
ALGORITHMS
Design and Analysis

Harsh Bhasin
Assistant Professor

Department of Computer Science
Jamia Hamdard

New Delhi

1

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2015

The moral rights of the author/s have been asserted.

First published in 2015

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-945666-6
ISBN-10: 0-19-945666-6

Typeset in Times New Roman
by Welkyn Software Solutions Pvt. Ltd, Coimbatore

Printed in India by Magic International (P) Ltd., Greater Noida

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

To

My Mother

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

About the Author

Harsh Bhasin is currently an Assistant Professor in the Department of Computer
Science, Jamia Hamdard, New Delhi. Prior to this, he has taught as visiting faculty in
many colleges including Delhi Technological University and also has a rich industrial
experience as a programmer. He was also the proprietor of S.S. Developers, a firm based
in Faridabad, Haryana.

Prof. Bhasin is a B. Tech and M. Tech in Computer Science as also a UGC NET
qualified. He has been actively involved in research and had also received the Young
Researcher’s Award by ErNet in 2012. His areas of interest include genetic algorithms,
cellular automata, big data, theory of computation, C#, and algorithms.

Prof. Bhasin has been involved in the development of a number of Enterprise Resource
Planning Systems. He has published around 60 research papers in various national and
international journals of repute and is the author of “Programming in C#” published by
OUP, India. He has also reviewed papers, journals, and books for renowned publishers.
He has been the Editor-in-Chief of the special issue on ‘Applicability of Soft Computing
Techniques in NP Problems,’ SciEp, USA.

Mr Bhasin can be reached at his Facebook page DTUComputation and via e-mail
at i_harsh_bhasin@yahoo.com or at thevibrantindian@blogspot.com.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

There are only two ways to live your life. One is as though nothing is a miracle. The
other is as though everything is a miracle.

— Albert Einstein

An algorithm is a step-by-step process of analysing and solving the given problem in
a logical manner. A well-designed algorithm is required to develop efficient program
codes as well as minimize the usage of computer resources. Algorithms are imple-
mented using a programming language. Mere knowledge of a programming language
without the fundamental understanding of algorithms may make one a competent
coder but not a programmer. Thus, algorithms form the building blocks of computer
programming.

Design and analysis of algorithms is one of the key subjects offered in computer
science and information technology streams. Knowledge of basic data structures and
mathematics is a prerequisite for studying this subject. This course makes the students
learn the standard design techniques, such as divide and conquer, greedy approach, and
dynamic programming, as also analyse the applicability of a technique in a given prob-
lem. Another important goal of this course is to help students develop the ability to study
an algorithm and find its complexity.

Thus, this book discusses the know-hows of the paradigms used for designing an
algorithm and illustrates the standard procedures for accomplishing the task. It provides
a sound understanding of the asymptotic notations required to analyse the effect of the
increase in input size of an algorithm on its space and time requirements. It also dis-
cusses the various artificial intelligence techniques which would help the readers handle
intractable problems.

ABOUT THE BOOK

Algorithms: Design and Analysis is a textbook designed for the undergraduate and post-
graduate students of computer science engineering, information technology, and com-
puter applications. It will help the students understand the fundamentals and applications

Preface

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

P r e fac e ■  v

of algorithms. The book will serve as a useful reference for researchers and practising
programmers who intend to pursue a career in algorithm designing as well as students
preparing for interviews and exams such as GATE and UGC NET.

The book offers an adequate mix of both theoretical and mathematical treatment of
the concepts. It covers the basics, design techniques, advanced topics, and applications
of algorithms. The concepts and algorithms are explained with the help of examples.
However, every attempt has been made to keep the text as precise as possible. Moreover,
some advanced topics in the book have been included considering the fact that they
would be used or implemented in research.

Each chapter of the book includes a variety of chapter-end exercises in the form of
MCQs (with answers), review questions, and programming exercises to help readers
test their knowledge. In the book, many problems have been solved using more than one
method for better understanding.

KEY FEATURES

The following are the salient features of the book:
•	 Offers in-depth treatment of topics such as complexity analysis, design paradigms,

data structures, and machine learning algorithms
•	 Introduces topics such as decrease and conquer, transform and conquer, and PSpace

along with standards paradigms
•	 Explains numerical methods including Euclid’s theorem and Chinese Remainder

Theorem, and also reviews essential mathematical concepts
•	 Provides points to remember and a list of key terms at the end of each chapter that

will help readers quickly recapitulate the important concepts
•	 Includes exercises given at the end of each chapter and Appendix A10 (Problems) to

help students prepare for their examinations and job interviews

ORGANIZATION OF THE BOOK

The book has been divided into four sections. The first section introduces the fundamen-
tal concepts and complexity analysis of algorithms. The second section deals with basics
of data structures. The third section introduces the various design techniques and the
fourth section deals with advanced topics. The sections are followed by ten appendices.

Section I: Basic Concepts of Algorithms
The first section of the book defines algorithms and discusses the application of algo-
rithms and the techniques to analyse them. It includes four chapters.

Chapter 1 introduces the subject by tracing the evolution of algorithms and high-
lighting the importance and applications of algorithms in recent times. The chapter also
explains the different ways of writing an algorithm.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

v i   ■  P r e fac e

Chapter 2 presents basic mathematical techniques such as logarithms, arithmetic,
and geometric progression along with an involved discussion on the asymptotic nota-
tions. The chapter also provides a comparison of the asymptomatic notations.

Chapter 3 introduces the concept of recursion and deals with different methods of
solving recursive equations.

Chapter 4 discusses ways to find complexities along with the proving techniques. It
also covers amortized and probabilistic analysis.

Section II: Data Structures
Knowledge about data structures is a prerequisite for understanding the concepts dis-
cussed in the following sections. Therefore, this section has been added to aid the readers
in refreshing the basics of data structures while studying the design techniques. The rest
of the book relies heavily on the terminology used in these chapters. This section has
four chapters.

Chapter 5 discusses stacks, queues, linked lists, and arrays along with their imple-
mentations, while Chapter 6 presents an overview of trees and the algorithms involved
therein. Chapter 7 revisits the concepts of graphs and its applications and Chapter 8 pre-
sents various linear and quadratic sorting algorithms.

Section III: Design Techniques
This section forms the core of the course on design and analysis of algorithms. It covers
the various design paradigms and their applications and implementation. This section
includes six chapters.

Chapter 9 discusses the divide and conquer technique and its applications in solving
problems such as quick sort, merge sort, selection sort, convex hull, Strassen’s matrix
multiplication, defective chessboard, and finding minimum distance between N points.
Master theorem and its proof is also explained in this chapter.

Chapter 10 introduces the concept of greedy approach. This concept has been used
to solve problems such as job scheduling, knapsack, coin changing, and minimum cost
spanning tree. Other problems that can be solved using the greedy approach are quick
sort, merge sort, binary search, and Strassen’s matrix multiplication.

Chapter 11 explains dynamic programming. Some of the problems, namely, subset
sum problem, 0/1 knapsack, matrix chain multiplication, longest common sub-sequence,
optimal binary search, and travelling salesman problem that can be solved using dynamic
programming have been illustrated in this book.

Chapters 12 and 13 discuss backtracking and branch and bound techniques, respec-
tively. In spite of being similar to backtracking, branch and bound technique is more
effective and efficient. Some of the problems that can be solved by these two tech-
niques are the maze problem, subset sum problem, the N-Queens problem, m-colouring
problem, travelling salesman problem, and Hamiltonian cycle.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

P r e fac e   ■  v i i

Chapter 14  introduces the concept of randomization, which would help in analysing
and understanding algorithms in an altered way. The chapter discusses the Monte Carlo
and Las Vegas algorithms and applications of randomized algorithms through the book
problem, load balancing, and quick sort problems.

Most of the problems discussed in the book can be solved in linear or quadratic time.
That is, for these problems the running time is O(n) or O(n2). Such problems which can
be solved in polynomial time, that is, problems which have complexity O(nk), where k
is an integral constant, are referred to as P-type problems. The problems that cannot be
verified in polynomial time are called NP problems. These concepts are also discussed
in this chapter.

Section IV: Advanced Topics
The fourth section of the book introduces some advanced topics and includes 10 chapters.

Chapter 15 explains the transform and conquer technique. The technique is used
to solve problems such as Gauss elimination method for finding the solution of a set
of linear equation; the LU decomposition for solving a set of equations; the Horner’s
method for finding the lowest common multiple, etc.

Chapter 16 introduces decrease and conquer approach. The method can be used to
solve many problems notably permutation generation, which is used to handle NP-hard
problems like the travelling salesman problem.

Chapter 17 deals with the number theoretic algorithms and covers topics such as
GCD and Euclid theorem. The Chinese remainder theorem has also been discussed in
this chapter. These topics are widely used in cryptography and cryptanalysis.

Chapter 18 introduces an immensely important topic, called string matching, which finds
applications in many areas including computational biology. It includes Naive string match-
ing algorithm, Rabin–Karp algorithm, deterministic and non-deterministic finite automata,
and Knuth–Morris–Pratt Automata. The chapter also discusses tries and suffix trees along
with the most common methods used for accomplishing the task of string matching.

Chapter 19 discusses the complexity classes—P and NP problems. It explains Cook’s
theorem, the concept of reducibility, and NP hard problems.

The book not only discusses the time complexity but also the space complexity.
Chapter 20 introduces the space complexity of an algorithm, PSpace, along with its
applications.

Chapter 21 presents the concept of approximation algorithms. These are one of the
most important tools for handling the NP complete problems. The chapter also covers
ρ-approximation and its applications.

Chapter 22 discusses the concept of parallel algorithms. The chapter discusses basic
concepts such as the generations of computers and parallel computers before introduc-
ing the parallel random access machine (PRAM) model. Hypercube algorithms have
also been covered in the chapter.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

v i i i ■  P r e fac e

Artificial intelligence techniques are now widely used to handle intractable problems.
In order to equip the readers with such techniques, the book introduces the concepts of
genetic algorithms and machine learning in Chapter 23. Applications of genetic algo-
rithms in solving knapsack, subset sum, travelling salesman, vertex cover, and maxi-
mum clique problems have been presented in this chapter.

Chapter 24 of this book introduces computational biology and bioinformatics. This
is essential as the readers would be able to apply the algorithms techniques studied ear-
lier in these areas.

The book also has 10 appendices which carry forward the concepts studied in the
previous sections. Topics such as probability, matrix operations, Red-black tress, lin-
ear programming, DFT, scheduling, and a reprise of sorting, searching, and amortized
analysis have been discussed in the appendices (A1 to A9).

The last Appendix A10 includes some interesting problems based on almost all the
topics discussed in the book.

ONLINE RESOURCES

To aid teachers and students, the book is accompanied with online resources which
are available at http://oupinheonline.com/book/bhasin-algorithms/9780199456666. The
contents of online resources include:

For Faculty
•	 Chapter-wise PowerPoint slides
•	 Solution manual for select chapter-end problems
•	 Assignment questions with answers

For Students
•	 Additional MCQs for test generator (with answers) for each chapter
•	 C language implementation of algorithms
•	 Interview questions with answers

ACKNOWLEDGMENTS

I have been lucky enough to get the motivation and guidance from various people dur-
ing the journey of developing this book. First of all, I would like to thank Professor
Moin Uddin, Dean, Faculty of Management and Information Technology, former Pro-
Vice Chancellor, Delhi Technological University for showing faith in me and inspiring
me to achieve my goals. I am also thankful to Professor A.K. Sharma, former Dean
and Chairperson, Department of Computer Science, YMCA, Faridabad, for his constant
encouragement while working on this book, research papers, and other projects.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

P r e fac e   ■  i x

Dr Michael Wing’s ACM Sigsoft Software Engineering Notes has helped me improve
my writing skills and inspired me to be more articulate. Moreover, I have learnt the most
important lesson of my life from Dr Wing: ‘If you know a thing but you cannot express
it then it is of no use.’

I would like to thank esteemed Professor Ranjit Biswas, Head, Department of
Computer Science, Jamia Hamdard, Professor Naresh Chauhan, Head and Chairperson,
Department of Computer Sceince, YMCA University of Science and Technology,
Professor Daya Gupta, Department of Computer Science, Delhi Technological
University, and Dr S.K. Pal, Scientist, Department of Defence and Research Organization,
Government of India, for their valuable suggestions regarding the book. I would also
like to acknowledge my colleagues, Dr Farheen Siddique and Dr G.D. Panda, for their
contributions in the chapter on computational biology and my students, Faisal Naved,
Mohd. Haider, Sourav Gupta, Yogesh Kumar, Chirag Ahuja, and Subham Kumar, for
their critical reviews and contributions in developing the web resources of this book.

I would like to express my sincere gratitude to my mother, sister, and rest of the fam-
ily including my pets, Zoe and Xena, and friend Mr. Naved Alam and others for extend-
ing their unconditional support to me.

I am also thankful to the editorial team of Oxford University Press for providing
valuable assistance.

I would be glad to receive comments or suggestions from the readers and users of
this book for further improvement of the future editions of the book. You can reach me
at i_harsh_bhasin@yahoo.com.

Harsh Bhasin

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Brief Contents

Preface� iv
Features of the Book� x
Detailed Contents� xv

	 Chapter 1  Introduction to Algorithms� 2

	 Chapter 2  Growth of Functions� 17

	 Chapter 3  Recursion� 41

	 Chapter 4  Analysis of Algorithms� 58

	 Chapter 5  Basic Data Structures� 78

	 Chapter 6  Trees� 108

	 Chapter 7  Graphs� 142

	 Chapter 8  Sorting in Linear and Quadratic Time� 168

	 Chapter 9  Divide and Conquer� 190

Chapter 10  Greedy Algorithms� 221

Chapter 11  Dynamic Programming� 258

Chapter 12  Backtracking� 286

Chapter 13  Branch and Bound� 310

Chapter 14  Randomized Algorithms� 332

SECTION I  Basic Concepts of Algorithms� 1

SECTION II  Data Structures� 77

SECTION III  Design Techniques� 189

xiv ■  B R I E F CO N T E N T S

	 Chapter 15  Transform and Conquer� 350

	 Chapter 16  Decrease and Conquer� 365

	 Chapter 17  Number Theoretic Algorithms� 377

	 Chapter 18  String Matching� 395

	 Chapter 19  Complexity Classes� 415

	 Chapter 20  Introduction to PSpace� 434

	 Chapter 21  Approximation Algorithms� 446

	 Chapter 22  Parallel Algorithms� 464

	 Chapter 23  Introduction to Machine Learning Approaches� 484

	 Chapter 24  Introduction to Computational Biology and Bioinformatics� 514

	 Appendix A1  Amortized Analysis–Revisited� 530

	 Appendix A2  2-3-4 and Red–Black Trees� 539

	 Appendix A3  Matrix Operations� 553

	 Appendix A4  Linear Programming� 571

	 Appendix A5  Complex Numbers and Introduction to DFT� 587

	 Appendix A6  Probability� 598

	 Appendix A7  Scheduling� 634

	 Appendix A8  Searching Reprise� 642

	 Appendix A9  Analysis of Sorting Algorithms� 658

Appendix A10  Problems� 667

Bibliography� 681

Index� 685

About the Author� 691

APPENDICES� 529

SECTION IV  Advanced Topics� 349

Detailed Contents

Preface  iv
Features of the Book  x
Brief Contents  xiii

CHAPTER 1  Introduction to Algorithms� 2
1.1	 Introduction� 2

1.2	 Importance of Algorithms� 3

1.3	 History of Algorithm� 4

1.4	 Algorithm: Definition� 4

1.5	 Ways of Writing an Algorithm� 5
1.5.1	 English-Like Algorithm� 5

1.5.2	 Flowchart� 6

1.5.3	 Pseudocode� 7

1.6	 Design and Analysis vs Analysis and Design� 10

1.7	 Present and Future� 11

1.8	 Flow of the Book� 12

1.9	 Conclusion� 12

CHAPTER 2  Growth of Functions� 17
2.1	 Introduction� 17

2.2	 Basic Mathematical Concepts� 18
2.2.1	 Logarithms� 18
2.2.2	 Arithmetic Progression� 20
2.2.3	 Geometric Progression� 21

2.3	 Asymptotic Notation� 22
2.3.1	 O Notation: Big Oh Notation� 22
2.3.2	 W Notation: Omega Notation� 23

SECTION I  Basic Concepts of Algorithms� 1

x vi   ■  D E TA I L E D CO N T E N T S

2.3.3	 q Notation: Theta Notation� 24
2.3.4	 w Notation: Small Omega Notation� 31
2.3.5	 o Notation: Small oh Notation� 31
2.3.6	 Comparison of Functions� 31

2.4	 Properties of Asymptotic Comparisons� 32

2.5	 Theorems Related to Asymptotic Notations� 33

2.6	 Conclusion� 34

CHAPTER 3  Recursion� 41
3.1	 Introduction� 41

3.2	 Rabbit Problem� 42

3.3	 Deriving an Explicit Formula from Recurrence Formula� 43
3.3.1	 Substitution Method� 43

3.4	 Solving Linear Recurrence Equation� 46

3.5	 Solving Non-linear Recurrence Equation� 48

3.6	 Generating Functions� 50

3.7	 Conclusion� 54

CHAPTER 4  Analysis of Algorithms� 58
4.1	 Introduction� 58

4.2	 Complexity of Recursive Algorithms� 58

4.3	 Finding Complexity by Tree Method� 60

4.4	 Proving Techniques� 61
4.4.1	 Proof by Contradiction� 61
4.4.2	 Proof by Mathematical Induction� 63

4.5	 Amortized Analysis� 65

4.6	 Probabilistic Analysis� 67
4.6.1	 Viva Problem� 67
4.6.2	 Marriage Problem� 68
4.6.3	 Applications to Algorithms� 68

4.7	 Tail Recursion� 69

4.8	 Conclusion� 69

CHAPTER 5  Basic Data Structures� 78
5.1	 Introduction� 78

5.2	 Abstract Data Types� 79

SECTION II  Data Structures� 77

D etailed Contents   ■  x vii

5.3	 Arrays� 79
5.3.1	 Linear Search� 80
5.3.2	 Reversing the Order of Elements of a Given Array� 81
5.3.3	 Sorting� 81
5.3.4	 2D Array� 81
5.3.5	 Sparse Matrix� 82

5.4	 Linked List� 82
5.4.1	 Advantages of a Linked List� 83
5.4.2	 Creation of a Linked List� 83
5.4.3	 Insertion at the Beginning� 84
5.4.4	 Insertion at End� 84
5.4.5	 Inserting an Element in the Middle� 85
5.4.6	 Deleting a Node from the Beginning� 86
5.4.7	 Deleting a Node from the End� 87
5.4.8	 Deletion from a Particular Point� 87
5.4.9	 Doubly Linked List� 88

5.4.10   Circular linked list

5.5	 Stack� 90
5.5.1	 Static Implementation of Stack� 90
5.5.2	 Dynamic Implementation of Stack� 92
5.5.3	 Applications of Stack� 93
5.5.4	 Evaluation of a Postfix Expression� 94
5.5.5	 Infix to Postfix� 96
5.5.6	 Infix to Prefix� 97

5.6	 Queue� 99
5.6.1	 Static Implementation� 99
5.6.2	 Problems with the Above Implementation� 101
5.6.3	 Circular Queue� 102
5.6.4	 Applications of a Queue� 103

5.7	 Conclusion� 104

CHAPTER 6  Trees� 108
6.1	 Introduction� 108

6.2	 Binary Trees� 108

6.3	 Representation of Trees� 110

6.4	 Applications of Trees� 112

6.5	 Tree Traversal� 116
6.5.1	 Pre-order Traversal� 116
6.5.2	 In-order Traversal� 116
6.5.3	 Post-order Traversal� 117

x vii i   ■  D E TA I L E D CO N T E N T S

	 6.6	 To Draw a Tree When Pre-order and In-order Traversals are Given� 117

	 6.7	 Binary Search Tree� 121

	 6.8	 B-Tree� 126

	 6.9	 Heap� 127
6.9.1	 Creation of a Heap� 127
6.9.2	 Deletion from a Heap� 129
6.9.3	 Heapsort� 129

	6.10	 Binomial and Fibonacci Heap� 131

	6.11	 Balanced Trees� 131

	6.12	 Conclusion� 135

CHAPTER 7  Graphs� 142
	 7.1	 Introduction� 142

	 7.2	 Concept of Graph� 142

	 7.3	 Representation of Graph� 143

	 7.4	 Cyclic Graphs: Hamiltonian and Eulerian Cycles� 144

	 7.5	 Isomorphic and Planar Graphs� 145

	 7.6	 Graph Traversals� 150
7.6.1	 Breadth First Search� 150
7.6.2	 Depth First Search� 153

	 7.7	 Connected Components� 156

	 7.8	 Topological Sorting� 157
7.8.1	 Applications of Topological Sorting� 161

	 7.9	 Spanning Tree� 161

	7.10	 Conclusion� 161

CHAPTER 8  Sorting in Linear and Quadratic Time� 168
	 8.1	 Introduction� 168

	 8.2	 Sorting � 169

	 8.3	 Classification� 169
8.3.1	 Classification Based on the Number of Comparisons� 170
8.3.2	 Classification Based on the Number of Swaps� 170
8.3.3	 Classification Based on Memory� 170
8.3.4	 Use of Recursion� 170
8.3.5	 Adaptability� 171
8.3.6	 Stable Sort� 171

	 8.4	 Selection Sort� 172

	 8.5	 Bubble Sort� 175

D etailed Contents   ■  xix

	 8.6	 Insertion Sort� 179

	 8.7	 Diminishing Incremental Sort� 180

	 8.8	 Counting Sort� 181

	 8.9	 Radix Sort� 183

	 8.10	 Bucket Sort� 184

	 8.11	 Conclusion� 185

CHAPTER 9  Divide and Conquer� 190
	 9.1	 Introduction� 190

	 9.2	 Concept of Divide and Conquer� 190

	 9.3	 Master Theorem� 193
  9.3.1  Proof of Master Theorem� 197

	 9.4	 Quick Sort� 199
  9.4.1  Worst-case Complexity� 201

	 9.5	 Merge Sort� 203

	 9.6	 Selection� 206

	 9.7	 Convex Hull� 208

	 9.8	 Strassen’s Matrix Multiplication� 211

	 9.9	 Minimum Distance Between N Points� 213

	 9.10	 Miscellaneous Problems� 215
  9.10.1	 Multiplying Numbers Using Divide and Conquer� 215
  9.10.2	 Defective Chessboard Problem� 216

	 9.11	 Conclusion� 216

CHAPTER 10  Greedy Algorithms� 221
	 10.1	 Introduction� 221

	 10.2	 Concept of Greedy Approach� 221

	 10.3	 0/1 Knapsack Problem� 226

	 10.4	 Job Sequencing with Deadlines� 228

	 10.5	 Kruskal’s Algorithm� 231

	 10.6	 Prim’s Algorithm� 236

	 10.7	 Coin Changing� 239

	 10.8	 Huffman Codes� 242

	 10.9	 Single-source Shortest Path� 243

SECTION III  Design Techniques� 189

xx   ■  D E TA I L E D CO N T E N T S

	10.10	 Miscellaneous Problems� 247
10.10.1	 Container Loading Problem� 247
10.10.2	 Subset Cover Problem� 249
10.10.3	 Optimal Storage� 250

	10.11	 Analysis and Design for Greedy Approach� 251

	10.12	 Conclusion� 252

CHAPTER 11  Dynamic Programming� 258
	 11.1	 Introduction� 258

	 11.2	 Concept of Dynamic Programming� 260
  11.2.1	 Implementing the Dynamic Approach� 261

	 11.3	 Longest Common Subsequence� 262
  11.3.1	 Brute Force Approach� 262
  11.3.2	 Using the Dynamic Approach� 263

	 11.4	 Matrix Chain Multiplication� 267

	 11.5	 Travelling Salesman Problem� 270
  11.5.1	 Using Brute Force Approach� 270
  11.5.2	 Using Dynamic Approach� 272

	 11.6	 Optimal Substructure Lemma� 274

	 11.7	 Optimal Binary Search Tree Problem� 275
  11.7.1	 Using Brute Force Approach� 276
  11.7.2	 Using Dynamic Approach� 276

	 11.8	 Floyd’s Algorithm� 277

	 11.9	 Miscellaneous Problems� 280
  11.9.1	 Coin Changing Problem� 280
  11.9.2	 Calculating Binomial Coefficients� 280

	11.10	 Conclusion� 281

CHAPTER 12  Backtracking� 286
	 12.1	 Introduction� 286

	 12.2	 Concept of Backtracking� 287

	 12.3	 Subset Sum Problem� 289

	 12.4	 N-Queens Problem� 292

	 12.5	 m-Colouring Problem� 300

	 12.6	 Hamiltonian Cycle� 302
  12.6.1	 Solution of Hamiltonian Cycle Using Backtracking� 303

	 12.7	 Miscellaneous Problems� 305
  12.7.1	 Knapsack Problem� 305
  12.7.2	 Other Problems� 306

	 12.8	 Conclusion� 307

D etailed Contents   ■  xxi

CHAPTER 13  Branch and Bound� 310
	 13.1	 Introduction� 310
	 13.2	 Concept of Branch and Bound� 311

