Essential Algorithms



E<sential Algoritl

A Practical Approach to Computer
Algorithms Using Python® and C#

Rod Stephens

WILEY



Essential Algorithms: A Practical Approach to Computer Algorithms Using Python® and C#

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-57599-3
ISBN: 978-1-119-57596-2 (ebk)
ISBN: 978-1-119-57598-6 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Per-
missions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Nei-
ther the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site
is referred to in this work as a citation and/or a potential source of further information does not mean that the author
or the publisher endorses the information the organization or website may provide or recommendations it may make.
Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport .wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019933736

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. Python is a regis-
tered trademark of Python Software Foundation. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.



For Maki



About the Author

Rod Stephens started out as a mathematician, but while studying at MIT, he
discovered how much fun algorithms are. He took every algorithms course MIT
offered, and he has been writing complex algorithms ever since.

During his career, Rod has worked on an eclectic assortment of applica-
tions in fields such as telephone switching, billing, repair dispatching, tax
processing, wastewater treatment, concert ticket sales, cartography, and training
for professional football players.

Rod was a Microsoft Visual Basic Most Valuable Professional (MVP) for 15
years and has taught introductory programming courses. He has written more
than 30 books that have been translated into languages from all over the world.
He has also written more than 250 magazine articles covering C#, Visual Basic,
Visual Basic for Applications, Delphi, and Java.

Rod’s popular C# Helper website (http://www.csharphelper.com) receives
millions of hits per year and contains tips, tricks, and example programs for
C# programmers. His VB Helper website (http://www.vb-helper.com) contains
similar material for Visual Basic programmers.

You can contact Rod at: RodStephens@csharphelper.com.

vii



About the Technical Editor

John Mueller is a freelance author and technical editor. He has writing in his
blood, having produced 112 books and more than 600 articles to date. The topics
range from networking to artificial intelligence and from database management
to heads-down programming. Some of his current books include discussions
of data science, machine learning, and algorithms. His technical editing skills
have helped more than 70 authors refine the content of their manuscripts. John
has provided technical editing services to numerous magazines, performed
various types of consulting, and he writes certification exams as well.

Be sure to read John’s blog at: http://blog.johnmuellerbooks.com/. You can
reach John on the Internet at JohneJohnMuellerBooks.com. John also has a web-
site at http://www.johnmuellerbooks.com/. Be sure to follow John on Amazon
at https://www.amazon.com/John-Mueller/.



Senior Acquisitions Editor
Kenyon Brown

Editorial Manager
Pete Gaughan

Associate Publisher
Jim Minatel

Production Manager
Kathleen Wisor

Project Editor
Gary Schwartz

Production Editor
Athiyappan Lalith Kumar

Credits

Technical Editor
John Muller

Copy Editor
Kim Wimpsett

Proofreader
Nancy Bell

Indexer
Potomac Indexing, LLC

Cover Designer
Wiley

Xi



Acknowledgments

Thanks to Ken Brown, Devon Lewis, Gary Schwartz, Pete Gaughan, Jim Mina-
tel, Athiyappan Lalitkumar, and everyone else at Wiley that helped make this
book possible.

Thanks to longtime friend John Mueller, who provided his technical exper-
tise to help make the information in this book as accurate as possible. (Any
remaining mistakes are mine, not his.)

Thanks also to Sunil Kumar for his generous feedback on the first edition.

xiii



Introduction
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17

Contents at a glance

Algorithm Basics
Numerical Algorithms
Linked Lists

Arrays

Stacks and Queues
Sorting

Searching

Hash Tables

Recursion

Trees

Balanced Trees

Decision Trees

Basic Network Algorithms
More Network Algorithms
String Algorithms
Cryptography
Complexity Theory

XXiX

23

71
103
135
167
201
209
227
285
349
367
403
451
493
519
543

XV



Contents at a glance

Chapter 18 Distributed Algorithms

Chapter 19 Interview Puzzles

Appendix A Summary of Algorithmic Concepts
Appendix B Solutions to Exercises

Glossary

Index

561
595
607
623
M1
739



Introduction

Chapter 1

Algorithm Basics
Approach

Algorithms and Data Structures

Pseudocode
Algorithm Features
Big O Notation
Rule 1
Rule 2
Rule 3
Rule 4
Rule 5

Common Run Time Functions

1

Log N
Sqrt N
N
Nlog N
NZ

ZN

N!

Visualizing Functions
Practical Considerations
Summary
Exercises

Contents

x
X,
OO 0ONIONWNN = X

[ I e T e S Sk Gy ok Gy ST W S G S ey
S O 0O OCNUI U Ul === O

XVii



xviii Contents

Chapter2  Numerical Algorithms
Randomizing Data
Generating Random Values
Generating Values
Ensuring Fairness
Getting Fairness from Biased Sources
Randomizing Arrays
Generating Nonuniform Distributions
Making Random Walks
Making Self-Avoiding Walks
Making Complete Self-Avoiding Walks
Finding Greatest Common Divisors
Calculating Greatest Common Divisors
Extending Greatest Common Divisors
Performing Exponentiation
Working with Prime Numbers
Finding Prime Factors
Finding Primes
Testing for Primality
Performing Numerical Integration
The Rectangle Rule
The Trapezoid Rule
Adaptive Quadrature
Monte Carlo Integration
Finding Zeros
Gaussian Elimination
Forward Elimination
Back Substitution
The Algorithm
Least Squares Fits
Linear Least Squares
Polynomial Least Squares
Summary
Exercises

Chapter3  Linked Lists

Basic Concepts

Singly Linked Lists
Iterating Over the List
Finding Cells
Using Sentinels
Adding Cells at the Beginning
Adding Cells at the End
Inserting Cells After Other Cells
Deleting Cells

Doubly Linked Lists

Sorted Linked Lists

23
23
23
24
26
28
29
30
31
33
34
36
36
38
40
42
42
44
45
47
48
49
50
54
55
57
58
60
61
62
62
64
67
68

71
71
72
73
73
74
75
76
77
78
79
81



Contents

XiX

Chapter 4

Chapter 5

Self-Organizing Linked Lists
Move To Front (MTF)
Swap
Count
Hybrid Methods
Pseudocode
Linked-List Algorithms
Copying Lists
Sorting with Insertionsort
Sorting with Selectionsort
Multithreaded Linked Lists
Linked Lists with Loops
Marking Cells
Using Hash Tables
List Retracing
List Reversal
Tortoise and Hare
Loops in Doubly Linked Lists
Summary
Exercises

Arrays
Basic Concepts
One-Dimensional Arrays
Finding Items
Finding Minimum, Maximum, and Average
Finding Median
Finding Mode
Inserting Items
Removing Items
Nonzero Lower Bounds
Two Dimensions
Higher Dimensions
Triangular Arrays
Sparse Arrays
Find a Row or Column
Get a Value
Set a Value
Delete a Value
Matrices
Summary
Exercises

Stacks and Queues
Stacks
Linked-List Stacks
Array Stacks
Double Stacks
Stack Algorithms

82
83
83
84
84
85
86
86
87
88
90
91
92
93
94
95
98
100
100
101

103
103
106
106
107
108
109
112
113
114
114
115
118
121
123
124
125
127
129
131
132

135
135
136
138
139
141



XX

Contents

Reversing an Array
Train Sorting
Tower of Hanoi
Stack Insertionsort
Stack Selectionsort
Queues
Linked-List Queues
Array Queues
Specialized Queues
Priority Queues
Deques
Binomial Heaps
Binomial Trees
Binomial Heaps
Merging Trees
Merging Heaps
Merging Tree Lists
Merging Trees
Enqueue
Dequeue
Runtime
Summary
Exercises

Chapter6  Sorting
O(N?) Algorithms
Insertionsort in Arrays
Selectionsort in Arrays
Bubblesort
O(NlogN) Algorithms
Heapsort
Storing Complete Binary Trees
Defining Heaps
Implementing Heapsort
Quicksort
Analyzing Quicksort’s Run Time
Picking a Dividing Item
Implementing Quicksort with Stacks
Implementing Quicksort in Place
Using Quicksort
Mergesort
Sub O(Nlog N) Algorithms
Countingsort
Pigeonhole Sort
Bucketsort
Summary
Exercises

141
142
143
145
146
147
148
148
151
151
152
152
152
154
155
156
156
158
161
162
163
163
164

167
168
168
170
171
174
175
175
176
180
181
182
184
185
185
188
189
192
192
193
195
197
198



Contents

Chapter 7

Chapter 8

Chapter9

Searching 201
Linear Search 202
Binary Search 203
Interpolation Search 204
Majority Voting 205
Summary 207
Exercises 208
Hash Tables 209
Hash Table Fundamentals 210
Chaining 211
Open Addressing 213
Removing Items 214
Linear Probing 215
Quadratic Probing 217
Pseudorandom Probing 219
Double Hashing 219
Ordered Hashing 219
Summary 222
Exercises 222
Recursion 227
Basic Algorithms 228
Factorial 228
Fibonacci Numbers 230
Rod-Cutting 232
Brute Force 233
Recursion 233
Tower of Hanoi 235
Graphical Algorithms 238
Koch Curves 239
Hilbert Curve 241
Sierpinski Curve 243
Gaskets 246
The Skyline Problem 247
Lists 248
Divide and Conquer 249
Backtracking Algorithms 252
Eight Queens Problem 254
Knight’s Tour 257
Selections and Permutations 260
Selections with Loops 261
Selections with Duplicates 262
Selections Without Duplicates 264
Permutations with Duplicates 265
Permutations Without Duplicates 266
Round-Robin Scheduling 267

Odd Number of Teams 268



xxii

Contents

Chapter 10

Even Number of Teams
Implementation
Recursion Removal
Tail Recursion Removal
Dynamic Programming
Bottom-Up Programming
General Recursion Removal
Summary
Exercises

Trees
Tree Terminology
Binary Tree Properties
Tree Representations
Building Trees in General
Building Complete Trees
Tree Traversal
Preorder Traversal
Inorder Traversal
Postorder Traversal
Breadth-First Traversal
Traversal Uses
Traversal Run Times
Sorted Trees
Adding Nodes
Finding Nodes
Deleting Nodes
Lowest Common Ancestors
Sorted Trees
Parent Pointers
Parents and Depths
General Trees
Euler Tours
All Pairs
Threaded Trees
Building Threaded Trees
Using Threaded Trees
Specialized Tree Algorithms
The Animal Game
Expression Evaluation
Interval Trees
Building the Tree
Intersecting with Points
Intersecting with Intervals
Quadtrees
Adding Items
Finding Items

270
271
273
274
275
277
277
280
281

285
285
289
292
292
295
296
297
299
300
301
302
303
303
303
306
306
309
309
310
311
312
314
316
317
318
320
322
322
324
326
328
329
330
332
335
336



Contents

xxiii

Chapter 11

Chapter 12

Tries
Adding Items
Finding Items
Summary
Exercises

Balanced Trees
AVL Trees
Adding Values
Deleting Values
2-3 Trees
Adding Values
Deleting Values
B-Trees
Adding Values
Deleting Values
Balanced Tree Variations
Top-down B-trees
B+trees
Summary
Exercises

Decision Trees
Searching Game Trees
Minimax
Initial Moves and Responses
Game Tree Heuristics
Searching General Decision Trees
Optimization Problems
Exhaustive Search
Branch and Bound
Decision Tree Heuristics
Random Search
Improving Paths
Simulated Annealing
Hill Climbing
Sorted Hill Climbing
Other Decision Tree Problems
Generalized Partition Problem
Subset Sum
Bin Packing
Cutting Stock
Knapsack
Traveling Salesman Problem
Satisfiability
Swarm Intelligence
Ant Colony Optimization

337
339
341
342
342

349
350
350
353
354
355
356
359
360
361
362
363
363
365
365

367
368
369
373
374
375
376
377
379
381
381
382
384
385
386
387
387
388
388
389
390
391
391
392
393



XXiv

Contents

Chapter 13

General Optimization
Traveling Salesman
Bees Algorithm
Swarm Simulation
Boids
Pseudoclassical Mechanics
Goals and Obstacles
Summary
Exercises

Basic Network Algorithms
Network Terminology
Network Representations
Traversals
Depth-First Traversal
Breadth-First Traversal
Connectivity Testing
Spanning Trees
Minimal Spanning Trees
Euclidean Minimum Spanning Trees
Building Mazes
Strongly Connected Components
Kosaraju’s Algorithm
Algorithm Discussion
Finding Paths
Finding Any Path
Label-Setting Shortest Paths
Label-Correcting Shortest Paths
All-Pairs Shortest Paths
Transitivity
Transitive Closure
Transitive Reduction
Acyclic Networks
General Networks
Shortest Path Modifications
Shape Points
Early Stopping
Bidirectional Search
Best-First Search
Turn Penalties and Prohibitions
Geometric Calculations
Expanded Node Networks
Interchange Networks
Summary
Exercises

393
393
394
394
395
396
397
397
398

403
403
407
409
410
412
413
416
417
418
419
420
421
422
425
425
426
430
431
436
437
438
439
440
441
441
442
442
442
443
443
444
445
447
447



Contents

Chapter 14 More Network Algorithms 451
Topological Sorting 451
Cycle Detection 455
Map Coloring 456

Two-Coloring 456
Three-Coloring 458
Four-Coloring 459
Five-Coloring 459
Other Map-Coloring Algorithms 462
Maximal Flow 464
Work Assignment 467
Minimal Flow Cut 468
Network Cloning 470
Dictionaries 471
Clone References 472
Cliques 473
Brute Force 474
Bron—Kerbosch 475
Sets R, P, and X 475
Recursive Calls 476
Pseudocode 476
Example 477
Variations 480
Finding Triangles 480
Brute Force 481
Checking Local Links 481
Chiba and Nishizeki 482
Community Detection 483
Maximal Cliques 483
Girvan-Newman 483
Clique Percolation 485
Eulerian Paths and Cycles 485
Brute Force 486
Fleury’s Algorithm 486
Hierholzer’s Algorithm 487
Summary 488
Exercises 489

Chapter 15 String Algorithms 493

Matching Parentheses 494
Evaluating Arithmetic Expressions 495
Building Parse Trees 496

Pattern Matching 497
DFAs 497
Building DFAs for Regular Expressions 500

NFAs 502



XXVi

Contents

Chapter 16

Chapter 17

String Searching
Calculating Edit Distance
Phonetic Algorithms
Soundex
Metaphone
Summary
Exercises

Cryptography

Terminology

Transposition Ciphers
Row/Column Transposition
Column Transposition
Route Ciphers

Substitution Ciphers
Caesar Substitution
Vigenere Cipher
Simple Substitution
One-Time Pads

Block Ciphers
Substitution-Permutation Networks
Feistel Ciphers

Public-Key Encryption and RSA
Euler’s Totient Function
Multiplicative Inverses
An RSA Example
Practical Considerations

Other Uses for Cryptography

Summary

Exercises

Complexity Theory
Notation
Complexity Classes
Reductions

3SAT

Bipartite Matching
NP-Hardness

Detection, Reporting, and Optimization Problems

Detection <, Reporting
Reporting <, Optimization
Reporting <, Detection
Optimization <, Reporting
Approximate Optimization
NP-Complete Problems
Summary
Exercises

504
508
511
511
513
514
515

519
520
521
521
523
525
526
526
527
529
530
531
531
533
534
535
536
536
537
538
539
540

543
544
545
548
549
550
550
551
552
552
552
553
553
554
557
558



Contents

XXVii

Chapter 18

Chapter 19

Appendix A

Distributed Algorithms
Types of Parallelism
Systolic Arrays
Distributed Computing
Multi-CPU Processing
Race Conditions
Deadlock
Quantum Computing
Distributed Algorithms
Debugging Distributed Algorithms
Embarrassingly Parallel Algorithms
Mergesort
Dining Philosophers
Randomization
Resource Hierarchy
Waiter
Chandy/Misra
The Two Generals Problem
Byzantine Generals
Consensus
Leader Election
Snapshot
Clock Synchronization
Summary
Exercises

Interview Puzzles

Asking Interview Puzzle Questions
Answering Interview Puzzle Questions
Summary

Exercises

Summary of Algorithmic Concepts
Chapter 1: Algorithm Basics

Chapter 2: Numeric Algorithms
Chapter 3: Linked Lists

Chapter 4: Arrays

Chapter 5: Stacks and Queues
Chapter 6: Sorting

Chapter 7: Searching

Chapter 8: Hash Tables

Chapter 9: Recursion

Chapter 10: Trees

Chapter 11: Balanced Trees

Chapter 12: Decision Trees

Chapter 13: Basic Network Algorithms
Chapter 14: More Network Algorithms
Chapter 15: String Algorithms

561
562
562
565
567
567
571
572
573
573
574
576
577
578
578
579
579
580
581
584
587
588
589
591
591

595
597
598
602
604

607
607
608
609
610
610
610
611
612
612
614
615
615
616
617
618



Xxviii

Contents

Appendix B

Glossary

Index

Chapter 16: Cryptography

Chapter 17: Complexity Theory
Chapter 18: Distributed Algorithms
Chapter 19: Interview Puzzles

Solutions to Exercises

Chapter 1: Algorithm Basics

Chapter 2: Numerical Algorithms
Chapter 3: Linked Lists

Chapter 4: Arrays

Chapter 5: Stacks and Queues

Chapter 6: Sorting

Chapter 7: Searching

Chapter 8: Hash Tables

Chapter 9: Recursion

Chapter 10: Trees

Chapter 11: Balanced Trees

Chapter 12: Decision Trees

Chapter 13: Basic Network Algorithms
Chapter 14: More Network Algorithms
Chapter 15: String Algorithms
Chapter 16: Encryption

Chapter 17: Complexity Theory
Chapter 18: Distributed Algorithms
Chapter 19: Interview Puzzles

618
619
620
621

623
623
626
633
638
648
650
653
655
658
663
670
675
678
681
686
689
692
697
701

11
739



Introduction

Algorithms are the recipes that make efficient programming possible. They
explain how to sort records, search for items, calculate numeric values such as
prime factors, find the shortest path between two points in a street network, and
determine the maximum flow of information possible through a communica-
tions network. The difference between using a good algorithm and a bad one
can mean the difference between solving a problem in seconds, hours, or never.

Studying algorithms lets you build a useful toolkit of methods for solving
specific problems. It lets you understand which algorithms are most effective
under different circumstances so that you can pick the one best suited for a
particular program. An algorithm that provides excellent performance with
one set of data may perform terribly with other data, so it is important that
you know how to pick the algorithm that is the best match for your scenario.

Even more important, by studying algorithms, you can learn general problem-
solving techniques that you can apply to other problems—even if none of the
algorithms you already know is a perfect fit for your current situation. These
techniques let you look at new problems in different ways so that you can create
and analyze your own algorithms to solve your problems and meet unantici-
pated needs.

In addition to helping you solve problems while on the job, these techniques
may even help you land the job where you can use them! Many large tech-
nology companies, such as Microsoft, Google, Yahoo!, IBM, and others, want
their programmers to understand algorithms and the related problem-solving
techniques. Some of these companies are notorious for making job applicants
work through algorithmic programming and logic puzzles during interviews.

XXix



Introduction

The better interviewers don't necessarily expect you to solve every puzzle.
In fact, they will probably learn more about you when you don’t solve a
puzzle. Rather than wanting to know the answer, the best interviewers want to
see how you approach an unfamiliar problem. They want to see whether you
throw up your hands and say the problem is unreasonable in a job interview. Or
perhaps you analyze the problem and come up with a promising line of reason-
ing for using algorithmic approaches to attack the problem. “Gosh, I don’t know.
Maybe I'd search the Internet,” would be a bad answer. “It seems like a recursive
divide-and-conquer approach might work” would be a much better answer.

This book is an easy-to-read introduction to computer algorithms. It describes
anumber of important classical algorithms and tells when each is appropriate.
It explains how to analyze algorithms to understand their behavior. Most
importantly, it teaches techniques that you can use to create new algorithms
on your own.

Here are some of the useful algorithms that this book describes:

m Numerical algorithms, such as randomization, factoring, working with
prime numbers, and numeric integration

m Methods for manipulating common data structures, such as arrays, linked
lists, trees, and networks

m Using more-advanced data structures, such as heaps, trees, balanced trees,
and B-trees

m Sorting and searching

m Network algorithms, such as shortest path, spanning tree, topological
sorting, and flow calculations

Here are some of the general problem-solving techniques this book explains:

m Brute-force or exhaustive search

m Divide and conquer

m Backtracking

m Recursion

m Branch and bound

m Greedy algorithms and hill climbing

m [east-cost algorithms

m Constricting bounds

m Heuristics

To help you master the algorithms, this book provides exercises that you can

use to explore ways that you can modify the algorithms to apply them to new

situations. This also helps solidify the main techniques demonstrated by the
algorithms.
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Finally, this book includes some tips for approaching algorithmic questions
that you might encounter in a job interview. Algorithmic techniques let you
solve many interview puzzles. Even if you can’t use algorithmic techniques
to solve every puzzle, you will at least demonstrate that you are familiar with
approaches that you can use to solve other problems.

Why You Should Study Algorithms

There are several reasons why you should study algorithms. First, they provide
useful tools that you can use to solve particular problems such as sorting or
finding shortest paths. Even if your programming language includes tools to
perform tasks that are handled by an algorithm, it’s useful to learn how those
tools work. For example, understanding how array and list sorting algorithms
work may help you decide which of those data structures would work best in
your programs.

Algorithms also teach you methods that you may be able to apply to other
problems that have a similar structure. They give you a collection of techniques
that you can apply to other problems. Techniques such as recursion, divide and
conquer, Monte Carlo simulation, linked data structures, network traversal,
and others apply to a wide variety of problems.

Perhaps most importantly, algorithms are like a workout for your brain. Just
as weight training can help a football or baseball player build muscle, studying
algorithms can build your problem-solving abilities. A professional athlete prob-
ably won't need to bench press weights during a game. Similarly, you probably
won't need to implement a simple sorting algorithm in your project. In both
cases, however, practice can help improve your game, whether it’s baseball or
programming.

Finally, algorithms can be interesting, satisfying, and sometimes surprising.
It never ceases to amaze me when I dump a pile of data into a program and a
realistic three-dimensional rendering pops out. Even after decades of study, I
still feel the thrill of victory when a particularly complicated algorithm pro-
duces the correct result. When all of the pieces fit together perfectly to solve
an especially challenging problem, it feels like something at least is right in
the world.

Algorithm Selection

Each of the algorithms in this book was included for one or more of the fol-
lowing reasons:

m The algorithm is useful, and a seasoned programmer should be expected
to understand how it works and how to use it correctly in programs.
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m The algorithm demonstrates important algorithmic programming tech-
niques that you can apply to other problems.

m The algorithm is commonly studied by computer science students, so the
algorithm or the techniques it uses could appear in a technical
interview.

After reading this book and working through the exercises, you will have a
good foundation in algorithms and techniques that you can use to solve your
own programming problems.

Who This Book Is For

This book is intended primarily for three kinds of readers: professional program-
mers, programmers preparing for job interviews, and programming students.

Professional programmers will find the algorithms and techniques described
in this book useful for solving problems they face on the job. Even when you
encounter a problem that isn’t directly addressed by an algorithm in this book,
reading about these algorithms will give you new perspectives from which to
view problems so that you can find new solutions.

Programmers preparing for job interviews can use this book to hone their
algorithmic skills. Your interviews may not include any of the problems described
in this book, but they may contain questions that are similar enough so that you
can use the techniques you learned in this book to solve them. Even if you can’t
solve a problem, if you recognize a structure similar to those used in one of the
algorithms, you can suggest similar strategies and perhaps get partial credit.

For all the reasons explained in the earlier section “Why You Should Study
Algorithms,” all programming students should study algorithms. Many of
the approaches described in this book are simple, elegant, and powerful, but
theyre not all obvious, so you won't necessarily stumble across them on your
own. Techniques such as recursion, divide and conquer, branch and bound, and
using well-known data structures are essential to anyone who has an interest
in programming,.

\[o AN Personally, I think algorithms are just plain fun! They’re my equivalent of
crossword puzzles or Sudoku. | love the feeling of successfully assembling a compli-
cated algorithm and watching it work.

They also make great conversation starters at parties. “What do you think about label
setting versus label-correcting, shortest path algorithms?”
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Getting the Most Out of This Book

You can learn some new algorithms and techniques just by reading this
book, but to really master the methods demonstrated by the algorithms, you
need to work with them. You need to implement them in some programming
language. You also need to experiment, modify the algorithms, and try new
variations on old problems. The book’s exercises and interview questions
can give you ideas for new ways to use the techniques demonstrated by the
algorithms.

To get the greatest benefit from the book, I highly recommend that you
implement as many of the algorithms as possible in your favorite program-
ming language or even in more than one language to see how different lan-
guages affect implementation issues. You should study the exercises and at
least write down outlines for solving them. Ideally, you should implement
them, too. Often there’s a reason why an exercise is included, and you may
not discover it until you take a hard look at the problem. The exercises may
lead you down paths that are very interesting but that are too long to squeeze
into the book.

Finally, look over some of the other interview questions available on the Internet
and figure out how you would approach them. In many interviews, you won't
be required to implement a solution, but you should be able to sketch out solu-
tions. And if you have time to implement solutions, you will learn even more.

Understanding algorithms is a hands-on activity. Don’t be afraid to put down
the book, break out a compiler, and write some actual code!

This Book’s Websites

Actually, this book has two websites: Wiley’s version and my version. Both sites
contain the book’s source code.

The Wiley web page for this book is www.wiley.com/go/essentialalgorithms.
You also can go to www.wiley.comand search for the book by title or ISBN. Once
you've found the book, click the Downloads tab to obtain all of the source code
for the book. Once you download the code, just decompress it with your favorite
compression tool.

V[ ANl Atthe Wiley website, you may find it easiest to search by ISBN. This book’s
ISBN is 978-1-119-57599-3.
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The C# programs are named with a Pascal case naming convention. For example,
the program that displays graphical solutions to the Tower of Hanoi puzzle for
Exercise 4 in Chapter 9 is named GraphicalTowerOfHanoi. The corresponding
Python programs are named with underscore casing as in graphical_tower_
of_hanoi.py.

To find my web page for this book, go to http://www.CSharpHelper.com/
algorithms2e.html.

How This Book Is Structured

This section describes the book’s contents in detail.

Chapter 1, “Algorithm Basics,” explains concepts you must understand to
analyze algorithms. It discusses the difference between algorithms and data
structures, introduces Big O notation, and describes times when practical
considerations are more important than theoretical runtime calculations.

Chapter 2, “Numerical Algorithms,” explains several algorithms that work
with numbers. These algorithms randomize numbers and arrays, calcu-
late greatest common divisors and least common multiples, perform fast
exponentiation, and determine whether a number is prime. Some of the
algorithms also introduce the important techniques of adaptive quadra-
ture and Monte Carlo simulation.

Chapter 3, “Linked Lists,” explains linked-list data structures. These flexible
structures can be used to store lists that may grow, shrink, and change in
structure over time. The basic concepts are also important for building
other linked data structures, such as trees and networks.

Chapter 4, “Arrays,” explains specialized array algorithms and data struc-
tures, such as triangular and sparse arrays, which can save a program
time and memory.

Chapter 5, “Stacks and Queues,” explains algorithms and data structures
that let a program store and retrieve items in first-in, first-out (FIFO) or
last-in, first-out (LIFO) order. These data structures are useful in other
algorithms and can be used to model real-world scenarios such as checkout
lines at a store.

Chapter 6, “Sorting,” explains sorting algorithms that demonstrate a wide
variety of useful algorithmic techniques. Different sorting algorithms work
best for different kinds of data and have different theoretical run times,
so it’s good to understand an assortment of these algorithms. These are
also some of the few algorithms for which exact theoretical performance
bounds are known, so they are particularly interesting to study.
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Chapter 7, “Searching,” explains algorithms that a program can use to search
sorted lists. These algorithms demonstrate important techniques such as
binary subdivision and interpolation.

Chapter 8, “Hash Tables,” explains hash tables—data structures that use
extra memory to allow a program to locate specific items very quickly.
They powerfully demonstrate the space-time trade-off that is so impor-
tant in many programes.

Chapter 9, “Recursion,” explains recursive algorithms—those that call
themselves. Some problems are naturally recursive, so these techniques
make solving them easier. Unfortunately, recursion can sometimes lead
to problems, so this chapter also describes how to remove recursion from
an algorithm when necessary.

Chapter 10, “Trees,” explains highly recursive tree data structures, which
are useful for storing, manipulating, and studying hierarchical data. Trees
also have applications in unexpected places, such as evaluating arithmetic
expressions.

Chapter 11, “Balanced Trees,” explains trees that remain balanced as they
grow over time. In general, tree structures can grow very tall and thin,
and that can ruin the performance of tree algorithms. Balanced trees solve
this problem by ensuring that a tree doesn’t grow too tall and skinny.

Chapter 12, “Decision Trees,” explains algorithms that attempt to solve
problems that can be modeled as a series of decisions. These algorithms
are often used on very hard problems, so they often find only approximate
solutions rather than the best solution possible. However, they are very
flexible and can be applied to a wide range of problems.

Chapter 13, “Basic Network Algorithms,” explains fundamental network
algorithms such as visiting all the nodes in a network, detecting cycles,
creating spanning trees, and finding paths through a network.

Chapter 14, “More Network Algorithms,” explains more network algorithms,
such as topological sorting to arrange dependent tasks, graph coloring,
network cloning, and assigning work to employees.

Chapter 15, “String Algorithms,” explains algorithms that manipulate strings.
Some of these algorithms, such as searching for substrings, are built into
tools that most programming languages can use without customized
programming. Others, such as parenthesis matching and finding string
differences, require some extra work and demonstrate useful techniques.

Chapter 16, “Cryptography,” explains how to encrypt and decrypt information.
It covers the basics of encryption and describes several interesting encryp-
tion techniques, such as Vigenere ciphers, block ciphers, and public key
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encryption. This chapter does not go into all the details of modern encryp-
tion algorithms such as Data Encryption Standard (DES) and Advanced
Encryption Standard (AES) because they are more appropriate for a book
on encryption.

Chapter 17, “Complexity Theory,” explains two of the most important classes
of problems in computer science: P (problems that can be solved in deter-
ministic polynomial time) and NP (problems that can be solved in nonde-
terministic polynomial time). This chapter describes these classes, ways
to prove that a problem is in one or the other, and the most profound
question in computer science: is P equal to NP?

Chapter 18, “Distributed Algorithms,” explains algorithms that run on mul-
tiple processors. Almost all modern computers contain multiple processors,
and computers in the future will contain even more, so these algorithms
are essential for getting the most out of a computer’s latent power.

Chapter 19, “Interview Puzzles,” describes tips and techniques that you
can use to attack puzzles and challenges that you may encounter during
a programming interview. It also includes a list of some websites that
contain large lists of puzzles that you can use for practice.

Appendix A, “Summary of Algorithmic Concepts,” summarizes the ideas
and strategies used by the algorithms described in this book. Using these,
you can build solutions to other problems that are not specifically covered
by the algorithms described here.

Appendix B, “Solutions to Exercises,” contains the solutions to the exercises
at the end of each chapter.

The Glossary defines important algorithmic terms that are used in this book.
You may want to review the glossary before going on programming inter-
views so the terms are fresh in your mind.

What You Need to Use This Book

To read this book and understand the algorithms, you don’t need any special
equipment, except perhaps for reading glasses and a caffeinated beverage. If
you really want to master the material, however, you should implement as many
of the algorithms as possible in an actual programming language. It doesn’t
matter which language you use. Working through the implementation details
in any language will help you better understand the algorithms and any special
treatment required by the language.

Of course, if you plan to implement the algorithms in a programming language,
you need a computer and whatever development environment is appropriate.
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The book’s websites contain sample implementations that you can download
and examine written in C# with Visual Studio 2017 and Python 3.7. If you want
to run those, you need to install either C# 2017 or Python 3.7 on a computer that
can run them reasonably well.

Running any version of Visual Studio requires that you have a reasonably fast,
modern computer with a large hard disk and lots of memory. For example, I'm
fairly happy running my Intel Core 2 system at 1.83 GHz with 2 GB of memory
and a spacious 500 GB hard drive. That’s a lot more disk space than I need, but
disk space is relatively cheap, so why not buy a lot?

You can run Visual Studio on much less powerful systems, but using an
underpowered computer can be extremely slow and frustrating. Visual Studio
has a big memory footprint, so if you're having performance problems, installing
more memory may help.

The C# programs will load and execute with Visual Studio Community
Edition, so there’s no need to install a more expensive version of Visual Studio.
You can get more information and download the Community Edition for free
at https://visualstudio.microsoft.com/downloads.

You can download Python at https://www.python.org/downloads/. Python
version 3.7 or later should be able to run this book’s Python examples. Instead of
downloading Python, you run it in the cloud without installing it on your local
system. For example, Google Colaboratory (https://colab.research.google.com)
is a free environment that lets you run Python programs on any Android device.

I'built the book’s examples in Windows 10, so there may be some differences
if you are running Python on some other platform, such as Linux, OS X, or
the cloud. Unfortunately, I can’t help you much if you have problems in those
environments.

Your performance will vary depending on the speed of the environment
and device that you use to run the examples. If youre unsure of a program’s
performance, start small and then make the problem larger when you know
how the program behaves. For example, try exhaustively solving a 10-item
partition problem (which should run pretty quickly) before you try solving a
100-item problem (which probably won't finish before the sun burns out).

Conventions

To help you get the most from the text and keep track of what’s happening, I've
used several conventions throughout the book.

SPLENDID SIDEBARS

Sidebars such as this one contain additional information and side topics.
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m Warning boxes like this hold important, not-to-be forgotten

information that is directly relevant to the surrounding text.

[ XNl Boxes like this hold notes, tips, hints, tricks, and asides to the current
discussion.

As for styles in the text:
m New terms and important words are italicized when they are introduced.
You also can find many of them in the glossary.

m Keyboard strokes look like this: Ctrl+A. This one means to hold down the
Ctrl key and then press the A key.

m URLs, code, and email addresses within the text are shown in monofont
type,asin:http://www.CSharpHelpeI:com,x = 10, and RodStephense
CSharpHelper.com.

I use a monofont type with no highlighting for most code examples.

I use bold text to emphasize code that's particularly important

in the present context.

How to Contact the Author

If you have questions, comments, or suggestions, please feel free to email me at
RodStephenseCSharpHelper.com. I can’t promise to solve all of your algorithmic
problems, but I do promise to try to point you in the right direction.



Algorithm Basics

Before you jump into the study of algorithms, you need a little background. To
begin with, you need to know that, simply stated, an algorithm is a recipe for get-
ting something done. It defines the steps for performing a task in a certain way.

That definition seems simple enough, but no one writes algorithms for
performing extremely simple tasks. No one writes instructions for how to
access the fourth element in an array. It is just assumed that this is part of the
definition of an array and that you know how to do it (if you know how to use
the programming language in question).

Normally, people write algorithms only for difficult tasks. Algorithms explain
how to find the solution to a complicated algebra problem, how to find the short-
est path through a network containing thousands of streets, or how to find the
best mix of hundreds of investments to optimize profits.

This chapter explains some of the basic algorithmic concepts you should
understand if you want to get the most out of your study of algorithms.

It may be tempting to skip this chapter and jump to studying specific algo-
rithms, but you should at least skim this material. Pay close attention to the sec-
tion “Big O Notation,” because a good understanding of run time performance
can mean the difference between an algorithm performing its task in seconds,
hours, or not at all.

Essential Algorithms: A Practical Approach to Computer Algorithms Using Python® and C#, First Edition.
Rod Stephens.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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Approach

To get the most out of an algorithm, you must be able to do more than simply
follow its steps. You need to understand the following:

The algorithm’s behavior Does it find the best possible solution, or does it
just find a good solution? Could there be multiple best solutions? Is there a
reason to pick one “best” solution over the others?

The algorithm’s speed Is it fast? Slow? Is it usually fast but sometimes slow
for certain inputs?

The algorithm’s memory requirements How much memory will the algorithm
need? Is this a reasonable amount? Does the algorithm require billions of
terabytes more memory than a computer could possibly have (at least today)?

The main techniques the algorithm uses Can you reuse those techniques to
solve similar problems?

This book covers all of these topics. It does not, however, attempt to cover
every detail of every algorithm with mathematical precision. It uses an intuitive
approach to explain algorithms and their performance, but it does not analyze
performance in rigorous detail. Although that kind of proof can be interesting,
it can also be confusing and take up a lot of space, providing a level of detail
that is unnecessary for most programmers. This book, after all, is intended
primarily for programmers who need to get a job done.

This book’s chapters group algorithms that have related themes. Sometimes
the theme is the task that they perform (sorting, searching, network algorithms),
sometimes it’s the data structures they use (linked lists, arrays, hash tables, trees),
and sometimes it’s the techniques they use (recursion, decision trees, distributed
algorithms). At a high level, these groupings may seem arbitrary, but when you
read about the algorithms, you'll see that they fit together.

In addition to those categories, many algorithms have underlying themes that
cross chapter boundaries. For example, tree algorithms (Chapters 10, 11, and 12)
tend to be highly recursive (Chapter 9). Linked lists (Chapter 3) can be used to
build arrays (Chapter 4), hash tables (Chapter 8), stacks (Chapter 5), and queues
(Chapter 5). The ideas of references and pointers are used to build linked lists
(Chapter 3), trees (Chapters 10, 11, and 12), and networks (Chapters 13 and 14). As
you read, watch for these common threads. Appendix A summarizes common
strategies programs use to make these ideas easier to follow.

Algorithms and Data Structures

An algorithm is a recipe for performing a certain task. A data structure is a way
of arranging data to make solving a particular problem easier. A data structure
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could be a way of arranging values in an array, a linked list that connects items
in a certain pattern, a tree, a graph, a network, or something even more exotic.

Algorithms are often closely tied to data structures. For example, the edit
distance algorithm described in Chapter 15, “String Algorithms,” uses a net-
work to determine how similar two strings are. The algorithm is tied closely to
the network and won't work without it. Conversely, the algorithm builds and
uses the network, so the network isn't useful (or really even built) without the
algorithm.

Often an algorithm says, “Build a certain data structure and then use itin a
certain way.” The algorithm can’t exist without the data structure, and there’s no
point in building the data structure if you don’t plan to use it with the algorithm.

Pseudocode

To make the algorithms described in this book as useful as possible, they are
first described in intuitive English terms. From this high-level explanation, you
should be able to implement the algorithm in most programming languages.

Often, however, an algorithm’s implementation contains petty details that
can make implementation hard. To make handling those details easier, many
algorithms are also described in pseudocode. Pseudocode is text that is a lot
like a programming language but is not really a programming language. The
idea is to give you the structure and details you would need to implement the
algorithm in code without tying the algorithm to a particular programming
language. Ideally, you can translate the pseudocode into actual code to run on
your computer.

The following snippet shows an example of pseudocode for an algorithm that
calculates the greatest common divisor (GCD) of two integers:

// Find the greatest common divisor of a and b.
// GCD(a, b) = GCD(b, a Mod b).
Integer: Gcd(Integer: a, Integer: b)
While (b != 0)
// Calculate the remainder.
Integer: remainder = a Mod b

// Calculate GCD (b, remainder).

a=>,
b = remainder
End While

// GCD(a, 0) is a.
Return a
End Gcd
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THE MOD OPERATOR

The modulus operator, which is written as Mod in the pseudocode, means the
remainder after division. For example, “13 Mod 4” is 1 because 13 divided by 4 is 3 with
aremainder of 1.

The statement “13 Mod 4” is usually pronounced “13 mod 4” or “13 modulo 4.”

The pseudocode starts with a comment. Comments begin with the characters
// and extend to the end of the line.

The first actual line of code is the algorithm’s declaration. This algorithm is
called Gcd and returns an integer result. It takes two parameters named a and
b, both of which are integers.

[ AN Chunks of code that perform a task, optionally returning a result, are vari-
ously called routines, subroutines, methods, procedures, subprocedures, or functions.

The code after the declaration is indented to show that it is part of the method.
The first line in the method’s body begins a while loop. The code indented below
the while statement is executed as long as the condition in the while statement
remains true.

The while loop ends with an End while statement. This statement isn’t strictly
necessary, because the indentation shows where the loop ends, but it provides
a reminder of what kind of block of statements is ending.

The method exits at the Return statement. This algorithm returns a value, so
this Return statement indicates which value the algorithm should return. If the
algorithm doesn’t return any value, such as if its purpose is to arrange values
or build a data structure, the Return statement isn’t followed by a return value, or
the method may have no rReturn statement.

The code in this example is fairly close to actual programming code. Other
examples may contain instructions or values described in English. In those
cases, the instructions are enclosed in angle brackets (<>) to indicate that you
need to translate the English instructions into program code.

Normally, when a parameter or variable is declared (in the Gecd algorithm,
this includes the parameters a and b and the variable remainder), its data type is
given before it followed by a colon, as in Integer: remainder. The data type may
be omitted for simple integer looping variables, as in For i = 1 To 10.

One other feature that is different from some programming languages is that
a pseudocode For loop may include a step statement indicating the value by
which the looping variable is changed after each trip through the loop. A For
loop ends with a Next i statement (where i is the looping variable) to remind
you which loop is ending.
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5

For example, consider the following pseudocode:

For i = 100 To 0O Step -5
// Do something...
Next i

This code is equivalent to the following C# code:

for (int i = 100; 1 >= 0; 1 -= 5)

{

// Do something. ..

}

Both of those are equivalent to the following Python code:

for i in range (100, -1, -5):
# Do something...

The pseudocode used in this book uses If-Then-Else statements, Case state-
ments, and other statements as needed. These should be familiar to you from
your knowledge of real programming languages. Anything else that the code
needs is spelled out in English.

Many algorithms in this book are written as methods or functions that return
aresult. The method’s declaration begins with the result’s data type. If a method
performs some task and doesn’t return a result, it has no data type.

The following pseudocode contains two methods:

// Return twice the input value.

Integer: Doublelt (Integer: value)
Return 2 * value

End DoubleIt

// The following method does something and doesn't return a value.
DoSomething (Integer: valuesl|])
// Some code here.

End DoSomething

The DoubleIt method takes an integer as a parameter and returns an integer.
The code doubles the input value and returns the result.

The Dosomething method takes as a parameter an array of integers named values.
It performs a task and doesn’t return a result. For example, it might randomize
or sort the items in the array. (Note that this book assumes that arrays start with
the index 0. For example, an array containing three items has indices 0, 1, and 2.)

Pseudocode should be intuitive and easy to understand, but if you find
something that doesn’t make sense to you, feel free to post a question on the
book’s discussion forum at www.wiley.com/go/essentialalgorithms or e-mail
me at RodStephens@CsharpHelper.com. I'll point you in the right direction.
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One problem with pseudocode is that it has no compiler to detect errors. As a
check of the basic algorithm and to give you some actual code to use for a refer-
ence, C# and Python implementations of many of the algorithms and exercises
are available for download on the book’s website.

Algorithm Features

A good algorithm must have three features: correctness, maintainability, and
efficiency.

Obviously, if an algorithm doesn’t solve the problem for which it was designed,
it’s not much use. If it doesn’t produce correct answers, there’s little point in
using it.

Interestingly, some algorithms produce correct answers only some of
the time but are still useful. For example, an algorithm may be able to give you
some information with a certain probability. In that case, you may be able to rerun
the algorithm many times to increase your confidence that the answer is correct.
Fermat’s primality test, described in Chapter 2, “Numerical Algorithms,” is this kind of
algorithm.

If an algorithm isn’t maintainable, it’s dangerous to use in a program. If an
algorithm is simple, intuitive, and elegant, you can be confident that it is pro-
ducing correct results and you can fix it if it doesn’t. If the algorithm is intricate,
confusing, and convoluted, you may have a lot of trouble implementing it, and
you will have even more trouble fixing it if a bug arises. If it’s hard to under-
stand, how can you know if it is producing correct results?

This doesn’t mean that it isn’t worth studying confusing and difficult algo-
rithms. Even if you have trouble implementing an algorithm, you may learn a lot in the
attempt. Over time, your algorithmic intuition and skill will increase, so algorithms
you once thought were confusing will seem easier to handle. You must always test all
algorithms thoroughly, however, to make sure that they are producing correct results.

Most developers spend a lot of effort on efficiency, and efficiency is certainly
important. If an algorithm produces a correct result and is simple to implement
and debug, it’s still not much use if it takes seven years to finish or if it requires
more memory than a computer can possibly hold.

To study an algorithm’s performance, computer scientists ask how its
performance changes as the size of the problem changes. If you double the
number of values the algorithm is processing, does the run time double? Does
it increase by a factor of 4? Does it increase exponentially so that it suddenly
takes years to finish?
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You can ask the same questions about memory usage or any other resource
that the algorithm requires. If you double the size of the problem, does the
amount of memory required double?

You can also ask the same questions with respect to the algorithm’s performance
under different circumstances. What is the algorithm’s worst-case performance?
How likely is the worst case to occur? If you run the algorithm on a large set of
random data, what is its average-case performance?

To get a feeling for how problem size relates to performance, computer scien-
tists use Big O notation, which is described in the following section.

Big O Notation

Big O notation uses a function to describe how the algorithm’s worst-case
performance relates to the problem size as the size grows very large. (This is
sometimes called the program’s asymptotic performance.) The function is written
within parentheses after a capital letter O.

For example, O(N?) means that an algorithm’s run time (or memory usage or
whatever you're measuring) increases as the square of the number of inputs N.
If you double the number of inputs, the run time increases by roughly a factor
of 4. Similarly, if you triple the number of inputs, the run time increases by a
factor of 9.

‘[ AN Often O(N?) is pronounced “order N squared.” For example, you might
say, “The quicksort algorithm described in Chapter 6, ‘Sorting,” has a worst-case
performance of order N squared.”

There are five basic rules for calculating an algorithm’s Big O notation.

1. Ifanalgorithm performs a certain sequence of steps f(IN) times for a math-
ematical function f, then it takes O(f(N)) steps.

2. If an algorithm performs an operation that takes O(f(N)) steps and then
performs a second operation that takes O(g(IN)) steps for functions f and
g, then the algorithm’s total performance is O(f(N) + g(N)).

3. If an algorithm takes O(f(N) + g(IN)) time and the function f(N) is greater
than g(N) for large N, then the algorithm’s performance can be simplified
t0 O(f(N))

4. If an algorithm performs an operation that takes O(f(N)) steps, and for

every step in that operation it performs another O(g(N)) steps, then the
algorithm’s total performance is O(f(N) x g(N)).

5. Ignore constant multiples. If C is a constant, O(C x f(N)) is the same as
O(f(N)), and O(f(C x N)) is the same as O(f(N)).
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These rules may seem a bit formal, with all that talk of f(N) and g(N), but
they're fairly easy to apply. If they seem confusing, a few examples should make
them easier to understand.

Rule 1

If an algorithm performs a certain sequence of steps f(N) times for a mathematical
function f, then it takes O(f(IN)) steps.

Consider the following algorithm, written in pseudocode, for finding the
largest integer in an array:

Integer: FindLargest (Integer: array/[])
Integer: largest = array|[0]
For i = 1 To <largest index>
If (array[i] > largest) Then largest = array[i]
Next i
Return largest
End FindLargest

The FindLargest algorithm takes as a parameter an array of integers and
returns an integer result. It starts by setting the variable largest equal to the
first value in the array.

It then loops through the remaining values in the array, comparing each to
largest. If it finds a value that is larger than largest, the program sets l1arg-
est equal to that value.

After it finishes the loop, the algorithm returns l1argest.

This algorithm examines each of the N items in the array once, so it has O(N)
performance.

\[o AN Often algorithms spend most of their time in loops. There’s no way an
algorithm can execute more than a few steps with a fixed number of code lines unless
it contains some sort of loop.

Study an algorithm’s loops to figure out how much time it takes.

Rule 2

If an algorithm performs an operation that takes O(f(N)) steps and then per-
forms a second operation that takes O(g(N)) steps for functions f and g, then
the algorithm’s total performance is O(f(N) + g(IN)).

