

Object-Oriented Design with UML and Java

To Irene – K.B.
To Salwa – J.S.

Object-Oriented Design
with UML and Java

K. Barclay
J. Savage

Amsterdam • Boston • Heidelberg • London • New York • Oxford • Paris
• San Diego • San Francisco • Singapore • Sydney • Tokyo

Elsevier Butterworth-Heinemann
Linacre House, Jordan Hill, Oxford OX2 8DP
200 Wheeler Road, Burlington, MA 01803

First published 2004

Copyright © 2004, Elsevier Ltd. All rights reserved

No part of this publication may be reproduced in any material form
(including photocopying or storing in any medium by electronic means
and whether or not transiently or incidentally to some other use of this
publication) without the written permission of the copyright holder
except in accordance with the provisions of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1T 4LP.
Applications for the copyright holder’s written permission to reproduce
any part of this publication should be addressed to the publisher.

Permissions may be sought directly from Elsevier’s Science and Technology
Rights Department in Oxford, UK: phone: (�44) (0) 1865 843830;
fax: (�44) (0) 1865 853333; e-mail: permissions@elsevier.co.uk. You may
also complete your request on-line via the Elsevier Science homepage
(http://www.elsevier.com), by selecting ‘Customer Support’ and then
‘Obtaining Permissions’.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0 7506 6098 8

Typeset by Charon Tec Pvt. Ltd, Chennai
Printed and bound in Great Britain

For information on all Elsevier Butterworth-Heinemann
publications visit our website at http://books.elsevier.com

Contents

Preface ix

1 Object Technology 1
1.1 Background 2

1.1.1 Modelling 2
1.1.2 UML 3
1.1.3 Analysis and design models 3
1.1.4 Development process 4

1.2 Using the UML 4
1.2.1 Objects: combined services and data 5
1.2.2 Objects make excellent software modules 8
1.2.3 Object interaction is expressed as messages 9

1.3 Classes: sets of similar objects 10
1.3.1 Specialization 12
1.3.2 Polymorphism 14

1.4 Tools 16
1.5 Summary 17
1.6 Exercises 17

2 Object-Oriented Analysis and Design 19
2.1 Fundamentals of an OOAD 19

2.1.1 A lightweight process 20
2.2 Illustration 23

2.2.1 Realizing the use-cases 25
2.3 Toward design 32
2.4 UML diagrams 33

2.4.1 Use-case diagrams 33
2.4.2 Interaction diagrams 34
2.4.3 Sequence diagrams 34
2.4.4 Collaboration diagrams 36
2.4.5 Activity diagrams 36

2.5 Class diagrams 38
2.5.1 Representation of objects 38
2.5.2 Association of objects 38
2.5.3 Composite aggregation of objects 42
2.5.4 Shared aggregation 43

2.6 Summary 44
2.7 Exercises 45

v

3 Implementing Objects with Java 49
3.1 Introduction 49
3.2 Illustration 49

3.2.1 Mandatory profile 56
3.3 Building an application 57
3.4 Implementing architectural relationships 59

3.4.1 Introduction 60
3.4.2 The bank problem revisited 60

3.5 Establishing the architecture 63
3.5.1 The mandatory profile revisited 64

3.6 The example application 65
3.7 Summary 68
3.8 Exercises 68

4 Case Study: A Library Application 73
4.1 Specification 73
4.2 Iteration 1 73

4.2.1 Establish use-cases 74
4.2.2 Analysis 75
4.2.3 Design 78
4.2.4 Implementation 83
4.2.5 Reconcile model diagrams 97

4.3 Iteration 2 98
4.3.1 Establish use-cases 98
4.3.2 Analysis 101
4.3.3 Design 103
4.3.4 Implementation 103
4.3.5 Reconcile model diagrams 111

4.4 Iteration 3 112
4.4.1 Establish use-cases 112
4.4.2 Analysis 113
4.4.3 Design 115
4.4.4 Implementation 117
4.4.5 Reconcile model diagrams 122

4.5 Summary 126
4.6 Exercises 127

5 Specialization 131
5.1 Specialization 131
5.2 Inherited methods 133
5.3 Redefined methods 135
5.4 Polymorphism 136
5.5 Polymorphism at work 146
5.6 Protected features 148
5.7 The abstract class 149
5.8 The interface class 153

vi Contents

5.9 The interface at work 157
5.10 Summary 160
5.11 Exercises 161

6 Case Study: The Library Application Revisited 167
6.1 Specification 167
6.2 Iteration 1 167

6.2.1 Establish use-cases 168
6.2.2 Analysis 172
6.2.3 Design 173
6.2.4 Implementation 175
6.2.5 Reconcile model diagrams 181

6.3 Iteration 2 181
6.3.1 Establish use-cases 182
6.3.2 Analysis 182
6.3.3 Design 182
6.3.4 Implementation 185
6.3.5 Reconcile model diagrams 193
6.3.6 A review of iteration 2 193

6.4 Iteration 3 197
6.4.1 Establish use-cases 197
6.4.2 Analysis 198
6.4.3 Design 199
6.4.4 Implementation 200
6.4.5 Testing 201

6.5 Summary 202
6.6 Exercises 202

7 Graphical User Interfaces 205
7.1 Overview of Swing 205
7.2 Rebuilding the library case study 207
7.3 Events 211
7.4 Menu bar 216

7.4.1 Responding to a menu selection 218
7.5 Application menus 221
7.6 Application buttons 230
7.7 Dialogs 235
7.8 Summary 238
7.9 Exercises 238

8 Design Patterns 241
8.1 Delegation 241
8.2 Interface 250
8.3 Iterator 254
8.4 Adapter 255
8.5 Singleton 257

Contents vii

8.6 Visitor 258
8.7 Observer 261
8.8 Template method 265
8.9 Abstract factory 266
8.10 Decorator 268
8.11 Summary 273
8.12 Exercises 273

9 Case Study: A Final Review 277
9.1 Refactoring 277
9.2 Iteration 1 278
9.3 Iteration 2 281
9.4 Iteration 3 286
9.5 Iteration 4 289
9.6 Summary 295
9.7 And finally 296
9.8 Exercises 296

Bibliography 299

Appendix A: Setting up the Environment 301
Appendix B: ROME 305
Appendix C: Package textio 329
Appendix D: UML Notation and Java Bindings 335
Appendix E: The Java Collections Framework 347
Appendix F: Programming with Java 363
Appendix G: Object-Oriented Programming with Java 379
Appendix H: Procedural Code in Java 393

Index 399

viii Contents

Preface

This book presents an introduction to Object-Oriented Design with the Unified
Modelling Language and the Java Programming Language. The target audience for the
book is undergraduate students in computing, computing science and software engin-
eering. However, practising software professionals who wish to update their knowledge
in this important area will also find it of value.

The text assumes no prior knowledge of object orientation on the part of the reader.
However, some experience of the Java programming language is expected. The book is
a basis for an academic course in which object-oriented design and the Java language
are jointly presented. Appendices F and G can be used as indicators of the level of Java
programming skills required. They can also be used to add to the reader’s knowledge of
Java programming.

Considerable effort has been taken to present the topics in a clear and orderly man-
ner. Each chapter participates in the development of the object concept from simple
objects and classes through to abstract classes, specialization, dynamic binding and
polymorphic behaviour. A number of illustrative object models are developed, specifi-
cations for the classes presented, and Java implementations are programmed. All are
reproduced from the computer and should execute correctly on any machine supported
by a standard Java environment.

A particular feature of the book is the inclusion of case studies. They are used to
illustrate various aspects of analysis and design and the Java language. They provide
fundamental and systematic software development in a relevant context not otherwise
achievable with small examples. Where appropriate, each chapter includes the analysis
and design accompanied with the program listings. The case study is first introduced as
a relatively simple application with a text-based user interface. It is then developed over
a number of versions and given various makeovers. From its humble beginnings it is
transformed to better accommodate revision and change, and given a contemporary
graphical user interface. It is further enhanced by applying design patterns to its
architecture and completed by refactoring some of its parts to obtain more leverage
from our work.

A short list of the major issues raised in each chapter is repeated as a summary at the
chapter end. All chapters include a set of exercises. They include the construction of
new designs as well as modifications and extensions to the given illustrations. Selected
solutions to these exercises are available from the book’s website.

The Object Management Group (OMG) has adopted the Unified Modelling
Language (UML) as a standard for presenting object-oriented designs. The UML is a
visual modelling language that is both simple and extensible, and integrates the best

ix

software engineering practices. It is used to visualize, specify, document and construct
the artefacts of an object-oriented analysis and design.

The emergence of object-oriented (OO) methods offers the opportunity to introduce
object-oriented modelling and design into the development process from the beginning,
ahead of any implementation concerns. Development methods or processes are both
cultural and organizational. UML does not mandate one method; rather it aims to be
applicable to a variety of methods. In this book we introduce a lightweight process that
guides the development lifecycle and provides the reader with an accessible introduc-
tion to object-oriented modelling.

Many practising professionals consider Java as the implementation language of
choice for object-oriented development. The adoption of Java as a programming lan-
guage presents a number of major challenges, not the least of which is to adopt and
fully embrace the object-oriented paradigm. This book explores some of these difficul-
ties and their resolution, by imposing on the language the use of an object model. It is
expressed as a UML design, which, in addition to constraining the form of the model,
also offers guidance in the production of the final Java code.

The UML reinforces the holistic nature of the object model where there is less div-
ision between the phases of the software lifecycle. It also provides the balance between
the power and flexibility of the Java programming language and the control required in
its usage. In this way the UML reduces the risk involved in the adoption of Java as an
object-oriented implementation language.

The UML permits developers to capture the detail of their design without the need to
embrace the Java language. It has sufficient expressive power to record the classes, their
basic attributes, relationships with other classes, and the behaviour of their operations.
The benefit from the approach is that there is a significant shift of emphasis away from
detailed programming difficulties on to the higher ground of analysing the meaning and
accuracy of the model. Further, as the mappings from the model to the implementation
are developed, we recognize emerging and repeated patterns. As a consequence much
of the programming collapses into a coding chore.

Organization

The book is presented in three parts. The first is covered by chapters 1 to 4 inclusive. In
these chapters we introduce object-oriented modelling, the UML, and the realization of
these models as Java programs. At this stage we do not exploit the full object-oriented par-
adigm, but seek to provide a firm foundation with object-based solutions to applications.

The second part is presented in chapters 5 and 6 where we embrace specialization
and its various aspects such as substitution and polymorphism. Specialization is one of
the distinguishing features of the object-oriented approach.

In these two parts we aim to provide the reader with a solid understanding of object-
oriented development. We have deliberately put the paradigm to the fore at the expense
of providing a sophisticated user interface. In these early chapters a simple text-based
interface is used in the illustrative applications.

In the third part of the book we consider further aspects of object orientation. With a
solid understanding of object-oriented principles from the first two parts we are able to

x Preface

easily replace the text-based interface with a contemporary graphical interface. This is
the subject of chapter 7. In the final two chapters we then investigate more advanced
object-oriented issues such as design patterns and refactoring.

Chapter 1: Object Technology — gives an account of the fundamental concepts of
object orientation and presents an introduction to topics discussed in more detail later
in the book. It describes software development as a modelling activity with objects as
the primary building blocks. It outlines the attributes of objects, encapsulation, infor-
mation hiding, abstraction, the class, message passing, inheritance and polymorphism.

Chapter 2: Object-Oriented Analysis and Design — gives an account of the fun-
damental features of an object-oriented analysis and design (OOAD). The chapter intro-
duces the UML as a notation for capturing and presenting the results of an OOAD. To
obtain the full leverage of the UML we must superimpose on it a lifecycle development
process. Here we introduce a lightweight process, one that is not overly bureaucratic, to
drive the development lifecycle. We then continue to follow this process throughout
subsequent chapters.

At this point the reader may care to review appendices A and B for installation and
user instructions for the ROME tool presented with the book. ROME may be used to
create and maintain these object models.

Chapter 3: Implementing Objects with Java — presents a detailed account of the
implementation in Java of simple object-oriented systems. Great care is taken to use
best practice so as to avoid opaque or confusing code. The bulk of the code developed
can be traced back to the class and other UML analysis diagrams of the preceding chap-
ter. Java concerns such as class declaration, attribute declaration and method definition,
message sending, parameter passing, scope and duration of objects and control flow are
now readily accessible through their early presentation in the object model.

Chapter 3 further develops Java implementations of object models by considering the
implementation of architectural relationships. The examples from this chapter draw
upon the collection classes included in the Java application programming interface
(API). Incremental development through a series of versions is offered as part of the
overall development method to reduce complexity and risk.

Chapter 4: Case Study: A Library Application — is a case study intended to con-
solidate the issues raised in the preceding chapters. A relatively simple lending library
is modelled and detailed with the UML. Emphasis is placed upon using the principles
of good software engineering within the context of an OOAD. The case study presents
a strategy for delivering an OOAD, through a number of controlled iterations driven by
use-cases. Each iteration is realized as successive increments to the developed code.

The three versions of the case study developed in this chapter follow the lightweight
process introduced in chapter 2. Further, we introduce how to include testing into an
OO development by considering use-cases that act as the basis for test-cases.

The final version considers the issue of progressing from a simple menu-driven,
text-oriented interface to a graphical user interface. The principle issue addressed here
is the separation of any input and output from the application domain model. This
readily permits the substitution of one user interface by another, and is the subject of
chapter 7.

Chapter 5: Specialization — completes the discussion of OOAD with the special-
ization of classes, the redefinition of methods and the use of the polymorphic effect.

Preface xi

The notion of base classes, interfaces and deferred methods is presented. Other issues
including public and protected attributes, as well as private operations, are also
addressed. The realization of these features in Java is demonstrated.

Chapter 6: The Library Application Revisited — is a case study that revisits the
library application of chapter 4. As before it consolidates the most important issues
raised in the preceding chapter. Specialization of classes and the use of the polymorphic
effect are highlighted in the context of this application. Further, a series of iterations of
this library application ultimately delivers a reusable framework suitable for this and
other similar applications.

Chapter 7: Graphical User Interfaces — evolves the library case study by incorpor-
ating a graphical user interface on to the application domain model developed in chap-
ters 4 and 6. The user interface is constructed from the Swing class library. Throughout
the chapter we continue to highlight the designs in the application as well as the object-
oriented models found throughout the Swing classes.

Chapter 8: Design Patterns — further extends our study of OOAD by considering
design patterns that communicate best practice solutions to common problems. In this
chapter we investigate and demonstrate a range of design patterns, captured through
UML diagrams and implemented in Java. We demonstrate, with a number of illustra-
tions, how these design patterns can be exploited.

Chapter 9: Case Study: A Final Review — completes our study of OOAD by
demonstrating how refactoring can enhance the quality of our work. Once again we
emphasize the importance of controlled development through relatively small
iterations. The changes are supported by making testing a critical element in this
activity.

Tool support

The UML has been incorporated into a graphical design tool called ROME by one of
the authors (K Barclay). This object modelling environment permits the user to prepare
and edit various UML diagrams. Further, the class diagrammer in ROME is used to
generate the Java code. The user creates a class diagram with ROME, generates the
Java program from this diagram, compiles the program, and then executes it. If the pro-
gram fails to compile correctly or produces the wrong output, the user makes the nec-
essary changes in ROME and repeats the cycle.

The ROME tool is offered on an as-is basis to the reader without any implied war-
ranty. It is a fully functional UML modelling tool and Java code generator, by which the
reader can follow the presentation of this book. It has been used extensively by the
authors for the past six years in their teaching programmes. The authors have taken
every precaution to ensure the robustness of this distribution. The product is offered in
good faith to the readers of the book. However, the authors cannot accept any liability
for any computer system fault resulting while using the software. Equally, the authors
imply no warranties of merchantability, or fitness for a particular purpose. The authors
shall not be liable for any damages suffered by a user when using any generated code
from the ROME software.

xii Preface

Acknowledgements

The authors are deeply grateful for the encouragement and stimulation to this project
given by the Head of School, Professor Jon Kerridge (School of Computing, Napier
University, Edinburgh). We also thank the students who actively participated in the
development of ROME, both as guinea pigs while it was being formulated, and as con-
tributors as it evolved into its present form. More than 1000 undergraduate and post-
graduate students of the School have had direct experience of ROME. Most acted as
unofficial beta-test sites for the tool. The authors also greatly benefited from the experi-
ences and insights offered by the practitioners who attended their professional devel-
opment programmes.

Finally, the authors wish to extend their sincere thanks to the team at Butterworth-
Heinemann. In particular we thank Alfred Waller for having faith in the book and Jodi
Burton in her editorial role.

Software distribution

The authors have prepared a supporting website (case sensitive URL):

http://www.dcs.napier.ac.uk/�kab/jeRome/jeRome.html

It contains the ROME software, designs and working programs for all the illustrations
and case studies presented in the book. Answers to selected exercises are also provided.
As new features are regularly included the reader is advised to consult this site for
up-to-date information.

October 2003 K A Barclay
W J Savage

Preface xiii

This Page Intentionally Left Blank

Object Technology

This book is concerned with Object-Oriented Design, the Unified Modelling Language
(UML) and the Java Programming Language. It seeks to demonstrate that a Java appli-
cation, no matter how small, can benefit from some design during its construction.
Various aspects of that design are captured and documented with the UML.

In this book we are primarily concerned with the middle ground between object-
oriented design and implementation. Many textbooks exist that are solely concerned
with the Java programming language (see the bibliography). These books give little or no
explicit consideration to the question of design. A much smaller number of analysis and
design books have been published. They often say little on the matter of realizing their
designs. Here, we seek to offer a bridge between the two.

The benefit from this approach is that there is a significant shift of emphasis away
from detailed programming issues on to the higher ground of analysing the meaning
and accuracy of the design. Further, as mappings from the design to the implementation
language are established, we recognize emerging and repeated patterns and conse-
quently much of the programming activity often collapses into a coding chore.

This introductory chapter offers a roadmap into the remainder of the book. Here, we
present the essence of object-oriented computing, and provide the necessary introduc-
tory background. We examine the fundamentals of object-oriented computing includ-
ing modelling, analysis, design and implementation. The concepts are framed around
everyday illustrations in which we concentrate on introducing the vocabulary of object-
oriented systems.

Computer technology has developed extremely quickly since its inception. Today,
computer-based systems impact on much of our lives in many spheres including bank-
ing, medical, flight reservation, educational and military applications. They are distin-
guished by having large amounts of software at their core. The capabilities of these
systems are derived from the complex computer programs that control them.

Although we better understand the process of developing computer software, we fre-
quently deliver it late and over budget. Often the software fails to do what the user
requires and is difficult to maintain and modify. These remarks have always applied to
the computer software industry, and while we have improved the technologies to sup-
port the development process, they have not fully matched the size and complexity of
contemporary systems. Object technology is considered the best to deliver on these
challenges, offering us the means to improve application development, reliability and
scalability.

1

1

1.1 Background

During the 1990s object technology entered the mainstream computing landscape. The
two primary fronts were in programming languages and in the introduction of object-
oriented methods. The development of object-oriented methods was the subject of
much research by both organizations and individuals. Notable leaders include Grady
Booch (Booch 1991) and Jim Rumbaugh (Rumbaugh 1991). The various approaches
promoted by these and others each had some merit but also had the effect of fragment-
ing the industry.

In the mid-1990s Booch and then Rumbaugh, and later Ivor Jacobson, formed the
Rational organization (http://www.Rational.com). The aim was to combine their indi-
vidual approaches and the contributions of others. Their efforts were offered for public
scrutiny, thereby obtaining industry acceptance for a single unified object-oriented (OO)
notation. It offers a means for capturing and recording the various elements of an
object-oriented analysis and design (OOAD). During the late 1990s Rational published
a number of versions of the UML. Subsequently in 1997 the Object Management Group
(OMG) approved the UML as a vendor-neutral standard.

1.1.1 Modelling

In the same manner that an architect’s blueprint presents design details for a building,
the UML allows software models to be constructed, viewed and manipulated during
analysis and design. Modelling is a proven technique used in a variety of disciplines.
For example, engineering models are used in the design and development of motor cars
(automobile engineering), aeroplanes (aero-engineering) and bridges (civil engineer-
ing). Similarly, meteorologists have developed mathematical models to predict weather
patterns.

Models are central to many human activities. They provide a blueprint for some arte-
fact we wish to manufacture or understand. A blueprint offers a measure of repeatabil-
ity ensuring standardization of the product. This is as equally important to the software
customer as it is to a customer purchasing, say, household goods such as a television or
a washing machine.

Through a model we aim to provide a better understanding of the system under devel-
opment. Models aid our understanding of especially complex systems and help ensure
we have correctly interpreted the system under development. For example, automobile
engineers use models to design new motor cars that meet a number of criteria including
their aerodynamics. The cars can be prototyped in fibreglass and tested in wind tunnels.
A similar argument can be applied to software development whereby a model can be
used to ensure all its requirements are met.

A model also permits us to evaluate our design against criteria such as safety or flexi-
bility. Similarly, UML models permit an application’s design to be evaluated and cri-
tiqued before implementation. Changes are much easier and less expensive to make
when they are made in the early phases of the software lifecycle.

Models help us capture and record our software design decisions as we progress
toward an implementation. This proves to be an important communications vehicle

2 Object-Oriented Design with UML and Java

between the development team members as well as between them and the customer.
Development team members can discuss their designs with the client to ensure they
have fully understood his needs.

Models can be layered and hence provide varying levels of detail. Abstract software
models omit large amounts of fine-grained detail and permit us to gain a high-level
view of the system and its architecture. These views permit us to focus on various parts
of the system without recourse to the details of program code. Repeated refinement of
these models can be used to progress them toward the final code.

An architect when designing a building often constructs a number of diagrams that
present it from a variety of perspectives. One view is, of course, the structure of the
building and is vital to the construction company. This same view is also important to
the customer since it reveals the details of the accommodation, its layout and the access
to stairs, elevators, etc. However, electrical (or plumbing) contractors are more inter-
ested in the run of electrical circuits (water supplies and drainage pipes) and their sup-
ply to the building from the utility companies. Hence an architect would construct a
number of blueprints highlighting these various facets.

In a similar manner, the software architect can offer a range of UML diagrams that
view the system from different perspectives. Some give a static view of the application
with the architectural configuration of the objects as the primary focus. Other UML
models emphasize the dynamic behaviour of the objects and their interactions.

1.1.2 UML

The UML defines a diagrammatic notation for describing the artefacts of an OOAD.
Through the UML we can visualize, specify, construct and document our software appli-
cation. As our software systems become ever larger and ever more complex we need
to manage that complexity and, in a sense, simplify it so we have a better understanding
of it. Often, visualizing the software graphically is more appropriate than struggling to
understand it in program code.

By inspecting our models we can identify deficiencies in our designs as well as
opportunities to enhance them. The UML acts as a specification language in which we
can precisely and unambiguously capture our design decisions.

Finally, from our UML diagrams we can derive programming language code. This is
referred to as forward engineering — the generation of code from UML models. This
is an approach we advocate through this textbook. The models are at the core of our
designs. The code is an outcome of that modelling activity and is itself a design docu-
ment. The models dictate the code that we ultimately produce.

1.1.3 Analysis and design models

An analysis model used in software development aims to document various facets of
the real world problem that we are modelling. In an object-oriented system develop-
ment this would typically involve identifying the significant application objects and the
application processing to be performed.

Chapter 1: Object Technology 3

Development methods that pre-dated object technology often deliberately delineated
between the analysis phase and the design stage. Commonly, they would also use a
linear or waterfall model for the development process in which the design stage only
follows after all the analysis has been completed. Further, these separate analysis
and design stages often resulted in a conflict between them, especially where different
models and notations were deployed.

Object-oriented methods are characterized by using the same modelling concepts
throughout the software lifecycle. This way, the solution that emerges during analysis is
carried through into design and finally to code. Objects identified during analysis should
also be present in the final code. This offers a seamless integration of the stages, not
otherwise found with other approaches. The design models augment the analysis models
with additional detail and, perhaps, introduce further low-level system objects required
in the implementation.

1.1.4 Development process

The UML is a modelling language. It has no notion of a development process, which
must accompany a method. The dictionary defines a method as a systematic or orderly
procedure. The authors of the UML understood this distinction and deliberately sought
to separate the language used to document a software design from the process used to
develop it. They recognized that processes are influenced by many considerations such
as the nature of projects and the culture of organizations.

Object-oriented design is usually conducted within an iterative process. This is vital
to ensure that we can revisit earlier decisions when corrections or modifications are
necessary. This is not unreasonable. After all, initial design decisions may require revi-
sion, especially in new projects or in those that are less well understood by the devel-
opment team. The iterative process continues until the full system is developed.

In common with many object-oriented developers, an iterative process is also accom-
panied by an incremental style of development. Each increment introduces some
additional functionality on to the previous stage. Often, the new increment only adds a
small feature so that we can fully test it and its effect on the existing system and its
architecture.

Each iteration needs to be accompanied by an objective that can be checked.
Otherwise, there is a danger of the process degenerating into undisciplined hacking.
An iterative approach is further enhanced when the customer is closely involved in the
system development. Each new iteration can be presented to the customer to obtain
feedback and to ensure his active participation throughout the project.

1.2 Using the UML

The next chapter presents a detailed discussion of the UML. Here, we simply consolidate
our earlier discussions by considering the more important elements of an object-oriented
software system. This will act as an introduction to the more detailed discussions that
follow.

4 Object-Oriented Design with UML and Java

1.2.1 Objects: combined services and data

An object-oriented system comprises a number of software objects that interact to
achieve the system objective. The software objects usually mimic the real-world objects
of the application domain. The real-world objects may have a physical presence or may
represent some well-understood conceptual entity in the application. For example, in a
university application we might have software objects that represent students. Equally,
we may have software objects representing programmes of study at a university even
though they have no physical existence.

Objects are characterized by having both state and behaviour. The state of an object
is the information an object has about itself. For example, a student object may have a
name, a date of birth and a university matriculation number. Equally, a programme of
study object might have the name of the programme, its duration and the name of the
programme leader. The behaviour of an object describes the actions the object is pre-
pared to engage in. For example, we might ask a programme of study object for its dur-
ation. We might ask a student object for its age. This would involve the student object
performing a calculation based on its date of birth and today’s date.

The behaviour of an object is described by the set of operations it is prepared to per-
form. One object interacts with another by asking it to perform one of its advertised
operations. This interaction is achieved by one object sending a message to another. The
first object is known as the sender object and the second object is known as the receiver
or recipient object. The only messages an object can receive belong to the set of oper-
ations it can accept. In the UML, objects and message passing are usually captured by a
sequence diagram as shown in figure 1.1. Here a university object is shown sending the
message getAge to a student object.

Chapter 1: Object Technology 5

: University : Student

getAge

Figure 1.1 Message passing in a sequence diagram

When an object receives a message it performs some action. This action is described
by a method. A method is the processes the receiving object follows when servicing the
message. For example, if a university object sends a message to a student object asking
for its name, then the student object simply replies to the sender with one part of its
state, namely, the name. However, if a university object sends a student object the mes-
sage asking for its age, then the method that student object must follow is more elab-
orate. First, it must obtain today’s date. This might be achieved by the student object

sending a message to some calendar object. The student object then has to perform
some complex date arithmetic on its date of birth and today’s date to determine its age.
In the sequence diagram of figure 1.1 this processing is shown as an activation, the rect-
angle adjacent to the message arrow.

Figure 1.1 also implies message propagation. When one object receives a message it
often sends a cascade of other messages to other objects. The university object sends a
message to the student object asking for its age. In turn, it sends a message to some cal-
endar object requesting today’s date. This example also demonstrates that an OO system
is a mix of objects interacting to achieve the required objective.

A university would typically have a large number of students. Unlike real students, all
student objects exhibit the same behaviour and carry the same knowledge about them-
selves. We might model a student object with a name, date of birth and matriculation
number. The actual state values for two student objects are presumably different since
university matriculation numbers are unique. With a large university population we might,
however, expect two or more students with the same name or two or more with the same
date of birth.

They are, however, all subject to the same behaviours. If one student can be asked for
their age by sending some suitable message, then all students can be sent this message.
How is this determined? All of our student objects support a single abstraction that we
may choose to call Student. Other abstractions from this problem domain might
include University, ProgrammeOfStudy and Tutor. We refer to the abstraction as the
class of the object.

A class is effectively a blueprint or template that fully describes the abstraction. The
Student class describes any number of student objects. The Tutor class describes any
number of tutor objects. The class describes the information an object holds to repre-
sent its state. The items of information are called attributes (sometimes also called
properties). The class also defines the behaviours of such objects, listing the operations
they can perform, i.e. the messages they can receive. The effect of these operations is
described by its method. Figure 1.2 shows a simplified class diagram for a Student
class.

6 Object-Oriented Design with UML and Java

Student

Attributes

theName

theDateOfBirth

theMatriculationNumber

Operations
getName

getAge

Figure 1.2 UML class diagram (simplified) for a Student class

In this figure we have a class Student with two operations and three attributes. Any stu-
dent object we create from this template will have a state comprising three values for the
attributes, i.e. theName, theDateOfBirth and theMatriculationNumber. Further, any

Student object can be sent messages to obtain their name or their age, i.e. getName and
getAge.

Figure 1.3 shows how in the UML we present a particular example of an object from
some named class. This we refer to as an object instance or simply an object. The upper
part of the figure names the class to which the object instance belongs, here Student. It
also labels the object with some identifier by which we can refer to that object (s1). The
lower part presents the attribute values maintained by the instance and represents its
state. Here, for example, this particular Student instance has theName attribute with
the value Ken Barclay as part of its state. Such a diagram element may be part of a
much larger object diagram (or collaboration diagram) that we describe with the UML
(see chapter 2).

Chapter 1: Object Technology 7

s1 : Student

Attributes
theName=Ken Barclay

theDateOfBirth=27 September 2000

theMatriculationNumber=CompSci1234

Figure 1.3 An object instance

As a further example, consider how we might model a bank account. An account can
exhibit a variety of behaviours such as debiting or crediting some monetary amount,
or requesting the account’s current balance. These behaviours give rise to some of the
likely account operations. Debit and credit transactions document the amount involved
in the transaction, changing the balance for an account. The balance, along with the
account number must be maintained by each bank account instance. Every example of
a bank account carries its own data values for these attributes (see figure 1.4).

acc : Account

Attributes

theNumber=NAP123

theBalance=150

Figure 1.4 A bank account instance

To model an account as an object we describe its behaviours as operations and its
state with attributes. During the execution of a system, an account object is requested to
carry out its various operations, changing its attribute values as needed to reflect the
effect of its actions. For example, in figure 1.4, a debit operation applied to such an
account object results in a change to the value of theBalance attribute.

Some operations are used to get information about an object, while others have some
effect on an object’s state. The operations that only give information about an object
are referred to as enquiry operations. They enquire about some state information held
by the object. The operation to obtain the value of an account’s balance is of this type.

The operation that performs a debit transaction on a bank account object changes the
current balance it holds. This category of operation is described as a transformer oper-
ation. A transformer operation changes one or more of the object instance attribute val-
ues. Both operations refer to the values of the object’s attributes, collectively the state
of the object. Transformer operations result in a state change, while enquiry operations
do not usually affect the state of the instance. In the class diagram of figure 1.5 we rec-
ognize the operation getBalance as an enquiry operation, while debit and credit are
transformer operations.

8 Object-Oriented Design with UML and Java

Account

Attributes

theNumber

theBalance

Operations

debit

credit

getBalance

Figure 1.5 Class diagram with Account class

1.2.2 Objects make excellent software modules

The concept of an object is both simple and yet extremely powerful. Objects make ideal
software modules. Each object instance forms a self-contained entity. Everything an
object knows is expressed in terms of its attributes and everything it can perform is
expressed by its list of operations. For this reason, objects are described as highly cohe-
sive. All the characteristics of an object provide some well-bounded behaviour for the
particular abstraction they represent (encapsulation).

Consider a motor car. A car has various controls that are used to control and operate
it. The gear shift, for example, is used to change gear on a manually operated vehicle or
to select the drive on one that is an automatic. Cars usually have tachometers to show
the speed of the vehicle. Other controls include the accelerator and the brake.

The internal components of the car are implemented by the many mechanical and
electronic devices contained within the body of the car (usually under the engine bon-
net). This metal carcass isolates the driver from the internals. Since the driver has no
direct contact with these components there is no likelihood that he will damage himself
or the car. Consider the position where, instead of an accelerator pedal, the driver con-
trols the speed by using a screwdriver on some internal control screw. The accelerator
would usually have some restricted amount of movement, limiting the driver to a
certain maximum speed. Without this restriction it is possible that adjustments made
directly to the control screw may set the speed above its maximum safe working level
and consequently damage vital components.

Equally, by isolating the driver from the internals, and only permitting a trained engin-
eer access to the components, a second benefit is obtained. If the car develops a fault,
then an engineer may replace the faulty component. The change has, however, been
effected without any operational change. The driver still uses the car in exactly the same
way. Only the repair of the faulty component has changed.

These ideas are also mirrored in object technology. They present the same benefits to
software as they do to cars. In a software object the attributes are hidden from a user but
may be replaced without affecting user software that relies on that object abstraction
(information hiding). In a software object behaviour is defined by its operations and not
by its private representation. The operations govern what we can ask a software object
to perform. If we supply an unacceptable value when invoking an operation, then
the effect can be denied, ensuring the correct state of the object. For example, a debit
operation applied to a bank account might only be permitted if sufficient funds are
available.

Since object attributes and operations only define their abstraction and no other, they
usually exhibit loose coupling with other objects. This is highly desirable because
strong coupling makes software components harder to understand, change or correct.
For example, when defining an object’s operation we need not concern ourselves with
the requester (client) of that operation. Only the effect of that operation on the receiv-
ing object’s attributes need be considered. Equally, the client requesting a service need
not be concerned with how that request is achieved by the recipient object.

1.2.3 Object interaction is expressed as messages

Figure 1.1 demonstrated that objects interact with each other by sending a message
from the sender requesting the recipient object to carry out one of its advertised oper-
ations. In figure 1.1 a University object requests the age of a Student object. Equally,
a bank object may send one of its account objects a credit operation. Here, the bank is
the sending object and the account is the receiving object. A message identifies the
recipient object and the name for the operation to be performed. The message name rep-
resents one of the operations of the class to which the recipient belongs. If the message
requires any further details they are given as the message parameters.

To request a bank account object to engage in a transaction to debit it by some mon-
etary amount, some sending object, such as an automated teller machine (ATM), might
send the account object the message:

acc debit 50

Here, acc is the identifier of the receiver object which is some bank account object,
debit is the operation it is being asked to execute, and 50 is the actual parameter inform-
ing the receiver account of the amount involved in the transaction. The UML collabo-
ration diagram in figure 1.6 portrays this message passing between objects. In the
diagram we have two objects: an Account object with identifier acc and an anonymous
(no identifier) ATM object. The latter sends a message to the Account object to perform
the operation debit with the actual parameter value of 50.

Chapter 1: Object Technology 9

When a message is received by some recipient object then an action is performed.
This action usually involves some or all of the values of the attributes representing the
state of the receiving object. The action will also use any message parameters. The logic
associated with this action is described by the method for the operation. The method
refers to the algorithm that is applied when an operation is executed. The method for the
debit operation applied to an Account object involves reducing the value of
theBalance attribute by the actual message parameter value of 50.

We have noted how transformer operations usually result in a state change to the
receiving object, while enquiry operations merely request information from it. The only
means of communication is a message sent from a sender to a receiver. In the case of an
enquiry operation a secondary information flow is observed. Here, the sender is expect-
ing a response from the receiver in the form of a return value. Occasionally, transformer
operations also supply return values, say, to report to the sender that the designated task
has been completed successfully. Be sure to recognize that a return value is not another
message.

Observe also the asymmetry of the messaging concept. The recipient object, when
defining its operation’s logic, does not concern itself with the object that is sending the
message. Equally, the sender need not be concerned with how the operation is imple-
mented by the recipient. As noted in the preceding section this greatly assists with the
production of high quality software systems by the separation of these two concerns.

1.3 Classes: sets of similar objects

An object-oriented system is characterized as a set of interacting objects. It is therefore
common to have more than one object of any given kind. For example, a bank will cer-
tainly have a number of customer accounts each of which carries out the same actions
and maintains the same kind of information. The single class Account (such as figure
1.5) could represent the entire collection of account objects (such as in figure 1.4). The
class contains the specification and definition of its operations (methods) and its attri-
butes. The actual accounts are represented by instances of this class, each with its own
unique identifier (say, acc1, acc2, …). Each instance contains data that represents its
own particular state. When an account receives a message to carry out one of its
operations, it uses the method definition for the operation given in its class and applies
it to its own attribute values.

Figure 1.7 shows the Account class and two instances of that class. The instances
have identifiers acc1 and acc2. The Account class has three services provided
by the operations debit, credit and getBalance. The attributes maintained by every

10 Object-Oriented Design with UML and Java

acc : Account

Attributes

theNumber=NAP123

theBalance=150

: ATM

debit 50

Figure 1.6 Message from an ATM to an account object

instance of this class have their own values for theNumber and theBalance. For
example, in the instance with identifier acc1 these attributes are respectively DEF456
and 1200. The message:

acc1 debit 50

results in the execution of the method for the debit operation applied to the Account
object acc1. This operation might be defined in terms of subtracting the value of the
message parameter 50 from the value of the attribute theBalance presently held by the
Account object acc1. The effect of this transformer operation produces a state change
in the object acc1, reducing theBalance to 1150.

Chapter 1: Object Technology 11

Account

Attributes

theNumber

theBalance

Operations

getBalance

credit

debit

acc1 : Account

Attributes

theNumber=DEF456

theBalance=1200

acc2 : Account

Attributes

theNumber=ABC123

theBalance=987

Figure 1.7 The Account class and two instances

Normally objects do not exist in isolation. They form relationships with each other
and related objects engage in message passing. In the object diagram of figure 1.8 we
show two Account objects that are related to the same Bank object. The Account
objects are not related to each other. Thus the Bank object can send messages to either
or both Account objects and the latter can send messages to the Bank object. Sig-
nificantly, since there is no relation between the Account objects therefore they cannot
engage in message passing.

The classes and the relationships between them are modelled in the class diagram in
figure 1.9. The annotation 0..* indicates that one Bank object can be related to none (0)
or more (*) Account objects. We shall have much more to say on these diagrams in the
next chapter. The object diagram of figure 1.8 is a particular example of a configuration
of objects described by this class diagram. In principle, there are an arbitrary number of
object diagrams that are based on a single class diagram. Thus a class diagram is a
abstract description of all possible configurations of objects.

1.3.1 Specialization

Object-oriented models can give rise to many classes of objects. Such complex models
may be rationalized and simplified by arranging the classes into hierarchies. The hier-
archies assist in the categorization of the types of object instances represented by the
many classes. This categorization of knowledge is found in many science and engineer-
ing disciplines and greatly assists in simplifying complex systems.

Many people, whatever their particular kind, share common characteristics. These
characteristics include both state information and behaviours. For example, name,
home address and social security number are data shared by all people. Equally, all
share the same behaviour of being able to ask a person for their age. People may be fur-
ther specialized as a particular kind of person, e.g. student. In addition to all the qual-
ities associated with people they also have additional characteristics peculiar to being a
student, such as a matriculation number. Everything that applies to an ordinary person
also applies to students and every instance of a student is implicitly an instance of a
person.

The Student class is described as a specialization of the Person class. Conversely,
the class Person is a generalization of the class Student. The specialized class
Student is said to inherit all the features of its generalization class Person. Thus if
any person has a name, then so do students. If we can ask a person for their age then
we can do the same with a student. In fact, any operation that may be applied to a
Person instance may also be applied to a Student instance. The converse, however, is
not true. A Student object may have attributes and operations peculiar to it, such
as a matriculation number. Since a Person is a generalization of a Student, only
those common characteristics are applicable to Persons. Hence we are not permitted

12 Object-Oriented Design with UML and Java

acc1 : Account

Attributes

theNumber=DEF456

theBalance=1200

acc2 : Account

Attributes

theNumber=ABC123

theBalance=987

bk : Bank

Figure 1.8 Objects and relationships

Bank Account
0..*

Figure 1.9 Class diagram with a relationship

to ask a person for their matriculation number since this is only applicable to
students.

Specialization is the mechanism by which one class is defined as a special case of
another class. The specialized class includes all the operations and attributes of the gen-
eral class. The specialized class is said to inherit all the features (or characteristics) of the
general class. The specialized class may introduce additional operations and attributes
peculiar to it. In addition to the operations inherited, the specialized class may choose to
redefine the behaviour of any one of these. This, as we shall see shortly, is used when the
specialized class has a more specific way of defining that behaviour. The specialized
class is commonly known as the subclass and the general class its superclass.

Specialization is often described as programming by difference. Since the Student
class inherits from the class Person, then the Student class need only implement those
differences between itself and the generalized Person class. So, for example, the
Student class need only introduce the additional attributes peculiar to students, say, a
matriculation number. Further, through inheritance, the specialized Student class need
not reprogram the inherited operations. The difference is any additional operations and
any redefined operations. The subclass then benefits from a significant amount of code
reuse.

In our banking illustration, the class Account could be specialized into two sub-
classes CurrentAccount and DepositAccount. The specialization relation is illus-
trated as a directed arrow from the subclass to the superclass as shown in figure 1.10.
Each inherits the general characteristics of its common superclass. Either subclass
may then add to the set of operations and attributes of the superclass, or redefine the
behaviour of one or more inherited operations.

Chapter 1: Object Technology 13

Account

Attributes

theNumber

theBalance

Operations

getBalance

credit

debit

CurrentAccount

Attributes

theOverdraftLimit
Operations

getOverdraftLimit

DepositAccount

Attributes

theInterestRate
Operations

getInterestRate

getBalance

Figure 1.10 Two subclasses of bank account

In Figure 1.10 any instance of the class CurrentAccount has the attributes
theNumber, theBalance and theOverdraftLimit. The latter attribute is introduced in the
CurrentAccount class itself, while the other attributes are inherited from the Account
superclass. Equally, any instance of CurrentAccount can respond to the messages debit,
credit, getBalance and getOverdraftLimit. Again, the first three operations are inherited
from the superclass and the last is defined for the CurrentAccount class. A similar
arrangement applies to the DepositAccount class in which the attributes of an instance
are theNumber, theBalance (both inherited) and theInterestRate (declared by the
class). The operations are debit, credit (both inherited), getInterestRate (defined by the
class) and getBalance (redefined).

Redefining the definition of an operation in a subclass permits a specialized imple-
mentation of the method. For example, the operation getBalance in the Account class
may be defined to simply return the present value of the attribute theBalance. In the
subclass DepositAccount the reappearance of the operation getBalance indicates a
redefinition that might, for example, deal with any interest accruing.

1.3.2 Polymorphism

Through inheritance, one class is formed as a specialization of an existing class, inherit-
ing all the features of that existing class. This proves to be a particularly important
concept that supports re-usability of existing code. Inheritance also gives rise to the
notions of polymorphism and dynamic binding. These additional concepts provide
support by which software systems may be modified to accommodate changes to its
specification.

The dictionary definition for polymorphism is “having many forms”. The class defin-
ition for DepositAccount declares the explicit specialization from class Account and
reveals that a DepositAccount is an Account with additional attributes, operations and
redefined operations. Hence an instance of DepositAccount may be substituted for an
Account instance. This is permitted since an instance of the class DepositAccount can
be sent the same messages as an instance of the Account class. Equally, an instance of
CurrentAccount may also be used where an Account instance is expected. This means,
for example, a Bank object may be introduced with a number of Account objects asso-
ciated with it. The Bank does not need to concern itself with whether they are
CurrentAccount objects or DepositAccount objects. They are all some kind of
Account.

This approach is radically different from that which is employed in conventional
systems where it is necessary to populate code with complex selection statements
to identify the kind of account then execute some appropriate logic. In these systems
the determination of the account kind lies wholly with the programmer. In object-
oriented systems responsibility for this selection is given to the programming
environment.

Figure 1.11 presents a class diagram in which a number of accounts are held or main-
tained by a bank. A particular instance of the class Bank is responsible for zero or more
instances of the various kinds of bank accounts, some of which are DepositAccounts
and some CurrentAccounts. The labelled line is an association demonstrating a

14 Object-Oriented Design with UML and Java

one-to-many relationship between the Bank class and the general Account class. This
kind of object model is the subject of this book and is formally introduced in the next
chapter.

Chapter 1: Object Technology 15

Account

Attributes

theNumber

theBalance

Operations

getBalance

credit

debit

CurrentAccount

Attributes

theOverdraftLimit
Operations

getOverdraftLimit

DepositAccount

Attributes

theInterestRate
Operations

getInterestRate

getBalance

Bank
Operations

getTotalAssets

theAccounts

0..*

Figure 1.11 Bank/Account class diagram

When a Bank object sends the message getBalance to each of the many Account
objects it holds, then the definition for this operation in the Account class is used. Some
accounts will, of course, be interest-bearing DepositAccounts that, through redefini-
tion of the getBalance method, have a different way of computing the amount of inter-
est. To obtain the correct selection of method we defer the choice of method to execute
until run-time using a mechanism known as dynamic binding. This is done by recording
that the polymorphic effect is required on the getBalance operation. If the operation
getBalance in the class Account is polymorphic, then when the message is sent to
each account instance the appropriate definition of the operation is executed according
to the class of the receiving object. Effectively, the receiving object knows to which
class it belongs and executes the appropriate method.

Thus when the getBalance message is received by a DepositAccount instance,
then the redefined version of the method from that class is executed. When a
CurrentAccount object receives the same message, then since that class does not rede-
fine the operation, the method executed is that defined and inherited from the superclass
Account. The UML collaboration diagram in figure 1.12 demonstrates how the Bank
object determines the value of its total assets. Each account is either an instance of a
DepositAccount or an instance of a CurrentAccount. The Bank is unaware of this
fact and simply sends the message getBalance to each. When the single CurrentAccount
object receives the message getBalance it simply executes the method inherited from

the Account superclass. The two DepositAccount objects use the redefined method in
their subclass.

16 Object-Oriented Design with UML and Java

: DepositAccount

Attributes

theNumber=AAA111
theBalance=800
theInterestRate=4

: DepositAccount

Attributes

theNumber=BBB222
theBalance=1200
theInterestRate=5

: CurrentAccount

Attributes

theNumber=CCC333
theBalance=500
theOverdraftLimit=1100

bk : Bank

1: getBalance

2: getBalance

3: getBalance

Figure 1.12 The dynamic binding effect

Polymorphism contributes to program maintenance. If we were to add a new kind of
account to the system, say the class SavingAccount as a specialization of the Account
class, it might implement its own getBalance operation. The Bank class does not need
to know about this enhancement. Again, it sends the getBalance message to every
account. If a particular instance happens to be from this new class it will choose its own
definition for this operation.

1.4 Tools

Today, modern software development normally takes place with the support of software
development tools. They are generally described as Computer Aided Software Engin-
eering (CASE) tools. Many commercial CASE tools are large and complex software
systems that support many of the stages of the software development process. They are
often known as upper-case tools because of their support for most aspects of a process.
By comparison, lower-case tools provide less support but usually require a much shorter
learning curve.

To support the reader throughout the remainder of this textbook, the authors have made
available a lower-case tool ROME (see appendices A and B). That way, the reader can
follow the book’s content and have access to CASE tool support for various parts of the
discussion. Whereas upper-case tools strive to automate activities, ensure consistency

across the models, provide various management reporting, etc., ROME does not include
these features to ensure we have a much simpler tool to operate. At the end of this study
however, we expect that the reader should be capable of progressing to the more advanced
commercial tools. For example, consult the website http://www.rational.com,
http://www.togethersoft.com.

The ROME modelling tool has been used throughout this book to create the many
UML diagrams shown. The current version of ROME supports the majority of dia-
grams described by the UML. Further, the class diagrammer in ROME is used to gen-
erate the Java code.

See the section entitled “Software distribution” in the Preface for details of how to
obtain and install the supplied software.

1.5 Summary

1. The Unified Modelling Language, UML, is an internationally agreed notation for
recording the various elements of an object-oriented analysis and design. The UML
defines a number of views of a system through various diagrams such as class and
collaboration diagrams.

2. The UML must be augmented with a process to guide the development of the soft-
ware. In an OOAD the same modelling concepts are used throughout the software
development process.

3. An object-oriented system is characterized as a set of communicating objects.
4. An object is a set of operations together with a state that the object retains between

invocations of any of its operations. Transformer operations result in a change to
that state while enquiry operations report on the state.

5. An object instance is a particular example of an object from some named class and
can be shown in a UML object diagram. A class is a blueprint or template describ-
ing an arbitrary number of such instances and is presented in a class diagram.

6. Objects interact through message passing shown in either UML collaboration or
sequence diagrams. One object sends another object a message that invokes one of
the recipient’s operations. The message is bound to the operation’s definition given
in its class or its superclass.

7. Classes may be classified into a hierarchy starting from the general and leading to
the more specific. A subclass is a specialization of its immediate superclass. A sub-
class inherits all the features of its superclass. It may add further features and rede-
fined operations. An instance of a subclass is an instance of its superclass and may
substitute at any time for an instance of the latter.

8. Inheritance also gives rise to the notions of polymorphism and dynamic binding.
A dynamically bound, polymorphic message sent to an object binds to the operation
definition in the class to which the object belongs.

1.6 Exercises

1. Explain why modelling is central to many human activities. Other than those already
described, give one further example for the use of models.

Chapter 1: Object Technology 17

2. What do you understand by the term process? Object-oriented development processes
employ iterations and increments. Outline what you understand by these terms.

3. What role does the UML play in an OO development process? Is the UML the
process itself?

4. Objects are said to have both state and behaviour. Explain what is meant by these
terms?

5. Carefully distinguish between the terms “operation” and “message”. What is the
relationship between the terms “message” and “method”?

6. What do you understand by the term “class”? What are the two principal features or
characteristics of a class? How do they relate to the notions of state and behaviour?

7. Give a UML class diagram in the manner of figure 1.2 for the class Person with
theName and theDateOfBirth attributes as well as the operations getName,
getAge and changeName.
Show two instances of class Person in an object diagram representing yourself and
someone in your family.
Suggest other plausible attributes and operations for the Person class.

8. The Account class in figure 1.5 shows two attributes and three operations. The
enquiry operation getBalance interrogates an Account object for part of its state.
Which attribute value is returned by this operation? How is this value used when
implementing the additional operation isOverdrawn that indicates the state of an
Account object?
When we debit or credit an Account, which attribute value is affected? By what
amount is it changed? How is this change value introduced with the debit and
credit operations?

9. How is an operation invoked? What are the three principal components? Which
component is optional? When missing, what category of operation do we typically
then have? What is a method in this context?

10. Figure 1.10 shows three kinds of bank account. The operations debit, credit and
getBalance of the Account class operate on which attributes? What attribute does
operation getOverdraftLimit in the CurrentAccount class use? How will the rede-
fined operation getBalance of class DepositAccount operate? What attributes are
involved and to which class do they belong?

11. Suppose the CurrentAccount class of figure 1.11 redefined the getBalance oper-
ation, and a Bank instance is related to a number of DepositAccount objects or
CurrentAccount objects (as in figure 1.11). If the Bank sends the getBalance
message to all, which versions of this operation are executed? How is this selection
determined?

18 Object-Oriented Design with UML and Java

Object-Oriented Analysis
and Design

The previous chapter described an object-oriented system as one composed of software
objects collaborating with each other to achieve some common goal. Clearly it is of
paramount importance that the objects and their relationships are correctly identified
and recorded.

Unfortunately, it is difficult to give hard and fast rules as to how this can be accom-
plished in all cases. Part of the reason is that problem solving is very much a human
activity. However, over the past few years several object-oriented analysis and design
methods have become popular (Jacobsen 1999, Priestley 2000). Although they differ in
some important respects each has at its core the belief that we naturally think in terms
of objects and that they make excellent software components.

We must appreciate that the UML is a notation and not a method. It has no notion of
a process that has to be followed as part of a method. Its purpose is to allow developers
to capture and present the results of an object-oriented analysis and design. In this chapter
we present a process that can be followed in which the UML is used to capture elements
of the system development.

In the following sections we introduce some of the more important UML diagrams.
We shall first illustrate them by considering a small example that continues into the next
chapter when we consider the implementation for our design in Java. Sections 2.2 and
2.3 introduce applications of the UML to this small demonstration. Later sections (2.4
and 2.5) revisit other aspects of the diagrams not covered by the illustration.

The reader is invited to review the materials in appendix D, which summarize most
of the UML features we use throughout this textbook. It is also recommended that spe-
cialist textbooks for the UML be consulted (Priestley 2000, Larman 2002).

2.1 Fundamentals of an OOAD

The UML does not mandate a particular software development lifecycle. In fact, its aim
is to act as a modelling language and to be process independent. To gain the full lever-
age of the UML we must impose on it a method. The original authors of the UML have
proposed the Rational Unified Process (Jacobsen 1999), a heavyweight, industrial-
strength method. Unfortunately, for many projects it is overly elaborate and complex.

In this textbook we offer a lightweight process as a vehicle for presenting an intro-
duction to the subject. This is also in keeping with recent developments in agile systems

2

19

development (Beck 1999) and extreme programming (Cockburn 2001) which seek to
simplify and reduce the bureaucracy of the heavyweight methods. We shall, however,
retain the accepted guiding principles that an OOAD process should be:

• use-case driven

• architecture centric

• iterative and incremental

A use-case is a typical interaction between a user and the system under development.
It is used to capture some functionality to be provided by the software system. For
example, in a banking application a use-case may document that a requirement of the sys-
tem is to support transactions on bank accounts, e.g. make a deposit. Similarly, in a word-
processor application changing the font of some text might be presented as a use-case.

Developing use-cases is a significant activity in the OOAD process. They can be used
to communicate with clients, as statements of intent for developers and as specifications
for the testing that should be applied to the system when it is under development.

A process that is architecture centric makes the system’s architecture the primary
focus during development. A model, presented as various UML diagrams, gives different
perspectives of the system. Some diagrams emphasize the static structure of the system’s
architecture while others capture some of its dynamic behaviours.

Any software system is actually a model of a problem that exists in the real (or
imagined) world. Therefore the more closely a software model corresponds to the
actual problem then the more effective it will be. OOAD methods recognize this fact
and use key abstractions (objects) taken from the problem domain as the fundamental
building blocks for the software system.

With this approach there is only one model of the system no matter what stage of
development it is at. System development is a process that progressively adds more
detail to the model until such time that it can be executed on a computer. Further, there
can be different views (perspectives) of the model at any given point in its development.
Each view has a specific purpose and uses only part of the information held in the full
model. In this way multiple and easily understood views of a complex system can be
presented.

An iterative process aims to release a series of versions of the software. Each version
augments its predecessor with some additional functionality. We need to ensure that
each iteration has a clearly defined aim to avoid undisciplined development. Some iter-
ations may not involve new designs but are concerned with refining or refactoring the
model to enhance its quality or its usefulness. Within an iteration we conduct an incre-
mental style of development in which we introduce small changes as the software is
developed with the aim of minimizing any risk.

2.1.1 A lightweight process

Our lightweight process employs use-cases to drive the development process. Based on
the use-cases identified we create a series of views of the model that describe various
perspectives of the system. They present both static and dynamic views. Arising from

20 Object-Oriented Design with UML and Java

these views we derive a design for our model to realize them. The design need not be
fully elaborated. Rather, we are interested in an outline design which we are confident
is sufficiently developed that the implementation can be achieved. It is not intended that
it is a blueprint that cannot be revised. The design sketches a solution that may be sub-
ject to revision as the system develops. Using the design as a guideline, a number of
iterations are used to grow our solution.

The elements of our process are captured by the activity diagram shown in figure 2.1.
The diagram shows the order in which each activity is undertaken. The process is heavily
influenced by a forward-engineering approach in which the design ultimately deter-
mines the final code. If we wish to make revisions to the code, they are captured in
changes to the design and subsequently to the revised code. The code and the design are
inextricably woven together since they form different aspects of the same model.

Chapter 2: Object-Oriented Analysis and Design 21

●

●●

3: Construct/revise class
diagram

2: Develop activity, collaboration
and sequence diagrams

1: Establish use-case
diagrams

4: Incrementally implement,
document and test the code

for each use-case

5: Reconcile the
model diagrams

[realize another use-case]

[new user requirements]

Requirements
established

Requirements analysis
development initial test cases

Object-oriented
analysis

Object-oriented design;
construct initial program code

Implementation; complete
program code for one iteration

[all use-cases implemented]

[no new requirements]

Figure 2.1 A lightweight process

The software lifecycle usually begins with the requirements capture in which we
seek to determine the purpose of the software. Determining the requirements is usually
performed in conjunction with the customer. The outcome from this activity might
be a short report or voluminous tomes depending on the scale and complexity of the
system.

Frequently the requirement documents are subject to interpretation. They can be
incomplete and ambiguous, so that further work is necessary to clarify these anomalies.
Notwithstanding these failings, requirements introduce the vocabulary of the problem
domain and allow us to set its boundaries.

When the requirements have been specified then a number of activities are under-
taken. Some are repeated as we progress through analysis, design and implementation.
The steps in our lightweight process are:

1. Develop a set of use-cases that describe the capabilities we expect from the system.
In many cases we will initially fail to gather all of the use-cases but it is vital to
try to capture the most important. They provide a point of communication between the
customer and the developer. They can also help in correcting the ambiguities and
omissions in the requirements documentation. Use-cases can also operate as the
basis for test-cases since they define the functionality sought from the software.

2. Begin the analysis phase by postulating what objects are present in the problem
domain, how they interact to achieve some part of the system objective, and how
they form relationships so that communication may take place. This work consists
of establishing a number of sequence, object, collaboration and activity diagrams
that demonstrate how each use-case is realized. The activity diagrams reveal some
of the processes within the system. The object and collaboration diagrams highlight
the principle objects drawn from the problem domain and their architecture. Collab-
oration and sequence diagrams help identify and document the behaviours expected
of the objects in the problem domain.

3. These analysis views reveal how a set of interacting objects deliver the functionality
described by the use-cases. We can then formulate a class diagram for the system’s
architecture. A fully decorated class diagram records the features of the class includ-
ing the state and behaviours we can expect of objects of each class. The class dia-
gram and the analysis diagrams should be considered jointly to ensure we have
consistency between the views of the model. For example, if a collaboration dia-
gram shows objects that are related, then that same knowledge must be present in
the class diagram. From the class diagram we can generate the initial program code.
This will produce the Java classes populated with class attributes, class operations
and the architectural relations that must exist between them.

4. We can augment the initial code with method bodies and start the process of imple-
menting and testing the development. Here it is best to conduct this work incremen-
tally. Often it is possible to fully develop one class in isolation. When we are
satisfied with it we can progress to another, possibly related, class. Its implementa-
tion can proceed safe in the knowledge that the first class is relatively stable. Each
increment should proceed with the aim of ultimately delivering one of the use-cases.
Throughout, we often have the customer closely associated with developments so
we have his active involvement.

22 Object-Oriented Design with UML and Java

5. Implementation may reveal some changes required to the UML diagrams. It may
be a simple augmentation to the model that does not invalidate the overall system
architecture. However, we should be prepared to make revisions to the class diagram
where it offers some significant improvement. Refactoring (Fowler 1999) a class
diagram to obtain a more elegant solution often produces cleaner code that is sim-
pler to enhance and maintain. Any changes made here need to be reconciled with the
model produced during analysis. After all, if new requirements are subsequently
introduced into the project it is important that these documents are consistent with
the existing code.

2.2 Illustration

Consider the outline for the following scenario:

The development of a computer system is required by a community bank. The com-
munity bank is a new venture to introduce banking services to a local community
that do not normally use the facilities of the national banks. A system is required
whereby customers may open accounts and perform the usual transactions on
these accounts (credit the account, debit the account, and obtain the current
balance). The bank is also required to provide to government the value for its total
assets.

Typically, such a statement of requirements would need further elaboration. For our
example we may need to know who actually opens an account. Is it performed directly
by the customer using an automated teller system or online system, or is it performed
indirectly through a bank clerk? Requirement documents for large projects might fill a
number of ponderously large tomes. The information presented in requirement docu-
ments is often assembled by working with the customer and their domain experts to
obtain a statement of their needs. Since this documentation is approved by the customer
it is also known as the negotiated statement of requirements.

However, we adapt the use of a requirement document by our iterative approach to
system development. We initially identify and document the system requirements with
some simple UML diagrams. From these emerge the design model that operates as a
blueprint to guide our future developments. Incrementally we can grow our application
until we satisfy all the requirements.

Our analysis begins by first identifying the functionality the system must provide to
the users. Here, we seek the tasks the user will perform with the aid of the system. As
we noted earlier, object-oriented systems are described as use-case driven. Therefore,
the formation of the system is determined by considering a number of use-cases. A use-
case is a single task that a user needs the system to perform. The totality of these indi-
vidual use-cases should then describe the full system functionality. Our specification,
for example, suggests a use-case in which a customer should be able to perform a debit
transaction on the customer’s account.

We typically have a variety of users interacting with the system. Clearly there are the
customers, but we might also have to consider bank clerks and bank managers. The cus-
tomer may be the user in one use-case who instructs the system to make a deposit into

Chapter 2: Object-Oriented Analysis and Design 23

that customer’s account. The bank manager may be another user who has the necessary
permissions to obtain the total bank assets, and this is shown in another use-case.

In a use-case, a user is described as an actor. An actor represents a user having a
particular role when interacting with the system. We show a customer as an actor since
he represents the source of the stimulus to the system when making a transaction.
The manager is also an actor when obtaining the value of the bank’s assets. In some
examples the same actor may have different roles. For example, our bank manager may
also be a customer of his own bank.

Notice, that in some systems actors may not be people. They might, for example, be
other computer systems. We might eventually introduce an automated teller machine
(ATM) to give customers 24-hour access, and the ATM is effectively an actor in an
appropriate use-case. Sometimes actors are other physical devices, such as health moni-
tors in medical applications or radar systems in military applications.

A sample use-case drawn from our banking application illustration is shown in figure
2.2. The diagram records that a bank clerk interacts with the system to open a new cus-
tomer account. Here the clerk is the actor and is presented as an iconic stick man. The
use-case is shown as an ellipse, briefly describing the task. Where an actor participates
in a use-case, then this relationship is shown as an interaction line between the two.

24 Object-Oriented Design with UML and Java

Open new account

clerk

Figure 2.2 Use-case diagram

We might augment the use-case with appropriate documentation. Our documentation
should aim to further elaborate some detail of the use-case. For example, figure 2.3
includes a UML note in the diagram attached to the use-case.

Open new account

clerk

Create a new account for a customer. The account
will be associated with that customer and will have
an initial balance determined by the amount submitted
by the customer.

Figure 2.3 Documented use-case

Generally, documentation for a use-case describes its normal behaviour. It may be
that the customer is already known to the bank and has an unacceptable financial
record. Perhaps our customer already has a number of overdrawn accounts and is a pos-
sible financial risk. In that case no new account would be opened, but we do not capture

this in our use-case. We may, however, record this knowledge in our documentation so
that we may incorporate this behaviour into our final system. Later, we show how to cap-
ture this exceptional behaviour.

Figure 2.4 is a full set of the use-cases from our banking system application. Our
clerk is involved in one use-case “Open new account”, the bank manager in another “Deter-
mine total bank assets”, and the customer in the remaining three use-cases. Notice that
a customer makes three kinds of transactions: debit, credit and obtain account balance.
We will limit this system by assuming that a customer has at most one account with
the bank.

Chapter 2: Object-Oriented Analysis and Design 25

Open new account

clerk

Credit account

customer

Determine total bank assets

manager

Debit account

Obtain account balance

Figure 2.4 Community bank use-cases

2.2.1 Realizing the use-cases

The next stage in modelling our application is to consider how each use-case can be
realized. In effect we are moving from an external view of the system as perceived by a
user, to an internal perspective that reveals how each use-case will be achieved. The
work also reveals some of the objects in our system, the behaviours they are respon-
sible for, and their relationships with each other.

This activity involves capturing some of the dynamic behaviour of the system as well
as some architectural aspects. The UML has a range of diagrams for this purpose. In
this section we use activity diagrams, sequence diagrams, collaboration diagrams and
object diagrams. These analysis diagrams can be considered as “for-instances” in which
a particular configuration of objects is considered and represented by a UML diagram.
By choosing concrete examples we seek to gain an understanding of the objects, their

configuration and how their interaction achieves the required functionality of the sys-
tem. During the design activity we aim to move from these examples to a single (class)
diagram that describes all possible arrangements.

An activity diagram shows the flow of control through each separate activity.
It emphasizes the flow of control among the activities, whereas an interaction diagram
emphasizes the flow of control among the objects (see later in this section). Activity
diagrams can be presented at various levels of granularity. At the lowest levels we can
use them to model the flow of control within a method (see next chapter). At this stage
in the development lifecycle we use activity diagrams to elaborate use-cases.

Figure 2.5(a) is an activity diagram demonstrating how we describe the “Open new
account” use-case. We start from the initial state symbol (solid circle), flow through the
two activities (soft boxes) and end with the final state symbol (bull’s eye). The first activity
we carry out is to establish the new account and the second is to register it with the bank.

26 Object-Oriented Design with UML and Java

●

Create new account

Register the new account
with the bank

Opening a new account
is a two-stage process in
which the account is first
created, then we ensure
that it is opened with the
particular bank.

●●
Figure 2.5(a) Activity diagram for “Open new account”

Two activities are shown in this diagram: “Create new account” and “Register new
account with the bank”. The first connects to the second with a transition shown by the
directed arrow. The activity diagram captures that this particular transition only occurs
after completion of the first activity.

A more elaborate version of this activity diagram is given in figure 2.5(b). Here, a
decision symbol (diamond) is accompanied with two guard expressions on each out-
going transition. The guard [good customer] shows how the activity proceeds if the cus-
tomer has a good credit rating. For a good customer the new account is created and
registered with the bank. For a bad customer (one with a poor credit rating, perhaps) no
actions are shown. In reality, some activity associated with this exceptional behaviour
would normally be described. Chapter 6 considers this further.

The UML supports two kinds of interaction diagrams. They are referred to as
sequence diagrams and collaboration diagrams. Essentially they convey the same infor-
mation. However, each has a different focus. A sequence diagram shows the sequence
of messages that take place between interacting objects, with an emphasis on their
time ordering. A collaboration diagram captures this same information, although less

conveniently, but it additionally reveals the architectural relationships that exist
between the objects. The latter is absent from a sequence diagram, though is implicit in
the messages sent between objects.

Consider the “Open new account” use-case. The result of this use-case is that there must
be a new Account object established that is initialized with the customer details. They
might include the customer name, the account number and the initial balance, and perhaps
some unique customer identification number. Such an account object then needs to be
opened with the bank and it becomes one of the many accounts that belong with this bank.
Figure 2.5(c) presents a possible sequence diagram for how this use-case could be realized.

Chapter 2: Object-Oriented Analysis and Design 27

●

Create new account

Register the new account
with the bank

[bad customer]

[good customer]

●●
Figure 2.5(b) Activity diagram for “Open new account”

bk : Bank ac : Account Implicitly, we assume
some action for bad debt
provision is also taken.

create
open new account

register(ac)

Figure 2.5(c) “Open new account” sequence diagram realization

A sequence diagram presents the objects that we are interested in when describing
the use-case. The diagrams can include the actors involved in the use-case, though we
understand that they are outside the system we implement and do not exist as applica-
tion objects. Their role is to stimulate the system to perform some functionality. In this
sequence diagram we have a clerk, bank and account objects. The objects are shown as
rectangular figures labelled with the object type and the object’s identifier. For example,
we have an Account object with object identifier ac, and a Bank object with identifier
bk. Since all objects are shown as rectangles then the names Account and Bank dis-
tinguish the kind of object they represent. The object identifier is required where, for
example, we have a number of objects of the same class and there is a need to distin-
guish between them.

Object identity is an important notion. It is perfectly possible that two objects of the
same class have the same state information. We cannot, therefore, distinguish one from
the other using this state information, yet they are unmistakably different objects. This
we can record by giving each object a distinct identifier. If in our example accounts
always have a unique account number, then this problem will not occur.

We present the objects at the top of the sequence diagram. Each object has an asso-
ciated lifeline extending below it. The lifeline is the period of time during which the
object plays its role in the sequence diagram. Time is understood to pass as we move
vertically down through the diagram. The lifelines are decorated with activations (thin
rectangular figures) that highlight where the object is actively involved in some pro-
cessing, i.e. executing a method.

Between two activations we can show a message. A message is a request sent from a
sender object to some recipient object to perform some processing action. In figure
2.5(c) we see the Bank object first creating the Account object then registering that
new account with the Bank object itself. When a recipient object has completed its pro-
cessing, control is assumed to pass back to the sender. It is perfectly possible to show
the return from a message in a sequence diagram (a dashed arrow from the recipient
back to the sender), but it tends to introduce clutter, so we normally make the return
implicit. From figure 2.5(c) we then understand that the registering of the Account with
the message register sent to the Bank object will only occur after the Account object has
been successfully created.

This same knowledge can also be conveyed in a collaboration diagram. It presents a
number of object instances, the relationships that exist between them, and the messages
that are sent. An object instance has the same form as that in a sequence diagram. Where
an object is related to another, then we show this as a link connecting them. The link can
be decorated with messages and an arrow to identify the recipient of the message. The
collaboration diagram is equivalent to the sequence diagram is shown in figure 2.6(a).

28 Object-Oriented Design with UML and Java

bk : Bank ac : Account
1.0: open new account

1.2: register(ac)

1.1: create

Figure 2.6(a) “Open new account” use-case realization

Again we see the same two objects. Here, the messages and their ordering are shown by
a simple numbering scheme. Only after the Account is created (message number 1.1)
is it registered with the Bank (message 1.2).

The outcome of the messages shown in figure 2.6(a) is presented by the object diagrams
in figures 2.6(b), 2.6(c) and 2.6(d). Figure 2.6(b) is an object diagram in which a single
Bank object and two Account objects already exist. These are examples of anonymous
objects that have no identifier and are shown to illustrate a possible initial configuration
of objects. They have no identifier since they play no further part in the discussion.
Further, the diagram shows that the Account objects are associated with this Bank
object as a consequence of having been opened with this bank.

Chapter 2: Object-Oriented Analysis and Design 29

bk : Bank

: Account

: Account

Initially, the bank has
two accounts already
opened.

Figure 2.6(b) Existing configuration of objects

Following the message 1.1: create, a newly established Account object is produced
(figure 2.6(c)). It is initialized with suitable values for its attributes. At this instant this
Account object has not established any relation with any other object.

bk : Bank

: Account

: Account

Now a new account is
created and suitably
initialized.

ac : Account

Figure 2.6(c) Create new Account object

Finally, when we register this Account object with the Bank object then a link con-
necting them is formed. That way the bank object knows of an additional account that has
been opened. This configuration of objects is shown in the object diagram of figure 2.6(d).

Figure 2.7 shows the collaboration diagram for the customer making a credit trans-
action on an Account. This figure reveals that the Bank and the Account objects need

to be related in some way so that they may engage in message passing. We have exposed
the relevant Account object to reveal some of its state information. Here, the account’s
number is the text (or string) ABC123 and the current balance is 2000 pounds. The
customer requests that 300 pounds be deposited in this account. The message
deposit(“ABC123”, 300) is received by the Bank object. This instructs the Bank
object to deposit 300 pounds in the Account object with account number ABC123. The
Bank object then sends the message credit(300) to the correct Account object, which
updates its balance to 2300 pounds.

A major weakness of showing exploded instances in this way is that it presupposes
how the objects will be implemented. Whilst we think of objects as having state (and
behaviour), during analysis we should avoid consideration of how that state will be real-
ized. For example, when we ask a Bank object for its total assets we should not think in
terms of some state value for that amount. We might, after all, actually obtain this by an
accumulation of the balance for each account. During analysis, we should make state
information implicit by the behaviour of our application objects. Thus we perceive these
objects in terms of the behaviours they present rather than their internal representation.

Figures 2.8(a) and 2.8(b) show a sequence diagram and corresponding collaboration
diagram for a different scenario for the “Credit account” use-case shown in figure 2.7.
This time we see the need for the Bank object first to identify the Account object with
the required account number ABC123. Then, the credit message is sent to this
Account object. Finally, the activity is concluded and no further interaction with other
Account objects takes place.

30 Object-Oriented Design with UML and Java

bk : Bank

: Account

: Account

Finally, the new account
is included along with the
others as opened with
this bank.

ac : Account

Figure 2.6(d) Final configuration of objects

bk : Bank

ac3 : Accountac2 : Account ac4 : Accountac1 : Account

theNumber=ABC123
theBalance=2000

Attributes

1.1: deposit
("ABC123", 300)

1.2: credit(300)

Figure 2.7 “Credit account” use-case realization

We see in figure 2.8(a) that the customer stimulates the bank to request that 300 pounds
be credited to the account with number ABC123. The Bank object interrogates each
Account object in turn requesting their account number. The diagram reveals that the first
two accounts are only asked for their account numbers and since neither has the required
value then no further processing of them is required. If the third Account object
has account number ABC123 then it is sent the additional message to credit it with 300
pounds. At this point the task is now complete and no other Account objects are involved.

Chapter 2: Object-Oriented Analysis and Design 31

bk : Bank ac3 : Accountac2 : Account ac4 : Accountac1 : Account

deposit("ABC123", 300) getNumber

getNumber

getNumber

credit(300)Cycle through each
account until we find
the one with the required
number, then make
a credit transaction.

Figure 2.8(a) Sequence diagram realizing “Credit account” use-case

bk : Bank

ac3 : Account

ac2 : Account

ac4 : Account

ac1 : Account

1: deposit("ABC123", 300)
1.1: getNumber

1.3: getNumber

1.2: getNumber

1.4: credit(300)

Figure 2.8(b) Collaboration diagram realizing “credit account” use-case

We see from these two example diagrams how sequence and collaboration diagrams
convey essentially the same information. The sequence diagram places the timing of
messages at its focus. The collaboration diagram, while able to show messages and their
ordering, is better at revealing the architectural relationships between objects.

We normally apply one or more of these analysis diagrams to each use-case to ensure
that a configuration of objects and their interactions can support the requirement
described by the use-case. We should also seek to ensure we have consistency between
diagrams. For example, the sequence diagram in figure 2.8(a) implies an iteration through
each Account object in which they are asked for their account number. This same
knowledge is present in figure 2.8(b) while additionally revealing the architecture of the
objects involved.

Bank

Account

-theAccounts

0..*

holds

+register
+getTotal Assets

Operations

Attributes

-theNumber
-theBalance

Operations

+getBalance
+credit
+debit

2.3 Toward design

The preceding sections showed an external view of the system presented by use-case
diagrams, and an indication of how they might be realized with activity, sequence, object
and collaboration diagrams.

We can move our analysis forward toward design with a diagram that is an abstraction
for these specific diagrams. The UML class diagram captures the class of objects in the
problem domain, the attributes and behaviours of such objects, as well as the relation-
ships that exist between them. Development of the class diagram is a major milestone
and acts as the main architectural element that guides further developments.

Figure 2.9(a) is a class diagram for our banking application. Each rectangle repre-
sents a class for some kind of object identified in the problem. Here we have classes
Bank and Account. The class is a blueprint describing all the features of objects of that
class. It defines the attributes that constitute the state of such an object and its behaviour
when it receives some message.

32 Object-Oriented Design with UML and Java

Bank Account
-theAccounts

0..*

holds

Figure 2.9(a) Initial class diagram

If we then further elaborate the class diagram of figure 2.9(a) based on our previous
analysis, then we show the Account class with attributes for the account number and
the balance. For an object of the Account class, the value of these attributes represents
the state information for that object. Additionally, the class diagram has been aug-
mented to show the messages that objects of each class can receive. Again, our earlier
work determines that we need (among other things) to send a Bank object the messages
to register some new account and to obtain the total assets of the bank. Equally, the
Account class introduces the operations to get the balance, make a credit and a debit.
Revising the class diagram in this manner gives figure 2.9(b).

The class diagram also captures a relationship that must exist between a Bank object
and its many Account objects. In the diagram the relationship is presented as a line
between the two classes. The relationship is decorated to show the role each object

Figure 2.9(b) Revised class diagram

plays. The many Account objects are referred to by the role name theAccounts as
shown in the figure. Further, this role is given the multiplicity 0..*, meaning none or
more objects of the Account class are related to a Bank object. One Bank object and
many Account objects participate in a holds relationship shown in the diagram. The
directed arrowhead indicates the direction in which the relation is to be read. Here, it is
the Bank object that holds the Account objects.