13.2.1	 FIFO Search� 311
13.2.2	 LIFO Search� 311
13.2.3	 Example of Branch and Bound: 0/1 Knapsack� 312

	 13.3	 Travelling Salesman Problem� 314
13.3.1	 Calculation of Cost� 314
13.3.2	 Procedure� 314

	 13.4	 Knapsack Problem� 319
13.4.1	 Knapsack Using Branch and Bound (Least Cost)� 319

	 13.5	 8-Puzzle Problems� 322
13.5.1	 First In First Out� 322
13.5.2	 Last In First Out� 323
13.5.3	 Least Cost Search� 323

	 13.6	 Efficiency Considerations� 324

	 13.7	 Optimization and Relaxation� 325
13.7.1	 Optimization� 325
13.7.2	 Relaxation� 327

	 13.8	 Conclusion� 328

CHAPTER 14  Randomized Algorithms� 332
	 14.1	 Introduction� 332

	 14.2	 Randomization� 333

	 14.3	 Monte Carlo vs Las Vegas Algorithms� 334
14.3.1	 Selection of Appropriate Technique� 334

	 14.4	 Uses of Randomized Algorithms� 336

	 14.5	 Complexity Classes of Randomized Algorithms� 337

	 14.6	 Applications of Randomized Algorithms� 339
14.6.1	 Book Problem� 339
14.6.2	 Load Balancing� 340
14.6.3	 Quick Sort� 341
14.6.4	 Equality of Polynomials� 344

	 14.7	 Conclusion� 345

CHAPTER 15  Transform and Conquer� 350
	 15.1	 Introduction� 350

	 15.2	 Presorting� 351

SECTION IV  Advanced Topics� 349

xxii   ■  D E TA I L E D CO N T E N T S

15.2.1	 Applications of Presorting� 351

	 15.3	 Gauss Elimination Method� 352

	 15.4	 LU Decomposition� 356

	 15.5	 Horner’s Method� 357

	 15.6	 Lowest Common Multiple� 359

	 15.7	 NP-Hard Problems� 361

	 15.8	 Conclusion� 361

CHAPTER 16  Decrease and Conquer� 365
	 16.1	 Introduction� 365

	 16.2	 Finding the Power Set of a Given Set� 367

	 16.3	 Breadth First Search and Depth First Search� 369

	 16.4	 Permutation Generation� 371

	 16.5	 Decrease and Conquer: Variable Decrease� 373

	 16.6	 Conclusion� 374

CHAPTER 17  Number Theoretic Algorithms� 377
	 17.1	 Introduction� 377

	 17.2	 GCD of Two Numbers� 378

	 17.3	 Euclid Theorem� 379

	 17.4	 Extended Euclid Theorem� 382

	 17.5	 Modular Linear Equations� 385

	 17.6	 Chinese Remainder Theorem� 386
17.6.1	 Applications� 386

	 17.7	 Cryptography� 388
17.7.1	 Symmetric Key Cryptography� 389
17.7.2	 Asymmetric Key Cryptography� 389

	 17.8	 Digital Signatures� 390

	 17.9	 RSA Algorithm� 391

	17.10	 Conclusion� 391

CHAPTER 18  String Matching� 395
	 18.1	 Introduction� 395

	 18.2	 String Matching—Meaning and Applications� 396
18.2.1	 Applications� 396
18.2.2	 Algorithms and Data Structures� 396

	 18.3	 Naïve String Matching Algorithm� 397

	 18.4	 Rabin–Karp Algorithm� 398

D etailed Contents   ■  xxii i

	 18.5	 Deterministic Finite Automata� 400
18.5.1	 Non-deterministic Finite Automata� 402

	 18.6	 Knuth–Morris–Pratt Automata� 403

	 18.7	 Tries� 406

	 18.8	 Suffix Tree� 409

	 18.9	 Conclusion� 410

CHAPTER 19  Complexity Classes� 415
	 19.1	 Introduction� 415

	 19.2	 Concept of P and NP Problems� 419

	 19.3	 Important Problems and Their Classes� 420

	 19.4	 Cook’s Theorem� 424

	 19.5	 Reducibility� 424
19.5.1	 How to Convert a CNF into an AND-OR Graph?� 424
19.5.2	 Maximum Clique from SAT3� 427
19.5.3	 Independent Set� 428
19.5.4	 Vertex Cover� 428

	 19.6	 Problems that are NP-Hard But not NP-Complete� 430

	 19.7	 Conclusion� 430

CHAPTER 20  Introduction to PSpace� 434
	 20.1	 Introduction� 434

	 20.2	 Quantified Satisfiability� 436

	 20.3	 Planning Problems� 437
20.3.1	 N-Puzzle Problem� 437
20.3.2	 Solution� 439

	 20.4	 Regular Expressions� 440

	 20.5	 Conclusion� 443

CHAPTER 21  Approximation Algorithms� 446
	 21.1	 Introduction� 446

	 21.2	 Taxonomy� 448

	 21.3	 Approximation Algorithm for Load Balancing� 448

	 21.4	 Vertex Cover Problem� 451
21.4.1	 Vertex Cover Problem Using Approximation Algorithm� 451
21.4.2	 Cormen Approximation Approach� 451
21.4.3	 Modified Vertex Cover� 453

	 21.5	 Set Cover Problem� 454

xxiv   ■  D E TA I L E D CO N T E N T S

21.5.1	 Greedy Approach for Approximate Set Cover� 455
21.5.2	 Subset Cover (Sets with Weights Associated with Them)� 456

	 21.6	 ρ-Approximation Algorithms� 457
21.6.1	 Load Balancing Problem Using 2-Approximation Algorithm� 457
21.6.2	 Travelling Salesman Problem� 459

	 21.7	 Use of Linear Programming in Approximation Algorithms� 459

	 21.8	 Conclusion� 461

CHAPTER 22  Parallel Algorithms� 464
	 22.1	 Introduction� 464

	 22.2	 Generations of Computers� 464

	 22.3	 Parallel Computers� 466

	 22.4	 Basics� 468

	 22.5	 Parallel Random Access Machine� 469

	 22.6	 Finding Maximum Number from a Given Set� 471
22.6.1	 Using CRCW� 471
22.6.2	 Using EREW� 472

	 22.7	 Prefix Computation� 473

	 22.8	 Merge� 474

	 22.9	 Hypercube Algorithms� 475
22.9.1	 Broadcasting� 476
22.9.2	 Prefix Computation Using Hypercube Algorithm� 478

	22.10	 Conclusion� 480

CHAPTER 23  Introduction to Machine Learning Approaches� 484
	 23.1	 Introduction� 484

	 23.2	 Artificial Intelligence� 484

	 23.3	 Machine Learning� 486
23.3.1	 Learning� 488

	 23.4	 Neural Networks� 488

	 23.5	 Genetic Algorithms� 492
23.5.1	 Crossover� 493
23.5.2	 Mutation� 495
23.5.3	 Selection� 496
23.5.4	 Process� 497

	 23.6	 Knapsack Problem� 498

	 23.7	 Subset Sum Using GA� 499
23.7.1	 Solution Using GA� 501

D etailed Contents   ■  xx v

	 23.8	 Travelling Salesman Problem� 503
  23.8.1  GA Approach to Solve Travelling Salesman Problem� 504

	 23.9	 Vertex Cover Problem� 507
  23.9.1  Approximation Algorithm� 507
  23.9.2  Solution of Vertex Cover via GAs� 508

	23.10	 Maximum Clique Problem� 509
23.10.1  Solution of Maximum Clique via GAs� 509

	23.11	 Conclusion� 510

CHAPTER 24  Introduction to Computational Biology and Bioinformatics� 514
	 24.1	 Introduction� 514

	 24.2	 Basics of Computational Biology and Bioinformatics� 515

	 24.3	 Basics of Life Sciences� 516
  24.3.1  Cell� 516
  24.3.2  DNA and RNA� 517
  24.3.3  Genome� 519
  24.3.4  Amino Acids� 520

	 24.4	 Sequencing and Problems Therein� 520
  24.4.1  Sequence–Structure Deficit� 522
  24.4.2  Folding Problem� 522

	 24.5	 Algorithms� 522

	 24.6	 Conclusion� 524

APPENDIX A1  Amortized Analysis—Revisited� 530
	A1.1	 Introduction� 530

	A1.2	 Aggregate Analysis� 530

	A1.3	� Dynamic Tables: Aggregation, Accounting, and Potential
Amortized Analysis� 531

	A1.4	 Conclusion� 536

APPENDIX A2  2-3-4 and Red–Black Trees� 539
	A2.1	 Introduction� 539

	A2.2	 2-3-4 Tree� 539

	A2.3	 Red–Black Trees� 544

	A2.4	 Conclusion� 549

APPENDICES� 529

xx vi   ■  D E TA I L E D CO N T E N T S

APPENDIX A3  Matrix Operations� 553
	A3.1	 Basics� 553

	A3.2	 Operations on Matrices� 555
  A3.2.1	 Equality of Matrices� 555
  A3.2.2	 Addition of Matrices� 556
  A3.2.3	 Subtraction of Matrices� 556
  A3.2.4	 Scalar Multiplication� 556
  A3.2.5	 Transpose of a Matrix� 557
  A3.2.6	 Symmetric Matrix� 557
  A3.2.7	 Skew-symmetric Matrix� 558
  A3.2.8	 Multiplication of Matrices� 559
  A3.2.9	 Determinant of a Matrix� 560
A3.2.10  Minor and Cofactor of an Element� 560
A3.2.11  Inverse of a Matrix� 561

	A3.3	 Solving System of Linear Equations: Cramer’s Rule� 562

	A3.4	 Solving System of Linear Equations: Inverse Method� 567

	A3.5	 Elementary Row Operations� 569

	A3.6	 Conclusion� 569

APPENDIX A4  Linear Programming� 571
	A4.1	 Introduction� 571

	A4.2	 Graphical Method� 572

	A4.3	 Simplex Method� 576

	A4.4	 Finding Dual and an Introduction to the Dual
Simplex Method� 581

	A4.5	 Conclusion� 583

APPENDIX A5  Complex Numbers and Introduction to DFT� 587
	A5.1	 Introduction� 587

	A5.2	 Complex Numbers� 588
  A5.2.1	 Complex Number: Cartesian and Polar Form� 588
  A5.2.2	 Conversion of a Complex Number into Polar Form� 589
  A5.2.3	 Power and Root of a Complex Number� 589
  A5.2.4	 Finding Powers and Roots of a Complex Number

Using the Polar Form� 590
  A5.2.5	 Roots of a Complex Number� 591
  A5.2.6	 Cube Roots of Unity� 592
  A5.2.7	 nth Roots of Unity� 593

	A5.3	 Discrete Fourier Transform� 594

D etailed Contents   ■  xx vii

	A5.4	 Use of Divide and Conquer in DFT� 594

	A5.5	 Conclusion� 596

APPENDIX A6  Probability� 598
	A6.1	 Introduction� 598

	A6.2	 Basics� 598
A6.2.1	 Taxonomy� 599
A6.2.2	 Pigeonhole Principle� 601

	A6.3	 Independent Events� 602
A6.3.1	 Bay’s theorem� 605

	A6.4	 Probability Distribution� 609
A6.4.1	 Mean and Variance of a Probability Distribution� 612

	A6.5	 Binomial Distribution� 614
A6.5.1	 Recurrence Formula for Binomial Distribution� 619

	A6.6	 Poisson’s Distribution� 620
A6.6.1	 Recurrence Formula for Poisson’s Distribution� 621

	A6.7	 Normal Distribution� 625

	A6.8	 Conclusion� 628

APPENDIX A7  Scheduling� 634
	A7.1	 Introduction� 634

A7.1.1	 Scheduling Problems� 634

	A7.2	 Definitions and Discussions� 635
A7.2.1	 Job Scheduling� 635
A7.2.2	 NP-complete Job Scheduling Problem� 636
A7.2.3	 Single Execution Time Scheduling with Variable

Number of Processors� 636
A7.2.4	 Pre-emptive Scheduling� 637

	A7.3	 How to Handle Scheduling Problems?� 637

	A7.4	 Tools� 638

	A7.5	 Conclusion� 639

APPENDIX A8  Searching Reprise� 642
	A8.1	 Introduction� 642

	A8.2	 Binary Search Tree—Revisited� 643

	A8.3	 Deletion in a BST� 649

	A8.4	 Problem with BST and AVL Trees� 652

	A8.5	 Conclusion� 654

xx vii i   ■  D E TA I L E D CO N T E N T S

APPENDIX A9  Analysis of Sorting Algorithms� 658
	A9.1	 Introduction� 658

	A9.2	 Lab 1: Quick Sort� 659
  A9.2.1	 Goal: Implement and Analyse Quick Sort for Small Input

Size (Exactly Reverse of What We Should Have Done)� 659
  A9.2.2	 Related Problems� 660

	A9.3	 Lab 2: Selection Sort� 660
  A9.3.1	 Goal: Implement and Analyse Selection Sort� 660
  A9.3.2	 Related Problems� 662

	A9.4	 Lab 3: Insertion Sort� 662
  A9.4.1	 Goal: Implement and Analyse Insertion Sort� 662
  A9.4.2	 Related Problems� 663

	A9.5	 Lab 4: Bubble Sort� 663
  A9.5.1	 Goal: Implement and Analyse Bubble Sort� 663
  A9.5.2	 Related Problems� 664

	A9.6	 Problems Based on Sorting� 664

APPENDIX A10  Problems� 667
	A10.1	 Introduction� 667

	A10.2	 Problems� 667
A10.2.1	 To Design an O(n) Algorithm to Find the nth Fibonacci Term� 667
A10.2.2	 To Find Whether a Strictly Binary Tree is a Heap� 668
A10.2.3	 To Develop an O(N) Algorithm to Sort Numbers� 669

	A10.3	 Division of a List Into Two Parts Whose Sum has Minimum Difference� 670

	A10.4	 Complexity-related Problems� 672

	A10.5	 Algorithm to Store Subsets Having Two Elements� 673

	A10.6	 Divide and Conquer� 674
A10.6.1	 Non-recursive Binary Search� 674
A10.6.2	 Binary Search in a 2-Dimensional array� 675
A10.6.3	 Complexity of Divide and Conquer� 677

	A10.7	 Applications of Dynamic Programming� 678

Bibliography  681

Index  685

About the Author  691

Some infi nities are bigger than other infi nities.
— John Green

Chapter 1 Introduction to Algorithms

Chapter 2 growth of Functions

Chapter 3 recursion

Chapter 4 Analysis of Algorithms

BASIC CONCEPTS OF ALGORITHMS
SECTJON 1

 Introduction to Algorithms

C H A P T E R 1

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the importance of algorithms
 • Trace the origin of algorithm
 • Defi ne an algorithm
 • Learn the various ways of writing an algorithm
 • Understand what the future has in store for us vis-à-vis algorithms
 • Understand the concept of designing an algorithm

1.1 INTRODUCTION

 A computer engineer is expected to tackle any given problem in the most effi cient man-
ner. This effi ciency can be in terms of memory or time or both. However, effi ciency
becomes important only if the solution, proposed by the person, solves the problem. The
steps followed to do so constitute an algorithm. This chapter introduces the concept of
algorithm, discusses the ways of writing an algorithm, and explores the basics of algo-
rithmic designing. We start with the informal defi nition of an algorithm.

 Algorithms are used everywhere, from a coffee machine to a nuclear power plant.
A good algorithm should use the resources such as the CPU usage, time, and memory
judiciously. It should also be unambiguous and understandable. The output produced
by an algorithm lies in a set called range . The input, is taken from a set ‘ domain’ (input
constraints). From the domain only the values satisfying given constraints can be taken.
These constraints are referred to as input constraints. Input constraints determine the
values of xi, i.e., input. The inputs are related to each other as governed by relation corre-
sponding to the task that is to be accomplished. This is referred to as explicit constraint.

 Defi nition Algorithm refers to the steps to be carried out in order to accomplish a
particular task.

I n t r o d u c t i o n to A lg o r i t h m s   ■  3

The formal definition and characteristics of an algorithm are discussed later in this
chapter. However, the above discussion introduces the concept.

1.2  IMPORTANCE OF ALGORITHMS

To understand the importance of algorithms, let us take an example. Most of us must have
found solutions to a lot of our problems using Google. When we type a query in Google,
we are presented with the ordered set of results that are more or less relevant. However,
this ranking is done via an algorithm, which ranks the pages in accordance with the query
entered. This ranking algorithm not only checks the textual similarity of the query with
the web page, but also calculates the inlinks (number of pages pointing to that page) and
the outlinks (number of pages that the page is pointing to) of that page. This algorithm
has helped Google in achieving its present status. Most of us would agree that Google has
changed our life. Therefore, the credit goes to the page rank algorithm that Google uses.

Another example that can be cited here is that of ‘Google Maps’. Most of us must
have used it to find the route from one location to another. ‘Google Maps’ helps us to get
driving directions by using the shortest path algorithms explained in this book. So, even
Google Maps is based on algorithms. The application fascinates and at times annoys
owing to the incorrect results displayed. However, one must appreciate the fact that it
is a computer program, which is an implementation of some algorithm. The algorithm
is still being refined but the fact is that it presents us with a thing which, at one point of
time, was the sole prerogative of man.

Nowadays, algorithms have become important even for biological endeavours.
Governments across the world want to make a global database of DNAs to combat the
menace of terrorism. This would be possible only if sorting and searching algorithms are
developed, which can extract information from billions of DNAs. In order to accomplish
this task, nature-based algorithms are being developed. The subsequent chapters of this
book examine the searching algorithms and their complexities. One of the nature-based
search procedures called genetic algorithms have been explained in Chapter 23.

Let us take another example to demonstrate the importance of algorithms. Optimization
problems are one of the most important problems not only in computer science but also in
economics. The study of algorithms helps us to solve optimization problems as well. All of
us know the fact that, in order to make a business profitable, the total cost should be mini-
mized and the profit should be maximized. Algorithmic designing techniques like ‘greedy
approach’, introduced in Section III of the book, help in achieving the task of optimization.

Summarizing the importance of algorithms discussed earlier, we can say the following:
•	 It helps in enhancing the thinking process. They are like brain stimulants that will

give a boost to our thinking process.
•	 It helps in solving many problems in computer science, computational biology, and

economics.
•	 Without the knowledge of algorithms we can become a coder but not a programmer.

4   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

•	 A good understanding of algorithms will help us to get a job. There is an immense
demand of good programmers in the software industry who can analyse the problem
well.

•	 The fourth section of the book that introduces genetic algorithms and randomized
approach will help us to retain that job.
Having discussed the importance of the subject, let us move on to the history of the

subject. It is important to know the history of the subject as it helps in creating an inter-
est in the subject. The problems faced in the past pave way for deducing the possible
solutions in the future.

1.3  HISTORY OF ALGORITHM

The origin of the word algorithm is indirectly linked to India. A scholar in the, ‘House
of Wisdom’ in Baghdad, Abu Abdullah Muhammad Ibn Musa Al Khwarizmi, wrote
a book about Indian numerals in which rules of performing arithmetic with such
numerals were discussed. These rules were referred to as ‘algorism’ from which the
word algorithm was derived. His book was translated into Latin in the 18th century.
This was followed by the invention of Boolean algebra by George Boole and the
creation of language in special symbols by Frege. The concept of algorithms, given
its present form by a genius named Alan Turing, helped in the inception of artificial
intelligence.

Algorithms have been used for long in mathematics and computer science. Euclid’s
theorem and the algorithm of Archimedes to calculate the value of ‘Pi’ are classic exam-
ples of algorithms. These events reinforced the belief that if a task is to be performed,
then it must be performed with a predefined sequence of steps that are unambiguous
and efficient. However, this belief would be challenged in the late 20th century with the
introduction of non-deterministic algorithms.

Not only in mathematics and computer science are there algorithms, they are part
of our daily lives. When a person is taught how to make tea, even then an algorithm is
edified. Algorithms are camouflaged as directions and rules, which form the basis of
our existence. The challenge, however, is to make these algorithms efficient and robust.

1.4  ALGORITHM: DEFINITION

An algorithm is a sequence of steps that must be carried out in order to accomplish a
particular task. Three things are to be considered while writing an algorithm: input,
process, and output. The input that we give to an algorithm is processed with the help
of the procedure and finally, the algorithm returns the output. It may be stated at this
point that an algorithm may not even have an input. An example of such an algorithm is
pseudorandom number generator (PRNG). Some random number generators generate

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

I n t r o d u c t i o n to A lg o r i t h m s   ■  5

a number without a seed. In such cases, the algorithm does not require any input. The
processing of the inputs generates an output. This processing is the most important part
of the algorithm. This book intends to examine the various methodologies used to write
a good algorithm. It may be noted though that algorithm writing is more of an art. We
can be taught the basics, but the art of writing an algorithm will have to be developed by
practicing more and more algorithms.

While writing an algorithm, the time taken to accomplish the task and the memory
usage must also be considered. The prime motto is to solve the problem but efficiency of
the process followed should not be compromised.

There is a distinction between natural language and algorithmic writing. While
speaking or writing a letter, we may use ambiguous terms unknowingly or deliberately.
However, the intelligence of the reader or the listener disambiguates the whole thing.
For example, if we have reservations about a person with regard to his/her knowledge of
the subject, then we might camouflage our unwillingness to work with him/her as a per-
sonal or social problem. This may not be the case when algorithms are concerned. While
writing an algorithm we will have to be clear and unambiguous about our objectives.
Moreover, any statement in an algorithm should be strictly deterministic. However, in
non-deterministic algorithms, this condition does not hold.

To summarize the discussion
•	 An algorithm is a sequence of steps in order to carry out a particular task.
•	 It can have zero or more inputs.
•	 It must have at least one output.
•	 It should be efficient both in terms of memory and time.
•	 It should be finite.
•	 Every statement should be unambiguous.

The meaning of finite is that the algorithm should have countable number of steps.
It may be stated that a program can run infinitely but an algorithm is always finite. For
example, an operating system of a server, in spite of being a program runs 24 × 7 but an
algorithm cannot be infinite.

1.5  WAYS OF WRITING AN ALGORITHM

There are various ways of writing an algorithm. In this section, three ways have been
explained and exemplified taking requisite examples. However, the chapters that follow
explain the problems introduced in this section in detail.

1.5.1  English-Like Algorithm
An algorithm can be written in many ways. It can be written in simple English but this
methodology also has some demerits. Natural languages can be ambiguous and there-
fore lack the characteristic of being definite. Since each step of an algorithm should be
clear and should not have more than one meaning, English language-like algorithms

6   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

are not considered good for most of the tasks. However, an example of linear search, in
which an element is searched at every position of the array and the position is printed if
an element is found, is given below. In this algorithm, ‘A’ is the array in which elements
are stored and ‘item’ is the value which is to be searched. The algorithm assumes that all
the elements in ‘A’ are distinct. Algorithm 1.1 depicts the above process.

	 Algorithm 1.1 E nglish-like algorithm of linear search

Step 1.	 Compare ‘item’ with the first element of the array, A.
Step 2.	 If the two are same, then print the position of the element and exit.
Step 3.	 Else repeat the above process with the rest of the elements.
Step 4.	 If the item is not found at any position, then print ‘not found’ and exit.

However, Algorithm 1.1, in spite of being simple, is not commonly used. The flow-
chart or a pseudocode is more common as compared to ‘English-like algorithms’, which
is used in some chapters such as Chapters 23 and 24 of this book.

1.5.2  Flowchart
Flowcharts pictorially depict a process. They are easy to understand and are commonly
used in the case of simple problems. The process of linear search, explained in the pre-
vious subsection, is depicted in the flowchart illustrated in Fig. 1.1. The conventions of
flowcharts are depicted in Table 1.1.

Yes

Yes

No

NoPrint
‘Not Found’

i = i + 1

Start

Stop

Is item
= A[i] ?

Is i = N?

Print the
location ‘i’

Figure 1.1  Flowchart of linear search

I n t r o d u c t i o n to A lg o r i t h m s   ■  7

Table 1.1  Flowchart conventions

S. No. Name Element Representation Meaning

1. Start/End An oval is used to indicate the beginning and
end of an algorithm.

2. Arrows An arrow indicates the direction of flow of
the algorithm.

3. Connectors Circles with arrows connect the disconnected
flowchart.

4. Input/Output A parallelogram indicates the input or output.

5. Process A rectangle indicates a computation.

6. Decision A diamond indicates a point where a decision
is made.

In the flowchart, shown in Fig 1.1, A[] is an array containing N elements. The index of
the first element is O which is also the initial value of i. Such depictions, though easy to
comprehend, are used only for simple straightforward problems. Hence, this book neither
recommends nor uses the above two types for writing algorithms, except for some cases.

