/ �

N� .0; 1/, then

FX.x/ D ˆZ.
x��
�
/ D 1

2
C

p


2�.
��1
�
/�.

�

��1 /
Erf �

��1

n
.
��1
�
/
��1
�

x � �
�

o
(31)

D 1 � 1

2�.
��1
�
/
�
�
��1
�
;
��1
�

�
x � �
�

�
�

��1

�
; x 2 R: (32)

3.1 Shannon Entropy and Generalization

Applying the Shannon entropy on a � -order normally distributed random variable
we state and prove the following.

Theorem 5. The Shannon entropy of a random variable X � N
p
� .�;†/, with p.d.f.

fX, is of the form

H.X/ D p ��1
�
� log Cp

� .†/ D p ��1
�
� log max fX : (33)
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Proof. From (22) and the definition (9) we obtain that the Shannon entropy of X is

H.X/ D � log Cp
� .†/C Cp

� .†/
��1
�

Z

Rp

Q� .x/
�

2.��1/ exp
n
� ��1

�
Q� .x/

�
2.��1/

o
dx:

Applying the linear transformation z WD .x � �/T†�1=2 with dx D d.x � �/ Dpjdet†jdz, the H.X� / above is reduced to

H.X/ D � log Cp
� .†/C Cp

� .Ip/
��1
�

Z

Rp

kzk �
��1 exp

n
� ��1

�
kzk �

��1

o
dz;

where Ip denotes the p�p identity matrix. Switching to hyperspherical coordinates,
we get

H.X/ D � log Cp
� .†/C Cp

� .Ip/
��1
�
!p�1

Z

RC

�
�

��1 exp
n
� ��1

�
�

�
��1

o
�p�1d�;

where !p�1 WD 2p=2=�
� p
2

�
is the volume of the .p � 1/-sphere. Applying the

variable change du WD d. ��1
�
��=.��1// D �1=.��1/d� we obtain successively

H.X/ D � log Cp
� .†/C Cp

� .Ip/!p�1
Z

RC

ue�u�
.p�1/.��1/�1

��1 du

D log Cp
� .†/� Cp

� .Ip/!p�1
Z

RC

ue�u
�
�

�
��1

� .p�1/.��1/�1
�

du

D � log Cp
� .†/C Cp

� .Ip/!p�1. �

��1 /
p ��1

� �1
Z

RC

up ��1
� e�udu

D � log Cp
� .†/C p ��1

�
�.p ��1

�
/Cp

� .Ip/!p�1:

Finally, by substitution of the volume !p�1 and the normalizing factor Cp
� .†/ and

Cp
� .Ip/, as in (23), relation (33) is obtained. ut

We state and prove the following Theorem which provides the results for the
Shannon entropy of the elliptically contoured family of the N� distributions.

Theorem 6. The Shannon entropy for the multivariate and elliptically countered
Uniform, Normal, and Laplace distributed X (for � D 1; 2;˙1, respectively), with
p.d.f. fX, as well as for the degenerate N0 distribution, is given by
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H.X/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

� log max fX D log
p=2

pj det†j
�
� p
2
C 1� ; for X � U p.�;†/;

p
2
� log max fX D log

p
.2e/pj det†j; for X � N p.�;†/;

p � log max fX D log
pŠep=2

pj det†j
�
� p
2
C 1� ; for X � L p.�;†/;

C1; for X � N p
0 .�;†/:

(34)

Proof. Applying Theorem 3 into (33) we obtain the first three branches of (34) for
� D 1 (in limit), � D 2 (normality), and � D ˙1 (in limit), respectively. Consider
now the limiting case of � D 0. We can write (33) in the form

H.X/ D log

�
p=2

pj det†j
�.

p
2
C 1/ � �.pgC 1/

.
g
e /

pg

	
;

where g WD ��1
�

. We then have,

lim
�!0�

H.X/ D log

�
p=2

pj det†j
�.

p
2
C 1/ lim

kDpŒg�!1
pkkŠ

. k
e /

k

	
; (35)

and using the Stirling’s asymptotic formula kŠ 	 p2k. k
e /

k as k!1, (35) finally
implies

lim
�!0�

H.X/ D log

�p
2j det†j p=2

�. p
2
C 1/ lim

k!1pk
p

k

	
D C1;

which proves the Theorem. ut
Example 1. For the univariate case p D 1, we are reduced to

H.X/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

� log max fX D log 2�; for X � N1.�; �/ D U .� � �;�C �/;
1
2
� log max fX D log

p
2e�; for X � N2.�; �

2/ D N .�; �2/;

1 � log max fX D 1C log 2�; for X � N
˙1

.�; �/ D L .�; �/;

C1; for X � N0.�; �/ D D.�/:

Figure 1 below illustrates the univariate case of Theorem 5. The Shannon
entropy H.X� /, of an r.v. X� � N� .�; �

2/ is presented as a bivariate function of
� 2 .0; 3� and � 2 Œ�10; 0/ [ Œ1; 10�, which forms the appeared surface (for
arbitrary � 2 R). The Shannon entropy values of Uniform (� D 1) and Normal
(� D 2) distributions are denoted (as curves), recall Example 1. Moreover, the
entropy values of the r.v. X˙10 � N˙10.�; �2/, which approximates the Shannon
entropy of Laplace distributed r.v. X˙1 � L .�; �/, as well as the entropy of the r.v.
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Fig. 1 Graph of all H.X� /, X� � N� .�; �
2/ across the �.> 0/-semi-axis and �-axis

X�0:01 � N�0:01.�; �2/ which approaches the degenerated Dirac r.v. X0 � D.�/,
are also depicted. One can also notice the logarithmic increase of H.X�/ as �
increases (for every fixed � value), which holds due to the form of (33).

Due to the above proved Theorems, for the generalized Shannon entropy we
obtain the following results.

Proposition 2. The ˛-Shannon entropy H˛ of the multivariate X � N� .�;†/ is
given by

H˛.X/ D 2��˛
2�

pC p
2

log

8
<

:2.
˛�1
˛
/˛�1. �

��1 /
˛
��1
�

"
�.p ��1

�
C 1/

�.p ˛�1
˛
C 1/

# ˛
p

j det†j ˛2p

9
=

; :

(36)

Moreover, in case of ˛ D � , we have

H� .X/ D p
2

log
n
2ej det†j �2p

o
: (37)

Proof. Substituting (12) and (33) into (16) we obtain

H˛.X/ D p
2

log
n
2

2�˛
2 e

2��˛
� . ˛�1

˛
/˛�1

o
C

D ˛
2

log

�
p=2.

�

��1 /
p ��1

�

�.p ��1
�
C 1/

�.p ˛�1
˛
C 1/

p
j det†j

	
;

and after some algebra we derive (36).
In case of ˛ D � we have H� .X/ D p

2
logf2ej det†j�=.2p/g, i.e. (37) holds. ut
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Proposition 3. For a random variable X following the multivariate Uniform,
Normal, and Laplace distributions (� D 1; 2;˙1, respectively), it is

H˛.X/ D
8
<

:

2�˛
2

pC h.†/; for X � U p.�;†/;

pC ˛
2

log
˚
.2=e/p=2�. p

2
C 1/�C h.†/; for X � N p.�;†/;

pC p
2

log pŠC h.†/; for X � L p.�;†/;
(38)

where

h.†/ WD ˛
2

log
n
.2/p=˛. ˛�1

˛
/p

˛�1
˛ Œ�.p ˛�1

˛
C 1/��1

p
j det†j

o
; (39)

while for the limiting degenerate case of X � N p
0 .�;†/ we obtain

H˛.X/ D
�
.sgn˛/.C1/; for ˛ ¤ 0;
p log

p
2e; for ˛ D 0: (40)

Proof. Recall (29) and let X� WD X. The ˛-Shannon entropy of r.v. X� , with
� D 1;˙1, can be considered as

H˛.X1/ WD lim
�!1C

H˛.X� /; and H˛.X˙1/ WD lim
�!˙1H˛.X� /:

Hence, for order values � D 1 (in limit), � D 2 and � D ˙1 (in limit), we
derive (38).

Consider now the limiting case of � D 0. We can write (36) in the form

H˛.X� / D p
2
.2 � ˛ C �g/C p

2
log

8
<

:2.
g�1

g /
˛�1g�g˛

"
�.pgC 1/pj det†j
�.p ˛�1

˛
C 1/

# ˛
p

9
=

;

D log

8
<

:.2/
p=2. ˛�1

˛
/p

˛�1
2

"
�.pgC 1/

. g
e /

pg�.p ˛�1
˛
C 1/

# ˛
2

j det†j˛
9
=

; ;

where g WD ��1
�

. We then have,

H˛.X0/ WD lim
�!0�

H˛.X� / D log

8
<

:.2/
p=2. ˛�1˛ /p

˛�1
2

"
lim

kWDpŒg�!1
pkkŠ

. k
e /

k

# ˛
2

j det†j˛
9
=

; :

Using the Stirling’s asymptotic formula (similar as in Theorem 6), the above relation
for ˛ ¤ 0 implies
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H˛.X0/ D log

(
.2/p=2. ˛�1

˛
/p

˛�1
2 j det†j˛



lim

k!1 pk
p

k

� ˛
2

)
D .sgn˛/.C1/;

where sgn˛ is the sign of parameter ˛, and hence the first branch of (40) holds. For
the limiting case of � D ˛ D 0, (37) implies the second branch of (40). ut

Notice that despite the rather complicated form of the H˛.X/ when ˛ ¤ � in
Proposition 2, the � -Shannon entropy of a � -order normally distributed X� has a
very compact expression, see (37), while in (36) varies both the shape parameter �
(to decide the distributions “fat tails” or not) and the parameter ˛ (of the Shannon
entropy) vary.

Recall now the known relation of the Shannon entropy of a normally distributed
random variable Z � N .�;†/, i.e. H.Z/ D 1

2
logf.2e/pj det†jg. Therefore,

H� .X� /, where X� � N� .�;†/ generalizes H.Z/, or equivalently H2.X2/, pre-
serving the simple formulation for every � , as parameter � affects only the scale
matrix †.

Another interesting fact about H� .X�/ is that, H0.X0/ D p
2

logf2eg or H0.X0/ D
� p
4

log �, recall Corollary (40) and (25). According to (40) the Shannon entropy
diverges to C1 for the degenerated distribution N0. However, the 0-Shannon en-
tropy H0 (in limit), for an r.v. following N0, converges to log

p
2e D � 1

2
log � 	

1:4189, which is the same value as the Shannon entropy of the standardized nor-
mally distributed Z � N .0; 1/. Thus, the generalized Shannon entropy, introduced
already, can “handle” the degenerated N0 distribution in a more “coherent” way
than the usual Shannon entropy (i.e., not diverging to infinity).

We can mention also that (36) expresses the generalized ˛-Shannon entropy of
the multivariate Uniform, Normal, and Laplace distributions relative to each other.
For example (recall Corollary 3), the difference of these entropies between Uniform
and Laplace is independent of the same scale matrix †, i.e. H˛.X˙1/ � H˛.X1/ D
p
2
.˛ C log pŠ/, while for the usual Shannon entropy, H.X˙1/ � H.X1/ D p C

p
2

log pŠ, i.e. their Shannon entropies differ by a dimension-depending constant. The
difference ratio is then

H˛.X˙1/ �H˛.X1/

H.X˙1/ �H.X1/
D log.pŠe˛/

log.pŠe2/
:

3.2 Generalized Entropy Power

So far we have developed a generalized form for the Shannon entropy. We shall
now discuss and provide general results about the generalized entropy power. The
typical cases are presented in (46). Notice that, as N˛ and H˛ are related, some of
the proofs are consequences of this relation, see Proposition 4. The following holds
for different ˛ and � parameters.
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Proposition 4. The generalized entropy power N˛.X/ of the multivariate X� �
N p
� .�;†/ is given, for all defined parameters ˛; � 2 R n Œ0; 1�, by

N˛.X� / D
�
˛�1
e˛

�˛�1
.

e�
��1 /

˛
��1
�

"
�.p ��1

�
C 1/

�
�
p ˛�1

˛
C 1�

#˛=p

j det†j ˛2p : (41)

Moreover, in case of ˛ D � 2 R n Œ0; 1�,

N� .X� / D j det†j �2p : (42)

Proof. Substituting (33) into (11), we obtain (41) and (42). ut
Corollary 2. For the usual entropy power of the � -order normally distributed r.v.
X� � N p

� .�;†/, we have that

N.X� / D 1
2e .

e�
��1 /

2
��1
�

"
�.p ��1

�
C 1/

�
� p
2
C 1�

#2=p

j det†j1=p; � 2 R n Œ0; 1�: (43)

For the multivariate Uniform, Normal, and Laplace distributions (� D 1; 2;˙1,
respectively), as well as for the degenerate case of � D 0, it is

N.X/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

j det†j1=p

2e�
� p
2
C 1�2=p

; for X � U p.�;†/;

p
pj det†j; for X � N p.�;†/;

2
2�p

p e

"
.p � 1/Špj det†j

�.p=2/

#2=p

; for X � L p.�;†/;

C1; for X � N
p
0 .�;†/:

(44)

Proof. For the normality parameter ˛ D 2, (43) is obtained from (41).
Recall (29) and let X� WD X. The usual entropy power of r.v. X� , with

� D 1;˙1, can be considered as

N.X1/ WD lim
�!1C

N.X� / and N.X˙1/ WD lim
�!˙1N.X�/:

Hence, for order values � D 1 (in limit), � D 2 and � D ˙1 (in limit), we derive
the first three branches of (44).

Consider now the limiting case of � D 0. We can write (43) in the form

N.X� / D j det†j1=p

2e�
� p
2
C 1�2=p

. e
g /
2g�.pgC 1/2=p;
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where g WD ��1
�

. We then have

N.X0/ WD lim
�!0�

N.X� / D j det†j1=p

2e�
� p
2
C 1�2=p

lim
kWDpŒg�!1 .

ep
k /

2k=p.kŠ/2=p:

Using the Stirling’s asymptotic formula (similar as in Theorem 6), the above relation
implies

N.X0/ D .2j det†j/1=p

2e�
� p
2
C 1�2=p

lim
k!1 p2k=pk1=p D C1;

and hence the last branch of (44) holds. ut
Example 2. For the univariate p D 1, (43) implies

N.X� / D 2
e .

e�
��1 /

2
��1
� �.

��1
�
C 1/2�2; (45)

and thus we derive from (44) that

N.X/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

b�a
e ; for X � U .a; b/;

�2; for X �N .�; �2/;

2e�

; for X � L .�; �/;

C1; for X � D.�/:

(46)

Corollary 3. For the generalized entropy power of the multivariate Uniform,
Normal, and Laplace distributions (� D 1; 2;˙1, respectively), it is

N˛.X/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

�
˛�1
e˛

�˛�1 j det†j ˛2p

�
�
p ˛�1

˛
C 1�˛=p

; for X � U p.�;†/;

�
˛�1
e˛

�˛�1
.2e/˛=2

"
�. p

2
C 1/

�
�
p ˛�1

˛
C 1�

#˛=p

j det†j ˛2p ; for X �N p.�;†/;

e
�
˛�1
˛

�˛�1
"

pŠ

�
�
p ˛�1

˛
C 1�

#˛=p

j det†j ˛2p ; for X � L p.�;†/;

(47)
while for the degenerate case of X �N p

0 .�;†/ we have

N˛.X/ D
(
C1; for ˛ > 1;

0; for ˛ < 0:
(48)
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Proof. Recall (29) and let X� � N� .�;†/. The generalized entropy power of r.v.
X� , with � D 1;˙1, can be considered as

N˛.X1/ WD lim
�!1C

N˛.X� /; and N˛.X˙1/ WD lim
�!˙1N˛.X� /;

and hence, for order values � D 1 (in limit), � D 2 and � D ˙1 (in limit), we
derive (47).

Consider now the limiting case of � D 0. We can write (41) in the form

N˛.X� / D
�
˛�1
e˛

�˛�1
. e

g /
g˛

"
�.pgC 1/
�
�
p ˛�1

˛
C 1�

#˛=p

j det†j ˛2p ;

where g WD ��1
�

. We then have

N˛.X0/ WD lim
�!0�

N˛.X�/ D
�
˛�1
e˛

�˛�1 j det†j ˛2p

�
�
p ˛�1

˛
C 1�˛=p

lim
kWDpŒg�!1 .

ep
k /

˛k=p.kŠ/˛=p:

Using the Stirling’s asymptotic formula, the above relation implies

N˛.X0/ D
�
˛�1
e˛

�˛�1 j det†j ˛2p

�
�
p ˛�1

˛
C 1�˛=p

lim
k!1 .2p2k/˛k=.2p/ D

� C1; for ˛ > 1;
0; for ˛ < 0;

and hence (48) holds. ut
For the special cases ˛ D 0; 1;˙1 of the parameter ˛ 2 R n Œ0; 1� of the

generalized entropy power, the following holds.

Proposition 5. The generalized entropy power N˛.X/, for the limiting values ˛ D
0; 1;˙1, of the multivariate r.v. X� � N p

� .�;†/, for all shape parameter values
� 2 R n Œ0; 1�, is given by

N0.X�/ D p; (49)

N1.X�/ D .
e�
��1 /

��1
� �.p ��1

�
C 1/ 1p j det†j 12p ; (50)

NC1.X�/ D
(
C1; for j det†j > S2� ;

0; for j det†j < S2� ;
(51)

N�1.X�/ D
(
C1; for j det†j < S2� ;

0; for j det†j > S2� ;
(52)
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where

S� WD
eppŠ. ��1e� /

p ��1
�

�.p ��1
�
C 1/ : (53)

Proof. For the limiting value ˛ D 0, we can consider

N0.X� / WD lim
˛!0�

N˛.X� /;

which can be written, through (41), into the form

N0.X� / D lim
ˇ!C1.

ˇ

e /
ˇ

1�ˇ

"
�.p ��1

�
C 1/

�.pˇ C 1/

# 1
p.1�ˇ/

j det†j 1
2p.1�ˇ/ ;

where ˇ WD ˛�1
˛

, or

N0.X�/ D lim
kWDpŒˇ�!1.

k
pe/

k
p�k

"
�.p ��1

�
C 1/

kŠ

# 1
p�k

j det†j 1
2.p�k/ :

Applying the Stirling’s asymptotic formula for kŠ, the above relation implies

N0.X� / D lim
k!1

"
�.p ��1

�
C 1/pj det†j

pk
p
2k

# 1
p�k

D lim
k!1 p

k
k�p k

1
2.k�p/ D p � 1 D p;

and therefore, (49) holds due to the fact that

lim
k!1k

1
2.k�p/ D exp

�
1
2

lim
k!1

log k

k � p

	
D e0 D 1: (54)

For the limiting value ˛ D 1, we can consider

N1.X� / WD lim
˛!1C

N˛.X� /;

and thus (50) hold, through (41).
For the limiting value ˛ D ˙1, we can consider

N˙1.X� / WD lim
˛!˙1N˛.X� / D lim

˛!˙1

"
A.†/

�.p ˛�1
˛
C 1/

#˛=p

; (55)
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where

A.†/ WD e�p.
e�
��1 /

p ��1
� �.p ��1

�
C 1/

p
j det†j; (56)

due to (41) and the fact that lim˛!˙1Œ.˛ � 1/=˛�˛�1 D e�1. Moreover, �.p ˛�1
˛C 1/! pŠ as ˛ ! ˙1, and thus, from (55) we obtain (51) and (52). ut

Corollary 2 presents the usual entropy power N.X/ D N˛D2.X/ when X follows
a Uniform, Normal, Laplace, or a degenerated (N0) random variable. The following
Proposition investigates the limiting cases of N˛D0;1;˙1.X/, as it provides results
for applications working with “extreme-tailed” distributions. Notice the essential
use of the quantity S2, as in (65), for the determinant of the distributions’ scale
matrix †, that alters the behavior of the extreme case of N˙1.

Proposition 6. For the multivariate Uniform, Normal, and Laplace distributions,
i.e. N�D1;2;˙1, as well as for the degenerate N�D0, the “limiting values” of the
generalized entropy power N˛D0;1;˙1, are given by

N0.X/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

p; for X � U p.�;†/;

p; for X �N p.�;†/;

p; for X � L p.�;†/;

1; for X �N p
0 .�;†/;

(57)

N1.X/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

j det†j 12p ; for X � U p.�;†/;
p
2e�. p

2
C 1/1=pj det†j 12p ; for X �N p.�;†/;

e.pŠ/1=pj det†j 12p ; for X � L p.�;†/;

C1; for X �N p
0 .�;†/;

(58)

NC1.X/ D
(
C1; for j det†j > .eppŠ/2;

0; for j det†j < .eppŠ/2;
and X � U p.�;†/; (59)

N�1.X/ D
(
C1; for j det†j < .eppŠ/2;

0; for j det†j > .eppŠ/2;
and X � U p.�;†/; (60)

NC1.X/ D
(
C1; for j det†j > S22;

0; for j det†j < S22;
and X � N p.�;†/; (61)

N�1.X/ D
(
C1; for j det†j < S22;

0; for j det†j > S2;
and X � N p.�;†/; (62)
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NC1.X/ D
(
C1; for j det†j > 1;
0; for j det†j < 1; and X � L p.�;†/; (63)

N�1.X/ D
(
C1; for j det†j < 1;
0; for j det†j > 1; and X � L p.�;†/; (64)

where

S2 WD eppŠ

.2e/p=2�. p
2
C 1/ : (65)

Proof. For the limiting value ˛ D 1, the first three branches of (58) holds,
through (47). Moreover, for the degenerate case of N�D0, we consider N1.X0/ WD
lim�!0� N1.X� /, with X� � N� .�;†/, i.e.

N1.X0/ D lim
g!C1.

e
g /

g�.pgC 1/ 1p j det†j 12p ;

where g WD ��1
�

. Then,

N1.X0/ D lim
kWDpŒg�!1.

ep
k /

k=p.kŠ/
1
p j det†j 12p :

Applying the Stirling’s asymptotic formula of kŠ, the above relation implies

N1.X0/ D lim
k!1pk=p.2kj det†j/ 12p D C1;

and thus (58) holds.
For the limiting value ˛ D ˙1 and X � N1.�;†/ D U p.�;†/, we consider

N˙1.X/ WD lim˛!˙1N˛.X/, i.e.

N˙1.X/ D lim
˛!˙1

" pj det†j
ep�.p ˛�1

˛
C 1/

#˛=p

; (66)

from (47). Moreover, �.p ˛�1
˛
C 1/ ! pŠ as ˛ ! ˙1, and thus, from (66), we

obtain (59) and (60)
For the limiting value ˛ D ˙1 and X � N2.�;†/ D N p.�;†/, relations (61)

and (62) hold due to (51) and (52), where S2 as in (53) with � D 2.
For the limiting value ˛ D ˙1 and X � N˙1.�;†/ D L p.�;†/,

relations (63) and (64) hold due to (42) with � ! ˙1.
For the limiting value ˛ D 0 and X � N1.�;†/ D U p.�;†/ we consider

N0.X/ WD lim˛!0� N˛.X/ which can be written, through the first branch of (47),
into the form
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N0.X/ D lim
ˇ!C1

.
ˇ

e /
ˇ

1�ˇ

�.pˇ C 1/ 1
p.1�ˇ/

j det†j 1
2p.1�ˇ/ ;

where ˇ WD ˛�1
˛

, or

N0.X/ D lim
kWDpŒˇ�!1.

k
pe /

k
p�k .kŠ/

1
k�p j det†j 1

2.p�k/ :

Applying the Stirling’s asymptotic formula for kŠ, the above relation implies

N0.X/ D lim
k!1

 pj det†j
pk
p
2k

! 1
p�k

D lim
k!1 p

k
k�p k

1
2.k�p/ D p � 1 D p;

and therefore the first branch of (57) holds due to (54).
For the limiting value ˛ D 0 and X � N2.�;†/ D N p.�;†/, the second

branch of (57) holds due to (49).
For the limiting value ˛ D 0 and X � N˙1.�;†/ D L p.�;†/ we consider

N0.X/ WD lim˛!0� N˛.X/ which can be written, through the last branch of (47),
into the form

N0.X/ D lim
ˇ!C1 .

ˇ

e /
ˇ

1�ˇ

�
pŠ

�.pˇ C 1/
 1

p.1�ˇ/

j det†j 1
2p.1�ˇ/ ;

or

N0.X/ D lim
kWDpŒˇ�!1.

k
pe /

k
p�k . pŠ

kŠ /
1

p�k j det†j 1
2.p�k/ :

Applying, again, the Stirling’s asymptotic formula for kŠ, the above relation implies

N0.X/ D lim
k!1

 
pŠ
pj det†j
pk
p
2k

! 1
p�k

D lim
k!1 p

k
k�p k

1
2.k�p/ D p � 1 D p;

and therefore the third branch of (57) holds due to (54).
For the limiting value ˛ D 0 and X � N0.�;†/, the last branch of (57) holds

due to (42) with � ! 0�. ut
Recall Proposition 5 where � 2 R n Œ0; 1�. For the limiting extra values of

� D 1 (Uniform case), � D ˙1 (Laplace case), and � D 0 (degenerate case),
the results (50)–(52) still hold in limit, see (58) and from (59) to (64). Therefore, the
relations (50)–(52) hold for all shape parameters � taking values over its “extended”
domain, i.e. � 2 R n .0; 1/[ f˙1g. However, from (49) and (57), it holds that
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Fig. 2 Graphs of N˛.X� / along ˛, for various � values, where X� � N� .0; 1/

Fig. 3 Graphs of N˛.X� / along ˛, for various � values, where X� � N� .0; 0:8/ (left-side) and
X� � N� .0; 1:5/ (right-side)

N0.X� / D
(

p; for � 2 R n Œ0; 1/[ f˙1g;
1; for � D 0: (67)

while for the univariate case, the generalized entropy power N0, as in (67), is always
unity for all the members of the “extended” � -order Normal distribution’s family,
i.e. N0.X� / D 1 with � 2 R n .0; 1/[ f˙1g.

Figure 2 presents the generalized entropy power N˛.X� / as a function of its
parameter ˛ 2 R n Œ0; 1� for various X� � N� .0; 1/ random variables, with the
special cases of Uniform (� D 1), Normal (� D 2), and Laplace (� D ˙1) r.v.
being denoted. Figure 3 depicts the cases of X� � N� .0; �

2/ with � < 1 (left
sub-Figure) and � > 1 (right sub-Figure).
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3.3 Rényi Entropy

We discuss now the Rényi entropy, another significant entropy measure which also
generalizes Shannon entropy, and can be best introduced through the concept of
generalized random variables. These variables extend the usual notion of a random
experiment that cannot always be observed. See for details the Rényi’s original work
in [25] and [26].

See [5]. For a p-variate continuous random variable, with p.d.f. fX , the Rényi
entropy R˛.X/ is defined, through the ˛-norm k � k˛ on L ˛.Rp/, by

R˛.X/ WD � ˛
˛�1 log kfXk˛ D 1

1�˛ log
Z

Rp

jfX.x/j˛dx; (68)

with ˛ 2 R�C n 1, i.e. 0 < ˛ ¤ 1. For the limiting case of ˛ D 1 the Rényi entropy
converges to the usual Shannon entropy H.X/ as in (9). Notice that we use the minus
sign for R˛ to be in accordance with the definition of (9), where we reject the usual
minus sign of the Shannon entropy definition.

Considering now an r.v. from the N p
� family of the generalized Normal

distributions, the following Theorem provides a general result to calculate the Rényi
entropy for different ˛ and � parameters.

Theorem 7. For the elliptically contoured � -order normally distributed r.v. X� �
N p
� .�;†/, with p.d.f. fX� , the Rényi R˛ entropy of X� is given by

R˛.X� / D p ��1
�.˛�1/ log˛ � log Cp

� .†/ D p ��1
�.˛�1/ log˛ � log max fX� ; (69)

for all the defined parameters ˛ 2 R�C n f1g and � 2 R n Œ0; 1�.
Proof. Consider the p.d.f. fX� as in (22). From the definition (68) it is

R˛.X� / D ˛
1�˛ log Cp

� .†/C 1
1�˛ log

Z

Rp

exp
�
�˛.��1/�

h
.x� �/†�1.x � �/T

i �
2.��1/

	
dx:

Applying the linear transformation z D .x � �/†�1=2 with dx D d.x � �/ Dpjdet†jdz, the R˛ above is reduced to

R˛.X� / D ˛
1�˛ log Cp

� .†/C 1
1�˛ log

Z

Rp

exp
n
�˛.��1/

�
kzk �

��1

o
dz:

Switching to hyperspherical coordinates, we get

R˛.X�/ D ˛
1�˛ log

n
Cp
� .†/!

1=˛
p�1
o
C 1

1�˛ log
Z

RC

exp
n
�˛.��1/

�
�

�
��1

o
�p�1d�;
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where !p�1 D 2p=2=�
� p
2

�
is the volume of the .p � 1/-sphere. Assuming du WD

d. ��1
�
��=.��1// D �1=.��1/d� we obtain successively

R˛.X� / D ˛
1�˛ log M.†/C 1

1�˛ log
Z

RC

e�˛u�
.p�1/.��1/�1

��1 du

D ˛
˛�1 log M.†/C 1

1�˛ log
Z

RC

e�˛u
�
�

�
��1

� .p�1/.��1/�1
�

du

D ˛
1�˛ log M.†/C 1

1�˛ log. �

��1 /
p ��1

� �1 C 1
1�˛ log

Z

RC

e�˛uup ��1
� �1du

D ˛
1�˛ log M.†/C 1

1�˛ log. �

��1 /
p ��1

� �1 � p ��1
�
� log˛
1�˛ C 1

1�˛ log�.p ��1
�
/;

where M.†/ WD Cp
� .†/!

1=˛
p�1. Finally, by substitution of the volume !p�1 we obtain,

through the normalizing factor Cp
� .†/ as in (23),

R˛.X� / D � ˛
˛�1 log Cp

� .†/C 1
˛�1 log Cp

� .†/C p ��1
�
� log˛
˛�1 ;

and thus (69) holds true. ut
For the limiting parameter values ˛ D 0; 1;C1 we obtain a number of results

for other well-known measures of entropy, applicable to Cryptography, as the
Hartley entropy, the Shannon entropy, and min-entropy, respectively, while for
˛ D 2 the collision entropy is obtained. Therefore, from Theorem 7, we have the
following.

Corollary 4. For the special cases of ˛ D 0; 1; 2;C1, the Rényi entropy of the
elliptically contoured r.v. X� � N� .�;†/ is reduced to

R˛.X� / D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

C1; for ˛ D 0; .Hartley entropy/

p ��1
�
� log max fX� ; for ˛ D 1; .Shannon entropy/

p ��1
�

log 2 � log max fX� ; for ˛ D 2; .collision entropy/

� log max fX� ; for ˛ D C1; .min-entropy/
(70)

where max fX� D Cp
� .†/.

The Rényi entropy R˛.X�/, as in (69), is a decreasing function of parameter ˛ 2
R�C n f1g, and hence

RC1.X� / < R2.X� / < R1.X� / < R0.X�/; � 2 R n Œ0; 1�;
while

min
0<˛¤1

fR˛.X� /g D RC1.X� / D � log max fX� D � log Cp
� .†/:
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Corollary 5. The Rényi entropy R˛ of the multivariate and elliptically contoured
Uniform random variable X � U .�;†/ is ˛-invariant, as R˛.X/ equals to the
logarithm of the volume !.E� / of the .p � 1/-ellipsoid E� W Q� .x/ D 1, x 2 R

p, in
which the p.d.f. of the elliptically contoured Uniform r.v. X is actually defined, i.e.

R˛.X/ D log!.E� / D log
p=2j det†j�1=2
�.

p
2
C 1/ ; ˛ 2 R�C n f1g; (71)

while for the univariate case of X � U .a; b/ it is reduced to

R˛.X/ D log.b � a/; ˛ 2 R�C n f1g:

Proof. Recall (29) and let X� � N� .�;†/. Then, the Rényi entropy of the
uniformly r.v. X can be considered as R˛.X/ WD lim�!1C R˛.X� / and therefore,
from (69), we obtain (71). ut

Notice, from the above Corollary 5, that the Hartley, Shannon, collision, and
min-entropy of a multivariate uniformly distributed r.v. coincide with log!.E� /.

Corollary 6. For the multivariate Laplace random variable X � L .�;†/, the
Rényi entropy is given by

R˛.X/ D p log˛
˛�1 C L.S/; (72)

and the Hartley, Shannon, collision, and the min-entropy are then given by

R˛.X/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

C1; for ˛ D 0; .Hartley entropy/

pC L.†/; for ˛ D 1; .Shannon entropy/

p log 2C L.†/; for ˛ D 2; .collision entropy/

L.†/; for ˛ D C1; .min-entropy/

(73)

where L.†/ WD logfpŠp=2j det†j1=2�. p
2
C 1/�1g.

Proof. Recall (29) and let X� � N� .�;†/. Then, the Rényi entropy of the Laplace
r.v. X can be considered as R˛.X/ WD lim�!˙1 R˛.X�/ and therefore, from (69),
we obtain (72), while through (70), relation (73) is finally derived. ut

Relations (71) and (72) below provide a general compact form of Rényi entropy
R˛ (for the Uniform and Laplace r.v.) and can be compared with the ˛-Shannon
entropy H˛ (for the such r.v.), as in (38).
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3.4 Generalized Fisher’s Entropy Type Information

As far as the generalized Fisher’s entropy type information measure J˛.X� / is
concerned, for the multivariate and spherically contoured r.v. X� � N p

� .�; �
2Ip/, it

holds, [18],

J˛.X� / D . �

��1 /
˛
�

�
�
˛Cp.��1/

�

�

�˛�
�

p ��1
�

� : (74)

More general, the following holds [19].

Theorem 8. The generalized Fisher’s entropy type information J˛ of a � -order
normally distributed r.v. X� � N p

� .�;†/, where † is a definite positive real matrix
consisted of orthogonal vectors (matrix columns) with the same norm, is given by

J˛.X� / D
.
�

��1 /
˛
� �
�
˛Cp.��1/

�

�

j det†j ˛2p�.p ��1
�
/
: (75)

Therefore, for the spherically contoured case, (74) holds indeed, through
Theorem 8.

Corollary 7. The generalized Fisher’s information J˛ of a spherically contoured
r.v. X� � N

p
� .�; �

2Ip/, with ˛=� 2 N�, is reduced to

J˛.X� / D ��˛.� � 1/�˛�
˛=�Y

kD1
f˛ � pC .p � k/�g; ˛; � > 1:

Proof. From (74) and the gamma function additive identity, i.e. �.xC 1/ D x�.x/,
x 2 R�C, relation (7) holds

3.5 Kullback–Leibler Divergence

As far as the information “discrimination” or “distance” is concerned between
two N� r.v., the Kullback–Leibler (K–L) measure of information divergence (also
known as relative entropy) is evaluated. Recall the K–L divergence DKL.X;Y/
defined in Sect. 1. Specifically, for two multivariate � -order normally distributed
r.v. with the same mean and shape, i.e. Xi 2 N� .�i; �

2
i Ip/, i D 1; 2, with �1 D �2,

the K–L divergence of X1 over X2 is given by, [16],

DKL.X1;X2/ D p log �2
�1
� p. ��1

�
/
h
1 � . �1

�2
/

�
��1

i
; (76)
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while for �1 ¤ �2 and � D 2,

DKL.X1;X2/ D p
2

h�
log �22

�21

�
� 1C �21

�22
C k�1��0k2

p�22

i
:

Moreover, from (76), the K–L divergence between two uniformly distributed r.v.
U1;U2 2 U p.�; �2i Ip/, i D 1; 2, is given by,

DKL.U1;U2/ D lim
�!1C

DKL.X1;X2/ D
(

p log �2
�1
; �1 > �2;

C1; �1 < �2;

while the K–L divergence between two Laplace distributed r.v. L1;L2 2
L p.�; �2i Ip/, i D 1; 2, is given by

DKL.L1;L2/ D lim
�!C˙1DKL.X1;X2/ D p

�
log �2

�1
� 1C �1

�2

�
:

We have already discussed all the well-known entropy type measures and new
generalized results have been obtained. We now approach the notion of complexity
from a new generalized point of view, as discussed below.

4 Complexity and the Generalized Gaussian

The entropy of a continuous system is defined over a random variable X as the
expected value of the information content, say I.X/, of X, i.e. H.X/ WD EŒI.X/�. For
the usual Shannon entropy (or differential entropy) case, the information content
I.X/ D log fX is adopted, where fX is the p.d.f. of the r.v. X.

In principle, the entropy can be considered as a measure of the “disorder” of
a system. However in applied sciences, the normalized Shannon entropy H� D
H=max H is usually considered as a measure of “disorder” because H� is indepen-
dent of all various states that the system can adopt, [24]. Respectively, the quantity
˝ D 1�H� is considered as a measure of “order”. For the estimation of “disorder,”
information measures play a fundamental role on describing the inner-state or the
complexity of a system, see [27] among others. We believe that concepts are useful
in Cryptography.

A quantitative measure of complexity with the simplest possible expression is
considered to be the “order–disorder” product K!;h given by

K!;h D ˝!H�h D H�h.1 �H�/! D ˝!.1 �˝/h; !; h 2 RC: (77)

This is usually called as simple complexity with “order” power ! and “disorder”
power h.
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The above measure K!;h, !; h 
 1, satisfies the three basic rules of complexity
measures. Specifically, we distinguish the following cases:

Rule 1. Vanishing “order” power, ! D 0. Then K!;h D .H�/h, i.e. K0;h is an
increasing function of the system’s “disorder” H.

Rule 2. Non-vanishing “order” and “disorder” powers, !; h > 0. Then for
“absolute-ordered” or “absolute-disordered” systems the complexity vanishes.
Moreover, it adopts a maximum value (with respect to H�) for an intermediate
state H� D h=.! C h/ or � D !=.! C h/, with maxH�fK!;hg D hh!!.! C
h/!Ch. In other words the “absolute-complexity” systems are such that their
“order” and “disorder” are “balanced,” hence H� D h=.! C h/.

Rule 3. Vanishing “disorder” power, h D 0. Then K!;h D ˝! , i.e. K!;0 is an
increasing function of the system’s “order”˝ .

The Shiner–Davison–Landsberg (SDL) measure of complexity KSDL is an
important measure in bio-sciences that satisfies the second rule as it is defined
by, [29],

KSDL D 4K1;1 D 4H�.1 � H�/ D 4˝.1�˝/: (78)

It is important to mention that all the systems with the same degree of “disorder”
have the same degree of SDL complexity. Moreover, SDL complexity vanishes
for all systems in an equilibrium state and therefore it cannot distinguish between
systems with major structural and organizing differences, see also [7, 27].

Now, consider the evaluation of the SDL complexity in a system where its various
states are described by a wide range of distributions, such as the univariate � -ordered
Normal distributions. In such a case we may consider the normalized Shannon
entropy H�.X� / WD H.X�/=H.Z/ where X� � N� .�; �

2/ as in (22), and we let
Z � N .�; �2Z / with �2Z D Var Z. That is, we adopt for the maximum entropy,
with respect to X� � N� , the Shannon entropy of a normally distributed Z with
its variance �2Z being equal to the variance of X� . This is due to the fact that the
Normal distribution (included also into the N� .�; �

2/ family for � D 2) provides
the maximum entropy of every distribution (here N� ) for equally given variances,
i.e. �2Z D Var Z D Var X� . Hence, max�fH.X� /g D H.X2/ D H.Z/.

The use of the above normalized Shannon entropy defines a complexity measure
that “characterizes” the family of the � -ordered Normal distributions as it is
obtained in the following Theorem, [17].

Theorem 9. The SDL complexity of a random variable X� � N� .�; �
2/ is given by

KSDL.X�/ D 8
log

n
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Fig. 4 Graphs of the SDL complexity KSDL.X� / along � , with X� � N� .�; �
2/, for various �2

values. (a) corresponds to � � 1 while (b) to �2 < 1 values

which vanishes (giving the “absolute-order” or “absolute-disorder” state of a
system) for: (a) the normally distributed r.v. X2, and (b) for scale parameters

� D 1
2
.
��1
�e /

��1
� Œ�.

��1
�
C 1/��1:

Figure 4 illustrates the behavior of the SDL complexity KSDL.X� / with X� �
N� .�; �

2/ for various scale parameters �2. Notice that, for �2 > 1, depicted in
sub-figure (a), the negative-ordered Normals close to 0, i.e. close to the degenerate
Dirac distribution (recall Theorem 3), provide the “absolute-complexity” state, i.e.
KSDL.X� / D 1, of a system, in which their different states described from the � -
ordered Normal distributions. The sub-figure (a) is obtained for �2 
 1, while (b)
for �2 < 1. Notice, in sub-figure (b), that among all the positive-ordered random
variables X� � N��0.�; �2/ with �2 < 1, the uniformly distributed ones � D 1

provide the maximum (but not the absolute) 2-SDL complexity measure.

5 Discussion

In this paper we have provided a concise presentation of a class of generalized
Fisher’s entropy type information measures, as well as entropy measures, that extend
the usual Shannon entropy, such as the ˛-Shannon entropy and the Rényi entropy.
A number of results were stated and proved, and the well-known results were just
special cases. These extensions were based on an extra parameter. In the generalized
Normal distribution the extra shape parameter � adjusts fat, or not, tails, while
the extra parameter ˛ of the generalized Fisher’s entropy type information, or of
the generalized entropy, adjusts “optimistic” information measures to better levels.
Under this line of thought we approached other entropy type measures as special
cases. We believe that these generalizations need further investigation using real
data in Cryptography and in other fields. Therefore, these measures were applied on
� -order normally distributed random variables (an exponential-power generalization
of the usual Normal distribution) and discussed. A study on a certain form of
complexity is also discussed for such random variables.
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Maximal and Variational Principles
in Vector Spaces

Mihai Turinici

Abstract In Sect. 1, a separable type extension of Ekeland’s variational principle
(J Math Anal Appl 47:324–353, 1974) is given, in the realm of ordered convergence
spaces. The connections with a related statement in Khanh (Bull Acad Pol Sci
(Math) 37:33–39, 1989) are then discussed. In Sect. 2, the Brezis–Browder ordering
principle (Adv Math 21:355–364, 1976) is used to establish a lot of maximality
results in triangular structures due to Pasicki (Nonlinear Anal 74:5678–5684, 2011).
Finally, in Sect. 3, some technical aspects of the variational principle due to Bao and
Mordukhovich (Control Cyb 36:531–562, 2007) are being analyzed. Further, an
extension of this result is proposed, by means of a pseudometric maximal principle
in Turinici (Note Mat 28:33–41, 2008).

Keywords: Metric space • Completeness • Ekeland variational principle •
Vector space • Convex cone • Separable property • Convergence structure •
Ordering • Vector half-metric • Maximal/minimal element • Dependent choice
principle • Triangular map • Strong almost completeness • Transitive brezis-
browder principle • Domination property • Level-set mapping • Properness •
Admissible point

1 Vector EVP on Separable Ordered Convergence Spaces

1.1 Introduction

Let X be a nonempty set and d W X � X ! RC WD Œ0;1Œ be a metric over it (in the
usual sense); the couple .X; d/ will be then referred to as a metric space. Further, let
' W X ! R [ f1g be a regular function; i.e.,

(a01) ' is inf-proper (Dom.'/ ¤ ; and '� WD infŒ'.M/� > �1)

(a02) ' is d-lsc on X (lim infn '.xn/ 
 '.x/, whenever xn
d�! x).
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The following 1974 statement in Ekeland [22] (referred to as Ekeland’s variational
principle; in short: EVP) is our starting point.

Theorem 1. Let the precise conditions hold; and .X; d/ be complete. Then, for each
u 2 Dom.'/ there exists v D v.u/ 2 Dom.'/, with

d.u; v/ � '.u/� '.v/ (hence '.u/ 
 '.v/) (1)

d.v; x/ > '.v/ � '.x/, for all x 2 X n fvg (2)

(8" > 0): d.u; v/ � ", whenever '.u/ � '� C ". (3)

Concerning the basic theoretical aspects involved here, we stress that, with
respect to the Brøndsted (quasi-) order [11]

(a03) (x; y 2 X): x � y iff d.x; y/C '.y/ � '.x/,
the point v 2 X appearing in (2) is maximal; so that, (EVP) is nothing but
a variant of the Zorn–Bourbaki maximal statement, under the way proposed by
Brezis–Browder’s ordering principle [10] (in short: BB); hence, (EVP) is deductible
from (BB). Concerning the reverse inclusion, note that (BB) is obtainable from
the Dependent Choice Principle (in short: DC) due to Bernays [7] and Tarski [51];
wherefrom, (DC) H) (BB) H) (EVP). On the other hand, (EVP) H) (DC); see
Brunner [12] and Turinici [62] for details. Summing up, both (BB) and (EVP) are
equivalent with (DC); hence, mutually equivalent.

Passing to the practical perspectives of this principle, note that (EVP) found some
basic applications to control and optimization, generalized differential calculus,
critical point theory, and global analysis; we refer to the 1979 paper by Ekeland
[23] for a survey of these. So, it cannot be surprising that, soon after its formulation,
many extensions of (EVP) were proposed. For example, the (pseudo-) metrical one
consists in conditions imposed upon the ambient metric d.:; :/ being relaxed. The
basic result in this direction, due to Tătaru [52], is essentially founded on Ekeland
type techniques; subsequent extensions of it were obtained by Kada, Suzuki, and
Takahashi [34]. Since all these are obtainable from (DC), it follows by the above
that a deduction of them from (EVP) is possible as well; see Turinici [59] for details.
On the other hand, a functional extension of (EVP) was carried out in Bao and
Khanh [4], as a refinement of some related methods due to Zhong [68]; note that, as
precise in Turinici [61], it is nothing but a variant of (EVP). Finally, the dimensional
way of extension refers to the ambient space (R) of '.X/ being substituted by a
(topological or not) vector space; an account of these results—including the ones
in Chen et al. [15, 16]—is to be found in the 2003 monograph by Goepfert et al.
[26, Chap. 3]. It is worth noting that the scalarization type method used there allows
us reducing most sequential statements in the area to (DC) (hence, ultimately, to
(EVP)); see Turinici [55] for details. Unfortunately, this device cannot cover the
1989 variational principle in Khanh [38]; but, for higher order versions of (DC)
taken as in Wolk [66], this must be possible. To clarify our assertion, the natural
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setting of Khanh’s result is to be re-analyzed. As we shall see, this especially refers
to the lattice structure of co-domain space being removed; we refer to Sect. 1.3 for
details. Further, some local versions of the obtained facts are indicated in Sect. 1.4.
All preliminary concepts and auxiliary statements for getting the results in question
are described in Sect. 1.2. Some other aspects will be delineated elsewhere.

1.2 Preliminaries

(A) Let Y be a (real) vector space; and K be a (convex) cone of it

˛K C ˇK � K, for ˛; ˇ 2 RC;

supposed to be pointed (K \ .�K/ D f0g). The relation .�K/ over Y introduced as

(b01) (x; y 2 Y): x �K y iff y � x 2 K

is reflexive transitive, antisymmetric; hence, an order; moreover, it is compatible
with the linear operations on Y:

x �K y H) xC z �K yC z; �x �K �y; 8z 2 Y; 8� 2 RC:

For simplicity, we shall denote this relation as .�/. Note that the relation .
/ over
Y introduced as

(x; y 2 Y): x 
 y iff y � x

is again an order; referred to as the dual of .�/. Finally, let .</ stand for the strict
order attached to .�/

(x; y 2 Y): x < y iff x � y and x ¤ y;

it is irreflexive (x < x is false, 8x 2 X) and transitive (x < y and y < z imply x < z),
as it can be directly seen. Finally, let .>/ stand for its dual

(x; y 2 Y): x > y iff y < x (or, equivalently: x > y iff x 
 y and x ¤ y);

clearly, it is a strict order too.
As a rule, the operational concepts to be used are being constructed with the aid

of the dual order .
/ and its attached dual strict order .>/; but these may be also
viewed as emerging from the initial order .�/ and its attached strict order .</.

(I) Let N WD f0; 1; : : :g stand for the class of natural numbers; and .�/ denote
the standard order on it, introduced as:

m � n iff mC p D n, for some p 2 N.

[Note that .N;�/ is well ordered; hence, all the more, totally ordered.] Any mapping
x W N ! Y will be referred to as a sequence; and written as .x.n/I n 
 0/ or .xnI n 

0/; moreover—when no confusion can arise—we further simplify this notation as
.x.n// or .xn/, respectively. By a subsequence of (the sequence) .xnI n 
 0/ we shall
mean any sequence .yn D xi.n/I n 
 0/, where

.i.n/I n 
 0/ is strictly ascending (hence: i.n/!1 as n!1).
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(II) Let V be a nonempty part of Y. We say that V is .
/-bounded-above (i.e.:
bounded below) by z 2 Y when V 
 z (i.e.: x 
 z, 8x 2 V); the class of all such
elements will be denoted ubd.�/.V/.D lbd.V//. Further, denote

first.�/.V/ D fz 2 VI z 
 Vg (=last.V/)
last.�/.V/ D fz 2 VIV 
 zg (=first.V/).

These sets appear as singletons, whenever they are nonempty; in this case, their
uniquely determined member (in V) will be called a .
/-first-element (i.e.: last
element) and .
/-last-element (i.e.: first element) of V , respectively. Finally, call
the point z 2 ubd.�/.V/.D lbd.V//, a .
/-supremum (i.e.: infimum) of V , when
[V 
 w H) z 
 w]. The class sup.�/.V/ D inf.V/ of all these is either
empty or a singleton, fzg; in this case, we write fzg D sup.�/.V/ D inf.V/ as
z D sup.�/.V/ D inf.V/. The corresponding form of these conventions with .�/ in
place of .
/ is to be introduced in a dual manner.

(III) We say that L � Y is a .
/-super-chain (in short: .
/-schain) of Y provided
each nonempty part of L has a .
/-first element; the class of all these will be denoted
as schain.�/.Y/. Given two objects P;Q 2 schain.�/.Y/, define

(b02) P w Q (referred to as: Q is .
/-cofinal in P), provided
(P � Q) and (8x 2 P, 9y 2 Q, with x 
 y).

This relation is reflexive, transitive, and antisymmetric—hence, an ordering—in
schain.�/.Y/; since the verification is immediate, we omit the details.

Now, call the (nonempty) P 2 schain.�/.Y/, .
/-chain-separable, when

P w fxnI n 
 0g, for some .
/-ascending sequence .xnI n 
 0/;
or, equivalently (passing to the initial order)

(b03) P w fxnI n 
 0g, for some descending sequence .xnI n 
 0/.
[Note that, the definition is consistent, in the sense of Q WD fxnI n 
 0g being an
element of schain.�/.Y/]. Clearly, any P 2 schain.�/.Y/ with last.�/.P/ ¤ ; fulfills
such a requirement; just take .xn D last.�/.P/I n 
 0/. So, the question to be posed
is that of discussing the underlying condition when last.�/.P/ D ;. In this case, we
claim that the .
/-ascending (i.e.: descending) property of our sequence .xnI n 
 0/
may be taken in a strict sense. For, if .xnI n 
 0/ fulfills

(9k 
 0): xn D xk, for all n 
 k (or, equivalently: for all n > k)

then xk D last.�/.P/; contradiction. Hence, necessarily,

for each k 
 0, there exists n > k, such that xk > xn;

wherefrom, the descending sequence .xnI n 
 0/ must admit a strictly descending
subsequence .ynI n 
 0/; and our claim follows via fxnI n 
 0g w fynI n 
 0g.
Hence, P 2 schain.�/.Y/ with last.�/.P/ D ; is .
/-chain-separable iff

(b04) P w fxnI n 
 0g, for some strictly descending sequence .xnI n 
 0/.
It remains now to determine sufficient global conditions for such a property. Let

us say that the nonempty subset C � Y is .
/-chain, provided
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for each x; y 2 U: either x 
 y or y 
 x;

this will be also referred to as: C is .
/-totally ordered. The dual concept of .�/-
chain (or: .�/-totally ordered set) is identical with the above one; so, we may talk
about a chain (or: totally ordered set) in this case. Further, let us say that Y is .
/-
complete when (cf. Peressini [46, Chap. 1, Sect. 1.7])

(D=chain, ubd.�/.D/ ¤ ;) H) sup.�/.D/ ¤ ;;

or, equivalently (passing to the initial order)

(b05) (D=totally ordered, bounded from below)H) inf.D/ exists.

Likewise, call Y, .
/-separable if (cf. Peressini [46, Chap. 1, Sect. 5.18])

(G=chain, sup.�/.G/ ¤ ;) H) there exists a sequence .xnI n 
 0/ in G
such that sup.�/.G/ D sup.�/.fxnI n 
 0g/;

or, equivalently (passing to the initial order)

(b06) (G=totally ordered, inf.G/ ¤ ;) H) there exists a sequence
.xnI n 
 0/ in G such that inf.G/ D inf.fxnI n 
 0g/.

Putting these together, we therefore get the following practical statement.

Proposition 1. Suppose that Y is .
/-complete and .
/-separable. Then, each
(nonempty) bounded from below part P 2 schain.�/.Y/ is .
/-chain-separable.

Proof. Let the nonempty P 2 schain.�/.Y/ be bounded from below. By a previous
remark, the case of last.�/.P/ ¤ ; is clear; so, there is no loss in generality if
one assumes that last.�/.P/ D ;. In particular, P is totally ordered (x; y 2 P H)
x � y or y � x); so, as Y is .
/-complete, inf.P/ exists. Combining with Y being
.
/-separable, one derives

there is a sequence .xnI n 
 0/ in P such that inf.P/ D inf.fxnI n 
 0g/.
We now claim that this last property is equivalent with

(b07) there must be a descending sequence .ynI n 
 0/ in P
such that inf.P/ D inf.fynI n 
 0g/.

In fact, let us construct the sequence (in P)

yn WD inffx0; : : : ; xng D minfx0; : : : ; xng, n 
 0.