Strictly, this UML class diagram shows an association relationship. This is often
described as a loose form of coupling between the objects. The objects involved (Bank
and Account) are considered as peers with equal standing. Further consideration of our
design might suggest that there is a much closer relationship, with the Account objects
subordinate to the Bank. A class diagram can capture this relationship with a compos-
ite aggregation relationship (see figure 2.9(c)).

Chapter 2: Object-Oriented Analysis and Design 33

Bank

Account

-theAccounts

0..*

holds

+register
+getTotal Assets

Operations

Attributes

-theNumber
-theBalance

Operations

+getBalance
+credit
+debit

1

Figure 2.9(c) Composite aggregation relationship

Aggregation implies a whole/part relationship between the composite and its part(s).
This is a much stronger coupling than that of association. If the composite object no
longer exists, then by implication, neither do the parts. For our illustration, if the bank
were to cease trading, then there would be no corresponding bank accounts.

2.4 UML diagrams

In the preceding sections we have introduced various UML diagrams in the context of
our banking example. In this section we revisit the diagrams and present further aspects
not otherwise covered.

2.4.1 Use-case diagrams

Figures 2.2, 2.3 and 2.4 show the essentials of use-case diagrams. They are composed
of actors and use-cases. Actors are related to use-cases by interactions. An actor symbol
is rendered as a stick man, and a use-case as an ellipse. An interaction between an actor
and a use-case is presented as an unadorned line between the two.

An actor provides the external stimuli for a use-case. It can be involved in one or
more use-cases (see figure 2.4). Equally, a use-case may involve any number of actors

(not shown in any of our sample use-case diagrams). While actors are given human
characteristics in the form of the stick man, this need not always be the case. Often, actors
that stimulate a system are other computer systems. In some cases they may be other
digital devices such as computer printers, medical monitoring equipment in a hospital,
or navigation systems in an aeroplane or in a ship. In our banking application ATM
machines may act as actors. Equally our central banking system may play the role of an
actor when initializing one of its ATMs.

2.4.2 Interaction diagrams

In the preceding section we noted that there are two types of interaction diagrams,
namely, sequence diagrams and collaboration diagrams. The illustrative examples also
highlighted the respective strengths of each. A sequence diagram is useful for emphasiz-
ing the time order of messages between objects. Collaboration diagrams reveal the rela-
tionships that must exist between objects so that they may engage in message passing.

The aim of an interaction diagram is to describe how groups of objects collaborate to
achieve some behaviour. Usually, we employ an interaction diagram to capture the behav-
iour for a single use-case. Both sequence and collaboration diagrams present a number
of objects and the messages that are passed between them. We can consider the example
objects as representative of the totality of actual objects in the system.

2.4.3 Sequence diagrams

In a sequence diagram the objects are presented as rectangular figures. In figure 2.5(c),
for example, we show two object instances: a Bank object and an Account object. The
object instances are decorated with a label of the form bk : Bank, where bk is the
object’s identifier and Bank is the class (or type) of the object. We have already dis-
cussed the role of object identity in such diagrams. Where we have no interest in the
identity, for example when we have only one such instance, then the identifier can be
omitted as in :Bank. Generally, unless the identity name chosen also reveals the implied
type (such as bank1), we do not omit the type name.

We are also permitted to include actors in our sequence diagrams. They need not rep-
resent software objects that we implement in our system. However, they identify the
user role that has stimulated the system to behave in the way described by the diagram.
The actors can be decorated in the same manner as the instances.

Each actor and object instance has a vertical lifeline, representing the object’s life
during the time of the interaction. When the object is participating in some activity this
is shown on the lifeline as an activation, presented as a thin, vertical, rectangular figure
positioned along it.

A message is represented by a directed arrow between two activations. The direction
of the arrow indicates which object is the receiver and which is the sender. Generally we
try to construct a sequence diagram so that the messages are shown with the recipient
on the right. Since time proceeds down the diagram, then one message shown above
another in the diagram precedes that message in time order. We have examples where

34 Object-Oriented Design with UML and Java

it is valid and useful to show where an object can send a message to itself. This is pre-
sented as the arrow connecting an activation with itself (see figure 2.5(c)).

As noted earlier we seek to reduce clutter in these diagrams by not showing the return
from a message when the recipient has completed its task. Where it improves the clar-
ity of some interaction, then it can be shown as a dashed arrow back from the recipient
to the sender. Be aware that these are not further messages. Such return arrows are pre-
cisely what their name suggests.

Where information is conveyed along with the message, then this can be shown as
message parameters. For example, in figure 2.5(c) the Bank object is sent the message
register(ac), where the message register is accompanied by the Account object iden-
tifier ac.

Messages can also be augmented with two additional types of information. For example,
if some condition has to be met before the message is dispatched to the recipient, then
we can capture this with a condition. This is shown as a prefix to the message, enclosed in
[and]. Figure 2.10 shows that we must first check the financial stability of the customer,
or some other aspect of the customer, before creating a new account for that customer.

Chapter 2: Object-Oriented Analysis and Design 35

bk : Bank ac : Account

Open new account [check customer record] create

Figure 2.10 Condition on a message

Another decoration for a message is used to indicate where the same message is sent,
in turn, to a number of similar objects. For example, where the bank is required to pro-
duce a listing of the details of every account. The message in this case is prefixed with
the asterisk symbol (*) to indicate repetition (or iteration). In that case we can also show
a group or collection of such objects as in figure 2.11. Here, the interest lies with the
collection (shown as a multi-object) rather than with an individual member.

bk : Bank

displayAll * display

: Account

Figure 2.11 Multi-object and repetition

In this figure the message displayAll is required to produce a listing of the details for
all the accounts held by the bank.

2.4.4 Collaboration diagrams

Collaboration diagrams use the same mix of actors and instance symbols as found in
sequence diagrams. A link between two object instances is shown by a connecting line.
The link is usually decorated with numbered messages sent between the instances. An
example of a collaboration diagram appeared in figure 2.8(b). The relationship shows
whether the instances are associates or are aggregates (see the discussion on class dia-
grams later). Like sequence diagrams we may also annotate messages in a collaboration
diagram with conditions and iterations (see figures 2.10 and 2.11).

As noted earlier, a particular quality of collaboration diagrams is that they reveal or
give an insight into the links that must exist between object instances. Without these
links the objects cannot participate in message passing. In the first version we might sim-
ply show these as associations. Further analysis might indicate the stronger coupling of
aggregation. This is a detail we can usually leave until the class diagram is constructed.

A collaboration diagram shows a representative collection of objects and the links
between them. Where no messages pass between the instances, they are referred to as
object diagrams in the UML. Their value is they make the architecture of the objects the
primary focus. Ultimately, they form the basis for the important class diagram.

2.4.5 Activity diagrams

An activity diagram is often used when modelling various dynamic aspects of a system.
At its simplest, an activity diagram presents the flow of control between activities.
Activity diagrams focus on the separate activities within a system, whereas interaction
diagrams are concerned with the execution flow through the network of objects. Activity
diagrams can be used to document use-cases as well as the behaviour of methods.

The essence of an activity diagram is an action that represents some executable compu-
tation. They are called action states and are represented by soft boxes (see figure 2.12(a))
populated with text describing the action performed. Upon completion of one action,
control automatically proceeds to the next along a directed transition.

36 Object-Oriented Design with UML and Java

Register new account
with the bank

Create new
account

Figure 2.12(a) Actions and transitions

Chapter 2: Object-Oriented Analysis and Design 37

Register new account
with the bank

Create new
account

●

●●
Figure 2.12(b) Start and stop states

Register new account
with the bank

Create new
account

●

[good customer]

[bad customer]

●●
Figure 2.12(c) Branching

The initial and final state for an activity is shown with start and stop state symbols as
shown in figure 2.12(b).

We can include branching logic in activity diagrams. They are shown as diamond-
shaped figures. A branch has one incoming transition and two or more outgoing transi-
tions. Figure 2.12(c) shows such a branch. Each outgoing transition is decorated with a
guard presented as mutually exclusive boolean expressions. Here we either have a good
customer or a bad customer, perhaps one that is a possible financial risk.

2.5 Class diagrams

The class diagram is the principal diagram that we construct in an object-oriented
design. Its importance lies in the fact that its content delivers the primary elements in
our program code, namely the Java classes. A class diagram describes the types of the
objects in the system and the relationships that exist between them. A class diagram is an
abstraction for all the possible object diagrams we might construct. Class diagrams and
collaboration/object diagrams need to be consistent. For example, if a possible config-
uration of objects can exist, then the class diagram needs to capture this information. If
the class diagram shows that two object types are unrelated then no link should be shown
between corresponding instances in a collaboration or object diagram. It also means that
we cannot show a message from one object to another in a sequence diagram.

A class is also documented with its set of attributes and operations. The attributes
represent the set of values each instance maintains as the object’s state. The set of oper-
ations is the messages an object of the class may receive. Some of these operations can
be identified from the various interaction diagrams we might construct. Further, these
latter diagrams can give some insight into the behaviour for these operations, perhaps
by sending messages to other objects in the system.

2.5.1 Representation of objects

For an object to support the operations available on its interface it must maintain an
internal state. Typically an object’s internal state represents the private data elements
encapsulated by the object. Collectively we refer to the private data elements as the
attributes of the object. Their identification is usually quite straightforward as they are
normally constructed from standard classes for commonly occurring objects such as
strings (a sequence of characters) and numbers.

In general, objects are significant coarse-grained elements within the context of the
problem under consideration, while their attributes are much finer-grained and there-
fore do not merit an independent object existence. For example, the class Employee
might have attributes that represent the name, address, age, sex, employee number and
salary of each employee in a company. Considered on its own each attribute has no rele-
vance. It is only of importance if it is seen as part of the representation of something
larger, i.e. an Employee. This is an important point to understand, as it is common for
novice designers to identify too many objects in a system.

2.5.2 Association of objects

As objects usually need to co-operate in order to achieve their effect, they commonly enter
into relationships with each other. One of the most important relationships is association.
Objects that are associates co-operate by sending messages to each other. In general
association should be used where two objects are not conceptually related but within

38 Object-Oriented Design with UML and Java

the context of the problem need to make use of each other’s services. For example, an
interaction in which a single Employee object is employed by a single Company
object can be imagined. They are associates in the sense that the Company object
adopts the role of the employer while the Employee object adopts the role of the
employee. Typically as part of the run-time behaviour of the system, the employee could

Chapter 2: Object-Oriented Analysis and Design 39

Company Employee
-theEmployer -theEmployee

Figure 2.13 Association

request the name of the employer while the employer could request the job title or salary
of the employee. Figure 2.13 is a class diagram describing this relationship.

The line that connects class symbols represents an optionally named association rela-
tionship between them. Each class (and therefore each instance) may adopt a named
role in the association. In this example we show that a relationship exists between
a Company class, an instance of which adopts the role of the employer, and an
Employee class, an instance of which adopts the role of the employee. The association
implies that the Employee object and the Company object that participate in the rela-
tionship may make use of each other’s services by sending appropriate messages to each
other. In other words the association can be navigated in either direction: from the
employer to the employee or from the employee to the employer.

The class diagram has the integer 1 adjacent to both the Company and Employee
classes. This is their multiplicity. It is used to indicate that a single Company object
and a single Employee object are associates. In this example the multiplicity is one in
each case but we will discover below that other possibilities are common. An important
point to note is that if there is no multiplicity value then it is considered to be unspeci-
fied, i.e. no decision has been made as to its value. Crucially there is no default, e.g. a
value of one cannot be assumed. This is useful as it avoids any possible ambiguity in the
class diagram and allows the designer more flexibility.

Some of the previous class diagrams were decorated with the operations and attri-
butes of each class. However, when several classes are incorporated into a single class
diagram it can become rather cluttered if these details are shown. In practice for all but
the simplest of models the unnecessary complexity they introduce can easily obscure
much more important information. For this reason it is permissible to suppress oper-
ations and/or attributes in a class diagram. Similarly, in order that explanatory text is
more readable we often refer to objects by their class name. For example, we might refer
to an Employee, or an Employee object. In either case the context should make it clear
that we mean an object and not the class to which it belongs.

Obviously, a Company may employ more than one Employee. This leads to the
Employee class having a multiplicity of more than one. Frequently occurring possibil-
ities are shown in figure 2.14 in which the multiplicity denoted by the symbol * repre-
sents none or more objects.

Note that even though role names can be omitted, they are very important as they
provide the means whereby an instance of one class can refer to an instance of the asso-
ciated class. For example, in the second illustration of figure 2.14 an instance of the
Employee class would refer to the Company object with which it is employed through
the role name theEmployer. This is a point that is expanded in chapter 3 when the
detailed interactions between objects are implemented as Java code.

The third illustration of figure 2.14 shows a many-to-many association. Many Tutors
teach many Students and many Students are taught by many Tutors.

It is also possible to have an association between objects of the same class. For example,
every person is the child of some other person, their mother. This is expressed in the
fourth illustration of figure 2.14. Such an association is described as a recursive or
reflexive association. Observe how for this example the role names are vital so that we
can clarify the usage of the class Person.

Before leaving the association relationship between classes, it is important to under-
stand that a class diagram does not describe a particular configuration. In effect, it
describes all possible configurations. It is a general description of the relationship
between two classes.

40 Object-Oriented Design with UML and Java

Person Car
1 1

One-to-one association: one person owns one car.

Company Employee
-theEmployer -theEmployees

1
*

One-to-many association: one company employs many (none or more) employees.

Tutor Student
-theTutors -theStudents

* 0..*

Many-to-many association: may tutors teach many students;
 many students are taught by many tutors.

1
Person

* -theChildren

-theMother

Recursive association: many child persons have one mother person.

Figure 2.14 Associations and multiplicities

Chapter 2: Object-Oriented Analysis and Design 41

Company Employee
-theEmployer -theEmployees

Figure 2.15 Class diagram

Figure 2.15 shows that one Company object acts as the employer for many
Employee objects that act as the employees. It most certainly does not specify which
Company object or which Employee object will enter into this association. This is the
point about a class diagram that must be understood.

In order to show the architecture of a real system with real objects, and not just
descriptions of objects, instances of the classes must be established with links formed
between them. Just as an object is an instance of a class, a link is an instance of an asso-
ciation. There must be a link between each object taking part in the association. The
purpose of an object diagram is to capture this information.

Figure 2.16 is an example of an object diagram. It shows a Company object identi-
fied as c1 with links to three Employee objects identified by e1, e2 and e3. As with the
previous class diagrams the object diagram is simplified by suppressing irrelevant
detail: in this case the attribute values of each instance.

c1 : Company

e1 : Employee

e2 : Employee

e3 : Employee

Figure 2.16 Object diagram

The important point to understand about this object diagram is that it represents a
concrete architecture and is not abstract in the manner of a class diagram. It represents
a particular configuration of objects that conforms to the general description embodied
in the corresponding class diagram of figure 2.15. Clearly this is just one of many pos-
sible object diagrams that can conform to this class diagram. For example, there might
be ten Employee objects as associates.

It is also clear from the object diagram that the Employee objects identified by e1,
e2 and e3 are not linked to each other. This means of course that they cannot send mes-
sages to each other. Although the class diagram of figure 2.16 does specify that a single
Company and many Employee objects can be linked and that an Employee object
cannot be linked to another Employee object because the object diagram is concrete it
does reinforce the point.

Note that there may be some confusion between the use of the phrase the name of an
object and the identifier for an object. An object only has a name if that is one of its
attributes and its name has nothing to do with its identifier. They are not the same. For
example, an Employee object could have an identifier e1 and a name Ken. Strictly the
phrase the identifier for an object should always be used if we are referring to object
identity as opposed to an object with a name attribute. In a similar vein the phrase the
object e1 is not strictly correct. It should actually be the object with an identifier of e1.
However, to enhance readability we normally do not make this distinction.

2.5.3 Composite aggregation of objects

A commonly occurring kind of association relationship between objects is composite
aggregation. Sometimes it is also referred to as the has-a or part-of relationship as it
indicates that one object (the whole) is composed of other objects (the parts). With com-
posite aggregation the relationship between the objects is much stronger than with asso-
ciation in that the whole cannot exist without its parts and the parts cannot exist without
the whole. Several important points are implied by this fact. They are as follows:

• deletion of the whole implies deletion of the parts

• there is only ever one whole, i.e. parts are not shared with other wholes

• parts cannot be accessed “outside” the whole, i.e. they are private to the whole and

• a message destined for a part must be sent to the whole and relayed by it to the part

This means that composite aggregation should really only be used where an object is
considered to be a part of another object and not just a casual associate with an inde-
pendent existence and visibility.

Clearly aggregate components are very like attributes. The difference is that the for-
mer are important enough in the context of the problem under consideration to be con-
sidered as objects in their own right, and not just ordinary attribute items. For example,
a bank can be considered as having several accounts inside it. A typical example is that
a message to display all the account items in the bank is received by the Bank object.
In response to this message the Bank object sends a message to each Account object
to display itself. This kind of execution behaviour is common in object-oriented sys-
tems and is referred to as message propagation.

The class diagram in figure 2.17 describes a composite aggregation class Bank and
its Account parts. A line terminating with a filled diamond indicates the composite
aggregation relationship. The filled diamond symbol is placed against the whole in the
whole/part relationship. To avoid any possible confusion the whole is given an explicit
multiplicity of 1 even though only one whole is possible. As with normal association
the parts may be adorned with 1 or *, where * means none or more. Similarly, if no value
is given then the multiplicity is considered to be unspecified.

As with a class diagram showing a normal association, a class diagram showing
composite aggregation is completely general but the corresponding object diagram is
specific. An object diagram for a specific Bank, bk with three Account items ac1, ac2
and ac3 in it is shown in figure 2.18. The filled diamond is used again to show the whole
and a decorated line a link to one of its parts.

42 Object-Oriented Design with UML and Java

2.5.4 Shared aggregation

Composite aggregation requires that there is a whole/part relationship between the
objects concerned. It is implicit in the relationship that a client has access only to the
public interface of the whole and cannot access any of the parts directly. For example, a
car engine could have a composite aggregation relationship with parts such as several
cylinders and a fuel injection system. This means that a user of the engine can only gain
indirect access to the engine parts through a limited set of operations such as start and
stop advertised by the whole, i.e. the engine. The client is probably blissfully unaware
of the existence of any of the parts as they are under the exclusive control of the whole
and the client just communicates with the whole and not the parts.

By way of contrast association is a much looser form of dependency or coupling. The
objects concerned are casual associates co-operating to achieve some overall effect. If
a car engine is modelled as an association between its parts then a user has direct access
to each part’s public interface. This means that a user could adjust the settings of the
fuel injection system as well as starting and stopping the engine.

Although these comparisons of composite aggregation and association are accurate,
there is a widely used form of aggregation that significantly changes some of the con-
clusions made. It is called shared aggregation and in some ways it is a compromise
between normal association and composite aggregation.

With shared aggregation there is still the design intention that there is a whole/part
relationship but now the parts are shareable with another whole. As with composite

Chapter 2: Object-Oriented Analysis and Design 43

Bank

Account

*

Figure 2.17 Composite aggregation

bk : Bank

ac1 : Account ac2 : Account ac3 : Account

Figure 2.18 Bank object diagram

aggregation a message destined for the part must be sent through the whole. However,
deletion of the whole does not imply deletion of the parts. In effect the tightness of the
coupling between the whole and its part has been loosened.

If we revisit the company/employee example shown earlier then we can model the
relationship between the Company and the Employee items as one of shared aggre-
gation. Figure 2.19 is a modified class diagram. Note that shared aggregation is shown
as an open diamond to signify that the part is shareable.

44 Object-Oriented Design with UML and Java

Company Employee
0..*

Figure 2.19 A modified class diagram using shared aggregation

The true impact of this decision becomes apparent when a corresponding object dia-
gram is drawn as shown in figure 2.20.

co1 : Company co2 : Company

e1 : Employee

e3 : Employee e4 : Employeee2 : Employee

Figure 2.20 A modified object diagram using shared aggregation

Now we can clearly see that the Company object co1 and the Company object co2
can legally access the same Employee object e2. This way we are able to successfully
model someone that works for two employers. For this and other reasons the shared
aggregation relationship is commonly used as a weaker form of composite aggregation.

2.6 Summary

1. The UML is a notation for capturing and presenting the results of an OOAD. To
obtain the full leverage of the UML we must superimpose on it a method.

2. A guiding principle is that an OOAD process should be use-case driven, architecture
centric, iterative and incremental.

3. A use-case diagram describes a single task that a system needs to perform. The
totality of the individual use-cases should describe the full system requirements.

4. Interaction diagrams present a dynamic view of the object instances. They offer a run-
time view of the behaviour for all or part of the system. Two kinds of diagram docu-
ment an interaction: an annotated collaboration diagram and a sequence diagram.

5. An annotated collaboration diagram highlights object structure but can also give the
sequence of messages between them. A sequence diagram highlights the time-
ordered sequence of messages but does not give information on object structure.

6. An object diagram presents the architectural relationship between objects. It is the
same as a collaboration diagram without any messages.

7. An activity diagram is used to show the flow of control among the activities.
Activity diagrams can be presented at various levels: as an analysis diagram or as
method logic.

8. A class diagram records the classes identified in the problem domain together with
the architectural relationships that exist between them. A class symbol is decorated
with the class name, the class attributes and the class operations.

9. Relationships between classes include association and composite aggregation.
Association should be used where two classes are not conceptually related but
within the context of the problem need to make use of each other’s services. With
composite aggregation, the coupling between the classes is much stronger since
the parts cannot exist without their whole. Association and aggregation may have
multiplicities recorded in the class diagram. Both may also be labelled with role
names.

2.7 Exercises

1. Present a clear distinction between the terms heavyweight process and lightweight
process.

2. Explain what is meant by each of the following terms:

• Use-case driven

• Architecture centric

• Iterative and incremental

3. Identify the primary modelling elements appearing in a use-case diagram and pro-
vide a short explanation for each. Does the actor always represent a human user? If
not, then give examples of what the actor might represent.

4. Figure 2.1 describes our lightweight OO process. How do the activities in this dia-
gram relate to the stages in a traditional waterfall lifecycle? What is probably the
most significant difference between the two approaches?

5. In figure 2.1 the OO analysis activity is concerned with developing a range of UML
diagrams. For what ultimate purpose do we prepare these various diagrams?

6. From which UML diagram do we generate our initial code?
7. Figure 2.1 emphasizes program development as an incremental activity. What is the

reasoning behind this and what are its merits?
8. Identify the UML diagrams that are used to reveal how a use-case can be realized.

Categorize the diagrams as either static architectural diagrams or dynamic behav-
ioural diagrams.

Chapter 2: Object-Oriented Analysis and Design 45

9. Identify all the elements found in an activity diagram.
10. Show an activity diagram for the logic described by the use-case “Debit account”

of figure 2.4 in which a monetary amount is removed from the account if sufficient
funds are available.

11. What two kinds of interaction diagrams are available in the UML? How are they
similar and how do they differ?

12. Construct the sequence diagram and corresponding collaboration diagram for the
use-case “Determine total bank assets” (see figure 2.4).

13. A sequence diagram includes object instances and their lifelines. What other mod-
elling elements are present in a sequence diagram?

14. Carefully distinguish between a collaboration diagram and an object diagram. Both
diagrams use a link to connect object instances. Explain the role for a link in such
diagrams.

15. What do you understand to be the difference between an object diagram and a class
diagram? What are the corresponding elements in a class diagram for an object
instance and a link used in an object diagram?

16. What are the architectural relationships that can be shown in a class diagram?
Present a clear distinction between them.

17. Explain the terms multiplicities and role names shown on architectural relationships
in class diagrams. Identify four of the more common multiplicities that are used.

18. Complete the following: In a class diagram state is described by … while behaviour
is described by …

For each of the following problem definitions:

• Compose use-cases to capture the required functionality

• Construct sequence diagrams showing the interactions between objects

• Construct matching collaboration diagrams

• Identify the major classes present

• Construct a class diagram showing any architectural relations

• Identify the most important operations and attributes for each class

For the moment do not concern yourself with how the operations are actually
implemented.

19. A person, identified by a unique social security number and a surname, can own at
most one vehicle at any given time. A vehicle is given a maker’s name and a regis-
tration number. In addition a person must also be able to disown a vehicle and
should be able to display details of any vehicle owned.

Show how a person could own a vehicle, display its details then disown it.
Similarly show how the same person could own a replacement vehicle and then dis-
play its details.

20. A country has many cities. Each city has a name and a population, while a country
has a name and a capital city. It is a requirement that a country should display,
on request, its capital city through the operation displayCapital as well as
the names of all its cities through the operation displayCities. In addition,
it should display the total population of the country through the operation
displayTotalPopulation, and the average city population through the operation
displayAveragePopulation.

46 Object-Oriented Design with UML and Java

Model this system showing how the capital city, the names of the cities and the
average city population of a country could be ascertained.

21. A teaching block consists of several rooms each with a unique room number and
specified seating capacity. Rooms may be booked on a particular day for lectures.
Each booking must start on the hour and can be of any duration. It must be possible
to book a room in the teaching block if it is free and generate a display of the status
of each room in the teaching block for a particular day.

Construct a model showing how a room in the teaching block could be booked.
22. University lecturers may obtain from a library a loan of textbooks. Every lecturer

has a name and every book a title. Construct a model of this system showing how
a lecturer could ask for a display of books in the library, borrow a book or return a
book. Lecturers should also be able to display the books they have out on loan.

23. Diving competitions are scored as follows:

• Each competitor is given a mark out of 10 for a dive by each of five judges.

• The score for a dive is calculated by discarding the highest and lowest mark,
determining the average, and then multiplying it by a difficulty factor (a number
in the range 0.1 to 1.0 in increments of 0.1).

All competitors complete three dives. Their overall score is the sum of the marks
for each dive. The winner is the competitor with the highest score. You are required
to construct a system to automate this scoring process.

24. A computer game consists of several players who compete with each other to build
a beetle. A complete beetle has two antennae, a head, a neck, a body, six legs and a
tail. When a player’s beetle is complete that player’s name is displayed and he leaves
the game. The game continues until each player’s beetle is completed.

The rules of the game are that a beetle:

• cannot have an antennae unless it has a head

• cannot have a head unless it has a neck

• cannot have a neck until it has a body

• cannot have a leg unless it has a body and

• cannot have a tail until it has a body

During the game, each player takes it in turn to be given a random number repre-
senting the throw of a die with which to construct his beetle. An integer in the range
1 to 6 represents an antennae, head, neck, body, leg and tail respectively. There
should also be a display of the configuration of a player’s beetle before and after his
turn. Construct a model for the game.

Chapter 2: Object-Oriented Analysis and Design 47

This Page Intentionally Left Blank

Implementing Objects
with Java

In the preceding chapters we documented our OOAD with UML diagrams. However, each
object identified in an OOAD must eventually be implemented in some programming
language such as Java. In this chapter we show how the Java language constructs are
used to implement the illustration first introduced in chapter 2. The reader is invited to
review the materials in appendices F and G, which summarize most of the Java language
features we use throughout this textbook. It is also recommended that specialist textbooks
for the Java language be consulted (Eckel 2002, Dietel 2003).

We develop our solution based on the model developed from the previous chapter
(repeated here as figure 3.13). We approach the problem by developing a number of ver-
sions, each an iterative extension of the preceding one (see figure 2.1). This iterative
approach ensures that we have some deliverable at each stage that is demonstrable to all
stakeholders involved, including the customer and other developers. Incremental devel-
opment is applied at each iteration to minimize any risk.

Frequently one activity can progress safe in the knowledge that some requirement
has been fully implemented. This is the approach illustrated in this chapter in which
we fully develop the Account class before extending the application to consider
the implementation of objects with architectural relationships. This way we can grow the
Bank class and its relationship with the Account class with little consideration for
the latter, confident that it has most of the required behaviours.

3.1 Introduction

Many important decisions are made as part of an OOAD. Clearly all of them should be
unambiguously recorded if the design is to be properly implemented with Java. Although
the UML is capable of achieving this aim, developers sometimes assume that some fun-
damental concepts are implicitly understood. This can lead to difficulties for the novice.
For this reason, we explain in some detail how objects should be implemented with Java.

3.2 Illustration

Consider the outline for the example from chapter 2:

The development of a computer system is required by a community bank. The com-
munity bank is a new venture to introduce banking services to a local community

3

49

who do not normally use the facilities of the national banks. A system is required
whereby customers may open accounts and perform the usual transactions on
these accounts (credit the account, debit the account, and obtain the current
balance). The bank is also required to provide to government the value for its total
assets.

In the previous chapter we characterized the development of OO systems as both itera-
tive and incremental. An iteration is a complete development cycle in which we deliver
some subset of the overall product such as a single use-case. We then grow toward the
final product by adding more use-cases that are developed on each subsequent iteration.
Increments introduce small changes as the software is developed.

Such an approach can lead to a significant reduction in the risks involved in software
development. Further, we can constantly keep the customer and all other stakeholders
informed at each iteration. With the customer always involved we can be sure that we
deliver a product that meets their requirements.

Each iteration needs to define its objectives. Without them there is serious danger that
our development process degenerates into hacking. Use-cases can play a role in this.
Each use-case can be used to specify our aims. Each new iteration will then augment
the previous use-cases, developed in terms of the originals.

From the previous chapter we know that this problem will eventually lead to a class
diagram with (at least) a one-to-many association relationship between a Bank class
and an Account class. See, for example, figures 2.9(a) to 2.9(c). For the first part of this
chapter we simply consider objects of the Account class and show how we implement
such a class in Java. Later we investigate the realization of architectural relationships
and complete our Bank class.

Figure 3.1 presents the use-cases that describe the functionality expected of a bank
account. Using the clerk as the external stimuli, we create a single bank account object,

50 Object-Oriented Design with UML and Java

Open new account

Credit account

clerk

Display account details

Debit account

Obtain account balance

Figure 3.1 Account use-cases

perform a variety of transactions on it, and have the account object display its details.
Note that there is no implied ordering among these use-cases.

The use-case “Open new account” might be realized in the manner depicted by the
sequence diagram in figure 3.2. The clerk is responsible for initiating this request, and
through the clerk we will provide the necessary values to establish the account, for
example its initial balance.

Chapter 3: Implementing Objects with Java 51

: Account

create

Figure 3.2 Sequence diagram realization for “Open new account” use-case

The three separate transactions we consider for a bank account are to credit the account
with some additional funds, debit some monetary amount from the account, and obtain the
current balance for the account. Figure 3.3 shows a sequence diagram for the particular
use-case “Credit account”. Specifically, we have shown the monetary amount 200 being
deposited into the account.

: Account

credit(200)

Figure 3.3 Sequence diagram realization for “Credit account” use-case

We might develop the activity diagram of figure 3.4 to show the logic behind the “Debit
account” use-case. This is obviously a trivial example but it demonstrates how activity
diagrams can be deployed at various levels. Elsewhere, we have examples of activity
diagrams documenting program code.

Finally, in figure 3.5 we present how we obtain the state information from an Account.
In our final programmed implementation for all these use-cases we shall find this
message useful for confirming the correctness of our code. In effect, we can use this
display message to observe the effect of the other messages. Having credited the
account with some amount we can use display both before and after the transaction to
check that the balance has changed by the correct amount.

Our class diagram is, of course, trivial having only the single Account class. However,
from our earlier analysis we can augment the diagram to show the operations that
are required to support the various messages that we have identified (see figure 3.6(a)).

52 Object-Oriented Design with UML and Java

●

[insufficient funds]

[sufficient funds]

Deduct amount
from balance

"Debit account"
Only make transaction
if there are sufficient
funds in the account

●●

: Account

display

Figure 3.4 Activity diagram for “Debit account”

Figure 3.5 Sequence diagram realization for “Display account details” use-case

Account
Operations

+credit

+debit

+getBalance

+display

Figure 3.6(a) Account class diagram

At this early stage it is sufficient to know that these operations will provide all the
required behaviours from Account objects and permit us to realize each use-case.
Later, we consider further aspects of these operations such as their signatures, e.g. what
parameters, if any, must we supply when we send such messages.

One consideration we have not made is the visibility levels for the features (both
operations and attributes) of a class. The visibility determines which features of one
class are accessible from another class and those that are not. In UML the developer can
specify one of four levels of visibility:

Visibility Symbol Description
(prefix)

public � available to all other classes
protected # available to subclasses (see chapter 5)
private - available only to the class itself
package % available to all classes in the same package

We see from figure 3.6(a) that all the operations have been given public access. This is
common practice. When selecting the visibility of features of a class we generally aim
to conceal the implementation details and only publicize those features that support the
abstraction represented by the class. Since debiting and obtaining the balance are examples
of what characterize a bank account, then these operations are given public visibility.
Private visibility is discussed below while protected and package visibilities are introduced
in later chapters.

The UML class in figure 3.6(a) is implemented by the outline Java class declaration
(the ellipsis . . . are used to indicate some missing detail to be completed later):

public class Account{

// ----- Operations ----------
public ... credit(...) { ... }
public ... debit(...) { ... }
public ... getBalance(...) { ... }
public ... display(...) { ... }

} // class: Account

The operations for a class are realized as Java methods. They too are decorated with a visi-
bility qualifier. Here the Java keyword public provides the required correspondence.

Each operation signature is then completed by adding any formal parameters and
specifying the class of any return value. The operations credit and debit are each given
a single parameter that represents the amount involved in the transaction. Neither opera-
tion returns a value to the sender of the corresponding message. We can think of these as
transformer operations since they modify the state of our Account objects. The opera-
tion getBalance is an accessor operation used to interrogate an Account object for its
current balance. Such an operation yields a numeric value for the monetary sum. Finally,
the operation display simply performs the actions that reveal the content of an Account
object’s state through a set of simple print statements. No parameters are required and no
value is returned. A revised UML diagram is given in figure 3.6(b).

Chapter 3: Implementing Objects with Java 53

The Java class declaration is then:

public class Account{

// ----- Operations ----------
public void credit(int anAmount) { ... }
public void debit(int anAmount) { ... }
public int getBalance() { ... }
public void display() { ... }

} // class: Account

The internal representation for the class can now be developed. Consideration of the
system specification should help us with this task. We can also look to the realization of
the use-cases to assist in revealing the necessary state information. For an Account
object to support the operations credit, debit and getBalance suggests that an attrib-
ute is required to represent the balance. The operations credit and debit will change this
attribute while the operation getBalance is an accessor to obtain its value. Not unrea-
sonably we will also associate an account number with each Account object. The
String type has been chosen so that we can have account numbers such as ABC123.
Figure 3.6(c) is the final class diagram.

54 Object-Oriented Design with UML and Java

Account
Operations

+void credit(int anAmount)

+void debit(int anAmount)

+int getBalance()

+void display()

Figure 3.6(b) Augmented Account class

Account
Attributes

-String theNumber

-int theBalance

Operations

+void credit(int anAmount)

+void debit(int anAmount)

+int getBalance()

+void display()

Figure 3.6(c) Account class with attributes

The resulting Java class declaration is shown below. Observe how the attributes have
been given private visibility. This is in keeping with the practice of information hiding in
which the internal representation for a class is not revealed to other classes. Here, we have
chosen to list the operations before the attributes. Java does not prescribe any ordering

of the features of a class. Our choice is based on the notion that we are primarily concerned
with the services offered by the class rather than any representational concerns.

public class Account{

// ----- Operations ----------
public void credit(int anAmount) { ... }
public void debit(int anAmount) { ... }
public int getBalance() { ... }
public void display() { ... }

// ----- Attributes ----------
private String theNumber;
private int theBalance;

} // class: Account

To complete the Java code we must supply the method definition for each operation
we have identified. For this class the methods are very simple. For example, the method
for the operation debit simply ensures that there are sufficient funds in the account
before making the transaction (see figure 3.4). The Account class is almost complete
and now reads as:

import textio.*;

public class Account {

// ----- Operations ----------
public void credit(int anAmount) {

theBalance += anAmount;
} // method: credit

public void debit(int anAmount) {
if(theBalance >= anAmount)

theBalance -= anAmount;
} // method: debit

public int getBalance() {
return theBalance;

} // method: getBalance

public void display() {
ConsoleIO.out.println(“Account”);
ConsoleIO.out.println(“\t” + “Number: ” + theNumber);
ConsoleIO.out.println(“\t” + “Balance: ” + theBalance);

} // method: display

// ----- Attributes ----------
private String theNumber;
private int theBalance;

} // class: Account

Observe the import statement at the start of this Java file. Other than comments and
general whitespace (space, tab and newline characters), import statements, where

Chapter 3: Implementing Objects with Java 55

present, must appear before all others (excepting a package statement, see chapter 4).
Here we import the declaration for the classes from the textio package, thereby giving
access to the classes by which we can undertake simple input and output. The class
ConsoleIO that supports simple input/output from and to the system console is
described in appendix C.

3.2.1 Mandatory profile

A mandatory profile specifies the minimum services expected of a class. The Java dec-
laration for class Account should include a constructor method for proper initialization
of objects of this type. We would normally expect a class declaration to include a para-
meterized constructor for the proper initialization of the class attributes.

public class Account{

// parameterized constructor
public Account(String aNumber, int anInitialBalance) { ... }
// ...

} // class: Account

We must, of course, provide two actual parameters to this constructor when creating objects
of this class. It is sometimes useful to be able to create such an object with some predefined
attribute values and subsequently update one or more of its state values. Creating objects
which are not properly initialized usually leads to many difficult programming problems.
To ensure that an object is safely initialized we may also include a default constructor as
part of the mandatory profile that is called if no initializing actual arguments are supplied
by the user. The latter could be incorporated into the Account class above with:

public class Account{

// parameterized and default constructors
public Account(String aNumber, int anInitialBalance) { ... }
public Account() { ... } // default constructor

// ...
} // class: Account

Here, if no parameters are given when an instance of the class Account is created, then
that object is initialized in the manner described by the method body for the default
constructor. Hence we might have:

Account ac1 = new Account(“ABC123”, 1200); // Parameterized constructor
Account ac2 = new Account(); // Default constructor

The default constructor for this class requires an appropriate behaviour. Here we might
consider initializing the number of the Account object to the empty string and the bal-
ance to zero. Whatever the default behaviour, this ensures that all Account objects are
properly initialized when they are created. This final additional code for the Account
class is shown below. Observe how the behaviour for the default constructor is defined

56 Object-Oriented Design with UML and Java

in terms of the parameterized constructor. This is common practice when using Java and
ensures consistency when developing overloaded constructors.

public class Account {

// ----- Operations ----------
// parameterized constructor
public Account(String aNumber, int anInitialBalance) {

theNumber = aNumber;
theBalance = anInitialBalance;

}

// default constructor
public Account() {

this(“”, 0);
}
// ...

} // class: Account

The method body for the default constructor is this(“”, 0). Here, the default construc-
tor calls the parameterized constructor with the empty string and zero as its actual
parameters. Thus the default constructor’s behaviour is defined in terms of the parame-
terized constructor.

Figure 3.7 shows a sequence diagram in which a new Account object is created. In
the note symbol we also show the corresponding Java statement, using a parameterized
constructor.

Chapter 3: Implementing Objects with Java 57

ac : Account

create
Account ac = new Account("ABC123", 1000);

Figure 3.7 Object creation

3.3 Building an application

In order that a complete system can be executed there needs to be an object that is able
to respond to a message from the execution environment. For historical reasons with
Java this must be an object that supports a public static method named main.

Although it is possible to locate all of the code required for an application in the
main method it is not really very practical or even desirable (see chapter 7). An alter-
native is to create in the main method a single Application object and send it a message
such as run. Now it is the run method of the Application class that represents the top
level of our software system and not a rather meaningless main method. This results in

the Java code:

public class Main{

// ----- Operations ----------
public static void main(String[] args) {

Application app = new Application();
app.run();

} // method: main

} // class: Main

held in the file Main.java. Figure 3.8 shows a sequence diagram for this, with notes giv-
ing the Java code corresponding to the diagram elements.

58 Object-Oriented Design with UML and Java

app : Application

create

run

app.run();

Application app = new Application();

Figure 3.8 Program start-up

The method main in Java is a static method with an array of String parameters and
a void return type. The array represents the series of Strings given when the program
is invoked by the user. We have no use for this. Here, we have made the method a mem-
ber of a class we call Main. This way, we need only write this class once and employ it
unchanged in many further programs.

Typically the run method of the Application object creates the other objects required
and sends each the appropriate messages to give the desired system behaviour. The
messages we wish to exercise here are those identified by the use-cases. Hence we need
to demonstrate that we are able to realize all the use-cases. Figure 3.9 shows part
of what this run method will perform. This results in the Java code in the file
Application.java and shown as program listing 3.1.

app : Application

run

ac.credit(200);

Account ac = new Account("ABC123", 1200);

ac : Account

create

credit(200)

Figure 3.9 Application object

Program 3.1 The Application class (model Prog3_1.uml)

public class Application{

public void run(){
//
// Use-case: Open new account
//
Account ac = new Account(“ABC123”, 1200);
//
// Use-case: Credit account
//
ac.credit(200); // balance now 1400
//
// Use-case: Display account details
//
ac.display();
//
// Use-case: Others
//
ac.debit(900); // balance now 500
ac.debit(700); // balance unchanged
ac.display();

} // method: run

} // class: Application

At this stage in the development lifecycle we have moved from analysis through to the
implementation in Java of the Account class. We are able to demonstrate, with some
confidence, that this class operates as required. Our confidence stems from executable
code that respects the requirements captured in the use-cases. The output from this pro-
gram is:

Account
Number: ABC123
Balance: 1400

Account
Number: ABC123
Balance: 500

and shows how the balance has been changed.

3.4 Implementing architectural relationships

In the preceding sections the implementation of a single object was discussed in some
detail. We now turn our attention to implementing an object that has an association or
aggregation relationship with other objects. As in chapter 2, we first communicate the basic

Chapter 3: Implementing Objects with Java 59

concepts involved by making extensive use of UML analysis diagrams. Having done so
we complete our discussions by considering their implementation with detailed Java code.

Further, we see this next phase as a new iteration building on our previous work.
If the Account class has all the required features for this new phase, then we have no
new work to apply to it and we can make the additional requirements our primary focus.
At worst we may have to augment the Account class with some minor additional fea-
tures. But this is a trivial task since the additional logic can be given to the Account
class, independent of any other developments we are engaged in.

3.4.1 Introduction

In a typical object-oriented system most objects do not exist as independent entities. In
order that the overall system functionality is achieved, objects enter into architectural
relationships, i.e. association or aggregation. This is a consequence of the fact that a
well-designed object should be highly cohesive, i.e. it should undertake a small number
of relatively simple, closely focused tasks. To be useful in a specific application it needs
to be connected (coupled) with others to form a network of co-operating objects.

Recall from chapter 2 that association is a loose form of coupling between objects that
are not conceptually related. Essentially the associates have visibility of each other so that
they can engage in message passing. Aggregation is a tighter form of coupling in which
a whole/part relationship is modelled. Composite aggregation is used when the parts are
unique to a single whole and shared aggregation when they are not. Our task is to explore
the implementation of these relationships with Java.

3.4.2 The bank problem revisited

The problem specification from section 3.2 introduced the notion of a Bank object to
which our Account objects are related. In effect the creation of an Account object
occurs when we open an Account with the Bank. Further, when we make a transaction
on an account we do so through the bank. The discussion reveals that there is a rela-
tionship formed between the Bank object and its many Account objects. Since the
Account objects only exist as part of the Bank, then we have an aggregate relationship.
Specifically we have composite aggregation since the Account objects have no exis-
tence outwith the Bank.

This discussion also reveals that all the use-cases we consider will involve interact-
ing directly with the Bank object. The Account objects are effectively parts of the
Bank object with which they are opened. A consequence of this is that the Accounts
are private to the Bank and messages destined for an Account object must first be sent
to the Bank and then propagated to it.

Consideration of the problem then identifies the following use-cases:

• Create a bank object

• Open a new account

• Perform a transaction on an account

• Obtain the total assets of the bank

60 Object-Oriented Design with UML and Java

The “Create a bank object” use-case is similar to that for creating a single Account
object as presented in figure 3.2. The use-case “Open a new account” is more elaborate
than that shown in chapter 2. Now we must achieve this in conjunction with the newly
created Bank object. Figure 3.10(a) presents a sequence diagram that captures its real-
ization. The message openAccount is sent to the Bank object which, in turn, creates a
new Account object.

Chapter 3: Implementing Objects with Java 61

bk : Bank ac : Account

create
openAccount

register(ac)

Figure 3.10(a) Realization of the use-case “Open new account”

The accompanying object diagram in figure 3.10(b) further identifies that the
newly created Account object has been aggregated into the Bank object. The diagram
reveals the relationship that forms between the Bank object and the Account object.
Hence figure 3.10(a) must be developed further to show how the architecture is
established.

bk : Bank

bk : Bank

bk : Bank ac : Account

ac : Account After registering the new account object
with the Bank.

After creating the new Account object.

Initially, only the Bank object exists.

Figure 3.10(b) Account object aggregated into the Bank object

In figure 3.10(b) the object diagram reveals the effect of the two steps in the corre-
sponding sequence diagram. First, only the Bank object exists. It is then instructed to

open a new account and, presumably, is given the account details. The Bank object then
creates a new Account object suitably initialized. At that point we have the arrange-
ment as shown in the second part of the figure in which two objects now exist but are
unrelated. Finally, the new Account object is registered with the Bank object. This has
the effect as shown in the third part of the figure with an aggregation relationship
formed between the two objects.

The use-cases “Credit an account”, “Debit an account” and “Obtain the balance of
an account” describe three distinct transactions. A particular example is a credit trans-
action on a particular account. The sequence diagram of figure 3.11 demonstrates how
this might be realized.

62 Object-Oriented Design with UML and Java

bk : Bank

creditcreditAccount

ac2 : Accountac1 : Account

Figure 3.11 The use-case “Perform a transaction (credit) on an account”

Here, the Bank object is first sent the message creditAccount. The Bank first needs
to identify the correct Account object among its many aggregate members (not shown
in the figure). Having done so the Bank can then send the credit message to the parti-
cular Account. In this illustration we have deliberately omitted the parameters that
would be associated with the messages. A similar arrangement applies to the other two
related use-cases.

Our final use-case is to determine the total assets of the bank. This is defined as the
sum of the balances for each account opened with the bank. The sequence diagram in
figure 3.12 shows that this is achieved by sending the message getBalance to each
aggregate Account object from the Bank object, and that the Bank object is responsi-
ble for summing the amounts.

These considerations lead to the class diagram presented in figure 3.13. We have a
one-to-many relationship between one Bank and its many Account objects. We have
arrived at a composite aggregate relation since the Account objects are wholly owned
by the Bank object. In essence, the accounts are attributes of the bank, but sufficiently
complex to view as objects in their own right.

The class diagram reveals the operations we associate with the Bank class. This set
is a direct result of our consideration of the services required by the application. They,
of course, have been identified by the various use-case models we have constructed of
the system.

3.5 Establishing the architecture

We now investigate the implementation of a one-to-many architecture. As we shall see
shortly, this involves using collection objects. The reader is invited to review the mater-
ials in appendix E which details aspects of the Java Collections Framework.

From the discussions of chapter 2 and that above, it is expected that objects will form
architectural relationships. It is worth noting that although the attributes of an object are
application independent, architectural relationships depend on the particular configur-
ation of objects. As a consequence they may change from one specific application to
another. For example, a Person might be connected to a Company in one application
and to a SportsClub in another.

In order that an object has an aggregation relationship with one or more objects
it must act as an assembly of its aggregate components. For example, figure 3.13 is a
class diagram describing these relationships. As there are many Account objects
in the aggregation, a suitable collection is required to hold them. The collection the
ArrayList has been chosen based on the assumption that each additional Account
object is simply appended to the existing list of Accounts.

Chapter 3: Implementing Objects with Java 63

bk : Bank

getBalance

getTotalAssets

ac2 : Accountac1 : Account

getBalance

Figure 3.12 Realizing the use-case “Obtain the total assets of the bank”

Bank
Operations

+Bank

+openAccount

+creditAccount

+debitAccount

+getAccountBalance

+getTotalAssets

Account
0..*

Figure 3.13 Bank problem class diagram

The declaration statement:

public class Bank{

// ...

// ----- Relations ----------
private java.util.ArrayList theAccounts; // of Account

} // class: Bank

in the class Bank declares a suitable ArrayList collection, theAccounts. The name for
this relation attribute is taken directly from the class diagram, figure 3.13.

The relationship between each reference held by the collection and the object it is
linked to is modelled as one of composite aggregation. This is a design choice justified
by the fact that each Account in a Bank is considered to be just like an attribute and is
therefore not shareable.

In the Bank class we have the operation openAccount that establishes a new
Account. Importantly, as well as creating this as a new Account for the Bank,
it also incorporates the Account into the collection for this Bank.

public class Bank{

public void openAccount(String aNumber, int anInitialBalance) {
Account acc = new Account(aNumber, anInitialBalance);
theAccounts.add(acc);

} // method: openAccount
// ...

// ----- Relations ----------
private java.util.ArrayList theAccounts; // of Account

} // class: Bank

3.5.1 The mandatory profile revisited

Earlier we discussed the concept of a mandatory profile for a Java class. Essentially it
prescribes the public operations that a class should have. For example, the Account
class should have a default constructor and a parameterized constructor as in:

public class Account{

// ----- Operations ----------
public Account(String aNumber, int anInitialBalance) { ... }
public Account() { ... }
// ...

} // class: Account

Appendix E discusses the need for the equals operation to support containment
in a collection. Therefore the Account class should have equals as a public

64 Object-Oriented Design with UML and Java

operation. If the Account objects were to be contained by a TreeSet collection, then
the operation compareTo is also required.

public class Account implements java.lang.Comparable{

// ----- Operations ----------
public Account(String aNumber, int anInitialBalance) { ... }
public Account() { ... }
public boolean equals(Object obj) { ... }
public int compareTo(Object obj) { ... }
// ...

} // class: Account

Where a class offers a definition for the operation equals, then it is redefining the ver-
sion inherited from the implied superclass Object (see chapters 1, 5 and 6). The opera-
tion compareTo is a definition from that specified by the interface Comparable
(again, see chapters 1, 5 and 6). This is captured by the implements clause as shown
in the listing above.

Finally, when using a HashSet collection, this container class requires that the
objects being contained support the operation hashCode. This method is used to pro-
vide a randomizing value for the underlying mechanism employed by HashSet to store
and retrieve objects.

public class Account implements java.lang.Comparable{

// ----- Operations ----------
public Account(String aNumber, int anInitialBalance){ ... }
public Account(){ ... }

public boolean equals(Object obj){ ... }
public int compareTo(Object obj){ ... }
public int hashCode(){ ... }
// ...

} // class: Account

By ensuring that all three operations are made part of the mandatory profile for a class,
then we have the freedom to change the collection class we use in the implementation.

3.6 The example application

We are now in a position to construct our application. The preceding analysis revealed
through a number of use-cases the functionality required by our system. As a consequence,
the following Application class is relatively straightforward. The application creates a
Bank object and opens a number of Accounts configured according to the class diagram
of figure 3.13. Having done so, the Application performs some transactions on one of the

Chapter 3: Implementing Objects with Java 65

accounts, requests the balance for a particular account and obtains the total bank assets.
(Further developments of this type of example and a more challenging illustration are
discussed in the case study of chapter 4.) This translates to the following Java code:

import textio.*;

public class Application {

// ----- Operations ----------
public void run() {

//
// Use-case: Open new bank
//
Bank bk = new Bank(“Community”);
//
// Use-case: Open new accounts
//
bk.openAccount(“ABC123”, 1200);
bk.openAccount(“DEF456”, 1000);
bk.openAccount(“GHI789”, 2000);
//
// Use-case: Perform transactions on an account
//
bk.creditAccount(“ABC123”, 200); // balance now 1400
bk.debitAccount(“ABC123”, 900); // balance now 500
bk.debitAccount(“ABC123”, 700); // balance unchanged
//
// Use-case: Display account details
//
int balance = bk.getAccountBalance(“ABC123”);
ConsoleIO.out.println(“Balance for ABC123: ” + balance);
//
// Use-case: Obtain total assets
//
int totalAssets = bk.getTotalAssets();
ConsoleIO.out.println(“Total assests: ” + totalAssets);

} // method: run

} // class: Application

The program delivers two outputs, namely, the balance for account with account num-
ber ABC123 and the total assets for the bank. The actual values are:

Balance for ABC123: 500
Total assets: 3500

The Bank class now appears as in program listing 3.2.

66 Object-Oriented Design with UML and Java

Program 3.2 The Bank class (model Prog3_2.uml)

import java.util.*;

public class Bank {

// ----- Operations ----------
public Bank(String aName) {

theName = aName;
theAccounts = new ArrayList();

} // method: Bank

public void openAccount(String aNumber, int anInitialBalance) {
Account acc = new Account(aNumber, anInitialBalance);
theAccounts.add(acc);

} // method: openAccount

public void creditAccount(String aNumber, int anAmount) {
Iterator iter = theAccounts.iterator();
while(iter.hasNext() == true) {

Account acc = (Account)iter.next();
if(aNumber.equals(acc.getNumber())) {

acc.credit(anAmount);
break;

}
}

} // method: creditAccount

public void debitAccount(String aNumber, int anAmount) {
Iterator iter = theAccounts.iterator();
while(iter.hasNext() == true) {

Account acc = (Account)iter.next();
if(aNumber.equals(acc.getNumber())) {

acc.debit(anAmount);
break;

}
}

} // method: debitAccount

public int getAccountBalance(String aNumber) {
Iterator iter = theAccounts.iterator();
while(iter.hasNext() == true) {

Account acc = (Account)iter.next();
if(aNumber.equals(acc.getNumber())) {

return acc.getBalance();
}

}
return -1; // denotes no account identified with number

} // method: getAccountBalance

Chapter 3: Implementing Objects with Java 67

public int getTotalAssets() {
int totalAssets = 0;

Iterator iter = theAccounts.iterator();
while(iter.hasNext() == true) {

Account acc = (Account)iter.next();
totalAssets += acc.getBalance();

}
return totalAssets;

} // method: getTotalAssets

// ----- Attributes ----------
private String theName;
// ----- Relations ----------
private java.util.ArrayList theAccounts; // of Account

} // class: Bank

3.7 Summary

1. A Java class is a composite structure in which we can define class attributes (prop-
erties or instance variables) and class operations (methods). A Java class typically
specifies the public services (methods) and the private representation (attributes).

2. The language supports parameterized methods for each class operation. A method
body comprises one or more statements. The sentences are assembled into the usual
control logic of sequence, selection and iteration. Statements can create local
instances and send messages to objects.

3. A collection object is a container for other objects of some arbitrary class. Java
offers several different kinds of standard collections. The nature of the application
will usually determine the appropriate container to use.

4. The objects to be contained by a collection will generally have to publicize a manda-
tory profile including the operations compareTo, equals and hashCode.

3.8 Exercises

For the following exercises and those in subsequent chapters we advise that you make use
of the ROME object modelling environment supplied with the text. Although its use is
not strictly necessary it does make the development of the Java code considerably eas-
ier and more enjoyable. Appendix B contains the information you require to use it. You
should consult it before proceeding.

1. Complete the following Java code for the class Car by giving implementations for
the method bodies. Draw a class diagram in the manner of figure 3.6(c) for this class.

public class Car {

// ----- Operations ----------
public Car(String aMake, String aModel, int aCapacity) { ... }

68 Object-Oriented Design with UML and Java

public String getMake() { ... }
public String getModel() { ... }
public int getCapacity() { ... }

// ----- Attributes ----------
private String theMake;
private String theModel;
private int theCapacity;

} // class: Car

Now develop an application that creates an instance of the Car class and displays its
details.

2. Complete the following Java code for the class Student by giving implementations for
the method bodies. Draw a class diagram in the manner of figure 3.6(c) for this class.

public class Student {

// ----- Operations ----------
public Student(String aName, String anAddress, String aMatriculationNumber) { ... }
public String getName() { ... }
public String getAddress() { ... }
public String getMatriculationNumber() { ... }

// ----- Attributes ----------
private String theName;
private String theAddress;
private String theMatriculationNumber;

} // class: Student

Now develop an application that creates an instance of the Student class and dis-
plays its details.

3. Complete the following Java code for the class House by giving implementations for
the method bodies. Draw a class diagram in the manner of figure 3.6(c) for this class.

public class House {

// ----- Operations ----------
public House (String anAddress, int aNumberOfRooms) { ... }
public String getAddress() { ... }
public int getNumberOfRooms() { ... }
public void extend (int aNumberOfRooms) { ... } // Add new rooms.

// ----- Attributes ----------
private String theAddress;
private int theNumberOfRooms;

} // class: House

Now develop an application that creates an instance of the House class, adds some
rooms to it, and then displays its details.

When a House instance is created would it thereafter change its address? If not,
under what circumstances could we consider moving the attribute theAddress into
the public interface?

Chapter 3: Implementing Objects with Java 69

4. Complete the following Java coding for the class Point representing a point in the
Cartesian co-ordinate system by giving implementations for the method bodies.
In a two-dimensional co-ordinate system a point may be represented by its X and Y
co-ordinate values.

public class Point {

// ----- Operations ----------
public Point (int anX , int aY) { ... }
public int getX() { ... } // obtain X co-ordinate
public int getY() { ... } // obtain Y co-ordinate
public void moveBy (int anX, int aY) { ... } // displace by amounts

// ----- Attributes ----------
private int theX;
private int theY;

} // class: Point

Develop a Java Application in which a single Point object is created, and then dis-
placed by some amount and its new position displayed. Draw a class diagram in the
manner of figure 3.6(c) for this class.

5. Using the Point class, complete the following Java code for the class Line by giving
implementations for the method bodies. A line in a two-dimensional co-ordinate
space may be represented by its start and end points.

public class Line {

// ----- Operations ----------
public Line (Point aStart, Point anEnd) { ... }
public boolean isHorizontal() { ... }
public boolean isVertical() { ... }
public void moveBy (int anX, int aY) { ... } // displace by amounts
public void display() { ... } // print details

// ----- Attributes ----------
private Point theStart;
private Point theEnd;

} // class: Line

Develop some application code expressed in Java in which a Line is established
through two Point values, is translated through some amount then its new position
printed.

Develop a class diagram for this Line class showing that it is a composite aggre-
gate of two Point objects.

6. Using the Point class, a rectangle may be represented by two Point values repre-
senting, respectively, the lower left vertex and the upper right vertex. Complete the

70 Object-Oriented Design with UML and Java

following Java code for the Rectangle class by giving implementations for the
method bodies.

public class Rectangle {

// ----- Operations ----------
public Rectangle (Point aLowerLeft, Point anUpperRight) {...}
public int getArea() { ... }
public int getPerimter() { ... }
public int getHeight() { ... }
public int getWidth() { ... }
public void moveBy (int anX, int aY) { ... }
public boolean isPointInRectangle (Point aPoint) { ... }

// ----- Attributes ----------
private Point theLowerLeft;
private Point theUpperRight;

} // class: Rectangle

Create a Rectangle in some application code expressed in Java, and then test the
behaviours of its operations. In a UML object diagram show an instance of a
Rectangle object and any other related objects.

7. Prepare the Java code for a Store class. The Store represents some storage device
that holds a single int value. The Store constructor has a single int parameter used
to initialize the representation. A single int parameter for the write operation is used
to update the value of the representation. The read operation returns a copy of the
representation value. The operations up and down respectively increment and
decrement by one the value of a Store object.

8. For questions 19, 20, 21 and 22 in the exercises of chapter 2, prepare suitable Java
files then construct suitable application code to test the system. Make sure that you
make full use of the class, collaboration and sequence diagrams.

9. Consider the class Employee with an operation getDateOfBirth that returns the
date of birth of an Employee object. Visit the Java website (http://java.sun.com)
for a description of the class java.util.GregorianCalendar.

public class Employee {

// ----- Operations ----------
public GregorianCalendar getDateOfBirth() {return theDateOfBirth;};

// ----- Attributes ----------
private GregorianCalendar theDateOfBirth;

} // class: Employee

Then in some application code we have:

Employee e1 = new Employee (...);
GregorianCalendar dateOfBirth = e1.getDateOfBirth();

What danger lies in this code? What principle has been broken?

Chapter 3: Implementing Objects with Java 71

10. We have stated that every instance of a class has it own set of private attributes.
Make a case for every instance sharing the same common attribute. How is this
realized in Java?

11. Develop the sample Bank-Account application by creating additional accounts.
You may use the ROME model supplied with this chapter. Extend the Bank class
with an operation to print the details of only those accounts with a balance over a
certain limit given as a parameter to the method.

In the Bank class listing in program 3.2 the methods creditAccount,
debitAccount and getAccountBalance all have to find the Account object with
the required account number. Introduce the private method:

//class Bank
private Account lookUp(String anAccountNumber) { ... }

that will find the required Account or return null if it does not exist. Now recode
the original methods to use this facility.

Using the examples presented in this and the preceding chapter, develop solutions
for the following problems. In all cases adopt the lightweight process introduced in
chapter 2. Use the ROME modelling tool to develop your solutions.

12. A sports club maintains a register of its members. The member details include their
name and address and the name of their preferred sport. A system is required to
enrol new members, and to present details of the full membership and a printout of
those members interested in tennis.

13. An organization maintains a record for each of its employees. The employee details
include their (unique) employment number, their name, age, sex and salary. A sys-
tem is required to hire new employees and to produce the following reports:
a) the complete staff list
b) a list of those staff for a given sex
c) a list of staff over a certain age
d) the total wage bill for the company

14. A student has an extensive music collection on CDs. Single artist CDs have a title
and the name of the artist. Each track on such a CD has a title. Compilation CDs
have a title, and their tracks have both the title and the artist. A system is required
to maintain details of the CD collection and to produce a report listing all the CDs
in the student collection.

15. A newsagent maintains a list of customers including their name and address. For
each customer the newsagent has a list of the names of up to three newspapers to
be delivered to that customer’s home. Develop a system to list each newspaper and
the quantities required.

72 Object-Oriented Design with UML and Java

Case Study: A Library
Application

This case study uses concepts discussed in the previous chapters to illustrate an OOAD
implemented with Java. The specification of the system is unrealistically simple but inter-
ested readers can modify it in a variety of ways as indicated in the exercises at the end of
the chapter. Throughout the case study we emphasize how the development revolves
around a number of iterations, driven by the use-cases. In turn, each use-case mirrors a
corresponding set of test-cases that ensure that the required functionality is fulfilled.

All class diagrams and the accompanying Java code were developed using the
ROME modelling tool.

4.1 Specification

It is often difficult (or even impossible) to obtain a set of unambiguous, fixed require-
ments for a software system. Although there are a variety of reasons for this, we assume
a sufficient familiarity with the operation of a library to understand the following
description:

The library has a name, holds a number of books each of which has a title, author
and unique catalogue number. There are registered borrowers each with a unique
name. A borrower may borrow a book and return it. However, each book trans-
action must be recorded by a librarian. She is also expected to register a new
borrower, be able to display in increasing catalogue number order those books
available for loan and those already out on loan.

We are required to develop an application to support the librarian.

4.2 Iteration 1

In this case study we use the development process described in section 2.1.1. Recall that
to implement a particular set of requirements there is an iteration consisting of five main
activities. They are as follows:

• Establish a use-case diagram

• Analysis
– Develop object, collaboration, sequence and activity diagrams

4

73

• Design
– Construct/revise a class diagram

• Implementation
– Incrementally implement, document and test the Java code for each class

• Reconcile the model diagrams

4.2.1 Establish use-cases

This activity is concerned with discovering and recording what the system is required
to do from a user’s perspective. Fortunately the description of the librarian’s duties gives
us the information we need. Just a little thought leads us to decide that the librarian
must be able to:

• Register a new borrower

• Add a new book to the stock

• Produce a list of books available for loan

• Produce a list of books out on loan

• Record that a book has been borrowed and

• Record that a book has been returned

In real life we would almost certainly check our conclusions with the librarian but for
this iteration we can safely construct the use-case diagram of figure 4.1.

At some later date we may be presented with additional or modified requirements but
they are implemented in subsequent iterations. Notice that the use-cases are grouped

74 Object-Oriented Design with UML and Java

Register one borrower

Return one book

Display books available for loan

Add one book

Display books on loan

This actor is normally
the librarian

Lend one book

Figure 4.1 A use-case diagram for the Library application: iteration 1

together. The first two are concerned with configuration, the next two are displays and
the last two record borrower transactions. It is always worthwhile trying to make UML
diagrams (and the resulting code) as clear as possible. The note also helps clarify the
nature of the actor in each use-case.

While undertaking this activity we can also specify some of the tests that will be
implemented. Recall from section 2.1.1 that there should be a least one test-case for
each use-case. Therefore we have the following test-cases with a short description of the
expected outcome from each:

• test-case 1: Register one borrower

A borrower is successfully registered with the library.

• test-case 2: Add one book

A book is successfully added to the library stock and is available for loan.

• test-case 3: Display books available for loan

A display of each book available for loan when there are zero or more books in the
library.

• test-case 4: Display books out on loan

A display of each book out on loan when there are zero or more books in the library.

• test-case 5: Lend one book

A book available for loan is recorded as out on loan to a borrower. The book is not
available for loan.

• test-case 6: Return one book
A book on loan to a borrower is recorded as not out on loan to that borrower. The
book is available for loan.

In later activities we might add more detail to the test-cases but for the moment it is
enough to record that they exist and there is an outline of what we expect from them.
Notice that to avoid the risk of any confusion we have numbered the test-cases. A more
complex numbering scheme could be used but as testing is not our main concern we do
not pursue this further.

4.2.2 Analysis

This activity is concerned with the analysis of the library application, i.e. the “system”.
As such it is an important part of its development. If it is of poor quality then it is very
difficult, or even impossible, to deliver high quality code. The main reason we under-
take the analysis is to identify problem domain objects and their classes, the relation-
ships they enter into and the messages they send to each other.

Chapter 4: Cast Study: A Library Application 75

Fortunately it is relatively easy to identify four major objects. Everyday experience
indicates the librarian, library, borrower and book. Identification of the classes
Librarian, Library, Borrower and Book follows naturally. This is not unusual and is a
major strength of object orientation. Real-world experience and intuition can often be
used to identify the most important objects and classes. With just a little practice it
becomes surprisingly straightforward.

After considering the use-case diagram and the textual description for the library, it
becomes clear that the librarian and borrower objects are not part of the system. The librar-
ian is the actor that uses the system and is therefore of no concern to us. Similarly although
we expect to record details of each borrower when registered, there is no question of the
human borrower interacting with or being part of our system (but see the next section). In
real life the interactions would be with the librarian but again that does not concern us.

The object diagram of figure 4.2 helps document this decision.

Notice that in our view each Book is part of the Library therefore an aggregation rela-
tionship is appropriate.

If we now turn our attention to identifying some of the operations we expect the
Library to have then the use-case diagram is particularly helpful. There is an operation
supported by the Library that corresponds to each. For example, the sequence diagram
of figure 4.3 shows the two display operations.

If an actor (the librarian) sends the message displayBooksAvailableForLoan to the
Library then it requests each Book available for loan to display itself. On the other hand

76 Object-Oriented Design with UML and Java

This actor would normally
be the librarian

The library records the details
of its registered borrowers

Each book is available
for loan or out on loan

: Library : Book

Figure 4.2 An object diagram

: Library : Book: Book: Book

displayBooksAvailableForLoan [is available for loan] display

[is available for loan] display

displayBooksOnLoan
[is not available for loan] display

Figure 4.3 A sequence diagram for the display operations

if the actor sends the message displayBooksOnLoan to the Library then it requests
each Book not available for loan to display itself. Notice that we have implied that the
Book class must support a display operation or its equivalent.

An alternative to a sequence diagram is to use an activity diagram as shown for the
displayBooksAvailableForLoan operation in figure 4.4.

Chapter 4: Cast Study: A Library Application 77

●

●●

Get a book from
the library loan

stock

FOREACH book IN theLoanStock DO
 IF book is available for loan THEN
 display book details
 ENDIF
ENDFOREACH

Display the
book details

[more books]

[book is not available for loan]

[book is available for loan]

[no more books]

Figure 4.4 An activity diagram for the displayBooksAvailableForLoan operation

We might even use both just to make sure that we have carefully documented our
intentions. Notice that we have used pseudocode (see appendix H) in the accompanying
note to help clarify what the diagram is intended to convey.

A second sequence diagram as shown in figure 4.5 helps document our intentions
with the remaining operations.

It shows that the operations registerOneBorrower and addOneBook are the sole
responsibility of the Library. However, lendOneBook and returnOneBook have an
interaction with a Book object. Although we have no details of how this will be accom-
plished, we can anticipate the operations attachBorrower and detachBorrower that
can be sent to a Book. The operation lendOneBook in the Library uses the former and
returnOneBook the latter. A collaboration diagram as shown in figure 4.6 helps makes
this point clear.

Notice that it is too soon to add details of any parameters on these diagrams. If
required, we can do this later when more information is available.

4.2.3 Design

From the object diagram in figure 4.2 we have the initial class diagram shown in
figure 4.7.

78 Object-Oriented Design with UML and Java

: Library : Book

registerOneBorrower

addOneBook

returnOneBook

lendOneBook attachBorrower

detachOneBorrower

Figure 4.5 A sequence diagram for the remaining operations

If a book is not attached to a borrower
then it is available for loan.
Otherwise it is out on loan.

This book is now attached to a
borrower while it is out on loan.
It will be detached from that
borrower on returning it.

1.1: lendOneBook 1.2: attachBorrower
: Library : Book

Figure 4.6 A collaboration diagram for the lendOneBook operation

-theLoanStock
Library Book

0..*1

Figure 4.7 An initial class diagram

Clearly it must be developed further. For example, two-way traversal of an associ-
ation or aggregation is the default in the UML. It is likely that there is no need for a
Book to send messages to the Library. After all it is just a Book. Therefore the aggre-
gation relation between a Library and a Book should only be traversed from the Library
to the Book. (An arrow decoration on the line that connects them captures this decision,
as shown in figure 4.8.)

Although it may appear to be a relatively minor detail, the decision to use shared
aggregation does have a profound impact. For example, it affects the system’s storage
requirements and run-time efficiency. Normally composite aggregation is reserved for
object-like attributes (see sections 2.5.3 and 2.5.4).

If we consider the nature of the collections used to support the multiplicity of zero
or many for Books then recall from appendix E that the default collection is the
HashSet. However, we are required to display Books in the order of their unique cata-
logue numbers. Therefore a TreeSet is an appropriate choice (see appendix E). The role
name theLoanStock from the class diagram gives it a suitable identifier.

The library specification indicates a Book is an object with attributes for a catalogue
number, author and title. From the preceding activity we also need to be able to decide
if a Book is available for borrowing or not. We also need to associate a Book with a reg-
istered borrower if it is out on loan to that borrower. Finally, the Library also needs to
have a record of each registered borrower.

This leads us to introduce an object of the class BorrowerRecord. Its purpose is to
hold the unique name of each borrower and a collection of those Books on loan to that
borrower. Notice that this object did not come from the problem domain but is a design
object introduced to help implement the use-cases. No doubt other designs are possible
but for this iteration it appears to be a good decision. In future iterations it could hold
more information about a borrower. For example, personal data such as address and tele-
phone number or information about outstanding fines. The class diagram of figure 4.8
shows its relationships with the Library and Book classes.

Chapter 4: Cast Study: A Library Application 79

-theBorrowers

Library

Book

0..*

BorrowerRecord

{ java.util.HashSet} {java.util.TreeSet}

{java.util.LinkedList}

-theBorrowedBooks

0..*-theLoanStock

-theBorrower0..1
0..*

Figure 4.8 A modified class diagram

As we anticipate that each BorrowerRecord is for the sole use of the Library
then a composite aggregation relationship navigated from the Library to Borrower
Record is appropriate. For the moment the default collection of the HashSet is satisfac-
tory as there are no duplicate borrowers and the order in which they are held is not impor-
tant. The role name of theBorrowers is a suitable identifier for it.

The relationship between the Book and BorrowerRecord classes is interest-
ing. Now we see that each Book on loan is held in a collection belonging to a
BorrowerRecord. In keeping with the fact that when a Book is returned, we expect
deletions at arbitrary points in this collection, we have chosen a LinkedList (see appen-
dix E). The role name theBorrowedBooks is a suitable identifier for the collection.
Given that each Book could be attached to the Library and a BorrowerRecord, a
shared aggregation relationship is appropriate. This decision is in keeping with the dis-
cussions of section 2.5.4.

Note that the Book has an architectural attribute theBorrower for the
BorrowerRecord that has borrowed it. We anticipate that if theBorrower has a value
of null then by implication a Book is not on loan. Otherwise it is on loan.

If we consider the impact of introducing the BorrowerRecord class on the imple-
mentation of the use-cases, then we have:

Register one borrower Establish a suitably initialized BorrowerRecord
object

Add one book Set theBorrower in the Book to null

Display books available Each Book displayed has theBorrower equal
for loan to null

Display books out Each Book displayed has theBorrower not
on loan equal to null

Lend one book Attach a BorrowerRecord to a Book and
vice versa

Return one book Detach a BorrowerRecord from a Book and
vice versa

Armed with the insights gained we can start to establish the operations and attributes of
each class.

If we consider the Book class then we identify the normal attributes theTitle,
theAuthor and theCatalogueNumber. They are a String, a String and an int respec-
tively, though a String for the latter might have been considered. The class must also
have the single-valued architectural attribute theBorrower as shown in the class dia-
gram of figure 4.8.

The mandatory profile operations concerned with object construction, comparison
and containment in a collection are easily dealt with. For example, we need a para-
meterized constructor with a String, a String and an int as formal parameters to
the Book constructor. We expect the method to initialize theTitle, theAuthor and
theCatalogueNumber with its parameter values. It should also set theBorrower to
null. There is also a default constructor that sets each attribute to an initial default
value. As regards object comparison and containment, all we need is the trio of operations
equals, compareTo and hashCode (based on the unique catalogue number) dis-
cussed in appendix E.

Next we have the operations attachBorrower and detachBorrower to associate and
disassociate a Book with a BorrowerRecord. The former needs a BorrowerRecord
parameter but the latter does not as it just detaches itself from the BorrowerRecord it
is currently attached to.

80 Object-Oriented Design with UML and Java

Finally we have the display operation identified in the previous activity. We antici-
pate that its method should display the Book attribute values on the system console.

The BorrowerRecord class is relatively straightforward with one normal String
attribute theName and a LinkedList architectural attribute theBorrowedBooks (see
figure 4.8). Its mandatory profile operations consist of a parameterized constructor and
the trio of operations equals, compareTo and hashCode (based on the unique name).
Although the last three are not strictly required we anticipate that they might be
required later and there is no harm including them here. In fact it is good practice
to do so.

The parameterized constructor has a String as a formal parameter to initialize the
attribute theName. It should also initialize theBorrowedBooks to reference a
LinkedList. Note that there is no default constructor therefore it is not possible to cre-
ate a BorrowerRecord unless a name is supplied as an actual parameter. This is inten-
tional as we consider it undesirable to have default BorrowerRecords in the context of
this application.

Finally we have the operations attachBook and detachBook to associate and disso-
ciate a BorrowerRecord and Book. Both operations need a Book parameter. Recall
that a BorrowerRecord can be associated with many Books.

The Library class has the normal attribute theName that is a String as well as the
architectural attributes theLoanStock and theBorrowers. As there is only one Library
in the problem domain it will never be compared or contained in a collection. It has only
a parameterized constructor for the mandatory profile of operations. It initializes the
attribute theName as well as the architectural attributes theLoanStock and
theBorrowers. The last two reference a TreeSet and HashSet respectively.

The remaining operations of the Library class correspond to the use-cases. The oper-
ations displayBooksAvailableForLoan and displayBooksOnLoan require no
parameters. However, addOneBook needs a Book parameter. It is the Book that is to
be added to the Library. Similarly registerOneBorrower needs the name of the bor-
rower to be registered. Therefore it has a String parameter. However, lendOneBook
needs the catalogue number and the borrower’s name. Therefore it has an int and String
parameter. As noted earlier returnOneBook requires only a Book as a parameter. It is
the Book to be returned.

The class diagrams of figures 4.9(a) and 4.9(b) summarize our design so far.