1.5.3  Pseudocode
The pseudocode has an advantage of being easily converted into any programming lan-
guage. This way of writing algorithm is most acceptable and most widely used. In order
to be able to write a pseudocode, one must be familiar with the conventions of writing it.
Table 1.2 shows the pseudocode conventions.

Table 1.2  Pseudocode conventions

S. No. Construct Meaning

1. // Comment Single line comments start with //

2. /* Comment Line 1
 Comment Line 2
 �
 �
 Comment Line n
*/

Multi-line comments occur between /* and */

3. {
statements
}

Blocks are represented using { and }. Blocks can be
used to represent compound statements (collection
of simple statements) or the procedures.

4. ; Statements are delimited by ;

(Contd)

8   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Table 1.2  (Contd)

S. No. Construct Meaning

5. <variable> = <Expression> This is an assignment statement. The statement
indicates that the result of evaluation of the expres-
sion will be stored in the variable.

6. a > b a and b are expressions, and > is a relational opera-
tor ‘greater than’. The Boolean expression a > b
returns true if a is greater than b, else returns false.

7. a < b a and b are expressions, and < is a relational opera-
tor ‘less than’. The Boolean expression a < b returns
true if a is less than b, else returns false.

8. a <= b a and b are expressions, and <= is a relational oper-
ator ‘less than or equal to’. The Boolean expression
a <= b returns true if a is less than or equal to b,
else returns false.

9. a >= b a and b are expressions, and >= is a relational
operator ‘greater than or equal to’. The Boolean
expression a >= b returns true if a is greater than
or equal to b, else returns false.

10. a != b a and b are expressions, and != is a relational opera-
tor ‘not equal to’. The Boolean expression a != b
returns true if a is not equal to b, else returns false.

11. a == b a and b are expressions, and == is a relational
operator ‘equal to’. The Boolean expression a == b
returns true if a is equal to b, else returns false.

12. a AND b a and b are expressions, and AND is a logical opera-
tor. The Boolean expression a AND b returns true
if both the conditions are true, else it returns false.

13. a OR B a and b are expressions, and OR is a logical opera-
tor. The Boolean expression a OR b returns true if
any of the condition is true, else it returns false.

14. NOT a a is an expression, and NOT is a logical operator.
The Boolean expression ‘NOT a’ returns true if the
result of a evaluates to False, else returns False.

15. if<condition>then<statement> The statement indicates the conditional operator if.

16. if<condition>then<statement1>
else<statement2>

The statement is an enhancement of the above if
statement. It can also handle the case wherein the
condition is not satisfied.

17. Case
{
 :<condition 1>: <statement 1>
 �
 �
 :<condition n>: <statement n>
 :default: <statement n+1>
}

The statement is a depiction of switch case used in
C or C++.

(Contd)

I n t r o d u c t i o n to A lg o r i t h m s   ■  9

Algorithm 1.2 depicts the process of linear search. The name of the algorithm is
‘Linear Search’. The element ‘item’ is to be searched in the array ‘A’. The algorithm
uses the conventions stated in Table 1.2.

	 Algorithm 1.2 L inear search

Algorithm Linear_Search(A, n, item)
{
 for i = 1 to n step 1 do
 {
 if(A[i] == item)
 {
 print i;
 exit();
 }
 }
 print “Not Found”
}

Two approaches of writing an algorithm are described in the following chap-
ters, the first approach, followed in Chapters 9–11 explicitly states the input, out-
put constraints, etc. The algorithms stated in this fashion require least effort to
implement. However, at times, when the details of the implementation are not to be
included in the algorithm, the English-like algorithms come to our rescue. The algo-
rithm broadly describes what is to be done, not exactly how it is to be done. As stated
earlier, some chapters such as Chapters 23 and 24 follow this approach.

Table 1.2  (Contd)

S. No. Construct Meaning

18. while<condition>do
{
 statements
}

The statement depicts a while loop

19. repeat
 statements
until<condition>

The statement depicts a do–while loop

20. for variable = value1 to value2
{
 statements
}

The statement depicts a for loop

21. Read Input instruction

22. Print Output instruction

23. Algorithm<name> (<parameter list>) The name of the algorithm is <name> and the argu-
ments are stored in the <parameter list>

10   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

1.6  DESIGN AND ANALYSIS vs ANALYSIS AND DESIGN

In order to accomplish a task, a solution needs to be developed. This is called designing
of an algorithm. For example, if an array ‘A’ of length n is given and our requirement is
to find out the maximum element of the array, then we can take a variable ‘Max’ whose
initial value is A[1], which is the first element of the array. Now, start traversing the
array, compare the value of Max with each element, if we are able to find any element
greater than Max, then we can set Max to the value of that element, else continue. The
process is depicted in Algorithm 1.3.

	 Algorithm 1.3  Finding maximum element from an array

Algorithm Max(A, n)
{
 Max = A[1];
 for i = 2 to n step 1 do
 {
 if(A[i]>Max) then
 {
 Max=A[i];
 }
 }
 Print “The maximum element is A[i]”
}

The next step would be to analyse the time complexity of the algorithm. Table 1.3
shows the number of times each statement is executed.

The above analysis gives an idea of maximum amount of resources (in this case time)
required to run the algorithm. This is referred to as algorithm design and analysis (ADA)
(see Fig. 1.2).

However, this may not be the case most of the times. Often, we have to develop
software for the client. The client has some set-up and will not want to upgrade his sys-
tems in order to install the software. In such cases, we must analyse the hardware and

Table 1.3 N umber of times each statement is executed in Algorithm 1.3

Max = A[1]; 1

for i := 2 to n step 1 do{ n

if(A[i]>max) { n-1

Max=A[i];}} less than or equal to (n-1)

print “The maximum element is A[i]” 1

Maximum: (n)

I n t r o d u c t i o n to A lg o r i t h m s   ■  11

the set-up of the client and then decide on the algorithms we would be using in order to
accomplish the tasks. Here, we cannot apply techniques like diploid genetic algorithm
on a system that uses a P4, similarly there is no point in using algorithms that are time
efficient but probably use extensive resources in a very advanced set-up. The process is
referred to as analysis and design. The process is depicted in Fig. 1.3.

The general approach being used is design and analysis; however, analysis and design
is far more practical and hence implementable.

1.7  PRESENT AND FUTURE

The algorithms developed at present focus more on efficiency and optimization. When we
develop an algorithm, the first and foremost task is to solve the problem at hand. So, cor-
rectness comes first even if it is at the expense of time and memory. When we are able to
solve the problem, then we try to make our algorithm efficient. That is to say, we try to use
constructs that require less time and perhaps less memory too. Most of the algorithms devel-
oped also cater to the requirement that each statement should be unambiguous and definite.
So to summarize, in developing an algorithm, the following things are taken care of:
1.	 Make sure that the solution is correct.
2.	 Try to make sure that the time consumption is least.
3.	 Try to make sure that the memory consumption is also least.
4.	 Try to keep each statement unambiguous and definite.

However, doing so can be a problem in the following cases:
1.	 When the search space is so large that it is not possible to obtain an exact solution.
2.	 The algorithm implements a non-deterministic machine.

The above two points have become common owing to the stress laid on the non-
deterministic algorithms in recent years and the need to process huge amount of data in
web mining.

Consuming least time and least memory would also be irrelevant in future because
processes have become so fast that even if our algorithm produces better results in spite
of taking more time, it will be considered good.

As far as memory is concerned, consuming a little more memory and giving bet-
ter results is considered acceptable in the present scenario and become more acceptable
owing to the decrease in the cost of memory. For example, a 20 GB hard disk would have
cost `3000 in 2001–2002, however, now we would get a 500 GB hard disk at the same

Design Analyse

Figure 1.2  Design and
analysis

Analyse Design

Figure 1.3  Analysis and
design

12   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

price. So, 25 times increase in the memory and no increase in the cost in a decade points
to the fact that memory is becoming cheap. Therefore, it would not be advisable to spend
a lot of time devising algorithms which would save a few bytes of memory.

It may also be noted that the algorithms will now be based on artificial intelligence tech-
niques rather than determinism. The development of Deep Blue, a computer which could
play chess and was able to challenge Garry Kasparov, is an example of such algorithms.

So, the future algorithms will depend on
1.	 Artificial intelligence techniques, which would help in optimization.
2.	 Ability to utilize hardware capabilities and process power as well.
3.	 Non-determinism which will have to be integrated so as to solve real-time problems

and parallel processes.

1.8  FLOW OF THE BOOK

This book has been divided into four sections: Basic Concepts of Algorithms, Data
Structures, Design Techniques, and Advanced Topics. The first section lays stress on
the importance of algorithms and the complexity measurements and the second section
deals with the basic data structures. This section have been included in this book so
that the readers who have not studied data structures should not find it difficult to com-
prehend the rest of the chapters. The section forms the basis of the concepts explained
in Sections III and IV. The readers who have done a basic course of data structures
may jump to the third section. However, it would be beneficial to at least go through
the sections to be able to implement the strategies examined in the sections that follow.

The third section focuses on the paradigms such as divide and conquer, dynamic approach,
backtracking, and branch and bound to solve various problems. The web resources of the
book also include the codes of some of the standard problems such as knapsack and job
sequencing. The section is the most important of the three sections and it is important to
understand the section to be able to become an accomplished algorithm designer.

The fourth section explores some of the yet unexplored areas such as artificial intel-
ligence and computational biology. The section is essential for those doing or intending
to do an advanced course in algorithms. Figure 1.4 depicts the organization of the book.

1.9  CONCLUSION

This chapter introduces the concept of algorithms. It may be stated at this point that
before proceeding any further, it is essential to be able to write an algorithm. In order
to do so the conventions of algorithm writing must be clearly understood. Moreover,
it is also important to understand the difference between analyses of algorithms and
followed by design and the concept of analysis and design. The chapter examines the
concept, and it will become clear as we proceed further. Although an algorithm can be
written in any of the three ways explained in the chapter, following the convention of

I n t r o d u c t I o n to A lg o r I t h m s ■ 13

 Algorithms 1.2 and 1.3 is advisable. The chapters that follow discuss the various strate-
gies of designing and analysing algorithms. Hence, this chapter serves as a foundation
stone of the text that follows. In order to become an accomplished programmer, the
know-how of algorithms is essential. So, it would be better to understand and implement
the concepts given in the chapters that follow.

Decoding algorithms

Introduction to
algorithms,
complexity
measurement, etc.

Essential data
structure and
recursion, sorting in
linear and quadratic
time and introduc-
tion to graphs

Techniques of
designing, divide
and conquer,
greedy algorithms,
dynamic program-
ming, backtracking,
branch and bound,
and randomized
algorithms, etc.

Transform and
conquer,
NP-completeness,
approximation
algorithms, number
theoretic, decrease
and conquer
approach,
topological sorting,
space-time trade
offs, limitations of
algorithmic power,
parallel algorithms,
hypercube, artificial
intelligence
approaches, and
miscellaneous
topics

I. Basic concepts
of algorithms

II. Data
structures

III. Design
techniques

IV. Advanced
topics

 Figure 1.4 organization of the book

 Points to Remember

 • An algorithm is diff erent from a program. An algorithm is fi nite; a program can be infi nite.

 • An algorithm can be pictorially depicted by a fl owchart.

 • The analysis of an algorithm is essential in order to judge whether it can be implemented
in the given conditions.

 • The analysis of an algorithm may consider time or space or both.

 • The design of an algorithm can follow the analysis of the requirements. This approach is
referred to as analysis and design.

 • The algorithm can be designed in order to accomplish a task, and then can be analysed.
this approach is referred to as design and analysis.

14 ■ A lg o r I t h m s : d e s I g n A n d A n A ly s I s

 Algorithm It is a sequence of steps to accomplish a particular task efficiently and effectively.

 Constraint the conditions that control the selection of elements in backtracking.

 Explicit Constraint the conditions that determine how should various x i ’s are related to each
other.

 Implicit Constraint An element x i can take its values only from a legal set of values called
domain.

 KEY TERMS

 I. Multiple Choice Questions
 1. Which of the following is a part of an algorithm?

 (a) Input
 (b) Output
 (c) Steps to be carried out in order to accomplish the task
 (d) All of the above

 2. What is the most desirable characteristic of an algorithm?
 (a) Usability
 (b) Documentation
 (c) Ability to accomplish task
 (d) None of the above

 3. Which of the following disciplines make use of ADA?
 (a) Automation
 (b) Computer science

 (c) Biology
 (d) All of the above

 4. Who gave the concept of algorithms in its present form?
 (a) George Boole
 (b) Frege

 (c) Al Khwarizmi
 (d) Alan Turing

 5. Who invented Boolean algebra?
 (a) George Boole
 (b) Frege

 (c) Al Khwarizmi
 (d) Alan Turing

 6. Who created a language in special symbols?
 (a) George Boole
 (b) Frege

 (c) Al Khwarizmi
 (d) Alan Turing

 7. Which is not an essential characteristic of algorithm?
 (a) Defi niteness
 (b) Finiteness
 (c) Effi ciency
 (d) Effectiveness

 EXERCISES

I n t r o d u c t i o n to A lg o r i t h m s   ■  15

	 8.	 Definiteness property of algorithm means
(a)	 Considering the time taken to accomplish the task and the memory usage
(b)	 Each step of an algorithm must be precisely defined, unambiguously
(c)	 The number of steps in an algorithm must be finite and further each step must

be executable in finite amount of time
(d)	 Each step must be sufficiently basic so that it can be done exactly by a person

using pencil and paper
	 9.	 Effectiveness property of algorithm means

(a)	 Considering the time taken to accomplish the task and the memory usage
(b)	 Each step of an algorithm must be precisely defined, unambiguously
(c)	 The number of steps in an algorithm must be finite and further each step must

be executable in finite amount of time
(d)	 Each step must be sufficiently basic so that it can be done exactly by a person

using pencil and paper
10.	 Algorithm must be

(a)	 Programming language dependent
(b)	 Programming language independent
(c)	 Either of the above
(d)	 None of the above

II.  Review Questions
	 1.	 What are algorithms? What are the characteristics of an algorithm?
	 2.	 What is meant by time complexity and memory complexity?
	 3.	 Briefly trace the history of algorithms.
	 4.	 What are the various ways of writing an algorithm?
	 5.	 Why do you think that each instruction of an algorithm must be definite?
	 6.	 Give an example of an algorithm which does not take any input.
	 7.	 Can there be an algorithm that does not have an output?
	 8.	 What are the differences between an algorithm and a program?
	 9.	 Explain the various approaches of writing an algorithm.
10.	 Explain with the help of an example time memory trade-off.

III.  Application-based Questions
	 1	 Write an algorithm to find the smallest number from amongst three numbers.
	 2.	 Write an algorithm to find the greatest common divisor of two numbers.
	 3.	 Write an algorithm to find the square root of a number.
	 4.	 Given an array write an algorithm to search an element from the array.
	 5.	 Given an array write an algorithm to find the maximum element from the array.
	 6.	 Given an array write an algorithm to find the minimum element from the array.

16 ■ A lg o r I t h m s : d e s I g n A n d A n A ly s I s

 7. Write an algorithm to fi nd second maximum element from an array.
 8. Write an algorithm to sort an array.
 9. Write an algorithm to fi nd out the maximum element from a matrix.
 10. Write an algorithm to fi nd the trace of a matrix.

 Answers to MCQs

 1. (d)
 2. (c)

 3. (d)
 4. (d)

 5. (a)
 6. (b)

 7. (d)
 8. (b)

 9. (d)
 10. (b)

 Growth of Functions

 C H A P T E R 2

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept and importance of asymptotic notations
 • Understand basic mathematical concepts such as arithmetic progression, geometric

progression, and logarithms
 • Explain the properties of asymptotic functions
 • Compare algorithms on the basis of asymptotic complexity

2.1 INTRODUCTION

 In order to accomplish a task, the most important thing is to design a correct algorithm.
An algorithm can be called correct if it accomplishes the required task. However, some-
times in spite of being correct, an algorithm may not be of much use, in the case where
it takes a lot of time. For example, applying linear search in order to fi nd out an element
is correct, but what if the array contains more than 10 10 elements?

 Even if one element is processed in 10 −6 seconds, it will take 10,000 seconds or
around 3 hours to search an element. Now imagine that the same task is to be accom-
plished in an array that contains the roll numbers of all the students of a university. In that
case this procedure will require a lot of time. So, it is important that the algorithm should
be correct as well as effi cient. The understanding of running time is also important in
order to compare the effi ciency of two algorithms. This chapter deals with the analysis
of algorithms. The analysis is aimed at fi nding out the running time of an algorithm.

 It is diffi cult to fi nd the exact running time of an algorithm. It requires rigorous math-
ematical analysis. The calculation of exact running time also requires the knowledge of
sequences and series and logarithms among others. Moreover, the exact analysis pro-
vides no additional advantage compared to an approximate analysis. The exact analysis
gives the exact polynomial function that relates the input size with the running time,
whereas the approximate analysis gives the power of input size on which the running
time depends. For example, the exact running time of an algorithm may be 3 × n 2 + 2 ×
 n + 3. In this case, the approximate running time would be f (n 2). So, the highest power of

18   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

n is what matters while calculating the approximate running time of an algorithm. Even
the constants that are there with the term containing the highest power do not matter.

It may also be stated that the number of inputs to an algorithm may not always be the
number of variables that are given as an input to the algorithm. For example, if an algo-
rithm takes an array as an input, then the input size is generally taken as n and not 1. So,
the idea is that since an array contains n elements, the number of inputs to the algorithm
must be taken as the number of elements in that array. The algorithm will most probably
deal with most, if not all, of the elements of the array.

The argument can be extended to a two-dimensional array as well. The number of
inputs of an algorithm that manipulates an array having n rows and m columns is taken
as n × m, and not 1. This is because the number of elements in the data structure is n × m.

Section 2.3 introduces the asymptotic notations and the procedure to find the asymp-
totic complexity of an algorithm. However, in order to understand the mathematics of
the asymptotic notations, basic mathematical concepts are needed, which have been
presented in Section 2.2. The topics discussed in Section 2.2 will help the readers to
understand the complexity analysis of the algorithms given in the subsequent chapters.

2.2  BASIC MATHEMATICAL CONCEPTS

This section deals with the basic topics such as an arithmetic progression, geometric
progression, and logarithms. The definition of the general sequence and the sum of
n terms of arithmetic and geometric progressions have been dealt with in the present
section. This section also throws light on logarithms, so that the idea of complexity can
be understood clearly.

2.2.1  Logarithms
Logarithm is one of the most important concepts in mathematics. The analysis of algo-
rithms also requires the concept of logarithms. The concept can be used in O notation
and for making calculations simpler. The definition of logarithm is as follows:

For example, since 53 = 125, log5 125 = 3
The standard notations are as follows:

log log10 x x=
log lne x x=

log lg2 x x=

Tip: In an array, the number of input elements is the length of the array, not 1.

Definition  If ab = c, then loga c = b, that is, log c to the base a is b.

G r o w t h o f F u n c t i o n s   ■  19

Moreover, the important properties of logarithms are as follows:

	 log log loga b ab+ = � Formula 1

	 log log log /a b a b− = � Formula 2

	 log loga b ab = × � Formula 3

	 log
log

loga b
a

b
= � Formula 4

	 log
loga

b

b
a

=
1

� Formula 5

For example,

log log log5 2 10+ =

log log log15 3 5− =

log log2 3 23 = ×

log
log

log2 7
7

2
=

log
log2

3

3
1

2
=

The above properties can be used to simplify and solve the equations involving log.
For example, in order to express log2 1000 in terms of log2 5, 1000 needs to be factor-
ized. Since

1000 5 23 3= ×

log log log2 2
3

2
31000 2 5= + = + = +3 2 3 5 3 3 52 2 2log log log

It may be noted at this point that ln(1 + x) can be evaluated with the help of the follow-
ing formula:

ln()
! ! !

1
2 3 4

2 3 4

+ = − + − +x x
x x x

�

Log to the base 10 can be calculated by calculating ln and then applying the base change
formula (Formula 4). For example, in order to calculate log 5 to the base 10, the follow-
ing steps must be followed:

ln()
! ! !

. , so1 4 4
4

2

4

3

4

4
1 395

2 3 4

+ = − + − + =� log
.

.
. ,5

1 395

2 31
0 60206= = since log . .e 10 2 31=

It may be stated at this point that the function log grows at a very slow rate. Figure 2.1
shows the variation of x and loge x.

20   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The composition of log is defined as

ln ln (ln(ln))x x=

There is a difference between ln ln ()a
k x x k= −taking of ln timesa 1 and (ln) ,a

kx which is
multiplying (ln)a x k times.

2.2.2  Arithmetic Progression
An arithmetic progression (AP) is one in which the difference between any two terms
is constant. The first term of the sequence is generally denoted by ‘a’ and the constant
difference is denoted by ‘d’. The terms of an AP are therefore as follows:

	 a a d a d a d, (), (), (),+ + × + ×2 3 … � Formula 6

The nth term Tn of the sequence is given by Formula 7:

	 T a n dn = + − ×()1 � Formula 7

For example, the sequence 2, 7, 12, 17, 22, … is an AP since the difference between
any two terms is 5. However, the following sequence is not an AP since the difference
between the consecutive terms is not constant,

2, 8, 12, 18, 22, …

In order to understand the concept, let there be an AP having the first term = 23 and
common difference 12. The ninth term of the AP would be

Tn = + − × = + =23 9 1 12 23 96 119()

In order to find the mth term from the end, the following formula can be used:

mth term from the end = (n − m + 1)th term from the beginning� Formula 8(a)

Log Log

0

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Figure 2.1  The log function

G r o w t h o f F u n c t i o n s   ■  21

In order to find out the number of terms of an AP, whose ‘a’, ‘d’, and ‘Tn’ are given,
apply Formula 7 and equate it to the given value of Tn, in order to obtain the value of n.
The value of n so obtained would be the number of terms.

For example, in the sequence

213, 247, …, 519

the value of ‘a’ is 213, the value of ‘d’ is 34, and that of Tn is 519. Since T nn = + − × =213 1 34 519() ,
T nn = + − × =213 1 34 519() , the value of n comes out to be 10. However, if the value of n comes out to

be a non-integer, then the given last term does not form the part of the sequence.
The sum of the terms of an AP is given by

	 S
n

a n dn = × + − ×
2

2 1(()) � Formula 8(b)

where a is the first term, d is the common difference, and n is the number of terms of
the AP.

2.2.3  Geometric Progression
A geometric progression (GP) is one in which the ratio of any two terms is constant. The
first term of the sequence is generally denoted by ‘a’ and the common ratio is denoted
by ‘r’. The terms of GP are, therefore, as follows:

a a r a r a r, (), (), (),× × ×2 3 …

The nth term Tn of the sequence is given by Formula 9

	 T a rn
n= × −1 � Formula 9

For example, the sequence

2, 10, 50, 250, …

is a GP since the ratio of any two terms is 5. However, the following sequence is not a
GP since the ratio of the consecutive terms is not constant.

2, 8, 12, 18, 22, …

In order to understand the concept, let there be a GP having the first term = 23 and com-
mon ratio 12. The ninth term of the GP would be

Tn = × =23 12 98895790088

In order to find the mth term from the end, the following formula can be used.

mth term from the end = (n – m + 1)th term from the beginning.

In order to find out the number of terms of a GP, whose ‘a’, ‘r’, and ‘Tn’ are given,
apply Formula 9, and equate it to the given value of Tn, in order to obtain the value of n.
The value of n so obtained would be the number of terms.

22   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

For example, in the sequence

245, 735, …, 59535

the value of a is 245, the value of r is 3, and that of Tn is 59535. Since

Tn
n= =−245 3 595351×

the value of n comes out to be 6. However, if the value of n comes out to be a non-
integer, then the given last term does not form the part of the sequence.

The sum of the terms of a GP is given by Formula 10 (a)

	 S
a r

rn

n

=
−

−
()

()

1

1
� Formula 10(a)

where a is the first term, r is the common ratio, and n is the number of terms of the GP,
if the value r > 1.

If r < 1, then the formula becomes S
a r

rn

n

=
−
−

()

()
.

1

1
 In this case, the value of sum upto

infinity is given by the following formula:

	 S
a

rn =
−()1

� Formula 10(b)

2.3  ASYMPTOTIC NOTATION

The word ‘asymptotic’ is made up of three words: ‘a’, ‘sym’, and ‘totic’. The meaning
of ‘a’ is not, and ‘sym’ means touch. Asymptote, therefore, means a line that approaches
the curve of the polynomial approximately.

Asymptotic notation finds the upper bound of the polynomial as in the case of ‘big
Oh’ notation; or the lower bound as in the case of w notation; or containment as in the
case of q notation. This section throws some light on the three notations and illustrates
the procedure to find asymptotic notations.