As .ynI n 
 0/ consists of elements taken from the original sequence .xnI n 
 0/,
we have (by the very definition of infimum)

yn 
 inf.fxnI n 
 0g/; for all nI

whence D WD fynI n 
 0g is bounded from below. Further, as .ynI n 
 0/ is
descending, D is totally ordered; wherefrom (as Y is .
/-complete)

.9/ inf.D/ D inf.fynI n 
 0g/ 
 inf.fxnI n 
 0g/:
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Finally, as (xn 
 yn, for all n), we derive

inf.fxnI n 
 0g/ 
 inf.fynI n 
 0g/I

whence (combining with the above) inf.fynI n 
 0g/ D inf.fxnI n 
 0g/. This, along
with a previous relation involving .xnI n 
 0/, gives the desired fact.

Finally, note that a slight extension of the above result is to be reached when
the .
/-complete and .
/-separable conditions upon Y would be formulated with
respect to .
/-schains (in place of chains). However, for the developments below,
the provided version of this criterion will suffice.

1.3 Main Results

With this information, we may return to the questions of introductory part.
(A) Let Y be a real vector space; and K be some pointed convex cone of Y; the

associated order .�K/ will be denoted as .�/, for simplicity. Assume that

(c01) Y is .
/-complete and .
/-separable (see above).

(B) Let X be a nonempty set. Denote by S .X/ the class of all sequences .xn/ in
X. By a (sequential) convergence structure on X we mean, as in Kasahara [36], any
part .!/ of S .X/ � X with the properties

(cs-1) (xn D x;8n 
 0) implies ..xn/I x/ 2 .!/
(cs-2) ..xn/I x/ 2 .!/ implies ..yn/I x/ 2 .!/,
for each subsequence .yn/ of .xn/.

In this case, ..xn/I x/ 2 .!/ writes xn ! x; and reads: x is the limit of .xn/. The set
of all such x is denoted lim.xn/; when it is nonempty, we say that .xn/ is convergent
(modulo .!/).

(C) Let .X;!/ be a convergence structure. According to Khanh [38], any map
d W X � X ! K with

(vhm-1) (reflexive sufficient) x D y” d.x; y/ D 0
(vhm-2) (triangular) d.x; z/ � d.x; y/C d.y; z/, 8x; y; z 2 X

will be called a vector half-metric on X. Fix in the following such an object; as well
as some function ' W X ! Y.

Given a sequence .xn/ in X, call it d-strongly asymptotic (in short: d-strasy), if

(str)
Pm

iD0 d.xi; xiC1/ � k, for all m > 0 and some k 2 K.

The following condition is to be considered

(c02) X is '-descending .d;!/-complete: each d-strasy sequence .xn/ in X
with .'.xn//=descending, converges (modulo .!/).

Given another function  W X ! Y, call it '-descending .!/-lsc, in case
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(lsc-d) ( .xn/ � t, 8n), xn ! x 2 X and .'.xn//=descending
imply  .x/ � t.

In particular, this holds whenever  is (standard) .!/-lsc, in the sense

(lsc-st) ( .xn/ � t;8n) and xn ! x 2 X imply  .x/ � t.

(D) Let .�/ be an ordering on X. Remember that z 2 X is .�/-maximal, provided

X.x;�/ D fzg; i.e.: z � w 2 X implies z D w;

the class of all these will be denoted as max.X;�/. The following maximal principle
is basic for our developments.

Proposition 2. Suppose that one of the following conditions holds:

(zb-1) X is .�/-chain-inductive: each .�/-chain is .�/-bounded-above
(zb-2) X is .�/-schain-inductive: each .�/-schain is .�/-bounded-above.

Then, for each u 2 X, there exists a .�/-maximal v 2 X with u � v.

The first variant of this statement (based on chains) belongs to Zorn [71]; see
also Kelley [37, Chap. 0]. The second (refined) variant of the same (based on .�/-
schains) is due to Bourbaki [9]. So, it is natural that Proposition 2 be referred to as
Zorn–Bourbaki maximal principle. For equivalent versions of this one we refer to
Moore [41, Chap. 4, Sect. 4.4] and the references therein.

Our main result in this exposition is

Theorem 2. Let the data .Y;K/, .X;!/ be taken according to the general condi-
tions above. Further, let the vector half-metric d.:; :/ and the function ' W X ! Y be
such that X is '-descending .d;!/-complete, and

(c03) '.X/ is bounded below: '.X/ � QyC K, for some Qy 2 Y
(c04) t 7! d.x; t/C '.t/ is '-descending .!/-lsc, for each x 2 X.

Then, for each u 2 X, there exists v 2 X with

d.u; v/ � '.u/� '.v/ .hence '.u/ 
 '.v// (4)

d.v; t/ � '.v/ � '.t/ is impossible, for each t 2 X n fvg: (5)

Proof. Define the relation over X

(c05) x � y iff d.x; y/ � '.x/� '.y/.
Clearly, .�/ is reflexive, transitive, and antisymmetric; hence, it is an order on X.
We show that .X;�/ fulfills conditions of the Zorn–Bourbaki maximal principle;
and, from this, all is clear. There are two steps to be passed.

Step 1. We show that, under these conditions, X is .�/-schain-inductive (see
above). Let A be some .�/-schain in X; that is,

for each (nonempty) A1 � A, there exists a1 2 A1, such that a1 � A1.
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If last.	/.A/ ¤ ;, A is .�/-bounded above (by this element); so, without loss, one
may assume that

(c06) last.	/.A/ D ;: for each u 2 A there exists v 2 A such that u � v.

By the very definition above, A is totally ordered (modulo .�/); so that (as d.:; :/ is
reflexive sufficient and .�/ is an order)

.x; y 2 A/ W x � y iff '.x/ > '.y/: (6)

(Here, .�/ and .>/ are the strict orders attached to .�/ and .
/, respectively.) In
other words, ' is an order isomorphism between .A;�/ and .E WD '.A/;
/; so,
necessarily, last.�/.E/ D first.E/ D ;. In addition, (as E � '.X/), E is bounded
from below by (c03); hence (as Y is .
/-complete),

inf.E/ exists in Y; and (as first.E/ D ;), E > inf.E/.

Combining with Y being .
/-separable, one derives (from a previous auxiliary fact)
that E is .
/-chain-separable; i.e.,

there exists a sequence .xn/ in A such that .'.xn// is
descending in E and inf.f'.xn/I n 
 0g/ D inf.E/.

Note that the former of these properties tells us (via (6) above) that .xn/ is ascending
(modulo .�/) in A

n < m H) .0 �/d.xn; xm/ � '.xn/� '.xm/: (7)

And, from the latter one, f'.xn/I n 
 0g is .
/-cofinal in E; wherefrom, fxnI n 
 0g
is .�/-cofinal in A. By (7), we derive (via (c03)), for all n > 0,

nX

iD0
d.xi; xiC1/ � '.x0/ � '.xnC1/ � '.x0/� Qy:

The sequence .xn/ is therefore d-strasy; so (as X is '-descending .!/-complete),
xn ! x� for some x� 2 X. Now, again by (7), one gets for each n,

d.xn; yj/C '.yj/ � '.xn/; 8jI

where, for simplicity, we denoted .yj WD xnCjI j 
 0/. Passing to limit upon j and
taking (c04) into account one derives, for all n,

d.xn; x
�/C '.x�/ � '.xn/I that is W xn � x�I

so that x� is an upper bound (modulo .�/) of .xn/; wherefrom (by the .�/-cofinality
of this sequence), x� is an upper bound (modulo .�/) of A.
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Step 2. By the Zorn–Bourbaki maximal principle, it follows that, for each u 2 X
there exists v 2 X with

(c1) u � v, (c2) v is .�/-maximal in X (v � x is impossible, 8x 2 X n fvg).
This shows that v is just the desired element; and the proof is complete.

As a direct consequence of this, the following fixed point result is available.

Theorem 3. Let the conditions of Theorem 2 be fulfilled and the multivalued map
T W X ! 2X be such that

(c07) for each x 2 X there exists y 2 Tx with d.x; y/ � '.x/ � '.y/.
Then, for each u 2 X, there exists v 2 X with the properties (4) and (5), fulfilling

v 2 Tv (i.e.: v is fixed under T). (8)

Proof. By (c07), the point v 2 X given by Theorem 2 has the property

d.v; t/ � '.v/ � '.t/ (i.e., v � t), for some t 2 Tv.

This, along with (5), yields v D t 2 Tv; wherefrom, all is clear.

In particular, when Y D R and d.:; :/ is a (standard) metric on X, Theorem 2 is
nothing else than (EVP); and Theorem 3 is just the Caristi–Kirk fixed point result
[13]. Further aspects may be found in Nemeth [43].

1.4 Local Versions

In the following, a local version of Theorem 2 is given, so as to compare it with the
last part of Theorem 1.

(A) Let Y be a real vector space; and K be some pointed convex cone of Y; the
associated order .�K/ will be denoted as .�/, for simplicity.

Let H � Y be a nonempty subset. Remember that the nonempty part C � H is
.
/-chain, provided

for each x; y 2 C: either x 
 y or y 
 x;

this will be also referred to as: C is .
/-totally ordered. The dual concept of .�/-
chain (or: .�/-totally ordered set) is identical with the above one; so, we may talk
about a chain (or: totally ordered set) in this case. Let chain.H/ stand for the class
of all (nonempty) chains in H. As before, we may introduce a maximality concept
over .chain.H/;�/, as follows: call C 2 chain.H/, maximal (modulo .�/), when

(d01) C � E 2 chain.H/ implies C D E;

the class of all such elements (if any) will be denoted as max.chain.H/;�/. A basic
existence result about the class in question is deductible from the Zorn–Bourbaki
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maximal principle. Namely, the following Hausdorff–Kuratowski maximal principle
is available (cf. Schechter [47, Chap. 6, Sect. 6.20]):

Proposition 3. The structure .chain.H/; .�// is inductive; i.e.,

for each totally ordered part D of chain.H/, we have G WD [D 2 chain.H/;
(wherefrom, D is bounded above (modulo .�// by G in chain.H/).

Hence (by the Zorn–Bourbaki maximal principle) the following property holds: for
each A 2 chain.H/, there exists some U 2 chain.H/, with

(i) A � U, (ii) U � V 2 chain.H/ H) U D V (i.e.: U is .�/-maximal).

This result allows us to get a useful representation of .
/-maximal (i.e.: minimal)
elements in .H;�/. Precisely, call z 2 H, .
/-maximal (i.e.: minimal), if

(d02) w 2 H, z 
 w implies z D w.

the class of all these will be denoted as max.H;
/ (resp., min.H;�/).
Proposition 4. Let the above conventions be in use. Then, z 2 H is .
/-maximal
(i.e.: minimal), if and only if it may be written as

z D first.U/, for some .�/-maximal U 2 chain.H/.

The verification is immediate; we do not give details.
(B) So far, the obtained facts are valid in a general context relative to .Y;K/.

But, for the next developments, further regularity conditions upon these data must
be imposed. Namely, assume that

(d03) Y is .
/-complete:
if D � Y is totally ordered and bounded from below, then inf.D/ exists.

Let H be a nonempty bounded from below part of Y. From the above complete-
ness assumption, it follows that

inf.U/ exists, for each [.�/-maximal or not] U 2 chain.H/.

Denote for simplicity

amin.H;�/ D finf.U/IU 2 max.chain.H/;�/g;
each element in this subset will be referred to as an almost minimal element of H.
By the statement above, it follows that

min.H;�/ � amin.H;�/ [whenever H is bounded below]; (9)

i.e.: each minimal element of H is almost minimal too. The reciprocal is not in
general true; to verify this, it will suffice noting that min.H;�/ may be sometimes
empty, whereas amin.H;�/ is always nonempty (under the previous choice of H).

The following “almost” Zorn–Bourbaki principle is now available.

Proposition 5. Let Y be .
/-complete; and the nonempty subset H of Y be bounded
from below. Then, for each A 2 chain.H/ there exists u 2 amin.H;�/, with A 
 u.
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Proof. By the Hausdorff–Kuratowski maximal principle, there exists a maximal
(modulo .�/) chain U in H with A � U. On the other hand, by the imposed upon H
condition, u WD inf.U/ exists; and this yields A 
 u. The proof is complete.

Having these precise, the following local version of Theorem 2 is available.

Theorem 4. Let the conditions of Theorem 2 be in force; as well as (d03). Then,
for each u 2 X, there exists v 2 X fulfilling (4) and (5). In addition, for the obtained
v 2 X there exists q 2 amin.'.X/;�/, with '.v/ 
 q; hence

d.u; v/ � r, when '.u/ � qC r. (10)

Proof. Let V be a maximal (modulo .�/) chain in '.X/, including the chain E WD
f'.u/; '.v/g. By the imposed conditions, q WD inf.V/ exists (in Y); with, in addition,
'.u/ 
 '.v/ 
 q. This, along with d.u; v/ � '.u/�'.v/, gives (10) and concludes
the argument.

The obtained result may be compared with a similar one due to Khanh [38].
However, we must say that, under these requirements, min.'.X/;�/may be empty;
so, the quoted result is not in general retainable. On the contrary, amin.'.X/;�/
is nonempty; i.e., this conclusion is retainable under the precise conditions. Note
finally that a corresponding variant of Theorem 2 may be formulated in the
setting of (10); we do not give details. Further aspects may be found in Bao and
Mordukhovich [5]; see also Turinici [54].

2 Maximality Principles in Triangular Structures

2.1 Introduction

Let X be a nonempty set; and d W X � X ! RC WD Œ0;1Œ be a metric over it (in the
usual sense); the couple .X; d/ will be then referred to as a metric space. Further, let
' W X ! R be a function with

(a01) ' is d-lsc on X: lim infn '.xn/ 
 '.x/ whenever xn
d�! x

(a02) ' is bounded from below on X: inff'.x/I x 2 Xg > �1.

The following 1979 statement in Ekeland [23] (referred to as Ekeland’s variational
principle; in short: EVP) is well known.

Theorem 5. Let the function ' W X ! R be d-lsc and bounded from below on X. In
addition, let .X; d/ be complete. Then, for each u 2 X, there exists v D v.u/ 2 X,
with the properties

d.u; v/ � '.u/� '.v/ (hence '.u/ 
 '.v/) (11)
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d.v; x/ > '.v/� '.x/, for all x 2 X n fvg. (12)

This principle found some basic applications to control and optimization,
generalized differential calculus, critical point theory, and global analysis; we refer
to Hyers et al. [30, Chap. 5] for a survey of these. So, it cannot be surprising that,
soon after, many extensions of (EVP) were proposed. For example, the abstract
(order) one starts from the fact that, with respect to the Brøndsted order [11]

(a03) (x; y 2 X): x � y iff d.x; y/ � '.x/� '.y/
the point v 2 X appearing in (12) is maximal; so that, Theorem 5 is nothing but a
variant of the Zorn Maximal Principle (cf. Bourbaki [9]), in the way described by the
Brezis–Browder ordering principle [10] (in short: BB). The (pseudo) metrical one
consists in conditions imposed to the ambient metric over X being relaxed; a basic
result of this type may be found in the 1996 paper by Kada, Suzuki, and Takahashi
[34]. Further, we must add to the above list the 1997 “functional” extension of (EVP)
obtained by Zhong [68]; this, essentially, consists in the variational conclusion (12)
being relaxed as

b.d.a; v//d.v; x/ > '.v/ � '.x/, for each x 2 X n fvg; (13)

where a is an element of X, and b W RC ! RC is a normal function:

(a04) b is decreasing, b.RC/ � R0C WD�0;1Œ and
R1
0

b.	/d	 D1;

cf. Suzuki [48] and Turinici [65]. Finally, the dimensional way of extension refers
to the ambient space (R) of '.X/ being substituted by a (topological or not) vector
space. A pioneering work in this direction is the 1983 Pareto efficiency statement
due to Isac [31]. Further, the topological vector space realm is discussed in the
papers by Nemeth [43] and Turinici [54]. A “product” type version of these results
is to be found in Goepfert, Tammer, and Zălinescu [25]; see also Isac [32].

Now, the natural question to be posed is that of these extensions being or
not effective. Some partial (negative) answers were stated in Turinici [59]; see
also Bao and Khanh [4]. According to these, the metrical and (sequential type)
dimensional extensions of (EVP) are obtainable from either (EVP) or (BB), via
straightforward techniques. Concerning the question of (BB) (and its subsequent
extensions) being reducible to (EVP), the basic tool for solving it is the Dependent
Choice Principle (in short: DC) due, independently, to Bernays [7] and Tarski [51].
Precisely, note that, by the very Ekeland’s argument, (DC)H) (EVP); moreover, as
shown in Brunner [12], (EVP) H) (DC). Hence, any maximal/variational result—
(MP) say—with (DC) H) (MP) H) (EVP) is logically equivalent with both (DC)
and (EVP); see Turinici [62] for details. In particular, this is the case with many
extensions of (EVP) and/or (BB). But (cf. Turinici [63]), the conclusion is also true
for the “smooth” extension of (EVP) due to Borwein and Preiss [8] and the related
contributions in Li and Shi [39]; see also Bejancu [6].

Recently, some new maximal principles in the area were obtained by Pasicki
[45], for triangular maps. By the remarks above, we may ask whether these enter as
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well in this reduction scheme. It is our aim in the present exposition to show that the
results in question are obtainable from certain “transitive” type ordering principles
like in Turinici [56]; whence, they are deductible from (DC). Moreover, these results
include both (EVP) and (BB); so, by the above, they are nothing else than equivalent
versions of (EVP) or (BB). The obtained conclusion may have a theoretical impact
upon such statements; but, from the equilibrium points perspective, these may be
useful tools; cf. Turinici [65].

2.2 Preliminaries

Throughout this exposition, the axiomatic system in use is Zermelo-Fraenkel’s
(abbreviated: ZF), as described by Cohen [17, Chap. 2]. The notations and basic
facts to be considered in this system are standard. Some important ones are
described below.

(A) Let X be a nonempty set. By a relation over X, we mean any nonempty part
R � X � X. For simplicity, we sometimes write .x; y/ 2 R as xRy. Note that R
may be regarded as a mapping between X and 2X (=the class of all subsets in X). In
fact, denote for x 2 X:

X.x;R/ D fy 2 XI xRyg (the section of R through x);

then, the desired mapping representation is [R.x/ D X.x;R/, x 2 X]. A basic
example of such object is

I D f.x; x/I x 2 Xg [the identical relation over X].

Given the relations R, S over X, define their product R ıS as

.x; z/ 2 R ıS , if there exists y 2 X with .x; y/ 2 R, .y; z/ 2 S .

Also, for each relation R in X, denote

R�1 D f.x; y/ 2 X � XI .y; x/ 2 Rg (the inverse of R).

Finally, given the relations R and S on X, let us say that R is coarser than S
(or, equivalently: S is finer than R), provided

R � S ; i.e.: xRy implies xS y.

Given a relation R on X, the following properties are to be discussed here:

(P1) R is reflexive: I � R
(P2) R is irreflexive: R \I D ;
(P3) R is transitive: R ıR � R
(P4) R is symmetric: R�1 D R
(P5) R is antisymmetric: R�1 \R � I .

This yields the classes of relations to be used; the following ones are important for
our developments:

(C0) R is trivial (i.e.: R D X � X)
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(C1) R is a (partial) order (reflexive, transitive, antisymmetric)
(C2) R is a strict order (irreflexive and transitive)
(C3) R is a quasi-order (reflexive and transitive)
(C4) R is an equivalence (reflexive, transitive, symmetric).

A basic ordered structure is .N;�/; here, N D f0; 1; : : :g is the set of natural
numbers and (the partial order) .�/ is defined as

m � n iff mC p D n, for some p 2 N.

In fact, .N;�/ is well ordered; i.e.: any (nonempty) subset of N has a first element.
By a sequence in X, we mean any mapping x W N ! X. For simplicity reasons,
it will be useful to denote it as .x.n/I n 
 0/, or .xnI n 
 0/; moreover, when no
confusion can arise, we further simplify this notation as .x.n// or .xn/, respectively.
Also, any sequence .yn WD xi.n/I n 
 0/ with

.i.n/I n 
 0/ is strictly ascending [hence, i.n/!1 as n!1]

will be referred to as a subsequence of .xnI n 
 0/.
(B) Remember that, an outstanding part of (ZF) is the Axiom of Choice

(abbreviated: AC), which, in a convenient manner, may be written as

(AC) For each nonempty set X, there exists a (selective) function
f W .2/X ! X, with f .Y/ 2 Y, for each Y 2 .2/X.

(Here, .2/X stands for the class of all nonempty elements in 2X). There are many
logical equivalents of (AC); see, for instance, Moore [41, Appendix 2]. A basic
group of these refers to (partially) ordered structures. Some preliminaries are
needed. Let .X;�/ be a (partially) ordered set. By a .�/-chain in X, we mean any
part C 2 .2/X , with

C is totally ordered (modulo .�//:
for each x; y 2 C, we have either x � y or y � x.

The family of all .�/-chains in X will be denoted as chain.X;�/; it may be viewed
as a partially ordered structure, with respect to the usual inclusion .�/. Given the
nonempty part Y of X, let us say that u 2 X is an upper bound of it, provided

Y � u; (in the sense: y � u, 8y 2 Y);

the class of all these will be denoted as ubd.Y/. Call .X;�/, inductive provided:

ubd.C/ is nonempty, for each .�/-chain C in X;

note that .chain.X;�/;�/ is endowed with such a property. Finally, call the point
z 2 X, maximal (modulo .�/), provided

X.z;�/ D fzg; or, equivalently: X.z; </ D ;.

(Here, .</ is the strict order attached to .�/, as

x < y iff x � y and x ¤ y.
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As precise, this means that .</ is irreflexive and transitive; we do not give details.)
Denote the class of all such elements as max.X;�/. We then say that .X;�/ is a
Zorn ordered structure, provided

for each x 2 X, there exists a maximal (modulo .�/) element z 2 X,
with the property x � z.

Returning to the general setting, we stress that a basic equivalent form of (AC) is
the Zorn Maximal Principle (in short: ZMP), expressed as

(ZMP) If the (partially) ordered structure .X;�/ is inductive,
then, necessarily, .X;�/ is Zorn ordered.

(For an outline of proof, we refer to Bourbaki [9].) As precise, the ordered structure
.chain.X;�/;�/ is inductive. This, via (ZMP), yields the so-called Hausdorff–
Kuratowski Maximal Principle:

(HKMP) The partially ordered structure .chain.X;�/;�/ is a Zorn one:
for each .�/-chain C in X, there exists a maximal (modulo .�/) .�/-chain D in
X, with C � D;

or, in a simplified way: any .�/-chain is included in a maximal .�/-chain. The
converse implication ((HKMP) H) (ZMP)) is also true (cf. Kelley [37, Chap. 0]);
hence, these maximal principles are equivalent.

The following variant of (HKMP) is to be noted. Let .r/ be a transitive relation
over X. Call the (nonempty) subset C of X, r-chain, provided

C is totally ordered (modulo .r//:
for each x; y 2 C, we have either xry or yrx;

the class of all these will be denoted as chain.X;r/. Clearly, .chain.X;r/;�/ is
inductive; however, we must stress that—unlike the partially ordered case—the
singleton C D fag (where a 2 X) need not be an element of it, unless ara. Having
these precise, let us consider the transitive type version of the Hausdorff–Kuratowski
Maximal Principle

(HKMP-t) The (partially) ordered structure .chain.X;r/;�/ is a Zorn one:
for each r-chain C in X, there exists a maximal (modulo .�/) r-chain D in X,
with C � D.

Note that (by the inductive property above), (ZMP) H) (HKMP-t); hence (by the
precise equivalence relation) (HKMP) H) (HKMP-t). Moreover, (HKMP-t) H)
(HKMP); so that, (HKMP-t) is equivalent with both (ZMP) and (HKMP).

Sometimes, when the ambient set X is endowed with denumerable type struc-
tures, the existence of maximal elements may be determined by using a weaker
form of (AC), called: Dependent Choice Principle (in short: DC). Call the relation
R over X, proper when

.X.x;R/ D/R.x/ is nonempty, for each x 2 X.
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Note that, in this case, R is to be viewed as a mapping between X and .2/X; the
couple .X;R/will be then referred to as a proper relational structure. Further, given
a 2 X, let us say that the sequence .xnI n 
 0/ in X is .aIR/-iterative, provided
[x0 D a; xnC1 2 R.xn/, 8n].

Proposition 6. Let the relational structure .X;R/ be proper. Then, for each a 2 X
there is at least an .a;R/-iterative sequence in X.

This principle—proposed, independently, by Bernays [7] and Tarski [51]—
is deductible from (AC), but not conversely; cf. Wolk [66]. Moreover, by the
developments in Moskhovakis [42, Chap. 8], and Schechter [47, Chap. 6], the
reduced system (ZF-AC+DC) is comprehensive enough so as to cover the “usual”
mathematics; see also Moore [41, Appendix 2].

(D) Let .RnI n 
 0/ be a sequence of relations on X. Given a 2 X, let us say
that the sequence .xnI n 
 0/ in X is .aI .RnI n 
 0//-iterative provided [x0 D a,
xnC1 2 Rn.xn/, 8n]. The following Diagonal Dependent Choice Principle (in short:
DDC) is also taken into consideration.

Proposition 7. Let .RnI n 
 0/ be a sequence of proper relations on X. Then, for
each a 2 X, there exists at least one .aI .RnI n 
 0//-iterative sequence in X.

Clearly, (DDC) includes (DC), to which it reduces when .RnI n 
 0/ is constant.
The reciprocal of this is also true. In fact, letting the premises of (DDC) hold, put
P D N � X; and let S be the relation over P introduced as

S .i; x/ D fiC 1g �Ri.x/, .i; x/ 2 P.

It will suffice applying (DC) to .P;S / and b WD .0; a/ 2 P to get the conclusion in
the statement; we do not give details.

Summing up, (DDC) is provable in (ZF-AC+DC). This is valid as well for its
variant, referred to as: the Selected Dependent Choice Principle (in short: SDC).

Proposition 8. Let the map F W N ! .2/X and the relation R over X fulfill

(8n 2 N): R.x/\ F.nC 1/ ¤ ;, 8x 2 F.n/ [F is R-chainable].

Then, for each a 2 F.0/ there exists a sequence .x.n/I n 
 0/ in X with

x.0/ D aI x.n/ 2 F.n/; 8nI x.n/Rx.nC 1/; 8n:

As before, (SDC) H) (DC) (” (DDC)); just take F.n/ D X, n 
 0. But, the
reciprocal is also true, in the sense: (DDC) H) (SDC). This follows from

Proof (Proposition 8). Let the premises of (SDC) be admitted. Define a sequence
of relations .RnI n 
 0/ over X as: for each n 
 0,

Rn.x/ D R.x/ \ F.nC 1/, if x 2 F.n/; Rn.x/ D fxg, if x 2 X n F.n/.

Clearly, Rn is proper, for all n 
 0. So, by (DDC), it follows that, for the starting
a 2 F.0/, there exists an .aI .RnI n 
 0//-iterative sequence .x.n/I n 
 0/ in X.
Combining with the very definition of .RnI n 
 0/ yields the desired conclusion.
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In particular, when R D X � X, F is R-chainable. The corresponding variant of
(SDC) is just the Denumerable Axiom of Choice (in short: (AC-N)):

Proposition 9. Let F W N ! .2/X be a function. Then, for each a 2 F.0/ there
exists a function f W N ! X with f .0/ D a and f .n/ 2 F.n/, 8n 
 0.

Remark 1. As a consequence of the above facts, (DC) H) (AC-N) in (ZF-AC).
A direct verification of this is obtainable by taking P D N � X and introducing the
relation over it:

R.n; x/ D fnC 1g � F.nC 1/, n 
 0, x 2 X;

we do not give details. The reciprocal of the written inclusion is not true; see
Moskhovakis [42, Chap. 8, Sect. 8.25] for details.

2.3 Pasicki Approach

Let X be a nonempty set; and f W X � X ! R be a triangular map; i.e.,

(c01) f .x; z/ � f .x; y/C f .y; z/, 8x; y; z 2 X;

then, .X; f / will be called a triangular structure. By this very definition,

f .x; x/ � 2f .x; x/ (hence, 0 � f .x; x/), 8x 2 X; (14)

.0 �/ f .x; x/ � f .x; y/C f .y; x/; 8x; y 2 X: (15)

Let .�/ be the relation over X introduced as

(c02) (x; y 2 X): y � x iff f .y; x/ � 0.

From the triangular property, .�/ appears as transitive [z � y, y � x H) z � x];
but, in general, it is neither reflexive nor irreflexive. In fact, for each x 2 X, we have
(by definition and a previous property)

x � x iff f .x; x/ � 0 (hence, f .x; x/ D 0).

This shows us that

x � x” f .x; x/ D 0; :.x � x/” f .x; x/ > 0;

hence the claim. Let also .�/ stand for the dual of .�/; i.e.,

(x; y 2 X): x � y if and only if y � x (i.e.: f .y; x/ � 0).

This relation has the same properties as the original one, .�/; we do not give details.
Now, call z 2 X, .�/-minimal (or, equivalently: .�/-maximal), provided
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(c03) X.z;�/ n fzg is empty; or, equivalently:
f .x; z/ > 0, for all x 2 X n fzg.

Let also Q WD Œ.�/-minimal] stand for the corresponding logical property; i.e.

Q.z/” [f .x; z/ > 0, for all x 2 X n fzg]
:Q.z/” [9x 2 X n fzg: f .x; z/ � 0] (hence, X.z;�/ n fzg ¤ ;).

The existence of such elements is to be studied under the regularity setting below:
(reg-1) Given u 2 X, call the triangular structure .X; f /, u-bounded when

h.:/ D f .:; u/ is bounded below: inffh.x/I x 2 Xg > �1.

If this holds for each u 2 X, we say that .X; f / is globally bounded.
(reg-2) We say that .xnI n 
 0/ is f -almost-convergent towards x 2 X (written as

xn
ff�! x) when lim infn f .x; xn/ � 0. In this case, x will be called an f -almost-limit

of .xn/; if such elements exist, we say that .xn/ is f -almost-convergent.
(reg-3) We say that .xnI n 
 0/ is f -strong-Cauchy when:

8" > 0, 9n."/: n."/ < n < m H)�" < f .xm; xn/ � 0.

In this case, .X; f / will be termed strongly almost complete (in short: stralm
complete) when each f -strong-Cauchy sequence in X is f -almost-convergent.

The following result in Pasicki [45] is our starting point. Denote, for x0 2 X and
A � X with x0 2 A,

m.A; f I x0/ WD fu 2 AI f .u; x0/ � f .x; x0/;8x 2 Ag.
Further, let P.:/ be a logical property concerning elements of X; we shall term it
Q-weaker (where Q.:/ is taken as before), provided

(c04) Q.x/ H) P.x/; or, equivalently: :P.x/ H) :Q.x/.

Theorem 6. Assume that x0 2 X is such that .X; f / is x0-bounded, and

(c05) each maximal chain A containing x0, for which m.A; f I x0/ ¤ ;, has a
unique smallest element.

Further, let .X; f / be stralm complete and the logical property P.:/ (involving
elements of X) be Q-weaker. Then, one of the alternatives below holds:

(i) P.x0/ is true
(ii) there exists a .�/-minimal z 2 X with z � x0, such that P.z/ holds.

The proof runs as follows. Assume that

(c06) :P.x0/ is true; hence (see above), X.x0;�/ n fx0g is nonempty.

Part 1. By the (transitive form of) Hausdorff–Kuratowski Maximal Principle,
there exists a maximal .�/-chain A � fx0g [ X.x0;�/, containing x0. Denote � WD
infff .y; x0/I y 2 Ag; clearly, �1 < � � 0, in view of .X; f / being x0-bounded and
[from (c06)]

f .u; x0/ � 0, for each u 2 X.x0;�/ n fx0g.
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Assume that f .y; x0/ > � , for all y 2 A. Then, there exists a sequence .yn/ in A such
that .f .yn; x0// is descending and convergent towards � . As a consequence, .yn/

is f -strong-Cauchy; so, by our completeness assumption, there exists y 2 X with

yn
ff�! y. This element belongs to m.A; f I x0/ (whence, m.A; f I x0/ is nonempty); so,

by (c05), y is the only smallest element of m.A; f I x0/ (and of A).
Part 2. Suppose there exists z 2 X n fyg such that z � y. It results that z ¤ y is

another smallest element of A; in contradiction to (c05).
Part 3. By replacing y with z we obtain P.z/, f .z; x0/ D � � 0 and 0 < f .x; z/,

8x 2 X n fzg. Clearly, z is a minimal element in X, as A is a maximal chain.
Technically speaking, Theorem 6 is equivalent with its particular version based

upon P identified with Q; referred to as: Theorem 6 (Q-version). In fact, suppose that
Theorem 6 (Q-version) holds; and let the logical property P.:/ (involving elements
of X) be Q-weaker; i.e.: Q.x/ H) P.x/, 8x 2 X. Two alternatives are possible:

(i) Q.x0/ is true; (ii) Q.x0/ is false.
In the former case, P.x0/ is true; and we are done. In the latter case, by the argument
above, there exists z 2 X with z � x0, fulfilling

z is .�/-minimal (so that, by definition, Q.z/ is true);

and this, along with Q.z/ H) P.z/, tells us that P.z/ is also true; hence the claim.
Note that, as long as (KMP-t) (equivalent, as above said, with (AC)) is involved

here, the obtained result is deductible in the complete axiomatic system (ZF). But,
all arguments appearing in this proof are sequential in nature; so, we may expect
that Theorem 6 is deductible in the reduced system (ZF-AC+DC). It is our aim in
the following to show that, ultimately, this is possible by the recursion to a certain
“transitive” form of Brezis–Browder ordering principle [10] established in Turinici
[56]. Further aspects occasioned by these developments are also discussed.

2.4 Transitive Brezis–Browder Principles

Let X be some nonempty set. Take a quasi-order (i.e.: reflexive and transitive
relation) .�/ over it; as well as a function g W X ! R. Call the point z 2 X,
.�; g/-maximal when:

(d01) w 2 X and z � w imply g.z/ D g.w/;

i.e.: g is constant on X.z;�/. A basic result about existence of such points is the
1976 Brezis–Browder ordering principle [10] (in short: BB).

Theorem 7. Assume that

(d02) .X;�/ is sequentially inductive:
each ascending sequence has an upper bound (modulo .�/)
(d03) g is .�/-decreasing (x � y H) g.x/ 
 g.y/)
(d04) g is bounded from below (inf.g.X// > �1).
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Then, each u 2 X is (BB)-admissible (modulo .�; g/), in the sense: there exists a
.�; g/-maximal v 2 X with u � v.

Proof. Define the function b W X ! R as: b.v/ WD infŒg.X.v;�//�, v 2 X. The
convention is meaningful, via (d04); in addition, b.:/ is increasing and

g.v/ 
 b.v/, for all v 2 X. (16)

Moreover, as g=decreasing, one gets a characterization like

v is .�; g/-maximal iff g.v/ D b.v/. (17)

Now, assume by contradiction that the conclusion in this statement is false; i.e. [in
combination with (17)] there must be some u 2 X such that:

(d05) for each v 2 Xu WD X.u;�/, one has g.v/ > b.v/.

Consequently (for all such v), g.v/ > .1=2/.g.v/C b.v// > b.v/; hence

v � w and .1=2/.g.v/C b.v// > g.w/, (18)

for at least one w (belonging to Xu). The relation R over Xu introduced via (18)
fulfills Xu.v;R/ ¤ ;, for all v 2 Xu. So, by the Dependent Choice Principle, there
must be a sequence .un/ in Xu with u0 D u and

un � unC1, .1=2/.g.un/C b.un// > g.unC1/, for all n. (19)

We have thus constructed an ascending sequence .un/ in Xu for which the real
sequence .g.un// is (from (d04) and (16)) strictly descending and bounded below;
hence � WD limn g.un/ exists in R. By (d02), .un/ is bounded from above in X: there
exists v 2 X such that un � v, for all n. From the properties of .g; b/, we have

g.un/ 
 g.v/, and g.v/ 
 b.v/ 
 b.un/, 8n.

The former of these relations gives � 
 g.v/ (passing to limit as n ! 1). On the
other hand, the latter of these relations yields (via (19))

.1=2/.g.un/C b.v// > g.unC1/, for all n 
 0.

Passing to limit as n ! 1 gives .g.v/ 
/b.v/ 
 �; so, combining with the
preceding one, g.v/ D b.v/.D �/, contradiction. Hence, (d05) cannot be accepted;
and the conclusion follows.

Note that, by the argument above, (DC) H) (BB) in (ZF-AC). For a slightly
different proof, we refer to Cârjă, Necula, and Vrabie [14, Chap. 2, Sect. 2.1].
Further metrical extensions of (BB) may be found in Turinici [55].
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(A) In the following, a transitive type variant of this principle is to be stated. Let
.r/ be a (nonempty) relation over X; assumed to be transitive [xry, yrz H) xrz].
The associated relation .�/ on X introduced as

(d06) x � y iff either x D y or xry

is reflexive and transitive; hence, a quasi-order on X; moreover, the following
assertion is true

xry and y � z imply xrz. (20)

Further, take a function g W X ! R; and consider the following condition:

(d07) g is r-decreasing: xry H) g.x/ 
 g.y/.

Note that, from the very definition of the induced quasi-order (see above), one has
the generic relation

g is r-decreasing” g is .�/-decreasing. (21)

Finally, call the point z 2 X, .r; g/-maximal, provided

(d08) w 2 X and zrw imply g.z/ D g.w/.

As before, the generic relation holds

z is .r; g/-maximal” z is .�; g/-maximal. (22)

As a consequence of this, maximality results involving the transitive relation .r/
are deductible from Brezis–Browder’s principle involving its associated quasi-order
.�/. A key moment of this approach is that of the sequential inductivity condition
for .X;�/ being assured. It would be useful to have expressed this requirement
in terms of the initial transitive relation. This necessitates a few conventions and
auxiliary facts. Call the sequence .xn/, ascending (modulo .r/) when

xnrxnC1;8n (or, equivalently: xnrxm, if n < m).

Clearly, the generic (sequential) relation holds

ascending (modulo .r/) H) ascending (modulo .�/).

The reciprocal is not in general true. For example, given a 2 X, the constant
sequence .xn D aI n 
 0/ is ascending (modulo .�/); but not ascending (modulo
.r/), as long as ara is false. Further, given the sequence .xn/ in X, let us say that
u 2 X is an upper bound (modulo .r/) of it, provided

(d09) xnru;8n (written as: .xn/ru).
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If such elements u exist, we say that .xn/ is bounded above (modulo .r/). As before,
the relation below is clear

.8u/ W Œ.xn/ru� H) Œ.xn/ � u�I

the converse is not in general valid. Finally, let us consider the condition

(d10) .X;r/ is sequentially inductive:
each ascending sequence has an upper bound (modulo .r/).

The following auxiliary statement is useful for us.

Lemma 1. The generic implication is true

.X;r/ is sequentially inductiveH) .X;�/ is sequentially inductive. (23)

Proof. Let .xn/ be an ascending (modulo .�/) sequence in M

xn � xnC1;8n (hence xn � xm whenever n � m).

If this sequence is stationary beyond a certain rank

9k such that: 8n > k one has xn D xk

we are done; because .xn/ � u, where u D xk. Otherwise,

8p; 9q > p such that xp ¤ xq (hence xprxq).

Consequently, a subsequence .yn D xi.n// of .xn/ may be constructed with the
property of being ascending (modulo .r/); wherefrom (by the admitted hypothesis)
.yn/rt (hence, .yn/ � t), for some t 2 X. But then, .xn/ � t; hence the claim.

Remark 2. Formally, the subsequence construction above requires the Denumerable
Axiom of Choice (AC-N). However, since its ambient set is N, this may be avoided.
In fact, define the couple of functions

(d11) ˚.p/ D fq > pI xprxqg, '.p/ D min˚.p/, p 2 N.

Note that, in these conventions, no choice arguments are needed; moreover,

p < '.p/; 8p 2 NI (i.e.: ' is strictly progressive):

Then, the strictly ascending rank sequence to be used here is

i.0/ D 0, i.nC 1/ D '.i.n//, n 
 0;

and this proves our assertion.
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We may now give an appropriate answer to the posed question. Given u 2 X,
call it (BB)-admissible (modulo .r; g/), if there exists a .r; g/-maximal v 2 X with
u � v. Note that, when

X.u;r/ D ; (i.e.: u is (trivially) .r; g/-maximal),

this property is fulfilled; so, the verification is required for those u 2 X with
X.u;r/ ¤ ;; referred to as: u is r-starting.

The following “transitive” form of (BB) (in short: (BB-t)) is now available.

Theorem 8. Let the transitive relation .r/ and the function g W X ! R be such that
.X;r/ is sequentially inductive and g is r-decreasing, bounded from below. Then,
each r-starting u 2 X is (BB)-admissible (modulo .r; g/), in the sense: there exists
a r-maximal v 2 X with urv.

Proof. By the preceding auxiliary fact, .X;�/ is sequentially inductive; and (cf. a
previous remark), g is .�/-decreasing; hence, (BB) applies to .X;�I g/. From its
conclusion we have that, given the r-starting point u 2 X, we have: for the arbitrary
fixed element u1 2 X.u;r/, there exists another one, v 2 X such that

(i) u1 � v; (ii) v is .�; g/-maximal.
The latter of these yields v is .r; g/-maximal (see above). And the former one gives
urv, if one takes a simple observation involving the couple .r;�/ into account.
The proof is complete.

By this very argument, (BB) H) (BB-t). The reciprocal inclusion ((BB-t) H)
(BB)) is also true; just note that, given the quasi-order .�/ on X, we have

.�/ is transitive, and any u 2 X is .�/-starting.

Hence, summing up, (BB)” (BB-t). Note that, a further extension of (BB-t) in
terms of general (amorphous) relations is possible; see Turinici [56] for details.

2.5 Main Results

Let X be a nonempty set; and f W X � X ! R be a triangular map; i.e.,

f .x; z/ � f .x; y/C f .y; z/, 8x; y; z 2 X;

the couple .X; f / will be then referred to as a triangular structure. Note that, by the
very definition above,

f .x; x/ � 2f .x; x/ (hence, 0 � f .x; x/), 8x 2 X; (24)

this will be useful in the sequel.
(A) Let .r/ denote the transitive relation attached to f .:; :/

(x; y 2 X): xry iff f .y; x/ � 0;
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and .�/ stand for the associate quasi-order

x � y iff either x D y or xry.

In the following, we are interested to apply (BB-t) to these data. This will necessitate
a lot of new concepts and auxiliary facts.

Lemma 2. Let a; b 2 X be arbitrary fixed. Then,

g.:/ WD f .a; :/ is r-increasing (xry H) g.x/ � g.y/)

h.:/ WD f .:; b/ is r-decreasing (xry H) h.x/ 
 h.y/).

Proof. Let x; y 2 X be such that xry; i.e.: f .y; x/ � 0. By the triangular property,

f .a; x/ � f .a; y/C f .y; x/ � f .a; y/;
f .y; b/ � f .y; x/C f .x; b/ � f .x; b/I

and conclusion follows.

(B) Remember that, given u 2 X, the triangular structure .X; f / is called
u-bounded, when

h.:/ WD f .:; u/ is bounded below: inffh.x/I x 2 Xg > �1.

If this holds for at least one u 2 X, we say that .X; f / is locally bounded; and, if this
holds for each u 2 X, we say that .X; f / is globally bounded. Clearly, each globally
bounded triangular structure is locally bounded too. But, the reciprocal is also true;
as results from

Lemma 3. Each locally bounded triangular structure is globally bounded too.
Hence, for each triangular structure, .X; f /,

locally bounded” globally bounded. (25)

Proof. Assume that .X; f / is u-bounded; and let v 2 X be arbitrary fixed. By the
triangular inequality,

f .x; u/� f .v; u/ � f .x; v/ � f .x; u/C f .u; v/; 8x 2 XI

and, from this, we derive that .X; f / is v-bounded.

(C) Call the sequence .xnI n 
 0/, r-ascending, when

n < m implies xnrxm (i.e.: f .xm; xn/ � 0);

the class of all such objects will be denoted asc.X;r/. Let us introduce a
convergence structure on this class as follows: given the sequence .xnI n 
 0/ in
asc.X;r/ and the point x 2 X, put

(e01) xn
f�! x iff limn f .x; xn/ � 0;
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referred to as: .xnI n 
 0/, f -converges towards x. Note that, by a previous auxiliary
fact, the real sequence .f .x; xn/I n 
 0/ is ascending; hence, limn f .x; xn/ exists (in
the generalized sense). This tells us that the convention above is meaningful; and
reads: x 2 X is a f -limit of the sequence .xnI n 
 0/ in asc.X;r/. The class of all
such elements will be denoted as f � limn.xn/; when it is nonempty, we say that
.xnI n 
 0/ is f -convergent.

The following property of a f -convergent sequence will be useful for us.

Lemma 4. Let the r-ascending sequence .xnI n 
 0/ in X and the point x 2 X be

such that xn
f�! x. Then, .xn/rx; i.e.: xnrx, for all n.

Proof. By a previous remark, the real sequence .f .x; xn/I n 
 0/ is ascending. This
yields, for each n,

f .x; xn/ � lim
n

f .x; xn/ � 0; (i.e.: xnrx);

and, from this, we are done.

(D) Further, let us say that the sequence .xnI n 
 0/ in asc.X;r/ is f -strong-
Cauchy provided (see above)

(e02) 8" > 0, 9n."/, such that: [n."/ < n < m H) �" < f .xm; xn/ � 0].

Note that, by the lack of symmetry for the triangular map f .:; :/, an f -convergent
sequence in asc.X;r/ need not be f -strong-Cauchy. However, we say that the
triangular structure .X; f / is r-complete, when each r-ascending f -strong-Cauchy
sequence in X is f -convergent.

The following auxiliary fact will be used in the sequel.

Lemma 5. Assume that .X; f / is globally bounded and r-complete. Then,

.X;r/ is sequentially inductive: for each r-ascending sequence

.xnI n 
 0/ in X, there exists x 2 X with xnrx, 8n.

Proof. Fix some u 2 X; and put h.:/ D f .:; u/. Further, let the sequence .xnI n 
 0/
in X be r-ascending. By the triangular property,

h.xm/� h.xn/ � f .xm; xn/ � 0, if n < m.

The (real) sequence .h.xn/I n 
 0/ is descending and bounded from below; hence,
a convergent one; and this (combined with the above) tells us that .xnI n 
 0/ is a
f -strong-Cauchy r-ascending sequence in X. As .X; f / is r-complete, there must

be some x 2 X with xn
f�! x. Taking a previous auxiliary fact into account yields

xnrx, 8n; and our conclusion follows.

(B) Given u 2 X, let us again denote h.:/ WD f .:; u/. Remember that u is called
(BB)-admissible (modulo .r; h/), when there exists a .r; h/-maximal element v 2
X with u � v. Note that, if X.u;r/ D ;, this condition is fulfilled, with v D u;
so, the verification of the underlying property is required for those u 2 X with
X.u;r/ ¤ ;, referred to as: u is r-starting.
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Concerning the sufficient conditions for this, it is worth stressing that, by the
triangular context, these may be expressed in an “absolute” way (not depending on
starting point u 2 X). Define a new relation .</ over X as

(e03) x < y iff f .y; x/ < 0.

Clearly, .</ is, by (24), irreflexive [x < x is false, 8x 2 X] and (via f =triangular)
transitive [x < y, y < z H) x < z]; hence, it is a strict order on X. Let also .�/
stand for the associated relation

(e04) x � y iff either x D y or x < y;

it is an order (i.e.: antisymmetric quasi-order) as it can be directly seen.
Concerning the connections with our initial relation .r/, we have (by definition)

x < y H) xry; hence, x � y H) x � y. (26)

The converse relation is not in general true. For example, if x; y 2 X with x ¤ y are
such that f .y; x/ D 0, then xry; but, evidently, x < y is false.

Now, call v 2 X, .</-maximal if

(e05) X.v;</ D ;; or, equivalently: X.v;�/ D fvg.
By the second relation above, v is also referred to as .�/-maximal; because this is
the usual concept of maximality, as in Bourbaki [9]. Denote by Q WD .<;max/ the
corresponding logical property; i.e.

Q.v/” (f .x; v/ 
 0, for all x 2 X)
:Q.v/” (f .x; v/ < 0 (hence, v < x), for some x 2 X).

Lemma 6. Let u 2 X be fixed and v 2 X be .r; h/-maximal, where h.:/ WD f .:; u/.
Then,

v is .</-maximal; hence, f .x; v/ 
 0, 8x 2 X (27)

x 2 X; vrx H) f .x; v/ D 0: (28)

Proof. (i) Assume by contradiction that v < x (i.e.: f .x; v/ < 0) for some x 2 X.
From a previous implication, we then have vrx; so that (by maximality),
h.v/ D h.x/. Combining the triangular property, gives

0 D h.x/� h.v/ � f .x; v/ < 0I

contradiction. This proves our claim.
(ii) Let x 2 X be such that vrx. By definition (and the preceding relation)

0 D h.x/� h.v/ � f .x; v/ � 0I

whence f .x; v/ D 0.

The first main result of the present exposition is
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Theorem 9. Assume that .X; f / is globally bounded and r-complete. Then, for
each r-starting point u 2 X there exists another point v 2 X with the
properties (27)+(28), such that

urv (hence, f .v; u/ � 0). (29)

Proof. Denote for simplicity h.:/ WD f .:; u/. We claim that (BB-t) applies to
.X;rI h/ and u 2 X. Firstly, by a preceding auxiliary fact, h.:/ is r-decreasing
on X. Secondly (by the globally bounded property), h.:/ is bounded from below
on X. Finally, again by the regularity conditions upon .X; f /, it results (see above)
that .X;r/ is sequentially inductive; hence, the claim. From (BB-t) it follows that,
for the r-starting u 2 X there exists a .r; h/-maximal v 2 X with urv. This, along
with a previous fact, gives all conclusions we need.

As a direct consequence of this, we derive the second main result of this
exposition. Namely, let P.:/ be a logical property relative to elements of X; we call
it Q-weaker, if

(e06) (8z 2 X): Q.z/ H) P.z/.

Theorem 10. Assume that .X; f / is globally bounded and r-complete. Further, let
P.:/ be a logical property relative to elements of X; supposed to be Q-weaker. Then,
for each r-starting u 2 X there exists some v 2 X in such a way that (27)–(29)
hold, as well as

Q.v/ is true; hence, P.v/ is true. (30)

For the moment, Theorem 9 H) Theorem 10; moreover, the latter of these may
be viewed as a simplified form of the Pasicki statement. The reciprocal implication
is also true; just take the logical property P.:/ as identical with Q.:/. Hence, these
two results are equivalent to each other. This also tells us that the introduction of
logical properties like before in Theorem 9 does not produce any generalizing effect
upon it. But, from a practical perspective, this may be useful; we do not give details.

2.6 Converse Question

The developments above tell us that the main result (subsumed to Theorem 9) is
reducible to (BB-t); hence, ultimately, to (BB). So, we may ask whether the converse
question is available too. It is our aim in the following to provide a positive answer
to this. Some preliminary facts are in order. Remember that (see above) (DC) H)
(BB) and (BB)” (BB-t). On the other hand, (BB) H) (EVP) (cf. Turinici [62]);
and, finally (by the developments in Brunner [12]) (EVP)H) (DC); hence, all these
principles are equivalent to each other. As a consequence,
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(I) any maximal/variational principle (MP) with (DC) H) (MP) H) (EVP) is
equivalent with both (DC) and (BB)

(II) any maximal/variational principle (MP) with (BB) H) (MP) H) (EVP) is
equivalent with both (BB) and (EVP).

For example, the first conclusion is applicable to many extensions of (BB), like the
ones in Altman [1] and Szaz [49]; see also Du [21]. On the other hand, the second
conclusion is applicable to the vector variational principle in Goepfert, Tammer,
and Zălinescu [25]; see, for instance, Turinici [55]. It also works for the results in
Sect. 2.5; but, with a slightly modified version of (EVP), described as follows.

Let .X; d/ be a complete metric space; and ' W X ! R be a function. The
following “generic” version of (EVP) (in short: (EVP-g)) is to be considered.

Theorem 11. Assume that ' is d-lsc and bounded from below on X. In addition, let
.X; d/ be complete. Then, there exists at least one v 2 X, with

d.v; x/ > '.v/� '.x/, for all x 2 X n fvg. (31)

Clearly, (EVP)H) (EVP-g) in a trivial way. But, the remarkable fact to be added
is that the converse implication is also true:

(EVP-g) H) (EVP); hence, (EVP-g)” (EVP). (32)

In fact, assume that the premises of (EVP) hold. Let .�/ stand for the Brøndsted
order [11] attached to '

(x; y 2 X): x � y iff d.x; y/ � '.x/� '.y/;
and fix some u 2 X; note that (by the d-lsc property of '), Xu WD X.u;�/ is
d-closed (hence, .Xu; d/ is complete). It will suffice applying (EVP-g) to (Xu; d/
and ' (restricted to Xu) to deduce all desired conclusions in (EVP); see Bao and
Khanh [4] for details.

(B) In the following, we shall give the announced answer concerning the logical
equivalence question. Remember that (BB)H) (BB-t)H) Theorem 9. So, to close
the circle, it will suffice proving that Theorem 9 H) (EVP); or, equivalently (see
above) Theorem 9 H) (EVP-g).

Proposition 10. Under these notations, Theorem 9 H) (EVP-g). So (combining
with the above) Theorem 9 is equivalent with both (BB) and (EVP).

Proof. Let the premises of (EVP-g) be admitted. Fix � > 1; and define a map
f W X � X ! R as

f .x; y/ D �.'.x/� '.y//C d.x; y/, x; y 2 X;

clearly, f is triangular. Let .r/ denote the relation over X

(f01) xry iff f .y; x/ � 0; i.e.: d.x; y/ � �.'.x/ � '.y//;
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note that, as a direct consequence of this, .r/ is reflexive, transitive,
antisymmetric—hence, a (partial) order—on X. Further, let .</ stand for the strict
order on X:

(f02) x < y iff f .y; x/ < 0; i.e.: d.x; y/ < �.'.x/� '.y//.
We claim that Theorem 9 applies to .X; f / and .r; </. This will be done in three
steps, as follows.