If you look again at the FindLargest algorithm shown in the preceding sec-
tion, you'll see that a few steps are not actually inside the loop. The following
pseudocode shows the same steps, with their run time order shown to the right
in comments:
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Integer: FindLargest (Integer: arrayl[])

Integer: largest = array[0] // 0(1)

For i = 1 To <largest index> // O(N)
If (arrayl[i] > largest) Then largest = arrayl[i]

Next i

Return largest // 0O(1)

End FindLargest

This algorithm performs one setup step before it enters its loop and then
performs one more step after it finishes the loop. Both of those steps have
performance O(1) (theyre each just a single step), so the total run time for the
algorithm is really O(1+ N +1). You can use normal algebra to combine terms
to rewrite this as O(2 + N).

Rule 3

If an algorithm takes O(f(N) + g(N)) time and the function f(N) is greater than
g(N) for large N, then the algorithm’s performance can be simplified to Q(f(N)).

The preceding example showed that the FindLargest algorithm has run time
O(2+N). When N grows large, the function N is larger than the constant value
2,50 O(2+ N) simplifies to O(N).

Ignoring the smaller function lets you focus on the algorithm’s asymptotic
behavior as the problem size becomes very large. It also lets you ignore relatively
small setup and cleanup tasks. If an algorithm spends some time building
simple data structures and otherwise getting ready to perform a big computa-
tion, you can ignore the setup time as long as it’s small compared to the length
of the main calculation.

Rule 4

If an algorithm performs an operation that takes O(f(N)) steps, and for every
step in that operation it performs another O(g(N)) steps, then the algorithm’s
total performance is O(f(N) x g(N)).

Consider the following algorithm that determines whether an array contains
any duplicate items. (Note that this isn’t the most efficient way to detect duplicates.)

Boolean: ContainsDuplicates (Integer: arrayl[])
// Loop over all of the array's items.

For 1 = 0 To <largest index>
For j = 0 To <largest index>
// See if these two items are duplicates.
If (i != j) Then
If (array[i] == array[j]) Then Return True
End If
Next j

Next i
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// If we get to this point, there are no duplicates.
Return False
End ContainsDuplicates

This algorithm contains two nested loops. The outer loop iterates over all the
array’s N items, so it takes O(N) steps.

For each trip through the outer loop, the inner loop also iterates over the N
items in the array, so it also takes O(N) steps.

Because one loop is nested inside the other, the combined performance is

O(N xN) = O(N?)-

Rule 5

Ignore constant multiples. If C is a constant, O(C x f(N)) is the same as O(f(N)),
and O(f(C x N)) is the same as O(f(N)).

If you look again at the containsDuplicates algorithm shown in the preceding
section, you'll see that the inner loop actually performs one or two steps. It per-
forms an 1f test to see if the indices i and j are the same. If they are different,
it compares array[i]l and array[jl. It may also return the value True.

If you ignore the extra step for the Return statement (it happens at most only
once) and you assume that the algorithm performs both of the 1f statements
(as it does most of the time), then the inner loop takes O(2 x N) steps. Therefore,
the algorithm’s total performance is O(N x 2 x N) = O(2x N?).

Rule 5 lets you ignore the factor of 2, so the run time is O(N?).

This rule really goes back to the purpose of Big O notation. The idea is to get
a feeling for the algorithm’s behavior as N increases. In this case, suppose that
you increase N by a factor of 2.

If you plug the value 2x N into the equation 2x N?, you get the following:

2><(2><N)2=2><4><N2=8><N2

This is four times the original value 2x N? so the run time has increased by a
factor of 4.

Now try the same thing with the run time simplified by rule 5 to O(N?).
Plugging 2 x N into this equation gives the following:

(2xN)’ =4xN?

This is four times the original value N?, so this also means that the run time
has increased by a factor of 4.

Whether you use the formula 2 x N”or just N?, the result is the same: increasing
the size of the problem by a factor of 2 increases the run time by a factor of 4. The
important thing here isn't the constant; it’s the fact that the run time increases
as the square of the number of inputs N.

\[o XN It'simportant to remember that Big O notation is just intended to give you
an idea of an algorithm’s theoretical behavior. Your results in practice may be different.
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For example, suppose an algorithm'’s performance is O(N), but if you don’t ignore the
constants, the actual number of steps executed is something like 100,000,000 + N.
Unless N is really big, you may not be able to safely ignore the constant.

Common Run Time Functions

When you study the run time of algorithms, some functions occur frequently. The
following sections give some examples of a few of the most common functions.
They also give you some perspective so that you'll know, for example, whether
an algorithm with O(N*) performance is reasonable.

1

An algorithm with O(1) performance takes a constant amount of time no matter
how big the problem is. These sorts of algorithms tend to perform relatively
trivial tasks because they cannot even look at all of the inputs in O(1) time.
For example, at one point the quicksort algorithm needs to pick a number
that is in an array of values. Ideally, that number should be somewhere in the
middle of all of the values in the array, but there’s no easy way to tell which
number might fall nicely in the middle. (For example, if the numbers are evenly
distributed between 1 and 100, 50 would make a good dividing number.) The
following algorithm shows one common approach for solving this problem:

Integer: DividingPoint (Integer: arrayl[])
Integer: numberl = array[0]
Integer: number2 = arrayl[<last index of array>]
Integer: number3 = array([<last index of array> / 2]

If (<numberl is between number2 and number3>) Then Return numberl
If (<number2 is between numberl and number3>) Then Return number2
Return number3

End MiddleValue

This algorithm picks the values at the beginning, end, and middle of the
array; compares them; and returns whichever item lies between the other two.
This may not be the best item to pick out of the whole array, but there’s a decent
chance that it’s not too terrible a choice.

Because this algorithm performs only a few fixed steps, it has O(1) performance
and its run time is independent of the number of inputs N. (Of course, this algorithm
doesn’t really stand alone. It’s just a small part of a more complicated algorithm.)

LogN

An algorithm with O(log N) performance typically divides the number of items
it must consider by a fixed fraction at every step.
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For example, Figure 1.1 shows a sorted complete binary tree. It’s a binary tree
because every node has at most two branches. It’s a complete tree because every
level (except possibly the last) is completely full, and all the nodes in the last
level are grouped on the left side. It’s a sorted tree because every node’s value is
at least as large as its left child and no larger than its right child. (Chapter 10,
“Trees,” has a lot more to say about trees.)

Figure 1.1: Searching a full binary tree takes O(log N) steps.

LOGARITHMS

The logarithm of a number in a certain log base is the power to which the base must be
raised to get a certain result. For example, log,(8) is 3 because 23 = 8. Here, 2 is the log base.

Often in algorithms the base is 2 because the inputs are being divided into two
groups repeatedly. As you'll see shortly, the log base isn’t really important in Big O
notation, so it is usually omitted.

The following pseudocode shows one way you might search the tree shown
in Figure 1.1 to find a particular item:

Node: FindItem(Integer: target value)
Node: test node = <root of tree>

Do Forever
// If we fell off the tree. The value isn't present.
If (test_node == null) Then Return null

If (target value == test node.Value) Then
// test _node holds the target value.
// This is the node we want.
Return test_node
Else If (target_value < test_node.Value) Then
// Move to the left child.
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test_node = test node.LeftChild
Else
// Move to the right child.
test node = test node.RightChild
End If
End Do
End FindItem

Chapter 10, “Trees,” covers tree algorithms in detail, but you should be able
to get the gist of the algorithm from the following discussion.

The algorithm declares and initializes the variable test_node so that it points
to the root at the top of the tree. (Traditionally, trees in computer programs are
drawn with the root at the top, unlike real trees.) It then enters an infinite loop.

If test_node is null, then the target value isn’t in the tree, so the algorithm
returns null.

‘[ AN The valuenull is a special value that you can assign to a variable that
should normally point to an object such as a node in a tree. The value null means
“This variable doesn’t point to anything.”

If test_node holds the target value, then test_node is the node that youre
seeking, so the algorithm returns it.

If target_value is less than the value in test_node, then the algorithm sets
test_node equal to its left child. (If test_node is at the bottom of the tree, its
Leftchild value is null, and the algorithm handles the situation the next time
it goes through the loop.)

If test_node’s value does not equal target_value and is not less than target_
value, then it must be greater than target_value. In that case, the algorithm
sets test_node equal to its right child. (Again, if test_node is at the bottom of
the tree, its Rightchild is null, and the algorithm handles the situation the next
time it goes through the loop.)

The variable test_node moves down through the tree and eventually either
finds the target value or falls off the tree when test_node is null.

Understanding this algorithm’s performance becomes a question of how far
down the tree test_node must move before it either finds target value or it
falls off the tree.

Sometimes the algorithm gets lucky and finds the target value right away. If
the target value is 7 in Figure 1.1, the algorithm finds it in one step and stops.
Even if the target value isn't at the root node—for example, if it’s 4—the program
might have to check only a small piece of the tree before stopping.

In the worst case, however, the algorithm needs to search the tree from top
to bottom.

In fact, roughly half the tree’s nodes are the nodes at the bottom that have
missing children. If the tree were a full complete tree, with every node having
exactly zero or two children, then the bottom level would hold exactly half the
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tree’s nodes. That means if you search for randomly chosen values in the tree, the
algorithm will have to travel through most of the tree’s height most of the time.

Now the question is, “How tall is the tree?” A full complete binary tree of
height H has 2"*! —1nodes. To look at it from the other direction, a full complete
binary tree that contains N nodes has heightlog, (N + 1) — 1 Because the algorithm
searches the tree from top to bottom in the worst (and average) case and because
the tree has a height of roughly log, (N), the algorithm runs in O(log, (N)) time.

At this point, a curious feature of logarithms comes into play. You can convert
a logarithm from base A to base B using this formula:

log, (x) =log, (x) /log, (B)
Setting B = 2, you can use this formula to convert the value O(log,(N) into any
other log base A:

O(log2 (N)) = O(logA (N) /log (2))

The value 1/1log, (2) is a constant for any given A, and Big O notation ignores
constant multiples, so that means O(log,(N)) is the same as O(log , (N)) for any
log base A. For that reason, this run time is often written O(log N) with no indi-
cation of the base (and no parentheses to make it look less cluttered).

This algorithm is typical of many algorithms that have O(log N) performance.
At each step, it divides the number of items that it must consider into two,
roughly equal-sized groups.

Because the log base doesn’t matter in Big O notation, it doesn’t matter which
fraction the algorithm uses to divide the items that it is considering. This example
divides the number of items in half at each step, which is common for many
logarithmic algorithms. But it would still have O(log N) performance if it divided
the remaining items by a factor of 1/10th and made lots of progress at each step
or if it divided the items by a factor of 9/10ths and made relatively little progress.

The logarithmic function log(N) grows relatively slowly as N increases, so
algorithms with O(log N) performance generally are fast enough to be useful.

SqrtN

Some algorithms have O(sqrt(N)) performance (where sqrt is the square root
function), but they’re not common, and they are not covered in this book. This
function grows very slowly but a bit faster than log(IN).

N

The FindLargest algorithm described in the earlier section “Rule 1” has O(IN)
performance. See that section for an explanation of why it has O(N) performance.

The function N grows more quickly than log(N) and sqrt(N) but still not
very quickly, so most algorithms that have O(N) performance work quite well
in practice.
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Nlog N

Suppose an algorithm loops over all of the items in its problem set and then,
for each loop, performs some sort of O(log N) calculation on that item. In that
case, the algorithm has O(N x log N) or O(N log N) performance.

Alternatively, an algorithm might perform some sort of O(log N) operation
and, for each step in it, do something to each of the items in the problem.

For example, suppose that you have built a sorted tree containing N items
as described earlier. You also have an array of N values and you want to know
which values in the array are also in the tree.

One approach would be to loop through the values in the array. For each
value, you could use the method described earlier to search the tree for that
value. The algorithm examines N items, and for each it performs log(N) steps
so the total run time is O(N log N).

Many sorting algorithms that work by comparing items to each other have
an O(N log N) run time. In fact, it can be proven that any algorithm that sorts
by comparing items must use at least O(N log N) steps, so this is the best you
can do, at least in Big O notation. Some of those algorithms are still faster than
others because of the constants that Big O notation ignores. Some algorithms
that don’t use comparisons can sort even more quickly. Chapter 6 talks more
about algorithms with various run times.

N2

An algorithm that loops over all of its inputs and then for each input loops over
the inputs again has O(N?) performance. For example, the containsbuplicates
algorithm described earlier in the section “Rule 4” runs in O(N?) time. See that
section for a description and analysis of the algorithm.

Other powers of N, such as O(N*) and O(N*), are possible and are obviously
slower than O(N?).

An algorithm is said to have polynomial run time if its run time involves any
polynomial involving N. O(N), O(N?), O(N°), and even O(N*") are all poly-
nomial run times.

Polynomial run times are important because in some sense these problems
can still be solved. The exponential and factorial run times described next grow
extremely quickly, so algorithms that have those run times are practical for only
very small numbers of inputs.

2N

Exponential functions such as 2" grow extremely quickly, so they are practical
for only small problems. Typically algorithms with these run times look for
optimal selections of the inputs.
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For example, in the knapsack problem, you are given a set of objects that each
has a weight and a value. You also have a knapsack that can hold a certain
amount of weight. You can put a few heavy items in the knapsack, or you can
put lots of lighter items in it. The challenge is to select the items with the greatest
total value that fit in the knapsack.

This may seem like an easy problem, but the only known algorithms for find-
ing the best possible solution essentially require you to examine every possible
combination of items.

To see how many combinations are possible, note that each item is either in the
knapsack or out of it, so each item has two possibilities. If you multiply the number
of possibilities for the items, you get 2x 2x...x 2 = 2" total possible selections.

Sometimes, you don’t have to try every possible combination. For example,
if adding the first item fills the knapsack completely, you don’t need to add any
selections that include the first item plus another item. In general, however, you
cannot exclude enough possibilities to narrow the search significantly.

For problems with exponential run times, you often need to use heuristics—
algorithms that usually produce good results but that you cannot guarantee
will produce the best possible results.

N!

The factorial function, written N! and pronounced “N factorial,” is defined for
integers greater than 0 by N!=1x2x3x ... xN. This function grows much
more quickly than even the exponential function 2N, Typically, algorithms with
factorial run times look for an optimal arrangement of the inputs.

For example, in the traveling salesman problem (TSP), you are given a list of
cities. The goal is to find a route that visits every city exactly once and returns
to the starting point while minimizing the total distance traveled.

This isn't too hard with just a few cities, but with many cities the problem
becomes challenging. The most obvious approach is to try every possible arrange-
ment of cities. Following that algorithm, you can pick N possible cities for the
first city. After making that selection, you have N —1 possible cities to visit next.
Then there are N — 2 possible third cities, and so forth, so the total number of
arrangements is Nx (N -1)x (N -2)x...x1=N!

Visualizing Functions

Table 1.1 shows a few values for the run time functions described in the pre-
ceding sections so that you can see how quickly these functions grow.

Figure 1.2 shows a graph of these functions. Some of the functions have been
scaled so that they fit better on the graph, but you can easily see which grows
fastest when x grows large. Even dividing by 100 doesn’t keep the factorial
function on the graph for very long.
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Table 1.1: Function Values for Various Inputs

[\ log,(N) sqrt(N) N N2 2N N!
1 0.00 1.00 1 1.00 2 1
5 2.32 2.23 5 25 32 625
10 3.32 3.16 10 100 1,024 1.0x10°
15 3.90 3.87 15 225 33x10* 2.9x10"
20 4.32 4.47 20 400 1.0x10° 524x10%
50 5.64 7.07 50 2,500 1.1x10”  1.8x10%
100 6.64 10.00 100 1x10*  13x10*  1.0x10"
1000 9.96 31.62 1,000 1x10°  1.1x10°" —
10000 13.28 100.00 1x10* 1108 — —
100000 16.60 316.22 1x10° 1x10"°  — —
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Figure 1.2: The log, sqgrt, linear, and even polynomial functions grow at a reasonable pace, but
exponential and factorial functions grow incredibly quickly.
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Practical Considerations

Although theoretical behavior is important in understanding an algorithm’s run
time behavior, practical considerations also play an important role in real-world
performance for several reasons.

The analysis of an algorithm typically considers all steps as taking the same
amount of time even though that may not be the case. Creating and destroying
new objects, for example, may take much longer than moving integer values
from one part of an array to another. In that case, an algorithm that uses arrays
may outperform one that uses lots of objects even though the second algorithm
does better in Big O notation.

Many programming environments also provide access to operating system
functions that are more efficient than basic algorithmic techniques. For example,
part of the insertionsort algorithm requires you to move some of the items in an
array down one position so that you can insert a new item before them. Thisis a
fairly slow process and contributes greatly to the algorithm’s O(N?) performance.
However, many programs can use a function (such as Rt 1MoveMemory in .NET
programs and MoveMemory in Windows C++ programs) that moves blocks of
memory all at once. Instead of walking through the array, moving items one at
a time, a program can call these functions to move the whole set of array values
at once, making the program much faster.

Just because an algorithm has a certain theoretical asymptotic performance
doesn’t mean that you can’t take advantage of whatever tools your programming
environment offers to improve performance. Some programming environments
also provide tools that can perform the same tasks as some of the algorithms
described in this book. For example, many libraries include sorting routines that
do a very good job of sorting arrays. Microsoft’s NET Framework, used by C#
and Visual Basic, includes an Array.sort method that uses an implementation
that you are unlikely to beat using your own code—at least in general. Similarly,
Python lists have a sort method that sorts the items in the list.

For specific problems, you can still sometimes beat built-in sorting methods
if you have extra information about the data. (For example, read about count-
ingsort in Chapter 6.)

Special-purpose libraries may also be available that can help you with certain
tasks. For example, you may be able to use a network analysis library instead
of writing your own network tools. Similarly, database tools may save you a
lot of work building trees and sorting things. You may get better performance
building your own balanced trees, but using a database is a lot less work.

If your programming tools include functions that perform the tasks of one of
these algorithms, by all means use them. You may get better performance than
you could achieve on your own, and you'll certainly have less debugging to do.
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Finally, the best algorithm isn't always the one that is fastest for very large
problems. If you're sorting a huge list of numbers, quicksort usually provides
good performance. If youre sorting only three numbers, a simple series of 1£
statements will probably give better performance and will be a lot simpler. Even
if quicksort does give better performance, does it matter whether the program
finishes sorting in 1 millisecond or 2? Unless you plan to perform the sort many
times, you may be better off going with the simpler algorithm that’s easier to
debug and maintain rather than the complicated one to save 1 millisecond.

If you use libraries such as those described in the preceding paragraphs,
you may not need to code all of these algorithms yourself, but it’s still useful
to understand how the algorithms work. If you understand the algorithms,
you can take better advantage of the tools that implement them even if you
don’t write them. For example, if you know that relational databases typically
use B-trees (and similar trees) to store their indices, you'll have a better under-
standing of how important pre-allocation and fill factors are. If you understand
quicksort, you'll know why some people think the NET Framework’s array
.sort method is not cryptographically secure. (This is discussed in the section
“Using Quicksort” in Chapter 6.)

Understanding the algorithms also lets you apply them to other situations.
You may not need to use mergesort, but you may be able to use its divide-and-
conquer approach to solve some other problem on multiple processors.

Summary

To get the most out of an algorithm, you not only need to understand how it
works, but you also need to understand its performance characteristics. This
chapter explained Big O notation, which you can use to study an algorithm’s
performance. If you know an algorithm’s Big O run time behavior, you can
estimate how much the run time will change if you change the problem size.

This chapter also described some algorithmic situations that lead to common
run time functions. Figure 1.2 showed graphs of these equations so that you can
get a feel for just how quickly each grows as the problem size increases. As a
rule of thumb, algorithms that run in polynomial time are often fast enough that
you can run them for moderately large problems. Algorithms with exponential
or factorial run times, however, grow extremely quickly as the problem size
increases, so you can run them only with relatively small problem sizes.

Now that you have some understanding of how to analyze algorithm speeds,
you're ready to study some specific algorithms. The next chapter discusses
numerical algorithms. They tend not to require elaborate data structures, so
they usually are quite fast.
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Exercises

You can find the answers to these exercises in Appendix B. Asterisks indicate
particularly difficult problems.

1. The section “Rule 4” described a containsbuplicates algorithm that has
run time O(N?). Consider the following improved version of that
algorithm:

Boolean: ContainsDuplicates(Integer: arrayl[])
// Loop over all of the array's items except the last one.
For i = 0 To <largest index> - 1
// Loop over the items after item i.
For j = 1 + 1 To <largest index>
// See if these two items are duplicates.
If (arrayl[i] == arrayl[j]) Then Return True
Next j
Next i

// If we get to this point, there are no duplicates.
Return False
End ContainsDuplicates

What is the run time of this new version?

2. Table 1.1 showed the relationship between problem size N and various
run time functions. Another way to study that relationship is to look at
the largest problem size that a computer with a certain speed could execute
within a given amount of time.

For example, suppose a computer can execute 1 million algorithm steps
per second. Consider an algorithm that runs in O(N?) time. In one
hour, the computer could solve a problem where N =60,000 (because
60,000% = 3,600,000,000, which is the number of steps the computer can
execute in one hour).

Make a table showing the largest problem size N that this computer could
execute for each of the functions listed in Table 1.1 in one second, minute,
hour, day, week, and year.

3. Sometimes the constants that you ignore in Big O notation are important.
For example, suppose that you have two algorithms that can do the same
job. The first requires 1,500 x N steps, and the other requires 30 x N steps.
For what values of N would you choose each algorithm?

4. "Suppose you have two algorithms—one that uses N° /75 -N? / 4+ N +10
steps, and one that uses N /2 +8 steps. For what values of N would you
choose each algorithm?
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5. Suppose a program takes as inputs N letters and generates all possible

unordered pairs of the letters. For example, with inputs ABCD, the program
generates the combinations AB, AC, AD, BC, BD, and CD. (Here unordered
means that AB and BA count as the same pair.) What is the algorithm’s
run time?

. Suppose an algorithm with N inputs generates values for each unit square
on the surface of an N xN xN cube. What is the algorithm’s run time?

Suppose an algorithm with N inputs generates values for each unit cube
on the edges of an NxNxN cube, as shown in Figure 1.3. What is the
algorithm’s run time?

N=3
I
n=4 M B
.
1l |
I _{_/
N=5
—
||

Figure 1.3: This algorithm generates values for cubes on a cube’s “skeleton”

. "Suppose you have an algorithm that, for N inputs, generates a value for
each small cube in the shapes shown in Figure 1.4. Assuming that the
obvious hidden cubes are present so that the shapes in the figure are not
hollow, what is the algorithm’s run time?

. Can you have an algorithm without a data structure? Can you have a data
structure without an algorithm?
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Figure 1.4: This algorithm adds one more level to the shape as N increases.

10. Consider the following two algorithms for painting a fence:

Algorithml ()
For i = 0 To <number of boards in fence> - 1

<paint board number ix>
Next i
End Algorithml

Algorithm2 (Integer: first board, Integer: last board)
If (first_board == last_board) Then
// There's only one board. Just paint it.
<paint board number first boards>

Else
// There's more than one board. Divide the boards

// into two groups and recursively paint them.
Integer: middle board = (first board + last_board) / 2
Algorithm2 (first_board, middle board)
Algorithm2 (middle_board + 1, last_board)
End If
End Algorithm2

What are the run times for these two algorithms, where N is the number
of boards in the fence? Which algorithm is better?

11. "You can define Fibonacci numbers recursively by the following rules:

Fibonacci(0) = 1
Fibonacci(1l) = 1
Fibonacci (n) = Fibonacci(n - 1) + Fibonacci(n - 2)

The Fibonacci sequence starts with the values 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.
How does the Fibonacci function compare to the run time functions shown

in Figure 1.2?



Numerical Algorithms

Numerical algorithms calculate numbers. They perform such tasks as ran-
domizing values, breaking numbers into their prime factors, finding greatest
common divisors, and computing geometric areas.

All of these algorithms are useful occasionally, but they also demonstrate
useful algorithmic techniques such as adaptive algorithms, Monte Carlo simu-
lation, and using tables to store intermediate results.

Randomizing Data

Randomization plays an important role in many applications. It lets a program
simulate random processes, test algorithms to see how they behave with random
inputs, and search for solutions to difficult problems. Monte Carlo integration,
which is described in the later section “Performing Numerical Integration,”
uses randomly selected points to estimate the size of a complex geometric area.

The first step in any randomized algorithm is generating random numbers.

Generating Random Values

Even though many programmers talk about “random” number generators, any
algorithm used by a computer to produce numbers is not truly random. If you
knew the details of the algorithm and its internal state, you could correctly
predict the “random” numbers it generates.

Essential Algorithms: A Practical Approach to Computer Algorithms Using Python® and C#, First Edition.

Rod Stephens.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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To get truly unpredictable randomness, you need to use a source other than
a computer program. For example, you could use a radiation detector that
measures particles coming out of a radioactive sample to generate random
numbers. Because no one can predict exactly when the particles will emerge,
this is truly random.

Other possible sources of true randomness include rolling dice, analyzing static
in radio waves, and studying Brownian motion. Random.org measures atmo-
spheric noise to generate random numbers. (You can go to https://www.random
.org to get true random numbers.) You may also be able to use a hardware random
number generator (HRNG). Search the Internet or look at https://en.wikipedia
.org/wiki/Hardware_random_number generator for more information on those.

Unfortunately, because these sorts of true random-number generators (TRNGs) are
relatively complicated and slow, most applications use a faster pseudorandom number
generator (PRNG) instead. For many applications, if the numbers are in some sense
“random enough,” a program can still make use of them and get good results.

Generating Values

One simple and common method of creating pseudorandom numbers is a linear
congruential generator, which uses the following relationship to generate numbers:

X, =(AxX+B)Mod M

Here A, B, and M are constants.

The value X, initializes the generator so that different values for X, produce
different sequences of numbers. A value that is used to initialize the pseudo-
random number generator, such as X, in this case, is called the seed.

Because all the values in the number sequence are taken modulo M, after at
most M numbers, the generator produces a number it produced before, and the
sequence of numbers repeats from that point.

As a small example, suppose A =7, B=5,and M =11. If you start with X, =0,
the previous equation gives you the following sequence of numbers:

X, =0

X; =(7x0+5)Mod 11=5

X, =(7x5+5)Mod 11 =40 Mod11=7
X; =(7x7 +5)Mod 11 =54 Mod11=10
X, =(7x10+5)Mod 11=75Mod11=9
X5 =(7x9+5)Mod 11 =68 Mod11=2
X =(7x2+5)Mod 11=19Mod11=8
X, =(7x8+5)Mod 11=61Mod11=6
Xs =(7x6+5)Mod 11 =47 Mod11=3
Xy =(7x3+5)Mod 11=26 Mod11=4
X =(7x4+5)Mod 11=33Mod11=0
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Because X,, =X, =0, the sequence repeats.

The values 0, 5,7, 10,9, 2, 8, 6, 3, 4 appear to be fairly random. But now that you
know the method that the program uses to generate the numbers, if someone tells
you the method’s current number, you can correctly predict those that follow.

Some PRNG algorithms use multiple linear congruential generators with dif-
ferent constants and then select from among the values generated at each step
to make the numbers seem more random and to increase the sequence’s repeat
period. That can make programs produce more random-seeming results, but
those methods are still not truly random.

Most programming languages have built-in PRNG methods that you can
use instead of writing your own. Those methods generally are reasonably fast and
produce very long sequences of numbers before they repeat, so for most programs
you can simply use them instead of writing your own.

One feature of PRNGs that is sometimes an advantage is that you can use a
particular seed value to generate the same sequence of “random” values repeat-
edly. That may seem like a disadvantage because it means that the numbers are
more predictable, but being able to use the same numbers repeatedly can make
some programs much easier to debug.

Being able to repeat sequences of numbers also lets some applications store
complex data in a very compact form. For example, suppose a program needs
to make an object perform a long and complicated pseudorandom walk on a
map. The program could generate the walk and save all of its coordinates so
that it can redraw the route later. Alternatively, it could just save a seed value.
Then, whenever it needs to draw the route, it can use the seed to reinitialize a
PRNG so that it produces the same walk each time.

The RandomTrees and random_trees programs, shown in Figure 2.1, use seed
values to represent random trees. Enter a seed and click Go to generate a random
tree. If two seed values differ by even 1, they produce very different results.

oZ RandomTrees — (m | -

Seed: D|| Go || Random |

Figure 2.1: Even slightly different seeds lead to very different random trees.



26

Chapter 2 » Numerical Algorithms

These programs use the seed value you enter to generate drawing parameters
such as the number of branches the tree creates at each step, the angle at which
the branches bend from their parent branch, and how much shorter each branch
is than its parent. You can download the programs from the book’s website to
see the details.

If you enter the same seed number twice, you produce the same tree both times.

CRYPTOGRAPHICALLY SECURE PRNGs

Any linear congruential generator has a period over which it repeats, and that makes it
unusable for cryptographic purposes.

For example, suppose you encrypt a message by using a PRNG to generate a value
for each letter in the message and then add that value to the letter. For example, the
letter A plus 3 would be D, because D is three letters after A in the alphabet. If you get
to Z, you wrap around to A. So, for example, Y +3=B.

This technique works quite well as long as the sequence of numbers is random, but
a linear congruential generator has a limited number of seed values. All you need to
do to crack the code is to try to decrypt the message with every possible seed value.
For each possible decryption, the program can look at the distribution of letters to
see whether the result looks like real text. If you picked the wrong seed, every letter
should appear with roughly equal frequency. If you guessed the right seed, some
letters, such as E and T, will appear much more often than other letters, such as Jand
X. If the letters are very unevenly distributed, you have probably guessed the seed.

This may seem like a lot of work, but on a modern computer it’s not very hard. If the
seed value is a 32-bit integer, only about 4 billion seed values are possible. A modern
computer can check every possible seed in just a few seconds or, at most, minutes.

A cryptographically secure pseudorandom number generator (CSPRNG) uses more
complicated algorithms to generate numbers that are harder to predict and to pro-
duce much longer sequences without entering a loop. They typically have much larger
seed values. A simple PRNG might use a 32-bit seed. A CSPRNG might use keys that are
3,072 bits long to initialize its algorithm.

CSPRNGs are interesting and very “random,” but they have a couple of disadvan-
tages. They are complicated, so they're slower than simpler algorithms. They also may
not allow you to do all of the initialization manually, so you may be unable to generate
arepeatable sequence easily. If you want to use the same sequence more than once,
you should use a simpler PRNG. Fortunately, most algorithms don’t need a CSPRNG,
so you can use a simpler algorithm.

Ensuring Fairness

Usually programs need to use a fair PRNG. A fair PRNG is one that produces
all of its possible outputs with the same probability. A PRNG that is unfair is
called a biased PRNG. For example, a coin that comes up heads two-thirds of
the time is biased.
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Many programming languages have methods that produce random numbers
within any desired range. But if you need to write the code to transform the
PRNG's values into a specific range, you need to be careful to do so in a fair way.

A linear congruential generator produces a number between 0 (inclusive)
and M (exclusive), where M is the modulus used in the generator’s equation:

X1 = (AxX, +B)Mod M

Usually, a program needs a random number within a range other than 0 to M.
An obvious but bad way to map a number produced by the generator into a
range Min to Max is to use the following equation:

result = Min + number Mod (Max —Min +1)
For example, to get a value between 1 and 100, you would calculate the following:

result =1+ number Mod (100 -1+1)

The problem with this is that it may make some results more likely than others.

To see why, consider a small example where M = 3, Min =0, and Max =1. If the
generator does a reasonable job, it produces the values 0, 1, and 2 with roughly
equal probability. If you plug these three values into the preceding equation,
you get the values shown in Table 2.1.

Table 2.1: PRNG Values and Results Mapped with a Modulus

GENERATOR VALUE RESULT

0 0

1 1

2 0

The result 0 occurs twice as often as the result 1 in Table 2.1, so the final result
is biased.

In a real PRNG where the modulus M is very large, the problem is smaller,
but it’s still present.

A better approach is to convert the value produced by the PRNG into a fraction
between 0 and 1 and then multiply that by the desired range, as in the follow-
ing formula:

result = Min + (number + M) x (Max — Min)

Another method of converting a pseudorandom value from one range to
another is simply to ignore any results that fall outside the desired range. In
the previous example, you would use the limited PRNG to generate a value
between 0 and 2. If you get a 2, which is outside the desired range, you ignore
it and get another number.
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For a slightly more realistic example, suppose that you want to give a cookie to
one of four friends, and you have a six-sided die. In that case, you could simply
roll the die repeatedly until you get a value between 1 and 4.

Getting Fairness from Biased Sources

Even if a PRNG is unfair, there may be a way to generate fair numbers. For
example, suppose that you think a coin is unfair. You don’t know the probabil-
ities of getting heads or tails, but you suspect the probabilities are not 0.5. In
that case, the following algorithm produces a fair coin flip:

Flip the biased coin twice.
If the result is {Heads, Tails}, return Heads.
If the result is {Tails, Heads}, return Tails.
If the result is something else, start over.

To see why this works, suppose the probability of the biased coin coming
up heads is P, and the probability of its coming up tails is 1 - P. Then the prob-
ability of getting heads followed by tails is P x(1-P). The probability of get-
ting tails followed by heads is (1 - P) x P. The two probabilities are the same,
so the probability of the algorithm returning heads or tails is the same, and
the result is fair.

If the biased coin gives you heads followed by heads or tails followed by
tails, you need to repeat the algorithm. If you are unlucky or the coin is very
biased, you may need to repeat the algorithm many times before you get a
fair result. For example, if P =0.9, 81% of the time the coin will give you heads
followed by heads, and 1% of the time it will give you tails followed by tails.
That means that you would fail to generate a fair flip and need to repeat the
algorithm roughly 82% of the time.

m Using a biased coin to produce fair coin flips is unlikely to be useful
in a real program. But it’s a good use of probabilities and would make an interesting

interview question, so it’s worth understanding.

You can use a similar technique to expand the range of a PRNG. For example,
suppose you want to give one of your five friends a cookie and your only source
of randomness is a fair coin. In that case, you can flip the coin three times
and treat the results as a binary number with heads representing 1 and tails
representing 0. For example, {heads, tails, heads} corresponds to the value 101
in binary, which is 5 in decimal. If you get a result that is outside the desired
range (in this example, {heads, heads, heads} gives the result 111 binary or 7
decimal, which is greater than the number of friends present), you discard the
result and try again.

In conclusion, the PRNG tools that come with your programming language
are probably good enough for most programs. If you need better randomness,
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you may need to look at CSPRNGs. Using a fair coin to pick a random number
between 1 and 100 or using a biased source of information to generate fair
numbers are situations that are more useful under weird circumstances or as
interview questions than they are in real life.

Randomizing Arrays

Randomizing the items in an array is a fairly common task in programs. In
fact, it’s so common that Python’s random module includes a shuffle method
that does exactly that.

For example, suppose a scheduling program needs to assign employees to
work shifts. If the program assigns the employees alphabetically, in the order in
which they appear in the database or in some other static order, the employee
who always gets assigned to the late-night shift will complain.

Some algorithms can also use randomness to prevent a worst-case situation.
For example, the standard quicksort algorithm usually performs well, but if
the values it must sort are initially already sorted, the algorithm performs ter-
ribly. One way to avoid that situation would be to randomize the values before
sorting them.

The following algorithm shows one way to randomize an array:

RandomizeArray (String: arrayl[])
Integer: max_ i = <Upper bound of array>
For i = 0 Tomax i - 1
// Pick the item for position i in the array.
Integer: j = <random number between i and max_i>
<Swap array[i] and arrayl[jl>
Next i
End RandomizeArray

This algorithm visits every position in the array once, so it has a run time of
O(N), which should be fast enough for most applications.

Note that repeating this algorithm does not make the array “more random.”
When you shuffle a deck of cards, items that start near each other tend to remain
near each other (although possibly less near each other), so you need to shuffle
several times to get a reasonably random result. This algorithm completely ran-
domizes the array in a single pass, so running it again just wastes time.

A task similar to randomizing an array is picking a certain number of random
items from an array without duplication.

A FAIRLY RANDOM ARRAY

One other important consideration of this algorithm is whether it produces a fair
arrangement. In other words, is the probability that an item ends up in any given posi-
tion the same for all positions? For example, it would be bad if the item that started in
the first position finished in the first position half of the time.
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I said in the introduction that this book doesn’t include long mathematical proofs,
so if you want you can skip the following discussion and take my word for it that the
randomness algorithm is fair. If you know some probability, however, you may find the
discussion interesting.

For a particular item in the array, consider the probability of its being placed
in position k. To be placed in position k, it must not have been placed in positions
1,2,3,...,k-1and then placed in positionk.

Define P, to be the probability of the item’s not being placed in positioni given
that it was not previously placed in positions 1,2, ...,i-1. Also, define P, to be the
probability of the item’s being placed in position k given that it was not placed in
positions 1,2,..., k-1. Then the total probability that the item is placed in positionk is
P XP,xPyx .. XP  XP,.

P is1/N,soP  is1-P,=1-1/N=(N-1)/N.

After the first item is assigned, N-1items could be assigned to position 2, soP, is
1/(N-1),andP,,is1-P,=1-1/(N-1)=(N-2)/(N-1).

More generally,P,=1/(N-(i-1))and
P,=1-P,=1-1/(N-(i-1))=(N-(i-1)-1)/(N-(i-1)) =(N-i)/(N-i+1).

If you multiply the probabilities together, P, xP_, <P, x ... xP , , xP, gives the
following equation:

3 N-(k-1) 1
Xooo X
—2° UN=(k=1)+1" (N-(k-1))

If you look at the equation, you'll see that the numerator of each term cancels out
with the denominator of the following term. When you make all the cancelations, the
equation simplifies to 1/N.

This means that the probability of the item being placed in position k is 1/N no
matter whatk is, so the arrangement is fair.

For example, suppose you're holding a drawing to give away five copies of
your book (something I do occasionally), and you get 100 entries. One way to
pick five names is to put the 100 names in an array, randomize it, and then give
the books to the first five names in the randomized list. The probability that
any particular name is in any of the five winning positions is the same, so the
drawing is fair.

Generating Nonuniform Distributions

Some programs need to generate pseudorandom numbers that are not uniformly
distributed. Often these programs simulate some other form of random-number
generation. For example, a program might want to generate numbers between
2 and 12 to simulate the roll of two six-sided dice.
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You can't simply pick pseudorandom numbers between 2 and 12, because
you won'’t have the same probability of getting each number that you would
get by rolling two dice.

The solution is actually to simulate the dice rolls by generating two numbers
between 1 and 6 and adding them together.

Occasionally, you might want to select random items with specific probabil-
ities. For example, you might like to pick one of the three colors. You want to
pick red with probability 0.25 (25%), green with probability 0.30 (30%), and blue
with probability 0.45 (45%).

One way to do that is to pick a random value between 0 and 1. Then loop
through the probabilities subtracting each from the random value. When the
result drops to zero or lower, you select the corresponding color. The following
pseudocode shows this algorithm:

// Pick an item from a array with given probabilities.
Item: PickItemWithProbabilities (Item: itemsI[],
Float: probabilities[])
Float: value = <PRNG value where 0 <= value < 1>
For i = 0 To items.Length - 1
value = value - probabilities[i]
If (value <= 0) Then Return items[i]
Next i
End PickItemWithProbabilities

For this method to work, the items and probabilities arrays must have the
same lengths. The values in the probabilities arrays must also add up to 1.

Making Random Walks

As you can probably guess from the name, a random walk is a path generated
at random. Usually the path consists of steps with a fixed length that move the
path along some sort of lattice, such as a rectangular or hexagonal grid. The
following pseudocode shows a method that generates points in a random walk
on a rectangular grid:

Point [] : MakeWalk (Integer: num_points)
Integer: x = <X coordinate of starting points>
Integer: y = <Y coordinate of starting point>

List Of Point: points
points.Add(x, y)

For i = 1 To num_points - 1
direction = random(0, 3)

If (direction == 0) Then // Up
y -= step_size
Else If (direction == 1) Then // Right

X += step_size
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Else If (direction == 2) Then // Down
Yy += step_size

Else // Left
X -= step_size

End If

points.Add (x, V)
Next i

Return points
End MakeWalk

This method sets variables x and y to the coordinates of the starting point,
possibly in the center of the drawing area. It then enters a loop where it picks a
random integer between 0 and 3 and uses that value to move the point (x, y) up,
down, left, or right. After the loop ends, the method returns the walk’s points.

Figure 2.2 shows the RandomWalk example program using this algorithm
to create a random walk.

o) RandemWalk - m] -

Step Size:
H Steps:

Figure 2.2: This program generates random walks on a square grid.

You can make similar random walks on other grids. For example, you can
make a walk on a triangular lattice by picking random directions, as shown
in Figure 2.3.
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Y

A

Figure 2.3: These random directions produce a walk on a triangular lattice.

Making Self-Avoiding Walks

A random self-avoiding walk, which is also called a non-self-intersecting walk, is a
random walk that is not allowed to intersect itself. Usually, the walk continues
on a finite lattice until no more moves are possible.

Figure 2.4 shows the SelfAvoidingWalk example program displaying a
random self-avoiding walk on a 6 x6 grid. The walk started at the circled
node and continued until it got stuck at a point where it had no unvisited
neighboring nodes.

o7 SelfAvoidingWalk| = m | -

-
—i®) , 3

width: [ 6]  Height: [ 6]

Figure 2.4: A self-avoiding random walk moves randomly but does not visit any node twice.
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The algorithm is similar to the one used to build a random walk, except it only
allows the walk to move to unvisited lattice points. The following pseudocode
code shows the new algorithm:

Point []: SelfAvoidingWalk (Integer: num points)
Integer: x = <X coordinate of starting points>
Integer: y = <Y coordinate of starting points>

List Of Point: points
Points.Add(x, y)

For i = 1 To num points - 1
List Of Point: neighbors = <unvisited neighbors of (x, y)>
If (neighbors Is Empty) Then Return points
<Move to a random unvisited neighboring point>

Next i

Return points
End SelfAvoidingWalk

At each step, the new algorithm makes a list of the points that are neighbors to
the walk’s most recent point. If the neighbor list is empty, then the walk cannot
continue, so the method returns the walk so far. If the neighbor list is not empty,
the algorithm moves to a random neighbor and continues.

Making Complete Self-Avoiding Walks

The self-avoiding random walk shown in Figure 2.4 eventually got stuck, so it
did not visit every node in the lattice. A complete random self-avoiding walk is a
walk that visits every node in a finite lattice. The CompleteSelfAvoidingWalk
example program shown in Figure 2.5 draws complete self-avoiding walks.

ol CompleteSelfiv...) = [m] -

width: [ 6]  Height: [ 6]

Figure 2.5: A complete self-avoiding random walk visits every node in the lattice.
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\[*AN Depending on the size of the lattice and the starting point, it may be
impossible to find a complete self-avoiding walk. For example, try building a walk
on a lattice with two rows and three columns and starting from a point in the middle
column.

Building a complete walk is a bit trickier than building any old random walk
because many paths lead to dead ends where the walk cannot be extended. For
example, the walk shown in Figure 2.4 starts at the circled node and then wanders
around randomly until it reaches a point where it has no unvisited neighbors.

To avoid getting stuck in a dead end, the algorithm must be able to unwind
bad decisions. It needs to be able to undo previous moves so that it can return
to a state where a complete walk is possible. That strategy of unwinding bad
decisions in a program is called backtracking.

The following pseudocode shows one possible backtracking approach to
building complete walks:

Point [] : CompleteSelfAvoidingWalk (Integer: num points)
Integer: x = <X coordinate of starting points>
Integer: y = <Y coordinate of starting points>

List Of Point: points
Points.Add (x, V)

ExtendWalk (points, num points)

Return points
End CompleteSelfAvoidingWalk

// Extend a walk that we have built so far.

// Return True if we find a complete walk.

Boolean: ExtendWalk (Point[] walk, Integer: num points)
If (points.Length == num points) Then Return True

List Of Point: neighbors = <unvisited neighbors of (x, y)>
If (neighbors Is Empty) Then Return False
<Randomize neighborss>

For Each neighbor In neighbors
<Add neighbor to pointss>
If (ExtendWalk (points, num points) Then Return True
<Remove neighbor from pointss>

Next i

Return False
End ExtendWalk

This completeselfavoidingWalk method creates a list of points and adds the
starting point to it. It then calls the Extendwalk method to try to extend the walk
that it has created so far to a complete walk.
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The Extendwalk method first checks the length of the current walk. If the walk
contains num_points steps, then it is a complete walk, so the method returns
True to indicate that it found a complete walk.

If the walk is not complete, the method builds a list of points that neighbor
the walk’s current last point (x, y) and that have not been visited yet. If that list is
empty, then the current walk cannot be extended, so the method returns False
to indicate that no complete walk is possible starting from that initial walk.

If the neighbor list is not empty, the method randomizes the list and loops
through them. It tries adding each neighbor to the walk and calls Extendwalk
to see whether the new partial walk can be extended to a complete walk. If
any of the calls to Extendwalk returns True, then it has found a solution, so the
current call to Extendwalk also returns True.

If a particular neighbor cannot lead to a complete walk, the method removes
that point from the walk and tries again with the next neighbor.

If none of the neighbors leads to a complete walk, then no complete walk is
possible from the starting walk, so the method returns ralse.

Finding Greatest Common Divisors

The greatest common divisor (GCD) of two integers is the largest integer that evenly
divides both of the numbers. For example, GCD(60, 24) is 12 because 12 is the
largest integer that evenly divides both 60 and 24. (The GCD may seem like an
esoteric function, but it is actually quite useful in cryptographic routines that
are widely used in business to keep such things as financial communications
secure.)

\Meh i3 IfGCD(A,B)=1,A andB are said to be relatively prime or coprime.

The following section explains an algorithm for finding greatest common
divisors. The section after that describes an extension that lets you find an
equation related to greatest common divisors.

Calculating Greatest Common Divisors

One way to find the GCD is to factor the two numbers and see which factors
they have in common. However, the Greek mathematician Euclid recorded a
faster method in his treatise, Elements, circa 300 BC.

The following pseudocode shows the modern version of the algorithm. Because
it is based on Euclid’s work, this algorithm is called the Euclidian algorithm or
Euclid’s algorithm.

Integer: GCD(Integer: A, Integer: B)
While (B != 0)
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Integer: remainder = A Mod B
// GCD(A, B) = GCD(B, remainder)
A =B
B = remainder
End While
Return A
End GCD

For example, consider GCD(4851, 3003). Table 2.2 shows the values for A, B,
and A Mod B at each step.

Table 2.2: Values Used to Calculate GCD(4851, 3003)

A B AMODB
4,851 3,003 1,848
3,003 1,848 1,155
1,848 1,155 693

1,155 693 462

693 462 231

462 231 0

231 0

When B becomes 0, the variable A holds the GCD—in this example, 231. To

verify the result, note that 4,851=231x21 and 1,848 =231x8, so 231 divides
both numbers. The values 21 and 8 have no common factors (they are relatively
prime), so 231 is the largest integer that divides 4,851 and 1,848.

GREAT GCDs

This is another mathematical explanation that you can skip if you really want.

The key to Euclid’s algorithm is the fact that GCD(A, B) = GCD(B, A Mod B).

To understand why this is true, consider the definition of the modulus operator. If
the remainderR = A Mod B, then A =m xB + R for some integerm. If g is the GCD of A
and B, then g divides B evenly, so it must also divide m x B evenly. Because g divides
A evenly and A=mxB +R, g must also divide m xB +R evenly. Because g dividesm xB
evenly, it must also divide R evenly.

This proves that g divides both B and R. To say g = GCD(B, R) you still need to know
that g is the largest integer that divides B and R evenly.