2.3.1  O Notation: Big Oh Notation
The big Oh notation is used when the upper bound of a polynomial is to be found. The
notation is helpful in finding out the maximum amount of resources an algorithm requires,
in order to run. This is important as pre-empting the maximum time (or resources)
requirement can help us to schedule the task accordingly. It is also helpful to compare
the best-suited algorithm amongst the set of algorithms, if more than one algorithm can
accomplish a given task. Figure 2.2 shows the relation between g(n) and O(g(n)).

Definition  f n O g n() (()),= if f n C g n n n() (), ,≤ × ≥ 0 C and n0 are constants.

G r o w t h o f F u n c t i o n s   ■  23

In order to understand the above point, let us take an example of an algorithm whose
running time varies according to the function: 4 × n2 + 5 × n + 3, n being the number of
inputs. The value of the function is less than or equal to 5 × n2, if the value of n is ≥6.
Table 2.1 shows the variation of values of the polynomial and 5n2.

Hence, it becomes evident from the table that the value of n for which 5 × n2 becomes
greater than 4 × n2 + 5 × n + 3 is 6.

It can, therefore, be stated that

g n n n() ,= × ≥5 62 for

The examples that follow this section examine the concept in more detail. It may be
noted that an algorithm that takes O(n) time is better than the one that takes O(n2) time.

If O(n) is the upper bound of an algorithm, then O(n2), O(n3), O(n4), etc., would also
be the upper bounds.

2.3.2  W Notation: Omega Notation
The omega notation is used when the lower bound of a polynomial is to be found.
The notation is helpful in finding out the minimum amount of resources, an algorithm

f(n)

f(n)

0
n

2

4

6

8

10

12

g(n)

Figure 2.2  The big Oh
notation: f(n) = O(g(n))

Table 2.1 C omparison of f(n) and g(n)

n 4*n*n + 5*n + 3 5*n*n

1 12 5

2 29 20

3 54 45

4 87 80

5 128 125

6 177 180

24   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

requires, in order to run. Finding out the minimum amount of resources is important as
this time can help us to schedule the task accordingly. It is also helpful to compare the
best-suited algorithm amongst the set of algorithms, if more than one algorithm can
accomplish a given task. Figure 2.3 shows the relation between g(n) and Ω(g(n)).

The grey line depicts the lower bound of the function. In order
to understand the above point, let us take an example of an algo-
rithm whose running time varies according to the function 5 × n2
+ 2 × n + 7. The function is greater than or equal to 4 × n2, if the
value of n is ≥1. Table 2.2 shows the variation of values of the
polynomial and 4n2. Hence, it becomes evident from the table that
4 × n2 is less than 5 × n2 + 2 × n + 7 for all values of n ≥ 1. So it
can be stated that g(n) = 4 × n2, for n ≥ 1.

If Ω(n3) is the lower bound of an algorithm, then Ω(n2), Ω(n),
Ω(1), etc., would also be the lower bounds. For example, if the
minimum time taken by an algorithm is 2n + 5 and the maximum

is 4n + 34, then we can say that the time taken by the algorithm is c n T n1 ≤ () and hence
T n n() ()= Ω

The examples that follow this section examine the concept in more detail.

2.3.3  q Notation: Theta Notation
The theta notation is used when the bounds of a polynomial are to be found. The notation
is helpful in finding out the minimum and the maximum amount of resources, an algo-
rithm requires, in order to run. Finding out the bounds of resources (or time) is important
as this can help us to schedule the task accordingly. The notation is also helpful in finding

0

5

10

15

20

25

30

f(n)

g(n)

Figure 2.3  f(n) = Ω(g(n))

Table 2.2 C omparison of
f(n) and g(n)

N 5*n*n + 2*n + 5 4*n*n

1 12 4

2 29 16

3 56 36

4 93 64

5 140 100

6 197 144

Definition  f n g n f n C g n n n C n() (()), () (), ,= ≥ × ≥Ω if and are constants.0 0

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

G r o w t h o f F u n c t i o n s   ■  25

the best-suited algorithm amongst the set of algorithms, if more than one algorithm can
accomplish a given task. Figure 2.4 shows the relation between g(n) and q(g(n)).

The grey and the dashed lines depict C2g(n) and C1g(n), accordingly. In order to
understand the above point, let us take an example of an algorithm whose running time
varies according to the function 3 2 12× + × +n n , where n is the input size. The function
is greater than or equal to 2 × n2 and less than or equal to 4n2, if the value of n is ≥3.
Table 2.3 shows the variation of values of the polynomial and 4n2 and 2 × n2.

Hence, it becomes evident from the table that the value of n for which 2 × n2 is less
than 3 × n2 + 2 × n + 1 is 1 and the value of n for which the function 4n2 becomes greater
than 3 × n2 + 2 × n + 1 is 3.

0

5

10

15

q (n)

20

25

30

f(
n)

 a
nd

 g
(n

)

C2g(n)

f(n)

C1g(n)

Figure 2.4  f(n) = θ (g(n))

Table 2.3 C omparison of g(n) and q(g(n)

n 3*n*n + 2*n + 1 4*n*n 2*n*n

1 6 4 2

2 17 16 8

3 34 36 18

4 57 64 32

5 86 100 50

6 121 144 72

7 162 196 98

8 209 256 128

9 262 324 162

10 321 400 200

11 386 484 242

Definition  f n g n C g n f n C g n n n C n() (()), (() (), ,= ≤ ≤ ≥θ if) and1 2 0 0 are constants.

26   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Therefore, g(n) = 4 × n2, for n ≥ 1.
The examples that follow this section examine the concept in more detail.

Illustration 2.1	 Two algorithms A1 and A2 run on the same machine. The running
time of A1 is 100n2 and the running time of A2 is 2n. For what value of n, A1 runs faster
than A2?

Solution Table 2.4 shows the variation of values of 100n2 and 2n with n. It may be noted
that for n ≥ 15, 2n exceeds 100n2. So, till n = 14, A2 runs faster.

In order to make the concept clear, let us also analyse the graph of 100n2 and 2n with n.
Figure 2.5 shows the graph. It may be noted that after n = 15, 2n is way ahead of 100n2.

Table 2.4  Variation of 100n2 and 2n with n

n 100n2 2n

1 100 2

2 400 4

3 900 8

4 1600 16

5 2500 32

6 3600 64

7 4900 128

8 6400 256

9 8100 512

10 10,000 1024

11 12,100 2048

12 14,400 4096

13 16,900 8192

14 19,600 16,384

15 22,500 32,768

2n is greater
than 100n2
for all
n ≥ 15

60,000

50,000

40,000

30,000

20,000

10,000

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2n

100 × n × n

Figure 2.5  Variation of 100n2 and 2n with n

G r o w t h o f F u n c t i o n s   ■  27

Now, most of you must be wondering as to why a question which you could have
solved in the sixth grade is given to you in this book. The reason being this question
portrays the gist of the chapter. It may be noted that in most of the algorithms, the num-
ber of inputs is generally greater than 15. The number can be in 100 s or even in 1000 s.
The large number of inputs forms the basis of growth of functions which forms the basis
of this chapter. Another example that demonstrates the concept is as follows:

Illustration 2.2	 Two algorithms A1 and A2 run on the same machine. The running
time of A1 is 100n30 and the running time of A2 is 2n. Can A1 run faster than A2?

Solution The question is similar to the first illustration, except for the fact that the power
of n in this case is 30. Now from a quick observation, it appears that A1 will always take
more time as compared to A2, but Fig. 2.6 shows the variation of values of 100n30 and 2n
with n. It may be noted that for n ≥ 245, 2n exceeds 100n30.

So, it is worth remembering that for large values of n, 2n will always be greater than
c n n mm× , .being the number of inputs and is any integer

Illustration 2.3	 Find omega notation for g(n) = 3 2 52× + × +n n .

Solution As per the definition of ‘Ω’ notation, the function f(n) such that

3 2 52
0× + × + ≥ × ≥n n c f n n n(),

will be the Ω(g(n)).
It may be noted that 3 2 5 22 2

0× + × + ≥ × ≥n n n n n, . Table 2.5 shows the values of
3 2 5 22 2× + × + ×n n nand 3 2 5 22 2× + × + ×n n nand . Hence, for ∀ ≥n 1, the above inequality holds

3 2 5 22 2× + × + ≥ ×n n n

Therefore, 3 2 52 2× + × + =n n nΩ().

2E + 74

0

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

4E + 74

6E + 74

8E + 74

1E + 75

1.2E + 75

1.4E + 75

1.6E + 75

1.8E + 75

2E + 75

2n

100 × n30

Figure 2.6  Variation of 100n2 and 2n with n

28   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Table 2.6  Variation of 3n2 + 2n + 5 and 4n2 with n

n 3n2 + 2n + 5 4n2

1 10 4

2 21 16

3 38 36

4 61 64

5 90 100

6 125 144

7 166 196

8 213 256

for n ≥4, 4n2
becomes greater
than 3n2 + 2n + 5

Illustration 2.4	 Find big Oh notation for g(n) = 3 2 52× + × +n n .

Solution As per the definition of ‘O’ notation, the function f(n) such that

c f n n n n n1
2

03 2 5× ≥ × + × + ≥() ,

will be the O(g(n)).
It may be noted that 3 2 5 42 2

0× + × + ≤ × ≥n n n n n, 3 2 5 42 2
0× + × + ≤ × ≥n n n n n, . Table 2.6 shows the values of

3 2 52× + × +n n and 4 × n2. Hence, for ∀ ≥n 4, the above inequality holds.

Therefore,	 3 2 52 2× + × + =n n O n()

Table 2.5  Variation of 3n2 + 2n + 5
and 2n2 with n

n 3n2 + 2n + 5 2n2

1 10 2

2 21 8

3 38 18

4 61 32

5 90 50

6 125 72

7 166 98

8 213 128

9 266 162

10 325 200

11 390 242

12 461 288

13 538 338

14 621 392

15 710 450

(Contd)

G r o w t h o f F u n c t i o n s   ■  29

Illustration 2.5	 Find theta notation for g(n) = 3 × n2 + 2 × n + 5.

Solution As per the definition of ‘q’ notation, the function f(n) such that

c f n n n c f n n n1
2

2 03 2 5× ≤ × + × + ≤ × ≥() (),

will be the q(g(n)). The above two illustrations confirm the fact that if f(n) = n2, then both

c f n n n n n1
2

03 2 5× ≤ × + × + ≥() ,

3 2 52
2 0× + × + ≤ × ≥n n c f n n n(),

Therefore, 3 2 52 2× + × + =n n nθ ().

Illustration 2.6	 Find omega notation for g(n) = n × logn + 5.

Solution As per the definition of ‘w’ notation, the function f(n) such that

c f n n n n n1 05× ≤ × + ≥() log ,

will be the w(g(n)).
Now, if the value of f(n) = log(n), then the above equation is satisfied. Table 2.7 shows

the variation of the given function, g(n) with f(n). The graph is depicted in Fig. 2.7.

Table 2.7  Variation of nlog(n) + 5 with log(n)

n nlog(n) + 5 log(n)

1 5 0

2 5.60206 0.30103

3 6.431364 0.477121

4 7.40824 0.60206

5 8.49485 0.69897

6 9.668908 0.778151

7 10.91569 0.845098

8 12.22472 0.90309

9 13.58818 0.954243

10 15 1

Table 2.6  (Contd)

n 3n2 + 2n + 5 4n2

9 266 324

10 325 400

11 390 484

12 461 576

13 538 676

14 621 784

15 710 900

30   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

It is evident from the graph that n n n n× + ≥ ≥log log ,5 1. Therefore,
ω(log) logn n n× + =5 .

Illustration 2.7	 Find ‘O notation’ for g(n) = nlog n + 5.

Solution As per the definition of ‘O’ notation, the function f(n) such that

c f n n n n n1 05× ≥ × + ≥() log ,

will be the O(g(n)).
Now, if the value of f(n) = 2n, then the above equation is satisfied. Table 2.8 shows

the variation of the given function, g(n) with f(n). The graph is depicted in Fig. 2.8.
Since 2 is a constant, therefore, f(n) = n qualifies as O( f(n)).

log(n)

n × log(n) + 5

1
0

5

10

15

20

25

30

35

40

45

3 5 7 9 11 13 15 17 19 21 23

Figure 2.7  Variation of nlog n + 5 and logn with n

Table 2.8  Variation of nlog(n) + 5 and 2n
with n

n nlog(n) + 5 2n

1 5 4

2 5.60206 8

3 6.431364 12

4 7.40824 16

5 8.49485 20

6 9.668908 24

7 10.91569 28

8 12.22472 32

9 13.58818 36

10 15 40

11 16.45532 44

12 17.95017 48

13 19.48126 52

14 21.04579 56

15 22.64137 60

G r o w t h o f F u n c t i o n s   ■  31

It is evident from the graph that n n n× + ≤ ≥log 5 2 , 1n . Therefore, n n O n× + =log ().5

2.3.4  w Notation: Small Omega Notation
The w notation is defined as follows:

f n g n
g n

f nn
() (()), lim

()

()
= =

→∞
ω iff 0

For instance, if f n n() = × +2 3, then g(n) = 1, since limn n→∞ × +
=

1

2 3
0.

In most of the cases, the degree of g(n) is one less than f(n). However, the premise
does not always hold good.

If the value of f n n n() ,= × + × +2 3 72 then g(n) would be n, which has degree one
less than f(n). However, if f(n) = log n, then g(n) = 1.

2.3.5  o Notation: Small oh Notation

The o notation is defined as follows:

f n g n
f n

g nn
() (()), lim

()

()
= =

→∞
o iff 0

For instance, if f n n() = × +2 3, then g(n) = n2, since lim .n

n

n→∞

× +
=

2 3
0

2

It may be noted that, in most of the cases, the degree of g(n) is one more than f(n). If
the value is f n n n() = × + × +2 3 72 , then g(n) would be n3, which has degree one more
than f (n).

2.3.6  Comparison of Functions
It was stated earlier that 2n surpasses any other function. However, the statement is
not true for all the values of n. The present section compares the values of n, log n, n2,
n3, and 2n. The values are given in Table 2.9 and the corresponding graph is shown in
Fig. 2.9.

2n

nlog(n) + 5

120

100

80

60

40

20

0
1 3 5 7 9 11 13 15 17 19 21 23

Figure 2.8  Variation of nlogn + 5 and 2n with n

32   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Note that 2n is always greater than any function, for larger values of n. It may be
noted that the lines depicting 2n and n seem to overlapp because of the scale of y-axis.
The students are advised to plot the values of n and 2n for smaller scale.

2.4  PROPERTIES OF ASYMPTOTIC COMPARISONS

The first property that is being discussed is reflexivity. Reflexivity, in general, is defined as

f a a f x a() , ()= where is a function and belongs to its domainn.

1
0

5000

10000

15000

20000

25000

30000

35000

2 3 4 5 6 7 8 9 10 11 12 13 14 15

log(n)

n

n × n

n × n × n

Figure 2.9  Variation of various functions with n

Table 2.9 C omparison of functions
Log n n n2 n3 2n

0 1 1 1 2

0.30103 2 4 8 4

0.477121 3 9 27 8

0.60206 4 16 64 16

0.69897 5 25 125 32

0.778151 6 36 216 64

0.845098 7 49 343 128

0.90309 8 64 512 256

0.954243 9 81 729 512

1 10 100 1000 1024

1.041393 11 121 1331 2048

1.079181 12 144 1728 4096

1.113943 13 169 2197 8192

1.146128 14 196 2744 16384

1.176091 15 225 3375 32768

G r o w t h o f F u n c t i o n s   ■  33

In the case of asymptotic notations, the reflexivity is defined as follows:

and	

f n f n

f n O f n

f n f n

() (())

() (())

() (())

=
=
=

Ω

θ

�

The symmetry property in general is defined as follows:
For a function f x y f a b f b a(,), (,) (,).=
In the case of asymptotic functions, symmetry can be stated as f n g n fg n f n() (()) () (()).= =θ θif

g n f n() (()).= θ However, as per the definitions of O and Ω, if  f(n) = O(g(n)), then
g(n) = Ω(f(n)). This property is called transpose symmetry.

The transpose symmetry is also valid for o and w, that is, if then f n o g n g n f n() (()), () (()).= = ω
if then f n o g n g n f n() (()), () (()).= = ω The transitivity, in general, is defined as

f a g b g b c f a c() () () , ()= = =and then

In the case of asymptotic notations, the following relations hold:

f n g n g n j n f n j n

f n O g n

() (()) () (()), (())

() (())

= = =
=

θ θ θand then ()

annd then ()

and)

g n O j n f n O j n

f n g n g n j n

() (()), (())

() (()) ((()

= =
= Ω = Ω)), (())

() (()) ((()), (

then ()

and) then ()

f n j n

f n o g n g n o j n f n o

=
= = =

Ω
jj n

f n g n g n j n f n j n

())

() (()) ((()), (())= = =ω ω ωand) then ()

However, it may be stated at this point that trichotomy does not hold in the case of
asymptotic notations.

2.5  THEOREMS RELATED TO ASYMPTOTIC NOTATIONS

This section presents some basic theorems related to the asymptotic notations intro-
duced in the earlier sections. The theorem proofing, in the case of asymptotic func-
tions, requires the understanding of basic definitions. Theorem 2.1 has been proved. The
proofs of Theorems 2.2 and 2.3 are left as an exercise for the readers.

Theorem 2.1	 If f n O g n f n g n f n g n() (()) () (()), ((= =and then) = ()).Ω θ
Proof  If f n O g n() (()),= then there exists c1 such that

f n c g n() (())≤ 1

Moreover, f n g n() (()),= Ω therefore, there exists c2 such that

f n c g n() ()≥ 2

34 ■ A lg o r i t h m s : D e s i g n A n D A n A ly s i s

 Combining the above two results it may be stated that

 c g n f n c g n1 2× ≤ ≤ ×() () ()

 which means that f n g n() (())= θ .

 The above theorem can be understood with the help of the following example. Let
 f n c x c x c xn n

n() ,= + + +−
1 2

1 0� then

 f n O xn() ()=

 also

 f n g n() (())= Ω

 therefore

 f n g n() (())= θ

 Theorem 2.2 If f (n) and g (n) are two non-negative functions, then

 max((), ()) (() ())f n g n f n g n= +θ

 Theorem 2.3 If f (n) and g (n) are two non-negative functions, then

 max((), ()) (() ())f n g n O f n g n= +

 2.6 CONCLUSION

 This chapter introduces the concept of asymptotic notations. It would help in determin-
ing the space and time complexity of the algorithms that follow. The chapter is the basis
of the rest of the chapters. The knowledge of basic sequences and logarithms is also
necessary in order to handle diffi cult mathematical tasks. The chapter, therefore, throws
some light on the basic mathematical concepts as well. There are fi ve basic asymptotic
functions, each of which has been defi ned in Section 2.3. The properties of these func-
tions have been dealt with in Section 2.4. It is highly recommended that the reader
strives to fi nd all the asymptotic notations of as many functions as he/she can.

 Points to Remember

 • The big Oh notation is used when the upper bound of a polynomial is to be found.

 • The omega notation is used when the lower bound of a polynomial is to be found.

 • The theta notation is used when the bounds of a polynomial are to be found.

 • f n f n() (())= Ω

g r o w t h o f f u n c t i o n s ■ 35

 Arithmetic progression An arithmetic progression (AP) is one in which the difference
between any two terms is constant .

 Geometric progression A geometric progression (gP) is one in which the ratio of any two
terms is constant .

 O notation f n O g n f n C g n n n C n() (()), () (), , ,= ≤ × ≥if and0 0f n O g n f n C g n n n C n() (()), () (), , ,= ≤ × ≥if and0 0 , are constants .

 o notation f n g n
f n
g nn() (()),

()
()

= =→∞ω iff lim 0 .

ΩΩ notation f n g n f n C g n n n C n C n() (()), () (), , ,= ≥ × ≥Ω if and and0 0 0 are constants .
 p notation f n g n c n n C n() (()), () () (), ,= ≤ ≤ ≥θ if and1 2 0 0g n f n c g n are constants .

 w notation f n g n
g n
f nn() (()),

()
()

= =→∞ω iff lim 0 .

 KEY TERMS

 • f n O f n() (())= and f n f n() (())=θ

 • If f n O g n f n g n f n g n() (() () ((), () (()).= = =and thenΩ θ

 • If f (n) and g (n) are two non-negative functions, then max((), ()) (() ())f n g n f n g n= +θ

 • If f (n) and g (n) are two non-negative functions, then max((), ()) (() ())f n g n O f n g n= +

 • A θ (1) algorithm is better than θ (n), which in turn is better than θ (n 2) and so on. same is
the case with O and W.

 • A θ (n k) algorithm is better than θ (k n)

 EXERCISES

 I. Multiple Choice Questions
 1. If f n n() = × +2 5 , then f (n) is

 (a) O (n)
 (b) O (n 2)

 (c) O (n 3)
 (d) All of the above

 2. If f n n() = × +4 3 , then f(n) is
 (a) O (n)
 (b) O (1)

 (c) O (log n)
 (d) All of the above

 3. If f n n() = × +3 7 , then f(n) is
 (a) W(n)
 (b) W(n 2)

 (c) W(n 3)
 (d) All of the above

 4. If f n n() = × +3 7 , then f(n) is
 (a) W(n)
 (b) W(log n)

 (c) W(1)
 (d) All of the above

36   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 5.	 If f n n n() = × + × +2 5 32 , then O(n)
(a)	 O(n)
(b)	 O(n2)

(c)	 O(n3)
(d)	 All of the above

	 6.	 If f n n n() = × + × +2 5 32 , then O(n)

(a)	 O(n)
(b)	 O(1)

(c)	 O(log n)
(d)	 None of the above

	 7.	 If f n n n() log= × + +3 7 3, then f(n) is

(a)	 Ω(n)
(b)	 Ω(n2)

(c)	 Ω(log n)
(d)	 All of the above

	 8.	 If f n n n() log= × + +3 7 3, then f(n) is

(a)	 O(n)
(b)	 O(log n)

(c)	 Ω(1)
(d)	 All of the above

	 9.	 If f n n n() log= × + × +3 7 2 3, then f(n) is

(a)	 Ω(2n)
(b)	 Ω(n2)

(c)	 Ω(log n)
(d)	 All of the above

10.	 If f n n n() log= × + +3 7 3, then f(n) is

(a)	 O(2n)
(b)	 O(log n)

(c)	 O(n)
(d)	 All of the above

II.  Review Questions
	 1.	 Explain the big Oh notation.
	 2.	 Explain the significance of the omega notation.
	 3.	 Explain the importance of the theta notation.
	 4.	 What is the importance of the study of growth of functions?
	 5.	 Why do we need to know the maximum and minimum amount of resources required

by an algorithm to run?

III.  Numerical Problems
	 1.	 Find big Oh notation for the following:

(a)	 f n n() = × +3 2

(b)	 f n n n() = × + × +3 5 42

(c)	 f n n n() = + × +2 3 1

(d)	 f n n n() = × + × +100 91 40002

(e)	 f n n n n() = × + × + × +3 2 5 23 2

(f)	 f n n n n() = × + × + × +3 2198 55 273 2

G r o w t h o f F u n c t i o n s   ■  37

(g)	 f n n n n() = × + × + × +3 2 5 24 3

(h)	 f n n n n() = × + × + × +2 2 87 1933 20

(i)	 f n n n nn() = + × + × + × +2 3 2 5 23 2

(j)	 f n n n

n

n n() = + + × + ×
+ × +

2 2 3 2

5 2

3 3 2

(k)	 f n n n n() log= × + × + × +3 2 5 22

f n n() log= × +3 2

	 2.	 Find theta notation for the following:

(a)	 f n n() = × +5 2

(b)	 f n n n() = × + × +2 4 32

(c)	 f n n n() = + × +2 7 9

(d)	 f n n n() = × + × +10 191 42962

(e)	 f n n n n() = × + × + × +6 12 57 233 2

(f)	 f n n n n() = × + × + × +3 19 50 213 2

(g)	 f n n n n() = × + × + × +30 2871 52 24 3

(h)	 f n n n n() = × + × + × +21 12 8 11933 20

(i)	 f n n n

n

n() = + × + ×
+ × +

2 90 22

25 26

3 2

(j)	 f n n n

n

n n()= + + × + ×
+ × +

2 2 321 21212

5113 24

3 3 2

(k)	 f n n n n() log= × + × + ×
+

3 234 523

22324

2

(l )	 f n n() . log= × +0 3 23112

	 3.	 Find omega notation for the following:

(a)	 f n n() = × +5 2

(b)	 f n n n() = × + × +4 3 52

(c)	 f n n n() = + × +2 237 9345

(d)	 f n n n() = × + × +1345 1435 42452

(e)	 f n n n

n

()= × + ×
+ × +

643 14352

5437 236

3 2

38   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

(f)	 f n n n n() = × + × + ×
+

343 1459 50

2167

3 2

(g)	 f n n n

n

() = × + ×
+ × +

30 2871

52 2567

4 3

(h)	 f n n n n() = × + × + × +21 152 65 933 20

(i)	 f n n n

n

n() = + × + ×
+ × +

2 90 22567

2565 4

3 2

(j)	 f n n n

n

n n() = + + × + ×
+ × +

2 2 3 2

3 4

3 3 2

(k)	 f n n n n() log= × + × + × +3 3 2 42

(l)	 f n n() log= × +3 4

4.	 Prove the following:

(a)	 f n n O n() ()= × + =5 2 2

(b)	 f n n O n() ()= × + =5 2

(c)	 f n n n n() ()= + × =2 2237 θ

(d)	 f n n O n() ()= × + =14 42

(e)	 f n n n n O n() ()= × + × + × + =6 4 5 63 2

(f)	 f n n n n n() ()= × + × + × =3 2 13 2 3W

(g)	 f n n n n O n() ()= × + × + × + =30 2871 52 25674 3 4

(h)	 f n n n n O n() ()= × + × + × + =30 2871 52 25674 3 5

(i)	 f n n n On n() ()= + × + × + =2 7 6 5 22

(j)	 f n On n n n() ()= + + =2 2 2 23 3

(k)	 f n n n O n() log (log)= + × + =2 4

(l)	 f n n n O n() log ()= × + =3

(m)	O n O n() (log)>

(n)	 O O nn() ()2 5>
5.	 Arithmetic Progression

(a)	 Find the Tn term for the following APs:

(i)	 a d n= =5 5 17, and = .