Step 1. Fix in the following u 2 X; and put

h.x/ D f .x; u/.D �.'.x/ � '.u//C d.x; u//, x 2 X.

As ' is bounded from below, it immediately follows that so is h.:/; this, along with
a previous auxiliary fact, tells us that .X; f / is globally bounded.

Step 2. Let .xnI n 
 0/ be an ascending (modulo .r/) sequence in X; i.e.,

(f03) d.xn; xm/ � �.'.xn/� '.xm//, if n < m.

The real sequence .'.xn/I n 
 0/ is descending and bounded from below; hence, a
Cauchy one. Combining with the working hypothesis, one gets that .xnI n 
 0/ is a

Cauchy sequence in X; so, by completeness, xn
d�! x for some x 2 X. As ' is d-lsc,

this gives '.xn/ 
 '.x/, for all n. Replacing in the working hypothesis gives

d.xn; xm/ � �.'.xn/� '.x//; if n < mI

so that, passing to limit as m!1,

d.xn; x/ � �.'.xn/� '.x//; for all nI

which may be also written as

f .x; xn/ � 0 (i.e.: xnrx), for all n.

On the other hand, by a previous remark, the real sequence .f .x; xn/I n 
 0/ is
ascending; hence, limn f .x; xn/ exists (in the general sense). Combining with the

above relation gives limn f .x; xn/ � 0; whence xn
f�! x. This shows that each

r-ascending sequence in X is f -convergent; hence, in particular, .X; f / is complete.
Step 3. As .r/ is (partial) order, it results that each u 2 X is r-starting. By

Theorem 9 it follows that, for the (fixed) element u 2 X there exists an element
v 2 X.u;r/ such that

v is .</-maximal: d.v; x/ 
 �.'.v/� '.x//, 8x 2 X. (33)

We claim that v is our desired element for (31). Assume not; i.e.,

(f04) .0 </d.v; y/ � '.v/ � '.y/, for some y 2 X n fvg.
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This yields '.v/ � '.y/ > 0; so that, combining with (33), one gets (via � > 1)

d.v; y/ 
 �.'.v/ � '.y// > '.v/ � '.y/I

in contradiction to the working assumption. This ends the argument.

Summing up, the results in Sect. 2.5 are nothing else than equivalent versions
of (BB) and/or (EVP). Further aspects may be found in Zhu et al. [70]; see also
Turinici [65].

3 GTZ Maximal Principles in Topological Vector Spaces

3.1 Introduction

Let .Y;T / be a (real) separated locally convex space; and K be some (convex)
cone of it:

˛K C ˇK � K, for all ˛; ˇ 2 RC WD Œ0;1Œ.
The relation .�K/ on Y

.y1; y2 2 Y): y1 �K y2 if and only if y2 � y1 2 K

is reflexive and transitive; hence, a quasi-order; when K is understood, we simply
denote it as .�/. Further, take a metric space .X; d/; and let F W X ! 2Y be a
multivalued map from X to Y (identified with its graph in X � Y), fulfilling

(a01) F is proper (Dom.F/ WD fx 2 XIF.x/ ¤ ;g is nonempty).

Finally, pick some k0 2 K; and let .�/ be the quasi-order on X � Y, introduced as

.x1; y1/ � .x2; y2/ if and only if k0d.x1; x2/ � y1 � y2.

For both practical and theoretical reasons, it would be useful to determine sufficient
conditions under which .F;�/ has points with certain maximal properties. The basic
result in this area obtained by Goepfert, Tammer, and Zălinescu [25] (in short: GTZ),
deals with convex cones K and points k0 2 K taken as

(a02) k0 is K-admissible: k0 2 K n .�cl.K//.

[Here, “cl” is the closure operator on Y]. Precisely, assume that

(a03) F is bounded below: F.X/ � QyC K, for some Qy 2 Y
(a04) F is .�/-semi-closed:

if ..xn; yn// � F is (�)-ascending and xn
d�! x, then x 2 Dom.F/

and there exists y 2 F.x/ such that .xn; yn/ � .x; y/, for all n.

Theorem 12. Let the above conditions be in force. In addition, let .X; d/ be
complete. Then, for each .x0; y0/ 2 F there exists .Nx; Ny/ 2 F with
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.x0; y0/ � .Nx; Ny/ [hence y0 
 Ny] (34)

.Nx; Ny/ � .x0; y0/ 2 F implies Nx D x0. (35)

This result includes Ekeland’s variational principle [23] (in short: EVP). Con-
cerning the reciprocal inclusion, note that (GTZ) is deductible from the Brezis–
Browder ordering principle [10] (in short: BB); see, for instance, Turinici [55].
On the other hand (as established in Turinici [64]), (BB) is deductible from the
Dependent Choices Principle (in short: DC) due to Bernays [7] and Tarski [51].
Finally, by the result in Brunner [12], (EVP) includes (DC). Summing up, we have
the inclusion chain between these statements

(DC) H) (BB) H) (EVP) H) (DC).

This in particular says that, any variational/maximal principle (VP) with (BB) H)
(VP) H) (EVP) is equivalent with both (BB) and (EVP). For example, (GTZ)
belongs to this “logical” interval between (BB) and (EVP); hence, it supports such
a conclusion. It follows that genuine extensions of (BB) and/or (EVP) must be not
deductible from (DC). A basic example in the area is the one due to Zhu and Li [69];
we do not give details.

Note that, due to semi-complete form of (35), (GTZ) is not an authentic Zorn
maximal principle. To get such a conclusion, an extra condition must be added.
Given the subset V of Y, call v 2 V , minimal (modulo K) when

w 2 V , v 
 w imply v � w;

the class of all these will be denoted min.VIK/; or, simply, min.V/ (if K is
understood). Now, the announced condition writes:

(a05) F has the domination property:
8x 2 Dom.F/, 8z 2 F.x/, 9Nz 2 min.F.z//, such that z 
 Nz.

Theorem 13. Suppose that (in addition), F has the domination property. Then, for
each .x0; y0/ 2 F there exists .Nx; Ny/ 2 F such that

.x0; y0/ � .Nx; Ny/; Ny 2 min.F.Nx// (36)

.Nx; Ny/ � .x0; y0/ 2 F H) Nx D x0; Ny � y0: (37)

The proof is immediate, by the remarks above; see also Sect. 3.4 for details. Some
other aspects were discussed in Hamel and Tammer [29].

The basic assumption of both these results is (a04). For example, it holds when

(a06) K has closed lower sections: K \ .v � k0RC/ is closed, 8v 2 K

(a07) F is sub-monotone: for each sequence ..xn; yn// in F with xn
d�! x and

.yn/=descending, there exists y 2 F.x/ such that yn 
 y, 8n;
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see the quoted papers for details. This continues to hold for transfinite versions of
Theorem 12; cf. Turinici [60]. It is our aim in the following to establish (in Sects. 3.4
and 3.5) that the key condition (a04) is still appropriate for a recent variational
principle due to Bao and Mordukhovich [5] (discussed in Sect. 3.3). The basic tool
of our developments is a lot Brezis–Browder maximality principles, analyzed in
Sect. 3.2. Note that the proposed techniques are applicable as well to some other
vector type variational results in the area; we do not give details.

3.2 Brezis–Browder Principles

Let M be a nonempty set. Take a quasi-order .�/ (i.e.: reflexive and transitive
relation) over it, as well as a function  W M ! RC. Call the point z 2 M, .�;  /-
maximal when it satisfies

w 2 M and z � w imply  .z/ D  .w/.
A basic result about existence of such points is the 1976 Brezis–Browder ordering
principle [10] (in short: BB).

Proposition 11. Suppose that

(b01) .M;�/ is sequentially inductive:
each ascending sequence has an upper bound (modulo .�/)
(b02)  is .�/-decreasing (x � y H)  .x/ 
  .y/).

Then, for each u 2 M there exists a .�;  /-maximal v 2 M, with u � v.

This statement, including the well-known Ekeland’s variational principle [23]
(in short: EVP), found some useful applications to convex and nonconvex analysis
(cf. the above references). So, it cannot be surprising that many extensions of
Proposition 11 were proposed; see, for instance, Altman [1], Anisiu [2], or Bae
et al. [3]. The obtained results are interesting from a technical viewpoint. However,
we must emphasize that, in all concrete situations when a maximality principle of
this type is to be applied, a substitution of it by the Brezis–Browder’s is always
possible. This (cf. Bao and Khanh [4]) raises the question of to what extent are
these enlargements of (BB) effective. As already precise, the answer is negative for
most of these; hence, in particular, for the 1990 ordering principle in Kang and Park
[35]. But, from a practical viewpoint, these are interesting tools in the area; so, a
discussion of them is always welcomed. It is our aim in the following to list some
basic maximal statements of this type, for a practical use.

Let M be some nonempty set; and .�/, some quasi-order on it. Further, let x 7!
'.x/ stand for a function between M and RC [ f1g D Œ0;1�.
Proposition 12. Assume (b01) and (b02) are true, as well as

(b03) (.M;�/ is almost regular (modulo '))
8x 2 M;8" > 0; 9y D y.x; "/ 
 x W '.y/ � ".
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Then, for each u 2 M there exists v 2 M with u � v and '.v/ D 0 (whence,
necessarily, v is .�; '/-maximal).

Proof. From (b03), there must be some z 
 u with '.z/ < 1. Clearly, (b01)-
(b02) apply to M.z;�/ WD fx 2 MI z � xg and .�; '/. So, for the starting point
z 2 M.z;�/ there exists v 2 M.z;�/ with

(max-1) z � v (hence u � v)
(max-2) v is .�; '/-maximal in M.z;�/
(hence: t 2 M.z;�/, v � t imply '.v/ D '.t/).

Suppose by contradiction that � WD '.v/ > 0; and fix some ˇ in �0; �Œ. Again via
(b03), there must be y D y.v; ˇ/ 
 v (hence y 2 M.z;�/), fulfilling '.y/ � ˇ <
�.D '.v//. This cannot be in agreement with the second conclusion above. Hence,
'.v/ D 0; and we are done.

Clearly, Proposition 12 is a logical consequence of (BB). But, the converse
inclusion is also true; to verify it, we need some conventions. By a (generalized)
pseudometric over M, we shall mean any map d W M �M ! RC [ f1g. Suppose
that we introduced such an object, with

d is reflexive [d.x; x/ D 0;8x 2 M].

Call the point z 2 M, .�; d/-maximal, if:

u; v 2 M and z � u � v imply d.u; v/ D 0.

Note that, if (in addition)

d is sufficient: d.x; y/ D 0 H) x D y,

the .�; d/-maximal property becomes:

w 2 M; z � w H) z D w (referred to as: z is strongly .�/-maximal).

So, existence results involving such points may be viewed as “metrical” versions of
the Zorn maximality principle (cf. Moore [41, Chap. 4, Sect. 4]). To get sufficient
conditions for these, one may proceed as below. Let .xn/ be an ascending sequence
in M. The d-Cauchy property for it is introduced in the usual way

8" > 0; 9h."/ such that h."/ � p � q H) d.xp; xq/ � "
(or, equivalently: d.xm; xn/! 0, as m; n!1, m � n).

Also, call .xn/, d-asymptotic when

8" > 0; 9k."/ such that k."/ � p H) d.xp; xpC1/ � "
(or, equivalently: d.xn; xnC1/! 0, as n!1).

Clearly, each (ascending) d-Cauchy sequence is d-asymptotic too. The reverse
implication is also true when all such sequences are involved; i.e., the global
conditions below are equivalent

(b04) each ascending sequence is d-Cauchy
(b05) each ascending sequence is d-asymptotic.
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By definition, either of these will be referred to as .M;�/ is regular (modulo d).
Note that this property implies its relaxed version

(b06) (.M;�/ is weakly regular (modulo d))
8x 2 M;8" > 0, 9y D y.x; "/ 
 x: y � u � v H) d.u; v/ � ".

The following ordering principle is then available (cf. Kang and Park [35]):

Proposition 13. Assume that .M;�/ is sequentially inductive and weakly regular
(modulo d). Then, for each u 2 M there exists a .�; d/-maximal v 2 M with u � v.

Proof. Let us introduce the function (from M to RC [ f1g)
'd.x/ D supfd.u; v/I x � u � vg; x 2 M.

Clearly, 'd is .�/-decreasing; moreover (as .M;�/ is weakly regular (modulo d)),
the quasi-ordered set .M;�/ is almost regular (modulo 'd). Hence, Proposition 12
is applicable to M and .�; 'd/. This, added to

'd.z/ D 0 if and only if z is .�; d/-maximal

gives the desired conclusion.

As a direct consequence of this, we get the maximality principle in Turinici [53]
(see also Conserva and Rizzo [18]):

Proposition 14. Assume that .M;�/ is sequentially inductive and regular
(modulo d). Then, conclusion of Proposition 13 is holding.

So far, Proposition 14 is a logical consequence of Proposition 11. The reciprocal
of this is also true, by simply taking

d.x; y/ D j .x/ �  .y/j; x; y 2 M (where  is the above one).

We therefore established the inclusional chain

Prop 11 H) Prop 12 H) Prop 13 H) Prop 14 H) Prop 11.

Hence, all these ordering principles are nothing but logical equivalents of the
Brezis–Browder’s [10] (Proposition 11). (This also includes the related statement
in Tătaru [52], which extends the one in Dancs et al. [20]). Further aspects may be
found in Hamel [28, Chap. 4]; see also Hyers et al. [30, Chap. 5].

Now, a close examination of the argument in Proposition 13 shows that if the
sequential inductivity condition is imposed 'd-asymptotically (i.e.: to sequences
.xn/ with 'd.xn/ ! 0) its conclusion is still retainable. So, it is natural to ask
whether this remark is applicable to Proposition 12 as well (with ' in place
of 'd). A positive answer to this may be given under the lines below. Let again
M be some nonempty set. Take a quasi-order .�/ over it, as well as a function
' W M ! RC [ f1g. The following counterpart of Proposition 12 is now available.

Proposition 15. Assume that (b02) and (b03) are true, as well as
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(b07) .M;�/ is sequentially inductive (modulo '): each ascending sequence
.xn/ with '.xn/! 0 has an upper bound (modulo .�/).

Then, for each u 2 M there exists v 2 M with u � v and '.v/ D 0 (hence,
necessarily, v is .�; '/-maximal).

Proof. Starting from (b03), it is not hard to construct—via (DC)—an ascending
(modulo .�/) sequence .un/ in M, with (u � u0 and)

'.un/ � 2�n;8n (hence '.un/! 0).

Let v stand for an upper bound (modulo .�/) of this sequence (assured by (b07)).
This element has all properties we need.

Now, (b01) is a particular case of (b07). This tells us that Proposition 12 (hence
Proposition 11 as well) is a particular case of Proposition 15. The reciprocal question
(Prop 12H) Prop 15) is also true; because Proposition 15 is deductible from (DC).
Further aspects may be found in Liu [40]; see also Jinag and Cho [33].

A basic particular case of these facts corresponds to the construction we already
exposed. Precisely, let d W M � M ! RC [ f1g be a reflexive (generalized)
pseudometric (over M); and 'd W M ! RC [ f1g, its associated function (see
above). Clearly, (b02) holds in this context; and the almost regularity (modulo 'd)
condition (b03) is just the one in (b06). Putting these together, it results the following
maximality statement involving these data.

Proposition 16. Assume that .M;�/ is sequentially inductive (modulo 'd) and
weakly regular (modulo d). Then, for each u 2 M there exists a .�; d/-maximal
v 2 M with u � v.

Clearly, the sequential inductivity (modulo 'd) condition holds under (b01);
wherefrom, Proposition 16 includes Proposition 13. As before, the reciprocal
inclusion is also retainable; we do not give details.

Now, the pseudometric setting above is also appropriate for discussing the
sequential inductivity (modulo 'd) condition. This will necessitate some conven-
tions. Denote by S .M/ the class of all sequences .xn/ in M. By a (sequential)
convergence structure on M we mean, as in Kasahara [36], any part C of S .M/�M
with the properties

(sc-1) .xn D x;8n 
 0/ H) ..xn/I x/ 2 C
(sc-2) ..xn/I x/ 2 C H) ..yn/I x/ 2 C , for each subsequence .yn/ of .xn/.

In this case, ..xn/I x/ 2 C will be denoted xn
C�! x; and referred to as: x is

the C -limit of .xn/; when such elements exist, we say that .xn/ is C -convergent.
Assume that we fixed such an object, and let .�; d/ be taken as before. Call
the subset Z of M, .�/-closed (modulo C ) when the C -limit of each ascending
sequence in Z is an element of it. Further, let us say that .�/ is self-closed (modulo
C ) when M.x;�/ is .�/-closed (modulo C ), for each x 2 M; or, equivalently:
the C -limit of each ascending sequence is an upper bound of it. Finally, term
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the (reflexive) pseudometric d, .�/-complete (modulo C ) when each ascending
d-Cauchy sequence in M is C -convergent.

We may now give an appropriate answer to the posed question.

Proposition 17. Suppose that .�/ is self-closed (modulo C ), d is .�/-complete
(modulo C ), and .M;�/ is weakly regular (modulo d). Then, conclusions of
Proposition 16 are retainable.

Proof. We claim that, under the accepted conditions, Proposition 16 is applicable
to .M;�I d/; precisely, that .M;�/ is sequentially inductive (modulo 'd). Let .xn/

be an ascending sequence with 'd.xn/ ! 0. In particular, .xn/ is an ascending

d-Cauchy sequence; so that (by the .�/-completeness (modulo C ) of d), xn
C�! y

for some y 2 M. Combining with the self-closeness (modulo C ) of .�/ yields
xn � y, for all n; and this proves the claim.

Now, a good choice for our convergence structure is C D . d�!/, introduced as:

xn
d�! x whenever d.xn; x/! 0 as n!1;

and called the convergence structure attached to d. For, if (in addition)

d is triangular [d.x; z/ � d.x; y/C d.y; z/;8x; y; z 2 M],

Proposition 17 includes the statement by Kang and Park [35], which, in turn,
includes the maximality principle by Granas and Horvath [27]. (Note, incidentally,
that all applications (based on Proposition 17) discussed by these authors may be
also handled via Ekeland’s variational principle [23]; we do not give details.) Further
aspects of structural nature may be found in Gajek and Zagrodny [24]; see also
Brunner [12] and Turinici [57]. Some applications of the obtained facts to (metrical)
surjectivity theory may be found in Park and Yie [44].

3.3 Bao–Mordukhovich Approach

In the following, we shall discuss the variational principle due to Bao and Mor-
dukhovich [5, Theorem 1]. This will be done along the notations we just introduced,
so as to get a better comparison with the results of introductory part.

Let .Z;T / be a (real) linear topological space. [For the moment, a regularity
assumption like

(c01) .Z;T / is Hausdorff separated

is not assumed by the authors. However, as we shall see, this condition is
indispensable to the present discussion].

Assume that K is a (convex) cone of Z, with

(c02) K is pointed (K \ .�K/ D f0g) and closed (K D cl.K/).
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Its associated relation .�K/ is therefore an order on Z; we shall denote it as .�/, for
simplicity. Further, take a metric space .X; d/, as well as a proper multivalued map
F W X ! 2Z from X to Z (identified with its graph in X � Z). Finally, take some
point k0 2 K n f0g; and let .�/ stand for the order on X � Z

.x1; z1/ � .x2; z2/ if and only if k0d.x1; x2/ � z1 � z2.

As before, we want to determine sufficient conditions under which .F;�/ has
maximal points. Some preliminaries are needed. Remember that (in our context),
given a subset V of Z, we say that v 2 V is a minimal point, provided V.v;

/ D fvg; the class of all these will be denoted min.V/. Further, define the level-set
multivalued map L W Z ! 2X attached to F as

L .v/ D fx 2 XI z � v; for some z 2 F.x/g, v 2 Z.

The underlying conditions may now be written as

(c03) (F is quasi-bounded below)
F.X/ � M C K, for some closed bounded part M � Z
(c04) (F is min-closed)
min.F.x// is (nonempty) closed, for all x 2 Dom.F/
(c05) (F has the domination property)
8x 2 Dom.F/, 8z 2 F.x/, 9Nz 2 min.F.x//, such that z 
 Nz.
(c06) (F is level-closed)
L .z/ is closed, for each z 2 Z.

Having these precise, we are in position to state the announced variational
principle due to the quoted authors.

Theorem 14. Suppose (under (c02)) that conditions (c03)–(c06) hold. In addition,
let .X; d/ be complete. Then, for each .x0; z0/ 2 F there exists .Nx; Nz/ 2 F, with

.x0; z0/ � .Nx; Nz/; Nz 2 min.F.Nx// (38)

.Nx; Nz/ � .x0; z0/ 2 F H) Nx D x0; Nz D z0: (39)

[As a matter of fact, the quoted statement has also an extra conclusion involving
the associated minimizers; but this is not essential for us].

In the following, we shall expose the proposed authors’ reasoning for establishing
their result. At the same time, some comments involving different stages of this
argument will be inserted, so as to make precise the extra conditions under which
authors’ conclusions are retainable.

Proof (Theorem 14). There are several steps to be passed.
Step 1. Define the set-valued map T W X � Z ! 2X as

T.x; z/ D fy 2 XI .x; z/ � .y; v/; for some v 2 F.y/g.
Note that, by this very definition,

y 2 T.x; z/ iff k0d.x; y/ � z � v, for some v 2 F.y/;
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and this gives the following characterization of the mapping T.:; :/ above:

T.x; z/ D fy 2 XI y 2 L .z � k0d.x; y//g, .x; z/ 2 X � Z.

The basic properties of this map are
(pro-1) T.x; z/ ¤ ;, whenever .x; z/ 2 F.
In fact, let .x; z/ 2 F be arbitrary fixed; hence, z 2 F.x/. As .x; z/ � .x; z/, we

derive that x 2 T.x; z/; and the assertion follows.
(pro-2) T.x; z/ is closed, for each .x; z/ 2 F.

Remark 3. This property seems to be not in general true, under the min-closed and
level-closed conditions. To reach this conclusion, two possible strategies may be
adopted. Let .x; z/ 2 F be arbitrary fixed; hence (see above), z 2 F.x/.

Strat-1. Suppose that .Z;T / is Hausdorff separable and the min-closed condi-
tion is to be substituted by (the stronger condition)

(c07) (F is min-compact)
min.F.x// is (nonempty) compact, for all x 2 Dom.F/.

Let .ynI n 
 0/ be a sequence in T.x; z/; i.e., there must be a sequence .wnI n 
 0/
in Z, with

wn 2 F.yn/, k0d.x; yn/ � z � wn, for all n 
 0.

Further, assume that yn
d�! y (i.e.: d.yn; y/ ! 0) as n ! 1, for some y 2 X. Let

" > 0 be arbitrary fixed. From this convergence property, there exists some rank
n."/ 
 0, such that

d.yn; y/ � ", for all n 
 n."/.

Combined with the preceding relations yields (by the triangular inequality),

k0d.x; y/ � k0d.x; yn/C k0d.yn; y/ � z � wn C k0"; for all n 
 n."/I

wherefrom (for the same ranks)

wn � z � k0d.x; y/C k0"; i.e.: yn 2 L .z � k0d.x; y/C k0"/.

As F is level-closed, this yields, for each " > 0,

y 2 L .z � k0d.x; y/C k0"/; i.e.: v � z � k0d.x; y/C k0", for some v 2 F.y/.

Combining with the closeness of K, the domination property, and the closeness of
min.F.y// (deductible from the compactness of the same and .Z;T /=Hausdorff
separated), it follows that

G" WD min.F.y//\ Œz � k0d.x; y/C k0" � K� is nonempty closed, 8" > 0.
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The family .G"I " > 0/ of (nonempty) closed subsets in the compact set min.F.y//
has the finite intersection property. Hence, by a well-known characterization of
compactness (cf. Kelley [37, Chap. 5]), we must have

G WD \fG"I " > 0g is nonempty closed in min.F.y//:

Now, by the closeness of K, each element w 2 G fulfills

w 2 min.F.y// � F.y/; w � z� k0d.x; y/ (whence, .x; z/ � .y;w/)I

which tells us that y 2 T.x; z/.

Strat-2. Suppose that the level-closed condition is to be substituted by the
stronger condition

(c08) (F is graph level-closed) L is closed in Z � X:

zn ! z, xn
d�! x, [xn 2 L .zn/, 8n] imply x 2 L .z/.

Let .ynI n 
 0/ be a sequence in T.x; z/; i.e., by the previous representation,

yn 2 L .z � k0d.x; yn//; for all n 
 0: (40)

Further, assume that, yn
d�! y (i.e.: d.yn; y/ ! 0) as n ! 1, for some y 2 X.

Passing to limit as n!1 in (40) above gives y 2 L .z � k0d.x; y//, which, by the
same characterization, is just y 2 T.x; z/.

Note that, from a technical viewpoint, this graph level-closed condition is
comparable with the .�/-semi-closed condition upon F. In fact, let .xn; zn/I n 
 0/
be .�/-ascending in F and xn

d�! x, for some x 2 X. By definition, we have

k0d.xp; xpCm/ � zp � zpCm; 8p 
 0;8m 
 1I

and this in turn yields

xpCm 2 L .zp � k0d.xp; xpCm//; 8p 
 0;8m 
 1:

From the (graph) closeness of L , we have x 2 L .zp � k0d.xp; x//; hence, in
particular, x 2 Dom.F/; and, moreover,

(8p 
 0): .xp; zp/ � .x;wp/, for some wp 2 min.F.x//.

This shows that, if

(c09) min.F.x// is a singleton, for each x 2 Dom.F/,

the .�/-semi-closed condition follows; and the corresponding version of Theo-
rem 14 is a particular case of Theorem 12 above, in the locally convex setting.
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(pro-3) The sets T.x; z/ are uniformly bounded for all .x; z/ 2 F
In fact, as F is quasi-bounded below,

F.X/ � M C K, for some closed bounded part M � Z.

Then, evidently,

T.x; z/ � fy 2 XI k0d.x; y/ 2 z �M � Kg;

and our claim follows.
(pro-4) The following inclusion holds, for each .x; z/ 2 F,

T.y; v/ � T.x; z/, for all y 2 T.x; z/ and v 2 F.y/ with .x; z/ � .y; v/.

In fact, let a 2 T.y; v/ be arbitrary fixed; hence,

.y; v/ � .a; b/, for some b 2 F.a/.

This, by the choice of our data, yields .x; z/ � .a; b/; whence, a 2 T.x; z/; and our
assertion is proved.

Step 2. Let us iteratively construct a sequence of pairs ..xi; zi/I i 
 0/ in F
(starting from .x0; z0/ in the statement) as: having the i-th iteration .xi; zi/, we select
the next one .xiC1; ziC1/, according to

xiC1 2 T.xi; zi/; (41)

d.xi; xiC1/ 
 supfd.xi; x/I x 2 T.xi; zi/g � 1=.iC 1/; (42)

ziC1 2 F.xiC1/; .xi; zi/ � .xiC1; ziC1/: (43)

Note that, by the above properties, this iterative procedure is well defined. Summing
up the inequalities in (43) gives (as F is quasi-bounded below)

k0.
mX

iD0
d.xi; xiC1// 2 z0 � zmC1 � K � z0 �M � K; 8m > 0:

Combining with the hypotheses about .K;M/, we obtain

1X

iD0
d.xi; xiC1/ <1; k0.

1X

iD0
d.xi; xiC1// 2 z0 �M � K: (44)

On the other hand, from

diamT.xiC1; ziC1/ � diamT.xi; zi/; 8i
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and the relation (obtained via (42) above)

diamT.xi; zi/ � 2Œd.xi; xiC1/C 1=.iC 1/�; 8i;

one derives diamT.xi; zi/! 0 as i!1. As .X; d/ is complete, we conclude that

\ fT.xi; zi/I i 
 0g D fNxg; for some Nx 2 X: (45)

Remark 4. Relation (44) seems to hold only when

P � K is closed, where P D z0 �M.

Sufficient conditions for this are to be determined by the Dieudonné closeness
criterion; see in this direction Zălinescu [67, Chap. 1, Sect. 1.1].

Remark 5. Relation (45) holds only if

T.xi; zi/ is closed, for all i 
 0.

But, as precise, this property is not in general valid under the min-closed and level-
closed conditions upon F. However, when one of the conditions below holds

(i) .Z;T / is Hausdorff separable, and the min-closed condition is to be substituted
by the (stronger) min-compact condition

(ii) the level-closed condition is to be substituted by (the stronger) graph level-
closed condition,

the underlying property is retainable.

Step 3. Now, given the iterative process ..xi; zi/I i 
 0/ [constructed by means
of (41)–(43)], define the set sequence

R.xi; zi/ D fz 2 min.F.Nx//I .xi; zi/ � .Nx; z/g, i 
 0.

The following properties hold:
(prop-1) R.xi; zi/ is nonempty closed, for each i 
 0.
In fact, by (45), one has, for each i 
 0,

k0d.xi; Nx/ � zi � Qz; for some Qz 2 F.Nx/:

By the domination condition, there exists z 2 min.F.Nx// with Qz 
 z. Taking the
previous relation into account gives z 2 R.xi; zi/; i.e., R.xi; zi/ ¤ ;. On the other
hand, by this very definition,

R.xi; zi/ D min.F.Nx// \ Œzi � k0d.xi; Nx/� K�:

This, along with the closeness of (the nonempty subsets) min.F.x// and K, yields
the closeness property of R.xi; zi/.
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(prop-2) the sequence .R.xi; zi/I i 
 0/ is descending:

R.xi; zi/ � R.xiC1; ziC1/; for all i 
 0:

To verify this, pick any z 2 R.xiC1; ziC1/; hence, .xiC1; ziC1/ � .Nx; z/. Combining
with .xi; zi/ � .xiC1; ziC1/, gives .xi; zi/ � .Nx; z/; wherefrom, z 2 R.xi; zi/.

Step 4. It follows from the above properties that

; ¤ \fR.xi; zi/I k 
 0g � F.Nx/: (46)

Remark 6. The nonemptiness of this intersection is not in general available under
the min-closed condition upon F. But, if we suppose that

.Z;T / is Hausdorff separable and the min-closed condition is to be substituted
by the min-compact condition,

this happens. In fact, the family .Hi WD R.xi; zi/I i 
 0/ of (nonempty) closed subsets
in the compact set min.F.Nx// has the finite intersection property. Hence, by a well-
known characterization of compactness (see above) we must have

H WD \fHiI i 
 0g is nonempty closed in min.F.Nx//I

and our assertion follows.

Step 5. Take an arbitrary point Nz of this intersection. The pair .Nx; Nz/ has all
properties we want.

3.4 Main Result

As a conclusion of the remarks above, the arguments in Theorem 14—developed
under the lines in Bao and Mordukhovich [5]—are (essentially) retainable when
(in addition), the following “combined” regularity condition holds

(h-comp) .Z;T / is Hausdorff separable, and the min-closed condition is to be
substituted by the (stronger) min-compact condition (upon F).

Clearly, the second property holds in the univalued case (modulo F); but, for the
multivalued case, an assumption like this is a little stringent. Moreover, the imposed
condition (in combination with the remaining ones) makes Theorem 14 be reducible
to a corresponding variant of Theorem 12 involving quasi-bounded from below
maps. It is our aim in the following to clarify this assertion, by means of the Brezis–
Browder techniques we just developed. But, for the moment, the non-topological
vector case will be considered.

Let Y be a (real) vector space. Take a (convex) cone K of it; and let .�K/ stand
for the associated quasi-order; also denoted as .�/, when K is understood. Further,
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let .X; d/ be a metric space; and take a proper multivalued map F W X ! 2Y from
X to Y (identified with its graph in X � Y). Finally, take some k0 2 K; and let .�/
stand for the quasi-order on X � Y:

.x1; y1/ � .x2; y2/ if and only if k0d.x1; x2/ � y1 � y2.

We are interested to find sufficient conditions (extending those of introductory
section) under which .F;�/ should have points with certain maximal properties.
The basic assumption to be used is again the one of introductory parts; i.e.,

(d01) (F is .�/-semi-closed):

if ..xn; yn// � F is (�)-ascending and xn
d�! x, then x 2 Dom.F/

and there exists y 2 F.x/ such that .xn; yn/ � .x; y/, for all n.

For the remaining ones, we need some conventions. Given the nonempty subset V
of Y, let us say that .y; k/ 2 V � K is singular, provided

for each n 2 N, there exists yn 2 V , such that nk � y � yn;

the family of all these couples .y; k/ will be denoted Sing.VIK/. Put also

Sing.V/ D fk 2 KI .y; k/ 2 Sing.VIK/; for at least one y 2 Vg;
each element of it will be referred to as V-singular. Note that the class of all such
k 2 K is always nonempty; because 0 2 Sing.V/.

We are now in position to state our first main result.

Theorem 15. Suppose that F is proper, .�/-semi-closed, and

(d02) k0 is .K;F/-admissible: k0 2 K n Sing.F.X//.

In addition, let .X; d/ be complete. Then, for each .x0; y0/ 2 F there exists .Nx; Ny/ 2 F
such that (34)+(35) hold.

Proof. Let e.:; :/ stand for the semi-metric on X � Y

e.x1; y1/; .x2; y2// D d.x1; x2/, .x1; y1/; .x2; y2/ 2 X � Y.

We show that Proposition 14 (see also Turinici [58]) is applicable to .FI �I e/. Let
..xn; yn/I n 
 0/ be an ascending (modulo .�/) sequence in F:

(d03) k0d.xn; xm/ � yn � ym, if n � m.

(I) We show that .xnI n 
 0/ is a d-Cauchy sequence in Dom.F/; or, equivalently:
..xn; yn/I n 
 0/ is an e-Cauchy sequence in F. Note that, as d.:; :/ is a metric, the
underlying property may be written as

8" > 0, 9k D ."/: k < n H) d.xk; xn/ < ".

Assume by contradiction that this is not true; then, for some " > 0, one has

(d04) for each n, there exists m > n, with d.xn; xm/ 
 ".
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(Clearly, without loss one may assume that 0 < " < 1). Inductively, we get a
subsequence .un WD xi.n/I n 
 0/ of .xnI n 
 0/, with

d.un; unC1/ 
 "; for all n 
 0: (47)

This yields, for the corresponding subsequence .vn WD yi.n/I n 
 0/ of .ynI n 
 0/,
an evaluation like

k0" � k0d.un; unC1/ � vn � vnC1; for all n 
 0I

wherefrom (adding the first q inequalities)

.q"/k0 � v0 � vq; for all q 
 0: (48)

Define the function Q W N ! N, as

Q.n/ D inffq 2 NI n � q"g, n 2 N; hence: n � Q.n/, 8n 2 N.

By the relation above,

nk0 � .Q.n/"/k0 � v0 � vQ.n/; for all n 
 0I (49)

which tells us that k0 is F.X/-singular, contradiction. Hence, our working hypothesis
cannot hold; i.e.: .F;�/ is regular (modulo e).

(II) As .X; d/ is complete, xn
d�! x as n!1, for some x 2 X. Taking the .�/-

semi-closed condition into account gives x 2 Dom.F/ and [.xn; yn/ � .x; y/, 8n],
for some y 2 F.x/; this, by the arbitrariness of our sequence, tells us that .F;�/ is
sequentially inductive.

Summing up, Proposition 14 is indeed applicable to .FI �I e/. Hence, by its
conclusion, we derive that, for the starting .x0; y0/ 2 F, there exists some .Nx; Ny/ 2 F
with the properties (34) and

.Nx; Ny/ � .x0; y0/ 2 F H) e..Nx; Ny/; .x0; y0// D 0: (50)

But, this is nothing else than (35); and the conclusion follows.

A useful completion of this result is obtainable under the lines of introductory
part. Precisely, we have

Theorem 16. Let the conditions in Theorem 15 be fulfilled; and F has the
domination property (see above). Then, for each .x0; y0/ 2 F, there exists .Nx; Ny/ 2 F
with the properties (36) and (37).

Proof. By Theorem 15, for the starting .x0; y0/ 2 F there exists .Qx; Qy/ 2 F
fulfilling (34) and (35) (with .Qx; Qy/ in place of .Nx; Ny/). Further, by the domination
property, there exists Ny 2 min.F.Qx// such that Qy 
 Ny; hence, .Qx; Qy/ � .Qx; Ny/. It is now
clear that the couple .Nx; Ny/ 2 F where Nx WD Qx, has all properties we need.
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Note that, if the domination property is not available, the conclusion (37) above
may be written in a form involving gauge functions; see Turinici [55] for details.

3.5 Particular Aspects

The obtained results are given in the realm of (general) vector spaces. It will be
therefore useful to see whether these extend the ones of introductory part. The
answer is affirmative; but, it will necessitate some preliminaries and auxiliary facts.

Let .Y;T / be a (real) topological vector space; note that its linear topology T is
characterized by a fundamental system B of zero-neighborhoods. Take a (convex)
cone K of Y; and denote its associated quasi-order as .�K/; or, simply, .�/ [when
K is understood]. Further, let .X; d/ be a complete metric space; and take a proper
multivalued function F W X ! 2Y from X to Y; identified with its graph in X � Y.
Finally, letting k0 2 K be a fixed element, denote by .�/ the quasi-order on X � Y

.x1; y1/ � .x2; y2/ if and only if k0d.x1; x2/ � y1 � y2.

As in the preceding sections, we intend to get conditions under which .F;�/ admits
maximal elements. The basic one is again the .�/-semi-closed condition upon F;
for the specific ones we may proceed as follows. Call the (nonempty) part P of Y,
bounded (modulo T ), when (cf. Cristescu [19, Chap. 1, Sect. 2])

(e01) 8B 2 B, 9˛ D ˛.B/ > 0, such that P � ˛B.

Denote

bound.Y/=the class of all bounded parts of Y.

The following characterization of this concept is to be noted (see the above reference
for details):

Lemma 7. The subset P of Y is bounded, if and only if

(e02) for each sequence .ynI n 
 0/ in P and each sequence .�nI n 
 0/ in R
with �n ! 0, it is the case that �nyn ! 0.

As a direct consequence, on gets a lot of basic properties for the class bound.Y/.
(The proof is almost evident; so, we do not give details).

Lemma 8. Under these conventions, we have

(bd-1) Q � P 2 bound.Y/ H) Q 2 bound.Y/
(bd-2) P;Q 2 bound.Y/ H) P [ Q 2 bound.Y/
(bd-3) P=finite H) P 2 bound.Y/
(bd-4) P;Q 2 bound.Y/ H) PC Q 2 bound.Y/
(bd-5) P 2 bound.Y/ H) �P 2 bound.Y/, 8� 2 R.

Now, assume in the following that
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(e03) (F is quasi-bounded below):
F.X/ � M C K, for some M 2 bound.Y/.

The following auxiliary fact makes the necessary connections with the results in the
preceding part.

Lemma 9. Suppose that F is quasi-bounded below. Then

Sing.F.X// � �cl.K/: (51)

Proof. Let k 2 K be some arbitrary fixed point in Sing.F.X//. By definition,

Nk � y � F.X/� K, for some y 2 F.X/.

Combining with the quasi-bounded from below condition yields

Nk � y �M � K, for some y 2 F.X/.

The subset V D y�M is bounded, from our preceding statement. On the other hand,
by definition, there must be a sequence .vnI n 
 1/ in V such that

k � .1=n/vn (hence, �kC .1=n/vn 2 K), 8n 
 1.

Passing to limit as n!1 yields (by a previous auxiliary fact) �k 2 cl.K/; and we
are done.

Now, by simply combining this with Theorem 15, one gets

Theorem 17. Suppose that F is proper, .�/-semi-closed, quasi-bounded below,
and k0 2 K is K-admissible (see above). In addition, let .X; d/ be complete. Then,
for each .x0; y0/ 2 F there exists .Nx; Ny/ 2 F such that (34)+(35) hold.

Proof. From the auxiliary fact above, one derives that k0 is .K;F/-admissible; and
this, along with Theorem 15, ends the argument.

On the other hand, we have (from Theorem 16) the following practical statement.

Theorem 18. Suppose that F is proper, .�/-semi-closed, quasi-bounded below,
and k0 2 K is K-admissible. In addition, let .X; d/ be complete and F have the
domination property. Then, for each .x0; y0/ 2 F, there exists .Nx; Ny/ 2 F, fulfilling
the relations (36) and (37).

In the following, a basic particular case of this last result is to be developed under
the lines in Bao and Mordukhovich [5].

Let .Y;T / be a (real) Hausdorff separated topological vector space. Take a
closed (convex) cone K of Y; its associated quasi-order will be denoted as .�/,
for simplicity. Further, let .X; d/ be a complete metric space; and take a proper
multivalued function F W X ! 2Y from X to Y (identified with its graph in X � Y).
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Finally, take some k0 2 K n .�K/; hence (as K is closed) k0 is K-admissible; and
denote by .�/ the quasi-order on X � Y

.x1; y1/ � .x2; y2/ if and only if k0d.x1; x2/ � y1 � y2.

As before, we intend to get conditions under which .F;�/ admits maximal
elements. There are two groups of such conditions

(con-g) The first group (of general conditions) is taken as in the result above:

F is quasi-bounded below, and has the domination property.

(con-s) For the second group (of specific conditions), we introduce a convention.
Define the level-set multivalued map L W Y ! 2X attached to F, as

L .v/ D fx 2 XI y � v; for some y 2 F.x/g, v 2 Y.

The underlying conditions write, in this case

(e04) (F is level-closed) L .y/ is closed in X, for each y 2 Y
(e05) (F is min-compact)
min.F.x// is (nonempty) compact, for all x 2 Dom.F/.

The following auxiliary fact provides the necessary connection with the
conditions of our preceding statement.

Lemma 10. Assume that F has the domination property, and is level-closed,
min-compact. Then F is .�/-semi-closed (see above).

Proof. Let the sequence ..xn; yn/I n 
 0/ in F be (�)-ascending and xn
d�! x, for

some x 2 X. Denote, for simplicity

Mi D fv 2 min.F.x//I .xi; yi/ � .x; v/g, i 
 0.

There are two steps to be passed.
(I) We firstly claim that

Mi is nonempty closed, for each i 
 0. (52)

The closeness property is clear, in view of

Mi D min.F.x//\ Œyi � k0d.xi; x/ � K�; i 
 0; (53)

combined with the closeness of K and the closeness of min.F.x// (deductible from
the compactness of the same and .Y;T /=Hausdorff separated). So, all we have to
establish is the nonemptiness of each member from the family .MiI i 
 0/. Fix i 
 0;
and note that, by the .�/-ascending property, we have

k0d.xi; xn/ � yi � yn; 8n 
 i:
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Let " > 0 be arbitrary fixed. From the imposed convergence property, there exists
some rank n."/ 
 i, such that

d.xn; x/ � ", for all n 
 n."/.

Combined with the preceding relations yields (by the triangular inequality)

k0d.xi; x/ � k0d.xi; xn/C k0d.xn; x/ � yi � yn C k0"; for all n 
 n."/I

wherefrom (for the same ranks)

yn � yi � k0d.xi; x/C k0"; i.e.: xn 2 L .yi � k0d.xi; x/C k0"/.

As F is level-closed, this yields, for each " > 0,

x 2 L .yi � k0d.xi; x/C k0"/; wherefrom:
v � yi � k0d.xi; x/C k0", for some v 2 F.x/;

hence, in particular, x 2 Dom.F/. Combining with the closeness of K, the
domination property, and the closeness of min.F.x// (see above), it follows that

G" WD min.F.x//\ Œyi � k0d.xi; x/C k0" � K� is nonempty closed, 8" > 0.

The family .G"I " > 0/ of (nonempty) closed subsets in the compact set min.F.x//
has the finite intersection property. Hence, by a well-known characterization of
compactness (cf. Kelley [37, Chap. 5]), we must have

G WD \fG"I " > 0g is (nonempty) closed in min.F.x//:

Now, by the closeness of K, each element v 2 G fulfills

v 2 min.F.x// � F.x/; v � yi � k0d.xi; x/ (whence, .xi; yi/ � .x; v/)I

which tells us that v 2 Mi; whence, Mi is nonempty (for each i 
 0).
(II) We now claim that .MiI i 
 0/ is a descending sequence of sets; i.e.,

Mi � Mj; whenever i � j: (54)

In fact, let the ranks i; j 
 0 be such that i � j; and take some v 2 Mj; hence, by
definition v 2 min.F.x// and .xj; yj/ � .x; v/. Combining with .xi; yi/ � .xj; yj/,
one derives .xi; yi/ � .x; v/; so that, v 2 Mi; and the claim follows.

Summing up, the family .MiI i 
 0/ of (nonempty) closed subsets in the compact
set min.F.x// has the finite intersection property. Hence, by the characterization of
compactness we just evoked,
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M WD \fMiI i 
 0g is nonempty closed in min.F.x//:

Now, evidently, any v 2 M fulfills

v 2 Mi (that is: .xi; yi/ � .x; v/), for all i 
 0.

This, along with the arbitrariness of the .�/-ascending sequence ..xn; yn/I n 
 0/

and x 2 X with xn
d�! x, proves the desired conclusion.

Now, by simply combining this with Theorem 18, one derives the following
practical statement.

Theorem 19. Suppose that F is proper, quasi-bounded below, and k0 2 Kn.�K/. In
addition, let .X; d/ be complete and F be level-closed, min-compact, and having the
domination property. Then, for each .x0; y0/ 2 F, there exists .Nx; Ny/ 2 F, fulfilling
the relations (36) and (37).

This result may be viewed as a (corrected) simplified version of Theorem 14;
due, as above said, to Bao and Mordukhovich [5]. In particular, when F is bounded
below, the obtained facts include in a direct way the statements in Tammer and
Zălinescu [50]. Some transfinite versions of these may be found in Nemeth [43] and
Khanh [38]; see also Turinici [60].
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Univ., Cluj-Napoca (România) (1987)

3. Bae, J.S., Cho, E.W., Yeom, S.H.: A generalization of the Caristi-Kirk fixed point theorem
and its applications to mapping theorems. J. Korean Math. Soc. 31, 29–48 (1994)

4. Bao, T.Q., Khanh, P.Q.: Are several recent generalizations of Ekeland’s variational principle
more general than the original principle? Acta Math. Vietnam. 28, 345–350 (2003)

5. Bao, T.Q., Mordukhovich, B.S.: Variational principles for set-valued mappings with applica-
tions to multiobjective optimization. Control Cyb. 36, 531–562 (2007)

6. Bejancu, A.: On the Ekeland and Borwein-Preiss principles in finite dimensions. An. Şt. Univ.
“A. I. Cuza” Iaşi (S. I-a, Mat.) 40, 63–67 (1994)

7. Bernays, P.: A system of axiomatic set theory: part III. Infinity and enumerability analysis. J.
Symb. Log. 7, 65–89 (1942)

8. Borwein, J.M., Preiss, D.: A smooth variational principle with applications to subdifferentia-
bility and to differentiability of convex functions. Trans. Am. Math. Soc. 303, 517–527 (1987)

9. Bourbaki, N.: Sur le théorème de Zorn. Arch. Math. 2, 434–437 (1949/1950)
10. Brezis, H., Browder, F.E.: A general principle on ordered sets in nonlinear functional analysis.

Adv. Math. 21, 355–364 (1976)
11. Brøndsted, A.: Fixed points and partial orders. Proc. Am. Math. Soc. 60, 365–366 (1976)
12. Brunner, N.: Topologische Maximalprinzipien. Z. Math. Logik Grundl. Math. 33, 135–139

(1987)



574 M. Turinici

13. Caristi, J., Kirk, W.A.: Geometric fixed point theory and inwardness conditions. In: The
Geometry of Metric and Linear Spaces (Michigan State Univ., 1974). Lecture Notes in
Mathematics, vol. 490, pp. 74–83. Springer, Berlin (1975)
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Iaşi (S I-a: Mat) 40, 225–266 (1994)
55. Turinici, M.: Minimal points in product spaces. An. Şt. Univ. “Ovidius” Constanţa (Math.) 10,
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Apoloniusz Tyszka

Abstract Let En D fxk D 1; xi C xj D xk; xi � xj D xkW i; j; k 2 f1; : : : ; ngg.
For any integer n 
 2214, we define a system T � En which has a unique
integer solution .a1; : : : ; an/. We prove that the numbers a1; : : : ; an are positive
and max .a1; : : : ; an/ > 22

n
. For a positive integer n, let f .n/ denote the smallest

non-negative integer b such that for each system S � En with a unique solution in
non-negative integers x1; : : : ; xn, this solution belongs to Œ0; b�n. We prove that if a
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8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

x1 D 1

x1 C x1 D x2
x2 � x2 D x3
x3 � x3 D x4
x4 � x4 D x5

: : :

xn�1 � xn�1 D xn

has a unique complex solution, namely
�
1; 2; 4; 16; 256; : : : ; 22

n�3
; 22

n�2�
. The

following system

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

x1 C x1 D x2
x1 � x1 D x2
x2 � x2 D x3
x3 � x3 D x4

: : :

xn�1 � xn�1 D xn

has exactly two complex solutions, namely:

.0; : : : ; 0/ and
�
2; 4; 16; 256; : : : ; 22

n�2
; 22

n�1�
.

Theorem 1. For each integer n 
 2203, the following system T

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

.T1/ 8i 2 f1; : : : ; ng xi � xi D xiC1

.T2/ xnC2 C xnC2 D xnC3

.T3/ xnC3 C xnC3 D xnC4

.T4/ xnC4 C xnC2 D xnC5

.T5/ xnC6 D 1

.T6/ xnC5 C xnC6 D xnC7

.T7/ xnC7 C xnC6 D xnC8

.T8/ xnC8 C xnC6 D x1

.T9/ xnC8 � xnC8 D xnC9

.T10/ xnC9 � xnC10 D xnC11

.T11/ xnC11 C x1 D x2204

has a unique integer solution .a1; : : : ; anC11/. The numbers a1; : : : ; anC11 are

positive and max
�

a1; : : : ; anC11
�
> 22

nC11
.

Proof. Equations .T2/–.T7/ imply that xnC8 D 5xnC2 C 2. Hence, xnC8 62˚�1; 0; 1;�22203 C 1�. The system .T1/ implies that xnC1 D x12
n

and x12
2203 D

x2204. By this and equations .T5/ and .T8/–.T11/, we get:
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�
xnC8 C 1

�22203 D
�

xnC8 C xnC6
�22203 D x1

22203 D x2204 D xnC11 C x1 D

.xnC9 � xnC10/C x1 D
�
x2nC8 � xnC10

�C .xnC8 C xnC6/ D x2nC8 � xnC10 C xnC8 C 1
(1)

Next,

�
xnC8 C 1

�22203 D 1C 22203 � xnC8 C x2nC8 �
22203X

k D 2

 
22203

k

!
� xk�2

nC8 (2)

Formulae (1) and (2) give:

x2nC8 �
0

@xnC10 �
22203X

k D 2

 
22203

k

!
� xk�2

nC8

1

A D
�
22203 � 1

�
� xnC8

The number 22203�1 is prime [8, pp. 79 and 81] and xnC8 62
˚�1; 0; 1;�22203 C 1�.

Hence, xnC8 D 22203 � 1. This proves that exactly one integer tuple .x1; : : : ; xnC11/
solves T and the numbers x1; : : : ; xnC11 are positive. Next, x1 D xnC8 C xnC6 D�
22203 � 1

�
C 1 D 22203, and finally

xnC1 D x1
2n D �22203�2

n

>
�
22048

�2n

D 22nC11

Explicitly, the whole solution is given by

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

8i 2 f1; : : : ; nC 1g ai D
�
22203

�2i�1

anC2 D 1
5
� �22203 � 3�

anC3 D 2
5
� �22203 � 3�

anC4 D 4
5
� �22203 � 3�

anC5 D 22203 � 3
anC6 D 1
anC7 D 22203 � 2
anC8 D 22203 � 1
anC9 D

�
22203 � 1�2

anC10 D 1C
22203P
kD2

�22203
k
� � �22203 � 1�k�2

anC11 D
�
22203

�22203 � 22203

ut
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If we replace the equation .T5/ by the system 8i 2 f1; : : : ; nC 11g xnC6 � xi D xi,
then the system T contains only equations of the form xi C xj D xk or xi � xj D
xk, and exactly two integer tuples solve T, namely .0; : : : ; 0/ and .a1; : : : ; anC11/.
Theorem 1 disproves the conjecture in [10], where the author proposed the upper

bound 22
n�1

for positive integer solutions to any system

S � fxi C xj D xk; xi � xj D xkW i; j; k 2 f1; : : : ; ngg

which has only finitely many solutions in positive integers x1; : : : ; xn. Theorem 1

disproves the conjecture in [11], where the author proposed the upper bound 22
n�1

for modulus of integer solutions to any system S � En which has only finitely many
solutions in integers x1; : : : ; xn. For each integer n 
 2, the following system

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

8i 2 f1; : : : ; ng xi � xi D xiC1
xnC2 D 1

xnC2 C xnC2 D xnC3
xnC3 C xnC3 D xnC4
xnC4 C xnC5 D xnC6
xnC6 C xnC2 D x1

xnC6 � xnC6 D xnC7
xnC8 C xnC8 D xnC9
xnC9 C xnC2 D xnC10
xnC7 � xnC10 D xnC11

xnC11 C xnC2 D xnC1

has a unique solution .a1; : : : ; anC11/ in non-negative integers [1]. The proof of this

gives also that anC1 > 22
.nC11/�2

for any n 
 512 [1]. The above-described result
inspired the author to formulate Theorem 1 and the next Theorem 2.