Suppose G is an integer larger than g, and G divides both B and R. Then G also
dividesmxB +R.But A=mxB +R, so G divides A as well. This means that g is not
GCD(A, B). This contradicts the assumption that g = GCD(A, B). Because the assump-
tion that G > g leads to a contradiction, there must be no such G, and g is GCD(A, B).
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This algorithm is quite fast because the value B decreases by at least a factor of
1/ 2 for every two trips through the while loop. Because the size of B decreases
by a factor of at least 1/ 2 for every two iterations, the algorithm runs in time
at most O(log B).

THE NEED FOR SPEED

The value B in Euclid’s algorithm decreases by at least a factor of 1/2 for every two trips
through the while loop. To see why, let A, B,, and R, be the A, B, and R values for the
kth iteration, and consider A, =m, xB, +R, for some integer m,. In the second iteration,
A, =B,andB, =R,.

IfR,<B,/2,thenB, <B, /2, andB has been cut in half as desired.

SupposeR, >B, / 2. In the third iteration, A, =B, =R, and B, =R,. By definition,
R, =A,ModB,, which is the same as B, Mod R,. We're assuming thatR, >B, / 2, soR,
divides into B, exactly once with a remainder of B, - R,. Because we're assuming that
R, >B, /2, we know thatB, —R, <B, / 2. Working back through the equations:

B,-R,=B, Mod R,=A, Mod B,=R, =B,

Therefore, B, <B, /2 and B has again been cut in half as desired.

Extending Greatest Common Divisors

In addition to being the largest integer that divides evenly into two values A
and B, the GCD also plays a role in an interesting theorem called Bézout’s iden-
tity. That theorem states that, for any integers A and B, there are other integers
X and Y such that AxX+BxY =GCD(A, B).

For example, GCD(210, 154) =14. You can set X=3 and Y =-4 in Bézout’s
identity to get the equation 210x 3 + 154 x -4 =14.

Note: Bézout’s identity is named after French mathematician Etienne
Bézout (1730-1783), who proved the identity for polynomials. The identity was pre-
viously discussed for integers by the earlier French mathematician Claude Gaspard
Bachet de Méziriac (1581-1638), but Bézout gets all the publicity. (Perhaps he had a
better public relations firm.)

You can use an extended version of Euclid’s GCD algorithm to find the inte-
gers X and Y that satisfy Bézout’s identity. The extended algorithm defines four
values at each step of the calculation.

The values Q and R are the quotient and remainder that you get after dividing
one number by the other. The remainder plays the role of A and B in Euclid’s
algorithm.



Chapter 2 = Numerical Algorithms 39

You calculate the values X and Y by adding combinations of previous values
multiplied by the current value of Q.
The following equations show how you initialize the first values for R, X, and Y:

R, = A
=B

=1

KX XXA
Il
S O =

The following equations show how you calculate Q, R, X, and Y for the algo-

rithm’s subsequent rounds:

R; R, %R,
Q= R, /Ry
Xi = Xi—Z _Qix Xi—l
Y =Y, -Q Y,

Here, / represents integer division, and the algorithm discards any remainder.
The % symbol represents the modulus operator.
When R; equals 0, the algorithm stops and the current values of X and Y,
which are X, ; and Y, ,, are the values that satisfy Bézout’s identity. The value

R, , holds the GCD.

For an example, let’s work through the algorithm’s calculations where A =210
and B=154. The following table shows the values of Q, R, X, and Y for the

algorithm’s rounds:

{e]V]\]>] Q R X Y

0 210 1 0

L 154 0 1

2 210/154=1 210 %154 =56 1-1x0=1 0-1x1=-1
3 154/56=2  154%56=42 0-2x1=-2 1-2x-1=3
4 56/42=1  56%42=14 1-1x-2=3 -1-1x3=-4
3 42/14=3  42%14=0

At this point, R, equals 0, so the algorithm stops. The bold value R, is 14,
which is GCD(210, 154). The bold values X, and Y, are 3 and —4. The following
equation shows those values plugged into Bézout’s identity:

210*3+154*-4=14
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The extended GCD algorithm’s pseudocode simply implements the algorithm
described in the preceding paragraphs, so I won’t show it here.

Performing Exponentiation

Sometimes a program needs to calculate a number raised to an integer power.
That’s not hard if the power is small. For example, 7° is easy to evaluate by
multiplying 7 x7 x7 = 343.

For larger powers such as 7'"'¥*! however, this would be fairly slow.

‘[ ANl Calculating large powers such as 7102187291 might be slow, but people prob-
ably wouldn’t care very much if it weren’t for the fact that this kind of large exponenti-
ation is used in some important kinds of cryptography.

Fortunately, there’s a faster way to perform this kind of operation. This method
is based on the fact that you can quickly calculate powers of a number that are
themselves powers of 2. For example, consider the value A', which is simply A.
From that, you can calculate A” because A> = A" x A'. Similarly, you can calcu-
late A* because A* = A* x A%. You can then calculate A® because A® = A* x A*,
and so on.

Now that you know how to calculate some large powers of A quickly, you
need to figure out how to assemble them to produce any large power. To do
that, consider the binary representation of the exponent. Each of the digits in
that representation correspond to the powers of A A" A',A%* A*, and so on.

For example, suppose you want to calculate A™. The binary representation
of 18 is 10010. Reading the binary digits from right to left, the digits correspond
to the values A”,A',A% A", and A®. You can use those special powers of A to
calculate A'®. In this case, A =0x A’ +1x A’ +0x A2 +0x A* + 1x A®.

That’s the basis for the fast exponentiation algorithm. You build bigger and
bigger powers of A and use the binary digits of the exponent to decide which
of those should be multiplied into the final result. The following pseudocode
shows the algorithm:

// Perform the exponentiation.
Integer: Exponentiate (Integer: value, Integer: exponent)
Integer: result = 1
Integer: factor = value
While (exponent != 0)
If (exponent Mod 2 == 1) Then result *= factor
factor *= factor
exponent /= 2
End While

Return result
End Exponentiate
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The algorithm sets result to 1. Initially, this holds value to the 0" power,
which is 1 for any value.

The algorithm also sets factor equal to value. This will represent the powers
of value. Initially, it holds value to the first power.

The code then enters a loop that executes as long as the exponent is not zero.
Inside the loop, the algorithm uses the modulus operator to see whether the
exponent is odd. If it is odd, then its binary representation ends with a 1. In that
case, the algorithm multiplies result by the current value of factor to include
that power of value in the result.

The algorithm then multiplies factor by itself so that it represents value
raised to the next power of 2. It also divides the exponent by 2 to remove its
least significant binary digits.

When the exponent reaches zero, the algorithm returns the result.

The algorithm’s loop executes once for each binary digit in the exponent. If the
exponent is P, then it has log, (P)binary digits, so the algorithm runs in O (log P)
time. That’s fast enough to calculate some pretty large values. For example, if P
is 1million, log(P) is about 20, so this algorithm uses about 20 steps.

One limitation of this algorithm is that values raised to large powers grow
extremely large. Even a “small” value such as 7** has 254 decimal digits. This
means that multiplying the huge numbers needed to calculate large powers is
slow and takes up quite a bit of space.

C# has a BigInteger data type that you can use to calculate extremely
large integer values. To use BigInteger, give the program a reference to the
System.Numerics namespace. You may also want to include ausing System
.Numerics directive in the code to make using the BigInteger type easier.

Fortunately, the most common applications for these kinds of huge powers
are cryptographic algorithms that perform all of their operations in a mod-
ulus. The modulus is large, but it still limits the numbers’ size. For example, if
the modulus has 100 digits, the product of two 100-digit numbers can have no
more than 200 digits. You then reduce the result with the modulus to again get
a number with no more than 100 digits. Reducing each number with the mod-
ulus makes each step slightly slower, but it means you can calculate values of
practically unlimited size.

L[ AN In C# the BigInteger data type has a ModPow method that performs this
kind of exponentiation for you.

In Python, the built-in pow function allows you to include a third parameter that indi-
cates the modulus for this kind of exponentiation.
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Working with Prime Numbers

As you probably know, a prime number (or simply prime) is a counting number
(an integer greater than 0) greater than 1 whose only factors are 1 and itself. A
composite number is a counting number greater than 1 that is not prime.

Prime numbers play important roles in some applications where their special
properties make certain operations easier or more difficult. For example, some
kinds of cryptography use the product of two large primes to provide security.
The fact that it is hard to factor a number that is the product of two large primes
is what makes the algorithm secure.

The following sections discuss common algorithms that deal with prime
numbers.

Finding Prime Factors

The most obvious way to find a number’s prime factors is to try dividing the
number by all of the numbers between 2 and 1 less than the number. When a
possible factor divides the number evenly, save the factor, divide the number
by it, and continue trying more possible factors. Note that you need to try the
same factor again before moving on in case the number contains more than
one copy of the factor.

For example, to find the prime factors of 127, you would try to divide 127 by
2,3,4,5, and so on, until you reach 126.

The following pseudocode shows this algorithm:

List Of Integer: FindFactors (Integer: number)
List Of Integer: factors
Integer: 1 = 2
While (i < number)
// Pull out factors of i.
While (number Mod i == 0)
// i is a factor. Add it to the list.
factors.Add (1)

// Divide the number by i.
number = number / i
End While

// Check the next possible factor.
i=1+1
End While

// If there's anything left of the number, it is a factor, too.
If (number > 1) Then factors.Add (number)

Return factors
End FindFactors
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If the number is N, this algorithm has run time O(N).
You can improve this method considerably with these three key observations:

= You don't need to test whether the number is divisible by any even number
other than 2 because, if it is divisible by any even number, it is also divis-
ible by 2. This means you only need to check divisibility by 2 and then
by odd numbers instead of by all possible factors. Doing so cuts the run
time roughly in half.

= You only need to check for factors up to the square root of the number. If
n=pxq, then either p or g must be less than or equal to sqrt(n). (If both
are greater than sqrt (n), then their product is greater than n.) If you check
possible factors up to sqrt(n), you will find the smaller factor, and when
you divide n by that factor, you will find the other one. This reduces the
run time to O(sqrt (n))

m Every time you divide the number by a factor, you can update the upper
bound on the possible factors that you need to check.

These observations lead to the following improved algorithm:

List Of Integer: FindFactors (Integer: number)
List Of Integer: factors

// Pull out factors of 2.
While (number Mod 2 == 0)
factors.Add (2)
number = number / 2
End While

// Look for odd factors.
Integer: i = 3
Integer: max_ factor = Sgrt (number)
While (i <= max factor)
// Pull out factors of i.
While (number Mod i == 0)
// i1 is a factor. Add it to the list.
factors.Add (i)

// Divide the number by i.
number = number / i

// Set a new upper bound.
max_factor = Sqgrt (number)
End While

// Check the next possible odd factor.
i =1+ 2
End While
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// If there's anything left of the number, it is a factor, too.
If (number > 1) Then factors.Add (number)

Return factors
End FindFactors

This prime factoring algorithm has run time 0(sqrt(N)), whereNis the
number it is factoring, so it is reasonably fast for relatively small numbers. If N gets
really large, even O(sqrt(N)) isn’t fast enough. For example, if N is 100 digits long,
sqrt(N) has 50 digits. If N happens to be prime, even a fast computer won’t be able to
try all of the possible factors in a reasonable amount of time. This is what makes some
cryptographic algorithms secure.

The method of trying all the possible factors smaller than a number is called trial
division. There are other factoring methods, such as wheel factorization and various
field sieves. For information on those, search the Internet or look at such pages as
the following: https://en.wikipedia.org/wiki/Integer_factorization
and http://mathforum.org/library/drmath/view/65801.html. All of these
methods depend on the size of the number and its factors, so a number’s size gives
you an idea of how hard a number might be to factor.

Finding Primes

Suppose that your program needs to pick a large prime number (yet another
task required by some cryptographic algorithms). One way to find prime num-
bers is to use the algorithm described in the preceding section to test a bunch
of numbers to see whether they are prime. For reasonably small numbers, that
works, but for large numbers, it can be prohibitively slow.

The sieve of Eratosthenes is a simple method you can use to find all of the primes
up to a given limit. This method works well for reasonably small numbers, but
it requires a table with entries for every number that is considered. Therefore, it
uses an unreasonable amount of memory if the numbers are too large.

The basic idea is to make a table with one entry for each of the numbers
between 2 and the upper limit. Cross out all of the multiples of 2 (not counting 2
itself). Then, starting at 2, look through the table to find the next number that is
not crossed out (3 in this case). Cross out all multiples of that value (not counting
the value itself). Note that some of the values may already be crossed out because
they were also a multiple of 2. Repeat this step, finding the next value that is
not crossed out and crossing out its multiples until you reach the square root of
the upper limit. At that point, any numbers that are not crossed out are prime.

The following pseudocode shows the basic algorithm:

// Find the primes between 2 and max_number (inclusive).
List Of Integer: FindPrimes (long max_number)
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// Allocate an array for the numbers.
Boolean: is_composite = New Boolean[max number + 1]

// "Cross out" multiples of 2.
For i = 4 to max number Step 2
is_composite[i] = true

Next 1

// "Cross out" multiples of primes found so far.
Integer: next prime = 3
Integer: stop_at = Sgrt (max number)
While (next prime <= stop_at)
// "Cross out" multiples of this prime.
For i = next_prime * 2 To max_number Step next_ prime Then
is_composite([i] = true
Next i

// Move to the next prime, skipping the even numbers.
next prime = next prime + 2
While (next_prime <= max number) And (is_composite [next_prime])
next_prime = next_prime + 2
End While
End While

// Copy the primes into a list.
List Of Integer: primes
For i = 2 to max number
If (Not is composite[i]) Then primes.Add (i)
Next i

// Return the primes.
Return primes
End FindPrimes

It can be shown that this algorithm has run time O (N xlog (log N)), but that
is beyond the scope of this book.

Testing for Primality

The algorithm described in the earlier section “Finding Prime Factors” factors
numbers. One way to determine whether a number is prime is to use that
algorithm to try to factor it. If the algorithm doesn’t find any factors, then the
number is prime.

As that section mentioned, the algorithm works well for relatively small num-
bers. However, if the number has 100 digits, the number of steps the program
must execute is a 50-digit number. Not even the fastest computers can perform
that many operations in a reasonable amount of time. (A computer executing 1
trillion steps per second would need more than 3x10” years.)
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Some cryptographic algorithms need to use large prime numbers, so this
method of testing whether a number is prime won't work. Fortunately, there
are other methods. The Fermat primality test is one of the simpler.

Fermat’s “little theorem” states that if pis primeand 1 <n < p,thenn”™' Mod p=1
In other words, if you raise n to the p — 1 power and then take the result modulo
p, the result is 1.

For example, suppose p=11and n=2. Then n”~ Mod p = 2" Mod 11=1,024
Mod 11. The value 1,024 =11x93+1, so 1,024 Mod 11=1. as desired.

Note that it is possible for "' Mod p =1, even if p is not prime. In that case,
the value n is called a Fermat liar because it incorrectly implies that p is prime.

If n° Mod p # 1, then n is called a Fermat witness because it proves that p is
not prime.

It can be shown that, for a natural number p, at least half of the numbers n
between 1 and p are Fermat witnesses. In other words, if p is not prime and
you pick a random number n between 1 and p, there is a 0.5 probability that n
is a Fermat witness, so n”' Mod p#l

Of course, there is also a chance you'll get unlucky and randomly pick a Fer-
mat liar for n. If you repeat the test many times, you can increase the chances
that you'll pick a witness if one exists.

It can be shown that at each test, there is a 50% chance that you'll pick a Fer-
mat witness. So, if p passes k tests, there is a 1/ 2" chance that you got unlucky
and picked Fermat liars every time. In other words, there is a 1/ 2" chance that
p is actually a composite number pretending to be prime.

For example, if p passes the test 10 times, there is a1/ 2% =~ 0.00098 proba-
bility that p is not prime. If you want to be even more certain, repeat the test
100 times. If p passes all 100 tests, there is only a1/2'” 7.8 x 10" probability
that p is not prime.

The following pseudocode shows an algorithm that uses this method to decide
whether a number is probably prime:

// Return true if the number p is (probably) prime.
Boolean: IsPrime(Integer: p, Integer: max_tests)
// Perform the test up to max tests times.
For test = 1 To max tests
<Pick a pseudorandom number n between 1 and p (exclusive)>
If (n®! Mod p != 1) Then Return false
Next test

// The number is probably prime.
// (There is a 1/2™*.tests chance that it is not prime.)
Return true

End IsPrime
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\[*A N This is an example of a probabilistic algorithm—one that produces a correct
result with a certain probability. There’'s still a slim chance that the algorithm is wrong,
but you can repeat the tests until you reach whatever level of certainty you want.

If the number p is very large—which is the only time when this whole issue
is interesting—calculating n”~' by using multiplication could take quite a while.
Fortunately, you know how to do this quickly by using the fast exponentiation
algorithm described in the earlier section, “Performing Exponentiation.”

Once you know how to determine whether a number is (probably) prime,
you can write an algorithm to pick prime numbers.

// Return a (probable) prime with max digits digits.
Integer: FindPrime (Integer: num digits, Integer: max tests)
Repeat
<Pick a pseudorandom number p with num digits digits>
If (IsPrime(p, max tests)) Then Return p
End FindPrime

Performing Numerical Integration

Numerical integration, which is also sometimes called quadrature or numeric quad-
rature, is the process of using numerical techniques to approximate the area
under a curve defined by a function. Often, the function has one variable so
it looks like y =F(x) and the result is a two-dimensional area, but some appli-
cations might need to calculate the three-dimensional volume under a surface
defined by a function z=F(x, y). You could even calculate areas defined by
higher-dimensional functions.

If the function is easy to understand, you may be able to use calculus to
find the exact area. Unfortunately, you may not always be able to calculate the
function’s antiderivative. For example, the function’s equation might be very
complicated, or you might have data generated by some physical process, so
you don’t know the function’s equation. In that case, you can’t use calculus,
but you can use numerical integration.

There are several ways to perform numerical integration. The most straight-
forward involve Newton-Cotes formulas, which use a series of polynomials to
approximate the function. The two most basic kinds of Newton-Cotes formulas
are the rectangle rule and the trapezoid rule.
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The Rectangle Rule

The rectangle rule uses a series of rectangles of uniform width to approximate
the area under a curve. Figure 2.6 shows the RectangleRule sample program
(which is available for download on the book’s website) using the rectangle rule.
The program also uses calculus to find the exact area under the curve so that
you can see how far the rectangle rule is from the correct result.

- RectangleRule - =] -

y=1+x+5in(2"x)

x[dul 9
# Intervals: Ilﬂﬂ

Est. Area: | 17.227604741

e

True Area: |18.419535764

Figure 2.6: The RectangleRule sample program uses the rectangle rule to approximate the area
under the curve y =1+ x + Sin(2x).

The following pseudocode shows an algorithm for applying the rectangle rule:

Float: UseRectangleRule (Float: function(), Float: xmin, Float: xmax,
Integer: num_intervals)
// Calculate the width of a rectangle.
Float: dx = (xmax - xmin) / num_intervals

// Add up the rectangles' areas.

Float: total area = 0

Float: x = xmin

For i = 1 To num_intervals
total_area = total_area + dx * function(x)
X = X + dx

Next i

Return total_area
End UseRectangleRule
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The algorithm simply divides the area into rectangles of constant width and
with height equal to the value of the function at the rectangle’s left edge. It then
loops over the rectangles and adds their areas.

The Trapezoid Rule

You can see in Figure 2.6 where the rectangles don't fit the curve exactly, pro-
ducing an error in the total calculated area. You can reduce the error by using
more, skinnier rectangles. In this example, increasing the number of rectangles
from 10 to 20 reduces the error from roughly —6.5% to —-3.1%.

An alternative strategy is to use trapezoids to approximate the curve instead
of using rectangles. Figure 2.7 shows the TrapezoidRule sample program (which
is available for download on the book’s website) using the trapezoid rule.

o5 TrapezoidRule - =] -

y=1+x+5in2 " x)

AT

x[ g
# Intervals:

Est. Area:  |18.341599463
% Em: -0.423%
True Area:  [18.419535764

Figure 2.7: The TrapezoidRule sample program uses the trapezoid rule to make a better
approximation than the RectangleRule program does.

The following pseudocode shows an algorithm for applying the trapezoid rule:

Float: UseTrapezoidRule (Float: function(), Float: xmin, Float: xmax,
Integer: num_intervals)
// Calculate the width of a trapezoid.
Float: dx = (xmax - xmin) / num intervals

// Add up the trapezoids' areas.
Float: total_area = 0
Float: x = xmin
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For i = 1 To num_intervals
total area = total area + dx * (function(x) + function(x + dx)) / 2
X = x + dx

Next i

Return total_ area
End UseTrapezoidRule

The only difference between this algorithm and the rectangle rule algorithm
is in the statement that adds the area of each slice. This algorithm uses the for-
mula for the area of a trapezoid: area = width x average of the lengths of the
parallel sides.

You can think of the rectangle rule as approximating the curve with a step
function that jumps from one value to another at each rectangle’s edge. The
trapezoid rule approximates the curve with line segments.

Another example of a Newton-Cotes formula is Simpson’s rule, which uses
polynomials of degree 2 to approximate the curve. Other methods use polyno-
mials of even higher degree to make better approximations of the curve.

Adaptive Quadrature

A variation on the numerical integration methods described so far is adaptive
quadrature, in which the program detects areas where its approximation method
may produce large errors and refines its method in those areas.

For example, look again at Figure 2.7. In areas where the curve is close to
straight, the trapezoids approximate the curve very closely. In areas where the
curve is bending sharply, the trapezoids don't fit as well.

A program using adaptive quadrature looks for areas where the trapezoids
don't fit the curve well and uses more trapezoids in those areas.

The AdaptiveMidpointIntegration sample program, shown in Figure 2.8, uses
the trapezoid rule with adaptive quadrature. When calculating the area of a slice,
this program first uses a single trapezoid to approximate its area. It then breaks
the slice into two pieces and uses two smaller trapezoids to calculate their areas.
If the difference between the larger trapezoid’s area and the sum of the areas
of the smaller trapezoids is more than a certain percentage, the program divides
the slice into two pieces and calculates the areas of the pieces in the same way.

The following pseudocode shows this algorithm:

// Integrate by using an adaptive midpoint trapezoid rule.
Float: IntegrateAdaptiveMidpoint (Float: function(),
Float: xmin, Float: xmax, Integer: num intervals,
Float: max_slice_error)
// Calculate the width of the initial trapezoids.
Float: dx = (xmax - xmin) / num intervals
double total = 0
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// Add up the trapezoids' areas.
Float: total _area = 0
Float: x = xmin
For i = 1 To num_intervals
// Add this slice's area.
total area = total_area +
SliceArea (function, x, x + dx, max_slice_error)
X = X + dx

Next i

Return total area
End IntegrateAdaptiveMidpoint

// Return the area for this slice.
Float: SliceArea (Float: function(),Float: x1, Float: x2,
Float: max_slice_error)
// Calculate the function at the endpoints and the midpoint.

Float: yl = function(xl)
Float: y2 = function (x2)
Float: xm = (x1 + x2) / 2
Float: ym = function (xm)

// Calculate the area for the large slice and two subslices.

Float: areal2 = (x2 - x1) * (yl1 + y2) / 2.0
Float: arealm = (xm - x1) * (yl1 + ym) / 2.0
Float: aream2 = (x2 - xm) * (ym + y2) / 2.0

Float: arealm2 = arealm + aream2

// See how close we are.
Float: error = (arealm2 - areal2) / areal2

// See if this is small enough.
If (Abs(error) < max_slice_error) Then Return arealm2

// The error is too big. Divide the slice and try again.
Return
SliceArea (function, x1, xm, max_slice_error) +
SliceArea (function, xm, x2, max_slice_error)
End SliceArea

If you run the AdaptiveMidpointIntegration program and start with only two
initial slices, the program divides them into the 24 slices shown in Figure 2.8
and estimates the area under the curve with —0.035% error. If you use the Trap-
ezoidRule program with 24 slices of uniform width, the program has an error
of —0.072%, roughly twice as much as that produced by the adaptive program.
The two programs use the same number of slices, but the adaptive program
positions them more effectively.

The AdaptiveTrapezoidIntegration sample program uses a different method
to decide when to break a slice into subslices. It calculates the second derivative



52

Chapter 2 » Numerical Algorithms

a5 AdaptiveMidpointintegration - =] -
y=1+x+5in(2"x)
H""ﬁ..___ B
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x [ 0w
Initial Intervals:
Max Slice Emor:
Est. Area: |18.413159148
% B 0.035%
True Area: |18.419535764
# Intervals:

Figure 2.8: The AdaptiveMidpointintegration program uses an adaptive trapezoid rule to make
a better approximation than the TrapezoidRule program.

of the function at the slice’s starting x value and divides the interval into one
slice plus 1 per second derivative value. For example, if the second derivative is
2, the program divides the slice into three pieces. (The formula for the number
of slices was chosen somewhat arbitrarily. You might get better results with a
different formula.)

In case your calculus is a bit rusty, a function’s derivative tells you its slope
at any given point. Its second derivative tells you the slope’s rate of change, or how
fast the curve is bending. A higher second derivative means that the curve is bending
relatively tightly, so the AdaptiveTrapezoidintegration program uses more slices.

Of course, this technique won’t work if you can'’t calculate the curve’s second
derivative. The technique used by the AdaptiveMidpointIntegration program
seems to work fairly well in any case, so you can fall back on that technique.

Adaptive techniques are useful in many algorithms because they can pro-
duce better results without wasting effort in areas where it isn’t needed. The
AdaptiveGridIntegration program shown in Figure 2.9 uses adaptive techniques
to estimate the area in the shaded region. This region includes the union of
vertical and horizontal ellipses, minus the areas covered by the three circles
inside the ellipses.



Chapter 2 » Numerical Algorithms

53

o AdaptiveGridintegration - =] -

Rows/Columns: | 4| | Integrate |

Min Box Area; | 0001] | Reset |

Area: 21.733474731445

H Boxes: 19217

Figure 2.9: The AdaptiveGridintegration program uses adaptive integration to estimate the
area in the shaded region.

This program divides the whole image into a single box and defines a grid of
points inside the box. In Figure 2.9, the program uses a grid with four rows and
columns of points. For each point in the grid, the program determines whether
the point lies inside or outside the shaded region.

If none of the points in the box lies within the shaded region, the program
assumes that the box is not inside the region and ignores it.

If every point in the box lies inside the shaded region, the program considers
the box to lie completely within the region and adds the box’s area to the region’s
estimated area.

If some of the points in the box lie inside the shaded region and some lie
outside the region, the program subdivides the box into smaller boxes and uses
the same technique to calculate the smaller boxes” areas.

In Figure 2.9, the AdaptiveGridIntegration program has drawn the boxes it
considered so that you can see them. You can see that the program considered
many more boxes near the edges of the shaded region than far inside or outside
the region. In total, this example considered 19,217 boxes, mostly focused on the
edges of the area it was integrating.
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Monte Carlo Integration

Monte Carlo integration is form of numeric integration in which the program
generates a series of pseudorandom points uniformly within an area and deter-
mines whether each point lies within the target region. When it has finished,
the program uses the percentage of the points that were inside the target region
to estimate the region’s total area.

For example, suppose the area within which the points are generated is a
20x 20 square, so it has an area of 400 square units, and 37% of the pseudo-
random points are within the region. Then the region has an area of roughly
0.37 x 400 = 148 square units.

The MonteCarlolntegration sample program shown in Figure 2.10 uses this
technique to estimate the area of the same shape used by the AdaptiveGrid-
Integration program.

o5 MonteCarlolntegrati.| == (=] -

-, R I T

Points: | 1DDI}|| Integrate || Reset |

Area: 207

Total Points: 1000

Figure 2.10: Points inside the shaded region are black, and points outside the region are gray.

Monte Carlo integration generally is more prone to error than more methodical
approaches such as trapezoid integration and adaptive integration. However, it
is sometimes easier to implement because it doesn’t require you to know much
about the nature of the shape you're measuring. You simply throw points at the
shape and see how many hit it.
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This chapter describes using pseudorandom values to calculate areas, but
more generally you can use similar techniques to solve many problems. In a Monte
Carlo simulation, you pick pseudorandom values and see what percentage satisfies
some criterion to estimate the total number of values that satisfy the criterion.

Finding Zeros

Sometimes a program needs to figure out where an equation crosses the x-axis.
In other words, given an equation y = f(x), you may want to find x where f (x) =0.
Values such as this are called the equation’s roots.

Newton'’s method, which is sometimes called the Newton-Raphson method, is a
way to approximate an equation’s roots successively.

The method starts with an initial guess X, for the root. If f(X, ) is not close
enough to 0, the algorithm follows a line that is tangent to the function at the
point X, until the line hits the x-axis. It uses the x-coordinate at the intersection
as a new guess X, for the root.

The algorithm then repeats the process starting from the new guess X,. The
algorithm continues the process of following tangents to the function to find
new guesses until it finds a value X, where f(X, ) is sufficiently close to 0.

The only tricky part is figuring out how to follow tangent lines. If you use a
little calculus to find the derivative of the function f (x), which is also written
df / dx(x), then the following equation shows how the algorithm can update its
guess by following a tangent line:

X, 4
i+1 i f'(Xl)

\[* 2N Unfortunately, explaining how to find a function’s derivative is outside the
scope of this book. For more information, search online or consult a calculus book.

Figure 2.11 shows the process graphically. The point corresponding to the initial
guess is labeled 1. That point’s y value is far from 0, so the algorithm follows
the tangent line until it hits the x-axis. It then calculates the function at the new
guess to get the point labeled 2 in Figure 2.11. This point’s y-coordinate is also
far from 0, so the algorithm repeats the process to find the next guess, labeled 3.
The algorithm repeats the process one more time to find the point labeled 4.
Point 4’s y-coordinate is close enough to 0, so the algorithm stops.
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The following pseudocode shows the algorithm:

// Use Newton's method to find a root of the function f (x).
Float: NewtonsMethod (Float: f(), Float: dfdx(), Float: initial guess,
Float: maxError)

float x = initial guess

For i = 1 To 100 // Stop at 100 in case something goes wrong.
// Calculate this point.
float y = f£(x)

// If we have a small enough error, stop.
if (Math.Abs(y) < maxError) break

// Update x.
X = X -y / dfdx(x)
Next i

Return x
End NewtonsMethod

X Axis

2

Figure 2.11: Newton’s method follows a function’s tangent lines to zero in on the
function’s roots.

The algorithm takes as parameters a functiony = £(x), the function’s derivative
dfdx, an initial guess for the root’s value, and a maximum acceptable error.

The code sets the variable x equal to the initial guess and then enters a For
loop that repeats, at most, 100 times. Normally, the algorithm quickly finds a
solution. But sometimes, if the function has the right curvature, the algorithm
can diverge and not zero in on a solution. Or it can get stuck jumping back and
forth between two different guesses. The maximum of 100 iterations means the
program cannot get stuck forever.

Within the For loop, the algorithm calculates £(x). If the result isn’t close
enough to 0, the algorithm updates x and tries again.
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Note that some functions have more than one root. In that case, you need
to use the FindZero algorithm repeatedly with different initial guesses to find
each root.

Figure 2.12 shows the NewtonsMethod sample program, which is available
for download on this book’s website. This program uses Newton’s method three
times to find the three roots of the functiony = x® /5-x>+x. Circles show the
program’s guesses as it searches for each root.

o2 NewtonsMethod = (=] -

14

Zeros: [{0.00, 0.00) |

(1138, 0.00) |

1362, 0.00) |

Figure 2.12: The NewtonsMethod sample program demonstrates Newton’s method to find the
three roots of the functiony = x> / 5— x* + X.

Gaussian Elimination

Root finding algorithms let you find values for X that make the equation y = f(x)
equal to zero. Gaussian elimination is a technique that does something similar
for a system of linear equations. It attempts to find values for the x’s in the fol-
lowing equations to make all of the equations true simultaneously:

AL X +AL, X, +...+A, - x, =C,

A, X, +A, X, +...+A,, - x, =C,

AL xy+AL, X+ +A L x, =C

n n
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Here all of the A and C values are numbers given by the problem. For a concrete
example, consider the following system of equations:

2x,+4x, +6x, =2
3%, +6X, +7%x; =2
6x,+10x, +4x, =1

The goal is to find numbers x,, X,, and x, that simultaneously satisfy all three
equations.

Gaussian elimination was named after German mathematician and phys-
icist Johann Carl Friedrich Gauss. The technique has a long history dating back to as
early as 179 CE when it was included in a Chinese mathematical text. It was described
and elaborated upon many times, including by Gauss in 1810. It wasn’t until the 1950s
that it took Gauss’s name because of confusion about the method’s history.

It’s easier to work with the equations if you represent them as an augmented
matrix. The first entries in each row hold the equations’ coefficients (the A values).
An extra final column holds the C values. The following shows the augmented
matrix for the preceding equations:

\[eJ -l Often, people draw a vertical line separating the final column containing
the C values from the other columns that hold the A values.

Gaussian elimination works in two stages that are sometimes called forward
elimination and back substitution.

Forward Elimination

During forward elimination, you use two operations to rearrange the matrix until
it has the following upper-triangular form:

* * * *
0 * * *
0 0 * *
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The entries on the matrix’s lower left are all zeros. The other entries are any
numbers and may or may not be zero. (That’s what the asterisks mean.)

You can use the following two row operations to manipulate the matrix dur-
ing forward elimination:

1. Swap the positions of two rows.

2. Add a nonzero multiple of one row to another row.

Each of these operations preserves the truth of the equations. If the x values sat-
isfy the original equations, then they also satisfy the matrix’s modified equations.

For an example, consider the following augmented matrix, which was shown
earlier:

4 6 2
6
6 10 4 1

We start by using the first entry in the first row (highlighted in bold) to zero
out the entries in that column in lower rows. The first entry in the first row is 2,
and the first entry in the second row is 3. We can zero out the 3 by multiplying
the first row by -3 / 2=-1.5 and then adding it to the second row. The follow-
ing matrix shows the calculation:

2 4 6 -2 2 4 6 2
3-15*2 6-15*4 7-15%6 2-15%*(-2)|=|0 0 -2 5
6 10 4 1 6 10 4 1

Next, we perform a similar operation to zero out the first entry in the last
row. This time, we multiply the first row by -6 / 2=-3 and add it to the final
row as shown here:

2 4 6 -2 2 4 6 -2
0 0 -2 5 =10 0 2 5
6-3%2 10-3*4 4-3%*6 1-3*(-2)| |0 2 -14 7

Now that we’ve zeroed out the entries in the first column after the first row,
we turn to the second column. We want to zero out the entries in the second
column below the second row.

Unfortunately, to do that we would need to multiply the second row by 2/0.
That'’s a problem because we cannot divide by zero.

\[* AN In practice, an entry doesn’t need to be exactly zero to cause problems. If
the value is close enough to zero, dividing by it might cause an arithmetic overflow
error. To prevent that, swap rows if the value is close to zero.



Chapter 2 » Numerical Algorithms

In cases like this one, where the next entry that we want to use to zero out a
column is already 0, we swap that row with one of the later rows that does not
have a zero in that column. In this example, the third row has -2 in its second
column, so we swap the second and third rows to get the following;:

2 4 6 2
0 2 -14 7
0 0 -2 5

\[* AN Sometimes you may find that no later row has a nonzero entry in the
column that you're trying to zero out. In that case, the system of equations has no
unique solution.

Now that you have a nonzero entry in the column, you can use it to continue
forward elimination. In this example, the final row already has a zero in its
second column, so the matrix is in upper triangular form, and we can move on
to back substitution.

Back Substitution

During back substitution, you work through the matrix from the bottom up to
find the values for the x’s that satisfy the equations. Each time you examine a
row, you learn one more x value. You can then plug in the x values that you
know to find the next value in the row above.

For a concrete example, consider the previous augmented matrix in upper-
triangular form:

2 4 6 2
0 2 -14 7
0 0 -2 5

The last row in the matrix represents the following equation:
Ox, +0x,-2x;=5

Because the first two coefficients are zero, their x terms drop out leaving
—-2x; =5. You can easily solve this by dividing both sides of the equation by -2
to get x, =—2.5. You have your first x value!

Now you move up a row. The matrix’s second row represents the following
equation:

0x, —2x,-14x, =7
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But you now know that x; =—2.5. Plugging that value into the equation gives
the following;:

0x, —2x, -14-(-2.5)=7
This simplifies to the following equation:
-2x,=7-35=-28

Now you can divide both sides of the equation by -2 to get x, =14.
You move up a row again to the top row, which corresponds to the following
equation:

2X,+4x,+6x, =-2
Plugging in the values that you now have for x; and x, gives the following:
2x,+4-14+6-(-2.5)=-2
Rearranging this gives the following;:
2x,=—2-4-14-6-(-25)=-2-56+15=-43

Now you can divide both sides of the equation by 2 to learn x, =-21.5.

The complete solution to the original system of equations is x, =-21.5,x, =14,
x,; =—2.5. If you plug those values into the original equations, you'll see that
they are correct.

The Algorithm

Gaussian elimination is a nice, straightforward, methodical way to solve a
system of linear equations. Unfortunately, it requires you to perform a long
sequence of relatively simple steps, so you have many chances to make small
arithmetic errors. This is exactly the kind of situation that a computer handles
well because it can quickly perform any number of simple arithmetic calcula-
tions without making mistakes.

The following pseudocode shows the Gaussian elimination algorithm at a
high level:

// Solve a linear system of equations.

Item: GaussianEliminate (Float: As[,], Float: CsI[])
<Use the As and Cs to build the augmented matrix.>
<Use row operations to put the matrix in upper triangular form.>
<Perform back substitution to find the Xs.>

End GaussianEliminate
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The details involve some long but relatively straightforward sequences of
loops to perform the calculations.

Least Squares Fits

A least squares fit attempts to find a function y =f(x) to fit a collection of data
values. The result is called a least squares fit because it finds the least possible sum
of the squares of the distances between the data points and the corresponding
points on the function.

Figure 2.13 shows a function approximating a set of data values. The vertical
lines show the distances between the data points and the corresponding points
on the function. A least squares fit considers variations of the function and
finds the one that minimizes the sum of the squares of those vertical distances.

A

3>
>

Figure 2.13: A least squares fit minimizes the sum of the squares of the distances between the
data points and the function.

Calculating a least squares fit can be intimidating, mostly because it can
involve a lot of terms. Fortunately, those terms are often relatively simple. They
can look scary when they're all arranged in one grand equation, but individu-
ally the terms are easy to manage. I admit that you need to use a little calculus
to find a least squares fit. Fortunately, it’s pretty easy calculus, so you should
be able to understand the following discussion even if you haven't taken a
derivative in a while.

The following sections describe two kinds of least squares fits. In the first,
the function that approximates the data is a line. In the second, the function is
a polynomial of any degree.

Linear Least Squares

In a linear least squares fit, the goal is to find a line that minimizes the sum of the
squares of the vertical distances between the data points and the line. It'’s the same
situation shown in Figure 2.13, except the curve is a line.
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You can represent a line with the equation y =m x + b where m is the line’s
slope and b is its Y-intercept. (The point where the line crosses the y-axis.)

Suppose that you have a set of n data points (X,, ¥, ), (X;,¥1),---»(X,, ¥, ) Then
the vertical distance between one of the points (x;, y;) and the line is simply
y: —(mXx; +b). The square of that distance is (yi —(mx; + b)) . If you add up
all of the squared terms for all of the points, you get the following equation:

E:(yo—(mx0 +b))2+(y1 —(mx, er))2 +...+(yn —(mx, er))2

You can write this more concisely by using the mathematical summation
symbol X

E= Z(yi - (mxi + b))2

Here the symbol ¥ simply means that you should add up all of the values
fori=0,1,2,...,n.

This equation looks pretty intimidating in both forms. After all, they include
two variables, m and b, plus a bunch of x; and y, values. Things are simpler if
you remember that the x; and y, values are part of the data—theyre just num-
bers like 6 and -13.

Now it’s time for the calculus. To find the minimum value for this equation,
you take its partial derivatives with respect to the variables m and b, set the
derivatives equal to zero, and solve for m and b.

The following equation shows the error equation’s derivative with respect tom:

& 2. (y,~(m-x, +b))-(~x)

Multiplying this out and rearranging a bit gives the following:

%= ZZ-(—yi-xi+m'xf+b-xi)

= Z(mfo +bXx, - 2(y, —xl.))
The following equation shows the error equation’s derivative with respect to b:
OE
E:ZZ(% —(m-x, +b))-(—1)
Multiplying this out and rearranging a bit gives the following:

o _ Y2-(-y,+m-x, +b)

ob
= 2(min +b21—2yi)
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These new equations don't look any simpler until you remember that only the
m and b terms are variables. All of the x; and y, values are numbers that youre
given by the data. To make it easier to work with the equations, let’s make the
following substitutions:

S, = Zx;
Sy = inz
Sxy =2X;"Y;
Sy = ZYi
S, = 21

If we plug those values into the partial derivatives and set them equal to zero,
we get the following:

2(m-S,, +b-5,-S,) =0
2(m-S, +b-S,-S.) =0

Now you can solve these two equations for m and b to get the following:
(Sy-Si-5.S,)
(Sxx 'Sl _Sx Sx)

(S S-S, -S..)
(Sx 'Sx _Sl 'Sxx)

m =

All of the S terms are easy to calculate from the data values, so now you can
find m and b to minimize the error squared.
The follow pseudocode shows the algorithm for finding a linear least squares
fit at a high level:
Float[]: FindLinearLeastSquaresFit (Point[]: points)
<Calculate the sums Sx, Sxx, Sxy, Sy, and Sl1l.>

<Use the S values to callculate m and b.>
End FindLinearLeastSquaresFit

This code simply performs the calculations described in the preceding
paragraphs.

Polynomial Least Squares

A linear least squares fit uses a line to fit a set of data points. A polynomial least
squares fit uses a polynomial of the form A, -x" + A, -x' + A, x> +...+ A, -x" to
tit the data points.



Chapter 2 » Numerical Algorithms

65

The degree of the polynomial is the largest power of x used by the equation.
The preceding equation has degree d. You can pick the degree to fit the data.
In general, higher degrees will fit the data points more closely, although they
may imply an artificially-high accuracy.

For example, a degree d —1 polynomial can fit d data points exactly, but it
may need to wiggle all over the place to do so. Figure 2.14 shows a degree 5
polynomial that exactly fits six data points.

o5/ PolynomialLeastSqu..| == =] -

Degree: | 5| | Solve || Reset

As: -680.8627981776184
41.035562018541924
-0.70614254847757508
0.0054D67471875515975
-1.8913140850738504E-05
2.4606626208239292E-08

Figure 2.14: A high-degree polynomial may match a set of data values very closely
but misleadingly.

It’s usually better to pick the smallest degree that fits the data reasonably well.
Figure 2.15 shows the same data points as shown in Figure 2.14, but this time fit
by a degree 3 polynomial that probably does a better job of representing the data.

You find a polynomial fit in the same way that you find a linear fit: you take
the partial derivatives of the error function with respect to the A values, set the
derivatives equal to zero, and solve for the A values.

The following equation shows the error function:

E=Z(yi —(AO A xS A+ LA, ’*xi"))2

= Z(yi—AO *x'—A *x A x? —...—Ad*xl.d)2

1

Here the sum is taken over all of the data points (x;, y;).



Chapter 2 » Numerical Algorithms

o' PolynomialLeastSqu..| == =] -

Degree:| 3| | Solve || Reset

As: 539.66528850626486
-9.3375936834797653
0.06653270949046497
-0.000145042255352021746

Figure 2.15: You should use lowest-degree polynomial that fits the data reasonably well.

The next step is to take the partial derivatives of this equation with respect to
the A values. This is a pretty complicated equation, so you might think that this
will be hard. Fortunately, only a few terms in the equation involve any given A
value, so most of the terms become zero in the partial derivatives.

The following equation shows the partial derivative with respect to A,:

oE
oA,

:ZZ(%—AO *x0-A*x —-A*x - - A, *xid)(—xf)

If you multiply the —x,* term through and add up the A, terms separately,
you get the following;:

%:2*(2% *xik _Ao ink _Al ink+1 _Az zxik+2 _"'_Adzxik+d)
k

This equation also looks intimidating, but if you look closely, you'll see that
most of the terms are sums that you can calculate by using the data points (x;,
y,)- For example, in the partial derivative with respect to A,, the A, term is the
sum of the x; values raised to the k + 2 power.

If you replace the sums with the values S, S, S,,...,S,, then the equation
simplifies to the following;:

%:Z*(S—AO *Sy— A *S = A *S,)
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Now you have n +1linear equations with n + 1unknowns A, through A . To
finish solving the problem, you set the equations equal to zero and then use
Gaussian elimination to solve them for the A; values.

When you set a partial derivative equal to zero, you can divide both sides
of the equation by 2 and then move the A terms to the other side of the equals
sign to get the following equation:

Ay*Sp+ A *S +...+A,; %5, =5

This has the format used in the earlier section on Gaussian elimination.
All of this leads to the following high-level algorithm for finding a polyno-
mial least squares fit to a set of data points:

// Find a polynomial least squares fit to a set of data points.
Float[]: FindPolynomialLeastSquaresFit (Point[]: points)
<Calculate the sums S, SO, S1, ..., Sn.>
<Use the S values to build coefficients for
a system of linear equations.>
<Use Gaussian elimination to solve the system
of equations and find the A values.>
End FindPolynomialLeastSquaresFit

This code simply performs the calculations described in the preceding text.

Summary

Some numerical algorithms, such as randomization, are useful in a wide variety
of applications. Other algorithms, such as prime factoring and finding the greatest
common divisor, have more limited use. If your program doesn’t need to find
greatest common divisors, the GCD algorithm won’t be much help.

However, the techniques and concepts demonstrated by these algorithms can be
useful in many other situations. For example, the idea that an algorithm can
be probabilistic is very important in many applications. That idea can help you
devise other algorithms that don’t work with perfect certainty (and that could
easily be the subject of an interview question).

This chapter explained the ideas of fairness and bias, two important concepts
for any sort of randomized algorithm, such as the Monte Carlo integration
algorithm, which also was described in this chapter.

This chapter also explained adaptive quadrature, a technique that lets a
program focus most of its work on areas that are the most relevant and pay
less attention to areas that are easy to manage. This idea of making a program
adapt to spend the most time on the most important parts of the problem is
applicable to many algorithms.
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Many numerical algorithms, such as GCD, Fermat’s primality test, the rect-
angle and trapezoid rules, and Monte Carlo integration, don’t need complex data
structures. In contrast, most of the other algorithms described in this book do
require specialized data structures to produce their results.

The next chapter explains one kind of data structure: linked lists. These are not
the most complicated data structures you'll find in this book, but they are useful
for many other algorithms. Also, the concept of linking data is useful in other
data structures, such as trees and networks.

Exercises

You can find the answers to these exercises in Appendix B. Asterisks indicate
particularly difficult problems.

1. Write an algorithm to use a fair six-sided die to generate coin flips.

2. The section “Getting Fairness from Biased Sources” explains how you can
use a biased coin to get fair coin flips by flipping the coin twice. However,
sometimes doing two flips produces no result, so you need to repeat the
process. Suppose that the coin produces heads three-fourths of the time
and tails one-fourth of the time. In that case, what is the probability that
you'll get no result after two flips and have to try again?

3. Again, consider the coin described in Exercise 2. This time, suppose you
were wrong and the coin is actually fair but you're still using the algorithm
to get fair flips from a biased coin. In that case, what is the probability
that you'll get no result after two flips and have to try again?

4. Write an algorithm to use a biased six-sided die to generate fair values
between 1 and 6. How efficient is this algorithm?

5. Write an algorithm to pick M random values from an array containing N
items (wWhere M <N). What is its run time? How does this apply to the
example described in the text where you want to give books to five people
selected from 100 entries? What if you got 10,000 entries?

6. Write an algorithm to deal five cards to players for a poker program. Does
it matter whether you deal one card to each player in turn until every
player has five cards or whether you deal five cards all at once to each player
in turn?