(ii)	 a d n= =2

3

7

3
18, and = .

G r o w t h o f F u n c t i o n s   ■  39

(iii)	 a d n= + = −2 3 2 3 20, , and = .

(iv)	 a = 2 + 3i, d = 2 – 3i, and n = 23, where i = −1.

(b)	In the above question, consider Tn to be the last term, find the 5th term from the
end in each case.

(c)	 Find the number of terms in the following sequences:
(i)	 213, 250, …, 546
(ii)	 6580, 6817, …, 8713
(iii)	 i, 1, …, 10

(iv)	
1

7

3

7
12, , ...,

(d)	 In question 20, consider Tn to be the last term, find the sum of the terms in each case.
6.	 Geometric Progression

(a)	 Find the Tn term for the following GPs:

(i)	 a r n= = =5 3 17, , and .

(ii)	 a r n= = =2

3

1

3
18, , and .

(iii)	 a r n= + = − =2 3 2 3 20, , .and

(iv)	 a = 2 + 3i, r = 1 – 3i, and n = 23, where i = −1.

(b)	In the above question, consider Tn to be the last term, find the 5th term from the
end in each case.

(c)	 Find the number of terms in the following sequences:
(i)	 26, 69, …, 16767
(ii)	 36, 216, …, 1679616
(iii)	 0.21, 1.89, …, 111602.6
(iv)	 3.124, 9.372, …, 2277.396

(d)	In question c, consider Tn to be the last term, find the sum of the terms in each
case.

7.	 Miscellaneous Problems
(a)	 If log 2 = 0.3010 and log 5 = 0.6991, then find the values of the logarithm for the

following numbers:
(i)	 2560
(ii)	 320,000
(iii)	 64,000
(iv)	 2560
(v)	 1289

(vi)	 10,000
(vii)	 5000
(viii)	 16,000
(ix)	 64
(x)	 50

8.	 Is an+1 = O(an) where a is an integer?
9.	 Is the statement ‘The running time of an algorithm is maximum Ω(n2)’ meaningful?

40 ■ A lg o r i t h m s : D e s i g n A n D A n A ly s i s

 10. What is O f n f n(()) (())?∩ W
 11. Can you compare any two functions using asymptotic notations?
 12. Which of the two is bigger as the value of n approaches ∞ ?

 n n nor cos

 13. Which of the two is bigger as the value of n approaches ∞ ?

 n cc nlog logor

 14. If f (n) = O(f (n) 2)?
 15. Is f (n) = W(f (n /3)?
 16. If f (n) = O(g (n)), then g (n) = O(f (n))?
 17. Find the O notation for log(n !).

 Answers to MCQs

 1. (d)
 2. (a)

 3. (a)
 4. (d)

 5. (b), (c)
 6. (d)

 7. (c)
 8. (a)

 9. (d)
 10. (a) , (c)

 Recursion

 C H A P T E R 3

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the importance and meaning of recursion
 • Appreciate the importance of stacks in recursion
 • Understand the rabbit problem
 • Understand various methods for solving a recursive equation
 • Apply substitution to solve the recursive equation
 • Appreciate the concept of generating functions and their application in solving recur-

sive equations

3.1 INTRODUCTION

 Recursion means calling a function in itself. If a function invokes itself, then the phe-
nomenon is referred to as recursion . However, in order to generate an answer, a termi-
nating condition is must. In order to understand the concept, let us take an example. If
the factorial of a number is to be calculated using the function fac(n) defi ned as follows:

 fac fac()()n n n= −× 1

 and fac(1) = 1, and if the value of n is 5, then the process of calculating fac(5) can be
explained with the help of Fig. 3.1 . fac(1) is calculated and its value is used to calculate

fac(5) = 5 × fac(4)

fac(4) = 4 × fac(3)

fac(3) = 3 × fac(2)

fac(2) = 2 × fac(1)

fac(1) = 1

Last In First Out

 Figure 3.1 calculation of factorial of 5

42   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

fac(2), which in turn is used for calculating fac(3). fac(3) helps to calculate fac(4) and
finally, fac(4) is used to calculate fac(5).

As is evident from Fig. 3.1, recursion uses the principle of last in first out and hence
requires a stack. One can also see that had there been no fac(1), the evaluation would not
have been possible. This was the reason for stating that recursion requires a terminating
condition also.

3.2  RABBIT PROBLEM

The rabbit problem is one of the most famous problems in recursion. The problem is
the source of Fibonacci series. The problem goes as follows. A newborn rabbit does not
breed for the first 2 months. After which, each pair breeds a pair of rabbits each month.
If initially there is a pair of rabbit, for the first 2 months, there will be a single pair, after
which there would be two and three pairs in the next 2 months. However, in the fifth
month, there would be five pairs. This number increases as shown in Fig. 3.2.

First month: 1

Second month: 1

Third month: 2

The first pair breeds
another pair.

Fourth month: 3

The first pair breeds
another pair.

Fifth month: 5

The first pair breeds
another pair. The pair
born in third month
also breeds a pair.

Figure 3.2  The rabbit problem

R e c u r s i o n   ■  43

Interestingly, the sequence of the number of rabbit pairs formed is 1, 1, 2, 3, 5, 8, etc.
Each term of this sequence is the sum of previous two terms. That is any term can be
found by the following formula:

f n f n f n() () ()= − + −1 2

where	 f f() ()1 1 2 1= =and

The above formula is easy to comprehend. It is, however, not that easy to find the explicit
formula for the nth term of the above sequence. Section 3.3 would help us to derive an
explicit formula of a given recursion relation.

3.3  DERIVING AN EXPLICIT FORMULA FROM RECURRENCE FORMULA

Though a recurrence formula gives an idea of how a particular term is related to the pre-
vious or the following term, it does not help us to directly find a particular term without
having gone through all the intervening terms. For that, we need an explicit formula.
There are three methods for finding an explicit formula from a recurrence relation. They
are as follows:
•	 Substitution
•	 Generating functions
•	 Tree method
Substitution requires the substitution of a previous instance of the formula in the pre-
sent relation. This method is discussed in Section 3.3.1. Generating functions are dis-
cussed in Section 3.6. The tree method requires finding the solution by determining
the number of inputs processed at each level of the tree. The tree method is discussed
in Section 4.3 of Chapter 4. The choice of the method, however, is a precarious issue.
There is no thumb rule to determine which method to be used for a particular relation.
However, many illustrations have been included in the following sections, which would
help us to develop an insight into the complex process of deriving an explicit formula
for a recurrence relation.

3.3.1  Substitution Method
The solution of a recurrence equation by substitution requires a previous instance of the
formula to be substituted in the given equation. The process is continued till we are able
to reach to the initial condition. Illustration 3.1 gives an example of the method.

Illustration 3.1	 Solve the following recurrence relation by substitution:

a a nn n= × + ≥−2 3 21 ,

a n1 2 2= =,

Solution Since, a a nn n= × + ≥−2 3 21 , , therefore

44   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 a a nn n− −= × + ≥1 22 3 2, 	 (3.1)

Substituting the value of an−1, we get

	 a an n= × × +() +−2 2 3 32() 	 (3.2)

which is same as,	 a an n= × + × +−4 2 3 32

From the given equation, it can be inferred that

	 a an n− −= × +2 32 3 	 (3.3)

By substituting Eq. (3.3) in Eq. (3.2), we get

a an n= × × × + +() +−2 2 2 3 3 33(()) , that is,

a an
r

n r
r= × + × + + +()−

−2 3 1 2 2 1�

or	 a an
r

n r
r= × + × −()−2 3 2 1 	 (3.4)

Putting	 n − r = 2  or  r = (n − 2)

we get	 a an
n n= × + × −()− −2 3 2 12

2
2

Since,	 a2 2=

Therefore,	 an
n n= × + × −()− −2 2 3 2 12 2

This implies,	 an
n n= + × −()− −2 3 2 11 2

or,	 an
n= −−5

2
2 31

Illustration 3.2	 A person wants to make an investment at the rate of 10% compounded
annually. What will be the amount after n years if the initial amount is `10,000?

Solution As per the problem

	 a a an n= ∗ =−1 00 1 10 000. , , 	 (3.5)

Therefore, a an n− −= ∗1 2 0 1. , substituting in Eq. (3.5), we get

	 a an n= × ×−2 0 1 0 1. . 	 (3.6)

Generalizing, we get

	 a an n r
r= ×− 0 1. 	 (3.7)

Putting (n − r) = 1, we get r = n − 1

a a an
n= × =−

0
1

00 1 10 000(.) , ,where

R e c u r s i o n   ■  45

Linear Recurrence Relation

A linear recurrence relation is of the form

	 a k a k a k an n n n= × + × + + ×− − −1 1 2 2 1 1� 	 (3.8)

where k1, k2, k3, etc., are constants.
Examples of linear recurrence relations are as follows:
•	 a a an n= × =−3 11 1, where

•	 a a a a an n n= + = =− −1 2 1 21 1, and

•	 a a a an n n= × + × =− −2 3 21 2 1,

The following equations are not linear:
•	 a n a an n= × =−1 1 1, where

•	 a a a a an n n= + () = =− −1 2

2

1 21 1() , and

•	 a a a an
n

n n= × + × =− −2 3 21 2 1,
Such equations can be solved by the method of generation functions described in the
following discussion. First of all, the characteristic equation of the given relation is
formed. In the characteristic equation formed, the order is the difference between the
highest and the lowest subscripts of the equation.

For example, the equation corresponding to a a an n n= +− −1 2 would be

s s2 1= +
That corresponding to a a a an n n n= + + ×− − −1 2 22 would be

s s s3 2 2= + +

and so on.
The characteristic equation thus formed is solved. Suppose the roots are r1, r2, etc.

(all different), then the solution of the given equation is

a c r c rn
n n= + +1 1 2 2() () �

However, if two of the roots are same (,)= …r r1 2
, then the solution would be

a c rc r c rn
n n= +() + +() () ()1 2 1 2 2 �

In this case, where three roots are same, the solution would be

a c rc r c r c rn
n n= + +() + +() () ()1 2

2
3 1 2 2 �

In the above cases, the values of constants can be found by the initial conditions.
Illustrations 3.3, 3.4, and 3.5 depict the above conditions.

Illustration 3.3	 Find the nth term of Fibonacci series.

Solution The general term of a Fibonacci series can be expressed as a recurrence relation
as follows:

a a a a an n n= + = =− −1 2 1 21 1, , and

46   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The characteristic equation of the above equation would be as follows:

s s2 1= +
Solving, we get

s =
− − ± − − × × −() () ()

()

1 1 4 1 1

2 1

2

which is

	 s =
±1 5

2

So, the solution would be

a c cn

n n

=
+







 +

−







1 2

1 5

2

1 5

2

Putting n = 1 and a1 = 1, we get

an

n n

=










+







 −











−









+ +
1

5

1 5

2

1

5

1 5

2

1 1

3.4  SOLVING LINEAR RECURRENCE EQUATION

A linear recurrence relation of order ‘r’ with constant coefficients is of the form

a c a c a c an n n r n r= + + +− − −1 1 2 2 �

where cr ≠ .0
For example,

an = 3an−1 is a recurrence relation of order 1.
an  = an−1 + an−2 is also a recurrence relation, which depicts the Fibonacci series, of

order 2.
an = an−1 + an−2 + an−3 is a recurrence relation of order 3.

The first step in solving a recursive relation is to form its characteristic equation.
A characteristic equation is a polynomial equation formed by retaining the constants
of the given equation and by replacing with the powers of s as shown in the following
examples. As a matter of fact, the answer depends on the solution of the equation. So, it
does not really make a difference, if one opts for other variables, except for s.

Examples of characteristic equations:
•	 For the equation an = c1an−1

	 The characteristic equation would be s = c1s
0

•	 For the equation a c a c an n n= +− −1 1 2 2

	 The characteristic equation would be s c s c s2
1

1
2

0= +
•	 For the equation a c a c a c an n n n= + +− − −1 1 2 2 3 3

Then characteristic equation would be s c s c s c s3
1

2
2

1
3

0= + +

R e c u r s i o n   ■  47

The next step is to solve the characteristic equation. We must be familiar with the solution
of a quadratic or a cubic equation. The contentious point is, therefore, to be able to find an
from the roots of the characteristic equation. The following rules would help us to do so.

Solving the characteristic equation, we get roots α α α1 2 3, , ,…
•	 If α α α1 2 3, , ,… are all distinct, then the solution is

a c c cn
n n n= + + +1 1 2 2 3 3() () ()α α α �

•	 If two roots a1 and a2 are same, the solution is of the form

a c ncn
n= +()()1 2 1α

•	 If the characteristic equation has 3 roots and all are equal, then

a c nc n cn
n= + +()()1 2

2
3 1α

The following illustrations would help us to understand the above concepts.

Illustration 3.4	 Solve the following recurrence relation:

a a an n n= +− −1 26

a1 = 1, a0 = 2

Solution For a a an n n= +− −1 26 , the characteristic equation would be

s s s2 06= +

By solving, we get	 s s s2 06 0− − =

or	 s s s2 3 2 6 0− + − =
or	 ()()s s− + =3 2 0

Hence	 s = 3, -2

So 	 a c c c cn
n n n n= + = − +1 1 2 2 1 22 3() () () ()α α 	 (3.9)

Putting n = 0 in Eq. (3.9), we get

a c c0 1 2 2= + =

Putting n = 1 in Eq. (3.9), we get

a c c1 1 22 3 1= − + =

i.e.	 c c1 2 2+ = 	 (3.10)

or	 − + =2 3 11 2c c 	 (3.11)

Solving the above two equations, we get c c1 2 1= =

48   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Putting the values in Eq. (3.9), we get

an
n n= − +() ()2 3

Illustration 3.5	 Solve a a a an n n n= − − −− − −6 12 81 2 3

Solution The order of a homogeneous equation is 3, so the characteristic equation is

s s s3 26 12 8= − − −

or	 s s s3 26 12 8 0= + + + = 	 (3.12)

s = −2 satisfies the equation, so (s + 2) is a factor of Eq. (3.12).
Dividing Eq. (3.12) by (s + 2), we get

()()s s s+ + + =2 4 4 02

By solving, we get three identical roots s = -2

Therefore, the answer is

a c nc n cn
n= + + −()()1 2

2
3 2

where c1, c2, and c3 are constants. Here, the values of a0, a1, etc., are not given, therefore,
there is no way to find the values of the constants.

3.5  SOLVING NON-LINEAR RECURRENCE EQUATION

Section 3.4 explored the techniques of solving a linear recurrence equation. This section
takes the concept forward and examines the solution of some special cases of a non-
linear equation. Here, the linear part would be solved in the same way as we described

earlier. However, the non-linear part requires substitution of an
in the given equation (Table 3.1). The general form of the recur-
rence relation is a c a c a c a f nn n n n= + + =− − −1 1 2 2 3 3… (). The value
of f(n) determines what is to be substituted in order to obtain the
total solution.

In the case of an, if the characteristic equation also results in
an, then we multiply the substitution by an till the solution of the
characteristic equation and the substitution becomes different.

Illustration 3.6	 Solve a a a nn n n
n− + = +− −5 6 31 2

Solution The RHS of the given equation is 3n + n and the characteristic equation is

s s2 5 6 0− + =

By solving, we get	 s = 3, 2�

Table 3.1 S olving non-linear
equation using recursion

f(n) an

Cn c n c1 2+

Cn2
c n c n c1

2
2 3+ +

an c1a
n

R e c u r s i o n   ■  49

So,	 a C Cn
n n= +1 23 2

Since 3n is common to both RHS and complementary function, we take the particular
solution as

a nC nCn
n= +1 2 3

Putting an in a a a nn n n
n− + = +− −5 6 31 2 , we get

	 () [() ()]

[() (

nC C nC n C C n C

n C C n

n n
1 2 3 1 2 3

1

1 2

3 5 1 1 3

6 2 2

+ + − − + + −

+ − + + −

−

))]C nn n
3

23 3− = +

So,

C1 = 1/2

C2 = 7/4

C3 = 3

The particular solution, therefore, becomes

a n nn
n= + +1 2 7 4 3 3/ /

Illustration 3.7	 Solve a a a nn n n= + +− −1 2
22 2 .

Solution The given equation can be written as

	 a a a nn n n− − =− −1 2
22 2 	 (3.13)

Since the RHS is 2n2, so let us take

a C n C n Cn = + +1
2

2 3

i.e.,

a C n C n Cn− = − + − +1 1
2

2 31 1() ()

and	 a C n C n Cn− = − + − +2 1
2

2 32 2() ()

Putting in	 a a a nn n n= + +− −1 2
22 2

() (() ()) (() ())C n C n C C n C n C C n C n C1
2

2 3 1
2

2 3 1
2

2 31 1 2 2 2+ + = − + − + + − + − + ++ 2 2n

− + − + − + − =2 10 2 9 5 2 21
2

1 2 1 2 3
2C n n C C C C C n() ()

Comparing the coefficients, we get

− =2 21C

or	 C1 1= −

or	 10 2 01 2C C− =

50   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

C2 5= −

− + − =9 5 2 01 2 3C C C

i.e.,	 C3 8= −

Hence,

a C n C n Cn = + +1
2

2 3

The LHS of Eq. (3.13) is

a a an n n− −− −1 22

The characteristic equation is s s2 2 0− − =

or	 s =
± +1 1 8

2

=
±1 3

2

= 2, –1

i.e.,	 a C Cn
n n= + −1 22 1()

Combining the solution of the characteristic equation and the particular solution, we get

a C C n nn
n n= + − − − −1 2

22 1 5 8()

3.6  GENERATING FUNCTIONS

The third method of solving a recurrence relation is using generating functions. To be
able to solve a recurrence relation via a generating function, let us first of all learn to
form a generating function of a recurrence relation.

An infinite series

a a z a z a z a zn
n

0 1 2
2

3
3+ + + + +�

is called generating function of numeric function (, , , ,)a a a an0 1 2 … .

Case 1  If (, ,)a a a an0 1 2 1= = = =…
Then, the generating function becomes

1 2 3+ + + + +z z z zn� �

Please note that the above series is a GP and the sum =
−

=
−

a

r z1

1

1

Hence, A
zz() ()

=
−
1

1

R e c u r s i o n   ■  51

Case 2  For 2 2 2 2 20 1 2 2 3 3+ + + + +z z z zn n� �

A
zz() ()

=
−
1

1 2
Generalization:

For	 a a z a z a z a zn n0 1 2 2 3 3+ + + + +� �

A
azz() ()

=
−
1

1
The following illustrations explore the concept and would help the reader to form a
generating function for a recurrence relation.

Illustration 3.8	 Find generating function for

an = 2.3n + 4 5. n + 6.8n

Solution Since for an, the generating function is

1

1()− az

Therefore, for 3n it becomes 1

1 3()− z

for 5n it becomes 1

1 5()− z
, and

for 8n it becomes 1

1 8()− z
The generating function for the given equation is

A
z z zz() () () ()

=
−

+
−

+
−

2
1

1 3
4

1

1 5
6

1

1 8

Illustration 3.9	 Find generating function for

an
n= +3 4

Solution

an
n= +3 4

= ⋅3 34n

= ⋅3 81n

The generating function for	 3
1

1 3
n

z
=

−
Therefore,

A
zz() =

−
81

1 3

52   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Having seen the formation of a generating function for a recurrence relation, let us now
see the method for finding the solution. In the following illustration, the value of A(z) is
given and the recurrence relation is to be solved.

Illustration 3.10	 Find the numeric function corresponding to

A
z

z zz() ()()
=

− +
3

1 1 2

Solution First of all, the partial fraction for the given function is found

3

1 1 2 1 1 2

z

z z

A

z

B

z()() () ()− +
=

−
+

+

This is followed by the evaluation of the constants, in this case A and B.

A =
∗

+ ∗
= =

3 1

1 2 1

3

3
1

Therefore, A = 1
Similarly,

	
B =

∗ −







− −







=

−

= −
3

1
2

1
1
2

3
2
3
2

1

Hence, B = -1

A(z) can therefore be written as A
z zz() () ()

.=
−

−
+

1

1

1

1 2

The last step requires substituting the solution. Table 3.2 gives
the values for an for various generating functions. On substitut-
ing the appropriate value, the value of an can be obtained,

an
n n= − −() ()1 2

If a a a a an= …(, , , ,)0 1 2 and b b b b bn= (, , ,),0 1 2 … be two numeric
functions then the corresponding generating functions are

A z a a z a z() = + +0 1 2
2�

B z b b z b zz() = + +1
1

2
2�

The convolution C = a*b is defined as

a b a b a b a bn n n n0 1 1 2 2 0+ + +− − …

Generating function of convolution C is the product of generat-
ing functions of the two sequences,

Table 3.2 G enerating
functions

Sequence Generating function

1 1

1()− z

an
1

1()− az

(n + 1) 1

1 2()− z

N z

z()1 2−

1

n!

ez

n2
z z

z

()

()

1

1 3

+
−

an f(z)

an + 1 f z a

z

()

()

− 0

an + 2 f z a a

z
z()

()

− −
2

R e c u r s i o n   ■  53

Hence,	 C z A z B z() (), ()=

Now let us look at how to solve the recurrence relation using Table 3.2.

Illustration 3.11	 Solve a a nn n= + ≥−3 1 21 ,

a a0 10 1= =

Using generating equation.

Solution Putting n = n + 1 in the above equation, we get

a an n+ = +1 3 1

i.e.	
f z a

z
f z

z

()

()
()

()

−
= +

−
0 3

1

1

or	 f z
z z

()
()

1
3

1

1
−






 =

−

or	 f z
z

z z
()

()

1 3 1

1

−





 =

−

i.e.	 f z
z

z z
()

()()
=

− −1 1 3

Now by applying the partial fraction, we get

z

()() () ()1 1 3 1 1 3− −
=

−
+

−z z

A

z

B

z

A =
−

= −
1

1 3

1

2()

Similarly, B will be calculated as

B =
−

=
1 3

1 1 3

1

2

/

(/) ()

f z
z z

()
/

()

/

()
=

−
−

−
1 2

1 3

1 2

1

Hence, an
n n n= − = −

1

2
3

1

2
1

1

2
3

1

2

Illustration 3.12	 Solve a a an n n= +− −1 2 (i.e., find the explicit formulae for the Fibonacci
sequence)

a a0 11 1= =,

using generating equation.

54 ■ A lg o r i t h m s : D e s i g n A n D A n A ly s i s

 Solution Since a a an n n= +− −1 2
 By p utting n = n + 2 , we get

 a a an n n+ += +2 1

f z a a z

z

f z a

z
f z

() ()
()

− −
=

−
+0 1

2
0

 f z z z
z z z

()(/)1 1 1
1 1 12

2
− − = − + +/

 f z
z z

z
() =

− −1 2

2

 Therefore, f z
z z

() =
− −

1

1 2

 By applying partial fraction , we get

1 5 1 5 2

1 1 5 2

1 5 1 5 2

1 1 5 2

/ / /

/

/ / /

/

()()
− +()

−
−() −()

− −()z z

 So, the fi nal answer is

 1 5 1 5 2 1 5 1 5 2
1 1

/ / / / ()() +() − () −() =
+ +n n

nO φ

where f is gold number.

 3.7 CONCLUSION

 The chapter explores the methods of solving a recurrence relation. The method of sub-
stitution, and that using generating functions have been examined in the chapter. These
topics have also been exemplifi ed. The topics will help the reader to analyse the back-
tracking algorithms and those using recursion effectively. The topics, though mathemati-
cal in nature, are essential for analysing algorithms also.