Theorem 2. If n 2 N and 2n � 1 is prime, then the following system

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

8i 2 f1; : : : ; ng xi � xi D xiC1
xnC2 D 1

xnC3 C xnC2 D xnC4
xnC4 C xnC2 D xnC5
xnC5 C xnC2 D x1

xnC5 � xnC5 D xnC6
xnC6 � xnC7 D xnC8
xnC8 C x1 D xnC1

has a unique solution .x1; : : : ; xnC8/ in non-negative integers and xnC1 D .2n/2
n
.
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Proof. The proof is analogous to that of Theorem 1. ut
The Davis–Putnam–Robinson–Matiyasevich theorem states that every recur-

sively enumerable set M � N
n has a Diophantine representation, that is

.a1; : : : ; an/ 2M ”9x1; : : : ; xm 2 N W.a1; : : : ; an; x1; : : : ; xm/ D 0 (R)

for some polynomial W with integer coefficients, see [4]. The polynomial W can
be computed, if we know the Turing machine M such that, for all .a1; : : : ; an/ 2
N

n, M halts on .a1; : : : ; an/ if and only if .a1; : : : ; an/ 2 M , see [4]. The
representation (R) is said to be single-fold, if for any a1; : : : ; an 2 N the equation
W.a1; : : : ; an; x1; : : : ; xm/ D 0 has at most one solution .x1; : : : ; xm/ 2 N

m. Y.
Matiyasevich conjectures that each recursively enumerable set M � N

n has a
single-fold Diophantine representation, see [2, pp. 341–342], [5, p. 42], [6, p. 79],
and [7, p. 745].

Let us say that a set M � N
n has a bounded Diophantine representation, if there

exists a polynomial W with integer coefficients such that

.a1; : : : ; an/ 2M ”

9x1; : : : ; xm 2 f0; : : : ;max .a1; : : : ; an/g W .a1; : : : ; an; x1; : : : ; xm/ D 0

Of course, any bounded Diophantine representation is finite-fold and any subset
of N with a bounded Diophantine representation is computable. A simple diagonal
argument shows that there exists a computable subset of N without any bounded
Diophantine representation, see [2, p. 360]. The authors of [2] suggest a possibility
that each subset of N which has a finite-fold Diophantine representation has also a
bounded Diophantine representation, see [2, p. 360].

Let ! denote the least infinite cardinal number, and let !1 denote the
least uncountable cardinal number. Let � 2 f2; 3; 4; : : : ; !; !1g. We say that
the representation (R) is �-fold, if for any a1; : : : ; an 2 N the equation
W .a1; : : : ; an; x1; : : : ; xm/ D 0 has less than � solutions .x1; : : : ; xm/ 2 N

m.
Of course, 2-fold Diophantine representations are identical to single-fold
Diophantine representations. Next, !-fold Diophantine representations are
identical to finite-fold Diophantine representations. Finally, !1-fold Diophantine
representations are identical to Diophantine representations.

For a positive integer n, let f�.n/ denote the smallest non-negative integer b such
that for each system S � En which has a solution in non-negative integers x1; : : : ; xn

and which has less than � solutions in non-negative integers x1; : : : ; xn, there exists
a solution of S in non-negative integers not greater than b. For a positive integer n,
let f .n/ denote the smallest non-negative integer b such that for each system S � En

with a unique solution in non-negative integers x1; : : : ; xn, this solution belongs to
Œ0; b�n. Obviously, f D f2, f .1/ D 1, and f .2/ D 2.

Lemma 1 ([3]). If k 2 N, then the equation x2C 1 D 52kC1 � y2 has infinitely many
solutions in non-negative integers. The minimal solution is given by
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x D
�
2Cp5

�5k

C
�
2 �p5

�5k

2

y D
�
2Cp5

�5k

�
�
2 �p5

�5k

2 � p5 � 5k

Theorem 3. For each positive integer n, the following system

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

8i 2 f1; : : : ; ng xi � xi D xiC1
x1 � xnC1 D xnC2

xnC3 D 1

xnC3 C xnC3 D xnC4
xnC4 C xnC4 D xnC5
xnC5 C xnC3 D x1

xnC6 � xnC6 D xnC7
xnC8 � xnC8 D xnC9

xnC9 C xnC3 D xnC10
xnC2 � xnC7 D xnC10

has infinitely many solutions in non-negative integers x1; : : : ; xnC10. If an integer
tuple .x1; : : : ; xnC10/ solves the system, then

xnC10 


0

BBBB@

�
2Cp5

�52n � 1 C
�
2 �p5

�52
n�1

2

1

CCCCA

2

C 1

Proof. It follows from Lemma 1, because the system equivalently expresses that

xnC10 D x28 C 1 D 52 � 2
n�1 C 1 � x2nC6 C 1. ut

Let Rng denote the class of all rings K that extend Z.

Lemma 2 ([10]). Let D.x1; : : : ; xp/ 2 ZŒx1; : : : ; xp�. Assume that deg.D; xi/ 
 1

for each i 2 f1; : : : ; pg. We can compute a positive integer n > p and a system
T � En which satisfies the following two conditions:

Condition 1. If K 2 Rng [ fN; N n f0gg, then

8Qx1; : : : ; Qxp 2 K
�

D.Qx1; : : : ; Qxp/ D 0”

9QxpC1; : : : ; Qxn 2 K .Qx1; : : : ; Qxp; QxpC1; : : : ; Qxn/ solves T
�
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Condition 2. If K 2 Rng [ fN; N n f0gg, then for each Qx1; : : : ; Qxp 2 K with
D.Qx1; : : : ; Qxp/ D 0, there exists a unique tuple .QxpC1; : : : ; Qxn/ 2 Kn�p such that the
tuple .Qx1; : : : ; Qxp; QxpC1; : : : ; Qxn/ solves T.

Conditions 1 and 2 imply that for each K 2 Rng [ fN; N n f0gg, the equation
D.x1; : : : ; xp/ D 0 and the system T have the same number of solutions in K.

Theorems 2 and 3 provide a heuristic argument that the function f!1 grows
much faster than the function f . The next Theorem 4 for � D !1 implies that the
function f!1 is not computable. These facts lead to the conjecture that the function f
is computable. By this, Theorem 4 for � D 2 is the first step towards disproving
Matiyasevich’s conjecture on single-fold Diophantine representations.

Theorem 4. If a function gWN! N has a �-fold Diophantine representation, then
there exists a positive integer m such that g.n/ < f�.n/ for any n 
 m.

Proof. By Lemma 2 for K D N, there is an integer s 
 3 such that for any non-
negative integers x1; x2,

.x1; x2/ 2 g”9x3; : : : ; xs 2 N ˚.x1; x2; x3; : : : ; xs/; (E)

where the formula ˚.x1; x2; x3; : : : ; xs/ is a conjunction of formulae of the forms
xk D 1, xi C xj D xk, xi � xj D xk .i; j; k 2 f1; : : : ; sg/, and for each non-negative
integers x1; x2 less than � tuples .x3; : : : ; xs/ 2 N

s�2 satisfy ˚.x1; x2; x3; : : : ; xs/. Let
Œ�� denote the integer part function. For each integer n 
 6C 2s,

n �
hn

2

i
� 3 � s 
 6C 2s�

�
6C 2s

2


� 3 � s 
 6C 2s� 6C 2s

2
� 3 � s D 0

For an integer n 
 6C 2s, let Sn denote the following system

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

all equations occurring in ˚.x1; x2; x3; : : : ; xs/

n � � n
2

� � 3 � s equations of the form zi D 1
t1 D 1

t1 C t1 D t2
t2 C t1 D t3

: : :

tŒ n
2 ��1 C t1 D tŒ n

2 �
tŒ n
2 �
C tŒ n

2 �
D w

wC y D x1
yC y D y (if n is even)

y D 1 (if n is odd)
x2 C t1 D u
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with n variables. The system Sn has less than � solutions in N
n. By the equiva-

lence (E), Sn is satisfiable over N. If an n-tuple .x1; x2; x3; : : : ; xs; : : : ;w; y; u/ of
non-negative integers solves Sn, then by the equivalence (E),

x2 D g.x1/ D g.wC y/ D g
�
2 �
hn

2

i
C y

�
D g.n/

Therefore, u D x2 C t1 D g.n/C 1 > g.n/. This shows that g.n/ < f�.n/ for any
n 
 6C 2s. ut

Let us fix an integer � 
 2.
For a positive integer n, let �.n/ denote the smallest non-negative integer b such

that for each system S � En with more than � � 1 solutions in non-negative integers
x1; : : : ; xn, at least two such solutions belong to Œ0; b�n.

For a positive integer n and for a non-negative integer m, let ˇ.n;m/ denote
the smallest non-negative integer b such that for each system S � En which has
a solution in integers x1; : : : ; xn from the range of 0 to m and which has less than �
solutions in integers x1; : : : ; xn from the range of 0 to m, there exists a solution that
belongs to Œ0; b�n. The function ˇ W .N n f0g/� N! N is computable.

The following equalities

f�.n/ D ˇ.n;max.f�.n/; �.n/// D ˇ.n;max.f�.n/; �.n//C 1/ D

ˇ.n;max.f�.n/; �.n//C 2/ D ˇ.n;max.f�.n/; �.n//C 3/ D : : :

hold for any positive integer n. Therefore, there is an algorithm which takes as
input a positive integer n, performs an infinite loop, returns ˇ.n;m� 1/ on the m-th
iteration, and returns f�.n/ on each sufficiently high iteration. This proves that the
function f� is computable in the limit for any integer � 
 2.

Theorem 5. Let � D 2. We claim that the following MuPAD code implements an
algorithm which takes as input a positive integer n, performs an infinite loop, returns
ˇ.n;m�1/ on the m-th iteration, and returns f .n/ on each sufficiently high iteration.

input("input the value of n",n):
X:=[0]:
while TRUE do
Y:=combinat::cartesianProduct(X $i=1..n):
W:=combinat::cartesianProduct(X $i=1..n):
for s from 1 to nops(Y) do
for t from 1 to nops(Y) do
m:=0:
for i from 1 to n do
if Y[s][i]=1 and Y[t][i]<>1 then m:=1 end_if:
for j from i to n do
for k from 1 to n do
if Y[s][i]+Y[s][j]=Y[s][k] and Y[t][i]+Y[t][j]<>Y[t][k]
then m:=1 end_if:
if Y[s][i]*Y[s][j]=Y[s][k] and Y[t][i]*Y[t][j]<>Y[t][k]
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then m:=1 end_if:
end_for:
end_for:
end_for:
if m=0 and s<>t then
W:=listlib::setDifference(W,[Y[s]]) end_if:
end_for:
end_for:
print(max(max(W[z][u] $u=1..n) $z=1..nops(W))):
X:=append(X,nops(X)):
end_while:

Proof. Let us say that a tuple y D .y1; : : : ; yn/ 2 N
n is a duplicate of a tuple x D

.x1; : : : ; xn/ 2 N
n, if

.8i 2 f1; : : : ; ng .xi D 1 H) yi D 1// ^

.8i; j; k 2 f1; : : : ; ng .xi C xj D xk H) yi C yj D yk// ^

.8i; j; k 2 f1; : : : ; ng .xi � xj D xk H) yi � yj D yk//

For a positive integer n and for a non-negative integer m, ˇ.n;m/ equals the smallest
non-negative integer b such that the box Œ0; b�n contains all tuples .x1; : : : ; xn/ 2
f0; : : : ;mgn which have no duplicates in f0; : : : ;mgn n f.x1; : : : ; xn/g. ut

The proof of Theorem 5 effectively shows that the function f is computable in
the limit. Limit-computable functions, also known as trial-and-error computable
functions, have been thoroughly studied, see [9, pp. 233–235] for the main results.
The function f!1 is also computable in the limit [12] and the following MuPAD
code

input("input the value of n",n):
X:=[0]:
while TRUE do
Y:=combinat::cartesianProduct(X $i=1..n):
W:=combinat::cartesianProduct(X $i=1..n):
for s from 1 to nops(Y) do
for t from 1 to nops(Y) do
m:=0:
for i from 1 to n do
if Y[s][i]=1 and Y[t][i]<>1 then m:=1 end_if:
for j from i to n do
for k from 1 to n do
if Y[s][i]+Y[s][j]=Y[s][k] and Y[t][i]+Y[t][j]<>Y[t][k]
then m:=1 end_if:
if Y[s][i]*Y[s][j]=Y[s][k] and Y[t][i]*Y[t][j]<>Y[t][k]
then m:=1 end_if:
end_for:
end_for:
end_for:
if m=0 and max(Y[t][i] $i=1..n)<max(Y[s][i] $i=1..n)
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then W:=listlib::setDifference(W,[Y[s]]) end_if:
end_for:
end_for:
print(max(max(W[z][u] $u=1..n) $z=1..nops(W))):
X:=append(X,nops(X)):
end_while:

performs an infinite computation of f!1.n/. The flowchart in Figure 1 describes an
algorithm which computes f�.n/ in the limit for any � 2 f!1g [ f2; 3; 4; : : :g.

MuPAD is a computer algebra system whose syntax is modelled on Pascal. The
commercial version of MuPAD is no longer available as a stand-alone product,
but only as the Symbolic Math Toolbox of MATLAB. Fortunately, all presented
codes can be executed by MuPAD Light, which was offered for free for research
and education until autumn 2005.

Theorem 6 ([12]). Let � 2 f2; 3; 4; : : : ; !g. Let us consider the following three
statements:

.a/ There exists an algorithm A whose execution always terminates and which
takes as input a Diophantine equation D and returns the answer YES or NO
which indicates whether or not the equation D has a solution in non-negative
integers, if the solution set Sol.D/ satisfies card.Sol.D// < �.

.b/ The function f� is majorized by a computable function.

.c/ If a set M � N
n has a �-fold Diophantine representation, then M is

computable.

We claim that .a/ is equivalent to .b/ and .a/ implies .c/.

Fig. 1 An infinite computation of f�.n/, where � 2 f!1g [ f2; 3; 4; : : :g
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Proof. The implication .a/) .c/ is obvious. We prove the implication .a/) .b/.
There is an algorithm Dioph which takes as input a positive integer m and a non-
empty system S � Em, and returns a Diophantine equation Dioph.m; S/ which has
the same solutions in non-negative integers x1; : : : ; xm. Item .a/ implies that for each
Diophantine equation D, if the algorithmA returnsYES for D, then D has a solution
in non-negative integers. Hence, if the algorithm A returns YES for Dioph.m; S/,
then we can compute the smallest non-negative integer i.m; S/ such that Dioph.m; S/
has a solution in non-negative integers not greater than i.m; S/. If the algorithm A
returns NO for Dioph.m; S/, then we set i.m; S/ D 0. The function

N n f0g 3 m! max
n
i.m; S/W ; ¤ S � Em

o
2 N

is computable and majorizes the function f� . We prove the implication .b/) .a/.
Let a function h majorizes f� . By Lemma 2 for K D N, a Diophantine equation D
is equivalent to a system S � En. The algorithm A checks whether or not S has a
solution in non-negative integers x1; : : : ; xn not greater than h.n/. ut

The implication .a/ ) .c/ remains true with a weak formulation of item .a/,
where the execution of A may not terminate or A may return nothing or something
irrelevant, if D has at least � solutions in non-negative integers. The weakened
item .a/ implies that the flowchart in Figure 2 describes an algorithm whose
execution terminates, if the set

Sol.D/ WD f.x1; : : : ; xn/ 2 N
nW D.x1; : : : ; xn/ D 0g

Fig. 2 An algorithm that conditionally finds all solutions to a Diophantine equation which has less
than � solutions in non-negative integers
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has less than � elements. If this condition holds, then the weakened item .a/
guarantees that the execution of the flowchart in Figure 2 prints all elements
of Sol.D/. However, the weakened item .a/ is equivalent to the original one. Indeed,
if the algorithm A satisfies the weakened item .a/, then the flowchart in Figure 3
illustrates a new algorithm A that satisfies the original item .a/.

Y. Matiyasevich in [6] studies Diophantine equations and Diophantine represen-
tations over N n f0g.
Theorem 7 ([6, p. 87]). Suppose that there exists an effectively enumerable set
having no finite-fold Diophantine representation. We claim that if a one-parameter
Diophantine equation

J.u; x1; : : : ; xm/ D 0 (3)

for each value of the parameter u has only finitely many solutions in x1; : : : ; xm, then
there exists a number n such that in every solution of (3)

x1 < un; : : : ; xm < un

Theorem 7 is false for u D 1 when J.u; x1/ D uC x1 � 3. Theorem 7 is missing
in [7], the Springer edition of [6]. The author has no opinion on the validity of
Theorem 7 for integers u > 1, but is not convinced by the proof in [6]. Theorem 7
restricted to integers u > 1 and reformulated for solutions in non-negative integers
implies the following Corollary:

Fig. 3 The weakened item .a/ implies the original one
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Corollary. If there exists a recursively enumerable set having no finite-fold
Diophantine representation, then any set M � N with a finite-fold Diophantine
representation is computable.

Let us pose the following two questions:

Question 1. Is there an algorithmB which takes as input a Diophantine equation D,
returns an integer, and this integer is greater than the heights of non-negative integer
solutions, if the solution set has less than � elements? We allow a possibility that the
execution of B does not terminate or B returns nothing or something irrelevant, if
D has at least � solutions in non-negative integers.

Question 2. Is there an algorithmC which takes as input a Diophantine equation D,
returns an integer, and this integer is greater than the number of non-negative integer
solutions, if the solution set is finite? We allow a possibility that the execution of C
does not terminate or C returns nothing or something irrelevant, if D has infinitely
many solutions in non-negative integers.

Obviously, a positive answer to Question 1 implies the weakened item .a/.
Conversely, the weakened item .a/ implies that the flowchart in Figure 4 describes
an appropriate algorithm B.

Theorem 8 ([12]). A positive answer to Question 1 for � D ! is equivalent to a
positive answer to Question 2.

Proof. Trivially, a positive answer to Question 1 for � D ! implies a positive
answer to Question 2. Conversely, if a Diophantine equation D.x1; : : : ; xn/ D 0

has only finitely many solutions in non-negative integers, then the number of non-
negative integer solutions to the equation

D2 .x1; : : : ; xn/C .x1 C : : :C xn � y � z/2 D 0
is finite and greater than max.a1; : : : ; an/, where .a1; : : : ; an/ 2 N

n is any solution
to D.x1; : : : ; xn/ D 0. ut

Fig. 4 The weakened item .a/ implies a positive answer to Question 1
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Image Encryption Scheme Based
on Non-autonomous Chaotic Systems

Christos K. Volos, Ioannis M. Kyprianidis, Ioannis Stouboulos,
and Viet-Thanh Pham

Abstract In this chapter, the great sensitivity of nonlinear systems, and especially
of chaotic systems, on the initial conditions and on the variation of their parameters,
was used to design a novel image encryption scheme. Until now, a great number
of chaotic autonomous continuous systems or discrete dynamical systems, have
been used in various image encryption processes, as a source of random numbers.
However, in this work, a Chaotic Random Bit Generator (CRBG), which is based
on a non-autonomous dynamical system, is used. For ridding from the system
the influence of the external source and increasing the security of the proposed
generator, the PoincarKe section for sampling the signal has been used. As a
dynamical system, the very well-known Duffing–van der Pol system has been
chosen, presenting very good statistical results. The aforementioned CRBG is the
“heart” of the proposed image encryption scheme. Finally, the security analysis
of the proposed encryption scheme, based on histogram analysis, correlation of
two adjacent pixels, differential analysis and information entropy, demonstrate the
robustness of the proposed chaotic encryption scheme against all kinds of statistical,
cryptanalytic, and brute-force attacks.

Keywords: Image encryption • Chaotic random bit generator • Non-autonomous
dynamical system • Duffing-van der Pol system • FIPS-140-2 • Security analysis

1 Introduction

In the last decades, information sharing and especially images information sharing
became more and more prevalent under the rapid development of Internet, networks
and mobile communication technologies. However, in open networks, there is a
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potential risk of making sensitive information, such as online personal photographs,
industrial drawings and medical images, vulnerable to unauthorized interceptions.
Also, images for military use such as drawings of military establishments, pho-
tographs which are produced by satellites or from military missions, must be also
kept private from enemies attacks. So, the development of robust cryptographic
schemes is essential to the provision of image’s security.

Furthermore, as it is known, digital images have some very characteristic features
such as:

• Bulk data capacity,
• Strong pixel correlation,
• High redundancy, and
• Existence of patterns and backgrounds.

In more detail, image data are usually bulky and very large-sized. So, the encryp-
tion of such bulky data with the traditional ciphers incurs significant overhead, and
it is too expensive for real-time multimedia applications. Also, in the case of digital
images, adjacent pixels often have similar gray-scale values and strong correlations,
or image blocks have similar patterns. Such an extremely high data redundancy of
multimedia makes the conventional encryption schemes fail to obscure all visible
information. Furthermore, in many real-life multimedia applications, it is very
important that very light encryption should be made to preserve some perceptual
information. This is impossible to be achieved with traditional encryption schemes
alone, which most likely degrade the data to a perceptually unrecognizable content.

Therefore, because of these features, traditional ciphers like Data Encryption
Scheme (DES) [1], International Data Encryption Algorithm (IDEA) [2], and
Advanced Encryption Scheme (AES) [3] are not suitable for real time image
encryption, as these ciphers require a large computational time and high computing
power.

So, nowadays, since traditional encryption schemes are not fit for modern image
requirement, many research teams have been devoted to investigate better solutions
on image encryption processes, such as digital watermarking [4–7] and chaotic
encryption [8–11].

Furthermore, in the last decades, nonlinear systems and especially chaotic
systems have aroused tremendous interest because of their applications in several
disciplines including meteorology, physics, engineering, economics, biology, and
philosophy [12]. Chaos theory studies the behavior of dynamical systems that are
highly sensitive on initial conditions, an effect which is popularly referred to as
the “Butterfly Effect.” This means that small differences in initial conditions, such
as those due to rounding errors in numerical computation, yield widely diverging
outcomes for such dynamical systems, rendering long-term prediction impossible
in general. This happens even though these systems are deterministic, meaning that
their future behavior is fully determined by their initial conditions, with no random
elements involved. In other words, the deterministic nature of these systems does
not make them predictable.
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So, the main advantage of the encryption schemes, which are based on chaos,
lies on the observation that a chaotic signal looks like noise for an unauthorized
user who ignores its mechanism of generation. Secondly, the time evolution of the
chaotic signal strongly depends on system’s initial conditions and parameters. So,
slight variations in these quantities yield quite different time evolutions. This means
that system’s initial conditions and parameters can be efficiently used as keys in an
encryption system based on chaos. Also, the generation of a chaotic signal is often of
low cost, which makes it suitable for the encryption of large bulky data. According
to the classification of chaotic systems, the chaotic encryption schemes, which have
been proposed, can be divided into two categories: analog chaotic cryptosystems
utilizing continuous dynamical systems [13, 14] and digital chaotic cryptosystems
utilizing discrete dynamical systems [15–17].

Also, it is known that cryptography and chaos have a structural relationship
due to their many similar properties [18]. As a result of this close relationship
several chaotic cryptosystems have been presented. One of the most interesting ways
through which chaotic cryptosystems can be realized is via the implementation of
a Chaotic Random Bit Generator (CRBG). Until now, the great majority of such
generators is based on autonomous nonlinear dynamical systems, in order to use
the independence of these systems from external sources. However, in the present
work a CRBG, which is based on a non-autonomous dynamical system, is used.
For ridding from the system the influence of the external source and increasing the
security of the proposed generator, the PoincarKe section for sampling the time series
has been used.

So, in response to the aforementioned challenges, the objective of this chapter
is the presentation of a gray-scale image encryption scheme realized with a non-
autonomous chaotic system, the Duffing–van der Pol, which is used in the CRBG.
The produced chaotic bitstream is a result of the X-OR function in the outputs of two
threshold circuits that use two same variables .x/ by the two Duffing–van der Pol’s
PoincarKe maps. Next, this bit sequence is subjected to the de-skewing technique to
extract unbiased bits with no correlation and so to increase their complexity, as it
is confirmed by the statistical test suite, FIPS-140-2. The produced bits sequence is
used to encrypt and decrypt digital images. Statistical analysis by using histogram
analysis, correlation of two adjacent pixels, differential analysis, and information
entropy confirmed the robustness of the encryption process against various known
statistical attacks.

This chapter is organized as follows. In Sect. 2, the definition of chaotic systems
in general and the description of the Duffing–van der Pol system, which has been
used, are given. Section 3 introduces the CRBG that is the base of the proposed
image encryption scheme and the results of the use of the statistical tests suite
FIPS-140-2 in the proposed generator. Section 4 demonstrates step by step the
proposed encryption process of a gray-scale image by using the CRBG. In Sect. 5,
the necessary security analysis of the proposed chaotic image encryption schemes
is presented. Finally, conclusion remarks are drawn in the last section.
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2 The Duffing–Van Der Pol System

Chaos refers to some dynamical phenomena considered to be complex and
unpredictable. Although it was precluded by PoincarKe at the end of the nineteenth
century [19], chaos theory begins to take form in the second half of the twentieth
century after observations of the evolution of different physical systems [20, 21].
These systems revealed that despite the knowledge of their evolution rules and
initial conditions, their future seemed to be arbitrary and unpredictable. That
opened quite a revolution in modern physics, terminating with Laplace’s ideas of
causal determinism [22].

Until now, chaos has been observed in weather and climate [20], population
growth in ecology [23], economy [24], to mention only a few examples. It also
has been observed in the laboratory in a number of systems such as electrical
circuits [25], lasers [26], chemical reactions [27], fluid dynamics [28], mechanical
systems, and magneto-mechanical devices [29]. So, chaos theory provides the
means to explain various phenomena in nature and make use of chaotic dynamical
systems in many different scientific fields.

From a mathematical viewpoint a nonlinear dynamical system, in order to be
considered as chaotic, must fulfill the following three conditions [30].

• It must be topologically mixing,
• Its chaotic orbits must be dense, and
• It must be very sensitive on initial conditions.

Firstly, the term topologically mixing means that the chaotic dynamical system,
especially the chaotic designated area of the trajectory will eventually cover part of
any particular region. The second feature of chaotic systems is that its chaotic orbits
have to be dense. This means that the trajectory of a dynamical system is dense,
if it comes arbitrarily close to any point in the domain. Finally, the most important
feature of chaotic systems, as it is mentioned, is the sensitivity on initial conditions.
This means that a small variation on a system’s initial conditions will produce a
totally different chaotic trajectory.

In this chapter, the second order nonlinear, non-autonomous Duffing–van der Pol
system [31], which is described by the following set of differential equations (1),
(2), is used.

dx

dt
D y (1)

dy

dt
D �.1 � x2/y � x3 C Bcos.!Nz/ (2)

The aforementioned system is called Duffing–van der Pol, because it contains in
the second equation the term, �.1�x2/y, which is a characteristic feature of the van
der Pol oscillator and the cubic term x3 of Duffing’s equation.

The dynamic behavior of the Duffing–van der Pol system is investigated
numerically by employing the fourth order Runge–Kutta algorithm. The system’s
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Fig. 1 The bifurcation diagram of x vs. B, for � = 0.2, while (a) !N = 4.0, (b) !N = 0.9, (c) !N =
0.7 and (d) !N = 0.6

rich dynamical behavior is revealed in Fig. 1, which shows the bifurcation diagrams
of x versus the parameter B, for various values of !N , while � = 0.2. Periodic and
chaotic regions alternate as the parameter B increases while interesting dynamical
phenomena, such as routes to chaos and crisis phenomena (boundary, internal),
are also displayed. This richness of dynamic behavior makes the proposed non-
autonomous system a suitable candidate for use in this CRBG.

The base of the proposed CRBG is the well-known PoincarKe map named by
Henri PoincarKe. It is the intersection of an orbit in the state space of a continuous
dynamical system with a certain lower dimensional subspace, called the PoincarKe
cross-section, transversal to the flow of the system. So, in this case, the PoincarKe
map is produced by using the PoincarKe cross-section which is defined by

X
D ˚

.x; y; � D !N	N/ 2 R2 � S1
�

(3)
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Fig. 2 PoincarKe maps of y vs. x, for � D 0:2 and !N = 4, while (a) B D 1, (b) B D 8, (c) BD 17

and (d) B D 19

where 	N D NTC	0 is the sampling time, 	0 the initial time determining the location
of the PoincarKe cross-section on which the coordinates .x; y/ of the attractors are
projected, and T D 2=!N is the period of the voltage source.

In Fig. 2 a number of PoincarKe maps for various values of the parameter B of
the bifurcation diagram of Fig. 1a, in the case of � D 0:2 and !N D 4:0, are
displayed. From this figure the great utility of the PoincarKe map can be seen, since
for different system’s dynamic behavior the PoincarKe map has a totally different
form. As it is known, the various forms of the PoincarKe map depending on system’s
dynamic behavior are:

• Discrete number of points for Periodic behavior.
• Closed curve for Quasi-periodic behavior.
• Strange attractor for Chaotic behavior.
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3 The Chaotic Random Bit Generator

As it was mentioned before, one of the methods to obtain aperiodic sequences is to
use chaos which is defined as “random” phenomenon generated by simple determin-
istic systems. Until now there have been many works on random number generation
based on chaos by using either continuous or discrete chaotic systems [32–52].

In the case of discrete-time chaotic systems, truly random generators which
were realized by analog circuits generate aperiodic random sequences. However,
it is difficult to generate random sequences with good statistical properties due
to nonidealities of analog circuit elements and inevitable noise [35, 53]. Thus,
there have also been several works on post-processing of the chaos-based random
numbers [54, 55].

The proposed random bit generator is based on a non-autonomous continuous
chaotic system. So, for this reason, the values of system’s parameters were selected
so that the system is in chaotic state. In Fig. 3 the phase portrait and the respective
PoincarKe map for a chosen set of system’s parameters are shown.

In Fig. 4, the proposed CRBG is presented. This generator consists of five blocks.
The first block (S1) includes two chaotic non-autonomous systems (Duffing–van der
Pol) running side by side with different set of parameters (�1, B1, !N1) and (�2, B2,
!N2), respectively. In the second block (S2) the PoincarKe map for the two systems is
used. The state variables xi1 from the two systems are partitioned into two subspaces
each other by using the two threshold functions in the third block (S3), which are
described as:

• �x1 = 0, if xi1 < xT1 or �x1 = 1, if xi1 
 xT1

• �x2 = 0, if xi2 < xT2 or �x2 = 1, if xi2 
 xT2

where xT1 and xT2 are the threshold values for the variables xi1 and xi2, respectively.

Fig. 3 (a) The phase portrait and the (b) the PoincarKe map of y vs. x, for � = 0.2, B = 1.175 and
!N = 0.92
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Fig. 4 The block diagram of the proposed CRBG

The fourth block (S4) produces the bit sequence �i by using the X-OR function in
�x1 and �x2 , which are finally subjected into the well-known De-skewing technique
for eliminating the correlation in the output of the sources of random bits. Von
Neumann has been the first author to state this problem [56]. He proposed a digital
post-processing that balances the distribution of bits. This technique consists of
converting the bit pair “01” into the output “0”, “10” into the output “1” and of
discarding bit pairs “00” and “11”.

This CRBG, due to its simple structure, can be implemented in hardware or by
using a microcontroller. However, in this chapter, for testing reasons, the proposed
CRBG is implemented in a software environment.

3.1 Statistical Tests

From the beginnings of computing, random number generation has been a subject
of great interest. Especially, from a practical point of view, “randomness” occurs
to the extent that something cannot be predicted. In the literature there are several
informal definitions of “randomness,” usually based on either a lack of discernible
patterns in a sequence or the unpredictability of the sequence or various aspects of
it by, generally, the most puissant possible adversary. PoincarKe pointed out that the
classic random outcome of a die throwing or a flipping coin comes from the sensitive
dependence on the initial condition. A small perturbation causes a large difference in
the final outcome, thereby making prediction difficult. This sensitive dependence, as
it was pointed out, is a hallmark of Chaos.

Furthermore, in the generation process of random numbers nobody can be sure,
if the produced numbers are really random. That is exactly why a background theory
is needed for it, and a set of standardized statistical tests must certify the numbers
as random. So, in order to gain the confidence that a newly developed random
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bit generator is cryptographically secure, due to its high level of randomness, it
should be subjected to a variety of statistical tests designed to detect the specific
characteristics expected of truly random sequences. There are several options
available in the literature for analyzing the “randomness” of the newly developed
random bit generators. The four most popular options are:

• The FIPS-140-2 (Federal Information Processing Standards) suite of statistical
tests of the National Institute of Standards and Technology (NIST) [57],

• The DIEHARD suite of statistical tests, which was created by the statistician
George Marsaglia [58],

• The Crypt-XS suite of statistical tests, which was developed by researchers at the
Information Security Research Centre at Queensland University of Technology in
Australia [59], and

• The Donald Knuth’s statistical tests set, which includes several empirical statisti-
cal tests [60].

In this chapter the “randomness” of the produced bit sequences, by the proposed
CRBG, is analyzed by using the FIPS-140-2 suite of statistical tests. The results of
the use of the four more important statistical tests (Monobit test, Poker test, Runs
test, and Long run test), which are part of the FIPS-140-2, are presented in detail.
According to FIPS-140-2, the examined CRBG will produce a bitstream, bi = b0,
b1, b2, . . . , bn�1, of length n (at least 20,000 bits), which must satisfy the following
standards [57].

• Monobit Test: The number n1 of 1’s in the bitstream must be 9; 725 < n1 <
10; 275.

• Poker Test: This test determines whether the sequences of length n (n = 4) show
approximately the same number of times in the bitstream. The bounds of this
statistic are then 2:16 < X3 < 46:17.

• Runs Test: This test determines whether the number of 0’s (Gap) and 1’s (Block)
of various lengths in the bitstream are as expected for a random sequence
(Table 1).

• Long Run Test: This test is passed if there are no runs longer than 26 bits.

Table 1 Required intervals
for length of runs test,
according to FIPS-140-2
statistical tests

Length of run Required interval

1 2,315–2,685

2 1,114–1,386

3 527–723

4 240–384

5 103–209

6 103–209
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From the information theory, it is known that the noise has maximum entropy.
For this reason, the system’s parameters and initial conditions are chosen so as
the measure-theoretic entropy [61] of the CRBG, which is given by the following
equation, is maximum.

Hn D lim
n!1

 
�
X

Bn

P .Bn/ ln P .Bn/ =n

!
(4)

where P.Bn/ is the probability of occurrence of a binary subsequence B of length n.
So, in this chapter, two Duffing–van der Pol systems with identical parameters

B D 2:0; !N D 0:6 and by using slightly different values for � (�1 D 0:20, while
�2 D 0:19), initial conditions .x01; y01/ D .0:5; 1:0/, .x02; y02/ D .0:49; 0:99/

and threshold values .xn1; xn2/ D .1:238; 1:313/ are running side by side as it was
mentioned. For the chosen sets of parameters the two systems present the expected
chaotic behavior as it confirmed by the phase portraits and the respective PoincarKe
maps of Fig. 5.

Fig. 5 (a) The phase portraits and the PoincarKe maps of y vs. x, for B = 2, !Í = 0.6, while (a), (b)
�1 = 0.20, (c), (d) �2 = 0.19
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With the procedure described in the previous section, by using the aforemen-
tioned sets of systems’ parameters, a bitstream of 200,000 bits is obtained which is
divided in 10 bit sequences of length 20,000 bits. In Table 2 the measure-theoretic
entropy for n = 3 and n = 4 and the detailed results of the 10 bit sequences
which were subjected to the four tests of FIPS-140-2 test suite are presented. As a
conclusion, all the bit sequences produced by the CRBG have numerically verified
the specific characteristics expected of random bit sequences. Finally, Table 3
presents the analytical results for the four tests of FIPS-140-2, in the case of the
first of the 10 bit sequences.

4 The Image Encryption Scheme

In this chapter a simple but effective encryption scheme for gray-scale images,
which has been implemented in MATLAB, is presented. This encryption process
is mainly based on X-OR function as in many other related works [62, 63]. The
proposed encryption scheme includes the following steps.

• Step 1: The scheme finds the pixel size M � N of the image, where M and N
represent the numbers of rows and columns of the image. The pixels are arranged
by order from left to right and top to bottom. Then an image data set, in which
each element is the decimal gray-scale value of the pixel (0-255), is produced.
Finally each decimal value is converted into a binary equivalent number and in
the end a one-dimensional matrix B is produced.

• Step 2: The matrix A which is a binary sequence produced by the chaotic
TRBG, with the procedure that was described in Sect. 3, and the above-
mentioned matrix B produces a third one-dimensional matrix C by using the
X-OR function: C =A˚ B.

• Step 3: The produced in the previous step matrix C is converted into the encrypted
image by the inverse process of step 1.

For the image’s decryption process the X-OR function must be applied again
.C ˚ B D A). In Fig. 6 the plain gray-scale image (plane) of size 131 � 131
pixels, the encrypted and the decrypted images which are produced with the above
encryption scheme are shown.

5 Statistical and Security Analysis

In this section the robustness of the proposed encryption scheme against many
existing statistical, cryptanalytic, and brute-force attacks is demonstrated. Thus,
the results of the security analysis on the proposed image encryption scheme, by
using histogram analysis, correlation of two adjacent pixels, differential analysis,
key space analysis and information entropy analysis, are presented.
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Table 3 Analytical results of
FIPS-140-2 tests, for the first
bit sequence of Table 2

Monobit test Poker test Runs test Long run test

B1 = 2,580

B2 = 1,215

n1 = 10,040 28.51452 B3 = 504 No

(50.22 %) B4 = 295

B5 = 151

B6 = 190

Passed Passed Passed Passed

5.1 Statistical Analysis

This section is devoted to analyze the statistical behavior of the gray-scale encrypted
image produced by the proposed scheme.

5.1.1 Histogram Analysis

Histogram analysis is an important metric used in the evaluation of the robustness
of an image encryption scheme. An image histogram shows the distribution of the
pixel values within an image. Figure 7 presents the histogram of the plain (plane)
and the encrypted image, respectively. From this figure one can observe that the
pixel values of the plain image are not uniformly distributed over the interval [0,
255]. Whereas, the histogram of the encrypted image shows uniform distribution of
the pixel values. Based on these results, we conclude that the encrypted image do
not provide any useful information about their corresponding plain image. So, the
proposed image encryption scheme is secure from any statistical attack.

5.1.2 Correlation Analysis

Another important metric, which is used in the evaluation of an image encryption
scheme, is the correlation analysis. Each pixel of any image has a high correlation
with its adjacent pixels either in horizontal, vertical, or diagonal directions. For
testing the correlation in a plain and encrypted image, respectively, the correlation
coefficient � [64] of each pair of pixels was calculated, by using the following
formulas.

E.x/ D 1

N

NX

iD1
xi (5)

D.x/ D 1

N

NX

iD1
Œxi � E.x/�2 (6)
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Fig. 6 (a) The plain image
(plane), (b) the encrypted
image, and (c) the decrypted
image
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Fig. 7 (a) Histogram of the plain and (b) the encrypted image

cov.x; y/ D 1

N

NX

iD1
Œxi � E.x/� Œyi � E.y/� (7)

�.x; y/ D cov.x; y/q
D.x/

p
D.y/

(8)

In the aforementioned equations, x and y are the gray values of two adjacent
pixels in the image and N is the total number of adjacent pairs of pixels. In Fig. 8
the correlations of two horizontal, vertical and diagonal pixels in the plain and
the encrypted image are shown respectively. Also, the results of the correlation
coefficient of the encrypted image, which has been decreased significantly, in regard
to the correlation coefficient of the plain image, are presented in Table 4. It is
obvious that the correlation coefficient of the encrypted image in any direction is
approximately equal to zero, so the correlated relationship is very low. Thus, the
proposed encryption scheme is robust against this type of statistical attacks.

5.1.3 Entropy Analysis

Entropy is one of the most important randomness measures [65]. The entropy H.s/
of a source s is given by

H.s/ D �
N�1X

iD0
p.si/log2p.si/ (9)

where p.si/ is the probability of appearance of the symbol si.
The entropy of an image presents the distribution of the gray-scale values

(0-255). As much uniform the distribution, is so much bigger the entropy is. Table 5
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Fig. 8 Correlations of two (a), (b) horizontal, (c), (d) vertical and (e), (f) diagonal adjacent pixels
in the plain and encrypted image

presents the entropy results for the plain and the encrypted image. Due to the fact
that the entropy of the encrypted image is increased, we have come to the conclusion
that the proposed encryption method is safe from an entropy attack.
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Table 4 Correlation
coefficients of two adjacent
pixels in the plain and
encrypted image

Plain image Encrypted image

Horizontal 0.9292 0.0006

Vertical 0.9715 0.0014

Diagonal 0.9071 0.0054

Table 5 Entropy results for
the plain and the encrypted
image

Plain image Encrypted image

Entropy 7.4003 7.9555

5.2 Security Analysis

In this section, the key-space and the sensitivity of the proposed scheme to a tiny
change in the plain image is analyzed.

5.2.1 Key Space and Sensitivity

A direct method for cipher-image analysis is to launch the brute-force attack if there
is enough time. So, the key space should be as large as possible. In this work, the
key space of the proposed encryption scheme is consisted of the following parts:

• The systems’ parameters: B1, B2, �1, �2, !N1, !N2.
• The systems’ initial conditions: (x01, y01) and (x02, y02).
• The threshold values: (xn1, xn2).

So, the key space can be as large as 10168, if the computational precision of the
64-bit double-precision number is set to 10�14. This result shows that the key space
of the proposed encryption scheme is very large and the scheme can resist against
brute force attacks.

Also, an ideal image encryption scheme should have high sensitivity to every key
even if only a tiny change has been made. In order to show this characteristic, only
the value of the initial condition x01, of the first system, has been changed (with
10�14 change) and the failure of recovering the plain image is presented in Fig. 9.
Therefore, the proposed image encryption scheme is very sensitive on the initial
conditions, which have been used.

5.2.2 Differential Analysis

The differential attack is one of the most famous attacks against an encrypted
image. This method is based on a tiny change (modification of one pixel) in the
encrypted image and the result is observed. Using this technique someone can find
a relationship between the encrypted and plain image. So, if a minor change in
the plain image can cause a significant change in the encrypted image, then the
differential attack would become practically useless.
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Fig. 9 The wrong recovered
image

The robustness of the proposed encryption method against the differential attack
is examined by changing one pixel in the plain image and two common numbers: the
Number of Pixels Change Rate (NPCR) and the Unified Average Changing Intensity
(UACI) [66], are calculated. Therefore, if A.i; j/ and B.i; j/ are the pixels in row—
i and column—j of the encrypted images A and B, with only one pixel difference
between the respective plain images, then the NPCR is calculated by the following
formula:

NPCR.A;B/ D 100%

0

@
X

i;j

D.i; j/

1

A =N (10)

where N is the total number of pixels and D.i; j/ is produced by the following
way: D.i; j/ D 1 if A.i; j/ ¤ B.i; j/ or D.i; j/ D 0 if A.i; j/ D B.i; j/.

For two random selected images the NPCR is NPCR D .1 � 2L/ � 100% ,
where L is the number of bits used for representing the pixels of an image. So, for a
gray-scale image (8 bit/pixel), the NPCR is equal to 99.60938 %.

The second number (UACI) measures the average intensity of differences
between the plain image and the encrypted image, calculated by the following
formula:

UACI.A;B/ D 1

N

0

@
X

i;j

jA.i; j/ � B.i; j/j
2L � 1

1

A 100% (11)

The expected value of UACI for two random selected images is:

UACI D
0

@
2L�1X

i�1
i.i � 1/

1

A =2L.2L � 1/ (12)

So, for a gray scale image the UACI is equal to 33.46354 %.
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Table 6 The NPCR and
UACI at two encryption
rounds

Round 1 (%) 2 (%)

NPCR 0.0233 99.24

UACI 0.0043 33.02

Therefore, the values of these two numbers show that the encryption scheme is
very weak to a differential attack. To improve this weakness of the proposed scheme
the encryption process is evaluated in more than one round. The NPCR and UACI at
different rounds of encryption process are calculated and listed in Table 6. In each
round the bitstream is shifted only one bit. Table 6 shows that the performance is
very satisfactory after only two rounds of encryption while the values of NPCR and
UACI have the tendency to be equal to the calculated values of random selected
images.

6 Conclusion

In this chapter a robust and efficient image encryption scheme, based on a CRBG,
was studied. The main elements of this CRBG were two non-autonomous Duffing–
van der Poll dynamical systems, which were running side by side, with different sets
of parameters and initial conditions, for producing the random bit sequence.

Simulation results showed the excellent performance of the proposed scheme.
Furthermore, these results demonstrated the robustness of the scheme against
existing statistical-based attacks. Moreover, security analysis demonstrated the high
sensitive dependence of the encryption scheme to a slightly modification in the
secret key. In addition the key space is large enough to defeat brute force attacks.
Therefore, the proposed encryption scheme is suitable for use in many applications
including medical, military, or industrial image encryption.
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Multiple Parameterize Yang-Hilbert-Type
Integral Inequalities

Bicheng Yang

Abstract In this chapter, by using the way of weight functions and technique
of Real Analysis, a multiple Yang-Hilbert-type integral inequality with a general
non-homogeneous kernel and multi-parameters is given. The equivalent forms, the
operator expressions with the norm, the reverses, a few cases with the particular
parameters and some examples with the particular kernels are also considered.

Keywords: Multiple Yang-Hilbert-type integral inequality • Kernel • Weight
function • Norm • Operator

1 Introduction

Suppose that p > 1; 1p C 1
q D 1; f .
 0/ 2 Lp.RC/; g.
 0/ 2 Lq.RC/; jjf jjp;

jjgjjq > 0: We have the following equivalent Hardy-Hilbert’s integral inequalities
(cf. [1]):

Z 1

0

Z 1

0

f .x/g.y/

xC y
dxdy <



sin.=p/
jjf jjpjjgjjq; (1)

�Z 1

0


Z 1

0

f .x/

xC y
dx

�p

dy

 1
p

<


sin.=p/
jjf jjp; (2)

where the constant factor 
sin.=p/ is the best possible.

Define Hardy-Hilbert’s integral operator T W Lp.RC/ ! Lp.RC/ as follows:
for f 2 Lp.RC/; there exists a unified expression h 2 Lp.RC/; such that Tf D h;
satisfying for any y 2 RC D .0;1/;
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Then in view of (2), it follows

jjTf jjp < 

sin.=p/
jjf jjp

and jjTjj � 
sin.=p/ : Since the constant factor is the best possible, we have

jjTjj D 

sin.=p/
:

Inequality (1) and (2) with the operator expression are important in analysis and
its applications (cf. [2, 3]). In 2002, [4] considered the property of Hardy-Hilbert’s
integral operator and gave an improvement of (1)(for p D q D 2). In 2004, by
adding another pair of conjugate exponents .r; s/.r > 1; 1r C 1

s D 1/ and an
independent parameter � > 0; Yang [5] gave a best extension of (1) as follows:

Z 1

0

Z 1

0

f .x/g.y/

x� C y�
dxdy <



� sin.=r/
jjf jjp;� jjgjjq; ; (3)

where �.x/ D xp.1� �r /�1, .x/ D xq.1� �s /�1;

jjf jjp;� D
�Z 1

0

�.x/f p.x/dx

	 1
p

> 0;

jjgjjq; > 0: In 2007, [6] gave the following inequality with the best constant
B. �

2
; �
2
/.� > 0IB.u; v/ is the beta function):

Z 1

0

Z 1

0

f .x/g.y/

.1C xy/�
dxdy

< B



�

2
;
�

2

�
Z 1

0

x1��f 2.x/dx
Z 1

0

x1��g2.x/dx

� 1
2

: (4)

Definition 1. If n 2 N;RnC WD f.x1; : : : ; xn/jxi 2 RC .i D 1; : : : ; n/g; � 2
R D .�1;1/; k�.x1; : : : ; xn/ is a measurable function in RnC; such that for any
u > 0 and .x1; : : : ; xn/ 2 RnC;

k�.ux1; : : : ; uxn/ D u��k�.x1; : : : ; xn/;

then we call k�.x1; : : : ; xn/ the homogeneous function of degree�� in RnC:

In 2009, [7] gave an extension of (4) in R2 with the kernel 1

j1Cxyj� .0 < � < 1/:

Yang [8] gave another extension of (4) to the general kernel k�.1; xy/.� > 0/ with
one pair of conjugate exponents .p; q/; and obtained the following multiple Hilbert-
type integral inequality: Suppose that n 2 Nnf1g D f2; 3; : : :g; pi > 1;

Pn
iD1
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1
pi
D 1; � > 0; k�.x1; : : : ; xn/ 
 0 is a homogeneous function of degree �� in

RnC; such that for any .r1; : : : ; rn/.ri > 1/; satisfying
Pn

iD1 1
ri
D 1, and

k� D
Z

Rn�1
C

k�.u1; : : : ; un�1; 1/
n�1Y

jD1
u
�
rj
�1

j du1 � � � dun�1 2 RC:

If �i.x/ D xpi.1� �
ri
/�1
; fi.
 0/ 2 Lpi

�i
.RC/, jjf jjpi;�i

> 0 .i D 1; : : : ; n/; then we have
the following inequality:

Z

Rn
C

k�.x1; : : : ; xn/

nY

iD1
fi.xi/dx1 � � � dxn < k�

nY

iD1
jjfijjpi;�i ; (5)

where the constant factor k� is the best possible.
For n D 2; k�.x; y/ D 1

x�Cy�
in (5), we obtain (3); for � D n � 1; ri D .n�1/pi

pi�1
.i D 1; : : : ; n/; (5) reduces to the following multiple Hardy-Hilbert-type inequality
(cf. [1]), which relates one group of conjugate exponents .p1; : : : ; pn/:

Z

Rn
C

kn�1.x1; : : : ; xn/

nY

iD1
fi.xi/dx1 � � � dxn < k1

nY

iD1
jjfijjpi : (6)

Benyi and Oh [9] also studied the corresponding multiple Hardy-Hilbert-type
integral operator with the homogeneous kernel of degree �nC 1.

We call (5) together with the equivalent forms as multiple Yang-Hilbert-type
integral inequalities with the homogeneous kernel, which relates two groups of
conjugate exponents and a few independent parameters. And the corresponding
operator are called multiple Yang-Hilbert-type operator.

Inequality (5) are some extensions of the results in [10–14]. In recent years,
[15, 16] considered some Hilbert-type operators relating (1)–(3); some other kinds
of Hilbert-type inequalities are provided by [17–22].

In this chapter, by using the way of weight functions and technique of Real
Analysis, a multiple Yang-Hilbert-type integral inequality with a general non-
homogeneous kernel and multi-parameters is given, which is an extension of (5).
The equivalent forms, the operator expressions with the norm, the reverses, a few
cases with the particular parameters, and some examples with the particular kernels
are also considered.

2 Some Lemmas

Lemma 1. If n 2 Nnf1g; ıi 2 f�1; 1g; �i 2 R .i D 1; : : : ; n/;
Pn

iD1 1
pi
D 1; then

we have
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A WD
nY

iD1

2

4x.ıi�i�1/.1�pi/
i

nY

jD1.j¤i/

x
ıj�j�1
j

3

5

1
pi

D 1: (7)

Proof. We find

A D
nY

iD1

2

4x.ıi�i�1/.1�pi/C1�ıi�i
i

nY

jD1
x
ıj�j�1
j

3

5

1
pi

D
nY

iD1

2

4x.1�ıi�i/pi
i

nY

jD1
x
ıj�j�1
j

3

5

1
pi

D
nY

iD1
x1�ıi�i

i

0

@
nY

jD1
x
ıj�j�1
j

1

A

Pn
iD1

1
pi

;

and then in view of
Pn

iD1 1
pi
D 1; (7) is valid.

The lemma is proved.

Lemma 2. Suppose that n 2 Nnf1g; �i 2 R;ıi 2 f�1; 1g .i D 1; : : : ; n/; �n DPn�1
iD1 �i D �

2
; k�.x1; : : : ; xn/ 
 0 is a homogeneous function of degree �� in RnC. If

H.i/ WD
Z

Rn�1
C

k�.u1; : : : ; ui�1; 1; uiC1; : : : ; un/

�
nY

jD1.j¤i/

u
�j�1
j du1 � � � dui�1duiC1 � � � dun.i D 1; : : : ; n/;

satisfying

k� WD H.n/ D
Z

Rn�1
C

k�.u1; : : : ; un�1; 1/
n�1Y

jD1
u
�j�1
j du1 � � � dun�1 2 R;

then each H.i/ D H.n/ D k� and for any i D 1; : : : ; n,

!i.xi/ WD xıi�i
i

Z

Rn�1
C

k�.x
ı1
1 xın

n ; : : : ; x
ın�1

n�1 xın
n ; 1/

�
nY

jD1.j¤i/

x
ıj�j�1
j dx1 � � � dxi�1dxiC1 � � � dxn D k�: (8)
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Proof. Setting uj D unvj.j ¤ i; n/ in the integral H.i/; we find

H.i/ D
Z

Rn�1
C

k�.v1; : : : ; vi�1; u�1n ; viC1; : : : ; vn�1; 1/
n�1Y

jD1.j¤i/

v
�j�1
j

�u�1��i
n dv1 � � � dvi�1dviC1 � � � dvn�1dun:

Setting vi D u�1n in the above integral, we obtain H.i/ D H.n/:
Since � � �n D �n; we find

!i.xi/ D xıi�i
i

Z

Rn�1
C

k�.x
ı1
1 ; : : : ; x

ın�1

n�1 ; x
�ın
n /x�ın�n�1

n

�
n�1Y

jD1.j¤i/

x
ıj�j�1
j dx1 � � � dxi�1dxiC1 � � � dxn:

Setting yn D x�1n in the above expression, we obtain

!i.xi/ D xıi�i
i

Z

Rn�1
C

k�.x
ı1
1 ; : : : ; x

ın�1

n�1 ; y
ın
n /y

ın�nC1
n

�
n�1Y

jD1.j¤i/

x
ıj�j�1
j dx1 � � � dxi�1dxiC1 � � � dxn�1.y�2n /dyn

D xıi�i
i

Z

Rn�1
C

k�.x
ı1
1 ; : : : ; x

ın�1

n�1 ; y
ın
n /y

ın�n�1
n

�
n�1Y

jD1.j¤i/

x
ıj�j�1
j dx1 � � � dxi�1dxiC1 � � � dxn�1dyn:

Setting uj D x
ıj

j x�ıi
i .j ¤ i; n/ and un D yın

n x�ıi
i in the above integral, we find

!i.xi/ D xıi�i
i

Z

Rn�1
C

k�.u1x
ıi
i ; : : : ; ui�1xıi

i ; x
ıi
i ; uiC1xıi

i ; : : : ; unxıi
i /

�
nY

jD1.j¤i/

.u
ı�1

j

j x
ıiı

�1
j

i /ıj�j�1jı�1j jx
ıiı

�1
j

i u
ı�1

j �1
j du1 � � � dui�1duiC1 � � � dun

D H.i/ D H.n/ D k�:

The lemma is proved.
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Lemma 3. As the assumption of Lemma 2, it follows that

k. Q�1; : : : ; Q�n�1/ WD
Z

Rn�1
C

k�.u1; : : : ; un�1; 1/
n�1Y

jD1
u
Q�j�1
j du1 � � � dun�1

is finite in a neighborhood of .�1; : : : ; �n�1/ if any only if k. Q�1; : : : ; Q�n�1/ is
continuous at .�1; : : : ; �n�1/:

Proof. The sufficiency property is obvious. We prove the necessary property of the
condition by mathematical induction in the following.