7. Write a program that simulates rolling two six-sided dice and draws a bar
chart or graph showing the number of times each roll occurs. Compare
the number of times each value occurs with the number you would expect
for two fair dice in that many trials. How many trials do you need to
perform before the results fit the expected distribution well?
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8. In the complete self-avoiding random walk algorithm, what is the key
backtracking step? In other words, exactly where does the backtracking
occur?

9. When building a complete self-avoiding random walk, what happens
if the algorithm does not randomize the neighbor list? Would that change
the algorithm’s performance?

10. What happens to Euclid’s algorithm if A <B initially?

11. The least common multiple (LCM) of integers A and B is the smallest integer
that A and B both divide into evenly. How can you use the GCD to calcu-
late the LCM?

12. How would you need to change the fast exponentiation algorithm to
implement modular fast exponentiation?

13. *Write a program that calculates the GCD for a series of pairs of pseudo-
random numbers and graphs the number of steps required by the GCD
algorithm versus the average of the two numbers. Does the result look
logarithmic?

14. The following pseudocode shows how the sieve of Eratosthenes crosses
out multiples of the prime next_prime:

// "Cross out" multiples of this prime.

For i = next prime * 2 To max number Step next prime Then
is_composite[i] = true

Next i

The first value crossed out is next_prime * 2. But you know that this
value was already crossed out because it is a multiple of 2; the first thing
the algorithm did was cross out multiples of 2. How can you modify this
loop to avoid revisiting that value and many others that you have already
crossed out?

15.*In an infinite set of odd composite numbers, called Carmichael numbers,
every relatively prime smaller number is a Fermat liar. In other words, p
is a Carmichael number if p is odd and every n where 1<n<p and
GCD (p, n) =1is a Fermat liar. Write an algorithm to list the Carmichael
numbers between 1 and 10,000 and their prime factors.

16. When you use the rectangle rule, parts of some rectangles fall above the
curve, increasing the estimated area, and parts of some rectangles fall
below the curve, reducing the estimated area. What do you think would
happen if you used the function’s value at the midpoint of the rectangle
for the rectangle’s height instead of the function’s value at the rectangle’s
left edge? Write a program to check your hypothesis.
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17. Could you make a program that uses adaptive Monte Carlo integration?
Would it be effective?

18. Write a high-level algorithm for performing Monte Carlo integration to
find the volume of a three-dimensional shape.

19. How could you use Newton’s method to find the points where two func-
tions intersect?

20.Could you use least squares with functions other than lines and
polynomials?

21. What happens to the linear least squares calculation if you have only two
data points and they have the same x-coordinate? What causes that
behavior?

22.What line best fits two data points that have the same x-coordinate? How
does that line relate to your answer to Exercise 21?



Linked Lists

Linked lists are probably the simplest data structures you'll build. However,
some of the concepts you use to build them are also used to build the most
sophisticated data structures described in this book. To use a linked list, you
need to understand cells and links in addition to methods of finding, inserting,
and deleting cells. You use those same concepts to build complicated networks,
trees, and balanced trees, which can be extremely confusing.

This chapter explains the ideas you need to master to use linked lists. Later
chapters (in particular, Chapters 4, 5, 8, and 10 through 14) revisit these ideas.

Basic Concepts

A linked list is built of objects that are often called cells. The cell’s class contains
whatever data the list must store plus a link to another cell. The link is simply
a reference or pointer to another object of a cell’s class. Often, the pointer field
in the cell class is called Next.

For example, the following code shows the definition of an Integercell class
in C#. The cell holds an integer value and a pointer to the next Integercell
object in the linked list.

Essential Algorithms: A Practical Approach to Computer Algorithms Using Python® and C#, First Edition.
Rod Stephens.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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class IntegerCell

{

public int Value;
public IntegerCell Next;

}

Linked lists are often represented graphically, with boxes representing cells
and arrows representing links.

To indicate a link that doesn’t point to anything, I use a small box with an X
in it. (In a programming language, the value of the pointer corresponding to
the link would be nothing, null, none, or some other language-specific value
indicating that the pointer doesn't point to anything.)

In addition to the list itself, a program needs a variable that points to the list
so that the code can find it. Often, this variable is named top to indicate that it
represents the top of the list. The top variable could be a variable of the cell’s
class, or it might be a pointer to the first cell in the list.

Figure 3.1 shows two linked lists holding the numbers 31, 72, 47, and 9. In the
list on the top, the program has a variable named top that is a pointer to the list’s
first cell. In the list on the bottom, the program’s top variable is the first cell in
the list. Both lists end with a box containing an X to represent a null pointer.

top
P P I
31 > 72 > 47 > 9 —>&
top e e e
31 > 72 > 47 > 9 —>&

Figure 3.1: These linked lists hold the numbers 31, 72, 47, and 9.

Linked lists are a good way to store a list of items that can grow or shrink
over time. To add a new cell, you just add it at the beginning or end of the linked
list. In contrast, an array has a fixed size, so it may be hard to enlarge if you
need to add more items.

The following sections explain some of the algorithms that you can use to
manipulate linked lists. Many of them are most easily described with figures
that show the list before and after an operation has been performed.

Singly Linked Lists

In a singly linked list, each cell is connected to the following cell by a single link.
The lists shown in Figure 3.1 are singly linked lists.
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To use a linked list, you need a set of algorithms for iterating over a list, adding
items to the list, finding items in the list, and removing items from the list. The
following sections describe some of the algorithms that you might want to use.

Iterating Over the List

Assuming that a program has built a linked list, iterating over its cells is relatively
easy. The following algorithm shows how you can iterate over the cells in a list
and use some sort of method to do something with the values in the cells. This
example uses a print method to display the cells” values, but you could replace
print with any method that does something with the cells.

Iterate(Cell: top)

While (top != null)
Print (top.Value)
top = top.Next

End While

End Iterate

V[ AN These algorithms assume that the parameter top is passed by value, so the
code can modify it without changing the value of top in the calling code.

This algorithm starts with a while loop that executes as long as the top cell
pointer is not null. Inside the loop, the algorithm calls the print method to display
the top cell’s value. It then sets top to point to the next cell in the linked list.

This process continues until top is set to the null pointer at the end of the
list and the while loop stops.

This algorithm examines every cell in the linked list, so if the list contains N
cells, it has run time O(N).

Finding Cells

Finding a cell in a linked list is simply a matter of iterating over the list and stop-
ping when you find the cell you want. The following algorithm looks through
a list and returns the cell that contains a target value:

Cell: FindCell(Cell: top, Value: target)
While (top != null)
If (top.Value == target) Then Return top
top = top.Next
End While

// 1If we get this far, the target is not in the list.
Return null
End FindCell
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The algorithm enters a while loop that executes as long as top is not null.
Inside the loop, the algorithm compares the top cell’s value to the target value.
If the values match, the algorithm returns top. If the values do not match, the
algorithm moves top to point to the next cell in the list.

If top runs all the way through the list and becomes nu11, then the target value
is not in the list, so the algorithm returns nul1l. (Alternatively, the algorithm could
throw an exception or raise some kind of error, depending on your program-
ming language.)

As you'll see in some of the following sections, it’s often easiest to work with a
cell in a linked list if you have a pointer to the cell before that cell. The following
algorithm finds the cell before the cell that contains a target cell:

Cell: FindCellBefore(Cell: top, Value: target)
// If the list is empty, the target value isn't present.
If (top == null) Return null

// Search for the target value.

While (top.Next != null)
If (top.Next.Value == target) Then Return top
top = top.Next

End While

// 1f we get this far, the target is not in the list.
Return null
End FindCellBefore

This code is similar to the previous version—with two exceptions. First it
must check that top is not null before it starts so that it knows it can look at
top.Next safely. If top is null, then top.Next is undefined, and a program that
implemented the algorithm would fail and probably crash.

If top is not null, the algorithm enters a while loop as before, but this time
it looks at top.Next.value instead of top.value. When it finds the value, top
points to the cell before the one that holds the target value, and the algorithm
returns top.

Using Sentinels

If you study the preceding algorithm closely, you'll find one situation where it
fails. If the first cell in the linked list contains the target value, then there is no
cell before that one, so the algorithm cannot return it. The first value that the
algorithm examines is in the list’s second cell, and the algorithm never looks back.

One way to handle this situation is to add special-purpose code that explicitly
looks for the target value in the first cell and then handles that case separately.
The program would probably need to handle this situation as a special case,
and it could get messy.
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Another approach is to create a sentinel at the beginning of the list. A sentinel
is a cell that is part of the linked list but that doesn’t contain any meaningful
data. It is used only as a placeholder so that algorithms can refer to a cell that
comes before the first cell.

The following pseudocode shows the previous FindcellBefore algorithm
modified to use a sentinel:

Cell: FindCellBefore(Cell: top, Value: target)
// Search for the target value.
While (top.Next != null)
If (top.Next.Value == target) Then Return top
top = top.Next
End While

// If we get this far, the target is not in the list.
Return null
End FindCellBefore

This version doesn’t need to check whether top is null. Because the linked
list always has at least a sentinel, top cannot be nu11. This means that the while
loop can begin right away.

This version also starts by checking the value in the first cell in the list, not
the second, so it can detect the case where the first cell contains the target value.

This version of the algorithm can return the sentinel cell before the first real
cell if appropriate. Therefore, the program using the algorithm doesn’t need
customized code to handle the special case in which the target value is at the
beginning of the list.

When searching for a target value, the algorithm might get lucky and find it
right away. But in the worst case it may have to search most of the linked list
before it finds the target value. If the target value isn't in the list, the algorithm
needs to search every cell in the list. If the list contains N cells, that means this
algorithm has run time O(N).

A sentinel may seem like a waste of space, but it removes the need for special-
purpose code and makes the algorithm simpler and more elegant.

The following sections assume that linked lists have sentinels.

Adding Cells at the Beginning

One use for linked lists is to provide a data structure where you can store
items. This is sort of like an array that you can expand whenever you need
more space.
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The easiest way to add an item to a linked list is to place a new cell at the
beginning, right after the sentinel. The following algorithm adds a new item at
the beginning of a linked list:

AddAtBeginning (Cell: sentinel, Cell: new cell)
new_cell.Next = sentinel.Next

sentinel .Next = new cell

End AddAtBeginning

This algorithm sets the new cell’s Next pointer so that it points to the first
cell in the list after the sentinel. It then sets the sentinel’s Next pointer to point
to the new cell. That places the new cell after the sentinel so that it becomes the
new first cell in the linked list.

Figure 3.2 shows a linked list before and after a new cell is added at the top

of the list.
New
Cell

sentinel ——>

l
X

x 52

sentinel ——>

1 —IX

Figure 3.2: To add an item at the top of a linked list, make the new cell’s Next link point to the
old top of the list and then make the sentinel’s Next link point to the new cell.

This algorithm performs only two steps, so its run time is O(1) no matter how
many cells the list contains.

Adding Cells at the End

Adding a cell at the end of the list is a bit more difficult than adding it at the
beginning because the algorithm must first traverse the list to find the last cell.

The following pseudocode shows an algorithm for adding a new cell at the
end of a list:

AddAtEnd(Cell: sentinel, Cell: new_cell)
// Find the last cell.
While (sentinel.Next != null)
sentinel = sentinel.Next
End While
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// Add the new cell at the end.
sentinel .Next = new_cell
new_cell.Next = null
End AddAtEnd

The code iterates through the linked list until it finds the last cell. It makes
the last cell’s Next link point to the new cell and then sets the new cell’s Next
link to point to null.

This code would be messier if the list didn’t have a sentinel. In that case, you
would have to use special code to handle the case when the list is empty so
sentinal points to null.

Figure 3.3 shows the process graphically.

New
Cell

sentinel ——>

Y

sentinel ——>f

Y

Figure 3.3: To add an item at the end of a linked list, find the last cell and make its Next link
point to the new cell. Then make the new cell’s Next link point to nul1l.

This algorithm must traverse the entire list, so if the list contains N cells, it
has run time O(N).

Inserting Cells After Other Cells

The preceding sections explained how you can add cells at the beginning or end
of a linked list, but sometimes you may want to insert an item in the middle of
the list. Assuming you have a variable named after me that points to the cell
after which you want to insert the item, the following pseudocode shows an
algorithm for inserting a cell after after_me:

InsertCell (Cell: after me, Cell: new cell)
new_cell.Next = after me.Next
after me.Next = new_cell

End InsertCell

This algorithm makes the new cell’s Next link point to the cell that follows
after_me and then makes after_me’s Next link point to the new cell. Figure 3.4
shows the process graphically.



78

Chapter 3 = Linked Lists

after_me [MNew |
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Figure 3.4: Inserting a cell after a given cell takes O(1) time.

This algorithm takes only two steps, so it runs in O(1) time, although you
may need to use O(N) time to find the cell aftter_me. For example, if you want
to insert a cell after the cell that contains a target value, first you need to find
the cell that contains the target value.

Deleting Cells

To delete a target cell, you simply set the previous cell’s Next link to the cell
that follows the target cell. The following pseudocode shows an algorithm that
deletes the cell after the cell after me:

DeleteAfter (Cell: after me)
Cell: target = after me.Next
after_me.Next = target.Next

End DeleteAfter

Figure 3.5 shows this algorithm graphically.

Yo

after_me

sentinel ——>
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sentinel ——> > > > —»&

Figure 3.5: To remove a cell from a linked list, set the previous cell's Next link to point to the
cell after the target cell.
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Programming languages such as Python, C#, and Visual Basic use automatic
memory management, so the deleted cell is eventually recycled automati-
cally. In some other programming languages, such as C and C++, you may
need to perform extra work to free the deleted cell properly. For example,
in C++ you would need to free the target cell, as in the following version of
the algorithm:

DeleteAfter(Cell: after me)
Cell: target_cell = after_me.Next
after me.Next = after_me.Next.Next
free (target cell)

End DeleteAfter

How you destroy a linked list also depends on your language. In Python, C#,
and Visual Basic, you can simply set all of the program’s references to the list to
null, and the garbage collector eventually reclaims the list. In a language such
as C++, where you need to free each cell explicitly, you need to walk through
the list, freeing each cell, as shown in the following pseudocode:

DestroyList (Cell: sentinel)
While (sentinel != null)
// Save a pointer to the next cell.
Cell: next cell = sentinel.Next

// Free sentinel.
free(sentinel)

// Move to the next cell.
sentinel = next_cell
End While
End DestroyList

How you free resources is language-dependent, so this book doesn’t say
anything more about it here or in later chapters. Just be aware that you may
need to do some extra work whenever you remove a cell or other object from
a data structure.

Doubly Linked Lists

In a doubly linked list, the cells have links that point to both the next and previous
cells in the list. The link to the previous cell is often called prev or Previous.
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Often, it is convenient to have both top and bottom sentinels for doubly
linked lists so that the program can easily manipulate the list from either end.
For example, this lets you add items to and remove items from either end in
O(1) time.

Figure 3.6 shows a doubly linked list with top and bottom sentinels.

top_sentinel \

X«

Y
Y
Y

B B s B ¢

\ bottom_sentinel

Figure 3.6: Doubly linked lists often have top and bottom sentinels.

A
A
A

Algorithms for manipulating doubly linked lists are similar to those that
work with singly linked lists, except that they must do some extra work to
manage the second set of links. For example, the following pseudocode shows
an algorithm for inserting a cell after a given cell:

InsertCell (Cell: after me, Cell: new cell)
// Update Next links.
new_cell .Next = after_ me.Next
after me.Next = new cell

// Update Prev links.
new_cell.Next.Prev = new_cell
new_cell.Prev = after_me

End InsertCell

The only really tricky part of these algorithms is keeping track of which
links have been updated at any point in time. For example, in the preceding
algorithm, the second-to-last statement sets the prev link that should point
to the new cell. You might be tempted to do this by using the following
statement:

after_me.Next.Prev = new_cell

However, when this statement executes, after_me.Next has already been
updated to point to the new cell, so this won’t work. The algorithm needs to use
new cell.Next instead.

Figure 3.7 shows the algorithm graphically.
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Figure 3.7: When updating a doubly linked list, a program must update both the Next
and Prev links.
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Sorted Linked Lists

Sometimes, it’s convenient to keep the items in a linked list in sorted order.
When you add a new item to the list, you need to search through the list to
find the position where the item belongs and update the appropriate links to
insert it there.

The following pseudocode shows an algorithm for inserting an item into a
sorted singly linked list:

// Insert a cell into a sorted singly linked list.
InsertCell (Cell: sentinel, Cell: new_cell)
// Find the cell before where the new cell belongs.
While (sentinel.Next != null) And
(sentinel .Next.Value < new cell.Value)
sentinel = sentinel.Next
End While

// Insert the new cell after sentinel.
new_cell.Next = sentinel.Next
sentinel .Next = new cell

End InsertCell

In the worst case, this algorithm might need to cross the whole list before
finding the correct location for the new item. Therefore, if the list holds N cells,
its run time is O(N).
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Although you cannot improve the theoretical run time, you can make the
algorithm simpler and slightly faster in practice by adding a bottom sentinel. If
you set the bottom sentinel’s value to a value larger than any value that could
be stored in a cell, then you can remove the sentinel.Next != null test because
you know that the code will eventually find a location for the new cell, even if
it’s right before the bottom sentinel.

For example, if the cells hold names that use ASCII characters, you can set
the bottom sentinel’s value to ~ because the ~ character comes alphabetically
after any valid name. If the cells hold integers, you can set the bottom sentinel’s
value to the largest possible integer value. (On most 32-bit systems, that value is
2,147,483,647. Python can represent arbitrarily large integers, so you'll just have to
pick a value that is larger than any value that you might want to store in the list.)

The following pseudocode shows the revised algorithm, assuming that the
list has a bottom sentinel holding a value larger than any value that could be
held in the cells:

// Insert a cell into a sorted singly linked list.
InsertCell (Cell: sentinel, Cell: new cell)
// Find the cell before where the new cell belongs.
While (sentinel.Next.Value < new cell.Value)
sentinel = sentinel.Next
End While

// Insert the new cell after sentinel.
new_cell.Next = sentinel.Next
sentinel .Next = new cell

End InsertCell

Self-Organizing Linked Lists

A self-organizing linked list is a list that uses some sort of heuristic to rearrange its
items to improve expected access times. For example, if the program searches
the list for a specific item a large number of times, it would make sense to move
that item to the beginning of the list so that it is easier to find.

A heuristic is an algorithm that is likely but not guaranteed to produce a
good result. For example, a heuristic for not getting speeding tickets is to drive no
more than 5 miles per hour over the speed limit. You still might get a ticket, but you
probably won't. (But don’t take my word as legal advice! Don’t blame me if you get a
ticket.) You’ll learn a lot more about heuristic algorithms later in this book.
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If you number the items in the list1, 2, ..., N, and the probability that you need
to find item i is P, then the expected number of steps that you need to move
down the list to find an item is given by the following formula:

Expected Search Length =
1.-P+2-P,+3-P,+---+ NPy

If it is equally likely that you'll want to find any given item, then all of the
probabilities P, have the same value 1/ N and the expected search length is the
following;:

Expected Search Length = 1 + 2 + 3 oot N_
N N N N
1

ZZ,_N(N+1)_N+1
N

2N 2

This value depends only on the length of the list, so it doesn’t matter how
the items are arranged. Because the P, values are all the same, you will need
to search roughly halfway through the list on average to find any given item.

In contrast, if the P, values are different, then it makes sense to move the more
popular items to the front of the list. If you knew the P, values ahead of time,
then you could arrange the list optimally. Unfortunately, you usually won't
know the actual probabilities until after you perform some searches.

A self-organizing list rearranges its items as it goes along to try to improve
the order of its items. The following sections describe several ways that a self-
organizing list can rearrange its items to improve search times.

Move To Front (MTF)

In the move to front method, the list moves the most recently accessed item to the
front of the list. Moving an item to the front of a link list only takes a few steps,
so this is relatively fast and easy. Frequently accessed items will tend to remain
near the top of the list while those that are accessed less often will usually be
near the bottom of the list.

One drawback to this method is that an infrequently accessed item will
occasionally jump to the front of the list and slow down subsequent searches
until it is pushed back down the list. Still, this kind of list gives a significant
improvement for little extra work.

Swap

The swap method or transpose method swaps the most recently accessed item with
the item before it so that frequently accessed items gradually move toward the
front of the list. It takes only a few steps to swap two items in a linked list, so
this method is fast and easy. It also prevents an infrequently accessed item from
jumping to the front of the list and slowing down later searches.
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One drawback to this method is that items move slowly. That means fre-
quently accessed items can take a long time to move to the front of the list, so it
can take a while before the items reach an effective arrangement. In turn, that
means the MTF method may give better results if you are only going to perform
a smaller number of searches.

Count

In the count method, you keep track of the number of times each item is accessed.
When you search for an item, you increment its count and then move it up
in the list until it lies before any items that have smaller counts. Over time,
the items move close to their optimal arrangement where they are sorted by
their probabilities.

One drawback to this method is that it requires extra storage to hold the item
counts. It also takes more work to move an item several positions through the
list than it does simply to move it to the front of the list or to swap it with one
neighboring item.

Despite the fact that it may take a relatively large amount of work to rearrange
the list, the items move into near-optimal positions fairly quickly, and after that,
the items should require little rearrangement.

Hybrid Methods

The MTE, swap, and count methods have different behaviors during different
parts of the list’s lifetime. For example, the MTF method makes large adjust-
ments to the items’ order relatively quickly, but later searches for less commonly
accessed items can mess up the arrangement. Swapping produces a better
arrangement but is slower. Counting produces a very good arrangement but
requires extra storage.

You may be able to use a combination of techniques to produce a better overall
result. For example, you might use an MTF strategy to move the most commonly
accessed items quickly to the front part of the list. Then you could switch to a
swapping strategy to adjust the list more slowly.

Another approach might initially use MTF while updating item counts. After
performing enough searches to get useful statistics, you could sort the items by
their counts and then switch to a counting strategy.

Figure 3.8 shows the SelfOrganizingLists example program after it has searched
a list of 100 values 1 million times. You can see that the MTF list was much faster
than the nonarranging list, the swapping list was even faster, and the counting
list was the fastest of all.
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o SelfOrganizingLists - =] -
# Values: 100  Probabilities:
# Searches: ) Equal ) Linear ® Quadratic
Steps Awverage Steps &Sptzg: i
Nome List: | 75613233 | 75.62] | 75.62]
MTFLst: | 32531835 | 3253 | 30.46]
Swap List: | 26196967 | 26.20] | 2571
Court List: | 25332863 | 2539 | 25.38

Figure 3.8: Self-arranging lists are much faster than fixed lists.

The program’s radio buttons determine how the items’ probabilities are dis-
tributed. If you check the Equal button, all of the items are selected with equal
probability.

If you check the Linear button, then an item’s probability is proportional to
its value. For example, the value 10 is selected 10 times as often as the value 1.

If you check the Quadratic button, an item is selected with probability equal
to its square divided by the total of all of the numbers squared. For example,
the value 17 is selected with probability 17 x17 / total.

Pseudocode
You can use the following high-level pseudocode for any self-organizing list:

// Find an item and rearrange the linked list.

Item: FindItem(Value: value)
<Find the item.>
<Rearrange the list for the desired self-organizing strategy.>
<Return the item.>

End FindItem

You can use the techniques described earlier in this chapter to find the item.

For an MTF or swapping list, you can find the linked-list cell before the target
item so that you can move or swap the item more easily.

For a counting list, you can use a doubly linked list so that you can easily
swap the found item toward the front of the list as far as necessary.

To implement the algorithm in C#, Python, or another object-oriented language,
you can make a self-organizing list parent class that provides basic list methods
to add and remove items. Its Find method can call a Rearrange method that does
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nothing in the parent class. Then the MTF, swapping, and counting child classes
can override the Rearrange method to restructure the list appropriately. That
allows the parent class to hold as much shared code as possible, and the child
classes only need to contain code that is specific to their arranging strategies.

Linked-List Algorithms

So far, this chapter has described algorithms for building and maintaining
linked lists. It has described algorithms for adding items at the top, bottom,
and interior of a list; algorithms for finding and deleting items in a list; and
algorithms for making self-organizing lists.

The following sections describe other algorithms that manipulate linked
lists in other ways.

Copying Lists

Some algorithms rearrange a list. For example, the next two sections describe
algorithms that sort the items in a list. If you want to keep the original list intact,
you must make a copy of the list before you sort it.

The following pseudocode shows how you can copy a singly linked list:

// Copy a list.

Cell: CopyList(Cell: old sentinel)
// Make the new list's sentinel.
Cell: new _sentinel = New Cell()

// Keep track of the last item we've added so far.
Cell: last_added = new_sentinel

// Skip the sentinel.
Cell: old cell = old_sentinel.Next

// Copy items.

While (old cell != null)
// Make a new item.
last_added.Next = New Cell

// Move to the new item.
last_added = last_added.Next

// Set the new item's value.
last_added.Value = old_cell.Value

// Get ready to copy the next cell.
old cell = old_cell.Next
End While
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// End with null.
last_added.Next = null

// Return the new list's sentinel.
Return new_sentinel

}

This algorithm is reasonably straightforward, but it contains one feature
worth mentioning. The algorithm uses the variable 1ast_added to keep track of
the cell that was most recently added to the new copy of the list. To copy a new
item to the list, the algorithm sets last_added.Next equal to a new cell object.
That puts the new object at the end of the list. The algorithm then updates
last_added to point to the new item and copies the original cell’s value into it.

This lets the list grow at the bottom instead of at the top. This is similar to
how you can easily add items to the end of a list if you keep track of the last
item in the list, as described in Exercise 1.

Sorting with Insertionsort

Chapter 6, “Sorting,” says a lot about sorting algorithms, but two are worth
discussing here: insertionsort and selectionsort.

The basic idea behind insertionsort is to take an item from the input list
and insert it into the proper position in a sorted output list (which initially
starts empty).

The following pseudocode shows the insertionsort algorithm, where the
items to sort are stored in a singly linked list that has a top sentinel:

// Use insertionsort to sort the list.
Cell: Insertionsort(Cell: old sentinel)
// Make a sentinel for the sorted list.
Cell new_sentinel = New Cell()
new_sentinel .Next = null

// Skip the input list's sentinel.
old_sentinel = old sentinel.Next

// Repeat until we have inserted all of the items in the new list.
While (old_sentinel != null)

// Get the next cell to add to the list.

Cell: next cell = old_sentinel

// Advance old sentinel for the next trip through the loop.
old_sentinel = old_sentinel.Next

// See where to add the next item in the sorted list.
Cell: after _me = new sentinel
While (after me.Next != null) And
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(after me.Next.Value < next_cell.Value)
after me = after_me.Next
End While

// Insert the item in the sorted list.
next_cell.Next = after me.Next
after_me.Next = next_cell

End While

// Return the sorted list.
return new_sentinel
End Insertionsort

This algorithm starts by building an empty list to hold the sorted output. It
then loops through the unsorted list of input cells. For each input cell, it looks
through the growing sorted list and finds the cell after which the new value
belongs. It then inserts the cell there.

You can simplify the code if you call the Insertcell algorithm described in
the earlier section “Inserting Cells After Other Cells.”

The algorithm’s best case occurs if the items in the input list are initially sorted
in largest-to-smallest order. In that case, each time the algorithm considers a
new item, it is smaller than all of the items that have already been added to the
sorted list. That means the new item belongs at the top of the sorted list, so you
can insert it in O(1) time. That in turn means you can “sort” the already-sorted
items in a total of O(N) time.

The algorithm’s worst case occurs when the items are initially sorted in
smallest-to-largest order. In that case, when the algorithm considers an item, it
is larger than all the items that have already been moved to the new list, and
you need to insert it at the end of the list. That means inserting all of the items
takes1+2+3+...+ N=Nx(N-1) /2=0O(N?) steps.

In the average case, with the items initially randomly arranged, the algorithm
can insert some items quickly, but others take longer. The result is that the
algorithm’s run time is still O(N?), although in practice it won't take as long as
the worst case.

Many other sorting algorithms take only O(N log N) time, so this algorithm’s
O(N?) performance is relatively slow. That makes this algorithm ineffective for
large lists. However, it runs reasonably quickly for small lists, and it works for
linked lists, which many of the other algorithms don't.

Sorting with Selectionsort

The basic idea behind the selectionsort algorithm is to search the input list for
the largest item it contains and then add it to the front of a growing sorted list.
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The following pseudocode shows the selectionsort algorithm for a singly
linked list holding integers:

// Use selectionsort to sort the list.

Cell: Selectionsort(Cell: old sentinel)
// Make a new_sentinel for the sorted list.
Cell: new_sentinel = New Cell
new_sentinel.Next = null

// Repeat until the old list is empty.
While (old sentinel.Next != null)
// Find the largest item in the old list.
// The cell best after me will be the cell before
// the one with the largest value.
Cell: best after me = old sentinel
Integer: best value = best after me.Next.Value

// Start looking with the next item.
Cell: after me = old_sentinel.Next
While (after_me.Next != null)
If (after me.Next.Value > best_value) Then
best _after me = after me
best_value = after_me.Next.Value
End If
after me = after_me.Next
End While

// Remove the best cell from the unsorted list.
Cell: best _cell = best_after me.Next
best_after_me.Next = best cell.Next

// Add the best cell at the beginning of the sorted list.
best_cell.Next = new_sentinel.Next
new_sentinel.Next = best cell

End While

// Return the sorted list.
Return new_sentinel
End Selectionsort

You can simplify this algorithm somewhat if you extract the code that finds
the largest cell in the input list, place that code in a new algorithm, and then
invoke the new algorithm from this one.

When the input list contains K items, finding the largest item in the list takes K
steps. Adding the largest item to the sorted list takes only a few steps. As the algorithm
progresses, the input list shrinks. Therefore, if it originally holds N items, the
total number of stepsisN+(N-1)+(N-2)+...+2+1=Nx(N-1)/2=O(N?),
the same run time given by the insertionsort algorithm.
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Multithreaded Linked Lists

In a singly linked list, a cell has a link to the next cell in the list. In a doubly
linked list, each cell has links to the cell before and after it in the list. The
doubly linked list uses two links to provide two different ways to move through
the cells it contains: forward or backward.

There’s no reason why you can’t add other links to a list’s cells to provide other
ways to move through the cells. For example, suppose you build a pPlanet class
to hold information about the solar system’s planets. You can give the planet
class a field named NextDistance that is a link to the Planet that is the next
nearest to the sun. Following the NextDistance links would list the planets in
the order Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune
(and optionally Pluto, if you're a Pluto fan).

Similarly, you could add other fields to list the planets ordered by mass,
diameter, and other characteristics. Each path through the cells defined by a
set of links is called a thread.

It’s easy enough to work with a single thread, thinking of it as a simple linked
list, although visualizing all of the threads at the same time can be messy. For
example, Figure 3.9 shows a linked list of planets with three threads. The thin
links visit the planets ordered by distance to the sun, the dashed links visit the
planets ordered by mass, and the thick links visit the planets ordered by diameter.

sentinel [ > Mercury [Z0 3 Venus [T___ > Earth [T i Mars '
> —|I—) > M > —I

Jupiter [T

Figure 3.9: Visualizing all the threads through a multithreaded linked list can be confusing.

\[o N Otherdata structures can also have threads. For example, a tree might pro-
vide threads to let a program visit its nodes in orders that are not typical for a tree.
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Linked Lists with Loops

A circular linked list is a linked list in which the last link points back to the first
item in the list. Figure 3.10 shows a circular linked list.

sentinel

Figure 3.10: Circular linked lists let a program easily loop through
a sequence of objects indefinitely.

Circular linked lists can be useful when you need to loop through a sequence
of items indefinitely. For example, an operating system might repeatedly loop
through a list of processes to give each a chance to execute. If a new process
started, it could be added anywhere in the list, perhaps right after the sentinel
so that it would have a chance to execute right away.

As another example, a game might loop indefinitely through a list of objects,
allowing each to move on the screen. Again, new objects could be added any-
where to the list.

Figure 3.11 shows a linked list that contains a loop, but the loop doesn’t include
all of the list’s cells.
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Figure 3.11: This list contains a loop that doesn't include all of the list’s cells.
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The kind of linked list shown in Figure 3.10 is interesting, mostly because
it presents you with two thought-provoking problems. First, how can you tell
whether a linked list contains such a loop? Second, if a linked list contains
such a loop, how can you find where the loop starts and break it there to “fix”
the list? This is roughly the same question as asking where the “bottom” of the
list is. In Figure 3.11, you might define the bottom of the list to be cell I because
it is the last cell you visit while traversing the list before cells start repeating.

The following sections describe some of the most interesting algorithms that
answer these questions.

Marking Cells

Probably the easiest way to tell whether a linked list has a loop is to traverse its
cells, marking each as you visit it. If you come to a cell that is already marked,
you know that the list has a loop and that it starts at that point.

The following pseudocode shows this algorithm:

// Return true if the list has a loop.

// If the list has a loop, break it.

Boolean: HasLoopMarking(Cell: sentinel)
// Assume there is no loop.
Boolean: has_loop = false

// Loop through the list.
Cell: cell = sentinel
While (cell.Next != null)
// See if we already visited the next cell.
If (cell.Next.Visited)
// This is the start of a loop.
// Break the loop.
cell.Next = null
has loop = true
<Break out of the While loop>
End If

// Move to the next cell.
cell = cell.Next

// Mark the cell as visited.
cell.Visited = true
End While

// Traverse the list again to clear the Visited flags.
cell = sentinel
While (cell.Next != null)
cell.Visited = false
cell = cell.Next
End While
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// Return the result.
Return has_loop
End HasLoopMarking

The BreakLoopMarking sample program, which is available for download
on the book’s website, demonstrates this algorithm.

This algorithm must traverse the loop twice—once to set the cells’ visited
flags to true and again to reset them to false. So, if the list contains N cells,
this algorithm takes 2 x N steps and runs in O(N) time.

This algorithm also requires that each cell have an added visited field, so it
requires O(N) space. The list already takes up O(N) space to hold the cells and
their links, so this shouldn’t be a problem, but it’s worth acknowledging that
the algorithm has some memory requirements.

V[ AN Marking cells is a simple technique that is also useful for other data struc-
tures, particularly networks. Some of the algorithms described in Chapters 13 and 14
use marking techniques.

Often, a problem such as this one has the additional requirement that you are
not allowed to change the definition of the cell class. In this case, that means
you aren’t allowed to add a visited field. The following algorithms satisfy that
additional restriction.

Using Hash Tables

Hash tables are described in detail in Chapter 8. For now, all you need to know
is that a hash table can quickly store items, retrieve items, and tell you whether
an item is present in the hash table.

This algorithm moves through the list, adding each cell to a hash table. When
it visits a cell, it checks the hash table to see whether the cell is already in the
table. If it comes to a cell that is already in the hash table, the list contains a loop
that starts at that cell.

The following pseudocode shows this algorithm:

// Return true if the list has a loop.
// If the list has a loop, break it.
Boolean: HasLoopHashTable (Cell: sentinel)
// Make a hash table.
Hashtable: visited

// Loop through the list.
Cell: cell = sentinel
While (cell.Next != null)
// See if we already visited the next cell.
If (visited.Contains (cell.Next))
// This is the start of a loop.
// Break the loop and return true.
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cell.Next = null
Return true
End If

// Add the cell to the hash table.
visited.Add (cell)

// Move to the next cell.
cell = cell.Next
End While

// 1f we get this far, there is no loop.
Return false
End HasLoopHashTable

The BreakLoopHashtable sample program, which is available for download
on the book’s website, demonstrates this algorithm.

This algorithm traverses the list’s cells once, so if the list contains N cells, this
algorithm takes N steps and runs in O(N) time.

This algorithm also requires a hash table. For the best performance, a hash table
must have extra space beyond what it needs to store the values. If the list contains
N items, the hash table must have room for more than N entries. A hash table
with room for 1.5 x N entries will give good performance and still use O(IN) space.

This algorithm obeys the restriction that it isn't allowed to modify the cell
class, but it uses extra storage. The following sections describe some algorithms
that detect loops without using extra storage.

List Retracing

The list retracing algorithm uses two objects that traverse the list. It starts the first

object (call it 1eader) on a normal traversal. Each time that object visits a new cell, the

algorithm starts a second object (call it t racer) on a traversal. If tracer ever reaches

the cell 1eader.Next before it comes to the cell 1eader, then the list contains a loop.
For example, look again at the list shown in Figure 3.11, and suppose leader is

pointing to cell I. Then tracer will reach 1eader.Next, which is cell D, before it

reaches cell I. That shows there is a loop starting at node D and ending at node L.
The following code shows the algorithm in pseudocode:

// Return true if the list has a loop.
// If the list has a loop, break it.
Boolean: HasLoopRetracing(Cell: sentinel)
// Loop through the list.
Cell: cell = sentinel
While (cell.Next != null)
// See if we already visited the next cell.
Cell: tracer = sentinel
While (tracer != cell)
If (tracer.Next == cell.Next)
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// This is the start of a loop.
// Break the loop and return true.
cell.Next = null
Return true
End If
tracer = tracer.Next
End While

// Move to the next cell.
cell = cell.Next
End While

// If we get here, the list has no loop.
Return false
End HasLoopRetracing

The BreakLoopHashtable sample program, which is available for download
on the book’s website, demonstrates this algorithm.

Assume that the list contains N cells. When the algorithm’s ce11 object exam-
ines the Kth cell in the list, the tracer object must traverse the list up to that
point, so it must perform K steps. That means the algorithm’s total run time is
1+24+3+...+ N=Nx(N-1)/2=0(N?).

This is slower than the previous algorithms, but, unlike those algorithms, the
only additional space it requires is for the two cell pointers that traverse the list.

List Reversal

Like the preceding list retracing algorithm, the list reversal algorithm uses only
a small amount of extra space to hold some pointers. This algorithm, however,
works in O(N) time.

This algorithm traverses the list, reversing each cell’s Next link so that it points
to the cell before it in the list instead of the one after it. If the algorithm ever
reaches the list’s sentinel, then the list contains a loop. If the algorithm reaches
a null link without reaching the sentinel, then the list doesn’t contain a loop.

Of course, moving through the list reversing links messes up the links. To
restore them, the algorithm then moves back through the list a second time,
reversing the links again so that they point back to where they did originally.

To see how this works, look at the list shown in Figure 3.12.

The top image in Figure 3.12 shows the original list. The algorithm starts at
cell A and moves through the list, reversing the links.

The middle image in Figure 3.12 shows the algorithm when it has reached
cell I. The links that have been reversed are shown in bold. Next, the algorithm
follows the link out of cell I to cell D. It then follows the reversed links from
cell D to cells C, B, and A. As it follows those links, the algorithm reverses them
again to give the image shown at the bottom of Figure 3.12. Here the links that
have been reversed twice are shown with dotted arrows.
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Figure 3.12: An algorithm can detect a loop by reversing the links in a linked list.

At this point, the algorithm returns to the first cell in the list so that it knows
the list contains a loop. Notice that the new list is the same as the old one, except
that the links in the loop are reversed.

The algorithm finishes by reversing the links again to restore their original
links.

Because this algorithm must reverse the list twice, it makes sense to move
that operation into a separate method that you can call twice. The following
pseudocode shows how the algorithm reverses the list’s links:

// Reverse the loop once and return the new top of the list.
Cell: ReverseList (Cell: sentinel)

Cell: prev_cell = null

Cell: curr cell = sentinel
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While (curr cell != null)
// Reverse the link out of this cell.
Cell: next_cell = curr_cell.Next
curr cell.Next = prev cell

// Move to the next cell.

prev_cell = curr_cell

curr_cell = next_cell
End While

// Return the last cell we visited.
Return prev_cell
End ReverseList

This pseudocode moves through the list, reversing the links, and returns the

last node visited, which is the first node in the reversed list.

The following algorithm uses the previous pseudocode to determine whether

the list contains a loop:

// Return true if the list has a loop.
Boolean: HasLoopReversing(Cell: sentinel)
{
// If the list is empty, it has no loops.
If (sentinel.Next == null) Then Return false

// Loop through the list, reversing links.
Cell: new_sentinel = ReverseList (sentinel)

// Loop through the list again to restore the links.
ReverseList (new_sentinel)

// 1If the reversed list starts with the same cell
// as the original list, there is a loop.
If (new_sentinel == sentinel) Then Return true
Return false

End HasLoopReversing

This algorithm calls the rReverseList method to reverse the list and get the
reversed list’s first cell. It then calls ReverseList again to re-reverse the list and

restore the links to their original values.

If the sentinel is the same as the first cell in the reversed list, the algorithm
returns true. If the sentinel is different from the first cell in the reversed list,

the algorithm returns false.

This algorithm traverses the list twice—once to reverse links and once to

restore them—so it performs 2 x N = O(N) steps.

This algorithm runs in O(N) time without requiring additional space. Unfor-
tunately, it only detects loops; it doesn't provide a way to break them. The next
algorithm solves that problem, although it is the most confusing of the algo-

rithms described here.
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Tortoise and Hare

This algorithm is called the tortoise-and-hare algorithm or Floyd’s cycle-finding
algorithm after Robert Floyd, who invented it in the 1960s. The algorithm itself
isn’t too complicated, but its explanation is pretty confusing, so if you don’t
want to see the math, skip to the following pseudocode.

The algorithm starts two objects called tortoise and hare moving through
the list at different speeds starting at the beginning of the list. The tortoise
moves one cell per step. The hare moves two cells per step.

If the hare reaches a link that is null, then the list has an end, so there is no
loop.

If the list does contain a loop, the hare eventually enters the loop and starts
running laps around it.

Meanwhile, the tortoise plods along until it eventually reaches the loop, too.
At that point, both the tortoise and hare are inside the loop.

Let T be the number of steps that pass before the tortoise enters the loop, and
let H be the distance from the beginning of the loop to the hare’s location after
T steps, as shown in Figure 3.13. Let L. be the number of cells inside the loop.

@b
YOS
QG

H

Figure 3.13: T is the distance the tortoise travels to get to the loop, and H is the distance from
the start of the loop to the hare at that time.

T

In Figure 313, T=4,H=4,and L =5.

Because the hare moves twice as fast as the tortoise, it reaches the loop after
moving T cells. It then crosses T more cells inside the loop to reach the position
shown in Figure 3.13. This leads to the following Important Fact #1.
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IMPORTANT FACT #1

If you move across T cells within the loop, you end up H cells away from where you
started.

Note that the hare may have run several laps around the loop if L is much
smaller than T. For example, if T is 102 and L is 5, the tortoise reaches the loop
after 102 steps. The hare reaches the loop after 51 steps, spends the next 50 steps
(100 cells) running 20 laps around the loop, and then moves one more step (two
cells) inside the loop. In this case, H=2.

The next question is, “When will the hare catch the tortoise?” When the tor-
toise enters the loop, the hare is H cells ahead, as shown in Figure 3.13. Because
the tortoise and hare are in a loop, you can also think of the hare as L-H
cells behind the tortoise. Because the hare moves two cells for every one that
the tortoise moves, it gains one cell per step. That means the hare will catch the
tortoise in L — H more steps.

In Figure 3.13, H=4 and L =5, so the hare will catch the tortoise in 5-4=1
more step when both animals meet at cell E.

This means that, at the point of collision, the tortoise will have moved L - H
cells into the loop. When the two animals meet, they are L — (L —H)=H cells
short of the beginning of the loop. This is Important Fact #2.

IMPORTANT FACT #2

When the hare catches the tortoise, the two animals are H cells short of the beginning
of the loop.

Now, if you could move the tortoise H cells from the point of collision, the tor-
toise would be at the beginning of the loop, and you would know where the
loop starts. Unfortunately, you don’t know the value of H, so you can’t simply
move the tortoise that far.

However, you do know from Important Fact #1 that if the tortoise moves T
cells around the loop, it will end up H cells ahead of where it started. In this
case, it will end up at the start of the loop!

Unfortunately, you also don’t know the value of T, so you can’t simply move
the tortoise that far either. However, if you start the hare at the beginning of the
linked list and make it move only one cell at a time instead of two (it’s probably
tired after running around in the loop for so long), it will also reach the start
of the loop after it crosses T cells. That means the two will meet again after
crossing T cells, when they will be at the start of the loop.
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The following pseudocode shows the algorithm at a high level:

1. Start the tortoise moving through the list at one cell per step. Start the
hare moving through the list at two cells per step.

2. If the hare finds a nul1 link, then the list has no loop, so stop.

3. Otherwise, when the hare catches the tortoise, restart the hare at the
beginning of the list, moving one cell per step this time. Continue moving
the tortoise at one cell per step.

4. When the tortoise and hare meet again, they are at the start of the loop.
Leave the hare at the loop’s starting point to take a well-deserved rest
while the tortoise takes one more lap around the loop. When the tortoise’s
Next pointer gives the cell where the hare is waiting, the tortoise is at the
end of the loop.

5. To break the loop, set the tortoise’s cell’s Next pointer to null.

m I've never met a program that really needed to use the tortoise-and-
hare algorithm. If you're careful, there’s no excuse for letting a linked list become

corrupted by an accidental loop. However, detecting loops seems to be a popular
interview question and brainteaser, so it’s good to know about this solution.

Loops in Doubly Linked Lists

Detecting loops in a doubly linked list is easy. If there is a loop, somewhere a
Next pointer jumps back to an earlier part of the list. The prev pointer in that
cell points to an earlier cell, not the one that created the loop.

So, to detect a loop, simply traverse the list, and for each cell, verify that ce11
.Next.Prev == cell.

This all assumes that the cells form a normal doubly linked list and that a
loop, if it exists, is a simple loop. If the Next and prev lists are completely out of
sync, this method detects the mess but doesn’t help you fix it. This is more of a
case of two threads through the same cells than a doubly linked list with a loop.

Summary

This chapter explained linked lists and some of the things that you can do
with them. It explained singly and doubly linked lists and threaded lists. It
also explained basic list-manipulation algorithms such as adding, finding, and
deleting items. Finally, it described some more advanced algorithms to manage
self-organizing lists and to detect and remove loops.
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All of this work with pointers is a kind of preview for later chapters that deal
with trees, balanced trees, networks, and other linked data structures. In fact,
the next chapter uses linked data structures to implement sparse arrays.

Exercises

You can find the answers to these exercises in Appendix B. Asterisks indicate
particularly difficult problems.

1.

10.

The section “Adding Cells at the End” gives an O(N) algorithm for adding
an item at the end of a singly linked list. If you keep another variable,
bottom, that points to the last cell in the list, then you can add items to the
end of the list in O(1) time. Write such an algorithm. How does this com-
plicate other algorithms that add an item at the beginning or end of the
list, find an item, and remove an item? Write an algorithm for removing
an item from this kind of list.

. Write an algorithm to find the largest item in an unsorted singly linked

list with cells containing integers.

Write an algorithm to add an item at the top of a doubly linked list.

. Write an algorithm to add an item at the bottom of a doubly linked list.

If you compare the algorithms you wrote for Exercises 3 and 4 to the
InsertCell algorithm shown in the section “Doubly Linked Lists,” you
should notice that they look very similar. Rewrite the algorithms you wrote
for Exercises 3 and 4 so that they call the Insertcell algorithm instead
of updating the list’s links directly.

Write an algorithm that deletes a specified cell from a doubly linked list.
Draw a picture that shows the process graphically.

Suppose you have a sorted doubly linked list holding names. Can you
think of a way to improve search performance by starting the search from
the bottom sentinel instead of the top sentinel? Does that change the Big
O run time?

Write an algorithm for inserting an item in a sorted doubly linked list
where the top and bottom sentinels hold the minimum and maximum
possible values.

Write an algorithm that determines whether a linked list is sorted.

Write a program similar to the one shown in Figure 3.14 that compares
the times needed by selectionsort and insertionsort to sort a list of items.
Which is faster?
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11.

12.

13.

14.

15.

16.

o LinkedSorts - (m] -

Minimum: | 100000000] | Make hems |

Maximum: 595955959

100197063 ~
1002082594
100251075
100367306
100415445
100590718
100597531
100673701
100723886
1007485956
100910742 v
| Reset | | Selectionsort | | Insertionsort

Figure 3.14: This program compares the performance of insertionsort and selectionsort.