Chapter 4: Cast Study: A Library Application 81

-theBorrowers

Library

Book

0..*

BorrowerRecord

{java.util.HashSet} {java.util.TreeSet}

{java.util.LinkedList}

-theBorrowedBooks

0..*-theLoanStock

-theBorrower0..1
0..*

Figure 4.9(a) An outline class diagram

82 Object-Oriented Design with UML and Java

Library
Attributes

Operations

-String theName

+void registerOneBorrower(String aBorrowerName)

+void addOneBook(Book aBook)

+void displayBooksAvailableForLoan()

+void displayBooksOnLoan()

+void lendOneBook(int aCatalogueNumber, String aBorrowerName)

+void returnOneBook(int aCatalogueNumber)

+Library(String aName)

Book
Attributes

Operations

-int theCatalogueNumber

-String theAuthor

-String theTitle

+void detachBorrower()

+void attachBorrower(BorrowerRecord aBorrower)

+void display()

+boolean equals(Object obj)

+int compareTo(Object obj)

+int hashCode()

+Book(String aTitle, String anAuthor, int aCatalogueNumber)

+Book()

BorrowerRecord

Attributes

Operations

-String theName

+void detachBook(Book aBook)

+void attachBook(Book aBook)

+boolean equals(Object obj)

+int compareTo(Object obj)

+int hashCode()

+BorrowerRecord(String aName)

Figure 4.9(b) Class diagram details

4.2.4 Implementation

Now we can begin producing some Java code from the class diagram of figure 4.9(a).
We could follow the scheme presented in chapter 3 and first develop then test the
Book class. The Library class could then be introduced and some of its functionality
tested including the addition and display of Books. Finally we might introduce the
BorrowerRecord class to test registering borrowers and borrowing and returning
Books.

However, as this is a relatively straightforward application it seems more sensible to
push ahead and develop each class in one increment. In chapter 6, where we revisit this
case study, we do indeed take several increments at this corresponding stage.

4.2.4.1 Architectural code

Although there are no method bodies at present we can still produce a significant pro-
portion of the final Java code. The reason is that the mapping between a class diagram
and Java is well defined (see appendix D). For example, in a class diagram:

• an attribute maps to a private field declaration

• a public operation maps to a public method

• a class maps to a public class declaration

• an association or aggregation relationship maps to a private field declaration

• the use of a collection maps to an import statement naming the class of the
collection

Therefore we have the following outline Java code for the Book class:

public class Book implements Comparable {

// ----- Operations ----------
public Book(String aTitle, String anAuthor, int aCatalogueNumber) { ... }
public Book() { ... }
//
public boolean equals(Object obj) { ... }
public int compareTo(Object obj) { ... }
public int hashCode() { ... }
//
public void detachBorrower() { ... }
public void attachBorrower(BorrowerRecord aBorrower) { ... }
public void display() { ... }

// ----- Attributes ----------
private final int theCatalogueNumber;
private String theAuthor;
private String theTitle;

Chapter 4: Cast Study: A Library Application 83

// ----- Relations ----------
private BorrowerRecord theBorrower;

} // class: Book

Note that in the class header we have:

... implements Comparable {

which guarantees that the Book class has a compareTo method used by a collection
object such as a TreeSet to order its elements (see appendix E).

The BorrowerRecord and Library classes are treated in exactly the same manner
giving the following outline code:

import java.util.LinkedList;
public class BorrowerRecord implements Comparable {

// ----- Operations ----------
public BorrowerRecord(String aName) { ... }
//

public boolean equals(Object obj) { ... }
public int compareTo(Object obj) { ... }
public int hashCode(){ ... }
//

public void detachBook(Book aBook) { ... }
public void attachBook(Book aBook) { ... }

// ----- Attributes ----------
private final String theName;

// ----- Relations ----------
private java.util.LinkedList theBorrowedBooks;

} // class: BorrowerRecord

and:

import java.util.HashSet;
import java.util.TreeSet;

public class Library {

// ----- Operations ----------
public Library(String aName) { ... }
//

public void registerOneBorrower(String aBorrowerName) { ... }
public void addOneBook(Book aBook) { ... }
public void displayBooksAvailableForLoan() { ... }
public void displayBooksOnLoan() { ... }
public void lendOneBook(int aCatalogueNumber, String aBorrowerName) { ... }
public void returnOneBook(int aCatalogueNumber) { ... }

84 Object-Oriented Design with UML and Java

// ----- Attributes ----------
private String theName;

// ----- Relations ----------
private java.util.TreeSet theLoanStock;
private java.util.HashSet theBorrowers;

} // class: Library

It is worth making the point that this code is not in any sense temporary. Although we
must supply method bodies and may add more operations or attributes we do not antici-
pate changing it. In fact it represents the skeleton of our final model. All we have to do
now is to add some flesh to make it executable!

4.2.4.2 Method code

The next step is to implement each method in the three classes. The Java coding for the
Book class is relatively straightforward. It is as follows:

import textio.*;

public class Book implements Comparable {

// ----- Operations ----------
public Book(String aTitle, String anAuthor, int aCatalogueNumber) {

// Initialize normal attributes
theTitle = aTitle;
theAuthor = anAuthor;
theCatalogueNumber = aCatalogueNumber;
//
// Initialize architectural attributes
theBorrower = null;

} // method: Book

public Book() {
// Initialize attributes using the parameterized constructor
this(“”, “”, 0);

} // method: Book

public boolean equals(Object obj) {
// The method for compareTo expects an Object therefore a cast is not required.
// Use compareTo as the basis for the equality test.
return this.compareTo(obj) == 0;

} // method: equals

public int compareTo(Object obj) {
// As obj is an Object it must be cast to a Book so that the message
// getCatalogueNumber can be sent.

Chapter 4: Cast Study: A Library Application 85

Book book = (Book) obj;
int bookCatalogueNumber = book.getCatalogueNumber();
//
// Use the relational operator defined for an int to return the appropriate value.
int result;
if(theCatalogueNumber < bookCatalogueNumber)

result = –1;
else if(theCatalogueNumber == bookCatalogueNumber)

result = 0;
else

result = 1;
//
return result;

} // method: compareTo

public int hashCode() {
// Create an Integer and initialize it with theCatalogueNumber – an int.
Integer integerCatalogueNumber = new Integer(theCatalogueNumber);
//
// Hash on this object.
return integerCatalogueNumber.hashCode();

} // method: hashCode

public void detachBorrower() {
theBorrower = null;

} // method: detachBorrower

public void attachBorrower(BorrowerRecord aBorrower) {
theBorrower = aBorrower;

} // method: attachBorrower

public void display() {
// Note that \t is the tab character. Therefore \t\t tabs the cursor twice to the right.
// Similarly \n is the new line character. Therefore \n can be used
// instead of ConsoleIO.out.println().
//
ConsoleIO.out.println();
ConsoleIO.out.println(“\t\t” + “Title: ” + theTitle);
ConsoleIO.out.println(“\t\t” + “Author: ” + theAuthor);
ConsoleIO.out.println(“\t\t” + “Catalogue Number: ” + theCatalogueNumber);
ConsoleIO.out.println();

} // method: display

public int getCatalogueNumber() {
return theCatalogueNumber;

} // method: getCatalogueNumber

86 Object-Oriented Design with UML and Java

// ----- Attributes ----------
private final int theCatalogueNumber;
private String theAuthor;
private String theTitle;

// ----- Relations ----------
private BorrowerRecord theBorrower;

} // class: Book

We have introduced the operation getCatalogueNumber for use by the compareTo
method. Notice that the comparison and hash code operations use the same attribute
(theCatalogueNumber). This gives an internal consistency to these methods. For
example, two Books that are equal have the same hash code. To avoid problems that
may arise from the inner workings of a collection we try to use an attribute whose value
is unique, final and set by a constructor.

The Java code for the BorrowerRecord class is slightly more complex as it takes
overall control of detaching and attaching a Book. It does this by sending the message
detachBorrower or attachBorrower to the Book in question. This is important as we
don’t want to be in a position where a Book is attached or detached but the correspon-
ding BorrowerRecord is not updated accordingly. It would invalidate our model with
disastrous results.

As we compare BorrowerRecords by their names we introduce the operation
getName to allow a client to determine the name attribute of a BorrowerRecord. Note
that a borrower’s name is unique, final and set by a constructor:

import java.util.LinkedList;
//
public class BorrowerRecord implements Comparable {

// ----- Operations ----------
public BorrowerRecord(String aName) {

// Initialize normal attributes
theName = aName;
//
// Initialize architectural attributes
theBorrowedBooks = new LinkedList();

} // method: BorrowerRecord

public boolean equals(Object obj) {
return this.compareTo(obj) == 0;

} // method: equals

public int compareTo(Object obj) {
BorrowerRecord borrowerRecord = (BorrowerRecord) obj;
String name = borrowerRecord.getName();
return theName.compareTo(name);

} // method: CompareTo

Chapter 4: Cast Study: A Library Application 87

public int hashCode() {
return theName.hashCode();

} // method: hashCode

public void detachBook(Book aBook) {
aBook.detachBorrower();
//
// Ensure that the relationship remains consistent
theBorrowedBooks.remove(aBook);

} // method: detachBook

public void attachBook(Book aBook) {
aBook.attachBorrower(this);
//
// Ensure that the relationship remains consistent
theBorrowedBooks.add(aBook);

} // method: attachBook

public String getName() {
return theName;

} // method: getName

// ----- Attributes ----------
private final String theName;

// ----- Relations ----------
private java.util.LinkedList theBorrowedBooks;

} // class: BorrowerRecord

Notice the way in which the detach and attach methods are implemented in the
BorrowerRecord class. This is an attempt to make sure that when a Book is borrowed or
returned that the BorrowerRecord and the Book are updated at the same time.

If we now turn our attention to the Library class then it is more of a challenge to
implement. However, a useful assumption we can make is that perfect data is supplied
by the client. Therefore if the Library records that a Book has been returned then we
can assume that the Book is actually in the Library and that it was actually borrowed.
Similarly when the Library records that a borrower has borrowed a Book then we can
assume that the borrower is registered with the Library and that the Book is not out on
loan already. This means that for this iteration there is no need to have error checks in
our code. Similarly we can ignore any performance issues.

Although we will almost certainly put error checks in place we can do so as part of a
series of managed iterations or increments. Also we can modify the model to execute
faster or use less memory in a subsequent iteration if it proves to be necessary. By
adopting this approach we can reduce the number and complexity of the problems we
have to face at any given point in the development. We grow towards the implementa-
tion required and therefore reduce the risk of failure.

The first problem that we encounter is that the Library references Books and
BorrowerRecords but the client supplies a catalogue number or a name to identify

88 Object-Oriented Design with UML and Java

them. Therefore we introduce the operations getBook and getBorrowerRecord to
bridge this gap. Notice that they are used internally by the Library and given private

visibility. In general, it is good practice to limit direct access to an operation or attrib-
ute as much as possible.

Our second problem is that we need a method for the operations
displayBooksOnLoan and displayBooksAvailableForLoan. After a little thought it
becomes clear that they can make use of a private operation displayBooks that takes
a boolean parameter. If the actual parameter is true then the method displays the
Books on loan otherwise it displays those not on loan. This makes sense as it is easier
to maintain our code. The alternative would be to have two similar methods: one in
displayBooksOnLoan and the other in displayBooksAvailableForLoan. Apart from
unnecessary duplication there is a danger that we might change one but not the other in
later iterations.

Finally we must import the Iterator class to enable us to iterate over the various col-
lections (see appendix E). The resulting code for the Library class is:

import java.util.HashSet;
import java.util.TreeSet;
import java.util.Iterator;

public class Library {

// ----- Operations ----------
public Library(String aName) {

// Initialize normal attributes
theName = aName;
//
// Initialize architectural attributes
theLoanStock = new TreeSet();
theBorrowers = new HashSet();

} // method: Library

public void registerOneBorrower(String aBorrowerName){
// Assume it has not been registered before.
BorrowerRecord record = new BorrowerRecord(aBorrowerName);
theBorrowers.add(record);

} // method: registerOneBorrower

public void addOneBook(Book aBook) {
// Assume it has not been added before.
theLoanStock.add(aBook);

} // method: addOneBook

public void lendOneBook(int aCatalogueNumber, String aBorrowerName) {
// Find the correct Book. Assume it is present and is not out on loan.
Book book = this.getBook(aCatalogueNumber);

Chapter 4: Cast Study: A Library Application 89

//
// Find the correct BorrowerRecord. Assume it is present.
BorrowerRecord record = this.getBorrowerRecord(aBorrowerName);
//
// Attach them to each other
record.attachBook(book);

} // method: lendOneBook

public void returnOneBook(int aCatalogueNumber) {
// Find the correct Book. Assume it is present and was out on loan.
Book book = this.getBook(aCatalogueNumber);
//
// Find the correct BorrowerRecord. Assume it is present.
BorrowerRecord record = book.getBorrower();
//
// Detach them from each other.
record.detachBook(book);

} // method: returnOneBook

public void displayBooksOnLoan() {
//
this.displayBooks(true);

} // method: displayBooksOnLoan

public void displayBooksAvailableForLoan() {
//
this.displayBooks(false);

} // method: displayBooksAvailableForLoan

private Book getBook(int aCatalogueNumber) {
Book foundBook = null;
//
Iterator iter = theLoanStock.iterator();
while(iter.hasNext() == true) {

Book book = (Book) iter.next();
int catalogueNumber = book.getCatalogueNumber();
if(catalogueNumber == aCatalogueNumber) {

foundBook = book;
break;

}
}
//
return foundBook;

} // method: getBook

90 Object-Oriented Design with UML and Java

private BorrowerRecord getBorrowerRecord(String aBorrowerName) {
BorrowerRecord foundRecord = null;

//
Iterator iter = theBorrowers.iterator();
while(iter.hasNext() == true) {

BorrowerRecord record = (BorrowerRecord) iter.next();
String name = record.getName();
if(name.equals(aBorrowerName) == true) {

foundRecord = record;
break;

}
}
//
return foundRecord;

} // method: getBorrowerRecord

private void displayBooks(boolean onLoan) {
ConsoleIO.out.println(“\n” + “Library: ” + theName + “\n”);
//
boolean found = false;
Iterator iter = theLoanStock.iterator();
//
if(onLoan == true) {

ConsoleIO.out.println(“\t” + “Books out on loan”);
while(iter.hasNext() == true) {

Book book = (Book) iter.next();
if(book.getBorrower() != null) {

found = true;
book.display();

}
}

}
else {

ConsoleIO.out.println(“\t” + “Books available for loan”);
while(iter.hasNext() == true) {

Book book = (Book) iter.next();
if(book.getBorrower() == null) {

found = true;
book.display();

}
}

}.
//
if(found == false)

ConsoleIO.out.println(“\n\t\t” + “None”);
} // method: displayBooks

Chapter 4: Cast Study: A Library Application 91

// ----- Attributes ----------
private String theName;

// ----- Relations ----------
private java.util.TreeSet theLoanStock;
private java.util.HashSet theBorrowers;

} // class: Library

In the returnOneBook method and the displayBooks method there is a need to
request a reference to the BorrowerRecord attached to a Book. For example, in the
returnOneBook method we have:

BorrowerRecord record = book.getBorrower();

Clearly we must support getBorrower in the Book class as:

// class Book
public BorrowerRecord getBorrower() {

return theBorrower;
} // method: getBorrower

Notice that to iterate over a collection we have code with the following form:

Iterator iter = theCollectionIdentifier.iterator();
while(iter.hasNext() == true) {

ClassName objectIdentifier = (ClassName) iter.next();
// Send messages through the objectIdentifier

}

This is important as it brings consistency of approach to our code. Essentially, we solve
the same problem in the same way each time. At this stage all of the Java classes devel-
oped should compile with no errors or warnings reported.

4.2.4.3 Testing

As discussed in section 3.3 we use an Application object as the effective point of entry
into the program. It responds to a message run that originates from the execution envi-
ronment. The run method creates the major objects, establishes the object architecture
and has the control logic necessary to stimulate the model.

Recall that we identified a test-case for each use-case in an earlier activity. Most of
the code for our model is in place and now is the time to execute each test-case in the
Application run method. As this is the first iteration the tests are as straightforward as
possible. Therefore we create a Library object and send the minimum messages to exe-
cute each test-case with no human user involvement. We do not send messages that
could give rise to an error.

92 Object-Oriented Design with UML and Java

It seems reasonable to start with test-case 3 in combination with test-case 2. This
means that we can demonstrate that we can display the Books available for loan when
there are zero or more Books in the Library. This leads to the following code for the
Application class that represents the first increment:

public class Application {

// ----- Operations ----------
public Application () {

// No initialization required
} // method: Application

public void run() {
//
// Create the Library
Library library = new Library(“Napier”);
//
// Test-case 3: Display books available for loan
library.displayBooksAvailableForLoan();
//
// Test-case 2: Add one Book
Book b1 = new Book(“Java”, “Ken”, 1);
library.addOneBook(b1);
//
// Test-case 3: Display books available for loan
library.displayBooksAvailableForLoan();

} // method: run

} // class: Application

Now we can prepare a Main class:

public class Main {

// ----- Operations ----------
public static void main(String [] args) {

Application app = new Application();
app.run();

} // method: main

} // class: Main

then compile all of the Java files (Book.java, BorrowerRecord.java, Library.java,
Application.java and Main.java). The execution of Main gives a typical output pro-
duced as follows:

Library: Napier

Books available for loan

None

Chapter 4: Cast Study: A Library Application 93

Library: Napier

Books available for loan

Title: Java
Author: Ken
Catalogue Number: 1

This is our first increment and it is successful. Had it been unsuccessful it would have
been necessary to investigate the detailed coding of the methods for the appropriate
operations.

If we now consider test-case 1 then we encounter a major problem. It is that nowhere
in the system specification are we required to display details of the borrowers registered
with the Library. Therefore we introduce a displayBorrowers operation to the Library
coded as follows:

// class Library
public void displayBorrowers() {

ConsoleIO.out.println(“\n” + “Library: ” + theName + “\n”);
ConsoleIO.out.println(“\t” + “Details of the borrowers”);
//
if(theBorrowers.isEmpty() == false) {

Iterator iter = theBorrowers.iterator();
while(iter.hasNext()) {

BorrowerRecord record = (BorrowerRecord) iter.next();
String name = record.getName();
ConsoleIO.out.println(“\n\t\t” + name);

}
}
else

ConsoleIO.out.println(“\n\t\t” + “None”);
} // method: displayBorrowers

Notice that we intend discussing the lack of a display of borrower details with the librar-
ian and anticipate that it may well become a use-case in its own right in a later iteration.
However, for the moment, it is sufficient to use the name of a borrower for the display.

Now we can modify the Application run method to:

// class Application
public void run() {

//
// As for increment 1
// ...
// Test-case 1: Register one borrower
library.displayBorrowers();
library.registerOneBorrower(“Peter”);
library.displayBorrowers();

} // method: run

94 Object-Oriented Design with UML and Java

and compile and execute as before. This is our second increment and it produces the
successful outcome shown as follows:

// As for increment 1
// ...
Library: Napier

Details of the borrowers

None

Library: Napier

Details of the borrowers

Peter

Having added one more Book, test-case 4 is now combined with test-case 5 for our
third increment. We check that a Book that was available for loan is no longer available
and is now on loan. Therefore we modify the Application run methods as:

// class Application
public void run() {

//
// As for increment 2
// ...
Book b2 = new Book(“Basic”, “Sally”, 2);
library.addOneBook(b2);
//
// Test-case 4: Display books on Loan
library.displayBooksOnLoan();
library.displayBooksAvailableForLoan();
//
// Test-case 5: Lend a book
library.lendOneBook(2, “Peter”);
//
library.displayBooksOnLoan();
library.displayBooksAvailableForLoan();

} // method: run

and then execute it to produce the following output:

// As for the increment 2
// ...
Library: Napier

Books out on loan

None

Library: Napier

Books available for loan

Chapter 4: Cast Study: A Library Application 95

Title: Java
Author: Ken
Catalogue Number: 1

Title: Basic
Author: Sally
Catalogue Number: 2

Library: Napier

Books out on loan

Title: Basic
Author: Sally
Catalogue Number: 2

Library: Napier

Books available for loan

Title: Java
Author: Ken
Catalogue Number: 1

As it is successful we only have test-case 6 to implement and we are finished with this
iteration. We combine it with test-cases 4 and 3 for the fourth increment. It checks that
a Book on loan is returned and is then available for further loan. The modified
Application run method is:

// class Application
public void run() {

//
// As for increment 3
// ...
// Test-case 6: Return a book
library.returnOneBook(2);
//
library.displayBooksOnLoan();
library.displayBooksAvailableForLoan();

} // method: run

and the output when it is compiled and executed is as follows:

// ... As for the increment 3
// ...
Library: Napier

Books out on loan

None

Library: Napier

96 Object-Oriented Design with UML and Java

Books available for loan

Title: Java
Author: Ken
Catalogue Number: 1

Title: Basic
Author: Sally
Catalogue Number: 2

The reader is invited to review McGregor 2001 for a more detailed account of testing
OO systems.

4.2.5 Reconcile model diagrams

Although all of the use-cases have been successfully implemented it does not mark the
end of the first iteration. We must ensure that our diagrams are brought up to date with
decisions made during each activity. No changes to the use-case diagram of figure 4.1
are required as it covered all of the requirements for this iteration. However, we should
make a mental note that we have introduced the operation displayBorrowers to the
Library and that it might become a use-case in the next iteration. On reflection, the only
diagrams that would benefit from an update are the sequence diagram of figure 4.5 and
the class diagram of figure 4.9. The others are accurate enough for our purposes.

Chapter 4: Cast Study: A Library Application 97

registerOneBorrower

: Library : BorrowerRecord : Book

create

The correct BorrowerRecord
is selected

: BorrowerRecord

The correct Book
is selected

detachBorrower

attachBorrower

The BorrowerRecord
created is added

The correct Book
is selected

The correct BorrowerRecord
is selected

attachBook

add

detachBook

borrowOneBook

returnOneBook

Figure 4.10 An updated sequence diagram

The sequence diagram of figure 4.5 now introduces a BorrowerRecord object when
a new borrower is registered. Its purpose is to illustrate the attach and detach operations
on borrowing and returning a Book as shown in figure 4.10. Observe how we have
shown the implementation multi-objects that represent the collections of
BorrowerRecords and Books held by the Library. Normally, we would only show the
model objects such as Book and BorrowerRecord objects held by the Library. Here,
we wish to explain and emphasize the underlying details of each method.

If we turn our attention the class diagram of figure 4.9 then all we need do is to
update the Library, BorrowerRecord and Book classes to include the operations we
introduced. Figure 4.11 illustrates.

This marks the end of the first iteration. Full listings of the resulting code are
given with the accompanying software (model Lib4_1.uml). See also appendices
A and B.

4.3 Iteration 2

After demonstrating the execution of iteration 1 and some discussion with the librarian
it turns out that a display of the status of all borrowers is required. Essentially she wants
a display of the borrowers to be ordered by each borrower’s name. Accompanying each
should be the catalogue numbers of each book out on loan in catalogue number order.
We also learn that a text-based user interface controlled by a simple menu is acceptable
at this stage. However, the librarian must have a system that can accommodate erro-
neous data input. Ideally it should give helpful error messages.

4.3.1 Establish use-cases

We do not have much work to do here as there is only one new use-case to deal with and
we have anticipated it in the previous iteration. It is the use-case “Display borrowers”.
However, we must have a test-case to match it. Iteration 1 resulted in six test-cases
therefore we might be tempted to make this one test 7. This is not advisable as it is
important to group use-cases and test-cases sensibly otherwise our work can easily
become difficult to understand. Therefore we have “Display borrowers” as use-case 2
and test-case 2. Although we are forced to renumber the use and test-cases it is worth
the effort. Figure 4.12 shows the updated use-case diagram for iteration 2.

The corresponding test-cases are now:

• test-case 1: Register one borrower

A borrower is successfully registered with the library.

• test-case 2: Display borrowers

A display of each borrower when there are zero or more borrowers with zero or
more books on loan in the library.

• test-case 3: Add one book

A book is successfully added to the library and is available for loan.

98 Object-Oriented Design with UML and Java

Chapter 4: Cast Study: A Library Application 99

Library

Operations

+void registerOneBorrower(String aBorrowerName)

+void addOneBook(Book aBook)

+void displayBooksAvailableForLoan()

+void displayBooksOnLoan()

+void lendOneBook(int aCatalogueNumber, String aBorrowerName)

+void returnOneBook(int aCatalogueNumber)

+void displayBorrowers()

-void displayBooks(boolean onLoan)

-BorrowerRecord getBorrowerRecord(String aBorrowerName)

-Book getBook(int aCatalogueNumber)

+Library(String aName)

Book
Operations

-int compareTo(Object obj)

+boolean equals(Object obj)

+int hashCode()

+int getCatalogueNumber()

+BorrowerRecord getBorrower()

+void attachBorrower(BorrowerRecord aBorrower)

+void detachBorrower()

+void display()

+Book(String aTitle, String anAuthor, int aCatalogueNumber)

+Book()

BorrowerRecord

Operations

+int compareTo(Object obj)

+boolean equals(Object obj)

+int hashCode()

+String getName()

+void attachBook(Book aBook)

+void detachBook(Book aBook)

+BorrowerRecord(String aName)

Figure 4.11 Updated classes

• test-case 4: Display books available for loan

A display of each book available for loan when there are zero or more books in the
library.

• test-case 5: Display books out on loan

A display of each book out on loan when there are zero or more books in the library.

• test-case 6: Lend one book

A book available for loan is recorded as out on loan to a borrower. The book is not
available for loan.

• test-case 7: Return one book

A book on loan to a borrower is dissociated from that borrower. The book is now
available for loan.

The requirements that the system must “accommodate erroneous data input” and “give
as helpful error messages as possible” are typical. However, they are difficult to deal with
as they are non-specific and might just be “wishful thinking” on the part of the librarian.
However, after some discussion with her we arrive at what is meant by them. Essentially
the system must inform the human user of a problem that arises by displaying a short tex-
tual message on the screen. Specifically the system should take no other action. The
human user is expected to try again having understood why the problem has arisen.

100 Object-Oriented Design with UML and Java

Register one borrower

Return one book

Display books available for loan

Display borrowers

Display books on loan

Lend one book

Add one book

Figure 4.12 A use-case diagram for the Library application: iteration 2

Again after discussion with the librarian we arrive at the following test-cases (but no
new use-cases) that reflect commonly occurring problems:

• test-case 8: Attempt to add a book with a catalogue number that already exists

Display a message indicating that the book with the given catalogue number is
already in the library and that it cannot be added.

• test-case 9: Attempt to register a borrower with a name that already exists

Display a message indicating that the borrower with the given name is already reg-
istered in the library and it cannot be registered.

• test-case 10: Attempt to borrow a book with a catalogue number that does not exist

Display a message indicating that the book with the given catalogue number is not
in the library and that it cannot be borrowed.

• test-case 11: Attempt to borrow a book for a borrower that is not registered

Display a message indicating that the borrower with the given name is not registered
in the library and that it cannot be borrowed.

• test-case 12: Attempt to borrow a book that is already out on loan

Display a message indicating that the book with the given catalogue number is out
on loan and that it cannot be borrowed.

• test-case 13: Attempt to return a book with a catalogue number that does not exist

Display a message indicating that the book with the given catalogue number is not
in the library and that it cannot be returned.

• test-case 14: Attempt to return a book that is not out on loan

Display a message indicating that the book with the given catalogue number is not
out on loan and that it cannot be returned.

Clearly many more such test-cases could be developed but these are sufficient for this
iteration. Others can be added in subsequent iterations as necessary.

4.3.2 Analysis

As we have added a relatively straightforward use-case that requires no new objects or
messages then there is no extra work to do in this activity. This is a good sign as it means
that our architecture is stable. In general for a well-designed system we tend to have less
and less work to get more and more functionality.

However, the run method of the Application class needs more thought as its effects
are controlled by using a simple text-based menu. Essentially the Application presents a
menu of options to the user and a suitable selection is made. On the basis of this selec-
tion one or more messages are sent to the Library.

As the run method of the Application can become excessively large it is wise to sep-
arate the action of obtaining a selection from the user and that of stimulating the Library.

Chapter 4: Cast Study: A Library Application 101

Therefore we introduce a private method getSelection for use by the run method of
the Application. It displays a menu and returns the choice made.

It is important to understand that the Application class is not part of the model. Its
only purpose is to create and then control the model by sending messages to it. This
point is developed later when we replace the text-based user interface with a graphical
user interface (see chapter 7).

We must be sure that this iteration can do at least as much as the previous one and that
each use-case can be successfully executed. The difficulty is that the input is from a
human user and it is therefore outside our control. One solution is to introduce a
private method testUseCases similar to the run method of the previous iteration. It
executes the “hard-wired” versions of test-cases 1 to 7. As no errors are expected to arise
from these test-cases we extend the approach to introduce a private method
testErrorConditions. It executes “hard-wired” versions of test-cases 8 to 14. If both

102 Object-Oriented Design with UML and Java

●

●●

testErrorConditions

Use cases are
numbered 1 to 7

testUserCases

getSelection

Display exit
message

Display error
message

Execute use
case

[unknown selection] [1 to 7 selected]

[0 selected]

Figure 4.13 An activity diagram for the run method of the Application

private methods execute successfully then we can be reasonably confident that the
human user should not have any unforeseen difficulties when using the menu. These
two private operations can be removed or reserved for use by the system developers
when the software is delivered to the librarian.

Finally, if we consider the run method of the Application then the design of the con-
trol logic becomes important. Essentially we need to ensure that the correct action fol-
lows from the choice made by the user. Clearly a selection statement is at the heart of
this method. Rather than get too detailed at this stage the activity diagram shown in fig-
ure 4.13 helps document this decision.

4.3.3 Design

All we have to do in this activity is to update the class diagram from iteration 1. As we
require an alphabetical list of borrower names in the operation displayBorrowers, one
solution is to change the HashSet used to hold them in iteration 1 to be a TreeSet.

We must also add the private methods getSelection, testUseCases and
testErrorConditions to the Application class. Figure 4.14 illustrates.

Chapter 4: Cast Study: A Library Application 103

Application

Library

BookBorrowerRecord

Operations

-testErrorConditions
-testUseCases
-getSelection
+run
+Application

-theBorrowedBooks

-theBorrowers
{java.util.TreeSet}
0..*

-theBorrower0..1

{java.util.TreeSet}
0..*

0..*

{java.util.LinkedList}

-theLoanStock

Figure 4.14 An updated class diagram

4.3.4 Implementation

As with iteration 1 we are confident that we can code each class in a single increment.
Therefore there is no need to consider a more cautious approach. With more complex
examples this would not be the case.

4.3.4.1 Architectural code

It should come as no surprise that there is very little to do in this activity. All that
is necessary is to declare theBorrowers as a reference to a TreeSet in the Library class
rather than a HashSet. Its constructors should initialize it to refer to a TreeSet. This
reflects the new requirement that the Library displays each borrower in name order.
An outline of the Java code using italicized characters to indicate the two changes
required is:

// ...
public class Library {

public Library(String aName) {
// ...

theBorrowers = new TreeSet();
} // method: Library

// ...
private TreeSet theBorrowers;

} // class: Library

An Iterator is used to visit each element in a collection therefore no other changes to
our code are necessary. Whichever collection we choose delivers a suitable Iterator. This
is a significant benefit as it makes such code virtually maintenance-free.

4.3.4.2 Method code

For this iteration we intend revisiting many of the methods from the previous iteration
with a view to detecting and reporting error conditions. This is significant amount of
work that must be carried out methodically and consistently. To do otherwise is to run
the risk of incomplete updates and confusing code. Our aim is to increase the quality of
the code from the previous iteration. Therefore we need to develop a strategy.

For example, we must be able to determine if a Book is in the Library or if a borrower
is registered. We can decide to do this with the private Library operations getBook and
getBorrower. Recalling that they return null if no Book or BorrowerRecord is found,
typical outline examples from Library methods are:

Book foundBook = this.getBook(aCatalogueNumber);
//
if(foundBook != null) {

// Messages that assume that the Book with aCatalogueNumber is in the Library
// ...

} else {
// Messages that assume that the Book with aCatalogueNumber is not in the Library
// ...

}

104 Object-Oriented Design with UML and Java

and

BorrowerRecord foundRecord = this.getBorrowerRecord(aName);
//
if(foundRecord != null) {

// Messages that assume that the borrower with aName is registered with the Library
// ...

} else {
// Messages that assume that the borrower with aName is not registered with the Library
// ...

}

This approach has the merit of using just one operation (getBook or
getBorrowerRecord) to make a decision. Therefore we need only change a single
method if the code requires any changes. The impact of this approach on maintenance
can be significant.

When an Object is added to a collection a boolean value of true is returned
if it is successful and false otherwise (see appendix E). We can make use of this return
value to detect the fact that something unforeseen has gone seriously wrong. For exam-
ple, we may have inadvertently tried to add a duplicate element to a HashSet.
Therefore the following code is typical.

boolean result = theLoanStock.add(aBook);
if(result == false) {

// Report an error
// ...

}

To bring consistency to our code we use the same structure of Java code for similar
problems. For example, in the Library class when we detect and report errors
we have:

// class Library
public void addOneBook(Book aBook) {

int aCatalogueNumber = aBook.getCatalogueNumber();
Book foundBook = this.getBook(aCatalogueNumber);
//
// Check that the Book is not the Library
if(foundBook == null) {

boolean result = theLoanStock.add(aBook);
// Check that the Book has been added to the collection

if(result == false) {
ConsoleIO.out.println(“\n\t” + “Book not added - unknown error”);

}
} else {

ConsoleIO.out.println(“\n\t” + “Book already present - cannot add”);
}

} // method: addOneBook

Chapter 4: Cast Study: A Library Application 105

and

public void registerOneBorrower(String aBorrowerName) {
BorrowerRecord foundRecord = this.getBorrowerRecord(aBorrowerName);
//
// Check that the Borrower is not already registered
if(foundRecord == null) {

BorrowerRecord borrowerRecord = new BorrowerRecord(aBorrowerName);
boolean result = theBorrowers.add(borrowerRecord);
// Check that the Borrower has been added to the collection
if(result == false) {

ConsoleIO.out.println(“\n\t” + “Borrower not registered - unknown error”);
}

} else {
ConsoleIO.out.println(“\n\t” + “Borrower already present - cannot register”);

}
} // method: registerOneBorrower

and

public void lendOneBook(int aCatalogueNumber, String aBorrowerName) {
Book foundBook = this.getBook(aCatalogueNumber);
//
// Check that the Book is in the Library
if(foundBook != null) {

// Check that the Book is borrowable
if(foundBook.getBorrower() == null) {

// Check that the borrower is registered
BorrowerRecord foundRecord = this.getBorrowerRecord(aBorrowerName);
if(foundRecord != null) {

// Always attach the Book to the BorrowerRecord
foundRecord.attachBook(foundBook);

} else {
ConsoleIO.out.println(“\n\t” + “Borrower not registered - cannot lend”);

}
} else {

ConsoleIO.out.println(“\n\t” + “Book out on loan - cannot lend”);
}

} else {
ConsoleIO.out.println(“\n\t” + “Book not present - cannot lend”);

}
} // method: lendOneBook

Notice that the various tests map directly to the test-case for the use-case that each oper-
ation represents. Even the format of the output is the same to give the same “look and
feel” to each method.

All of these approaches are consistently used throughout this activity. Full listings of
the code for the Library class are given with the accompanying software (model
Lib4_2.uml).

106 Object-Oriented Design with UML and Java

4.3.4.3 Testing

Finally we should consider the Application class. First of all we need a method for
getSelection. It is quite straightforward (if a little tedious):

// class Application
private String getSelection() {

// Display menu to the human user
ConsoleIO.out.println();
ConsoleIO.out.println(“0: Quit”);
ConsoleIO.out.println(“1: Register one borrower”);
ConsoleIO.out.println(“2: Display borrowers”);
ConsoleIO.out.println(“3: Add one book”);
ConsoleIO.out.println(“4: Display books available for loan”);
ConsoleIO.out.println(“5: Display books on loan”);
ConsoleIO.out.println(“6: Lend one book”);
ConsoleIO.out.println(“7: Return one book”);
//
// Get and return the choice made
ConsoleIO.out.print(“\n\t” + “Enter the choice >>> ”);
return ConsoleIO.in.readString();

} // method: getSelection

Notice that a Quit option is offered and that the others map directly to the use-cases
identified. Also the selection is a String rather than an int to permit any character (not
just a digit) to be input. This makes our software less prone to run-time failure.

Given the work done in the previous iteration, the coding for testUseCases and
testErrorConditions is quite straightforward:

// class Application
private void testUseCases() {

// Create the Library
Library library = new Library(“Napier”);
// Test-case 4: Display books available for loan
library.displayBooksAvailableForLoan();
// Test-case 3: Add one Book
Book b1 = new Book(“Java”, “Ken”, 1);
library.addOneBook(b1);
// Test-case 4: Display books available for loan
library.displayBooksAvailableForLoan();
// Test-case 2: Display borrowers
library.displayBorrowers();
// Test-case 1: Register one borrower
library.registerOneBorrower(“Peter”);
// Test-case 2: Display borrowers
library.displayBorrowers();

Chapter 4: Cast Study: A Library Application 107

//
Book b2 = new Book(“Basic”, “Sally”, 2);
library.addOneBook(b2);
// Test-case 5: Display books on Loan
library.displayBooksOnLoan();
library.displayBooksAvailableForLoan()
// Test-case 6: Lend a book
library.lendOneBook(2, “Peter”);
//
library.displayBooksOnLoan();
library.displayBooksAvailableForLoan();
// Test-case 7: Return a book
library.returnOneBook(2);
//
library.displayBooksOnLoan();

library.displayBooksAvailableForLoan();
} // method: testUseCases

private void testErrorConditions() {
// Create the library.
Library library = new Library(“Napier”);
// Add 3 books to the library.
library.addOneBook(new Book(“C++”, “Jim”, 1));
library.addOneBook(new Book(“Java”, “Peter”, 2));
library.addOneBook(new Book(“Basic”, “Jane”, 3));
// Register 2 borrowers.
library.registerOneBorrower(“John”);
library.registerOneBorrower(“Ken”);
// Inspect the results.
library.displayBooksAvailableForLoan();
// Test-case 8: Attempt to add a book with same catalogue number
library.addOneBook(new Book(“XML”, “Mike”, 2));
// Test-case 9: Attempt to register borrower with same name
library.registerOneBorrower(“Ken”);
// Test-case 10: Attempt to borrow non-existent book.
library.lendOneBook(10, “John”);
// Test-case 11: Attempt to borrow a book for non-existent borrower
library.lendOneBook(1, “James”);
// Test-case 12: Attempt to borrow book already on loan.
library.lendOneBook(1, “John”);
library.lendOneBook(1, “Ken”);
// Test-case 13: Attempt to return non-existent book
library.returnOneBook(10);
// Test-case 14: Attempt to return a book not on loan.
library.returnOneBook(2);

} // method: testErrorConditions

108 Object-Oriented Design with UML and Java

Although the run method is relatively complex we have the activity and sequence dia-
gram of figure 4.13 to guide us. Great care has been taken to ensure that the formatting
and general approach taken are as consistent as possible. This minimizes the risk of
making mistakes.

// class Application
public void run() {

this.testUseCases();
//
this.testErrorConditions();
//
// Create and initialize a Library
Library library = new Library(“Books-R-Us”);
//
String choice = “”;
do {

// Get the human user’s choice.
choice = this.getSelection();
ConsoleIO.out.println();
//
// Action the human user’s choice.
if(choice.equals(“0”)) {

ConsoleIO.out.println(“\n\t\t” + “SYSTEM CLOSING” + “\n”) ;
ConsoleIO.out.println();

}
else if(choice.equals(“1”)) {

// Get the borrower details from the human user
ConsoleIO.out.print(“\t” + “Enter the borrower name >>> ”);
String borrowerName = ConsoleIO.in.readString();
// Register the borrower with the Library
library.registerOneBorrower(borrowerName);

}
else if(choice.equals(“2”)) {

library.displayBorrowers();
}
else if(choice.equals(“3”)) {

// Get the Book details from the human user
ConsoleIO.out.print(“\t” + “Enter the title >>> ”);
String title = ConsoleIO.in.readString();
//
ConsoleIO.out.print(“\t” +”Enter the author >>> ”);
String author = ConsoleIO.in.readString();
//
ConsoleIO.out.print(“\t” + “Enter the catalogue number >>> ”);
int catalogueNumber = ConsoleIO.in.readInt();
// Add the Book to the Library

Chapter 4: Cast Study: A Library Application 109

library.addOneBook(new Book(title, author, catalogueNumber));
}
else if(choice.equals(“4”)) {

library.displayBooksAvailableForLoan();
}
else if(choice.equals(“5”)) {

library.displayBooksOnLoan();
}
else if(choice.equals(“6”)) {

// Get the Book details from the human user
ConsoleIO.out.print(“\t” + “Enter the catalogue number >>> ”);
int catalogueNumber = ConsoleIO.in.readInt();
//
// Get the borrower details from the human use
ConsoleIO.out.print(“\t” + “Enter the borrower name >>> ”);
String borrowerName = ConsoleIO.in.readString();
// Loan the Book to the borrower
library.lendOneBook(catalogueNumber, borrowerName);

}
else if(choice.equals(“7”)) {

// Get the Book details from the human user
ConsoleIO.out.print(“\t” + “Enter the catalogue number >>> ”);
int catalogueNumber = ConsoleIO.in.readInt();
// Return it to the Library
library.returnOneBook(catalogueNumber);

}
else {

ConsoleIO.out.println(“\n\t\t” + “Unknown selection - try again” + “\n”);
}
//

} while(choice.equals(“0”) == false);
} // method: run

On successful compilation the run method of the Application is executed with the
output from testUseCases and testErrorConditions as expected. Samples from
each are:

// testUseCases

Library: Napier

Details of the borrowers

None

Library: Napier

Details of the borrowers

Peter
// ...

// testErrorConditions

110 Object-Oriented Design with UML and Java

Book already present – cannot add
Borrower already present – cannot register
Book not present – cannot lend
// ...

The human user can make use of the menu as normal (user input is shown as bold type):

0: Quit
1: Register one borrower
2: Display borrowers
3: Add one book
4: Display books available for loan
5: Display books on loan
6: Lend one book
7: Return one book

Enter the choice >>> 2

Library: Books-R-Us

Details of the borrowers
None

0: Quit
1: Register one borrower
2: Display borrowers
3: Add one book
4: Display books available for loan
5: Display books on loan
6: Lend one book
7: Return one book

Enter the choice >>> 0

SYSTEM CLOSING

After a thorough use of the menu without any problems we consider this iteration to be
completed. As the private operations testUseCases and testErrorConditions have
served their purpose we comment them out of the Application run method and deliver
this iteration to the librarian for evaluation. The accompanying software has full listings
of the resulting code (model Lib4_2.uml).

4.3.5 Reconcile model diagrams

As expected there is nothing to do in this activity as we have not changed the model or the
Application class that stimulates it. However, it is important to understand that we have
made a positive decision that this is the case. In no sense is it a waste of time as it explic-
itly documents the fact that no changes to the model diagrams are required. The alterna-
tive is to run the risk of analysis and design decisions that do not map to Java code.

Chapter 4: Cast Study: A Library Application 111

4.4 Iteration 3

Having demonstrated iteration 2 to the librarian it turns out that she wants to be able to ini-
tialize the system from a text file. We anticipate that this new requirement is not especially
difficult to implement. However, she indicated that at some point soon there should be a
version of the software with a graphical user interface (GUI). There may even be a require-
ment for one that operates over the World Wide Web. Worryingly any updates should apply
to the text-based, GUI and World Wide Web versions. Finally she asked for more feedback
from the system when changes are made to the information held by the system.

4.4.1 Establish use-cases

If we start with the requirement for initialization from a file then we can introduce a use-
case “Load books from file” as shown in figure 4.15.

112 Object-Oriented Design with UML and Java

Register one borrower

Return one book

Display books available for loan

Display borrowers

Display books on loan

Lend one book

Add one book

Load books from file

Figure 4.15 A use-case diagram for the Library application: iteration 3

There should be a corresponding test-case such as:

• test-case 4: Load books from file

Using initialization data from a named file, zero or more books are added to the
library and are available for loan.

Notice that although the use-cases from iteration 2 do not change, many of them must
be renumbered. Although this is unfortunate, it is unavoidable as we insist that use-
cases and the test-cases that follow are sensibly grouped together. The reason is that we
strive to help others who will maintain our designs and code.

There are no other new use-cases that follow from the new requirements as they
involve the internal workings of the system.

4.4.2 Analysis

The analysis of the new use-case “Load Books from file” is relatively straightforward.
All we need do is to support an operation loadBooksFromFile that initializes each new
Book with data input from a text file before adding it to the Library. If for any reason
the file cannot be opened then an error should be reported to the user. The activity dia-
gram and pseudocode of figure 4.16 help illustrate.

Chapter 4: Cast Study: A Library Application 113

●

●●

Open file
for reading

open file for reading
IF the file is open THEN
 WHILE there is more data DO
 read data for a Book
 create a new Book
 add new Book to the Library
 ENDWHILE
ELSE
 output error message
ENDIF

Output error
message

Read data,
create book,
add to library

[unsuccessful]

[successful]

[end of file]

Figure 4.16 An activity diagram for the loadBooksFromFile operation

It is more difficult to make an analysis of the provision for different kinds of user
interfaces. If we consider the model developed in the previous iteration then a design
flaw becomes apparent. It is that the Application, Library, BorrowerRecord and Book
classes all have a significant responsibility for input and/or output of data. Essentially
they are all concerned with some element of the user interface. Quite simply we cannot
contemplate having this as a feature of our new model if we are to achieve the flexibil-
ity to have different user interfaces. The problem is that a change of user interface
would necessitate significant changes to these classes.

Our intention is that those classes from the model, i.e. Library, BorrowerRecord and
Book, should have no responsibility for input or output. Collectively we refer to them
as the domain model. In the text-based versions developed so far the Application run
method allows the human user to interact with the domain model. Therefore we can
ensure that it has some responsibility for input and output.

Further consideration of the model from iteration 2 leads us to conclude that over
time the Application run method will become ever more complex. It seems sensible
that while undertaking this major revision we should try to simplify it as much as pos-
sible and avoid its complexity overwhelming us.

A useful approach is to have an object whose responsibility is to interact with the domain
model. This means that the Application run method has no direct involvement with the
domain model but uses this object instead. For this reason we introduce an Action class an
instance of which presents a straightforward set of operations corresponding to each use-
case. Much of the complexity associated with domain model interactions are hidden in its
methods. The sequence diagram of figure 4.17 illustrates the approach.

114 Object-Oriented Design with UML and Java

addOneBook
addOneBook

create

addOneBook

: Application : Action : Book : Library

Figure 4.17 A sequence diagram using an Action object

In response to a menu presented by the Application, the user makes a request to add
a Book. This request is passed on to an Action object that gets the details of the Book
from the user (input from the user interface) and then creates a suitably initialized Book
object. It is this Book object that is passed to the Library (part of the domain model) to
be added.

Notice that we have separated two concerns. The first is what the system needs to do
and the second is how it should do it. The Application class is largely concerned with
the first and the Action class the second. This is a very important point and is the hall-
mark of a good design.

Finally we should ensure that whatever design we eventually develop for the user
interface it must be able to interrogate the domain model for the outcome of any state
changes. For example, when a Book is returned to the Library then the Action object
should report completion of this task by displaying a message that originates from the

Library. This should enable us to give feedback to the human user as recorded in the
requirements of this iteration.

4.4.3 Design

From the analysis it is clear that the domain model classes the Library,
BorrowerRecord and Book must all be encapsulated by the Action class. This guar-
antees that the domain model can only be accessed by it. Therefore we establish a com-
posite aggregation relationship between the Action and Library classes as shown in
figure 4.18.

Chapter 4: Cast Study: A Library Application 115

-theBorrowers

Library

Book

0..*

BorrowerRecord

{java.util.TreeSet} {java.util.TreeSet}

{java.util.LinkedList}

-theBorrowedBooks

0..*-theLoanStock

-theBorrower0..1
0..*

Action

-theLibrary 1

Figure 4.18 A modified class diagram

Notice that the architecture of the domain model is unchanged from the previous iter-
ation. All we have done is to introduce the Action class as a “front-end” (façade) to it.

In the previous discussions we implied that the domain model and its façade can be
treated as a single entity. Taken together they are a subsystem of the overall system with
the Application as the other. We can make this clear by using a UML package symbol
as shown in figure 4.19.

The UML package symbol is similar to the class symbol except that it has a tab
and it contains classes. In this case it is named librarysubsystem and contains the
Library, BorrowerRecord, Book and Action classes.

The + symbol associated with the Action class indicates that it is available to the
package’s clients, i.e. it is public. In contrast the % symbol associated with the other
classes indicates that they are not available to clients but have visibility of each other.
This is normally referred to as package access and is discussed in more detail in the

section 4.4.4.1. For the moment it is enough to realize that our use of public and pack-
age access modifiers reflects our decision that the Application should only access the
domain model through the Action object.

Ignoring the removal of input/output responsibilities from the domain model we do
not anticipate any major changes are necessary. However, we must consider the Action
class in more detail. As indicated earlier, it should have a method for each use-case and
any others that the Application may require when interacting with the domain model.
This leads us to the class diagram of figure 4.20.

116 Object-Oriented Design with UML and Java

librarysubsystem

Features

%Library
%BorrowedRecord
%Book
+Action

Application

The Application creates a single Action
object.

The Action object creates a single
Library and Book objects as required.

The Library creates BorrowerRecord
objects as required.

Figure 4.19 A modified class diagram using a package

Action

Operations
+Action

+close

+registerOneBorrower

+displayBorrowers

+addOneBook

+loadBooksFromFile

+displayBooksAvailableForLoan

+displayBooksOnLoan

+lendOneBook

+returnOneBook

+unknownSelection

Figure 4.20 The Action class in more detail

Notice that we intend that the operation loadBooksFromFile in the Action class
makes use of addOneBook in the Library. There is no loadBooksFromFile operation
in the Library. This is a good example of the Action class helping us keep the under-
lying domain model as simple as possible.

4.4.4 Implementation

Having established the design for iteration 3, it is now time to implement it. Before doing
so it is wise to decide on a general approach to the problems we will encounter.
Essentially as in section 4.3.4.2, we intend solving the same kind of problems in the same
way even though several alternatives exist. For example, the domain model classes have
no input/output responsibilities but we must be able to get textual information about
them. We adopt one way of doing this.

Before adopting a strategy to deal with this problem we should discuss the operation
toString. There are two important points that we should understand about it. The first is
that it is defined in the class Object to return basic information about the recipient as a
String. However, it can be redefined in any other Java class to give more detailed infor-
mation such as the attribute values of the recipient. The second point is that the String
concatenation operator + can take an Object as its second parameter. All it does is
to send the message toString to it resulting in the second String parameter it
actually requires. If toString has been redefined in that object’s class then that method
will execute. If not then the method defined in Object will execute. This is an example
of polymorphic substitution discussed earlier in section 1.3.2 and later in the next
chapter.

Bearing this in mind our strategy is:

• For each class in the domain model replace the display operations with toString.
The information in the String it returns should relate to its normal attributes and if
appropriate general information about its associates or aggregate components, e.g.
the number of Books in the Library but not their details.

• If there are any aggregate components or associates then an Iterator to the collec-
tion that holds their references should be returned by a suitable method. Using this
Iterator a client can visit each element and send it the message toString (implicitly
or explicitly) as required. In addition the Iterator should only permit read access to
the collection so as to limit the danger of unwarranted changes to it. Although this
is not “bulletproof ” it is safer than making the collection available to a client for
reading and writing.

We must also ensure that the user is given more feedback. One way to achieve this is
for the Library to have a String attribute theMessage and an accessor operation
getStatus to return its value to a client (in this iteration it is the Action object). Our inten-
tion is that any operation that changes the state of the Library should update theMessage
with a suitable value. The Library can then be interrogated as required.

4.4.4.1 Architectural code

The introduction of the librarysubsystem package causes no major implementation
difficulties as the package construct is supported by Java. All that is necessary is to
name the package that a class belongs to as in:

package librarysubsystem;

Chapter 4: Cast Study: A Library Application 117

By convention the package name has only lower-case letters. It must be the first state-
ment preceding a class declaration. For example, we have:

package librarysubsystem;
// ...

public class Action {
// ...

} // class Action

and

package librarysubsystem;
// ...

class Library {

// ...
} // class Library

Notice that the default access modifier for a class gives it package access. Therefore the
Library, BorrowerRecord and Book classes have no explicit access modifier. As with
any other Java package it must be imported by another class. No other architectural
changes are required.

4.4.4.2 Method code

If we start with the changes necessary to the domain model classes then in keeping with
the approach discussed previously we replace each display method with toString. As
the Book class has no aggregate components it is quite straightforward.

// class Book
public String toString() {

return theCatalogueNumber + “: ” + theTitle + “ by ” + theAuthor;
} // method: toString

In the BorrowerRecord class its toString method is:

// class BorrowerRecord
public String toString() {

int borrowedBooksCount = theBorrowedBooks.size();
//
return theName + “ :” + borrowedBooksCount + “ book(s)”;

} // method: toString

Notice how the number of Books it is associated with is reported by using the size
method of collection that holds references to them. The Library method is treated sim-
ilarly as in:

// class Library
public String toString() {

int bookCount = theLoanStock.size();

118 Object-Oriented Design with UML and Java

int borrowerCount = theBorrowers.size();
//
return theName + “: ” + bookCount + “ book(s) :” + borrowerCount + “ borrower(s)”;

} // method: toString

The BorrowerRecord and Library classes should also return an Iterator
to their aggregate components. They do this by converting the appropriate collections
to be read only with the static method unmodifiableCollection from the Collections
class then return an Iterator to it. The methods are as follows:

// class BorrowerRecord
public Iterator getBorrowedBooksIterator() {

Collection readOnlyCollection = Collections.unmodifiableCollection(theBorrowedBooks);
return readOnlyCollection.iterator();

} // method: getBorrowedBooksIterator

// class Library
public Iterator getBorrowersIterator() {

Collection readOnlyCollection = Collections.unmodifiableCollection(theBorrowers);
return readOnlyCollection.iterator();

} // method: getBorrowersIterator

// class Library
public Iterator getBooksIterator() {

Collection readOnlyCollection = Collections.unmodifiableCollection(theLoanStock);
return readOnlyCollection.iterator();

} // method: getBooksIterator

Note that it is the references in the unmodifiable collection that are read-only, not the
objects they reference. This means that as a consequence of Java’s reference semantics
they could be modified through another shared reference despite our best intentions!

To finish the domain model changes we introduce into the Library class the
private String attribute theMessage and the accessor operation getStatus that
returns its value. Each state-changing operation updates theMessage as appropriate.
For example, we have:

public class Library {
// ...
public void addOneBook(Book aBook) {

int aCatalogueNumber = aBook.getCatalogueNumber();
Book foundBook = this.getBook(aCatalogueNumber);
//
if(foundBook == null) {

boolean result = theLoanStock.add(aBook);
if(result == true) {

theMessage = “Book added”;
}

Chapter 4: Cast Study: A Library Application 119

else {
theMessage = “Book not added”;

}
}
else {

theMessage = “Book already present - cannot add”;
}

} // method: addOneBook
public String getStatus() {

return theMessage;
} // method: getStatus
private String theMessage;
// ...

} // class Library

The method getStatus is used by the Action class as follows:

// class Action
public void addOneBook() {

// Get book details from the user.
// ...
// Add the book to the library.
theLibrary.addOneBook(new Book(title, author, catalogueNumber));
//
// Display the outcome
ConsoleIO.out.println(“\n\t” + theLibrary.getStatus());

}

If we now turn our attention to the Action class then we must implement each of its
methods. As it has visibility of the Library, Book and BorrowerRecord classes it can
create an instance of them as required. For example, its constructor creates the Library
for which it acts as a façade. Similarly the method addOneBook creates the Book that
is to be added. No other class outside the librarysubsystem package (including the
Application class) can do this.

The Action class methods that output details of the domain model use toString and
an Iterator. A typical method is:

// class Action
public void displayBooksAvailableForLoan() {

// Display information about the Library
ConsoleIO.out.println(“\n” + theLibrary);
//
// Display information about the Books available for loan
ConsoleIO.out.println(“\n\t” + “Books available for loan”);
boolean bookFound = false;
Iterator iter = theLibrary.getBooksIterator();
//
while(iter.hasNext() == true) {

120 Object-Oriented Design with UML and Java

Book book = (Book) iter.next();
if(book.getBorrower() == null) {

ConsoleIO.out.println(“\n\t\t” + book);
bookFound = true;

}
}
if(bookFound == false)

ConsoleIO.out.println(“\n\t\t” + “None”);
} // method: displayBooksAvailableForLoan

The completed model (Lib4_3.uml) is given with the supplied software.

4.4.4.3 Testing

The Application class now is much simpler than in the previous iteration. The reason
of course is that much of its complexity is now in the Action class. All the run method
has to do is to present the human user with a menu, get a response and then pass it on
to an Action object.

As in iteration 2 we could make use of the private operations such as
testUseCases and testErrorConditions to help automate the burden of testing.
However, we leave this as an exercise to the reader and assume that the following out-
line code could be used for manual testing.

import librarysubsystem.*;
import textio.*;

public class Application {

public Application() {
// No initialization required

} // method: Application

public void run() {
// Create a unified interface (facade) for the Library
Action action = new Action(“Books-R-Us”);
//
// Get and process the user’s choice
String choice = “”;
do {

// Get the user’s selection
choice = this.getSelection();
ConsoleIO.out.println();
// Action the user’s choice
if(choice.equals(“0”)) {

action.close();
} else if(choice.equals(“1”)) { // Register one borrower.

action.registerOneBorrower();
}

Chapter 4: Cast Study: A Library Application 121

// Other choices as per the use-cases
// ...

else {
action.unknownSelection();

}
} while(choice.equals(“0”) == false);

} // method: run

private String getSelection() {
// Display menu to the user.
ConsoleIO.out.println();
ConsoleIO.out.println(“0: Quit”);
ConsoleIO.out.println(“1: Register one borrower”);
//
// Other choices as per the use-cases
// ...

} // method: getSelection

} // class: Application

4.4.5 Reconcile model diagrams

For this activity there is very little to do as only one increment was necessary to imple-
ment the new use-case. However, it is always worthwhile making the decision explicit.
Although the capability of iteration 3 is the very similar to iteration 2 it represents a
major improvement on the earlier designs. Undoubtedly we will benefit from our hard
work in later iterations.

Finally, the following listing (from the model Lib4_3.uml) gives the Action class in
its entirety.

package librarysubsystem;

import java.io.*;
import textio.*;
import java.util.*;

public class Action {

public Action(String aLibraryName) {
theLibrary = new Library(aLibraryName);

} // method: Action
public void close() {

ConsoleIO.out.println(“\n\t” + “SYSTEM CLOSING” + “\n”);
} // method: close

public void registerOneBorrower() {
// Get the borrower details from the user.

122 Object-Oriented Design with UML and Java

ConsoleIO.out.print(“\t” + “Enter the borrower name >>> ”);
String borrowerName = ConsoleIO.in.readLine();
//
// Register the borrower with the library
theLibrary.registerOneBorrower(borrowerName);
//
// Display the outcome
ConsoleIO.out.println(“\n\t” + theLibrary.getStatus());

} // method: registerOneBorrower

public void displayBorrowers() {
// Display information about the Library
ConsoleIO.out.println(“\n” + theLibrary);
//
// Display information about the Borrowers
boolean borrowerFound = false;
Iterator iter1 = theLibrary.getBorrowersIterator();
//
while(iter1.hasNext() == true) {

//
// Display information about the Borrower
BorrowerRecord borrowerRecord = (BorrowerRecord) iter1.next();
ConsoleIO.out.println(“\n\t” + borrowerRecord);
borrowerFound = true;
//
// Display information about the Books on loan to the Borrower
ConsoleIO.out.println(“\n\t\t” + “Books on loan”);
boolean bookFound = false;
Iterator iter2 = borrowerRecord.getBorrowedBooksIterator();
//
while(iter2.hasNext() == true) {

Book book =(Book) iter2.next();
ConsoleIO.out.println(“\n\t\t\t” + book);
bookFound = true;

}
if(bookFound == false)

ConsoleIO.out.println(“\n\t\t\t” + “None”);
}
if(borrowerFound == false)

ConsoleIO.out.println(“\n\t” + “No registered borrowers”);
} // method: displayBorrowers

public void addOneBook() {
// Get book details from the user.
ConsoleIO.out.print(“\t” + “Enter the title >>> ”);
String title = ConsoleIO.in.readLine();
ConsoleIO.out.print(“\t” + “Enter the author >>> ”);

Chapter 4: Cast Study: A Library Application 123

String author = ConsoleIO.in.readLine();
ConsoleIO.out.print(“\t” + “Enter the catalogue number >>> ”);
int catalogueNumber = ConsoleIO.in.readInt();
//
// Add the book to the library.
theLibrary.addOneBook(new Book(title, author, catalogueNumber));
//
// Display the outcome
ConsoleIO.out.println(“\n\t” + theLibrary.getStatus());

} // method: addOneBook

public void loadBooksFromFile() {
// Get the file name from the user.
ConsoleIO.out.print(“\t” + “Enter the file name >>> ”);
String fileName = ConsoleIO.in.readString();
//
// Initialize the Library from a file
try {

// Open the file
FileTextReader inputFile = new FileTextReader(fileName);
while(inputFile.isEOF() == false) {

// Get the data from the file
String title = inputFile.readLine();
String author = inputFile.readLine();
int catalogueNumber = inputFile.readInt();
//
// Create and add a Book to the Library
theLibrary.addOneBook(new Book(title, author, catalogueNumber));
//
// Display the outcome
ConsoleIO.out.println(“\n\t” + theLibrary.getStatus());

}
}
catch(IOException exception) {

ConsoleIO.out.println(“\n\t” + “Cannot open ” + fileName);
}

} // method: loadBooksFromFile

public void displayBooksAvailableForLoan() {
// Display information about the Library
ConsoleIO.out.println(“\n” + theLibrary);
//
// Display information about the Books available for loan
ConsoleIO.out.println(“\n\t” + “Books available for loan”);
boolean bookFound = false;
Iterator iter = theLibrary.getBooksIterator();
//

124 Object-Oriented Design with UML and Java

while(iter.hasNext() == true) {
Book book = (Book) iter.next();
if(book.getBorrower() == null) {

ConsoleIO.out.println(“\n\t\t” + book);
bookFound = true;

}
}
if(bookFound == false)

ConsoleIO.out.println(“\n\t\t” + “None”);
} // method: displayBooksAvailableForLoan

public void displayBooksOnLoan() {
// Display information about the Library
ConsoleIO.out.println(“\n” + theLibrary);
//
// Display information about the Books on loan
ConsoleIO.out.println(“\n\t” + “Books on loan”);
boolean bookFound = false;
Iterator iter = theLibrary.getBooksIterator();
//
while(iter.hasNext() == true) {

Book book = (Book) iter.next();
if(book.getBorrower() != null) {

ConsoleIO.out.println(“\n\t\t” + book);
bookFound = true;

}
}
if(bookFound == false)

ConsoleIO.out.println(“\n\t\t” + “None”);
} // method: displayBooksOnLoan

public void lendOneBook() {
// Get details from the human user
ConsoleIO.out.print(“\t” + “Enter the catalogue number >>> ”);
int catalogueNumber = ConsoleIO.in.readInt();
ConsoleIO.out.print(“\t” + “Enter the borrower name >>> ”);
String borrowerName = ConsoleIO.in.readLine();
//
// Lend the book to the borrower
theLibrary.lendOneBook(catalogueNumber, borrowerName);
//
// Display the outcome
ConsoleIO.out.println(“\n\t” + theLibrary.getStatus());

} // method: lendOneBook

public void returnOneBook() {
// Get details from the human user

Chapter 4: Cast Study: A Library Application 125

ConsoleIO.out.print(“\t” + “Enter the catalogue number >>> ”);
int catalogueNumber = ConsoleIO.in.readInt();
//
// Return it to the library
theLibrary.returnOneBook(catalogueNumber);
//
// Display the outcome
ConsoleIO.out.println(“\n\t” + theLibrary.getStatus());

} // method: returnOneBook

public void unknownSelection() {
ConsoleIO.out.println(“\n\t” + “UNKNOWN SELECTION” + “\n”);

} // method: unknownSelection

private Library theLibrary;

} // class: Action

A typical output from the Application is now (user input is shown as bold type):

0: Quit
1: Register one borrower
2: Display borrowers
3: Add one book
4: Load books from file
5: Display books available for loan
6: Display books on loan
7: Lend one book
8: Return one book

Enter the choice >>> 5

Books-R-Us :0 book(s) :0 borrower(s)

Books available for loan

None
// ...

Full listings for all of the classes involved are given in the software supplied (model
Lib4_3.uml).

4.5 Summary

1. The development process revolves around a number of iterations that deliver
the final application. The iterations are driven by the use-cases identified at each
cycle.

2. The application code is realized by successive increments. Each adds a small piece of
functionality whose introduction can be tested thereby reducing the risk posed by
new code.

126 Object-Oriented Design with UML and Java

3. The class diagram derived from other UML diagrams developed during the analysis
activity acts as the architectural framework on which the application development
hangs. The use-case iterations and code increments are conducted within that guiding
architecture.

4. Each use-case is accompanied by a corresponding test-case. Further test-cases can
be introduced to check any special situations that need to be considered.

5. The combined use of Iterators and the trio of operations equals, compareTo and
hashCode makes the code more resilient to change. One collection can substitute
for another without code revisions.

6. The domain model should have no responsibility for any input and output. This we
achieve by overloading the toString method and by providing non-modifiable
Iterators.

4.6 Exercises

1. Revisit the object diagram in figure 4.2 to show three distinct Book objects (rather
than a multi-object) and their relationship with the Library object. Show exploded
versions for the Library and Book object instances to suggest possible attribute
values.

2. Prepare two collaboration diagrams for the operations displayBooksAvailableForLoan
and displayBooksOnLoan presented as sequence diagrams in figure 4.3. What
observation can be made about the similarities and differences between these two
types of interaction diagrams? Under what circumstances would you use one rather
than the other?

3. Figure 4.4 is an activity diagram for the operation displayBooksAvailableForLoan.
Prepare a corresponding activity for the operation displayBooksOnLoan.
Factor out the similarities between the two and propose how we might simplify the
logic.

4. The class diagram for the first iteration of the case study is given in figure 4.8.
The BorrowerRecord class and the Book class have a one-to-many aggregation
relationship. Make a case for replacing this with a one-to-many association
relationship.

5. With reference to the class diagram of figure 4.8, reflect on the multiplicity of 0..1
for a BorrowerRecord in the BorrowerRecord–Book shared aggregation rela-
tionship. Why is it is not just 0..*?

6. Architectural relations in a class diagram are ultimately realized as Java code. Offer
a scheme for translating one-to-one and one-to-many relations into Java.

7. Section 4.2.4.2 presents the method code for the Book class. Give an explanation
for the inclusion of the methods equals, compareTo and hashCode. Why are they
included in the class? Why should they be implemented consistently? What other
classes in this case study should define these methods?

8. Section 4.2.4.2 also presents the method for the displayBooks operation in the
Library. Although the logic used is clear, it is unwieldy in that it repeats code that
iterates over a collection of Books displaying each as appropriate. Revisit this
method and eliminate its duplicated code.

Chapter 4: Cast Study: A Library Application 127

9. Again in section 4.2.4.2, the Library adds a Book object created by a client with a
method:

// class Library
public void addOneBook(Book aBook) {

// ...
}// method: addOneBook

Replace it with one that creates a Book object before adding it. It should have the
following form:

// class Library
public void addOneBook(String aTitle, String anAuthor, int aCatalogueNumber) {

// ...
}// method: addOneBook

What are the factors that affect using one rather than the other?
10. The Application class shown at the beginning of section 4.2.4.3 created a Library

object then immediately displayed the books available for loan. Given that no Books
had been added to the Library, what was the rationale for doing this?

11. In the same code fragment discussed in question 7, the method
displayBooksAvailableForLoan is being used for a purpose other than its functional
requirement identified in the use-case analyses. What is that additional purpose?

12. In section 4.3.4.1 we replaced the architectural relationship that was realized with
a HashSet with a TreeSet. This is the only change made to the code. How is it
possible to change the container yet not make any further revisions to the code?

13. Section 4.3.4.3 presents a method getSelection that returns a String. Amend it to
return an int. What are the implications of this decision?

For these remaining exercises you should modify the final model (Lib4_3.uml) devel-
oped in the case study. It is probably wise to add one increment at a time and not to try
everything at once. As with the exercises of chapter 3, it is recommended that you use
the ROME modelling environment supplied.

14. Amend the Book class so that it has an International Standard Book Number
(ISBN) as one of its attributes. Ensure all appropriate methods in the Book class
are also updated.

15. How might we revise the specification so that a borrower is restricted to a max-
imum of five Books on loan? Implement this change.

16. Modify the system to include, at program start-up, a login procedure for the librar-
ian. At the program start the librarian is invited to enter a system password. Allow
for the librarian to have three attempts at providing the correct password before the
program closes.

17. Amend the addOneBook method of the Library so that a unique catalogue num-
ber is given to each Book on addition to the Library. It is expected that these cata-
logue numbers should be in ascending numeric sequence starting at 1.

18. Amend the BorrowerRecord class so that each borrower has a unique registration
number. Again it should be automatically allocated by the Library in the method
registerOneBorrower.

128 Object-Oriented Design with UML and Java

19. Amend the BorrowerRecord class so that it has more attributes, e.g. an
address.

20. It is not long before software developers start to recognize similarities between the
systems they build. Although many of the details may be different their overall
design and implementation is often very similar (we discover later in chapter 8 that
common design patterns have been documented). In our case study we have a
Library with many Books. However, we might have used a Doctor with many
Patients or a University with many Students. The design and the issues that arise
from it would have been much the same.

Using this case study as a guide consider the following:

• A hire company has several cars. Each car has a unique registration number,
model name and year of registration. Cars may be hired out to a customer regis-
tered in the company. Each customer has a name and a unique number associated
with him or her. We are asked to support the company owner by logging which
cars are out on hire to which customer.

• A video shop has a large number of videos for hire to customers. Each video has
a unique title and each customer a unique registration number. As before we are
asked to log which videos are out on loan to which customers.

• A hospital has many doctors and patients. Each doctor and patient has a name
and unique number associated with them. Doctors look after many patients but
a patient has exactly one doctor. We are asked to develop a patient monitoring
system by recording which patient is associated with a particular doctor.

• A university has many students each with a unique matriculation number as well
as a name and the course of study. We are asked to be able to log each student
and obtain a display of all students as well as those on a particular course.

Now develop a suitable design and implementation based on one (or all) of them.
You can add as much detail as you think is appropriate.

21. You are required to develop software to support the administration of a hotel. The
major features of the hotel are:

• there are three floors numbered 1, 2 and 3 each of which has up to five rooms

• not all floors have the same combination of rooms

• each room has a room number, e.g. 201 for room 1 on floor 2

• each room has a maximum occupancy, i.e. the number of people that can use it.

Staff should be able to obtain details of each room on each floor in a variety of
ways. As a minimum, the user must be able to request for a report for:

• all the rooms on all floors

• all the rooms on a particular floor or

• a particular room on a particular floor

and to decommission a room:

• remove a particular room from a given floor.

Chapter 4: Cast Study: A Library Application 129

22. A software house employs programmers each of whom has an expertise in a par-
ticular programming language, e.g. Cobol, C++ or Java. All programmers are paid
a basic monthly salary of around 1000 pounds per month. However, it may vary
from programmer to programmer.

As they are in demand a 10% enhancement of the basic salary is paid to each pro-
grammer that specializes in Java. However, programmers may change their special-
ist language and their salary enhancement should change accordingly. For example,
after suitable training, a Cobol programmer could become a Java programmer.

When a new programmer joins the staff a more experienced programmer is
assigned to him as a mentor. Both must specialize in the same programming
language. The basic idea behind this practice is that the new recruit (the mentee)
will benefit from the experience of the mentor. As this is extra work for the mentor
he is awarded 5% of current salary enhancement for every mentee under his super-
vision. When a programmer no longer needs a mentor the mentor’s salary is
changed accordingly.
For administrative purposes each employee has a name and a unique payroll number.
You are required to develop software that supports the administration of the com-
pany. As a minimum it should produce a detailed report on each programmer and a
total monthly salary bill for the company.

The report should show for each programmer:

• his payroll number and name

• the specialist programming language and current monthly salary

together with:

• details of any programmers that he is mentoring or is mentored by.

130 Object-Oriented Design with UML and Java

Specialization

Chapter 2 introduced the architectural relationships of association and aggregation. In
this chapter we develop those discussions further with the introduction of the special-
ization relationship that may also exist between classes. It is widely used in an OOAD
and brings to our designs a powerful feature unique to object orientation.

5.1 Specialization

Consider a software house that employs several programmers. Each is given a unique
payroll number. His name and monthly salary are recorded. The programming language
used is also recorded but it is expected to change from time to time. It should be pos-
sible to get a display showing the details of each programmer and a monthly salary bill
for the software house.

Using the knowledge gained from the preceding chapters we might arrive at the class
diagram shown in figure 5.1.

5

131

SoftwareHouse Programmer
-theProgrammers

{java.util.ArrayList} 0..*1

Figure 5.1 An initial class diagram

We might also develop the following outline Java code for the Programmer class.

public class Programmer {

// ----- Operations ----------
public Programmer(int aPayrollNumber, int aMonthlySalary, String aName,

String aLanguage) { ... }
public int getMonthlySalary() { ... }
public void setLanguage(String aLanguage) { ... }
public void display() { ... }

// ----- Attributes ----------
private int thePayrollNumber;
private int theMonthlySalary;
private String theName;
private String theLanguage;

} // class: Programmer

Although there is nothing intrinsically wrong with the design we can improve it sig-
nificantly. For example, it seems likely that all of the software house employees, not just
programmers, are given a payroll number. Similarly we expect their name and salary
to be recorded. Finally we expect it to be necessary to be able to access the salary of
each employee and to display its details. On reflection, the only attribute special to a
Programmer is theLanguage and the only operation is setLanguage.

We can think of a Programmer as a special kind of Employee and amend the class
diagram as shown in figure 5.2.

132 Object-Oriented Design with UML and Java

SoftwareHouse Programmer
-theProgrammers

{java.util.ArrayList} 0..*

Employee

Figure 5.2 An improved class diagram using the specialization relationship

The arrow symbol shows that the Employee class is related to the Programmer class
by specialization. The Employee class is usually referred to as the parent and the
Programmer class as the child or descendant. It is implicit in this relationship that the
parent must be able to respond to the same set of messages as the child. In other words
a Programmer is in effect an Employee. However the reverse is not true as the
child may introduce operations not present in the parent. We cannot assume that an
Employee is a Programmer.

The Java reserved word extends specifies that a class is a specialization (extension)
of another. Its use leads to the following outline code for the Employee and
Programmer classes:

public class Employee {
// ----- Operations ----------
public Employee(int aPayrollNumber, int aMonthlySalary, String aName) { ... }
public int getMonthlySalary() { ... }
public void display() { ... }

// ----- Attributes ----------
private int thePayrollNumber;
private int theMonthlySalary;
private String theName;

} // class: Employee:

and

public class Programmer extends Employee {

// ----- Operations ----------
public Programmer(int aPayrollNumber, int aMonthlySalary, String aName,

String aLanguage) { ... }
public void setLanguage(String aLanguage) { ... }

// ----- Attributes ----------
private String theLanguage;

} // class: Programmer

The Programmer class now only has those features special to it. In contrast the
Employee class has those relevant to employees in general. This makes the
Programmer class much easier to develop. In this programming context the parent is
often referred to as the superclass and the child as the subclass.

It is important to realize that the Employee class could be reused in a different appli-
cation. For example, we might declare a class Administrator as:

public class Administrator extends Employee {

// ----- Operations ----------
public Administrator(int aPayrollNumber, int aMonthlySalary, String aName,

String aDepartment) { ... }
public void display() { ... }

// ----- Attributes ----------
private String theDepartment;

} // class: Administrator

which uses the Employee class unchanged.

5.2 Inherited methods

With Java all of the features (methods and attributes) declared in a superclass are
inherited by a subclass. This means that the Programmer class need only declare those
methods and attributes special to it. In this case it is the method setLanguage and the
attribute theLanguage. Clearly in more complex examples this would represent a
major saving in effort. In this example it means that we need only introduce the attrib-
ute theLanguage and the method setLanguage to the Programmer class.

Typically we have:

Employee employee = new Employee(123, 2000, “John”);
int salary = employee.getMonthlySalary();

giving the variable salary a value of 2000 and:

Programmer programmer = new Programmer(234, 3000, “Ken”, “C++”);
salary = programmer.getMonthlySalary();

Chapter 5: Specialization 133

giving it a value of 3000. In both cases the method for getMonthlySalary executed is
defined in the Employee class.