For n D 2, there exists I WD fQ�1j Q�1 D �1 C ı; jıj � ı0; ı0 > 0g; such that for
any Q�1 2 I; k. Q�1/ 2 R: Since for Q�1 D �1 C ı 2 I.ı ¤ 0/;

k.�1 C ı/ D
Z 1

0

k�.u1; 1/u
�1Cı�1
1 du1

D
Z 1

0

k�.u1; 1/u
�1Cı�1
1 du1 C

Z 1

1

k�.u1; 1/u
�1Cı�1
1 du1;

k�.u1; 1/u
�1Cı�1
1 � k�.u1; 1/u

�1�ı0�1
1 du1; u1 2 .0; 1�I

k�.u1; 1/u
�1Cı�1
1 � k�.u1; 1/u

�1Cı0�1
1 du1; u1 2 .1;1/;

and k.�1 � ı0/C k.�1 C ı0/ <1; then by Lebesgue control convergence theorem
(cf. [23]) , it follows

k.�1 C ı/ D k.�1/C o.1/.ı! 0/:

Assuming that for n.
 2/; k. Q�1; : : : ; Q�n�1/ is continuous at .�1; : : : ; �n�1/; then
for n C 1; by the result of n D 2; since k.�1 C ı1; : : : ; �n C ın/ is finite in a
neighborhood of .�1; : : : ; �n/; we find

lim
ın!0
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D lim
ın!0
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0
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n dun

D
Z 1

0

0

@
Z

Rn�1
C

k�.u1; : : : ; un; 1/

n�1Y

jD1
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1

A u�n�1
n dun
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C
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n dun
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jD1
u
�jCıj�1
j du1 � � � dun�1;
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then by the assumption for n; it follows

lim
ın!0

k.�1 C ı1; : : : ; �n C ın/ D k.�1; : : : ; �n/C o.1/

.ıi ! 0; i D 1; : : : ; n � 1/:

By mathematical induction, we prove that for n 2 N n f1g; k. Q�1; : : : ; Q�n�1/ is
continuous at .�1; : : : ; �n�1/:

The lemma is proved.

Lemma 4. As the assumption of Lemma 2, define

Ei WD fx 2 RCI xıi 
 1g.i D 1; : : : ; n/:

If there exists a � > 0; such that

max
1�i�n�1fj�ijg < �; k.�1 C �1; : : : ; �n�1 C �n�1/ 2 R;

pi 2 Rnf0; 1g.i D 1; : : : ; n/; and 0 < " < �min1�i�nfjpijg, then we have
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RCnEn

x
ın.�nC "
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x
ıj.�j� "

pj
/�1

j dx1 � � � dxn�1 D k� C o.1/."! 0C/: (9)

Proof. Setting yn D x�1n in the integral of (9), we find
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Setting uj D x
ıj

j y�ın
n .j D 1; : : : ; n � 1/ in the above integral, since � � �n D �n; we

find

I" D "

Z

En

y�1�ın"
n

2

4
Z 1

y�ın
n

� � �
Z 1

y�ın
n

k�.u1; : : : ; un�1; 1/

�
n�1Y

jD1
u
�j� "

pj
�1

j du1 � � � dun�1

3

5 dyn
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D "

Z 1

1

x�1�"n

2

4
Z 1

x�1
n

� � �
Z 1

x�1
n

k�.u1; : : : ; un�1; 1/

�
n�1Y

jD1
u
�j� "

pj
�1

j du1 � � � dun�1

3

5 dxn.xn D yın
n /: (10)

Setting some sets

Dj WD f.u1; : : : ; un�1/juj 2 .0; x�1n /; uk 2 .0;1/.k ¤ j/g

and functions

Aj.xn/ WD
Z
� � �
Z

Dj

k�.u1; : : : ; un�1; 1/
n�1Y

jD1
u
�j� "

pj
�1

j du1 � � � dun�1

.j D 1; : : : ; n � 1/; then by (10), it follows

I" 

Z

Rn�1
C

k�.u1; : : : ; un�1; 1/
n�1Y

jD1
u
�j� "

pj
�1

j du1 � � � dun�1

�"
n�1X

jD1

Z 1

1

x�1n Aj.xn/dxn: (11)

Without loss of generality, we estimate the case of j D n; namely,
Z 1

1

x�1n An�1.xn/dxn D O.1/:

In fact, setting ˛ > 0; such that j "
pn�1
C ˛j < �; since

�u˛n�1 ln un�1 ! 0.un�1 ! 0C/;

there exists a constant M > 0; such that

�u˛n�1 ln un�1 � M.un�1 2 .0; 1�/;

and then by Fubini theorem, it follows

0 �
Z 1

1

x�1n An�1.xn/dxn

D
Z 1

1

x�1n

2

4
Z

Rn�2
C

Z x�1
n

0

k�.u1; : : : ; un�1; 1/
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�
n�1Y

jD1
u
�j� "

pj
�1

j dun�1du1 � � � dun�2

3

5 dxn

D
Z 1

0

Z

Rn�2
C

k�.u1; : : : ; un�1; 1/
n�1Y

jD1
u
�j� "

pj
�1

j

 Z u�1
n�1

1

x�1n dxn

!
du1 � � � dun�1

D
Z 1

0

Z

Rn�2
C

k�.u1; : : : ; un�1; 1/
n�1Y

jD1
u
�j� "

pj
�1

j .� ln un�1/du1 � � � dun�1

� M
Z 1

0

Z

Rn�2
C

k�.u1; : : : ; un�1; 1/

�
n�2Y

jD1
u
�j� "

pj
�1

j u
�n�1�. "

pn�1
C˛/�1

n�1 du1 � � � dun�1

� M
Z

Rn�1
C

k�.u1; : : : ; un�1; 1/
n�2Y

jD1
u
�j� "

pj
�1

j u
�n�1�. "

pn�1
C˛/�1

n�1 du1 � � � dun�1

D M � k


�1 � "

p1
; : : : ; �n�2 � "

pn�2
; �n�1 � . "

pn�1
C ˛/

�
<1:

Hence by (10), we have

I" 

Z

Rn�1
C

k�.u1; : : : ; un�1; 1/
n�1Y

jD1
u
�j� "

pj
�1

j du1 � � � dun�1 � o1.1/:

Since by Lemma 3, we find

I" � "
Z 1

1

x�1�"n

2

4
Z 1

0

� � �
Z 1

0

k�.u1; : : : ; un�1; 1/

�
n�1Y

jD1
u
�j� "

pj
�1

j du1 � � � dun�1

3

5 dxn

D
Z 1

0

� � �
Z 1

0

k�.u1; : : : ; un�1; 1/
n�1Y

jD1
u
�j� "

pj
�1

j du1 � � � dun�1

D k.�1 � "

p1
; : : : ; �n�1 � "

pn�1
/ D k� C o2.1/;

then we have (9).
The lemma is proved.
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Lemma 5. Suppose that n 2 Nnf1g; ıi 2 f�1; 1g; pi 2 Rnf0; 1g .i D 1; : : : ; n/;Pn
iD1 1

pi
D 1; 1

qn
D 1 � 1

pn
; .�1; : : : ; �n/ 2 Rn; �n D Pn�1

iD1 �i D �
2
; k�.x1; : : : ; xn/

.
 0/ is a homogeneous function of degree �� in RnC; such that

k� D
Z

Rn�1
C

k�.u1; : : : ; un�1; 1/
n�1Y

jD1
u
�j�1
j du1 � � � dun�1 2 R:

If fi 
 0 are measurable functions in RC .i D 1; : : : ; n � 1/; putting

Qk.x1; : : : ; xn/ WD k�.x
ı1
1 xın

n ; : : : ; x
ın�1

n�1 xın
n ; 1/;

then (i) for pi > 1.i D 1; : : : ; n/; we have

J WD
(Z 1

0

xın�nqn�1
n

"Z

Rn�1
C

Qk.x1; : : : ; xn/

n�1Y

iD1
fi.xi/dx1 � � � dxn�1

#qn

dxn

) 1
qn

� k�

n�1Y

iD1

�Z 1

0

xpi.1�ıi�i/�1f pi.x/dx

	 1
pi I (12)

(ii) for 0 < p1 < 1; pi < 0.i D 2; : : : ; n/; we have the reverse of (12).

Proof.

(i) For pi > 1.i D 1; : : : ; n/; by Hölder’s inequality (cf. [24]) and (7), it follows

"Z

Rn�1
C

Qk.x1; : : : ; xn/

n�1Y

iD1
fi.xi/dx1 � � � dxn�1

#qn

D

8
<̂

:̂

Z

Rn�1
C

Qk.x1; : : : ; xn/

n�1Y

iD1

2

4x.ıi�i�1/.1�pi/
i

nY

jD1.j¤i/

x
ıj�j�1
j

3

5

1
pi

fi.xi/

�
2

4x.ın�n�1/.1�pn/
n

n�1Y

jD1
x
ıj�j�1
j

3

5

1
pn

dx1 � � � dxn�1

9
>=

>;

qn

�
Z

Rn�1
C

Qk.x1; : : : ; xn/

n�1Y

iD1

2

4x.ıi�i�1/.1�pi/
i

nY

jD1.j¤i/

x
ıj�j�1
j

3

5

qn
pi



Multiple Parameterize Yang-Hilbert-Type Integral Inequalities 623

�f qn
i .xi/dx1 � � � dxn�1

�
8
<

:

Z

Rn�1
C

Qk.x1; : : : ; xn/x
.ın�n�1/.1�pn/
n

n�1Y

jD1
x
ıj�j�1
j dx1 � � � dxn�1

9
=

;

qn�1

D .k�/qn�1x1�ınqn�n
n

Z

Rn�1
C

Qk.x1; : : : ; xn/

�
n�1Y

iD1

2

4x.ıi�i�1/.1�pi/
i

nY

jD1.j¤i/

x
ıj�j�1
j

3

5

qn
pi

f qn
i .xi/dx1 � � � dxn�1: (13)

Then it follows

J � .k�/ 1
pn

(Z 1

0

Z

Rn�1
C

Qk.x1; : : : ; xn/

�
n�1Y

iD1

2

4x.ıi�i�1/.1�pi/
i

nY

jD1.j¤i/

x
ıj�j�1
j

3

5

qn
pi

f qn
i .xi/dx1 � � � dxn�1dxn

9
>=

>;

1
qn

D .k�/ 1
pn

(Z

Rn�1
C


Z 1

0

Qk.x1; : : : ; xn/x
ın�n�1
n dxn

�

�
n�1Y

iD1

2

4x.ıi�i�1/.1�pi/
i

n�1Y

jD1.j¤i/

x
ıj�j�1
j

3

5

qn
pi

f qn
i .xi/dx1 � � � dxn�1

9
>=

>;

1
qn

: (14)

For n 
 3; in view of
Pn�1

i�1
qn
pi
D 1; by Hölder’s inequality again, it follows

J � .k�/ 1pn

8
<

:

n�1Y

iD1

2

4
Z

Rn�1
C


Z 1

0

Qk.x1; : : : ; xn/x
ın�n�1
n dxn

�

�x.ıi�i�1/.1�pi/
i

n�1Y

jD1.j¤i/

x
ıj�j�1
j f pi

i .xi/dx1 � � � dxn�1

3

5

qn
pi

9
>=

>;

1
qn

� .k�/ 1pn

n�1Y

iD1

8
<̂

:̂

Z 1

0

2

64
Z

Rn�1
C

Qk.x1; : : : ; xn/
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�xıi�i
i

nY

jD1.j¤i/

x
ıj�j�1
j dx1 � � � dxi�1dxiC1 � � � dxn

3

5 xpi.1�ıi�i/�1
i f pi

i .xi/dxi

9
=

;

1
pi

D .k�/ 1pn

n�1Y

iD1

�Z 1

0

!i.xi/x
pi.1�ıi�i/�1
i f pi

i .xi/dxi

	 1
pi

:

Then by (7), we have (12) (Note: for n D 2; we do not use Hölder’s inequality
again in the above).

(ii) For 0 < p1 < 1; pi < 0.i D 2; : : : ; n/; by the reverse Hölder’s inequality and
the same way, we obtain the reverses of (12).
The lemma is proved.

3 Main Results and Applications

As the assumption of Lemma 5, setting

�i.x/ WD xpi.1�ıi�i/�1 .x 2 RC D .0;1/I i D 1; : : : ; n/;

then we find Œ�n.x/�qn�1 D xınqn�n�1 : If pi > 1 .i D 1; : : : ; n/; define the following
real function spaces:

Lpi
�i
.RC/ WD

�
f I jjf jjpi;�i

D f
Z 1

0

�i.x/jf .x/jpi dxg 1pi <1
	
.i D 1; : : : ; n/;

n�1Y

iD1
Lpi
�i
.RC/ WD

n
.f1; : : : ; fn�1/I fi 2 Lpi

�i
.RC/; i D 1; : : : ; n � 1

o
;

and a multiple Yang-Hilbert-type integral operator

T W
n�1Y

iD1
Lpi
�i
.RC/! Lqn

�
qn�1
n

.RC/

as follows: For f D .f1; : : : ; fn�1/ 2Qn�1
iD1 Lpi

�i
.RC/; there exists a unified expression

Tf ; satisfying for xn 2 .0;1/;

.Tf /.xn/ WD
Z

Rn�1
C

Qk.x1; : : : ; xn/

n�1Y

iD1
fi.xi/dx1 � � � dxn�1: (15)
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Then by (12), it follows Tf 2 Lqn

�
qn�1
n

.RC/. T is bounded satisfying

jjTf jj
qn;�

qn�1
n
� k�

n�1Y

iD1
jjfijjpi;�i

and then jjTjj � k�; where

jjTjj WD sup
f .¤�/2Qn�1

iD1 L
pi
�i
.RC/

jjTf jj
qn;�

qn�1
nQn�1

iD1 jjfijjpi;�i

: (16)

Define the formal inner product of T.f1; : : : ; fn�1/ and fn as

.T.f1; : : : ; fn�1/; fn/ WD
Z

Rn
C

Qk.x1; : : : ; xn/

nY

iD1
fi.xi/dx1 � � � dxn: (17)

Theorem 1. As the assumption of Lemma 5, suppose that for any .�1; : : : ; �n/ 2
Rn; �n DPn�1

iD1 �i D �
2
; and

k� D
Z

Rn�1
C

k�.u1; : : : ; un�1; 1/
n�1Y

jD1
u
�j�1
j du1 � � � dun�1 2 RC: (18)

If fi.
 0/ 2 Lpi
�i
.RC/, jjf jjpi;�i

> 0 .i D 1; : : : ; n/; then

(i) for pi > 1.i D 1; : : : ; n/; we have jjTjj D k� and the following equivalent
inequalities:

jjT.f1; : : : ; fn�1/jjqn;�
qn�1
n

< k�

n�1Y

iD1
jjfijjpi;�i ; (19)

.T.f1; : : : ; fn�1/; fn/ < k�

nY

iD1
jjfijjpi;�i ; (20)

where the constant factor k� is the best possible;
(ii) for 0 < p1 < 1; pi < 0.i D 2; : : : ; n/; using the formal symbols in the case of

(i), we have the equivalent reverses of (19) and (20) with the same best constant
factor.

Proof.

(i) For all pi > 1; if (12) takes the form of equality, then for n 
 3 in (14), there
exist Ci and Ck.i ¤ k/; such that they are not all zero and
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Cix
.ıi�i�1/.1�pi/
i

n�1Y

jD1.j¤i/

x
ıj�j�1
j f

pj

j .xj/

D Ckx.ık�k�1/.1�pk/
k

n�1Y

jD1.j¤k/

x
ıj�j�1
j f

pj

j .xj/ a.e. in RnC;

namely,

Cix
pi.1�ıi�i/
i f pi

i .xi/ D Ckxpk.1�ık�k/
k f pk

k .xk/ D C a.e. in RnC:

Assuming that Ci > 0; then

xpi.1�ıi�i/�1
i f pi

i .xi/ D C=.Cixi/;

which contradicts that 0 < jjf jjpi;�i
<1 (Note: for n D 2; we consider (13) for

f pi
k .xk/ D 1 in the above). Hence we have (19).

By Hölder’s inequality, it follows

.Tf ; fn/ D
Z 1

0

 
x
ın�n� 1

qn
n

Z

Rn�1
C

Qk.x1; : : : ; xn/

n�1Y

iD1
fi.xi/dx1 � � � dxn�1

!

�



x
1

qn
�ın�n

n fn.xn/

�
dxn � jjT.f1; : : : ; fn�1/jjqn;�

qn�1
n
jjfnjjpn;�n ;

(21)

and then by (19), we have (20). Assuming that (20) is valid, setting

fn.xn/ WD xınqn�n�1
n

"Z

Rn�1
C

Qk.x1; : : : ; xn/

n�1Y

iD1
fi.xi/dx1 � � � dxn�1

#qn�1
;

then it follows that

J D
�Z 1

0

xpn.1�ın�n/�1
n f pn

n .xn/dxn

	 1
qn

:

By (12), it follows J <1: If J D 0; then (19) is trivially valid. Assuming that
0 < J <1; by (20), it follows

Z 1

0

xpn.1�ın�n/�1
n f pn

n .xn/dxn D Jqn D .Tf ; fn/ < k�

nY

iD1
jjfijjpi;�i ;
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�Z 1

0

xpn.1�ın�n/�1
n f pn

n .xn/dxn

	 1
qn D J < k�

n�1Y

iD1
jjfijjpi;�i ;

and then (19) is valid, which is equivalent to (20).
We put

Ei WD fx 2 RCI xıi 2 Œ1;1/g.i D 1; : : : ; n/:

For " > 0 small enough, setting Qfi.xi/ as follows:

Qfi.xi/ D 0; xi 2 RCnEiI
Qfi.xi/ D x

ıi.�i� "
pi
/�1

i ; x 2 Ei.i D 1; : : : ; n � 1/;
Qfn.xn/ D x

ın.�nC "
pn
/�1

n ; x 2 RCnEnI Qfn.xn/ D 0; xn 2 En;

if there exists a positive constant k � k�; such that (20) is still valid when
replacing k� by k; then in particular, by Lemma 4, we have

k� C o.1/ D I" D ".T.Qf1; : : : ; Qfn�1/; Qfn/ < "k
nY

iD1
jjQfijjpi;�i D k; (22)

and k� � k." ! 0C/: Hence k D k� is the best value of (20). We confirm that
the constant factor k� in (19) is the best possible, otherwise we would reach a
contradiction by (21) that the constant factor in (20) is not the best possible.
Therefore, we have jjTjj D k�:

(ii) For 0 < p1 < 1; pi < 0.i D 2; : : : ; n/; by using the reverse Hölder’s inequality
and the same way, we have the equivalent reverses of (19) and (20) with the
same best constant factor.
The theorem is proved.

Remark 1.

(i) For ıi D 1.i D 1; : : : ; n/ in (19) and (20), we have the following equivalent
inequalities with the non-homogeneous kernel and best possible constant factor
k� (cf. [25]):

Z

Rn
C

k�.x1xn; : : : ; xn�1xn; 1/

nY

iD1
fi.xi/dx1 � � � dxn

< k�

nY

iD1

�Z 1

0

xpi.1��i/�1
i f pi.xi/dxi

	 1
pi

; (23)
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(Z 1

0

x�nqn�1
n

"Z

Rn�1
C

k�.x1xn; : : : ; xn�1xn; 1/

n�1Y

iD1
fi.xi/dx1 � � � dxn�1

#qn

dxn

) 1
qn

< k�

n�1Y

iD1

�Z 1

0

xpi.1��i/�1f pi.x/dx

	 1
pi I (24)

(ii) For ıi D 1.i D 1; : : : ; n � 1/; ın D �1 in (19) and (20), replacing x�n fn.xn/

by fn.xn/; we have the following equivalent inequalities with the homogeneous
kernel and a best possible constant factor k� W

Z

Rn
C

k�.x1; : : : ; xn/

nY

iD1
fi.xi/dx1 � � � dxn

< k�

nY

iD1

�Z 1

0

xpi.1��i/�1
i f pi .xi/dxi

	 1
pi

; (25)

(Z 1

0

x�nqn�1
n

"Z

Rn�1
C

k�.x1; : : : ; xn/

n�1Y

iD1
fi.xi/dx1 � � � dxn�1

#qn

dxn

) 1
qn

< k�

n�1Y

iD1

�Z 1

0

xpi.1��i/�1f pi.x/dx

	 1
pi

: (26)

For � > 0; �i D �
ri
.i D 1; : : : ; n/; inequality (25) reduces to (5) (rn D 2/.

4 Some Examples

Example 1. For � > 0; �i D �
ri
.i D 1; : : : ; n/; rn D 2;Pn

iD1 1
ri
D 1;

k�.x1; : : : ; xn/ D 1

.
Pn

iD1 xi/�
;

by mathematical induction, we can show that

k� D
Z

Rn�1
C

Qn�1
jD1 u

�
rj
�1

j

.
Pn�1

iD1 ui C 1/�
du1 � � � dun�1 D 1

� .�/

nY

iD1
�



�

ri

�
: (27)
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In fact, for n D 2; we obtain

k� D
Z

RC

1

.u1 C 1/� u
�
r1
�1

1 du1 D 1

� .�/
�



�

r1

�
�



�

r2

�
:

Assuming that for n.
 2/; (27) is valid, then for nC 1, it follows

k� D
Z

Rn
C

1

.
Pn

iD1 ui C 1/�
nY

jD1
u
�
rj
�1

j du1 � � � dun

D
Z

Rn�1
C

nY

jD2
u
�
rj
�1

j

8
<

:

Z

RC

u
�
r1
�1

1 du1
Œu1 C .Pn

iD2 ui C 1/��

9
=

; du2 � � � dun

D
Z

Rn�1
C

1

.
Pn

iD2 ui C 1/�
nY

jD2
u
�
rj
�1

j

2

4
Z

RC

v
�
r1
�1

1 dv1
.v1 C 1/�

3

5 du2 � � � dun

D � . �r1
/� .� � �

r1
/

� .�/

Z

Rn�1
C

1

.
Pn

iD2 ui C 1/�.1�
1
r1
/

nY

jD2
u
�
rj
�1

j du2 � � � dun

D � . �r1
/� .� � �

r1
/

� .�/

1

� .� � �
r1
/

nC1Y

iD2
�



�

ri

�

D 1

� .�/

nC1Y

iD1
�



�

ri

�
:

Then by mathematical induction, (27) is valid for n 2 Nnf1g:
Example 2. For � > 0; �i D �

ri
.i D 1; : : : ; n/; rn D 2;Pn

iD1 1
ri
D 1;

k�.x1; : : : ; xn/ D 1
Pn

iD1 x�i
;

we can show that

k� D
Z

Rn�1
C

Qn�1
jD1 u

�
rj
�1

jPn�1
iD1 u�i C 1

du1 � � � dun�1 D 1

�n�1
nY

iD1
�



1

ri

�
: (28)
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In fact, setting vi D u�i .i D 1; : : : ; n � 1/ in the above integral, we find

ui D v
1
�

i ; dui D 1
�
v
1
��1
i dvi and

k� D 1

�n�1

Z

Rn�1
C

Qn�1
jD1 v

1
rj
�1

jPn�1
iD1 vi C 1

dv1 � � � dvn�1:

In view of (27), for � D 1; we have (28).

Example 3. For � > 0; �i D �
ri
.i D 1; : : : ; n/; rn D 2;Pn

iD1 1
ri
D 1;

k�.x1; : : : ; xn/ D 1

.max1�i�nfxig/� ;

by mathematical induction, we can show that

k� D
Z

Rn�1
C

1

.max1�i�n�1fuig C 1/�
n�1Y

jD1
u
�
rj
�1

j du1 � � � dun�1

D 1

�n�1
nY

iD1
ri: (29)

In fact, for n D 2; we obtain

k� D
Z

RC

u
�
r1
�1

1

.maxfu1; 1g/� du1

D
Z 1

0

u
�
r1
�1

1 du1 C
Z 1

1

u
��
r2
�1

1 du1 D r1r2
�
:

Assuming that for n.
 2/; (29) is valid, then for nC 1, it follows

k� D
Z

Rn�1
C

nY

jD2
u
�
rj
�1

j

�Z 1

0

1

.max1�i�nfui; 1g/� u
�
r1
�1

1 du1


du2 � � � dun

D
Z

Rn�1
C

nY

jD2
u
�
rj
�1

j

"Z maxfu2;:::;un;1g

0

1

.max2�i�nfui; 1g/� u
�
r1
�1

1 du1

C
Z 1

maxfu2;:::;un;1g
1

u�1
u
�
r1
�1

1 du1


du2 � � � dun

D r21
�.r1 � 1/

Z

Rn�1
C

1

.max2�i�nfui; 1g/�
�
1� 1

r1

�
nY

jD2
u
�
rj
�1

j du2 � � � dun
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D r21
�.r1 � 1/



r1

r1 � 1
�n�1

�
Z

Rn�1
C

1

.max2�i�nfvi; 1g/�
nY

jD2
v
�
rj

r1
r1�1�1

j dv2 � � � dvn

D r21
�.r1 � 1/



r1

r1 � 1
�n�1

1

�n�1
nC1Y

iD2

r1 � 1
r1

ri

D 1

�n

nC1Y

iD1
ri:

Then by mathematical induction, (29) is valid for n 2 Nnf1g:
Example 4. For � > 0; �i D ��ri

.i D 1; : : : ; n/; rn D 2;Pn
iD1 1

ri
D 1;

k�.x1; : : : ; xn/ D



min
1�i�n
fxig

��
;

by mathematical induction, we can show

k�� D
Z

Rn�1
C

.minfu1; : : : ; un�1; 1g/�
n�1Y

jD1
u

��
rj
�1

j du1 � � � dun�1

D
Qn

iD1 ri

�n�1 : (30)

In fact, for n D 2; we obtain

k�� D
Z 1

0

u
�
r2
�1

1 du1 C
Z 1

1

u
��
r1
�1

1 du1 D 1

�
r1r2:

Assuming that for n.
 2/; (30) is valid, then for nC 1, it follows

k�� D
Z

Rn�1
C

nY

jD2
u

��
rj
�1

j

�Z 1

0

.minfu1; : : : ; un; 1g/�u
��
r1
�1

1 du1


du2 � � � dun

D
Z

Rn�1
C

nY

jD2
u

��
rj
�1

j

"Z minfu2;:::;un;1g

0

u�1u
��
r1
�1

1 du1

C
Z 1

minfu2;:::;un;1g
.minfu2; : : : ; un; 1g/�u

��
r1
�1

1 du1

#
du2 � � � dun
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D r21
�.r1 � 1/

Z

Rn�1
C

.minfu2; : : : ; un; 1g/�.1�
1
r1
/

nY

jD2
u

��.1� 1
r1
/

.1� 1
r1
/rj
�1

j du2 � � � dun

D r21
�.r1 � 1/

1

Œ�.1 � 1
r1
/�n�1

nC1Y

iD2



1 � 1

r1

�
ri

D 1

�n

nC1Y

iD1
ri:

Then by mathematical induction, (30) is valid for n 2 Nnf1g:
Remark 2.

(i) In particular, for n D 2 in (23), we have

Z 1

0

Z 1

0

k�.xy; 1/f .x/g.y/dxdy

< k�

�Z 1

0

xp.1� �2 /�1f p.x/dx

	 1
p
�Z 1

0

xq.1� �2 /�1gq.x/dx

	 1
q

; (31)

where k� D
R1
0

k�.u; 1/u
�
2�1du > 0.� 2 R/ is the best possible. Inequality

(31) is an extension of (4) and (8.1.7) in [8].
(ii) In Examples 1–3, by Theorem 1, since for any .�1; : : : ; �n/ 2 Rn.�n DPn

iD1 �i D �
2
/; we obtain 0 < k� < 1; then we have jjTjj D k� and

the equivalent inequalities (19) and (20) with the particular kernels and some
equivalent reverses. In Example 4, still using Theorem 1, we find 0 < jjTjj D
k�� <1 and the equivalent inequalities (19) and (20) with the particular kernel
and some equivalent reverses.
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Parameterized Yang–Hilbert-Type Integral
Inequalities and Their Operator Expressions

Bicheng Yang and Michael Th. Rassias

Abstract Applying methods of Real Analysis and Functional Analysis, we build
two weight functions with parameters and provide two kinds of parameterized
Yang–Hilbert-type integral inequalities with the best constant factors. Equivalent
forms, the reverses, and the operator expressions are also given. In particular,
the Hardy-type inequalities and Hardy-type operators are studied. Additionally, a
number of examples with two kinds of particular kernels are considered.

Keywords: Hardy-type integral operator • Yang–Hilbert-type integral inequality
• Hölder’s inequality • Measurable function • Weight function • Equivalent
form • Operator expression

1 Introduction

If f .x/; g.y/ 
 0; satisfy

0 <

Z 1

0

f 2.x/dx <1
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and

0 <

Z 1

0

g2.y/dy <1;

then we have the following well-known Hilbert’s integral inequality (cf. [1])

Z 1

0

Z 1

0

f .x/g.y/

xC y
dxdy < 


Z 1

0

f 2.x/dx
Z 1

0

g2.y/dy

� 1
2

; (1)

where the constant factor  is the best possible. The operator expression of (1) was
studied in [2] and [3].

In 1925, by introducing one pair of conjugate exponents .p; q/, that is 1
pC 1

q D 1,
Hardy [4] provided an extension of (1) as follows:

For p > 1; f .x/; g.y/ 
 0; satisfying

0 <

Z 1

0

f p.x/dx <1

and

0 <

Z 1

0

gq.y/dy <1;

we have

Z 1

0

Z 1

0

f .x/g.y/

xC y
dxdy <



sin.=p/


Z 1

0

f p.x/dx

� 1
p

Z 1

0

gq.y/dy

� 1
q

; (2)

where the constant factor 
sin.=p/ is still the best possible. Inequality (2) is known as

Hardy-Hilbert’s integral inequality, and is important in analysis and its applications
(cf. [5, 6]).

Definition 1. If � 2 R D .�1;1/; k�.x; y/ is a non-negative measurable function
in R2C D RC � RC, satisfying

k�.tx; ty/ D t��k�.x; y/;

for any t; x; y > 0, then we call k�.x; y/ the homogeneous function of degree ��
in R2C.

In 1934, replacing 1
xCy in (2) by a general homogeneous kernel of degree-1, as

k1.x; y/, Hardy et al. presented an extension of (2) with the best possible constant
factor

kp D
Z 1

0

k1.t; 1/t
�1
p dt 2 RC D .0;1/
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obtaining (cf. [5, Th. 319]):

Z 1

0

Z 1

0

k1.x; y/f .x/g.y/dxdy < kp


Z 1

0

f p.x/dx

� 1
p

Z 1

0

gq.y/dy

� 1
q

: (3)

The following inequality with the non-homogeneous kernel h.xy/ similar to (3) was
studied (cf. [5, Th. 350]):

For h.t/ > 0, satisfying �.s/ WD R1
0

h.t/ts�1dt 2 RC; f .x/; g.y/ 
 0;

0 <

Z 1

0

xp�2f p.x/dx <1

and

0 <

Z 1

0

gq.y/dy <1;

we have

Z 1

0

Z 1

0

h.xy/f .x/g.y/dxdy < �.
1

p
/


Z 1

0

xp�2f p.x/dx

� 1
p

Z 1

0

gq.y/dy

� 1
q

:

(4)

Remark 1. Hardy could not prove that the constant factor in (4) is the best possible
and did not consider the operator expressions of (3) and (4) (cf. [5, Chapter 9]). We
shall call (3) and (4) Hardy-Hilbert-type integral inequalities, which only contain
one pair of conjugate exponents .p; q/.

In 1998, by introducing an independent parameter � > 0; Yang [7, 8] gave an
extension of (1) as follows:

For f .x/; g.y/ 
 0; such that

0 <

Z 1

0

x1��f 2.x/dx <1

and

0 <

Z 1

0

y1��g2.y/dy <1;

we have

Z 1

0

Z 1

0

f .x/g.y/

.xC y/�
dxdy < B



�

2
;
�

2

�
Z 1

0

x1��f 2.x/dx
Z 1

0

y1��g2.y/dy

� 1
2

;

(5)
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where the constant factor B
�
�
2
; �
2

�
is the best possible, and

B.u; v/ WD
Z 1

0

tu�1

.tC 1/uCv dt.u; v > 0/ (6)

is the beta function (cf. [9]).
In 2004, by introducing two pairs of conjugate exponents .p; q/ and .r; s/, that

is 1
p C 1

q D 1
r C 1

s D 1, and an independent parameter � > 0; Yang [10] gave the
following extension of (3):

For p; r > 1; f .x/; g.y/ 
 0; such that

0 <

Z 1

0

xp.1� �r /�1f p.x/dx <1

and

0 <

Z 1

0

yq.1� �s /�1gq.y/dy <1;

it holds
Z 1

0

Z 1

0

f .x/g.y/

x� C y�
dxdy

<


� sin.=r/

�Z 1

0

xp.1� �r /�1f p.x/dx

 1
p
�Z 1

0

yq.1� �s /�1gq.y/dy

 1
q

; (7)

where the constant factor



� sin.=r/

is the best possible.
For � D 1; r D q; s D p; inequality (7) reduces to (2); for � D 1; r D p; s D q;

inequality (7) reduces to the dual form of (2) as follows:

Z 1

0

Z 1

0

f .x/g.y/

xC y
dxdy

<


sin.=p/


Z 1

0

xp�2f p.x/dx

� 1
p

Z 1

0

yq�2gq.y/dy

� 1
q

: (8)

In 2009, replacing 1=.x�Cy�/ in (7), by a general homogeneous kernel of degree
��, as k�.x; y/, Yang [11, 12] proved an extension of (7) in the following form:
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For � > 0; f .x/; g.y/ 
 0; such that

0 <

Z 1

0

xp.1� �r /�1f p.x/dx <1

and

0 <

Z 1

0

yq.1� �s /�1gq.y/dy <1;

it follows
Z 1

0

Z 1

0

k�.x; y/f .x/g.y/dxdy

< k�.r/

�Z 1

0

xp.1� �
r /�1f p.x/dx

 1
p
�Z 1

0

yq.1� �s /�1gq.y/dy

 1
q

; (9)

where the constant factor

k�.r/ WD
Z 1

0

k�.t; 1/t
�
r �1dt 2 RC

is the best possible.
In [13], Yang presented also the following new inequality with a non-

homogeneous kernel similar to (4):
For f .x/; g.y/ 
 0; satisfying

0 <

Z 1

0

xp.1��/�1f p.x/dx <1

and

0 <

Z 1

0

yq.1��/�1gq.y/dy <1;

we have
Z 1

0

Z 1

0

h.xy/f .x/g.y/dxdy

< �.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

Z 1

0

yq.1��/�1gq.y/dy

� 1
q

; (10)

where the constant factor

�.�/ D
Z 1

0

h.t/t��1dt 2 RC

is the best possible.
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Remark 2. For � D 1; r D q; s D p; it follows that inequality (9) reduces to (3).
Hence, (9) is an extension of (3) with two pairs of conjugate exponents and an
independent parameter. In 2014, Yang [14] proved that inequalities (9) and (10) are
equivalent for

h.u/ D k�.u; 1/;

and considered the operator expressions of (9) and (10). We call (9) together
with (10) as Yang–Hilbert-type integral inequalities in the first quadrant. Also we
can call some similar inequalities as Yang–Hilbert-type integral inequalities in the
whole plane.

In 2007, Yang [15] introduced a Hilbert-type integral inequality in the whole
plane as follows:

For f .x/; g.y/ 
 0; such that

0 <

Z 1

�1
e��xf 2.x/dx <1

and

0 <

Z 1

0

Z 1

�1
e��yg2.y/dy <1;

it holds
Z 1

�1

Z 1

�1
f .x/g.y/

.1C exCy/�
dxdy

< B



�

2
;
�

2

�
Z 1

�1
e��xf 2.x/dx

Z 1

�1
e��yg2.y/dy

� 1
2

; (11)

where the constant factor B. �
2
; �
2
/ .� > 0/ is the best possible.

For the case when 0 < � < 1, p > 1; 1
p C 1

q D 1; Yang [16] proved in 2008, the
following Hilbert-type integral inequality in the whole plane:

For p > 1; f .x/; g.y/ 
 0; satisfying

0 <

Z 1

�1
jxjp.1� �2 /�1f p.x/dx <1

and

0 <

Z 1

�1
jyjq.1� �2 /�1gq.y/dy <1;
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we have
Z 1

�1

Z 1

�1
1

j1C xyj� f .x/g.y/dxdy

< k�

�Z 1

�1
jxjp.1� �2 /�1f p.x/dx

 1
p
�Z 1

�1
jyjq.1� �2 /�1gq.y/dy

 1
q

; (12)

where the constant

k� D B



�

2
;
�

2

�
C 2B



1 � �; �

2

�

is still the best possible.
Additionally, Yang et al. [17–26] provided also some other Hilbert-type integral

inequalities in the whole plane. Rassias et al. [27–32] presented as well some
different new Hilbert-type inequalities.

In this paper, applying methods of Real Analysis and Functional Analysis, we
build two weight functions with parameters, and provide two kinds of parameterized
Yang–Hilbert-type integral inequalities with the best constant factors. Equivalent
forms, the reverses, and the operator expressions are also given. In particular,
the Hardy-type inequalities and Hardy-type operators are studied. Furthermore, a
number of examples with two kinds of particular kernels are considered.

2 Yang–Hilbert-Type Integral Inequalities
in the First Quadrant

In this section, we present a weight function and study some Yang–Hilbert-type
integral inequalities in the first quadrant with parameters and the best constant
factors. Equivalent forms, the reverses, the Hardy-type inequalities, the operator
expressions, and some particular examples are also discussed.

2.1 Definition of Weight Function and a Lemma

Definition 2. If � 2 R; h.t/ is a non-negative measurable function in RC; define
the following weight function:

!.�; y/ WD y�
Z 1

0

h.xy/x��1dx.y 2 RC/: (13)
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Setting t D xy in (13), we obtain

!.�; y/ D k.�/ WD
Z 1

0

h.t/t��1dt: (14)

Lemma 1. If p > 0 .p ¤ 1/; 1pC 1
q D 1; � 2 R; both h.t/ and f .t/ are non-negative

measurable functions in RC; and k.�/ is defined by (14), then, (i) for p > 1; we have
the following inequality:

J WD
Z 1

0

yp��1

Z 1

0

h.xy/f .x/dx

�p

dy � kp.�/

Z 1

0

xp.1��/�1f p.x/dxI (15)

(ii) for 0 < p < 1; we have the reverse of (15).

Proof. (i) By the weighted Hölder’s inequality (cf. [33]) and (13), it follows that

Z 1

0

h.xy/f .x/dx D
Z 1

0

h.xy/

�
x.1��/=q

y.1��/=p
f .x/

 �
y.1��/=p

x.1��/=q


dx

�
�Z 1

0

h.xy/
x.1��/p=q

y1��
f p.x/dx

 1
p
�Z 1

0

h.xy/
y.1��/q=p

x1��
dx

 1
q

D .!.�; y// 1q y
1
p��

�Z 1

0

h.xy/
x.1��/.p�1/

y1��
f p.x/dx

 1
p

: (16)

Then by (14) and Fubini’s theorem (cf. [34]), we have

J � kp�1.�/
Z 1

0

Z 1

0

h.xy/
x.1��/.p�1/

y1��
f p.x/dxdy

D kp�1.�/
Z 1

0

�Z 1

0

h.xy/
x.1��/.p�1/

y1��
dy


f p.x/dx

D kp�1.�/
Z 1

0

!.�; x/xp.1��/�1f p.x/dx: (17)

By (14), we obtain (15).
(ii) For 0 < p < 1; by the reverse of the weighted Hölder’s inequality (cf. [33]),

combined with (13) and (14), we obtain the reverse of (16) and (17). Then we
get the reverse of (15) by using (14). This completes the proof of the lemma.

�
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2.2 Two Equivalent Inequalities as well as the Reverses
with the Best Possible Constant Factors

Theorem 1. Suppose that p > 1; 1p C 1
q D 1; � 2 R; h.t/ 
 0; and

k.�/ D
Z 1

0

h.t/t��1dt 2 RC:

If f .x/; g.y/ 
 0; such that

0 <

Z 1

0

xp.1��/�1f p.x/dx <1

and

0 <

Z 1

0

yq.1��/�1gq.y/dy <1;

then we have the following equivalent inequalities:

I WD
Z 1

0

Z 1

0

h.xy/f .x/g.y/dxdy

< k.�/

�Z 1

0

xp.1��/�1f p.x/dx

 1
p
�Z 1

0

yq.1��/�1gq.y/dy

 1
q

; (18)

J D
Z 1

0

yp��1

Z 1

0

h.xy/f .x/dx

�p

dy < kp.�/

Z 1

0

xp.1��/�1f p.x/dx; (19)

where the constant factors k.�/ and kp.�/ are the best possible.

Proof. We first proved that (16) preserves the form of a strict inequality for any
y 2 RC. Otherwise, there exists a y > 0; such that (16) becomes an equality. Then,
there exist two constants A and B; such that they are not all zero, and (cf. [33])

A
x.1��/p=q

y1��
f p.x/ D B

y.1��/q=p

x1��
a. e. in RC:

If A D 0; then B D 0; which is impossible. Suppose that A ¤ 0: Then it follows
that

xp.1��/�1f p.x/ D y.1��/q
B

Ax
a. e. in RC;

which contradicts the fact that

0 <

Z 1

0

xp.1��/�1f p.x/dx <1;
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in virtue of
Z 1

0

1

x
dx D1:

Hence, both (16) and (17) preserve the forms of strict inequalities, and thus we
have (19).

By Hölder’s inequality (cf. [33]), we obtain

I D
Z 1

0



y��

1
p

Z 1

0

h.xy/f .x/dx

�
.y

1
p��g.y//dy

� J
1
p

�Z 1

0

yq.1��/�1gq.y/dy

 1
q

: (20)

Then by (19), we get (18). On the other hand, assuming that (18) is valid, we set

g.y/ WD yp��1

Z 1

0

h.xy/f .x/dx

�p�1
; y 2 RC:

Then we obtain

J D
Z 1

0

yq.1��/�1gq.y/dy:

By (15), in view of

0 <

Z 1

0

xp.1��/�1f p.x/dx <1;

it follows that J < 1. If J D 0; then (19) is trivially valid; if J > 0; then by (18),
we have

0 <

Z 1

0

yq.1��/�1gq.y/dy D J D I

< k.�/

�Z 1

0

xp.1��/�1f p.x/dx

 1
p
�Z 1

0

yq.1��/�1gq.y/dy

 1
q

;

J
1
p D

�Z 1

0

yq.1��/�1gq.y/dy

 1
p

< k.�/

�Z 1

0

xp.1��/�1f p.x/dx

 1
p

;

and then (19) follows, which is equivalent to (18).
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For any n 2 N (where N is the set of positive integers), we define the functions
fn.x/ and gn.y/ as follows:

fn.x/ WD
(

0; x 2 .0; 1/
x��

1
np�1; x 2 Œ1;1/ ; gn.y/ WD

(
y�C

1
nq�1; y 2 .0; 1�
0; y 2 .1;1/ :

Then we find

Ln WD
�Z 1

0

xp.1��/�1f p
n .x/dx

 1
p
�Z 1

0

yq.1��/�1gq
n.y/dy

 1
q

D

Z 1

1

x�
1
n�1dx

� 1
p

Z 1

0

y
1
n�1dy

� 1
q

D n:

By Fubini’s theorem, it follows that

In WD
Z 1

0

Z 1

0

h.xy/fn.x/gn.y/dxdy

D
Z 1

1

x��
1

np�1

Z 1

0

h.xy/y�C
1
nq�1dy

�
dx

D
Z 1

1

x�
1
n�1


Z x

0

h.t/t�C
1
nq�1dt

�
dx

D
Z 1

1

x�
1
n�1


Z 1

0

h.t/t�C
1
nq�1dtC

Z x

1

h.t/t�C
1

nq�1dt

�
dx

D n
Z 1

0

h.t/t�C
1
nq�1dtC

Z 1

1

x�
1
n�1


Z x

1

h.t/t�C
1
nq�1dt

�
dx

D n
Z 1

0

h.t/t�C
1
nq�1dtC

Z 1

1


Z 1

t
x�

1
n�1dx

�
h.t/t�C

1
nq�1dt

D n


Z 1

0

h.t/t�C
1
nq�1dtC

Z 1

1

h.t/t��
1
np�1dt

�
:

If there exists a positive number k � k.�/; such that (18) is still valid when
replacing k.�/ by k; then in particular, it follows that

1

n
In < k

1

n
Ln;

and

Z 1

0

h.t/t�C
1
nq�1dtC

Z 1

1

h.t/t��
1
np�1dt < k:
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Since both

fh.t/t�C 1
nq�1g1nD1 .t 2 .0; 1�/

and

fh.t/t�� 1
np�1g1nD1 .t 2 .1;1//

are non-negative and increasing, then by Levi’s theorem (cf. [34]), we get

k.�/ D
Z 1

0

h.t/t��1dtC
Z 1

1

h.t/t��1dt

D lim
n!1


Z 1

0

h.t/t�C
1

nq�1dtC
Z 1

1

h.t/t��
1

np�1dt

�
� k:

Thus k D k.�/ is the best possible constant factor of (18).
The constant factor in (19) is still the best possible. Otherwise, by (20) we would

reach the contradiction that the constant factor in (18) is not the best possible.
This completes the proof of the theorem. �

Theorem 2. Replacing p > 1 by 0 < p < 1 in Theorem 1, we obtain the equivalent
reverses of (18) and (19). If there exists a constant ı 0 > 0; such that for any Q� 2
.� � ı 0; ��;

k. Q�/ D
Z 1

0

h.t/tQ��1dt 2 RC;

then the constant factors in the reverses of (18) and (19) are the best possible.

Proof. By Lemma 1 and the reverse of Hölder’s inequality, we get the reverses
of (18), (19), and (20). Similarly, we can set g.y/ as in Theorem 1, and prove that
the reverses of (18) and (19) are equivalent.

For n > 2
ı 0jqj .n 2 N/; we set fn.x/ and gn.y/ as in Theorem 1. If there exists a

positive number k 
 k.�/; such that the reverse of (18) is valid when replacing k.�/
by k; then it follows that

1

n
In > k

1

n
Ln;

and

Z 1

0

h.t/t�C
1
nq�1dtC

Z 1

1

h.t/t��
1
np�1dt > k: (21)
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Since fh.t/t�� 1
np�1g1nD1.t 2 .1;1// is still non-negative and increasing, by Levi’s

theorem it follows that

lim
n!1

Z 1

1

h.t/t��
1
np�1dt D

Z 1

1

h.t/t��1dt:

Since

0 � h.t/t�C
1
nq�1 � h.t/t.��

ı 0
2 /�1



t 2 .0; 1�; n > 2

ı 0jqj
�
;

and

0 �
Z 1

0

h.t/t.��
ı 0
2 /�1dt � k



� � ı 0

2

�
<1;

then by Lebesgue’s dominated convergence theorem (cf. [34]), it follows that

lim
n!1

Z 1

0

h.t/t�C
1
nq�1dt D

Z 1

0

h.t/t��1dt:

In view of the above results and (21), we have

k.�/ D lim
n!1


Z 1

0

h.t/t�C
1

nq�1dtC
Z 1

1

h.t/t��
1
np�1dt

�

 k:

Then k D k.�/ is the best possible constant factor for the reverse of (18).
Following the same method, we can prove that the constant factor in the reverse

of (19) is the best possible, by the use of the reverse of (20).
This completes the proof of the theorem. �

2.3 Yang–Hilbert-Type Integral Inequalities in the First
Quadrant with Multi-Variables

Theorem 3. Suppose that p > 1; 1p C 1
q D 1; h.t/ 
 0; � 2 R;

k.�/ D
Z 1

0

h.t/t��1dt 2 RC;

ıi 2 f�1; 1g; 0 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi// and

vi.a
C
i / D lim

s!aiC
vi.s/ D 0;

vi.b
�
i / D lim

s!bi�
vi.s/ D1 .i D 1; 2/:
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If f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

.v1.x//p.1�ı1�/�1

.v01.x//p�1
f p.x/dx <1

and

0 <

Z b2

a2

.v2.y//q.1�ı2�/�1

.v02.y//q�1
gq.y/dy <1;

then we have the following equivalent inequalities:

Z b2

a2

Z b1

a1

h.vı11 .x/v
ı2
2 .y//f .x/g.y/dxdy

< k.�/

�Z b1

a1

.v1.x//p.1�ı1�/�1

.v01.x//p�1
f p.x/dx

 1
p

�
�Z b2

a2

.v2.y//q.1�ı2�/�1

.v02.y//q�1
gq.y/dy

 1
q

; (22)

Z b2

a2

v02.y/
.v2.y//1�pı2�


Z b1

a1

h.vı11 .x/v
ı2
2 .y//f .x/dx

�p

dy

< kp.�/

Z b1

a1

.v1.x//p.1�ı1�/�1

.v01.x//p�1
f p.x/dx; (23)

where the constant factors k.�/ and kp.�/ are the best possible.

Proof. Setting

x D vı11 .s/; y D vı22 .t/

in (18), since ıi 2 f�1; 1g; we get

dx D ı1vı1�11 .s/v01.s/ds; dy D ı2vı2�12 .t/v02.t/dt;

and

I D jı1ı2j
Z b2

a2

Z b1

a1

h.vı11 .s/v
ı2
2 .t//f .v

ı1
1 .s//g.v

ı2
2 .t//v

ı1�1
1 .s/v01.s/v

ı2�1
2 .t/v02.t/dsdt

D
Z b2

a2

Z b1

a1

h.vı11 .s/v
ı2
2 .t//.f .v

ı1
1 .s//v

ı1�1
1 .s/v01.s//.g.v

ı2
2 .t//v

ı2�1
2 .t/v02.t//dsdt;
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I1 W D
Z 1

0

xp.1��/�1f p.x/dx D
Z b1

a1

.v
ı1
1 .s//

p.1��/�1f p.v
ı1
1 .s//v

ı1�1
1 .s/v01.s/ds;

I2 W D
Z 1

0

yq.1��/�1gq.y/dy D
Z b2

a2

.v
ı2
2 .t//

q.1��/�1gq.v
ı2
2 .t//v

ı2�1
2 .t/v02.t/dt:

Setting

F.s/ D f .vı11 .s//v
ı1�1
1 .s/v01.s/; G.t/ D g.vı22 .t//v

ı2�1
2 .t/v02.t/;

we obtain

f p.v
ı1
1 .s// D vp.1�ı1/

1 .s/.v01.s//�pFp.s/;

gq.v
ı2
2 .t// D vq.1�ı2/

2 .t/.v02.t//�qGq.t/;

and then it follows that

I D
Z b2

a2

Z b1

a1

h.vı11 .s/v
ı2
2 .t//F.s/G.t/dsdt;

I1 D
Z b1

a1

.v1.s//p.1�ı1�/�1

.v01.s//p�1
Fp.s/ds; I2 D

Z b2

a2

.v2.t//q.1�ı2�/�1

.v02.t//q�1
Gq.t/dt:

Substituting the above results in (18), resetting

s D x; t D y; F.s/ D f .x/; G.t/ D g.y/;

we obtain (22). Similarly, we have (23).
On the other hand, if we set

v
ı1
1 .x/ D x; vı22 .y/ D y; ai D 0; bi D1 .i D 1; 2/

in (22), we obtain (18). Hence, the inequalities (22) and (18) are equivalent. It is
evident that the inequalities (23) and (19) are equivalent. Hence, the inequalities (22)
and (23) are equivalent. Since the constant factors in (18) and (19) are the best
possible, it follows that the constant factors in (22) and (23) are also the best possible
by using the equivalency.

This completes the proof of the theorem. �

Theorem 4. Replacing p > 1 by 0 < p < 1 in Theorem 3, we obtain the equivalent
reverses of (22) and (23). If there exists a constant ı 0 > 0; such that for any value
of Q� 2 .� � ı 0; ��;

k. Q�/ D
Z 1

0

h.t/tQ��1dt 2 RC;

then the constant factors in the reverses of (22) and (23) are the best possible.
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In particular, for ı1 D ı2 D 1 in Theorems 3 and 4, we get the following integral
inequalities with the non-homogeneous kernel:

Corollary 1. Suppose that p > 1; 1p C 1
q D 1; h.t/ 
 0; � 2 R;

k.�/ D
Z 1

0

h.t/t��1dt 2 RC;

0 � ai < bi � 1; v0i.s/ > 0.s 2 .ai; bi//; vi.a
C
i / D 0; vi.b�i / D 1 .i D 1; 2/: If

f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx <1

and

0 <

Z b2

a2

.v2.y//q.1��/�1

.v02.y//q�1
gq.y/dy <1;

then we have the following equivalent inequalities:

Z b2

a2

Z b1

a1

h.v1.x/v2.y//f .x/g.y/dxdy

< k.�/

�Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx

 1
p

�
�Z b2

a2

.v2.y//q.1��/�1

.v02.y//q�1
gq.y/dy

 1
q

; (24)

Z b2

a2

v02.y/
.v2.y//1�p�


Z b1

a1

h.v1.x/v2.y//f .x/dx

�p

dy

< kp.�/

Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx; (25)

where the constant factors k.�/ and kp.�/ are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we obtain the equivalent
reverses of (24) and (25).