Insertionsort and selectionsort both have a run time of O(N?). Explain
why selectionsort takes longer in practice.

In what state is the input list after executing the insertionsort and selec-
tionsort algorithms? Can you think of a way to make them both leave the
input list unchanged?

Write a program that builds a multithreaded linked list of the planets, as
described in the section “Multithreaded Linked Lists.” Let the user click
a radio button or select from a combo box to display the planets ordered
by the different threads. (Hint: Make a planet class with fields Name,
DistanceToSun, Mass, Diameter, NextDistance, NextMass, and NextDiameter.
Then make an AddplanetToList method that adds a planet to the threads
in sorted order.)

*Write a program similar to the SelfOrganizingLists program shown in
Figure 3.8. For bonus points, you might try making a program that graphs
the average expected steps as the number of searches grows for the vari-
ous list types and probability distributions.

The swapping self-organizing list moves items slowly, so it is less effective
than the MTF list until the items move into good positions. Use the pro-
gram that you wrote for Exercise 14 to determine the number of searches
required with a 100-item list before the swapping list starts to outperform
the MTF list.

*Write a program that implements the tortoise-and-hare algorithm.



Arrays

Arrays are extremely common data structures. They are intuitive, easy to use,
and supported well by most programming languages. In fact, arrays are so
common and well understood that you may wonder whether there’s much to say
about them in an algorithms book. Most applications use arrays in a relatively
straightforward manner, but special-purpose arrays can be useful in certain
cases, so they deserve some attention here.

This chapter explains algorithmic techniques that you can use to make arrays
with nonzero lower bounds, save memory, and manipulate arrays more quickly
than you can normally.

Python does not have arrays, but lists can do the same things in most cases.
Python also does not have multidimensional lists, but you can use a list of lists instead.
For example, instead of an array with an entry at position [i, 3j], you can use a list of
lists with an entry at position [i][j].

Basic Concepts

An array is a chunk of contiguous memory that a program can access by using
indices—one index per dimension in the array. You can think of an array as an
arrangement of boxes where a program can store values.

Essential Algorithms: A Practical Approach to Computer Algorithms Using Python® and C#, First Edition.
Rod Stephens.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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Figure 4.1 illustrates one-, two-, and three-dimensional arrays. A program
can define higher-dimensional arrays, but trying to represent them graphically
is hard.

Figure 4.1: You can think of one-, two-, and three-dimensional arrays as arrangements of boxes
where a program can store values.

Typically, a program declares a variable to be an array with a certain number
of dimensions and certain bounds for each dimension. For example, the follow-
ing code shows how a C# program might declare and allocate an array named
numbers that has 10 rows and 20 columns:

int[,] numbers = new int[10, 20];

In C#, array bounds are zero-based, so this array’s row indices range from 0
to 9, and its column indices range from 0 to 19.

V[N The following Python code allocates a list of lists that you can use much as
you can use a C# array:

numbers = [[0 for ¢ in range(num_columns)] for r in range (num_rows) ]

This isn’t quite the same as the preceding C# array, but you can use similar indices to
get and set its elements.

Behind the scenes, the program allocates enough contiguous memory to
hold the array’s data. Logically, the memory looks like a long series of bytes,
and the program maps the array’s indices to positions in this series of bytes, as
explained in the following list:
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m For one-dimensional arrays, the mapping from array indices to memory
entries is simple: index i maps to entry i.

m For two-dimensional arrays, the program can map the array entries in
one of two ways: row-major order or column-major order.

m In row-major order, the program maps the first row of array entries to
the first set of memory locations. It then maps the second row to the
set of memory locations after the first. It continues mapping one row
at a time until all of the entries are mapped.

m In column-major order, the program maps the first column of array entries
to the first set of memory locations. It then maps the second column to
the second set of memory locations, and so forth.

Figure 4.2 shows row-major and column-major mappings.

Logical Array
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S Row 1 \
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3 v
II |Row0| I |Row1| I |ROW2| I
Array Memory
Logical Array
g
S | Colo | Col1 | Col2
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8| | colo | | | Col1 | | | col2 | |

Array Memory

Figure 4.2: A program can map array entries to memory locations in either row-major or
column-major order.

You can extend the ideas of row-major and column-major ordering for higher-
dimensional arrays. For example, to store a three-dimensional array in row-major
order, the program would map the first two-dimensional “slice” of the array
where the third dimension’s index is 0. It would map that slice in row-major
order as usual. It would then similarly map the second slice where the third
index is 1, and so on, for the remaining slices.
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Another way to think of this is as an algorithm for mapping a three-dimensional
array. Suppose you have defined a Map2parray method that maps a two-dimensional
array. The following algorithm uses Map2DArray to map a three-dimensional array:

For i = 0 To <upper bound of array's third coordinate>
Map2DArray (<array with the third coordinate set to 1)
Next i

Similarly, you could use this algorithm to define algorithms for mapping
arrays with even more dimensions.

Normally, how a program maps array entries to memory locations is irrele-
vant to how a program works, and there’s no reason why you should care. Your
code manipulates the array entries, and you don't need to know how they are
stored. However, understanding how the row-major and column-major orders
work is useful when you try to create your own array-mapping data structures
to implement triangular arrays. (Triangular arrays are discussed later in this
chapter in the section “Triangular Arrays.”)

One-Dimensional Arrays

Algorithms that involve one-dimensional or linear arrays tend to be so straightfor-
ward that theyre almost trivial. They often come up in programming interviews,
however, so theyre worth a brief discussion here. Linear array operations also
provide a preview of operations used by more interesting data structures such as
stacks and queues, so it’s worth covering these operations now for completeness.

Finding Items

Chapter 7, “Searching,” covers some interesting algorithms for finding a target
item in a sorted array. If the items in the array are not sorted, however, finding
an item is a matter of performing a linear search or exhaustive search. You look at
every element in the array until you find the target item, or you conclude that
the item is not in the array. The following algorithm finds a target item:

Integer: IndexOf (Integer: array[], Integer: target)
For i = 0 to array.Length - 1
If (array[i] == target) Return i
Next i

// The target isn't in the array.
Return -1
End IndexOf
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In the worst case, the target item may be the very last item in the array. If the
array has N items, the algorithm ends up examining all of them. That makes
the algorithm’s run time O(N).

The worst case also occurs if the target item is not in the array. In that case,
the algorithm must examine all N items to conclude that the item is not present.

If you were to search for every item in the array, you would find some items
near the beginning of the array and some near the end. It would take one step to
find the first item, two steps to find the second item, and so forth. Finding every
item would take a total of 1+2+3+...+ N = N(N +1) / 2steps. If you divide that
by the number of searches, N, you get the average number of steps to find an
item in the array: (N +1) / 2. This means that the average run time for finding
an item in the array is O(N).

Finding Minimum, Maximum, and Average

If the array contains numbers, you might want to find the minimum,
maximum, and average values in the array. As is the case for finding an
item, you cannot avoid looking at every item in the array when you want
to find those values.

The following algorithms find the minimum, maximum, and average values
for a one-dimensional array of integers:

Integer: FindMinimum(Integer: arrayl[])
Integer: minimum = array[0]
For i = 1 To array.Length - 1
If (arrayl[i] < minimum) Then minimum = array[i]
Next i
Return minimum
End FindMinimum

Integer: FindMaximum(Integer: arrayl[])
Integer: maximum = array[0]
For i = 1 To array.Length - 1
If (array[i] > maximum) Then maximum = array[i]
Next i
Return maximum
End FindMaximum

Float: FindAverage (Integer: arrayl[])
Integer: total = 0
For i = 0 To array.Length - 1
total = total + arrayl[i]
Next i
Return total / array.Length
End FindMaximum
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As is the case for the algorithm that finds a specific item, these algorithms
must visit every item in the array, so they have run time O(N).

Finding Median

You can use code similar to the preceding algorithms to calculate other statistical
values such as the standard deviation and variance if you need them. One value
that isn't as easy to calculate is the median, the value that lies in the middle
of the values when they are sorted. For example, the median of the values
{3, 1,7,8,4,8, 9} is 7, because there are three smaller values (1, 3, 4) and three
larger values (8, 8, 9).

A single pass through the array won't give you all of the information you need
to calculate the median because in some sense you need more global information
about the values to find the median. You can’t simply adjust a “running” median
by looking at values one at a time.

One approach might be to think about each value in the list. For each test
value, reconsider all of the values and keep track of those that are larger and
smaller than the test value. If you find a test value where the number of smaller
and larger entries is equal, then the test value is the median.

The following pseudocode shows the basic algorithm:

Integer: FindMedian (Integer: arrayl[])
For 1 = 0 To array.Length - 1

// Find the number of values greater than and

// less than array[i].

Integer: num_larger = 0

Integer: num smaller = 0

For j = 0 To array.Length - 1
If (arrayl[j] < arrayl[i]l) Then num smaller++
If (arrayl[j] > arrayl[i]l) Then num larger++

Next j

If (num _smaller = num larger) Then
Return array[il]
End If
Next i
End FindMedian

This algorithm has a few flaws. For example, it doesn’t handle the case in which
multiple items have the same value, as in {1, 2,3,3, 4}. It also doesn’t handle
arrays with an even number of items, which have no item in the middle. If an
array has an even number of items, its median is defined as the average of the
two middlemost items. For example, the median of {1, 4,6, 9} is(4+6)/2=5.

This algorithm isn't efficient enough to be worth fixing, but its run time is
worth analyzing.
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If the array contains N values, the outer For i loop executes N times. For
every one of those iterations, the inner For j loop executes N times. That means
the steps inside the inner loop execute N x N = N? times, giving the algorithm
a run time of O(N?).

A much faster algorithm is first to sort the array and then to find the median
directly by looking at the values in the middle of the sorted array. Chapter 6,
“Sorting,” describes several algorithms for sorting an array containing N items
in O(N log N) time. That’s a lot faster than O(N?).

Finding Mode

Another value that’s hard to calculate with a single pass through the array is
the mode. The mode is the value that occurs most often. For example, if the array
contains the values {A, C,A,B,E,B,C,F, B, G}, then the mode is B because that
value occurs more times than the other values.

There are several approaches that you can take to find the mode. For example,
you could loop through the items. For each item, you could loop through the
items again and count the number of times that particular item appears. You
would then keep track of the item that appeared most often. Because that method
uses two nested loops that each cover N items, this method has run time O(N?).

A second approach would be to use one of the algorithms described in Chapter 6
to sort the items in O(N log N) time. Then you can perform a pass through the
array, keeping track of the longest run of adjacent matching items. The follow-
ing pseudocode uses this approach:

Integer: FindModeSort (Data: arrayl[])
<Sort the array>

// Keep track of the best run.
Integer: best_run start = -1
Integer: best_run length = 0

Integer: run_start = 0
Data: current value = array[0]
For i = 1 To array.Length - 1
If (arrayl[i] != current value) Then
// We've found a new value.
Integer: run_length = i - run_start
If (run_length > best_run length) Then
best run start = run start
best_run length = run length
End If

// Save the new item.
current_value = arrayl[i]
End If
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Next i

// Check the last run.
Integer: run_length = array.Length - run start
If (run_length > best run length) Then
best_run_start = run_ start
best_run_length = run_length
End If

// Return the item at the best start position.
Return array[best run start]
End FindModeSort

This algorithm uses variable run_start to keep track of the index where the
current run started. It uses variable current _value to keep track of the current
run’s value. Note that the values may not be numbers. Quantities such as the
average or median are defined only for numbers, but the mode is defined for
strings or any other kind of data.

After initializing run_start and current_value, the algorithm loops through
the array. Each time it encounters a new value, it calculates the length of the
current run and updates the best_run_start and best_run_length values if
this run is a new best.

After it finishes its loop, the algorithm considers the array’s final run (in case
the mode is at the end of the array). It finishes by returning the value at the
start of the longest run.

This algorithm sorts the array’s values in O(N log N)time. It then loops through
the array in O(N) time, so its total run time is O(N + N log N) = O(N log N).

Unfortunately, this algorithm works only if you can sort the items in the array.
If the items are unsortable, for example if they are customer objects, then you
need to use a different approach.

A third method for finding the mode works only if the values in the array
span a relatively small range of integer values. For example, you might have
10,000 items that lie between 0 and 100.

This algorithm uses a technique similar to the one used by the countingsort
algorithm described in Chapter 6. It allocates a new array to hold the number
of times each item occurs in the array. The following pseudocode shows the
algorithm:

Integer: FindModeCounts (Data: arrayl[])
// Make an array to hold item counts.
Integer: counts[] = New Integer [<maximum value> + 1]

// Keep track of the largest count.
Integer: best_value = -1
Integer: best count = 0
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// Count the items.

For Each value In array
// Increment this value's count.
counts [value] ++

// See if it's the biggest.
If (counts[value] > best count) Then
best_value = value
best_count = counts[value]
End If
Next value

Return best_value
End FindModeCounts

This algorithm creates a counts array that is big enough to hold the range of
the values in the array. It then loops through the array and updates each value’s
count. If a count is greater than the values stored in the best_count variable,
the code updates best_count. After it finishes counting the values, the code
returns the best value that it found.

This algorithm loops through the values in the array once, so it has O(N) run
time. It is faster than the previous methods, but it requires extra memory to
build the counts array. This is an example of the kind of space/time trade-off
that is common in algorithms. The algorithm is faster than the previous ones,
but it uses more memory.

A fourth method for finding the mode, and the last one described here, uses
a hash table similar to the ones described in Chapter 8, “Hash Tables.” A hash
table lets you quickly associate a value with a key. Later, you can look up a key’s
associated value much like you can look up a word'’s definition in a dictionary.

\[*A N In C# and Python, a dictionary is a type of hash table.

The advantage to a hash table is that it can use just about anything as a key.
The preceding algorithm worked only if the values in the array were integers
that spanned a fairly limited range. The new algorithm will work even if the
items span a large range, aren’t integers, or aren’t sortable.

The following pseudocode shows how this algorithm works:

Integer: FindMode (Data: arrayl[])
// Make a hash table to hold item counts.
HashTable<Data>: counts[] = New HashTable<Data>

// Keep track of the largest count.
Integer: best value = -1
Integer: best count = 0
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// Count the items.
For Each value In array
// Increment this value's count.

counts [value] ++

// See if it's the biggest.
If (counts[value] > best count) Then
best_value = value
best_count = counts[value]
End If
Next value

Return best_value
End FindMode

This algorithm is almost the same as the FindModeCounts algorithm, except
that it stores the item counts in a hash table instead of an array. Like the earlier
algorithm, it loops through the array once.

During each trip through the main loop, it uses the hash table. If the hash
table is properly designed, it should have a lookup time of O(1), so the algorithm
will have a total run time of O(N).

The hash table does take up extra space, however. If an array contains M
different values, then the hash table needs O(M) extra memory to hold the
values. This is another example of the space/time trade-off demonstrated by
the previous algorithm.

Inserting Items

Inserting an item at the end of a linear array is easy, assuming that the under-
lying programming language can extend the array by one item. Simply extend
the array and insert the new item at the end.

Inserting an item anywhere else in the array is more difficult. The following
algorithm inserts a new item at location position in a linear array:

InsertItem(Integer: arrayl[], Integer: value, Integer: position)
<Resize the array to add 1 item at the end>

// Move down the items after the target position

// to make room for the new item.

For 1 = array.Length - 1 To position + 1 Step -1
array[i] = array[i - 1]

Next i

// Insert the new item.
array [position] = value
End InsertItem
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Notice that this algorithm’s For loop starts at the end of the array and moves
toward the beginning. That lets it fill in the new location at the end of the array
first and then fill each preceding spot right after its value has been copied to
its new location.

L\[* AN These operations are trivial in Python. You simply use a list’s append
method to add a new item at the end or its insert method to add an item in the
middle of the list.

If the array initially holds N items, this algorithm’s For loop executes N —
position times. In the worst case, when you're adding an item at the beginning
of the array, position =0 and the loop executes N times, so the algorithm’s run
time is O(N).

\[*AN Many programming languages have methods for moving blocks of
memory that would make moving the items down one position much faster.

In practice, inserting items in a linear array isn’t all that common, but the
technique of moving over items in an array to make room for a new one is use-
ful in other algorithms.

Removing Items

Removing the item with index k from an array is about as hard as adding an
item. The code first moves the items that come after position k one position
closer to the beginning of the array. The code then resizes the array to remove
the final unused entry.

In the worst case, when you're removing the first item from the array, the
algorithm may need to move all the items in the array. That means it has a run
time of O(N).

In some cases, it may be possible to flag an entry as unused instead of actu-
ally removing it. For example, if the values in the array are references or pointers to
objects, you may be able to set the removed entry to null. That technique can be par-
ticularly useful in hash tables, where resizing the array and rebuilding the hash table
would be time-consuming.

If you flag many entries as unused, however, the array could eventually fill up with
unused entries. Then, to find an item, you would need to examine a lot of empty
positions. At some point, you may want to compress the array to remove the empty
entries.
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Nonzero Lower Bounds

Many programming languages require that all arrays use 0 for a lower bound
in every dimension. For example, a linear array can have indices ranging from
0 to 9, but it cannot have indices ranging from 1 to 10 or 101 to 200.

Sometimes it’s convenient to treat an array’s dimension as if it had nonzero
lower bounds. For example, suppose you're writing a sales program that needs
to record sales figures for 10 employees with IDs between 1 and 10 for the years
2000 through 2010. In that case, it might be nice to declare the array like this:

Double: sales[1 to 10, 2000 to 2010]

You can’t do that in languages such as C# and Python, which require 0 lower
bounds, but you can translate the more convenient bounds into bounds that
start with 0 fairly easily. The following two sections explain how to use nonzero
lower bounds for arrays with two or more dimensions.

[ ANl Manylanguages have features that let you create arrays with nonzero lower
bounds. For example, Python’s NumPy library can create multidimensional array
objects, and C#'s Array class can build arrays with nonzero lower bounds.

Two Dimensions

Managing arrays with nonzero lower bounds isn’t too hard for any given number
of dimensions.

Consider again the example where you want an array indexed by employee
ID and year, where the employee ID ranges from 1 to 10 and the year ranges
from 2000 to 2010. These ranges include 10 employee ID values and 11 years, so
the program would allocate an array with 10 rows and 11 columns, as shown
in the following pseudocode:

Double: sales[10, 11]

To access an entry for employee e in year y, you calculate the row and column
in the actual array as follows:

row = e - 1
column = y - 2000

Now the program simply works with the entry array[row, column] (or arraylrow]
[column] in Python).

This is easy enough, but you can make it even easier by wrapping the array
in a class. You can make a constructor to give the object the bounds for its
dimensions. It can then store the lower bounds so that it can later calculate the
corresponding rows and columns in the storage array.
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In some programming languages, you can even make get and set methods
(__getitem __ and _ setitem __in Python) to be the class’s indexers, so you
can treat objects almost as if they were arrays. For example, in C# you could
use the following code to set and get values in an array:

array[6, 2005] = 74816
MessageBox.Show ("In 2005 employee 6 had " +
array[6, 2005] .ToString() + " in sales."

The details of a particular programming language are specific to that language,
so they aren’t shown here. You can download the TwoDArray and two_d_array
sample programs from the book’s website to see the details in C# and Python.

Higher Dimensions

The method described in the preceding section works well if you know the
number of dimensions the array should have. Unfortunately, generalizing this
technique for any number of dimensions is difficult because, for N dimensions,
you need to allocate an N-dimensional array to hold the data. You could make
separate classes to handle two, three, four, and more dimensions, but it would
be better to find a more generalizable approach.

Instead of storing the values in a two-dimensional array, you could pack them
into a one-dimensional array in row-major order. (See? I told you it would be
good to know how row-major order worked.) You would start by allocating an
array big enough to hold all of the items. If there are N rows and M columns,
you would allocate an array with N x M entries.

Double: values[N * M]

To find an item’s position in this array, first you calculate the row and column
as before. If an item corresponds to employee ID e and year y, the row and
column are given by the following:

row = e - <employee ID lower bound>
column = y - <year lower bound>

Now that you know the item’s row and column, you need to find its index in
the values array. To find that index, you first need to know how many complete
rows fit into the array before this item. If the item’s row number is r, then there
are r complete rows before this item, and they are numbered 0, 1, ..., r — 1. Because
there are <row sizes items in each row, that means those rows account for r x
<row sizes items before this one.

After you know the number of entries before this item that are due to complete
rows, you need to know how many items come before this one in this item’s row.
If this item’s column number is ¢, then there are c items before this item in its
row numbered 0, 1, ..., c — 1. Those items take up c positions in the values array.
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The total number of items that come before this one in the values array is
given by this:
index = row x <row size> + column

Now you can find this item at location values[index].

This technique is a bit more complicated than the technique described in the
preceding section, but it is easier to generalize for any number of dimensions.

Suppose you want to create an array with N dimensions, with lower bounds
stored in the lower_bounds array and with upper bounds stored in the
upper_bounds array.

The first step is to allocate a one-dimensional array with enough space to
store all the values. Simply subtract each lower bound from each upper bound
to see how “wide” the array must be in that dimension and then multiply the
resulting “widths” together:

Integer: ArraySize(Integer: lower bounds([], Integer: upper bounds[])
Integer: total size = 0
For i = 0 To lower_bounds.Length - 1
total size = total size * (upper bounds[i] - lower bounds[i])
Next i

Return total size
End ArraySize

The next step, mapping a row and column to a position in the one-dimensional
array, is a bit more confusing. Recall how the preceding example mapped row
and column to an index in the values array. First the code determined how
many complete rows should come before the item in question and multiplied
that number by the number of items in a row. The code then added 1 for each
position in the item’s row that was before the item.

Moving to three dimensions isn't much harder. Figure 4.3 shows a 4x4x3
three-dimensional array with dimensions labeled height, row, and column. The
entry with coordinates (1,1, 3) is highlighted in gray.

To map the item’s coordinates (1,1, 3) to an index in the values array, first
determine how many complete “slices” come before the item. Because the item’s
height coordinate is 1, there is one complete slice before the item in the array.
The size of a slice is <row size> x <column sizes.If the item has coordinates
(h, r, ¢), then the number of items that come before this one due to slices is given
by the following:

index = h X <row size> X <column size>
Next you need to determine how many items come before this one due to
complete rows. In this example, the item’s row is 1, so one row comes before

the item in the values array. If the item has row r, you need to add r times the
size of a row to the index.

index = index + r X <row size>

Finally, you need to add 1 for each item that comes before this one in its
column. If the item has column ¢, this is simply c.
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Figure 4.3: The first step in mapping an item to the values array is determining how many
complete “slices” come before it.

index = index + c

You can extend this technique to work in even higher dimensions. To make
calculating indices in the values array easier, you can make a slice_sizes array
that holds the size of the “slice” at each of the dimensions. In the three-dimensional
case, these values are <row size> x <column sizes, <column sizes, and 1.

To move to higher dimensions, you can find a slice size by multiplying the next
slice size by the size of the current dimension. For example, for a four-dimensional
array, the next slice size would be <height size> x <row size> x <column sizes.

With all of this background, you're ready to see the complete algorithm. Sup-
pose the bounds array holds alternating lower and upper bounds for the desired
N-dimensional array. Then the following pseudocode initializes the array:

InitializeArray (Integer: bounds[])
// Get the bounds.
Integer: NumDimensions = bounds.Length / 2
Integer: LowerBound [NumDimensions]
Integer: SliceSize[NumDimensions]

// Initialize LowerBound and SliceSize.
Integer: slice_size =1

For i = NumDimensions - 1 To 0 Step -1
SliceSize[i] = slice_size
LowerBound [i] = bounds[2 * i]

Integer: upper bound = bounds[2 * i + 1]
Integer: bound size = upper bound - LowerBound[i] + 1
slice_size *= bound size

Next i

// Allocate room for all of the items.
Double: Values[slice_size]
End InitializeArray

This code calculates the number of dimensions by dividing the number of
values in the bounds array by 2. It creates a LowerBound array to hold the lower
bounds and a slicesize array to hold the sizes of slices at different dimensions.
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Next the code sets slice_size to 1. This is the size of the slice at the highest
dimension, which is a column in the preceding example.

The code then loops through the dimensions, starting at the highest and
looping toward dimension 0. (This corresponds to looping from column to row
to height in the preceding example.) It sets the current slice size to slice_size
and saves the dimension’s lower bound. It then multiplies slice_size by the
size of the current dimension to get the slice size for the next-smaller dimension.

After it finishes looping over all of the dimensions, slice_size holds the sizes
of all of the array’s dimensions multiplied together. That is the total number of
items in the array, so the code uses it to allocate the values array, where it will
store the array’s values.

The following deceptively simple pseudocode uses the LowerBound and
Slicesize arrays to map the indices in the indices array to an index in the
Values array:

Integer: MapIndicesToIndex(Integer: indices([])

Integer: index = 0
For 1 = 0 to indices.Length - 1
index = index +
(indices[i] - LowerBound[i]) * SliceSize[i]
Next i

Return index
End MapIndicesToIndex

The code initializes index to 0. It then loops over the array’s dimensions. For
each dimension, it multiplies the number of slices at that dimension by the size
of a slice at that dimension and adds the result to index.

After it has looped over all of the dimensions, index holds the item’s index
in the values array.

You can make using the algorithm easier by encapsulating it in a class. The con-
structor can tell the object what dimensions to use. Depending on your program-
ming language, you may be able to make get and set methods that are used as
accessors so that a program can treat an object as if it actually were an array.

Download the NDArray and n_d_array sample programs from the book’s
website to see a C# and Python implementations of this algorithm.

Triangular Arrays

Some applications can save space by using triangular arrays instead of normal
rectangular arrays. In a triangular array, the values on one side of the diagonal
have some default value, such as 0, null, or blank. In an upper-triangular array,
the real values lie on or above the diagonal. In a lower-triangular array, the non-
default values lie on or below the diagonal. For example, Figure 4.4 shows a
lower-triangular array.
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Figure 4.4: In a lower-triangular array, values above the diagonal have a default value.

For example, a connectivity matrix represents the connections between
points in some sort of network. The network might be an airline’s flight
network that indicates which airports are connected to other airports. The
array’s entry connectedl[i, 3l is set to true if there is a flight from airport
i to airport 5. If you assume that there is a flight from airport j to airport
i whenever there is a flight from airport i to airport j, then connected
[, j1 = connected[j, il.In that case, there’s noneed to store both connectedli,
j] and connectedl[j, il because they are the same.

In cases such as this, the program can save space by storing the connectivity
matrix in a triangular array.

It's probably not worth going to the trouble of making a 3x 3 triangular
array because you would save only three entries. In fact, it's probably not worth mak-
ing a 100 x 100 triangular array because you would save only 4,960 entries, which still
isn’t all that much memory, and working with the array would be harder than using a
normal array. However, a 10,000 x 10,000 triangular array would save about 50 million
entries, which begins to add up to real memory savings, so it may be worth making it
into a triangular array.

Building a triangular array isn’t too hard. Simply pack the array’s values into
a one-dimensional array, skipping the entries that should not be included. The
challenges are to figure out how big the one-dimensional array must be and to
figure out how to map rows and columns to indices in the one-dimensional array.

Table 4.1 shows the number of entries needed for triangular arrays of differ-
ent sizes.

If you study Table 4.1 for a while, you'll see a pattern. The number of cells
needed for N rows equals the number needed for N —1 rows plus N.

If you think about triangular arrays for a while, you'll realize that they contain
roughly half the number of the entries in a square array with the same number of
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rows. A square array containing N rows holds N entries, so it seems likely that the
number of entries in the corresponding triangular array would involve N”. If you
start with a general quadratic equation A x N* + Bx N + C and plug in the values
from Table 4.1, you can solve for A, B, and C to find that the equation is (N*+N)/2.

Table 4.1: Entries in Triangular Arrays

1 1
3
6
10

15

21
28

N (O (v~ w N

That solves the first challenge. To build a triangular array with N rows, allo-
cate a one-dimensional array containing (N* + N) / 2 items.

The second challenge is to figure out how to map rows and columns to indices
in the one-dimensional array. To find the index for an entry with row r and
column ¢, you need to figure out how many entries come before that one in the
one-dimensional array:.

To answer that question, look at the array shown in Figure 4.5 and consider
the number of entries that come before entry (3, 2).

The entries due to complete rows are highlighted with a thick border in Figure 4.5.
The number of those entries is the same as the number of all entries in a triangular
array with three rows, and you already know how to calculate that number.

Figure 4.5: To find the index of an entry, you must figure out how many entries come before it
in the one-dimensional array.
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The entries that come before the target entry (3, 2) that are not due to complete
rows are those to the left of the entry in its row. In this example, the target entry
is in column 2, so there are two entries to its left in its row.

In general, the formula for the index of the entry with row r and column c is
(r-1) +(r-1))/2+c.

With these two formulas, working with triangular arrays is easy. Use the
first formula, (N* + N) / 2, to figure out how many items to allocate for an array
with N rows. Use the second formula, ((r — 1)2 + (1- - 1)) / 2 + ¢, tomap rows and
columns to indices in the one-dimensional array.

You can make this easier by wrapping the triangular array in a class. If you
can make get and set indexers for the class, a program can treat a triangular
array object as if it were a normal array.

One last detail is how the triangular array class should handle requests for
entries that do not exist in the array. For example, what should the class do if
the program tries to access entry (1, 4), which lies in the missing upper half of
the array? Depending on the application, you might want to return a default
value, switch the row and column and return that value, or throw an exception.

Sparse Arrays

Triangular arrays let a program save memory if you know that the array will
not need to hold values above its diagonal. If you know that an array will hold
very few entries, you may be able to save even more memory.

For example, consider again an airline connectivity matrix that holds the value
truein the [i, j] entry to indicate that there is a flight between city i and city ;.
The airline might have only 600 flights connecting 200 cities. In that case, there
would be only 600 nonzero values in an array of 40,000 entries. Even if the flights
are symmetrical (for every i—j flight there is a j—1 flight) and you store the con-
nections in a triangular array, the array would hold only 300 nonzero entries
out of a total of 20,100 entries. The array would be almost 99 percent unused.

A sparse array lets you save even more space than a triangular array by not
representing the missing entries. To get an item’s value, the program searches
for the item in the array. If the item is present, the program returns its value. If
the item is missing, the program returns a default value for the array. For the
connectivity matrix example, the default value would be false.

One way to implement a sparse array is to make a linked list of linked lists.
The first list holds information about rows. Each item in that list points to
another linked list holding information about the array’s columns for that row.

You can build a sparse array with two cell classes—an ArrayRow class to rep-
resent a row and an ArrayEntry class to represent a value in a row.

The ArrayRow class stores a row number, a reference or pointer to the next
ArrayRow object, and a reference to the first ArrayEntry in that row. The follow-
ing pseudocode shows the Arrayrow class’s layout:
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ArrayRow:
Integer: RowNumber
ArrayRow: NextRow
ArrayEntry: RowSentinel

The aArrayEntry class stores the entry’s column number, whatever value the
entry should hold for the array, and a reference to the next ArrayEntry objectin
this row. The following shows the ArrayEntry class’s layout, where T is whatever
type of data the array must hold:

ArrayEntry:
Integer: ColumnNumber
T: Value
ArrayEntry: NextEntry

To make adding and removing rows easier, the list of rows can start with a
sentinel, and each list of values in a row can start with a sentinel. Figure 4.6
shows a sparse array with the sentinels outlined in bold.

Array =
Row
_V— ] ] ]
Array | Array | Array | Array | Array
Row | Entry | Entry | Entry “1 Entry X

»
| |
|
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Entry “1 Entry “1 Entry =
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Entry “1 Entry =
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Figure 4.6: Adding and removing cells is easier if each linked list begins with a sentinel.
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To make it easier to determine when a value is missing from the array, the Array-
Row Objects are stored in increasing order of RowNumber. If you're searching the list
for a particular row number and you come to an Arrayrow object that has a greater
RowNumber, you know that the row number you're looking for isn't in the array.

Similarly, the aArrayEntry objects are stored in increasing order of
ColumnNumber.

Note that the RowEntry objects that seem to be aligned vertically in Figure 4.6
do not necessarily represent the same columns. The first RowEntry object in the
first row might represent column 100, and the first RoweEntry object in the second
row might represent column -50.

The arrangement shown in Figure 4.6 looks complicated, but it’s not too
hard to use. To find a particular value, look down the row list until you find
the right row. Then look across that row’s value list until you find the column
you want. If you fail to find the row or column, then the value isn’t in the array.

This arrangement requires some ArrayRow objects and sentinels that don't
hold values, but it’s still more efficient than a triangular array if the array really
is sparse. For example, in the worst case, a sparse array would contain one value
in each row. In that case, an N x N array would use N + 1 ArrayRow objects and
2x N ArrayEntry objects. Of those objects, only N would contain actual values
and the rest would be sentinels or used to navigate through the array. The
fraction of objects containing array valuesisN /(N +1+2*N)=N /(3*N +1) or
approximately 1/ 3. Compare that to the triangular array described previously,
which was almost 99 percent empty.

With the data structure shown in Figure 4.6, you still need to write algorithms
to perform three array operations.

1. Get the value at a given row and column or return a default value if the
value isn't present.

2. Seta value at a given row and column.

3. Delete the value at a given row and column.

These algorithms are a bit easier to define if you first define methods for finding
a particular row and column.

Find a Row or Column

To make finding values easier, you can define the following FindrRowBefore
method. This method finds the arrayrow object before the spot where a target
row should be. If the target row is not in the array, this method returns the
ArrayRow before where the target row would be if it were present.

ArrayRow: FindRowBefore (Integer: row, ArrayRow: array row sentinel)
ArrayRow: array row = array row_sentinel
While (array_ row.NextRow != null) And
(array row.NextRow.RowNumber < row))
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array_row = arrayRow.NextRow
End While

Return array row
End FindRowBefore

This algorithm sets variable array_rowequal to the array’s row sentinel. The
algorithm then repeatedly advances array_row to the next Arrayrow object in
the list until either the next object is null or the next object’s RowNumber is at
least as large as the target row number.

If the next object is null, the program has reached the end of the row list
without finding the desired row. If the row were present, it would belong after
the current array row object.

If the next object’s RowNumber value equals the target row, then the algorithm
has found the target row.

If the next object’s RowNumber value is greater than the target row, the target
row is not present in the array. If the row were present, it would belong after
the current array_row object.

Similarly, you can define a FindColumnBefore method to find the ArrayEntry
object before the spot where a target column should be in a row.

FindColumnBefore (Integer: column, ArrayEntry: row_sentinel)
ArrayEntry: array entry = row_sentinel
While (array_ entry.NextEntry != null) And
(array entry.NextEntry.ColumnNumber < column))
array_entry = array_entry.NextEntry
Return array_entry
End FindColumnBefore

If the array holds N ArrayRow objects, the FindrowBefore method takes O(N)
time. If the row holding the most nondefault items contains M of those items,
then the FindcolumnBefore method runs in O(M) time. The exact run time for
these methods depends on the number and distribution of nondefault values
in the array.

Get a Value

Getting a value from the array is relatively easy once you have the FindrowBefore
and FindColumnBefore methods.

GetValue (Integer: row, Integer: column)
// Find the row.
ArrayRow: array row = FindRowBefore (row)
array_row = array row.NextRow
If (array row == null) Return default
If (array row.RowNumber > row) Return default
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// Find the column in the target row.
ArrayEntry: array entry =
FindColumnBefore (column, array row.RowSentinel)
array entry = array entry.NextEntry
If (array_entry == null) Return default
If (array_ entry.ColumnNumber > column) Return default
Return array entry.Value
End GetValue

This algorithm uses FindRowBefore to set array_row to the row before the target
row. It then advances array_row to the next row, which is ideally the target row.
If array_row is null or refers to the wrong row, the Getvalue method returns
the array’s default value.

If the algorithm finds the correct row, it uses FindColumnBefore to set
array_entry to the column before the target column. It then advances array_entry to
the next column, which is ideally the target column. If array_entryisnull or refers
to the wrong column, the Getvalue method again returns the array’s default value.

If the algorithm gets this far, it has found the correct ArrayEntry object, so it
returns that object’s value.

This algorithm calls the FindrRowBefore and FindColumnBefore methods. If
the array has N rows that contain nondefault values, and the row with the most
nondefault values contains M of those values, then the total run time for the
Getvalue method is O(N + M). This is much longer than the O(1) time needed
to get a value from a normal or triangular array, but the sparse array uses much
less space.

This is the reverse of the space/time trade-off demonstrated by some of
the mode-finding algorithms described earlier in this chapter. This time, the
algorithm reduces speed to save space.

Set a Value

Setting a value is similar to finding a value, except that the algorithm must be
able to insert a new row or column into the array if necessary.

SetValue (Integer: row, Integer: column, T: value)
// If the value we're setting is the default,
// delete the entry instead of setting it.
If (value == default)
DeleteEntry (row, column)
Return
End If

// Find the row before the target row.
ArrayRow: array row = FindRowBefore (row)

// If the target row is missing, add it.
If (array_row.NextRow == null) Or
(array_row.NextRow.RowNumber > row)
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Then
ArrayRow: new_row
new_row.NextRow = array row.NextRow
array row.NextRow = new_row

ArrayEntry: sentinel entry
new_row.RowSentinel = sentinel entry
sentinel_entry.NextEntry = null

End If

// Move to the target row.
array_row = array row.NextRow

// Find the column before the target column.
ArrayEntry: array entry =
FindColumnBefore (column, array row.RowSentinel)

// If the target column is missing, add it.
If (array_entry.NextEntry == null) Or
(array entry.NextEntry.ColumnNumber > column)
Then
ArrayEntry: new_entry
new_entry.NextEntry = array entry.NextEntry
array_entry.NextEntry = new_entry
End If

// Move to the target entry.
array_entry = array_ entry.NextEntry

// Set the value.
array_entry.Value = value
End SetValue

The algorithm starts by checking the value it is setting in the array. If the
value is the default value, the program should delete it from the array to min-
imize the array’s size. To do that, it calls the DeleteEntry method, which is
described in the next section, and returns.

If the new value isn’t the default value, the algorithm calls the FindrowBefore
method to find the row before the target row. If the row after the one returned
by FindrowBefore isn't the target row, then either the algorithm reached the
end of the row list or the next row comes after the target row. In either case,
the algorithm inserts a new ArrayRow object between the row before and the
row that follows it.

Figure 4.7 shows this process. In the list on the left, the target row is missing,
but it should go where the dashed ellipse is shown.

To insert the new Arrayrow object, the algorithm creates the new object, sets
its NextRow reference to array row.NextRow, and sets array row.NextRow to the
new object. It then gives the new object a new row sentinel.
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Array Array
Row Row

new_row

Figure 4.7: If the target row is missing, the SetValue method inserts a new ArrayRow.

When it has finished, the list looks like the right side of Figure 4.7, with
array_row’s NextRow reference pointing to the new object.

Having found the target row, creating it if necessary, the algorithm calls
the FindColumnBefore method to find the ArrayEntry object that represents the
target column. If that object doesn't exist, the algorithm creates it and inserts it into
the linked list of the ArrayEntry object, much as it inserted the ArrayRow if necessary.

Finally, the algorithm moves the variable array_entry to the ArrayEntry
corresponding to the column and sets its value.

The setvalue algorithm may call the DeleteEntry algorithm, described
in the following section. That algorithm calls the FindrRowBefore and
FindColumnBefore methods. If the setvalue algorithm does not call DeleteEntry,
it calls FindRowBefore and FindColumnBefore. In either case, the method calls
FindRowBefore and FindColumnBefore either directly or indirectly.

Suppose the array has N rows that contain nondefault values and the row
with the most nondefault values contains M of those values. In that case, those
FindRowBefore and FindColumnBefore methods give the setvalue algorithm a
total run time of O(N + M),

Delete a Value

The algorithm to delete a value follows the same general approach used to get
or set a value.

DeleteEntry (Integer: row, Integer column)
// Find the row before the target row.
ArrayRow: array row = FindRowBefore (row)
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// If the target row is missing, we don't need to delete it.
If (array_row.NextRow == null) Or
(array row.NextRow.RowNumber > row)
Return

// Find the entry before the target column in the next row.
ArrayRow: target_row = array_ row.NextRow
ArrayEntry: array entry =

FindColumnBefore (column, target_ row.RowSentinel)

// If the target entry is missing, we don't need to delete it.
If (array entry.NextRow == null) Or
(array_ entry.NextRow.ColumnNumber > column)
Return

// Delete the target column.
array_entry.NextColumn = array entry.NextColumn.NextColumn

// If the target row has any columns left, we're done.
If (target_row.RowSentinel.NextColumn != null) Return

// Delete the empty target row.
array_ row.NextRow = array row.NextRow.NextRow
End DeleteEntry

This algorithm calls FindrowBefore to find the row before the target row. If the
target row doesn't exist, the algorithm doesn’t need to delete anything, so it returns.

Next, the algorithm calls FindcolumnBefore to find the column before the target
column in the target row. If the target column doesn't exist, again the algorithm
doesn’t need to delete anything, so it returns.

At this point, the algorithm has found the ArrayEntry object before the target
entry in the row’s linked list of entries. It removes the target entry from the list
by setting the Nextcolumn reference of the previous entry to refer to the object
after the target entry.

Figure 4.8 shows this operation. The list at the top is the original list. The variable
array_entry refers to the entry before the target entry. To remove the target entry, the
algorithm makes that entry’s NextColumn reference point to the following entry.

Array | Array N o~ | Array
Row > Entry > array_entry > target_entry > Entry —X
Array | Array N | Array
Row > Entry > array_entry T target_entry 31 Entry —X

Figure 4.8: To remove a target entry, the algorithm sets the preceding entry’s Next Column
reference to the entry after the target entry.



Chapter 4 = Arrays

129

The algorithm does not change the target entry’s NextColumn reference. That
reference still refers to the following entry, but the algorithm no longer has a ref-
erence that can refer to the target entry, so it is essentially lost to the program.

When this algorithm deletes a row or column object, that object’s memory
must be freed. Depending on the programming language, that may require more
action. For example, a C++ program must explicitly call the £ree function for the
removed object to make that memory available for reuse.

Other languages take other approaches. For example, C#, Visual Basic, and Python use
garbage collection, so the next time the garbage collector runs, it automatically frees
any objects that the program can no longer access.

After it has removed the target entry from the row’s linked list, the program
examines the row’s Arrayrow sentinel. If that object’s NextColumn reference is
not null, then the row still holds other column entries, so the algorithm is fin-
ished, and it returns.

If the target row no longer contains any entries, then the algorithm removes it
from the linked list of ArrayRrow objects, much as it removed the target column
entry.

The peleteEntry algorithm calls FindrRowBefore and FindColumnBefore. If
the array has N rows that contain nondefault values and the row with the most
nondefault values contains M of those values, the total run time for the pelete-
Entry method is O(N + M).

Matrices

One application of arrays is to represent matrices. If you use normal arrays,
it’s fairly easy to perform operations on matrices. For example, to add two 3 x3
matrices, you simply add the corresponding entries.

If you're unfamiliar with matrices and matrix operations, you may want to
review the article on the Math Is Fun website (https://www.mathsisfun
.com/algebra/matrix-introduction.html). For a more in-depth discussion,
see the Wikipedia article “Matrix” at https://en.wikipedia.org/wiki/

Matrix(mathematics).

The following pseudocode shows how you can add two normal matrices that
are stored in two-dimensional arrays:

AddArrays (Integer: arrayl[], Integer: array2[], Integer: result[])
For i = 0 To <maximum bound for dimension 1>
For j = 0 To <maximum bound for dimension 2>



130

Chapter 4 = Arrays

result([i, j] = arrayl[i, j] + array2[i, 7J]
Next i
Next i
End AddArrays

The following algorithm shows how you can multiply two normal
two-dimensional matrices:

MultiplyArrays (Integer: arrayl[], Integer: array2[], Integer: result|[])
For 1 = 0 To <maximum bound for dimension 1>
For j = 0 To <maximum bound for dimension 2>
// Calculate the [i, j] result.
result([i, j] = 0
For k = 0 To <maximum bound for dimension 2>
result([i, j] = result[i, jF] +
arrayl[i, k] * array2[k, jl
Next k
Next j

Next i
End MultiplyArrays

These algorithms work with triangular or sparse arrays, but they are inef-
ficient because they examine every item in both input arrays—even if those
entries aren’t present.

For example, a triangular array is missing all values [i, j] where j > i,s0
adding or multiplying those entries takes on special meaning. If the missing
entries are assumed to be 0, then adding or multiplying them doesn’t contribute
to the result. (If those entries are assumed to have some other default value,
then adding or multiplying the arrays will result in a nontriangular array, so
you may need to add or multiply the arrays completely.)

Instead of considering every entry, the algorithms should consider only the entries
that are actually present. For triangular arrays, this isnt too confusing. I'll let you
write addition and multiplication algorithms for triangular arrays as exercises.

The situation is a bit more confusing for sparse arrays, but the potential time
savings is even greater. For example, when you add two sparse matrices, there’s
no need to iterate over rows and columns that are not present in either of the
input arrays.

The following high-level algorithm adds two sparse matrices:

AddArrays (SparseArray: arrayl[], SparseArray: array2l[],
SparseArray: resultl[])
// Get pointers into the the matrices' row lists.
ArrayRow: arrayl row = arrayl.Sentinel.NextRow
ArrayRow: array2 row = array2.Sentinel.NextRow
ArrayRow: result row = result.Sentinel

// Repeat while both input rows have items left.
While (arrayl row != null) And (array2 row != null)
If (arrayl row.RowNumber < array2 row.RowNumber) Then
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// arrayl row's RowNumber is smaller. Copy it.
<copy arrayl row's row to the results>
arrayl row = arrayl_ row.NextRow

Else If (array2_ row.RowNumber < arrayl row.RowNumber) Then
// array2 row's RowNumber is smaller. Copy it.
<copy array2 row's row to the result>
array2_row = array2 row.NextRow

Else
// The input rows have the same RowNumber.
// Add the values in both rows to the result.
<add the values in both arrayl row and array2 row to the

result>

arrayl row = arrayl row.NextRow
array2_row = array2_row.NextRow

End If

End While

// Copy any remaining items from either input matrix.

If (arrayl row != null) Then

<copy arrayl row's remaining rows to the results>
End If
If (array2 row != null) Then

<copy array2 row's remaining rows to the result>
End If
End AddArrays

Similarly, you can write an algorithm to multiply two sparse matrices without
examining all the missing rows and columns. I'll save that for an exercise, too.

COLUMN-ORDERED SPARSE MATRICES

In some algorithms, it may be more convenient to access the entries in a sparse
matrix by columns instead of by rows. For example, when you’re multiplying two 2D
matrices, you multiply the entries in the rows of the first matrix by the entries in the
columns of the second matrix.

To make that easier, you can use a similar technique where you use linked lists
to represent columns instead of rows. If you need to access a sparse matrix in both
row and column order, you can use both representations. The result is similar to a
threaded linked list.

Summary

Normal arrays are simple, intuitive, and easy to use, but for some applications
they can be awkward. In some applications, it may be more natural to work with
an array that has nonzero lower bounds. By using the techniques described in
the section “Nonzero Lower Bounds,” you can effectively do just that.
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Normal arrays are also inefficient for some applications. If an array holds
entries in only its lower-left half, you can use a triangular array to save roughly
half of the array’s memory. If an array contains even fewer entries, you may be
able to save even more space by using a sparse array.

Arrays with nonzero lower bounds, triangular arrays, and sparse arrays are
more complicated than the normal arrays provided by most programming lan-
guages, but in some cases, they offer greater convenience and large memory
savings.

An array provides random access to the elements that it contains. It lets you
get or set any item if you know its indices in the array.

The next chapter explains two different kinds of containers: stacks and queues.
Like arrays, these data structures hold collections of items. Unlike arrays, with
their random access behavior, they have very constrained methods for insert-
ing and removing items.

Exercises

You can find the answers to these exercises in Appendix B. Asterisks indicate
particularly difficult problems.