// class Employee
public int getMonthlySalary() {

return theMonthlySalary;
} // method: getMonthlySalary

However, we might also have:

programmer.setLanguage(“Java”);

which sets the attribute theLanguage to a value of “Java”. The method for
setLanguage executed is defined in the Programmer class as:

// class Programmer
public void setLanguage(String aLanguage) {

theLanguage = aLanguage;
} // method: setLanguage

Note that:

employee.setLanguage(“Java”);

is illegal. An Employee cannot respond to the message setLanguage as it is not
declared in the Employee class.

Clearly the construction of a subclass object must involve the use of a constructor
declared in its class. However, a subclass constructor method may also make use of its
superclass constructor. For example, we have:

// class Employee
public Employee(int aPayrollNumber, int aMonthlySalary, String aName) {

thePayrollNumber = aPayrollNumber;
theMonthlySalary = aMonthlySalary;
theName = aName;

} // method: Employee

and

// class Programmer
public Programmer(int aPayrollNumber, int aMonthlySalary, String aName,

String aLanguage) {
super(aPayrollNumber, aMonthlySalary, aName);
theLanguage = aLanguage;

} // method: Programmer

Notice the use of the reserved word super in the Programmer constructor method
that refers to the immediate superclass. This is how its superclass constructor with three
parameters (an int, an int and a String) is executed. It is important to understand that even
though two constructors are used in the construction of a Programmer there is only one
object created. It is a Programmer not a Programmer and an Employee.

134 Object-Oriented Design with UML and Java

5.3 Redefined methods

Some words of caution are necessary at this point. The Java access modifiers public

and private are also inherited by a subclass. This means that a method body (it is
implicitly private) or any private attributes in a superclass cannot be accessed in a
subclass method. This may appear strange as they are inherited.

The consequence is that the method body for display in the Employee class cannot
be modified by the Programmer class to reflect the fact that each Programmer has a
language as an attribute. Clearly we need two display methods: one for an Employee
and one for a Programmer. In other words the display operation is variant over spe-
cialization.

However, with Java, a method inherited by a subclass can be redefined to have a dif-
ferent behaviour. An obvious strategy for the display method required in the
Programmer class is to make use of the display method in the Employee class but to
augment it with additional logic. Therefore we have:

// class Employee
public void display() {

ConsoleIO.out.println(“payroll number:” + “\t” + thePayrollNumber);
ConsoleIO.out.println(“monthly salary:” + “\t” + theMonthlySalary);
ConsoleIO.out.println(“first name:” + “\t” + theName);

} // method: display

and

// class Programmer
public void display() {

super.display();
ConsoleIO.out.println(“language:” + “\t” + theLanguage);

} // method: display

Notice again the use of the reserved word super in the Programmer class. It
ensures that the display method defined in its immediate superclass is executed
before the extra attribute is displayed. In fact the Programmer class could not
display the attributes declared in Employee. The reason is that they are declared
as private in the Employee class. Even though they are inherited by the
Programmer class they are not accessible in its methods. As a consequence it is
unwise to introduce an attribute with the same name into two classes in the same
hierarchy.

This apparently odd behaviour is an example of good software engineering
practice. One reason is that the logic required to display the Employee attributes
is located in just one method. Therefore any changes are much easier to implement
consistently. Another is that access to Employee attributes is restricted to the
Employee class preventing the possibility of unexpected changes by methods in
another class.

Chapter 5: Specialization 135

Using the declarations for employee and programmer in section 5.2, execution of
the statements:

employee.display();
programmer.display();

produces the output:

payroll number: 123
monthly salary: 2000
first name: John

payroll number: 234
monthly salary: 3000
first name: Ken
language: C++

The first uses display defined in the Employee class and the second display defined in
the Programmer class.

5.4 Polymorphism

A defining characteristic of object-oriented systems is the polymorphic effect. A mes-
sage sent to an object of some class is received as normal. However the same message
may also be received by an object of a descendant class. Use of the polymorphic effect
results in systems that are apparently simple but have complex execution behaviours.

To illustrate it we introduce project leaders to the software house. A project leader is
a programmer responsible for a team of programmers. He is given a 10% monthly
salary bonus for each member in the team. The display of a project leader should
include a display of each programmer assigned. To make the problem more interesting
we also specify that if a programmer uses Java then a 20% bonus is awarded.

We might propose the class diagram of figure 5.3.

136 Object-Oriented Design with UML and Java

SoftwareHouse Programmer
-theProgrammers

{java.util.ArrayList} 0..*

Employee

-theTeam

0..* {java.util.ArrayList}

ProjectLeader
-theProjectLeaders

{java.util.ArrayList} 0..* 1

Figure 5.3 An initial class diagram with specialization

The class diagram documents an inheritance hierarchy with the Employee class
specialized into a Programmer that is in turn specialized into a ProjectLeader.
The SoftwareHouse maintains two collection objects. The first (referenced by
theProgrammers) holds Programmer references and the second (referenced by
theProjectLeaders) holds ProjectLeader references. In addition each ProjectLeader
has a collection (referenced by theTeam) with a reference to each Programmer in his
team. Our intention is that the SoftwareHouse sends messages to its ProjectLeaders
and Programmers. For example, the method for displayStaff is:

// class SoftwareHouse
public void displayStaff() {

ConsoleIO.out.println();
ConsoleIO.out.println(“Staff list for “ + theName);
ConsoleIO.out.println();
//
Iterator iter1 = theProgrammers.iterator();
while(iter1.hasNext()) {

Programmer programmer = (Programmer) iter1.next();
programmer.display();
ConsoleIO.out.println();

}
//
Iterator iter2 = theProjectLeaders.iterator();
while(iter2.hasNext()) {

ProjectLeader projectLeader = (ProjectLeader) iter2.next();
projectLeader.display();
ConsoleIO.out.println();

}
} // method: displayStaff

Although using two collections is not actually wrong, it leads to code duplication
which is almost certainly unnecessary. We can improve the design significantly by using
the polymorphic effect. However, before doing so, we must be clear about two points.
The first is that a descendant class must have at least the same set of methods as its
parent. Therefore an object of a descendant class can be used in place of an object of a
parent class. In other words a child can be substituted for its parent. In this example it
follows that we can have a heterogeneous collection of Programmer reference and
ProjectLeader reference values. This is because the class ProjectLeader is a descen-
dant of the class Programmer and so a ProjectLeader object can substitute for a
Programmer object.

The second point is that with some programming languages the binding of a message
to a corresponding method may occur before the software starts its execution.
Alternatively the binding may occur when the software is actually running. The former
is usually referred to as static or early binding, and the latter as dynamic, late or virtual
binding. Late binding is always assumed in Java.

If descendant class substitution is combined with late binding then the polymorphic
effect is the result. This means that a message sent from a SoftwareHouse object

Chapter 5: Specialization 137

through a reference to a Programmer object, can now be received by a Programmer
object or a ProjectLeader object. This simplifies the class diagram as shown in
figure 5.4.

138 Object-Oriented Design with UML and Java

SoftwareHouse Programmer
-theStaff

{java.util.ArrayList} 0..*

Employee

-theTeam

0..* {java.util.ArrayList}

ProjectLeader
1

Figure 5.4 An improved class diagram using polymorphism

There is no longer any need to have an explicit relationship between the
SoftwareHouse and its ProjectLeaders. As a result the coding in the SoftwareHouse
methods is simplified. For example, we now have:

// class SoftwareHouse
public void displayStaff() {

ConsoleIO.out.println();
ConsoleIO.out.println(“Staff list for ” + theName);
ConsoleIO.out.println();
//
Iterator iter = theStaff.iterator();
while(iter.hasNext()) {

Programmer programmer = (Programmer) iter.next();
programmer.display();
ConsoleIO.out.println();

}
} // method: displayStaff

where the message display sent through a Programmer reference may be received by
a Programmer or a ProjectLeader object. Similarly we have:

// class SoftwareHouse
public void addProgrammer(Programmer aProgrammer) {

// ...
} // method addProgrammer

where the formal parameter is declared to be a Programmer reference but the actual
parameter may reference a Programmer or ProjectLeader.

As there are some new requirements we should revisit the implementation of the
Employee and Programmer classes. There are no major changes necessary in the
Employee class as its display method just displays the attributes set by its constructor.
However, we should recognize that the monthly salary is now subject to change in
descendants therefore it is more accurately named as theBasicMonthlySalary. Its value
is returned by getMonthlySalary.

// class Employee
public int getMonthlySalary() {

return theBasicMonthlySalary;
} // method: getMonthlySalary

The Programmer class is more interesting as it has a redefined method for
getMonthlySalary that checks the language attribute and awards a bonus as appropri-
ate. This leads to the method:

// class Programmer
public int getMonthlySalary() {

int bonus = 0;
int monthlySalary = super.getMonthlySalary();
//
if(theLanguage.equals(“Java”) == true) {

bonus = (int) (monthlySalary * 0.2);
}
//
return monthlySalary + bonus;

} // method: getMonthlySalary

Note the use of the reserved word super to specify the method getMonthlySalary as
defined in the immediate superclass Employee.

If we consider the ProjectLeader class then it is clear that it must also redefine the
method getMonthlySalary inherited from Programmer. It checks for the number of
Programmers in the team and awards a bonus. It is coded as follows:

// class ProjectLeader
public int getMonthlySalary() {

int monthlySalary = super.getMonthlySalary();
int bonus = 0;
int numberOfProgrammers = theTeam.size();
//
bonus = (int) (numberOfProgrammers * 0.1 * monthlySalary) ;
//
return monthlySalary + bonus;

} // method: getMonthlySalary

Chapter 5: Specialization 139

Again the reserved word super is used. Now it specifies the method getMonthlySalary
defined in its immediate superclass Programmer in which a check of the language used
is made. It awards a bonus as appropriate. Therefore the bonus awarded to a
ProjectLeader depends on the language used and the number of Programmers in the
team. Notice the chaining of method calls down through a class hierarchy. It is typical of
the complex run-time behaviours of object-oriented systems.

The remaining methods are relatively straightforward and full listings are given in
program 5.1. It is included in the software supplied.

Program 5.1 Using the polymorphic effect (model Prog5_1.uml)

import textio.*;

public class Employee {
// ----- Operations ----------
public Employee(int aPayrollNumber, int aMonthlySalary, String aName) {

thePayrollNumber = aPayrollNumber;
theBasicMonthlySalary = aMonthlySalary;
theName = aName;

} // method: Employee

public int getMonthlySalary() {
return theBasicMonthlySalary;

} // method: getMonthlySalary

public void display() {
ConsoleIO.out.println(“payroll number:” + “\t” + thePayrollNumber);
ConsoleIO.out.println(“monthly salary:” + “\t” + this.getMonthlySalary());
ConsoleIO.out.println(“first name:” + “\t” + theName);

} // method: display

// ----- Attributes ----------
private final int thePayrollNumber;
private int theBasicMonthlySalary;
private String theName;

} // class: Employee

import textio.*;

public class Programmer extends Employee {

// ----- Operations ----------
public Programmer(int aPayrollNumber, int aMonthlySalary, String aName,

String aLanguage)
{

super(aPayrollNumber, aMonthlySalary, aName);
theLanguage = aLanguage;

} // method: Programmer

public void display() {
super.display();
//

140 Object-Oriented Design with UML and Java

ConsoleIO.out.println(“language:” + “\t” + theLanguage);
} // method: display

public int getMonthlySalary() {
int bonus = 0;
int monthlySalary = super.getMonthlySalary();
//
if(theLanguage.equals(“Java”) == true) {

bonus = (int) (monthlySalary * 0.2);
}
//
return monthlySalary + bonus;

} // method: getMonthlySalary

// ----- Attributes ----------
private String theLanguage;

} // class: Programmer

import java.util.*;
import textio.*;

public class ProjectLeader extends Programmer {

// ----- Operations ----------
public ProjectLeader(int aPayrollNumber, int aMonthlySalary, String aName,

String aLanguage)
{

super(aPayrollNumber, aMonthlySalary, aName, aLanguage);
theTeam = new ArrayList();

} // method: ProjectLeader

public void display() {
super.display();
//
ConsoleIO.out.println(“\n” + “Team members are:” + “\n”);
ConsoleIO.out.println(“-------------” + “\n”);
//
Iterator iter = theTeam.iterator();
while(iter.hasNext() == true) {

//
// As next returns an Object it is cast to a Programmer
// so that the message display can be sent.
Programmer programmer = (Programmer) iter.next();
programmer.display();
ConsoleIO.out.println();

}
ConsoleIO.out.println(“-------------” + “\n”);

} // method: display

Chapter 5: Specialization 141

public int getMonthlySalary() {
int monthlySalary = super.getMonthlySalary();
int bonus = 0;
int numberOfProgrammers = theTeam.size();
//
bonus = (int) (numberOfProgrammers * 0.1 * monthlySalary);
//
return monthlySalary + bonus;

} // method: getMonthlySalary

public void addProgrammer(Programmer aProgrammer) {
theTeam.add(aProgrammer);

} // method: addProgrammer

// ----- Relations ----------

private java.util.ArrayList theTeam; // of Programmer

} // class: ProjectLeader

import textio.*;
import java.util.*;

public class SoftwareHouse {

// ----- Operations ----------
public SoftwareHouse(String aName) {

theName = aName;
theStaff = new ArrayList();

} // method: SoftwareHouse

public void addProgrammer(Programmer aProgrammer) {
theStaff.add(aProgrammer);

} // method: addProgrammer

public void displayStaff() {
ConsoleIO.out.println();
ConsoleIO.out.println(“Staff list for ” + theName);
ConsoleIO.out.println();
//
Iterator iter = theStaff.iterator();
while(iter.hasNext()) {

Programmer programmer = (Programmer) iter.next();
programmer.display();
ConsoleIO.out.println();

}
} // method: displayStaff

public int getMonthlySalaryBill() {
int totalMonthlyBill = 0;
Iterator iter = theStaff.iterator();
while(iter.hasNext()) {

Programmer programmer = (Programmer) iter.next();

142 Object-Oriented Design with UML and Java

totalMonthlyBill += programmer.getMonthlySalary();
}
return totalMonthlyBill;

} // method: getMonthlySalaryBill

// ----- Attributes ----------
private String theName;

// ----- Relations ----------
private java.util.ArrayList theStaff; // of Programmer

} // class: SoftwareHouse

import textio.*;

public class Application {

// ----- Operations ----------
public void run() {

// Create a new organisation.
SoftwareHouse sh = new SoftwareHouse(“Objects-R-Us”);
//
// Create some new programmers.
Programmer p1 = new Programmer(123, 2000, “John”, “Ada”) ;
Programmer p2 = new Programmer(234, 2500, “Ken”, “C++”);
Programmer p3 = new Programmer(456, 3000, “Peter”, “Java”) ;
//
// Create some new project leaders.
ProjectLeader pl1 = new ProjectLeader(567, 4000, “Jon”, “C”) ;
ProjectLeader pl2 = new ProjectLeader(789, 4000, “Jessie”, “Java”);
//
// Assign each programmer to a project leader
pl1.addProgrammer(p3);
pl1.addProgrammer(p2);
//
pl2.addProgrammer(p1);
//
// Hire each programmer and project leader
sh.addProgrammer(p1);
sh.addProgrammer(p2);
sh.addProgrammer(p3);
//
sh.addProgrammer(pl1);
sh.addProgrammer(pl2);
//
// Display some details of the staff.
sh.displayStaff();
//
// Obtain and print the wage bill.

Chapter 5: Specialization 143

ConsoleIO.out.println(“The monthly salary bill is: ” + sh.getMonthlySalaryBill());
ConsoleIO.out.println();

} // method: run
} // class: Application

The output produced is:

Staff list for Objects_R_Us

payroll number: 123
monthly salary: 2000
first name: John
language: Ada

payroll number: 234
monthly salary: 2500
first name: Ken
language: C++

payroll number: 456
monthly salary: 3600
first name: Peter
language: Java

payroll number: 567
monthly salary: 4800
first name: Jon
language: C

Team members are:

payroll number: 456
monthly salary: 3600
first name: Peter
language: Java

payroll number: 234
monthly salary: 2500
first name: Ken
language: C++

payroll number: 789
monthly salary: 5280
first name: Jessie
language: Java

Team members are:

payroll number: 123
monthly salary: 2000
first name: John
language: Ada

The monthly salary bill is: 18180

144 Object-Oriented Design with UML and Java

The collaboration diagram in figure 5.5 for the operation displayStaff helps clarify
the configuration of objects and the messages they send to each other.

Chapter 5: Specialization 145

: ProjectLeader
Attributes

thePayrollNumber=789

: Programmer
Attributes

thePayrollNumber=123

: Programmer
Attributes

thePayrollNumber=234

: ProjectLeader
Attributes

thePayrollNumber=567

: Programmer
Attributes

thePayrollNumber=456

1.5.1 display

1.4.2 display

1.4.1 display

1.1 display

1.2 display

1.3 display

1.4 display

1.5 display

: SoftwareHouse
Attributes

theName=Objects_R_Us1 displayStaff

Figure 5.5 A collaboration diagram for the displayStaff operation

Notice that it emphasizes the inherent run-time complexity in object-oriented systems.
If we reflect on the fact that the code for the display methods executed by a
Programmer or ProjectLeader involves dynamic binding to code located in a super-
class then the point is reinforced.

Before leaving this section we should be aware that it is possible that a subclass of
ProjectLeader such as SystemManager could further redefine an inherited operation
such as display and engage in polymorphic behaviour. Clearly this requires dynamic
binding of the display message to its method. As this is the default with Java no further
action is required on our part. Note that constructors cannot be redefined, therefore the
terms polymorphic or redefined do not apply to them.

Sometimes we don’t want an operation to be subject to redefinition in a specialized
class. Our intention is that all descendants should respond in exactly the same manner.
In other words the operation should be invariant over specialization. For example, we
have setLanguage in the class Programmer that just sets the value of the language
used. We don’t want a subclass to do anything different. Such an operation is described
as frozen when using the UML and the corresponding keyword in Java is final as in:

// class Programmer
public final void setLanguage(String aLanguage) {

theLanguage = aLanguage;
}

As its name suggests an operation that is final cannot be redefined in a subclass. The
Java qualifier final can also be applied to a class declaration as in:

public final class ProjectLeader { ... }

In this context it means that the class cannot be extended. It is used when the class is
question is at the bottom of a hierarchy that should not be deepened further.

It is our normal practice to redefine an operation only in an immediate descendant
and not some class lower down the specialization hierarchy. For example, if the
display operation inherited from Employee is not redefined in Programmer then we
do not redefine it in Project Leader. Our intention is that there should be
no gaps in a chain of redefinitions. It would almost certainly lead to unexpected behaviours.

5.5 Polymorphism at work

Polymorphism is remarkably useful and it is no surprise that it is an important part of
the Java language. Recall that all Java classes are implicitly descended from the class
Object. Like any other class it has operations that are inherited by its subclasses with
methods that may be redefined.

One such operation is toString used during the case study of chapter 4 to return the
textual representation of a Book. As it is declared in Object any object of any Java class
must be able to respond to the message toString. However, if its method has not been
redefined then the method originally defined in Object will execute.

Clearly we can do much better by arranging that toString returns a String with the
attribute values of the object in question. For example, using the Employee class from
section 5.1 we might have:

// class Employee
public String toString() {

return “ payroll number: ” + thePayrollNumber +
“ monthly salary: ” + theBasicMonthlySalary +
“ first name: ” + theName;

} // toString

Notice how toString redefined in Employee makes no use of the parent method
from class Object. To be more accurate this is method replacement rather than method
redefinition. Now if we create and initialize an Employee object with:

Employee employee = new Employee(123, 2000, “John”);

then:

employee.toString()

produces the String representation of the Employee object. It can then be output with:

ConsoleIO.out.println(employee.toString());

giving:

payroll number: 123 monthly salary: 2000 first name: John

Alternatively we might have:

ConsoleIO.out.println(“Employee details:” + employee);

146 Object-Oriented Design with UML and Java

giving:

Employee details: payroll number: 123 monthly salary: 2000 first name: John

The reason for the alternative is that the concatenation operator � accepts an Object
reference as its second actual parameter. It sends the message toString to it and then
uses the String it returns.

Some judgement should be used when redefining toString as the method may
become too complex. If a simple String made up of a few attributes is all that is
required then its use is justified. However, if the method has a complex logic then it is
usually better to have a named method such as displayStaff in the SoftwareHouse
class of program 5.1.

A second example of polymorphism at work in the Java language is the operation:

public boolean equals(Object obj)

declared in the class Object. Its method compares the reference supplied as an actual
parameter with a reference to the object executing the method. It delivers true if
they are the same and false otherwise. In other words two objects are equal if they are
identically the same. Notice that the formal parameter is declared as an Object.
Polymorphic substitution allows any class of object to be supplied as the actual
parameter. This is a common strategy used with Java to develop generally reusable
(generic) methods. For example, the add method advertised by a collection declares
its formal parameter to be an Object and so any class of object to be added to it (see
appendix E).

The default behaviour for equals that compares objects by identity is not always
what is required. In fact it can sometimes be confusing as the following code illustrates:

// Create two distinct objects
Employee e1 = new Employee(123, 2000, “John”);
Employee e2 = new Employee(123, 2000, “John”);
//
if(e1.equals(e2))

ConsoleIO.out.println(“Equal”);
else

ConsoleIO.out.println(“Not equal”);

It produces Not equal as its output even though we might believe that the two
Employees are clearly equal.

Usually we expect two objects to be considered equal if they have one or more equal
attribute values. For example, two distinct Employee objects with the same payroll
number are equal in this sense. To make this possible we redefine the method for equals
(inherited from Object) and use the polymorphic effect. If we introduce:

// class Employee
public final int getPayrollNumber() {

return thePayrollNumber;
} // method: getPayrollNumber

Chapter 5: Specialization 147

to the Employee class we might have:

// class Employee
public final int compareTo(Object obj) {

Employee emp = (Employee)obj;
return thePayrollNumber - emp.getPayrollNumber();

} // method: compareTo

public final boolean equals(Object obj) {
return this.compareTo(obj) == 0;

} // method: equals

Now two Employees are equal if they have the same payroll number and the previous
code sample produces the output Equal as expected. For more discussion on the
method equals see section 5.9 and appendix E.

Notice that both methods are qualified as final. This ensures that they cannot be
redefined in a subclass and so all Employees, Programmers and ProjectLeaders are
compared for equality on the same basis. Also there is no possibility of duplicated code
in subclasses.

5.6 Protected features

An object of a descendant class and its parent are very closely related. In fact they are
so close that the polymorphic effect allows them to be treated as being the same. Often
we find that a descendant requires privileged access to its parent’s features. In order to
make this possible Java provides the protected keyword to modify access to oper-
ations and attributes. Descendants have access to those that are public or protected but
associates or aggregate parts can access only those that are public. As stated
earlier, private features are not accessible to clients or a subclass method.

Assume that the Employee class is amended so that the date of birth of an
Employee is held as an attribute. As this is sensitive information, it is not available to
normal clients and is not displayed. However, we intend that a Programmer subclass
method should be able to access it and display the year of birth.

One possibility is to qualify the date of birth attribute in the Employee class as pro-

tected and give subclasses direct access to it. We take the view that this is not always
advisable as it violates the rule that an object should encapsulate its own state.
Therefore we qualify the date of birth as private and provide a protected method to
access it. The following code fragments illustrate:

// class Employee
public Employee(int aPayrollNumber, int aMonthlySalary, String aName,

java.util.GregorianCalendar aDateOfBirth) {
theDateOfBirth = aDateOfBirth;
// ...

} // method: Employee

148 Object-Oriented Design with UML and Java

// class Employee
protected java.util.GregorianCalendar getDateOfBirth() {

return theDateOfBirth;
} // method: getDateOfBirth

// class Employee
private java.util.GregorianCalendar theDateOfBirth;

// class Programmer
public int getYearOfBirth() {

// Use the protected operation getDateOfBirth
GregorianCalendar dateOfBirth = this.getDateOfBirth();
return dateOfBirth.get(Calendar.YEAR);

} // method: getYearOfBirth

Execution of the statements:

Programmer p1 = new Programmer(123, 2000, “John”, “Ada”,
new GregorianCalendar(1980,1,14));

ConsoleIO.out.println(“Year: ” + p1.getYearOfBirth());

results in the output:

Year: 1980

Notice that a GregorianCalendar object is created as part of the call to the
Programmer constructor method. An anonymous reference to it is passed as the actual
parameter. This is a common Java programming idiom equivalent to:

GregorianCalendar dateOfBirth = new GregorianCalendar(1980,1,14);
Programmer p1 = new Programmer(123, 2000, “John”, “Ada”, dateOfBirth);

It avoids having to creating an unnecessary reference to an object.

5.7 The abstract class

It is often useful to be able to define a class that acts as a basis for establishing others.
There is no intention to make an instance of it. It is a way of guaranteeing that all
descendants share a common set of operations on their public interface. This kind of
class is referred to as an abstract class.

For example, consider the software house from our previous discussions. Assume
that there will never be an instance of an Employee as we have Programmers or
ProjectLeaders but never just Employees. We intend that all employees of the
SoftwareHouse must share common operations such as getPayrollNumber,
getMonthlySalary, display and equals. Therefore we decide that the class Employee
is stereotypical of an abstract class.

Chapter 5: Specialization 149

Experience has shown that an abstract class is so useful that the UML has a standard
stereotype, abstract used to adorn a class box (we also render it grey). In Java the key-
word abstract is used. For example, we might have:

150 Object-Oriented Design with UML and Java

«abstract»
Employee

and

public abstract class Employee { ... }

Specialization of an abstract class and qualification of its operations as frozen, poly-
morphic redefined are unaffected. Anticipating the use of the polymorphic effect, a dec-
laration such as:

Employee employee;

is allowed. The reason is that employee is a reference type. All we need do is to ensure
that the object it references belongs to a concrete subclass of Employee. Therefore
we can have:

Employee employee = new Programmer(234, 2500, “Ken”, “C++”);

but not:

Employee employee = new Employee(123, 2000, “John”);

The formal parameters for methods are treated similarly therefore:

public void addEmployee(Employee anEmployee) { ... }

is permitted and we expect the actual parameter to reference a Programmer or
ProjectLeader. We can now modify the previous class diagram to that shown in figure 5.6.

SoftwareHouse

Programmer

-theStaff

{java.util.ArrayList} 0..*1

-theTeam

0..* {java.util.ArrayList}

ProjectLeader
1

«abstract»
Employee

Figure 5.6 A modified class diagram using an abstract class

Only minor changes are required to the resulting Java code. Essentially all we need
do is to replace Programmer with Employee references in the SoftwareHouse class.
For example, we have:

// class SoftwareHouse
public void addEmployee(Employee anEmployee) {

theStaff.add(anEmployee);
} // method: addEmployee

and

// class SoftwareHouse
public void displayStaff() {

ConsoleIO.out.println();
ConsoleIO.out.println(“Staff list for ” + theName);
ConsoleIO.out.println();
//
Iterator iter = theStaff.iterator();
while(iter.hasNext()) {

Employee employee = (Employee) iter.next();
employee.display();
ConsoleIO.out.println();

}
} // method: displayStaff

and

// class SoftwareHouse
public int getMonthlySalaryBill() {

int totalMonthlyBill = 0;
Iterator iter = theStaff.iterator();
while(iter.hasNext()) {

Employee employee = (Employee) iter.next();
totalMonthlyBill += employee.getMonthlySalary();

}
return totalMonthlyBill;

} // method: getMonthlySalaryBill

Program 5.2 (Prog5_2.uml) in the software supplied gives complete listings.
The Application run method is unchanged and so it has the same output as
program 5.1.

Having made this change to the design we can now introduce other kinds of Employees
to the software house. For example, we might have administrators. The class diagram of
figure 5.7 shows a modified class diagram.

Chapter 5: Specialization 151

152 Object-Oriented Design with UML and Java

SoftwareHouse

Programmer

-theStaff

{java.util.ArrayList} 0..*1

-theTeam

0..* {java.util.ArrayList}

ProjectLeader
1

«abstract»
Employee

Administrator

Figure 5.7 A class diagram with an abstract class

Crucially the SoftwareHouse class requires no changes at all. As far as it is concerned
an Administrator is just another Employee. It is simply coded for illustration as:

import textio.*;

public class Administrator extends Employee {

// ----- Operations ----------
public Administrator(int aPayrollNumber, int aMonthlySalary, String aName,

String aDepartment) {
super(aPayrollNumber, aMonthlySalary, aName);
theDepartment = aDepartment;

} // method: Administrator

public void display() {
super.display();
//
ConsoleIO.out.println(“department:” + “\t” + theDepartment);

} // method: display

// ----- Attributes ----------
private String theDepartment;

} // class: Administrator

If the Application run method is modified to be:

// class Application
public void run() {

// Create a new organisation.
SoftwareHouse sh = new SoftwareHouse(“Objects-R-Us”);
//
// As for programs 5.1 (Prog5_1.uml) and 5.2 (Prog5_2.uml)
//
// Create some new administrators.
Administrator a1 = new Administrator(901, 5000, “Alice”, “Accounts”) ;

Administrator a2 = new Administrator(012, 4500, “James”, “Personnel”) ;
//
// Hire each administrator
sh.addEmployee(a1);
sh.addEmployee(a2);
//
// Display some details of the staff.
sh.displayStaff();
//
// Obtain and print the wage bill.
ConsoleIO.out.println(“The monthly salary bill is: ” + sh.getMonthlySalaryBill());
ConsoleIO.out.println();

} // method: run

then it produces an output of:

// As for program 5.2 (Prog5_2.uml)

payroll number: 901
monthly salary: 5000
first name: Alice
department: Accounts

payroll number: 902
monthly salary: 4500
first name: James
department: Personnel

The monthly salary bill is: 27680

Full listings are given in program 5.3 (Prog5_3.uml) in the software supplied.
Observe how the class Employee has been declared abstract ensuring that no

instance can be created. A class is also abstract when one or more of its methods
is qualified as abstract, i.e. no method definition is possible. For example, our
Employee class might have the operation getSalaryEnhancement that delivers the
enhancement to the basic salary. This cannot be defined for this class as it is
dependent on the nature of the subclass. Hence class Employee might appear as:

pubic abstract class Employee {

// ----- Operations ----------
public abstract int getSalaryEnhancement();
// ...

} // class: Employee

This introduces a protocol (see next section) which concrete subclasses must define.

5.8 The interface class

It is possible to have an abstract class with public operations none of which have a
defined method. They are all deferred to a subclass for their implementation. As it has

Chapter 5: Specialization 153

no method bodies it presents only a specification of its behaviours. At first sight this
may seem to be a rather strange class but it turns out be extremely useful. Often it is
used as the specification of an interface (or protocol) that a subclass must conform to.
For this reason it is normally referred to as an interface class.

Java supports the concept of an interface class with the keyword interface.
Although it is similar to an abstract class with no defined methods, it is important to
realize that it is different in one important respect. It is that a class that implements the
interface, i.e. one that provides methods for its deferred operations, can belong to any
class. Specifically such classes need not belong to the same class hierarchy. Although
they may implement other methods and have different parents, if they implement those
operations advertised by the interface then they can substitute for it. This simple fact
makes the Java interface an extremely powerful facility that gives the designer more
flexibility than the abstract class allows.

Consider the software house and its employees. We can insist that we must be able
to get the payroll number and monthly salary of any employee, display his details and
compare him for equality with another employee. Clearly the class to which an employee
belongs must have implementations for the public operations getPayrollNumber,
getMonthlySalary, display and equals. However, there is no requirement that each
class is part of the same specialization hierarchy. This is an important point that makes a
critical difference to our design. All that matters is that the SoftwareHouse is able to
send the messages getPayrollNumber, getMonthlySalary, display and equals to each
of its employees. It may be possible to send other messages but to be employable by the
SoftwareHouse these four are the minimum required.

We can model this situation with a Java interface as shown in figure 5.8. Note that
the interface class name ends in “able”. This a common idiom used to imply the
capabilities that classes that implement the interface must have. The dashed specializa-
tion arrows connecting Consultant and Employee to Employable denote that
Consultant and Employee (or its descendants) implement Employable. Finally we
use the UML stereotype <<interface>> to adorn the Employable class box.

154 Object-Oriented Design with UML and Java

SoftwareHouse

Programmer

-theStaff

1 {java.util.ArrayList} 0..*

-theTeam

0..* {java.util.ArrayList}

ProjectLeader
1

Administrator

«interface»
Employable

«abstract»
Employee

Consultant

Figure 5.8 Class diagram with an interface

Now the SoftwareHouse has an aggregation relationship with Employable objects
that can belong to any class hierarchy. As before the Programmer and ProjectManager
classes are descendants of Employee but Consultant forms it own hierarchy and is
unrelated to them. This frees us from having to construct an unnatural single hierarchy
just to make use of the polymorphic effect.

Java code for the interface class Employable is:

public interface Employable {

// ----- Operations ----------
public abstract int getPayrollNumber();
public abstract int getMonthlySalary();
public abstract void display();
public abstract boolean equals(Object obj);

} // interface: Employable

Note that use of the keyword public in the interface declaration is optional but we pre-
fer to make it explicit as it provides additional documentation for the code. Similarly the
use of abstract in the operation signatures is optional but it does emphasize that an
operation advertised by an interface can have no method body.

The primary change (but see the next section) required to the Employee class is to
its header as in:

public abstract class Employee implements Employable { ... }

It specifies that:

• it is available to all other objects (public)

• no instances of it can be created (abstract)

• it is a declaration for the class Employee (class) and

• it conforms to the protocol of the Employable interface class (implements)

Although the list is rather long it documents the class extremely well and is a major
strength of the Java language. The Programmer, ProjectLeader and Administrator
classes are unchanged.

The Consultant class that follows is coded rather simply for illustration purposes.
Normally it would have many more attributes and operations.

import textio.*;

public final class Consultant implements Employable {

// ----- Operations ----------
public Consultant(int aPayrollNumber, String aSpeciality) {

thePayrollNumber = aPayrollNumber;
theSpeciality = aSpeciality;

} // method: Consultant

public int getPayrollNumber() {
return thePayrollNumber;

} // method: getPayrollNumber

Chapter 5: Specialization 155

public int getMonthlySalary() {
return 5000;

} // method: getMonthlySalary

public void display() {
ConsoleIO.out.println(“payroll number:” + “\t” + thePayrollNumber);
ConsoleIO.out.println(“monthly salary:” + “\t” + this.getMonthlySalary());
ConsoleIO.out.println(“speciality:” + “\t” + theSpeciality);

} // method: display

public boolean equals(Object obj) {
return this.compareTo(obj) == 0;

} // method: equals

public int compareTo(Object obj) {
// ...

}

// ----- Attributes ----------
private int thePayrollNumber;
private String theSpeciality;

} // class: Consultant

The SoftwareHouse is interesting in that its Employee references now become
Employable references. For example, we have:

// class SoftwareHouse
public void addEmployee(Employable anEmployee) {

theStaff.add(anEmployee);
} // method: addEmployee

and

// class SoftwareHouse
public void displayStaff() {

ConsoleIO.out.println();
ConsoleIO.out.println(“Staff list for ” + theName);
ConsoleIO.out.println();
//
Iterator iter = theStaff.iterator();
while(iter.hasNext()) {

Employable employee = (Employable) iter.next();
employee.display();
ConsoleIO.out.println();

}
} // method: displayStaff

This may appear to be a small change but it has a profound effect. There is no need for the
SoftwareHouse to differentiate between a Consultant, Programmer, Administrator or
ProjectLeader. Each will respond to the operations advertised by the Employable inter-
face according to its class.

156 Object-Oriented Design with UML and Java

A suitable outline Application run method is:

// class Application
public void run() {

// Create a new organisation.
SoftwareHouse sh = new SoftwareHouse(“Objects-R-Us”);
//
// As for program 5.3 (Prog5_3.uml)
//
// Create a new consultant.
Consultant c1 = new Consultant(903, “OOAD”) ;
//
// Hire the Consultant
sh.addEmployee(c1);
//
// Display some details of the staff.
sh.displayStaff();
//
// Obtain and print the wage bill.
ConsoleIO.out.println(“The monthly salary bill is: ” + sh.getMonthlySalaryBill());
ConsoleIO.out.println();

}// method: run

producing an output of:

// As for program 5.3 (Prog5_3.uml)

payroll number: 903
monthly salary: 5000
speciality: OOAD

The monthly salary bill is: 32680

Full listings are given in program 5.4 (Prog5_4.uml) in the software supplied.

5.9 The interface at work

Collection objects are extremely useful but they do have a cost associated with them. It
arises from the fact that a collection can hold any class of object. Unfortunately it is
unavoidable that as part of their inner workings (methods), collections must carry out
manipulations on the objects they hold. For example, they will almost certainly be com-
pared if they need to be ordered.

With some classes such as Integer, Decimal, Boolean and String this does not pres-
ent any difficulty as the meanings (semantics) of the various comparisons are already
defined in Java. However, with objects of user-defined classes, the problem needs care-
ful consideration. The reason is that the meaning of testing for equality or being less
than another object may be far from clear. What does it mean for one Employee to be
less than another?

Chapter 5: Specialization 157

The decision cannot be the responsibility of the collection, as it cannot anticipate
which class of object it may be required to hold. It follows that it must be the responsi-
bility of the class of the object held by the collection to provide the necessary operations.

Methods in the Java collections use the operation compareTo when making com-
parisons of objects for ordering purposes. They do this by casting the Object they
receive as an actual parameter to be Comparable, where Comparable is an interface
class available as part of the Java environment.

public interface Comparable {

// ----- Operations ----------
public abstract int compareTo(Object obj);

} // interface: Comparable

Assuming that the cast is successful, then a method for compareTo is guaranteed
to exist. It is expected to return an integer less than zero if the receiving object is
less than object referenced by the actual parameter, 0 if it is equal to it and an integer
greater than 0 if it is greater than it. The collection’s ordering algorithm makes use of
this fact.

Crucially a collection is not concerned about the actual class of its objects when order-
ing them. All that is required is that they can be successfully cast to be Comparable.
This means that any object of any class can be ordered by a collection. All it has to do is
to implement the Comparable interface by providing a suitable method for compareTo
(see appendix E).

In the example programs presented so far in this chapter, the collection used to
implement one-to-many associations and aggregations has been the ArrayList. It was
carefully chosen because its add method adds its Object reference parameter to the end
of the list. It makes no use of compareTo and so it does not cast its parameter to refer-
ence an object that implements the Comparable interface. Therefore the Employee
class of program 5.1 need not implement the Comparable interface to be added to an
ArrayList.

However, there are other collections such as the TreeSet whose elements must
implement the Comparable interface. This means that if our example programs are
modified so that a TreeSet is used then they will not execute successfully. Therefore it
is wise to ensure that any object held by a collection implements the Comparable
interface. The Employee class now becomes:

public abstract class Employee implements Employable {

// ----- Operations ----------
public int compareTo(Object obj) {

// Cast the actual parameter to be an Employable
// so that the message getPayrollNumber can be sent.
Employable employable = (Employable) obj;
//
// get the payroll number of the parameter
int parameterPayrollNumber = employable.getPayrollNumber();
//

158 Object-Oriented Design with UML and Java

return thePayrollNumber - parameterPayrollNumber;
} // method: compareTo

// ...

} // class: Employee

Since the Consultant class is not part of the Employee hierarchy, then it too must
implement a similar compareTo method.

The declaration of collection reference such as:

// class SoftwareHouse
private java.util.ArrayList theProgrammers;

should also be changed as it names a concrete class (type) ArrayList. A more flexible
approach is to name the Collection interface that specifies the methods an implemen-
tation class (type) must implement. Therefore we have:

// class SoftwareHouse
private java.util.Collection theProgrammers;

Program 5.4 is interesting in that the SoftwareHouse holds Employable refer-
ences. Therefore we add compareTo to the Employable interface. As an interface can-
not implement a method it extends the Comparable interface as in:

public interface Employable extends java.lang.Comparable {
// ----- Operations ----------
// Further Employable operations
// ...

} // interface: Employable

The Consultant and Employee classes provide a suitable method for compareTo.
Note that they cast the Object reference parameter to Employable not Consultant or
Employee. This is because the collection may hold an arbitrary mixture of
Consultant, Programmer and ProjectLeader references.

These changes are illustrated in program 5.5 (Prog5_5.uml) included with the soft-
ware supplied. As expected, its output is the same as program 5.4 except that each
employee is displayed in the order of his payroll number.

As a second illustration, we show how an interface can be used to restrict the
functionality of an existing class. The Java language currently provides the
GregorianCalendar class to support dates. However, this class is really too complex
for our purposes. All we require is to be able to create a date (given a day, month and
year) and obtain its textual representation with toString.

Of course we cannot disinherit a method on specialization but we can achieve a simi-
lar effect by specifying an interface. For example, we have:

public interface DateIF {

// ----- Operations ----------
public abstract String toString();

} // interface: DateIF

Chapter 5: Specialization 159

implemented with:

import java.util.GregorianCalendar;

public class DateImp implements DateIF {

// ----- Operations ----------
public DateImp(int aDay, int aMonth, int aYear) { ... }
public String toString() { ... }

// ----- Attributes ----------
private GregorianCalendar theDate;

} // DateImp

Now the DateImp class supports only the functionality we require with an encapsu-
lated (private) GregorianCalendar object, theDate. The actual details of how it
achieves it are of no concern to us here. The main point is that we can now declare a ref-
erence to DateIF that is initialized to reference a DateImp object with:

DateIF date = new DateImp(1, 5, 2003);

and display the date quite simply with:

ConsoleIO.out.println(“The date is” + date);

The case study that follows in chapter 6 makes extensive use of this interface and its
implemenation.

5.10 Summary

1. A class is a specialization (extension) of a parent class if it can be considered as an
example of the parent. Although the descendant (subclass) normally has additional
behaviours not present in the parent (superclass) it must respond to the same mes-
sages as the parent.

2. A descendant class has privileged access to its parent through a protected interface.
3. The polymorphic effect permits a message sent through a reference to an object of

a parent class to be received and interpreted by an object of a descendant class.
4. An operation may be initially documented as frozen. It is qualified in Java as

final in which case it cannot be redefined by a descendant. This qualification
cannot be changed in a descendant class.

5. An operation may be initially documented as polymorphic in which case its method
may be redefined by a descendant. No qualification is required in Java as this is the
default behaviour.

6. An operation may subsequently be documented as redefined in which case its
method has been redefined by a descendant. It must have been initially documented
as polymorphic (or deferred) and may be subject to further redefinition by other
descendants. No qualification is required in Java.

7. An operation may be initially documented as deferred in which case it must be
redefined by a descendant if its class is to be concrete. It is polymorphic by implica-
tion and may be subject to further redefinition by other descendants. It is qualified

160 Object-Oriented Design with UML and Java

in Java as abstract and the class to which it belongs must also be qualified
as abstract.

8. An abstract class can have no instances but acts only to define the protocol of
its descendants. It may have some of its methods defined.

9. An interface class can have no instances but acts only to define all or part of the
interface of its descendants. None of its methods are defined. A class that imple-
ments an interface must define its inherited methods or it is itself abstract.

5.11 Exercises

1. Animals that populate the earth can be categorized according to the outline class
diagram in figure 5.9.

Chapter 5: Specialization 161

Animal

Reptile Mammal

Primate

HomoSapien

Figure 5.9 An outline class diagram for animals

a) Extend this diagram to encompass other animals, e.g. apes, snakes, birds and dogs.
b) Consider which classes should be designated as abstract

c) Consider an operation move advertised on the public interface of the class
Animal representing the movement of an animal. It could be documented as
frozen, deferred, polymorphic or redefined. Select and justify the most appropri-
ate documentation.

2. A university has a records system to store and retrieve information about its staff
and students. Typically records are added and viewed. Staff have a name, address,
employee number and department while students have a name, address, matricula-
tion number and course name.
a) Construct a class diagram for this record system.

b) Develop Java code for each class and a suitable Application class to exer-cise
them.

c) Extend the details held on staff and students.
3. A bank offers two kinds of account to its customers that they can make withdrawals

from, deposit funds into and enquire as to the current balance. The first is an ordin-
ary account and the second a current account. Both have an account number and
hold the current balance. However, the current account has an overdraft limit that is
normally agreed with the bank manager when the account is created. Withdrawals
can be made up to the overdraft limit. There is no overdraft limit available for ordin-
ary accounts. Clearly there is no limit on deposits that can be made in either case.
a) Construct a class diagram for the bank accounts.
b) Develop Java code to define each class.
c) Construct the Java coding for an Application object to exercise the system.

4. Academic staff in a university are designated as either a lecturer or a senior lecturer.
Both teach students but a lecturer does a small amount of research while a senior
lecturer is expected to do significantly more.
a) Construct a class diagram for academic staff.
b) Define outline Java code for each class assuming the polymorphic effect is to be

used to its full extent. Method bodies should consist of simple insert messages to
the screen such as,

ConsoleIO.out.println(“Doing some teaching”);
ConsoleIO.out.println(“Doing a little research”);

and

ConsoleIO.out.println(“Doing extra research”);

c) What changes would be necessary if senior lecturers carry out administrative
tasks but lecturers do no administration?

5. A class diagram consists of several symbols. They may be either a class symbol or
a relation symbol. With the former the symbol may describe a concrete or abstract
class. With the latter the symbol may describe an association, aggregation or spe-
cialization relation. A relation symbol always connects two class symbols and a
class symbol may have zero or more relation symbols connected to it.
a) Construct a class diagram to describe a class diagram.
b) Develop outline Java code for each class. In particular focus on an operation

draw that draws a complete class diagram on a computer screen.
6. Object-oriented software is commonly developed as successive versions. The first

version might be quite rudimentary and later versions increasingly sophisticated.
Although this approach is very useful it does pose the problem of version control.
We must always be sure that a later version can be used in place of an earlier one. In
other words a new version must be compatible with earlier ones. Assume that the
versions are numbered as 1.1, 1.2, 1.3, . . . then 2.1, 2.2, 2.3 and so on. Version 1
objects should have the same interface as should version 2 objects.
a) Construct a class diagram and corresponding Java that ensures that the

Application object for each version complies with this requirement.
b) Develop an Application object to implement a simple version controller.

162 Object-Oriented Design with UML and Java

7. If we return to exercise 4 we find that university staff consist of not just lecturers and
senior lecturers but readers and professors as well. They all teach students to the
same extent but in addition:

• a lecturer does a small amount of research

• a senior lecturer does a moderate amount of research and some administration

• a reader does a lot of research but no administration

• a professor does a lot of research and some administration.
a) Construct a class diagram for academic staff.
b) Define outline Java code for each class.

8. Sometimes an aggregate component is composed of another aggregate component.
We refer to it as a composite object. For example, we might have a picture object
that is composed of some text, lines, rectangles and another picture. Clearly a pic-
ture that is embedded in a picture may have some text, lines, rectangles or another
picture. In other words a component of a composite object can be just a single com-
ponent (a leaf) such as a piece of text, a line or a rectangle or it may have another
composite such as another picture.

When constructing a composite object it is important that we develop a simple
way of treating a leaf and a composite in the same way. The class diagram of figure
5.10 solves the problem.

Chapter 5: Specialization 163

Leaf Composite

Component
-theComponents

0..*

1

Figure 5.10 Class diagram for a composite object

The class Component acts as a common interface for a Leaf or Composite
object. Clients refer to Components and by using the polymorphic effect we can
implement operations advertised by it in the Leaf and Composite classes as appro-
priate. Typical operations allow clients to add, remove and display Components.
The first two allow a suitable architecture to be constructed and the last allows its
inspection. A Leaf object would normally implement operations fully while a
Composite object would iterate over its components sending messages to each as
appropriate.
a) Construct an instance diagram showing a Component composed of several

leaves and Composites.
b) Develop sequence diagrams to show how a Component object might imple-

ment the operations add and display.
As this is a rather complex situation that occurs quite frequently we can capture it as
a design pattern (Gamma 1994) which we can name as the composite design pat-
tern. To accomplish this we specialize the Leaf class into Text, Line and Rectangle

classes and the Composite class into the Picture class. They have responsibility for
implementing operations such as display that are unique to them. Operations that
are not specific are implemented by the classes Component, Leaf and Composite
as appropriate.
c) Develop Java code for the composite design pattern.
d) Show how it might be used with the picture example.

9. In a hospital there are a number of wards each of which may be empty or have on
them one or more patients. Each ward has a unique name. The hospital has an
administration department that is responsible for recording information about the
hospital’s wards and the patients that are on each ward.

The doctors in the hospital are organized into teams, each of which has a unique
team code. Each team is headed by a consultant doctor who is the only consultant
doctor in the team. The rest are all junior doctors at least one of which must be at
grade 1. Each doctor is in exactly one team. The administration department keeps a
record of these teams and the doctors allocated to each team.

Each patient is under the care of a single team of doctors. The consultant who
heads that team is responsible for the patient. A patient may be treated by any num-
ber of doctors but they must all be in the team that cares for the patient. A doctor can
treat any number of patients.

The system should provide support for the administration department by record-
ing information about:

• wards, including their name

• doctors, including their name, address (and for junior doctors their grade) and the
way in which they are organized into teams

• patients, from admission to discharge, including their name, address, date of
birth and the ward the patient is on

Patients are identified by the name of the ward they are on together with their name.
Similarly doctors are identified by the team code and their name.

The system should be able to do the following:

• display the name of the consultant doctor responsible for a patient

• display the team code of the team caring for a patient

• list the details of all of the doctors who treated a patient

• list the details of each patient, including their personal data and the ward they
are on.

On admission to the hospital the patient’s personal details are recorded together
with the name of the ward she is on and the team code for the team that is caring for
her. When a patient is treated by a doctor the system is given the name of the
patient, ward and doctor together with the team code for the doctor. When a patient
is discharged the system is given the name of the patient and the ward the patient is
on. It should then remove all information relating to that patient.

10. You are required to develop software to support the administration of a hotel. The
major features of the hotel are:

• there are three floors numbered 1, 2 and 3 each of which has up to five rooms

• most rooms are ordinary bedrooms but some are used for conferences

• conference rooms may have study rooms associated with them

164 Object-Oriented Design with UML and Java

• study rooms are simply modified bedrooms

• not all study rooms are associated with a conference room

• not all floors have the same combination of rooms

• each room has a room number, e.g. 201 for room 1 on floor 2

• each room has a maximum occupancy, i.e. the number of people that can use it

• conference rooms also have a name
Staff should be able to obtain details of each room on each floor in a variety of

ways. As a minimum, the user must be able to request for a report for:

• all the rooms on all floors

• all the rooms on a particular floor or

• a particular room on a particular floor

and to decommission a room:

• remove a particular room from a given floor

If the room is a bedroom then its number and maximum occupancy are dis-
played. However, if it is a conference room then its name and the room number of
each study room associated with it must also be given. A study room displays the
same information as a bedroom.

11. Revisit exercise 22 from chapter 4. Reflect on your solution given the new material
from this chapter. Now develop the problem using specialization.

Chapter 5: Specialization 165

This Page Intentionally Left Blank

Case Study: The Library
Application Revisited

This case study uses the same problem domain as that of chapter 4. It is intended to
highlight more advanced elements of an OOAD. As with the first case study we empha-
size how the development revolves round a number of iterations. All diagrams and the
accompanying Java code were developed using the ROME modelling tool.

6.1 Specification

In the case study of chapter 4 the library held only books. In this version our library
stocks both books and journals. An outline specification for the system is:

A library has a name and holds a number of stock items that may be either books
or journals. Books and journals both have a title and a unique catalogue number.
However, each book has an author and each journal has its date of publication and
the name of the editor. The system should be able to display the stock items avail-
able for loan and those that are out on loan. At some point in the future the library
will hold other stock items such as videos and compact disks.

There are registered borrowers each with a unique name. A borrower may bor-
row and return a book or journal. The system should record each transaction. To
record the borrowing of a book or journal the name of the borrower and the cata-
logue number for the publication is required. To record that a book or journal has
been returned only the catalogue number is required.

The system should also be able to display details of the stock items out on loan
to borrowers.

We are required to develop an application to support the librarian.

6.2 Iteration 1

This version has two aims. The first is to make sure that the initial object model developed
is a good reflection of the problem domain. Clearly if it is not correct then the rest of
the development effort is severely jeopardized. The second aim is more concerned with

6

167

the implementation of the final system. It is to demonstrate that the polymorphic effect
described in chapter 5 can be used successfully.

6.2.1 Establish use-cases

As in chapter 4 we start by developing a use-case diagram, supporting documentation
and test-cases. However we can take this opportunity to explore use-cases in more
detail. For example, we use the term scenario to refer to a specific sequence of inter-
actions between the librarian (an actor) and the system.

As a scenario is just one path through a particular use-case it is often referred to as
its use-case instance. More generally:

• a use-case is a collection of scenarios that define specific behaviours of the use-case
and

• a use-case diagram is a collection of use-cases that define specific behaviours of the
system.

This observation is helpful as it gives us a better understanding of the relationship
between a system, its use-cases and their scenarios. Bearing this is mind, if we consider
how we might document a use-case then it is clear that we should take into account the
various scenarios it supports.

The most important scenario is the one that leads to a successful outcome without
any difficulties arising. It represents the basic flow of events through the use-case. For
example, in the “Add one book” use-case from chapter 4, the basic flow occurs when
the librarian creates a new book that is added to the library. The creation of the book and
adding it to the library happen successfully at the first attempt.

However, there may be other scenarios that may arise and some may result in failure.
For example, the catalogue number of a new book entered by the librarian may not be
unique and therefore the book created cannot be added to the library. Others may
require additional actions to be taken but still result in success. For example, an invalid
catalogue number may be entered by the librarian and then re-entered before the new
book or journal can be created. Having done so it can be added to the library. Clearly
these scenarios should be identified and documented as they represent an alternative
flow of events through the use-case.

An important point to realize is that the basic flow is most often just a straightforward
sequence of steps that lead to success. This makes it easy to understand and stresses that
it is the main success path, i.e. there are no “problems”. By way of contrast, alternative
flows often take account of more complex situations, e.g. repeated data entry. Therefore
they can be more difficult to understand. This means that we must be careful when docu-
menting a use-case with more than one scenario. We might use the following template
(Larman 2002):

Use-case: Name

Basic flow

The scenario that is a typical success path

Alternative flows

All other scenarios (successful or otherwise)

168 Object-Oriented Design with UML and Java

When applied to the “Add one book” use-case we have:

Use-case: Add one book

Basic flow

1. User enters the title of the new book
2. User enters the name of the author of the new book
3. User enters the catalogue number of the new book
4. A new book is created
5. The new book is added to the library and is available for loan
6. The user is informed that the addition was successful

Alternative flows

1a, 2a, 3a The system detects an invalid data entry:
1. The system informs the user
2. The user re-enters the data

Steps 1–2 (alternative flows) are repeated until
the data entered is valid

Notice that the steps (events) are numbered to indicate the time order in which they
occur. Alternative flows are annotated with respect to the branch point in the main flow.
For example, 1a indicates a deviation from the success scenario at step 1. The system
detects an invalid data entry and informs the actor. The numbered actions that follow
specify the subsequent steps that are taken before returning to the basic flow at the
branch point. For brevity we group three alternative flows as a comma-separated list,
i.e. 1a, 2a, 3a, as they take the same sequence of remedial actions.

On completion of an alternative flow, the main flow continues at the next step unless
the scenario indicates otherwise, e.g. cancellation. For example, if a new book or jour-
nal cannot be added to the library then we might have:

Alternative flows

// ...
5a The system detects a duplicate catalogue number:

1. The system informs the user
2. The scenario is abandoned

At this point it is worth remembering that non-specialists need to understand use-
cases when they help develop system requirements. We expect them to be able to make
an informed judgement on a use-case. This means that we try to avoid using the full
power of the UML in their construction. For example, we have chosen not to use an
activity diagram to document a use-case where it may have been expected. We should
also resist the strong temptation to add too much detail at this early stage. Even worse,
we must not attempt to decompose use-cases into simpler ones. To do so may well
lead to an analysis that is not object-oriented but is based on a top-down (divide-and-
conquer) structured approach.

Bearing these points in mind, UML use-cases may have relationships with each other.
The most common one is where a use-case shares some part of its functionality with
another. It is called the include relationship. For example, we can anticipate that the “Add
one book” and “Add one journal” use-cases involve the librarian entering basic details,

Chapter 6: Case Study: The Library Application Revisited 169

Use-case: Enter basic details

Basic flow

1. User enters the title of the new book
2. User enters the catalogue number of the new book

Alternative flows

1a, 2a The system detects an invalid data entry:
1. The system informs the user
2. The user re-enters the data

Steps 1–2 (alternative flows) are repeated until
the data entered is valid

Use-case: Add one book

Basic flow

1. Include Enter basic details
2. User enters the name of the author of the new book
3. A new book is created
4. The new book is added to the library and is available for loan
5. The user is informed that the addition was successful
Alternative flows

// ...

Use-case: Add one journal

Basic flow

1. Include Enter basic details
2. User enters the name of the editor of the new journal
3. User enters the date of publication of the new journal
4. A new journal is created
5. The new journal is added to the library and is available for loan
6. The user is informed that the addition was successful

Alternative flows

// ...

170 Object-Oriented Design with UML and Java

i.e. the title and catalogue number. We capture this common behaviour as shown in
figure 6.1 in which the include relationship is depicted as a stereotype on a directed line.
For the textual documentation we now have:

Add one book

Add one journal

Enter basic details

«include»

«include»

Figure 6.1 Use-cases with an include stereotype

Other more advanced use-case features exist in the UML, e.g. the extend relation-
ship. However, it is our opinion that for the vast majority of circumstances the com-
plexity they introduce conflicts with the primary aim of a use-case. We don’t make
use of them even though our use-case diagrams may sometimes be less elegant and
the resulting documentation verbose. The important point is that both have an obvious
meaning that can be readily understood. Interested readers should consult more
advanced texts for a more extensive discussion of use-case relationships (Larman
2002).

We are now in a position to develop a use-case diagram as shown in figure 6.2.

Chapter 6: Case Study: The Library Application Revisited 171

Register one borrower

Return one publication

Display borrowers

Display publications on loan

Lend one publication

Display publications available for loan

Load publications from file

Add one book

Add one journal

Enter basic details

«include»

«include»

Figure 6.2 A use-case diagram for the Library application: iteration 1

When compared to the corresponding diagram in the case study of chapter 4, the
main difference is that a book or journal is borrowed and returned rather than just a
book. Typical supporting documentation is:

Use-case: Add one book

Basic flow

1. Include Enter basic details
2. User enters the name of the author of the new book

3. A new book is created
4. The new book is added to the library and is available for loan
5. The user is informed that the addition was successful

Alternative flows

2a The system detects an invalid data entry:
1. The system informs the user
2. The user re-enters the data

Steps 1-2 are repeated until the data entered is valid
4a The system detects a duplicate catalogue number:

1. The system informs the user
2. The scenario is abandoned

Hopefully any intelligent person could read and understand it without too much diffi-
culty. Also bear in mind that some readers may choose to ignore the alternative flows.

As in the previous case study we must develop preliminary test-case documentation
for each use-case. However, we should take into account the fact that there may be sev-
eral different scenarios to test. Fortunately this is not too difficult as we have sum-
marized the expected outcome of each test-case in the use-case documentation. For
example, we might have:

Test-case: Add one book

Basic flow outcomes

1. The user is prompted to enter data
2. A new book with the data entered is created
3. The book is added to the library.
4. The book is available for loan
5. The user is informed of a successful outcome

Alternative flows outcomes

1a The system detects an invalid data entry:
1. The system informs the user
2. The user re-enters the data

Steps 1–2 are repeated until the data entered is valid
3a The system detects a duplicate catalogue number:

1. The system informs the user
2. The scenario is abandoned

Each numbered outcome is effectively the test we wish to demonstrate that we have
achieved.

6.2.2 Analysis

As in the chapter 4 analysis, we start by considering the use-case diagrams. It clearly
shows that a user must be able to borrow, return and display a book or journal from the
library.

172 Object-Oriented Design with UML and Java

We readily identify the Library class as before. The main issue is whether a book and
a journal are essentially the same kind of entity or whether they are sufficiently distinct
to designate them as objects. This decision is crucial as it determines the fundamental
structure of the final system.

Clearly journals and books have similarities in that they are both a kind of publica-
tion with a title and catalogue number in common. However, they are also quite differ-
ent in some important respects. For example:

• a book has an author

• a journal has an editor and a date of publication

• users of the library perceive books and journals to be both conceptually and phys-
ically different

• the library may treat books and journals differently, e.g. there may be different
rules for lending and returning them or storing them in different parts of the
library

Our conclusion is that their differences are sufficient to merit their designation as dis-
tinct object types. Therefore we can identify the classes Book and Journal. The object
diagram of figure 6.3 documents this decision.

Chapter 6: Case Study: The Library Application Revisited 173

: Library

: Book

: Journal

: Book

Figure 6.3 An object diagram

6.2.3 Design

It is important to recognize that two distinct relationships are developed during this
design phase. The first is based on specialization and gives information about the rela-
tionships between a class and its ancestors. The second is based on aggregations and
gives information about the scope and visibility of classes. Usually both relationships
are combined in the same class diagram.

If we consider the first relationship, then as we intend using the polymorphic effect,
it is reasonable to decide that Book and Journal objects are examples of a more
general class. From the text of the outline system specification we can name it
Publication. Our intention is to send messages through a Publication reference but we
anticipate that each message is actually received by a Book or Journal. Figure 6.4
describes this specialization hierarchy.

Notice that we have determined that the class Publication should be abstract and
therefore no instance of it can be made. As discussed earlier in chapter 4, we can declare
a reference to a Publication as normal but it must reference a concrete object such as a
Book. This means that much of our code does not distinguish between Books and
Journals. We just treat them uniformly as Publications.

If we consider the second relationship then we can reuse the model developed for
version 3 from chapter 4. Recall that the aim of this iteration is to demonstrate that we
can make use of the polymorphic effect using a basic model. If necessary we can
change the model in a later iteration. Therefore the Library object references zero or
more Publications and BorrowerRecords. Each BorrowerRecord references zero or
more Publications and each Publication may reference a BorrowerRecord. With this
new information the architecture can be updated as shown in figure 6.5.

174 Object-Oriented Design with UML and Java

BookJournal

«abstract»
Publication

Figure 6.4 A specialization hierarchy

Book Journal

«abstract»
Publication

{java.util.Collection}
0..*

Library

-theBorrowedPublications
BorrowerRecord

{java.util.Collection}
0..*-theBorrowers

-theBorrower

{java.util.Collection} 0..*0..1

-theLoanStock

Figure 6.5 Initial class diagram (from model Lib4_3.uml)

At this corresponding point in the chapter 4 case study an object diagram was par-
ticularly useful. With the introduction of polymorphism it is even more important.
Figure 6.6 illustrates a typical configuration of objects. It shows a Library with three
Books and one Journal. There are two registered borrowers. One has borrowed a Book
and the other a Book and a Journal. The remaining Book is available for loan. Note that
there are no Publication objects present: only Books or Journals.

6.2.4 Implementation

This part of the development is relatively straightforward. We can use much of the
work done in chapter 4. The essential structure is unchanged. Therefore we have an
Application object whose run method communicates with the user through a text-
based interface. As before, the run method creates an Action object that is a façade for
the Library. However, there is the one crucial difference in that each Book
reference parameter used in the chapter 4 solution now becomes a Publication refer-
ence. Similarly, methods declare Publication references rather than Book references.
This simplifies much of the code as we do not have to distinguish between Books and
Journals: they are just Publications.

6.2.4.1 Architectural code

Following on from the preceding section we have the following outline code for the
Library:

package librarysubsystem;

import java.util.*;

public final class Library {

// ----- Operations ----------
public void addOnePublication(Publication aPublication) {

int catalogueNumber = aPublication.getCatalogueNumber();
Publication foundPublication = this.getPublication(catalogueNumber);
//

Chapter 6: Case Study: The Library Application Revisited 175

: Library

: Book

: Journal

: Book

: Book

: BorrowerRecord : BorrowerRecord

Figure 6.6 An object diagram

if(foundPublication == null) {
// ...

} else {
// ...

}
} // method: addOnePublication

// ...
// ----- Relations ----------
private java.util.Collection theBorrowers; // of BorrowerRecord
private java.util.Collection theLoanStock; // of Publication

} // class: Library

Similarly the BorrowerRecord class code is:

package librarysubsystem;

import java.util.*;

public final class BorrowerRecord implements Comparable {

// ----- Operations ----------
public void attachPublication(Publication aPublication) {

theBorrowedPublications.add(aPublication);
aPublication.attachBorrower(this);

} // method: attachPublication

public void detachPublication(Publication aPublication) {
theBorrowedPublications.remove(aPublication);
aPublication.detachBorrower();

} // method: detachPublication

public final int compareTo(Object obj) {
//...

} // method: compareTo

public final boolean equals(Object obj) {
//...

} // method: equals

public final int hashCode()

//...

} // method: hashCode

// ...

// ----- Relations ----------
private java.util.Collection theBorrowedPublications; // of Publication

} // class: BorrowerRecord

This leaves us with the Publication class. As it acts as a base class for the Book and
Journal classes, it implements common features pertaining to the architecture. It fol-
lows that it implements the Comparable interface (allowing its descendants to be

176 Object-Oriented Design with UML and Java

compared on the same basis) and holds a reference to its borrower. This results in the
following outline code:

package librarysubsystem;

public abstract class Publication implements Comparable {

// ----- Operations ----------
public void attachBorrower(BorrowerRecord aBorrower) {

theBorrower = aBorrower;
} // method: attachBorrower

public void detachBorrower() {
theBorrower = null;

} // method: detachBorrower

public final int compareTo(Object obj) {
//...

} // method: compareTo

public final boolean equals(Object obj) {
//...

} // method: equals

public final int hashCode(){
//...

} // method: hashCode

// ...

// ----- Relations ----------
private BorrowerRecord theBorrower;

} // class: Publication

6.2.4.2 Method code

For the Library class all that remains is to complete its operation signatures and
methods. They are essentially unchanged from chapter 4. Of course we must remember
when naming operations that the Library refers to Publications rather than Books but
that is the only difference. For example, we have getPublicationsIterator rather than
getBooksIterator.

Similarly there are no significant changes to the BorrowerRecord class except
for the trivial renaming of operations, e.g. getBorrowedPublicationsIterator not
getBorrowedBooksIterator.

The Publication class has the common features of Books and Journals as well as
having architectural responsibilities. This gives the following outline code:

package librarysubsystem;

public abstract class Publication implements Comparable {

// ----- Operations ----------
protected Publication(String aTitle, int aCatalogueNumber) {

Chapter 6: Case Study: The Library Application Revisited 177

theTitle = aTitle;
theCatalogueNumber = aCatalogueNumber;
theBorrower = null;

} // method: Publication

protected Publication() {
this(“”,0);

} // method: Publication

public int getCatalogueNumber() {
return theCatalogueNumber;

} // method: getCatalogueNumber

public String getBorrowerName(){
String name = “”;
if(theBorrower != null) {

name = theBorrower.getName();
}
return name;

} // method: getBorrowerName

public BorrowerRecord getBorrower(){
return theBorrower;

} // method: getBorrower

public String toString() {
return theCatalogueNumber + “ : ” + theTitle;

} // method: toString

// ...

// ----- Attributes ----------
private String theTitle;
private final int theCatalogueNumber;

// ----- Relations ----------
private BorrowerRecord theBorrower;

} // class:Publication

Notice that even though it is abstract its constructors are protected to minimize
(even further) any chance of misuse by other classes that are not descendants.

When it comes to the Book and Journal classes we find that the majority of the work
has been done in the Publication class. All they have to do is to hold any additional
attributes, supply a constructor and redefine toString for use by the Action class. This
leaves us with:

package librarysubsystem;

public final class Book extends Publication {

// ----- Operations ----------
public Book(String aTitle, int aCatalogueNumber, String anAuthor) {

super(aTitle, aCatalogueNumber);

178 Object-Oriented Design with UML and Java

theAuthor = anAuthor;
} // method: Book

public Book() {
this(“”, 0, “”);

} // method: Book

public String toString() {
return super.toString() + “ by ” + theAuthor;

} // method: toString

// ----- Attributes ----------
private String theAuthor;

} // class: Book

and

package librarysubsystem;

public final class Journal extends Publication {

public Journal(String aTitle, int aCatalogueNumber, String anEditor,
DateIF aDateOfPublication)

{
super(aTitle, aCatalogueNumber);
theEditor = anEditor;
theDateOfPublication = aDateOfPublication;

} // method: Journal

public Journal() {
this(“”, 0, “”, new DateImp());

} // method: Journal

public String toString() {
return super.toString() + “ edited by ” + theEditor + “ on ” + theDateOfPublication;

} // method: toString

// ----- Attributes ----------
private String theEditor;
private DateIF theDateOfPublication;

} // class: Journal

as the complete listings for the Book and Journal classes. The interface DateIF and the
DateImp class are those described earlier in chapter 5. Notice how brief the class dec-
larations are and the extent to which they reuse methods defined by the superclass. This
is typical of a good object-oriented design. Hopefully we accomplish more and more in
each iteration with less and less effort. This is a major benefit that should not be under-
estimated.

Finally, the Action class is updated to reflect the use-cases developed in section 6.2.1.
However, its overall structure is unchanged from the case study of chapter 4. The only

Chapter 6: Case Study: The Library Application Revisited 179

real difference is that its methods recognize that Publications are borrowed and
returned to the Library. A typical method is:

// class Action
public void addOneBook() {

// Get book details from the user.
ConsoleIO.out.print(“\t” + “Enter the title >>> ”);
String title = ConsoleIO.in.readLine();
ConsoleIO.out.print(“\t” + “Enter the author >>> ”);
String author = ConsoleIO.in.readLine();
ConsoleIO.out.print(“\t” + “Enter the catalogue number >>> ”);
int catalogueNumber = ConsoleIO.in.readInt();
//
// Add the book to the library.
theLibrary.addOnePublication(new Book(title, catalogueNumber, author));
//
// Display the outcome
ConsoleIO.out.println(“\n\t” + theLibrary.getStatus());

} // method: addOneBook

Full listings of the classes developed in this section are to be found with the supplied
software (model Lib6_1.uml).

6.2.4.3 Testing

As in the chapter 4 case study we could make use of private operations such as
testUseCases and testErrorConditions to help automate the burden of testing. We
might even use a commercially available testing tool (http://www.junit.org). However,
we leave this as an exercise to the reader and assume that manual testing is sufficient for
the purpose of this discussion. Of course we should use the test cases documented in
section 6.2.1 as the basis for any tests. An outline of the Application run method is:

// class Application
public void run() {

// Create a unified interface (facade) for the Library
Action action = new Action(“Books-R-Us”);
//
// Get and process the user’s choice
String choice = “”;
do {

// Get the user’s selection
choice = this.getSelection();
ConsoleIO.out.println();
// Action the user’s choice
if(choice.equals(“0”)) {

action.close();
} else if(choice.equals(“1”)) { // Register one // borrower.

180 Object-Oriented Design with UML and Java

action.registerOneBorrower();
}

//
// One selection and the corresponding actions for each use-case
// ...

} else {
action.unknownSelection();

}
} while(choice.equals(“0”) == false);

} // method: run

Assuming that two Books and a Journal have been added to the Library a
typical successful testing outcome is:

0: Quit
1: Register one borrower
2: Display borrowers
3: Add one book
4: Add one journal
5: Load publications from file
6: Display publications available for loan
7: Display publications on loan
8: Lend one publication
9: Return one publication

Enter the choice >>> 6

Books-R-Us :3 book(s) :0 borrower(s)

Publications available for loan
1: Java by Ken

2: Basic by Sally

3: UML edited by John on 17/2/2003

It clearly shows that we have been able use the polymorphic effect. The list of publications
available for loan include both books and journals as shown in the report. We also believe
that the model is a sensible one. Therefore we have achieved the aims of this iteration.

6.2.5 Reconcile model diagrams

There are no actions that we need take in this activity. However, it is always useful to
make this decision explicit.

6.3 Iteration 2

This iteration has only one aim. It is that to demonstrate that we can significantly
improve the previous design by using the full power of the object-oriented paradigm. In

Chapter 6: Case Study: The Library Application Revisited 181

particular the design should be able to accommodate new requirements without the
necessity for substantial changes. We must avoid having to redesign the system or
recode large parts of it each time we conduct an iteration. Therefore the challenge is to
develop a design by refactoring it so that is stable in the face of change.

6.3.1 Establish use-cases

As this iteration does not result from new requirements there are no changes to be made
to the use-case diagram from the previous iteration.

6.3.2 Analysis

At this point we consider the design from a different perspective to that taken in the pre-
vious iteration. If we think in more general terms about the objects that populate the
design then there is a good chance of success. For example, the Library can be viewed
as a lender that just happens to lend Books and Journals. Perhaps in the future it will
lend other items such as compact discs or videos. We may even have other kinds of
lenders, e.g. a car hire company or a video shop.

This train of thought leads us to introduce an interface LenderIF. Our intention is
that it should specify the essence of what it is to be a lender, not just a Library. Similarly
an interface LoanItemIF specifies what it is to be a loan item, not just a Book or
Journal.

This may appear to be a small change but it is extremely significant. Anticipating the
design that follows, we intend that any class that implements LenderIF can be viewed
as a lender. We are not restricted to the Library class. Similarly any class that imple-
ments LoanItemIF can be viewed as a loan item. Again we are not restricted to a single
class such as Book. This gives us the element of flexibility we desire.

6.3.3 Design

It might seem sensible to implement LenderIF and LoanItemIF with problem domain-
specific objects such as the Library, Book and Journal. However, we take a different
approach and try to stay more general in our thinking. Therefore we implement each
interface with an abstract class. The first is LenderImp that implements LenderIF and
the second is LoanItemImp that implements LoanItemIF.

There is a zero-to-many aggregation relationship between a lender and loan items
inferred from the system specification. This means that we can establish an initial archi-
tectural framework as shown in figure 6.7.

Notice that the Library, Publication, Book and Journal classes are absent. It is a
general framework that can be applied to any lender or loan item. Our intention is to
specialize the LenderImp and LoanItemImp classes when we need to “instantiate” a
particular application. For example, the Library class is a specialization of LenderImp
and Publication is a specialization of LoanItemImp in this case study. Figure 6.8 illus-
trates the relationships between the interfaces and classes concerned.

182 Object-Oriented Design with UML and Java

Chapter 6: Case Study: The Library Application Revisited 183

«interface»
LoanItemIF

«abstract»
LoanItemImp

«abstract»
LenderImp

«interface»
LenderIF

-theLoanStock

{java.util.Collection} 0..*

Figure 6.7 An initial architectural framework

It is important to realize that the problem domain-specific Library and Publication
classes have no responsibility for the architecture. This is all taken care of by the
abstract classes of the framework. It is this fact that goes a long way towards giving
us the resilience to change that we desire.

To complete this part of the design we focus on the BorrowerRecord class intro-
duced in chapter 4. The approach used for lenders and loan items leads us to a
BorrowerRecordIF interface implemented by an abstract BorrowerRecordImp
class. We infer aggregation relations between the BorrowerRecordImp, LenderImp
and LoanItemImp classes from the system specification.

«interface»
LoanItemIF

«abstract»
LoanItemImp

«abstract»
LenderImp

«interface»
LenderIF

-theLoanStock

{java.util.Collection} 0..*

«abstract»
Publication

Library

JournalBook

Figure 6.8 An “instantiation” of the initial framework

A suitably modified architectural framework and its “instantiation” is shown in
figures 6.9(a) and 6.9(b).

184 Object-Oriented Design with UML and Java

«interface»
LoanItemIF

«abstract»
LenderImp

«interface»
BorrowerRecordIF

«interface»
LenderIF

-theLoanStock

0..*
{java.util.Collection}

«abstract»
LoanItemImp

«abstract»
BorrowerRecordImp

{java.util.Collection}
0..*

{java.util.Collection}
0..*

-theBorrower

-theBorrowers

0..1
-theBorrowedLoanItems

Figure 6.9(a) The final architectural framework

«interface»
LoanItemIF

«abstract»
LenderImp

«interface»
BorrowerRecordIF

«interface»
LenderIF

-theLoanStock

0..*
{java.util.Collection}

«abstract»
LoanItemImp

«abstract»
BorrowerRecordImp

{java.util.Collection}
0..*

{java.util.Collection}
0..*

-theBorrower

-theBorrowers

JournalBook

BorrowerRecord
«abstract»
Publication

-theBorrowedLoanItems

Library

Figure 6.9(b) An “instantiation” of the final architectural framework

Although it may appear rather complex at first sight, it is in fact quite straightforward.
Essentially it consists of three layers. The top layer has the interfaces that specify the min-
imum behaviour that any lender, loan item or borrower record must have. The middle
layer implements the architectural relationships that exist between them. Finally, the bot-
tom layer has the problem domain-specific objects that populate our design.