If there exists a constant ı 0 > 0; such that for any Q� 2 .� � ı 0; ��;

k. Q�/ D
Z 1

0

h.t/tQ��1dt 2 RC;

then the constant factors in the reverses of (24) and (25) are the best possible.
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In particular, for ı1 D �1; ı2 D 1 in Theorems 3 and 4, setting

h.t/ D k�.1; t/

(cf. Definition 1), we find

h



v2.y/

v1.x/

�
D k�



1;
v2.y/

v1.x/

�
D v�1 .x/k�.v1.x/; v2.y//:

Replacing f .x/ by v��1 .x/f .x/; it follows that Œv1.x/�p.1C�/�1f p.x/ is replaced by

Œv1.x/�
p.1C�/�1Œv��1 .x/f .x/�p D Œv1.x/�p.1��/�1f p.x/;

and we have the following integral inequalities with the homogeneous kernel:

Corollary 2. Suppose that p > 1; 1p C 1
q D 1; �; � 2 R; �C � D �; k�.x; y/ is a

homogeneous function of degree �� in R2C;

k�.�/ D
Z 1

0

k�.1; t/t
��1dt 2 RC;

0 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi//; vi.a
C
i / D 0; vi.b�i / D 1 .i D 1; 2/: If

f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx <1

and

0 <

Z b2

a2

.v2.y//q.1��/�1

.v02.y//q�1
gq.y/dy <1;

then we have the following equivalent inequalities:

Z b2

a2

Z b1

a1

k�.v1.x/; v2.y//f .x/g.y/dxdy

< k�.�/

�Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx

 1
p

�
�Z b2

a2

.v2.y//q.1��/�1

.v02.y//q�1
gq.y/dy

 1
q

; (26)
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Z b2

a2

v02.y/
.v2.y//1�p�


Z b1

a1

k�.v1.x/; v2.y//f .x/dx

�p

dy

< kp
�.�/

Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx; (27)

where the constant factors k�.�/ and kp
�.�/ are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we obtain the equivalent
reverses of (26) and (27). If there exists a constant ı 0 > 0; such that for any Q� 2
.� � ı 0; ��;

k�. Q�/ D
Z 1

0

k�.1; t/t
Q��1dt 2 RC;

then the constant factors in the reverses of (26) and (27) are the best possible.
Setting

ai D 0; bi D1 .i D 1; 2/; v1.x/ D x; v2.y/ D y

in Corollary 2, we have

Corollary 3. Suppose that p > 1; 1p C 1
q D 1; �; � 2 R; �C � D �; k�.x; y/ is a

homogeneous function of degree �� in R2C; and

k�.�/ D
Z 1

0

k�.1; t/t
��1dt 2 RC:

If f .x/; g.y/ 
 0;

0 <

Z 1

0

xp.1��/�1f p.x/dx <1

and

0 <

Z 1

0

gq.1��/�1.y/dy <1;

then we have the following equivalent inequalities:

Z 1

0

Z 1

0

k�.x; y/f .x/g.y/dxdy

< k�.�/

�Z 1

0

xp.1��/�1f p.x/dx

 1
p
�Z 1

0

yq.1��/�1gq.y/dy

 1
q

; (28)
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Z 1

0

yp��1

Z 1

0

k�.x; y/f .x/dx

�p

dy < kp
�.�/

Z 1

0

xp.1��/�1f p.x/dx; (29)

where the constant factors k�.�/ and kp
�.�/ are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we obtain the equivalent
reverses of (28) and (29). If there exists a constant ı 0 > 0; such that for any Q� 2
.� � ı 0; ��;

k�. Q�/ D
Z 1

0

k�.1; t/t
Q��1dt 2 RC;

then the constant factors in the reverses of (28) and (29) are the best possible.

Remark 3. (a) It is evident that (18) and (28) are equivalent for h.t/ D k�.1; t/:
The same holds for (19) and (29).

(b) In the following, we list the functions vi.s/ .i D 1; 2/ which satisfy the
conditions of Theorems 3 and 4:

(i) vi.s/ D sa; s 2 .0;1/ .a 2 RC/; with v0i.s/ D asa�1 > 0I
(ii) vi.s/ D tana s; s 2 .0; 

2
/ .a 2 RC/; with v0i.s/ D a tana�1 s sec2 s > 0I

(iii) vi.s/ D lna s; s 2 .1;1/ .a 2 RC/; with v0i.s/ D a
s lna�1 s > 0I

(iv) vi.s/ D eas � 1; s 2 .0;1/ .a 2 RC/; with v0i.s/ D aeas > 0:

2.4 Hardy-Type Integral Inequalities with Multi-Variables

In the following two sections, if the constant factors in the inequalities (operator
inequalities) are related to k.1/.�/ (or k.1/� .�/), then we call them Hardy-type
inequalities (operators) of the first kind; if the constant factors in the inequalities
(operator inequalities) are related to k.2/.�/ (or k.2/� .�/), then we call them Hardy-
type inequalities (operators) of the second kind.

If h.t/ D 0 .t > 1/, then we have h.xy/ D 0 .x > 1
y > 0/; and

k.�/ D
Z 1

0

h.t/t��1dt D
Z 1

0

h.t/t��1dt:

Setting

k.1/.�/ WD
Z 1

0

h.t/t��1dt; (30)
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by Theorems 1 and 2, we obtain the following first kind Hardy-type integral
inequalities with non-homogeneous kernel:

Corollary 4. Suppose that p > 1; 1p C 1
q D 1; h.t/ 
 0; � 2 R;

k.1/.�/ D
Z 1

0

h.t/t��1dt 2 RC:

If f .x/; g.y/ 
 0;

0 <

Z 1

0

xp.1��/�1f p.x/dx <1

and

0 <

Z 1

0

yq.1��/�1gq.y/dy <1;

then we have the following equivalent inequalities:

Z 1

0

 Z 1
y

0

h.xy/f .x/dx

!
g.y/dy D

Z 1

0

 Z 1
x

0

h.xy/g.y/dy

!
f .x/dx

< k.1/.�/

�Z 1

0

xp.1��/�1f p.x/dx

 1
p
�Z 1

0

yq.1��/�1gq.y/dy

 1
q

; (31)

Z 1

0

yp��1
 Z 1

y

0

h.xy/f .x/dx

!p

dy < .k.1/.�//p
Z 1

0

xp.1��/�1f p.x/dxI (32)

where the constant factors k.1/.�/ and .k.1/.�//p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we obtain the equivalent
reverses of (31) and (32). If there exists a constant ı 0 > 0; such that for any Q� 2
.� � ı 0; ��;

k.1/. Q�/ D
Z 1

0

h.t/tQ��1dt 2 RC;

then the constant factors in the reverses of (31) and (32) are the best possible.
If h.t/ D 0 .t > 1/ in Corollary 1, then

h.v1.x/v2.y// D 0


v1.x/ >

1

v2.y/
> 0

�
;

and therefore we obtain the following general results:
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Corollary 5. Suppose that p > 1; 1p C 1
q D 1; h.t/ 
 0; � 2 R;

k.1/.�/ D
Z 1

0

h.t/t��1dt 2 RC;

0 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi//; vi.a
C
i / D 0; vi.b�i / D 1 .i D 1; 2/: If

f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx <1

and

0 <

Z b2

a2

.v2.y//q.1��/�1

.v02.y//q�1
gq.y/dy <1;

then we have the following equivalent inequalities:

Z b2

a2

 Z v�1
1 . 1

v2.y/
/

a1

h.v1.x/v2.y//f .x/dx

!
g.y/dy

D
Z b1

a1

 Z v�1
2 . 1

v1.x/
/

a2

h.v1.x/v2.y//g.y/dy

!
f .x/dx

< k.1/.�/

�Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx

 1
p

�
�Z b2

a2

.v2.y//q.1��/�1

.v02.y//q�1
gq.y/dy

 1
q

; (33)

Z b2

a2

v02.y/
.v2.y//1�p�

 Z v�1
1 . 1

v2.y/
/

a1

h.v1.x/v2.y//f .x/dx

!p

dy

< .k.1/.�//p
Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx; (34)

where the constant factors k.1/.�/ and .k.1/.�//p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we obtain the equivalent
reverses of (33) and (34). If there exists a constant ı 0 > 0; such that for any Q� 2
.� � ı 0; ��;
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k.1/. Q�/ D
Z 1

0

h.t/tQ��1dt 2 RC;

then the constant factors in the reverses of (33) and (34) are the best possible.
If h.t/ D 0 .0 < t < 1/, then h.xy/ D 0 .0 < x < 1

y /; and

k.�/ D
Z 1

0

h.t/t��1dt D
Z 1

1

h.t/t��1dt:

Setting

k.2/.�/ WD
Z 1

1

h.t/t��1dt; (35)

by Theorems 1 and 2, we have the following second kind Hardy-type integral
inequalities with the non-homogeneous kernel:

Corollary 6. Suppose that p > 1; 1p C 1
q D 1; h.t/ 
 0; � 2 R;

k.2/.�/ D
Z 1

1

h.t/t��1dt 2 RC:

If f .x/; g.y/ 
 0;

0 <

Z 1

0

xp.1��/�1f p.x/dx <1

and

0 <

Z 1

0

yq.1��/�1gq.y/dy <1;

then we have the following equivalent inequalities:

Z 1

0

 Z 1
1
y

h.xy/f .x/dx

!
g.y/dy D

Z 1

0

 Z 1
1
x

h.xy/g.y/dy

!
f .x/dx

< k.2/.�/

�Z 1

0

xp.1��/�1f p.x/dx

 1
p
�Z 1

0

yq.1��/�1gq.y/dy

 1
q

; (36)

Z 1

0

yp��1
 Z 1

1
y

h.xy/f .x/dx

!p

dy < .k.2/.�//p
Z 1

0

xp.1��/�1f p.x/dx; (37)

where the constant factors k.2/.�/ and .k.2/.�//p are the best possible.
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Replacing p > 1 by 0 < p < 1 in the above inequalities, we derive the equivalent
reverses of (36) and (37).

If there exists a constant ı 0 > 0; such that for any Q� 2 .� � ı 0; ��;

k.2/. Q�/ D
Z 1

1

h.t/tQ��1dt 2 RC;

then the constant factors in the reverses of (36) and (37) are the best possible.
If h.t/ D 0 .0 < t < 1/ in Corollary 1, then

h.v1.x/v2.y// D 0


0 < v1.x/ <

1

v2.y/

�
:

We have the following general results:

Corollary 7. Suppose that p > 1; 1p C 1
q D 1; h.t/ 
 0; � 2 R;

k.2/.�/ D
Z 1

1

h.t/t��1dt 2 RC;

0 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi//; vi.a
C
i / D 0; vi.b�i / D 1 .i D 1; 2/: If

f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx <1

and

0 <

Z b2

a2

.v2.y//q.1��/�1

.v02.y//q�1
gq.y/dy <1;

then we have the following equivalent inequalities:

Z b2

a2

 Z b1

v�1
1 . 1

v2.y/
/

h.v1.x/v2.y//f .x/dx

!
g.y/dy

D
Z b1

a1

 Z b2

v�1
2 . 1

v1.x/
/

h.v1.x/v2.y//g.y/dy

!
f .x/dx

< k.2/.�/

�Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx

 1
p

�
�Z b2

a2

.v2.y//q.1��/�1

.v02.y//q�1
gq.y/dy

 1
q

; (38)
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Z b2

a2

v02.y/
.v2.y//1�p�

 Z b1

v�1
1 . 1

v2.y/
/

h.v1.x/v2.y//f .x/dx

!p

dy

< .k.2/.�//p
Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx; (39)

where the constant factors k.2/.�/ and .k.2/.�//p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we have the equivalent
reverses of (38) and (39). If there exists a constant ı 0 > 0; such that for any Q� 2
.� � ı 0; ��;

k.2/. Q�/ D
Z 1

1

h.t/tQ��1dt 2 RC;

then the constant factors in the reverses of (38) and (39) are the best possible.
Similarly, if k�.1; t/ D 0 .t > 1/; then

k�.x; y/ D x��k�
�
1;

y

x

�
D 0 .y > x > 0/;

by Corollary 3, we have the following First kind of Hardy-type integral inequalities
with the homogeneous kernel:

Corollary 8. Suppose that p > 1; 1
p C 1

q D 1; �; � 2 R; �C � D �; k�.x; y/ is

a homogeneous function of degree �� in R2C;

k.1/� .�/ D
Z 1

0

k�.1; t/t
��1dt 2 RC:

If f .x/; g.y/ 
 0;

0 <

Z 1

0

xp.1��/�1f p.x/dx <1

and

0 <

Z 1

0

yq.1��/�1gq.y/dy <1;

then we have the following equivalent inequalities:

Z 1

0


Z 1

y
k�.x; y/f .x/dx

�
g.y/dy D

Z 1

0


Z 1

x
k�.x; y/g.y/dy

�
f .x/dx

< k.1/� .�/

�Z 1

0

xp.1��/�1f p.x/dx

 1
p
�Z 1

0

yq.1��/�1gq.y/dy

 1
q

; (40)
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Z 1

0

yp��1

Z 1

y
k�.x; y/f .x/dx

�p

dy < .k.1/� .�//
p
Z 1

0

xp.1��/�1f p.x/dx; (41)

where the constant factors k.1/� .�/ and .k.1/� .�//
p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above cases, we obtain the equivalent
reverses of (28) and (29). If there exists a constant ı 0 > 0; such that for any Q� 2
.� � ı 0; ��;

k.1/� . Q�/ D
Z 1

0

k�.1; t/t
Q��1dt 2 RC;

then the constant factors in the reverses of (40) and (41) are the best possible.
If k�.1; t/ D 0 .t > 1/ in Corollary 2, then

k�.v1.x/; v2.y// D 0 .0 < v1.x/ < v2.y//;

and we have the following general results:

Corollary 9. Suppose that p > 1; 1
p C 1

q D 1; �; � 2 R; �C � D �; k�.x; y/ is

a homogeneous function of degree �� in R2C;

k.1/� .�/ D
Z 1

0

k�.1; t/t
��1dt 2 RC;

0 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi//; vi.a
C
i / D 0; vi.b�i / D 1 .i D 1; 2/: If

f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx <1

and

0 <

Z b2

a2

.v2.y//q.1��/�1

.v02.y//q�1
gq.y/dy <1;

then we have the following equivalent inequalities:

Z b2

a2

 Z b1

v�1
1 .v2.y//

k�.v1.x/; v2.y//f .x/dx

!
g.y/dy

D
Z b1

a1

 Z b2

v�1
2 .v1.x//

k�.v1.x/; v2.y//g.y/dy

!
f .x/dx
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< k.1/� .�/

�Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx

 1
p

�
�Z b2

a2

.v2.y//q.1��/�1

.v02.y//q�1
gq.y/dy

 1
q

; (42)

Z b2

a2

v02.y/
.v2.y//1�p�

 Z b1

v�1
1 .v2.y//

k�.v1.x/; v2.y//f .x/dx

!p

dy

< .k.1/� .�//
p
Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx; (43)

where the constant factors k.1/� .�/ and .k.1/� .�//
p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above cases, we have the equivalent reverses
of (42) and (43). If there exists a constant ı 0 > 0; such that for any Q� 2 .� � ı 0; ��;

k.1/� . Q�/ D
Z 1

0

k�.1; t/t
Q��1dt 2 RC;

then the constant factors in the reverses of (42) and (43) are the best possible.
Similarly, if k�.1; t/ D 0 .0 < t < 1/ in Corollary 3, then

k�.x; y/ D 0 .x > y > 0/;

and we have the following second kind Hardy-type integral inequalities with the
homogeneous kernel:

Corollary 10. Suppose that p > 1; 1p C 1
q D 1; �; � 2 R; �C � D �; k�.x; y/ is

a homogeneous function of degree �� in R2C;

k.2/� .�/ D
Z 1

1

k�.1; t/t
��1dt 2 RC:

If f .x/; g.y/ 
 0;

0 <

Z 1

0

xp.1��/�1f p.x/dx <1

and

0 <

Z 1

0

yq.1��/�1gq.y/dy <1;
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then we have the following equivalent inequalities:
Z 1

0


Z y

0

k�.x; y/f .x/dx

�
g.y/dy D

Z 1

0


Z x

0

k�.x; y/g.y/dy

�
f .x/dx

< k.2/� .�/

�Z 1

0

xp.1��/�1f p.x/dx

 1
p
�Z 1

0

yq.1��/�1gq.y/dy

 1
q

; (44)

Z 1

0

yp��1

Z y

0

k�.x; y/f .x/dx

�p

dy < .k.2/� .�//
p
Z 1

0

xp.1��/�1f p.x/dxI (45)

where the constant factors k.2/� .�/ and .k.2/� .�//
p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above cases, we have the equivalent reverses
of (44) and (45). If there exists a constant ı 0 > 0; such that for any Q� 2 .� � ı 0; ��;

k.2/� . Q�/ D
Z 1

1

k�.1; t/t
Q��1dt 2 RC;

then the constant factors in the reverses of (44) and (45) are the best possible.
If k�.1; t/ D 0 .0 < t < 1/ in Corollary 2, then

k�.v1.x/; v2.y// D 0 .v1.x/ > v2.y/ > 0/;
we have the following general results:

Corollary 11. Suppose that p > 1; 1p C 1
q D 1; �; � 2 R; �C � D �; k�.x; y/ is

a homogeneous function of degree �� in R2C;

k.2/� .�/ D
Z 1

1

k�.1; t/t
��1dt 2 RC;

0 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi//; vi.a
C
i / D 0; vi.b�i / D 1 .i D 1; 2/: If

f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx <1

and

0 <

Z b2

a2

.v2.y//q.1��/�1

.v02.y//q�1
gq.y/dy <1;
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then we have the following equivalent inequalities:

Z b2

a2

 Z v�1
1 .v2.y//

a1

k�.v1.x/; v2.y//f .x/dx

!
g.y/dy

D
Z b1

a1

 Z v�1
2 .v1.x//

a2

k�.v1.x/; v2.y//g.y/dy

!
f .x/dx

< k.2/� .�/

�Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx

 1
p

�
�Z b2

a2

.v2.y//q.1��/�1

.v02.y//q�1
gq.y/dy

 1
q

; (46)

Z b2

a2

v02.y/
.v2.y//1�p�

 Z v�1
1 .v2.y//

a1

k�.v1.x/; v2.y//f .x/dx

!p

dy

< .k.2/� .�//
p
Z b1

a1

.v1.x//p.1��/�1

.v01.x//p�1
f p.x/dx; (47)

where the constant factors k.2/� .�/ and .k.2/� .�//
p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we have the equivalent
reverses of (46) and (47). If there exists a constant ı 0 > 0; such that for any Q� 2
.� � ı 0; ��;

k.2/� . Q�/ D
Z 1

1

k�.1; t/t
Q��1dt 2 RC;

then the constant factors in the reverses of (46) and (47) are the best possible.

2.5 Yang–Hilbert-Type Operators and Hardy-Type Operators

Suppose that p > 1; 1
p C 1

q D 1; �; � 2 R; � C � D �: We set the following
functions:

'.x/ WD xp.1��/�1;  .y/ WD yq.1��/�1; �.x/ WD xp.1��/�1.x; y 2 RC/;

from which we obtain that  1�p.y/ D yp��1:
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Define the following real normed linear space:

Lp;'.RC/ WD
(

f W jjf jjp;' WD
�Z 1

0

'.x/jf .x/jpdx

	 1
p

<1
)
:

Therefore,

Lp; 1�p.RC/ D
(

h W jjhjjp; 1�p WD
�Z 1

0

 1�p.y/jh.y/jpdy

	 1
p

<1
)
;

Lp;�.RC/ D
(

g W jjgjjp;� WD
�Z 1

0

�.x/jg.x/jpdx

	 1
p

<1
)
:

(a) In view of Theorem 1, for f 2 Lp;' .RC/; setting

H1.y/ WD
Z 1

0

h.xy/jf .x/jdx .y 2 RC/;

by (19), we have

jjH1jjp; 1�p WD

Z 1

0

 1�p.y/Hp
1.y/dy

� 1
p

< k.�/jjf jjp;' <1: (48)

Definition 3. Let us define the Yang–Hilbert-type integral operator with the non-
homogeneous kernel T1 W Lp;' .RC/! Lp; 1�p.RC/ as follows:

For any f 2 Lp;' .RC/; there exists a unique representation T1f D H1 2
Lp; 1�p.RC/; satisfying

T1f .y/ D H1.y/;

for any y 2 RC.

In view of (48), it follows that

jjT1f jjp; 1�p D jjH1jjp; 1�p � k.�/jjf jjp;'
and then the operator T1 is bounded satisfying

jjT1jj D sup
f .¤�/2Lp;' .RC/

jjT1f jjp; 1�p

jjf jjp;' � k.�/:

Since the constant factor k.�/ in (48) is the best possible, we have

jjT1jj D k.�/ D
Z 1

0

h.t/t��1dt: (49)
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If we define the formal inner product of T1f and g as

.T1f ; g/ WD
Z 1

0


Z 1

0

h.xy/f .x/dx

�
g.y/dy D

Z 1

0

Z 1

0

h.xy/f .x/g.y/dxdy;

then we can rewrite (18) and (19) as follows:

.T1f ; g/ < jjT1jj � jjf jjp;' jjgjjq; ; jjT1f jjp; 1�p < jjT1jj � jjf jjp;' :

(b) In view of Corollary 4, for f 2 Lp;' .RC/; setting

H.1/
1 .y/ WD

Z 1
y

0

h.xy/jf .x/jdx .y 2 RC/;

by (32), we obtain

jjH.1/
1 jjp; 1�p WD


Z 1

0

 1�p.y/.H.1/
1 .y//

pdy

� 1
p

< k.1/.�/jjf jjp;' <1:
(50)

Definition 4. Define the Hardy-type integral operator of the first kind with the non-
homogeneous kernel

T.1/1 W Lp;'.RC/! Lp; 1�p.RC/

as follows:
For any f 2 Lp;' .RC/; there exists a unique representation T.1/1 f D H.1/

1 2
Lp; 1�p.RC/; satisfying

T.1/1 f .y/ D H.1/
1 .y/;

for any y 2 RC:

In view of (50), it follows that

jjT.1/1 f jjp; 1�p D jjH.1/
1 jjp; 1�p � k.1/.�/jjf jjp;'

and thus the operator T.1/1 is bounded satisfying

jjT.1/1 jj D sup
f .¤�/2Lp;'.RC/

jjT.1/1 f jjp; 1�p

jjf jjp;' � k.1/.�/:
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Since the constant factor k.1/.�/ in (50) is the best possible, we have

jjT.1/1 jj D k.1/.�/ D
Z 1

0

h.t/t��1dt: (51)

Setting the formal inner product of T.1/1 f and g as

.T.1/1 f ; g/ D
Z 1

0

 Z 1
y

0

h.xy/f .x/dx

!
g.y/dy;

we can rewrite (31) and (32) as follows:

.T.1/1 f ; g/ < jjT.1/1 jj � jjf jjp;' jjgjjq; ; jjT.1/1 f jjp; 1�p < jjT.1/1 jj � jjf jjp;' : (52)

(c) In view of Corollary 6, for f 2 Lp;' .RC/; setting

H.2/
1 .y/ WD

Z 1
1
y

h.xy/jf .x/jdx .y 2 RC/;

by (37), we have

jjH.2/
1 jjp; 1�p WD


Z 1

0

 1�p.y/.H.2/
1 .y//

pdy

� 1
p

< k.2/.�/jjf jjp;' <1:
(53)

Definition 5. Define the second kind Hardy-type integral operator with the non-
homogeneous kernel

T.2/1 W Lp;'.RC/! Lp; 1�p.RC/

as follows:
For any f 2 Lp;' .RC/; there exists a unique representation T.2/1 f D H.2/

1 2
Lp; 1�p.RC/; satisfying

T.2/1 f .y/ D H.2/
1 .y/;

for any y 2 RC:

In view of (37), it follows that

jjT.2/1 f jjp; 1�p D jjH.2/
1 jjp; 1�p � k.2/.�/jjf jjp;'
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and hence the operator T.2/1 is bounded satisfying

jjT.2/1 jj D sup
f .¤�/2Lp;'.RC/

jjT.2/1 f jjp; 1�p

jjf jjp;' � k.2/.�/:

Since the constant factor k.2/.�/ in (53) is the best possible, we have

jjT.2/1 jj D k.2/.�/ D
Z 1

1

h.t/t��1dt: (54)

Setting the formal inner product of T.2/1 f and g as

.T.2/1 f ; g/ D
Z 1

0

 Z 1
1
y

h.xy/f .x/dx

!
g.y/dy;

we can rewrite (36) and (37) as follows:

.T.2/1 f ; g/ < jjT.2/1 jj � jjf jjp;' jjgjjq; ; jjT.2/1 f jjp; 1�p < jjT.2/1 jj � jjf jjp;' : (55)

(d) In view of Corollary 3, for f 2 Lp;� .RC/; setting

H2.y/ WD
Z 1

0

k�.x; y/jf .x/jdx .y 2 RC/;

by (29), we have

jjH2jjp; 1�p WD

Z 1

0

 1�p.y/Hp
2.y/dy

� 1
p

< k�.�/jjf jjp;� <1: (56)

Definition 6. Define the Yang–Hilbert-type integral operator with the homoge-
neous kernel T2 W Lp;� .RC/! Lp; 1�p.RC/ as follows:

For any f 2 Lp;� .RC/; there exists a unique representation T2f D H2 2
Lp; 1�p.RC/; satisfying

T2f .y/ D H2.y/;

for any y 2 RC:

In view of (56), it follows that

jjT2f jjp; 1�p D jjH2jjp; 1�p � k�.�/jjf jjp;�
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and thus the operator T2 is bounded satisfying

jjT2jj D sup
f .¤�/2Lp;� .RC/

jjT2f jjp; 1�p

jjf jjp;� � k�.�/:

Since the constant factor k�.�/ in (56) is the best possible, we have

jjT2jj D k�.�/ D
Z 1

0

k�.1; t/t
��1dt: (57)

Setting the formal inner product of T2f and g as

.T2f ; g/ D
Z 1

0


Z 1

0

k�.x; y/f .x/dx

�
g.y/dy

D
Z 1

0

Z 1

0

k�.x; y/f .x/g.y/dxdy;

we can rewrite (28) and (29) as follows:

.T2f ; g/ < jjT2jj � jjf jjp;� jjgjjq; ; jjT2f jjp; 1�p < jjT2jj � jjf jjp;� :

(e) Due to Corollary 8, for f 2 Lp;� .RC/;

H.1/
2 .y/ WD

Z 1

y
k�.x; y/jf .x/jdx .y 2 RC/;

by (41), we have

jjH.1/
2 jjp; 1�p WD


Z 1

0

 1�p.y/.H.1/
2 .y//

pdy

� 1
p

< k.1/� .�/jjf jjp;� <1:
(58)

Definition 7. Define the Hardy-type integral operator of the first kind, with the
homogeneous kernel T.1/2 W Lp;�.RC/! Lp; 1�p.RC/ as follows:

For any f 2 Lp;� .RC/; there exists a unique representation T.1/2 f D H.1/
2 2

Lp; 1�p.RC/; satisfying

T.1/2 f .y/ D H.1/
2 .y/;

for any y 2 RC:

By (41), it follows that

jjT.1/2 f jjp; 1�p D jjH.1/
2 jjp; 1�p � k.1/� .�/jjf jjp;�
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and then the operator T.1/2 is bounded satisfying

jjT.1/2 jj D sup
f .¤�/2Lp;� .RC/

jjT.1/2 f jjp; 1�p

jjf jjp;� � k.1/� .�/:

Since the constant factor k.1/� .�/ in (58) is the best possible, we have

jjT.1/2 jj D k.1/� .�/ D
Z 1

0

k�.1; t/t
��1dt: (59)

Setting the formal inner product of T.1/2 f and g as

.T.1/2 f ; g/ D
Z 1

0


Z 1

y
k�.x; y/f .x/dx

�
g.y/dy;

we can rewrite (40) and (41) as follows:

.T.1/2 f ; g/ < jjT.1/2 jj � jjf jjp;� jjgjjq; ; jjT.1/2 f jjp; 1�p < jjT.1/2 jj � jjf jjp;� :

(f) By Corollary 10, for f 2 Lp;� .RC/;

H.2/
2 .y/ WD

Z y

0

k�.x; y/jf .x/jdx .y 2 RC/;

and by (45), we have

jjH.2/
2 jjp; 1�p WD


Z 1

0

 1�p.y/.H.2/
2 .y//

pdy

� 1
p

< k.2/� .�/jjf jjp;� <1:
(60)

Definition 8. Define the Hardy-type integral operator of the second kind with the
homogeneous kernel T.2/2 W Lp;�.RC/! Lp; 1�p.RC/ as follows:

For any f 2 Lp;� .RC/; there exists a unique representation T.2/2 f D H.2/
2 2

Lp; 1�p.RC/; satisfying

T.2/2 f .y/ D H.2/
2 .y/;

for any y 2 RC.

In view of (45), it follows that

jjT.2/2 f jjp; 1�p D jjH.2/
2 jjp; 1�p � k.2/� .�/jjf jjp;�
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and then the operator T.2/2 is bounded satisfying

jjT.2/2 jj D sup
f .¤�/2Lp;� .RC/

jjT.2/2 f jjp; 1�p

jjf jjp;� � k.2/� .�/:

Since the constant factor k.2/� .�/ in (60) is the best possible, we have

jjT.2/2 jj D k.2/� .�/ D
Z 1

1

k�.1; t/t
��1dt: (61)

Setting the formal inner product of T.2/2 f and g as

.T.2/2 f ; g/ D
Z 1

0


Z y

0

k�.x; y/f .x/dx

�
g.y/dy;

we can rewrite (44) and (45) as follows:

.T.2/2 f ; g/ < jjT.2/2 jj � jjf jjp;�jjgjjq; ; jjT.2/2 f jjp; 1�p < jjT.2/2 jj � jjf jjp;�:

2.6 Some Examples

Example 1. (a) Set

h.t/ D k�.1; t/ D 1

.1C t/�
.�; � > 0;�C � D �/:

Then we have the kernels

h.xy/ D 1

.1C xy/�
; k�.x; y/ D 1

.xC y/�

and obtain the constant factors

k.�/ D k�.�/ D
Z 1

0

t��1

.1C t/�
dt D B.�; �/ 2 RC:

By (49) and (57), we have jjT1jj D jjT2jj D B.�; �/:
(b) Set

h.t/ D k�.1; t/ D � ln t

1 � t�
.�; � > 0;�C � D �/:
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Then we have the kernels

h.xy/ D ln.xy/

.xy/� � 1 ; k�.x; y/ D ln.x=y/

x� � y�

and obtain the constant factors

k.�/ D k�.�/ D
Z 1

0

.ln t/t��1

t� � 1 dt

D 1

�2

Z 1

0

.ln u/u.�=�/�1

u � 1 du D
�



� sin.�=�/

2
2 RC:

In view of (49) and (57), we have

jjT1jj D jjT2jj D
�



� sin.�=�/

2
:

(c) Set

h.t/ D k�.1; t/ D j ln tjˇ
.maxf1; tg/� .ˇ > �1; �; � > 0;�C � D �/:

Then we have the kernels

h.xy/ D j ln.xy/jˇ
.maxf1; xyg/� ; k�.x; y/ D j ln.x=y/jˇ

.maxfx; yg/�

and by using the formula (cf. [9])

� .˛/ WD
Z 1

0

e�tt˛�1dt .˛ > 0/

we obtain the following constant factors

k.�/ D k�.�/ D
Z 1

0

j ln tjˇt��1

.maxf1; tg/� dt

D
Z 1

0

.� ln t/ˇt��1dtC
Z 1

1

.ln t/ˇt��1

t�
dt

D
Z 1

0

.� ln t/ˇ.t��1 C t��1/dt D



1

�ˇC1
1

�ˇC1

�Z 1

0

vˇe�vdv

D



1

�ˇC1
C 1

�ˇC1

�
� .ˇ C 1/ 2 RC:
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By (49) and (57), we have

jjT1jj D jjT2jj D



1

�ˇC1
C 1

�ˇC1

�
� .ˇ C 1/:

Due to (51) and (59), we have

jjT.1/1 jj D jjT.1/2 jj D
1

�ˇC1
� .ˇ C 1/;

and by (54) and (61), it follows that

jjT.2/1 jj D jjT.2/2 jj D
1

�ˇC1
� .ˇ C 1/:

(d) Set

h.t/ D k�.1; t/ D j ln tjˇ
.minf1; tg/� .ˇ > �1; �; � < 0;�C � D �/:

Then we have the kernels

h.xy/ D j ln.xy/jˇ
.minf1; xyg/� ; k�.x; y/ D j ln.x=y/jˇ

.minfx; yg/�

and obtain the constant factors

k.�/ D k�.�/ D
Z 1

0

j ln tjˇt��1

.minf1; tg/� dt

D
Z 1

0

.� ln t/ˇt��1

t�
dtC

Z 1

1

.ln t/ˇt��1dt

D
Z 1

0

.� ln t/ˇ.t���1 C t���1/dt D
�

1

.��/ˇC1
1

.��/ˇC1
 Z 1

0

vˇe�vdv

D
�

1

.��/ˇC1 C
1

.��/ˇC1

� .ˇ C 1/ 2 RC:

In view of (49) and (57), we have

jjT1jj D jjT2jj D
�

1

.��/ˇC1 C
1

.��/ˇC1

� .ˇ C 1/:
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By (51) and (59), we have

jjT.1/1 jj D jjT.1/2 jj D
1

.��/ˇC1 � .ˇ C 1/;

and by (54) and (61), it follows that

jjT.2/1 jj D jjT.2/2 jj D
1

.��/ˇC1 � .ˇ C 1/:

(e) Set

h.t/ D k�.1; t/ D j ln tj
1C t�

.�; � > 0;�C � D �/:

Then we have the kernels

h.xy/ D j ln.xy/j
1C .xy/�

; k�.x; y/ D j ln.x=y/j
x� C y�

and obtain the constant factors

k.�/ D k�.�/ D
Z 1

0

j ln tjt��1
1C t�

dt

D
Z 1

0

.� ln t/t��1

t� C 1 dtC
Z 1

1

.ln t/t��1

t� C 1 dt D
Z 1

0

.� ln t/.t��1 C t��1/
t� C 1 dt

D
Z 1

0

.� ln t/
1X

kD0
.�1/k.tk�C��1 C tk�C��1/dt:

By the fact that

1X

kD0

Z 1

0

j.�1/k.� ln t/.tk�C��1 C tk�C��1/jdt

D
1X

kD0

Z 1

0

.� ln t/



1

k�C � dtk�C� C 1

k�C �dtk�C�
�

D
1X

kD0

�
1

.k�C �/2 C
1

.k�C �/2

2 RC;
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in combination with Theorem 7 (cf. [35], Chapter 5), we obtain

k.�/ D k�.�/ D
Z 1

0

.� ln t/
1X

kD0
.�1/k.tk�C��1 C tk�C��1/dt

D
1X

kD0

Z 1

0

.�1/k.� ln t/.tk�C��1 C tk�C��1/dt

D
1X

kD0
.�1/k

�
1

.k�C �/2 C
1

.k�C �/2

2 RC:

By (49) and (57), we have

jjT1jj D jjT2jj D
1X

kD0
.�1/k

�
1

.k�C �/2 C
1

.k�C �/2

:

By (51) and (59), we have

jjT.1/1 jj D jjT.1/2 jj D
1X

kD0
.�1/k 1

.k�C �/2 ;

and by (54) and (61), it follows that

jjT.2/1 jj D jjT.2/2 jj D
1X

kD0
.�1/k 1

.k�C �/2 :

(f) Set

h.t/ D k�.t; 1/ D 1

j1 � tj� . �; � > 0;�C � D � < 1/:

Then, we have kernels

h.xy/ D 1

j1 � xyj� ; k�.x; y/ D 1

jx � yj�

and obtain the constant factors

k.�/ D k�.�/ D
Z 1

0

t��1

j1 � tj� dt

D
Z 1

0

t��1 C t��1

.1 � t/�
dt D B.1 � �; �/C B.1 � �;�/ 2 RC:



674 B. Yang and M.Th. Rassias

In view of (49) and (57), we obtain

jjT1jj D jjT2jj D B.1 � �; �/C B.1� �;�/:

By (51) and (59), we have

jjT.1/1 jj D jjT.1/2 jj D B.1 � �; �/;

and by (54) and (61), it follows that

jjT.2/1 jj D jjT.2/2 jj D B.1 � �;�/:

For (a)–(f), we can obtain the equivalent inequalities with the kernels and the
best possible constant factors in Theorems 1–4. Setting ı 0 D j� j

2
> 0; we

can still obtain the equivalent reverse inequalities with the kernels and the best
possible constant factors in Theorems 1–4.

(g) Set

h.t/ D k�.1; t/ D .minft; 1g/�
.maxft; 1g/�C� .� > �minf�; �g; �C � D �/:

Then we have the kernels

h.xy/ D .minf1; xyg/�
.maxf1; xyg/�C� ; k�.x; y/ D .minfx; yg/�

.maxfx; yg/�C�

and obtain the constant factors

k.�/ D k�.�/ D
Z 1

0

.minf1; tg/�t��1
.maxf1; tg/�C� dt

D
Z 1

0

t�t��1dtC
Z 1

1

t��1

t�C�
dt D 1

� C � C
1

�C �

D �C 2�
.� C �/.�C �/ 2 RC:

In view of (49) and (57), we get

jjT1jj D jjT2jj D �C 2�
.� C �/.�C �/ :

By (51) and (59), we have

jjT.1/1 jj D jjT.1/2 jj D
1

� C �;
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and by (54) and (61), it follows that

jjT.2/1 jj D jjT.2/2 jj D
1

�C �:

Then we can derive the equivalent inequalities with the kernels and the best
possible constant factors in Theorems 1–4. Setting ı 0 D �C�

2
> 0; we can still

obtain the equivalent reverse inequalities with the kernels and the best possible
constant factors in Theorems 1–4.

In particular, (i) for � D 0,

h.t/ D k�.1; t/ D 1

.maxf1; tg/� . �; � > 0;�C � D �/;

we have

h.xy/ D 1

.maxf1; xyg/� ; k�.x; y/ D 1

.maxfx; yg/�

and

jjT1jj D jjT2jj D �

��
I

(ii) for � D ��;

h.t/ D k�.t; 1/ D 1

.minf1; tg/� . �; � < 0;�C � D �/;

we have

h.xy/ D 1

.minf1; xyg/� ; k�.x; y/ D 1

.minfx; yg/�

and

jjT1jj D jjT2jj D ��
��
I

(iii) for � D 0;

h.t/ D k0.1; t/ D



minf1; tg
maxf1; tg

��
.� > j� j/;

we have

h.xy/ D



minf1; xyg
maxf1; xyg

��
; k�.x; y/ D



minfx; yg
maxfx; yg

��
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and

jjT1jj D jjT2jj D 2�

�2 � �2 :

Example 2. (a) Set

h.t/ D k0.1; t/ D ln
�
1C �

t�

�
.� > 0; 0 < � < �/:

Then we have the kernels

h.xy/ D ln

�
1C �

.xy/�


; k0.x; y/ D ln

�
1C �



x

y

��

and obtain the constant factors

k.�/ D k0.�/ D
Z 1

0

t��1 ln
�
1C �

t�

�
dt

D 1

�

Z 1

0

ln
�
1C �

t�

�
dt�

D 1

�

�
t� ln

�
1C �

t�

�
j10 �

Z 1

0

t�d ln
�
1C �

t�

�

D �

�

Z 1

0

t��1

.t�=�/C 1dt D ��=�

�

Z 1

0

u.�=�/�1

uC 1 du

D ��=�

� sin.�=�/
2 RC:

In view of (49) and (57), we have

jjT1jj D jjT2jj D ��=�

� sin.�=�/
:

(b) Set

h.t/ D k0.1; t/ D arctan
� �

t�

�
.� > 0; 0 < � < �/:

Then we have the kernels

h.xy/ D arctan



�

.xy/�

�
; k0.x; y/ D arctan �



x

y

��
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and obtain the constant factors

k.�/ D k0.�/ D
Z 1

0

t��1 arctan
� �

t�

�
dt

D 1

�

Z 1

0

arctan
� �

t�

�
dt�

D 1

�

�
t� arctan

� �
t�

�
j10 �

Z 1

0

t�d arctan
� �

t�

�

D �

��

Z 1

0

t�C��1

.t2�=�2/C 1dt D ��=�

2�

Z 1

0

uŒ.�C�/=.2�/��1

uC 1 du

D ��=�

2� sinŒ.�C �/=.2�/� D
��=�

2� cosŒ�=.2�/�
2 RC:

By (49) and (57), we have

jjT1jj D jjT2jj D ��=�

2� cosŒ�=.2�/�
:

(c) Set

h.t/ D k0.1; t/ D e��t� .�; �; � > 0/:

Then we have the kernels

h.xy/ D e��.xy/� ; k0.x; y/ D e��.
y
x /
�

and obtain the constant factors

k.�/ D k0.�/ D
Z 1

0

t��1e��t�dt

D 1

���=�

Z 1

0

e�uu
�
��1du D 1

���=�
�



�

�

�
2 RC:

In view of (49) and (57), we have

jjT1jj D jjT2jj D 1

���=�
�



�

�

�
:

Then for (a)–(c), we can obtain the equivalent inequalities with the kernels and
the best possible constant factors in Theorems 1–4. Setting ı 0 D �

2
> 0; we

can still obtain the equivalent reverse inequalities with the kernels and the best
possible constant factors in Theorems 1–4.
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Example 3. (a) Set

h.t/ D k0.1; t/ D csc h.�t�/ D 2

e�t� � e��t�
.� > 0; 0 < � < �/

where csc h.�/ stands for the hyperbolic cosecant function (cf. [36]). Then we
have the kernels

h.xy/ D 2

e�.xy/� � e��.xy/�
; k0.x; y/ D 2

e�.
y
x /
� � e��.

y
x /
�
:

By the Lebesgue term by term integration theorem, we obtain the constant
factors

k.�/ D k0.�/ D
Z 1

0

2t��1dt

e�t� � e��t�
D
Z 1

0

2t��1dt

e�t� .1 � e�2�t� /

D 2
Z 1

0

t��1
1X

kD0
e�.2kC1/�t�dt D 2

1X

kD0

Z 1

0

t��1e�.2kC1/�t�dt

D 2

���=�

1X

kD0

1

.2kC 1/�=�
Z 1

0

e�uu
�
��1du

D 2

���=�
�



�

�

� 1X

kD0

1

.2kC 1/�=�

D 2

���=�
�



�

�

�" 1X

kD1

1

k�=�
�
1X

kD1

1

.2k/�=�

#

D 2

���=�



1 � 1

2�=�

�
�



�

�

�
#



�

�

�
2 RC;

where #
�
�
�

�
D P1

kD1 1

k�=�
(# .�/ is Riemann zeta function). In view of (49)

and (57), we have

jjT1jj D jjT2jj D 2

���=�



1 � 1

2�=�

�
�



�

�

�
#



�

�

�
:

(b) Set

h.t/ D k0.1; t/ D e��t� cot h.�t�/ D e��t� e�t� C e��t�

e�t� � e��t�

D 1C e�2�t�

e�t� � e��t�
D e��t� C e�3�t�

1 � e�2�t�
.� > 0; 0 < � < �/:
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Let cot h.�/ stand for the hyperbolic cotangent function (cf. [36]). Then we have
the kernels

h.xy/ D 1C e�2�.xy/�

e�.xy/� � e��.xy/�
; k0.x; y/ D 1C e�2�.

x
y /
�

e�.
y
x /
� � e��.

y
x /
�
:

By the Lebesgue term by term integration theorem, we obtain the constant
factors

k.�/ D k0.�/ D
Z 1

0

.e��t� C e�3�t� /t��1

1 � e�2�t�
dt

D
Z 1

0

t��1
1X

kD0
.e�.2kC1/�t� C e�.2kC3/�t�/dt

D 1

���=�

1X

kD0

�
1

.2kC 1/�=� C
1

.2kC 3/�=�
 Z 1

0

e�uu
�
��1du

D 1

���=�
�



�

�

�"
2

1X

kD0

1

.2kC 1/�=� � 1
#

D 1

���=�
�



�

�

��

2 � 1

2.�=�/�1

�
#



�

�

�
� 1


2 RC:

In view of (49) and (57), we have

jjT1jj D jjT2jj D 1

���=�
�



�

�

��

2 � 1

2.�=�/�1

�
#



�

�

�
� 1


:

Then for (a)–(b), we can obtain the equivalent inequalities with the kernels and
the best possible constant factors in Theorems 1–4. Setting ı 0 D ���

2
> 0; we

can still obtain the equivalent reverse inequalities with the kernels and the best
possible constant factors in Theorems 1–4.

(c) Set

h.t/ D k0.1; t/ D sec h.�t�/ D 2

e�t� C e��t�
.�; �; � > 0/:

Let sec h.�/ stand for the hyperbolic secant function (cf. [36]). Then we have the
kernels

h.xy/ D 2

e�.xy/� C e��.xy/�
; k0.x; y/ D 2

e�.
y
x /
� C e��.

y
x /
�
:
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By the Lebesgue term by term integration theorem, we obtain the constant
factors

k.�/ D k0.�/ D
Z 1

0

2t��1dt

e�t� C e��t�
D
Z 1

0

2t��1dt

e�t� .1C e�2�t� /

D 2

Z 1

0

t��1
1X

kD0
.�1/ke�.2kC1/�t�dt

D 2

Z 1

0

t��1
1X

kD0
Œe�.4kC1/�t� � e�.4kC3/�t� �dt

D 2

1X

kD0

Z 1

0

t��1Œe�.4kC1/�t� � e�.4kC3/�t� �dt

D 2

1X

kD0
.�1/k

Z 1

0

t��1e�.2kC1/�t�dt

D 2

���=�

1X

kD0

.�1/k
.2kC 1/�=�

Z 1

0

e�uu
�
��1du

D 2

���=�
�



�

�

�
�



�

�

�
2 RC;

where

�.
�

�
/ D

1X

kD0

.�1/k
.2kC 1/�=� :

In view of (49) and (57), we have

jjT1jj D jjT2jj D 2

���=�
�



�

�

�
�



�

�

�
:

(d) Set

h.t/ D k0.1; t/ D e��t� tan h.�t�/ D e��t� e�t� � e��t�

e�t� C e��t�

D 1 � e�2�t�

e�t� C e��t�
D e��t� � e�3�t�

1C e�2�t�
.�; �; � > 0/:
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Let tan h.�/ stand for the hyperbolic tangent function (cf. [36]). Then we have
the kernels

h.xy/ D 1 � e�2�.xy/�

e�.xy/� C e��.xy/�
; k0.x; y/ D 1 � e�2�.

y
x /
�

e�.
y
x /
� C e��.

y
x /
�
:

By the Lebesgue term by term integration theorem, we obtain the constant
factors

k.�/ D k0.�/ D
Z 1

0

.e��t� � e�3�t� /t��1

1C e�2�t�
dt

D
Z 1

0

t��1
1X

kD0
.�1/ke�.2kC1/�t�dt �

Z 1

0

t��1
1X

kD0
.�1/ke�.2kC3/�t�dt

D
Z 1

0

t��1
1X

kD0
Œe�.4kC1/�t� � e�.4kC3/�t� �dt

�
Z 1

0

t��1
1X

kD0
Œe�.4kC3/�t� � e�.4kC5/�t� �dt

D
1X

kD0

�Z 1

0

t��1Œe�.4kC1/�t� � e�.4kC3/�t� �dt

�
Z 1

0

t��1Œe�.4kC3/�t� � e�.4kC5/�t� �dtg
	

D 1

���=�

1X

kD0
.�1/k

�
1

.2kC 1/�=� �
1

.2kC 3/�=�
 Z 1

0

e�uu
�
��1du

D 1

���=�
�



�

�

�"
2

1X

kD0

.�1/k
.2kC 1/�=� � 1

#

D 1

���=�
�



�

�

�

2�



�

�

�
� 1

�
2 RC:

In view of (49) and (57), we have

jjT1jj D jjT2jj D 1

���=�
�



�

�

�

2�



�

�

�
� 1

�
:

Then for (c)–(d), we can obtain the equivalent inequalities with the kernels and
the best possible constant factors in Theorems 1–4. Setting ı 0 D �

2
> 0; we

can still obtain the equivalent reverse inequalities with the kernels and the best
possible constant factors in Theorems 1–4.
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Lemma 2. Let C stand for the set of complex numbers. If C1 D C [ f1g;

zk 2 CnfzjRe z 
 0; Im z D 0g .k D 1; 2; : : : ; n/

are different points, the function f .z/ is analytic in C1 except for zi; i D 1; 2; : : : ; n,
and z D1 is a zero point of f .z/ whose order is not less than 1, then for ˛ 2 R; we
have

Z 1

0

f .x/x˛�1dx D 2i

1 � e2˛i

nX

kD1
Re sŒf .z/z˛�1; zk�; (62)

where 0 < Im ln z D arg z < 2 . In particular, if zk; k D 1; : : : ; n; are all poles of
order 1, setting

'k.z/ D .z � zk/f .z/ .'k.zk/ ¤ 0/;

then

Z 1

0

f .x/x˛�1dx D 

sin˛

nX

kD1
.�zk/

˛�1'k.zk/: (63)

Proof. In view of the theorem (cf. [37], p. 118), we obtain (62). We have

1 � e2˛i D 1 � cos 2˛ � i sin 2˛

D �2i sin˛.cos˛ C i sin˛/ D �2iei˛ sin˛:

In particular, since

f .z/z˛�1 D 1

z � zk
'k.z/z

˛�1;

it is obvious that

Re sŒf .z/z˛�1;�ak� D zk
˛�1'k.zk/ D �ei˛.�zk/

˛�1'k.zk/:

Then by (62), we obtain (63). �

Example 4. (a) Set

h.t/ D k�.1; t/ D 1Qs
kD1.ak C t�=s/
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where s 2 N; 0 < a1 < � � � < as; �; � > 0; � C � D �: Then we have the
kernels

h.xy/ D 1Qs
kD1Œak C .xy/�=s�

; k�.x; y/ D 1Qs
kD1.akx�=s C y�=s/

:

For

f .z/ D 1Qs
kD1.zC ak/

; zk D �ak;

by (63), we get

'k.zk/ D .zC ak/
1Qs

iD1.zC ai/

ˇ̌
ˇ
zD�ak

D
sY

jD1.j¤k/

1

aj � ak
;

and obtain the constant factors

k.�/ D k�.�/ D
Z 1

0

t��1dtQs
kD1.ak C t�=s/

D s

�

Z 1

0

u.s�=�/�1duQs
kD1.uC ak/

D s

� sin.s�=�/

sX

kD1
as�=�

k

sY

jD1.j¤k/

1

aj � ak
2 RC:

In view of (49) and (57), we have

jjT1jj D jjT2jj D s

� sin.s�=�/

sX

kD1
as�=�

k

sY

jD1.j¤k/

1

aj � ak
:

In particular, (i) if s D 1; a1 D a; h.t/ D k�.1; t/ D 1

aCt�
.a; �; � > 0 �C � D

�/; then we have the kernels h.xy/ D 1

aC.xy/�
; k�.x; y/ D 1

ax�Cy�
; and

jjT1jj D jjT2jj D 

� sin.�=�/
a
�
��1I

(ii) if s D 2; a1 D a; a2 D b;

h.t/ D k�.1; t/ D 1

.aC t�=2/.bC t�=2/
.0 < a < b; �; � > 0; �C � D �/;

then we have the kernels

h.xy/ D 1

ŒaC .xy/�=2�ŒbC .xy/�=2�
; k�.x; y/ D 1

.ax�=2 C y�=2/.ax�=2 C y�=2/
;
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and

jjT1jj D jjT2jj D 2

� sin.2�=�/

1

b � a
.a

2�
� �1 � b

2�
� �1/:

(b) Set

h.t/ D k�.1; t/ D 1

t� C 2ct�=2 cos � C c2

.c > 0; j� j < 
2
; �; � > 0; �; � D �/: Then we have the kernels

h.xy/ D 1

.xy/� C 2c.xy/�=2 cos � C c2
;

k�.x; y/ D 1

y� C 2c.xy/�=2 cos � C c2x�
:

By (63), we can find

k.�/ D k�.�/ D
Z 1

0

t��1

t� C 2ct�=2 cos � C c2
dt

D 2

�

Z 1

0

u.2�=�/�1du

u2 C 2cu cos� C c2
D 2

�

Z 1

0

u.2�=�/�1du

.uC cei� /.uC ce�i� /

D 2

� sin.2�=�/

�
.cei� /.2�=�/�1

c.e�i� � ei� /
C .ce�i� /.2�=�/�1

c.ei� � e�i� /



D 2 sin �.1� 2�=�/
� sin.2�=�/ sin �

c
2�
� �2 2 RC:

In view of (49) and (57), we have

jjT1jj D jjT2jj D 2 sin �.1� 2�=�/
� sin.2�=�/ sin �

c
2�
� �2:

Then for (a)–(b), we can obtain the equivalent inequalities with the kernels and
the best possible constant factors in Theorems 1–4. Setting ı 0 D �

2
> 0;we can

obtain the equivalent reverse inequalities with the kernels and the best possible
constant factors in Theorems 1–4.