1. Write an algorithm to calculate the sample variance of a one-dimensional
array of numbers where the sample variance for an array containing N
items is defined by this equation:

1 N-1

SZEZ(xi_J_‘)z

i-0

Here X is the mean (average) of the values in the array, and the summation
symbol X means to add up all of the x; values as i varies from 0 to N - 1.

2. Write an algorithm to calculate the sample standard deviation of a one-
dimensional array of numbers where the sample standard deviation is
defined to be the square root of the sample variance.

3. Write an algorithm to find the median of a sorted one-dimensional array.
(Be sure to handle arrays holding an even or odd number of items.)

4. If more than one value occurs the most in a one-dimensional array, then
all such items are modes. For example, in the values {A, B,A,C A,B, B},
both A and B occur three times, so they are both modes. How do the
mode-finding algorithms described in this chapter handle that issue? How
could you modify them to return all of the modes?
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10.

11.

12.

13.

14.

15.
16.

The FindModeCounts algorithm checks to see whether a count is the new
largest count every time it increases a count. Would it be better to save
those comparisons for the end after all of the counts are complete?

The FindModeCounts algorithm uses a counts array to find an array’s
mode in O(N) time. How would that compare to the FindModeSort algo-
rithm if that algorithm used a sorting method, such as countingsort, which
can sort in O(N) time?

The FindModeCounts algorithm works only if the range of values is rela-
tively limited and starts at 0. How would you modify it if the range did
not start at 0? For example, what if the values ranged from 1,000 to 2,000?

The section “Removing Items” explained how to remove an item from a
linear array. Write the algorithm in pseudocode.

The triangular arrays discussed in this chapter are sometimes called
lower-triangular arrays because the values are stored in the lower-left half
of the array. How would you modify that kind of array to produce an
upper-triangular array with the values stored in the upper-right corner?

How would you modify the lower-triangular arrays described in this
chapter to make an “upper-left” array where the entries are stored in the
upper-left half of the array? What is the relationship between row and
column for the entries in the array?

Suppose you define the main diagonal of a rectangular (and nonsquare)
array to start in the upper-left corner and extend down and to the right
until it reaches the bottom or right edge of the array. Write an algorithm
that fills entries on or below the main diagonal with 1s and entries above
the main diagonal with 0s.

Consider the diagonal of a rectangular array that starts in the last column
of the first row and extends left and down until it reaches the bottom or
left edge of the array. Write an algorithm that fills the entries on or above
the diagonal with 1s and entries below the diagonal with Os.

Write an algorithm that fills each item in a rectangular array with the
distance from that entry to the nearest edge (left, right, top, or bottom) of
the array.

*Generalize the method for building triangular arrays to build three-
dimensional tetrahedral arrays that contain entries valueli, j, k] where
j <1 and k < 5. How would you continue to extend this method for even
higher dimensions?

How could you make a sparse triangular array?

Write an algorithm that adds two triangular arrays.
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17. Write an algorithm that multiplies two triangular arrays.

18.

19.

The algorithm described for adding two sparse matrices is fairly high
level. Expand the algorithm to provide details in place of the instructions
inside the angle brackets (<>). (Hint: You may want to make a separate
CopyEntries method to copy entries from one list to another and a sepa-
rate AddEntries method to combine the entries in two rows that have the
same row number.)

Write a high-level algorithm that efficiently multiplies two sparse matrices
that have default value 0.



Stacks and Queues

Stacks and queues are relatively simple data structures that store objects in
either first-in-first-out order or last-in-first-out order. They expand as needed
to hold additional items, much like linked lists can, as described in Chapter 3,
“Linked Lists.” In fact, you can use linked lists to implement stacks and queues.

You can also use stacks and queues to model analogous real-world scenarios, such
as service lines at a bank or supermarket. Usually, however, they are used to store
objects for later processing by other algorithms, such as shortest-path algorithms.

This chapter describes stacks and queues. It explains what they are, explains
stack and queue terminology, and describes the methods that you can use to
implement them.

Stacks

A stack is a data structure where items are added and removed in last-in-first-
out order. Because of this last-in-first-out (LIFO, usually pronounced “life-oh”)
behavior, stacks are sometimes called LIFO lists or LIFOs.

A stack is similar to a pile of books on a desk. You can add a book to the top
of the pile or remove the top book from the pile, but you can’t pull a book out of
the middle or bottom of the pile without making the whole thing topple over.

A stack is also similar to a spring-loaded stack of plates at a cafeteria. If you
add plates to the stack, the spring compresses so that the top plate is even with
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the countertop. If you remove a plate, the spring expands so that the plate that is
now on top is still even with the countertop. Figure 5.1 shows this kind of stack.

H\Push Pop X—

Figure 5.1: A stack s similar to a stack of plates at a cafeteria.

Because this kind of stack pushes plates down into the counter, this data
structure is also sometimes called a pushdown stack. Adding an object to a stack
is called pushing the object onto the stack, and removing an object from the stack
is called popping the object off of the stack. A stack class typically provides push
and pop methods to add items to and remove items from the stack.

\[o AN Python lists even provide a pop method. It can take the index of the item
that you want to remove from the list as a parameter. If you omit the index, then the
method removes and returns the last item in the list, just like a stack should.

Python lists don’t provide a push method, but the append method does what push
would do.

One important difference between the C# Stack class and a Python list is the position
where they add and remove items. The C# Stack class’s Push and Pop methods add
and remove items at the beginning of its list. In contrast, a Python list’s append and
pop methods add and remove items from the end of the list.

This doesn’t matter if you only access the stacks’ items via the push and pop methods,
but it makes a difference if you examine the items inside the stacks. The two kinds

of stacks store their items in opposite orders. For example, if you use the algorithms
described later in this chapter to sort items in increasing order, the items will actually
appear in decreasing order in a Python list.

The following sections describe a few of the more common methods for
implementing a stack.

Linked-List Stacks

Implementing a stack is easy using a linked list. The push method simply adds a
new cell to the top of the list, and the pop method removes the top cell from the list.
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The following pseudocode shows the algorithm for pushing an item onto a
linked-list stack:

Push(Cell: sentinel, Data: new_value)
// Make a cell to hold the new value.
Cell: new_cell = New Cell
new_cell.Value = new_value

// Add the new cell to the linked list.
new_cell.Next = sentinel.Next
sentinel .Next = new cell

End Push

The following pseudocode shows the algorithm for popping an item off of
a linked-list stack:

Data: Pop(Cell: sentinel)
// Make sure there is an item to pop.
If (sentinel.Next == null) Then <throw an exceptions>

// Get the top cell's value.
Data: result = sentinel.Next.Value

// Remove the top cell from the linked list.
sentinel.Next = sentinel.Next.Next

// Return the result.
Return result
End Pop

Figure 5.2 shows the process. The top image shows the stack after the program
has pushed the letters A, P, P, L, and E onto it. The middle image shows the stack

Sentinel —> E > L >{ P > P > A =X

= Push

Sentinel —>»{ S > E > L > P > P (> A >

Pop S

Sentinel —> E > L >{ P > P > A =X

Figure 5.2: It's easy to build a stack with a linked list.
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after the new letter S has been pushed onto the stack. The bottom image shows
the stack after the S has been popped off of the stack.

\[o ANl See Chapter 3 for more details about using linked lists.

With a linked list, pushing and popping items both have O(1) run times, so
both operations are quite fast. The list requires no extra storage aside from the
links between cells, so linked lists are also space-efficient.

Array Stacks

Implementing a stack in an array is almost as easy as implementing one with a
linked list. Allocate space for an array that is large enough to hold the number
of items that you expect to put in the stack. Then use a variable to keep track of
the next empty position in the stack.

The following pseudocode shows the algorithm for pushing an item onto an
array-based stack:

Push(Data: stack values [], Integer: next index, Data: new_value)
// Make sure there's room to add an item.
If (next index == <length of stack values>) Then
<throw an exceptions>

// Add the new item.
stack_values [next_index] = new_value

// Increment next index.
next index = next index + 1
End Push

The following pseudocode shows the algorithm for popping an item off of
an array-based stack:

Data: Pop(Data: stack _values[], Integer: next_ index)
// Make sure there is an item to pop.
If (next_index == 0) Then <throw an exception>

// Decrement next_ index.

next index = next_index - 1

// Return the top value.
Return stack values [next index]
End Pop

Figure 5.3 shows the process graphically. The top image shows the stack after
the program has pushed the letters A, P, P, L, and E onto it. The middle image
shows the stack after the new letter S has been pushed onto the stack. The bot-
tom image shows the stack after the S has been popped off of the stack.
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NextIndex

l

S NextIndex
Push l

A|P|P L E S

NextIndex S
L/~

Figure 5.3: It's easy to build a stack with an array.

A|P | P L E

With an array-based stack, adding and removing an item both have O(1) run
times, so both operations are quite fast. Setting and getting a value from an
array generally is faster than creating a new cell in a linked list, so this method
may be slightly faster than using a linked list. The array-based stack also doesn’t
need extra memory to store links between cells.

Unlike a linked-list stack, however, an array-based stack requires extra space
to hold new items. How much extra space depends on your application and
whether you know in advance how many items might need to fit in the stack.
If you don’t know how many items you might need to store in the array, you
can resize the array if needed, although that will take extra time. If the array
holds N items when you need to resize it, it will take O(N) steps to copy those
items into the newly resized array.

Depending on how the stack is used, allowing room for extra items may be
very inefficient. For example, suppose an algorithm occasionally needs to store
1,000 items in a stack, but most of the time it stores only a few. In that case, most
of the time the array will take up much more space than necessary. If you know
the stack will never need to hold more than a few items, however, an array-based
stack can be fairly efficient.

Double Stacks

Suppose an algorithm needs to use two stacks whose combined size is bounded
by some amount. In that case, you can store both stacks in a single array, with
one at each end and both growing toward the middle, as shown in Figure 5.4.
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NextIndex1 NextIndex2

l l

A

P P L E A[N|A|[N]A|B

Figure 5.4: Two stacks can share an array if their combined size is limited.

The following pseudocode shows the algorithms for pushing and popping
items with two stacks contained in a single array. To make the algorithm sim-
pler, the values array and the NextIndex1 and NextIndex2 variables are stored
outside of the push methods.

Data: StackValues[<max items>]

Integer: NextIndexl, NextIndex2

// Initialize the array.

Initialize()

NextIndexl = 0
NextIndex2 = <length of StackValues> - 1

End Initialize

// Add an item to the top stack.
Pushl (Data: new_value)

// Make sure there's room to add an item.
If (NextIndexl > NextIndex2) Then <throw an exceptions

// Add the new item.
StackValues [NextIndexl] = new_value

// Increment NextIndexl.
NextIndexl = NextIndexl + 1

End Pushl

// Add an item to the bottom stack.
Push2 (Data: new_value)

// Make sure there's room to add an item.
If (NextIndexl > NextIndex2) Then <throw an exceptions

// Add the new item.
StackValues [NextIndex2] = new_value

// Decrement NextIndex2.
NextIndex2 = NextIndex2 - 1

End Push2

// Remove an item from the top stack.
Data: Popl()

// Make sure there is an item to pop.
If (NextIndexl == 0) Then <throw an exception>
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// Decrement NextIndexl.
NextIndexl = NextIndexl - 1

// Return the top value.
Return StackValues [NextIndex1]
End Popl

// Remove an item from the bottom stack.

Data: Pop2()
// Make sure there is an item to pop.
If (NextIndex2 == <length of StackValues> - 1)
Then <throw an exceptions>

// Increment NextIndex2.
NextIndex2 = NextIndex2 + 1

// Return the top value.
Return StackValues [NextIndex2]
End Pop2

Stack Algorithms

Many algorithms use stacks. For example, some of the shortest path algorithms
described in Chapter 13, “Basic Network Algorithms,” can use stacks. The fol-
lowing sections describe a few other algorithms that you can implement by
using stacks.

Reversing an Array

Reversing an array is simple with a stack. Just push each item onto the stack
and then pop it back off. Because of the stack’s LIFO nature, the items come
back out in reverse order.

The following pseudocode shows this algorithm:

ReverseArray (Data: values|[])
// Push the values from the array onto the stack.
Stack: stack = New Stack
For i = 0 To <length of values> - 1
stack.Push(values[i])
Next i

// Pop the items off the stack into the array.
For 1 = 0 To <length of values> - 1
values[i] = stack.Pop ()
Next i
End ReverseArray

If the array contains N items, this algorithm takes 2x N steps, so it has run
time O(N).
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Train Sorting

Suppose a train contains cars bound for several different destinations, and it
enters a train yard. Before the train leaves the yard, you need to use holding
tracks to sort the cars so that the cars going to the same destination are grouped
together.

Figure 5.5 shows a train with cars bound for cities 3, 2, 1, 3, and 2 entering from
the left on the input track. The train can move onto a holding track and move
its rightmost car onto the left end of any cars on that holding track. Later, the
train can go back to the holding track and move a car from the holding track’s
left end back onto the train’s right end. The goal is to sort the cars.

Holding Tracks

Input Track Output Track

Figure 5.5: You can use stacks to model a train yard sorting a train’s cars.

You can directly model this situation by using stacks. One stack represents
the incoming train. Its Pop method removes a car from the right of the train,
and its push method moves a car back onto the right end of the train.

Other stacks represent the holding tracks and the output track. Their push
methods represent moving a car onto the left end of the track, and the pop
method represents moving a car off of the left end of the track.

The following pseudocode shows how a program could use stacks to model
sorting the train shown in Figure 5.5. Here train is the train on the input track,
trackl and track2 are the two holding tracks, and output is the output track
on the right.

holdingl.Push(train.Pop()) // Step 1: Car 2 to holding 1.
holding2.Push(train.Pop()) // Step 2: Car 3 to holding 2.
output .Push (train.Pop()) // Step 3: Car 1 to output.
holdingl.Push(train.Pop()) // Step 4: Car 2 to holding 1.
train.Push(holding2.Pop()) // Step 5: Car 3 to train.
train.Push(holdingl.Pop()) // Step 6: Car 2 to train.
train.Push (holdingl.Pop()) // Step 7: Car 2 to train.
train.Push (output.Pop()) // Step 8: Car 1 to train.

Figure 5.6 shows this process. The car being moved in each step has a bold
outline. An arrow shows where each car moves.
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Figure 5.6: You can sort this train in eight moves by using two holding tracks and an output track.

N[ AN A real train yard might need to sort several trains containing many more cars
all at once using many more holding tracks that may connect in unique configurations.
All of these considerations make the problem much harder than this simple example.

Of course, in a real train yard, each move requires shuffling train cars, and that can take
several minutes. Therefore, finding a solution with the fewest possible moves is very
important.

Tower of Hanoi

The Tower of Hanoi puzzle (also called the Tower of Brahma or Lucas” Tower),
shown in Figure 5.7, has three pegs. One peg holds a stack of disks of different
sizes, ordered from smallest to largest. The goal is to move all the disks from
one peg to another. You must move disks one at a time, and you cannot place
a disk on top of another disk that has a smaller radius.

You can model this puzzle using three stacks in a fairly obvious way. Each stack
represents a peg. You can use numbers giving the disks” radii for objects in the stacks.

Figure 5.7: The goal in the Tower of Hanoi puzzle is to restack disks from one peg to another
without placing a disk on top of a smaller disk.
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The following pseudocode shows how a program could use stacks to model
moving the disks from the left peg to the middle peg in Figure 5.7:

peg2.Push (pegl.Pop())
peg3.Push(pegl.Pop())
peg3.Push(peg2.Pop())
peg2.Push (pegl.Pop())
pegl.Push (peg3.Pop())
peg2.Push (peg3.Pop())
peg2.Push (pegl.Pop())

Figure 5.8 shows the process graphically.

[ |
Figure 5.8: You can model the Tower of Hanoi puzzle with three stacks.
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\[*AN The example shown in Figure 5.8 uses only three disks so that the solution
can fit easily into a figure. In general, the number of steps required to move N disks is
2" -1, so the number of steps grows very quickly asN increases.

The puzzle was invented by French mathematician Edouard Lucas (1842-1891). The
legend (which may have been invented by Lucas) says that there is an Indian temple
containing three large posts and 64 golden disks. The temple’s priests follow the
bigger-disks-on-the-bottom rule to move the whole stack.

The bad news is that, when the priests finish, the world will end. The good news is that
2% -1 is more than 1.8x10", so this will take a while. If the priests can move one disk
per second, then this will take nearly 585 billion years.

One solution to the Tower of Hanoi puzzle is a nice example of recursion, so
it is discussed in greater detail in Chapter 9, “Recursion.”

Stack Insertionsort

Chapter 6, “Sorting,” focuses on sorting algorithms, but Chapter 3 briefly
explained how to implement insertionsort with linked lists. The basic idea
behind insertionsort is to take an item from the input list and insert it into the
proper position in a sorted output list (which initially starts empty). Chapter 3
explained how to implement insertionsort with linked lists, but you also can
implement it with stacks.

The original stack holds items in two sections. The items farthest down in
the stack are sorted, and those near the top of the stack are not. Initially, no
items are sorted, and all of the items are in the “not sorted” section of the stack.

The algorithm uses a second, temporary stack. For each item in the original
stack, the algorithm pops the top item off of the stack and stores it in a vari-
able. It then moves all of the other unsorted items onto the temporary stack.
By “moves,” I mean the algorithm pops a value from one stack and pushes it
onto another stack.

Next the algorithm starts moving sorted items onto the temporary stack until
it finds the position where the new item belongs within the sorted items. At
that point, the algorithm inserts the new item onto the original stack and then
moves all of the items from the temporary stack back onto the original stack.
The algorithm repeats this process until all of the items have been added to the
sorted section of the stack.

The following pseudocode shows the insertionsort algorithm at a fairly high
level:

// Sort the items in the stack.

StackInsertionsort (Stack: items)
// Make a temporary stack.
Stack: temp stack = New Stack
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Integer: num_items = <number of items>
For i = 0 To num_items - 1

// Position the next item.

// Pull off the first item.

Data: next item = items.Pop ()

<Move the items that have not yet been sorted to temp_stack.
At this point there are (num_items - i - 1) unsorted items.>

<Move sorted items to the second stack until
you find out where next item belongs.>

<Add next_item at this position.>

<Move the items back from temp stack to the original stack.>
Next i

End StackInsertionsort

For each item, this algorithm moves the unsorted items to the temporary
stack. Next it moves some of the sorted items to the temporary stack, and then it
moves all of the items back to the original stack. At different steps, the number of
unsorted items that must be movedisN,N -1,N -2, ...,2,1, so the total number
of items moved is N+ (N = 1)+ (N =2)+...+2+1=Nx(N+1) /2= O(N?). This
means that the algorithm has a run time of O(N?).

Stack Selectionsort

In addition to describing a linked-list insertionsort, Chapter 3 explained how to
implement selectionsort with linked lists. The basic idea behind selectionsort
is to search through the unsorted items to find the largest item and then move
it to the front end of the sorted output list. Chapter 3 explained how to imple-
ment selectionsort with linked lists, but you can also implement it with stacks.

As in the insertionsort algorithm, the original stack holds items in two sec-
tions. The items farthest down in the stack are sorted, and those near the top
of the stack are not. Initially, no items are sorted, and all of the items are in the
“not sorted” section of the stack.

The algorithm uses a second temporary stack. For each position in the original
stack, the algorithm moves all of the still unsorted items to the temporary stack,
keeping track of the largest item.

After it has moved all of the unsorted items to the temporary stack, the
program pushes the largest item it found onto the original stack in its correct
position. It then moves all of the unsorted items from the temporary stack back
to the original stack.

The algorithm repeats this process until all of the items have been added to
the sorted section of the stack.
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The following pseudocode shows the selectionsort algorithm at a fairly
high level:

// Sort the items in the stack.

StackSelectionsort (Stack: items)
// Make the temporary stack.
Stack: temp_stack = New Stack

Integer: num_items = <number of items>
For i = 0 To num items - 1
// Position the next item.
// Find the item that belongs in sorted position i.

<Move the items that have not yet been sorted onto the

temp stack, keeping track of the largest. Store the

largest item in variable largest item.

At this point there are (num items - i - 1) unsorted items.>

<Add largest_item to the original stack
at the end of the previously sorted items.>

<Move the unsorted items back from temp stack to the
original stack, skipping largest item when you find it>
Next i
End StackSelectionsort

For each item, this algorithm moves the unsorted items to the temporary stack,
adds the largest item to the sorted section of the original stack, and then moves
the remaining unsorted items back from the temporary stack to the original
stack. For each position in the array, it must move the unsorted items twice. At
different steps, there are N,N -1,N -2, ..., 1lunsorted items to move, so the total
number of items moved is N+ (N -1)+ (N =2)+...+1=Nx(N +1) /2=0O(N?),
and the algorithm has run time O(N?).

Queues

A queue is a data structure where items are added and removed in first-in-first-
out order. Because of this first-in-first-out (FIFO, usually pronounced “fife-oh”)
behavior, stacks are sometimes called FIFO lists or FIFOs.

A queue is similar to a store’s checkout queue. You join the end of the queue
and wait your turn. When you get to the front of the queue, the cashier takes
your money and gives you a receipt.

Usually, the method that adds an item to a queue is called Enqueue, and the
item that removes an item from a queue is called Dequeue.

The following sections describe a few of the more common methods for
implementing a queue.
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Linked-List Queues

Implementing a queue is easy using a linked list. To make removing the last
item from the queue easy, the queue should use a doubly linked list.

The Engqueue method simply adds a new cell to the top of the list, and the
Dequeue method removes the bottom cell from the list.

The following pseudocode shows the algorithm for enqueueing an item in
a linked-list stack:

Enqueue (Cell: top_sentinel, Data: new_value)
// Make a cell to hold the new value.
Cell: new_cell = New Cell
new_cell.Value = new value

// Add the new cell to the linked list.
new_cell.Next = top_sentinel.Next
top_sentinel.Next = new cell
new_cell.Prev = top_sentinel

End Engqueue

The following pseudocode shows the algorithm for dequeueing an item from
a linked-list stack:

Data: Dequeue (Cell: bottom_sentinel)
// Make sure there is an item to dequeue.
If (bottom sentinel.Prev == top_sentinel) Then <throw an exceptions>

// Get the bottom cell's wvalue.
Data: result = bottom sentinel.Prev.Value

// Remove the bottom cell from the linked list.
bottom sentinel.Prev = bottom_ sentinel.Prev.Prev
bottom sentinel.Prev.Next = bottom sentinel

// Return the result.
Return result
End Dequeue

‘[ A N-Jl See Chapter 3 for more details about using linked lists.

With a doubly linked list, enqueueing and dequeueing items have O(1) run
times, so both operations are quite fast. The list requires no extra storage aside
from the links between cells, so linked lists are also space-efficient.

Array Queues

Implementing a queue in an array is a bit trickier than implementing one with a
linked list. To keep track of the array positions that are in use, you can use two var-
iables: Next, to mark the next open position, and Last, to mark the position that has
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been in use the longest. If you simply store items at one end of an array and remove

them from the other, however, the occupied spaces move down through the array.
For example, suppose that a queue is implemented in an array with eight

entries. Consider the following series of enqueue and dequeue operations:

Enqueue (M)
Enqueue (0)
Enqueue (V)
Dequeue ()
)
I)
Enqueue (N)
G)
)
)

Enqueue

Enqueue

(
(
(
(
Dequeue (
(
(
(
Dequeue (
(

Dequeue

// Remove
// Remove

// Remove V
I.

// Remove

Figure 5.9 shows this sequence of operations. Initially, Next and Last refer
to the same entry. This indicates that the queue is empty. After the series of
Enqueue and Dequeue operations, only two empty spaces are available for add-
ing new items. After that, it will be impossible to add new items to the queue.

One approach to solving this problem is to enlarge the array when Next falls
off the end of the array. Unfortunately, that would make the array grow bigger
over time, and all the space before the Last entry would be unused.

Last Next

v

Last Next
| |
M| O V
Last Next
VL
V
Last Next
| |
V | N G
Last Next
|
N G

Figure 5.9: As you enqueue and dequeue items in an array-based queue, the occupied spaces
move down through the array.
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Another approach would be to move all of the array’s entries back to the
beginning of the array whenever Last falls off the array. That would work, but
it would be relatively slow.

A more effective approach is to build a circular array, in which you treat the
last item as if it were immediately before the first item. Now when next falls
off the end of the array, it wraps around to the first position, and the program
can store new items there.

Figure 5.10 shows a circular queue holding the values M, O, V, I, N, and G.

et

ﬁﬂ\

Figure 5.10: In a circular queue, you treat the array’s last item as if it comes right
before the first item.

A circular array does present a new challenge, however. When the queue is
empty, Next is the same as Last. If you add enough items to the queue, Next
goes all the way around the array and catches up to Last again, so there’s no
obvious way to tell whether the queue is empty or full.

You can handle this problem in a few ways. For example, you can keep track
of the number of items in the queue, keep track of the number of unused spaces
in the queue, or keep track of the number of items added to and removed from
the queue. The CircularQueue sample program, which is available for download
on the book’s website, handles this problem by always keeping one of the array’s
spaces empty. If you added another value to the queue shown in Figure 5.10,
the queue would be considered full when Next is just before Last, even though
there was one empty array entry.

The following pseudocode shows the algorithm used by the example program
for enqueueing an item:

// Variables to manage the queue.
Data: Queue[<queue size>]
Integer: Next = 0

Integer: Last = 0
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// Enqueue an item.
Enqueue (Data: value)
// Make sure there's room to add an item.

If ((Next + 1) Mod <queue size> == Last) Then <throw an exception>
Queue [Next] = value
Next = (Next + 1) Mod <queue size>

End Engqueue

The following pseudocode shows the algorithm for dequeueing an item:

// Dequeue an item.
Data: Dequeue ()
// Make sure there's an item to remove.
if (Next == Last) Then <throw an exceptions

Data: value = Queue [Last]
Last = (Last + 1) Mod <queue size>

Return value
End Degqueue

A circular queue still has a problem if it becomes completely full. If the queue
is full and you need to add more items, then you need to allocate a larger storage
array, copy the data into the new array, and then use the new array instead of
the old one. This can take some time, so you should try to make the array big
enough in the first place.

Specialized Queues

Queues are fairly specialized, but some applications use even more specialized
queues. Two of these kinds of queues are priority queues and deques.

Priority Queues

In a priority queue, each item has a priority, and the dequeue method removes the
item that has the highest priority. Basically, high-priority items are handled first.

One way to implement a priority queue is to keep the items in the queue sorted
by priority. For example, you can use the main concept behind insertionsort to keep
the items sorted. When you add a new item to the queue, you search through the
queue until you find the position where it belongs and you place it there. To dequeue
an item, you simply remove the top item from the queue. With this approach,
enqueueing an item takes O(N) time, and dequeueing an item takes O(1) time.

Another approach is to store the items in whatever order they are added to
the queue and then have the dequeue method search for the highest-priority
item. With this approach, enqueueing an item takes O(1) time, and dequeueing
an item takes O(N) time.
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Both of these approaches are reasonably straightforward if you use linked lists.

The heap data structure described in the “Heapsort” section of Chapter 6
provides a more efficient way of implementing a priority queue. A heap-based
priority queue can enqueue and dequeue items in O(log N) time.

Deques

Deque, which is usually pronounced “deck,” stands for double-ended queue. A
deque is a queue that allows you to add items to and remove items from either
end of the queue.

Deques are useful in algorithms where you have partial information about
the priority of items. For example, you might know that some items are high
priority and others are low priority, but you might not necessarily know the exact
relative priorities of every item. In that case, you can add high-priority items
to one end of the deque and low-priority items to the other end of the deque.

Deques are easy to build with doubly linked lists.

Binomial Heaps

You can use a linked list to make a simple priority queue, but then you need
either to keep the list sorted (which is slow) or to dig through the list to find
the highest-priority item when needed (which is also slow). A binomial heap lets
you insert new items and remove the highest priority item relatively quickly.
Abinomial heap contains a collection of binomial trees that contain the heap’s values.
To make rearranging the trees easier, the heap normally stores the tree rootsin a
linked list. You may want to use a list sentinel to make it easier to manage the list.

\[ ANl A disjoint union of trees, such as the ones used by a binomial heap, is some-
times called a forest.

Chapters 10 and 11 have a lot more to say about trees, but I wanted to describe
binomial heaps here near the discussion of priority queues.

Binomial Trees
You can define a binomial tree recursively by using the following rules:

1. A binomial tree with order 0 is a single node.

2. A binomial tree with order k has child nodes that are roots of subtrees
that have ordersk -1,k -2, ..., 1, 0 in that order from left to right.

Figure 5.11 shows binomial trees with orders between 0 and 3. Dashed lines
show how the order 3 contains trees of order 2, 1, and 0.
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Order 0 Order 1 Order 2 Order 3

’
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’
’
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’
I
1

Order 2
Figure 5.11: A binomial tree of order k contains binomial subtrees of order k =1, k-2, ..., 0.

Order 1

L\[o AN These trees are called binomial trees because the number of nodes at a

certain level in a tree is given by the binomial formula. If a tree has order n, then it has
n n

4 | nodes at depth d. The value | 4 |, which is pronounced “n choose d " is given by

e

For example, consider the order 3 tree shown in Figure 5.11. The following equations
calculate the number of nodes that this tree should have on each of its four levels
(numbered 0 through 3).

the following formula:

(o)}

If you look again at Figure 5.11, you'll see that the order 3 tree has 1, 3, 3, and 1 node
onits four levels.

Binomial trees have a couple of interesting properties. A tree of order k contains
2" nodes and has a height of k. (A tree’s height is the number of links between
the root node and the tree’s deepest leaf node.)
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A feature of binomial trees that is particularly important for building a binomial
heap is that you can combine two trees of order k by making one of the roots
be a child of the other in order to produce a new tree of order k + 1. Figure 5.12
shows how you can turn two order 2 trees into an order 3 tree.

Ord_e_r 3

\\\-.-*'/\Orderz

Figure 5.12: If you make the root of an order 2 tree (in the left dashed circle) into a child of the
root of another order 2 tree (in the right dashed circle), you get an order 3 tree.

Binomial Heaps

A binomial heap contains a forest of binomial trees that follows these three
additional rules:

1. Each binomial tree obeys the minimum heap property. That means every
node’s value is less than or equal to the values of its children. In particular,
this means that the tree’s root holds the smallest value in the tree.

2. The forest contains at most one binomial tree of any given order. For
example, the forest might contain trees of order 0, 3, and 7, but it cannot
contain a second tree with order 3.

3. The forest’s trees are sorted by their orders, so those with the smallest
orders come first.

The first rule makes it easy to find the node with the smallest value in the
forest—simply loop through the trees and pick the smallest root value.

This discussion assumes that items with higher priorities have smaller
values, so, for example, the value 1 might mean top priority and the value 2 might
mean second priority. If you regard larger numbers as having higher priority, simply
reverse the discussion.

The second property ensures that the heap cannot grow too wide and force
you to examine a lot of trees when you need to find the smallest element.
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In fact, the number of values in the heap uniquely determines the number
of trees and their orders! Because a binomial tree of order k contains 2* nodes,
you can use the binary representation of the number of values to determine
which trees it must contain.

For example, suppose a heap contains 13 nodes. The binary representation of
13 is 1101, so the heap must contain a tree of order 3 (containing eight nodes), a
tree of order 2 (containing four nodes), and a tree of order 0 (containing one node).

All of this means that a binomial heap containing N nodes can hold at most
1+1log, (N) trees, so it cannot be too wide.

That’s enough background about binomial trees and heaps. The following
sections explain how you perform the key operations necessary to make a
binomial heap work as a priority queue.

Merging Trees

As I mentioned earlier, you can merge two trees with the same order by mak-
ing one tree’s root a child of the other tree’s root. The only trick here is that you
need to maintain the minimum heap property. To do that, simply use the root
node that has the smaller value as the parent so that it becomes the root of the
new tree.

The following pseudocode shows the basic idea. Here I assume that the nodes
in the trees are contained in BinomialNode objects. Each BinomialNode object
has a Nextsibling field that points to the node’s sibling and a Firstchild field
that points to the node’s first child.

// Merge two trees that have the same order.
BinomialNode: MergeTrees (BinomialNode: rootl, BinomialNode: root2)
If (rootl.Value < root2.Value) Then
// Make rootl the parent.
root2.NextSibling = rootl.FirstChild
rootl.FirstChild = root2
Return rootl
Else
// Make rootl the parent.
rootl.NextSibling = root2.FirstChild
root2.FirstChild = rootl
Return root2
End If
End MergeTrees

The algorithm compares the values of the trees’ root nodes. If the value of
root1 is smaller, the algorithm makes root2 a child of root1. To do that, it first
sets the next sibling of root2 equal to the current first child of root1. It then sets
the first child of root1 equal to root2, so rootz2 is the first child of root1 and its
NextSibling pointer leads to the other children of root1. The algorithm then
returns the new tree’s root.
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If the value of root2 is smaller than the value of root1, the algorithm performs
the same steps with the roles of the two roots reversed.

Figure 5.13 shows this operation. The root nodes in the two trees on the left
have values 24 and 16. Because 16 is smaller, that node becomes the root of the
new tree and the node with value 24 becomes that node’s child.

it

Figure 5.13: Merge two trees with the same order by making one tree’s root become a child of
the other tree’s root.

Notice that the new tree satisfies the minimum heap property.

Merging Heaps

Merging two binomial heaps is the most important, interesting, and confusing
operation required to maintain a binomial heap. The process works in two phases.
First, you merge the tree lists. Then, you merge trees that have the same order.

Merging Tree Lists

In the first phase of merging two heaps, you merge the trees in each of the heaps
into a single list where the trees are sorted in increasing order. Because each
heap stores its trees in sorted order, you can loop through the two tree lists
simultaneously and move the trees into the merged list in order.

The following pseudocode shows the basic idea. Here I assume that heaps are
represented by BinomialHeap objects that have a RootSentinel property that
points to the first tree in the heap’s forest.

// Merge two heaps' tree lists.
List Of BinomialTree: MergeHeapLists (BinomialHeap: heapl,
BinomialHeap: heap2)
// Make a list to hold the merged roots.
BinomialNode: mergedListSentinel = New BinomialNode (int.MinValue)
BinomialNode: mergedListBottom = mergedListSentinel
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// Remove the heaps' root list sentinels.
heapl.RootSentinel = heapl.RootSentinel.NextSibling
heap2.RootSentinel = heap2.RootSentinel.NextSibling

// Merge the two heaps' roots into one list in ascending order.
While ((heapl.RootSentinel != null) And
(heap2.RootSentinel != null))
// See which root has the smaller order.
BinomialHeap moveHeap = null
If (heapl.RootSentinel.Order <= heap2.RootSentinel.Order) Then
moveHeap = heapl
Else
moveHeap = heap2
End If

// Move the selected root.
BinomialNode: moveRoot = moveHeap.RootSentinel
moveHeap.RootSentinel = moveRoot.NextSibling
mergedListBottom.NextSibling = moveRoot
mergedListBottom = moveRoot
mergedListBottom.NextSibling = null

End While

// Add any remaining roots.

If (heapl.RootSentinel != null) Then
mergedListBottom.NextSibling = heapl.RootSentinel
heapl.RootSentinel = null

Else If (heap2.RootSentinel != null) Then
mergedListBottom.NextSibling = heap2.RootSentinel
heap2.RootSentinel = null

End If

// Return the merged list sentinel.
Return mergedListSentinel
End MergeHeapLists

This algorithm starts by setting each heap’s Rootsentinel value to the first
actual tree in the heap. As long as both heaps contain trees, the code compares
the first trees in the heaps (which will have the smallest orders in their respec-
tive heaps) and moves the one with the smaller order into the merged list.

After one of the heaps has run out of trees, the algorithm adds the other heap’s
remaining trees to the end of the merged list.

Figure 5.14 shows two heaps that should be merged.

Figure 5.15 shows the merged tree list.

If you look at the merged tree list in Figure 5.15, you'll see that it violates
second heap rule, which requires that a heap cannot contain more than one
tree with the same order. This list contains two trees of order 1 and two trees
of order 2. That brings us to the second phase of the merge process, merging
trees that have the same order.
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Figure 5.15: This list contains the heaps’ merged tree lists.

Merging Trees

In the second phase of merging two heaps, you merge any trees that have the
same order. The trees in the merged list shown in Figure 5.15 are sorted by their
orders. This means that if there are any trees with the same degree, then they
are adjacent to each other in the list.

To merge the trees, you scan through the list looking for adjacent trees that
have the same order. When you find a matching pair, you simply make one
tree’s root the child of the other tree’s root as described earlier.

Unfortunately, there is a catch. When you merge two trees of order k, you
create a new tree of order k + 1. If the list happens to include two other trees of
order k +1, then you now have three trees with the same order in a row. In that
case, simply leave the first (new) tree alone and merge the following two trees
into a new tree of degree k + 2.

The following pseudocode shows how to merge adjacent trees with the same
order:

// Sift through the list and merge roots with the same order.
MergeRootsWithSameOrder (BinomialNode: listSentinel)
BinomialNode: prev = listSentinel
BinomialNode: node = prev.NextSibling
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BinomialNode: next = null
If (node != null) Then next = node.NextSibling

While (next != null)

// See if we need to merge node and next.

If (node.Order != next.Order) Then
// Move to consider the next pair.
prev = node
node = next
next = next.NextSibling

Else
// Remove them from the list.
prev.NextSibling = next.NextSibling

// Merge node and next.
node = MergeTrees (node, next)

// Insert the new root where the old ones were.
next = prev.NextSibling
node.NextSibling = next
prev.NextSibling = node

// If we have three matches in a row,
// skip the first one so we can merge
// the other two in the next round.
// Otherwise consider node and next
// again in the next round.

If ((next != null) And
(node.Order == next.Order) And
(next .NextSibling != null) And
(node.Order == next.NextSibling.Order))
Then

prev = node
node = next

next = next.NextSibling
End If
End If
End While
End MergeRootsWithSameOrder

The algorithm uses three variables to keep track of its position in the merged
tree list. The variable node points to the tree that the algorithm is considering.
Variables prev and next point to the trees before and after node in the linked list.

The algorithm then enters a loop that executes as long as next is not nu1l. If
the node and next trees have different orders, the algorithm simply advances
prev, node, and next to examine the next pair of trees.

If the node and next trees have the same order, then the algorithm calls the
MergeTrees method described earlier to merge them. That may create a new
tree with the same order as the next two trees. If that is the case, the algorithm
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advances prev, node, and next to move past the new tree so that it can merge
the other two during the next pass through the while loop.

If the merge did not create three trees in a row with the same order, the
algorithm leaves prev, node, and next so that node is pointing to the new tree.
During the next trip through the loop, the algorithm will compare the new tree
to the next one and merge them if they have the same order.

The next few figures show how the MergeRootswWithSameOrder algorithm
works. Figure 5.16 shows the previous merged tree list, which contains some
trees that have the same order.

Figure 5.16: Some of these trees have the same order,
so they must be merged.

When the algorithm loops through the list, it finds that the trees inside the
dashed ellipse shown in Figure 5.16 both have order 1, so it merges them into a
tree with order 2. Figure 5.17 shows the new list.

When it merges the two trees with order 1, the algorithm notices that the
list now contains three trees with order 2. It skips the first one and merges the
second and third, which are surrounded by dashed lines in Figure 5.17.

' |
' l
' '
\ i
\ ,

Figure 5.17: The list now contains three trees in a row
that have order 2.
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Figure 5.18 shows the list after the latest merge.

15 ;/4—8\ > 16

Figure 5.18: At this point, the list ready to be used
by a binomial heap.

Recall that the point of this exercise was to merge two binomial heaps.
The MergeHeapLists algorithm merged their tree lists. Then the MergeRoots-
WithSameOrder algorithm merged any trees in the list that had the same order.
At this point, the tree list satisfies the binomial heap properties, so you can use
it to build the new merged heap. You'll see in the following sections how you
can use this process to implement the final heap features: adding an item to the
heap and removing the item with the smallest value from the heap.

Enqueue

After you know how to merge heaps, adding an item to a heap is relatively easy.
Simply create a new heap that contains the new item and then merge the new
heap with the existing one. The following pseudocode shows how to perform
this operation:

Enqueue (Integer: value)

// If this heap is empty, just add the value.

If (RootSentinel.NextSibling == null) Then
RootSentinel.NextSibling = New BinomialNode (value)

Else
// Make a new heap containing the new value.
BinomialHeap newHeap = New BinomialHeap ()
newHeap . Enqueue (value)

// Merge with the new heap.
MergeWithHeap (newHeap)
End If
End Enqueue
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This algorithm checks the heap’s tree list to see whether it is empty. If the list
is empty, it creates a new single-node (order 0) tree containing the new value
and adds it to the top of the list.

If the tree list isn't empty, the algorithm makes a new single-item heap and
then merges it with the existing heap.

Dequeue

After you know how to merge tree lists, removing the item with the smallest
value is also easy. First, find the item with the smallest value and remove that
item’s tree from the tree list. Next, add the removed tree’s child subtrees to a new
heap and merge the new heap with the original one. The following pseudocode
shows the steps in more detail:

// Remove the smallest value from the heap.

Integer: Dequeue ()
// Find the root with the smallest value.
BinomialNode: prev = FindRootBeforeSmallestValue ()

// Remove the tree containing the value from our list.
BinomialNode: root = prev.NextSibling
prev.NextSibling = root.NextSibling

// Make a new heap containing the

// removed tree's subtrees.

BinomialHeap: newHeap = New BinomialHeap ()

BinomialNode: subtree = root.FirstChild

While (subtree != null)
// Add this subtree to the top of the new heap's root list.
BinomialNode: next = subtree.NextSibling
subtree.NextSibling = newHeap.RootSentinel.NextSibling
newHeap.RootSentinel .NextSibling = subtree
subtree = next

End While

// Merge with the new heap.
MergeWithHeap (newHeap)

// Return the removed root's value.
Return root.Value
End Dequeue

This algorithm finds the tree root that has the smallest value. Because each of
the trees satisfies the minimum heap property, that is the item with the smallest
value in the entire heap.

Next, the algorithm removes that tree from the tree list. It then creates a new
heap and loops through the removed tree’s subtrees adding them to the new
heap. The subtrees of a binomial tree are stored sorted by increasing tree order,
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so it’s easy to add them to the new heap in increasing order by simply adding
them to the top of the new heap’s tree list.

After it finishes adding the subtrees to the new heap, the algorithm calls the
MergeWithHeap method to merge the new heap with the original one. The code
finishes by returning the smallest item that it found.

Runtime

The longest operations on a binomial heap loop through the heap’s tree list, so
their runtimes depend on the length of that list. | mentioned earlier that the tree
list can hold at most 1+1og, (N) trees if the heap contains N items, so the time
needed to loop through the list can take at most O(log N) time.

More precisely, to enqueue an item, you create a new heap containing the item
and then merge the new heap with the existing one. To merge the heaps, you
combine their tree lists in O(log N) time. You then loop through the merged
tree list to combine any trees that have the same order, again taking O(log N)
time. That makes the total time to insert an item O(log N) + O(log N) = O(log N).

To dequeue an item, you first spend O(log N) time looping through the heap’s
tree list to find the root with the smallest value. You then remove that tree and add
its subtrees to a new heap. The removed tree can have at most O(log N) subtrees,
so that takes at most O(log N) time. Finally, you spend O(log N) time merging the
two heaps, so the total run time is O(log N) + O(log N) + O(log N) = O(log N).

The worst case time for inserting an item is O(log n), but in the long run
the average time is smaller because a long operation tends to reduce the time
needed for later operations.

For example, suppose a heap contains 15 items. Remember that the number
of items uniquely determines the number and orders of the trees in the heap. If
the heap contains 15 items, then it contains four trees with orders 0, 1, 2, and 3.

When you add another item, the new item will force all of those trees to merge
together into a single tree of order 4 containing all 16 items. That operation will
take the full O(log N) steps because the heap initially contained O(log N) trees.
However, after that, the heap contains only one tree, so future insertions will
be much quicker.

This kind of study of performance over a long sequence of operations is called
amortized analysis. It turns out that the amortized runtime for inserting items
in a binomial heap is O(1).

Summary

This chapter explained stacks and queues, two data structures that are often
used by other algorithms to store items. In a stack, items are added to and then
removed from the same “end” of the data structure in last-in-first-out order.
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In a queue, items are added at one end and removed from the other in first-in-
first-out order.

You can use an array to build a stack fairly easily, as long as it doesn’t run out
of space. If you build a stack with a linked list, you don’t need to worry about
running out of space.

You can also use an array to build a queue, although in that approach the
items move through the array until they reach the end and you need to resize
the array. You can solve that problem by using a circular array. You can also
avoid the whole issue by using a doubly linked list to build a queue.

You can use stacks and queues to sort items in O(N?) time, although those
algorithms are more exercises in using stacks and queues than in efficient
sorting. The next chapter describes several sorting algorithms that give much
better performance, with some running in O(N log N) time and others even
running in O(N) time.

This chapter also explained binomial heaps, which are the most complicated
data structures described by this book so far. They let you add and remove items
from a heap in O(log N) time. That makes them a useful method for building
a priority queue.

Exercises

You can find the answers to these exercises in Appendix B. Asterisks indicate
particularly difficult problems.

1. When you use a double stack, what is the relationship between the vari-
ables NextIndex1 and NextIndex2 when one of the stacks is full?

2. Write an algorithm that takes as input a stack and returns a new stack
containing the same items but in reverse order.

3. Write a program that implements insertionsort with stacks.

4. For each item, the stack insertionsort algorithm moves the unsorted items
to the temporary stack. Next, it moves some of the sorted items to the
temporary stack, and then it moves all of the items back to the original
stack. Does it really need to move all of the items back to the original stack?
Can you improve the algorithm’s performance by modifying that step?
What does that do to the algorithm’s Big O run time?

5. What does the stack insertionsort algorithm mean in terms of train
sorting?

6. Write a program that implements selectionsort with stacks.

What does the stack selectionsort algorithm mean in terms of train
sorting?
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8. Write a program that implements a priority queue.

9. Write a program that implements a deque.

10. *Consider a bank where customers enter a single line that is served by

11.
12.
13.

several tellers. You enter the line at the end, and when you get to the front
of the line, you are served by the next available teller. You can model this
“multiheaded queue” with a normal queue that serves multiple tellers.

Make a program similar to the one shown in Figure 5.19 to simulate a
multiheaded queue in a bank. Give the user controls to adjust the number
of tellers, the amount of time between customer arrivals, the amount of
time each customer stays, and the speed of the simulation. After the user
specifies the parameters, run a simulation to see how the queue behaves.
How does the number of tellers affect the average wait time?

o5 MultiHeadedCQueue - m] -

Parameters

H Tellers: 2 =

Amival Mins: (1 5 to 3 15 minutes
Duration: 2 [ to |7 5 minutes
Speed: 5 & steps persecond

Queue: 107 108 105 110 111 112 113
114 115 ll€ 117 118 11% 120
121 122 123 124 125 12§ 127

Tellers: |_L-:|a 10€

Wait: [19min, 18 sec

Figure 5.19: In a bank queue, customers stand in a single line and then are helped by the
next available teller.

Write a program that implements insertionsort with queues.
Write a program that implements selectionsort with queues.

*Write a program that implements a binomial heap.



Sorting

Sorting algorithms are usually covered in great detail in algorithms books for
several reasons.

m They are interesting and demonstrate several useful techniques, such as
recursion, divide and conquer, heaps, and trees.

m Sorting algorithms are well-studied and are some of the few algorithms
for which exact run times are known. It can be shown that the fastest
possible algorithm that uses comparisons to sort N items must use O(N
log N) time. Several sorting algorithms actually achieve that performance,
so in some sense they are optimal.

m Sorting algorithms are useful. Almost any data is more useful when it is
sorted in various ways, so sorting algorithms play an important role in
many applications.

This chapter describes several different sorting algorithms. Some, such as
insertionsort, selectionsort, and bubblesort, are relatively simple but slow. Others,
such as heapsort, quicksort, and mergesort, are more complicated but much faster.
Still others, such as countingsort and pigeonhole sort, don't use comparisons
to sort items, so they can break the O(N log N) barrier and perform amazingly
fast under the right circumstances.