6.3.4 Implementation

Clearly the new design affects the manner in which we implement the final system. One
approach is to implement the first two layers to produce a framework that can be reused
in subsequent iterations. In keeping with our decision to partition code into Java pack-
ages, it seems sensible to locate them in a package named loansubsystem.

The implementation of the bottom layer can be treated as a separate activity. As before
we can locate the objects developed in a librarysubsystem package. Our intention is that
it will make use of the interfaces and abstract classes exported by the loansubsystem
package. The relationship between the two packages is shown in figure 6.10.

Chapter 6: Case Study: The Library Application Revisited 185

librarysubsystem loansubsystem
Features

+Library
%BorrowerRecord
%Publication
+Journal
+Book
+DateIF
+DateImp

Features

+BorrowerRecordIF
+BorrowerRecordImp
+LenderIF
+LenderImp
+LoanItemIF
+LoanItemImp

The Library class specializes the LenderImp class.
The BorrowerRecord class specializes the
 BorrowerRecordImp class
The Publication class specializes the LoanItemImp class.

loansubsystem

Figure 6.10 A package-view of the system

6.3.4.1 Architectural framework code

During this activity we establish the detailed nature of the three interfaces LenderIF,
LoanItemIF and BorrowerRecordIF. After some thought, and using our previous expe-
riences, we conclude that a lender must be able to:

• register a borrower

• add a loan item

• record the loan and return of a loan item

• provide a means of displaying its borrowers and loan items

• provide a textual representation for display purposes and

• provide status information

Translating this into Java we have:

package loansubsystem;

public interface LenderIF {

// ----- Operations ----------
public abstract void registerOneBorrower(String aBorrowerName);
public abstract void addOneLoanItem(LoanItemIF aLoanItem);
public abstract void lendOneLoanItem(int aCatalogueNumber,

String aBorrowerName);
public abstract void returnOneLoanItem(int aCatalogueNumber);
public abstract Iterator getBorrowersIterator();
public abstract Iterator getLoanItemsIterator();
public abstract String toString();
public abstract String getStatus();

} // interface: LenderIF

Similarly a loan item must be able to:

• attach and detach a borrower

• provide its catalogue number

• provide its borrower and its borrower name

• provide a textual representation for display purposes

These requirements map to:

package loansubsystem;

public interface LoanItemIF {

// ----- Operations ----------
public abstract void attachBorrower(BorrowerRecordIF aBorrower);
public abstract void detachBorrower();
public abstract int getCatalogueNumber();
public abstract BorrowerRecordIF getBorrower();
public abstract String getBorrowerName();
public abstract String toString();

} // interface: LoanItemIF

Finally, a borrower record must be able to:

• attach and detach a loan item

• provide its name

• provide a means of displaying its loan items and

• provide a textual representation for display purposes

186 Object-Oriented Design with UML and Java

giving:

package loansubsystem;

public interface BorrowerRecordIF {

// ----- Operations ----------
public abstract void attachLoanItem(LoanItemIF aLoanItem);
public abstract void detachLoanItem(LoanItemIF aLoanItem);
public abstract Iterator getLoanItemsIterator();
public abstract String getName();
public abstract String toString();

} // interface: BorrowerRecordIF

If we now focus on the second layer of the design then we implement each
interface with a corresponding abstract class. They are of course located in the
loansubsystem package.

As might be expected, the code for the LoanItemImp class that implements
LoanItemIF is taken more or less directly from code previously developed for the
Publication class of the previous iteration. The major difference is that formal parame-
ters and some attributes are interface and not class declarations. This gives us the flexi-
bility to refer to any object whose class implements the corresponding interface.

An outline of the LoanItemImp class is:

package loansubsystem;

public abstract class LoanItemImp implements Comparable, LoanItemIF {

// ----- Operations ----------
public LoanItemImp(int aCatalogueNumber) {

theCatalogueNumber = aCatalogueNumber;
theBorrower = null;

} // method: LoanItemImp

public final void attachBorrower(loansubsystem.BorrowerRecordIF aBorrower) {
theBorrower = (BorrowerRecordImp) aBorrower;

} // method: attachBorrower

public final void detachBorrower() {
theBorrower = null;

} // method: detachBorrower

public final loansubsystem.BorrowerRecordIF getBorrower() {
return theBorrower;

} // method: getBorrower

public String toString() {
return String.valueOf(theCatalogueNumber) + “ : ”;

} // method: toString

// getCatalogueNumber, equals, compareTo and hashCode are as in
// previous versions except that in method compareTo the cast is to a
// LoanItemIF not a Book or Publication.

// ...

Chapter 6: Case Study: The Library Application Revisited 187

// ----- Attributes ----------
private final int theCatalogueNumber;

// ----- Relations ----------
private BorrowerRecordImp theBorrower;

} // class: LoanItemImp

Notice how we have imposed the requirement that all loan items must have a catalogue
number represented as an int. It acts as the basis for any comparisons that are made in
the equals, compareTo and hashCode methods. Also we control the redefinition of a
method in a subclass by including or omitting the final qualifier.

Similarly, the code for the BorrowerRecordImp class is based on the
BorrowerRecord class of iteration 1. Its outline is:

package loansubsystem;

import java.util.*;

public abstract class BorrowerRecordImp implements Comparable, BorrowerRecordIF {

// ----- Operations ----------
public BorrowerRecordImp(String aName) {

theName = aName;
theBorrowedLoanItems = new LinkedList();

} // method: BorrowerRecordImp

public final void attachLoanItem(loansubsystem.LoanItemIF aLoanItem) {
aLoanItem.attachBorrower(this);
theBorrowedLoanItems.add(aLoanItem);

} // method: attachLoanItem

public final void detachLoanItem(loansubsystem.LoanItemIF aLoanItem) {
theBorrowedLoanItems.remove(aLoanItem);
aLoanItem.detachBorrower();

} // method: detachLoanItem

public String toString() {
int borrowedItemsCount = theBorrowedLoanItems.size();
return theName + “ : ” + borrowedItemsCount + “ loan item(s)”;

} // method: toString

// getName, getBorrowedLoanItemsIteratorequals, compareTo and hashCode are as in
// previous versions except that in method compareTo the cast is to a
// BorrowerRecordIF not a BorrowerRecord.

// ...

// ----- Attributes ----------
private String theName;

// ----- Relations ----------
private java.util.Collection theBorrowedLoanItems; // of LoanItemImp

} // class: BorrowerRecordImp

188 Object-Oriented Design with UML and Java

As with the LoanItemImp class, notice that we have imposed the requirement that all
borrower records must have a name represented as a String. It is used for all compar-
isons of borrower records.

When it comes to the LenderImp class we use the Library class of iteration 1
as our guide. Virtually all of the code that results is the same except that there are
appropriate interface and not class declarations. For example, in the method for
addOneLoanItem we have:

// class LenderImp
public final void addOneLoanItem(LoanItemIF aLoanItem) {

int aCatalogueNumber = aLoanItem.getCatalogueNumber();
LoanItemIF foundLoanItem = this.getLoanItem(aCatalogueNumber);
// ...

} // method: LenderImp

Notice that getLoanItem returns a reference to a LoanItemIF. This means that no matter
what class of object it actually refers to we know that it must conform to the LoanItemIF
interface. Therefore we can send it the message getCatalogueNumber later in the method
body. Many other examples of this approach are to be found in the code for this iteration.

An important point to understand is that when a reference to an interface is declared,
only messages corresponding to operations advertised by that interface can be sent
through that reference. Even though the class of the object referenced advertises other
operations, messages corresponding to them cannot be sent.

We can use this fact to our advantage by treating an object of some arbitrary class as
one that conforms to a specific interface. No matter what class it belongs to, we know a
subset of its operations that can be used, i.e. those advertised by the interface. In a sense
we view it as an interface object not an object of the class it actually belongs to. This
allows us to write code that is generally applicable.

When implementing the LenderImp class, the only real problem lies in the method
for registerOneBorrower. The difficulty is that it has the responsibility for creating
each borrower record the lender holds. Unfortunately it cannot do so as it has no knowl-
edge of what class the borrower record actually belongs to. The reason is that it is prob-
lem domain-specific. One solution is to defer this decision by introducing an abstract

operation createBorrower declared as:

// class LenderImp
private abstract BorrowerRecordIF createBorrower(String aBorrowerName);

The intention is that some concrete subclass (Library) with the knowledge of what class
the borrower record belongs to (BorrowerRecord) actually implements this operation.
We can then make use of it in registerOneBorrower as follows:

// class LenderImp
public final void registerOneBorrower(String aBorrowerName) {

BorrowerRecordIF foundRecord = this.getBorrowerRecord(aBorrowerName);
//
if(foundRecord == null) {

BorrowerRecordIF borrowerRecord = this.createBorrower(aBorrowerName);

Chapter 6: Case Study: The Library Application Revisited 189

boolean result = theBorrowers.add(borrowerRecord);
// ...

} // method: registerOneBorrower

We have achieved the apparently impossible by creating an object without knowing
what class it belongs to! This is because createBorrower returns a reference to an
object that implements BorrowerRecordIF. It does not matter that its method is to be
found in a subclass of LenderImp not LenderImp itself.

This subtle solution to a difficult problem is an example of a design pattern. In fact
the method registerOneBorrower is a Template Method design pattern that uses a
Factory Method design pattern createBorrower. Chapter 8 expands upon this impor-
tant field of study.

Full listings of the interfaces and classes developed in this section are to be found
with the supplied software (model Lib6_2.uml).

6.3.4.2 Problem domain code

Having established a reusable architectural framework we can now focus on those
classes that are specific to the problem domain. They are the classes Publication,
Book, Journal, Library and BorrowerRecord previously identified. All being well, we
should find their implementation is quite straightforward.

Starting with the BorrowerRecord class we discover that there is no work to do! All
that is required is to specialize the abstract class BorrowerRecordImp then imple-
ment a constructor using superclass methods. The resulting code is as follows:

package librarysubsystem;

import loansubsystem.*;

public class BorrowerRecord extends BorrowerRecordImp {

// ----- Operations ----------
public BorrowerRecord(String aBorrowerName) {

super(aBorrowerName);
}

} // class: BorrowerRecord

In keeping with our earlier decision the code is located in the librarysubsystem package.
For the Library class we intend giving it a name. This leads to a parameterized and

default constructor that initialize the name attribute. We must also redefine toString to
reflect the fact that a Library has a name. All that remains is to define the method for
createBorrower inherited from the superclass BorrowerRecordImp by creating a
BorrowerRecord. The code for the Library class is:

package librarysubsystem;

import loansubsystem.*;

public final class Library extends LenderImp {

// ----- Operations ----------
public Library(String aName) {

super();

190 Object-Oriented Design with UML and Java

theName = aName;
}

public Library() {
this(“”);

}

public BorrowerRecordIF createBorrowerRecord(String aBorrowerName) {
return new BorrowerRecord(aBorrowerName);

}

public String toString() {
return theName + “ : ” + super.toString();

}

// ----- Attributes ----------
private String theName;

} // class Library

Finally we have the Publication class hierarchy. Again it does not present any major
difficulties. We concern ourselves only with the characteristics of Publications, Books
and Journals. The fact that they are loan items is irrelevant. This has all been taken care
of by the architectural framework.

The role of the Publication class is to act as a common protocol for all of its descen-
dants. It also has the title and catalogue number attributes common to all Publications.
As no instances of it are required it is qualified as abstract and has package scope
only. There is a default and a parameterized constructor to initialize attributes. However,
they are protected to avoid the possibility of misuse by classes that are not descen-
dants. We also redefine toString from the superclass LoanItemImp and allow it to be
redefined by descendants. The resulting code for the Publication class is:

package librarysubsystem;

import loansubsystem.*;

abstract class Publication extends LoanItemImp {

// ----- Operations ----------
protected Publication(String aTitle, int aCatalogueNumber) {

super(aCatalogueNumber);
theTitle = aTitle;

}

protected Publication() {
this(“”, 0);

}
public String toString() {

return super.toString() + theTitle;
}

// ----- Attributes ----------
private String theTitle;

} // class Publication

Chapter 6: Case Study: The Library Application Revisited 191

The concrete class Book is a specialization of the abstract Publication class and is
available outside the package. It has one additional attribute, initialized by default and
parameterized constructors, that represents the author of a Book. The redefined method
for toString reflects this additional attribute. The code for the Book class is:

package librarysubsystem;

public final class Book extends Publication {

// ----- Operations ----------
public Book(String aTitle, int aCatalogueNumber, String anAuthor) {

super(aTitle, aCatalogueNumber);
theAuthor = anAuthor;

}

public Book() {
this(“”,0, “”);

}

public String toString() {
return super.toString() + “ by ” + theAuthor;

}

// ----- Attributes ----------
private String theAuthor;

} // class Book

Notice just how brief the code is even though a Book can be loaned, borrowed, dis-
played and held in a collection.

The concrete class Journal is very similar to Book. The only real difference is that it
has two additional attributes. The first is the editor and the second the date of publica-
tion. This gives the following code for the Journal class:

package librarysubsystem;

public class Journal extends Publication {

// ----- Operations ----------
public Journal(String aTitle, int aCatalogueNumber, String anEditor,

DateIF aDateOfPublication)
{

super(aTitle, aCatalogueNumber);
theEditor = anEditor;
theDateOfPublication = aDateOfPublication;

}
public Journal() {

this(“”, 0, “”, new DateImp(1,1,2002));
}

public String toString() {
return super.toString() + “ edited by ” + theEditor + “ on ” + theDateOfPublication;

}

192 Object-Oriented Design with UML and Java

// ----- Attributes ----------
private String theEditor;
private DateIF theDateOfPublication;

}

As with iteration 1, we have used the DateIF interface and DateImp class discussed in
chapter 5 for the date of publication of a Journal. The Action and Application classes
from the previous iteration are unchanged. Full listings of the classes developed in this
section are to be found with the supplied software (model Lib6_2.uml).

6.3.4.3 Testing

During this activity there is no need to introduce any new tests as there are no new
requirements. However, it is vital that all of the tests conducted in the previous iteration
give exactly the same results. This is in fact the case.

6.3.5 Reconcile model diagrams

As with the previous iteration there are no explicit actions that need be taken. However,
it is worth noting that Java code is also part of the documentation for the system. In fact
there is a school of thought (Agile Programming) that concludes that it is the most
important documentation we have. Therefore it is important to consider this when
taking part in this activity. For example, we make extensive use of javadoc comments
(see http://java.sun.com/j2se/javadoc).

6.3.6 A review of iteration 2

The aim of this iteration is to make the design more general and resilient to change by
using the full power of the object-oriented paradigm. It is hard to look into the future!
However, to help us decide just how successful we have been, we can explore some
requirements that we anticipate will arise.

First of all, it is probable that different kinds of Publication will be introduced. For
example, there may be Ordinance Survey maps held by the Library. This presents no
real problem as all we have to do is to introduce an OSMap class as a specialization of
Publication. Figure 6.11 illustrates.

Similarly if there is a requirement to specialize the Book or Journal classes then the
impact on the design would be much the same. Better still, exactly the same conclusions
would apply to the specialization of the Library or BorrowerRecord classes.

The ease with which we are able to cope with this type of change lies in the fact that
the classes we introduce are treated as examples of a superclass, e.g. a Publication. It
makes no difference that they belong to a subclass. The polymorphic effect permits
messages sent through a superclass reference to be received by a subclass object.

It is also likely that there may be loan items that are not publications. For example,
we might have compact disks. Again this requirement presents no real difficulty. We

Chapter 6: Case Study: The Library Application Revisited 193

might introduce an abstract class Recording analogous to the Publication class. It
would in turn be specialized into a CompactDisk class just as the Book class was spe-
cialized from Publication. Figure 6.12 illustrates a modified LoanItemImp hierarchy.

194 Object-Oriented Design with UML and Java

OSMap
Attributes

Journal
Attributes

Book
Attributes

«abstract»
Publication

Attributes

Operations

-theRegion

-theMapNumber

+toString

+OSMap

-theEditor

-theDateOfPublication

+toString

+Journal

-theAuthor

+toString

+Book

+toString

+Publication

-theTitle

-theCatalogueNumber

Operations Operations

Operations

Figure 6.11 A modified Publication hierarchy

«abstract»
LoanItemImp

Book

«abstract»
Publication

Journal

«abstract»
Recording

CompactDisk

Figure 6.12 A modified LoanItemImp hierarchy

The reason why this kind of change is so straightforward is that the Recording class
specializes LoanItemImp. The framework code references all loan items as
LoanItemImps and so it makes no difference to what subclass they actually belong. As

with the previous change it is the polymorphic effect at work. Specializations of
LenderImp and BorrowerRecordImp would have a similar minimal impact on the
design.

One serious difficulty that might arise is that the Recording class may already be a
specialization of some other class. For example, it might be a kind of MusicItem. As
Java does not support multiple inheritance we cannot specialize it from LoanItemImp.
As this is the kind of problem that will inevitably occur again it is best to find a gener-
ally applicable solution.

We can introduce a LoanItemImpAdapter class that is a specialization of
LoanItemImp. Our intention is that it should act as a replacement for the Recording (or
indeed the Publication) class. As it does not implement any methods it is abstract. All
it does is to relay messages to an aggregate component instead. In fact the only message
of interest corresponds to the toString operation used in displays by the Action class. (In
more realistic examples there would of course be many more operations.) Therefore we
introduce an interface DisplayIF that advertises toString. Any aggregate component of
the LoanItemImpAdapter must implement it.

Figure 6.13 shows the changes introduced into the revised architecture. They have no
effect on the rest of the design. Essentially we can choose to use the adapter or not as
circumstances dictate.

Chapter 6: Case Study: The Library Application Revisited 195

«abstract»
Recording

CompactDisk

theAdaptee might be initialized by a constructor as in:
 LoanItemAdapter(DisplayIF anAdaptee) {
 theAdaptee = anAdaptee;
 }
The method toString is:
 public String toString() { return theAdaptee.toString)(); }

«abstract»
LoanItemImp

«abstract»
MusicItem

«interface»
DisplayIF

Operations

+toString

«abstract»
LoanItemAdapter

-theAdaptee

Figure 6.13 Part of a revised architecture using an adapter

The approach is known as the Adapter design pattern and it is applicable to other
parts of the design should it prove to be necessary. It is discussed in more detail in
chapter 8.

Consider what happens if there is a requirement to display only the books available
for loan. The problem is that we have decided that a book is just a publication that we
view as a loan item. It might be a book, journal or even a compact disk. The crucial
point is we do not distinguish between them. Clearly books and journals are the same or
they are different: they cannot be both. Therefore whatever we do is going to be a com-
promise unless we radically change our design.

One pragmatic solution is to discover the class of each loan item in the library and
then take the appropriate action. Typical code that uses this approach is:

Iterator iter = theLibrary.getLoanItemsIterator();

while(iter.hasNext()) {
LoanItemIF loanItem = (LoanItemIF) iter.next();
// ...
if(loanItem.getBorrower() == null) {

String name = loanItem.getClass().getName();
if(name.equals(“Book”)) {

// Display this loan item
}
// ...

}
}
// ...

We might also have considered using the instanceof operator in place of the method
calls getClass and getName. However, we prefer the latter as they give the true type
of the loan item. The statement:

String name = loanItem.getClass().getName();

uses the method getClass (defined in Object) to return a Class object produced by the
compiler. It is interrogated by getName (defined in Class) for the String that is the
class name. It is then compared with the class name that interests us with:

if(name.equals(“Book”)) ...

and the appropriate action taken. In this case we display the loan item, which is now
known to be a Book. In other words we have abandoned the polymorphic effect tem-
porarily. Clearly this approach should be used with caution as we must populate our
code with statements to identify classes by name. Apart from being against the spirit of
object orientation, it could easily lead to difficulties during maintenance.

If it turns out that this approach is not suitable then the conclusion is that this archi-
tectural framework cannot be used in its current form. This is not really the fault of the

196 Object-Oriented Design with UML and Java

designers, as one of the assumptions they made (loan items are treated uniformly) is no
longer valid. The solution is to learn from this experience and if possible redesign the
framework to accommodate this type of change. For example, the LenderImp class
might have a collection of collections each of which holds a particular kind of loan
item. However, this is for future iterations. On balance we consider this iteration to be
successful.

6.4 Iteration 3

In all the previous versions of the library application we have supported a rudimentary
mechanism whereby we could load the initial library stock with details read from a file.
The stock details could then be augmented by additional books and journals but this
new information was not reflected back to the data file. This version of the library
application is given support for making its data persist. A persistence mechanism pro-
vides data storage between separate executions of an application. A number of strat-
egies are available to us, from simple interfaces that persistent class objects must
implement, to complex schemes integrated into database technologies. In this chapter
we consider the serialization mechanism supported by Java.

A shortened lifecycle that finishes at the implementation of persistence to the appli-
cation is applied.

6.4.1 Establish use-cases

As there are no new requirements for this iteration there is no need to develop a new
use-case diagram. However, we add explicit start-up and close-down use-cases to the
one shown in figure 6.2. A suitable note attached to each helps clarify their purpose.
Figure 6.14 illustrates.

Chapter 6: Case Study: The Library Application Revisited 197

System start-up

System close-down

Read persistent data from
a file

Write persistent data
to a file

●

●

●

Figure 6.14 A modified use-case diagram: iteration 3

6.4.2 Analysis

Object serialization is a mechanism for saving the state of an object as a byte sequence
in a disk file. The serialization mechanism supports re-creation of the Java object from
this persistent file store. Thus separate activations of an application can retain an image
of its objects.

To persist an object in Java the object’s class must implement the Serializable inter-
face. This is a tagging interface with no features and simply indicates that objects of
that class can persist. A class diagram in which the Book class from chapter 4 is made
persistent is shown in figure 6.15.

198 Object-Oriented Design with UML and Java

«interface»
Serializable

Book

Figure 6.15 Implementing the Serializable interface

If the Book class extends the Publication class as in this chapter, and all Publications
are to be made persistent, then we arrange for the abstract class Publication to imple-
ment the Serializable interface. This means that the Book and Journal classes remain
unchanged.

For simplicity, if we focus on just the Book class then we have:

import java.io.*;
// ...
public final class Book implements Comparable, java.io.Serializable {

// All features are unchanged from the case study of chapter 4

} // class: Book

To persist a Book object we use the ObjectOutputStream class. An
ObjectOutputStream object is wrapped around a byte stream object of the class
FileOutputStream to persist the object’s byte sequence. This is an example of the dec-
orator pattern described in chapter 8. The following code illustrates how this approach
operates to persist a single Book object. Other than opening and closing the persistent
file, we need only execute the method writeObject defined in ObjectOutputStream.

public class MainSave {

// ----- Operations ----------
public static void main(String[] args) {

Book bk = new Book(...); // make a Book object

//
try {

FileOutputStream fos = new FileOutputStream(“Book.ser”); // open persistent file
ObjectOutputStream oos = new ObjectOutputStream(fos); // wrap with decorator
oos.writeObject(bk); // now save instance
oos.close(); // close persistent file

} catch(IOException ex) {
// report error
}

} // method: main

} // class: MainSave

Restoring the object during a subsequent execution of the application is equally simple.
The readObject method call from the ObjectInputStream class is all we require. Since
this method is used to restore any serialized object, then we must cast it to the correct type.
We then have a Book object containing the same state information as the original.

public class MainLoad {

// ----- Operations ----------
public static void main(String[] args) {

try {
FileInputStream fis = new FileInputStream(“Book.ser”); // open persistent file
ObjectInputStream ois = new ObjectInputStream(fis); // wrap with decorator
Book bk = (Book)ois.readObject(); // restore the instance
ois.close(); // close persistent file
Console.out.println(“Title: ” + bk.getTitle()); // confirm all is ok

} catch(IOException ex) {
// report error

} catch(ClassNotFoundException ex) {
// report error

}
} // method: main

} // class: MainLoad

We should note that when we serialize an object then not only that object’s state is
made to persist, but also all persistent objects referenced by it. Thus if our model is a
Library object with its stock comprising many Book objects, then when we persist the
Library object then so too do all the associated Book objects. Similarly, when we
restore the single Library object, as in the second illustration above, then the Book
objects are also restored as the library stock.

6.4.3 Design

Applying this revision to iteration 2 of this case study is relatively straight-forward.
First, we arrange that the classes LoanItemImp, LenderImp and BorrowerRecordImp

Chapter 6: Case Study: The Library Application Revisited 199

implement the Serializable interface so that their objects may persist. We must do the
same to the DateImp class in the librarysubsystem package. Figure 6.16 illustrates.
The only other changes are made to the Action class as described in section that
follows.

200 Object-Oriented Design with UML and Java

«abstract»
LoanItemImp

«abstract»
BorrowerRecordImp

-theBorrower

«abstract»
BorrowerRecordIF

«interface»
LoanItemIF

{loansubsystem.BorrowerRecordIFmatching}

{java.util.Collection} 0..*

«abstract»
LenderImp

«interface»
Serializable

«interface»
LenderIF

0..* {java.util.Collection}

0..* -theBorroweditems

-theBorrowers

{java.util.Collection}

theLoanStock

Figure 6.16 Serialization

Observe how in this class diagram all the implementation classes have been made to
implement the Serializable interface. We might have considered having all the inter-
face classes extend from Serializable. The implication of this latter choice is that
all implementations must persist. It may be that in some circumstances this is not
appropriate.

6.4.4 Implementation

Again there is relatively little work to do in this activity. The only significant change is
made to the Action class as shown below. Specifically, we arrange that at program
close-down the application’s state is written as serialized data to the persistent file store.
At program start-up we recover this state by reading the same file. Respectively, we cap-
ture this in the close method and in the constructor to the Action class.

package librarysubsystem;

import java.io.*;
import textio.*;
import java.util.*;

public class Action {

// ----- Operations ----------
public Action(String aLibraryName) {

//
// Restore the persistent application objects, if any
File file = new File(PERSISTENT_FILENAME);

if(file.exists()) {
try {

FileInputStream fis = new FileInputStream(PERSISTENT_FILENAME);
ObjectInputStream ois = new ObjectInputStream(fis);
theLibrary = (Library)ois.readObject();
ois.close();

} catch(IOException ex) {
System.out.println(“Error reading persistent store”);

} catch(ClassNotFoundException ex) {
System.out.println(“Error restoring persistent application objects”);

}
} else

theLibrary = new Library(aLibraryName);
} // method: Action

public void close() {
//
// Save the persistent application objects
try {

FileOutputStream fos = new FileOutputStream(PERSISTENT_FILENAME);
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(theLibrary);
oos.close();

} catch(FileNotFoundException ex) {
System.out.println(“Cannot create persistent file store”);

} catch(IOException ex) {
System.out.println(“Error writing to persistent file store”);

}
ConsoleIO.out.println(“\n\t” + “SYSTEM CLOSING” + “\n”);

} // method: close

// ...

// ----- Attributes ----------
private static final String PERSISTENT_FILENAME = “Library.ser”;

// ----- Relations ----------
private Library theLibrary;

} // class: Action

Full listings for this iteration can be found in the software provided under Lib6_3.uml.

6.4.5 Testing

As with the previous iteration we do not engage in extensive testing during this activity.
All that is required is to demonstrate that the software behaves in the same manner as
iteration 1 and that it supports persistence. This is indeed the case therefore we consider
the aim of this iteration to have been met.

Chapter 6: Case Study: The Library Application Revisited 201

6.5 Summary

1. Scenarios represent different paths through a use-case. Scenarios have basic and
alternate flow of events through a use-case.

2. Use-cases can have include relationships and extend relationships. They simplify
use-cases by sharing some common functionality.

3. Specialization and the use of the polymorphic effect can radically simplify our
designs and implementation code. The code is expressed in terms of abstract

superclasses rather than specific concrete classes.
4. The full power of the object-oriented paradigm lets our designs accommodate new

requirements without the necessity for substantial changes.
5. The full power of the object-oriented paradigm includes class specialization, object

substitution, the polymorphic effect and designs expressed in terms of interfaces.
6. An architectural framework is a general solution that can be instantiated for a par-

ticular domain-specific application.
7. A persistence mechanism provides data storage between separate executions of an

application. Object serialization in Java is a mechanism for saving the state of an
object as a byte sequence and from which the object’s state can be restored.

6.6 Exercises

1. Develop documentation for the “Display publications on loan” and “Return one
publication” use-cases. The “Add one book” use-case discussed in section 6.2.1
should act as a guide.

2. Develop test-cases for the “Display publications on loan” and “Return one publica-
tion” use-cases. The “Add one book” test-case discussed in section 6.2.1 should act
as a guide.

3. In the Action class from iteration 1 (model Lib6_1.uml) the methods
displayPublicationsAvailableForLoan and displayPublicationsOnLoan need to
determine if a publication is on loan to a borrower. Introduce a method isOnLoan
for this purpose:

// class Publication
...boolean isOnLoan() { ... }

4. Use examples from this chapter to illustrate the value of final methods and final

classes.
5. What changes would be made to the analysis and design of iteration 1 if there were

several different kinds of borrower? For example, there might be a limit on the num-
ber of publications that can be borrowed by a borrower. Perhaps some borrowers
have privileged borrowing rights that permit them to borrow more publications. A
similar situation might apply to the length of time that a publication can be bor-
rowed for without incurring a fine.

6. Consider the impact on the analysis and design of iteration 1 if there were a require-
ment that some borrowers can borrow books and journals but others can only bor-
row books.

202 Object-Oriented Design with UML and Java

7. We have not shown an archiectural relationship between two interface classes.
Explain why and suggest an alternative. See, for example, theBorrower relation of
the class LoanItemImp of section 6.3.4.1.

8. (a) Using the class diagram of figure 6.5 as your guide, extend iteration 1 (model
Lib6_1.uml) by introducing music CDs as loan items. You can assume that
each CD is given a catalogue number, a title and the name of the artist.

(b) Now extend iteration 2 (model Lib6_2.uml) using the class diagram of
figure 6.12 as your guide.

(c) Discuss the benefits of each approach.
9. (a) In the second iteration (model Lib6_2.uml) a framework was established to

represent a lender of arbitrary loan items supplied to arbitrary borrowers. Use
this framework to create an application in which a company hires cars and light
vans to registered borrowers. You can assume that the hire company has several
cars and light vans each of which have a unique registration number. They are
hired out to registered customers each of whom has a unique name. Cars and
light vans have a model name and a year of registration. However cars also have
an engine capacity and light vans their maximum load capacity.

(b) Comment on the difficulty this exercise. Does it justify building the framework
in the first place?

10. (a) Revisit exercise 8 and using the third iteration (model Lib6_3.uml) as your
starting point, introduce a LoanItemAdapter class as shown in figure 6.13.

(b) Discuss the benefits of this approach as compared to those taken in exercise 8.
(c) Use your solution to illustrate the benefits of Java’s serialization capability.

Chapter 6: Case Study: The Library Application Revisited 203

This Page Intentionally Left Blank

Graphical User Interfaces

The final version of the library case study from chapter 4 and in subsequent chapters
introduced the class Action to separate the concerns of user interaction from the other
application classes. This separation permits us to offer various user interfaces without
disrupting the domain model. In this chapter we evolve the library application from a
system driven from the command line to one that uses a graphical interface.

In this chapter we also meet some new OO features, details of which are given in later
chapters. Some are simple extensions to our existing Java knowledge and are easily
assimilated. Some we have now detailed, such as class specialization, and the reader is
invited to revisit the latter parts of the preceding two chapters. This chapter is not a defini-
tive guide to the Swing library as it is a very large topic and is beyond the scope of this
book. The reader is directed to the references Elliott (2002) and Topley (1999).

Throughout this chapter emphasis is given to the design of our library application,
both as it presently exists and as we make the necessary revisions. Further, we also con-
sider the architectural design of the Java Swing library to gain a better understanding of
how to deploy it. The Swing library also serves as an illustration of an industrial strength
framework building on the discussions from the previous chapter.

7.1 Overview of Swing

A graphical Java application is developed using the Swing class library. This is a large
and complex library consisting of over 300 classes and interfaces. The software engin-
eers that developed it made full use of leading edge technologies such as design pat-
terns, and this further complicates its usage. A design pattern is a recognized solution
for a particular type of problem. In this chapter we will have some direct and indirect
contact with these patterns and present sufficient material to understand and exploit
them. A full discussion is, however, reserved until the next chapter.

Many classes in the Swing library represent the familiar components that appear in a
graphical application. These include buttons, menus, text fields, etc. For example, figure
7.23 is an application dialog with three labelled text fields at the top and two buttons at the
foot. The user is expected to enter information into the text fields then select the button to
accept or cancel the action. Much of our work in this chapter either involves specializing
a component class to give it application-specific features, or associating a handler object
with it so that some action is taken when, for example, a button is pressed or a menu item
selected. This makes the learning curve a little less steep than it might first appear.

7

205

Obviously, we will not meet all the classes in the Swing library. However, the overall
architecture of the library means there is a significant amount of similarity between the
Swing components. Hence the illustrations presented can be the foundations for further
study.

The similarity between the Swing components arises from the extensive use of spe-
cialization. Many components are specializations of the JComponent class. This
abstract class carries most of the common behaviour associated with graphical com-
ponents. For example, this class defines whether a component is visible, and if so renders
itself on to the screen. Most components are rendered as a member of some other com-
ponent referred to as its parent as in a whole/part relationship described in the preceding
chapters. Note this is not to be confused with a parent/child relationship as found in spe-
cialization. For example, a button component may appear on a parent dialog component.
The JComponent class implements the notion of aggregate subcomponents with the
aggregate as the parent. The JComponent class also defines the location of a compon-
ent, and is usually in terms of its position relative to the parent component.

The JComponent class is then the root of a specialization hierarchy that extends to
various concrete components that might be used in a graphical application. For example,
a dialog may have a text field into which the user enters some value. The class
JTextField represents such a component. Alongside the field there may be a simple
label documenting the purpose of the text field. A label is obtained using the class
JLabel that is an immediate descendant of JComponent (see figure 7.1).

206 Object-Oriented Design with UML and Java

«abstract»
JTextComponent

«abstract»
JComponent

JTextField

JLabel

Figure 7.1 Class hierarchy for JLabel and JTextField

Most of the other graphic components are developed in this manner, specializing
directly (as for JLabel) or indirectly through other abstract classes (as is the case
for the class JTextField). The following table lists some of the components we
introduce.

Component Description

JButton An implementation of a “push” button. Buttons can be decorated with
text or a graphic icon.

JFrame A JFrame is a top-level window with a captioned title and a border.
A frame is used to represent the application.

JLabel A JLabel is a display area for a short length text string. Labels are
often used alongside input text areas to document their purpose.

JMenuBar A JMenuBar represents a menu-bar as might appear at the top of a
frame.

JPanel A JPanel is a general-purpose container frequently used to group
other components.

JTextArea A JTextArea is a multi-line area for presenting plain text.
JTextField A JTextField is a component that permits the editing of a single

line of text.

Since the Swing class JComponent extends (is a specialization of) the class
Container (see figure 7.2), Swing components can act as containers for other Swing
components. These subcomponents are the child components (the parts) of their parent
component (the whole) and are included in a parent using the method add from the
class Container. The relative position of a child within a parent is determined by a lay-
out manager (see later) associated with the parent container.

Chapter 7: Graphical User Interfaces 207

«abstract»
JComponent

Container «abstract»
LayoutManager

-layoutMgr

1

Figure 7.2 The Container class hierarchy

7.2 Rebuilding the library case study

This chapter emphasizes the iterative style of development introduced from chapter 2.
Recognize that all the development work has been done by the designers of the Java
Swing library. All we are required to do is to make use of it. Therefore, we produce a
series of versions that successively augment the preceding version until we produce the
final product. At each iteration we will set an objective so that we have a purpose that
we can measure our achievement against and provide a harness for any testing.

In chapter 6, the final version of the library case study carefully separated off the
input/output (IO) mechanisms from the domain model for the application. Thus the
classes Library, Book, Journal and BorrowerRecord provide toString methods to

give access to the state of the objects. None of them perform any IO. All the IO is pro-
vided by the methods in the Action class and the Application class.

This separation between the domain application model and its IO mechanism is
inspired by the model-view-controller (MVC) design pattern. The model, as already
discussed, represents the actual application state. The view element of the MVC is con-
cerned with the visualization (Action class) of the data while the controller is con-
cerned with user input that may result in state changes to the data (Application class
and Action class). Figure 7.3 illustrates.

208 Object-Oriented Design with UML and Java

view-controller

model-theLibrary

-theBorrowers
-theBorrower

-theBorrowedPublications

-theLoanStock0..* 0..*

Action

Library

BorrowerRecord «abstract»
Publication

JournalBook

0..1 0..*

1

Figure 7.3 MVC inspired architecture of the library case study

Note that we have ignored the framework developed in chapter 6 and have presented a
conceptual representation of the model (see figure 6.9(b) for the full architecture). This
permits us to focus on the primary model classes.

The MVC is a common architecture to use when developing graphical user interfaces
(GUIs). In fact, it has been used in the development of the Swing components. For
example, the JButton class acts as the view-controller for a button while a separate
class implements its model. This separation of model from view-controller permits us
to replace the Action class with Swing classes to give our application a modern user
interface.

In this first version we demonstrate how to introduce a graphical window that repre-
sents the application’s interface. The parameterized class constructor for JFrame takes
a single String argument representing the title for the application that is presented in the
caption bar. Having created such an object, we merely have to make it visible. In previ-
ous chapters we have made the run method of the Application class responsible for the
program’s overall control. Now it will reside in the GUI classes that replace class
Action. For this reason method main now creates the primary GUI object instead of the
Application object as shown in program 7.1.

Program 7.1 A first frame (model Lib7_1.uml)

import javax.swing.*;

public class Main {

// ----- Operations ----------
public static void main(String[] args) {

JFrame frame = new JFrame(“Library”);
frame.setVisible(true);

} // method: main

} // class: Main

When we run this program a new window appears at the top left of the screen as
shown by figure 7.4. It is a fully featured window that can be dragged, opened, iconized,
and closed. When the window is resized, we see it has a caption bar with the title “Library”,
a system menu to the left of the caption, and minimize, maximize and close buttons to
the right of the caption. Strictly, the application does not close correctly. After having
apparently closed the application with this button, when we return to the command win-
dow we must issue a CONTROL-C to reinstate the command prompt. We shall see in
program 7.4 how to correct this.

Chapter 7: Graphical User Interfaces 209

Figure 7.4 The library application window

To bring the window up with some start-up size we merely have to set the window
bounds. The method setBounds has four arguments representing, respectively, the X and
Y coordinates for the upper left of the window, the width and the height. All are measured
in pixel values. Program 7.2 shows how this is achieved and figure 7.5 is its output.

Program 7.2 Sizing the frame (model Lib7_2.uml)

import javax.swing.*;

public class Main {

// ----- Operations ----------
public static void main(String[] args) {

JFrame frame = new JFrame(“Library”);
frame.setBounds(0, 0, 400, 300);
frame.setVisible(true);

} // method: main

} // class: Main

Perhaps a final improvement we can make to the program start-up procedure is to
locate the main application window in the centre of the screen. The Toolkit class has the

method getScreenSize to obtain the size of the screen. The Dimension value returned
by this method encapsulates the width and height of the screen. We can access these
values directly with the attributes width and height or by using the accessor methods
getWidth and getHeight. Thereafter, some simple arithmetic centres the frame as
demonstrated in program 7.3.

Program 7.3 Centring the application window (model Lib7_3.uml)

import librarysubsystem.LibraryFrame;

public class Main {

public static void main(String[] args) {
LibraryFrame frame = new LibraryFrame(“Library”);

} // method: main

} // class: Main

and:

package librarysubsystem;

import javax.swing.*;
import java.awt.*;

public class LibraryFrame extends JFrame {

// ----- Operations ----------
public LibraryFrame(String aCaption) {

super(aCaption);

210 Object-Oriented Design with UML and Java

Figure 7.5 Frame with an initial start-up size

Dimension screen = Toolkit.getDefaultToolkit().getScreen Size();
int width = screen.width * 3 / 4;
int height = screen.height * 3 / 4;
this.setBounds(screen.width / 8, screen.height / 8, width, height);
this.setVisible(true);

} // method: LibraryFrame

} // class: LibraryFrame

In this version we have moved all of the frame building logic into a specialized
LibraryFrame class (see figure 7.6). The class LibraryFrame extends the superclass
JFrame. The class constructor for LibraryFrame first invokes the superclass JFrame
constructor with the statement super(caption). It then sets its bounds and position and
then makes itself visible.

Chapter 7: Graphical User Interfaces 211

LibraryFrame

JFrame

Figure 7.6 Specialized JFrame class

7.3 Events

Graphical applications are described as event driven. They await some user activity
then spring into action to service that event. For example, when the user moves the
mouse across a component, the mouse’s movement is reflected by the motion of the
mouse cursor on the screen. Equally, when the user selects a menu from the menu bar,
a popup list of menu items is displayed from which the user may select some service
request. Both illustrations exhibit how a system is effectively inactive until the user
does something. When the user moves the mouse or selects a menu then an event
occurs, stimulating the system, perhaps ultimately leading to a state change in the
domain model.

In the Java event model different types of events are represented by objects of
different event classes. For example, mouse movements are represented by objects of
the class MouseEvent. Similarly, selecting a menu item is represented by an object
of the class ActionEvent. The event object produced as a result of an event occurring
is made available to the program code that processes the event, the so-called event
handler. The event object has various attributes describing aspects of the event.
For example, a MouseEvent object has the co-ordinates of the position of the
mouse when the mouse event occurred. Figure 7.7 shows an extract of the event class
hierarchy.

The Java event model is based on the notion of an event listener. A listener is an object
that is interested in being advised of events. When an event is generated by an event
source, the source notifies all its listener objects by calling a specified method and pass-
ing to it the appropriate event object. For the source to be able to call a specific method
in a listener object, the listener must implement a particular method protocol as defined by
a corresponding listener interface. For example, for some classes XListener and
YListener to operate as listeners for ActionEvents they must implement the
ActionListener interface as shown by figure 7.8. To implement the interface, each sub-
class must have a definition for the actionPerformed method.

212 Object-Oriented Design with UML and Java

MouseEvent

ActionEvent ComponentEvent

«abstract»
AWTEvent

«abstract»
InputEvent

Figure 7.7 Event class hierarchy

«interface»
ActionListener

YListener

Operations

Operations

+void actionPerformed(ActionEvent event)

+void actionPerformed(ActionEvent event)

XListener
Operations

+void actionPerformed(ActionEvent event)

Figure 7.8 ActionListener hierarchy

An object that generates events is referred to as the event source and is some spe-
cialized JComponent object. An event source object maintains a list of listener objects
that wishes to be notified of events generated by the source. For example, figure 7.9
shows two action event listeners associated with our LibraryFrame. When a source
object generates an action event it calls the actionPerformed method on all action lis-
teners registered with it. The listener object will specify those events with which it is
interested. A listener object listening for only ActionEvent events, for example, will
not hear any MouseEvent events.

Chapter 7: Graphical User Interfaces 213

If : LibraryFrame xI : XListener

yI : YListener

An action event occurring in the
LibraryFrame object is notified
to all its action listener objects.

List of action listener
objects registered with
the LibraryFrame object.

Figure 7.9 Action listeners registered with the LibraryFrame

This set of listeners can be dynamically updated with various methods to add and
remove listeners for an event source object as shown in figure 7.10. For the event type
ActionEvent there are the methods addActionListener and remove ActionListener
on a component. These listener objects will then be notified by the source object of any
ActionEvents. Figure 7.10 shows the particular methods to add and remove action
listeners.

«abstract»
JComponent

Operations

+void addActionListener(ActionListener listener)
+void removeActionListener(ActionListener listener)

Figure 7.10 Adding and removing action event listeners

Figure 7.11 shows a sequence diagram that traces the behaviour of our
LibraryFrame object. Consider that we have classes XListener and YListener that
describe action listeners as in figure 7.8. The LibraryFrame object lf creates an instance
of each of these listener classes then registers each with itself. The latter is achieved by

lf sending itself the message addActionListener(xl) and addActionListener(yl). Then
when the user generates an event through, for example, pressing a button or selecting a
menu item, the LibraryFrame object lf operates as the event source and notifies the
action listener objects xl and yl through the actionPerformed message.

214 Object-Oriented Design with UML and Java

If : LibraryFrame xI : XListener yI : YListener

user action

create

addActionListener(xI)

create

addActionListener(yI)

actionPerformed(event)

actionPerformed(event)

Figure 7.11 Registering and notifying action listeners

The above illustration is described in terms of action events. An identical scheme
applies were we interested in, say, mouse events. First, we develop one or more listener
classes that implement the MouseListener interface. We then register objects of these lis-
tener subclasses with the event source. When a particular mouse event occurs then the
event source notifies its mouse listener objects. An object of the class MouseEvent is cre-
ated with the details of the event (e.g. mouse position at time of the event) and is passed
as the parameter to the listener’s event handler (the equivalents of xl and yl).

In this fourth version of the library case study we include the code to properly close
the application when the user selects close from the system menu or from the close but-
ton. To do so we register a WindowListener object with our LibraryFrame component.
This listener object is from the class LibraryFrameClosing that implements
WindowListener. WindowListener is an interface with a protocol that includes seven
abstract methods such as the one we are interested in, windowClosing (this is dis-
cussed further in chapter 8). The Swing library also provides classes that fully imple-
ment the interface with each redefined method having empty method bodies. These are
generally known as adapter classes, and for this example is the WindowAdapter class.

We then specialize from the WindowAdapter class and only implement the handler
that we are interested in. Figure 7.12 shows this arrangement.

Chapter 7: Graphical User Interfaces 215

WindowAdapter

LibraryFrameClosing

Operations

Operations

«interface»
WindowListener

Operations

+windowActivated
+windowClosed
+windowClosing
+windowDeactivated
+windowDeiconified
+windowIconified
+windowOpened

+windowActivated
+windowClosed
+windowClosing
+windowDeactivated
+windowDeiconified
+windowIconified
+windowOpened

+windowClosing

Figure 7.12 WindowListener hierarchy

In our library application we are interested in the user closing the application. To
correctly handle this situation we register an object of the LibraryFrameClosing class as
a window listener. The class LibraryFrameClosing extends the class WindowAdapter
(which implements the interface WindowListener) and provides an implementation for
the one method windowClosing. The method simply calls the method exit from the class
System to close the application. The full listing for the class LibraryFrame is given in
program 7.4.

Program 7.4 LibraryFrame with an inner class event handler (model Lib7_4.uml)

package librarysubsystem;

import java.awt.*;
import javax.swing.*;

public class LibraryFrame extends javax.swing.JFrame {

// ----- Operations ----------
public LibraryFrame(String aCaption) {

super(aCaption);
Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();
int width = screen.width * 3 / 4;
int height = screen.height * 3 / 4;
this.setBounds(screen.width / 8, screen.height / 8, width, height);
this.setVisible(true);
// Proper close-down procedure.
this.addWindowListener(new LibraryFrameClosing());

} // method: LibraryFrame

// ----- Inner classes ----------
public class LibraryFrameClosing extends java.awt.event.WindowAdapter {

// ----- Operations ----------
public void windowClosing(java.awt.event.WindowEvent event) {

System.exit(0);
} // method: windowClosing

} // class: LibraryFrameClosing

} // class: LibraryFrame

First, note the final statement in the LibraryFrame class constructor:

this.addWindowListener(new LibraryFrameClosing());

Here, the LibraryFrame object sends a message to itself. The message is
addWindowListener and the parameter is an instance of the class LibraryFrameClosing,
the event handling class. Note how the latter is an example of an inner class, a class defined
within the LibraryFrame class. For the present, there is nothing significant in doing it this
way and we could just as easily presented LibraryFrameClosing as a normal class, but
inner classes were introduced into Java to provide support for event handling code. The full
effect of this we shall see shortly.

7.4 Menu bar

Most graphical applications support a menu bar located along the top of the application
window. The menu bar carries a number of drop-down menus each of which has a set of
menu items. The user selects one of these items to have some functionality performed
by the application.

A basic menu is assembled with the classes JMenuBar, JMenu and JMenuItem.
The class JMenuBar is used to create a menu bar object that is attached to the top of
the main application frame window. The menu bar is populated with a number of menus.
In figure 7.13 the menus are File, Options and Help. Each menu is represented by an

216 Object-Oriented Design with UML and Java

instance of the class JMenu. When the user selects any such menu a menu popup con-
taining one or more menu items (from the class JMenuItem) or menu item separators
(a bar dividing groups of menu items) is displayed.

Chapter 7: Graphical User Interfaces 217

Figure 7.13 Elements of a menu

Once again, all the work is done in the class LibraryFrame with the private support
method assembleMenuBar. The attribute theMenuBar is initialized with the
statement:

theMenuBar = new JMenuBar();

and attached to the frame with:

this.setJMenuBar(theMenuBar); // inherited from JFrame

Menus and menu items are prepared with code of the form:

// Prepare the File menu ...
JMenu fileMenu = new JMenu(“File”);
fileMenu.setMnemonic(‘F’);

// ... and the Exit menu item
theFileExitAction = // ... see later ...
JMenuItem fileExit = fileMenu.add(theFileExitAction);
fileExit.setMnemonic(‘x’);

// Place the menu on the frame.
theMenuBar.add(fileMenu);
this.setJMenuBar(theMenuBar);

The first statement uses the JMenu constructor to establish a menu labelled “File”. The
penultimate statement adds this menu object to the menu bar with the add method from
class JMenuBar. Note the calls to the method setMnemonic to associate shortcuts for
both the menu and the menu item.

The remaining statements assemble a single menu item, adding it to the menu. The
add method of the class JMenu is prepared to accept an action object as a parameter.
The action object is used to create and return a JMenuItem object. This can then be
configured in a number of ways. Here, we set the mnemonic “x” for this menu item. The
interesting code for this is the single statement:

JMenuItem fileExit = fileMenu.add(theFileExitAction);

the details of which are discussed in the next section.
The ordering of menu items in a menu is determined by the order in which the items

are added to the menu. A similar arrangement applies to the menus on the menu bar.

7.4.1 Responding to a menu selection

Menus and menu items usually have shortcuts by which the user can activate the
required service without having to use the mouse. This way an application that makes
extensive use of the keyboard, such as a word processor, does not require the user to
leave the keyboard to make a menu selection with the mouse. Typically, a menu has one
of the characters in the menu name underlined (for example, File) that is used in con-
junction with the ALT key to invoke the popup. In a similar way menu items can also be
annotated. When the menu is visible, the highlighted character of the menu item acti-
vates that service. Thus ALT + F might open the File menu and ALT + N might select
the New menu item (see figure 7.13). The method setMnemonic in the classes JMenu
and JMenuItem achieve this effect. The parameter is a single char representing the
shortcut. Thus we have:

fileMenu.setMnemonic(‘F’);

Attaching the menu to the frame does exactly that and no more. We have to include
more code to our solution to handle the menu selections made by the user. Selecting a
menu item causes the menu item to generate an ActionEvent. To process it we must
register a listener object with the menu item for this type of event. In section 7.3 we
indicated how this is achieved.

According to figure 7.11 we need to create an object of a subclass that imple-
ments ActionListener, the listener interface for these types of events. We
then register this event handler object with our menu item object using the method
addActionListener. However, the JMenu class supports an alternative to this. Rather
than adding an object instance of the class JMenuItem to a JMenu object, we can add
an instance of the specialized ActionListener object using an overloaded version of the
method add. The add method returns a newly created JMenuItem that can be config-
ured as shown in the code listing above for preparing menus and menu items. This effect
is described by the sequence diagram in figure 7.14.

Here, the LibraryFrame object creates an action listener object of the class
FileExitAction (subclassed from AbstractAction). This action object is then added to
the JMenu object that creates a JMenuItem object with that action listener registered
as its event handler. The newly created JMenuItem object is then delivered as the
return value for the add operation.

218 Object-Oriented Design with UML and Java

Following our discussions from section 7.3 FileExitAction would implement the
interface ActionListener (see figure 7.8). However, if we subclass from the class
AbstractAction then the menu item that is created can be given some text or an icon or
both. The relevant class hierarchy is shown in figure 7.15. Note how the Action inter-
face is a specialization of the ActionListener interface. The abstract class
AbstractAction is responsible for introducing labels and icons that decorate the objects
created from actions. The figure also shows that the FileExitAction merely has to pro-
vide a suitable constructor and a definition for the actionPerformed method. The code
for this is given in program 7.5.

Chapter 7: Graphical User Interfaces 219

If : LibraryFrame fileMenu : JMenu

add(fea)
create

create

fileExit : JMenuItemfea : FileExitAction

Figure 7.14 Creating a menu item from an action event object

«abstract»
AbstractAction

«interface»
ActionListener

«interface»
Action

FileExitAction
Operations

+FileExitAction(java.lang.String label)
+void actionPerformed(java.awt.event.ActionEvent event)

Figure 7.15 FileExitAction class hierarchy

Program 7.5 The LibraryFrame class with two inner classes
(model Lib7_5.uml)

package librarysubsystem;

import java.awt.*;
import javax.swing.*;

public class LibraryFrame extends javax.swing.JFrame {

// ----- Operations ----------
public LibraryFrame(String aCaption) {

super(aCaption);
this.assembleMenuBar();
Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();
int width = screen.width * 3 / 4;
int height = screen.height * 3 / 4;
this.setBounds(screen.width / 8, screen.height / 8, width, height);
this.setVisible(true);
// Proper close-down procedure.
this.addWindowListener(new LibraryFrameClosing());

} // method: LibraryFrame

private void assembleMenuBar() {
// Prepare the File menu ...
JMenu fileMenu = new JMenu(“File”);
fileMenu.setMnemonic(‘F’);
// ... and the Exit menu item.
JMenuItem fileExit = fileMenu.add(theFileExitAction);
fileExit.setMnemonic(‘x’);
// Add the menu to the menu bar.
theMenuBar.add(fileMenu);
// Then place the menu on the frame.
this.setJMenuBar(theMenuBar);

} // method: assembleMenuBar

// ----- Attributes ----------
private javax.swing.JMenuBar theMenuBar = new JMenuBar();

private FileExitAction theFileExitAction = new FileExitAction(“Exit”);

// ----- Inner classes ----------

public class LibraryFrameClosing extends java.awt.event.WindowAdapter {

// ----- Operations ----------
public void windowClosing(java.awt.event.WindowEvent event) {

LibraryFrame.this.theFileExitAction.actionPerformed(null);
} // method: windowClosing

} // class: LibraryFrameClosing

public class FileExitAction extends javax.swing.AbstractAction {

220 Object-Oriented Design with UML and Java

// ----- Operations ----------
public FileExitAction(String aLabel) {

super(aLabel);
} // method: FileExitAction

public void actionPerformed(java.awt.event.ActionEvent event) {
System.exit(0);

} // method: actionPerformed

} // class: FileExitAction

} // class: LibraryFrame

In the windowClosing method of LibraryFrameClosing we see one of the key fea-
tures of inner classes. An object instance of the inner class LibraryFrameClosing has
effectively a reference to the object instance of the outer class, here LibraryFrame.
Further, the inner class instance forms a closely coupled relationship with its outer class
instance such that it has access to the attributes and operations of the outer class object,
even to those that have private visibility. Hence the statement:

LibraryFrame.this.theFileExitAction.actionPerformed(null);

references the private attribute theFileExitAction of an instance of the enclosing class
LibraryFrame. Strictly, the qualifier LibraryFrame.this is not required where there is no
ambiguity. However, it is a useful piece of documentation that reminds us that we are refer-
ring to an object of the outer class. This object executes the actionPerformed method of
the FileExitAction class, closing the application. Since that method does not use its param-
eter we can safely pass the null actual parameter value. Here, we ensure that whether the
user closes the application through the system menu or this new File + Exit menu, the same
closedown code is executed. For example, if our application required files to be properly
closed, then we could place all the necessary code in the actionPerformed method of the
inner class FileExitAction.

Figure 7.16 now shows our updated application. The user has selected the File menu.
The Exit menu item is highlighted when the mouse is placed across it.

7.5 Application menus

Using the scheme introduced in the preceding section we can start to populate the
LibraryFrame class with a number of inner classes that provide event handlers for the
various services our application must support. Rather than attempt this in one major incre-
ment we shall satisfy ourselves that our approach is correct by first including two such
inner classes. Of course, we aim to support the same functionality achieved with the final
version in chapter 6, but for the present we shall establish the necessary architecture to
support lending and returning a publication. Here we emphasize setting up the required
architecture, the actionPerformed methods simply issue messages to the system console.
The true code for these and the other services follows in the next iteration.

Following on from program 7.5, we introduce two new inner classes Lend
PublicationAction and ReturnPublicationAction. As above, both are specializations
of the AbstractAction class and present implementations of the actionPerformed

Chapter 7: Graphical User Interfaces 221

method and will, at the next version, provide the service described by its class name.
Additionally, we include a new menu entitled Application with these action objects
used in the creation of the corresponding menu items. Program 7.6 presents the relevant
elements of the LibraryFrame class. Only the details for the LendPublicationAction
and the ReturnPublicationAction classes are shown.

Program 7.6 Inner classes for lending and returning books (model Lib7_6.uml)

package librarysubsystem;

import java.awt.*;
import javax.swing.*;
import java.util.*;

public class LibraryFrame extends javax.swing.JFrame {

// ----- Operations ----------
private void assembleMenuBar() {

// Prepare the File menu ...
JMenu fileMenu = new JMenu(“File”);
fileMenu.setMnemonic(‘F’);
// ... and the Exit menu item.
JMenuItem fileExit = fileMenu.add(theFileExitAction);
fileExit.setMnemonic(‘x’);
// Prepare the Application menu ...
JMenu applicationMenu = new JMenu(“Application”);
applicationMenu.setMnemonic(‘A’);

222 Object-Oriented Design with UML and Java

Figure 7.16 The library application with its File menu and Exit menu item

// ... and its various menu items.
JMenuItem lendPublication = applicationMenu.add(theLendPublicationAction);
JMenuItem returnPublication = applicationMenu.add(theReturnPublicationAction);
// Add the menus to the menu bar.
theMenuBar.add(fileMenu);
theMenuBar.add(applicationMenu);
// Then place the menu on the frame.
this.setJMenuBar(theMenuBar);

} // method: assembleMenuBar

// ...

// ----- Attributes ----------
private javax.swing.JMenuBar theMenuBar = new JMenuBar();

private FileExitAction theFileExitAction = new FileExitAction(“Exit”);

private LendPublicationAction theLendPublicationAction =
new LendPublicationAction(“Lend publication”);

private ReturnPublicationAction theReturnPublicationAction =
new ReturnPublicationAction(“Return publication”);

// ----- Inner classes ----------
public class LendPublicationAction extends javax.swing.AbstractAction {

// ----- Operations ----------
public LendPublicationAction(String aLabel) {

super(aLabel);
} // method: LendPublicationAction

public void actionPerformed(java.awt.event.ActionEvent event) {
System.out.println(“Lend publication action”);

} // method: actionPerformed

} // class: LendPublicationAction

public class ReturnPublicationAction extends javax.swing.AbstractAction {

// ----- Operations ----------
public ReturnPublicationAction(String aLabel) {

super(aLabel);
} // method: ReturnPublicationAction

public void actionPerformed(java.awt.event.ActionEvent event) {
System.out.println(“Return publication action”);

} // method: actionPerformed

} // class: ReturnPublicationAction

// ...

} // class: LibraryFrame

When we execute this version of the application we gain some real confidence that we
are progressing in the correct direction. Now we have a second menu entitled Application

Chapter 7: Graphical User Interfaces 223

with two menu items Lend publication and Return publication. When, for example, the
former is selected the message “Lend publication action” appears in the command con-
sole. Now we simply have to develop a series of inner classes, one for each of the services
originally provided by the methods in the Action class from chapter 6. Like that Action
class we reintroduce the Library and the other classes as the model to underpin the MVC
controller that we have developed. An equivalent class diagram for this is given in figure
7.17 (see also the comments concerning figure 7.3). We note here the similarity with figure
7.3 with the Action class now replaced with a LibraryFrame. The latter has also absorbed
the functionality of Application run method.

224 Object-Oriented Design with UML and Java

Book

«abstract»
Publication

Journal

LibraryFrame

Library

BorrowerRecord

-theBorrower
0..*

0..1

-theBorrowers

-theBorrowedPublications

0..*

-theLoanStock

1-theLibrary

0..*

Figure 7.17 The revised class diagram

LibraryFrame
-theScrolledViewingArea

JTextAreaJScrollPane

JTextField

JPanel JLabel

-theViewingArea

-theStatusPanel -theStatusLabel

-theStatusField

1

1

1

11

Figure 7.18 The view component

Our primary objective with the final version in chapter 6 was to successfully separate
the view and controller from the model. In our graphical application we must construct
a replacement for the view that combines with our model and controller elements. An
assembly for the view component is described by the class diagram shown in figure 7.18.

The principal elements are the JTextArea, the JLabel and the JTextField. The
JTextArea, with role name theViewingArea, is a multi-line display area where all pro-
gram output is presented. We shall arrange for this component to be read-only so that the
user cannot change its content. Further, we wrap it in a Swing JScrollPane so that it has
horizontal and vertical scrollbars. The JLabel and JTextField are used to present any
status information from the application. Recollect from chapter 6 that each action pro-
duced a message representing the status of that action. Such messages are routed to this
JTextField. The JLabel is simply a static piece of text that decorates the field, describ-
ing its purpose. The two are assembled into a single component by adding them to a
JPanel. The effect is shown in figure 7.19.

Chapter 7: Graphical User Interfaces 225

Strictly, the ScrollPane and JPanel are added to the content pane, as part of the
JFrame. Both the content pane and the JPanel need to be associated with layout man-
agers that will determine how their subcomponents are presented. We set the JPanel to
have a FlowLayout manager that left justifies its subcomponents, so that the label and
the text field appear horizontal and adjacent to each other. For the content pane of the
LibraryFrame we use a BorderLayout manager that partitions the content pane into
five regions described as NORTH, SOUTH, EAST, WEST and CENTER. We place
the viewing area into the central region and the status panel in the southern region. If
any region is missing, the centre expands outward to occupy it. The relevant parts of the
LibraryFrame are given below:

public class LibraryFrame extends javax.swing.JFrame {

// ----- Operations ----------
public LibraryFrame(String aCaption) {

super(aCaption);
// Populate the frame with its sub-components.
Container contentPane = this.getContentPane();
contentPane.setLayout(new BorderLayout());
contentPane.add(theScrolledViewingArea, BorderLayout.CENTER);

Figure 7.19 Appearance of the application

contentPane.add(theStatusPanel, BorderLayout.SOUTH);
this.assembleMenuBar();
Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();
int width = screen.width * 3 / 4;
int height = screen.height * 3 / 4;
this.setBounds(screen.width / 8, screen.height / 8, width, height);
this.setVisible(true);
// Proper close-down procedure.
this.addWindowListener(new LibraryFrameClosing());
theLibrary = new Library(“Napier”);

} // method: LibraryFrame

// ...

// ----- Attributes ----------

private javax.swing.JTextArea theViewingArea = new JTextArea();

{ // initialization block
theViewingArea.setEditable(false);

}
private javax.swing.JScrollPane theScrolledViewingArea =

new JScrollPane(theViewingArea);

private javax.swing.JLabel theStatusLabel = new JLabel(“Status”);

private javax.swing.JTextField theStatusField = new JTextField(60);

private javax.swing.JPanel theStatusPanel =
new JPanel(new FlowLayout(FlowLayout.LEFT));

{ // initialization block
theStatusPanel.add(theStatusLabel);
theStatusPanel.add(theStatusField);

}

} // class: LibraryFrame

Note also the use of initialization blocks. These are code blocks executed along with the
initialization of the class attributes. Here we use them to further initialize the attributes
following that provided by their class constructors. As an illustration, once we have cre-
ated theViewingArea we then set it so it operates as read-only.

Development of the action event handlers mirrors the original code in the Action
class from chapter 6. The changes we have to make revolve around displaying the
results and obtaining information from the user. For those handlers primarily concerned
with producing output displays we use the append message of the JTextArea class.
This method simply adds new text on to the end of the multi-line text area. See the hand-
ler for the class DisplayPublicationsAvailableForLoanAction in program 7.7 for
examples of this coding. User input is obtained by using various dialogs from the class
JOptionPane. A number of simple dialogs are provided by this class, including the
input dialogs provided by the showInputDialog method. An example of its use is given
in the AddBookAction class.

226 Object-Oriented Design with UML and Java

Program 7.7 Restoration of all the actions (model Lib7_7.uml)

package librarysubsystem;

import java.awt.*;
import javax.swing.*;
import java.util.*;
import textio.*;

public class LibraryFrame extends javax.swing.JFrame {

// ----- Operations ----------
private void assembleMenuBar() {

// Prepare the File menu ...
JMenu fileMenu = new JMenu(“File”);
fileMenu.setMnemonic(‘F’);
// ... and the Exit menu item.
JMenuItem fileExit = fileMenu.add(theFileExitAction);
fileExit.setMnemonic(‘x’);
// Prepare the Application menu ...
JMenu applicationMenu = new JMenu(“Application”);
applicationMenu.setMnemonic(‘A’);
// ... and its various menu items.
JMenuItem registerBorrower = applicationMenu.add(theRegisterBorrowerAction);
JMenuItem displayBorrowers = applicationMenu.add(theDisplayBorrowersAction);
JMenuItem addBook = applicationMenu.add(theAddBookAction);
JMenuItem addJournal = applicationMenu.add(theAddJournalAction);
JMenuItem loadPublications = applicationMenu.add(theLoadPublicationsAction);
JMenuItem publicationsForLoan = applicationMenu.add

(theDisplayPublicationsAvailableForLoanAction);
JMenuItem publicationsOnLoan = applicationMenu.add

(theDisplayPublicationsOnLoanAction);
JMenuItem lendPublication = applicationMenu.add(theLendPublicationAction);
JMenuItem returnPublication = applicationMenu.add(theReturnPublicationAction);
// Add the menus to the menu bar.
theMenuBar.add(fileMenu);
theMenuBar.add(applicationMenu);
// Then place the menu on the frame.
this.setJMenuBar(theMenuBar);

} // method: assembleMenuBar

// ...

// ----- Attributes ----------
private AddBookAction theAddBookAction = new AddBookAction(“Add book”);
private DisplayPublicationsAvailableForLoanAction

theDisplayPublicationsAvailableForLoanAction
= new DisplayPublicationsAvailableForLoanAction(“Display publications for loan”);

// ...

Chapter 7: Graphical User Interfaces 227

// ----- Inner classes ----------
public class AddBookAction extends javax.swing.AbstractAction {

// ----- Operations ----------
public AddBookAction(String aLabel) {

super(aLabel);
} // method: AddBookAction

public void actionPerformed(java.awt.event.ActionEvent event) {
// Get book details from the user.
String title = JOptionPane.showInputDialog(LibraryFrame.this,

“Enter the book title”, “Book details”, JOptionPane.QUESTION_MESSAGE);
String catalogueString = JOptionPane.showInputDialog(LibraryFrame.this,

“Enter the catalogue number”,“Book details”,
JOptionPane.QUESTION_MESSAGE);

String author = JOptionPane.showInputDialog(LibraryFrame.this,
“Enter the author name”, “Book details”,

JOptionPane.QUESTION_MESSAGE);
int catalogueNumber = Integer.parseInt(catalogueString);
//
// Add the book the the library.
LibraryFrame.this.theLibrary.addOneLoanItem(new Book(title,

catalogueNumber, author));
//
// Display the outcome.
LibraryFrame.this.theStatusField.setText(LibraryFrame.this.theLibrary.getStatus());

} // method: actionPerformed

} // class: AddBookAction

public class DisplayPublicationsAvailableForLoanAction extends

javax.swing.AbstractAction {

// ----- Operations ----------
public DisplayPublicationsAvailableForLoanAction(String aLabel) {

super(aLabel);
} // method: DisplayPublicationsAvailableForLoanAction

public void actionPerformed(java.awt.event.ActionEvent event) {
// Display information about the Library

LibraryFrame.this.theViewingArea.append(“\n” + theLibrary);
//
// Display information about the publications available for loan
LibraryFrame.this.theViewingArea.append(“\n\t” + “Publications available for loan”);
boolean publicationFound = false;
Iterator iter = theLibrary.getLoanItemsIterator();
//
while(iter.hasNext()) {

Publication pub = (Publication) iter.next();

228 Object-Oriented Design with UML and Java

if(pub.getBorrower() == null) {
LibraryFrame.this.theViewingArea.append(“\n\t\t” + pub);
publicationFound = true;

}
}
if(publicationFound == false)

LibraryFrame.this.theViewingArea.append(“\n\t\t” + “None”);
//
// Display outcome
LibraryFrame.this.theStatusField.setText(“”);

} // method: actionPerformed

} // class: DisplayPublicationsAvailableForLoanAction

} // class: LibraryFrame

In class DisplayPublicationsAvailableForLoanAction, the actionPerformed
method simply appends the library name and publication details to theViewingArea
component. At the end of the method we use the message setText to change the content
of theStatusField.

The actionPerformed method in the AddBookAction class prompts the user for the
individual book details, then adds a new Book object to the library stock. The method
showInputDialog has four parameters: parent component, message, title and message
type. The parent component identifies the Swing component that acts as the parent
while the dialog is visible. Here, it is the LibraryFrame object. The message is the
prompt that advises what information is sought from the user. The title is the text that
decorates the dialog caption. The message type is a symbolic constant describing the
type of dialog, here a questioning dialog. An example of this kind of dialog is shown in
figure 7.20.

Chapter 7: Graphical User Interfaces 229

Figure 7.20 The application with some output and a dialog requesting a book title

7.6 Application buttons

In this final iteration we aim to provide the user with a simpler interface comprising on-
screen buttons labelled with the applications services. In effect they provide shortcuts
to the items on the Application menu. In keeping with the theme of this chapter we
make one incremental change to that in program 7.7 which leaves the program
unchanged but gives us a better structure to include the action buttons.

The code for the method assembleMenuBar shown in program 7.7 is not especially
inspirational. It is simply a list of statements to create the menus and attach the menu
items. One useful revision is to place the action objects and the menu details into a data
structure. Here we have chosen an array, but see also appendix E for alternatives. We
can then replace our existing code with new code to traverse each array to build the
menus and their menu items. First, let us construct an array with the details for the File
menu. In this case it is the menu name and the action object for its single menu item:

private Object[] theFileMenu = {
“File”,
theFileExitAction

};

Note how the array has a String and a FileExitAction object and so we declare it as an
array of Objects. That way the array can reference any type other than the primitives.
In a similar manner we have the Application menu:

private Object[] theApplicationMenu = {
“Application”,
theLoadPublicationsAction,
theAddBookAction,
theAddJournalAction,
theDisplayPublicationsAvailableForLoanAction,
theDisplayPublicationsOnLoanAction,
theRegisterBorrowerAction,
theLendPublicationAction,
theReturnPublicationAction

};

Now we place references to these two arrays into a third array:

private Object[] theMenus = {
theFileMenu,
theApplicationMenu

};

These structures are described by figure 7.21. Two one-dimensional tables are estab-
lished to hold the menus. Each is declared as an array of Objects. The first entry is a
String object acting as the menu name. The remaining entries are the action objects that
act as the handlers for the menu items. The third array is an array with references to the

230 Object-Oriented Design with UML and Java

menu arrays. This third array then acts as the root of the structure from which all the
menus can be assembled.

Chapter 7: Graphical User Interfaces 231

theMenus theFileMenu

theApplicationMenu

. . .

. . .

Figure 7.21 Structure of the menus

With these simple changes we can now reprogram the assembleMenuBar method.
It iterates through the elements of theMenus passing each member to another auxiliary
method assembleMenu. The formal parameter to this new method is an array of
Objects, reflecting that it is a heterogeneous container. The first element in the array is
the menu name and the remaining are the action objects. For such an array the
assembleMenu method creates the menu from the first element and the menu items
from the remaining action elements. Program 7.8 shows the necessary details.

Program 7.8 Revised menu assembly (model Lib7_8.uml)

public class LibraryFrame extends JFrame {

// ----- Operations ----------
private void assembleMenuBar() {

int menusLength = theMenus.length;
for(int k = 0; k < menusLength; k++)

this.assembleMenu((Object[])theMenus[k]);
this.setJMenuBar(theMenuBar);

} // method: assembleMenuBar

private void assembleMenu(Object[] menuEntries) {
int menuLength = menuEntries.length;
// Peel off the first item as the menu name.
JMenu menu = new JMenu((String)menuEntries[0]);
// Remainder are the menu items.
for(int k = 1; k < menuLength; k++) {

AbstractAction action = (AbstractAction)menuEntries[k];
menu.add(action);

}
theMenuBar.add(menu);

} // method: assembleMenu

// ...

} // class: LibraryFrame

These code revisions have no impact on the appearance and execution of the pro-
gram. The changes, however, permit us to readily incorporate a toolbar of buttons cor-
responding to the Application menu items. Many applications have a toolbar
positioned immediately below the menu. Such toolbars have small buttons with iconic
representations for the services they provide. For our example we use large buttons
labelled the same as the Application menu items. We arrange the buttons vertically in
a panel to the left of the view area where the output is displayed. The appearance is now
as demonstrated in figure 7.22.

232 Object-Oriented Design with UML and Java

The new panel arrangement is simple to achieve. Recollect that the frame’s content
pane was given a BorderLayout manager. We simply add the button panel to the left
(WEST) of the view panel. The panel itself is made from the Box class that uses a

Figure 7.22 Button toolbar

BoxLayout manager. This layout manager is suitable for preparing its components as a
row of horizontal members or a column of vertical members. Program 7.9 highlights
the relevant new code.

Program 7.9 A panel of buttons (model Lib7_9.uml)

public class LibraryFrame extends JFrame {

private void assembleMenu(Object[] menuEntries) {
int menuLength = menuEntries.length;
// Peel off the first item as the menu name.
JMenu menu = new JMenu((String)menuEntries[0]);
// Remainder are the menu items.
for(int k = 1; k < menuLength; k++) {

AbstractAction action = (AbstractAction)menuEntries[k];
menu.add(action);
JButton button = new JButton(action);
theToolBar.add(button);
button.setPreferredSize(BUTTONSIZE);
button.setMinimumSize(BUTTONSIZE);
button.setMaximumSize(BUTTONSIZE);

}
theMenuBar.add(menu);

} // method: assembleMenu

// ...

// ----- Attributes ----------

private javax.swing.JMenuBar theMenuBar = new JMenuBar();
private javax.swing.Box theToolBar = Box.createVerticalBox();

private static final java.awt.Dimension BUTTONSIZE = new Dimension(200, 30);

// ...

} // class: LibraryFrame

Observe how the private method assembleMenu simultaneously prepares both the
menus and the buttons. A JButton object is created from the action, decorated with the
same text as the corresponding menu item. Each button is added to theToolBar, an
object of the Box class.

Finally, we reinstate the serialization mechanism. In version 3 from chapter 6 the sav-
ing was implemented in the close method of the Action class and the restoration of
objects was realized in the Action class constructor. With our graphical version of
the application the corresponding location for this code is the event handler for
FileExitAction and the LibraryFrame class constructor.

Chapter 7: Graphical User Interfaces 233

Program 7.10 Serialization (model Lib7_10.uml)

public class LibraryFrame extends javax.swing.JFrame {

// ----- Operations ----------
public LibraryFrame(String aCaption) {

super(aCaption);
// Populate the frame with its sub-components.
Container contentPane = this.getContentPane();
contentPane.setLayout(new BorderLayout());
contentPane.add(theStatusPanel, BorderLayout.SOUTH);
contentPane.add(theToolBar, BorderLayout.WEST);
contentPane.add(theScrolledViewingArea, BorderLayout.CENTER);
this.assembleMenuBar();
Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();
int width = screen.width * 3 / 4;
int height = screen.height * 3 / 4;
this.setBounds(screen.width / 8, screen.height / 8, width, height);
this.setVisible(true);
// Proper close-down procedure.
this.addWindowListener(new LibraryFrameClosing());
// Restore the persistent application objects.
File file = new File(PERSISTENT_FILENAME);
if(file.exists()) {

try {
FileInputStream fis = new FileInputStream(PERSISTENT_FILENAME);
ObjectInputStream ois = new ObjectInputStream(fis);
theLibrary = (Library)ois.readObject();
ois.close();

} catch(IOException ex) {
theStatusField.setText(“Error reading persistent store”);

} catch(ClassNotFoundException ex) {
theStatusField.setText(“Error restoring application objects”);

}
} else

theLibrary = new Library(“Napier”);
} // method: LibraryFrame

// ...