Remark 4. Setting p D q D 2; � D � D �
2

in Theorem 1 and Corollary 3, in view
of Remark 3 and the above results, if f .x/; g.y/ 
 0; with

0 <

Z 1

0

x1��f 2.x/dx <1
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and

0 <

Z 1

0

y1��g2.y/dy <1;

then we obtain the following eight couples of simpler equivalent inequalities with
an independent parameter � and the best possible constant factors:

(a) For � > 0;

Z 1

0

Z 1

0

f .x/g.y/

x� C y�
dxdy <



�


Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2

; (64)

Z 1

0

Z 1

0

f .x/g.y/

1C .xy/�
dxdy <



�


Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2 I (65)

Z 1

0

Z 1

0

f .x/g.y/

.xC y/�
dxdy < B



�

2
;
�

2

�
Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2

;

(66)
Z 1

0

Z 1

0

f .x/g.y/

.1C xy/�
dxdy < B



�

2
;
�

2

�
Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2

;

(67)
Z 1

0

Z 1

0

f .x/g.y/

.maxfx; yg/� dxdy <
4

�


Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2

; (68)

Z 1

0

Z 1

0

f .x/g.y/

.maxfxy; 1g/� dxdy <
4

�


Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2 I (69)

Z 1

0

Z 1

0

j ln. x
y /jf .x/g.y/

.maxfx; yg/� dxdy <
8

�2


Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2

;

(70)
Z 1

0

Z 1

0

j ln.xy/jf .x/g.y/
.maxf1; xyg/� dxdy <

8

�2


Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2 I

(71)
Z 1

0

Z 1

0

ln. x
y /f .x/g.y/

x� � y�
dxdy <

�
�

�2 
Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2

;

(72)
Z 1

0

Z 1

0

ln.xy/f .x/g.y/

.xy/� � 1 dxdy <
�
�

�2 
Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2 I
(73)

(b) for 0 < � < 1;

Z 1

0

Z 1

0

f .x/g.y/

jx � yj� dxdy < 2B



1 � �; �

2

�
Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2

;

(74)



686 B. Yang and M.Th. Rassias

Z 1

0

Z 1

0

f .x/g.y/

j1 � xyj� dxdy < 2B



1 � �; �

2

�
Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2 I

(75)

(c) for � < 0,

Z 1

0

Z 1

0

f .x/g.y/

.minfx; yg/� dxdy <
�4
�


Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2

; (76)

Z 1

0

Z 1

0

f .x/g.y/

.minf1; xyg/� dxdy <
�4
�


Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2 I

(77)
Z 1

0

Z 1

0

j ln. x
y /jf .x/g.y/

.minfx; yg/� dxdy <
8

�2


Z 1

0

x1��f 2.x/dx
Z 1

0

y1��g2.y/dy

� 1
2

;

(78)
Z 1

0

Z 1

0

j ln.xy/jf .x/g.y/
.minf1; xyg/� dxdy <

8

�2


Z 1

0
x1��f 2.x/dx

Z 1

0
y1��g2.y/dy

� 1
2

:

(79)

3 Yang–Hilbert-Type Integral Inequalities
in the Whole Plane

In this section, we study some Yang–Hilbert-type integral inequalities in the whole
plane with parameters and the best constant factors. The equivalent forms, the
reverses, the Hardy-type inequalities, the operator expressions, and some particular
examples are also discussed.

3.1 Weight Functions and a Lemma

Definition 9. If ı 2 f�1; 1g; � 2 R; H.t/ is a non-negative measurable function in
R, define the following weight functions:

!ı.�; y/ W D jyj�
Z 1

�1
H.xıy/jxjı��1dx.y 2 Rnf0g/; (80)

$ı.�; x/ W D jxjı�
Z 1

�1
H.xıy/jyj��1dy.x 2 Rnf0g/: (81)
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Setting t D xıy in (80), we obtain x D y� 1ı t
1
ı ; dx D 1

ı
y� 1ı t

1
ı�1dt and

!ı.�; y/ D jyj�
Z 1

�1
H.t/jy� 1ı t

1
ı jı��1jyj� 1ı jtj 1ı�1dt

D K.�/ WD
Z 1

�1
H.t/jtj��1dt: (82)

Setting t D xıy in (81), we find y D x�ı t; dy D x�ıdt and

$ı.�; x/ D jxjı�
Z 1

�1
H.t/jx�ı tj��1jxj�ıdt D K.�/: (83)

Remark 5. We can still get

K.�/ D
Z 0

�1
H.t/.�t/��1dtC

Z 1

0

H.t/t��1dt

D
Z 1

0

H.�u/u��1duC
Z 1

0

H.t/t��1dt

D
Z 1

0

.H.�t/C H.t//t��1dt: (84)

If H.t/ D H.�t/; then

K.�/ D 2
Z 1

0

H.t/t��1dt;

and thus we obtain again cases of integrals in the first quadrant. In this section, we
assume that H.t/ ¤ H.�t/:

Lemma 3. If p > 0 .p ¤ 1/; 1
p C 1

q D 1; � 2 R; both H.t/ and f .t/ are non-
negative measurable functions in R; and K.�/ is defined by (83), then, (i) for p > 1;
we have the following inequality:

J WD
Z 1

�1
jyjp��1


Z 1

�1
H.xıy/f .x/dx

�p

dy

� Kp.�/

Z 1

�1
jxjp.1�ı�/�1f p.x/dxI (85)

(ii) for 0 < p < 1; we have the reverse of (85).
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Proof. (i) By Hölder’s weighted inequality (cf. [33]) and (80), it follows that

Z 1

�1
H.xıy/f .x/dx

D
Z 1

�1
H.xıy/

� jxj.1�ı�/=q

jyj.1��/=p
f .x/

 � jyj.1��/=p

jxj.1�ı�/=q


dx

�
�Z 1

�1
H.xıy/

jxj.1�ı�/p=q

jyj1�� f p.x/dx

 1
p

�
�Z 1

�1
H.xıy/

jyj.1��/q=p

jxj1�ı� dx

 1
q

D .!ı.�; y//
1
q

jyj�� 1p
�Z 1

�1
H.xıy/

jxj.1�ı�/.p�1/
jyj1�� f p.x/dx

 1
p

: (86)

Then, by (82) and Fubini’s theorem (cf. [34]), we get

J � Kp�1.�/
Z 1

�1

Z 1

�1
H.xıy/

jxj.1�ı�/.p�1/
jyj1�� f p.x/dxdy

D Kp�1.�/
Z 1

�1

�Z 1

�1
H.xıy/

jxj.1�ı�/.p�1/
jyj1�� dy


f p.x/dx

D Kp�1.�/
Z 1

�1
$ı.�; x/jxjp.1�ı�/�1f p.x/dx: (87)

By (83), we obtain (85).
(ii) For 0 < p < 1; by the reverse of Hölder’s weighted inequality (cf. [33]), we

can similarly derive the reverses of (86) and (87). Then we obtain the reverse
of (85).

This completes the proof of the lemma.
�

3.2 Equivalent Inequalities with the Best Possible
Constant Factors

Theorem 5. Suppose that p > 1; 1p C 1
q D 1; � 2 R;H.t/ 
 0; and

K.�/ D
Z 1

�1
H.t/jtj��1dt 2 RC:

If f .x/; g.y/ 
 0; such that

0 <

Z 1

�1
jxjp.1�ı�/�1f p.x/dx <1
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and

0 <

Z 1

0

yq.1��/�1gq.y/dy <1;

then we obtain the following equivalent inequalities:

I WD
Z 1

�1

Z 1

�1
H.xıy/f .x/g.y/dxdy

< K.�/

�Z 1

�1
jxjp.1�ı�/�1f p.x/dx

 1
p
�Z 1

0

yq.1��/�1gq.y/dy

 1
q

; (88)

J D
Z 1

�1
jyjp��1


Z 1

�1
H.xıy/f .x/dx

�p

dy

< Kp.�/

Z 1

�1
jxjp.1�ı�/�1f p.x/dx; (89)

where the constant factors K.�/ and Kp.�/ are the best possible.

In particular, for ı D 1; we have

I WD
Z 1

�1

Z 1

�1
H.xy/f .x/g.y/dxdy

< K.�/

�Z 1

�1
jxjp.1��/�1f p.x/dx

 1
p
�Z 1

0

yq.1��/�1gq.y/dy

 1
q

; (90)

J D
Z 1

�1
jyjp��1


Z 1

�1
H.xy/f .x/dx

�p

dy

< Kp.�/

Z 1

�1
jxjp.1��/�1f p.x/dx: (91)

Proof. We shall initially prove that (86) preserves the form of strict inequality for
any y 2 Rnf0g. Otherwise, there exist two constants A and B; such that they are not
both zero, and (cf. [33])

A
jxj.1�ı�/p=q

jyj1�� f p.x/ D B
jyj.1��/q=p

jxj1�� a. e. in R:

If A D 0; then B D 0; which is impossible. Suppose that A ¤ 0: Then it follows
that

jxjp.1�ı�/�1f p.x/ D jyj.1��/q B

Ajxj a. e. in R;
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which contradicts the fact that

0 <

Z 1

�1
jxjp.1�ı�/�1f p.x/dx <1;

in virtue of
Z 1

�1
1

jxjdx D1:

Hence, both (86) and (87) preserve the forms of strict inequality, and thus we
obtain (89).

By Hölder’s inequality (cf. [33]), we find

I D
Z 1

�1



jyj�� 1p

Z 1

�1
H.xıy/f .x/dx

�
.jyj 1p��g.y//dy

� J
1
p

�Z 1

�1
jyjq.1��/�1gq.y/dy

 1
q

: (92)

Then by (89), we have (88). On the other hand, assuming that (88) is valid, we set

g.y/ WD jyjp��1

Z 1

�1
H.xıy/f .x/dx

�p�1
; y 2 R:

Then we get

J D
Z 1

�1
jyjq.1��/�1gq.y/dy:

By (85), in view of

0 <

Z 1

�1
jxjp.1�ı�/�1f p.x/dx <1;

it follows that J <1:
If J D 0; then (89) is trivially valid; if J > 0; then by (88), we have

0 <

Z 1

�1
jyjq.1��/�1gq.y/dy D J D I

< K.�/

�Z 1

�1
jxjp.1�ı�/�1f p.x/dx

 1
p
�Z 1

�1
jyjq.1��/�1gq.y/dy

 1
q

;

J
1
p D

�Z 1

�1
yq.1��/�1gq.y/dy

 1
p

< K.�/

�Z 1

�1
jxjp.1�ı�/�1f p.x/dx

 1
p

;

and then (89) follows, which is equivalent to (88).
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For any n 2 N, we define two sets

Eı WD fx 2 RI jxjı 
 1g; ECı WD fx 2 RCI xı 
 1g;

and the functions fn.x/, gn.y/ as follows:

fn.x/ WD
(

0; x 2 RnEı
jxjı.�� 1

np /�1; x 2 Eı
gn.y/ WD

(
jyj�C 1

nq�1; y 2 Œ�1; 1�
0; y 2 RnŒ�1; 1�

Then we find

Ln WD
�Z 1

�1
jxjp.1�ı�/�1f p

n .x/dx

 1
p
�Z 1

�1
jyjq.1��/�1gq

n.y/dy

 1
q

D

Z

Eı

jxj� ın�1dx

� 1
p

Z 1

�1
jyj 1n�1dy

� 1
q

D
 
2

Z

EC

ı

x�
ı
n�1dx

! 1
p 

2

Z 1

0

y
1
n�1dy

� 1
q

D 2n:

Setting Y D �y; we obtain

I.x/ WD
Z 1

�1
H.xıy/jyj�C 1

nq�1dy

D
Z 1

�1
H..�x/ıY/jYj�C 1

nq�1dY D I.�x/;

and then I.x/ is an even function. For x > 0; we find

I.x/ D
Z 0

�1
H.xıy/.�y/�C

1
nq�1dyC

Z 1

0

H.xıy/y�C
1

nq�1dy

D x�ı��
ı

nq

Z xı

0

.H.�t/C H.t//t�C
1

nq�1dt:

By the above results and Fubini’s theorem, it follows that

In WD
Z 1

�1

Z 1

�1
H.xıy/fn.x/gn.y/dxdy

D
Z

Eı

jxjı.�� 1
np /�1


Z 1

�1
H.xıy/jyj�C 1

nq�1dy

�
dx
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D
Z

Eı

jxjı.�� 1
np /�1I.x/dx D 2

Z

EC

ı

xı.��
1

np /�1I.x/dx

D 2

Z

EC

ı

x�
ı
n�1


Z 1

0

.H.�t/C H.t//t�C
1

nq�1dt

�
dx

C2
Z

EC

ı

x� ı
n�1

 Z xı

1

.H.�t/C H.t//t�C
1
nq�1dt

!
dx

D 2n


Z 1

0

.H.�t/C H.t//t�C
1
nq�1dt

�

C2
Z 1

1


Z

fx>0Ixı�tg
x�

ı
n�1dx

�
.H.�t/C H.t//t�C

1
nq�1dt

D 2n

�Z 1

0

.H.�t/CH.t//t�C
1
nq�1dt C

Z 1

1

.H.�t/C H.t//t��
1
np�1dt


:

If there exists a positive number k � K.�/; such that (88) is still valid when
replacing K.�/ by k; then in particular, it follows that

1

2n
In < k

1

2n
Ln;

and

Z 1

0

.H.�t/C H.t//t�C
1
nq�1dtC

Z 1

1

.H.�t/C H.t//t��
1
np�1dt < k:

Since both

f.H.�t/C H.t//t�C
1
nq�1g1nD1 .t 2 .0; 1�/

and

f.H.�t/C H.t//t��
1

np�1g1nD1 .t 2 .1;1//

are non-negative and increasing, then by Levi’s theorem (cf. [34]), it follows that

K.�/ D
Z 1

0

.H.�t/C H.t//t��1dtC
Z 1

1

.H.�t/C H.t//t��1dt

D lim
n!1


Z 1

0

.H.�t/C H.t//t�C
1
nq�1dtC

Z 1

1

.H.�t/C H.t//t��
1
np�1dt

�

� k;

and thus k D K.�/ is the best possible constant factor of (88).
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The constant factor in (89) is still the best possible. Otherwise, we would reach
a contradiction by (92). This completes the proof of the theorem. �

Theorem 6. Replacing p > 1 by 0 < p < 1 in Theorem 1, we obtain the equivalent
reverses of (88) and (89). If there exists a constant ı 0 > 0; such that for any Q� 2
.� � ı 0; ��;

K. Q�/ D
Z 1

�1
H.t/jtjQ��1dt 2 RC;

then the constant factors in the reverses of (88) and (89) are the best possible.

Proof. By Lemma 3 and the reverse of Hölder’s inequality, we get the reverses
of (88), (89), and (92). Similarly, we can set g.y/ as in Theorem 5, and prove that
the reverses of (88) and (89) are equivalent.

For n > 2
ı 0jqj .n 2 N/; we set fn.x/ and gn.y/ as in Theorem 1. If there exists

a positive number k 
 K.�/; such that the reverse of (88) is valid when replacing
K.�/ by k; then it follows that

1

2n
In > k

1

2n
Ln;

and

Z 1

0

.H.�t/C H.t//t�C
1
nq�1dtC

Z 1

1

.H.�t/C H.t//t��
1

np�1dt > k: (93)

Since

f.H.�t/C H.t//t��
1

np�1g1nD1 .t 2 .1;1//

is still a non-negative and increasing sequence, then by Levi’s theorem, it follows
that

lim
n!1

Z 1

1

.H.�t/C H.t//t��
1
np�1dt D

Z 1

1

.H.�t/C H.t//t��1dt:

Due to the fact that

0 � .H.�t/C H.t//t�C
1

nq�1 � .H.�t/C H.t//t.��
ı 0
2 /�1

.t 2 .0; 1�; n > 2
ı 0jqj /; and

0 �
Z 1

0

.H.�t/C H.t//t.��
ı 0
2 /�1dt � K



� � ı 0

2

�
<1;
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then, by Lebesgue’s dominated convergence theorem (cf. [34]), it follows that

lim
n!1

Z 1

0

.H.�t/C H.t//t�C
1
nq�1dt D

Z 1

0

.H.�t/CH.t//t��1dt:

In view of the above results and (93), we have

K.�/ D
Z 1

0

.H.�t/C H.t//t��1dtC
Z 1

1

.H.�t/CH.t//t��1dt

D lim
n!1


Z 1

0

.H.�t/C H.t//t�C
1

nq�1dt

C
Z 1

1

.H.�t/C H.t//t��
1

np�1dt

�

 k;

and then k D K.�/ is the best possible constant factor in the reverse of (88).
Similarly, we can prove that the constant factor in the reverse of (89) is the best

possible by using the reverse of (92). �

3.3 Yang–Hilbert-Type Integral Inequalities in the Whole
Plane with Multi-Variables

Theorem 7. Suppose that p > 1; 1
p C 1

q D 1; H.t/ 
 0; K.�/ 2 RC; ı 2
f�1; 1g; �1 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi//; vi.a

C
i / D �1; vi.b�i / D

1 .i D 1; 2/: If f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

jv1.x/jp.1�ı�/�1
.v01.x//p�1

f p.x/dx <1

and

0 <

Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy <1;

then we have the following equivalent inequalities:

Z b2

a2

Z b1

a1

H.vı1.x/v2.y//f .x/g.y/dxdy

< K.�/

�Z b1

a1

jv1.x/jp.1�ı�/�1
.v01.x//p�1

f p.x/dx

 1
p

�
�Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy

 1
q

; (94)
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Z b2

a2

v02.y/
jv2.y/j1�p�


Z b1

a1

H.vı1.x/v2.y//f .x/dx

�p

dy

< Kp.�/

Z b1

a1

jv1.x/jp.1�ı�/�1
.v01.x//p�1

f p.x/dx; (95)

where the constant factors K.�/ and Kp.�/ are the best possible.

Proof. Setting x D v1.s/; y D v2.t/ in (88), we get dx D v01.s/ds; dy D v02.t/dt;
and

I D
Z b2

a2

Z b1

a1

H.vı1.s/v2.t//f .v1.s//g.v2.t//v
0
1.s/v

0
2.t/dsdt

D
Z b2

a2

Z b1

a1

H.vı1.s/v2.t//.f .v1.s//v
0
1.s//.g.v2.t//v

0
2.t//dsdt;

I1 WD
Z 1

�1
jxjp.1�ı�/�1f p.x/dx D

Z b1

a1

jv1.s/jp.1�ı�/�1f p.v1.s//v
0
1.s/ds;

I2 WD
Z 1

�1
yq.1��/�1gq.y/dy D

Z b2

a2

jv2.t/jq.1��/�1gq.v2.t//v
0
2.t/dt:

If we set

F.s/ D f .v1.s//v
0
1.s/ and G.t/ D g.v2.t//v

0
2.t/;

we obtain

f p.v1.s// D .v01.s//�pFp.s/; gq.v2.t// D .v02.t//�qGq.t/;

and then it follows that

I D
Z b2

a2

Z b1

a1

H.vı1.s/v2.t//F.s/G.t/dsdt;

I1 D
Z b1

a1

jv1.s/jp.1�ı�/�1
.v01.s//p�1

Fp.s/ds;

I2 D
Z b2

a2

jv2.t/jq.1��/�1
.v02.t//q�1

Gq.t/dt:
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Substitution of the above results to (88), with

s D x; t D y; F.s/ D f .x/; and G.t/ D g.y/;

we obtain (94). Similarly, we derive (95). On the other hand, if we set

v1.x/ D x; v2.y/ D y; ai D �1; bi D1

in (94), we get (88). Hence, the inequalities (94) and (88) are equivalent. It is
evident that the inequalities (95) and (89) are equivalent. Hence, the inequalities (94)
and (95) are equivalent. Since the constant factors in (88) and (89) are the best
possible, it follows that the constant factors in (94) and (95) are also the best
possible. This completes the proof of the theorem. �
Theorem 8. Replacing p > 1 by 0 < p < 1 in Theorem 7, we obtain the equivalent
reverses of (94) and (95). If there exists a constant ı 0 > 0; such that for any Q� 2
.� � ı 0; ��;

K. Q�/ D
Z 1

�1
H.t/jtjQ��1dt 2 RC;

then the constant factors in the reverses of (94) and (95) are the best possible.

Remark 6. We list the following vi.s/ .i D 1; 2/ that satisfy the conditions of
Theorems 7 and 8:

(a) vi.s/ D s� ; s 2 .�1;1/ .� 2 faI a D 1
2k�1 ; 2k C 1 .k 2 N/g/; satisfying

v0i.s/ D �s��1 > 0I
(b) vi.s/ D tan� s; s 2 .�

2
; 
2
/ .� 2 faI a D 1

2k�1 ; 2k C 1 .k 2 N/g/; satisfying
v0i.s/ D � tan��1 s sec2 s > 0I

(c) vi.s/ D ln� s; s 2 .0;1/ .� 2 faI a D 1
2k�1 ; 2k C 1 .k 2 N/g/; satisfying

v0i.s/ D �

s ln��1 s > 0I
(d) vi.s/ D .ejsj � 1/sgn.s/; s 2 .�1;1/; satisfying v0i.s/ D ejsj > 0:

Definition 10. If � 2 R;K�.x; y/ is a non-negative measurable function in R2,
satisfying

K�.tx; ty/ D jtj��K�.x; y/;

for any t 2 Rnf0g; x; y 2 R; then K�.x; y/ is said to be the homogeneous function
of degree �� in R2.

In particular, by Theorems 7 and 8, with ı D 1, we obtain the following integral
inequalities with the non-homogeneous kernel:
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Corollary 12. Suppose that p > 1; 1p C 1
q D 1; � 2 R;H.t/ 
 0;

K.�/ D
Z 1

�1
H.t/jtj��1dt 2 RC;

�1 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi//; vi.a
C
i / D �1; vi.b�i / D 1 .i D

1; 2/: If f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx <1

and

0 <

Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy <1;

then we have the following equivalent inequalities:

Z b2

a2

Z b1

a1

H.v1.x/v2.y//f .x/g.y/dxdy

< K.�/

�Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx

 1
p

�
�Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy

 1
q

; (96)

Z b2

a2

v02.y/
jv2.y/j1�p�


Z b1

a1

H.v1.x/v2.y//f .x/dx

�p

dy

< Kp.�/

Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx; (97)

where the constant factors K.�/ and Kp.�/ are the best possible.

Replacing p > 1 by 0 < p < 1 in Corollary 12, we derive the equivalent reverses
of (96) and (97). If there exists a constant ı 0 > 0; such that for any Q� 2 .� � ı 0; ��;

K. Q�/ D
Z 1

�1
H.t/jtjQ��1dt 2 RC;

then the constant factors in the reverses of (96) and (97) are the best possible.
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In particular, for ı D �1 in Theorems 7 and 8, setting H.t/ D K�.1; t/ (cf.
Definition 10), we get

H



v2.y/

v1.x/

�
D K�



1;
v2.y/

v1.x/

�
D jv1.x/j�K�.v1.x/; v2.y//:

Replacing f .x/ by jv1.x/j��f .x/; it follows that jv1.x/jp.1C�/�1f p.x/ is replaced by

jv1.x/jp.1C�/�1Œjv1.x/j��f .x/�p D jv1.x/jp.1��/�1f p.x/;

and we have the following integral inequalities with the homogeneous kernel:

Corollary 13. Let p > 1; 1p C 1
q D 1; �; � 2 R; � C � D �; K�.x; y/ is a

homogeneous function in R2 of degree ��;

K�.�/ WD
Z 1

�1
K�.1; t/jtj��1dt 2 RC;

0 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi//; vi.a
C
i / D �1; vi.b�i / D 1 .i D 1; 2/:

If f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx <1

and

0 <

Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy <1;

then we have the following equivalent inequalities:

Z b2

a2

Z b1

a1

K�.v1.x/; v2.y//f .x/g.y/dxdy

< K�.�/

�Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx

 1
p

�
�Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy

 1
q

; (98)
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Z b2

a2

v02.y/
jv2.y/j1�p�


Z b1

a1

K�.v1.x/; v2.y//f .x/dx

�p

dy

< Kp
�.�/

Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx; (99)

where the constant factors K�.�/ and Kp
�.�/ are the best possible.

Replacing p > 1 by 0 < p < 1 in the above cases, we obtain the equivalent
reverses of (98) and (99). If there exists a constant ı 0 > 0; such that for any Q� 2
.� � ı 0; ��;

K�. Q�/ D
Z 1

�1
K�.1; t/jtjQ��1dt 2 RC;

then the constant factors in the reverses of (98) and (99) are the best possible.
Setting ai D �1; bi D1 .i D 1; 2/; v1.x/ D x; v2.y/ D y in Corollary 13, we

obtain the following corollary:

Corollary 14. Let p > 1; 1
p C 1

q D 1; �; � 2 R; � C � D �; K�.x; y/ is a

homogeneous function in R2 of degree ��;

K�.�/ D
Z 1

�1
K�.1; t/t

��1dt 2 RC:

If f .x/; g.y/ 
 0;

0 <

Z 1

0

xp.1��/�1f p.x/dx <1

and

0 <

Z 1

0

gq.1��/�1.y/dy <1;

then we have the following equivalent inequalities:

Z 1

�1

Z 1

�1
K�.x; y/f .x/g.y/dxdy

< K�.�/

�Z 1

�1
xp.1��/�1f p.x/dx

 1
p
�Z 1

�1
yq.1��/�1gq.y/dy

 1
q

; (100)

Z 1

�1
yp��1


Z 1

�1
K�.x; y/f .x/dx

�p

dy < Kp
�.�/

Z 1

0

xp.1��/�1f p.x/dx; (101)

where the constant factors K�.�/ and Kp
�.�/ are the best possible.
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Replacing p > 1 by 0 < p < 1 in the above cases, we get the equivalent
reverses of (100) and (101). If there exists a constant ı 0 > 0; such that for any
Q� 2 .� � ı 0; ��;

K�. Q�/ D
Z 1

�1
K�.1; t/jtjQ��1dt 2 RC;

then the constant factors in the reverses of (100) and (101) are the best possible.

Remark 7. It is evident that (90) and (100) are equivalent for H.t/ D K�.1; t/: The
same holds for (91) and (101).

3.4 Hardy-Type Integral Inequalities in the Whole Plane

In the following two sections, if the constant factors in the inequalities (operator
inequalities) are related to K.1/.�/ (or K.1/

� .�/), then we shall call them Hardy-type
inequalities (operator) of the first kind; if the constant factors in the inequalities
(operator inequalities) are related to K.2/.�/ (or K.2/

� .�/), then we shall call them
Hardy-type inequalities (operator) of the second kind.

If H.t/ D 0 .jtj > 1/, then H.xy/ D 0 .jxj > 1
jyj > 0/; and

K.�/ D
Z 1

�1
H.t/jtj��1dt D

Z 1

�1
H.t/jtj��1dt:

Set

K.1/.�/ WD
Z 1

�1
H.t/jtj��1dt D

Z 1

0

.H.�t/CH.t//t��1dt: (102)

Then, by Theorems 7 and 8 (ı D 1), we have the following Hardy-type integral
inequalities of the first kind, with non-homogeneous kernel in the whole plane:

Corollary 15. Suppose that p > 1; 1p C 1
q D 1; H.t/ 
 0; � 2 R;

K.1/.�/ D
Z 1

�1
H.t/jtj��1dt 2 RC:

If f .x/; g.y/ 
 0;

0 <

Z 1

�1
jxjp.1��/�1f p.x/dx <1
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and

0 <

Z 1

�1
jyjq.1��/�1gq.y/dy <1;

then we have the following equivalent inequalities:

Z 1

�1

 Z 1
jyj

� 1
jyj

H.xy/f .x/dx

!
g.y/dy D

Z 1

0

 Z 1
jxj

� 1
jxj

H.xy/g.y/dy

!
f .x/dx

< K.1/.�/

�Z 1

�1
jxjp.1��/�1f p.x/dx

 1
p
�Z 1

�1
jyjq.1��/�1gq.y/dy

 1
q

; (103)

Z 1

�1
jyjp��1

 Z 1
jyj

� 1
jyj

H.xy/f .x/dx

!p

dy < .K.1/.�//p
Z 1

�1
jxjp.1��/�1f p.x/dxI

(104)
where the constant factors K.1/.�/ and .K.1/.�//p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we obtain the equivalent
reverses of (103) and (104). If there exists a constant ı 0 > 0; such that for any
Q� 2 .� � ı 0; ��;

K.1/. Q�/ D
Z 1

�1
H.t/jtjQ��1dt 2 RC;

then the constant factors in the reverses of (103) and (104) are the best possible.
If we have H.t/ D 0 .jtj > 1/ in Corollary 12, then

H.v1.x/v2.y// D 0


jv1.x/j > 1

jv2.y/j > 0
�
;

and thus we derive the following general results:

Corollary 16. Suppose that p > 1; 1p C 1
q D 1; H.t/ 
 0; � 2 R;

K.1/.�/ D
Z 1

�1
H.t/jtj��1dt 2 RC;

�1 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi//; vi.a
C
i / D �1; vi.b�i / D 1

.i D 1; 2/: If f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx <1
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and

0 <

Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy <1;

then we obtain the following equivalent inequalities:

Z b2

a2

 Z v�1
1 . 1

jv2.y/j
/

v�1
1 . �1

jv2.y/j
/

H.v1.x/v2.y//f .x/dx

!
g.y/dy

< K.1/.�/

�Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx

 1
p

�
�Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy

 1
q

; (105)

Z b2

a2

v02.y/
jv2.y/j1�p�

 Z v�1
1 . 1

jv2.y/j
/

v�1
1 . �1

jv2.y/j
/

H.v1.x/v2.y//f .x/dx

!p

dy

< .K.1/.�//p
Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx; (106)

where the constant factors K.1/.�/ and .K.1/.�//p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we get the equivalent
reverses of (105) and (106). If there exists a constant ı 0 > 0; such that for any
Q� 2 .� � ı 0; ��;

K.1/. Q�/ D
Z 1

�1
H.t/jtjQ��1dt 2 RC;

then the constant factors in the reverses of (105) and (106) are the best possible.
If H.t/ D 0 .0 < jtj < 1/, then H.xy/ D 0 .0 < jxj < 1

jyj /; and

K.�/ D
Z 1

�1
H.t/jtj��1dt D

Z �1

�1
H.t/.�t/��1dtC

Z 1

1

H.t/t��1dt

D
Z 1

1

.H.�t/C H.t//t��1dt: (107)

If we set

Ey WD
�

x 2 RI x 
 1

jyj ; or x � �1jyj
	
;
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and

K.2/.�/ WD
Z

E1

H.t/jtj��1dt D
Z 1

1

.H.�t/C H.t//t��1dt;

then, by Theorems 7 and 8 (ı D 1), we obtain the following Hardy-type integral
inequalities of the second kind with the non-homogeneouskernel in the whole plane:

Corollary 17. Let p > 1; 1p C 1
q D 1; H.t/ 
 0; � 2 R;

K.2/.�/ D
Z 1

1

.H.�t/C H.t//t��1dt 2 RC:

If f .x/; g.y/ 
 0;

0 <

Z 1

�1
jxjp.1��/�1f p.x/dx <1

and

0 <

Z 1

�1
jyjq.1��/�1gq.y/dy <1;

then we have the following equivalent inequalities:

Z 1

�1

 Z

Ey

H.xy/f .x/dx

!
g.y/dy

< K.2/.�/

�Z 1

�1
jxjp.1��/�1f p.x/dx

 1
p
�Z 1

�1
jyjq.1��/�1gq.y/dy

 1
q

; (108)

Z 1

�1
jyjp��1

 Z

Ey

H.xy/f .x/dx

!p

dy < .K.2/.�//p
Z 1

�1
jxjp.1��/�1f p.x/dxI

(109)
where the constant factors K.2/.�/ and .K.2/.�//p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we get the equivalent
reverses of (108) and (109). If there exists a constant ı 0 > 0; such that for any
Q� 2 .� � ı 0; ��;

K.2/. Q�/ D
Z 1

1

.H.�t/C H.t//tQ��1dt 2 RC;

then the constant factors in the reverses of (108) and (109) are the best possible.
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If we have H.t/ D 0 .0 < jtj < 1/ in Corollary 12, then

H.v1.x/v2.y// D 0


0 < jv1.x/j < 1

jv2.y/j
�
:

Setting

QEy WD
�

x 2 .a1; b1/I x 
 v�11



1

jv2.y/j
�

or x � v�11

 �1
jv2.y/j

�	
;

we obtain the following general results:

Corollary 18. Let p > 1; 1p C 1
q D 1; H.t/ 
 0; � 2 R;

K.2/.�/ D
Z 1

1

.H.�t/C H.t//t��1dt 2 RC;

�1 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi//; vi.a
C
i / D �1; vi.b�i / D 1 .i D

1; 2/: If f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx <1

and

0 <

Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy <1;

then we have the following equivalent inequalities:

Z b2

a2

 Z

QEy

H.v1.x/v2.y//f .x/dx

!
g.y/dy

< K.2/.�/

�Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx

 1
p

�
�Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy

 1
q

; (110)
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Z b2

a2

v02.y/
jv2.y/j1�p�

 Z

QEy

H.v1.x/v2.y//f .x/dx

!p

dy

< .K.2/.�//p
Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx; (111)

where the constant factors K.2/.�/ and .K.2/.�//p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we get the equivalent
reverses of (110) and (111). If there exists a constant ı 0 > 0; such that for any
Q� 2 .� � ı 0; ��;

K.2/. Q�/ D
Z 1

1

.H.�t/C h.t//tQ��1dt 2 RC;

then the constant factors in the reverses of (110) and (111) are the best possible.
Similarly, if K�.1; t/ D 0 .jtj > 1/; then

K�.x; y/ D jxj��K�
�
1;

y

x

�
D 0 .jyj > jxj/:

By Corollary 14, setting

Fy WD fx 2 RI x 
 jyj or x � �jyjg ;

we obtain the following Hardy-type integral inequalities of the first kind, with the
homogeneous kernel in the whole plane:

Corollary 19. Let p > 1; 1p C 1
q D 1; �; � 2 R; � C � D �; K�.x; y/ is a

homogeneous function of degree �� in R2;

K.1/

� .�/ D
Z 1

�1
K�.1; t/jtj��1dt 2 RC:

If f .x/; g.y/ 
 0; such that

0 <

Z 1

�1
jxjp.1��/�1f p.x/dx <1

and

0 <

Z 1

�1
jyjq.1��/�1gq.y/dy <1;
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then we have the following equivalent inequalities:

Z 1

�1

 Z

Fy

K�.x; y/f .x/dx

!
g.y/dy

< K.1/

� .�/

�Z 1

�1
jxjp.1��/�1f p.x/dx

 1
p
�Z 1

�1
jyjq.1��/�1gq.y/dy

 1
q

; (112)

Z 1

�1
jyjp��1

 Z

Fy

K�.x; y/f .x/dx

!p

dy < .K.1/

� .�//
p
Z 1

�1
jxjp.1��/�1f p.x/dx;

(113)

where the constant factors K.1/

� .�/ and .K.1/

� .�//
p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we get the equivalent
reverses of (112) and (113). If there exists a constant ı 0 > 0; such that for any
Q� 2 .� � ı 0; ��;

K.1/

� . Q�/ D
Z 1

�1
K�.1; t/jtjQ��1dt 2 RC;

then the constant factors in the reverses of (112) and (113) are the best possible.
If K�.1; t/ D 0 .jtj > 1/ in Corollary 12, then

K�.v1.x/; v2.y// D 0 .0 < jv1.x/j < jv2.y/j/:
Setting

QFy WD fx 2 .a1; b1/I x 
 v�11 .jv2.y/j/ or x � v�11 .�jv2.y/j/g;
we obtain the following general results:

Corollary 20. Let p > 1; 1
p C 1

q D 1; �; � 2 R; � C � D �; K�.x; y/ is a

homogeneous function of degree �� in R2;

K.1/

� .�/ D
Z 1

�1
K�.1; t/jtj��1dt 2 RC;

�1 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi//; vi.a
C
i / D �1; vi.b�i / D 1

.i D 1; 2/: If f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx <1

and

0 <

Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy <1;
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then we have the following equivalent inequalities:

Z b2

a2

 Z

QFy

K�.v1.x/; v2.y//f .x/dx

!
g.y/dy

< K.1/

� .�/

�Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx

 1
p

�
�Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy

 1
q

; (114)

Z b2

a2

v02.y/
jv2.y/j1�p�

 Z

QFy

K�.v1.x/; v2.y//f .x/dx

!p

dy

< .K.1/

� .�//
p
Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx; (115)

where the constant factors K.1/

� .�/ and .K.1/

� .�//
p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we obtain the equivalent
reverses of (114) and (115). If there exists a constant ı 0 > 0; such that for any
Q� 2 .� � ı 0; ��;

K.1/

� . Q�/ D
Z 1

�1
K�.1; t/jtjQ��1dt 2 RC;

then the constant factors in the reverses of (114) and (115) are the best possible.
Similarly, if K�.1; t/ D 0 .0 < jtj < 1/ in Corollary 14, then

K�.x; y/ D 0 .jxj > jyj > 0/:

The following Hardy-type integral inequalities of the second kind with the homoge-
neous kernel hold true:

Corollary 21. Let p > 1; 1
p C 1

q D 1; �; � 2 R; � C � D �; K�.x; y/ is a

homogeneous function of degree �� in R2;

K.2/

� .�/ D
Z 1

1

.K�.1;�t/C K�.1; t//t
��1dt 2 RC:

If f .x/; g.y/ 
 0;

0 <

Z 1

�1
jxjp.1��/�1f p.x/dx <1
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and

0 <

Z 1

�1
jyjq.1��/�1gq.y/dy <1;

then we have the following equivalent inequalities:

Z 1

�1

 Z jyj

�jyj
K�.x; y/f .x/dx

!
g.y/dy D

Z 1

�1

 Z jxj

�jxj
K�.x; y/g.y/dy

!
f .x/dx

< K.2/

� .�/

�Z 1

�1
jxjp.1��/�1f p.x/dx

 1
p
�Z 1

�1
jyjq.1��/�1gq.y/dy

 1
q

; (116)

Z 1

�1
jyjp��1

 Z jyj

�jyj
K�.x; y/f .x/dx

!p

dy < .K.2/

� .�//
p
Z 1

�1
jxjp.1��/�1f p.x/dxI

(117)
where the constant factors K.2/

� .�/ and .K.2/

� .�//
p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we obtain the equivalent
reverses of (116) and (117). If there exists a constant ı 0 > 0; such that for any
Q� 2 .� � ı 0; ��;

K.2/

� . Q�/ D
Z 1

1

.K�.1;�t/C K�.1; t//t
Q��1dt 2 RC;

then the constant factors in the reverses of (116) and (117) are the best possible.
If K�.1; t/ D 0 .0 < jtj < 1/ in Corollary 12, then

K�.v1.x/; v2.y// D 0 .jv1.x/j > jv2.y/j > 0/;

we have the following general results:

Corollary 22. Let p > 1; 1
p C 1

q D 1; �; � 2 R; � C � D �; K�.x; y/ is a

homogeneous function of degree �� in R2;

K.2/

� .�/ D
Z 1

1

.K�.1;�t/C K�.1; t//t
��1dt 2 RC;

�1 � ai < bi � 1; v0i.s/ > 0 .s 2 .ai; bi//; vi.a
C
i / D �1; vi.b�i / D 1 .i D

1; 2/: If f .x/; g.y/ 
 0; such that

0 <

Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx <1
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and

0 <

Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy <1;

then we have the following equivalent inequalities:

Z b2

a2

 Z v�1
1 .jv2.y/j/

v�1
1 .�jv2.y/j/

K�.v1.x/; v2.y//f .x/dx

!
g.y/dy

< K.2/

� .�/

�Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx

 1
p

�
�Z b2

a2

jv2.y/jq.1��/�1
.v02.y//q�1

gq.y/dy

 1
q

; (118)

Z b2

a2

v02.y/
jv2.y/j1�p�

 Z v�1
1 .jv2.y/j/

v�1
1 .�jv2.y/j/

K�.v1.x/; v2.y//f .x/dx

!p

dy

< .K.2/

� .�//
p
Z b1

a1

jv1.x/jp.1��/�1
.v01.x//p�1

f p.x/dx; (119)

where the constant factors K.2/

� .�/ and .K.2/

� .�//
p are the best possible.

Replacing p > 1 by 0 < p < 1 in the above inequalities, we have the equivalent
reverses of (118) and (119). If there exists a constant ı 0 > 0; such that for any
Q� 2 .� � ı 0; ��;

K.2/

� . Q�/ D
Z 1

1

.K�.1;�t/C K�.1; t//t
Q��1dt 2 RC;

then the constant factors in the reverses of (118) and (119) are the best possible.

3.5 Yang–Hilbert-Type Operators and Hardy-Type Operators
in the Whole Plane

Let p > 1; 1p C 1
q D 1; �; � 2 R; �C � D �: We define the following functions:

'.x/ WD jxjp.1��/�1;  .y/ WD jyjq.1��/�1; �.x/ WD jxjp.1��/�1.x; y 2 R/;

wherefrom,  1�p.y/ D jyjp��1:
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We define also the following real normed linear space:

Lp;'.R/ WD
(

f W jjf jjp;' WD
�Z 1

�1
'.x/jf .x/jpdx

	 1
p

<1
)
;

wherefrom,

Lp; 1�p.R/ D
(

h W jjhjjp; 1�p WD
�Z 1

�1
 1�p.y/jh.y/jpdy

	 1
p

<1
)
;

Lp;� .R/ D
(

g W jjgjjp;� WD
�Z 1

�1
�.x/jg.x/jpdx

	 1
p

<1
)
:

(a) In view of Theorem 5 (ı D 1/, for f 2 Lp;' .R/;

H1.y/ WD
Z 1

�1
H.xy/jf .x/jdx .y 2 RC/;

by (91), we have

jjH1jjp; 1�p WD

Z 1

�1
 1�p.y/Hp

1.y/dy

� 1
p

< K.�/jjf jjp;' <1: (120)

Definition 11. Define Yang–Hilbert-type integral operator with the non-
homogeneous kernel in the whole plane

T1 W Lp;'.R/! Lp; 1�p.R/

as follows:
For any f 2 Lp;' .R/; there exists a unique representation

T1f D H1 2 Lp; 1�p.R/;

satisfying

T1f .y/ D H1.y/;

for any y 2 R.

In view of (120), it follows that

jjT1f jjp; 1�p D jjH1jjp; 1�p � K.�/jjf jjp;' :
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Therefore, the operator T1 is bounded and it satisfies the following relation

jjT1jj D sup
f .¤�/2Lp;' .R/

jjT1f jjp; 1�p

jjf jjp;' � K.�/:

Since the constant factor K.�/ in (120) is the best possible, we have

jjT1jj D K.�/ D
Z 1

�1
H.t/jtj��1dt: (121)

If we define the formal inner product of T1f and g as

.T1f ; g/ WD
Z 1

�1


Z 1

�1
H.xy/f .x/dx

�
g.y/dy

D
Z 1

�1

Z 1

�1
H.xy/f .x/g.y/dxdy;

then we can rewrite (90) and (91) as follows:

.T1f ; g/ < jjT1jj � jjf jjp;' jjgjjq; ; jjT1f jjp; 1�p < jjT1jj � jjf jjp;' :

(b) In view of Corollary 15, for f 2 Lp;' .R/; setting

H.1/
1 .y/ WD

Z 1
jyj

�1
jyj

H.xy/jf .x/jdx.y 2 Rnf0g/;

by (104), we obtain

jjH.1/
1 jjp; 1�p D


Z 1

�1
 1�p.y/.H.1/

1 .y//
pdy

� 1
p

< K.1/.�/jjf jjp;' <1:
(122)

Definition 12. Let us define the Hardy-type integral operator of the first kind, with
the non-homogeneous kernel in the whole plane

T.1/1 W Lp;' .R/! Lp; 1�p.R/

as follows:
For any f 2 Lp;' .R/; there exists a unique representation

T.1/1 f D H.1/
1 2 Lp; 1�p.R/;

satisfying

T.1/1 f .y/ D H.1/
1 .y/;

for any y 2 R:
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In view of (122), it follows that

jT.1/1 f jjp; 1�p D jjH.1/
1 jjp; 1�p � K.1/.�/jjf jjp;' :

Then, the operator T.1/1 is bounded satisfying

jjT.1/1 jj D sup
f .¤�/2Lp;' .R/

jjT.1/1 f jjp; 1�p

jjf jjp;' � K.1/.�/:

Since the constant factor K.1/.�/ in (122) is the best possible, we have

jjT.1/1 jj D K.1/.�/ D
Z 1

�1
H.t/jtj��1dt: (123)

Setting the formal inner product of T.1/1 f and g as

.T.1/1 f ; g/ D
Z 1

�1

 Z 1
jyj

�1
jyj

H.xy/f .x/dx

!
g.y/dy;

we can rewrite (103) and (104) as follows:

.T.1/1 f ; g/ < jjT.1/1 jj � jjf jjp;' jjgjjq; ; jjT.1/1 f jjp; 1�p < jjT.1/1 jj � jjf jjp;' : (124)

(c) In view of Corollary 17, for f 2 Lp;' .R/; setting

H.2/
1 .y/ WD

Z

Ey

H.xy/jf .x/jdx .y 2 R/;

by (109), we have

jjH.2/
1 jjp; 1�p D


Z 1

�1
 1�p.y/.H.2/

1 .y//
pdy

� 1
p

< K.2/.�/jjf jjp;' <1: (125)

Definition 13. Let us define the Hardy-type integral operator of the second kind
with the non-homogeneous kernel in the whole plane

T.2/1 W Lp;' .R/! Lp; 1�p.R/

as follows:
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For any f 2 Lp;' .R/; there exists a unique representation

T.2/1 f D H.2/
1 2 Lp; 1�p.R/;

satisfying

T.2/1 f .y/ D H.2/
1 .y/;

for any y 2 R:

In view of (125), it follows that

jjT.2/1 f jjp; 1�p D jjH.2/
1 jjp; 1�p � K.2/.�/jjf jjp;' :

Thus, the operator T.2/1 is bounded satisfying

jjT.2/1 jj D sup
f .¤�/2Lp;' .R/

jjT.2/1 f jjp; 1�p

jjf jjp;' � K.2/.�/:

Since the constant factor K.2/.�/ in (125) is the best possible, we have

jjT.2/1 jj D K.2/.�/ D
Z 1

1

.H.�t/C H.t//t��1dt: (126)

Setting the formal inner product of T.2/1 f and g as

.T.2/1 f ; g/ D
Z 1

�1

 Z

Ey

H.xy/f .x/dx

!
g.y/dy;

we can rewrite (108) and (109) as follows:

.T.2/1 f ; g/ < jjT.2/1 jj � jjf jjp;' jjgjjq; ; jjT.2/1 f jjp; 1�p < jjT.2/1 jj � jjf jjp;' : (127)

(d) In view of Corollary 14, for f 2 Lp;� .R/;

H2.y/ WD
Z 1

�1
K�.x; y/jf .x/jdx .y 2 R/;

by (101), we have

jjH2jjp; 1�p D

Z 1

�1
 1�p.y/Hp

2.y/dy

� 1
p

< K�.�/jjf jjp;� <1: (128)
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Definition 14. We define the Yang–Hilbert-type integral operator with the homo-
geneous kernel in the whole plane

T2 W Lp;� .R/! Lp; 1�p.R/

as follows:
For any f 2 Lp;� .R/; there exists a unique representation

T2f D H2 2 Lp; 1�p.R/;

satisfying

T2f .y/ D H2.y/;

for any y 2 R:

By (128), it follows that

jjT2f jjp; 1�p D jjH2jjp; 1�p � K�.�/jjf jjp;� :
Hence, the operator T2 is bounded satisfying

jjT2jj D sup
f .¤�/2Lp;� .R/

jjT2f jjp; 1�p

jjf jjp;� � K�.�/:

Since the constant factor K�.�/ in (128) is the best possible, we have

jjT2jj D K�.�/ D
Z 1

�1
K�.1; t/jtj��1dt: (129)

Setting the formal inner product of T2f and g as

.T2f ; g/ D
Z 1

�1


Z 1

�1
K�.x; y/f .x/dx

�
g.y/dy

D
Z 1

�1

Z 1

�1
K�.x; y/f .x/g.y/dxdy;

we can rewrite (100) and (101) as follows:

.T2f ; g/ < jjT2jj � jjf jjp;� jjgjjq; ; jjT2f jjp; 1�p < jjT2jj � jjf jjp;� :

(e) By Corollary 19, for f 2 Lp;� .R/;

H.1/
2 .y/ WD

Z

Fy

K�.x; y/jf .x/jdx .y 2 R/;
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combined with (113), we obtain

jjH.1/
2 jjp; 1�p D


Z 1

�1
 1�p.y/.H.1/

2 .y//
pdy

� 1
p

< K.1/

� .�/jjf jjp;� <1: (130)

Definition 15. We define the Hardy-type integral operator of the first kind, with the
homogeneous kernel in the whole plane

T.1/2 W Lp;� .R/! Lp; 1�p.R/

as follows:
For any f 2 Lp;� .R/; there exists a unique representation

T.1/2 f D H.1/
2 2 Lp; 1�p.R/;

satisfying

T.1/2 f .y/ D H.1/
2 .y/;

for any y 2 R:

In view of (130), it follows that

jjT.1/2 f jjp; 1�p D jjH.1/
2 jjp; 1�p � K.1/

� .�/jjf jjp;� :

Therefore, the operator T.1/2 is bounded satisfying

jjT.1/2 jj D sup
f .¤�/2Lp;� .R/

jjT.1/2 f jjp; 1�p

jjf jjp;� � K.1/

� .�/:

Since the constant factor K.1/

� .�/ in (130) is the best possible, we have

jjT.1/2 jj D K.1/

� .�/ D
Z 1

�1
K�.1; t/jtj��1dt: (131)

Setting the formal inner product of T.1/2 f and g as

.T.1/2 f ; g/ D
Z 1

�1

 Z

Fy

K�.x; y/f .x/dx

!
g.y/dy;

we can rewrite (112) and (113) as follows:

.T.1/2 f ; g/ < jjT.1/2 jj � jjf jjp;� jjgjjq; ; jjT.1/2 f jjp; 1�p < jjT.1/2 jj � jjf jjp;� :
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(f) In view of Corollary 21, for f 2 Lp;� .RC/;

H.2/
2 .y/ WD

Z jyj

�jyj
K�.x; y/jf .x/jdx .y 2 R/;

by (117), we have

jjH.2/
2 jjp; 1�p WD


Z 1

�1
 1�p.y/.H.2/

2 .y//
pdy

� 1
p

< K.2/

� .�/jjf jjp;� <1: (132)

Definition 16. We define the Hardy-type integral operator of the second kind, with
the homogeneous kernel in the whole plane

T.2/2 W Lp;� .R/! Lp; 1�p.R/

as follows:
For any f 2 Lp;� .R/; there exists a unique representation

T.2/2 f D H.2/
2 2 Lp; 1�p.R/;

satisfying

T.2/2 f .y/ D H.2/
2 .y/;

for any y 2 R:

By (132), it follows that

jjT.2/2 f jjp; 1�p D jjH.2/
2 jjp; 1�p � K.2/

� .�/jjf jjp;�
and then the operator T.2/2 is bounded satisfying

jjT.2/2 jj D sup
f .¤�/2Lp;� .R/

jjT.2/2 f jjp; 1�p

jjf jjp;� � K.2/

� .�/:

Since the constant factor K.2/

� .�/ in (132) is the best possible, we have

jjT.2/2 jj D K.2/

� .�/ D
Z 1

1

.K�.1;�t/C K�.1; t//t
��1dt: (133)

Setting the formal inner product of T.2/2 f and g as

.T.2/2 f ; g/ D
Z 1

�1

 Z jyj

�jyj
K�.x; y/f .x/dx

!
g.y/dy;
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we can rewrite (116) and (117) as follows:

.T.2/2 f ; g/ < jjT.2/2 jj � jjf jjp;� jjgjjq; ; jjT.2/2 f jjp; 1�p < jjT.2/2 jj � jjf jjp;� :

Remark 8. (a) If K�.x; y/ is a symmetric function satisfying K�.y; x/ D K�.x; y/;
then by setting

H.t/ DW K�.1; t/ arctan jtjˇ .ˇ 2 R/;

and � D � D �
2

in (121), we obtain

jjT1jj D
Z 1

�1
H.t/jtj��1 D

Z 1

�1
K�.1; t/ arctan jtjˇjtj��1dt

D 

4
K�



�

2

�
; (134)

where

K�



�

2

�
D
Z 1

�1
K�.1; t/jtj��1dt:

In fact, we obtain
Z 1

0

K�.1; t/.arctan tˇ/t
�
2�1dt

D
Z 1

0

K�.1; t/.arctan tˇ/t
�
2�1dtC

Z 1

1

K�.1; u/.arctan uˇ/u
�
2�1du

D
Z 1

0

K�.1; t/.arctan tˇ/t
�
2�1dtC

Z 1

0

K�.t; 1/.arctan t�ˇ/t �2�1dt

D
Z 1

0

K�.1; t/.arctan tˇ C arctan t�ˇ/t
�
2�1dt

D 

2

Z 1

0

K�.1; t/t
�
2�1dt D 

4

Z 1

0

K�.1; t/t
�
2�1dt:

Similarly, we get

Z 0

�1
K�.1; t/ arctan.�t/ˇ.�t/��1dt

D
Z 1

0

K�.1;�u/.arctan uˇ/u��1du D 

4

Z 1

0

K�.1;�t/t
�
2�1dt:

Then we have

jjT1jj D 

4

Z 1

0

.K�.1;�t/C K�.1; t//t
�
2�1dt D 

4
K�



�

2

�
:
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(b) If we replace H.t/ by

h.jtj� C t� cos˛/.� 2 fbI b D 1

2k � 1 ; 2kC 1 .k 2 N/g; ˛ 2 .0; //

in (121), where h.t/ is a non-negative measurable function in RC; satisfying

k



�

�

�
D
Z 1

0

h.t/t
�
� �1dt 2 RC;

it follows that

jjT1jj D
Z 1

�1
h.jtj� C t� cos˛/jtj��1

D 1

�2�=�

��
sec

˛

2

� 2˛
� C

�
csc

˛

2

� 2˛
�


k



�

�

�
; (135)

In particular, setting h.t/ D k�.1; t/ .t 2 RC/; it follows that

jjT1jj D
Z 1

�1
k�.1; jtj� C t� cos˛/jtj��1

D 1

�2�=�

��
sec

˛

2

� 2˛
� C

�
csc

˛

2

� 2˛
�


k�



�

�

�
; (136)

where

k�



�

�

�
D
Z 1

0

k�.1; t/t
�
� �1dt 2 RC:

In fact, setting u D t� .1C cos˛/, we get
Z 1

0

h.jtj� C t� cos˛/jtj��1dt

D
Z 1

0

h.t� .1C cos˛//t��1dt D 1

�2�=�

�
sec

˛

2

� 2˛
�

k



�

�

�
I

Moreover, setting u D �t; we have

Z 0

�1
h.jtj� C t� cos˛/jtj��1dt D

Z 0

�1
h.�t� .1 � cos˛//.�t/��1dt

D
Z 1

0

h.u�.1 � cos˛//u��1du D 1

�2�=�

�
csc

˛

2

� 2˛
�

k



�

�

�
;

and then (135) follows.
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(c) Replacing K�.1; t/ by k�.1; jtj� C t� cos˛/ in (134), where k�.x; y/ is a
homogeneous function in RC; satisfying

k�



�

�

�
D
Z 1

0

k�.1; t/t
�
� �1dt 2 RC;

in view of (136), we obtain

jjT1jj D
Z 1

�1
k�.1; jtj� C t� cos˛/ arctan jtjˇjtj �2�1dt

D 

�22C�=�

��
sec

˛

2

� 2˛
� C

�
csc

˛

2

� 2˛
�


k�



�

2�

�
: (137)

3.6 Some Examples

Example 5. (a) Set

H.t/ D K�.1; t/ D 1

j1C tj� .�; � > 0;�C � D � < 1/:

Then we have the kernels

H.xy/ D 1

j1C xyj� ; K�.x; y/ D 1

jxC yj�

and obtain the constant factors

K.�/ D K�.�/ D
Z 1

�1
jtj��1
j1C tj� dt

D
Z 1

0

t��1

j1 � tj� dtC
Z 1

0

t��1

.1C t/�
dt

D B.1 � �; �/C B.1� �;�/C B.�; �/ 2 RC:

By (121) and (129), we have (cf. [16])

jjT1jj D jjT2jj D B.1 � �; �/C B.1� �;�/C B.�; �/: (138)

(b) Set

H.t/ D K�.1; t/ D j ln jtj
ˇj

j1C tj� ;
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where ˇ > �1; �; � > 0;�C � D � < 1C ˇ: Then we have the kernels

H.xy/ D j ln jxyjˇj
j1C xyj� ; K�.x; y/ D j ln jx=yjˇj

jxC yj�

and obtain the constant factors

K.�/ D K�.�/ D
Z 1

�1
j ln jtjˇjjtj��1
j1C tj� dt

D
Z 1

0

j ln tˇjt��1
j1 � tj� dtC

Z 1

0

j ln tˇ jt��1
.1C t/�

dt

D
Z 1

0

.� ln t/ˇ
�

1

.1 � t/�
C 1

.1C t/�


.t��1 C t��1/dt:

There exists a constant ı 0 > 0; such that � > ı 0; � > ı 0: Since

lim
t!0C

tı 0
.� ln t/ˇ

.1 � t/ˇ
D 0; lim

t!1�

tı 0
.� ln t/ˇ

.1 � t/ˇ
D 1;

there exists a constant L > 0; such that

tı 0
.� ln t/ˇ

.1 � t/ˇ
� L .0 < t < 1/

and

0 < K.�/ D
Z 1

0

.� ln t/ˇ
�

1

.1 � t/�
C 1

.1C t/�


.t��1 C t��1/dt

� 2
Z 1

0

.� ln t/ˇ

.1 � t/�
.t��1 C t��1/dt � 2L

Z 1

0

t��ı 0�1 C t��ı 0�1

.1 � t/��ˇ
dt

D 2LŒB.ˇ C 1 � �;� � ı 0/C B.ˇ C 1 � �; � � ı 0/� <1:

Therefore, K.�/ D K�.�/ 2 RC:
Since

 
��
2k

!
D
 
�C 2k � 1

2k

!
> 0;
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then by Lebesgue’s term by term theorem, it follows that

K.�/ D
Z 1

0

.� ln t/ˇ
1X

kD0
.��k /Œ.�1/k C 1�.tkC��1 C tkC��1/dt

D 2

Z 1

0

.� ln t/ˇ
1X

kD0
.��2k /.t

kC��1 C tkC��1/dt

D 2

1X

kD0
.��2k /

Z 1

0

.� ln t/ˇ.t2kC��1 C t2kC��1/dt

D 2� .ˇ C 1/
1X

kD0
.��2k /

�
1

.2kC �/ˇ C
1

.2kC �/ˇ

:

In view of (121) and (129), we have

jjT1jj D jjT2jj D 2� .ˇ C 1/
1X

kD0
.��2k /

�
1

.2kC �/ˇ C
1

.2kC �/ˇ

: (139)

(c) Set

H.t/ D K�.1; t/ D .maxf1; jtjg/ˇ
j1C tj�Cˇ .ˇ < 1;�; � > 0;�C � D � < 1 � ˇ/:

Then we have the kernels

H.xy/ D .maxf1; jxyjg/ˇ
j1C xyj�Cˇ ; K�.x; y/ D .maxfjxj; jyjg/ˇ

jxC yj�Cˇ

and obtain the constant factors

K.�/ D K�.�/ D
Z 1

�1
.maxf1; jtjg/ˇ
j1C tj�Cˇ jtj

��1dt

D
Z 1

0

.maxf1; tg/ˇ
j1 � tj�Cˇ t��1dtC

Z 1

0

.maxf1; tg/ˇ
.1C t/�Cˇ

t��1dt

D
Z 1

0

�
1

.1� t/�Cˇ
C 1

.1C t/�Cˇ


.t��1 C t��1/dt

D B.1 � � � ˇ;�/C B.1� � � ˇ; �/C
Z 1

0

t��1 C t��1

.1C t/�Cˇ
dt 2 RC:

By Taylor’s formula, we still can obtain
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Z 1

0

t��1 C t��1

.1C t/�Cˇ
dt D

Z 1

0

1X

kD0

����ˇ
k

�
.tkC��1 C tkC��1/dt

D
Z 1

0

1X

kD0
.�1/k

�
�CˇCk�1

k

�
.tkC��1 C tkC��1/dt

D
Z 1

0

1X

kD0

h�
�CˇC2k�1
2k

�
�
�
�CˇC2k
2kC1

�
t
i
.t2kC��1 C t2kC��1/dt:

Since we find

�
�CˇC2k�1
2k

�
�
�
�CˇC2k
2kC1

�
t D

�
�CˇC2k�1
2k

�
� .�C ˇ C 2k/t

2kC 1
�
�CˇC2k�1
2k

�

D
�
1 � .�C ˇ C 2k/t

2kC 1
 �

�CˇC2k�1
2k

�
;

there exists a number k0 2 N0 D N [ f0g; such that �C ˇ C 2k0 > 0, and for
any s 2 N;

�
�CˇC2.k0Cs/�1
2.k0Cs/

�
�
�
�CˇC2.k0Cs/C1
2.k0Cs/C1

�
t

D
�
1 � .�C ˇ C 2k0 C 2s/t

2.k0 C s/C 1
 �

�CˇC2.k0Cs/�1
2.k0Cs/

�

D
�
1 � .�C ˇ C 2k0 C 2s/t

2.k0 C s/C 1


��C ˇ C 2k0 C 2s � 1
2k0 C 2s

� � � �C ˇ C 2k0
2k0 C 1

�
�CˇC2k0�1
2k0

�
:

For t 2 .0; 1�; we get

1 � .�C ˇ C 2k0 C 2s/t

2.k0 C s/C 1 
 1 � �C ˇ C 2k0 C 2s

2.k0 C s/C 1

D 1 � � � ˇ
2.k0 C s/C 1 > 0:

Then it follows that for any s 2 N;

sgn
��

�CˇC2.k0Cs/�1
2.k0Cs/

�
�
�
�CˇC2.k0Cs/C1
2.k0Cs/C1

�
t
�
D sgn

�
�CˇC2k0�1
2k0

�
:
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Hence by Lebesgue term by term integration theorem, we have

K.�/ D B.1� � � ˇ;�/C B.1� � � ˇ; �/

C
1X

kD0

����ˇ
k

� Z 1

0

.tkC��1 C tkC��1/dt

D B.1� � � ˇ;�/C B.1� � � ˇ; �/

C
1X

kD0

����ˇ
k

�
 1

kC � C
1

kC �
�
:

In view of (121) and (129), we have

jjT1jj D jjT2jj D B.1� � � ˇ; ˇ C �/C B.1� � � ˇ; ˇ C �/

C
1X

kD0

����ˇ
k

�
 1

kC � C
1

kC �
�
: (140)

For (a)–(c), we can obtain the equivalent inequalities with the kernels and the
best possible constant factors in Theorem 5–8. Setting ı 0 D �

2
> 0; we also

obtain the equivalent reverse inequalities with the kernels and the best possible
constant factors in Theorem 5–8.

(d) Set

H.t/ D K�.1; t/ D .minf1; jtjg/ˇ
j1C tj�Cˇ ;

with ˇ > �1; �; � > �ˇ;�C � D � < 1 � ˇ: Then we have the kernels

H.xy/ D .minf1; jxyjg/ˇ
j1C xyj�Cˇ ; K�.x; y/ D .minfjxj; jyjg/ˇ

jxC yj�Cˇ
and obtain the constant factors

K.�/ D K�.�/ D
Z 1

�1
.minf1; jtjg/ˇ
j1C tj�Cˇ jtj

��1dt

D
Z 1

0

.minf1; tg/ˇ
j1 � tj�Cˇ t��1dtC

Z 1

0

.minf1; tg/ˇ
.1C t/�Cˇ

t��1dt

D
Z 1

0

�
1

.1 � t/�Cˇ
C 1

.1C t/�Cˇ


.tˇC��1 C tˇC��1/dt

D B.1 � � � ˇ; ˇ C �/C B.1 � � � ˇ; ˇ C �/

C
Z 1

0

tˇC��1 C tˇC��1

.1C t/�Cˇ
dt 2 RC:
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Similarly to the method followed in (c), we find

Z 1

0

tˇC��1 C tˇC��1

.1C t/�Cˇ
dt D

1X

kD0

����ˇ
k

� Z 1

0

.tkCˇC��1 C tkCˇC��1/dt

D
1X

kD0

����ˇ
k

�
 1

kC ˇ C � C
1

kC ˇ C �
�
:

By the above results, (121) and (129), we have

jjT1jj D jjT2jj D B.1� � � ˇ; ˇ C �/C B.1� � � ˇ; ˇ C �/

C
1X

kD0

����ˇ
k

�
 1

kC ˇ C � C
1

kC ˇ C �
�
: (141)

Then in (d), we can obtain the equivalent inequalities with the kernels and the
best possible constant factors in Theorem 5–8. Setting ı 0 D �Cˇ

2
> 0; we

can still obtain the equivalent reverse inequalities with the kernels and the best
possible constant factors in Theorem 5–8.

Example 6. Set

H.t/ D K2.1; t/ D 1

1C 2btC .ct/2
.jbj < jcj; � D � D 1/:

Then we have the kernels

H.xy/ D 1

1C 2bxyC .cxy/2
; K�.x; y/ D 1

x2 C 2bxyC .cy/2

and obtain the constant factors

K.�/ D K2.�/ D
Z 1

�1
1

1C 2btC .ct/2
dt

D 2p
4c2 � 4b2

arctan
2c2tC 2bp
4c2 � 4b2

ˇ̌
ˇ
1
�1 D

p
c2 � b2

2 RC:

In view of (121) and (129), we have (cf. [13])

jjT1jj D jjT2jj D p
c2 � b2

:

In particular, for c D 1; b D cos˛ .0 < ˛ < /; we have

jjT1jj D jjT2jj D 

sin˛
:
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Example 7. (a) Set

H.t/ D K2.1; t/ D min
i2f1;2g

1

1C 2t cos˛i C t2
;

with 0 < ˛1 � ˛2 < ; 0 < � < 2: Then we have the kernels

H.xy/ D min
i2f1;2g

1

1C 2xy cos˛i C .xy/2
; K2.x; y/ D min

i2f1;2g
1

x2 C 2xy cos˛i C y2

and obtain the constant factors

K.�/ D K2.�/ D
Z 1

�1
min

i2f1;2g
1

1C 2t cos˛i C t2
jtj��1dt

D
Z 1

0

min
i2f1;2g

t��1

1C 2t cos˛i C t2
dtC

Z 1

0

min
i2f1;2g

t��1

1 � 2t cos˛i C t2
dt

D
Z 1

0

t��1

1C 2t cos˛1 C t2
dtC

Z 1

0

t��1

1C 2t cos. � ˛2/C t2
dt:

Set

f .z/ D 1

1C 2z cos˛1 C z2
:

Then

z1 D �ei˛1 ; z2 D �e�i˛1

are the poles of order 1. Setting

'1.z/ D .z � z1/f .z/ D 1

z � z2
; '2.z/ D .z � z2/f .z/ D 1

z � z1
;

by (63), we have

Z 1

0

t��1

1C 2t cos˛1 C t2
dt D

Z 1

0

f .t/t��1dt

D 

sin�
Œ.�z1/

��1'1.z1/C .�z2/
��1'2.z2/�

D 

sin�

�
ei˛1.��1/

�ei˛1 C e�i˛1
C e�i˛1.��1/

�e�i˛1 C ei˛1



D  sin ˛1.1 � �/
sin� sin˛1

:
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Similarly, it follows that

Z 1

0

t��1dt

1C 2t cos. � ˛2/C t2
D  sin. � ˛2/.1 � �/

sin� sin. � ˛2/

D  sin. � ˛2/.1 � �/
sin� sin ˛2

;

and then

K.�/ D 

sin�

�
sin ˛1.1 � �/

sin˛1
C sin. � ˛2/.1 � �/

sin ˛2


2 RC:

In view of (121) and (129), we have (cf. [21])

jjT1jj D jjT2jj D 

sin�

�
sin ˛1.1� �/

sin˛1
C sin. � ˛2/.1 � �/

sin ˛2


: (142)

Then in (a), we can obtain the equivalent inequalities with the kernels and the
best possible constant factors in Theorems 5–8. Setting ı 0 D �

2
> 0;we can still

obtain the equivalent reverse inequalities with the kernels and the best possible
constant factors in Theorems 5–8.

In particular, if ˛1 D ˛2 D ˛ 2 .0; /; then

H.t/ D K2.1; t/ D 1

1C 2t cos˛ C t2

and

jjT1jj D jjT2jj D 

sin� sin ˛
Œsin ˛.1 � �/C sin. � ˛/.1 � �/�:

(b) Set

H.t/ D K0.1; t/ D min
i2f1;2g

minf1; jtjgp
1C 2t cos˛i C t2

;

with 0 < ˛1 � ˛2 < ; � D � D 0: Then we have the kernels

H.xy/ D min
i2f1;2g

minf1; jxyjgp
1C 2xy cos˛i C .xy/2

;

K0.x; y/ D min
i2f1;2g

minfjxj; jyjg
p

x2 C 2xy cos˛i C y2
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and obtain the constant factors

K.0/ D K0.0/ D
Z 1

�1
min

i2f1;2g
minf1; jtjgp

1C 2t cos˛i C t2
jtj�1dt

D
Z 1

0

min
i2f1;2g

minf1; tgt�1
p
1C 2t cos˛i C t2

dt

C
Z 1

0

min
i2f1;2g

minf1; tgt�1p
1 � 2t cos˛i C t2

dt

D
Z 1

0

minf1; tgt�1dt
p
1C 2t cos˛1 C t2

C
Z 1

0

minf1; tgt�1dt
p
1C 2t cos. � ˛2/C t2

D 2
"Z 1

0

dtp
1C 2t cos˛1 C t2

C
Z 1

0

dtp
1C 2t cos. � ˛2/C t2

#
:

We get

Z 1

0

dt
p
1C 2t cos˛1 C t2

D ln
�
2tC 2 cos˛1 C 2

p
1C 2t cos˛1 C t2

�
j10 D ln

�
1C sec

˛1

2

�
;

and by the same way,

Z 1

0

dtp
1C 2t cos. � ˛2/C t2

D ln
�
1C sec

 � ˛2
2

�
D ln

�
1C csc

˛2

2

�
:

Then it follows that

K.0/ D K0.0/ D 2 ln
�
1C sec

˛1

2

� �
1C csc

˛2

2

�
:

By (121) and (129), we have (cf. [20])

jjT1jj D jjT2jj D 2 ln
�
1C sec

˛1

2

� �
1C csc

˛2

2

�
: (143)

In particular, if ˛1 D ˛2 D ˛ 2 .0; /; then

H.t/ D K0.1; t/ D minf1; jtjgp
1C 2t cos˛ C t2

and

jjT1jj D jjT2jj D 2 ln
�
1C sec

˛

2

� �
1C csc

˛

2

�
:



728 B. Yang and M.Th. Rassias

Example 8. Set

H.t/ D K0.1; t/ D
ˇ̌
ˇ ln

1C 2t cos˛1 C t2

1C 2t cos˛2 C t2

ˇ̌
ˇ;

with 0 < ˛1 � ˛2 < ; � D �� 2 .0; 1/: Then we have the kernels

H.xy/ D
ˇ̌
ˇ ln

1C 2xy cos˛1 C .xy/2

1C 2xy cos˛2 C .xy/2

ˇ̌
ˇ;

K0.x; y/ D
ˇ̌
ˇ ln

x2 C 2xy cos˛1 C y2

x2 C 2xy cos˛2 C y2

ˇ̌
ˇ

and obtain the constant factors

K.�/ D K0.�/ D
Z 1

�1

ˇ̌
ˇ ln

1C 2t cos˛1 C t2

1C 2t cos˛2 C t2

ˇ̌
ˇ � jtj��1dt

D
Z 1

0

t��1 ln
1C 2t cos˛1 C t2

1C 2t cos˛2 C t2
dt

C
Z 1

0

t��1 ln
1 � 2t cos˛2 C t2

1 � 2t cos˛1 C t2
dt

D
Z 1

0

t��1 ln
1C 2t cos˛1 C t2

1C 2t cos˛2 C t2
dt

C
Z 1

0

t��1 ln
1C 2t cos. � ˛2/C t2

1C 2t cos. � ˛1/C t2
dt:

We find

I1 WD
Z

1

0

t��1 ln
1C 2t cos˛1 C t2

1C 2t cos˛2 C t2
dt D 1

�

Z
1

0

ln
1C 2t cos˛1 C t2

1C 2t cos˛2 C t2
dt�

D 1

�

�
t� ln

1C 2t cos ˛1 C t2

1C 2t cos ˛2 C t2
j10

�2
Z

1

0

t�



cos ˛1Ct

1C2t cos ˛1 C t2
� cos˛2 C t

1C 2t cos ˛2 C t2

�
dt



D �2
�

�Z
1

0

.cos˛1 C t/ t�

1C2t cos˛1Ct2
dt�

Z
1

0

.cos ˛2 C t/ t�

1C 2t cos ˛2 C t2
dt



D �2
�
.I.1/1 � I.2/1 /;

I.i/1 D
Z

1

0

.cos ˛iC t/t.�C1/�1

1C 2t cos ˛iC t2
dt .i D 1; 2/:
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By (63), we have

I.i/1 D


sin.� C 1/



ei˛i�
cos˛i � ei˛i

�ei˛i C e�i˛i
C e�i˛i�

cos˛i � e�i˛i

�e�i˛i C ei˛i

�

D  cos˛i�

sin.� C 1/ .i D 1; 2/;

and then

I1 D �2
�

�
 cos˛1�

sin.� C 1/ �
 cos˛2�

sin.� C 1/


D �2.cos˛1� � cos˛2�/

� sin.� C 1/

D 4

� sin.� C 1/ sin
˛1 C ˛2
2

� sin
˛1 � ˛2
2

�:

Similarly, we have

I2 WD
Z 1

0

t��1 ln
1C 2t cos. � ˛2/C t2

1C 2t cos. � ˛1/C t2
dt

D 4

� sin.� C 1/ sin



 � ˛1 C ˛2

2

�
� sin

˛1 � ˛2
2

�;

and then

K.�/ D K0.�/ D 4

� sin.� C 1/ sin
˛1 C ˛2
2

�

�
�

sin
˛1 � ˛2
2

� C sin



 � ˛1 C ˛2

2

�
�



D �4 sin �
2
.˛1 � ˛2/

� cos.�=2/
cos

�

2
.˛1 C ˛2 � / 2 RC:

In view of (121) and (129), we have (cf. [18])

jjT1jj D jjT2jj D
�4 sin �

2
.˛1 � ˛2/

� cos.�=2/
cos

�

2
.˛1 C ˛2 � /: (144)

Then we can obtain the equivalent inequalities with the kernels and the best
possible constant factors in Theorems 5–8. Setting ı 0 D ��2 > 0;we still can obtain
the equivalent reverse inequalities with the kernels and the best possible constant
factors in Theorems 5–8.

Remark 9. Since K.0�/ D 2.˛2 � ˛1/ 2 RC; then (144) is valid for � 2 .�1; 0�:
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Example 9. (a) For

� 2
�

aI a D 1

2k � 1; 2kC 1.k 2 N/
	
;

we set

H.t/ D K�.1; t/ D min
i2f1;2g

1

.1C t� cos˛i C jtj� /�=� ;

where 0 < ˛1 � ˛2 < ; �; � > 0; �C � D �: Then we have the kernels

H.xy/ D min
i2f1;2g

1

.1C .xy/� cos˛i C jxyj�/�=� ;

K�.x; y/ D min
i2f1;2g

1

.jxj� C y� sgn(x/ cos˛i C jyj� /�=�

and obtain the constant factors

K.�/ D K.�/ D K�.�/ D
Z 1

�1
min

i2f1;2g
1

.1C t� cos˛i C jtj� /�=� jtj
��1dt

D
Z 1

0

t��1dt

Œ1C t� .1C cos˛1/��=�
C
Z 1

0

t��1dt

Œ1C t� .1 � cos˛2/��=�

D 1

�

�
1

.1C cos˛1/�=�
C 1

.1 � cos˛2/�=�

 Z 1

0

u.�=�/�1du

.1C u/�=�

D 1

�2�=�

��
sec

˛1

2

� 2�
� C

�
csc

˛2

2

� 2�
�


B



�

�
;
�

�

�
:

In view of (121) and (129), we have

jjT1jj D jjT2jj D 1

�2�=�

��
sec

˛1

2

� 2�
� C

�
csc

˛2

2

� 2�
�


B



�

�
;
�

�

�
: (145)

In particular, if ˛1 D ˛2 D ˛ 2 .0; /; then it follows that

H.t/ D K�.1; t/ D 1

.1C t� cos˛ C jtj� /�=� ;

and

jjT1jj D jjT2jj D 1

�2�=�

��
sec

˛

2

� 2�
� C

�
csc

˛

2

� 2�
�


B



�

�
;
�

�

�
:



Parameterized Yang–Hilbert-Type Integral Inequalities and Their Operator Expressions 731

(b) For

� 2
�

aI a D 1

2k � 1; 2kC 1.k 2 N/
	
;

we set

H.t/ D K�.1; t/ D min
i2f1;2g

1

j1 � t� cos˛i � jtj� j�=� ;

where 0 < ˛1 � ˛2 < ; �; � > 0; �C � D � < �: Then we have the kernels

H.xy/ D min
i2f1;2g

1

j1� .xy/� cos˛i � jxyj� j�=� ;

K�.x; y/ D min
i2f1;2g

1

jjxj� � y� sgn(x/ cos˛i � jyj� j�=�

and obtain the constant factors

K.�/ D K�.�/ D
Z 1

�1
min

i2f1;2g
1

j1� t� cos˛i � jtj� j�=� jtj
��1dt

D
Z 1

0

min
i2f1;2g

1

j1� t� .1C cos˛i/j�=� t��1dt

C
Z 1

0

min
i2f1;2g

1

j1 � t� .1 � cos˛i/j�=� t��1dt

D 1

�

�Z 1

0

1

.1C cos˛1/�=�

Z 1

0

u.�=�/�1du

j1� uj�=�


C 1
�

�Z 1

0

1

.1 � cos˛2/�=�

Z 1

0

u.�=�/�1du

j1 � uj�=�


D 1

�2�=�

��
sec

˛1

2

� 2�
� C

�
csc

˛2

2

� 2�
�



�
�

B



1 � �

�
;
�

�

�
C B



1 � �

�
;
�

�

�
:

In view of (121) and (129), we have

jjT1jj D jjT2jj D 1

�2�=�

��
sec

˛1

2

� 2�
� C

�
csc

˛2

2

� 2�
�



�
�

B



1 � �

�
;
�

�

�
C B



1 � �

�
;
�

�

�
: (146)
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In particular, if ˛1 D ˛2 D ˛ 2 .0; /; then we have

H.t/ D K�.1; t/ D 1

j1� t� cos˛ � jtj� j�=� ;

and

jjT1jj D jjT2jj D 1

�2�=�

��
sec

˛

2

� 2�
� C

�
csc

˛

2

� 2�
�



�
�

B



1 � �

�
;
�

�

�
C B



1 � �

�
;
�

�

�
:

(c) For

� 2
�

aI a D 1

2k � 1 ; 2kC 1 .k 2 N/
	
;

we set

H.t/ D K�.1; t/ D min
i2f1;2g

ln.t� cos˛i C jtj� /
.t� cos˛i C jtj� /�=� � 1;

with 0 < ˛1 � ˛2 < ; �; � > 0; �C � D �: Then we have the kernels

H.xy/ D min
i2f1;2g

ln..xy/� cos˛i C jxyj�/
..xy/� cos˛i C jxyj�/�=� � 1 ;

K�.x; y/ D min
i2f1;2g

ln.. y
x /
� cos˛i C j yx j� /

.y� sgn.x/ cos˛i C jyj� /�=� � jxj�

and obtain the constant factors

K.�/ D K�.�/ D
Z 1

�1
min

i2f1;2g
ln.t� cos˛i C jtj� /

.t� cos˛i C jtj� /�=� � 1 jtj
��1dt

D
Z 1

0

min
i2f1;2g

lnŒt� .1C cos˛i/�

Œt� .1C cos˛i/��=� � 1 t��1dt

C
Z 1

0

min
i2f1;2g

lnŒt� .1 � cos˛i/�

Œt� .1 � cos˛i/��=� � 1 t��1dt

D �

�2

�Z 1

0

1

.1C cos˛1/�=�

Z 1

0

ln u

u � 1u
�
��1du



C �

�2

�Z 1

0

1

.1 � cos˛2/�=�

Z 1

0

ln u

u � 1u
�
��1du



D �

�22�=�

��
sec

˛1

2

� 2�
� C

�
csc

˛2

2

� 2�
�

 �


sin .�=�/

2
:
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By (121) and (129), we have

jjT1jj D jjT2jj D �

�22�=�

��
sec

˛1

2

� 2�
� C

�
csc

˛2

2

� 2�
�

 �


sin.�=�/

2
:

In particular, if ˛1 D ˛2 D ˛ 2 .0; /; then we have

H.t/ D K�.1; t/ D ln.t� cos˛ C jtj� /
.t� cos˛ C jtj� /�=� � 1 ;

and

jjT1jj D jjT2jj D �

�22�=�

��
sec

˛

2

� 2�
� C

�
csc

˛

2

� 2�
�

 �


sin .�=�/

2
:

(d) For

� 2
�

aI a D 1

2k � 1; 2kC 1.k 2 N/
	
;

we set

H.t/ D K�.1; t/ D min
i2f1;2g

1

maxf1; .t� cos˛i C jtj� /�=� g ;

where 0 < ˛1 � ˛2 < ; �; � > 0; �C � D �: Then we have the kernels

H.xy/ D min
i2f1;2g

1

maxf1; Œ.xy/� cos˛i C jxyj� ��=�g ;

K�.x; y/ D min
i2f1;2g

1

maxfjxj; .y�sgn.x/ cos˛i C jyj� /�=�g
and obtain the constant factors

K.�/ D K�.�/ D
Z 1

�1
min

i2f1;2g
1

maxf1; .t� cos˛i C jtj� /�=�g jtj
��1dt

D
Z 1

0

min
i2f1;2g

1

maxf1; Œt� .1C cos˛i/��=� g t
��1dt

C
Z 1

0

min
i2f1;2g

1

maxf1; Œt� .1 � cos˛i/��=� g t
��1dt

D 1

�

�Z 1

0

min
i2f1;2g

1

.1C cos˛i/�=�
1

maxf1; ugu
�
��1du
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C 1
�

�Z 1

0

min
i2f1;2g

1

.1 � cos˛i/�=�
1

maxf1; ugu
�
��1du



D 1

�

�Z 1

0

1

.1C cos˛1/�=�

Z 1

0

1

maxf1; ugu
�
��1du



C 1
�

�Z 1

0

1

.1 � cos˛2/�=�

Z 1

0

1

maxf1; ugu
�
��1du



D 1

2�=�

��
sec

˛1

2

� 2�
� C

�
csc

˛2

2

� 2�
�


�

��
:

By (121) and (129), we have

jjT1jj D jjT2jj D 1

2�=�

��
sec

˛1

2

� 2�
� C

�
csc

˛2

2

� 2�
�


�

��
: (147)

In particular, if ˛1 D ˛2 D ˛ 2 .0; /; then we have

H.t/ D K�.1; t/ D 1

maxf1; .t� cos˛ C jtj� /�=�g ;

and

jjT1jj D jjT2jj D 1

2�=�

��
sec

˛

2

� 2�
� C

�
csc

˛

2

� 2�
�


�

��
:

Then, for (a)–(d) we can obtain the equivalent inequalities with the kernels and
the best possible constant factors in Theorems 5–8. Setting ı 0 D �

2
> 0; we

can still obtain the equivalent reverse inequalities with the kernels and the best
possible constant factors in Theorems 5–8.
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A Secure Communication Design Based on the
Chaotic Logistic Map: An Experimental
Realization Using Arduino Microcontrollers

Mauricio Zapateiro De la Hoz, Leonardo Acho, and Yolanda Vidal

Abstract Chaotic systems feature some characteristics that are being actively
exploited in the field of communication systems. However, there are still some
drawbacks to be solved before actual feasible implementation of these systems
can be possible. One basic communication scheme found in the literature is the
digital-based scheme that uses discrete dynamical systems. In this case, chaotic
maps are frequently employed as pseudo-random bit generators used for encrypting
the messages. In this chapter we present a digital-based communication system
that uses the discrete logistic map which is a second-order polynomial map. The
input message signals is modulated using a 1-bit analog-to-digital converter. Then,
a logistic map is implemented in order to generate a digital binary version that
is used to encrypt the message. In the receiver side, the binary-coded message is
decrypted using a key signal that is sent through one of the communication channels.
The proposed scheme is experimentally tested using Arduino shields which are
simple yet powerful development kits that allows for the implementation of the
communication system for testing purposes.

Keywords: Logistic map • Arduino • Secure communications

1 Introduction

Security and secrecy in communications are some of the most important concerns
in nowadays societies. With the advent of worldwide networks and digital com-
munication techniques, the cryptographic techniques that once were restricted to
military and state affairs are now covering several domains such as banks, private
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Table 1 Comparison between chaos and cryptography properties

Chaos property Cryptographic property

Ergodicity Confusion

Sensitivity to initial
conditions/control parameter

Diffusion with a small change in the
text/secret key

Mixing property Diffusion with a small change within one
block of the plaintext

Deterministic dynamics Deterministic pseudo-randomness

Structural complexity Algorithm complexity

Table adapted from Table 1 as it appears in [2, 32]

companies, medical organizations, etc. This has led to a very active research field
oriented to finding optimal solutions to the problem of communications security
[5, 11, 31]. As a result, numerous cryptographic techniques that seek to preserve
the privacy of the information transmitted have been designed. However, they are
all vulnerable to some degree and thus efforts are still being made in order to find
better solutions. One trend in this research field is the application of chaotic systems.
The highly unpredictable and random-look nature of chaotic signals is the most
attractive feature of deterministic chaotic systems that may lead to novel engineering
applications [10]. Alvarez and Li [2] and Volos [32] summarize in a very concise
way the comparison between chaos and cryptography that helps understand this last
point as can be seen in Table 1.

Chaos thus has become very important for encryption/decryption purposes as
will be seen in the next paragraphs. There are basically two main approaches to
designing secure communication systems based on chaotic dynamics: analog and
digital.

Analog communication systems based on chaos has become possible because of
the possibility of synchronization. This is the possibility of using the output of a
driving system (master) to control the response system (slave) in such a way that
they both oscillate in a synchronized manner. This was discovered by Pecora and
Carroll [24] and opened up the way to applying chaos in communication systems.
A wide variety of synchronization schemes have been developed since then. For
instance, Agiza and Yassen [1] demonstrated that synchronization was possible
in two different systems: one of them composed of two identical Rossler chaotic
systems and the other one composed of two identical Chen chaotic systems. Another
example can be found in the work by Huang [8] who investigates the application
of adaptive control techniques for chaos synchronization between the Lorenz–
Stenflo (LS) system and a novel dynamical system called CYQY, as well as the
synchronization between an LS system and a hyper-chaotic system. An interesting
work in this field is that by Park [20] who accomplished synchronization between
two different chaotic systems by means of nonlinear control laws. The author
demonstrates that the two different systems could be controlled using nonlinear
control techniques and proved the closed-loop stability by means of linear control
theory.
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As mentioned earlier, the synchronization of chaotic systems led to the design of
communication systems in which chaotic oscillators are used to encrypt/decrypt the
information. In these systems, the chaotic oscillator signals are used to encrypt the
message and thus, these systems always require a synchronizing signal so that
the chaotic signal (or signals) can be reconstructed in the receiver. This is how
the message sent from the transmitter can be retrieved. Here are some examples.
Zapateiro et al. [35] designed a chaotic communication system in which a binary
signal is encrypted in the frequency of the sinusoidal term of a chaotic Duffing
oscillator. Two chaotic signals of the oscillator are further encrypted with a Delta
modulator before they are sent through the channel. In the receiver, a Lyapunov-
based observer uses the chaotic signals for retrieving the sinusoidal term that
contains the message. A novel frequency estimator is then used to obtain the
binary signal. Furthermore, in a new proposal, Zapateiro et al. [36] investigated
a modified Chua chaotic oscillator in which the nonlinear term of the original
oscillator was changed for a smooth and bounded function that allows for easier
analysis and synchronization with another oscillators. An application to secure
communications using the modified oscillator was developed and its performance
evaluated by numerical simulations. Fallahi and Leung [6] developed a chaotic
communication system based on a chaos multiplication modulator that encrypts
the signal. The chaotic signal is generated by using the Genesio-Tesi chaotic
system. This scheme does not require the knowledge of the initial conditions
of the transmitter. The authors also prove that the system security could not be
broken with the existing methods at that time. Yang and Chua [34] proposed a
secure communication system based on impulsive stabilization. In the transmitter,
a chaotic oscillator and an embedded cryptographic scheme is implemented. The
receiver consists of a chaotic oscillator and a cryptographic scheme, both identical
to those of the transmitter. The transmitted signal consists of a sequence of time
frames divided into two regions. The first region is a synchronization region, which
uses synchronization impulses for synchronizing the chaotic systems in both the
transmitter and the receiver. The second region contains the scrambled signal. The
synchronization of the chaotic oscillators is performed by means of the theory of
impulsive synchronization, which the authors developed in this work. In this system,
the key signal is generated by the chaotic system.

On the other hand, digital chaos communication systems do not depend on chaos
synchronization at all. Instead, they usually use one or more chaotic maps in which
the initial conditions and the control parameters play the role of the secret key
[2]. For instance, Lee et al. [13] proposed a chaotic cipher stream, a new scheme
for generating pseudo-random numbers based on the composition of chaotic maps.
The method consists of using one chaotic map to generate a sequence of pseudo-
random bytes and then apply some permutation on them using another chaotic map.
Liu and Sun [14] propose a new design of chaotic cryptosystems in which they
use high dimensional chaotic maps along with some cryptography techniques to
achieve a high security level. The high dimensionality of the map leads to a high
complexity and effective byte confusion and diffusion of the output ciphertext at the
time that the small key space problem is overcome. Patidar and Sud [22] proposed
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a pseudo random bit generator based on two chaotic systems running side by side.
This scheme increases complexity and thus the difficulty for an intruder to break it.
In an image encryption application, Zhang et al. [38] used discrete exponential maps
along with spatial S-box transform to design a key scheme resistant to statistic attack
and grey code attack. The properties of confusion and diffusion were improved
as shown by their experimental results. Pareek et al. [19] designed an image
encryption scheme in which two logistic maps are used along with an 80-bit key
to encrypt/decrypt the images. Eight different types of operation are used to encrypt
the pixels of an image; the type of operation is chosen according the outcome of the
logistic maps. The robustness of the secure communication scheme was proven by
means a statistical, key sensitivity and key space analysis.

In this chapter, we present a digital chaos communication system in which a
logistic map is used along with a 1-bit analog-to-digital converter (ADC) to encrypt
a message. This technique is also known as Delta modulator and is one of the most
simple and robust methods of ADC schemes requiring serial digital communications
of analog signals [27]. The transmitter and receiver are implemented low cost, small
but powerful microcontroller boards: Arduino Uno R3 [3]. The Arduino transmitter
receives a message which is analog in nature and encrypts it using a logistic map and
a 1-bit ADC. Then the Arduino receiver decrypts the message and converts to digital
form which corresponds to the Delta-modulated signal. In order to obtain the analog
version of the message signal, an analog circuitry performs 1-bit digital-to-analog
conversion (DAC) and retrieves the message.

This chapter is organized as follows. Section 2 describes the problem to be treated
and a scheme of the proposed solution. Section 3 is an introduction to the logistic
map from its origin to its applications in secure communications. Section 4 presents
the details of the implementation of the proposed technique. Finally, the conclusions
are presented in Sect. 5.

2 Problem Statement

In this chapter we explore the secure communications problem by means of chaos
techniques. The objective is to transmit a message m.t/ between two points. The
communication system scheme is shown in Fig. 1 and it consists of the following
elements:

• Arduino transmitter. This is the core of the transmitter. The Arduino board will
take the message m.t/ through one of its analog input ports, convert it to a digital
signal m.k/, and then encrypt it using a logistic map and a 1-bit ADC. This process
generates two outputs: one is the encrypted message me.k/ and the other one is
the signal s.k/ that is used for decryption purposes. Note that the Arduino will
sample the input message m.t/ and convert it to m.k/, k D nt, n D 0; 1; 2; : : :

• Channels. Two wired channels are used to send the encrypted and key signals to
the receiver.
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Fig. 1 Block diagram of the communication system

• Arduino receiver. This is one of the two main blocks in the receiver side. It takes
the signals me.k/ and s.k/ to decrypt the 1-bit digital signal before it is converted
to its analog form. The output is a digital signal md.k/ which corresponds to the
signal mb.k/.

• 1-bit DAC. This is the second block in the receiver. It is a 1-bit DAC consisting
of an integrator, a filter and some amplifiers to retrieve the original message. Its
output is a signal mr.t/ 	 m.t/.

The details of these blocks will be outlined in the following sections of this
chapter.

3 The Logistic Map

The Logistic Map has its origins in the works by the Belgian mathematician Pierre-
François Verhulst in the first half of the eighteenth century. According to the
biographies by Kint et al. [9] and Pastijn [21] and the references therein, Verhulst
was a brilliant mathematician who excelled since very young: at age 18, he enrolled
an exact sciences career at the University of Ghent and obtained his doctoral degree
3 years later with a dissertation on the reduction of binomial equations. After a break
in which he lived in Italy and enrolled the Belgian army to participate in a battle
against Holland, he became professor of the Royal Military Academy in Brussels.

Verhulst began to develop an interest in the application of mathematics to
the political context, particularly, to the idea of how population growth could be
modeled. After a few years of research and discussions, he published in 1845 an
article entitled Recherches mathématiques sur la loi d’acroissement de la population
[29] (Mathematical investigations about the law of population growth) in which
he developed the idea of the logistic growth model (la courbe logistique as he
named it). In this work, Verhulst highlights the importance of knowing the laws
that rule the population progress and recognizes that there are numerous factors that
influence the multiplication of the human race. Due to the difficulty of solving the
problem in a general way, he proposed a calculus-based model that neglected the
“accidental causes” because to his understanding, the statistics science was not
developed enough by that time. In 1846 he further presented another article to the
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Academy entitled Deuxième memoire sur la loi d’acroissement de la population
(Second memory about the law of population growth). It was published in 1847
[30] and it was a critical revision of his previous work.

After Verhulst’s dead in 1849, the logistic curve lost interest until 1920 when
it was rediscovered [9]. In that year, a paper entitled On the rate of Growth of the
Population of the United States since 1790 and its Mathematical Representation
[23], Pearl and Reed studied the mathematical models that were used at the time to
determine how the population size evolved along the time in the United States. They
concluded that the existing models did not reflect too much accuracy and came up
with an equation that better fitted the real data. That equation was exactly the same
Verhulst’s logistic curve though they initially ignored it. The logistic model then
resurged to be widely used in natural sciences to represent the population dynamics
of different species.

In 1972 the meteorologist Lorenz presented one of the pioneering works on
chaotic dynamics. His work entitled Does the flap of butterfly’s wings in Brazil set
off a tornado in Texas? [15] was a research on how some meteorological phenomena
could be modeled with a chaotic dynamic system. Then a series of works on chaotic
systems began to be developed and the logistic model would soon come along with
them. In 1976 May presented an article entitled Simple mathematical models with
very complicated dynamics [16] in which he described how the simple logistic map,
i.e., the discrete-time version of Verhulst’s logistic curve, would lead to chaos. The
importance of the logistic map as a simple chaotic system then begun.

The equation of the logistic model as it appears in Verhulst’s works is:

M

p

dp

dt
D m � np (1)

where p is the population, m D l C nb, b is the population corresponding at the
moment that the study begins, l=M is a coefficient relative to the weakening of the
population, and n is a constant. This is a first order differential equation. It is well
known that chaotic systems must be at least of third order, however this is not true
for discrete time systems. The logistic map, the discrete-time version of Verhulst’s
logistic model is indeed chaotic under certain conditions. Its equation is:

xnC1 D rxn.1 � xn/; 0 � x � 1 (2)

where r is a constant parameter. Figure 2 is the bifurcation diagram of the logistic
map created by varying the parameter r from 2.5 to 4.0.

As can be seen in the bifurcation diagram, there are different regions that depend
on the value of r. It is of particular interest when r D 3 because there it begins the
period doubling that leads to the chaotic dynamics when r 	 3:5699 : : : until r D
4:0. Figure 3 shows the Lyapunov exponent of the logistic map as r is varied from
2.5 to 4.0. It can be seen that the Lyapunov exponent � becomes positive for values
of or greater than 3.56 approximately which is a strong indicator of chaos [33].



A Secure Communication Design Based on the Chaotic Logistic Map 743

2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

r

x n

Fig. 2 Logistic map bifurcation diagram

2.5 3 3.5 4
−4

−3

−2

−1

0

1

r

λ

Fig. 3 Logistic map Lyapunov exponent

As was discussed earlier in Sect. 1, digital communication systems based on
chaotic maps are being widely studied and the logistic map is no exception. Several
works can be found in the literature in which the chaotic properties of the logistic
maps are exploited in the design of cryptography techniques for improving secure
communications. For example, Murillo-Escobar et al. [17] presented a symmetric
text cipher in which they used a 128-bit secret key, two logistic maps with optimized
pseudorandom sequences, plain text characteristics, and only one permutation
diffusions round. Security analysis was performed to demonstrate its feasibility.
Ursulean [28] studied the properties of the logistic map as a pseudo-random bit
generator and carried out statistical tests to analyze its performance. Lawrence and
Wolff [12] explored the generation of one or more binary-valued sequences from a
standard logistic map, according to the continuous values being in one of two sub-
intervals of the map’s domain defined by cut-points, one applying to each binary
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process and presented an application to secure communications. Zhang and Cao
[37] proposed a technique for encrypting images in which a new modification of the
logistic map is proposed. The modified logistic map is, according to the authors, a
better choice for encryption due to the improved chaotic properties as a result of a
much larger Lyapunov exponent. Singh and Sinha [26] proposed an opto-electronic
communication system that uses a logistic map and pulse position modulation. In
this scheme, the input signal (message) is added to a chaotic signal generated by
a logistic map. Then it is modulated with a pulse position modulator (PPM). The
modulated signal is then sent through the channel to the receiver in which the inverse
operation is performed in order to retrieve the message. The authors experimentally
tested this scheme with optical fiber with satisfactory results. He et al. [7] proposed
a scheme in which the message is processed using a logistic map and the chaotic
parameter modulation (CPM) technique. Then it is sent to the receiver where a
nonlinear control factor is introduced in order to synchronize the transmitter and
the receiver and thus retrieve the message. Chang [4] presented a communication
system based on the asymptotic synchronization of modified logistic hyper-chaotic
system. For that purpose, they proposed a modification of the logistic map in which
is uniformly distributed in [0,1]. The difference with respect to the original logistic
map is that the modified version does not exhibit windows. This has the advantage of
a greater key space for communications. Volos [32] presented a chaotic random bit
generator and implemented it in an Arduino board. The microcontroller runs side-
by-side two logistic maps working in different chaotic regimes due to the different
initial conditions and system parameters. Statistical tests were carried out to prove
security against intruders. Pande and Zambreno [18] presented another experimental
realization of a chaotic encryption scheme, this time using a Xilin Virtex 6 FPGA.
They implemented a modified logistic map that improves the performance of the
logistic map in terms of Lyapunov exponent and uniformity of the bifurcation
diagram.

In the next sections, we will use a logistic map as part of an encryption/decryption
scheme for transmitting information. In the next sections we will explain the
details of the prototype of this communication system which is implemented in two
Arduino Uno boards.

4 Experimental Implementation

4.1 Description of the Communication System

The communication system implemented in this work consists of a transmitter and
a receiver whose cores are the Arduino Uno R3 microcontroller boards, shown
in Fig. 4. These are low cost, simple but powerful microcontrollers based on the
ATmega328 chip. They have 14 digital input/output pins (six of them can be used
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Fig. 4 Picture of an Arduino Uno R3 microcontroller. Picture taken from the Arduino website [3]

as PWM outputs), six analog inputs, a 16 MHz crystal oscillator, a USB connection,
and a reset button. They can be programmed using a language similar to CCC called
Wiring [3].

The flow diagram of the programs executed by each Arduino is shown in Fig. 5
in order to facilitate the description of the communication system algorithms.

The communication starts when a message m.t/ is produced by a function
generator and sent to the analog input A0 of the Arduino transmitter. Arduino
analog inputs only accepts unipolar signals in the range form 0 to 5 V. An embedded
10-bit ADC converts the input signal from analog to digital at a maximum rate
of 10,000 samples per second. However, as can be seen in the flow diagram, the
loop is repeated every 0.5 ms and thus, the message input is sampled at a rate of
2000 samples per second. In order to guarantee the timing, we made use of the
SimpleTimer library [25]. Since the output of the ADC is a value between 0 and
1023 (the ADC resolution), an internal operation to bring it back to the range from
0 to 5 V is executed. The result is a sampled message signal m.k/.

The next step is the 1-bit ADC conversion. The ADC conversion scheme, also
known as simple Delta modulation, shown in Fig. 6, consists of a comparator in the
forward path and an integrator in the feedback path of a simple control loop. The
modulated output mb.k/ is either true or false at any given time. The signal m.k/
is compared to another signal xn.k/ which is generated internally by the algorithm.
xn.k/ is a digital implementation of an integrator, which is the base of the 1-bit ADC
conversion [27]. This value is updated every loop of the Arduino program.

After one bit from the ADC is obtained, the logistic map is called to generate a
value x.k/ and then proceed to the encryption. The encryption algorithm is then:
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Fig. 5 Flow diagram of the Arduino codes. Left: transmitter. Right: receiver
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Fig. 6 Diagram of the 1-bit
ADC/DAC converter also
known as Delta modulator

+
-

clock

modulator (ADC)

mb(k) mb(k)m(k)

xn(k)

m(k)

demodulator (DAC)

if x(k) > 0.5 then
me(k) = mb(k)
s(k) = true
else
me(k) = !mb(k) //Symbol ! means boolean negation
s(k) = false
end

where me.k/ is the encrypted message and s.k/ is the key. These signals are sent
to the receiver through digital outputs D2 and D7. The key signal s.k/ can also be
encrypted using, for example, Karnaugh maps, however this was not done in this
work.

In the receiver, the signals me.k/ and s.k/ go directly to the Arduino inputs D7
and D2, respectively. The flow diagram of the receiver program is shown in Fig. 5 as
well. The receiver decrypts the message by analyzing the key signal s.k/ by running
the following algorithm:

if s(k) = 1 then
md(k)=me(k)
else
md(k)=!me(k)
end

where md.k/ is the decrypted signal. The receiver runs every loop in 0.5 ms. The
output md.k/ is sent to the output pin D3 and it goes directly to the 1-bit DAC
realized with analog electronics using operational amplifiers. As shown in Fig. 6, the
DAC or Delta demodulation consists of an integrator. The signal is passed through
different stages though as shown in the circuit diagram of Fig. 7. The circuit has
three main blocks. The first one, composed of the amplifiers U1 and U2 is a unipolar
to bipolar converter. Recall that the Arduino inputs must be unipolar so in the case
that the original signals are bipolar they must recovered to its original form at the
output of the Arduino. Thus the signal m.k/ 2 Œ0; 5�V is converted to a signal
m.t/ 2 Œ�2:5; 2:5�V. The second block is composed of amplifiers U3 and U4. They
are an integrator that performs the DAC and an amplifier to adjust the quality of
its output. This signal is finally sent through a low-pass filter, an amplifier, and an
inverter (amplifiers U5–U7) to get the final mr.t/ which should be approximately
equal to m.t/.

The codes of the Arduino transmitter and receiver are shown in the Appendix.
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Fig. 7 Circuit diagram of the analog electronics in the receiver

4.2 Experimental Results

The communication system was implemented for experimental purposes. Figure 8
is a picture of the experiment in which we observe the two Arduino boards and a
protoboard with the analog electronics. For the experiments, the logistic map was
implemented with r D 3:9018 and an initial condition x.0/ D 0:5. The sequence of
numbers generated under these conditions is shown in Fig. 9.
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Fig. 8 Picture of the circuit
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Fig. 9 Numbers generated by the logistic map with r D 3:9018 and x.0/ D 0:5

Figures 10, 11, and 12 are screenshots of the oscilloscope corresponding to the
first experiment. In this case, a 160 Hz sine wave, 5 V peak-to-peak amplitude, was
used as a message signal. In Fig. 10 we see a comparison of the sent message m.t/
(in blue) and the retrieved message mr.t/ (in yellow). Figure 11 compares the sent
message m.t/ (in blue) and the key signal s.k/ (in yellow). Figure 12 is a comparison
on the sent message m.t/ (in blue) and the encrypted message me.k/ (in yellow).

In a second experiment, a 150 Hz triangular wave was used as a message. The
screenshots of the oscilloscope are displayed in Figs. 13, 14, and 15. Figure 13
compares the sent message m.t/ to the retrieved message mr.t/. Figures 14 and 15
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Fig. 10 160 Hz sine wave message. Blue: sent message. Yellow: retrieved message

Fig. 11 160 Hz sine wave message. Blue: sent message. Yellow: key signal

are the key signal s.k/ and the encrypted message me.k/ compared to the sent
message m.t/, respectively.

Finally, in Fig. 16 we can see a random-like message signal (in yellow) and its
retrieved version (in blue). This signal was generated by making sounds through an
electret microphone. For this experiment, it was necessary to reduce the execution
time of every loop of the Arduino microcontrollers to 0.1 ms in order to account for
the wider frequency spectrum of the signal.
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Fig. 12 160 Hz sine wave message. Blue: sent message. Yellow: encrypted message

Fig. 13 160 Hz triangular wave message. Blue: sent message. Yellow: retrieved message

5 Conclusion

In this chapter we have reviewed the digital secure communication systems using
the logistic map and proposed a new scheme based on it. The communication
system proposed uses a 1-bit DAC (also known as Delta modulator) to modulate
the message signal and a logistic map for encryption. The whole system was
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Fig. 14 160 Hz triangular wave message. Blue: sent message. Yellow: key signal

Fig. 15 160 Hz triangular wave message. Blue: sent message. Yellow: encrypted message

implemented with Arduino Uno microcontroller boards that run the encryption and
decryption algorithms in the transmitter and receiver, respectively. The results of
experiments showed the feasibility of using the Arduino microprocessors for the
task proposed. In future works, the key signal used to decrypt the message is going
to be encrypted as well in order to increase the security of the transmission.
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Fig. 16 Random signal. Blue: sent message. Yellow: encrypted message
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Appendix

Arduino Transmitter Code

///TX code
#include <SimpleTimer.h>
SimpleTimer timer;
double x=0.5; //Logistic map threshold for encryption.
double h=0.1; //Digital integrator parameter.
double xn=0; //Digital integrator signal xn(k).
double r=3.9018;//Logistic map parameter r.
int mk; //k-th sample of message signal m(t).
int aux; //Digital integrator parameter.
int me; //Encrypted message me(k).

void setup(){
pinMode(2,OUTPUT);

pinMode(7,OUTPUT);
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timer.setInterval(0.5,repeatMe);
}

void repeatMe(){
mk=analogRead(A0)*5/1023;
if(mk-xn>0){

me=HIGH;
aux=5;

}
else{

me=LOW;
aux=-5;

}
xn=xn+h*aux;
x=r*x*(1-x);
if(x>0.5){

digitalWrite(7,me);
digitalWrite(2,HIGH);

}
else{

digitalWrite(7,!me);
digitalWrite(2,LOW);

}
}

void loop(){
timer.run();

}

Arduino Receiver Code

#include <SimpleTimer.h>
SimpleTimer timer;
int me; //Encrypted signal from the transmitter me(k).

void setup() {
pinMode(2,INPUT);

pinMode(7,INPUT);
pinMode(3,OUTPUT);
timer.setInterval(0.1,repeatMe);

}

void repeatMe(){
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me=digitalRead(7);
if(digitalRead(2)==HIGH{
digitalWrite(3,me);

}
else{
digitalWrite(3,!me);

}
}

void loop(){
timer.run();
}
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