 Points to Remember

 • Recursion uses the principle of last in fi rst out and hence requires a stack.

 • In the Fibonacci series, the n th term can be found by taking the sum of the (n − 1)th and
(n − 2)th term.

 • Substitution, generating functions, and tree method are some of the methods to fi nd the
explicit formula for a recurrence equation.

 • For the equation a c an n= −1 1, the characteristic equation would be s c s= 1
0 ; for the equation

a c a c an n n= +− −1 1 2 2 , the characteristic equation would be s c s c s2
1

1
2

0= + ; for the equation

r e c u r s i o n ■ 55

 a c a c a c an n n n= + +− − −1 1 2 2 3 3 , the characteristic equation would be s c s c s c s3
1

2
2

1
3

0= + + and
so on.

 • If the roots of a characteristic equation are α α1 2, , ,… then

 (a) If α α α1 2 3, , ,… are all distinct, then the solution is

 a c c cn
n n n= + + +1 1 2 2 3 3(()) (()) (())α α α �

 (b) If two roots a1 and a2 are same, the solution is of the form

 a c ncn
n= +()()1 2 1α

 (c) If the characteristic equation has three roots and all are equal then the solution is

 a c nc n cn
n= + +()1 2

2
3 α

 KEY TERM

 Recursion It means calling a function in itself. If a function invokes itself, then the phenom-
enon is referred to as recursion.

 I. Multiple Choice Questions
 1. Which of the following is necessary to prevent stack overfl ow in recursion?

 (a) An initial condition
 (b) A recursion relation

 (c) Range of variables
 (d) None of the above

 2. The following code evaluates the factorial of a number (in C language)
 int fact(int x)
 {
 if(x==1)
 return 1;
 else
 return (x*fac(x-1));
 }

 For which of the following the answer would not be correct
 (a) 2 (b) 9 (c) 3 (d) 1

 3. Which of the following cannot be solved by recursion?
 (a) Fibonacci series
 (b) Factorial of a number
 (c) Power function
 (d) All of the above can be solved by recursion

 4. Which of the following strategies uses recursion extensively?
 (a) Backtracking
 (b) Greedy

 (c) Both
 (d) None of the above

 EXERCISES

56   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 5.	 Which of the following is not an example of a linear recursive equation?
(a)	 a an n= × −7 1 , where a1 1=

(b)	 a a a a an n n= × + × = =− −2 3 1 11 2 1 2, and

(c)	 a a a an n n= × + × =− −2 3 21 2 1,

(d)	 a n an n= × −1 , where a1 1=

	 6.	 Which of the following is an example of a linear recursive equation?
(a)	 a n an n= × −3 1 , where a1 1=

(b)	 a a a a an n n= + = =− −1 2
7

1 21 1(()) , and ,

(c)	 a a a an
n

n n= × + × =− −6 3 21 2 1,

(d)	 a an n= −7 1, where a1 1=

	 7.	 Which of the following methods can be used to solve a linear recursive equation?
(a)	 Substitution
(b)	 Generating function

(c)	 Master theorem
(d)	 All of the above

	 8.	 Which of the following algorithms does not generally use recursion?
(a)	 Depth first search
(b)	 Breadth first search

(c)	 A*
(d)	 Genetic algorithms

	 9.	 Which of the following is a general error while implementing recursion?
(a)	 Stack overflow
(b)	 Queue underflow

(c)	 Underflow–overflow
(d)	 None of the above

10.	 Which of the following can be used to solve the Tower of Hanoi problem?
(a)	 Recursion
(b)	 Divide and Conquer

(c)	 Procedural
(d)	 None of the above

II.	 Review Questions
	 1.	 What is recursion? What are the conditions for a recursive function to run?
	 2.	 Write a recursive function to implement the following:

(a)	 Factorial of a number
(b)	 Power function

(c)	 Fibonacci series
(d)	 Reversing a number

III.	 Numerical Problems:
	 1.	 Solve the following equations with the initial conditions:

(a)	 an = 2an−1,  n ≥ 1,  a0 = 3

(b)	 an = 3an−2,  n ≥ 2,  a0 = 2, a1 = 6

(c)	 an= an−1 + 3an − 2,   n ≥ 2,  a0 = 3, a1 = 6

(d)	 an = an−2,  n ≥ 2,  a0 = 2, a1 = −1

(e)	 an = − 6an−1 − 9 an − 2,  n ≥ 2,  a0 = 3, a1 = −3

(f)	 an + 2 = − 4an+1 + 5an n ≥ 2 a0 = 2, a1 = 8

(g)	 an = 6an−1 −12an−2 + 8an−3 a0 = −5, a1 = 4, a2 = 88

r e c u r s i o n ■ 57

 2. Find the general formula for solution of linear homogeneous recurrence relation.
The characteristic equation has the roots: −1, −1, −1, 2, 2, 5, 5, 7.

 3. If a n = 2 a n −1 +2 n , prove that a n = n 2 n using backtracking.
 4. Calculate the previous problem using generating functions.
 5. Find all the solutions of a n = 2 a n −1 +2 n 2 .
 6. In Numerical Problem 5, if a 1 = 2, fi nd the solution.
 7. Solve the simultaneous equations:

 a n = 2 a n −1 + 3 b n−1

 b n = a n −1 + 2 b n−1

 a 0 = 0; b 0 = 2

 8. Suppose there are two rabbits, initially the number of rabbits double each month
by natural reproduction and some rabbits are either added or removed each month.
Construct a recurrence relation for the number of rabbits at the start of n th month
given that during each month extra 10 rabbits are put on the island.

 9. In Numerical Problem 8, fi nd the number of rabbits at the start of n th month.

 1. (a)
 2. (b)

 3. (d)
 4. (a)

 5. (d)
 6. (d)

 7. (d)
 8. (d)

 9. (a)
 10. (a)

 Answers to MCQs

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the method of fi nding the complexity of a recursive algorithm
 • Appreciate the importance of the tree method in accomplishing the task
 • Explain the basic proving techniques
 • Understand Amortized Analysis
 • Appreciate the importance of probabilistic analysis

4.1 INTRODUCTION

 The second chapter introduced the concept of complexity, where the methods of fi nding
the complexity of non-recursive algorithms were examined. The notations O, omega,
and theta were also explained in Chapter 2. Though the chapter helps to fi nd the com-
plexity of simple algorithms, it would not be possible to fi nd the complexity of recursive
algorithms using those techniques. This chapter discusses the concept of complexity of
recursive algorithms and presents various ways of fi nding it. The chapter briefl y revisits
the techniques of proving a premise. Section 4.4 discusses the method of contradiction
and briefl y explains the concept of proof by mathematical induction. The proving tech-
niques would be helpful in the following chapters. The chapter also discusses Amortized
Analysis and probabilistic analysis. There is another reason for inducting these topics
in this book. The design of algorithms requires mathematical aptitude and at times,
the concepts of discrete mathematics. If one wants to become a programmer, then it is
imperative for him/her to understand and be able to design algorithms. In order to do so,
one must have a basic, if not involved, knowledge of mathematics. However, for a basic
course, this chapter may be skipped.

 4.2 COMPLEXITY OF RECURSIVE ALGORITHMS

 The following section explains the technique of fi nding the complexity of recursive
algorithms. The methods to solve a recursive equation would help us to achieve the task.

 Analysis of Algorithms

 C H A P T E R 4

A n a ly s i s o f A lg o r i t h m s   ■  59

The process requires the designing of a recursive equation relating the previous instances
of the function with the present one and then solving the equation with substitution, tree
method or Master method as the case may be.

Illustration 4.1 	 The factorial function can be related to its previous instance by the fol-
lowing function as the complexity of T(n) depends on that of T(n − 1).

The factorial of a number n is the product of n and the factorial of the number
preceding it,

T n T n T() () ()= − +1 1

where T(n) is the complexity of the algorithm having input ‘n’, and T(n − 1) is the com-
plexity of the algorithm having input ‘n − 1’.

Solution The above equation can easily be solved using the method of substitution.
The equation, in the next step, becomes T(n) = (T(n − 2) + T(1)) + T(1),

i.e.,	 T n T n T() () ()= − +2 2 1
On further substitution, we get

T n T n n n T() (()) () ()= − − + −1 1 1×

= n × T(1) = O(n)
Listing 1

factorial(n)
 {
 if(n==1)
 {
 return 1;
 }
 else
 {
 return (n*factorial(n-1));
 }
 }

Complexity: T(n) = O(n).

Illustration 4.2	 Fibonacci series arises out of the rabbit problem, as discussed in
Chapter 3 (Section 3.2). A Fibonacci term is the sum of the previous two Fibonacci
terms (Listing 2). The complexity of a Fibonacci sequence can also be calculated using
the method discussed in Illustration 4.1.

Solution The recursive equation of the Fibonacci sequence is as follows:
T n T n T n() () ()= − + −1 2 , T(1) = 1 and T(2) = 1

The solution of the above equation is

1

5
1

5

2

1

5
1

5

2

1 1









 +








 −









 −










+ +n n

60   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Listing 2

Fib(int n)
 {
 if(n==1)
 return 1;
 else if (n==2)
 return 1;
 else
 return (fib(n-1) + fib(n-2));
 }

Illustration 4.3 	 Tower of Hanoi problem has been discussed in Annexure. The num-
ber of moves in the nth iteration of the problem is one more than twice the number of
moves in the previous instance.

Solution The recursive equation of the problem is

T n T n n() = −2 1× () +1, >1

T n n() ,= =1 1

The characteristic equation of the above equation is s − 2 = 0. The solution of this equa-
tion is s = 2, i.e., s = c(2)n. On putting the initial values, the value of c comes out to be 1.

For the particular solution, put T(n) = c in the given equation, thus c = 2c + 1, so the
value of c comes out to be −1. Therefore, the complete solution is T n On n() ()= − =2 1 2 .

4.3  FINDING COMPLEXITY BY TREE METHOD

The following discussion analyses the tree method of finding the complexity of a given
algorithm. The tree method can be used in the case of recursive algorithms whose input
size in various calls can be represented in a hierarchical structure, with the node represent-
ing the initial call and the sub-trees representing the trees formed in the subsequent calls.

The concept can be understood by taking the example of merge sort and the average
case of quick sort. The algorithms will be discussed in Chapter 9. However, the point, as
far as complexity is concerned, is that in both the cases, after each call, the number of
items to be sorted gets reduced by half. The first call will split the array having n elements
into two arrays having n/2 elements each. In the next step, there would be four arrays of
(n/4) elements. At the end of the divide step, there would be just one element (Fig. 4.1).

At the terminating condition,
n

i2
1= , that is, i n= log2 . The complexity of the two

algorithms is, therefore, O n(log()). The tree method can also be used to solve the recur-
sive algorithm having recursive equation T n T n() = −() +11 . Such cases will be encoun-
tered in the worst case of quick sort, as discussed in Chapter 9.

A n a ly s i s o f A lg o r i t h m s   ■  61

4.4  PROVING TECHNIQUES

The discussion that follows explores some of the most basic methods of proving. These are
proofs by contradiction and that by mathematical induction. The proof by contradiction can
be used in the cases like proving a particular number is not rational. Mathematical induction
is generally used in the cases wherein a mathematical equation or a premise is given. The
concepts have been explained by taking easy examples. So even if the reader is not from a
mathematical background, it would not be too difficult for him to understand the concepts.

4.4.1  Proof by Contradiction
Proof by contradiction requires starting from the opposite of what is to be proved.
By proving the statement that you started with as incorrect and hence stating that since
what we thought was incorrect, the intended statement was correct. In order to under-
stand the concept, let us consider the following situation. Hari was fond of Indian classi-
cal music. He had a good ear for the complexities of distinct compositions and the depth
of lyrics. A person called ‘Funny Ting’ came into picture and changed the rules of the
game. He started singing songs from a book called ‘nursery rhymes by those who never
went to school, that too on music lifted from the Internet albums. Hari’s annoyance was
reflected from his blogs, and his Facebook posts. Almost everyone in the country seemed
to love Mr Ting, probably, due to his previous legendary works (before coming to the
mainstream music industry). One day, Mr Ting is found dead in his house. Investigators
found that someone, mercilessly, forced him to listen to his own songs repeatedly.
The investigators assumed that it could be Hari, for obvious reasons. The case goes to

Tip: The complexity of the recursive equation of the type () ()n aT
n
b

f n= 





 + can be found

by Master method as discussed in Chapter 9.

n
4

n
4

n
8

n
8

n
8

n
8

n
2i

n
2

n
4

n
4

n
8

n
8

n
8

n
8

n
2

n

Figure 4.1  Complexity of merge sort

62   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Now, let us consider a more concrete example. Here, we intend to prove that 3 is
irrational. First, assume that it is rational. Now, since 3 is now rational (as per our
assumption), 3 =

p

q
, where p and q do not have a common factor.

This implies that 3
2

2
=

p

q
, therefore, 3 is a common factor of p and q. This is con

tradictory to the statement from which we started. Therefore, 3 is an irrational number.
Illustration 4.4 explores another example of the technique.

Illustration 4.4	 Prove that 2 3+ is an irrational number.

Solution Let us assume that 2 3+ is a rational number.

2 3+ =
p

q

This implies	 3 2=








 −

p

q

That is,	 3
2

=
−









p q

q

court. In the court, Hari produces a CCTV footage showing Hari playing with his dogs.
The court discharges Hari owing to the contradiction found in the investigators’ theory.
The court stated that since a person cannot be present at two places at the same time, Hari
could not have committed the crime. The episode can be summarized in Fig. 4.2.

To prove Hari is innocent

Investigator He is guilty

Contradiction
CCTV footage showing him playing
with his dogs

Court
He is innocent
Investigators’ claims are incorrect

Figure 4.2  Hari not involved in Funny Ting’s murder

A n a ly s i s o f A lg o r i t h m s   ■  63

Now p and q are integers, therefore, (p − 2q)/q is a rational number, but the left-hand side
is an irrational number (proved in the previous illustration). Therefore, our supposition
was incorrect and hence 2 3+ is an irrational number.

4.4.2  Proof by Mathematical Induction
Proof by mathematical induction requires three steps. In the first step, the given equa-
tion is verified by substituting the initial values of n. Often, the initial values are 1 and 2.
Once this is done, we move on to the second step.

In the second step, we assume that the statement is true for n = k. Using this assump-
tion, if we are able to prove that the given statement is also true for n = (k + 1), then the
statement is assumed to be true for every value of n. In order to understand the concept,
let us explore some illustrations.

Illustration 4.5	 Prove that 1 2
1 2 1

6
2 2 2+ + ⋅⋅ ⋅ + =

+ × +
n

n n n× ×() ()
 using mathemati-

cal induction.

Solution

Step 1	 Verification: Put n = 1 on both sides of the given expression.

LHS = 12

RHS =
1 2 3

6
1

× ×() ()
=

On substituting n = 2 on both sides, we get

LHS = 12 + 22 = 5

RHS = 2 3 5

6
5

× ×() ()
=

Therefore, the given statement is true for n = 1 and 2. Let us now move to the second step.

Step 2	 Let the statement be true for n = k.

That is, let	 1 2
2 1

6
2 2 2+ + ⋅⋅ ⋅ + =

+
k

k k k× (+1)× ×()

Step 3	 Substituting n = k + 1 on the LHS of the given equation, we get

1 2 12 2 2 2+ + ⋅⋅ ⋅ + + +k k()1 2 12 2 2 2+ + ⋅⋅ ⋅ + + +k k()

i.e.,	
k k k

k
× (+1)× ×()

()
2 1

6
1

2
2+

+ +

or	
 (+1)× × (2×)k k k()+ +2 3

6

Substituting n = (k + 1) on the RHS, we get
 (+1)× × (2×)k k k()+ +2 3

6

64   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Since on substituting n = (k + 1) on both sides, we get the same thing; therefore, the
statement is true for n = (k + 1) when it is true for n = k. Hence, the statement is univer-
sally true.

Illustration 4.6	 Prove that  1 2
1

4
3 3 3

2 2

+ + ⋅⋅ ⋅ + =
× +

n
n n()

  using mathematical induction.

Solution

Step 1	 Verification: Put n = 1 on both sides of the given expression.

LHS = 13

RHS =
1 4

4
1

× ()
=

On substituting n = 2 on both sides, we get

LHS = 13 + 23 = 9

RHS =
4 9

4
9

×
=

()

Therefore, the given statement is true for n = 1 and 2. Let us now move to the second step.

Step 2	 Let the statement be true for n = k.

That is, let	 1 2
1

4
3 3 3

2 2

+ + ⋅⋅ ⋅ + =
× +

k
k k()

Step 3	 Substituting n = k + 1 on the LHS of the given equation, we get

1 2 13 3 3 3+ + ⋅⋅ ⋅ + + +k k()

i.e.,	
k k

k
2 2

31

4
1

× +
+ +

()
()

or,	
() ()k k+ × +1 2

4

2 2

Substituting n = (k + 1) on the RHS, we get
() ()

.
k k+ × +1 2

4

2 2

Since on substituting n = (k + 1) on both sides, we get the same thing; therefore, the state-
ment is true for n = (k + 1) when it is true for n = k. Hence, the statement is universally true.

Illustration 4.7	 Prove that 52n − 1 is divisible by 24, using mathematical induction.

Solution

Step 1	 Verification: Put n = 1 on both sides of the given expression,

LHS = 52 − 1 = 24, which is divisible by 24

A n a ly s i s o f A lg o r i t h m s   ■  65

On substituting n = 2 on both sides, we get

LHS = 54 – 1 = 624

This is also a multiple of 24.
Therefore, the given statement is true for n = 1 and 2. Let us now move to the second step.

Step 2	 Let the statement be true for n = k.
That is, let 52k − 1 is divisible by 24.

Step 3	 Substituting n = k + 1 on the LHS of the given equation, we get

		 52k + 1 − 1

i.e.,	 25 × 52k − 1

24 × 52k + (52k – 1)

Now, the second part is a multiple of 24 (proved in the last step) and the first part is also
divisible by 24. Therefore, 24 × 52k + (52k – 1) is divisible by 24.

Therefore, the statement is true for n = (k + 1) when it is true for n = k. Hence, the
statement is universally true.

4.5  AMORTIZED ANALYSIS

The method described in this section helps us to analyse the performance of a data struc-
ture. It helps to establish the worst-case bounds of an algorithm. There are three ways
discussed in this section, in which this analysis can be carried out. However, the choice
depends on the situation. According to Cormen, Amortized Analysis may be defined as
follows. 

The concept of Amortized Analysis can be related to the concept of hash tables. Hash
tables are effective tools for searching. The readers who are not familiar with the hash
table can refer to Appendix A1 for a brief overview. However, those who have studied
data structures must have read about it, and the problems associated with them.

The most contentious point in designing a hashing scheme is the size of the hash
table. As observed by many researchers and authors, the size of the hash table should be
neither too large nor too small. No matter how good the design is, it can always lead to
‘Overflow.’ In such cases, dynamic tables come to our rescue. In dynamic hash tables, as
soon as overflow occurs, a new table is created with double the number of spaces as the
old one, and the elements from the previous table are copied to the new one. Complexity

Definition  An amortized analysis is any strategy for analysing a sequence of operations to
show that the average cost per operation is small, even though a single operation within the
sequence might be expensive [1].

66   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The aggregate cost comes out to be (1 + 2 + 3 + 1 + 5) = 12. Had the complexity
been O(n2) the cost would have been proportional to 25. However, it comes out to be 12.
Moreover, for the next three insertions, the cost would be 1, thus making the aggregate
cost of 8 iterations as 1 + 2 + 3 + 1 + 5+ 1 + 1 + 1=15 and not 64. It can be easily proved
that the cost, in any case, would be ≤3 × n, thus making it O(n). The above method was
introduced by Tarjen.

Accounting Method

The second more intricate method of amortized analysis is the accounting method. In
this method, a fictitious cost is assigned to each operation, or a fee is required to perform
an operation (henceforth be denoted by C ). The amount, which is not used, acts as a sav-
ing in a bank. The premise of the analysis is that the bank balance should never become
negative. The following equation summarizes the concept:

Ci C
i

n

i
i

n

= =
∑ ∑≤

1 1

analysis: on the face of it, the operation has a complexity of O(n2), in the worst case.
Since a single insertion would have a complexity of O(n) and there are n such opera-
tions, the worst-case complexity becomes O(n2). However, a more in-depth analysis of
the insertions would yield an eccentric result.

Tarjen’s Method

Consider, for example, the sequence of insertions depicted in Fig. 4.3. Here, if the value
of j − 1 is an exact power of two, then the operation would have a cost of O( j), and in
the other case 1.

1 2

1 2 3

1 2 3 4

1 2 3 4

3 41 2 5

Cost: 1

Cost: 2

Cost: 3

Cost: 4

Cost: 5Step 5: Insert 5

Step 4: Insert 4

Step 3: Insert 3

Step 2: Insert 2

Step 1: Insert

1 2

Figure 4.3  Amortized analysis

A n a ly s i s o f A lg o r i t h m s   ■  67

Potential Method

The third method, referred to as potential method, is based on the concept of dynamic
programming; in this, the difference in the costs of the previous two operations is pro-
portional to the cost of the current operation. The cost is determined by a function called
the potential function.

It has been observed by Rebecca Fiebrink, Princeton University, that both the
potential method and the accounting method give the same result (or almost same
result). However, as stated earlier, the choice depends on the situation. It may also
be stated here that the above section intends to introduce the concept of Amortized
Analysis. Appendix A1 deals with the potential method and the accounting method
in detail. The readers who wish to comprehensively cover the topic may refer to
Appendix A8.

4.6  PROBABILISTIC ANALYSIS

The analysis of an algorithm requires an in-depth knowledge of the mathematical con-
cepts like probability. The concept of probability has been dealt within the appendix
of this book. It is strongly recommended that those who are not familiar with the idea
of probability should go through the appendix before starting this section. However, a
basic knowledge of probability would help us to understand the probability analysis,
for example, viva problem helps us to explain the probabilistic analysis. The problems
discussed are just representative examples. It is expected that one would be able to apply
problem reduction approach to apply the analysis in other problems as well.

In Chapter 1, it was mentioned that one of the ways of dealing with the algorithms
is to analyse our resources and then decide which algorithm would suit our needs.
The following discussion would help us to achieve that goal.

4.6.1  Viva Problem
Hari joins a university as an assistant professor. He is asked by one of his seniors to
conduct an internal viva for computer graphics. He has a book of graphics, having
15 chapters and 25 questions at the end of each chapter. So, the total number of ques-
tions that he can ask is 25 × 15 = 375. In the class, there are 60 students. The problem
is to find out the probability that two students would get the same question. This is
important as students are asked questions in Hari’s cabin. Outside his cabin, the rest of
the students are waiting and as soon as a person comes out after giving viva, the students
waiting for their turn ask him the questions that were asked, in the hope of getting the
same question.

Now, since there are 375 questions, the probability of a question being asked is
1

375
.

If the events (asking question to a student) are deemed independent, two students

68   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

would be asked the same question, with a probability of
1

375

1

375

1

140625
× = , which is

pretty low.
Had there been n questions in the book, the probability of asking same questions to

two students would have been
1 1 1

2n n n
× = .

The probability that at least two out of k people will get the same question can be
calculated as follows. Since it is easy to find out the probability of two questions being
different, one minus this probability would give us the probability of two questions
being same. If there are k students in a class, then the conditional probability that out

of n questions (n −(k − 1)) have not been asked is
n k

n

− +1
. For k = 0, 1, …, (k − 1),

this becomes

1
1 1 1 1

× × × ×
n k

n

n k

n

n

n

− + − − +
⋅⋅ ⋅

+()

Since, 1+ ≤k ek, the above expression ≤ ⋅⋅ ⋅ = ≤
− − −

−

e e en n
k

k

n

1 2 1

2 1

2
× ×

×
.

k k n2 2 2− ≤ ln , if n is 375, then the value of k comes out to be 23. Therefore, there must
be at least 23 people in the class in order to make the probability of the same question
being asked greater than 1/2.

4.6.2  Marriage Problem
The person in the previous problem conducts the exam successfully and is there-
fore offered an extension of a year by the university. He, therefore, decides to marry.
He consults his ‘Guru’ who advises him not to marry a person having birthday on the
same month as him. After reaching home, he gets himself registered on a matrimony
site and the next day finds some suggestions. On the basis of the above discussion, he
finds the minimum number of girls, whose details Hari must see in order to make the
probability of her birthday being in a different month as that of Hari. In an unrelated
development that ‘Guru’ is arrested in some fraud case and Hari is left to fend for
himself.

4.6.3  Applications to Algorithms
The probabilistic analysis helps us to analyse a given algorithm ‘X’, with a set of inputs
‘I’. The analysis helps us to find the complexity of the algorithm or to compare the
algorithm with other algorithms or it helps us to find ways to improve the algorithm.
Figure 4.4 depicts the concept of the analysis.