// ----- Inner classes ----------
public class FileExitAction extends javax.swing.AbstractAction {

// ----- Operations ----------
public FileExitAction(String aLabel) {

super(aLabel);
} // method: FileExitAction

public void actionPerformed(java.awt.event.ActionEvent event) {

234 Object-Oriented Design with UML and Java

try {
FileOutputStream fos

= new FileOutputStream(LibraryFrame.this.PERSISTENT_FILENAME);
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(LibraryFrame.this.theLibrary);
oos.close();

} catch(IOException ex) {
LibraryFrame.this.theStatusField.setText(“Cannot open persistent file”);

}
System.exit(0);

} // method: actionPerformed

} // class: FileExitAction

} // class: LibraryFrame

7.7 Dialogs

Obtaining the book and journal details is somewhat pedestrian since we use separate
input dialogs. Normally, the user would expect a single dialog requesting each value. To
achieve this we introduce specialized JDialog classes. For example, the BookDialog
class gives rise to the input dialog as shown in figure 7.23.

Chapter 7: Graphical User Interfaces 235

Figure 7.23 Book details dialog

The BookDialog class assembles this dialog, populating it with the three text fields
and associated labels at the top, and the two buttons at the lower edge. The JDialog
class is a component with a content pane that is given a BorderLayout manager. The
constructor for the class BookDialog will place a panel in its centre to carry the three
text fields and a buttons panel at the SOUTH position. The code is:

// class BookDialog
public BookDialog(JFrame frame) {

super(frame, “Book details”, true);
this.setSize(500, 400);
// Build the sub-components.
Container contentPane = this.getContentPane();
contentPane.setLayout(new BorderLayout());
contentPane.add(theDetailsPanel, BorderLayout.CENTER);
contentPane.add(theButtonsPanel, BorderLayout.SOUTH);
this.setResizable(false);
this.setLocationRelativeTo(frame);

} // method: BookDialog

The details panel is assembled with a series of declarations and initializations (the
code commentary has, for brevity, been removed):

private javax.swing.JLabel theAuthorLabel = new JLabel(“Author”);
private javax.swing.JTextField theAuthorTextField = new JTextField(30);
private javax.swing.JPanel theAuthorPanel =

new JPanel(new FlowLayout(FlowLayout.LEFT));

{ // initialization block
theAuthorPanel.add(theAuthorLabel);
theAuthorPanel.add(theAuthorTextField);
theAuthorPanel.setMaximumSize(PANELSIZE);

}

private javax.swing.JLabel theTitleLabel = new JLabel(“Title”);
private javax.swing.JTextField theTitleTextField = new JTextField(30);
private javax.swing.JPanel theTitlePanel

= new JPanel(new FlowLayout(FlowLayout.LEFT));

{ // initialization block
theTitlePanel.add(theTitleLabel);
theTitlePanel.add(theTitleTextField);
theTitlePanel.setMaximumSize(PANELSIZE);

}

private javax.swing.JLabel theCatalogueLabel = new JLabel(“Catalogue”);
private javax.swing.JTextField theCatalogueTextField = new JTextField(30);
private javax.swing.JPanel theCataloguePanel

= new JPanel(new FlowLayout(FlowLayout.LEFT));

{ // initialization block
theCataloguePanel.add(theCatalogueLabel);

236 Object-Oriented Design with UML and Java

Chapter 7: Graphical User Interfaces 237

theCataloguePanel.add(theCatalogueTextField);
theCataloguePanel.setMaximumSize(PANELSIZE);

}

private javax.swing.Box theDetailsPanel = Box.createVerticalBox();

{ // initialization block
theDetailsPanel.add(theAuthorPanel);
theDetailsPanel.add(theTitlePanel);
theDetailsPanel.add(theCataloguePanel);
theDetailsPanel.add(Box.createVerticalGlue());

}

An inner class OkCancelAction describes the event handling associated with the
two buttons. For either button we make the dialog invisible. If the user presses the “Ok”
button we set the property theUserAction of the class BookDialog to the value
JOptionPane.OK_OPTION that identifies this button. The value JOptionPane.
CANCEL_OPTION records that the “Cancel” button was selected.

// ----- Inner classes ----------
public class OkCancelAction implements java.awt.event.ActionListener {

// ----- Operations ----------
public void actionPerformed(java.awt.event.ActionEvent event) {

BookDialog.this.setVisible(false);
if(event.getActionCommand().equals(“Ok”))

BookDialog.this.theUserAction = JOptionPane.OK_OPTION;
else

BookDialog.this.theUserAction = JOptionPane.CANCEL_OPTION;
} // method: actionPerformed

} // class: OkCancelAction

When the user dismisses the dialog, the method getUserAction from the BookDialog
class allows us to determine the choice made. If the user dismissed the dialog with the
“Ok” button then the three accessor methods getTitle, getCatalogueNumber and
getAuthor give us the values entered by the user. Program 7.11 shows the revisions made
to the inner class AddBookAction. Similar work can give us a dialog for the user details.

Program 7.11 Using the dialog (model Lib7_11.uml)

public class LibraryFrame extends JFrame {

// ...

// ----- Inner classes ----------
public class AddBookAction extends javax.swing.AbstractAction {

// ----- Operations ----------
public AddBookAction(String label) {

super(label);
} // method: AddBookAction

public void actionPerformed(java.awt.event.ActionEvent event) {
BookDialog dialog = new BookDialog(LibraryFrame.this);
dialog.setVisible(true);
if(dialog.getUserAction() == JOptionPane.OK_OPTION) {

String title = dialog.getTitle();
int catalogueNumber = dialog.getCatalogueNumber();
String author = dialog.getAuthor();
//
// Add the book to the library.
LibraryFrame.this.theLibrary.addOneBook(new Book(title, catalogueNumber,

author));
//
// Display the outcome
LibraryFrame.this.theStatusField.setText(LibraryFrame.this.theLibrary.getStatus());

} else

LibraryFrame.this.theStatusField.setText(“No Book added”);
} // method: actionPerformed

} // class: AddBookAction

// ...

} // class: LibraryFrame

7.8 Summary

1. The abstract class JComponent is the root class for many of the graphic components.
2. Components can include other sub-components in a parent/child arrangement. A

LayoutManager is responsible for positioning the children of a parent component.
3. The model-view-controller design pattern is a significant feature of the architecture

of the Swing classes. The view-controller is responsible for the presentation and the
interaction with a graphical component. The model element represents the state
information for the component.

4. Events in Swing are represented by objects of different event classes. When an event
occurs, an event object is passed to an event handler. The event object carries the
data associated with the event.

5. The Java event model is based on the notion of event listeners. When an event is
generated by an event source, the source notifies all its listener objects by calling a
fixed method and passing to it the appropriate event object. For the source to be able
to call a specific method in a listener object, the listener object must implement a
particular method protocol as defined by a corresponding listener interface.

6. Inner classes are frequently used to realize event listeners.

7.9 Exercises

1. Use the API documentation to construct a class hierarchy for the class JFrame.
Why does this hierarchy not include the class JComponent? What terms are used

238 Object-Oriented Design with UML and Java

to distinguish the class JFrame from the concrete subclasses of JComponent?
Give an explanation for these terms.

2. What class of object is used to arrange GUI components in a Container?
3. Use the API documentation to construct a class diagram that is rooted in the interface

LayoutManager. Briefly summarize the layout schemes of the various layout managers.
4. What method is used to specify the layout manager for a component? Name three

concrete layout managers.
5. Is BorderLayout the default layout manager for a content pane? When using

a BorderLayout what is the maximum number of components can it display? Do
we have to add GUI components in a particular order to a BorderLayout?

6. In a manner similar to that shown in figure 7.1, present a class hierarchy for the class
JButton by using the information in the API documentation. The class
AbstractButton has an architectural attribute of the class ButtonModel. Incorporate
this class into the class diagram including its associated class hierarchy. Explain the
role for this second group of classes.

7. Explain the difference between the terms model, view and controller. How is the
MVC deployed in Swing for the class JButton? Find how it is used in the class
JTextField. How is it deployed in the library case study?

8. Explain the difference between the terms “event driven”, “event object” and “event
handler”.

9. The methods addActionListener and removeActionListener are used to associ-
ate and disassociate action listener objects with a JComponent. What are the
names and signatures for the corresponding operations for mouse events? How did
we do the same for window events in the library case study?

10. How do we ensure that an action listener object can be sent the correct message by
an event source?

11. Give an outline of how events are handled in Swing by considering what happens
when a mouse click occurs over some component. In particular identify how other
components are advised of this occurrence. For a component to be informed how
do we determine which of its methods we should execute as the handler? What type
of object is passed to that handler to give details of the event.

12. Program 7.4 introduced inner classes to act as event handler objects. Go to the Java
website that follows and checkout some details for these constructs.
http://java.sun.com/products/jdk/1.1/docs/guide/innerclasses/spec/inner-
classes.doc.html

13. Develop a class diagram for the classes JMenu and JMenuItem. What in this
architecture permits a menu to have sub-menus?

14. What is the rationale for adding ActionListener objects to both JMenu objects
and to JToolBar objects?

15. The BookDialog class is used to obtain the book author, title and catalogue number.
It also has event handlers for the Ok and Cancel buttons. The JournalDialog class
achieves much the same for a journal. What might be done to reduce the amount of
common code? Use model Lib7_11.uml and make the necessary changes.

16. Using program 7.11 as the base code, augment this application with two additional
use-cases:

• a list of borrowers that have no books on loan and

• a list of borrowers that have more than some specified number of books on loan.

Chapter 7: Graphical User Interfaces 239

This Page Intentionally Left Blank

Design Patterns

No book on object-oriented development would be complete without a discussion of
software design patterns. They first became popular with the seminal book Gamma
(1994) and have subsequently attracted a considerable following among software
professionals. “Patterns are ways to describe best practice, good design, and capture
experience in a way that it is possible for others to reuse this experience” (http://
www.hillside.net). Their aim is to build a body of knowledge to support design and
implementation in a form that can be promulgated to software developers. Our aim is to
illustrate their use and to bring a greater understanding of OOAD to the reader.

8.1 Delegation

Delegation is at the heart of many design patterns. Therefore a review of delegation is
a useful introduction to this chapter. The essential idea is that when an object receives a
message it can choose to implement none or part of the method. This is because it has
the option of making use of a delegate. The class diagram of figure 8.1 and the accom-
panying outline Java code illustrate a delegator implementing operation_1 but using a
delegate in the implementation of operation_2 and operation_3.

8

241

Delegator Delegate
Operations Operations

+operation_4
+operation_5

+operation_1
+operation_2
+operation_3

-theDelegate

1

Figure 8.1 A delegator with a delegate

public class Delegator {

// ----- Operations ----------
public Delegator(Delegate aDelegate) {

theDelegate = aDelegate;
} // method: Delegator

public void operation_1() {
//...

} // method: operation_1

public void operation_2() {
//...
theDelegate.operation_4();

} // method: operation_2

public void operation_3() {
theDelegate.operation_5();

} // method: operation_3

// ----- Attributes ----------
private Delegate theDelegate;

// ...

} // class: Delegator

public class Delegate {
// ----- Operations ----------
public void operation_4() {

//...
} // method: operation_4

public void operation_5() {
//...

} // method: operation_5

// ...

} // class: Delegate

public class Application {

// ----- Operations ----------
public void run () {

Delegator delegator = new Delegator(new Delegate(...));
//
delegator.operation_1(); // Implemented directly by the delegator.
delegator.operation_2(); // Implemented in part by the delegator and the delegate.
delegator.operation_3(); // Implemented by the delegate.

} // method: run

} // class: Application

Recall that when using the Java programming language:

• specialization is implemented by class (interface) inheritance

• inheritance is static in the sense that it is a compile-time phenomenon

• all instances of a class behave in the same manner

• an object cannot change its class and

• encapsulation may be broken if protected (or package) access to a parent’s fea-
tures is used.

242 Object-Oriented Design with UML and Java

By way of contrast:

• delegation is implemented by object composition

• the delegate can be changed at run-time therefore delegation may be dynamic if
required

• delegation uses public services therefore it respects encapsulation.

To illustrate delegation we can use an amended version of the example from chapter 5.
Consider a software company, employing programmers each of which have a unique
payroll number. We can assume that a programmer gets paid a basic weekly salary of
100 pounds. When a new programmer joins the staff he is assigned to a more experi-
enced programmer called a mentor. The mentor is paid a bonus of 10 per cent for this
duty. The company management also recognizes that some mentors are exceptional pro-
grammers and designates them as gurus. They receive a 20% bonus. We can model the
relationship between the programmer, mentor and guru as one of specialization.

As indicated in figure 8.2, the Programmer class acts as the base class holding the
payroll number and basic salary as protected attributes. Its getSalary method is rede-
fined in the descendant Mentor and Guru classes to reflect their enhanced salary.
Similarly the toString method is redefined to support the display of the objects.

Chapter 8: Design Patterns 243

-theProgrammers

{java.util.Collection} 0..*
#int thePayrollNumber

#int BASIC_SALARY

+Programmer(int aPayrollNumber)

+int getSalary()

+java.lang.String toString()

+Mentor(int aPayrollNumber)

+int getSalary()

+java.lang.String toString()

+Guru(int aPayrollNumber)

+String toString()

+int getSalary()

Company

Programmer

Mentor

Guru

Attributes

Operations

Operations

Operations

Figure 8.2 Using specialization to model the programmer/mentor relationship

Polymorphic substitution allows the Company to maintain a collection of Programmer,
Mentor and Guru objects.

To calculate the salary bill, the Company accumulates a total by iterating over the
collection of Programmers requesting the salary of each object it encounters. Of course
the object in question could be a Programmer, Mentor or Guru. Each responds accord-
ing to the method defined for getSalary in its class. Outline Java code for these classes is
shown in program 8.1.

Program 8.1 Using specialization (model Prog8_1.uml)

import textio.*;

public class Application {

// ----- Operations ----------
public void run() {

//
// Create a new organisation
Company co = new Company(“The Object University”);
//
// Hire some new employees
co.hireProgrammer(new Programmer(123));
co.hireProgrammer(new Mentor(456));
co.hireProgrammer(new Guru(789));
//
// Display all the employees
co.displayProgrammers();
//
// Obtain and print the wage bill
ConsoleIO.out.println(“The salary bill is: ” + co.getSalaryBill());
ConsoleIO.out.println();

} // method: run
} // class: Application

public class Programmer {

// ----- Operations ----------
public Programmer(int aPayrollNumber) {

thePayrollNumber = aPayrollNumber;
} // method: Programmer

public int getSalary() {
return BASIC_SALARY;

} // method: getSalary

public String toString() {
return “Programmer with payroll number: ” + thePayrollNumber;

} // method: toString

244 Object-Oriented Design with UML and Java

// ----- Attributes ----------
protected int thePayrollNumber;
protected static final int BASIC_SALARY = 100;

} // class: Programmer

public class Mentor extends Programmer {

// ----- Operations ----------
public Mentor(int aPayrollNumber) {

super(aPayrollNumber);
} // method: Mentor

public int getSalary() {
return BASIC_SALARY + (int)(BASIC_SALARY * 0.1);

} // method: getSalary

public String toString() {
return “Mentor with payroll number: ” + thePayrollNumber;

} // method: toString

} // class: Mentor

public class Guru extends Mentor {

// ----- Operations ----------
public Guru(int aPayrollNumber) {

super(aPayrollNumber);
} // method: Guru

public String toString() {
return “Guru with payroll number: ” + thePayrollNumber;

} // method: toString

public int getSalary() {
return BASIC_SALARY + (int)(BASIC_SALARY * 0.2);

} // method: getSalary

} // class: Guru

Note that for the sake of clarity we have omitted the methods equals, compareTo
and hashCode where they would normally be expected. Similarly the method qualifier
final is often omitted. The Application (created in a class Main with method main as
normal) produces an output as follows:

Staff list for The Object University:

Programmer with the payroll number: 123
Mentor with the payroll number: 456
Guru with the payroll number: 789

The salary bill is: 330

The difficulty with this solution arises when there is a need for a mentor or guru to
revert back to his normal programming job! We can easily make the situation worse by

Chapter 8: Design Patterns 245

introducing the requirement that a programmer adopts other roles. For example, he might
also be an administrator. In this case specialization is not appropriate. The reason is that
we must change the class of a particular object, e.g. from Mentor to Programmer. A
better alternative is to use a delegate to represent the role that an employee adopts. This
approach is shown in the class diagram of figure 8.3. Note that we have decided that a
Guru is just a special kind of Programmer not a Mentor. This prevents the special-
ization hierarchy becoming unnecessarily deep.

246 Object-Oriented Design with UML and Java

-theEmployees

{java.util.Collection} 0..*

-theDelegate

11

+Employee

+setDelegate

+getPayrollNumber

+getSalary

+toString

+Programmer

+getSalary

+toString

+Mentor

+getSalary

+toString

+Guru

+getSalary

+toString

Operations
Company

Employee Programmer

Mentor Guru

Operations

Operations Operations

Figure 8.3 A model of the company using delegation

Now when the Company accumulates a salary bill it does so by asking each
Employee for its salary. The difference is that the Employee uses a Programmer del-
egate to do so. The toString method is treated similarly. As before we specialize the
Programmer into a Mentor or Guru. The crucial point is that the Company only has
Employee objects but each may have a different role. It depends on the class of the del-
egate. The Java code for this example is given in program 8.2.

Program 8.2 Using a delegate (model Prog8_2.uml)

import textio.*;

public class Application {
// ----- Operations ----------
public void run() {

Company co = new Company(“The Object University”);
Employee emp = null;
//
emp = new Employee(123);
emp.setDelegate(new Programmer());
co.hireEmployee(emp);
//
emp = new Employee(456);
emp.setDelegate(new Mentor());

co.hireEmployee(emp);
//
co.displayEmployees();
ConsoleIO.out.println(“The salary bill is: ” + co.getSalaryBill());
ConsoleIO.out.println();
//
emp = co.getEmployee(123);
emp.setDelegate(new Mentor());
//
emp = co.getEmployee(456);
emp.setDelegate(new Guru());
//
co.displayEmployees();
ConsoleIO.out.println(“The salary bill is: ” + co.getSalaryBill());
ConsoleIO.out.println();

} // method: run
} // class: Application

import textio.*;
import java.util.*;

public class Company {

// ----- Operations ----------
public Company(String aName) {

theName = aName;
theEmployees = new ArrayList();

} // method: Company

public void hireEmployee(Employee anEmployee) {
theEmployees.add(anEmployee);

} // method: hireEmployee

public void displayEmployees() {
ConsoleIO.out.println();
ConsoleIO.out.println(“Staff list for ” + theName);
ConsoleIO.out.println();
Iterator iter = theEmployees.iterator();
while(iter.hasNext()) {

Employee emp = (Employee)iter.next();
ConsoleIO.out.println(“\t” + emp);

}
ConsoleIO.out.println();

} // method: displayEmployees

public int getSalaryBill() {
int totalBill = 0;
Iterator iter = theEmployees.iterator();
while(iter.hasNext()) {

Employee emp = (Employee)iter.next();

Chapter 8: Design Patterns 247

totalBill += emp.getSalary();
}
return totalBill;

} // method: getSalaryBill

public Employee getEmployee(int aPayrollNumber) {
Iterator iter = theEmployees.iterator();
while(iter.hasNext()) {

Employee emp = (Employee)iter.next();
if(aPayrollNumber == emp.getPayrollNumber())

return emp;
}
return null;

} // method: getEmployee

// ----- Attributes ----------
private String theName;
private java.util.Collection theEmployees; // of Employee

} // class: Company

public class Employee {

// ----- Operations ----------
public Employee(int aPayrollNumber) {

thePayrollNumber = aPayrollNumber;
theDelegate = null;

} // method: Employee

public void setDelegate(Programmer aProgrammer) {
theDelegate = aProgrammer;

} // method: setDelegate

public int getPayrollNumber() {
return thePayrollNumber;

} // method: getPayrollNumber

public int getSalary() {
return theDelegate.getSalary();

} // method: getSalary

public String toString() {
return “Employee with payroll number: ” + thePayrollNumber +

“ that is a ” + theDelegate;
} // method: toString

// ----- Attributes ----------
private int thePayrollNumber;
private Programmer theDelegate;

} // class: Employee

public class Programmer {

// ----- Operations ----------

248 Object-Oriented Design with UML and Java

public Programmer() {
} // method: Programmer

public int getSalary() {
return BASIC_SALARY;

} // method: getSalary

public String toString() {
return “Programmer”;

} // method: toString

// ----- Attributes ----------
protected static final int BASIC_SALARY = 100;

} // class: Programmer

public class Mentor extends Programmer {

// ----- Operations ----------
public Mentor() {

super();
} // method: Mentor

public int getSalary() {
return BASIC_SALARY + (int)(BASIC_SALARY * 0.1);

} // method: getSalary

public String toString() {
return “Mentor”;
} // method: toString

} // class: Mentor

public class Guru extends Programmer {

// ----- Operations ----------
public Guru() {

super();
} // method: Guru

public int getSalary() {
return BASIC_SALARY + (int)(BASIC_SALARY * 0.2);

} // method: getSalary

public String toString() {
return “Guru”;

} // method: toString

} // class: Guru

The Application produces the following output:

Staff list for The Object University:

Employee with payroll number: 123 that is a Programmer
Employee with payroll number: 456 that is a Mentor

The salary bill is: 210

Chapter 8: Design Patterns 249

Staff list for The Object University:

Employee with payroll number: 123 that is a Mentor
Employee with payroll number: 456 that is a Guru

The salary bill is: 230

8.2 Interface

Although apparently rather simple, the interface design pattern is probably the most
widely used design pattern of all. Recall from the discussions of chapters 5 and 6 that
we frequently establish a relationship with the base class of a class hierarchy. The inten-
tion is that an object belonging to any of its specialized classes can act as a substitute.
In fact a typical example is that shown in figure 8.2. Clearly this is a useful approach but
it can sometimes be too restrictive. The main problem that we face is that all of the
objects involved must belong to the same hierarchy. This may not always be appropriate.

A solution is to replace the base class with an interface. This is a class that provides
only a specification of its services. It allows us to design to a specification only and not
to a specification and its implementation. In order to conform to an interface a class
must implement all of its services, i.e. supply a method body for each operation. There
is no requirement for conformant classes to have any relationship with each other. They
need only implement the same interface. Crucially they can belong to different class
hierarchies. It is this fact that gives us the flexibility we need.

As is shown in the class diagram in figure 8.4 the Programmer, Mentor, and Guru
classes are now free to have separate implementations. Their only commonality is that
they must implement the Role interface.

250 Object-Oriented Design with UML and Java

-theEmployees

{java.util.Collection} 0..*
Company

Programmer Mentor Guru

Employee «interface»
Role

-theDelegate

1 1

Figure 8.4 A model of the company using specialization, delegation and an interface

Corresponding Java code is given in program 8.3. The classes Application and
Company are unchanged from the previous example giving:

Program 8.3 An interface delegate (model Prog8_3.uml)

public class Employee {

// ----- Operations ----------

public Employee(int aPayrollNumber) {
thePayrollNumber = aPayrollNumber;
theDelegate = null;

} // method: Employee

public void setDelegate(Role aRole) {
the Delegate = aRole;

} // method: setDelegate

public int getPayrollNumber() {
return thePayrollNumber;

} // method: getPayrollNumber

public int getSalary() {
return theDelegate.getSalary();

} // method: getSalary

public String toString() {
return “Employee with payroll number: ” + thePayrollNumber + “that is a” +

theDelegate;
} // method: toString

// ----- Attributes ----------
private int thePayrollNumber;
private Role theDelegate;

} // class: Employee

public interface Role {

// ----- Operations ----------
public abstract int getSalary();
public abstract String toString();
public static final int BASIC_SALARY = 100;

} // interface: Role

public class Programmer implements Role {

// ----- Operations ----------
public Programmer() {
} // method: Programmer

public int getSalary() {
return Role.BASIC_SALARY;

} // method: getSalary

public String toString() {
return “Programmer”;

} // method: toString

} // class: Programmer

public class Mentor implements Role {

// ----- Operations ----------

Chapter 8: Design Patterns 251

public Mentor() {
} // method: Mentor

public int getSalary() {
return Role.BASIC_SALARY + (int)(Role.BASIC_SALARY * MULTIPLIER);

} // method: getSalary

public String toString() {
return “Mentor”;

} // method: toString

// ----- Attributes ----------
private static final double MULTIPLIER = 0.1;

} // class: Mentor

public class Guru implements Role {

// ----- Operations ----------
public Guru() {
} // method: Guru

public int getSalary() {
return Role.BASIC_SALARY + (int)(Role.BASIC_SALARY * MULTIPLIER);

} // method: getSalary

public String toString() {
return “Guru”;

} // method: toString

// ----- Attributes ----------
private static final double MULTIPLIER = 0.2;

} // class: Guru

The Application produces an output as follows:

Staff list for the Object University

Employee with payroll number: 123 that is a Programmer
Employee with payroll number: 456 that is a Mentor

The salary bill is 210

Staff list for the Object University

Employee with payroll number: 123 that is a Mentor
Employee with payroll number: 456 that is a Guru

The salary bill is 230

The interface pattern is widely used in the Java API. For example, when using the
Swing class library (see chapter 7) there is a common requirement to create an applica-
tion that processes events. Typically the programmer must ensure that on notification of
an event such as a mouse click on a JComponent, some specific action should take
place. The Swing library provides a Listener interface for this purpose.

In fact there are several Listener interfaces: one for each kind of event that
might occur. For example, there is a MouseListener interface that is used to handle

252 Object-Oriented Design with UML and Java

mouse events. To be a MouseListener a class must implement the MouseListener
interface:

public interface MouseListener {

// ----- Operations ----------
public abstract void mouseClicked(MouseEvent e);
public abstract void mouseEntered(MouseEvent e);
public abstract void mouseExited(MouseEvent e);
public abstract void mousePressed(MouseEvent e);
public abstract void mouseReleased(MouseEvent e);

} // interface: MouseListener

To connect a specific Listener to a JComponent there are a number of opera-
tions provided by the JComponent class. For example, there is the operation
addMouseListener (MouseListener listener). Typically we might have:

import java.awt.*;
import java.awt.event.*;

public class Demo extends JFrame {
// ...
private class FrameListener implements MouseListener {

// ----- Operations ----------
public void mouseClicked(MouseEvent e) {

// ...
} // method: mouseClicked

public void mouseEntered(MouseEvent e) {
// ...

} // method: mouseEntered

public void mouseExited(MouseEvent e) {
// ...

} // method: mouseExited

public void mousePressed(MouseEvent e) {
// ...

} // method: mousePressed

public void mouseReleased(MouseEvent e) {
// ...

} // method: mouseReleased

} // class: FrameListener
// ...
this.addMouseListener(new FrameListener());
// ...

} // class: Demo

and

Chapter 8: Design Patterns 253

public class Main {

// ----- Operations ----------
public static void main (String[] args) {

Demo demo = new Demo();
demo.setVisible(true);
// ...

} // method: main

} // class: Main

8.3 Iterator

It has been demonstrated in the preceding chapters the usefulness of the collections pro-
vided by the Java Collections Framework. However, each element must be held privately
to prevent client abuse. Therefore each collection must provide some way of accessing
its elements. The iterator design pattern is used to do so.

This design pattern defines an interface that declares methods for sequentially accessing
the objects in the collection. Each collection provides clients with an object that imple-
ments this interface. Clients that access the elements in a collection do so through the inter-
face and remain independent of the class that actually implements it. An example from
program 8.2 will suffice.

public class Company {

// ----- Operations ----------
public Company(String aName) {

theEmployees = new ArrayList();
// ...

} // method: Company

public int getSalaryBill() {
int totalBill = 0;
Iterator iter = theEmployees.iterator();
while(iter.hasNext()) {

Employee emp = (Employee)iter.next();
totalBill += emp.getSalary();

}
return totalBill;

} // method: getSalaryBill
// ...

// ----- Attributes ----------
private java.util.Collection theEmployees; // of Employee
// ...

} // class: Company

The Company uses an ArrayList to hold Employee references. In the method
getSalaryBill it must visit each Employee in turn and request its salary. It does this by

254 Object-Oriented Design with UML and Java

declaring iter, a reference to an Iterator initialized with a reference to the object
returned by the iterator method of the ArrayList. It can then be sent the message
hasNext to control a while loop and next to access each reference in the ArrayList. The
Object reference returned must be cast to an Employee so that the message getSalary
can be sent.

The important points for us to appreciate is that Iterator is an interface defined in the
java.util package as:

public interface Iterator {

// ----- Operations ----------
public abstract boolean hasNext();
public abstract Object next();
public abstract void remove(Object obj);
// ...

}

and that the method iterator in ArrayList returns an implementation of it. The detail of
how it does so is of no concern to us. Note that any other collection that provides an
Iterator could be used with minimal changes to our code.

8.4 Adapter

Sometimes a class may present the wrong set of services to a client. By using the
adapter pattern we can easily remedy this rather than undertake extensive modifica-
tions. All that happens is that the adaptee is a delegate of the adapter. This allows an
Adapter class to advertise those services expected by a client but to use an adaptee to
implement them. The class diagram of figure 8.5 illustrates the approach.

Chapter 8: Design Patterns 255

Adapter

Operations

+operation_1

+operation_2

+operation_3

Adaptee

Operations

+operation_4

+operation_5

+operation_6

Figure 8.5 Using a delegate to design an adapter

When an Adapter is sent a message corresponding to operations 1, 2 or 3 it uses
operations 4, 5 and 6 respectively in the Adaptee. This means that it can present the
services expected by a client and use another object to implement them. The Action
class of Chapter 4 is based on an Adapter. In this context it is also known as the façade
design pattern as it acts as a front end to its delegate, the Library.

An adapter is also useful when there are too many services on offer. Often the adapter
is a specialization of the adaptee. Typically the adapter provides default implementations
of the adaptee’s operations. Further specializations of the adapter can redefine them as
is necessary. However, an interface can be used as the adaptee. In this case the adapter

just implements the adaptee. Figure 8.6 and the corresponding Java code fragments
illustrate the approach.

256 Object-Oriented Design with UML and Java

Adapter_1

Operations

+operation_1

+operation_2

+operation_3

«interface»
Adaptee

Operations

+operation_1

+operation_2

+operation_3

Adapter_2

Operations

+operation_1

Figure 8.6 Using specialization to design an adapter

public interface Adaptee {

// ----- Operations ----------
public abstract void operation_1();
public abstract void operation_2();
public abstract void operation_3();

} // interface: Adaptee

public class Adapter_1 implements Adaptee {

// ----- Operations ----------
public void operation_1() {

// ...
} // method: operation_1

public void operation_2() {
// ...

} method: operation_2

public void operation_3() {
// ...

} // method: operation_3

} // class: Adapter_1

public class Adapter_2 extends Adapter_1 {

// ----- Operations ----------
public void operation_1() {

// ...
} // method: operation_1

} // class: Adapter_2

public class Application {

// ----- Operations ----------
public void run () {

Adaptee firstAdapter = new Adapter_1(...);
firstAdapter.operation_1(); // Default implementation
firstAdapter.operation_2(); // Default implementation
firstAdapter.operation_3(); // Default implementation
//
Adaptee secondAdapter = new Adapter_2(...);
secondAdapter.operation_1(); // Special implementation
secondAdapter.operation_2(); // Default implementation
secondAdapter.operation_3(); // Default implementation

} // method: run

} // class: Application

There are many examples of this kind of adapter in the Java API. For example, there
is an abstract adapter class for each kind of event listener interface. All that each class
does is to provide empty methods. This means that the programmer need only extend
the adapter and provide methods that are relevant to the application. Crucially there is
no need to even know about the others. This simplifies an otherwise tedious task.

For example, the abstract WindowAdapter class provides seven default methods for
the WindowListener interface described in figure 7.12. An application is expected to
specialize it and redefine one or more of its methods as shown in program 7.4.

8.5 Singleton

The singleton design pattern is concerned with object creation. In many applications
we find a requirement that no more than one instance of a particular class should exist.
For example, throughout this text we have assumed a single instance of the class
Application. However, with a default constructor we can create any number of
instances as in:

public class Main {

// ----- Operations ----------
public static void main(String[] args) {

Application app1 = new Application();
Application app2 = new Application();
// ...

} // method: main

} // class: Main

In part, this illustration points the way to achieving our objective. That is, the
Application class is given programmer-defined default or parameterized constructors that
do not have public visibility. Without a public constructor clients cannot create any
instances. Note that if there is no declared constructor for a class, then Java assumes a
default constructor with public visibility.

Chapter 8: Design Patterns 257

Additionally, if a single instance is to be guaranteed, then the class must have some
operation, which we shall refer to as a factory operation, to create the singleton. Hence
we are hiding the class constructor behind the factory operation.

In Java we realize the singleton pattern in the Application class with a static method
representing the factory that guarantees that only one instance is available. This method has
access to the attribute that refers to the unique instance. The attribute representing the
instance references an initialized object. The class is declared as in program 8.4.

Program 8.4 Singleton design pattern (model Prog8_4.uml)

public class Application {

// ----- Operations ----------
public static Application getApplication() {

return theApplication;
} // method: getApplication

private Application() {
// No initialization required

} // method: Application

public void run() {
// ...

} // method: run

// ----- Attributes ----------
private static final Application theApplication = new Application();

} // class: Application

Class Main now appears as:

public class Main {

// ----- Operations ----------
public static void main(String[] args) {

Application app = Application.getApplication();
app.run();

} // method: main

} // class: Main

8.6 Visitor

Consider program 8.2 from section 8.1. The Company class has the operation
displayEmployees which presents a list of staff members:

// class Company
public void displayEmployees() {

ConsoleIO.out.println();
ConsoleIO.out.println(“Staff list for ” + theName);

258 Object-Oriented Design with UML and Java

ConsoleIO.out.println();
Iterator iter = theEmployees.iterator();
while(iter.hasNext()) {

Employee emp = (Employee)iter.next();
ConsoleIO.out.println(“\t” + emp);

}
ConsoleIO.out.println();

} // method: displayEmployees

Consider also the operation getSalaryBill to compute the total cost of the salaried
employees:

// class Company
public int getSalaryBill() {

int totalBill = 0;
Iterator iter = theEmployees.iterator();
while(iter.hasNext()) {

Employee emp = (Employee)iter.next();
totalBill += emp.getSalary();

}
return totalBill;

} // method: getSalaryBill

We immediately identify a common logic fragment in both examples, namely, the need
to iterate across the collection of Employees and to perform some action against each.
In the operation displayEmployees the action is to display the details of each
Employee. In the operation getSalaryBill the action is to form a running total of the
salaries of each Employee.

The visitor pattern lets us separate out the code to traverse a possibly complex struc-
ture of objects from the processing that is performed against each object. While our col-
lection of Employee objects is relatively straightforward, we see from the two
illustrative methods that we mix in traversal with action code. It is often the case that it
is better to separate these two concerns.

The separation we desire can be achieved by locating action operations in a separate
object called a visitor. This visitor object is passed to each element of the structure (here,
an Employee object) as the structure is traversed. The architecture of the visitor classes
is shown in figure 8.7.

The EmployeeVisitor is an interface with the abstract operation visit:

public interface EmployeeVisitor {

// ----- Operations ----------
public abstract void visit(Employee emp);

} // interface: EmployeeVisitor

The EmployeeDisplayVisitor class provides an implementation for the visit opera-
tion. The method simply displays the Employee object referenced by the parameter
supplied by a client. This is, of course, the action we associate when displaying the col-
lection of employees.

Chapter 8: Design Patterns 259

public class EmployeeDisplayVisitor implements EmployeeVisitor {
// ----- Operations ----------
public void visit(Employee emp) {

ConsoleIO.out.println(“\t” + emp);
} // method: visit

} // class: EmployeeDisplayVisitor

The EmployeeSalaryVisitor also implements the visit operation but the method adds the
salary of the Employee to a private attribute. Additionally the class provides an acces-
sor for this private attribute and a constructor to initialize it.

public class EmployeeSalaryVisitor implements EmployeeVisitor {

// ----- Operations ----------
public EmployeeSalaryVisitor() {

theTotalSalary = 0;
} // method: EmployeeSalaryVisitor

public void visit(Employee emp) {
theTotalSalary += emp.getSalary();

} // method: visit

public int getTotalSalary() {
return theTotalSalary;

} // method: getTotalSalary

// ----- Attributes ----------
private int theTotalSalary;

} // class: EmployeeSalaryVisitor

The Company class is no longer responsible for displaying or accumulating a salary
bill. However, it must provide a method accept that iterates over its collection of

260 Object-Oriented Design with UML and Java

«interface»
EmployeeVisitor

Operations

+visit

EmployeeDisplayVisitor

Operations

+visit

EmployeeSalaryVisitor

Operations

+EmployeeSalaryVisitor

+visit

+getTotalSalary

Figure 8.7 Visitor classes

Employees giving an EmployeeVisitor access to each in turn. Of course different
EmployeeVisitors carry out different actions on each Employee. We can now revise
the Company class from program 8.4 in the outline code that follows. The other classes
are unchanged.

Program 8.5 Using a visitor (model Prog8_5.uml)

public class Company {

// ----- Operations ----------
public void displayEmployees() {

ConsoleIO.out.println();
ConsoleIO.out.println(“Staff list for ” + theName);
ConsoleIO.out.println();
//
EmployeeDisplayVisitor displayVisitor = new EmployeeDisplayVisitor();
this.accept(displayVisitor);
ConsoleIO.out.println();

} // method: displayEmployees

public int getSalaryBill() {
EmployeeSalaryVisitor salaryVisitor = new EmployeeSalaryVisitor();
this.accept(salaryVisitor);
return salaryVisitor.getTotalSalary();

} // method: getSalaryBill

private void accept(EmployeeVisitor visitor) {
Iterator iter = theEmployees.iterator();
while(iter.hasNext()) {

Employee emp = (Employee)iter.next();
visitor.visit(emp);

}
} // method: accept

// ...

// ----- Attributes ----------
private String theName;
private java.util.Collection theEmployees; // of Employee

} // class: Company

The two original methods for displayEmployees and getSalaryBill now create an
appropriate visitor object then call the private accept method. This accept method iter-
ates across the Employee objects and requests the visitor object to visit each. Of course,
different visitor objects have different behaviours when they visit an Employee.

8.7 Observer

In object-oriented designs there is a common need for one or more objects (the observers)
to be informed when the state of another (the subject) changes. This gives rise to the
observer pattern as illustrated in figure 8.8.

Chapter 8: Design Patterns 261

262 Object-Oriented Design with UML and Java

Observer

Operations

+notify

«interface»
ObserverIF

Operations

+notify

Subject

Operations

+addObserver

«interface»
ObservableIF

Operations

+addObserver

-theObservers -theSubject

0..* 1

Figure 8.8 The observer design pattern

To be an observer a class must implement the interface ObserverIF. The intention is
that the subject can inform an observer that its state has changed. This is done by the
subject sending the message notify. The method for notify consists of the actions the
observer actually takes on notification. To be a subject a class must implement the inter-
face ObservableIF. The intention is that observers can be registered with the subject
for notification with the message addObserver.

The observer design pattern is so widely used that it is supported by the Java API.
There is an interface Observer (corresponding to ObserverIF in figure 8.8):

public interface Observer {

public abstract void update(Observable obj, Object arg);

} // interface: Observer

It specifies that a class must implement the method update to be an observer. The sub-
ject makes use of it when notifying its observers of a change to its state.

There is also the class Observable (corresponding to Subject in figure 8.8):

public class Observable {

public void addObserver(Observer obj) { ... }
protected void setChanged() { ... }
public void notifyObservers(Object obj) { ... }
// ...

} // class: Observable

It takes care of the implementation details associated with being a subject. For example,
we can register an observer with addObserver, note that the subject has changed with
setChanged and inform its observers with notifyObservers. All that we need do is to
extend Observable to represent an object that is to be observed.

As a simple example, consider an application in which there are students each with
a name and a matriculation number that can be changed. If a student’s matriculation

number is changed then administrators must be informed. Alternatively if a student’s
name is changed then lecturers must be informed. We can make each student
Observable by extending the Observable class. The Lecturers and Administrators
become Observers by implementing the Observer interface. Program 8.6 illustrates
the approach.

Program 8.6 A simple observer example (model Prog8_6.uml)

import java.util.Observable;

public class Student extends java.util.Observable {

// ----- Operations ----------
public Student(String aName, int aMatriculationNumber) {

theName = aName;
theMatriculationNumber = aMatriculationNumber;

} // method: Student

public void setName(String aName) {
theName = aName;
this.setChanged();
this.notifyObservers(“name”);

} // method: setName

public void setMatriculationNumber(int aMatriculationNumber) {
theMatriculationNumber = aMatriculationNumber;
this.setChanged();
this.notifyObservers(“matriculation number”);

} // method: setMatriculationNumber

public String toString() {
return theName + “ with matriculation number ” + theMatriculationNumber + “\n”;

} // method: toString

// ----- Attributes ----------
private String theName;
private int theMatriculationNumber;

} // class: Student

import java.util.Observable;
import textio.*;

public class Lecturer implements java.util.Observer {

// ----- Operations ----------
public Lecturer(String aName) {

theName = aName;
} // method: Lecturer

public void update(Observable obj, Object arg) {
if(arg.equals(“name”))

Chapter 8: Design Patterns 263

ConsoleIO.out.println(this + “ knows that ” + obj + “ has changed its ” + arg);
else

ConsoleIO.out.println(this + “ cannot handle changes to ” + arg);
} // method: update

public String toString() {
return “Lecturer: ” + theName + “\n”;

} // method: toString

// ----- Attributes ----------
private String theName;

} // class: Lecturer

import java.util.Observable;
import textio.*;

public class Administrator implements java.util.Observer {

// ----- Operations ----------
public Administrator(String aName) {

theName = aName;
} // method: Administrator

public String toString() {
return “Administrator: ” + theName + “\n”;

} // method: toString

public void update(Observable obj, Object arg) {
if(arg.equals(“matriculation number”))

ConsoleIO.out.println(this + “ knows that ” + obj + “ has changed its ” + arg);
else

ConsoleIO.out.println(this + “ cannot handle changes to ” + arg);
} // method: update

// ----- Attributes ----------
private String theName;

} // class: Administrator

public class Application {

// ----- Operations ----------
public void run() {

Student s1 = new Student(“John”, 123);
//
s1.addObserver(new Lecturer(“Ken”));
s1.addObserver(new Administrator(“Peter”));
//
s1.setName(“Alec”);
s1.setMatriculationNumber(456);

} // method: run

} // class: Application

264 Object-Oriented Design with UML and Java

Notice the methods setName and setMatriculationNumber in the Student class. They
change the appropriate attribute, record that the recipient has changed with setChanged
then notify its observers with notifyObservers. If the change is not recorded then
notifyObservers does nothing. As both setChanged and notifyObservers are inher-
ited from the superclass Observable their implementation is of no concern to us.
However, we expect that the Observable class maintains a collection of Observer
references.

As the Lecturer and Administrator classes implement the Observer interface

there is an update method in each. It is this method that is called by notifyObservers.
The first parameter is a reference to the Observable object that has changed. If neces-
sary the update method can make use of the second parameter to respond accordingly.

Finally, the Application makes use of the addObserver method to register a Lecturer
and an Administrator as Observers. As with setChanged and notifyObservers it is
inherited by the Student class from Observable.

The output produced is:

Administrator: Peter
cannot handle changes to name

Lecturer: Ken
knows that Alec with matriculation number 123
has changed its name

Administrator: Peter
knows that Alec with matriculation number 456
has changed its matriculation number

Lecturer: Ken
cannot handle changes to matriculation number

A second example is the Swing class library that supports the implementation of
event-driven designs. An important part of its design uses a variation of the observer
pattern. The class JComponent is a base class describing any kind of visual com-
ponent such as a panel or a text field. Subclass instances of this JComponent class can
act as both subjects and observers. Therefore a text field operating as a subject (an event
source) might inform a panel, operating as an observer that some new data is available
for display.

8.8 Template method

Recall that in the second iteration of the case study of chapter 6 (section 6.3.4.2) we
encountered a serious problem with the implementation of the LenderImp class. The
role of one of its methods, registerOneBorrower was to define the logic for
registering a borrower. It also had to create a borrower record held by the lender.
Unfortunately the necessary information to create a borrower record was not available
as the detailed nature of the borrower is problem domain-specific. For example, it might
be a library borrower with a name, address and telephone number or a video shop bor-
rower with a name and registration number. How do we define a method when some of

Chapter 8: Design Patterns 265

the information required to do so is only known by a subclass? One solution is the
Template Method design pattern.

The template method pattern uses an abstract method in the implementation of a
method. The subtle point is that the superclass method is final and the abstract

method is defined by a subclass. This means that we can define a method in a superclass
and expect a subclass to complete it without altering the ordering of its statements.

In the case study we know that registerOneBorrower considers the borrower to be
an object belonging to a class that implements the BorrowerRecordIF interface. We
also know that it must have a name. Therefore we can declare:

protected abstract BorrowerRecordIF createBorrower(String aBorrowerName);

in the LenderImp class. It can then be used by its registerOneBorrower method as in:

// class LenderImp
public final void registerOneBorrower(String aBorrowerName) {

BorrowerRecordIF foundRecord = this.getBorrowerRecord(aBorrowerName);
// ...
if(foundRecord == null) {

BorrowerRecordIF borrowerRecord = this.createBorrower(aBorrowerName);
boolean result = theBorrowers.add(borrowerRecord);
// ...

}
} // method: registerOneBorrower

A problem domain-specific class such Library or VideoShop can then define it as:

// class Library
protected final BorrowerRecordIF createBorrower(String aBorrowerName) {

String address;
String telephoneNo;
// Get the values for address and telephoneNo – perhaps using a dialog box
// ...

return new BorrowerRecord(aBorrowerName, address, telephoneNo);
} // method: createBorrower

or assuming that RentalRecord implements BorrowerRecordIF:

// class VideoShop
protected final BorrowerRecordIF createBorrower(String aBorrowerName) {

String registrationNo;
// Get the values for registrationNo – perhaps using a dialog box
// ...
return new RentalRecord(aBorrowerName, registrationNo);

} // method: createBorrower

8.9 Abstract factory

A framework is a generic architecture that can be customized for a particular applica-
tion. Their use in object-oriented systems has become widespread. Because of evolving

266 Object-Oriented Design with UML and Java

requirements they need to be malleable, so that they may adapt to change. For example, a
framework may need to be portable across many different hardware platforms. Often this
leaves the framework designer with the rather difficult problem of creating an object with-
out knowing about its concrete implementation. In fact we encountered such an example in
the preceding section with the creation of a borrower record in the LenderImp class.

The abstract factory pattern solves this kind of problem by delegating construction
of a concrete class object to an appropriate subclass. Figure 8.9 illustrates the architec-
ture that is often used.

Chapter 8: Design Patterns 267

ConcreteFactory1

Operations

+createProduct

«abstract»
AbstractFactory

Operations

+getFactory

+createProduct «abstract»
Product

Operations

+dolt
ConcreteFactory2

Operations

+createProduct
ConcreteProduct2

Operations

+dolt

ConcreteProduct1

Operations

+dolt

Client

Figure 8.9 The abstract factory pattern

The AbstractFactory class defines an abstract method createProduct for
creating instances of the required concrete class (such as ConcreteProduct1
or ConcreteProduct2). A concrete factory such as ConcreteFactory1 or
ConcreteFactory2 implements that interface. In class ConcreteFactory1, for exam-
ple, the method createProduct creates a new object of the class ConcreteProduct1.
The actual concrete factory object is supplied by the static method getFactory in class
AbstractFactory. A client calls this method to get the concrete factory for creating the
various concrete products. In this case it is ConcreteProduct1 or ConcreteProduct2.
For example, a client may have code such as:

Product myProduct = AbstractFactory.getFactory().createProduct();
myProduct.doIt();

The client code does not know (or need to know) what concrete class myProduct actu-
ally references. This is probably fixed when the system is initialized and might change
from one hardware platform to another. Note that for simplicity the concrete factories
shown create only one concrete product. Typically they might create a family of con-
crete products.

The Swing class library provided by the Java API is a classic example of a framework
that makes use of this pattern to help make it portable. Its Toolkit class is an abstract fac-
tory used to create objects that work with the native windowing system. The concrete fac-
tory it uses for a given hardware platform is determined by initialization code. So that it can
be accessed by other classes, a static method getDefaultToolkit is provided. In addition it

has abstract operations such as createFrame and createButton that are defined by the
concrete factory. Swing makes use of code similar in nature to that shown above.

8.10 Decorator

Perhaps the most elegant of the design patterns is the Decorator design pattern.
It achieves the apparently impossible by allowing the programmer to dynamically add
functionality to an object. Objects of the same class can have different run-time behav-
iours! Decorator achieves its effect by using a wrapping (or chaining) technique.

Consider what happens if we change the company scenario from section 8.2 so that
an employee is basically a programmer, but he is expected to adopt other roles. For
example, a programmer might become a mentor or an administrator. The “twist” that
we introduce is that a programmer can adopt combinations of these roles in some arbi-
trary fashion. For example, a programmer might also be a mentor, or an administrator
or both at various times. One obvious way to achieve this is to have a class for every
possible combination of roles. For example, we might have the classes:

Programmer,
ProgrammerAndMentor,
ProgrammerAndAdministrator and
ProgrammerAndMentorAndAdministrator.

However, this would lead to an explosion of classes. If we expect to add other roles later
in the development of the software it is even less attractive. Finally it does not give us
the run-time flexibility we need as it is based on a static class hierarchy.

A better approach to the problem is shown in the class diagram of figure 8.10.

268 Object-Oriented Design with UML and Java

«interface»
Employee

«abstract»
EmployeeDecorator

Company

Programmer

Mentor Administrator

-theEmployees

{java.util.Collection} 0..* 1

-theDecoratedEmployee

Figure 8.10 A model of the company using a decorated class

As might be expected from previous discussions, the design has the concrete classes
Programmer, Mentor and Administrator. They correspond to each role an Employee
might adopt.

However, the EmployeeDecorator class requires some explanation. It has an aggre-
gate component named theDecoratedEmployee that acts as a delegate. Normally we
say that it decorates it. By polymorphic substitution this delegate can belong to any
class that implements the Employee interface. For example, it could be a
Programmer. However, the delegate could also be an EmployeeDecorator, i.e. a
Mentor or Administrator. The important point to understand is that in this case the
object concerned decorates an Employee. As before this could be a Programmer or an
EmployeeDecorator. This gives us the flexibility we require to decorate an Employee
as necessary.

For example, as all of these classes define the getSalary method we might have the
collaboration diagram as shown in figure 8.11.

Chapter 8: Design Patterns 269

It shows:

• a Mentor that decorates a Programmer

• an Administrator that decorates a Mentor that decorates a Programmer and

• an undecorated Programmer

When each is sent the message getSalary, it is relayed to each decorated Employee as
appropriate.

The basic approach is to create a Programmer and decorate it as appropriate.
Therefore we might have:

Employee programmer_1 = new Programmer(123);

and

Employee programmer_2 = new Programmer(456);
Employee teamLeader = new Mentor(programmer_2);

To avoid the confusion of referencing an object when it is undecorated and decorated
(programmer_2 above and theDecoratedEmployee in DecoratedEmployee

1.0: getSalaryBill 1.3: getSalary 1.4: getSalary 1.5: getSalary

: Company : Administrator : Mentor : Programmer

: Mentor : Programmer

: Programmer

1.1: getSalary 1.2: getSalary

1.6: getSalary

Figure 8.11 Representative collaborations

respectively) it is normal for the decorated object to be created during the constructor
call of the decorating object. Therefore we have:

Employee teamLeader = new Mentor(new Programmer(456));

to create a Mentor that decorates a Programmer. This approach continues with more
complex decorations to give:

Employee projectLeader = new Administrator(new Mentor(new Programmer(912)));

to give an Administrator that decorates a Mentor that decorates a Programmer.
Note that as a decorated object carries the same data as its decorator, we strive to make

a class such as EmployeeDecorator as lightweight as possible, i.e. with a minimum
number of attributes.

The Java code from program 8.7 illustrates the decorator design pattern in more detail.

Program 8.7 Using a decorator (model Prog8_7.uml)

import textio.*;

public class Application {

// ----- Operations ----------
public void run() {

Company co = new Company(“The Object University”);
//
Employee programmer = new Programmer(123);
co.hireEmployee(programmer);
//
Employee teamLeader = new Mentor(new Programmer(456));
co.hireEmployee(teamLeader);
//
Employee documentationLeader = new Administrator(new Programmer(789));
co.hireEmployee(documentationLeader);
//
Employee projectLeader = new Administrator(new Mentor(new Programmer(912)));
co.hireEmployee(projectLeader);
//
co.displayEmployees();
ConsoleIO.out.println(“The salary bill is: ” + co.getSalaryBill());
ConsoleIO.out.println();

} // method: run

} // class: Application

public interface Employee {

// ----- Operations ----------
public abstract int getPayrollNumber();
public abstract int getSalary();

270 Object-Oriented Design with UML and Java

public abstract String toString();

} // interface: Employee

public class Programmer implements Employee {

// ----- Operations ----------
public Programmer(int aPayrollNumber) {

thePayrollNumber = aPayrollNumber;
} // method: Programmer

public int getPayrollNumber() {
return thePayrollNumber;

} // method: getPayrollNumber

public int getSalary() {
return BASIC_SALARY;

} // method: getSalary

public String toString() {
return “ Programmer with payroll number: ” + this.getPayrollNumber();

} // method: toString

// ----- Attributes ----------
private int thePayrollNumber;
private static final int BASIC_SALARY = 100;

} // class: Programmer

public abstract class EmployeeDecorator implements Employee {

// ----- Operations ----------
public EmployeeDecorator(Employee anEmployee) {

theDecoratedEmployee = anEmployee;
} // method: EmployeeDecorator

public int getPayrollNumber() {
return theDecoratedEmployee.getPayrollNumber();

} // method: getPayrollNumber

public int getSalary() {
return theDecoratedEmployee.getSalary();

} // method: getSalary

public String toString() {
return theDecoratedEmployee.toString();

} // method: toString

// ----- Attributes ----------
private Employee theDecoratedEmployee;

} // class: EmployeeDecorator

public class Mentor extends EmployeeDecorator {

// ----- Operations ----------

Chapter 8: Design Patterns 271

public Mentor(Employee anEmployee) {
super(anEmployee);

} // method: Mentor

public int getSalary() {
return super.getSalary() + (int)(super.getSalary() * MULTIPLIER);

} // method: getSalary

public String toString() {
return “ Mentor and ” + super.toString();

} // method: toString

// ----- Attributes ----------
private static final double MULTIPLIER = 0.1;

} // class: Mentor

public class Administrator extends EmployeeDecorator {

// ----- Operations ----------
public Administrator(Employee anEmployee) {

super(anEmployee);
} // method: Administrator

public int getSalary() {
return super.getSalary() + (int)(super.getSalary() * MULTIPLIER);

} // method: getSalary

public String toString() {
return “ Administrator and ” + super.toString();

} // method: toString

// ----- Attributes ----------
private static final double MULTIPLIER = 0.2;

} // class: Administrator

The output produced is:

Staff list for the Object University

Programmer with payroll number: 123
Mentor and Programmer payroll number: 456
Administrator and Programmer payroll number: 789
AdministratorandMentorandProgrammerpayroll number:912

The salary bill is: 462

The input/output classes of the Java API are strongly influenced by the decorator
design pattern. For example, a FileOutputStream object references a text file and is
created with a statement such as:

FileOuputStream fos = new FileOutputStream(“Library.txt”);

However, the ObjectOutputStream class supports object serialization discussed in
section 6.4.2 and has a constructor that permits it to decorate a FileOutputStream object.

272 Object-Oriented Design with UML and Java

A typical example is:

ObjectOutputStream oos = new ObjectOutputStream(new

FileOutputStream(“Library.ser”));
Book bk = new Book (...);
oos.writeObject(bk);

The crucial point is that a FileOutputStream object is made to behave like an
ObjectOutputStream object with no modification to the FileOutputStream class.

8.11 Summary

1. Patterns are ways to describe best practices, good designs, and capture experience
in a way that it is possible for others to reuse this experience.

2. Specialization and delegation are widely used in object-oriented systems. Both pro-
vide powerful ways of reusing code. Delegation can often be used in place of spe-
cialization, offering flexibility at run-time.

3. The use of interfaces can increase the flexibility we seek. An interface provides
only a specification of its services. In order to conform to an interface a class must
implement all of its services, i.e. supply a method body for each operation.
Crucially the classes can belong to different class hierarchies.

4. The adapter design pattern is used to introduce a class with the required set of ser-
vices that is realized by another class that has the wrong set of services for a client.

5. The singleton design pattern guarantees that no more than one instance of a partic-
ular class exists in a program. The singleton also offers a common point of access
to the object throughout the application.

6. The visitor pattern is used to separate the code to traverse a possible complex struc-
ture of objects from the processing that is performed against each object.

7. The template method pattern lets us fix the ordering of steps in an algorithm but lets
subclasses vary the details of the separate steps.

8. The abstract factory method delegates the construction of concrete class objects to
an appropriate subclass. This way the client code need not know what actual con-
crete object it references.

9. The decorator pattern is used to dynamically add new functionality to an object.
10. Many of these design patterns have been incorporated into the Java API.

8.12 Exercises

1. The final model from the previous chapter (program 7.11, Lib7_11.uml) included
a class BookDialog used to obtain the details of a Book. In the actionPerformed
method of the inner class AddBookAction of LibraryFrame a new BookDialog is
created and made visible. The user then enters the required information and selects
either the Ok or Cancel buttons. The dialog is then dismissed and if Ok has been
selected then the input values are obtained and used to initialize a newly created
Book object.

Chapter 8: Design Patterns 273

Object creation is one of the most expensive operations for a Java program to
perform. Consider using the singleton design pattern so that only one BookDialog
object is ever created. You will probably also require operations to empty the dialog
controls so that new data can be entered. Otherwise when the dialog appears it will
show the data from the preceding usage.

2. The ROME case tool is a large, complex Java program. It should come as no sur-
prise that it was designed before it was implemented. Therefore there are several
UML diagrams that were used in the development of ROME. For example, there is
a class diagram for the class diagrammer it supports.

We expect this diagram to be populated with classes that refer to model elements
such as a class symbol or an association symbol. For example, figure 8.12 is a sim-
plified class diagram for the class diagrammer used in ROME. The abstract class
ModelElement represents any model element that can appear in a diagram. The
abstract class NodeElement represents any kind of node while the abstract class
RelationElement represents any kind of relation between two nodes. The concrete
classes ClassSymbol, NoteSymbol, AggregationSymbol, AssociationSymbol
and SpecializationSymbol represent themselves.

274 Object-Oriented Design with UML and Java

NoteSymbol ClassSymbol AggregationSymbol AssociationSymbol SpecializationSymbol

«abstract»
RelationElement

«abstract»
ModelElement

«abstract»
NodeElement

2 0..*

Figure 8.12 A class diagram for the ROME class diagrammer

This may appear odd and perhaps in some sense recursive. However, there is no
contradiction. It is just a class diagram for a software system. The fact that it is a
class diagrammer makes no difference. You might like to reflect on the fact that
ROME is being used to develop a model of the next version of itself.

We understand that an object diagram is a concrete example of the class dia-
gram. Therefore an object diagram corresponding to figure 8.12 is a class diagram.
Use a selection of class diagrams from this book to check on its accuracy.
Remember that it is somewhat simplified.

3. Introduce the concrete class PackageSymbol that is an aggregate of any number
of other modelling elements into the class diagram of the previous exercise. You
should arrive at the structure for the composite design pattern. Visit http://
www.hillside.net for a discussion on this pattern. Given that a class may include fur-
ther inner classes with their own relationships, then how should ClassSymbol be
revised? Compare the composite and decorator patterns.

4. Figure 8.12 implies that as a class symbol is dragged by the user then all
RelationElements associated with it must be informed so that visually they retain
the appearance of being connected. What design pattern might be used to ensure
this occurs? Outline how it would be introduced into figure 8.12.

5. Figure 8.13 is a simplified class diagram for the primary user-interface panels used
in ROME.

Chapter 8: Design Patterns 275

For example, the class ProjectPanel represents the panel at the upper left for the
model’s project tree (see also appendix B).

When the user selects a new diagram from the project panel tree then the model
panel responds by rendering the diagram represented by the tree node. Equally
when the user selects a class symbol in the model panel then the properties panel
presents the features of the chosen class.

What design pattern is appropriate to achieve this effect? Reflect on the Java docu-
mentation for the classes PropertyEvent and PropertyChangeListener then con-
sider how they would be deployed for this purpose.

6. In chapters 4, 6 and 7 we have developed software used to support a librarian.
Unfortunately in the light of new requirements it requires extensive modification.
Rather than adopt an ad-hoc code-based approach, it has been decided to redesign
it making use of design patterns wherever appropriate. It is anticipated that this
should minimize the effort required to accommodate future changes as well as
bringing an element of “best practice”. It is also expected that any changes to any
existing classes should be minimal.

The new requirements are as follows:

Requirement #1
There should be a guarantee that only one library is created.

Requirement #2
There is a need to track the borrowing habits of frequent borrowers. If a borrower
has more than four publications out on loan then from that point on the details of
his borrowings should be recorded. The librarian can ask at any time for the bor-
rowing/returning history of all such borrowers.

All transactions for a borrower should be sensibly grouped together, e.g. loans fol-
lowed by returns. However, the groupings should be ordered by the borrower’s name.

RomeFrame RomePanel

ProjectPanel

ModelPanel

PropertiesPanel

MessagePanel

Figure 8.13 The primary user-interface panels from ROME

Similarly the system should allow specific borrowers to be tracked no matter
how many publications they have out on loan. The borrowing history of any one of
these borrowers can be requested by the librarian.

Requirement #3
From time to time a publication will not be available for lending. For example, the
librarian may have to have its cover refurbished. Our intention is not to remove it
from the loan stock even though it cannot be borrowed. When the details of such a
publication are displayed then a short message to the effect that it cannot be bor-
rowed should also be displayed. Clearly it should not already be out on loan.
However, it should also be possible for it to revert back to being a normal borrow-
able publication.

7. When testing software it is often useful to be able to follow the thread of control i.e.
to trace the sequence of method calls. This is especially true with object-oriented
systems where there is often extensive message passing. At its simplest, this might
involve a method printing its name before starting normal execution. For example,
when testing the library case study we might have an output such as:

// ...
method: Book.toString
method: Publication.toString
1: Java by Ken
// ...

It shows that displaying the details of a book involves the method toString in the class
Book invoking the method toString in the class Publication.

An obvious implementation strategy is to add a print statement to each method.
However, it has the major disadvantage that normal code is populated with testing code.
Ultimately it must be deleted or commented out when testing is complete. Use of a
boolean variable alleviates the problem but it still leaves us with code that is more
complex than it should be. If there is a requirement that we should be able to switch test-
ing code on and off for selected classes, then our difficulties are exacerbated. In the
worst case our testing code could introduce errors to the methods we are trying to test.

One solution is to separate testing behaviour from normal behaviour. Our intention is
to have no testing code in the body of a method under test. This implies that we need to
be able to change an object’s behaviour. We expect the same object to behave differently
when it is under test and when it is not.

After some thought we come to the conclusion that the decorator design pattern will
help us determine the most useful approach to take. For example, testing code might be
located in decorator methods. Normal code would then be located in corresponding
methods in its delegate. Explore this idea using the Publication hierarchy in iteration
11 (model Lib7_11.uml) from chapter 7.

276 Object-Oriented Design with UML and Java

Case Study: A Final Review

In section 2.1 it was pointed out that there might be occasions on which a design and its
implementation could be refactored. Such an occasion arose in section 4.4 with the
introduction of the Action class and later in section 6.3 with the development of a
framework. On both occasions the intention was to aid further development of the case
study. However, it is probable that future changes will not involve the original develop-
ers. Bearing this in mind, we take a last opportunity to review the case study.

9.1 Refactoring

A useful working definition of refactoring is:

To make changes to the internal structure of software so that it is easier to under-
stand and modify without changes in its observable behaviour.

Refactoring often depends on individual experience and expertise. However, it has been
documented in a manner similar to the design patterns described in chapter 8. For
example, there is a catalogue of named refactorings (Fowler 1999) each of which is a
distillation of the hard-won experience of experts. Interested readers should consult the
reference cited.

A golden rule when refactoring is to make relatively small changes, as it is surpris-
ingly easy to introduce errors! Therefore when refactoring the case study we take the
most recent version (iteration 11 from chapter 7) as our starting point and apply
changes to it iteratively.

As with previous iterations there is no question of abandoning the desire to develop
the case study in a controlled manner. Therefore we must be sure that all of its docu-
mentation is updated where necessary. To bring the necessary focus to each refactoring
it should also have a stated aim.

Clearly the integrity of the system should not be compromised when refactoring.
Therefore testing becomes a critical activity. It is essential that we demonstrate that
the system has exactly the same behaviour before and after refactoring. Although
it would be more convenient and efficient to automate the testing process, it is
sufficient for our purposes to undertake manual testing based on the test cases from
section 6.2.1. Interested readers should refer to more advanced sources (Fowler 1999,
http://www.junit.org).

9

277

9.2 Iteration 1

The aim of this iteration is to reduce the perceived complexity of the system. Obviously
the easier a system is to understand the easier it is to make changes. It is worth noting
that the developers have not intentionally made it too complex. There is no question of
attributing blame. It is a fact of life that just like anyone else software engineers learn
from experience. Sometimes when working intensively on a part of a large, complex
system it is hard to keep the bigger picture in mind. In this iteration we stand back and
take a more objective view.

Recall from section 7.2 that the architecture of the case study is inspired by the model-
view-controller (MVC) architecture and the use of a framework. Anyone trying to under-
stand the case study (perhaps with the intention of maintaining it) would benefit from
being aware of this. For example, the Library class does not show an explicit architec-
tural relationship with its Publications. This is because it specializes the framework
class LenderImp that does. Given that the Library class is located in a different package
from the framework classes (see figure 6.9(a)) this fact might not be readily understood.
Therefore any steps we can take to make this clearer would be advantageous.

Before proceeding some important points to remember are:

• The domain model is application-specific and should have no responsibility for
input/output. In the case study it is the Library with its Publications and
BorrowerRecords that constitute the model.

• The view is responsible for presenting some facet of the model to the human user.
For example, it might be the Publications held by the Library that are available for
loan. In the case study the view is represented by the LibraryFrame class.

• The view and the controller(s) are combined into a view/controller. As well as display-
ing information about the model the view presents a button for each use-case. There is
a controller (action object) attached to each button so that when there is a mouse click
on it the controller stimulates the model in the appropriate manner. For example, there
is a button labelled Display publications on loan. Attached to it is a controller of the
class DisplayPublicationsOnLoanAction. As its name suggests, its role is to send the
message displayPublicationsOnLoan to the Library. In the case study each controller
is an instance of an inner class declared in the LibraryFrame.

• The view/controller also has classes to elicit information from the human user. For
example, there is a class BookDialog that gets the various details of a Book to be
added to the Library.

• As noted earlier the classes that make up the model specialize classes from a
framework. There are no architectural relationships shown between them. It is
the responsibility of the framework to establish and maintain the necessary
relationships.

• There is a class Main whose role is to act as the main point of entry for the Java run-
time environment. It creates a LibraryFrame which, having created the model, the
controllers and the GUI starts up the application.

The problem with the current version is nothing to do with its functionality. It is that
the use of the MVC and a framework is not evident from the design and ensuing code.

278 Object-Oriented Design with UML and Java

Figure 9.1 shows its top-level package/class structure (omitting relationships for
clarity).

Chapter 9: Case Study: A Final Review 279

Main librarysubsystem loansubsystem

Figure 9.1 The top-level package/class structure of the current version of the case study

The role of Main is clear. Its single method is trivial and so we can safely ignore it.
The classes in the loansubsystem package constitute a framework and so are not
expected to be changed during normal maintenance. However, we should check that
they are properly documented as part of this iteration. Note that extensions to the UML
have been proposed (Fontoura 2001) to help document frameworks.

When it comes to the interfaces and classes located in the librarysubsystem it is a
different matter. As is shown in figure 9.2 there is no indication that the designers had
the MVC architecture and the use of a framework in mind.

LibraryFrame

Library Book Journal

DateImpJournalDialogBookDialogBorrowerDialog

«abstract»
Publication

BorrowerRecord

«interface»
DateIF

-theLibrary 1

Figure 9.2 The interfaces/classes located in the librarysubsystem package

We can help remedy this by introducing a guisubsystem package for the view/ con-
troller and use the librarysubsystem package for the model. Appropriate stereotypes
on the three packages that result are also useful. Figure 9.3 illustrates the revised pack-
age structure.

«view/controller»
guisubsystem

«model»
librarysubsystem

«framework»
loansubsystem

Figure 9.3 A revised package structure

Now we can locate those interfaces and classes that pertain to the model in the
librarysubsystem package. They are shown in figure 9.4

280 Object-Oriented Design with UML and Java

Library

Journal Book DateImp

«abstract»
Publication

BorrowerRecord

«interface»
DateIF

Figure 9.4 The interfaces/classes located in the revised librarysubsystem package

Finally the classes that pertain to the view/controller are located in the guisubsystem
package as shown in figure 9.5.

LibraryFrame

Library

JournalDialog

BookDialog

BorrowerDialog

-theLibrary

{librarysubsystem.Library}

Figure 9.5 The classes located in the guisubsystem package

Note that the Library is given its qualified name. This makes it clear that the Library
class referred to is located in the librarysubsystem and not the guisubsystem.

Having introduced these changes the dependencies between classes must be updated
and the resulting code recompiled. This is a minor task as only a few classes, e.g.
LibraryFrame and BorrowerDialog, are involved. To convince ourselves that all is
well the tests from iteration 3 of chapter 6 are carried out. Happily the same behaviours
are observed.

Before leaving this iteration we should check that all of the various UML diagrams
that document the system are still accurate. All we have done is to introduce a
package and relocate some of the code therefore no updates are required. However,
interested readers should investigate the UML deployment diagram in this context
(Pooley 1999).

Although it is a somewhat subjective judgement, we believe that the overall design
intent behind the case study is now more obvious. Therefore the aim of this iteration has
been achieved. File Lib9_1.uml is the completed model.

9.3 Iteration 2

One important reason for refactoring a design is to remove duplicate code. Apart from
making the code size larger than it need be, duplicate code is a barrier to effective main-
tenance. The main problem is that any changes must also be duplicated. There is a risk
of not being aware that duplicate changes are required or making different changes to
achieve the same effect. Ideally a change should be made only in one place. The aim of
this iteration is to remove duplicate code.

If we focus on the three dialog classes in the guisubsystem package of figure 9.5
then it seems likely that we will find some duplicate code. The reason is that they have
similar responsibilities but are presently unrelated. It is not surprising to find that:

• they have the same superclass

• they have methods and attributes in common

• each has an inner class to handle the selection of the Ok and Cancel button on a dia-
log box.

From our discussion in chapter 5, it seems sensible to create a superclass with the com-
mon features of the three dialog classes. By doing this we should be able to remove
significant amounts of duplicate code. Therefore we introduce an abstract superclass
AbstractDialog with the attributes and methods common to the BorrowerDialog,
BookDialog and JournalDialog classes. It also has the inner class OkCancelAction to
handle selection of the Ok or Cancel button on a dialog box.

We then apply the same approach to the BookDialog and JournalDialog classes by
introducing the abstract superclass PublicationDialog. It has the attributes and meth-
ods common to all Publications. Figure 9.6 shows the hierarchy of dialogs that results.

Chapter 9: Case Study: A Final Review 281

JournalDialogBookDialog

BorrowerDialog

«abstract»
AbstractDialog

«abstract»
PublicationDialog

Figure 9.6 A hierarchy of dialogs

Now the Java code is significantly improved. As shown in the code that follows, the
AbstractDialog class:

• uses its constructor to set up a basic dialog box with an action object for the Ok and
Cancel buttons in place

• has an inner class to which the action object belongs

• has the method getUserAction used by a client, i.e. LibraryFrame to discover if
Ok or Cancel has been clicked.

// class AbstractDialog
package guisubsystem;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public abstract class AbstractDialog extends javax.swing.JDialog {
protected AbstractDialog(javax.swing.JFrame frame, String title) {

super(frame, title, true);
this.setSize(500, 200);

Container contentPane = this.getContentPane();
contentPane.setLayout(new BorderLayout());

//
// Note that theDetailsPanel is now protected - subclasses will populate it
contentPane.add(theDetailsPanel, BorderLayout.CENTER);
contentPane.add(theButtonsPanel, BorderLayout.SOUTH);

setResizable(false);
setLocationRelativeTo(frame);

} // method: AbstractDialog

public int final getUserAction() {
return theUserAction;

} // method: getUserAction

protected javax.swing.Box theDetailsPanel = Box.createVerticalBox();

{
theDetailsPanel.add(Box.createVerticalGlue());

}

private javax.swing.Jpanel theButtonsPanel = new JPanel();

{
theButtonsPanel.add(theOkButton);
theButtonsPanel.add(theCancelButton);

}
private OkCancelAction theOkCancelAction = new OkCancelAction();
private javax.swing.Jbutton theOkButton = new JButton(“Ok”);

{
theOkButton.addActionListener(theOkCancelAction);

}

282 Object-Oriented Design with UML and Java

private int theUserAction;
protected static final java.awt.Dimension PANELSIZE = new Dimension(400, 40);
private javax.swing.JButton theCancelButton = new JButton(“Cancel”);

{
theCancelButton.addActionListener(theOkCancelAction);

}

private class OkCancelAction implements java.awt.event.ActionListener {

public void actionPerformed(java.awt.event.ActionEvent event) {
AbstractDialog.this.setVisible(false);
if(event.getActionCommand().equals(“Ok”))

AbstractDialog.this.theUserAction = JOptionPane.OK_OPTION;
else

AbstractDialog.this.theUserAction = JOptionPane.CANCEL_OPTION;
} // method: actionPerformed

} // class: OkCancelAction

} // class: AbstractDialog

The introduction of the AbstractDialog class makes the BorrowerDialog class
straightforward. The code that follows shows that all it has to do is to:

• use its superclass to set up a basic dialog box

• amend the dialog box to be suitable for getting a borrower’s details.

// class BorrowerDialog
package guisubsystem;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class BorrowerDialog extends AbstractDialog {

public BorrowerDialog(javax.swing.JFrame frame) {
super(frame, “Borrower details”);

} // method: BorrowerDialog

public String getName() {
return theNameTextField.getText();

} // method: getName

private javax.swing.JLabel theNameLabel = new JLabel(“Name”) ;
private javax.swing.JTextField theNameTextField = new JTextField(30);
private javax.swing.JPanel theNamePanel

= new JPanel(new FlowLayout(FlowLayout.LEFT));

{
theNamePanel.add(theNameLabel);
theNamePanel.add(theNameTextField);
//

Chapter 9: Case Study: A Final Review 283

theNamePanel.setMaximumSize(PANELSIZE);
theDetailsPanel.add(theNamePanel);

}

} // class: BorrowerDialog

The PublicationDialog is very similar as the only difference is that it:

• amends the dialog box to be suitable for getting a Publication title and catalogue
number.

Its coding is as follows:

// class PublicationDialog
package guisubsystem;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

abstract class PublicationDialog extends AbstractDialog {

protected PublicationDialog(javax.swing.JFrame frame, String title) {
super(frame, title);

} // method: PublicationDialog

public int getCatalogueNumber() {
return Integer.parseInt(theCatalogueNumberTextField.getText());

} // method: getCatalogueNumber

public String getTitle() {
return theTitleTextField.getText();

} // method: getTitle

private javax.swing.JLabel theCatalogueNumberLabel = new JLabel(“Num”);
private javax.swing.JTextField theCatalogueNumberTextField = new JTextField(30);
private javax.swing.JPanel theCatalogueNumberPanel = new JPanel

(new FlowLayout(FlowLayout.LEFT));

{
theCatalogueNumberPanel.add(theCatalogueNumberLabel);
theCatalogueNumberPanel.add(theCatalogueNumberTextField);
theCatalogueNumberPanel.setMaximumSize(PANELSIZE);

}

private javax.swing.JLabel theTitleLabel = new JLabel(“Title”);
private javax.swing.JTextField theTitleTextField = new JTextField(30);
private javax.swing.JPanel theTitlePanel

= new JPanel(new FlowLayout(FlowLayout.LEFT));

{
theTitlePanel.add(theTitleLabel);
theTitlePanel.add(theTitleTextField);
theTitlePanel.setMaximumSize(PANELSIZE);
//

284 Object-Oriented Design with UML and Java

theDetailsPanel.add(theCatalogueNumberPanel);
theDetailsPanel.add(theTitlePanel);

}

} // class: PublicationDialog

As expected when it comes to the BookDialog and JournalDialog classes they are also
straightforward. They inherit from PublicationDialog and through it AbstractDialog.
Therefore they need only:

• use the superclass to set up a basic dialog box suitable for getting a Publication title
and catalogue number

• amend the dialog box to be suitable for getting additional Book or Journal details.