The following sections categorize the algorithms by their run-time performance.

Essential Algorithms: A Practical Approach to Computer Algorithms Using Python® and C#, First Edition.
Rod Stephens.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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Many programming libraries, such as C# and Python, include sorting tools,
and they usually are quite fast. In practice, you may want to use those tools to save
time writing and debugging the sorting code. It’s still important to understand how
sorting algorithms work, however, because sometimes you can do even better than
the built-in tools. For example, a simple bubblesort algorithm may beat a more com-
plicated library routine for very small lists, and countingsort often beats the tools if
the data being sorted has the right characteristics.

O(N?) Algorithms

O(N?) algorithms are relatively slow but fairly simple. In fact, their simplicity
sometimes lets them outperform faster but more complicated algorithms for
very small arrays.

Insertionsort in Arrays

Chapter 3 described an insertionsort algorithm that sorts items in linked
lists. Chapter 5 described insertionsort algorithms that use stacks and queues.
The basic idea is to take an item from the input list and insert it into the proper
position in a sorted output list (which initially starts empty).

Chapter 3 explained how to do this in linked lists, but you can use the same
steps to sort an array. The following pseudocode shows the algorithm for use
with arrays:

Insertionsort (Data: values|[])
For i = 0 To <length of values> - 1
// Move item i into position in the sorted part of the array.
< Find the first index j where
j < 1 and values[j] > values[i].>
<Move the item into position j.>
Next i
End Insertionsort

As the code loops through the items in the array, the index i separates the
items that have been sorted from those that have not. The items with an index
less than i have already been sorted, and those with an index greater than or
equal to i have not yet been sorted.

As i goes from 0 to the last index in the array, the code moves the item at
index i into the proper position in the sorted part of the array.

To find the item’s position, the code looks through the already sorted items
and finds the first item that is greater than the new value values[i].

The code then moves values[i] into its new position. Unfortunately, this can
be a time-consuming step. Suppose that the item’s new index should be 5. In
that case, the code must move the items between indices j and i, one position
to the right to make room for the item at position 3.
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Figure 6.1 shows the algorithm’s key steps. The image at the top shows the
original unsorted array. In the middle image, the first four items (outlined in
bold) have been sorted, and the algorithm is preparing to insert the next item
(which has value 3) into the sorted part of the array. The algorithm searches
through the sorted items until it determines that the value 3 should be inserted
before the value 5. At the bottom of the figure, the algorithm has moved the
values 5, 6, and 7 to the right to make room for value 3. The algorithm inserts
value 3 and continues the For loop to insert the next item (which has value 2)
into its correct position.

This algorithm sorts the items in the original array, so it doesn’t need any
additional storage (aside from a few variables to control loops and move items).

A

3

Figure 6.1: Insertionsort inserts items into the sorted part of the array.

If the array contains N items, the algorithm considers each of the N positions
in the array. For each position i, it must search the previously sorted items in the
array to find the ith item’s new position. It must then move the items between
that location and index i one position to the right. If the item i should be moved
to position 5, it takes j steps to find the new location j and then i — j more steps
to move items over, resulting in a total of i steps. That means in total it takes i
steps to move item i into its new position.

Adding up all the steps required to position the items, the total run time is
as follows:

1+2+3+...+N=(N*+N) /2

This means that the algorithm has run time O(N?). This isn’t a very fast run
time, but it’s fast enough for reasonably small arrays (fewer than 10,000 or so
items). It’s also a relatively simple algorithm, so it may sometimes be faster than
more complicated algorithms for very small arrays. How small an array must
be for this algorithm to outperform more complicated algorithms depends on
your system. Typically, this algorithm is only faster for arrays holding fewer
than 5 or 10 items.
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Selectionsort in Arrays

In addition to describing insertionsort for linked lists, Chapter 3 also described
selectionsort for linked lists. Similarly, Chapter 5 described selectionsort algo-
rithms that use stacks and queues.

The basic idea is to search the input list for the largest item it contains and
then add it to the end of a growing sorted list. The following pseudocode shows
the algorithm for use with arrays:

Selectionsort (Data: values|[])
For i = 0 To <length of values> - 1
// Find the item that belongs in position 1i.
<Find the smallest item with index j >= i.>
<Swap values[i] and values[j].>
Next i
End Selectionsort

The code loops through the array to find the smallest item that has not yet
been added to the sorted part of the array. It then swaps that smallest item with
the item in position i.

Figure 6.2 shows the algorithm’s key steps. The image at the top shows the
original unsorted array. In the middle image, the first three items (outlined
in bold) have been sorted, and the algorithm is preparing to swap the next
item into position. The algorithm searches the unsorted items to find the one
with the smallest value (3 in this case). The algorithm then swaps the item that
has the smallest value into the next unsorted position. The image at the bottom
of the figure shows the array after the new item has been moved to the sorted
part of the array. The algorithm now continues the For loop to add the next item
(which has value 5) to the growing sorted portion of the array.

0 1 2 3 7 8 6 | 5

Figure 6.2: Selectionsort moves the smallest unsorted item to the end of the sorted part of
the array.
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Like insertionsort, this algorithm sorts the items in the original array, so it
doesn’t need any additional storage (aside from a few variables to control loops
and move items).

If the array contains N items, the algorithm considers each of the N positions
in the array. For each position i, it must search the N — i items that have not yet
been sorted to find the item that belongs in position i. It then swaps the item
into its final position in a small constant number of steps. Adding up the steps
to move all of the items gives the following run time:

(N-D+(N-2)+...+42+1=(N*+N)/2

This means that the algorithm has run time O(N?)—the same run time as
insertionsort.

Like insertionsort, selectionsort is fast enough for reasonably small arrays
(fewer than 10,000 or so items). It’s also a fairly simple algorithm, so it may
sometimes be faster than more complicated algorithms for very small arrays
(typically 5 to 10 items).

Bubblesort

Bubblesort uses the fairly obvious fact that if an array is not sorted, then it must
contain two adjacent elements that are out of order. The algorithm repeatedly
passes through the array, swapping items that are out of order, until it can’t
find any more swaps.

The following pseudocode shows the bubblesort algorithm:

Bubblesort (Data: values[])
// Repeat until the array is sorted.
Boolean: not_sorted = True
While (not_sorted)
// Assume we won't find a pair to swap.
not_sorted = False

// Search the array for adjacent items that are out of order.

For 1 = 0 To <length of values> - 1
// See if items i and i - 1 are out of order.
If (values[i] < wvalues[i - 1]) Then

// Swap them.

Data: temp = values[i]
values[i] = values[i - 1]
values[i - 1] = temp

// The array isn't sorted after all.
not_sorted = True
End If
Next 1
End While
End Bubblesort
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The code uses a Boolean variable named not_sorted to keep track of whether
it has found a swap in its most recent pass through the array. As long as
not_sorted is true, the algorithm loops through the array, looking for adjacent
pairs of items that are out of order and swaps them.

Figure 6.3 shows an example. The array on the far left is mostly sorted. During
the first pass through the array, the algorithm finds that the 6/3 pair is out of
order (6 should come after 3), so it swaps 6 and 3 to get the second arrangement
of values. During the second pass through the array, the algorithm finds that
the 5/3 pair is out of order, so it swaps 5 and 3 to get the third arrangement of
values. During the third pass through the array, the algorithm finds that the
4/3 pair is out of order, so it swaps 4 and 3, giving the arrangement on the far
right in the figure. The algorithm performs one final pass, finds no pairs that
are out of order, and ends.

7 7 7 7
8 8 8 8
9 9 9 9

Figure 6.3: In bubblesort, items that are farther down than they should be slowly “bubble up”
to their correct positions.

The fact that item 3 seems to bubble up slowly to its correct position gives the
bubblesort algorithm its name.

During each pass through the array, at least one item reaches its final posi-
tion. In Figure 6.3, item 6 reaches its final destination during the first pass, item
5 reaches its final destination during the second pass, and items 3 and 4 reach
their final destinations during the third pass.

If the array holds N items and at least one item reaches its final position dur-
ing each pass through the array, then the algorithm can perform, at most, N
passes. (If the array is initially sorted in reverse order, the algorithm needs all
N passes.) Each pass takes N steps, so the total run time is O(N?).



Chapter 6 = Sorting

173

Like insertionsort and selectionsort, bubblesort is fairly slow but may pro-
vide acceptable performance for small lists (fewer than 1,000 or so items). It is
also sometimes faster than more complicated algorithms for very small lists
(five or so items).

You can make several improvements to bubblesort. First, in Figure 6.3,
the item with value 3 started out below its final correct position. However,
consider what happens if an item starts above its final position. In that case,
the algorithm finds that the item is out of position and swaps it with the fol-
lowing item. It then considers the next position in the array and considers the
item again. If the item is still out of position, the algorithm swaps it again.
The algorithm continues swapping that item down through the list until
it reaches its final position in a single pass through the array. You can use
this fact to speed up the algorithm by alternating downward and upward
passes through the array. Downward passes quickly move items that are
too high in the array, and upward passes quickly move items that are too
low in the array.

This upward and downward version of bubblesort is sometimes called cocktail
shaker sort.

To make a second improvement, notice that some items may move through
several swaps at once. For example, during a downward pass, a large item (call
it K) may be swapped several times before it reaches a larger item, and it stops
for that pass. You can save a little time if you don’t put item K back in the array for
every swap. Instead, you can store K in a temporary variable and move other
items up in the array until you find the spot where K stops. You then put K in
that position and continue the pass through the array.

To make a final improvement, consider the largest item (call it L) that is not
in its final position. During a downward pass, the algorithm reaches that item
(possibly making other swaps beforehand) and swaps it down through the list
until it reaches its final position. During the next pass through the array, no item
can swap past L because L is in its final position. That means the algorithm can
end its pass through the array when it reaches item L.

More generally, the algorithm can end its pass through the array when it
reaches the position of the last swap that it made during the previous pass. If
you keep track of the last swaps made during downward and upward passes
through the array, you can shorten each pass.

Figure 6.4 shows these three improvements. During the first pass down
through the array, the algorithm swaps item 7 with items 4, 5, 6, and 3. It holds
the value 7 in a temporary variable, so it doesn’t need to save it back into the
array until it reaches its final position.

After placing 7 after 3, the algorithm continues moving through the array
and doesn’t find any other items to swap, so it knows that item 7 and those
that follow are in their final positions and don’t need to be examined again.
If some item nearer to the top of the array were larger than 7, the first pass
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0 0 0

1 1 1

2 2 2

7 4 3
9 J

4 5 4
9 J

5 6 5
9 J

6 3 6
9

3 7 7

8 8 8

9 9 9

Figure 6.4: Improvements make bubblesort faster, but it still has O(N*) performance.

would have swapped it down past 7. In the middle image shown in Figure 6.4,
the final items are shaded to indicate that they don’t need to be checked dur-
ing later passes.

The algorithm knows that item 7 and the items after it are in their final posi-
tions, so it starts its second pass, moving upward through the array at the first
item before item 7, which is item 3. It swaps that item with items 6, 5, and 4, this
time holding item 3 in a temporary variable until it reaches its final position.

Now item 3 and those that come before it in the array are in their final posi-
tions, so they are shaded in the last image in Figure 6.4.

The algorithm makes one final downward pass through the array, starting
the pass at value 4 and ending at value 6. No swaps occur during this pass,
so the algorithm ends.

These improvements make bubblesort faster in practice. (In one test sorting
10,000 items, bubblesort took 2.50 seconds without improvements and 0.69 sec-
onds with improvements.) But it still has O(N?) performance, so there’s a limit
to the size of the list you can sort with bubblesort.

O(NlogN) Algorithms

O(N log N) algorithms are much faster than O(N?) algorithms, at least for larger
arrays. For example, if N is 1,000, N log N is less than 1x10*, but N* is roughly
100 times as big at 1x 10°. That difference in speed makes O(N log N)algorithms
more useful in everyday programming, at least for large arrays.
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Heapsort

Heapsort uses a data structure called a heap, which also demonstrates a useful
technique for storing a complete binary tree in an array.

Storing Complete Binary Trees

A binary tree is a tree where every node is connected to, at most, two children.
In a complete tree (binary or otherwise), all of the tree’s levels are completely
filled, except possibly the last level, where all of the nodes are pushed to the left.

Figure 6.5 shows a complete binary tree holding 12 nodes. The tree’s first
three levels are full. The fourth level contains five nodes pushed to the left side
of the tree.

Figure 6.5: In a complete binary tree, every level is full, except possibly the last.

One useful feature of complete binary trees is that you can easily store them
in an array using a simple formula. Start by placing the root node at index 0.
Then, for any node with index i, place its children at indices 2xi+1 and 2xi+2.

If a node has index j, then its parent has index |[(j—1) /2|, where | | means
to truncate the result to the next-smallest integer. In other words, round down.
For example, [2.9] is 2, and |2] is also 2.

Figure 6.6 shows the tree shown in Figure 6.5 stored in an array, with the
entries’ indices shown on top.

0 1 2 3 4 5 6 7 8 9 10 M

7 1 110 [ 4 6 9 2 |11 ] 3 5 |12 ] 8

Figure 6.6: You can easily store a complete binary tree in an array.

For example, the value 6 is at index 4, so its children should be at indices
4x2+1=9and 4x2+2=10. Those items have values 5 and 12. If you look at
the tree shown in Figure 6.5, you'll see that those are the correct children.
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If the index of either child is greater than the largest index in the array, then
the node doesn't have that child in the tree. For example, the value 9 has index
5. Its right child has index 2 x 5 + 2 =12, which is beyond the end of the array. If
you look at Figure 6.5, you'll see that the item with value 9 has no right child.

For an example of calculating a node’s parent, consider the item with value 12
stored at index 10. The index of the parent is [(10 - 1)/2| = |4.5] =4 . The value at
index 4 is 6. If you look at the tree shown in Figure 6.5, you'll see that the node
with value 12 does have as its parent the node with value 6.

Defining Heaps

A heap, shown in Figure 6.7, is a complete binary tree where every node holds
a value that is at least as large as the values in all of its children. Figure 6.5 is
not a heap, however, because the root node has a value of 7 and its right child
has a value of 10, which is greater.

Figure 6.7: In a heap, the value of every node is at least as large as the values of its children.

You can build a heap one node at a time. Start with a tree consisting of a single
node. Because the single node has no children, it satisfies the heap property.

Now suppose you have built a heap, and you want to add a new node to it.
Add the new node at the end of the tree. There is only one place where you can
add this node to keep the tree a complete binary tree—to the right of the nodes
already in the bottom level of the tree.

Now compare the new value to the value of its parent. If the new value is
larger than the parent’s, swap them. Because the tree was previously a heap,
you know that the parent’s value was already larger than its other child (if it
has one). By swapping it with an even larger value, you know that the heap
property is preserved at this point.

However, you have changed the value of the parent node, so that might break
the heap property farther up in the tree. Move up the tree to the parent node and
compare its value to the value of its parent, swapping their values if necessary.



Chapter 6 = Sorting

177

Continue up the tree, swapping values if necessary, until you reach a node
where the heap property is satisfied. At that point, the tree is again a heap.

Figure 6.8 shows this process when you add the value 12 to the tree shown
in Figure 6.7. Figure 6.9 shows the new heap.

Figure 6.8: To add a new value to a heap, place the value at the end of the tree and move it up
as needed to restore the heap property.

Figure 6.9: When the value moves up to a node that already satisfies the heap property, the
tree is once again a heap.

Storing the heap in an array makes this process particularly easy because
when you need to add a new item to the end of the tree, it’s already in the proper
position in the array. When you store a complete binary tree in an array, the
next item belongs on the right, on the tree’s bottom level. In the array, that’s
the position that comes after the last entry that is already in the tree. This
means you don’t need to do anything to place the next item in the tree. All you
need to do is to swap it up through the tree to restore the heap property.

The following pseudocode shows the algorithm to turn an array into a heap:
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MakeHeap (Data: values[])
// Add each item to the heap one at a time.
For i = 0 To <length of values> - 1
// Start at the new item, and work up to the root.
Integer: index = i
While (index != 0)
// Find the parent's index.
Integer: parent = (index - 1) / 2

// If child <= parent, we're done, so
// break out of the While loop.
If (values[index] <= values|[parent]) Then Break

// Swap the parent and child.
Data: temp = values [index]
values [index] = values [parent]
values [parent] = temp

// Move to the parent.
index = parent
End While
Next i
End MakeHeap

You may recall from Chapter 5, “Stacks and Queues,” that a priority queue is
a queue that returns objects in the order of their priorities. Heaps are useful
for creating priority queues because the largest item in the tree is always at the
root node. If you use the items’ priorities to build the heap, then the item with
the highest priority is at the top. To remove an item from the priority queue,
you simply use the item at the root.

Unfortunately, that breaks the heap, so it has no root and is therefore no
longer a tree. Fortunately, there’s an easy way to fix it: move the last item in the
tree to the root.

Doing that breaks the tree’s heap property, but you can fix that by using a
method similar to the one you used to build the heap. If the new root value is
smaller than one of its child values, swap it with the larger child. That fixes the
heap property at this node, but it may have broken it at the child’s level, so move
down to that node and repeat the process. Continue swapping the node down
into the tree until you find a spot where the heap property is already satisfied
or you reach the bottom of the tree.

The following pseudocode shows the algorithm to remove an item from the
heap and restore the heap property:

Data: RemoveTopItem (Data: values[], Integer: count)
// Save the top item to return later.
Data: result = values|[0]
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// Move the last item to the root.
values [0] = values[count - 1]

// Restore the heap property.

Integer: index = 0

While (True)
// Find the child indices.
Integer: childl = 2 * index + 1
Integer: child2 = 2 * index + 2

// If a child index is off the end of the tree,
// use the parent's index.

If (childl >= count) Then childl = index

If (child2 >= count) Then child2 = index

// If the heap property is satisfied,

// we're done, so break out of the While loop.

If ((values[index] >= values[childl]) And
(values[index] >= values[child2])) Then Break

// Get the index of the child with the larger value.
Integer: swap_child
If (values([childl] > values[child2]) Then
swap_child = childl
Else
swap_child = child2

// Swap with the larger child.
Data: temp = values[index]

values [index] = values[swap child]
values [swap _child] = temp

// Move to the child node.
index = swap_child
End While

// Return the value we removed from the root.
return result
End RemoveTopItem

This algorithm takes as a parameter the size of the tree, so it can find the
location where the heap ends within the array.

The algorithm starts by saving the value at the root node so that it later can
return the highest-priority value. It then moves the last item in the tree to the
root node.

The algorithm sets the variable index to the index of the root node and then
enters an infinite while loop.

Inside the loop, the algorithm calculates the indices of the children of the
current node. If either of those indices is off the end of the tree, then it is set
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to the current node’s index. In that case, when the node’s values are compared
later, the current node’s value is compared to itself. Because any value is greater
than or equal to itself, that comparison satisfies the heap property, so the missing
node does not make the algorithm swap values.

After the algorithm calculates the child indices, it checks whether the heap
property is satisfied at this point. If it is, then the algorithm breaks out of the
while loop. (If both child nodes are missing or if one is missing and the other
satisfies the heap property, then the while loop also ends.)

If the heap property is not satisfied, the algorithm sets swap_child to the index
of the child that holds the larger value and swaps the parent node’s value with
that child node’s value. It then updates the index variable to move down to the
swapped child node and continues down the tree.

Implementing Heapsort

Now that you know how to build and maintain a heap, implementing the heap-
sort algorithm is easy. The algorithm builds a heap. It then repeatedly swaps the
first and last items in the heap and rebuilds the heap excluding the last item.
During each pass, one item is removed from the heap and added to the end of
the array where the items are placed in sorted order.

The following pseudocode shows how the algorithm works:

Heapsort (Data: values)
<Turn the array into a heap.>

For 1 = <length of values> - 1 To 0 Step -1
// Swap the root item and the last item.
Data: temp = values[0]
values [0] = values/[i]
values[i] = temp

<Consider the item in position i to be removed from the heap,
so the heap now holds i - 1 items. Push the new root value
down into the heap to restore the heap property.s>
Next i
End Heapsort

This algorithm starts by turning the array of values into a heap. It then repeat-
edly removes the top item, which is the largest, and moves it to the end of the
heap. It reduces the number of items in the heap by one and restores the heap
property, leaving the newly positioned item beyond the end of the heap in its
proper sorted order.

When it is finished, the algorithm has removed the items from the heap in
largest-to-smallest order and placed them at the end of the ever-shrinking heap.
That leaves the array holding the values in smallest-to-largest order.
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The space required by heapsort is easy to calculate. The algorithm stores all
the data inside the original array and uses only a fixed number of extra variables
for counting and swapping values. If the array holds N values, the algorithm
uses O(N) space.

The run time required by the algorithm is slightly harder to calculate. To build
the initial heap, the algorithm adds each item to a growing heap. Each time it
adds an item, it places the item at the end of the tree and swaps the item upward
until the tree is again a heap. Because the tree is a complete binary tree, it is up
to O(log N) levels tall, so pushing the item up through the tree can take, at most,
O(log N) steps. The algorithm performs this step of adding an item and restoring
the heap property N times, so the total time to build the initial heap is O(N log N).

To finish sorting, the algorithm removes each item from the heap and then
restores the heap property. It does that by swapping the last item in the heap
with the root node and then swapping the new root down through the tree until
the heap property is restored. The tree is up to O(log N) levels tall, so this can
take up to O(log N) time. The algorithm repeats this step N times, so the total
number of steps required is O(N log N).

Adding the time needed to build the initial heap and the time to finish sort-
ing gives a total time of O(N log N) + O(N log N) = O(N log N).

Heapsort is an elegant “sort-in-place” algorithm that takes no extra storage. It
also demonstrates some useful techniques such as heaps and storing a complete
binary tree in an array:.

Even though heapsort’s O(N log N) run time is asymptotically the fastest pos-
sible for an algorithm that sorts by using comparisons, the quicksort algorithm
described in the next section usually runs slightly faster.

Quicksort

The quicksort algorithm uses a divide-and-conquer strategy. It subdivides an array
into two pieces and then calls itself recursively to sort the pieces. The following
pseudocode shows the algorithm at a high level:

Quicksort (Data: values[], Integer: start, Integer: end)
<Pick a dividing item from the array. Call it divider.>

<Move items < divider to the front of the array.
Move items >= divider to the end of the array.
Let middle be the index between the pieces where divider is put.>

// Recursively sort the two halves of the array.
Quicksort (values, start, middle - 1)
Quicksort (values, middle + 1, end)

End Quicksort

For example, the top of Figure 6.10 shows an array of values to sort. In this
case, I picked the first value, 6, for divider.
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0 | 3|3 |4 ([5[5 |6 |6 7]|8]9

Figure 6.10: When the value moves up to a node that already satisfies the heap property, the
tree is once again a heap.

In the middle image, values less than divider have been moved to the beginning
of the array, and values greater than or equal to divider have been moved to
the end of the array. The divider item is shaded at index 6. Notice that one other
item has value 6, and it comes after the divider in the array.

The algorithm then calls itself recursively to sort the two pieces of the array
before and after the divider item. The result is shown at the bottom of Figure 6.10.

Before moving into the implementation details, let’s study the algorithm’s
run-time behavior.

Analyzing Quicksort’s Run Time

First, consider the special case in which the dividing item divides the part of the
array that is of interest into two exactly equal halves at every step. Figure 6.11
shows the situation.

/N
.
1

I/II l l/ll l l l\ll
Figure 6.11: If the divider item divides the array into equal halves, the algorithm
progresses quickly.
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Each of the “nodes” in the tree shown in Figure 6.11 represents a call to the
quicksort algorithm. The thick line in the middle of the node shows how the array
was divided into two equal halves. The two arrows out of the node represent
the quicksort algorithm calling itself twice to process the two halves.

The nodes at the bottom of the tree represent calls to sort a single item.
Because a list holding a single item is already sorted, those calls simply return
without doing anything.

After the calls work their way to the bottom of the tree, they begin returning
to the methods that called them, so control moves back up the tree.

If the array originally holds N items and the items divide exactly evenly, as
shown in Figure 6.11, then the tree of quicksort calls is log N levels tall.

Each call to quicksort must examine all the items in the piece of the array it is
sorting. For example, a call to quicksort represented by a group of four boxes in
Figure 6.11 would need to examine those four boxes to divide its values further.

All of the items in the original array are present at each level of the tree, so
each level of the tree contains N items. If you add up the items that each call to
quicksort must examine at any level of the tree, you get N items. That means
the calls to quicksort on any level require N steps.

The tree is log N levels tall, and each level requires N steps, so the algorithm’s
total run time is O(N log N).

All of this analysis assumes that the quicksort algorithm divides its part of
the array into two equal-sized pieces at every step. In practice, that would be
extremely unlikely.

Most of the time, however, the dividing item will belong somewhere more or
less in the middle of the items that it is dividing. It won't be in the exact middle,
but it won't be near the edges either. For example, in Figure 6.10, the dividing
item 6 ended up close to but not exactly in the middle in the second image. If
the dividing item is usually somewhere near the middle of the values that it is
dividing, then in the expected case, the quicksort algorithm still has O(N log N)
performance.

In the worst case, suppose the dividing item is less than any of the other
items in the part of the array that it is dividing. That happens if the items are
already sorted when the algorithm begins. (The worst case also occurs if all of
the items in the array have the same value.) In that case, none of the items goes
into the left piece of the array, and all of the other items (except the dividing
item) go into the right piece of the array. The first recursive call returns imme-
diately because it doesn’t need to sort any items, but the second call must pro-
cess almost all the items. If the first call to quicksort had to sort N items, this
recursive call must sort N —1 items.

If the dividing item is always less than the other items in the part of the array
being sorted, then the algorithm is called to sort N items, then N — 1 items, then
N -2 items, and so on. In that case, the call tree shown in Figure 6.11 is extremely
tall and thin, with a height of N.
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The calls to quicksort at level i in the tree must examine N - i
items. Adding up the items that all of the calls must examine gives
N+(N-1)+(N=-2)+...+1=Nx(N+1) /2, which is O(N?), so the algorithm’s
worst-case behavior is O(N?).

In addition to examining the algorithm’s run-time performance, you should
consider the space it needs. This depends partly on the method you use to divide
parts of the array into halves, but it also depends on the algorithm’s depth of
recursion. If the sequence of recursive calls is too deep, the program will exhaust
its stack space and crash.

For the tree shown in Figure 6.11, the quicksort algorithm calls itself recur-
sively to a depth of log N calls. In the expected case, that means the program’s
call stack will be O(log N) levels deep. That shouldn’t be a problem for most
computers. Even if the array holds 1 billion items, log N is only about 30, and
the call stack should be able to handle 30 recursive method calls.

For the tall thin tree created in the worst case, however, the depth of recur-
sion is N. Few programs will be able to build a call stack safely with 1 billion
recursive calls.

You can help avoid the worst-case scenario to make the algorithm run in a
reasonable amount of time and with a reasonable depth of recursion by pick-
ing the dividing item carefully. The following section describes some strategies
for doing that. The sections after that one describe two methods for dividing
a section of an array into two halves. The final quicksort section summarizes
issues with using quicksort in practice.

Picking a Dividing Item

One method of picking the dividing item is simply to use the first item in the
part of the array being sorted. This is quick, simple, and usually effective.
Unfortunately, if the array happens to be initially sorted or sorted in reverse,
the result is the worst case. If the items are randomly arranged, this worst-case
behavior is extremely unlikely, but it seems reasonable that the array of items
might be initially sorted or mostly sorted for some applications.

One solution is to randomize the array before calling quicksort. If the items
are randomly arranged, it is extremely unlikely that this method will pick a
bad dividing item every time and result in worst-case behavior. Chapter 2,
“Numerical Algorithms,” explains how to randomize an array in O(N) time so
that this won’t add to quicksort’s expected O(N log N) run time, at least in Big
O notation. In practice, however, it could still take a fair amount of time to ran-
domize a large array, so most programmers don’t use this approach.

Another approach is to examine the first, last, and middle items in the part of
the array being sorted and use the value that is between the other two for the
dividing item. This doesn’t guarantee that the dividing item isn't close to the larg-
est or smallest in this part of the array, but it does make it less likely.
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A final approach is to pick a random index from the part of the array being
sorted and then use the value at that index as the dividing item. It would be
extremely unlikely that every such random selection would produce a bad
dividing value and result in worst-case behavior.

Implementing Quicksort with Stacks

After you have picked a dividing item, you must divide the items into two sec-
tions to be placed at the front and back of the array. One easy way to do this
is to move items into one of two stacks, depending on whether the item you
are considering is greater than or less than the dividing item. The following
pseudocode shows the algorithm for this step:

Stack of Data: before = New Stack of Data
Stack of Data: after = New Stack of Data

// Gather the items before and after the dividing item.
// This assumes the dividing item has been moved to values[start].
For i = start + 1 To end
If (values[i] < divider) Then before.Push(values[i])
Else after.Push(values[i])
Next 1

<Move items in the "before" stack back into the array.>
<Add the dividing item to the array.>
<Move items in the "after" stack back into the array.>

At this point, the algorithm is ready to recursively call itself to sort the two
pieces of the array on either side of the dividing item.

Implementing Quicksort in Place

Using stacks to split the items in the array into two groups as described in the
preceding section is easy, but it requires you to allocate extra space for the stacks.
You can save some time if you allocate the stacks at the beginning of the algorithm
and then let every call to the algorithm share the same stacks instead of creating
their own, but this still requires the stacks to hold O(N) memory.

With a little more work, you can split the items into two groups without using
any extra storage. The following high-level pseudocode shows the basic approach:

<Swap the dividing item to the beginning of the array.>
<Remove the dividing item from the array.
This leaves a hole at the beginning where you can place another item.>

Repeat:
<Search the array from back to front to find
the last item in the array less than "divider."s>
<Move that item into the hole. The hole is now where that item was.>
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<Search the array from front to back to find
the first item in the array greater than or equal to "divider."s>
<Move that item into the hole. The hole is now where that item was.>

This code uses the first item as the dividing item. It places that item in a tem-
porary variable and removes it from the array, leaving a hole.

The algorithm then searches the array from the back to the front until it finds
a value that is less than the dividing item. It removes that value from its current
location and moves it into the hole. Removing the item from its original location
creates a new hole.

Next, the algorithm searches from the point of the old hole (now filled with
the newly moved item) toward the back of the array until it finds an item that is
greater than the dividing item. It moves that item to the current hole, creating
a new hole where the item was originally.

The code continues searching back and forth through this section of the array,
moving items into the holes left by previously moved items, until the two regions
that it is searching meet somewhere in the middle. The algorithm deposits the
dividing item in the hole, which is now between the two pieces, and recursively
calls itself to sort the two pieces.

This is a fairly confusing step, but the actual code isn't all that long. If you
study it closely, you should be able to figure out how it works.

<Search the array from back to front to find
the last item in the array less than "divider.">
<Move that item into the hole. The hole is now where that item was.>

<Search the array from front to back to find
the first item in the array greater than or equal to "divider."s>
<Move that item into the hole. The hole is now where that item was.>

The following pseudocode shows the entire quicksort algorithm at a low level:

// Sort the indicated part of the array.

Quicksort (Data: values[], Integer: start, Integer: end)
// If the list has no more than one element, it's sorted.
If (start >= end) Then Return

// Use the first item as the dividing item.
Integer: divider = values[start]

// Move items < divider to the front of the array and

// items >= divider to the end of the array.

Integer: lo = start

Integer: hi = end

While (True)
// Search the array from back to front starting at "hi"
// to find the last item where value < "divider."
// Move that item into the hole. The hole is now where
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// that item was.
While (values[hi] >= divider)
hi = hi - 1
If (hi <= lo) Then <Break out of the inner While loop.>
End While
If (hi <= lo) Then
// The left and right pieces have met in the middle
// so we're done. Put the divider here, and
// break out of the outer While loop.
values[lo] = divider
<Break out of the outer While loop.>
End If

// Move the value we found to the lower half.
values[lo] = values[hi]

// Search the array from front to back starting at "lo"
// to find the first item where value >= "divider."
// Move that item into the hole. The hole is now where
// that item was.
lo =1o +1
While (values[lo] < divider)
lo =1o + 1
If (lo >= hi) Then <Break out of the inner While loop.>
End While
If (lo >= hi) Then
// The left and right pieces have met in the middle
// so we're done. Put the divider here, and
// break out of the outer While loop.

lo = hi

values[hi] = divider

<Break out of the outer While loop.>
End If

// Move the value we found to the upper half.
values[hi] = values[lo]
End While

// Recursively sort the two halves.
Quicksort (values, start, lo - 1)
Quicksort (values, lo + 1, end)

End Quicksort

This algorithm starts by checking whether the section of the array contains
one or fewer items. If it does, then it is sorted, so the algorithm simply returns.

If the section of the array contains at least two items, the algorithm saves the
first item as the dividing item. You can use some other dividing item selection
method if you like. Just swap the dividing item you pick to the beginning of the
section so that the algorithm can find it in the following steps.
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Next the algorithm uses variables 1o and hi to hold the highest index in the
lower part of the array and the lowest index in the upper part of the array. It
uses those variables to keep track of which items it has placed in the two halves.
Those variables also alternately track where the hole is left after each step.

The algorithm then enters an infinite while loop that continues until the lower
and upper pieces of the array grow to meet each other.

Inside the outer while loop, the algorithm starts at index hi and searches
the array backward until it finds an item that should be in the lower piece of the
array. It moves that item into the hole left behind by the dividing item.

Next the algorithm starts at index 1o and searches the array forward until it
finds an item that should be in the upper piece of the array. It moves that item
into the hole left behind by the previously moved item.

The algorithm continues searching backward and then forward through the
array until the two pieces meet. At that point, it puts the dividing item between
the two pieces and recursively calls itself to sort the pieces.

Using Quicksort

If you divide the items in place instead of by using stacks or queues, quicksort
doesn’t use any extra storage (beyond a few variables).

Like heapsort, quicksort has O(N log N) expected performance, although
quicksort can have O(N?) performance in the worst case. Heapsort has O(N log N)
performance in all cases, so it is in some sense safer and more elegant. However,
in practice, quicksort is usually faster than heapsort, so it is the algorithm of
choice for many programmers.

In addition to greater speed, quicksort has another advantage over heapsort:
it is parallelizable. Suppose a computer has more than one processor, which
is increasingly the case these days. Each time the algorithm splits a section of
the array into two pieces, it can use different processors to sort the two pieces.
Theoretically, a highly parallel computer could use O(N) processors to sort the
list in O(log N) time. In practice, most computers have a fairly limited number
of processors (for example, two or four), so the run time would be divided by
the number of processors plus some additional overhead to manage the differ-
ent threads of execution. That won't change the Big O run time, but it should
improve performance in practice.

Because it has O(N?) performance in the worst case, the implementation
of quicksort provided by a library may be cryptographically insecure. If the
algorithm uses a simple dividing item selection strategy, such as picking the first
item, an attacker might be able to create an array holding items in an order that
gives worst-case performance. The attacker might be able to launch a denial-
of-service (DOS) attack by passing your program that array and ruining your
performance. Most programmers don’t worry about this possibility, but if this
is a concern, you can use a randomized dividing item selection strategy.
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Mergesort

Like quicksort, mergesort uses a divide-and-conquer strategy. Instead of picking
a dividing item and splitting the items into two groups holding items that are
larger and smaller than the dividing item, mergesort splits the items into two
halves holding an equal number of items. It then recursively calls itself to sort
the two halves. When the recursive calls to mergesort return, the algorithm
merges the two sorted halves into a combined sorted list.

The following pseudocode shows the algorithm:

Mergesort (Data: values[], Data: scratch[], Integer: start, Integer: end)
// If the array contains only one item, it is already sorted.
If (start == end) Then Return

// Break the array into left and right halves.
Integer: midpoint = (start + end) / 2

// Call Mergesort to sort the two halves.
Mergesort (values, scratch, start, midpoint)
Mergesort (values, scratch, midpoint + 1, end)

// Merge the two sorted halves.

Integer: left index = start

Integer: right_ index = midpoint + 1

Integer: scratch_index = left_index

While ((left index <= midpoint) And (right index <= end))

If (values[left index] <= values[right index]) Then

scratch[scratch index] = values[left index]
left_index = left_index + 1

Else
scratch[scratch_index] = values[right_index]
right index = right index + 1

End If

scratch _index = scratch index + 1 End While

// Finish copying whichever half is not empty.

For i = left_index To midpoint
scratch[scratch index] = values[i]
scratch index = scratch index + 1

Next 1

For i = right index To end
scratch[scratch_index] = values[i]
scratch_index = scratch_index + 1

Next i

// Copy the values back into the original values array.
For i = start To end
values[i] = scratchl[i]
Next i
End Mergesort
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In addition to the array and the start and end indices to sort, the algorithm
also takes as a parameter a scratch array that it uses to merge the sorted halves.

This algorithm starts by checking whether the section of the array contains
one or fewer items. If it does, then it is trivially sorted, so the algorithm returns.

If the section of the array contains at least two items, the algorithm calculates
the index of the item in the middle of the section of the array and recursively
calls itself to sort the two halves.

After the recursive calls return, the algorithm merges the two sorted halves.
It loops through the halves, copying the smaller item from whichever half
holds it into the scratch array. When one-half is empty, the algorithm copies the
remaining items from the other half.

Finally, the algorithm copies the merged items from the scratch array back
into the original values array.

\[o AN Itis possible to merge the sorted halves without using a scratch array, but
it's more complicated and slower, so most programmers use a scratch array.

The “call tree,” shown in Figure 6.11, shows calls to quicksort when the values
in the array are perfectly balanced, so the algorithm divides the items into equal
halves at every step. The mergesort algorithm does divide the items into exactly
equal halves at every step, so Figure 6.11 applies even more to mergesort than
it does to quicksort.

The same run-time analysis shown earlier for quicksort also works for merge-
sort, so this algorithm also has O(N log N) run time. Like heapsort, mergesort’s
run time does not depend on the initial arrangement of the items, so it always has
O(N log N) run time and doesn’t have a disastrous worst case like quicksort does.

Like quicksort, mergesort is parallelizable. When a call to mergesort calls itself
recursively, it can make those calls on different processors. This requires some
coordination, however, because the original call must wait until both recursive
calls finish before it can merge their results. In contrast, quicksort can simply
tell its recursive calls to sort a particular part of the array, and it doesn’t need
to wait until those calls return.

Mergesort is particularly useful when all the data to be sorted won't fit in
memory at once. For example, suppose a program needs to sort 1 million cus-
tomer records, each of which occupies 1 MB. Loading all that data into memory
at once would require 10'® bytes of memory, or 1,000 TB, which is much more
than most computers have.

Fortunately, the mergesort algorithm doesn’t need to load that much memory
all at once. The algorithm doesn’t even need to look at any of the items in the
array until after its recursive calls to itself have returned.

At that point, the algorithm walks through the two sorted halves in a linear
fashion and merges them. Moving through the items linearly reduces the com-
puter’s need to page memory to and from disk. When quicksort moves items



Chapter 6 = Sorting

191

into the two halves of a section of an array, it jumps from one location in the
array to another, increasing paging and greatly slowing down the algorithm.
Mergesort was even more useful in the days when large data sets were stored
on tape drives, which work most efficiently if they keep moving forward with
few rewinds. (Sorting data that cannot fit in memory is called external sorting)
Specialized versions of mergesort were even more efficient for tape drives. They're
interesting but not commonly used anymore, so they aren’t described here.

For some interesting background on external sorting on tape drives, see
https://en.wikipedia.org/wiki/Merge sort#Use with tape drives.For
more general information on tape drives, see https://en.wikipedia.org/wiki/
Tape_drive.

A more common approach to sorting enormous data sets is to sort only the
items” keys. For example, a customer record might occupy 1 MB, but the cus-
tomer’s name might occupy only 100 bytes. A program can make a separate
index that matches names to record numbers and then sort only the names.
Then, even if you have 1 million customers, sorting their names requires only
about 100 MB of memory, an amount that a computer could reasonably hold.
(Chapter 11, “Balanced Trees,” describes B-trees and B+ trees, which are often
used by database systems to store and sort record keys in this manner.)

STABLE SORTING

A stable sorting algorithm is one that maintains the original relative positioning of
equivalent values. For example, suppose that a program is sorting Car objects by
their Cost properties and that Car objects A and B have the same Cost values.

If object A initially comes before object B in the array, then in a stable sorting
algorithm, object A still comes before object B in the sorted array.

If the items you are sorting are value types such as integers, dates, or strings, then
two entries with the same values are equivalent, so it doesn’t matter if the sort is
stable. For example, if the array contains two entries that have value 47, it doesn’t
matter which 47 comes first in the sorted array.

In contrast, you might care if Car objects are rearranged unnecessarily. For
example, a stable sort lets you arrange the array multiple times to get a result that is
sorted on multiple keys (such as Maker and Cost for the Car example).

Mergesort is easy to implement as a stable sort (the algorithm described earlier is
stable). It is also easy to parallelize, so it may be useful on computers that have more
than one CPU. See Chapter 18, “Distributed Algorithms,” for information on imple-
menting mergesort on multiple CPUs.

Quicksort may often be faster, but mergesort still has some advantages.
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Sub O(NlogN) Algorithms

Earlier in this chapter, I said that the fastest possible algorithm that uses compar-
isons to sort N items must use at least O(N log N) time. Heapsort and mergesort
achieve that bound, and so does quicksort in the expected case, so you might
think that’s the end of the sorting story. The loophole is in the phrase “that uses
comparisons.” If you use a technique other than comparisons to sort, you can
beat the O(N log N) bound.

The following sections describe some algorithms that sort in less than
O(N log N) time.

Countingsort

Countingsort is a specialized algorithm that works well if the values you are
sorting are integers that lie in a relatively small range. For example, if you need
to sort 1 million integers with values between 0 and 1,000, countingsort can
provide amazingly fast performance.

The basic idea behind countingsort is to count the number of items in the
array that have each value. Then it is relatively easy to copy each value, in order,
the required number of times back into the array.

The following pseudocode shows the countingsort algorithm:

Countingsort (Integer: values[], Integer: max value)
// Make an array to hold the counts.
Integer: counts[0 To max_value]

// Initialize the array to hold the counts.
// (This is not necessary in all programming languages.)
For i = 0 To max_value
counts [i] = 0
Next i

// Count the items with each value.
For 1 = 0 To <length of values> - 1
// Add 1 to the count for this wvalue.
counts [values[i]] = counts[values[i]] + 1
Next i

// Copy the values back into the array.
Integer: index = 0
For i = 0 To max_value
// Copy the value i into the array counts[i] times.
For j = 1 To counts/[i]
values [index] = 1
index = index + 1
Next j
Next i
End Countingsort
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The max_value parameter gives the largest value in the array. (If you don't
pass it in as a parameter, you can modify the algorithm to figure it out by looking
through the array.)

Let M be the number of items in the counts array (so M = max_value + 1)
and let N be the number of items in the values array. If your programming
language doesn’t automatically initialize the counts array so that it contains
Os, the algorithm spends M steps initializing the array. It then takes N steps to
count the values in the values array.

The algorithm finishes by copying the values back into the original array.
Each value is copied once, so that part takes N steps. If any of the entries in the
counts array is still 0, the program also spends some time skipping over that
entry. In the worst case, if all of the values are the same so that the counts array
contains mostly Os, it takes M steps to skip over the 0 entries.

That makes the total run time O(2 x N + M) = O(N + M) If M is relatively small
compared to N, this is much smaller than the O(N log N) performance given by
heapsort and the other algorithms described previously.

In one test, quicksort took 4.29 seconds to sort 1 million items with values
between 0 and 1,000, but it took countingsort only 0.03 seconds. Note that this
is a bad case for quicksort because the values include many duplicates. With 1
million values between 0 and 1,000, roughly 1,000 items have each value, and
quicksort doesn’t handle lots of duplication well.

With similar values, heapsort took roughly 1.02 seconds. This is a big improve-
ment on quicksort, but it is still much slower than countingsort.

Pigeonhole Sort

Like countingsort, pigeonhole sort works well when the range of possible values
is limited. Countingsort counts the number of items with each given value. To
do that, it uses the values as indices into the counts array. Unfortunately, that
won't work if the items that you are sorting are not integers, so you can't use
them as indices.

Pigeonhole sort works by placing the items in pigeonholes corresponding to
their key values. The pigeonhole approach makes it easier to sort more compli-
cated items than simple numeric values. For example, suppose that you want
to sort a set of words by their lengths. Countingsort would give you an array
holding the number of words with each length, but it’s not immediately obvious
how you would convert that into the ordered list of words.

In contrast, pigeonhole sort groups words with the same length in the same
pigeonhole, so it is easier to put them in order.

The following pseudocode shows how pigeonhole sort works. The algorithm
assumes that you have defined a cel1 class with value and Next properties that
you can use to build a linked list of values in each pigeonhole.
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PigeonholeSort (Integer: values[], Integer: max)
// Make the pigeonholes.
Cell: pigeonholes[] = new Cell[max + 1]

// Initialize the linked lists.
For 1 = 0 To max

pigeonholes[i] = null
Next i

// Move items into the pigeonholes.

For Each value in values
// Add this item to its pigeonhole.
Cell: cell = new Cell (value)
cell.Next = pigeonholes[value]
pigeonholes [value] = cell

Next value

// Copy the items back into the values array.
Integer: index = 0
For 1 = 0 To max
// Copy the items in pigeonhole i into the values array.
Cell: cell = pigeonholes([i]
While (cell != null)
values [index] = cell.Value
index++
cell = cell.Next
End While
Next i
End PigeonholeSort

The values parameter gives the values to sort. The max parameter gives the
maximum value that the values array could hold. Here I'm assuming the values
are integers starting at zero. If they include values between lower and upper
bounds, you'll have to adjust the code accordingly. If the values are non-numeric,
for example if they are strings, then you'll need to use some sort of algorithm
to map each value to its pigeonhole.

The algorithm first creates a pigeonhole array of pointers to ce11 objects and
initializes them to null. It then loops through the items and adds each to the
top of its pigeonhole’s linked list. The code then loops through the pigeonholes
and copies the items in each linked list back into the values array.

To analyze the algorithm’s run time, suppose that the values array contains
N items that span a range of M possible values. The algorithm uses O(M) steps
to initialize its pigeonhole linked lists. It then loops through the values and
adds them to their pigeonholes in O(N) steps.

The algorithm finishes by looping through the pigeonholes again, this time
moving the items back into the values array. It must spend O(M) steps exam-
ining each linked list whether or not that list is empty. During this stage, it also
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must move every item back into the values array, and that takes O(N) steps, so
the total steps to perform this final stage is O(M + N).

That means the total run time for the algorithm is O(M) + O(N) + O(M + N) =
OM +N).

If the number of values N is roughly the same as the size of the range of values
M, then this becomes O(N), and that is much faster than O(N log N).

Bucketsort

The countingsort and pigeonhole sort algorithms work well if the values include
only a relatively small range. Bucketsort works even if the values span a large
range.

The bucketsort algorithm, which is also called binsort, works by dividing items
into buckets. It sorts the buckets either by recursively calling bucketsort or by
using some other algorithm. It then concatenates the buckets” contents back
into the original array in sorted order. The following pseudocode shows the
algorithm at a high level:

Bucketsort (Data: valuesl[])

<Make buckets.>

<Distribute the items into the buckets.>

<Sort the buckets.>

<Gather the bucket values back into the original array.>
End Bucketsort

If the values in an array holding N items are reasonably uniformly distrib-
uted, if you use M buckets, and if the buckets divide the range of values evenly,
then you should expect roughly N / M items per bucket.

For example, consider the array shown at the top of Figure 6.12, which contains
10 items with values between 0 and 99. In the distribution step, the algorithm
moves the items into the buckets. In this example, each bucket represents 20
values: 0 to 19, 20 to 39, and so on. In the sorting step, the algorithm sorts each
bucket. The gathering step concatenates the values in the buckets to build the
sorted result.