A n a ly s i s o f A lg o r i t h m s   ■  69

4.7  TAIL RECURSION

Tail recursion is a special case of recursion. The tail call is, generally, the concluding call
of a particular procedure. It can be implemented with no additional stack frame being
added to the call stack. The crafting of such call is referred to as tail call elimination.

Those versed with functional programming should have an idea of the fact that the
tail call elimination is assured by the language standards. As an example, let us consider
the following code, which calculates the factorial of a number.

Listing 3

int fact(int number)
 {
int f=1;
 return (fact(number, f);
 }
int fact(int number, int iteration)
 {
 if(number==0)
 return(1)
 else
 {
 iteration++;
 return(fac((number −1), iteration)*number);
 }
 }

4.8  CONCLUSION

This chapter examined the application of core mathematical concepts. This chapter is a
continuation of Chapter 2. The above theories would help us to find the complexities of
recursive algorithms such as those in Chapters 2 and 3. The proving techniques would

Algorithm “X”

Input set “I”

Complexity of “X”

Ways to improve the

performance of “X”

Or

Or

Comparing “X” with alternatives

Probabilistic

analysis

Figure 4.4  Probabilistic analysis of algorithms

70 ■ A lg o r i t h m s : D e s i g n A n D A n A ly s i s

be useful in proving various theorems in chapters related to NP-complete and NP-hard
 problems. If one wants to explore the concept, then he should follow any book on dis-
crete mathematics. The importance of the concepts described in this chapter extends to
many more topics.

 Points to Remember

 • The complexity of factorial of a number through recursion is O (n).

 • The complexity of fi nding the n th fibonacci term through recursion is φ n , where φ is the
gold number.

 • The complexity of binary search is O (log n).

 • An argument can be proved through many methods; some of them are ‘Proof by
Contradiction’ and ‘Mathematical induction’.

 • Mathematical Induction has three steps: verifi cation, assumption, and induction.

 • In proof by contradiction, we assume the negation of the given argument to be true and
then prove that our supposition was incorrect.

 • The Amortized Analysis helps to establish the worst-case bounds of an algorithm.

 KEY TERM

 Amortized analysis it is any strategy for analysing a sequence of operations to show that
the average cost per operation is small, even though a single operation within the sequence
might be expensive.

 I. Multiple Choice Questions
 1. Which of the following is a method to solve recursive equation?

 (a) Tree method
 (b) Substitution method
 (c) Master theorem
 (d) All of the above

 2. A generating function is used in context of recursive functions to
 (a) Derive explicit formula from recursive formula
 (b) Derive recursive formula from explicit formula
 (c) Both
 (d) None of the above

 3. Which of the following precisely represent the complexity of Tower of Hanoi?
 (a) O (2 n)
 (b) O (2 n)

 (c) O (n)
 (d) None of the above

 EXERCISES

A n a ly s i s o f A lg o r i t h m s   ■  71

	 4.	 Which of the following precisely the complexity of Fibonacci series?

(a)	 O On n((())) ((()))1 5 2 1 5 2+ + −/ /

(b)	 O On n((())) ((()))1 5 2 1 5 2+ − −/ /

(c)	 fn, where f is gold number
(d)	 None of the above

	 5.	 Which of the following is the complexity of the algorithm having equation T(n) =
T(n − 1) + n?
(a)	 O(n)
(b)	 O(n2)

(c)	 O(n3)
(d)	 None of the above

	 6.	 Which of the complexity of the algorithm having recursive equation T(n) = T(n − 1) + 1?
(a)	 O(n)
(b)	 O(n2)

(c)	 O(n3)
(d)	 None of the above

	 7.	 Which of the following can be used to solve the recursive equation of the form

T n aT
n

b
f n() ()= 





+ ?

(a)	 Master theorem
(b)	 Tree method
(c)	 Both of the above
(d)	 None of the above

	 8.	 Which of the following is not a proving technique?
(a)	 Pumping lemma
(b)	 Contradiction
(c)	 Induction
(d)	 Inception

	 9.	 Which of the following requires assuming the kth instance of the equation to be
correct and proving the (k + 1)th instance to be correct?
(a)	 Induction
(b)	 Conduction
(c)	 Convection
(d)	 Radiation

10.	 Which of the following is generally used to prove the statements of the type ‘8 7+ ’
is an irrational number?
(a)	 Induction
(b)	 Contradiction

(c)	 Conduction
(d)	 Radiation

II.  Review Questions
	 1.	 Discuss the concept of Amortized Analysis.
	 2.	 What is Amortized Analysis, how is it helpful in analysing the dynamic hash

tables?
	 3.	 What are the different methods of Amortized Analysis?

72   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 4.	 Prove that in the aggregation method of Amortized Analysis, the cost is ≤3 × n,
where n is the number of iterations.

	 5.	 Explain the concept of probabilistic analysis using appropriate examples.

III.  Application-Based Questions
	 1.	 A set of numbers called L numbers are such that the first number of the sequence

is 1, the second number 1, and the rest of the numbers are the sum of previous two
numbers. Write an algorithm to generate the nth L number.

	 2.	 Write a recursive algorithm to find the sum of two numbers.
	 3.	 Write a recursive algorithm to calculate ‘a’ to the power of ‘b’, ‘a’ and ‘b’ entered

by the user.
	 4.	 Write a recursive algorithm to reverse a string entered.
	 5.	 Prove that 3 5+ is an irrational number.

IV.  Numerical Problems
	 1.	 Find the complexity of the algorithms having time complexity given as follows.

(a)	 T n T n T n T n() () () ()= − + − + −1 2 3

(b)	 T n T n T n() () ()= − + × −1 2 2
(c)	 T n T n() ()= − +3 1 1×
(d)	 T n T n() ()= − +1 2
(e)	 T n T n T n() () ()= − + −5 1 6 2
(f)	 T n T n() ()= − +5 1 6
(g)	 T n T n() ()= − +2 3
(h)	 T n n T n T T() (), () , ()= − = =× 2 1 1 2 1

(i)	 T n T
n

() = 





+3
2

1

(j)	 T n T n T n T n T

T T

() () () (), ()

, () , ()

= − + − + −
= = =

1 2 3 1

1 2 1 3 1

	Problems Based on Probabilistic Analysis

	 2.	 In the viva problem given in Section 4.6.1, find the minimum number of stu-
dents required to make the probability of two students getting the same question
equal to 1/4?

	 3.	 In the viva problem given in Section 4.6.1, find the minimum number of stu-
dents required to make the probability of two students getting the same question
equal to 1/2, if the number of questions is increased to 575?

	 4.	 In the viva problem given in Section 4.6.1, find the minimum number of stu-
dents required to make the probability of two students getting the same question
equal to 1/2, if the number of questions is changed to 100?

A n A ly s i s o f A lg o r i t h m s ■ 73

 1. (d)
 2. (c)

 3. (a)
 4. (c)

 5. (b)
 6. (a)

 7. (a)
 8. (d)

 9. (a)
 10. (b)

 5. In the marriage problem, fi nd the number of bio-data that Hari must see so that the
probability of the girl’s birthday being different from him is greater than 1/2.

 6. In the marriage problem, fi nd the number of bio-data that Hari must see so that the
probability of the girl’s birthday being different from him is greater than 1/4.

 7. How many persons must be there in a room so that the probability of two persons
having birthday on the same day is greater than 1/3?

Answers to MCQs

74   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Annexure
The Tower of Hanoi

The Tower of Hanoi is a mathematical puzzle, which consists of three rods. Initially,
there are n disks in the first rod such that the disk i is above the disk j, the radius of j is
greater than that of i.

The objective is to transfer the disks into the last rod, such that at no point in time a
larger disk is above a smaller disk. Moreover, only one disk can move at a time. So, if
there are n disks 1, 2, 3,… (2 above 1 and 3 above 2) having radii r1, r2, …, rn in the first
rod, such that r1 > r2 > r3 and so on, then at the end there should be n disks 1, 2, 3,…
(2 above 1 and 3 above 2) having radii r1, r2, …, rn, in the last rod, such that r1 > r2 > r3
and so on.

The minimum number of moves to move n disks from the first peg to the last one
is 2n − 1. The corresponding recurrence relation and its solution have been explained in
Illustration 4.3.

Interestingly, the pegs have been used to guess the age of the world in the legends of
many cultures including Hinduism and Buddhism. According to a legend, the priests of
Kashi Vishwanath temple in India were asked by Brahma, the creator, to move 64 disks
from first peg, of the three pegs, to the third peg. Even if it takes 1 s to move a disk to another
peg, then it would take 264 – 1 s, or more than 580 billion years, to complete the task.

How to Solve the Problem?
There can be many solutions to the above problem. The simplest of which is the alternate
move between the smallest disk and its previous disk.

The recursive solution would require placing of all, but the last, disks from the first
to the second peg. This should be followed by placing the last disk in the third peg and
then moving rest of them to the third one, in a way that the constraints are met. Figure
depicts the steps involved in the transfer of three disks, from the first to the third rod.

Why is this Problem Important?
•	 The problem is an excellent example of recursion.
•	 The game is used by neuropsychologists to check if there is any defect in the frontal

lobe of the brain.
•	 It is difficult for human beings to solve the problem but amazingly Argentine ant,

Linepithemahumile can solve it using their pheromones.
•	 A version of the problem has also a connection with the shortest path problem, dis-

cussed in Chapter 10.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

A n a ly s i s o f A lg o r i t h m s   ■  75

(a) Initially there are three disks in the first peg

(b) The smallest disk is then moved to the third peg

(c) The second disk is then moved to the second peg

(d) The smallest disk is then stacked on the middle peg

Figure  Solution of Tower of Hanoi, with three disks (contd)

76   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

(e) The largest disk is moved to the last peg

(f) The smallest disk is then stacked on the first peg

(g) The middle disk is then stacked on to the largest disk on the last peg

(h) The smallest disk is then moved to the last peg

Figure  (Contd) Solution of Tower of Hanoi, with three disks

Bad programmers worry about the code.
Good programmers worry about data structures and
their relationships.

— Linus Torvalds

Chapter 5 Basic Data structures

Chapter 6 trees

Chapter 7 Graphs

Chapter 8 sorting in Linear and Quadratic time

DATA STRUCTURES
SECTION I I

 Basic Data Structures

 C H A P T E R 5

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of data structures
 • Appreciate the importance of abstract data structures
 • Understand and use arrays and implement various operations such as search and

traverse
 • Understand the linked list and various operations on a singly linked list
 • Differentiate between a doubly linked list and a circular linked list
 • Understand the concept of stacks
 • Implement stacks using arrays and linked list
 • Understand the concept of queues
 • Implement queues using arrays and linked list
 • Understand the importance of data structures vis-à-vis algorithms

 5.1 INTRODUCTION

 For most of the readers, the primary aim of reading this book is to become an accom-
plished programmer or an accomplished algorithm designer. It is important to under-
stand the concept of data structures in order to do that. It is essential to be able to
develop algorithms, analyse them, and make them as effi cient as possible. This effi -
ciency can be attained in two ways, either by the techniques explained in the follow-
ing sections or by using effi cient data structures. This chapter concentrates on the
latter. In order to make things happen effi ciently, it is essential to organize the data so
that its retrieval becomes easy. This branch of computer science deals with not just
the organization of data and its retrieval, but also the processing alternatives. Finally,
in order to become a good programmer, one must understand both data structures and
algorithms.

 Even the basic data types, provided by a language, such as int, fl oat, and char, are
considered as data structures. They are called primal data structures . The more intricate
ones such as arrays, stacks, and linked lists described in the following sections are called

B a s i c Data S t r u c t u r e s   ■  79

non-primal data structures. The latter can be linear as in the case of a stack or a queue
or can be non-linear like a graph or a tree. Trees and graphs have been discussed in
Chapters 6 and 7, respectively, of this book.

Each data structure comes with standard operations such as create, delete, update,
and traverse. Let us now explore the tremendous world of data structures. In the journey,
one must try to empower oneself with the immense powers of the data structures so that
the war of algorithms can be fought and won.

5.2  ABSTRACT DATA TYPES

Abstract data types (ADTs) refer to the abstraction of certain class of types that have
similar behaviour. Such data structures are defined by the operations that can be
performed on the above said class. At times, the restrictions on such operation(s) are
also stated along with the ADT. One of the classical examples of an ADT is stack.
Stack is a linear data structure that follows the principle of last in first out. The behav-
iour of a stack may be defined by push, pop, underflow, and overflow operations. The
push operation inserts an element into the stack at the position indicated by the value
of TOP. The pop operation takes out an element from the stack and decrements the
value of TOP. The overflow operation checks if the value of TOP increments MAX -1,
where MAX is the maximum number of elements that can be stored in the stack. The
underflow operation, on the other hand, checks if the pop operation is running when
the value of TOP is -1, that is, there is no element in the array and still pop is being
invoked. The stack ADT has been implemented using both arrays and linked list in
the following sections. In the above discussion, the various operations that can be
performed on a stack and the constraints on the operations have been discussed. The
above discussion also brings forth the point that an ADT can be implemented using
various data types.

Though there is no regular convention for defining them, the ADTs find their appli-
cation even in the fascinating field of Artificial Intelligence wherein groups, rings, etc.
are described using ADT. ADTs are also an important ingredient of Object Oriented
Programming (OOP), wherein they are widely used in design by contract.

The above approach not only provides flexibility and facilitates change as needed but
also gives a way to understand the concept of abstraction in OOP.

5.3  ARRAYS

An array is a linear data structure, wherein homogeneous elements are located at con-
secutive locations. An array can be of any standard data type; for example, an integer
array cannot store a character and a string array would not store a user-defined structure.
Hence, all arrays are said to be homogeneous. Moreover, if an integer type array starts
from a location, say 2048, then the first element stored at 2048 would have its neighbour

80   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

stored at 2050 (assuming that an integer takes 2 bytes of memory). The ith element, in
this case, would be stored at the location, which can be found by the following formula:

Address of th element Base Address size of inti i= + − ×() ()1

The following discussion explains some of the basic operations on arrays.

5.3.1  Linear Search
An element stored in an array (ITEM), having n elements, can be easily found by a
simple traversal. This procedure would be henceforth referred to as linear search.
Although the algorithm has also been discussed earlier, the following explanation will
revisit the concept and will help the user to implement the procedure. The variable
FLAG, in Algorithm 5.1, is initially 0, indicating that the value has not been found. If
the element is found, then the value of FLAG becomes 1. At the end of the procedure, if
FLAG remains 0, it means that the element has not been found. In case the element to be
found occurs in the array more than once, the value of FLAG remains 1.

	 Algorithm 5.1 A lgorithm for linear search (Array [] a, int n, int ITEM)

{
	 FLAG = 0;
	 int i = 0;
	 while (i<n)
	 {
	 if (a[i] == ITEM)
	 {
	 FLAG = 1;
	 print: “FOUND”;
	 }
	 i++;
	 }
	 if (FLAG == 0)
	 {
	 Print: ‘Not Found’;
	 }
}

Complexity: If the element to be found is present at the first position, then the com-
plexity would be O(1). In the other extreme case, the element may not be present in the
given array, or even be present at the last position. In such case, the complexity would
be O(n). What matters the most is the average complexity which, in the case of linear
search, is O(n).

There is another, more efficient, search technique referred to as binary search, which
requires the use of Divide and Conquer. The algorithm has been discussed in Chapter 9.

B a s i c Data S t r u c t u r e s   ■  81

5.3.2  Reversing the Order of Elements of a Given Array
In order to reverse the order of elements of an array, the following procedure is employed.
A loop takes the ith element from the beginning and the ith element from the end (or the
(n - i - 1)th element from the beginning) and swaps them.

	 Algorithm 5.2 R eorder (int[] a)

//temp is a temporary variable
//i is the counter
for(i=0; i<n; i++)
	 {
	 temp = a[i];
	 a [i] = a [n-i-1];
	 a [n-i-1] = temp;
	 }

Complexity: Every statement inside the block runs (n/2) times, so the complexity of the
above algorithm becomes O(n).

5.3.3  Sorting
The sorting of a given array [, , , ,]a a a1 2 3 … produces an array [, , , ,]b b b1 2 3 … , such that
b bi j> , if i j> (or for that matter b bi j< , if i j>). The concept has been dealt with in
Chapter 8 and has been carried forward in Chapter 9.

5.3.4  2D Array
A 2D array contains rows and columns. The base index of rows is 0 and so is that of
the first column. There are two ways of storing the elements of a 2D array, the row
major or the column major. In the row major technique, the first row elements are
stored, followed by those in the second row and so on. A 3 2× , 2D array has been
depicted as follows:

a a a

a a a
00 01 02

10 11 12

A 2D array has many applications. One of the most important is matrix operations.
A matrix is a 2D array. These operations are used in graphics and animations along
with many other things. The basic operations like that of addition and subtraction are
O(n2) algorithms. For example, a matrix A of order m × n, when added to another
matrix B of the same order, would require the execution of O(n2) instructions, if
m = n, otherwise O(mn) (refer to the code that follows). This is because there is a loop
within a loop.

82   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

for (i=0; i<n; i++)
		 {
		 for(j=0; j<n; j++)
			 {
			 c[i][j]=0;
			 for(k=0; k<n; k++)
				 {
				 c[i][j]+=a[i][k]*b[k][j];
				 }
			 }
		 }

Complexity: The multiplication of two matrices requires three levels of nesting, thus
making the complexity as O(n3). However, the complexity can be greatly reduced by a
method explained in Chapter 9 of this book.

5.3.5  Sparse Matrix
A sparse matrix is a special type of matrix in which most of the elements are zero. In such
cases, there is hardly any need to store each and every element of the matrix. Only the non-
zero elements of the matrix can be stored along with their corresponding row and column
numbers. For example, consider the following 5 5× sparse matrix. There are only four
elements. The rest of the elements are zero and hence are shown in the following array:

3 2

21 11

�
� � �
�

















The above elements can therefore be stored as follows. Here, the first column depicts
the element, the second column depicts the row number, and the third depicts the
column number of the element. This method requires only 12 memory locations, as
against 25 required to store the whole array.

3 0 0

2 0 4

21 4 0

11 4 4

5.4  LINKED LIST

A linked list is a data structure whose basic unit is a node. Each node has two parts
namely: data and link. The data part contains the value, whereas the link part has the
address of the next node. This helps to connect various nodes of a list. The last node
of the list has NULL in the link part, thus indicating that nothing is attached after the
last node. In the discussion that follows the first node would be denoted by FIRST. In
C, a linked list can be created using structures, the code of which is written as follows.

B a s i c Data S t r u c t u r e s   ■  83

5.4.1  Advantages of a Linked List
Insertion and deletion in a linked list are easier as compared to an array. Moreover, a linked
list does not suffer from the problem of limited placeholders as in the case with arrays.
Linked lists are flexible, efficient, and provide more functionality as compared to an array.
However, the linked list makes use of pointers, which make the implementation of a linked
list a bit difficult. Moreover, the linked list algorithms are more involved as compared to that
of arrays. However, the advantages of using a linked list are far more than its disadvantages.

5.4.2  Creation of a Linked List
In order to create a linked list, allocate memory to the node (in the case of C, it can be done
via malloc()). This is followed by setting the value in the DATA part of the node. If one wants
to insert a new node, then the address of the next node is set in the LINK field. If there is just
a single node in the LIST, then the LINK of the first node becomes NULL (Fig. 5.2).

A list with a single node

A list having two nodes

17 2048 23 NULL

LINK = NULLDATA = 1

Figure 5.2  A list with a single node and with two nodes

Last node

Address of
node: 2048

Conceptual connection between two nodes

Conceptual connection between two nodes

DATA LINK DATA LINK DATA LINK = NULL

DATA 2048 DATA 2096 DATA NULL

Figure 5.1  Nodes in a linked list

struct node
	 {
	 int data;
	 struct node * LINK;
	 };
In the above code, node is a structure having data part, which is of any standard data type
and the link, which is a pointer to the node itself. Figure 5.1 depicts the node.

84   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

5.4.4  Insertion at End
In order to insert an element at the end, first of all, a pointer, PTR, is set at the beginning.
The list is traversed till the LINK of the present node becomes NULL.

5.4.3  Insertion at the Beginning
In order to insert a node at the beginning of a linked list, the following steps are required:

INPUT: VALUE and LIST

	 Algorithm 5.3 I nsert_beg()

{
//Create a node called temp.
	 struct node * temp;
Allocate memory to temp.
//Now put the given value (VALUE) in the data part of temp.
	 temp->DATA = VALUE;
//Set the LINK part of temp to FIRST.
	 temp->LINK = FIRST
Rename temp to FIRST
}

Complexity: O(1).
The process is depicted in Fig. 5.3. In this figure, a linked list having elements such
as 11, 43, and 28 is taken. An element is to be inserted at the beginning having a value = 23.

(c) Rename temp as FIRST

FIRST

23 11 43 28

(b) Point the LINK of temp to FIRST

(a) Create a new node called temp, and set the value of DATA to the given value (23 in this case)

FIRST

11 43 28

23

Temp

23

Temp FIRST

11 43 28

Figure 5.3  Insertion at the beginning of a linked list

B a s i c Data S t r u c t u r e s   ■  85

	 Algorithm 5.4 I nsert_end (VALUE)

{
PTR = FIRST;
while (PTR -> LINK! = NULL)
	 {
	 PTR = PTR-> LINK;
	 }
Create a new node called TEMP;
SET TEMP->DATA = VALUE;
SET PTR ->LINK = TEMP;
TEMP->LINK = NULL;
}

5.4.5  Inserting an Element in the Middle
In order to insert an element after the node having DATA = ‘x’, follow the below steps.

Set PTR to FIRST. Traverse till the DATA of PTR becomes ‘x’. Create a new node
called TEMP and set the DATA of Temp to the given value. Now set the LINK of Temp
to the next of PTR, and the LINK of PTR to TEMP. The algorithm is given as follows.
Figure 5.5 depicts the process.

A new node called TEMP is created, the DATA of which is set to the given value. The
LINK of PTR is then set to TEMP. The LINK of temp is then set to NULL, indicating
that it has become the last node. The process is depicted in Fig. 5.4.

(c) Set LINK of PTR to temp and LINK of temp to NULL

FIRST

2311 43 28

Temp

23

(a) Create a new node called temp, and set the value DATA to the given value (23 in this case),
 set PTR to FIRST

FIRST PTR

11 2843

(b) Traverse till PTR reaches the last node

FIRST
PTR

11 43 28

Figure 5.4  Adding node at the end

86   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

	 Algorithm 5.5 I nsert_middle (VALUE)

{
PTR = FIRST;
while (PTR -> DATA! = VALUE)
	 {
	 PTR = PTR-> LINK;
	 }
Create a new node called TEMP;
SET TEMP -> DATA = VALUE;
SET TEMP -> LINK = PTR -> LINK;
SET PTR ->LINK = TEMP;
}

Complexity: Since this is a linear algorithm, so the complexity is O(n).

5.4.6  Deleting a Node from the Beginning
In order to delete a node from the beginning, the DATA of FIRST is first stored in a
backup. This is followed by renaming the FIRST → LINK (node to which the pointer of
FIRST points) to FIRST.

(c) Set LINK of PTR to Temp and LINK of Temp to PTR

43 28

FIRST

23

11

(b) When PTR reaches the node having value 43, stop

11 43 28

FIRST

Temp

23

28

(a) Create a new node called Temp, and set the value of DATA to the given value (23 in this case),
 set PTR to FIRST. The value of ‘x’ is 43

11 43

FIRST PTR

Figure 5.5  Inserting node after a given value

B a s i c Data S t r u c t u r e s   ■  87

	 Algorithm 5.6  Delete_beg()

	 {
	 int backup = FIRST->DATA
	 Rename (FIRST->LINK) as FIRST;
	 }

5.4.7  Deleting a Node from the End
In order to delete a node from the end, first of all we traverse till the last but one node.
This can be done with the help of a pointer, PTR.

PTR = FIRST;
while ((PTR -> LINK)->LINK! = NULL)
	 {
	 PTR = PTR->LINK;
	 }

After the above code has been executed, PTR reaches the last but one node.
Now save the value of PTR->LINK in the backup
int backup = (PTR->LINK)->DATA;
In the final step, the pointer of PTR is set to NULL.
PTR->LINK = NULL;
The complete algorithm is as follows.

	 Algorithm 5.7  Delete_end()

{
PTR = FIRST;
while ((PTR-> LINK)->LINK != NULL)
	 {
	 PTR = PTR->LINK;
	 }
int backup = (PTR->LINK)->DATA;
PTR->LINK = NULL;
}

5.4.8  Deletion from a Particular Point
In order to accomplish the task, the pointer PTR is first set to FIRST. This is followed by
traversal till the requisite value ‘x’ is found. Now, the LINK of PTR is set to the (PTR ->
LINK -> LINK).