The BookDialog code that follows illustrates.

// class BookDialog
package guisubsystem;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class BookDialog extends PublicationDialog {

public BookDialog(javax.swing.JFrame frame) {
super(frame, “Book details”);

} // method: BookDialog

public String getAuthor() {
return theAuthorTextField.getText();

} // method: getAuthor

private javax.swing.JLabel theAuthorLabel = new JLabel(“Author”);
private javax.swing.JTextField theAuthorTextField = new JTextField(30);
private javax.swing.JPanel theAuthorPanel

= new JPanel(new FlowLayout(FlowLayout.LEFT)) ;

{
theAuthorPanel.add(theAuthorLabel);
theAuthorPanel.add(theAuthorTextField);
theAuthorPanel.setMaximumSize(PANELSIZE);
//
theDetailsPanel.add(theAuthorPanel);

}

} // class: BookDialog

Even though we have introduced significant changes by the introduction of a hier-
archy of dialogs there is no impact on the rest of the system or its documentation. This
is because a client’s view of pre-existing classes is unaffected. They continue to “see”
the same classes with the same features. Execution of our tests confirms this. Therefore
having removed significant amounts of duplicate code we consider the second iteration
to be successful. The model is given in the file Lib9_2.uml.

Chapter 9: Case Study: A Final Review 285

9.4 Iteration 3

A major benefit from the study of design patterns in chapter 8 is that we can learn from
the experience of others. Therefore we can improve the case study design by reflecting
on design patterns. For example, it would simplify the overall design if there was a sin-
gle Library object with a common point of access. It would mean that we do not have
to pass the Library as a parameter and that future changes could not introduce multiple
Library objects by mistake. Modification of the Library class to be a singleton is an
obvious strategy.

The Library is implemented as a singleton by providing a public static method
getLibrary. It returns a reference to a single Library object held in a private static

field. The important point we need to understand is that getLibrary uses a private con-
structor to create the Library object it references. This happens only once. As the
Library constructor is not available to clients they cannot create a library and must use
getLibrary instead. The following code illustrates the approach taken in more detail:

public class Library extends loansubsystem.LenderImp {

private Library(String aName) {
super();
theName = aName;

} // method: Library

public static librarysubsystem.Library getLibrary() {
if(theLibrary == null) {

Library.restore(); // See later
}
return theLibrary;

} // method: getLibrary

// ...
private String theName;
private static librarysubsystem.Library theLibrary = null;

} // class: Library

This implementation rather than the one discussed in section 8.5 has been chosen
because a more subtle behaviour is required of the Library class. It originates from the
fact that it implements the Serializable interface (as specified in its superclass). The
problem we face is that a static field is associated with its class and not with an object
belonging to the class. Therefore on object serialization a static field is ignored and is
set to null on deserialization.

Three important consequences that affect the implementation of the Library as a seri-
alizable singleton are as follows:

• serialization of a Library object does not store the value of the static field
theLibrary

• the static field theLibrary must be updated to reference the deserialized Library
object otherwise it will have a null value

286 Object-Oriented Design with UML and Java

• each client must update its reference to the Library following serialization/
deserialization otherwise it could easily reference the Library object before
serialization/deserialization.

We also discover that the LibraryFrame is responsible for the serialization/
deserialization of the Library. Clearly it is preferable that the Library itself should take
on this responsibility.

Taking the first two consequences into account and reusing code from the
LibraryFrame the Library class now supports persistence using Java’s
serialization/deserialization mechanism as follows:

public class Library extends loansubsystem.LenderImp {

// ...
private static void restore() {

// Attempt to restore the persistent application objects
File file = new File(PERSISTENT_FILENAME);
if(file.exists()) {

try {
FileInputStream fis = new FileInputStream(PERSISTENT_FILENAME);
ObjectInputStream ois = new ObjectInputStream(fis);
theLibrary = (Library)ois.readObject();
ois.close();

} catch(IOException ex) {
JOptionPane.showMessageDialog(null, “Error reading persistent store”,

“Library”, JOptionPane.ERROR_MESSAGE);
theLibrary = new Library(“Napier”);

} catch(ClassNotFoundException ex) {
JOptionPane.showMessageDialog(null, “Error restoring application objects”,

“Library”, JOptionPane.ERROR_MESSAGE);

theLibrary = new Library(“Napier”);
}

} else {
theLibrary = new Library(“Napier”);

}

} // method: restore

public static void save() {
try {

FileOutputStream fos = new FileOutputStream(PERSISTENT_FILENAME);
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(theLibrary);
oos.close();

} catch(IOException ex) {
JOptionPane.showMessageDialog(null, “Cannot open persistent file”,

“Library”, JOptionPane.ERROR_MESSAGE);
System.exit(1);

}

Chapter 9: Case Study: A Final Review 287

System.exit(0);

} // method: save

// ...
private static final String PERSISTENT_FILENAME = “library.ser”;

} // class: Library

The third conclusion leads us to ensure that each action class in the LibraryFrame
requests a Library reference in its actionPerformed method, i.e. as close to the point
of use as we can arrange. It is typical of design patterns that they can often appear
straightforward to implement but are in fact rather subtle. The following outline code
from the inner LibraryFrame class, AddBookAction, illustrates:

// class AddBookAction
public void actionPerformed(java.awt.event.ActionEvent event) {

// Get the Library singleton
Library library = Library.getLibrary();
// ...

} // method: actionPerformed

Having made these changes to the Library and the LibraryFrame the resulting code is
significantly improved. Inappropriate Library serialization/deserialization code in the
LibraryFrame constructor has been moved to its rightful location in the Library class.
In addition we have removed the risk of the existence of multiple libraries by making
the Library a singleton.

Changes required to the documentation include:

• update the Library class diagram with the stereotype <<singleton>> and include
getMethod, restore and save

• make the Library constructor private

• remove Library serialization/deserialization code from the LibraryFrame
constructor

• update each action object in LibraryFrame to request a Library singleton
reference.

Recompilation and successful execution of our tests confirm that all is well.
Therefore we consider this iteration to be complete. The model is given in the file
Lib9_3.uml.

Before leaving this iteration a previously undetected bug becomes evident. Sadly,
despite our best efforts, this is a relatively common occurrence with software systems.
The problem is that when adding a Book or Journal to the Library we expect a dialog box
with the title Book details or Journal details. In fact neither is present (see figure 7.23).

Closer examination shows the PublicationDialog class has an operation getTitle
that is its source. The purpose of getTitle is to deliver the title of the Book or Journal
keyed into a text field by a human user. Unknown to us there is an operation with the
same signature inherited from the Swing framework. Its purpose is to deliver the title of
a dialog box when it is displayed. We have inadvertently redefined it to return an empty
String! Hence the lack of a title on the dialog box.

288 Object-Oriented Design with UML and Java

Although we should not make any changes to the functionality of the system when
refactoring it seems safe to do so in this case. Therefore we rename getTitle in the
PublicationDialog class as getPublicationTitle. For consistency (and some peace of
mind) we also rename similar operations in the AbstractDialog hierarchy as follows:

// class BorrowerDialog
getBorrowerName

// class BookDialog
getBookAuthor

// class JournalDialog
getJournalEditor
getJournalDateOfPublication

All that remains is to modify the actionPerformed method in the addBookAction,
addPublicationAction and registerBorrowerAction classes accordingly. Subsequent
testing shows that all is well.

An important point to learn from this experience is that a method should be final if
it is intended that it should be invariant over specialization (see section 5.4). In this case
it seems clear that getTitle inherited from the swing framework should have been final.
This would have prevented us from inadvertently redefining it.

9.5 Iteration 4

Consider the screen dump from the ROME case tool shown in figure 9.7.

Chapter 9: Case Study: A Final Review 289

Figure 9.7 An overview of the LibraryFrame class

It indicates that the LibraryFrame class with 12 inner classes is probably too large
and complex. Our suspicion is that as more and more functionality is required, more
inner classes will be added.

The difficulty with inner classes is that they can be hard to maintain. For example, the
size of the enclosing class can be daunting and a refactoring that tries to establish a hier-
archy of inner classes can be technically challenging (in our opinion anonymous inner
classes are even worse). We also suspect that the LibraryFrame has duplicate code, as
some of the inner classes appear to have a similar role. Therefore the aim of this itera-
tion is to rationalize and simplify the LibraryFrame class.

Closer examination shows that the LibraryFrame:

• establishes the GUI

• detects human user selections

• actions each selection and reports on the outcome.

Recall that the LibraryFrame is the view/controller in the MVC architecture. Therefore
it is reasonable that it should establish the GUI and have responsibility for
detecting/actioning human user selections. The real problem is how to manage the com-
plexity that inevitably arises. One approach is to make a clearer separation of its two
concerns, i.e. establishing the GUI and detecting/actioning human user selections.

Normally an inner class is used for encapsulation purposes. Since an inner class has
direct access to the private features of its enclosing class it can also simplify the coding.
However, we can also achieve an element of encapsulation by the introduction of an
inner package to relocate the inner classes. The benefit for us is that the enclosing class
is significantly reduced in size and complexity. If the inner classes are not heavily
dependent on the private features of the enclosing class (as is the case here) then this
alternative is even more attractive.

Weighing up the advantages and disadvantages of each approach we abandon the use
of inner classes for action objects not directly associated with the LibraryFrame. As
shown in figure 9.8, this leads to a revised structure for the guisubsystem package.

290 Object-Oriented Design with UML and Java

JournalDialogBookDialog

BorrowerDialog

«abstract»
AbstractDialog

«view»
LibraryFrame

«controller»
actionsubsystem

«abstract»
PublicationDialog

Figure 9.8 A revised structure for the guisubsystem package

Note that the stereotype <<view>> helps clarify the LibraryFrame’s role. Similarly,
the stereotype <<controller>> clarifies the role of the classes in the actionsubsystem
package.

As the inner class LibraryFrameClosing is directly concerned with the LibraryFrame
it is not relocated. However, the remaining eleven interact with the model (the Library)
and are relocated to the actionsubsystem package. Of course while doing so we refac-
tor them.

Using a similar approach to that taken in iteration 2, we introduce an
AbstractLibraryAction class as shown in figure 9.9.

Chapter 9: Case Study: A Final Review 291

«singleton»
Library

«abstract»
AbstractLibraryAction

#theLibrary

1 {librarysubsystem.Library}

Figure 9.9 The AbstractLibraryAction class

It has three main responsibilities. The first is to initialize its superclass AbstractAction.
The second is to initialize a protected LibraryFrame reference intended for use by all
subclasses. This is necessary as the LibraryFrame is no longer directly visible. As normal
the constructor discharges both of these responsibilities.

The third responsibility is unusual in that it gives subclasses access to the most
recent Library singleton. This is achieved by setting the reference to it in its
actionPerformed method. Recall that in the previous iteration each of the LibraryFrame
inner classes had this responsibility. Subclasses can now use the superclass
actionPerformed method to ensure that the Library singleton reference is up to date.

The following code illustrates.

// class AbstractLibraryAction
package guisubsystem.actionsubsystem;

import librarysubsystem.Library;

public abstract class AbstractLibraryAction extends javax.swing.AbstractAction {

protected AbstractLibraryAction(String label, guisubsystem.LibraryFrame aLibraryFrame) {
super(label);
theLibraryFrame = aLibraryFrame;

} // method: AbstractLibraryAction

public void actionPerformed(java.awt.event.ActionEvent event) {
// Get the Library singleton
theLibrary = Library.getLibrary();

} // method: actionPerformed

protected guisubsystem.LibraryFrame theLibraryFrame;
protected librarysubsystem.Library theLibrary;

} // class: AbstractLibraryAction

Before proceeding we should consider the fact that the LibraryFrame’s private attrib-
utes are no longer visible to the action classes. Therefore we add two new operations

appendToViewingArea and setStatusField to the LibraryFrame. They allow clients
to display information on a scrollable text area and to update a status field. They are
coded as follows:

// class LibraryFrame
public void appendToViewingArea(String text) {

theViewingArea.append(text);
} // method: appendToViewingArea

public void setStatusField(String aMessage) {
theStatusField.setText(aMessage);

} // method: setStatusField

It is not unusual when refactoring that the original design must be modified in some
manner to accommodate it.

The subclasses of AbstractLibraryAction:

• RegisterBorrowerAction

• LendPublicationAction

• ReturnPublicationAction

• AddBookAction

• AddJournalAction

• LoadFileAction and

• FileExitAction

are now relatively straightforward. Each constructor is given a LibraryFrame object
and a check is made to ensure that the redefined actionPerformed method updates the
Library singleton reference (if necessary). Finally the LibraryFrame methods
appendToViewingArea and setStatusField are used as appropriate.

The following code for the RegisterBorrowerAction class illustrates:

package guisubsystem.actionsubsystem;

import javax.swing.*;
import guisubsystem.*;

public class RegisterBorrowerAction extends AbstractLibraryAction {

// ----- Operations ----------
public RegisterBorrowerAction(java.lang.String label,

guisubsystem.LibraryFrame aLibraryFrame) {
super(label, aLibraryFrame);

} // method: RegisterBorrowerAction

public final void actionPerformed(java.awt.event.ActionEvent event) {
super.actionPerformed(event);
//
BorrowerDialog dialog = new BorrowerDialog(theLibraryFrame);
dialog.setVisible(true);
//
if(dialog.getUserAction() == JOptionPane.OK_OPTION) {

292 Object-Oriented Design with UML and Java

String borrowerName = dialog.getBorrowerName();
//
// Register the borrower with the library
theLibrary.registerOneBorrower(borrowerName);
//
// Display the outcome
theLibraryFrame.setStatusField(theLibrary.getStatus());

} else

theLibraryFrame.setStatusField(“No Borrower registered”);

} // method: actionPerformed

} // class: RegisterBorrowerAction

The AbstractLibraryAction hierarchy is now as shown in figure 9.10.

Chapter 9: Case Study: A Final Review 293

LendPublicationAction

RegisterBorrowerAction

ReturnPublicationAction

AddBookAction

AddJournalAction

LoadFileAction

FileExitAction

«abstract»
AbstractLibraryAction

«singleton»
Library

{librarysub-system.Library}

#theLibrary

1

Figure 9.10 The updated AbstractLibraryAction hierarchy

All that remains are the classes:

• DisplayStockAction

• DisplayBorrowersAction

• DisplayPublicationsOnLoanAction

• DisplayPublicationsAvailableForLoanAction

Based on previous experience, it is obvious that we should introduce a superclass
DisplayAction with the common features all four display classes. The final
AbstractLibraryAction hierarchy is now as shown in figure 9.11.

294 Object-Oriented Design with UML and Java

LendPublicationAction

RegisterBorrowerAction

ReturnPublicationAction

AddBookAction

AddJournalAction

LoadFileAction

FileExitAction

«abstract»
AbstractLibraryAction

«singleton»
Library

#theLibrary
«abstract»

DisplayAction

DisplayStockAction

DisplayBorrowersAction

DisplayPublicationsOnLoanAction

DisplayPublicationsAvailableForLoanAction

{librarysubsystem.Library}

1

Figure 9.11 The final hierarchy of action classes

The DisplayAction class is quite straightforward. All that is required is that:

• the constructor must properly initialize its superclass AbstractLibraryAction

• the actionPerformed method ensures that it has the up-to-date Library
singleton and

• the Library is displayed on the LibraryFrame’s scrollable text area.

Its detailed coding is:

// class DisplayAction
package guisubsystem.actionsubsystem;

public abstract class DisplayAction extends AbstractLibraryAction {

protected DisplayAction(String label, guisubsystem.LibraryFrame aLibraryFrame) {
super(label, aLibraryFrame);

} // method: DisplayAction

public void actionPerformed(java.awt.event.ActionEvent event) {
super.actionPerformed(event);
// Display information about the Library
theLibraryFrame.appendToViewingArea(“\n” + “Library:” + theLibrary);

} // method: actionPerformed

} // class: DisplayAction

Happily the four subclasses are also straightforward as they require only the expected
modifications. The code for the DisplayStockAction class serves as an illustration.

// class DisplayStockAction
package guisubsystem.actionsubsystem;

import java.util.*;
import librarysubsystem.*;

public class DisplayStockAction extends DisplayAction {

public DisplayStockAction(String label, guisubsystem.LibraryFrame aLibraryFrame) {
super(label, aLibraryFrame);

} // method: DisplayStockAction

public void actionPerformed(java.awt.event.ActionEvent event) {
super.actionPerformed(event);
//
// Display information about the publications
theLibraryFrame.appendToViewingArea(“\n\t” + “Publication stock”);
boolean publicationFound = false;
Iterator iter = theLibrary.getLoanItemsIterator();
//
while(iter.hasNext()) {

Publication pub = (Publication) iter.next();
theLibraryFrame.appendToViewingArea(“\n\t\t” + pub);
publicationFound = true;

}
if(publicationFound == false)

theLibraryFrame.appendToViewingArea(“\n\t\t” + “None”);
//
// Display the outcome
theLibraryFrame.setStatusField(“”);

} // method: actionPerformed

} // class: DisplayStockAction

Recompilation and execution of our tests confirm that all is well. Therefore we con-
sider this final iteration to be successful. All that remains is to make a final check on the
documentation and this review of the case study is complete. The model is given in the
file Lib9_4.uml.

9.6 Summary

1. Refactoring is often necessary as part of a final review. Although refactoring depends
on experience, the subject has been well documented and a vocabulary exists to
describe a sequence of refactorings that might be applied to a system.

2. Each refactoring should make a relatively small change. It should be accompanied
with extensive testing to guarantee the same behaviour from the software.

Chapter 9: Case Study: A Final Review 295

3. Redistribution of classes in stereotyped packages clarifies their role and eases the
maintenance burden.

4. Code duplication is a major cause for refactoring.
5. Exposure to design patterns can help identify useful refactorings.

9.7 And finally

This book has been concerned with Object-Oriented Design, the Unified Modelling
Language and the Java Programming Language. Throughout we have stressed the import-
ance of conducting an OOD prior to the implementation of a system. We have used the
UML to enhance our understanding of the system by documenting different views of it.
In our opinion this brings a significant measure of quality to the final program code.

From chapter 2 we have argued that system development should be architecture-
centric, employ an iterative approach and be use-case led. A lightweight lifecycle was
introduced to bring discipline to development activities without being encumbered by
needless bureaucracy.

The expressive power of the UML has been crucial to the success of our designs. Its
various diagrams gave important insights into the final system. For example, a sequence
diagram reveals how message propagation through a collection of objects implements
some part of its functionality. Often the diagram can be mapped directly into code.

Of all of the UML diagrams available, the class diagram has been the most import-
ant. It is central to the modelling activity as it defines the architecture we realize in code.
In effect it drives our implementation development. We seek to forward engineer the
program code from the class diagram.

The class diagram reveals association and aggregation relations that exist between
classes. This led to the use of the Java Collections Framework. As well as acting as an
exemplar of OOD their use markedly simplified our application code.

Specialization hierarchies are also documented in a class diagram. They helped us
make use of the polymorphic effect and to aspire to design to an interface wherever pos-
sible. Ultimately this led to the development of a framework.

The more sophisticated applications of polymorphic substitution gave rise to
advanced design patterns. They offer elegant solutions to many common design and
programming problems. The vocabulary they introduce elevates the level of abstraction
we can achieve in our designs above that of an ordinary class diagram.

Our discussion of design patterns led naturally to refactoring our designs. Jointly, refac-
toring and design patterns represent leading edge developments in object orientation.

Finally, we have made ROME available. We hope that this case tool has stimulated
the reader to value the modelling capabilities of the UML and to confirm the merits of
design before coding.

9.8 Exercises

1. Exercise 1 in chapter 8 noted that object creation is one of the most expensive oper-
ations for a Java program to perform. You were asked to use the singleton design

296 Object-Oriented Design with UML and Java

pattern to guarantee that only one BookDialog object is ever created. Now apply
this strategy to other GUI objects in the design using Lib9_4.uml as your starting
point.

You may like to investigate the use of a profiling tool as part of this exercise. It
can be used to identify classes that are suitable for refactoring. There are several on
offer as downloads from the World Wide Web.

2. Figure 8.12 in exercise 2 of chapter 8 presented a simplified class diagram for the
class diagrammer used in ROME. Construct a similar class diagram for the collab-
oration diagrammer used in ROME.

Identify classes that are common to the class diagrams for the two diagrammer
tools. Now produce a single unified class diagram. Can we consider this as the basis
for a refactoring strategy?

3. Figure 9.12 is an extract of the relationship classes from figure 8.12. Additionally
we have shown that a relation comprises one or more LineSegment objects repre-
senting the horizontal and vertical strips used to draw a relation.

Chapter 9: Case Study: A Final Review 297

«abstract»
RelationElement

Operations

AggregationSymbol

Operations

+draw

+draw

AssociationSymbol

Operations

+draw

SpecializationSymbol

Operations

+draw

LineSegment

Operations

+draw
1 1..*

Figure 9.12 Extract of the relationship classes

The draw method in class AggregationSymbol renders the LineSegments then
places a diamond decoration at one end. The draw method in class
SpecializationSymbol renders the LineSegments then places an arrow tip at one
end. The class AssociationSymbol simply renders the LineSegments.

Refactor this architecture by making the concrete draw method in the class
RelationElement. What common behaviour does it take responsibility for? How
do we deal with the particular decorations required by the concrete subclasses?
What design pattern are we using?

4. During the development of iteration 3, it was noted that there was the possibility of
having several Library singletons! The root cause was the serialization/deserializa-
tion the Library. Our solution was to ensure that each client of the Library updated
its Library reference before sending it a message. Although this approach does work
it has significant drawbacks. For example, there is no guarantee that someone main-
taining our code will remember to update a Library reference before using it. It
could also be argued that it is inefficient if the update is not required.

An alternative solution is give the Library responsibility for informing its clients
that it has been deserialized. It could also supply each client with an updated refer-
ence to itself. Each client could then store this reference for its own use. The point
is that this reference is guaranteed to refer to the most recently deserialized Library
object.
(a) Suggest a design pattern that could be used to help us refactor iteration 3 using

our new approach.
(b) Implement your ideas as iteration 5.

298 Object-Oriented Design with UML and Java

Beck 1999 Kent Beck, Martin Fowler
Extreme Programming Explained: Embrace Change, and
Planning Extreme Programming
Addison-Wesley 1999

Booch 1991 Grady Booch
Object Oriented Design with Applications
Benjamin/Cummings 1991

Booch 1999 Grady Booch, James Rumbaugh, Ivar Jacobson
The Unified Modeling Language User Guide
Addison-Wesley 1999

Cockburn 2001 Alistair Cockburn
Agile Software Development
Addison-Wesley 2001

Dietel 2003 H Dietel and P Dietel
Java: How to Program
Prentice Hall 2003

Eckel 2002 Bruce Eckel
Thinking in Java
Prentice Hall 2002

Elliott 2002 James Elliott et al.
Java Swing
O’Reilly 2002

Fontoura 2001 M Fontoura, W Pree, B Rumpe
The UML Profile for Framework Architectures
Addison-Wesley 2001

Fowler 1999 Martin Fowler
Refactoring: Improving the Design of Existing Code
Addison-Wesley 1999

Gamma 1994 Eric Gamma, Ralph Helm, Richard Johnson, John Vlissides
Design Patterns
Addison-Wesley 1994

Jacobsen 1999 Ivar Jacobsen, Grady Booch, James Rumbaugh
The Unified Software Development Process
Addison-Wesley 1999

Larman 2002 Craig Larman
Applying UML and Patterns
Prentice Hall 2002

Bibliography

299

McGregor 2001 J D McGregor, D A Sykes
A Practical Guide to Testing Object-Oriented Software
Addison-Wesley 2001

Pooley 1999 Rob Pooley, Perdita Stevens
Using UML
Addison-Wesley 1999

Priestley 2000 Mark Priestley
Practical Object-Oriented Design with UML
McGraw-Hill 2000

Rumbaugh 1991 James Rumbaugh et al.
Object Oriented Modeling and Design
Prentice Hall 1991

Topley 1999 Kim Topley
CORE Swing: Advanced Programming
Prentice Hall 1999

Watt 2001 D Watt, D F Brown
Java Collections
Wiley 2001

300 Object-Oriented Design with UML and Java

Setting up the Environment

The examples and exercises in this book were prepared with the ROME modelling tool.
The ROME tool and the Java programs produced by it use the Java Software Develop-
ment Kit (SDK) version 1.4. In this appendix we present how to install the SDK and the
ROME tool, and how to configure the environment to run ROME and the Java pro-
grams. These notes assume a Microsoft Windows installation. Other installations follow
similar procedures.

A.1 Installing the Java Software Development Kit

ROME is a pure Java application. In order to use it you must install a Java run-time
environment. However, since ROME generates Java programs that must be compiled
and run, then we must download and install the Java 2 platform, Standard Edition.
You can download the Java SDK for Windows, Linux and Solaris environments from
the java.sun.com website. See the ROME website (http://www.dcs.napier.
ac.uk/�kab/jeRome/jeRome.html) for further details.

Installation of the SDK is relatively straightforward. Currently, on the main page
(http://java.sun.com/j2se), follow the releases link to the download page. For a
Microsoft Windows installation, download Windows (all languages including English)
by selecting the Windows DOWNLOAD SDK link. Read and accept the terms of con-
ditions, then start the download of the self-extracting compressed file (currently j2sdk-
1_4_1_03-windows-i586.exe).

Run the self-extracting compressed file by double-clicking the file icon in the file
manager tool. The decompression begins and the SDK is extracted into the default
directory c:\j2sdk1.4.1_03. We shall refer to this as the JDK home directory. Now
ensure that the JAVA_HOME environment variable is set to the installation JDK home
directory, and that the Java bin directory is included in the search path. On a Windows
system you set these by entering the following commands in a command prompt window:

C:\> set JAVA_HOME = c:\j2sdk1.4.1_03

C:\> set PATH = %JAVA_HOME%\bin;%PATH%

To test this set-up procedure, now run the command:

C:\> java –version

which will reply with details of the installed Java run-time environment.

Appendix A

301

Successfully setting a number of environment variables is dependent on there being
sufficient environment space. It may be necessary to open the command window by
selecting Run ... from the Start menu and entering the name of the program as:

command /e:4096

This will open a command window with a 4Kbyte environment space that is sufficient
for our needs.

Later in this appendix we will show how we can prepare these environment settings
in a batch (*.bat) file and run this file at the start of a ROME and Java session.

It is also worth downloading the Java documentation from the same site. You can
download the documentation for the current version from http://java.sun.com/j2se.
This documentation describes the Java tools such as a Java compiler and the Java lan-
guage APIs.

A.2 Installing the ROME modelling tool

Create the empty directory C:\jeRome5 on your Windows system. This we will refer
to as the ROME home directory. You can download the ROME modelling tool from the
ROME website at http://www.dcs.napier.ac.uk/�kab/jeRome/jeRome.html (case
sensitive URL). The download link brings you to a page from which to start the actual
download procedure. Save the jeRome5.Distribution.zip file into the ROME home
directory, then unpack this compressed file with a suitable zip tool such as WinZip
(http://www.winzip.com/). Choose the ROME home directory as the output directory
for this file decompression. Alternatively, you can unpack it by changing to the ROME
home directory, then run the Java archive tool (jar) with the command:

C:\> cd jeRome5

C:\jeRome5> jar xvf jeRome5.Distribution.zip

Either method creates a number of subdirectories within the ROME home directory.
The subdirectories include, among others, examples and jerome. The ROME home
directory also includes a number of batch files such as setjava.bat, setrome.bat,
jc.bat and jr.bat (discussed later). Like most software packages the ROME home
directory contains a file entitled README.txt. Software distributions change and
the README.txt should always be consulted for the most current installation
instructions.

The examples directory includes the models and programs presented in the book.
The models are in folders corresponding to the chapters. Hence in the examples direc-
tory there is a subdirectory chapter03 with the two models files Prog3_1.uml and
Prog3_2.uml. The examples directory also includes subfolders AppendixF and
AppendixG. They, in turn, have subfolders such as ProgramF01 and ProgramG01
that contain the Java files for the samples from appendices F and G.

The jerome directory has the start-up code for the ROME tool. Following our dis-
cussion of batch files (next) we show how to launch ROME.

302 Object-Oriented Design with UML and Java

A.3 Setting the compilation environment

We noted in section A.1 the two commands to enter in a command window:

C:\> set JAVA_HOME = c:\j2sdk1.4.1_03

C:\> set PATH = %JAVA_HOME%\bin;%PATH%

These and other environment settings have been prepared in the batch file
setjava.bat. This is a text file that can be edited with a simple text editor such as
Notepad. The reader must consult the README.txt file to discover how to make the
small number of revisions to the batch file to reflect the user’s set-up.

When the revisions have been made we can execute the commands in the batch file with:

C:\> c:\jeRome5\setjava

We can now confirm that the settings are correct by compiling and running any of the
sample programs from appendices F and G. For example, if we change to the directory
ProgramF02:

C:\jeRome5\examples\AppendixF\ProgramF02>

Then we can use the batch file jc.bat to compile Java program files and the batch file
jr.bat to run a Java program. In the directory programf02 we have the program files
Main.java and Point.java. First we compile all the program files with the command:

C:\jeRome5\examples\AppendixF\ProgramF02> jc *.java

Now we can run the program with:

C:\jeRome5\examples\AppendixF\ProgramF02> jr Main

A.4 Setting the ROME environment

The batch file setrome.bat sets the environment to execute the ROME program.
As noted in the previous section this too is a text file that may require editing to correctly
reflect the user’s configurations. Again, the README.txt file gives the necessary instal-
lation instructions.

Once setrome.bat has been modified, open a second command window. Notice we
have two command windows opened. The first was opened in section A.1 and is used to
compile and run the Java code produced by ROME. This second command window is
used to start ROME. Now run this batch file with the command:

C:\> c:\jeRome5\setrome

Now we can use the batch file rr.bat to start ROME:

C:\> rr jerome.Rome

Appendix A: Setting up the Environment 303

When ROME starts the following message appears in the command window:

PROGRAM START... (do not close this window)

This reminds the user not to close the command window (though it can be iconized).
Closing the command window will also close down the ROME application.

Section B.5 describes how to set the output directory using the Preferences Editor
dialog. This sets the directory in which classes generated from a class diagram are
placed (say, C:\demonstration for illustration). In the first command window opened
(see section A.1), move to this output directory then compile and run the ROME gen-
erated code following the instructions from the previous section.

C:\demonstration> jc *.java

C:\demonstration> jr Main

304 Object-Oriented Design with UML and Java

ROME

ROME is a lower-case object-modelling environment. It is a UML compliant tool with
support for activity, class, collaboration, object, sequence and use-case diagrams.
Additionally, ROME provides support for generating and compiling Java code from a
class diagram.

ROME is a lightweight tool with sharply focused functionality. The aim was to pro-
duce a modelling environment that is productive, uniform and consistent, has a low
learning curve and has a small footprint. Such features make ROME a readily accessi-
ble tool for novices new to object-oriented analysis and design. Developers can, in time,
consider progressing to the feature-rich professional tools that are available.

Unburdened by too many features, ROME proves to be a highly productive environ-
ment. For example, the class diagram supports visually preparing a static model of the
object classes and their relationships. Simultaneously, the developer is able to see the
emerging Java code. Further, any class can be compiled from within ROME and any
errors are reported back into ROME.

All the diagrams are given a uniform and consistent behaviour. Most UML diagrams
comprise graphs of nodes and relations that connect the nodes. Within any diagram a node
and a relation have the same behaviours. When a node in a class diagram (such as a class
symbol) is dragged then the effect is much the same when an instance symbol is dragged
in a collaboration diagram. Equally, a relation in an object diagram (such as an aggregate
link) operates in the same manner as a transition symbol in an activity diagram.

The class diagram is a key UML diagram. Under ROME the class diagram can
include nested class and package symbols, and architectural relations (aggregation,
association and specialization). Dialogs permit ROME to decorate these modelling ele-
ments. These decorations are then used in the generation of the Java code for the dia-
gram. Working jointly with a compilation system, the developer can create and revise a
UML class diagram, generate the source code, then compile and execute that code. The
cycle can then be repeated, incrementally developing the application.

In this appendix we simply illustrate using ROME’s class diagrammer. Since the
other diagrams operate in a similar manner, the user will obtain sufficient familiarity
with this one example. The reader can also consult the online help provide by ROME.
The user can also load any of the supplied models (class diagrams), set the preferences
(see section B.5), and press the OOPL button to code generate. The user is encouraged
to follow the example presented while simultaneously using ROME.

This current implementation of ROME (version 5) was developed as a Java applica-
tion, using version 1.3 of the Java Development Kit. The graphical elements of ROME
are assembled as Swing components. All development has taken place under a variety

Appendix B

305

of MS Windows operating environments. Further updates will be provided on the
website and in the ROME online help.

B.1 User interface

ROME has the look and feel of any standard graphical application. Upon start-up, a
ROME session appears as shown in figure B.1. The principal elements of the ROME
application are typical of those found in most graphical products. The Window has a
caption bar across the top bearing the title ROME: Untitled. In the upper left of the
window is the usual control menu box. At the top right are the minimize and maximize
buttons.

Below the caption is the application menu bar and toolbar. These provide the com-
mon services irrespective of which diagram the user is editing. The remainder of the
ROME window is partitioned into four panels, respectively the project panel, the model
panel, the properties panel and the message panel. Each panel is separated by moveable
partitions. By adjusting the partitions each sub-panel can be enlarged or reduced.

306 Object-Oriented Design with UML and Java

Figure B.1 ROME start-up

Below the caption is the menu bar including the menus File, Options and Help. We
select a menu option and choose a command from the list of menu items to carry out
some action. The File menu offers the choice shown in figure B.2. As we might expect
New, Open..., Save and Save As are concerned with saving and retrieving models.
Print prepares a hard copy of the diagram the user is editing and Exit terminates ROME.

Below the Exit menu item is a history list of the four most recent models the user had
been editing. Selecting one of these will open the model into ROME.

Appendix B: ROME 307

Figure B.2 File menu

Below the menu bar is a toolbar. The toolbar presents a list of iconic buttons provid-
ing fast and convenient access to the more common operations supported by ROME.
For example, we may start a new design by selecting the command New from the File
menu, or by simply clicking the leftmost button on the toolbar.

The four subpanels have been identified as the project panel, the model panel, the
properties panel and the message panel. The model panel is where the user creates and
edits a UML diagram. Where ROME is able to identify errors in the model, they are
reported in the message panel. Error messages are also accompanied by an audible beep
to alert the user. The properties panel is used to present information about the selected
item in the model panel. For example, when editing a class in a class diagram, the prop-
erties panel will present some details about that class. The project panel partitions the
project into one or more diagrams and permits the user to edit a selected diagram or to
add further diagrams to the project.

B.2 Preparing UML diagrams

The project panel is an index into the diagrams and subdiagrams that comprise a UML
file in ROME. A project can consist of one or more UML diagrams. The diagrams are

presented as branches from the <<project>> root. The user selects one of the diagrams
in the project panel and the model panel shows the UML diagram.

The user clicks the right mouse button while over the <<project>> root to reveal the
floating menu shown in figure B.3. From this menu the user can select and add a new
diagram into the project. Repeated application of this will populate the project with a
number of separate diagrams.

308 Object-Oriented Design with UML and Java

Figure B.3 Project menu

Figure B.4 shows the project panel when a class and a collaboration diagram have
been added to the project. Notice how in all these illustrations that the model panel has
remained greyed, indicating that it is inactive.

The following sections illustrate how to use the class diagrammer. Most of the fea-
tures for preparing and editing this type of diagram are common to the other diagrams.
The reader is encouraged to experiment with the other diagrams in ROME.

B.3 Preparing class diagrams

If in figure B.4 we now select the «class diagram» node in the project tree, then
the model panel is opened to reveal a drawing surface on which the user assembles the
diagram, and a context sensitive diagram toolbar. Since this is a class diagram, there are
toolbar buttons for including the various elements associated with class diagrams. This
is shown in figure B.5.

Appendix B: ROME 309

Figure B.4 Project comprising a class and a collaboration diagram

Figure B.5 Class diagrammer

Observe how the toolbar buttons are arranged into logical groups. The first group of
three buttons is used to include, respectively, package, class and note into the class dia-
gram. The next seven buttons are the relation building buttons. They are toggle buttons
with only one ever active. The first of these is the selection button and is used to select
an element in a diagram and, perhaps, drag it. The others are used to form the various
relations. For example, the second of these seven buttons is used to introduce an aggre-
gation relation between two classes. The next group of three buttons is for cut, copy and
paste. Finally, the OOPL button is used to generate code (see later).

To describe the stages involved and the use of the ROME tool, we shall reconsider
the model developed in chapter 3. The model was that of a banking organization and its
many accounts. The example model we aim to develop is shown in figure B.6.

310 Object-Oriented Design with UML and Java

-theAccounts

{java.util.ArrayList} 0..*
Bank Account

Figure B.6 Target model

To construct the model we must first introduce the Bank and Account classes into
the diagram. In ROME we can do this in a variety of ways. With the mouse positioned
over the model pane we simply click the right mouse button, then a floating menu
appears and if we select the first option Add class, we get an empty class rectangle
included in the class diagram at the mouse point.

The same can be achieved by pressing the add class toolbar button (second from left
of toolbar). Note that when we position the mouse cursor above this toolbar button the
tool tips reminds us that this button is for adding a class to the model. When we click
this Add class toolbar button with the left mouse button a class symbol appears in the
upper left of the model as shown in figure B.7. Here we have clicked the button twice
and the class symbols have been stacked at the upper left of the diagram.

From figure B.7 we see that the newly entered class is obscuring an existing class
box. If we position the mouse cursor over this new box, then press and hold down the
left mouse button a rectangular outline for the selected class appears. While still hold-
ing the left mouse button we may drag the selected symbol to the desired location.
When we are satisfied with the new position for the symbol we simply release the left
mouse button.

We now name one of these new classes as Account. This we do with the Class
Editor dialog shown in figure B.8. The dialog appears by first positioning the mouse
cursor above the unnamed class, clicking the right mouse button and selecting Edit
Class... from the floating menu. The primary information we give through this dialog
is the class name. This is entered into the edit control labelled Name. Other aspects of
the class can also be set by this dialog. For example, commentary associated with the
class can be given by entering a Java style comment into the Comment field.

We need now to establish the aggregation relationship between the Bank and
Account classes. This we do using the aggregate button on the toolbar. Select this tool
(the tool tip indicates that this is an Aggregation tool for establishing aggregation
relationships) then move the mouse cursor to the class representing the part in the

Appendix B: ROME 311

Figure B.7 The effect of adding two new classes

Figure B.8 Class Editor dialog

whole/part relationship (here, the class Account). Note that ROME has changed the
mouse cursor to a crosshair to reflect the kind of operation that is underway. Press the
left mouse button at this class and drag the mouse to the class acting as the whole in
the whole/part relationship (Bank). Releasing the mouse results in ROME drawing the
aggregation relation between these classes (see figure B.9). Restore the selection mouse
by pressing the appropriate toolbar button.

312 Object-Oriented Design with UML and Java

Figure B.9 Adding an aggregation relation

To complete this aggregation we must label it, attach the multiplicities and choose
the appropriate implementation. This we enter with the Aggregation Editor dialog
shown in figures B.10a and B.10b. First right click the mouse while over the aggrega-
tion relation and select Edit aggregation... from the context sensitive menu. The role
name for this end of the aggregation is entered into the edit control labelled Role. The
multiplicity is chosen from the list under Multiplicity, which is a fixed list of UML
labels such as 0..* for many. The choice of implementation (here an ArrayList) is cho-
sen from the list under the Implementation, again a fixed list of the standard Java con-
tainers. This dialog, like so many other ROME dialogs, is a tabbed dialog in which
various editing aspects are distributed across a series of related dialogs. Each is chosen
from the tabs at the top of the main dialog.

When we click on the aggregation line, it is highlighted by colouring. If we select the
aggregation this way then by pressing and holding down the left mouse button we may
drag the line either upward or downward. When we release the button the effect may be
as shown in figure B.11. Note how ROME continues to retain the relationship between
the two classes by extending the relationship in an appropriate manner.

Figure B.10a Aggregation Editor dialog (Architecture tab)

Figure B.10b Aggregation Editor dialog (Advanced tab)

Aggregation and association relations can be recursive (see chapter 2). We achieve
this in ROME by combining the corresponding tool with the CTRL button. For exam-
ple, first select the association tool from the class diagram toolbar. Now with the CTRL
key held down press and release the mouse left button above the class symbol. When
the mouse is released ROME will put a recursive association into the class diagram.
The relationship links the class symbol with itself. The relationship can be dragged and
edited like any other.

B.4 Class attributes and operations

Now we shall enter the attributes and operations into the Account class. From the
discussions of chapter 3, we know that the two attributes are theNumber and
theBalance. To enter these details we invoke the Class Editor dialog we saw in figure
B.8 and repeated in figure B.12. This time, however, we activate the dialog by position-
ing the mouse cursor above the Account class, clicking the right mouse button, and
selecting Edit attributes... from the floating menu. Note this time the central list box in
which we view the class attributes and the Add... button at the lower left of the dialog.
Initially, of course, the list is empty. The button is used to obtain a second dialog into
which we enter the new attribute theBalance.

Press the Add... button on the Class Editor dialog. This pops up the Attribute Editor
dialog shown in figure B.13. Into the Name edit control we enter the attribute name
theBalance and its type into the Type field. The type can be entered in a number of

314 Object-Oriented Design with UML and Java

Figure B.11 Moving and stretching the aggregation relation

ways. We can enter the type name int directly into the field or we can select from the
drop list of fundamental Java types.

We continue by now adding theNumber attribute. Again, press the Add... button
from the Class Editor dialog (see figure B.12) and enter theNumber into the Name
field. This time we wish this attribute to have the String type. Again, we can enter this
directly into the field. We can also select from a list of Java types using the Class types
dialog. Press the button labelled with the ellipsis (...) alongside the Type field then work
your way through the packages to locate the correct class name. Figure B.14 shows the
packages partially expanded. The String class is part of the lang package and we must
open this and select the class name.

We can also give an attribute an initial value. Enter the Java expression into the Initial
field on the attribute editor (figure B.13). Only the expression needs to be entered.
ROME will complete the generated code by placing an assignment (=) between
the attribute and the expression and a terminating semicolon (;) after the initialized
declaration.

Also associated with an attribute is an initialization block. This comprises one or
more Java statements entered into the field marked Initialisation block. Again ROME
will code generate the necessary block markers (brace symbols {and}) around the state-
ments. See chapter 7 for an example of this.

Appendix B: ROME 315

Figure B.12 Class Editor dialog with empty attribute list and Add... button

Figure B.13 Attribute Editor dialog

Figure B.14 Class types dialog

Having entered the representational attributes, the Class Editor dialog now appears as
shown in figure B.15. The minus symbol prefix attached to each entry reminds us that the
attribute is private (a plus symbol means public and an equal symbol means protected).

Appendix B: ROME 317

Figure B.15 Class Editor dialog and attribute list

We do much the same for the operations of the class Account. We first select the item
Edit Operations... from the floating menu. The Add button brings up the Operation
Editor dialog as shown by figure B.16. Into the Name text field enter the name for the
operation. Enter the type of return value in the Return type. Like the type for an attrib-
ute we can set this value in a number of ways. We can enter the type name directly, or
we can choose one of the fundamental types from the drop list. Finally, we can select a
class name with the Class types dialog by following the ellipsis button alongside the
Return type field.

Operations with parameters are introduced as shown in figure B.17. The centre of the
Operation Editor dialog comprises a scroll list for the operation parameters. Each row
in this list has a field for the Name and the Type of the parameter. Into the Name field
provide the parameter name. The Type field is completed either by entering the type
name directly, choosing a fundamental type from the drop list (appears automatically
when the field is clicked), or by obtaining a class name from the Class types dialog by
using the ellipsis button.

When editing an existing list of parameters, be sure to press the RETURN key when
having completed editing either a Name or Type field. This is required to ensure that
the correction is properly registered.

Figure B.16 Operation Editor dialog

Figure B.17 Operation parameters

Note also the Stereotype combo box on these Operation Editor dialogs. You must
choose constructor from this drop-list when introducing a constructor method into a
class. Otherwise, the ROME code generator will handle constructor methods the same
as all other methods.

The Comment tab on the Operation Editor dialog presents a template for docu-
mentation for use with the javadoc tool. The user replaces one or more templates
enclosed with [and] with appropriate documentation. This can be used to name and
describe the method, and to name and describe the method parameters and return value.

For any selected class in the model panel, the properties panel presents a list of all the
features (attributes and operations) for that class (see figure B.18). This is useful for
obtaining some details of the class without having to open the class dialog.

Appendix B: ROME 319

Figure B.18 The Properties tab in the properties panel

Notice how in figure B.18 the Properties tab in the properties panel is selected. If we
select the OOPL (Object-Oriented Programming Language) tab, then for the selected
class we obtain an on-the-fly presentation of the Java code for the class (see figure
B.19). Observe that this generated code is not saved, it simply permits the developer to
review the emerging Java code.

We can also see what features are associated with a class by requesting the class to
show these details on the model. Place the mouse cursor over the Account class, click
the right mouse button and select, say, Show operations from the floating menu. This
would list the operations for that class. Additionally, if we repeat this and also select
Show signatures, then further details for the operations are revealed. The effect is
shown in figure B.20. Note how the effect is done on a per-class basis. Note also how
the expanded class symbol fills the model and disrupts the arrangement of the model.
Usually, some repositioning is needed to make sense of the diagram.

320 Object-Oriented Design with UML and Java

Figure B.19 The OOPL tab in the properties panel

Figure B.20 A class with its Show operations and its Show signatures set

The final work we have to do is fill the method bodies for the operations we have
attached to the class. Right click the Account class and choose Edit operations... from the
floating menu. From the list of classes select the one to edit and press the Edit button. This
brings up the Operation Editor dialog as first shown in figure B.17. Now select the
Method tab and complete the method body as shown in figure B.21. Observe how the
operation name is repeated in a non-editable field at the top of the tab.

Appendix B: ROME 321

Figure B.21 Method tab

B.5 Code generation

When we have completed the class diagram, ROME offers us a code generation facil-
ity. We can have ROME produce the generated Java code. The button on the toolbar
labelled OOPL activates this service. The service involves producing one or more Java
files for each class in the model. To use this facility, we must first nominate the direc-
tory in which they will be placed. Before we use these buttons we set the directory to
the current working directory with the Preferences... command on the Options menu.
The result is the Preferences Editor dialog shown in figure B.22.

The important field on this dialog is the Output Directory and specifies where all files
are placed. Typically we set this as the same directory in which the model resides but it
can be placed anywhere (here the directory is c:\demonstrator). We may edit this field
directly, or use the Browse... button to select the desired directory.

If we press the OOPL button on the toolbar, then ROME creates Java code files for each
class in the model. Thus we would have the files Bank.java, Account.java etc. ROME also
produces a Java code file called Main.java containing the Java main method that creates an
Application object and sends it the run message (see chapter 3).

B.6 Packages and nested classes

Class diagrams can include packages as we saw in the final iteration of the library case
study from chapter 4. Classes with nested inner classes were also introduced in chapter 7
when we discussed event handlers. Both of these are treated in a similar manner in ROME.

In figure B.23 a package has been introduced into a new class diagram and decorated
with the name librarysubsystem. The package is given this name using the Package
Editor, much like a class name is introduced.

Importantly, observe how the «class diagram» entry in the project panel has an
expand/collapse button to its immediate left. The button has a horizontal tail indicating
that this part of the project tree is currently collapsed. If we press this button and expand
the tree we obtain figure B.24.

By selecting the «librarysubsystem» entry in the project tree we effectively open
that package. As we see in figure B.25 a package in a class diagram can consist of the
usual elements that comprise a class diagram. The toolbar reveals that a package can be
an assembly of classes with relations and even other nested packages.

322 Object-Oriented Design with UML and Java

Figure B.22 Preferences Editor dialog

Appendix B: ROME 323

Figure B.23 A package

Figure B.24 Expanded class diagram

We have a similar arrangement when we include a class in a class diagram. In figure
B.26 we have a class LibraryFrame in the model panel with a corresponding entry in
the project tree.

324 Object-Oriented Design with UML and Java

Figure B.25 An opened package

Figure B.26 A class symbol

Again, when we select the LibraryFrame entry in the project tree, we open the class
as shown in figure B.27. Observe how in this figure ROME has disabled adding a pack-
age to a class, compared to figure B.25 in which a package can be a nested element for
another package. In figure B.27 the toolbar button to add an inner class, such as
WindowClosingAction, remains enabled.

Appendix B: ROME 325

Figure B.27 An opened class

B.7 Other features

All ROME diagrams have a group of buttons to cut, copy and paste elements from a
diagram. One or more model elements are first selected. The elements can then be cut
or copied into the ROME clipboard using these toolbar buttons. The items in the clip-
board can then be pasted into the same diagram or into another diagram. When we are
pasting into another diagram, ROME will only permit this where the same diagram
types are involved.

An individual model element is selected in the normal way. A number of model elem-
ents from a diagram can be selected using the selection tool by pressing and holding the
left mouse button over an unoccupied part of a diagram and by dragging the mouse to
a new part of the diagram. As the mouse is dragged an elastic rectangle grows and sur-
rounds the items that are selected.

We can also cut, copy and paste text in any of the text fields such as a class name or
a method body. All or parts of the text are selected with the mouse. The highlighted text
can then be cut with CTRL-X and copied with CTRL-C. This text, now in the clipboard,
can be pasted into another text field with CTRL-V.

ROME is also capable of compiling any class in a class diagram. To do so we must
first specify the necessary directories using the OOPL tab from the Preferences
Editor dialog.

In figure B.28 the three fields classpath, directory and sourcepath have been
established. The classpath field is the search path used to locate program files during
compilation. If we use the Browse... button repeatedly then each entry is appended to

326 Object-Oriented Design with UML and Java

Figure B.28 Setting the OOPL directories

Figure B.29 Compiling a class

the existing entries with a semicolon separator. The directory field specifies the root
destination directory into which all compiled files are stored. This root directory will
contain other subdirectories if the class diagram contains packages. The sourcepath
field identifies the directory or directories in which the source code files reside. Again,
the Browse... button forms a list separated with semicolons.

To compile a particular class we select the menu item Compile from the context sen-
sitive menu as shown in figure B.29. Any success message or any error messages appear
in the message panel. If necessary, we can remove the entries in the message panel by
issuing a right mouse click over this panel and selecting Clear from the floating menu.

Appendix B: ROME 327

This Page Intentionally Left Blank

Package textio

The input/output (IO) facilities of Java are provided by classes located in the java.io
package. This is an especially sophisticated suite of classes assembled using a number
of advanced design patterns. Unfortunately, the advanced designs are not suitable for
the novice. To this end we have developed a relatively simple package, textio, suitable for
console and file IO. The interfaces and classes in this package are described by the class
diagram shown in figure C.1.

Appendix C

329

«interface»
TextWriterIF

«interface»
TextReaderIF

TextReaderTextWriter

FileTextReaderFileTextWriter

ConsoleIO

Figure C.1 The textio package

C.1 Output

The Java interface is an indispensable tool when designing software systems. It allows us
to specify the behaviour of an object without worrying about how it is achieved. Another
way of stating this is that the interface specifies a protocol for all classes that implement it.

For example, an analysis of our output requirements reveals that we need to be able
to output language types such as ints, booleans and Strings as character sequences.
Our output requirement then leads us to a TextWriterIF interface as shown below in
which there are overloaded print and println methods. Some have formatting parame-
ters. We have the guarantee that any class that implements this interface must support

them. Its declaration is as follows:

package textio;

public interface TextWriterIF {
// ------ group #1 ------
public abstract void print(String text);
public abstract void print(char ch);
public abstract void print(int number);
public abstract void print(double number);
public abstract void print(boolean bool);

// ------ group #2 ------
public abstract void println();
public abstract void println(String text);
public abstract void println(char ch);
public abstract void println(int number);
public abstract void println(double number);
public abstract void println(boolean bool);

// ------ group #3 ------
public abstract void print(String text, int width);
public abstract void print(char ch, int width);
public abstract void print(int number, int width);
public abstract void print(double number, int width, int fraction);
public abstract void print(boolean bool, int width);

// ------ group #4 ------
public abstract void println(String text, int width);
public abstract void println(char ch, int width);
public abstract void println(int number, int width);
public abstract void println(double number, int width, int fraction);
public abstract void println(boolean bool, int width);

} // interface: TextWriterIF

The print methods are categorized into groups 1 and 3 as shown in the listing. The first
group displays the standard types unformatted, while those in the third group have addi-
tional formatting values. Those in the second and fourth groups mirror, respectively, those
in groups 1 and 3, but additionally issue a newline symbol after having completed the out-
put. The methods in groups 3 and 4 display the values formatted according to a field
width. For example, for values of type int, the third method of group 3, displays the value
right justified in a field width specified by the second parameter. For values of type double

(see fourth method in group 3) we also specify the number of decimal places required.
The TextWriter class implements the interface TextWriterIF. Its outline class decla-

ration is:

public class TextWriter implements TextWriterIF {

// ------ Operations ------------
public TextWriter() { ... }

330 Object-Oriented Design with UML and Java

// Implementations for all of the operations in TextWriterIF
// ...

} // class: TextWriter

The class ConsoleIO includes a static member named out of the class TextWriter.
It represents an output stream to the system console:

public class ConsoleIO {

public static final TextWriter out = new TextWriter();
// ...

} // class: ConsoleIO

Assuming a suitable import statement we can deliver output to the command console
with the following code samples:

int age = 21;
ConsoleIO.out.print(“My age is:”);
ConsoleIO.out.println(age);

This produces the following output (blanks in the output are emphasized with the symbol):

My age is:21

Formatted printing is achieved with:

double height = 1.6764; // metres
ConsoleIO.out.print(“My height is:”);
ConsoleIO.out.println(height, 8, 2); // total field width of 8, 2 decimals

producing:

My height is: 1.68

C.2 Input

An analysis of our input requirements reveals that we need to be able to input character
sequences and form the various types such as Strings, chars, ints, doubles and
booleans. One solution is to have a suitably named operation for each. For example,
we might have the operation readInt to convert character input to an int. The
TextReaderIF interface lets us impose a protocol based on this approach on any class
that implements it. Its declaration is as follows:

public interface TextReaderIF {

public abstract String readString();
public abstract String readLine();
public abstract char readChar();
public abstract int readInt();
public abstract double readDouble();
public abstract boolean readBoolean();

} // interface: TextReaderIF

Appendix C: Package textio 331

The method readString ignores any leading whitespace characters then reads a series of
characters up to the next whitespace symbol. The methods readInt, readDouble and
readBoolean ignore any leading whitespace then form the required input value from
the subsequent character sequence. Any unexpected input, such as a letter when reading
an int or double, stops further input and returns the value read. The method readChar
reads the next available character, including whitespace characters. The method
readLine reads a series of characters up to and including the newline symbol. The latter
is not part of the returned String.

Input from the system console is provided by the static member in of the class
ConsoleIO (see above). This TextReader class implements the interface TextReaderIF.

public class ConsoleIO {
public static final TextReader in = new TextReader();
public static final TextWriter out = new TextWriter();

} // class: ConsoleIO

Assuming a suitable import statement sample usage is:

ConsoleIO.out.print(“Please enter your surname: ”);
String surname = ConsoleIO.in.readString();
ConsoleIO.out.print(“Your name is: ”);
ConsoleIO.out.println(surname);

C.3 Files

Text files are human readable files suitable for text processing with utilities such as
Microsoft NotePad. As shown in figure C.1, the textio package has two classes to sup-
port input and output from them. File handling uses the classes FileText Reader and
FileTextWriter.

The FileTextReader is remarkably straightforward as shown in the following
declaration:

import java.io.*;

public final class FileTextReader extends TextReader {

// ------ Operations ------------
public FileTextReader(String fileName) throws IOException {...}

} // class: FileTextReader

As it extends TextReader then it inherits the various read operations. Therefore all that
the constructor need do is any initialization it requires to read from a named file. Note that
it can throw an exception belonging to the class IOException (a subclass of Exception
in the package java.io). Therefore if we use this constructor then it must be in a try block.

Assuming that we have visibility of all of the classes in the textio package and the
class IOException with:

import textio.*;
import java.io.*;

332 Object-Oriented Design with UML and Java

then a typical code fragment is:

try {
String name = null;
int age = 0;
//
FileTextReader data_in = new FileTextReader(“data_in.txt”);
//
while(data_in.isEOF() == false) {

name = data_in.readString();
age = data_in.readInt();
ConsoleIO.out.println(“The age of ” + name + “ is ” + age);

}
}
catch(IOException e) {

ConsoleIO.out.println(“Cannot open data_in.txt”);
}

Here we create a FileTextReader initialized to read from the file named data_in.txt.
The method isEOF reports when the end of the file has been reached. Therefore the
while loop displays the String-int pairs in the file until no more are left. In this simple
example the exception handler just reports that the file cannot be opened. Specifically it
does not use the IOException object passed to it.

As might be expected the FileTextWriter class is similar in that it inherits the func-
tionality of the TextWriter, i.e. the various overloaded print and println operations. All
its constructor need do is any initialization required to write to a named file. An outline
class declaration is:

import java.io.*;

public final class FileTextWriter extends TextWriter {

// ------ Operations -----------
public FileTextWriter(String fileName) throws IOException { ... }

} // class: FileTextWriter

Note that as with the FileTextReader, the constructor for the FileTextWriter class can
throw an IOException. Therefore, it must be used in a try block. Again assuming we
have the necessary import statements, an example of it in use is:

try {
FileTextWriter data_out = new FileTextWriter(“data_out.txt”);
String name = null;
int age = 0;
//
name = ConsoleIO.in.readString();
age = ConsoleIO.in.readInt();
while(name.equals(“XXX”) == false) {

data_out.println(“The age of ” + name + “ is ” + age);

Appendix C: Package textio 333

name = ConsoleIO.in.readString();
age = ConsoleIO.in.readInt();

}
}
catch(IOException e) {

ConsoleIO.out.println(“Cannot open data_out.txt”);
}

The code accepts a String-int pair from the keyboard until XXX is input as the String.
It copies them with some explanatory text to a file name data_out.txt.

334 Object-Oriented Design with UML and Java

UML Notation and
Java Bindings

In this appendix we catalogue the essential elements of the UML diagrams supported
by ROME. We also provide a mapping from our designs into Java. We specify the bind-
ings between our designs (expressed as UML class diagrams) and the corresponding
Java class declarations.

D.1 UML notation

Class diagram

A UML class diagram is a static structure diagram of the application classes and the
relationships formed between them. The application can be partitioned by recursively
nested packages. Classes can also exhibit a nested structure with inner classes. The
relations found in a class diagram include association, aggregation and specialization.
Documentation in the form of a note can also be found in a class diagram.

A package is used to group model elements or subsystems. A package is a nested
namespace, permitting elements with the same name to exist in different packages. A
package is rendered as a tabbed folder with, optionally, the names of subordinate pack-
ages and classes shown within it, as depicted by figure D.1. The convention is to use
only lower-case characters for the package name.

Appendix D

335

packagename

Features

+Class2

+Class1

Figure D.1 A package exploded to reveal its features

A class defines the state and behaviours for objects of that class. An object’s state is
defined by the class attributes and an object’s behaviour by the methods of the class.
Attributes have a name and a type. Java supports class-level (static) attributes.
A method has a name, none or more method parameters and a return type. Method

parameters also have a name and a type. Methods can be deferred (abstract) or class-
level (static). Methods can also be tagged as final, indicating that they cannot be rede-
fined in a subclass.

A class can be marked as abstract, containing none or more abstract methods. A class
with only abstract methods and, possibly static attributes, is described as an interface. A
class tagged as final cannot be subclassed. A sample class is shown in figure D.2.

336 Object-Oriented Design with UML and Java

-Type1 attribute1

-Type2 attribute2

+Type1 method1()

+Type2 method(ParamType aParam)

+Type3 abstractMethod()

+Type4 classMethod()

ClassName

Attributes

Operations

Figure D.2 Sample class with its attributes and operations

The permissible relations in a class diagram are association, aggregation and spe-
cialization. Association and aggregation relations are used to capture the architectural
links between instances of the classes involved in the relationship. Two forms of aggre-
gation are permitted: composite aggregation and shared aggregation. The former
emphasizes a strong coupling between object instances of the whole and its parts.
Shared aggregation weakens this coupling.

Specialization introduces the notion of subclass and superclass. A subclass
inherits all the features (attributes and operations) of its superclass. The subclass may
include additional features or redefine inherited operations. The term implementation
is used where the superclass is an interface and the subclass is either abstract or
concrete.

Figure D.3 shows two classes with a shared aggregation relationship. The relation-
ship is that of a one-to-many, which is realized using an ArrayList collection.

-theRoleName

1 {java.util.ArrayList} 0..*
Class1 Class2

Figure D.3 Shared aggregation between classes

In figure D.4 the concrete class SubConcrete is related to the two classes
SuperInterface and SuperConcrete. The class SubConcrete is shown to implement
the interface SuperInterface and extend the concrete superclass SuperConcrete.

Collaboration diagram

A UML collaboration diagram is used to present the dynamics of a part of a system. It
comprises a set of object instances, the relations between them, and the messages that
flow between the objects. The messages are numbered to reveal the order in which they
occur. The association, composite or shared aggregation can be used as the relations.
Each relation represents a link between objects. Each object is an instance of the class
to which it belongs and will have the behaviours and attributes as defined by that class.

Figure D.5 presents a collaboration diagram with a single instance of a Bank object
and three instances of Account objects. The Account objects are shown as aggregate
sub-components of the Bank object. The three Account objects are distinguished by
the identifiers ac1, ac2 and ac3. In the diagram the Account object ac3 has been
exploded to reveal its state consisting of a bank account number ABC123 and a balance
of 1200 monetary units. The diagram also shows the Bank object issuing the message
getBalance, in turn, to each Account object.

Appendix D: UML Notation and Java Bindings 337

«interface»
SuperInterface SuperConcrete

SubConcrete

Figure D.4 Specialization of classes

ac3 : Account

Attributes

1: getBalance

3: getBalance

2: getBalance

theNumber=ABC123

theBalance=1200

bk : Bank

ac1 : Account

ac2 : Account

Figure D.5 Collaboration diagram

Sequence diagram

A UML sequence diagram is also used to present the dynamics of a part of a system.
It comprises a set of object instances and the messages that flow between them. The
objects are decorated with a lifeline in which time is understood to pass as we move
down the diagram. The ordering of the messages is according to the passage of time as
we read the diagram from top to bottom. Each object is an instance of the class to which
it belongs and will have the behaviours and attributes as defined by that class.

Figure D.6 presents a sequence diagram with a single instance of a Bank object and
three instances of Account objects. The diagram shows the Bank object issuing the
message getBalance, in turn, to each Account object.

338 Object-Oriented Design with UML and Java

bk : Bank ac1 : Account ac2 : Account

getBalance

getBalance

getBalance

ac3 : Account

Figure D.6 Sequence diagram

Object diagram

A UML object diagram is used to present the static structure of a part of a system. It
comprises a set of object instances and the relations between them. The association,
composite or shared aggregation can be used as the relations. Each relation represents
a link between objects. Each object is an instance of the class to which it belongs and
will have the behaviours and attributes as defined by that class. In effect, an object dia-
gram is a collaboration diagram without the messages. It is intended to reveal the archi-
tecture of the objects.

Figure D.7 presents an object diagram. It is similar to that shown in figure D.5 except
there are no messages shown.

Use-case diagram

A UML use-case diagram is used to present an external view of the functionality
required by a system. Each use-case will describe a single functional requirement of the
system. All the use-cases describe the entire system.

A use-case diagram is shown in figure D.8. It consists of a use-case, an actor and an
interaction. Figure D.8 shows a bank teller interacting with a computer system to open
a new account for a customer.

Appendix D: UML Notation and Java Bindings 339

ac3 : Account

Attributes

theNumber=ABC123

theBalance=1200

bk : Bank

ac1 : Account

ac2 : Account

Figure D.7 Object diagram

Open new account

Figure D.8 Use-case diagram

Activity diagram

A UML activity diagram is often better known as a flow diagram or flowchart. It repre-
sents how some process is performed. It breaks the process into various steps or activ-
ities with, perhaps, decision points and loops. Figure D.9 shows an activity diagram in

●

●●

[good customer]

[bad customer]

Open new account

Figure D.9 Activity diagram

which a new account is only created for good customers. It comprises one activity
(Open new account), one decision symbol (the diamond), a number of transitions as we
proceed through the process, and start and stop symbols.

D.2 UML to Java class declarations

Concrete class

A concrete class represents a class from which object instances can be created.
Concrete class features are its attributes (Java properties) and method definitions. Each
feature is tagged with its visibility indication. Attributes can be initialized, finalized
(constant) or static (class property). All operations of a concrete class have a method
definition. Finalized methods cannot be redefined in a subclass. Static methods can only
reference static features (attributes or methods). The class itself can be specified as
final, indicating that it cannot be subclassed. The following example (and subsequent
examples) illustrate class diagrams and associated Java code.

340 Object-Oriented Design with UML and Java

-String theName

-GregorianCalendar theDOB

+int getAge()

+void setName(String aName)

Person

Attributes

Operations

public class Person {

public int getAge() { ... }
public void setName(String aName) { ... }

private String theName;
private GregorianCalendar theDOB;

} // class: Person

Abstract class

An abstract class is characterized by having deferred methods. A class may be abstract
as a result of inheriting an abstract method from an abstract superclass (or an interface)
that the class does not redefine. An abstract method cannot be static nor can it be
final.

public abstract class Employee {

public int getYearToDateEarnings() { ... }
public abstract int getPay();

private int theYearToDateEarnings;
private String theEmployeeNumber;

} // class: Employee

An interface

An interface is a class that specifies only abstract methods. An interface may include
attributes but they must all be class variables (static). Like an abstract class we cannot
create instances of an interface. By default, all features of an interface are public and
all methods are abstract.

Appendix D: UML Notation and Java Bindings 341

-int theYearToDateEarnings

-String theEmployeeNumber

+int getYearToDateEarnings()

+int getPay()

«abstract»
Employee

Attributes

Operations

+int getDay()

+int getMonth()

+int getYear()

+boolean isLeap()

«interface»
DateIF

Operations

public interface DateIF {

public abstract int getDay();
public abstract int getMonth();
public abstract int getYear();
public abstract boolean isLeap();

} // class: DateIF

One-to-one association (or aggregation)

An association (or aggregation) with multiplicity one is realized by a reference to an
object of the associate (aggregate) class. This architectural feature can, like others,
include a visibility tag.

public class Computer {

// ...
private Monitor theMonitor;

} // class: Computer

public class Monitor {

// ...

} // class: Monitor

One-to-many association (or aggregation)

In a one-to-many association (or aggregation) an object of one class carries the refer-
ences to many objects of the second class. Usually, the many object references are man-
aged by a suitable collection.

342 Object-Oriented Design with UML and Java

Computer

Monitor

1-theMonitor

-int theYearToDateEarnings

-String theEmployeeNumber

+int getYearToDateEarnings()

+int getPay()

«abstract»
Employee

Attributes

Operations

Company

Attributes

-String theName

-theEmployees

{java.util.ArrayList} 0..*

public class Company {

// ...
private String theName;
private ArrayList theEmployees;

} // class: Company

public abstract class Employee {

public int getYearToDateEarnings() { ... }
public abstract int getPay();

private int theYearToDateEarnings;
private String theEmployeeNumber;

} // class: Employee

Specialization from a concrete class

A concrete class can operate as the superclass for another concrete class or for an
abstract class. The subclass is introduced as an extension of the superclass introducing
additional features and/or redefinitions of inherited methods.

Appendix D: UML Notation and Java Bindings 343

-int theYearToDateEarnings

-String theEmployeeNumber

+int getYearToDateEarnings()

+int getPay()

«abstract»
Employee

Attributes

Operations

Person

Attributes

-String theName

-GregorianCalendar theDOB

public class Person {

// ...
private String theName;
private GregorianCalendar theDOB;

} // class: Person

public abstract class Employee extends Person {

public int getYearToDateEarnings() { ... }
public abstract int getPay();

private int theYearToDateEarnings;
private String theEmployeeNumber;

} // class: Employee

Specialization from an abstract class

An abstract class may act as the superclass for a concrete class or for another abstract
class. A concrete subclass must provide definitions for all inherited abstract methods.
An abstract subclass results from having its own abstract methods or from inherit-
ing, without redefinition, abstract methods. Again, the subclass is said to extend the
superclass.

344 Object-Oriented Design with UML and Java

-int theYearToDateEarnings

-String theEmployeeNumber

+int getYearToDateEarnings()

+int getPay()

«abstract»
Employee

Attributes

Operations

Manager

Operations

+int getPay()

public abstract class Employee {

public int getYearToDateEarnings() { ... }
public abstract int getPay();

private int theYearToDateEarnings;
private String theEmployeeNumber;

} // class: Employee

public class Manager extends Employee {

// ...
public int getPay() { ... }

} // class: Manager

Specialization from an interface

An interface, an abstract class and a concrete class can be subclassed from an interface.
An interface subclass is an extension of an interface superclass, simply adding further

abstract methods to the interface. An abstract subclass will have one or more abstract
methods either through inheritance from the interface or by the introduction of additional
abstract methods. A concrete subclass will define all the abstract methods inherited from
the interface. An abstract or concrete subclass is said to implement the interface.

Appendix D: UML Notation and Java Bindings 345

+int getDay()

+int getMonth()

+int getYear()

+boolean isLeap()

«interface»
DateIF

Operations

+int getDay()

+int getMonth()

+int getYear()

+boolean isLeap()

Date

Operations

public interface DateIF {

public abstract int getDay();
public abstract int getMonth();
public abstract int getYear();
public abstract boolean isLeap();

} // interface: DateIF

public class Date implements DateIF {

public int getDay() { ... }
public int getMonth() { ... }
public int getYear() { ... }
public boolean isLeap() { ... }

} // class: Date

Specialization from multiple superclasses

Java does not support multiple inheritance. A subclass may have at most one superclass
(either an abstract superclass or a concrete superclass). A class may implement any
number of interfaces. An interface may also extend any number of other interfaces.

346 Object-Oriented Design with UML and Java

+void moveTo(int x, int y)

«interface»
MoveableIF

Operations

+void moveTo(int x, int y)

+void draw()

Box

Operations

+void draw()

«interface»
GraphicF

Operations

public interface MoveableIF {

// ...
public abstract void moveTo(int x, int y);

} // interface: MoveableIF

public interface GraphicIF {

// ...
public abstract void draw();

} // interface: GraphicIF

public class Box implements MoveableIF, GraphicIF {

// ...
public void moveTo(int x, int y) { ... }

public void draw() { ... }

} // class: Box

The Java Collections
Framework

This appendix demonstrates how the Java Collections Framework (JCF) is used to
implement the one-to-many architectural relationships identified in an OOAD. It is not
intended to be a definitive account. Interested readers should consult specialist sources
such as http://developer.java.sun.com/developer/online-Training/collections/ and
Watt 2001.

We begin with a discussion of the design strategy used in the construction of the JCF.
It should give the reader an insight into its architecture and so make it easier to deploy.
It also serves as a good illustration of an industrial-strength framework that consolidates
the material presented in chapter 6. Advice on the criteria for the selection of a collection
follows. Finally we discuss some of the issues associated with using the JCF.

E.1 The architecture of the JCF

In object-oriented systems development there is a common requirement to have an
object that acts as a collection of other objects. The intention is to treat the entire collec-
tion of those objects as a single entity. Typically it is used for their storage and retrieval.
For example, we might use a collection to hold electronic mail messages or the details
of each student studying OOAD.

The JCF is a unified architecture for representing and manipulating collections. Its
design is based on the principle that an interface is partially implemented by an abstract
class then fully implemented by a concrete class. It means that several concrete classes
can benefit from having the same superclass. Figure E.1 illustrates that part of the JCF
architecture that pertains to a particular kind of collection known as the set.

The Collection interface acts as the specification for any collection. As
such it advertises methods common to all collections. The Set interface that specializes
it acts as the specification for all collections that are sets. The AbstractCollection
class implements those methods in the Collection interface applicable to all collec-
tions. Its subclass AbstractSet implements the remaining methods applicable to
all sets.

Each concrete class now completes the implementation by implementing any methods
that are specific to it. For example, the add method is implemented by the HashSet
class so that its elements are added in no particular order. However, the TreeSet

Appendix E

347

provides a different implementation so that its elements are ordered. Both must also
provide their respective constructors.

Notice how this elegant approach separates specification from implementation with
an interface and a class hierarchy respectively. Many of the other interfaces, abstract
classes and concrete classes that make up the JCF are structured similarly. They are all
located in the java.util package.

It has been our experience that the advantages that come from using the JCF are enor-
mous. It is no exaggeration to state that it radically changes the manner in which we
develop our software. For example, collection objects make object-oriented systems
easier and faster to develop. They also make them easier to understand. There is also the
added bonus that the resulting software is more portable, reliable and efficient than would
otherwise have been the case.

E.2 Choosing a Collection class

Although there are several different kinds of collection objects available, two are par-
ticularly useful. The first is the set and the second the list. The set is similar to that found
in mathematics. It is a group of unique items or elements. The fact that the elements in
the set must be unique is important because it forbids any duplicates. On the other hand
the list is a sequence of elements that does allow duplicates. It also supports the pos-
itional indexing of its elements. This means that each element has its location in the list
defined by a positive number known as its index. The purpose of the index is to allow
access to an element that occupies a specific position in the list.

An important principle of object orientation is that one object should be independent of
the internal workings of another. The essential idea is that a client should only rely on the
specification of an operation as advertised by the receiver. To put it another way, the client
should not depend on its method, i.e. its implementation. This supports the flexibility
required to change a method’s implementation with no unforeseen effects on clients.

348 Object-Oriented Design with UML and Java

«abstract»
AbstractCollection

«interface»
Collection

«interface»
Set

«abstract»
AbstractSet

TreeSetHashSet

Figure E.1 Part of the JFC architecture that pertains to the set collection

In the case of a collection object, the choice of which one to use is not just deter-
mined by whether it is a set or a list but also how it is implemented. The reason is that
a collection’s implementation can often affect critical design criteria. For example, we
might choose a collection with an implementation that minimizes the amount of mem-
ory used or one that retrieves an element faster than another. Note that there is no
dependency on the collection’s implementation. It is just that we choose one rather than
the other because of our particular design requirements. This means that knowledge of
a collection’s implementation and its impact on the rest of the software is important.

The set supplied with the standard Java environment is implemented using either a
hash table or a tree. Both are traditional data structures. Respectively, these are the Java
classes HashSet and TreeSet. The hash table holds the location of each element of a
HashSet to permit efficient access. Thankfully the details of how the hash table works
need not concern us. In contrast the tree holds each element of a TreeSet in a particu-
lar sort order. Again we are not concerned with how this is actually achieved.

The list also has two implementations, namely the ArrayList and the LinkedList. The
first uses an array and the second a linked list structure. Again, both are traditional data
structures. The ArrayList holds its elements as a contiguous sequence, i.e. one follows the
other in memory. Usually an ArrayList is the better choice when there is a need to access
each element in the list at random locations. However, this is with the proviso that there are
no (or at least a minimum of) insertions or removals from any place other than the end of
the ArrayList. The reason for the first is that an element can be found rapidly with an index
as it is mapped directly to a memory location. The reason for the second is that because
each element in an array is adjacent in memory, an insertion or removal anywhere other
than at the end must involve moving existing elements from one location to another.
Obviously this can be time consuming.