The buckets can be stacks, linked lists, queues, arrays, or any other data
structure that you find convenient.

If the original array contains N fairly evenly distributed items, then dis-
tributing them into the buckets requires N steps times whatever time it takes
to place an item in a bucket. Normally this mapping can be done in constant
time. For example, suppose the items are integers between 0 and 99, as in the
example shown in Figure 6.12. You would place an item with value v in bucket
number |v / 20].You can calculate this number in constant time, so distributing
the items takes O(N) steps.
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Figure 6.12: Bucketsort moves items into buckets, sorts the buckets, and then concatenates the
buckets to get the sorted result.

If you use M buckets, sorting each bucket requires an expected F(N/M)
steps, where F is the run-time function of the sorting algorithm that you use to
sort the buckets. Multiplying this by the number of buckets M, the total time
to sort all the buckets is O(M x F(N/M)) .

After you have sorted the buckets, gathering their values back into the array
requires N steps to move all of the values. It could require an additional O(M)
steps to skip empty buckets if many of the buckets are empty, but if M <N, the
whole operation requires O(N) steps.

Adding the times needed for the three stages gives a total run time of
O(N) + O(M x F(N/M)) + O(N) = O(N + M x F(N/M)).

If M is a fixed fraction of N, then N /M is a constant, so F(N / M) is also a
constant, and this simplifies to O(N + M).

In practice, M must be a relatively large fraction of N for the algorithm to
perform well. If you are sorting 10 million records and you use only 10 buckets,
then you need to sort buckets containing an average of 1 million items each.

In contrast, if M equals N, then each bucket should hold only a few items
and sorting them should take a small constant amount of time. In that case,



Chapter 6 » Sorting 197

the algorithm’s O(N + M) run time simplifies to O(N), and the algorithm runs
very quickly.

Unlike countingsort and pigeonhole sort, bucketsort’s performance does
not depend on the range of the values. Instead, it depends on the number of
buckets that you use.

Summary

The sorting algorithms described in this chapter demonstrate different tech-
niques and have different characteristics. Table 6.1 summarizes the algorithms.

Table 6.1: Algorithm Characteristics

ALGORITHM RUN TIME TECHNIQUES USEFUL FOR
Insertionsort O(N%) Insertion Very small arrays
Selectionsort O(N?) Selection Very small arrays
Bubblesort/ O(N%) Two-way passes, Very small arrays,
Cocktail Shaker restricting bounds of mostly sorted arrays
Sort interest
Heapsort O(NlogN) Heaps, storing Large arrays with
complete trees in an unknown distribution
array
Quicksort O(NlogN) Divide-and-conquer, Large arrays without
expected, swapping items into too many duplicates,
O(N?) worst position, randomization  parallel sorting
case to avoid worst-case
behavior
Mergesort O(NlogN) Divide-and-conquer, Large arrays with
merging, external unknown distribution,
sorting huge amounts of data,
parallel sorting
Countingsort O(N+M) Counting Large arrays of
integers with a limited
range of values
Pigeonhole sort O(N+M) Pigeonholes Large arrays of
possibly noninteger
values within a limited
range
Bucketsort O(N+M) Buckets Large arrays with

reasonably uniform
value distribution
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These algorithms demonstrate an assortment of useful techniques and pro-
vide good performance for a wide variety of problems, but they're far from the
end of the story. There are dozens of other sorting algorithms. Some are minor
modifications of these algorithms, and others use radically different approaches.
Chapter 10 discusses trees, which are also extremely useful for sorting data.
Search the Internet for other algorithms.

This chapter explained several ways to sort data, but it didn't explain why you
should want to do that. Simply having data sorted often makes it more useful
to a user. For example, viewing customer accounts sorted by balance makes it
much easier to determine which accounts need special attention.

Another good reason to sort data is so that you can later find specific items
within it. For example, if you sort customers by their names, it’s easier to locate
a specific customer. The next chapter explains methods that you can use to
search a sorted set of data to find a specific value.

Exercises

You can find the answers to these exercises in Appendix B. Asterisks indicate
particularly difficult problems.

1. Write a program that implements insertionsort.

2. The rFor i loop used by the insertionsort algorithm runs from 0 to the
array’s last index. What happens if it starts at 1 instead of 0? Does that
change the algorithm’s run time?

3. Write a program that implements selectionsort.

4. What change to selectionsort could you make that corresponds to the
change described in Exercise 2? Would it change the algorithm’s run time?

5. Write a program that implements bubblesort.

6. Add the first and third bubblesort improvements described in the section
“Bubblesort” (downward and upward passes and keeping track of the
last swap) to the program you built for Exercise 5.

7. Write a program that uses an array-based heap to build a priority queue.
So that you don't need to resize the array, allocate it at some fixed size,
perhaps 100 items, and then keep track of the number of items that are
used by the heap. (To make the queue useful, you can't just store priorities.
Use two arrays—one to store string values and another to store the cor-
responding priorities. Order the items by their priorities.) (For more practice,
use a class to store items with their priorities and wrap the priority queue
in a second class.)
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10.

11.

12.

13.

14.

15.
16.

17.
18.

19.

20.

21.

What is the run time for adding items to and removing items from a heap-
based priority queue?

Write a program that implements heapsort.

Can you generalize the technique used by heapsort for holding a complete
binary tree so that you can store a complete tree of degree d? Given a
node’s index p, what are its children’s indices? What is its parent’s index?

Write a program that implements quicksort with stacks. (You can use the
stacks provided by your programming environment or build your own.)

Write a program that implements quicksort with queues instead of stacks.
(You can use the queues provided by your programming environment or
build your own.) Is there any advantage or disadvantage to using queues
instead of stacks?

Write a program that implements quicksort with in-place partitioning.
Why is this version faster than the version that uses stacks or queues?

Quicksort can display worst-case behavior if the items are initially sorted,
if the items are initially sorted in reverse order, or if the items contain
many duplicates. You can avoid the first two problems if you choose ran-
dom dividing items. How can you avoid the third problem?

Write a program that implements countingsort.

If an array’s values range from 100,000 to 110,000, allocating a counts array
with 110,001 entries with indices 0 through 110,000 would slow down
countingsort considerably, particularly if the array holds a relatively small
number of items. How could you modify countingsort to give good per-
formance in this situation?

Write a program that implements pigeonhole sort.

If an array holds N items that span the range 0 to M — 1, what happens to
bucketsort if you use M buckets?

Write a program that implements bucketsort. Allow the user to specify
the number of items, the maximum item value, and the number of
buckets.

Explain the space/time trade-off that you should consider when picking
the number of buckets used by bucketsort.

For the following data sets, which sorting algorithms would work well,
and which would not?

a. 10 floating-point values

b. 1,000 integers

c. 1,000 names

d. 100,000 integers with values between 0 and 1,000

e. 100,000 integers with values between 0 and 1 billion
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f. 100,000 names

g. 1 million floating-point values

h. I million names

i. 1 million integers with uniform distribution

j- 1 million integers with nonuniform distribution



Searching

The preceding chapter explained how you can sort data. Algorithms such as
quicksort and heapsort let you sort large amounts of data quickly. Algorithms
such as countingsort and bucketsort let you sort data almost as quickly as a
program can examine it, but only under certain special circumstances.

One of the advantages of sorted data is that it lets you find specific items
relatively quickly. For example, you can locate a particular word in a dictionary
containing tens of thousands of words in just a minute or two because all the
words are arranged in sorted order. (Imagine trying to find a word if the dic-
tionary wasn’t sorted!)

This chapter explains algorithms that you can use to find a particular piece
of data in a sorted array.

The algorithms described in this chapter work with simple arrays, not more
specialized data structures. Specialized data structures such as trees also let you
quickly find an item with a specific value. Chapter 10, “Trees,” discusses algorithms for
working with trees.

Some programming libraries include searching tools that locate items in a
sorted array. For example, the NET Framework’s array class provides a Binary-
search method. These methods generally are fast, so in practice you may want
to use those tools to save time writing and debugging the searching code.

Essential Algorithms: A Practical Approach to Computer Algorithms Using Python® and C#, First Edition.
Rod Stephens.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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It’s still important to understand how searching algorithms work, however,
because sometimes you can do even better than the tools. For example, inter-
polation search is much faster than binary search when it is applicable.

Linear Search

As you may be able to guess from its name, a linear search or exhaustive search
simply loops through the items in the array, looking for the target item. Figure 7.1
shows a linear search for the value 77.

YAYAYATAATATATATAYAAYA

Figure 7.1: A linear search examines every item in the array until it finds the target item.

719091

Unlike binary search and interpolation search, linear search works on linked
lists, where you cannot easily jump from one part of the list to another, as you
can in an array.

Linear search also works on unsorted lists. If the items are sorted, however,
the algorithm can stop if it ever comes to an item with a value greater than the
target value. That lets the algorithm stop early and save a little time if the target
value isn't in the list.

The following pseudocode shows the linear search algorithm for an array:

// Find the target item's index in the sorted array.
// If the item isn't in the array, return -1.

Integer: LinearSearch(Data values[], Data target)
For 1 = 0 To <length of values> - 1
// See if this is the target.
If (values[i] == target) Then Return i

// See if we have passed where the target would be.
If (values[i] > target) Then Return -1
Next i

// If we get here, the target is not in the array.
Return -1
End LinearSearch

This algorithm may need to loop through the entire array to conclude that
an item isn't there, so its worst-case behavior is O(N).

Even in the average case, the algorithm’s run time is O(N). If you add up
the number of steps required to search for every item in the array, you get
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1+2+3+...+ N=Nx(N+1)/2.If you divide that total by N to get the average
search time for all the N items, you get (N +1) / 2, which is still O(N).

This algorithm is much slower than binary search or interpolation search, but
it has the advantage that it works on linked lists and unsorted lists.

Binary Search

A binary search algorithm uses a divide-and-conquer strategy to narrow down
quickly the part of the array that might contain the target value. The algorithm
keeps track of the largest and smallest indices that the target item might have
in the array. Initially, those bounds (call them min and max) are set to 0 and the
largest index in the array.

The algorithm then calculates the index halfway between min and max (call
it mid). If the target is less than the array’s value at mid, the algorithm resets max
to search the left half of the array and starts over. If the target is greater than
the array’s value at mid, the algorithm resets min to search the right half of the
array and starts over. If the target equals the array’s value at mid, the algorithm
returns the index mid.

Figure 7.2 shows a binary search for the value 77.

7 \A
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Figure 7.2: A binary search repeatedly divides the part of the array that might contain the
target item into two halves and then searches the appropriate half.

The following pseudocode shows the algorithm:

// Find the target item's index in the sorted array.
// If the item isn't in the array, return -1.
Integer: BinarySearch(Data values[], Data target)
Integer: min = 0
Integer: max = <length of values> - 1
While (min <= max)
// Find the dividing item.
Integer: mid = (min + max) / 2

// See if we need to search the left or right half.
If (target < values[mid]) Then max = mid - 1
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Else If (target > values[mid]) Then min = mid + 1
Else Return mid
End While

// 1f we get here, the target is not in the array.
Return -1
End BinarySearch

At each step, this algorithm halves the number of items that might contain
the target. If the array contains N items, then after O(log N) steps, the section
of the array that might hold the target contains only one item, so the algorithm
either finds the item or concludes that it isn’t in the array. This means that the
algorithm has O(log N) run time.

Interpolation Search

At every step, binary search examines the item in the middle of the section
of the array that it is considering. In contrast, interpolation search uses the value of
the target item to guess where in the array it might lie and achieve much faster
search times.

For example, suppose that the array contains 1,000 items with values between
1 and 100. If the target value is 30, then it should lie about 30 percent of the
way from the smallest to the largest value, so you can guess that the item may
be somewhere near index 300. Depending on the distribution of the numbers
in the array, this may not be exactly correct, but it should get you fairly close to
the target item’s position.

Figure 7.3 shows an interpolation search for the value 77.
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Figure 7.3: Interpolation search uses the target item’s value to calculate where it should be in
the remaining part of the array.

The following pseudocode shows the algorithm at a high level:

Integer: InterpolationSearch(Data values[], Data target)
Integer: min = 0
Integer: max = values.Length - 1
While (min <= max)
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// Find the dividing item.
Integer: mid = min + (max - min) *
(target - values[min]) / (values[max] - values[min])

If (values[mid] == target) Then Return mid

<Set min or max to search the left or right half.>
End While

Return -1
End InterpolationSearch

This high-level description leaves a couple of problems unsolved. The mid
calculation can result in an overflow or a value of mid that is not between min
and max. Solving those problems is left as part of Exercise 6 in this chapter.

The trickiest part of this algorithm is the statement that calculates mid. The
value is set to the current value of min plus the distance between min and max
when scaled by the expected fraction of the distance between values[min] and
values[max] where target should lie.

For example, if values[min] is 100, values[max] is 200, and target is 125,
then you would use the following calculation to decide where to look for the
target value:

(target - values[min]) / (values[max] - values[min]) =
(125 - 100) / (200 - 100) =

25 / 100 =

0.25

That puts the new value for mid one-quarter of the way from min to max.

In the worst case, if the data is extremely unevenly distributed and you're
looking for the worst possible target value, this algorithm has O(N) performance.
If the distribution is reasonably uniform, the expected performance is O(log(log
N)). (Proving that, however, is outside the scope of this book.)

Majority Voting

Voting is basically a specialized kind of searching. The goal in the majority voting
problem is to determine a sequence’s majority item—the item that appears more
than half of the time. For example, suppose you poll 30 students and ask them
whether they prefer chocolate, strawberry, or vanilla ice cream. The majority
voting problem asks you to determine the majority opinion.

Note that there may not be a majority item. For example, suppose 14 students
pick chocolate, 6 pick strawberry, and 10 pick vanilla. In that case, none of the
choices receives more than half of the votes, so there is no majority.
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One obvious majority voting algorithm is to loop through the list of items
and keep a counter indicating the number of times each was chosen. If there
are M possible values (chocolate, strawberry, and vanilla) and the list contains
N items (30 students give 30 results in this example), then this algorithm takes
O(N) time to scan the results and O(M) space to hold the counters.

Each of the O(N) steps will also require some time to find the appropriate
counter. For example, if you use a hash table to store the counters, then finding
them will be relatively quick. If you store the counters in an array or linked list,
then finding the appropriate counter to increment will be slower.

This algorithm has the advantage of being very simple and intuitive. It can
also find the mode of the votes, in case no item occurs more than half of the
time. (The mode is the outcome that occurred most often.) For example, if 14 stu-
dents pick chocolate, 6 pick strawberry, and 10 pick vanilla, then this algorithm
can fairly easily determine that chocolate was the mode even though it didn’t
receive a majority of the votes.

The Boyer-Moore majority vote algorithm is an interesting algorithm that can
find the majority item in O(N) time using only O(1) space. To find the majority,
the algorithm uses two variables: Majority to hold an outcome and count to
hold a counter. The following pseudocode shows how the algorithm works:

Outcome: BoyerMooreVote (List<Outcomes> outcomes)
Outcome: majority = ""
Integer: counter = 0
For Each outcome In outcomes
If (counter == 0) Then
majority = outcome
counter = 1
Else If (outcome == majority) Then
counter++
Else
counter--
End If
Next outcome

Return majority
End BoyerMooreVote

The algorithm initializes variable counter to 0 and then loops through the list
of items. When it examines an item, if counter is currently 0, then the algorithm
saves the current item in variable majority and sets counter to 1.

If counter is not 0 when it examines an item, the algorithm compares the new
item to the one stored in majority. If the new item matches majority, then the
algorithm increments counter, essentially casting another vote for this item.

If counter is not 0 and the new item is different from majority, then the
algorithm decrements count, essentially removing a vote for majority.
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After the algorithm finishes, the variable majority holds the result. If there is
a majority item, then the result is correct. If there is no majority item, then the
algorithm returns something, but the result is not guaranteed to be the mode.

To understand why the algorithm works, suppose that the majority item is m.
During any step of the algorithm, define the value C to be the value in counter if
majority currently holds m, and let C be the negative of the value in counter oth-
erwise. Whenever the algorithm sees m, it increases C. When the algorithm sees
some other item, it either increases or decreases C, depending on whether the
new outcome matches the value currently stored in majority.

Because m is the majority item, the algorithm must increase C more than it
decreases C, so when the algorithm finishes, C will be positive. That happens
only when majority holds m, so m must hold that value when the algorithm
finishes.

Summary

Table 7.1 shows the values of N, log N, and log(log N) for different values of N
so that you can compare the speeds of linear search, binary search, and inter-
polation search.

Table 7.1: Algorithm Characteristics

N log, N log,(log, N)
1,000 10.0 3.3
1,000,000 19.9 4.3
1,000,000,000 299 49
1,000,000,000,000 399 5.3

Linear search is useful only for relatively small arrays. Table 7.1 shows that
binary search works well even for very large arrays. It can search an array con-
taining 1 trillion items in only about 40 steps.

Interpolation search works well for arrays of any size that you can reason-
ably fit on a computer. It can search an array containing 1 trillion items in only
about five steps. In fact, an array would need to hold more than 1x10"™ items
before interpolation search would require an expected number of steps greater
than nine.

However, the exact number of steps for interpolation search depends on the
distribution of the values. Sometimes the algorithm gets lucky and finds the target
in one or two steps. At other times, it might need four or five steps. On average,
however, it is extremely fast.
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The Boyer-Moore majority voting algorithm is a particularly odd algorithm
because it produces the correct result only sometimes, and it doesn't tell you
whether the result is correct.

Exercises

You can find the answers to these exercises in Appendix B. Asterisks indicate
particularly difficult problems.

If you're not familiar with recursion, skip Exercises 2, 5, and 7 and come back
to them after you read Chapter 9.

1.
2.

Write a program that implements linear search.

Write a program that implements linear search recursively. Does this ver-
sion have any advantages or disadvantages compared to the nonrecursive
version?

3. Write a program that implements linear search with sorted linked lists.

4. Write a program that implements binary search.

5. Write a program that implements binary search recursively. Does this

version have any advantages or disadvantages compared to the nonrecur-
sive version?

6. Write a program that implements interpolation search.

Write a program that implements interpolation search recursively. Does
this version have any advantages or disadvantages compared to the non-
recursive version?

Which sorting algorithm described in Chapter 6, “Sorting,” uses a tech-
nique reminiscent of the technique used by interpolation search?

If an array contains duplicates, the binary search and interpolation search
algorithms described in this chapter don’t guarantee that they return the
first instance of the target item. How could you modify them to return
the first occurrence of the target item? What is the run time for the modi-
fied version?

10. In the Boyer-Moore majority voting algorithm, what happens if outcome

11.

M occurs exactly half of the time in the list of outcomes? Can you make
two example lists, one that causes the algorithm to return M and one that
returns some other value?

The Boyer-Moore majority voting algorithm always returns an outcome,
but if there is no majority, the result is not guaranteed to be the most com-
mon outcome in the list. How could you modify that algorithm to indicate
whether the result is really a majority without changing the O(N) run
time and O(1) memory characteristics?



Hash Tables

The preceding chapter explained binary search, an O(log N) algorithm for
locating an item in a sorted list. The algorithm repeatedly examines a test item
in the middle of the part of the list where the target item must be. It compares
the test item to the target item and then recursively examines the left or right
half of the region, depending on whether the test item is greater than or less
than the target item.

Chapter 7 also explained interpolation search, which uses a mathematical cal-
culation to predict where the target item will be. That algorithm has O(log (log N))
time and is so much faster than binary search that it almost seems like magic.

The reason why interpolation search is so much faster than binary search
is that it uses the data’s special structure to find values by calculation instead
of by making comparisons. The countingsort, pigeonhole sort, and bucketsort
algorithms described in Chapter 6 do that too.

Hash tables also use the data’s structure to locate values quickly. Instead of
storing items in a sorted list, a hash table stores them in a way that lets you
calculate an item’s location in the table directly.

L[* AN Python’s version of a hash table is a dictionary.

In C#, you can use the HashTable class to store weakly typed objects with keys.
The Dictionary classis a strongly typed hash table where the data types of the items

Essential Algorithms: A Practical Approach to Computer Algorithms Using Python® and C#, First Edition.
Rod Stephens.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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and keys are defined. Because the objects in a Dictionary have a known data type,
aDictionary gives faster performance than a nonspecific HashTable.

Dictionaries in both C# and Python allow you to look up items by using a key. The
prebuilt dictionary classes work well, so feel free to use them in your programs. This
chapter explains some of the methods that those classes use and how you can imple-
ment hash tables in your code.

For a simple example of a hash table, suppose that you have a small company
with 20 employees, and you want to be able to look up an employee’s information
by searching for that person’s employee ID. One way you could store the
information is to allocate an array of 100 items and then store an employee with
employee ID N in position N mod 100 in the array. For example, an employee
with ID 2190 would go in position 90, an employee with ID 2817 would go in
position 17, and an employee with ID 3078 would go in position 78.

To find a particular employee, you would simply calculate the ID mod 100
and look at the corresponding array entry. This is an O(1) operation that’s even
faster than interpolation search.

In a real program, things aren’t quite so simple. If you have enough employees,
you will eventually get two with IDs that map to the same value. For example, if
two employees have IDs 2817 and 1317, they both map to position 17 in the table.

Still, this idea of mapping values into a table is a pretty good start, and it is
the basic concept behind hash tables. The rest of this chapter describes hash
tables more precisely and explains ways that you can implement hash tables
in a program.

Hash Table Fundamentals

A hash table maps data to locations in a data structure. Often it associates a key
value such as an ID or name to a larger record such as an employee or customer
record. Because hash tables associate a key to a value, they are sometimes called
associative arrays or, less formally, dictionaries.

The process of mapping a key value for use by the hash table is called hashing.
Good hashing functions spread out key values so that they don't all go to the
same position in the table. In particular, key values are often similar, so a good
hashing function maps similar key values to dissimilar locations in the table.

For example, suppose that you want to store customer records in a hash table
and look them up by name. If two customers have the last names Richards and
Richardson, ideally the hashing function should map them to two different
locations.

To achieve this, hashing functions often generate a value that looks something
like gibberish, as if the key value had been chopped into hash.
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If you put enough values in a hash table, eventually you'll find two keys that
hash to the same value. That’s called a collision. When that occurs, you need a
collision-resolution policy that determines what to do. Often the collision resolu-
tion policy maps the key to a series of new positions in the table until it finds
an empty position.

A hash table’s fill percentage, the percentage of the table that contains entries,
influences the chance of collisions occurring. Adding a new key to a hash table
is more likely to cause a collision if the table’s data structure is 95 percent full
than if it’s only 10 percent full.

To summarize, a hash table needs the following:

m A data structure to hold the data
m A hashing function to map keys to locations in the data structure

m A collision-resolution policy that specifies what to do when keys collide

To be useful, a hash table must be able to at least add new items and locate
items that were previously stored. Another feature that is useful but not provided
by some hash tables is the ability to remove a hashed key.

RESIZING HASH TABLES

Eventually a hash table may become completely full, or at least so full that collisions
are likely and performance suffers. In that case, you need a resize algorithm to deter-
mine when and how the hash table is resized to make it larger.

You can also have an algorithm for determining when and how to make the hash
table smaller. For example, if a hash table can hold 1 million entries but currently
holds only 10 entries, you might want to make it smaller to reclaim unused space.

One simple method of resizing a hash table is to create a new hash table of the
desired size and then rehash all the items in the original data structure into the
new table. Some types of hash tables, such as hash tables with chaining, offer other
methods, but this one should work for almost any hash table.

Different kinds of hash tables use different methods to provide these features.
The following sections describe some common methods of building hash tables.

Chaining

A hash table with chaining uses a collection of entries called buckets to hold
key values. Each bucket is the top of a linked list holding the items that map
to that bucket.
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Typically the buckets are arranged in an array, so you can use a simple hash-
ing function to determine a key’s bucket. For example, if you have N buckets
and the keys are numeric, you could map the key K to bucket number K mod N.

Figure 8.1 shows a hash table with chaining.

920 | | 291 102 424 507 689
v v v
681 917 189
v
281

Figure 8.1: In a hash table with chaining, each bucket is the top of a linked list.

To add a key to the hash table, you map the key to a bucket using the hash
function and then add a new cell to the bucket’s linked list. Hashing the key
to find its bucket takes O(1) steps. Adding the value to the top of the linked list
takes O(1) steps, so this operation is very fast.

However, to be useful, a hash table cannot hold duplicate values. This means
that before you can add a new item to a bucket, you should verify that it is not
already present. If the hash table uses B buckets and holds a total of N items
and the items are reasonably evenly distributed, each bucket’s linked list holds
roughly N/B items. If you need to verify that a key is not in the hash table, you
need to examine the roughly N/B items in that key’s bucket. All of this means
that adding an item to the hash table takes a total of O(1) + O(N/B) = O(N/B)
steps.

You can make searching for items in the hash table a little faster if the
linked lists hold keys in sorted order. Then, if a key isn’t present, you only need to
search until you find a value greater than the target key instead of searching all
the way to the end of the list. The run time is still O(N/B), but in practice it will be a
bit faster.

To find an item, you hash its key to see which bucket should hold it and then
traverse that bucket’s linked list until you find the item or come to the end of
the list. If you get to the end of the list, you can conclude that the item isn’t
in the hash table. As is the case when adding an item to the hash table, this
takes O(IN/B) steps.
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A hash table with chaining supports item removal quite well. To remove an
item, hash its key as usual to find its bucket. Then remove the item from the
bucket’s linked list. Hashing the item takes O(1) steps and removing it takes
O(N/B) steps, so the total time is O(IN/B).

A hash table with chaining can expand and shrink as needed, so you don't
need to resize it if you don’t want to. If the linked lists become too long, how-
ever, finding and removing items will take a long time. In that case, you may
want to enlarge the table to make more buckets. When you rehash the table,
you know that you will not be adding any duplicate items, so you don’t need to
search to the end of each bucket’s linked list to look for duplicates. That allows
you to rehash all of the items in O(N) time.

Open Addressing

Chaining has some nice advantages, such as the fact that it can hold any number
of values without changing the number of buckets, but it has some disadvantages
as well. For example, if you put too many items in the buckets, then searching
through the buckets can take a fair amount of time. You can reduce the search
time by adding more buckets, but then you might have lots of empty buckets
taking up space, and there’s no way for the hash table to use those empty buckets.

Another strategy for building hash tables is called open addressing. In open
addressing, the values are stored in an array, and some sort of calculation serves
as the hashing function, mapping values into positions in the array. For example,
if a hash table uses an array with M entries, a simple hashing function might
map the key value K into array position K mod M.

Different variations of open addressing use different hashing functions and
collision-resolution policies. In all cases, however, the collision-resolution policy
produces a sequence of locations in the array for a value. If a value maps to a
location that is already in use, the algorithm tries another location. If that loca-
tion is also in use, the algorithm tries again. The algorithm continues trying
new locations until it either finds an empty location or concludes that it cannot
find one.

The sequence of locations that the algorithm tries for a value is called the
value’s probe sequence. The average length of probe sequences for values that
may or may not be in the hash table gives a good estimate of the efficiency of
the hash table. Ideally, the average probe sequence length should be only 1 or 2.
If the table becomes too full, the average probe sequence may become very long.

Depending on the collision-resolution policy, a probe sequence might be
unable to find an empty location for an item even if there are empty items in
the hash table’s array. If the probe sequence repeats itself before visiting every
entry, some entries may remain unused.



214

Chapter 8 = Hash Tables

To locate an item in the hash table, the algorithm follows the value’s probe
sequence until one of three things happens. First, if the probe sequence finds
the item, the job is done. Second, if the probe sequence finds an empty entry
in the array, the item is not present. (Otherwise, it would have been placed in
the empty position.)

The third possibility is that the probe sequence could visit M entries, where
M is the size of the array. In that case, the algorithm can conclude that the value
is not present. The probe sequence might not visit every entry in the array, but
after visiting M entries, you know that it has either visited every entry or that it
is unlikely to find the target value. The probe sequence may even be following
a loop, visiting the same positions repeatedly. In any case, the value must not
be present because, if it were, it would have been added to the array using the
same probe sequence.

At a reasonable fill percentage, open addressing is extremely fast. If the average
probe sequence length is only 1 or 2, then adding and locating items has run
time O(1).

Open addressing is fast, but it does have some disadvantages. The most obvious
problem is that the hash table’s performance degrades if its array becomes too
full. In the worst case, if the array contains N items and is completely full, it
takes O(N) time to conclude that an item is not present in the array. Even find-
ing items that are present can be very slow.

If the array becomes too full, you can resize it to make it bigger and give the
hash table a smaller fill percentage. To do that, create a new array and rehash
the items into it. If the new array is reasonably large, it should take O(1) time to
rehash each item, for a total run time of O(N).

The following section discusses another important problem with open address-
ing: removing items.

Removing Items

Although open addressing lets you add and find items reasonably quickly, at least
if the array isn’t too full, it doesn’t allow you to remove items the way chaining
does. An item in the array might be part of another item’s probe sequence. If you
remove that item, then you will break the other item’s probe sequence so you can
no longer find the second value.

For example, suppose items A and B both map to the same index I, in the
array. Item A is added first at indexI,, so when you try to add item B, it goes to
the second position in its probe sequence, I.

Now suppose you remove item A. If you then try to find item B, you initially
look atindex I,. Because that entry is now empty, you incorrectly conclude that
item B isn’t present.
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One solution to this problem is to mark the item as deleted instead of reset-
ting the array’s entry to the empty value. For example, if the array holds 32-bit
integers, you might use the value —2,147, 483, 648 to mean that an entry has no
value and -2,147,483,647 to mean that the value has been deleted.

When you search for a value, you continue searching if you find the deleted
value. When you insert a new value into the hash table, you can place it in a
previously deleted entry if you find one in the probe sequence.

One drawback of this approach is that if you add and then remove many
items, the table may become full of deleted entries. That will make searching
for items slower. In the worst case, if the array is completely full of current and
deleted items, you might have to search the entire array to find an item or to
conclude that it isn’t present.

If you delete many items, you can rehash the current values and reset the
deleted array locations so that they hold the special empty value. If the array
contains N items and has a reasonable fill percentage, this should take O(N) time.

Linear Probing

In linear probing, the collision-resolution policy adds a constant number, called
the stride and usually set to 1, to each location to generate a probe sequence. Each
time the algorithm adds 1, it takes the result modulus the size of the array, so
the sequence wraps around to the beginning of the array if necessary.

For example, suppose the hash table’s array contains 100 items and the hash-
ing rule is as follows: N maps to location N mod 100. Then the probe sequence
for the value 2,197 would visit locations 97, 98, 99, 0, 1, 2, and so forth.

Figure 8.2 shows a linear probe sequence for inserting the value 71.

71
Nan
61 | 22

Figure 8.2: In linear probing, the algorithm adds a constant amount to locations to produce a
probe sequence.

34 | 84 | 14 38

Here the table already contains several values when you want to add item
71. This table’s array has 10 entries, so 71 maps to location 71 mod 10 = 1. That
location already contains the value 61, so the algorithm moves to the next loca-
tion in the value’s probe sequence: location 2. That location is also occupied, so
the algorithm moves to the next location in the probe sequence: location 3. That
location is empty, so the algorithm places 71 there.
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This method has the advantages that it is very simple and that a probe sequence
will eventually visit every location in the array. Therefore, the algorithm can
insert an item if any space is left in the array.

However, it has a disadvantage called primary clustering, an effect in which
items added to the table tend to cluster to form large blocks of contiguous
array entries that are all full. This is a problem because it leads to long probe
sequences. If you try to add a new item that hashes to any of the entries in a
cluster, the item’s probe sequence will not find an empty location for the item
until it crosses the whole cluster.

The LinearProbing example program shown in Figure 8.3 demonstrates primary
clustering. This hash table’s array has 101 entries and currently holds 50 values.
If the items were evenly distributed within the array, the probe sequence for
every item that is in the table would have a length of 1. The probe sequences
for items that are not in the table would have lengths of 1 or 2, depending on
whether the initial hashing mapped an item to an occupied location.

ozl LinearPrebing - o -
808 -—— -—— --- --—— 40% --- -—— 513 71§ |~
101 --- 815 920 --- --—— --—— 824 723 82& €25
. 727 525 215 €22 22é 832 833 -—— -—-—— -——-
——= B3 === === === —-— 440 €43 240 ---
bmiELE ——— —— ——— -——— 543 882 -—— 451 85& 857
Min: 100 151 960 ---— --—— 155 —== ——= ——= ——= -
- ——— ——— ——— 184 -—— 287 --— 375 573 473
Max: 777 475 --- 780 477 --- --— 8385 --- €85
484 -—— --— --- -——— 853 --— 138§ 452 T3¢
# lems: 393 192 998 €99 390 -——— ——— ——— ——— ——-
Create/Find
-
Statistics
Fill % 4950
-
Awe Probe: 242
R

Figure 8.3: Hash tables that use linear probing are subject to primary clustering.

However, in Figure 8.3 the program shows that the hash table’s average probe
sequence length is 2.42, which is a bit above what you would get with an even
distribution. The situation is worse with higher load factors.

\[*A Nl The program shown in Figure 8.3 is a solution to Exercise 8.3. See Appendix B
for more information.
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To understand how clusters form, consider an empty hash table with N entries.
If you add a random number to the table, there’s a 1/N chance that it will end
up in any given position. Suppose it ends up in position K.

Now suppose that you add another random number to the table. There’sal/N
chance that this item will also map to position K, and in that case, linear prob-
ing will put the item in position K + 1. There’s also a 1/N chance that the item
will map directly to position K + 1. Between the two possibilities, there’s a 2/N
chance that the item will end up in position K +1 and a small cluster will form.

Over time, more clusters will form. The larger a cluster is, the greater the
probability that a new item will add to the end of the cluster. Eventually, clus-
ters will expand until they merge and form bigger clusters. Soon the array is
full of clusters and long probe sequences.

The following two sections describe ways you can reduce the primary clus-
tering effect.

Quadratic Probing

The reason linear probing produces clusters is that items that map to any loca-
tion within a cluster end up at the end of the cluster, making it larger. One way
to prevent that is quadratic probing. Instead of adding a constant stride to loca-
tions to create a probe sequence, the algorithm adds the square of the number
of locations it has tried to create the probe sequence.

In other words, if K,K +1,K +2,K + 3,...is the probe sequence created by linear
probing, the sequence created by quadratic probing is K, K +1°, K +2*, K +3%,....

Now, if two items map to different positions in the same cluster, they don't
follow the same probe sequences, so they don’t necessarily end up adding to
the cluster.

Figure 8.4 shows an example. Initially, the table has a cluster containing five
items. The value 71 has the probe sequence1,1+1* =2,1+2* =5,1+3% =10, so it
doesn’t add to the cluster. The value 93 initially maps to the same cluster but has
the probe sequence 3, 3 + 1> =4,3+2%*=7,soitdoesn’t add to the cluster, either.

\m/\/\

s

Figure 8.4: Quadratic probing reduces primary clustering.
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The QuadraticProbing example program, shown in Figure 8.5, uses quadratic
probing to store random values in a hash table. If you compare this figure
to Figure 8.3, you'll see that quadratic probing gives a shorter average probe
sequence length than linear probing. In this example, linear probing gave an
average probe sequence length of 2.42 but quadratic probing gave an average
probe sequence length of only 1.92.

\[* AN The program shown in Figure 8.5 is part of the solution to Exercise 8.4. See
Appendix B for more information.

o5 QuadraticProbing = =] -
808 -—— --—— --— -—-— 40% --- --- 513 71§ |~
0 - --- 824 723 32€ €25
L 727 232 833 --- -——- -——-
--- -—— 440 €43 240 ---
Load Table — 852 --— 451 35¢ 837
Min: 151 el
-—- 267 --— 275 573 473
184 853 --— 185 452 T3¢
# ttems: 393 e 390 —m— e oo
Create/Find
tom:
Statistics
Fill % 4550
Ave Probe: 1592
W

Figure 8.5: The average probe sequence length is shorter with quadratic probing than it is with
linear probing.

Quadratic probing reduces primary clustering, but it can suffer from secondary
clustering. In secondary clustering, values that map to the same initial position in
the array follow the same probe sequence, so they create a cluster. This cluster
is spread out through the array, but it still results in longer probe sequences for
the items that map to the same initial position.

Quadratic probing also has the drawback that it may fail to find an empty
entry for a value even if a few empty positions are left in the table. Because of
how a quadratic probe sequence jumps farther and farther through the array,
it may jump over an empty position and not find it.
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Pseudorandom Probing

Pseudorandom probing is similar to linear probing, except that the stride is given
by a pseudorandom function of the initially mapped location. In other words, if
a value initially maps to position K, its probe sequence is K, K+p, K+2xp,...,
where p is determined by a pseudorandom function of K.

Like quadratic probing, pseudorandom probing prevents primary clustering.
Also like quadratic probing, pseudorandom probing is subject to secondary
clustering, because values that map to the same initial position follow the same
probe sequences.

Pseudorandom probing may also skip over some unused entries and fail to
insert an item even though the table isn’t completely full.

The result is similar to that of quadratic probing; you're just using a different
method for building the probe sequence.

Double Hashing

The reason quadratic probing and pseudorandom probing suffer from secondary
clustering is that values that map to the same initial location then follow the
same probe sequence. You can reduce that effect if you make values that map
to the same location follow different probe sequences.

Double hashing is similar to pseudorandom probing. However, instead of
using a pseudorandom function of the initial location to create a stride value, it
uses a second hashing function to map the original value to a stride.

For example, suppose the values A and B both initially map to position K. In pseu-
dorandom probing, a pseudo-random function F, generates a stride p = F, (K).
Then both values use the probe sequence K, K+p,K+2xp,K+3xp,....

In contrast, double hashing uses a pseudorandom hash function F, to map the
original values A and B to two different stride values p, =F,(A) and p; =F,(B).
The two probe sequences start at the same value K, but after that they are different.

Double hashing eliminates primary and secondary clustering. However, like
pseudorandom probing, double hashing may skip some unused entries and fail
to insert an item even though the table isn’t completely full.

Ordered Hashing

In some applications, values are hashed once and then looked up many times.
For example, a program that uses a dictionary, address book, or product lookup
table might follow this approach. In that case, it is more important that the
program be able to find values quickly than to insert them quickly.
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A hash table with chaining can find items more quickly if its linked lists are
sorted. When searching for an item, the algorithm can stop if it ever finds an
item that is larger than the target item.

Similarly, you can arrange a hash table in an ordered manner. Suppose the
probe sequence for value K visits array locations with values V,, V,, and so forth,
where all of the V, are less than K. In other words, all of the values along K’s
probe sequence are less than K.

Note that the values need not be in a strictly increasing order. For example,
the probe sequence for the value 71 might encounter the values 61, 32, and
then 71. That’s okay as long as the probe sequence for 32 doesn’t follow the same
path so that it visits 61 before 32.

If you can arrange the array in this way, you can make searching for an item
faster by stopping if you ever find a value greater than the target value.

The following pseudocode shows at a high level how you can find an item
in an ordered hash table:

// Return the location of the key in the array or -1 if it is
// not present.
Integer: FindValue (Integer: array[], Integer: key)
Integer: probe = <Initial location in key's probe sequence.>

// Repeat forever.
While true
// See if we found the item.
If (arrayl[probe] == key) Then Return probe

// See if we found an empty spot.
If (arrayl[probe] == EMPTY) Then Return -1

// See if we passed where the item should be.
If (arrayl[probel] > key) Then Return -1

// Try the next location in the probe sequence.
probe = <Next location in key's probe sequence.>
End While
End Findvalue

The exact arrangements of the hash tables described so far depend on the
order in which items are added to the table. For example, suppose a hash table’s
array has 10 entries and the hashing function maps the value K to K mod 10. If
you add the values 11, 21, 31, 41 to the hash table, they are stored in that order
in positions 1 through 4. However, if you add the same items in the order 41,
31, 21, 11, they are stored in the same positions, but in reverse order.

Suppose that you can add the values to the hash table in sorted order, smallest
to largest. Then, when you add a value, if the table already holds any values in the
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new value’s probe sequence, they must be smaller than the new value, because
you're adding the values in sorted order. That means each probe sequence must
be properly ordered so that you can search the table quickly.

Unfortunately, you often cannot add the items to a hash table in sorted order
because you don’t know that order when you start. For example, you may only
add a few items at a time to the table over a long period. Fortunately, there is a
way to create an ordered hash table no matter how you add the items.

To add an item, follow its probe sequence as usual. If you find an empty
spot, insert the item and you're done. If you find a spot containing a value that
is larger than the new value, replace it with the new value and then rehash
the larger value.

As you rehash the larger value, you may encounter another, even larger value.
If that happens, drop the item you're hashing in the new position and rehash the
larger value. Continue the process until you find an empty spot for whatever
item you're currently hashing.

The following pseudocode shows the process at a high level:

AddItem(Integer: arrayl[], Integer: key)
Integer: probe = <Initial location in key's probe sequence.>

// Repeat forever.
While true
// See if we found an empty spot.

If (arrayl[probe] == EMPTY) Then
array [probe] = key
Return

End If

// See if we found a value greater than "key."

If (arrayl[probe] > key) Then
// Place the key here and rehash the other item.
Integer: temp = array[probel

array[probe]l = key
key = temp
End If

// Try the next location in the probe sequence.
probe = <Next location in key's probe sequence.>
End While
End AddItem

The final step inside the while loop sets probe equal to the next location in
the current key’s probe sequence. For linear probing, pseudorandom probing,
and double hashing, you can figure out the next item in the probe sequence even
if you switched the key value you're hashing for a larger value. For example,
with double hashing, you can apply the second hashing function to the new key
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value to find the new probe sequence’s stride. You can then use the new stride
to follow the new item’s probe sequence from that point.

That doesn’t work for quadratic probing, because you would need to know how
far the algorithm had searched the new key’s probe sequence to get to that point.

The reason this method works is that you only replace values with smaller
values. If you replace a value in an ordered probe sequence with a smaller value,
the probe sequence is still ordered.

The only value that might still be in question is the new larger value you're
rehashing. When you rehash that value, it ends up in a position that makes its
probe sequence ordered.

Summary

Hash tables allow you to store and locate values very quickly. If a hash table
has a reasonably low fill percentage, finding an item may require only a couple
calculations.

It is important to maintain a reasonable fill percentage, however, because if
a hash table becomes too full, its performance suffers. A lower fill percentage
gives better performance but requires extra space that isn’t used to hold data,
so in some sense it is wasted. Too high a fill percentage can slow performance
and increases the risk that the hash table will become full. This requires you to
resize the hash table, which can take a considerable amount of time and memory.

This is a good example of a space/time trade-off that is common in algorithms.
By using extra space, you can improve an algorithm’s performance.

Ordered hashing provides another kind of trade-off. If you spend extra time
up front building a hash table, later searching is much faster. When inserting
a value, the program may find a value that is larger than the one it is insert-
ing. In that case, it switches values and continues to rehash the larger one. One
way to do that is recursion: making the insertion algorithm call itself. The next
chapter discusses recursion in detail. It covers good and bad uses of recursion
and explains how you can remove recursion from a program if deep call stacks
or frequent recalculation of values cause problems.

Exercises

You can find the answers to these exercises in Appendix B. Asterisks indicate
particularly difficult problems.

For the exercises that ask you to build a hash table, create an interface sim-
ilar to Figure 8.6. The example shown in the figure sets each item’s value to its
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key value with a v added in front so that you can tell it’s a string. It displays an
entry’s value in the format [key:value].

o LinearProbing
[808:wB08] [80l:wE801l] [-——-————- 1
1M [ 1 [815:w813%] [320:w520]
= [727:%7271 [525:w525] [2159:w215]
[-—--———- 1
bmEis [243:v343]
Min: 100 [151:w151]
- [S€9:wIET]
[484:vag4]
H tems: [353:w353] [192:w1%2] [958:v558] [€59:w€95] [3%90:v3:
[283:w285]
Create/Find
tem
Statistics
P
Max e
W
Ave Probe: 630
< m *

Figure 8.6: This interface lets you build and test hash tables.

The Create button creates a new hash table. The Make Items button lets you add
many random items to the hash table all at once. The Insert and Find buttons
add or find a single item. After each change to the table or its data, display the
number of keys per bucket for chaining algorithms or the fill percentage for open
addressing algorithms. Also display the maximum and average probe length
when you try to find all of the values between the minimum and maximum
values used to fill the table.

1.
2.

Write a program that implements a hash table with chaining.

Modify the program you wrote for Exercise 1 to use sorted chains. Compare
the average probe lengths of the two programs when the hash tables use
10 buckets and hold 100 items.

Graph the average probe sequence length for the programs you built for
Exercises 1 and 2 when the hash tables use 10 buckets and hold 50, 100,
150, 200, and 250 items. What can you deduce from the graph?

Write a program that builds a hash table that uses open addressing with
linear probing.

Write a program that builds a hash table that uses open addressing with
quadratic probing.
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6.

10.

11.

12.

13.

14.

15.

Write a program that builds a hash table that uses open addressing with
pseudorandom probing.

Write a program that builds a hash table that uses open addressing with
double hashing.

Linear probing always finds an empty spot for a value if a spot is avail-
able, but quadratic probing, pseudorandom probing, and double hashing
may all skip empty entries and conclude that the table is full when it is
not. How can you pick the table size N to prevent quadratic probing,
pseudorandom probing, and double hashing from concluding that the
hash table is full even if it is not?

Write a program that builds a hash table that uses open addressing with
ordered quadratic hashing.

Write a program that builds a hash table that uses open addressing with
ordered double hashing.

To see how the different open addressing algorithms compare, graph the
average probe sequence length for the programs you built for Exercises
4,5,6,7 9, and 10. Use a table with 101 entries, and plot values when
the table holds 50, 60, 70, 80, and 90 values. What can you deduce from the
graph?

Suppose a hash table uses buckets with sorted chaining. To insert a key,
you need to search its bucket to verify that it is not present. If the table
uses B buckets and contains N items, that takes roughly O(IN/B/2) steps
on average. After you verify that the key is not present, you need to insert
it in the correct position in its chain, which takes another O(N/B/2) steps.
Why is this faster than the O(N/B) steps needed to insert an item if the
chains are not sorted?

Suppose you want to double the number of buckets used by a hash table
that uses buckets with chaining. How would you split a bucket in two?
What if the chains are sorted?

Suppose that you're using a hash table with open addressing and you
mark removed entries with a special value such as —2,147,483,647. When
you insert a new item, you can place it in a spot that has been marked as
deleted if you find such a spot. Now suppose you add and remove many
items so that the table is full of marked entries. Why does that slow down
inserting new items?

In open addressing with linear probing, what is the probability that two
random values will land adjacent to each other and start a small cluster
if the table is initially empty?
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16.

17.

When you insert an item in an ordered hash table that uses open address-
ing, you sometimes find a larger value along an item’s probe sequence. In
that case, you deposit the new item and rehash the larger value. How do
you know that this process will eventually stop? What is the largest number
of items that you might move during this process?

In ordered hashing, what happens if the algorithm is unable to find an
empty position to add a new item even if the table isn’t full?



Recursion

Recursion occurs when a method calls itself. The recursion can be direct (when
the method calls itself) or indirect (when the method calls some other method
that then calls the first method).

Recursion can also be single (when the method calls itself once) or multiple
(When the method calls itself multiple times).

Recursive algorithms can be confusing because people don't naturally think
recursively. For example, to paint a fence, you probably would start at one end
and start painting until you reach the other end. It is less intuitive to think about
breaking the fence into left and right halves and then solving the problem by
recursively painting each half.

However, some problems are naturally recursive. They have a structure
that allows a recursive algorithm to easily keep track of its progress and find
a solution. For example, trees are naturally recursive because branches divide
into smaller branches that divide into still smaller branches and so on. For that
reason, algorithms that build, draw, and search trees are often recursive.

This chapter explains some useful algorithms that are naturally recursive.
Some of these algorithms are useful by themselves, but learning how to use
recursion in general is far more important than learning how to solve a single
problem. Once you understand recursion, you can find it in many program-
ming situations.

Essential Algorithms: A Pra