With a LinkedList an element (often called a node) can be located anywhere in
memory. This avoids rearranging elements but requires that each element is connected
to the next by a link. A LinkedList is often the better choice when elements are added
or removed from intermediate locations within the list. The reason is that there is no
rearrangement of the elements required. An element’s index is not directly mapped to a
memory location. Therefore the LinkedList is not a good choice when the efficiency of
random access is important.

Table E.1 summarizes the main attributes of the Java collection classes we commonly
use. It can be used in determining the best design choice.

The UML default collection is the set. Therefore, we use the HashSet as our default
Java implementation.

Appendix E: The Java Collections Framework 349

Table E.1 A summary of the main attributes of the Java Collection classes

Collection JCF class Description

set HashSet Unordered and no duplicates; fast insertion and retrieval
set TreeSet Ordered with no duplicates; fast insertion and retrieval
list ArrayList Positional ordering with duplicates; unsuitable for

general insertions/deletions
list LinkedList Positional ordering with duplicates; suitable for general

insertions/deletions

E.3 Using the JCF

There is no doubt that the JCF is a complex software artefact. However, so long as a few
relatively simple rules are followed, it is not especially difficult to use. This section
details how we employ the JCF in the implementation of one-to-many aggregations and
associations identified in an OOAD.

E.3.1 Adding an element to a collection

Creating a collection object is the same as for any other object. For example, the decla-
ration statement:

Collection accounts = new HashSet();

creates a HashSet object of a default size and

Collection accounts = new HashSet(10);

a HashSet initialized to hold ten elements.

The identifier accounts references the HashSet object created. Notice that
accounts is declared as a Collection reference not a HashSet reference. This is good
practice as it means accounts may reference any object whose class implements the
Collection interface. We describe Collection as the interface type and HashSet as the
implementation type.

Our four Java collection classes (HashSet, TreeSet, ArrayList and LinkedList) all
support the method add. Its purpose is to allow a client to populate a collection with a
reference to a particular object. For example, as the HashSet has no ordering of its ele-
ments the addition of an element is straightforward. We just add it to the HashSet with
the operation:

boolean add(Object element)

As each collection is dynamically resizable we don’t have to concern ourselves with
memory allocation issues. It will just increase its size as necessary.

Each element in a collection is a reference to an object of the class Object. This is
important as polymorphic substitution (see chapter 5) means that we can add a refer-
ence to any object of any descendant class of Object. As all Java classes are descended
from Object, then it means that a reference to any Java object can be added to a collec-
tion. (This does not include the Java primitives such as int and char. In this case a
wrapper class such as Integer and Character must be used.)

Notice that the add operation returns a boolean value. It is used to inform a client
of the success or failure of the addition. For example, if we have:

public class Account {
// ...
}

350 Object-Oriented Design with UML and Java

and:

Collection accounts = new HashSet();
Account ac1 = new Account(...);

then we might have:

if(accounts.add(ac1) == true)
// Take some action knowing that the addition was successful

else

// Take some action knowing that the addition was not successful

We can also ignore the return value with:

// Ignore the boolean return value
accounts.add(ac);

With a LinkedList or ArrayList each element is part of a sequence. Therefore there
is a positional index that can be used to locate an element. Although there are several
(overloaded) add methods available, we normally use only the add method applicable
to all collections, i.e. the one that does not involve a positional index. It just adds the
element to the end of the list. This gives us the flexibility we require to change the
implementation type with minimal impact on our code.

The only real difficulty is with the addition of an element to a TreeSet. The reason is
that it must be added in some specified order. This means that the TreeSet must be able
to compare the element to be added with those already present.

Focusing on the important question of the comparison of objects, if we have a col-
lection of Integer objects then there is no problem. It is clear what the outcome of a
comparison of one Integer with another should be. It is just that expected from arith-
metic. Similarly for String values there is a natural ordering of English language
Strings based on a lexicographic comparison. It relies on the fact that each character is
represented in the computer as a numeric code.

When two Strings are compared it is actually a comparison of the numeric codes of
the characters in the Strings. For example, John is less than Ken as the first character of
John comes before the first character of Ken in the numeric coding sequence. Similarly
john is greater than John as lower-case characters have higher numeric codes than
upper-case ones. Finally Johnny is greater than John as it has two extra characters.

In fact all Objects that belong to standard Java classes have a natural ordering pre-
defined. Our problem is that we need allow for the comparison of objects that belong to
user-defined classes, e.g. the class Account. Clearly the Java development team could
not anticipate what it means to compare objects of some arbitrary user-defined class.
For example, we might compare two Accounts according to their account number or
their balance or some other criteria. The point is that we must make the decision of what
the basis for the comparison is.

Fortunately the situation is not quite so bleak as the previous discussion might sug-
gest. The reason is that the Java development team designed the collections in such a
way that the operation:

public int compareTo(Object obj)

is used to compare two elements in a collection.

Appendix E: The Java Collections Framework 351

As with the add method its formal parameter is a reference to an Object thereby
making it generally reusable. It returns a value of 0 if the object that receives the mes-
sage compareTo is equal to the object referenced by the actual parameter, a negative
value if it is less than it and a positive value if it is greater. For example, assuming the
declaration statements:

String s1 = new String(“John”);
String s2 = new String(“Ken”);
String s3 = new String(“Johnny”);

and the three expressions:

s1.compareTo(s1)
s1.compareTo(s2)
s3.compareTo(s1)

The first returns 0, the second a value less than 0 and the third a value greater than 0.
The collections can use this behaviour in selection statements such as:

if(s1.compareTo(s2) == 0) {
// Take some action knowing that the Strings are equal

}
else if(s1.compareTo(s2) < 0) {

// Take some action knowing that the first String is less than the second
}
else {

// Take some action knowing that the first String is greater than the second
}

To add an object of a user-defined class to a TreeSet, all we have to do is to define a
method for compareTo and the problem is solved. For example, we might have:

// ...
public class Account implements Comparable {

// ------ Operations ----------
public Account(String aNumber, int aBalance) {

theNumber = aNumber;
theBalance = aBalance;

} // method: Account

public String getNumber() {
return theNumber;

} // method: getNumber
public int compareTo(Object obj) {

Account acc = (Account) obj;
String accountNumber = acc.getNumber();
//
return theNumber.compareTo(accountNumber);

} // method: compareTo

// ...

352 Object-Oriented Design with UML and Java

// ----- Attributes ----------
private final String theNumber;
private int theBalance;

} // class: Account

Notice that the Account class implements the interface Comparable (located in the
java.lang package). As part of its sorting algorithm, a collection casts its elements to
reference a Comparable object not to the actual class they belong to. The reason is that
the collection only sends the compareTo message declared by the Comparable inter-
face. Therefore it does not need to know the true class of each element.

In the Account class, the comparison is actually based on the operation compareTo
defined for the class String. This is common practice as it limits the amount of work we
have to do. Had the attribute used for the comparison been declared as int we might
have had:

// class: Account
public int compareTo(Object obj) {

Account acc = (Account) obj;
int accountNumber = acc.getNumber();
int result;
//
if(theNumber < accountNumber) {

result = -1;
}
else if(theNumber == accountNumber) {

result = 0;
}
else {

result = +1;
}
//
return result;

} // method: compareTo

or just:

// class: Account
public int compareTo(Object obj) {

Account acc = (Account) obj;
int accountNumber = acc.getNumber();
//
return theNumber - accountNumber;

} // method: compareTo

Also the attribute theNumber that is the basis for the comparison is qualified as final and
is set by the constructor. This is intentional as it eliminates the risk that the attribute will
be changed at a later date, perhaps invalidating the original comparison.

Appendix E: The Java Collections Framework 353

E.3.2 Mandatory profile considerations

Any object held by a TreeSet must have a method for compareTo otherwise a run-
time error will result. Even though it is not required by other collections it is wise to
insist that it is always available for any object held in a collection. The danger is that in
a working system, if the collection used is changed to a TreeSet then an unexpected
problem will result. It may be difficult to trace and fix.

It turns out that two other methods, namely equals and hashCode, are also used
internally by the JCF. The first compares two elements for equality while the second
delivers a number used for storage and retrieval of an element. Both are originally
defined in the class Object. Again, they may not be strictly necessary for a particular
collection but it is wise to include them.

Taking these considerations into account we insist that the class of any object to be
held in a collection must have the following form:

public class ClassName implements Comparable {

public int compareTo(Object obj) { ... }
public boolean equals(Object obj) { ... }
public int hashCode() { ... }

// ...

} // class: ClassName

This is part of its mandatory profile. For example, for the Account class we have:

public class Account implements Comparable {

public int compareTo(Object obj) {
// As in the previous section

} // method: compareTo

public boolean equals(Object obj) {
boolean result = this.compareTo(obj) == 0;
//
return result;

} // method: equals

public int hashCode() {
return theNumber.hashCode();

} // method: hashCode

// ----- Attributes ----------
private final String theNumber;
// ...

} // class: Account

Notice that the method equals is defined in terms of compareTo. Although this might
not always be the case, for our purposes it does bring consistency to our code. Therefore
two Accounts that are equal occupy the same position when sorted. Similarly the method
for hashCode uses the same final attribute as compareTo. This means that two equal
Accounts have the same hash code.

354 Object-Oriented Design with UML and Java

E3.3 Traversing a collection

Clearly the Object references held in a collection are not directly available to a client.
This poses a problem when there is a need to traverse a collection. Therefore the col-
lections have a method iterator that delivers an Iterator (located in the java.util pack-
age) reference to a client. The idea is that an Iterator has privileged access to the
internal workings of the collection. For example, it supports the methods:

// Return true if there is another element in a collection to visit otherwise return false
boolean hasNext()

and:

// Return the next Object in the collection
Object next()

Consider a bank that holds many accounts. We model it as shown in figure E.2.

Appendix E: The Java Collections Framework 355

Bank Account
-theAccounts

{java.util.Collection} 0..*
1

Figure E.2 A bank holding many accounts

Outline code for the Bank class is:

import java.util.*;
import textio.*;

public class Bank {

// ----- Operations ----------
public Bank(String aName) {

theName = aName;
//
// Architecture initialisation.
theAccounts = new TreeSet();

} // method: Bank
//

public void openAccount(String aNumber, int aBalance) {
Account acc = new Account(aNumber, aBalance);
//
// Establish the architecture between the bank and this new account.
theAccounts.add(acc);

} // method: openAccount

public void displayAllAccounts() {
ConsoleIO.out.println();
ConsoleIO.out.println(“All account details for: ” + theName + “\n”);
//
Iterator iter = theAccounts.iterator();

while(iter.hasNext()) {
Account acc = (Account) iter.next();
acc.display();

}
} // method: displayAllAccounts

public void displayAnAccount(String aNumber) {
ConsoleIO.out.println();
ConsoleIO.out.println(“Single account details for: ” + theName + “\n”);
//
// Find the account with the given number and display it
Iterator iter = theAccounts.iterator();
while(iter.hasNext()) {

Account acc = (Account)iter.next();
String number = acc.getNumber();
if(aNumber.equals(number)) {

acc.display();
break;
}

}
} // method: displayAnAccount

public int getTotalAssets() {
// Form a running total of the balances for each account
int totalAssets = 0;
//
Iterator iter = theAccounts.iterator();
while(iter.hasNext()) {

Account acc = (Account)iter.next();
totalAssets + = acc.getBalance();

}
return totalAssets;

} // method: getTotalAssets
// ..

// ----- Attributes ----------
private java.lang.String theName;

// ----- Relations ----------
private java.util.Collection theAccounts; // of Account

} // class: Bank

Notice how the methods displayAllAccounts, displayAnAccount and getTotalAssets
have the same form. Essentially it can be summarized by the following pseudo code (see
appendix H):

FOREACH element IN theCollection DO

get the next element
use the element

ENDFOREACH

356 Object-Oriented Design with UML and Java

that maps to the Java code:

Iterator iter = theCollection.iterator();
while(iter.hasNext()) {

ElementClass element = (ElementClass) iter.next();
// send messages to element

}

For example, we have:

// class Bank
public void displayAllAccounts() {

ConsoleIO.out.println();
ConsoleIO.out.println(“All account details for: ” + theName + “\n”);
//
Iterator iter = theAccounts.iterator();
while(iter.hasNext()) {

Account acc = (Account) iter.next();
acc.display();

}
} // method: displayAllAccounts

Notice that the Iterator delivers an Object reference. Therefore it must be cast to ref-
erence an Account if a message such as display is sent. The reason is that display is
not declared in the Object class. Also we have initialized the architectural attribute
theAccounts to reference a TreeSet. Therefore the display prints each Account in its
sort order, i.e. in order of increasing account number.

E.3.4 Removing an element from a collection

The Iterator object used to traverse a collection can also be used to remove an
element. For example, in the Bank class we have:

// class Bank
public void removeAnAccount(String aNumber) {

// Find the account with the given number and remove it from the bank
Iterator iter = theAccounts.iterator();
while(iter.hasNext()) {

Account acc = (Account)iter.next();
String number = acc.getNumber();
if(aNumber.equals(number)) {

iter.remove();
break;

}
}

} // method: removeAnAccount

Appendix E: The Java Collections Framework 357

E3.5 Putting it all together

Program E.1 (ProgE_1.uml) in the software supplied demonstrates the use of JCF in
the bank example. Complete listings are as follows.

Program E.1 Using the Java Collections Framework (model ProgE_1.uml)

public class Main {

public static void main(String[] args) {
Application app = new Application();
app.run();

} // method: main

} // class: Main

public class Application {

// ----- Operations ----------
public void run() {

// Open new bank
Bank bk = new Bank(“Object Bank”);
//
// Open three new accounts
bk.openAccount(“GHI789”, 2000);
bk.openAccount(“ABC123”, 1200);
bk.openAccount(“DEF456”, 1000);
//
// Display all accounts details
bk.displayAllAccounts();
//
// Display a single account’s details
bk.displayAnAccount(“ABC123”);
//
// Obtain total assets
ConsoleIO.out.println(“Total assets: ” + bk.getTotalAssets());
//
// Remove an account
bk.removeAnAccount(“DEF456”);
//
// Display all accounts details
bk.displayAllAccounts();
//
// Obtain total assets
ConsoleIO.out.println(“Total assets: ” + bk.getTotalAssets());
} // method: run

} // class: Application

import java.util.*;
import textio.*;

358 Object-Oriented Design with UML and Java

public class Bank {

// ----- Operations ----------
public Bank(String aName) {

theName = aName;
theAccounts = new TreeSet(); // a HashSet, ArrayList or LinkedList could also be used

} // method: Bank

public void openAccount(String aNumber, int aBalance) {
Account acc = new Account(aNumber, aBalance);
theAccounts.add(acc);

}// method: openAccount

public void displayAllAccounts() {
ConsoleIO.out.println();
ConsoleIO.out.println(“All account details for: ” + theName + “\n”);
//
Iterator iter = theAccounts.iterator();
while(iter.hasNext()) {

Account acc = (Account) iter.next();
acc.display();

}
} // method: displayAllAccounts

public void displayAnAccount(String aNumber) {
ConsoleIO.out.println();
ConsoleIO.out.println(“Single account details for: ” + theName + “\n”);
//
// Find the account with the given number and display it
Iterator iter = theAccounts.iterator();
while(iter.hasNext()) {

Account acc = (Account)iter.next();
String number = acc.getNumber();
if(aNumber.equals(number)) {

acc.display();
break;

}
}

} // method: displayAnAccount

public void removeAnAccount(String aNumber) {
// Find the account with the given number and remove it from the bank
Iterator iter = theAccounts.iterator();
while(iter.hasNext()) {

Account acc = (Account)iter.next();
String number = acc.getNumber();
if(aNumber.equals(number)) {

iter.remove();

Appendix E: The Java Collections Framework 359

break;
}

}
} // method: removeAnAccount

public int getTotalAssets() {
// Form a running total of the balances for each account.
int totalAssets = 0;
//
Iterator iter = theAccounts.iterator();
while(iter.hasNext()) {

Account acc = (Account)iter.next();
totalAssets += acc.getBalance();

}
return totalAssets;

} // method: getTotalAssets

// ------ Attributes ----------
private String theName;

// ----- Relations ----------
private java.util.Collection theAccounts; // of Account

} // class: Bank

import textio.*;

public class Account implements Comparable {
// ----- Operations ----------
public Account(String aNumber, int aBalance) {

theNumber = aNumber;
theBalance = aBalance;

} // method: Account

public final int getBalance() {
return theBalance;

} // method: getBalance

public final void display() {
ConsoleIO.out.print(“\t” + “Account”);
ConsoleIO.out.print(“\t” + “Number: ” + theNumber);
ConsoleIO.out.println(“\t” + “Balance: ” + theBalance + “\n”);

} // method: display

public String getNumber() {
return theNumber;

} // method: getNumber

public boolean equals(Object obj) {
boolean result = this.compareTo(obj) == 0;
return result;

} // method: equals

360 Object-Oriented Design with UML and Java

public int compareTo(Object obj) {
Account acc = (Account) obj;
String accountNumber = acc.getNumber();
return theNumber.compareTo(accountNumber);

} // method: compareTo

public int hashCode() {
return theNumber.hashCode();

} // method: hashCode

// ----- Attributes -----------
private final String theNumber;
private int theBalance;

} // class: Account

The output produced is:

All account details for: Object Bank

Account Number: ABC123 Balance: 1200

Account Number: DEF456 Balance: 1000

Account Number: GHI789 Balance: 2000

Single account details for: Object Bank

Account Number: ABC123 Balance: 1200

Total assets: 4200

All account details for: Object Bank

Account Number: ABC123 Balance: 1200

Account Number: GHI789 Balance:2000

Total assets: 3200

Appendix E: The Java Collections Framework 361

This Page Intentionally Left Blank

Programming with Java

This appendix visits some of the prerequisite Java programming knowledge required by
this textbook. We do not intend this and the following appendix to be a detailed study of
Java. Rather, we remind the reader of those language constructs that will figure prom-
inently in our development of the study of object-oriented design. For a comprehensive
introduction to the Java programming language see the specialist texts (Eckel 2002,
Deitel 2003).

Here, we begin with an overview of some fundamental language constructs including
classes, methods, constructors, parameters, objects, object initialization, and message
passing. We review how, through object composition, one object is constructed from
other objects. Where many composite objects appear, then we utilize the Java collection
classes. Finally, we explore how an inner class is used as a helper class supporting and
separating functionality from the enclosing class.

F.1 Objects and message passing in Java

Consider we have a class to represent geometric points in a two-dimensional cartesian
coordinate space. Let this class be Point. In Java we introduce such an object with the
statement:

Point p;

Here, p is the object’s identifier and Point is the class to which it belongs. In Java, the
identifier p is used to refer to the object and is known as the object reference or object
handle. In this statement we have only introduced the object’s reference and not the
object itself. To create the object and associate a handle with it we use:

Point p = new Point(0, 0);

The keyword new specifies that a new Point object is created having the handle p. The
two zero values represent the X and Y coordinates we wish for this newly created Point
object. A second example is:

Point q = new Point(2, 4);

If the definition for the Point class includes an operation getX to interrogate such an
object for its X coordinate, then we send such a message to the object referenced by p with:

int x = p.getX();

Appendix F

363

A message in Java specifies the identifier (reference) of the recipient object (p) and the
operation (getX()), separated by the period (.) symbol. Since the operation requires no
parameters (see later) then the parentheses are left empty. The value delivered by this
message is stored in the primitive int x. Note that the primitive language types in Java
represent themselves rather than object handles. We might now display this value with:

ConsoleIO.out.println(“X coordinate is: ” + x);

See appendix C for details of the textio package.

F.2 Classes in Java

The Java interpreter starts program execution from the method main that must be pre-
sent in the class nominated for execution. Program F.1 simply prints two lines of text
using two statements in method main, defined in the class Main. Here this class simply
acts as a placeholder for the method main. It could equally have been embedded in
some other class. For clarity, we choose to publish method main in its own class.

Program F.1

import textio.*;

public class Main {

public static void main(String[] args) {
ConsoleIO.out.println(“Hello.”);
ConsoleIO.out.println(“My name is Ken.”);

}
}

The previous section introduced a Point class to represent a point in a two-
dimensional space. Program F.2 introduces such a class. The class has three methods and
two attributes. The private attributes comprise a pair of int values representing the X
and Y coordinates. The accessor methods getX and getY provide operations to interro-
gate a Point object for its constituents. The first method listed is referred to as the con-
structor method (distinguished by having the class name), used to initialize a Point
object. When, for example, we introduce the Point object p by:

Point p = new Point(3, 4);

the class constructor is called and uses its two actual arguments to initialize its internal
attributes. We usually refer to this as a parameterized constructor since two parameter
values are given to support the initialization.

Program F.2

import textio.*;

public class Main {

public static void main(String[] args) {
Point p = new Point(3, 4);

364 Object-Oriented Design with UML and Java

ConsoleIO.out.println(“The X coordinate is: ” + p.getX());
ConsoleIO.out.println(“The Y coordinate is: ” + p.getY());

}
}

and:

public class Point {

public Point(int x, int y) {
theXCoordinate = x;
theYCoordinate = y;

}

public int getX() {
return theXCoordinate;

}

public int getY() {
return theYCoordinate;

}

// ----- Attributes -----------------
private int theXCoordinate;
private int theYCoordinate;

}

The expression p.getX() in the program sends the message getX to the Point object
referenced by p. When defining a method the code can reference local variables, the
method parameters (if any), and the attribute values of the object. In method getX a
copy of the private attribute theXCoordinate is returned to the sender object. In the
parameterized constructor method the formal parameter x is used to initialize the value
of theXCoordinate attribute.

Implicitly, any method body can also use the keyword this. Keyword this is the han-
dle or reference to the object for which the method has been called. For example, this

would be the handle for the Point object p when executing the method getX in the mes-
sage call p.getX(). Class Point might also be defined as in program F.3. Observe how
the constructor is defined. The statement:

this.x = x;

means assign to the attribute x of the recipient object the value of the parameter x,
removing the ambiguity between the attribute and the formal parameter.

Program F.3

public class Point {

public Point(int x, int y) {
this.x = x;
this.y = y;

}

Appendix F: Programming with Java 365

public int getX() {
return this.x;

}

public int getY() {
return this.y;

}

// ----- Attributes -----------------

private int x;
private int y;

}

Class methods, including constructors, may be overloaded to offer various method
definitions having the same name. Overloaded methods must be distinguished by
the number and/or type of their parameters. This means that two or more methods
may bear the same name provided the number and or type of the formal parameters
differs. Program F.4 has overloaded the constructor, introducing a second with no argu-
ments, called the default constructor. The method sets each attribute to have a default
value.

Program F.4

import textio.*;

public class Main {

public static void main(String[] args) {

Point p = new Point(3, 4);

ConsoleIO.out.println(“The X coordinate of P is: ” + p.getX());
ConsoleIO.out.println(“The Y coordinate of P is: ” + p.getY());

Point q = new Point();

ConsoleIO.out.println(“The X coordinate of Q is: ” + q.getX());
ConsoleIO.out.println(“The Y coordinate of Q is: ” + q.getY());

}
}

and:

public class Point {

public Point(int x, int y) {
theXCoordinate = x;
theYCoordinate = y;

}

public Point() {
theXCoordinate = 0;
theYCoordinate = 0;

}

366 Object-Oriented Design with UML and Java

public int getX() {
return theXCoordinate;

}

public int getY() {
return theYCoordinate;

}

// ----- Attributes -----------------
private int theXCoordinate;
private int theYCoordinate;

}

It is useful to be clear about the order of initialization including a constructor call. We
create an instance of a class with a statement of the form:

Point p = new Point(3, 4);

which calls the parameterized constructor with actual parameter values 3 and 4.
Before the code for the constructor executes, the attributes of the object are first initial-
ized. If no explicit initial values are specified, as in program F.4, then default “zero” val-
ues are used. Here, both theXCoordinate and theYCoordinate attributes of the new
Point object p are first set to int zero. Then, the constructor method executes and ini-
tializes (strictly, resets) the attributes to the values of the constructor parameters.

This means that the default constructor need not have any statements to perform if
the properties have been explicitly initialized as in the following code fragment. And, of
course, where the default initializer for all attributes is zero, then we do not require the
explicit initialization as shown. For the benefit of others that maintain our code there is
an argument that we should always be explicit and unambiguous.

Further, observe that explicit or implicit attribute initialization occurs in the order
of the declarations in the class. Thus an explicit initialization of the attribute
theYCoordinate might involve the value of theXCoordinate.

public class Point {

public Point(int x, int y) {
theXCoordinate = x;
theYCoordinate = y;

}

public Point() {
}

// ...

// ----- Attributes --------------------------
private int theXCoordinate = 0;
private int theYCoordinate = 0;

}

The keyword this can also be used to define one constructor in terms of another. The
default constructor in program F.5 has the single statement this(0, 0); which invokes

Appendix F: Programming with Java 367

and:

public class Point {

public Point(int x, int y) {
theXCoordinate = x;
theYCoordinate = y;

}

public Point() {
this(0, 0);

}

public int getX() {
return theXCoordinate;

}

public int getY() {
return theYCoordinate;

}

public static final Point ZERO = new Point();

// ----- Attributes -----------------
private int theXCoordinate;
private int theYCoordinate;

}

When we introduce static class members we must reconsider the order of
initialization of objects. In a conventionally compiled language such as C++, when such
an application starts execution all the program code is loaded into memory at the start-
up and all static objects are created and initialized. With an interpreted language such
as Java, a class is only loaded when we create an object of that class. When the class is
loaded, any static objects defined by that class are first initialized.

The execution of program F.6 would begin by first loading the class Main. In method
main a new Point object with handle p is created. The class Point is now loaded and before
the constructor for the object p is invoked the static member ZERO is initialized. We have
to be careful to fully understand this order of initialization that occurs in a Java program.

Had the class included two static declarations, then they are initialized in the order
in which they occur in the class. Hence the second static object may have used the
value of the first static object in its initialization.

Finally, had the static object ZERO been initialized to an object of some class other
than Point, then that additional class would be loaded and any static objects defined
there created and initialized. The constructor for this ZERO object is then executed
before, finally, executing the constructor for the Point object reference by p that started
this snowball effect.

F.3 Object composition

Our Point class consisted of two primitive attributes. Having defined such a class
we can then use it as the type for attributes of another class giving rise to the notion

Appendix F: Programming with Java 369

of object composition: one object composed of other objects. For example, the class
LineSegment might be introduced to represent a line in a two-dimensional coordinate
space. One Point attribute represents the start of the line, the other Point the end of the
segment. Figure F.1 shows the arrangement. Note how the coordinate space has the X
coordinate increasing to the right and the Y coordinate increasing downward. This is in
keeping with the coordinate system used by the Swing library (see chapter 7).

370 Object-Oriented Design with UML and Java

X

Y

theFinish

theStart

Figure F.1 A line segment

Class LineSegment is presented below. The class is realized with two Point attributes
called theStart and theFinish. Two overloaded constructors are provided to initialize
these values. The first has two Point parameters while the second uses four int values (two
pairs of X, Y coordinates). The accessor methods getStart and getFinish give access to
the attributes of a LineSegment object, while the enquiry methods isHorizontal and
isVertical determine if a segment has these particular geometric qualities.

public class LineSegment {

public LineSegment(Point start, Point finish) {
theStart = start;
theFinish = finish;

}

public LineSegment(int x1, int y1, int x2, int y2) {
this(new Point(x1, y1), new Point(x2, y2));

}

public Point getStart() {
return theStart;

}

public Point getFinish() {
return theFinish;

}

public boolean isHorizontal() {
return (theStart.getY() == theFinish.getY());

}

public boolean isVertical() {
return (theStart.getX() == theFinish.getX());

}

public double getLength() {
int xDiff = theStart.getX() - theFinish.getX();
int xSquared = xDiff * xDiff;
int yDiff = theStart.getY() - theFinish.getY();
int ySquared = yDiff * yDiff;

return Math.sqrt((double)(xSquared + ySquared));
}

// ----- Attributes -----------------
private Point theStart;
private Point theFinish;

}

Note the expression:

Math.sqrt((double)(xSquared + ySquared))

in the method getLength. Here we are executing the method sqrt (square root) from the
Math class. This is a static method and hence is qualified with the class name.

Program F.7 shows this new class at work. Two segments are created. For the first we
interrogate it for its start point, and for the second we find if it is vertical. We also obtain
the length of the first line.

Program F.7

import textio.*;

public class Main {

public static void main(String[] args) {
Point p = new Point(3, 4);
Point q = new Point(4, 5);

LineSegment line1 = new LineSegment(p, q);
LineSegment line2 = new LineSegment(q.getX(), q.getY(), q.getX(), 6);

ConsoleIO.out.println(“The start of line1 is: (” + line1.getStart().getX() +
“,” + line1.getStart().getY() + “)”);

if(line2.isVertical())
ConsoleIO.out.println(“Line 2 is vertical”);

Appendix F: Programming with Java 371

else

ConsoleIO.out.println(“Line 2 is not vertical”);

ConsoleIO.out.println(“Line 1 length: ” + line1.getLength());
}

}

Continuing with this theme of object composition, let us introduce a class Line that
describes a line comprising a series of connected line segments. Such a class will
require a storage structure to collect together all the segments that form the line. The
Java Foundation Classes (JFC) has a range of collection classes for this purpose (see
appendix E). The simplest is the ArrayList that imitates a conventional array. However,
this container is more sophisticated than the array in that it is an object that will dynam-
ically grow to meet our requirements. If we include a new element into an ArrayList
that has no free capacity, then it automatically resizes itself to make additional space for
the incoming item. Here is this Line class:

import java.util.*;

public class Line {

public Line(LineSegment first) {
if(first != null)

theLineSegments.add(first);
}

public Line(LineSegment first, LineSegment second) {
if(first != null)

theLineSegments.add(first);
if(second != null)

theLineSegments.add(second);
}

public void addSegment(LineSegment segment) {
if(segment != null)

theLineSegments.add(segment);
}

public double getLength() {
double totalLength = 0;
int cardinality = theLineSegments.size();
for(int k = 0; k < cardinality; k++) {

LineSegment segment = (LineSegment)theLineSegments.get(k);
totalLength += segment.getLength();

}
return totalLength;

}

// ----- Attributes -----------------
private ArrayList theLineSegments = new ArrayList(10);

}

372 Object-Oriented Design with UML and Java

Class ArrayList is defined in the utilities package java.util, hence the import statement
at the top of the file. The Java classes are arranged into packages. A package is a collection
of classes or sub-packages. The import statement requests that all the classes from the
(sub-)package util of the java package be accessible to this program code file. The attrib-
ute theLineSegments is the container holding references to the segments comprising the
line. This ArrayList object is initialized with start-up size of 10. The two class constructors
for Line initialize the container with one or two segments. The method addSegment
incorporates a further segment into the container using the method add of class ArrayList.

Method getLength computes the sum of the lengths of the individual segments. It does
this by iterating across all the segments in the collection, getting their length and forming
a running total. The number of elements in the container is found from the method size in
class ArrayList, and a particular element is selected with the get message.

Note the statement:

LineSegment segment = (LineSegment)theLineSegments.get(k);

The ArrayList method get accesses the item in the container at some index position. The
ArrayList class is a generic container capable of holding any type of object. Thus the
method get simply returns a reference or handle to the object at the given index. We
must coerce or cast this reference to the required type as shown. Since we know that the
only items in the container are LineSegment objects then we use the cast prefix
(LineSegment) to coerce the handle to the required reference type.

Program F.8 shows this new class in action. An empty Line object is first established
then populated with two line segments. The length of the line is then determined.

Program F.8

import textio.*;

public class Main {

public static void main(String[] args) {
Line polyLine = new Line(null);

Point p = new Point(3, 4);
Point q = new Point(4, 5);

LineSegment l1 = new LineSegment(p, q);
LineSegment l2 = new LineSegment(q.getX(), q.getY(), q.getX(), 6);

polyLine.addSegment(l1);
polyLine.addSegment(l2);

ConsoleIO.out.println(“The length of line is: ” + polyLine.getLength());
}

}

F.4 Inner classes

The Java language supports various styles of inner classes. This feature permits one
class to be defined as a member of another class in a manner similar to that for class

Appendix F: Programming with Java 373

the parameterized constructor method with a pair of zero int arguments. In a construc-
tor method this construction is recognized as a call to another constructor. The actual
constructor called is determined by matching the number and type of actual parameters
to the number and type of the formal parameters.

Program F.5

public class Point {

public Point(int x, int y) {
theXCoordinate = x;
theYCoordinate = y;

}

public Point() {
this(0, 0);

}

// ...

// ----- Attributes ---------------------
private int theXCoordinate;
private int theYCoordinate;

}

Every object of a class has its own copies of its attributes. In program F.4, the two
Point objects referenced by p and q both have the pair of attributes defined for the class.
A static class member represents a single object shared by all instances of the class
and by the application. In program F.6 class Point introduces the static member ZERO
which happens to be initialized as a Point object having the values (0, 0). Further, the
member is qualified as final, meaning that its value cannot be changed. We usually
describe these as constants.

There is only one such object in an application, irrespective of how many Point
objects (the class in which ZERO is defined) are created. Note then how the ZERO
object is referenced in main. Since ZERO is defined as a static member in class Point
we must qualify its usage with the class name as in Point.ZERO. To that Point object
we send it the message getX with Point.ZERO.getX().

Program F.6

import textio.*;

public class Main {

public static void main(String[] args) {
Point p = new Point(3, 4);

ConsoleIO.out.println(“The X coordinate of P is: ” + p.getX());
ConsoleIO.out.println(“The Y coordinate of P is: ” + p.getY());

ConsoleIO.out.println(“The X coordinate of ZERO is: ” + Point.ZERO.getX());
ConsoleIO.out.println(“The Y coordinate of ZERO is: ” + Point.ZERO.getY());

}
}

368 Object-Oriented Design with UML and Java

attributes and class methods. A variety of inner classes are supported by Java. Here,
however, we are primarily interested in inner member classes that operate as helper
classes to the enclosing class. A characteristic of these inner classes is that code within
an inner member class can refer to any of the attributes and methods of the enclosing
class, including those with private visibility.

Consider our Line class from the previous section. For some application we may
have a need to cycle across the individual line segments and perform some action upon
them. Of course, the class Line does not make visible its implementation, otherwise we
would break the rules of encapsulation and information hiding. Hence we have no
direct access to the line segments contained by the Line object.

What we require is another abstraction called an iterator abstraction or simply an
iterator. An iterator permits us to visit the members of a collection without exposing the
underlying storage mechanism of the collection object. We can achieve this using the
mechanisms we have already introduced. A separate iterator class would usually have
the collection it is to iterate across passed in the constructor and may also require vari-
ous accessor methods introduced into the container object to support iteration.

An inner member class object, however, is always associated with an instance of the
enclosing class. Inner class methods can directly reference the attributes of the instance
of the enclosing class. These two features mean that we can forego some of the require-
ments noted at the end of the last paragraph, resulting in a more elegant solution.

Into class Line we introduce the inner class LineIterator with methods
isExhausted, getSelection and advance. The class has a single property theIndex,
used as the subscript into the ArrayList object theLineSegments of the enclosing
class Line. Method isExhausted determines when all the segments have been visited.
Method getSelection directly accesses the collection of segments and retrieves the ref-
erence to the LineSegment object at the index position. Method advance simply
moves the index to reference the next segment.

import java.util.ArrayList;

public class Line {

public Line(LineSegment first) {
if(first != null)

theLineSegments.add(first);
}

public Line(LineSegment first, LineSegment second) {
if(first != null)

theLineSegments.add(first);
if(second != null)

theLineSegments.add(second);
}

public void addSegment(LineSegment segment) {
if(segment != null)

theLineSegments.add(segment);
}

public double getLength() {
double totalLength = 0;

374 Object-Oriented Design with UML and Java

int cardinality = theLineSegments.size();
for(int k = 0; k < cardinality; k++) {

LineSegment segment = (LineSegment)theLineSegments.get(k);
totalLength += segment.getLength();

}
return totalLength;

}

// ----- Attributes -----------------
private ArrayList theLineSegments = new ArrayList(10);

// ----- inner class ----------------------

public class LineIterator {

public boolean isExhausted() {
return theIndex >= theLineSegments.size();

}
public LineSegment getSelection() {

return (LineSegment)theLineSegments.get(theIndex);
}

public void advance() {
theIndex++;

}

// ----- Attributes ----------------------
private int theIndex = 0;

}

}

Note how the inner class methods directly reference the private attributes of the enclos-
ing class. For example, method isExhausted uses the code theLineSegments.size()
to find how many segments there are. For clarification we may also use Line.this.
theLineSegments.size() with the class qualifier Line and implicit attribute this prepended
to signify the member theLineSegments of the instance of the enclosing class. This special
syntax can be necessary to remove ambiguity where the inner class and the enclosing class
have features with the same name. It is also useful documentation where the programmer
wishes to highlight that the inner class methods are accessing outer class features.

Program F.9

import textio.*;

public class Main {

public static void main(String[] args) {
Line polyLine = new Line(null);

Point p = new Point(3, 4);
Point q = new Point(4, 5);

LineSegment l1 = new LineSegment(p, q);
LineSegment l2 = new LineSegment(q.getX(), q.getY(), q.getX(), 6);

Appendix F: Programming with Java 375

polyLine.addSegment(l1);
polyLine.addSegment(l2);

int verticalSegments = 0;
Line.LineIterator iterator = polyLine.new LineIterator();
while(iterator.isExhausted() == false) {

LineSegment segment = iterator.getSelection();
if(segment.isVertical())

verticalSegments++;
iterator.advance();

}
ConsoleIO.out.println(“Number of vertical segments is: ” + verticalSegments);

}
}

Program F.9 demonstrates the usage. Here we iterate across the segments of a line
and determine how many of these are vertical. The while loop utilizes the iterator meth-
ods to achieve the effect. Of particular interest is the statement:

Line.LineIterator iterator = polyLine.new LineIterator();

The LineIterator class must be given its fully qualified name (Line.LineIterator) since
it is an inner class of a normal top-level class. The new LineIterator object is always
associated with an instance of the enclosing class, here the instance polyLine, and the
object creation is achieved with the code fragment polyLine.new LineIterator().

The iterator is an example of a design pattern, see chapter 8. The principal concept
in this pattern is to assign responsibility for access and traversal of an aggregate object
(such as class Line) to a separate iterator object (such as LineIterator). The iterator has
a traversal interface for accessing the elements of the aggregate (namely, isExhausted,
getSelection and advance).

A separator iterator class confers a number of advantages. A separate iterator class
obviates the need for the traversal interface appearing in the aggregate class. Since an
iterator object manages its own traversal state, then we can have more than one iterator
object applied to the same aggregate. By subclassing (see next appendix) of the iterator
class we can introduce variations on the traversal. For example, a specialized iterator may
only select those elements that meet a particular requirement.

The relation between class Line and class LineIterator is shown by figure F.2.

376 Object-Oriented Design with UML and Java

+isExhausted

+getSelection

+advance

LinelteratorLine

Figure F.2 LineIterator class diagram

Note that the iterator and aggregate are coupled. To instantiate a LineIterator object we
must provide a Line object to traverse. This is the essence of the code:

Line.LineIterator iterator = polyLine.new LineIterator();

The new LineIterator object (iterator) is created in association with the Line object
(polyLine).

In this book’s chapters we shall see that the Java collection classes are accompanied
with iterator classes achieving the same effect we have illustrated (see appendix E). We
shall use these in further code examples. Further, inner classes will play a significant
role in our graphical applications (see chapter 7), acting as event handlers that process
user requests.

F.5 Exercises

1. How are the attributes of a class introduced in Java? Why are they normally given
private visibility? Under what circumstances can we remove this restriction?

2. What is the syntax for message sending in Java? Illustrate with messages with and
without parameters and messages with and without return values.

3. Show how an object instance is created in Java. Which method in the object’s class
is involved in the creation process? Describe its purpose.

4. What do you understand by the term “overloading”? Give examples of where it
might be used.

5. In this appendix we used the ArrayList collection class. Visit the Sun website:
http://developer.java.sun.com/developer/onlineTraining/collections/Collection.
html for a discussion of the other Java collection classes.

6. In this appendix we used inner member classes. Visit the Java website (http://
java.sun.com) and find what other types of inner classes are supported by Java.
Identify the use for each type of inner class.

7. Develop the class Rational to represent a fractional value expressed as the quotient
of two positive integers. Examples of rational numbers are 1/2, 3/4 and 8/5.
A rational number comprises a pair of integers for the numerator and non-zero
divisor. For this class implement suitable constructors and accessor operations
getNumerator and getDenominator.

Generally, a rational number is expressed in its simplest form. The rational
number 8/6 reduces to 4/3. The reduced form is achieved by determining the highest
common factor (hcf):

private static int hcf(int num, int den) {
if(den > num) {

int temp = num;
num = den;
den = temp;

}
while(num % den != 0) {

int temp = den;
den = num % den;
num = temp;

}
return den;

}

Appendix F: Programming with Java 377

In this class introduce the operations to add and multiply rational numbers:

public void add(Rational rat) { ... }
public void mult(Rational rat) { ... }

The arithmetic of rationals is:

a / b + c / d = (a * d + b * c) / (b * d)
a / b * c / d = (a * c) / (b * d)

8. Develop the class Rectangle using the class Point. A rectangle is represented by a
pair of Points for the upper left and lower right vertices. Include methods to deter-
mine the length of the perimeter and the area occupied by the figure.
Augment this class with the methods contains and inflate:

public boolean contains(Point p) { ... }
public void inflate(int x, int y) { ... }

Method contains returns boolean true if the Point parameter is contained within
the bounds of the rectangle (including the border).

Method inflate expands a rectangle by the given amounts. For a positive value for
x, the rectangle should grow by that amount at both its left and right sides. For a
positive value for y, the rectangle will grow by that amount at both its top and bot-
tom. Negative values for either of these will shrink the rectangle.

9. Use the Point class to develop a new class Triangle declared as:

public class Triangle {

public Triangle(Point p, Point q, Point r) { ... }
public double perimeter() { ... }
public double area() { ... }
public boolean isRightTriangle() { ... }
public boolean isIsoscelesTriangle() { ... }

private Point p1;
private Point p2;
private Point p3;

}

A right triangle is one with a right-angled vertex. An isosceles triangle is one with
two sides of equal length. If the length of the sides of a triangle are a, b and c, then
the perimeter is:

a + b + c

and the area is given by:

sqrt(s * (s - a) * (s - b) * (s - c))

and where the semi-perimeter is given by:

s = (a + b + c) / 2

10. Review the system documentation for the class ArrayList. What operation is avail-
able to change the size of an ArrayList object dynamically? If we add one item
more than the present capacity of an ArrayList what happens?

378 Object-Oriented Design with UML and Java

Object-Oriented
Programming with Java

In this appendix we focus on the use and deployment of specialization. We illustrate Java’s
support for class specialization, substitution, method redefinition and the polymorphic
effect. Further, we review abstract classes with deferred methods and interfaces.

Specialization permits a subclass to inherit features from a superclass, leveraging a
measure of code reuse. Since a subclass object has all the features of a superclass
object, then the former can substitute for where the latter is required. By carefully
exploiting substitution we can make our software more extensible and more adaptable
to change. Redefining methods in subclasses exploits the effect of dynamic binding,
where a particular message adapts to the recipient’s behaviour. These effects are a con-
sequence of working to the interface described by a superclass.

One of the more distinctive features of object-oriented programming languages is
their support for specialization. A specialized class is one that is developed out of an
existing class by inheriting all the features of that class. Further, the specialized class
can introduce additional attributes, additional methods, and may choose to redefine any
of the inherited methods. Specialization can lead to significant amounts of code reuse
where the specialized class only implements its differences with the existing class.

The specialized class is called the subclass. The class from which a specialized class
is developed is referred to as the superclass. In Java the subclass is said to be an exten-
sion of the superclass. This is intended to connote the idea that the subclass has all the
features of the superclass and possibly more. The subclass/superclass arrangement is
usually presented in a UML class diagram as shown by figure G.1.

Specialization also gives rise to the notion of isA. An instance of a subclass is an
instance of a superclass. This is correct since a subclass inherits all the features of its

Appendix G

379

Superclass

Subclass

Figure G.1 A class diagram with specialization

superclass and hence an instance of the subclass can receive all the messages defined in
the superclass. Further, this implies that where in our code an instance of a superclass
is expected an instance of a subclass may be used. This is known as the principle of
substitutability.

Substitution makes our software extensible since we may substitute an instance of a
subclass that may be defined later in the lifetime of the software. Careful architecting of
our systems is required to gain this leverage, but it can result in the introduction
of instances of a new class without recourse to wholesale changes to the existing fabric
of the software.

Substitutability combines with the polymorphic effect to have a profound effect on
our programming style. Through polymorphism we leverage improved program code
organization. Conventional procedural code is frequently concerned with obtaining an
appropriate effect according to the type of some object. The polymorphic effect removes
this consideration from our code. Where once we might have used a complex if or
switch statement, now we have a single simple program statement. Frequently, these
conditional statements would populate large parts of our code and make program main-
tenance a major concern.

Through dynamic binding one object sends a message to another, indifferent to its
actual type. Substitution means the recipient object may be an instance of any appro-
priate subclass. The recipient object knows to which type or class it belongs and exe-
cutes the correct method. If the recipient is an instance of a subclass in which the
method has been redefined, then it is this redefined method that executes. Redefined
methods of various subclasses will have different effects but the sending object is
decoupled from this concern and for the need to select the appropriate behaviour.

G.1 Specialization

Consider a class that represents an Employee of an organization. From the previous
chapter this class might appear as:

public class Employee {

public Employee(String aName, String aJobTitle, int aSalary) {
theName = aName;
theJobTitle = aJobTitle;
theSalary = aSalary;

}

public String getName() {
return theName;

}

public void printDetails() {
ConsoleIO.out.print(“Employee: ” +theName);
ConsoleIO.out.print(“, ” +theJobTitle);
ConsoleIO.out.println(“,” +theSalary);

}

380 Object-Oriented Design with UML and Java

// ----- Attributes -----------------
protected String theName;
protected String theJobTitle;
protected int theSalary;

}

The attributes of the class have protected visibility. Protected features behave as if they
were private to other classes but public to subclasses. This means that any subclass of
Employee will be able to refer to these values directly.

Consider now a manager. A manager is also an employee of an organization but with
added responsibilities. A manager may head up one or more projects, or have responsi-
bility for some budgetary amount. Let us introduce class Manager as a specialization
of class Employee. A class diagram for this is given in figure G.2.

Appendix G: Object-Oriented Programming with Java 381

Employee

Manager

Figure G.2 Employee/Manager class diagram

The corresponding code for class Manager is:

public class Manager extends Employee {

public Manager(String aName, String aJobTitle, int aSalary, int aBudget) {
super(aName, aJobTitle, aSalary);
theBudget = aBudget;

}

public void printDetails() {
ConsoleIO.out.print(“Manager: ” +theName);
ConsoleIO.out.print(“,” +theJobTitle);
ConsoleIO.out.print(“,” +theSalary);
ConsoleIO.out.println(“,” +theBudget);

}

// ----- Attributes -----------------
private int theBudget;

}

The keyword extends notifies that class Manager is an extension or a specialization of
the class Employee. The Manager class inherits all the features of the class Employee.
Since an instance of the class Employee can be sent the message getName, then so too
can an instance of the class Manager.

Observe how the method printDetails is reintroduced in the subclass Manager. This
is an example of method redefinition. The subclass is a more specialized version of the
superclass with a budgetary responsibility, and requires a different presentation from
this method. Note also how this method directly references the protected attributes
theName, theJobTitle and theSalary from the superclass (but see also our discus-
sions in chapter 5).

We have said that a subclass inherits all the features of the superclass. Strictly, a subclass
inherits all but the superclass constructor. This is not unreasonable since a subclass will
frequently have additional attributes that will require appropriate treatment under, for
example, initialization. The subclass constructor will be responsible for initializing both
its own and its inherited attributes. When creating an instance of the class Employee
that class’ constructor is employed to perform the correct initialization. In a similar
manner the subclass Manager achieves proper initialization of its inherited attributes
through the superclass constructor. The code is:

public Manager(String aName, String aJobTitle, int aSalary, int aBudget) {
super(aName, aJobTitle, aSalary);
theBudget = aBudget;

}

The first statement is responsible for invoking the superclass constructor. The remain-
ing statement initializes the additional subclass attribute in the usual way.

Program G.1 illustrates the two classes in use. An instance of the class Employee
and an instance of the class Manager are first created. Both are then sent the message
printDetails, producing the output:

Employee: Ken Barclay, Lecturer, 1000
Manager: John Savage, Senior Lecturer, 1200, 2000

Since class Manager has redefined this method then the new effect is exhibited by the
second line of the output.

Program G.1

public class Main {

public static void main(String[] args) {
Employee e1 = new Employee(“Ken Barclay”, “Lecturer”, 1000);
Manager m2 = new Manager(“John Savage”, “Senior Lecturer”, 1200, 2000);

e1.printDetails();
m2.printDetails();

}
}

This next example illustrates the principle of substitution and the polymorphic effect.
The class diagram is shown in figure G.3. An organization has any number of people
working for it. They are classified as plain employees or managers as described in the
preceding example.

382 Object-Oriented Design with UML and Java

Appendix G: Object-Oriented Programming with Java 383

Employee

Manager

Company
-theEmployees

0..*

Figure G.3 Company/Employee class diagram

The one-to-many relationship between a Company object and its Employee objects
is realized by an ArrayList object as part of the Company class. The method hire in the
Company class is supplied with a handle to some Employee object that is added to the
ArrayList container. In program G.2 the actual parameter objects given to method hire
are instances of both the Employee class and the Manager class, illustrating the use of
substitution.

import java.util.*;
import textio.*;

public class Company {

public Company(String aName) {
theName = aName;

}

public void hire(Employee emp) {
theEmployees.add(emp);

}

public void printEmployeeDetails() {
ConsoleIO.out.println(“Company: ” +theName);

Iterator iter = theEmployees.iterator();
while(iter.hasNext() == true) {

Employee emp = (Employee)iter.next();
emp.printDetails();

}
}

// ----- Attributes -----------------
private String theName;
private ArrayList theEmployees = new ArrayList(10);

}

The method printEmployeeDetails from class Company cycles through the members
of the collection and sends each the message printDetails. Here, we utilize the Iterator
class from the Java Collections Framework classes. The various containers provide an
Iterator object through the message iterator. The principal methods from this class are
hasNext (which determines if there are more elements in the collection yet to visit) and
next (which returns a handle to the next available item from the collection).

The collection is, of course, a mix of Employee and Manager objects. When we
select an item from the collection we cast it to some kind of Employee object. The
polymorphic effect of the operation printDetails is determined dynamically at run-time
according to the type of the recipient object. This is exhibited by the program’s output:

Company: Napier
Employee: Ken Barclay, Lecturer, 1000
Manager: John Savage, Senior Lecturer, 1200, 2000
Manager: Jessie Kennedy, Reader, 1200, 3000

According to the actual object’s type the correct printDetails method is executed.

Program G.2

public class Main {

public static void main(String[] args) {
Employee e1 = new Employee(“Ken Barclay”, “Lecturer”, 1000);
Manager m2 = new Manager(“John Savage”, “Senior Lecturer”, 1200, 2000);
Manager m3 = new Manager(“Jessie Kennedy”, “Reader”, 1200, 3000);

Company co = new Company(“Napier”);

co.hire(e1);
co.hire(m2);
co.hire(m3);

co.printEmployeeDetails();
}

}

Substitution and polymorphism combine to make our designs extensible. The
Employee/Manager class hierarchy of figure G.3 may be both broadened and deep-
ened without incurring changes elsewhere. For example, we could introduce further
kinds of employees or more specialized managers. No change would be necessary to
the class Company. Through substitution, any of these specialized employees may be
hired by the company. The company can produce a listing of all its employees through
the polymorphism of the operation printDetails.

G.2 Abstract classes

An abstract class has one or more abstract (or deferred) methods. An abstract method
does not include a method body, only a signature. The abstract methods may be introduced
in the class itself or inherited from another abstract class. These abstract methods intro-
duce a protocol that must be respected by all subclasses. Thus, a concrete subclass of an
abstract superclass must present an implementation for all inherited abstract methods.

Abstract classes are illustrated with the example of figure G.4. A Company has any
number of employees working for it. The employees are either sales staff or sales managers.

384 Object-Oriented Design with UML and Java

All staff have a name, job title and salary. A SalesEmployee has a sales target set
against them. A SalesManager has a budget and is a manager for any number of the
sales employees.

Appendix G: Object-Oriented Programming with Java 385

-theEmployees

0..*

0..*

-theSalesTeam

Company

SalesManager SalesEmployee

«abstract»
Employee

Operations

+printDetails

Figure G.4 Abstract Employee class

Class Employee is abstract with a deferred method printDetails. Both concrete sub-
classes SalesEmployee and SalesManager must define this method. For class
SalesEmployee this method gives an employee summary listing their name, job title,
salary and sales target. For class SalesManager the printDetails method again lists
the manager’s details but additionally gives the names of the sales staff in her team.
Here is class Employee:

public abstract class Employee {
public Employee(String aName, String aJobTitle, int aSalary) {

theName = aName;
theJobTitle = aJobTitle;
theSalary = aSalary;

}

public String getName() {
return theName;

}

public abstract void printDetails(); // DEFERRED

// ----- Attributes -----------------
protected String theName;
protected String theJobTitle;
protected int theSalary;

}

Note that the class is declared as abstract. No instances of an abstract class can be
created. Observe also how the deferred operation printDetails is introduced. No method
body is given, simply the operation signature giving the name, return type and formal
parameters, if any. The operation is qualified as abstract.

Concrete subclass SalesManager and SalesEmployee must provide an imple-
mentation for printDetails. For class SalesManager we first print the details for the
manager, then we cycle through the sales team members printing their name. Note also
the method addSalesMember for adding a new SalesEmployee object to the team
overseen by the manager.

public class SalesManager extends Employee {

public SalesManager(String aName, String aJobTitle, int aSalary, int aBudget) {
super(aName, aJobTitle, aSalary);
theBudget = aBudget;

}

public void addSalesMember(SalesEmployee emp) {
theSalesTeam.add(emp);

}

public void printDetails() {
ConsoleIO.out.print(“SalesManager: ” + theName);
ConsoleIO.out.print(“, ” +theJobTitle);
ConsoleIO.out.print(“, ” +theSalary);
ConsoleIO.out.println(“, ” +theBudget);

Iterator iter = theSalesTeam.iterator();
while(iter.hasNext() == true) {

SalesEmployee emp = (SalesEmployee)iter.next();
ConsoleIO.out.println(“\tSales team member:” +emp.getName());

}
}

// ----- Attributes -----------------
private int theBudget;
private ArrayList theSalesTeam = new ArrayList(10);

}

Class Company is modified from the previous version. Two hire methods are available.
The first simply includes a new manager as part of the workforce. The second (over-
loaded) hire method includes the sales employee in the company workforce, but addition-
ally includes her into the sales team managed by a particular team leader. To implement
this we must find an existing employee that is the given manager. The code for this is:

if(emp instanceof SalesManager && emp == man) { ... }

where the first part of the conditional checks the run-time type of the employee.

public class Company {

public Company(String aName) {
theName = aName;

}

public void hire(SalesManager man) {
theEmployees.add(man);

}

386 Object-Oriented Design with UML and Java

public void hire(SalesEmployee sales, SalesManager man) {
Iterator iter = theEmployees.iterator();
while(iter.hasNext() == true) {

Employee emp = (Employee)iter.next();
if(emp instanceof SalesManager && emp == man) {

SalesManager manager = (SalesManager)emp;
manager.addSalesMember(sales);

}
}
theEmployees.add(sales);

}

public void printEmployeeDetails() {
ConsoleIO.out.println(“Company: ” +theName);

Iterator iter = theEmployees.iterator();
while(iter.hasNext() == true) {

Employee emp = (Employee)iter.next();
emp.printDetails();

}
}

// ----- Attributes -----------------
private String theName;
private ArrayList theEmployees = new ArrayList(10);

}

Finally, the application is shown in Program G.3. The program run produces the output
shown below. The manager Jessie Kennedy presents both her details as well as listing
the names of her sales team. The other employees simply list their details.

Company: Napier
Manager: Jessie Kennedy, Professor, 1200, Budget: 8000

Sales member: Ken Barclay
Sales member: John Savage

Sales employee: Ken Barclay, Lecturer, 1000, Sales target: 2000
Sales employee: John Savage, Lecturer, 1200, Sales target: 2000

Program G.3

public class Main {

public static void main(String[] args) {
SalesEmployee e1 = new SalesEmployee(“Ken Barclay”, “Lecturer”, 1000, 5000);
SalesEmployee e2 = new SalesEmployee(“John Savage”, “Senior Lecturer”, 1200, 2000);
SalesManager m3 = new SalesManager(“Jessie Kennedy”, “Professor”, 1200, 10000);

Company co = new Company(“Napier”);

co.hire(m3);

Appendix G: Object-Oriented Programming with Java 387

co.hire(e1, m3);
co.hire(e2, m3);

co.printEmployeeDetails();
}

}

The UML collaboration diagram of figure G.5 shows the configuration of objects and
the message flows between them. The application, represented by the actor, sends the
message printEmployeeDetails to the Company object with identity co. This
Company object then sends the message printDetails in turn to the three employee
objects. When the message printDetails is received by the manager object it executes the
redefined version for this method. The method printDetails from class SalesManager
prints the managers details then gets the names of the two employees that are members
of that manager’s team.

388 Object-Oriented Design with UML and Java

e1 : Sales Employee

e2 : Sales Employeeco : Company

m3 : SalesManager

2: printDetails

4: printDetails

3: printDetails

1: printEmployee

Details

2.2: getName

2.1: getName

Figure G.5 Collaboration diagram

G.3 Interfaces

An interface is a particular kind of abstract class in which all methods are deferred and
for which there are no (non static) attributes. In effect, an interface is a pure abstract
class. A Java interface is implicitly public as are all its methods. Further, these methods
are implicitly qualified as abstract. It is permissible in Java to make these qualifica-
tions explicit, rendering additional documentation for the reader.

A Java interface is permitted to contain class attributes but these must be static and
final. Java interfaces are sometimes used to collect a number of related constants. Other
classes can then refer to them using the class name qualifier or by subclassing to pro-
vide direct referencing.

Since an interface has no state we say that any specialized class implements an inter-
face. An abstract class or a concrete class can implement an interface. A subclass that is
itself another interface is said to extend the interface superclass.

Java supports multiple inheritance through interfaces. A class can be an extension of
at most one abstract class or concrete class and implement any number of interfaces.
The isA relation is still present, but now an instance of the subclass can be substituted
for any of the superclasses, including the interfaces.

Consider any two-dimensional closed figure such as a rectangle or a triangle for which
we wish to obtain the length of its perimeter or its area. The interface ClosedFigure
introduces the protocols for obtaining these values, which every concrete subclass must
implement. Further, we can develop code in terms of this interface without consideration
for the actual type of closed figure with which we are interacting. That way, our code is
made much more adaptable.

Appendix G: Object-Oriented Programming with Java 389

«interface»
ClosedFigure

Operations

+getArea

+getPerimeter

Rectangle Triangle

Figure G.6 Specialization hierarchy

Figure G.6 shows the class hierarchy we shall develop. The code for the interface
ClosedFigure is:

public interface ClosedFigure {

public abstract double getPerimeter();
public abstract double getArea();

}

The code for the two concrete subclasses must include implementations for these two
deferred methods. Below is the code for the Rectangle class using a variant of the
Point class (using doubles rather than ints). The Triangle class would be developed
similarly.

public class Rectangle implements ClosedFigure {

public Rectangle(Point upperLeft, double width, double height) {
theUpperLeft = upperLeft;
theWidth = width;
theHeight = height;

}

public Rectangle(double upperLeftX, double upperLeftY, double width,
double height) {

this(new Point(upperLeftX, upperLeftY), width, height);
}

public double getPerimeter() {
return 2 * (theWidth + theHeight);

}

public double getArea() {
return theWidth * theHeight;

}

// ----- Attributes -----------------
private Point theUpperLeft;
private double theWidth;
private double theHeight;

}

The sample application code is given in program G.4. Here, we create instances
of the Rectangle and Triangle classes and interrogate each for their perimeter and area
values.

Program G.4

public class Main {

public static void main(String[] args) {
Rectangle rect = new Rectangle(0.0, 4.0, 4.0, 4.0); // square 4 x 4
Triangle tri = new Triangle(0.0, 0.0, 3.0, 0.0, 3.0, 4.0); // 3-4-5 right triangle

ConsoleIO.out.println(“Rectangle: ” + rect.getPerimeter() + “, ” +rect.getArea());
ConsoleIO.out.println(“Triangle: ” + tri.getPerimeter() + “, ” +tri.getArea());

}
}

G.4 Exercises

1. Carefully distinguish between the terms interface, abstract class and concrete
class.

2. Carefully distinguish between the Java keywords extends and implements,
ensuring that you are clear where they are used.

3. Carefully distinguish between the terms superclass and subclass. How may a sub-
class differ from its superclass? How much commonality is there? Describe what
is meant by substitutability when discussing superclass and subclass.

4. What do you understand by the terms redefinition and the polymorphic effect?
Explain their value to OO development.

5. What feature does a subclass constructor method use to initialize inherited attributes?

390 Object-Oriented Design with UML and Java

6. How is a redefined method introduced into a Java subclass?
7. The Java keyword abstract has two uses. Give examples of each and explain their

usage.
8. Answer the following, giving explanations.

(a) Can an interface extend another interface?
(b) Can an interface extend more than one interface?
(c) Can an interface subclass an abstract class?
(d) Can an abstract class extend another abstract class?
(e) Can a concrete class extend an interface?
(f) Can a concrete class implement an interface?
(g) Can a concrete class implement two interfaces and extend an abstract class?
(h) Can a concrete class extend two abstract classes?

9. Develop a Person class with name and age properties. Now develop two special-
izations from class Person. Prepare the class Student as a subclass of Person
with a matriculation number attribute. Revise the Employee class from this chap-
ter with Person as its superclass.

10. Develop the class Employee with name and employee number attributes. Provide
suitable methods for this class. Introduce into the class the abstract operation
computeMonthlyPay that is redefined in the subclasses SalariedEmployee and
HourlyEmployee. A salaried employee has a salary, which is paid out monthly. An
hourly employee has a fixed pay rate and a number of hours worked per month.
Implement the method computeMonthlyPay for these two subclasses.

11. Develop a class Account having a balance and account number attributes. Introduce
the methods debit and credit that implement deposit and withdrawal transactions on
a bank account. Form two specializations for the classes DepositAccount and
CurrentAccount. A deposit account accrues interest and cannot be overdrawn while
a current account may be overdrawn up to some overdraft limit.

12. Develop the concrete class Circle as a subclass of ClosedFigure. Test its behav-
iour using program G.4.

13. Develop the class Quadrilateral to represent any four-sided figure, then
specialize this into the subclasses Rectangle and Square. Choose a suitable rep-
resentation for the Quadrilateral and implement the operations getPerimeter and
getArea. Redefine both these for the two subclasses.

14. Look up the Swing class Jframe in the Java documentation and present its super-
class hierarchy.

15. Look up the Swing classes WindowListener and WindowAdapter in the Java
documentation files. What is the class hierarchy of these two classes? Why is class
WindowListener an interface? How is class WindowAdapter a concrete class?

Appendix G: Object-Oriented Programming with Java 391

This Page Intentionally Left Blank

Procedural Code in Java

Appendix D is primarily concerned with the mappings from the elements of a class dia-
gram to Java classes. They were simply concerned with the major constructs including
interfaces, classes, relations, class attributes and methods. In this appendix we examine
the procedural code of class methods. In addition, we outline the pseudo-code that we
use to describe program logic.

H.1 Procedural code

Java’s procedural code is used to implement a method body. This code can also appear
in initialization blocks as described in chapter 7. Procedural code is assembled from the
three control structures of sequence, selection and iteration (repetition). These three
control structures are prepared in any combination to describe the logic required. In
Java the if and switch statements represent the language’s two selection statements.
The while, do and for are the repetition statements. Combining these structures in any
manner means that an if statement can be nested within another if statement, or a while

statement can be used in an if statement, and so on.
As we form complex control logic then it too will benefit from the application of

some design. This we achieve by developing pseudo-code to describe the intended logic
before converting it into actual Java statements. Pseudo-code, as its name suggests, is
not Java code but bears some passing resemblance to it. Pseudo-code aims to describe
the intention of some logic by using code-like constructs.

Pseudo-code is sometimes also known as a Program Design Language (PDL) or by
the term Structured English, in which some restricted form of natural language is used
to describe our intent.

The language used with pseudo-code is a mix of fixed constructs and paraphrased
statements. The idea of fixed constructions is evident from the name Structured English.
Some parts of the language used are constrained to some fixed structures. The remainder
of the pseudo-code is composed of short phrases that describe the intent. We distinguish
the latter by using italic font. The fixed structures are presented as emboldened text.

A simple illustration of pseudo-code with no structured elements is given below. It
simply identifies that we need to obtain a date from the user and that we prompt the user
when it is required. It represents an example of sequential code.

prompt the user for a date
read the date from the user

Appendix H

393

Observe how program code is totally absent. This is intentional, we simply wish to con-
vey the actions required in getting some input from the user. If we then subsequently
add some detail, then the following Java emerges:

ConsoleIO.out.print(“Please enter date as DD MM YYYY: ”);
int day = ConsoleIO.in.readInt();
int month = ConsoleIO.in.readInt();
int year = ConsoleIO.in.readInt();

The following pseudo-code presents some logic in which the user is prompted to pro-
vide a date that is then validated and an appropriate message displayed.

prompt the user for a date
read the date from the user
IF the date is valid THEN

display “date is valid”
ELSE

display “date is invalid”
ENDIF

Observe how the italicized text simply describes what should occur without detailing
how it should be implemented. In particular note the phrase the date is valid, which
seeks to determine if we have a valid date. No attempt is made to describe how this will
be done. In fact, further pseudo-code can be introduced to outline the required logic for
this as a separate activity.

Note also structured logic described by the IF THEN ELSE ENDIF control struc-
ture. This part of the pseudo-code identifies the need for a two-way selection to deter-
mine the output to be produced. The THEN and ELSE indicate choice, while IF and
ENDIF delimit the extent of the selection.

The pseudo-code is readily translated into its Java implementation. Ignoring how the
date is validated, and using the textio package from appendix C, we arrive at:

ConsoleIO.out.print(“Please enter date as DD MM YYYY: ”);
int day = ConsoleIO.in.readInt();
int month = ConsoleIO.in.readInt();
int year = ConsoleIO.in.readInt();
if(...)

ConsoleIO.out.println(“date is valid”);
else

ConsoleIO.out.println(“date is invalid”);

Iteration 2 of the case study from chapter 4 introduces a simple menu into the text-
based user interface. The menu operates by first prompting the user with a set of num-
bered choices. The user selects from this list and the necessary service is provided. The
menu is repeated and the process continues until the user selects numbered choice 0 to
exit the system. The pseudo-code that would have first described this logic is given as:

present the menu to the user
read the selection made by the user

394 Object-Oriented Design with UML and Java

WHILE selection is not choice number 0 DO

IF selection is choice number 1 THEN

provide service for choice number 1
ELSE IF selection is choice number 2 THEN

provide service for choice number 2
ELSE IF ... THEN

...
ENDIF

present the menu to the user
read the selection made by the user

ENDWHILE

Again, this maps directly into Java as shown below. Note how presenting the menu and
obtaining the user’s selection is relegated to a support method called getSelection. The
Structured English described by the WHILE and IF have direct counterparts in Java.

String choice = this.getSelection();
while(choice.equals(“0”) == false) {

if(choice.equals(“1”)) {
// Get the borrower details from the human user
ConsoleIO.out.print(“\t” + “Enter the borrower name >>>”);
String borrowerName = ConsoleIO.in.readString();
// Register the borrower with the Library
library.registerOneBorrower(borrowerName);

}
else if(choice.equals(“2”) == true) {

// ...
}

// ...
else {

ConsoleIO.out.println(“\n\t\t” + “Unknown selection - try again” + “\n”);
}

choice = this.getSelection();
}

Alternatively, we might have considered a do loop and nested if-else statement:

String choice = “ ”;
do {

// Get the human user’s choice.
choice = this.getSelection();
ConsoleIO.out.println();
//
// Action the human user’s choice.
if(choice.equals(“0”)) {

ConsoleIO.out.println(“\n\t\t” + “SYSTEM CLOSING” + “\n”);
ConsoleIO.out.println();

}

Appendix H: Procedural Code in Java 395

else if(choice.equals(“1”) == true) {
// Get the borrower details from the human user
ConsoleIO.out.print(“\t” + “Enter the borrower name >>>”);
String borrowerName = ConsoleIO.in.readString();
// Register the borrower with the Library
library.registerOneBorrower(borrowerName);

}
else if(choice.equals(“2”) == true) {

// ...
}

// ...
else {

ConsoleIO.out.println(“\n\t\t” + “Unknown selection - try again” +“\n”);
}
//
} while(choice.equals(“0”) == false);

Chapter 3 utilized a Java collection object to realize a one-to-many architecture.
Appendix E gives details of the Java collection classes. These discussions introduced
the notion of an iterator object that is bound to a collection object to provide a means to
visit, in turn, all the items in the collection. In the Bank class of chapter 3 we prepared
the creditAccount method:

// class Bank
public void creditAccount(java.lang.String aNumber, int anAmount) {

Iterator iter = theAccounts.iterator();
while(iter.hasNext() == true) {

Account acc = (Account)iter.next();
if(aNumber.equals(acc.getNumber())) {

acc.credit(anAmount);
break;

}
}

} // method: creditAccount

The method visits each Account object maintained by the collection theAccounts as
part of the Bank class. The method identifies the Account object with the required
account number and performs a credit operation against that account. This implemen-
tation might have been derived from the matching pseudo-code:

FOREACH acc:Account IN theAccounts DO

IF account number of acc is that required THEN

perform credit operation on acc
break from this loop

ENDIF

ENDFOREACH

396 Object-Oriented Design with UML and Java

The FOREACH clause introduces acc as a reference to one of the Account objects in
the collection theAccounts. Within the FOREACH loop we use acc to represent the
next Account object we are processing.

We can also use a variant of the FOREACH pseudo-code to indicate repetition a set
number of occasions. We might, for example, use a FOREACH to show how the sum
of the first ten input values is achieved:

initialize the total to zero
FOREACH num IN 0..9 DO

prompt user for the next input value
read the value
add the value to the total

ENDFOREACH

Of course, the Java for this is:

double total = 0.0;
for(int num = 0; num<10; num++) {

ConsoleIO.out.print(“Please enter next value: ”);
double value = ConsoleIO.in.readDouble();
total += value;

}

Appendix H: Procedural Code in Java 397

This Page Intentionally Left Blank

A

abstract class 149
abstract factory pattern 267
accessor operation 53
action states 36
activation(s) 6, 28
activities 26
activity diagram 21, 26
actor 24
Adapter design pattern 196
adapter pattern 255
agile systems development 19
algorithm 10
alternative flow 168
analysis diagrams 25
analysis model 3
architecture centric 20
array 58
association 14, 33
attributes 6, 32, 38

B

basic flow 168
behaviour 5
branch 37

C

child 132
child components 207
class 6
class declaration 53
class diagram 6, 32, 38, 39
code reuse 13
collaboration diagram(s) 7, 26
collection objects 63

composite aggregation 33, 42
composite design pattern 163
Computer Aided Software Engineering 16
condition 35
constructor method 56
content pane 225
coupling 33

D

decision 26
decorator design pattern 268
decorator pattern 198
default constructor 56
deferred operations 154
Delegation 241
descendant 132
design patterns 205, 241
dynamic binding 14, 15, 145

E

early binding 137
encapsulation 8
enquiry operations 7
event driven 211
event handler 211
event listener 212
event source 213
extend relationship 171
extreme programming 20

F

façade design pattern 255
Factory Method design pattern 190
forward engineering 3
frozen 145

Index

399

G

generalization 12
guard 37
guard expressions 26

H

highly cohesive 8

I

include relationship 169
incremental style of development 4
information hiding 9, 54
inherit 12
inner class 216
instances 41
interaction 24
interaction diagrams 26
interface class 154
interface design pattern 250
invariant over specialization 145
iteration 35
iterative 20
iterative process 4
iterator design pattern 254

L

late binding 137
layout manager 207
lifeline 28
link 28, 36, 41
loose coupling 9

M

mandatory profile 56
menu bar 216
menu items 216
menus 216
message 5, 9, 28
message parameters 9, 35
message propagation 6, 42
method(s) 5, 10, 53
Modelling 2
model-view-controller 208
multi-object 35
multiplicity 33, 39

N

negotiated statement of requirements 23

O

object diagram(s) 7, 29, 36
object identifier 28
object instance 7
Object serialization 198
object-oriented analysis and design 19
observer pattern 261
operation signature 53
operations 5
overloaded constructors 57

P

package access 115
parameterized constructor 56
parent 207
parent component 207
persistence mechanism 197
polymorphic effect 15, 136
polymorphic substitution 117
polymorphism 14
programming by difference 13
properties 6
public access 53

R

recipient object 5
recursive 40
redefine(d) 13, 135
refactoring 20, 23
requirement documents 22, 23
return value 10
role 24, 39
role name 33
runtime 15

S

scenario 168
sender object 5
sequence diagram(s) 5, 26
singleton design pattern 257
singleton pattern 258

400 Index

software lifecycle 2
specialization 12
state 5, 8
static binding 137
stereotype 150
strong coupling 9
subclass 13, 133
substituted 137
superclass 13, 133

T

Template Method 266
Template Method design pattern 190
transformer operation(s) 8, 53
transition 26
types 38

U

undisciplined hacking 4
use-case 20, 23
use-case instance 168

V

variant over specialization 135
virtual binding 137
visibility levels 53
visitor pattern 259

W

waterfall model 4
window listener 215

Index 401

This Page Intentionally Left Blank

	Object-Oriented Design with UML and Java
	Copyright Page
	Contents
	Preface
	Chapter 1. Object Technology
	1.1 Background
	1.2 Using the UML
	1.3 Classes. sets of similar objects
	1.4 Tools
	1.5 Summary
	1.6 Exercises

	 Chapter 2. Object-Oriented Analysis and Design
	2.1 Fundamentals of an OOAD
	2.2 Illustration
	2.3 Toward design
	2.4 UML diagrams
	2.5 Class diagrams
	2.6 Summary
	2.7 Exercises

	Chapter 3. Implementing Objects with Java
	3.1 Introduction
	3.2 Illustration
	3.3 Building an application
	3.4 Implementing architectural relationships
	3.5 Establishing the architecture
	3.6 The example application
	3.7 Summary
	3.8 Exercises

	Chapter 4. Case Study: A Library Application
	4.1 Specification
	4.2 Iteration 1
	4.3 Iteration 2
	4.4 Iteration 3
	4.5 Summary
	4.6 Exercises

	Chapter 5. Specialization
	5.1 Specialization
	5.2 Inherited methods
	5.3 Redefined methods
	5.4 Polymorphism
	5.5 Polymorphism at work
	5.6 Protected features
	5.7 The abstract class
	5.8 The interface class
	5.9 The interface at work
	5.10 Summary
	5.11 Exercises

	Chapter 6. Case Study: The Library Application Revisited
	6.1 Specification
	6.2 Iteration 1
	6.3 Iteration 2
	6.4 Iteration 3
	6.5 Summary
	6.6 Exercises

	Chapter 7. Graphical User Interfaces
	7.1 Overview of Swing
	7.2 Rebuilding the library case study
	7.3 Events
	7.4 Menu bar
	7.5 Application menus
	7.6 Application buttons
	7.7 Dialogs
	7.8 Summary
	7.9 Exercises

	Chapter 8. Design Patterns
	8.1 Delegation
	8.2 Interface
	8.3 Iterator
	8.4 Adapter
	8.5 Singleton
	8.6 Visitor
	8.7 Observer
	8.8 Template method
	8.9 Abstract factory
	8.10 Decorator
	8.11 Summary
	8.12 Exercises

	Chapter 9. Case Study: A Final Review
	9.1 Refactoring
	9.2 Iteration 1
	9.3 Iteration 2
	9.4 Iteration 3
	9.5 Iteration 4
	9.6 Summary
	9.7 And finally
	9.8 Exercises

	Bibliography
	Appendix A. Setting up the Environment
	Appendix B. ROME
	Appendix C. Package textio
	Appendix D. UML Notation and Java Bindings
	Appendix E. The Java Collections Framework
	Appendix F. Programming with Java
	Appendix G. Object-Oriented Programming with Java
	Appendix H. Procedural Code in Java
	Index