The algorithm is left as an exercise for the reader.
The web resources of this book contain the programs of all the aforementioned

operations.

88   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

The premise of insertion of a node at the beginning, middle, and end in a doubly
linked list is fundamentally the same as that of a singly linked list. However, in the case
of a doubly linked list, both the pointers, PREV and NEXT are to be taken care of. For
example, in inserting a node at the beginning, a node called TEMP should be created.
The value of the DATA part of TEMP should be set to VALUE (the given value). After
this, the LINK of TEMP should be set to the FIRST of the given list. The PREV of the
FIRST should be set to TEMP. Since TEMP has to become the FIRST of the list, the
PREV of TEMP should be set to NULL. Finally, TEMP should be renamed as FIRST.
The algorithm of the above process is given as follows.

	 Algorithm 5.8 I nsert_beg_doubly

{
	 Set PTR = FIRST;
	 Create a new node called TEMP;

5.4.9  Doubly Linked List
The node of a linked list may also have two links namely: PREV and NEXT. Such a
linked list is called a doubly linked list.

The insertion and deletion in such a linked list are a bit involved. However, the extra
effort pays as this can be used to represent a number of useful data structures like a
binary tree. The node of a doubly linked list is shown in Fig. 5.6.

(b) An example of a doubly linked list

PREV 22 NEXT PREV

PREV 15 NEXT = NULL

31 NEXT

(a) A node of a doubly linked list

PREV DATA NEXT

Figure 5.6  An example of a doubly linked list

Tip: A stack can be implemented using a linked list by combining two algorithms: insert_
end() and delete_end() of a singly linked list. In this case, the element can be inserted only
at the end and can be taken out from the end only.

Tip: A queue can be implemented using a linked list by combining two algorithms: insert_
end() and end_beg() of a singly linked list. In this case, the element can be inserted only at
the end and can be deleted only from the beginning.

B a s i c Data S t r u c t u r e s   ■  89

	 Set TEMP->DATA = VALUE;
	 Set TEMP->LINK = PTR;
	 Set PTR->PREV = TEMP;
	 TEMP-> PREV = NULL;
	 FIRST = TEMP;
}

In inserting a node at the end, PTR has to traverse till the last node. A new node called
TEMP is to be created whose DATA is set to VALUE.

Now, the LINK of PTR is set to TEMP, the PREV of TEMP to PTR, and the LINK of
TEMP to NULL. The process is summarized in the following algorithm.

	 Algorithm 5.9 I nsert_end_doubly

{
SET PTR = FIRST;
While(PTR -> LINK ! = NULL)
	 {
	 PTR = PTR->LINK;
	 }
Create a new node called TEMP. TEMP-> DATA = VALUE;
Set PTR-> LINK = TEMP;
Set TEMP-> PREV = PTR;
Set TEMP-> LINK = NULL;
}

In inserting a node in the middle, PTR is made to traverse till ‘x’ is found. The LINK
TEMP is then set LINK PTR. The PREV of the (PTR->LINK) becomes TEMP. The LINK
of PTR is then set to TEMP. This is followed by setting the PREV of TEMP to PTR.

While deleting a node from the beginning, the FIRST is simply set to the (FIRST->
LINK) and the second node is renamed as FIRST.

Deletion from the end requires PTR to traverse till the last but one node and then
make it LINK as NULL.

Deletion from the middle also follows the same approach as was done in a singly
linked list, keeping in mind that PREV pointers are to be catered with.

5.4.10  Circular Linked List
A circular linked list is one in which the LINK of the last node points to the FIRST node.
Here, the circular list can be implemented both by a singly linked list and by a doubly
linked list. The algorithms pertaining to the circular linked list are left as an exercise for
the reader. However, the web resources of this book contain programs pertaining to a
doubly linked list.

90   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

5.5  STACK

When we pile up our books on our study table, we pick up the book which we had kept
at the end, that is, the book which was at the last index is popped first, the initial index
being that of the book which was kept initially. The same thing happens when we open
the ‘open file’ dialog in MS Word and via the ‘open file’ dialog we open the ‘browse’
dialog. Till the browse dialog is not closed, we cannot close the ‘open file’ dialog, and
until the ‘open file’ dialog is closed, we cannot close the Word application.

Such data structures that follow the principle of Last In First Out are referred to as a
stack. The data structure can be implemented in a static fashion with the help of arrays
or in a dynamic fashion with the help of a linked list.

The variable TOP keeps track of the last element of the stack. Initially, the value of
TOP in the static implementation of stack is -1. As we add the elements, the value of the
variable increases. However, this increase is possible only if the value of TOP is less than a
maximum threshold, henceforth be referred as MAX. If an element is added onto a stack,
wherein the value of TOP is (MAX -1), then a condition known as ‘Overflow’ occurs.

The deletion of the element, from a stack, is possible if the value of TOP is not -1.
If the value of TOP is -1 and the pop operation is invoked, then a condition known as
‘Underflow’ occurs.

Terminology:

MAX:	 Maximum number of elements in a stack
TOP:	 Initially: -1
	 Maximum value: MAX -1
push():	� A method which increments the value of TOP and inserts value

‘item’ in the stack.
pop():	� A method which pops value from the stack and decrements the value

of TOP.
Underflow:	 Condition wherein pop is invoked and the value of TOP is -1
Overflow:	� Condition wherein push is invoked and the value of TOP is (MAX -1)
Starting index:	 -1

5.5.1  Static Implementation of Stack
The static implementation of a stack is done with the help of an array. The initial
value of the variable TOP is set to -1. The push (int item) function increments the

Definition  Stack is a linear data structure, which follows the principle of last in first out.

B a s i c Data S t r u c t u r e s   ■  91

value of TOP and inserts the value onto the stack. Algorithm 5.10 depicts the push
function.

push()

	 Algorithm 5.10  push(int item)

Input: A variable of the type int, array a[].
Output: none
Strategy: Increment the value of TOP and insert the item at the index denoted by the new
value of TOP.

{
if(TOP == MAX-1)
	 {
	 Print “Overflow ”;
	 }
else
	 {
	 TOP++;
	 a[TOP]=item;
	 }
}

pop()
The pop algorithm pops or takes out an element from the top of the stack. The algo-

rithm basically decreases the value of the variable TOP. However, this is possible only
if the value of TOP ! = –1.

	 Algorithm 5.11  pop()

Input: none
Output: none
Strategy: If the value of TOP is not –1, then pop an item from the top of the stack and
decrement the value of TOP by –1.

POP ()
if (TOP !=-1)
	 {
	 TOP--;
	 }
else
	 {
	 print ‘Underflow’;
	 }
}

92   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

5.5.2  Dynamic Implementation of Stack
The dynamic implementation of a stack requires a linked list. The push operation trav-
erses to the end of the list and joins the new node at the end of the list. In order to do so, a
pointer PTR, initially at the FIRST of the linked list, traverses till the NEXT of the node
is NULL. At the end of this step, PTR would be at the last node of the list.

A new node TEMP is created. The DATA part of the new node would contain the
value to be inserted and the NEXT of PTR would be set to NULL. The NEXT of PTR
would then point to the new node TEMP. Algorithm 5.12 depicts the dynamic imple-
mentation of the push operation.

	 Algorithm 5.12  push(int item)

// A node has two parts DATA and NEXT.
//PTR is a pointer to a node.
//FIRST is the first node of the list
//TEMP is a temporary node.
{
PTR=FIRST;
while(PTR-> NEXT !=NULL)
	 {
	 PTR = PTR -> NEXT;
	 }
//Create a new node called TEMP.
TEMP-> DATA = item;
TEMP->NEXT = NULL;
PTR->NEXT = TEMP;
}

The pop operation removes an element from the top of the stack in question. In order
to carry out the operation, a pointer to node, PTR, is set to FIRST. The PTR traverses
till the NEXT of PTR is NULL. That is, go to the second last node in order to remove
the last node. It is like cutting a branch of a tree. In order to cut a branch, we will not
sit on the branch, which we intend to cut but on the branch just before that. In order to
remove an element from the linked list, we need not to physically separate it, just make
the NEXT pointer of the previous node NULL. The following Algorithm 5.13 depicts
the implementation of the pop operation.

	 Algorithm 5.13  pop ()

Input: none
Output: the element at the TOP of the stack.

B a s i c Data S t r u c t u r e s   ■  93

// A node has two parts DATA and NEXT.
//PTR is a pointer to a node.
//FIRST is the first node of the list
//TEMP is a temporary node.

{
	 PTR=FIRST;
	 while((PTR-> NEXT)->NEXT !=NULL)
	 {
	 PTR = PTR -> NEXT;
	 }
PTR->NEXT = NULL;
}

5.5.3  Applications of Stack
One of the most important applications of stack is conversion of one type of expression
into another. An expression can be written in three forms: infix, prefix, and postfix. In the
infix form, the operator is written in between the two operands; in the prefix form, the
operator is written before two operands, whereas in the postfix form, the operator is writ-
ten after the two operands. For example, if two numbers stored in variables ‘a’ and ‘b’
are to be added and the result is to be stored in a variable called ‘c’, then the infix expres-
sion would be c a b= + , the postfix would be c ab= +, and the prefix would be c ab= + .

A more complex expression would make the things more clear. The second example
is as follows:

c a b c d e= + − × +

Figure 5.7 shows the evaluation of the expression.
Stacks help us to evaluate postfix expressions as explained in the next section.

a + b − c × d + eInfix

a + b − (c × d) + eEvaluation of infix

(a + b) − (c × d) + eEvaluation of infix

((a + b) − (c × d)) + eEvaluation of infix

((a b +) (c d ×) −) e + a b + c d × −e +Postfix

+ (− (+ a b) (× c d)) e + − + a b × c d ePrefix

Figure 5.7  Evaluation of an expression

94   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

5.5.4  Evaluation of a Postfix Expression
Evaluation of a postfix expression refers to finding its value. Stacks can be used to
evaluate a postfix expression. The procedure to accomplish the above task is pretty
simple. The given expression is scanned from left to right. The symbols scanned are
processed as follows. The operands are put into the stack. (The string representing
the infix expression is initially set to NULL). When an operator ‘op’ is encountered,
then two symbols ‘x’ and ‘y’ are popped from the stack. The expression ‘y’, ‘op’, and
‘x’ is evaluated and put into stack. At the end, whatever is left in the stack is the final
answer. In order to understand the above procedure, let us consider the postfix expres-
sion in Fig. 5.8.

a

a b + c d × − e +

a b + c d × − e +

b

a

a b + c d × − e +

a + b
b

a

Figure 5.8  Evaluation of a postfix expression (Contd)

B a s i c Data S t r u c t u r e s   ■  95

a + b
c

d

c

d

a b + c d × − e +

c × d

a + b

Answers: ((a + b) − (c × d)) + e

e

(a + b) − (c × d)

a b + c d × − e +

a + b

a b + c d × − e +

(a + b) − (c × d)

c × d

a + b
c

a b + c d × − e +

a + b

Figure 5.8  (Contd) Evaluation of a postfix expression

96   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

5.5.5  Infix to Postfix
Another application of stack is the conversion of an infix expression into postfix. The
procedure for converting the expression is as follows.

	 Algorithm 5.14 I nfixToPostfix (E) returns P

Input: Expression E, containing operators, operands, opening parentheses, and closing
parentheses
Output: The expression P, which is the postfix of E.

{
P =ϕ;
Add ‘)’ at the end of E and ‘(‘at the top of the stack;
for each x P∈ do
	 {
	 if (x is an operand)
	 {
	 add it to P;
	 }
	 else if (x is ‘(’)
	 {
	 push it to the stack;
	 }
	 else if (x is ‘)’)
	 {
	 y=pop(S);
	 while (y!=’(’)
	 {
	 add y to P;
	 y=pop(S);
	 }
	 else if (x is an operator)
	 {
	� add it to the stack, S, if the operator on the top of the stack has a

lower priority;
	� otherwise pop the existing operator from stack and add the incoming

operator at the top of the stack
	 }
	 }// end of for
return P;
}

Complexity: Each symbol is checked and processed. The complexity of the procedure
discussed earlier is therefore O(n).

B a s i c Data S t r u c t u r e s   ■  97

Illustration 5.1	 Convert the following expression to postfix:

((a + b) − c * d)

Solution

E: ((a + b) − c * d)
P =ϕ

Add ‘)’ at the end of E and ‘(’ at the top of the stack;
The processing of the given expression has been shown in the following table.

Symbol Scanned Stack P

(((NULL

((((NULL

a (((a

+ (((+ a

b (((+ ab

) ((ab+

− ((− ab+

c ((− ab+c

* ((−* ab+c

d ((−* ab+cd

) (ab+cd*−
) NULL ab+cd*−

5.5.6  Infix to Prefix
Another application of stack is the conversion of an infix expression into the prefix.
The procedure is the same as that of converting an infix expression to the postfix
except for the fact that the given expression is first reversed and then the procedure
is applied. Moreover, the expression obtained after applying the procedure is also
reversed to get the final answer. The procedure for converting the expression is as
follows.

	 Algorithm 5.15 I nfixToPrefix (E) returns P

Input: Expression E containing operators, operands, opening parentheses, and closing
parentheses.
Output: The expression P, which is the prefix of E.

98   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

{
P =ϕ;
E = Expression obtained by reversing the order of symbols in E;
Add ‘)’ at the end of E and ‘(‘ at the top of the stack;
for each x P∈ do
	 {
	 if (x is an operand)
	 {
	 add it to P;
	 }
	 else if (x is ‘(’)
	 {
	 push it to the stack;
	 }
	 else if (x is ‘)’)
	 {
	 y=pop(S);
	 while (y!=’(’)
	 {
	 add y to P;
	 y=pop(S);
	 }
	 else if (x is an operator)
	 {
	� add it to the stack, S, if the operator on the top of the stack has a

lower priority;
	� otherwise pop the existing operator from stack and add the incoming

operator at the top of the stack
	 }
	 }
	 }// end of for
P = expression obtained by reversing the order of symbols of P;
return P;
}

Complexity: Each symbol is checked and processed. The complexity of the above
procedure is therefore O(n).

Illustration 5.2	 Convert the following expression to prefix:

() *a b c d+ −

Solution
E: (a + b) - c * d
E obtained by reversing the order of symbols: d * c −)b + a(
P =ϕ;
Add ‘)’ at the end of E and ‘(‘ at the top of the stack;

The processing of the given expression has been shown in the following table:

B a s i c Data S t r u c t u r e s   ■  99

5.6.1  Static Implementation
A queue implemented using an array has two indicators FRONT and REAR. In an empty
queue, both the FRONT and REAR are -1. When the first element is inserted in the queue,

Symbol Scanned Stack P

None (NULL

d (* d

c (* dc

− (− dc*

) dc*−
b dc*−b

+ + dc*−b

a + dc*−ba

(+(dc*−ba

) + dc*−ba

dc*−ba+

P: dc*−ba+
P obtained by reversing the order of symbols: +ab−*cd
Answer: +ab−*cd

5.6  QUEUE

Queue is a linear data structure that follows the principle of First In First Out. A queue
can be implemented using an array or a linked list. A queue implemented using an array
is referred to as a static queue whereas those implemented using a linked list is called a
dynamic queue. Figure 5.9 summarizes the classification.

Queue: Static
implementation

Using arrays

Limited
placeholders

Queue: Dynamic
implementation

Using linked list

Flexible

Circular

Overcomes the
problems of
linear queue

Figure 5.9  Queues and their types

100   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

both FRONT and REAR become 0. On further insertion, the value of REAR increments and
the new values are added to the new position. However, this is not possible if the value of
REAR is MAX -1, where MAX is the maximum number of elements, an array can have. If
one tries to enter an element in a queue whose REAR is MAX -1, then a condition referred
to as Overflow is raised, indicating that no more elements can be added to the queue.

On deleting an element from a queue, the deletion must be from FRONT, hence the
value of FRONT increments by 1. However, this is not possible if the queue is empty,
that is FRONT=REAR= −1 (Underflow Condition).

The algorithms for the insertion and deletion from a queue are as follows.

	 Algorithm 5.16 I nsert_Queue(int VALUE)

	 {
	 if (REAR = MAX-1)
	 {
	 print ‘Overflow’;
	 }
	 else if(FRONT = REAR = -1)
	 {
	 FRONT = REAR = 0;
	 Queue[REAR] = VALUE;
	 }
	 else
	 {
	 REAR ++;
	 Queue[REAR] = VALUE;
	 }
}

	 Algorithm 5.17  Delete_Queue()

	 {
	 if(FRONT = REAR = −1)
	 {
	 print: ‘Underflow’;
	 }
	 else if (FRONT = REAR)
	 {
	 FRONT = REAR = −1;
	 }
	 else
	 {
	 FRONT ++;
	 }
	 }

Tip: The dynamic implementation of a queue can be done by insert_end() and delete_
begin() algorithms of linked lists (refer to Section 5.4).

B a s i c Data S t r u c t u r e s   ■  101

both FRONT and REAR become 0. On further insertion, the value of REAR increments and
the new values are added to the new position. However, this is not possible if the value of
REAR is MAX -1, where MAX is the maximum number of elements, an array can have. If
one tries to enter an element in a queue whose REAR is MAX -1, then a condition referred
to as Overflow is raised, indicating that no more elements can be added to the queue.

On deleting an element from a queue, the deletion must be from FRONT, hence the
value of FRONT increments by 1. However, this is not possible if the queue is empty,
that is FRONT=REAR= −1 (Underflow Condition).

The algorithms for the insertion and deletion from a queue are as follows.

	 Algorithm 5.16 I nsert_Queue(int VALUE)

	 {
	 if (REAR = MAX-1)
	 {
	 print ‘Overflow’;
	 }
	 else if(FRONT = REAR = -1)
	 {
	 FRONT = REAR = 0;
	 Queue[REAR] = VALUE;
	 }
	 else
	 {
	 REAR ++;
	 Queue[REAR] = VALUE;
	 }
}

	 Algorithm 5.17  Delete_Queue()

	 {
	 if(FRONT = REAR = −1)
	 {
	 print: ‘Underflow’;
	 }
	 else if (FRONT = REAR)
	 {
	 FRONT = REAR = −1;
	 }
	 else
	 {
	 FRONT ++;
	 }
	 }

Tip: The dynamic implementation of a queue can be done by insert_end() and delete_
begin() algorithms of linked lists (refer to Section 5.4).

5.6.2  Problems with the Above Implementation
The problem with the above implementation is that the Overflow condition may be
raised even when the queue has some empty cells. For example, consider the situation
depicted in Fig. 5.10.

12

12 14

12 14 16

12 14 16 18

12 14 16 18 21

14 16 18 21

14 16 18 21

FRONT = 0, REAR = 0, MAX = 5

FRONT = 0, REAR = 1, MAX = 5

FRONT = 0, REAR = 2, MAX = 5

FRONT = 0, REAR = 3, MAX = 5

FRONT = 0, REAR = 4, MAX = 5

FRONT = 1, REAR = 4, MAX = 5

On insertion Overflow is raised

FRONT REAR

FRONT REAR

FRONT REAR

FRONT REAR

FRONT REAR

FRONT REAR

FRONT REAR

Figure 5.10  Example of insertion and deletion in a queue

102   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

In the figure, 12, 14, 16, 18, and 21 are added to a queue having MAX = 5. After
which, 12 is deleted. The queue has empty place. However, on insertion, the Overflow
condition is raised as the value of REAR is MAX - 1.

5.6.3  Circular Queue
The above problem can be handled by what is called a circular queue. In a circular
queue, the REAR is connected to the 0th index of the array. This makes way for the
element entering the array if the value of REAR is MAX - 1 and FRONT is not 0.
However, the following points must be observed in the reference to a circular queue as
against a linear queue.

In a circular queue, if there is just one element then FRONT = REAR. This condi-
tion is the same as that of a linear queue. In a circular queue, the algorithm for insertion
increments the value of REAR but also takes its Mod with (MAX), so that if the value of
REAR is MAX - 1, it becomes 0. The algorithm for insertion of an element in a circular
queue is as follows.

	 Algorithm 5.18 I nsert_Circular_Queue ()

{
	 if (REAR = FRONT =-1)
	 {
	 REAR = FRONT = 0;
	 Circular_Queue[REAR] = VALUE;
	 }
	 else if (FRONT = (REAR +1) % MAX)
	 {
	 Print ‘Overflow’;
	 }
	 else
	 {
	 REAR = (REAR + 1 )% MAX;
	 Circular_Queue[REAR] = VALUE;
	 }
}

The algorithm for deletion is given as follows.

	 Algorithm 5.19  Delete_Circular_Queue()

{
if (REAR = FRONT =-1)

B a s i c Data S t r u c t u r e s   ■  103

	 {
	 Print ‘Underflow’;
	 }
else if (REAR = FRONT)
	 {
	 REAR = FRONT = −1;
	 }
else
	 {
	 FRONT = (FRONT + 1)% MAX;
	 }
}

5.6.4  Applications of a Queue
The queue data structure finds applications in many fields. A few of them are listed
here.
1.	 In a printer, the print commands are queued and hence the command, which was given

first, is printed first followed by the next one. This is also referred to as spooling.
2.	 The operating system assigns the CPU to different processes. There can be many

ways of doing this. One of the most common ways is a technique called Round
Robin technique. In this technique, the CPU is allotted to different processes for
a fixed time slot. For example, the slice (time) is two units and the four processes
take six units, four units, and eight units, respectively. Then, the CPU executes
the first process for the first two units, then it goes to the second process for
two units, and then to the third process. The second cycle also proceeds like
this. In the third cycle, the processor goes to the first, second, and then the third
process. In the next cycle, only third process remains. The process is depicted in
Fig. 5.11.

3.	 Queues are also used in various customer services.

Figure 5.11  Round Robin scheduling

End of cycle 1 End of cycle 3

p1 is the first process, p2 is the second, and p3 is the third process. A block represents a unit of time.

p1 p1

End of cycle 2

p2 p2 p3 p3 p1 p1 p2 p2 p3 p3 p2 p2 p3 p3 p3 p3

104 ■ a LG O r i t H M s : D e s i G N a N D a N a LY s i s

 5.7 CONCLUSION

 The chapter introduced the concept of data structures, which is the soul of algorithm
design. Without the knowledge of data structures, the study of algorithms is like an
attempt to attain Nirvana without understanding the pains of living beings. The chapter
also gave a short description of ADTs.

The chapter explored the types of stacks, their static and dynamic implementa-
tions, and their applications. It also introduced the concept of queues and provided an
insight into their implementation. Finally, all the algorithms given in this chapter have
been implemented in C. We can fi nd their implementation in the web resources of this
book. It is advised that before having a look at those implementations, the reader must
at least try to implement them. The above concepts as well as the chapters that follow
extensively use the concepts explained earlier.

 Points to Remember

 • Abstract data types (ADTs) refer to the abstraction of certain class of types that have
similar behaviour.

 • An array is a linear data structure, wherein homogeneous elements are located at con-
secutive locations.

 • The complexity of linear search is O(n).

 • The complexity of addition, subtraction of two matrices of order n n× is O(n 2).

 • The complexity of conventional matrix multiplication is O(n 3).

 • Most of the elements in a sparse matrix are 0.

 • The insertion and deletion in a linked list are easy as compared to an array.

 • A stack is used in conversion of expressions (like from infi x to postfi x), in recursion, etc.

 • Round Robin algorithm of CPU scheduling uses a queue.

 • The static implementation of a stack is done using an array and the dynamic implemen-
tation is done using a linked list.

 • Problem of having empty spaces and still showing ‘overfl ow’ in a linear queue can be
solved by using a circular queue.

 • If a stack has n elements then the space complexity is O(n) and the time complexity of
each operation is O(1).

 • The complexity of insertion or deletion at the beginning in the linked list is O(1).

 • The complexity of insertion at the end in a linked list is O(n).

 • The complexity of deletion from the end in a linked list is O(n).

 • The complexity of insertion or deletion in the middle of a linked list is O(n).

B a s i c Data s t r u c t u r e s ■ 105

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following follows the principle of First In First Out (FIFO)?

 (a) Stack
 (b) Queue

 (c) Tree
 (d) Graph

 2. Which of the following follows the principle of Last In First Out (LIFO)?
 (a) Stack
 (b) Queue

 (c) Tree
 (d) Graph

 3. Which of the following is a linear data structure?
 (a) Stack
 (b) Graph

 (c) Tree
 (d) None of the above

 4. Which of the following is a non-linear data structure?
 (a) Stack
 (b) Queue

 (c) Tree
 (d) None of the above

 5. Which of the following are facilitated by a data structure?
 (a) Access of data
 (b) Organization of data

 (c) Manipulation of data
 (d) All of the above

 6. Which of the following must be defi ned by an abstract data structure?
 (a) Operations on the data
 (b) Constraints on operations
 (c) Both
 (d) None

 7. Which of the following uses a queue?
 (a) Round Robin
 (b) Round Martin

 (c) Martin Robin
 (d) Robin Robin

 8. Which of the following does not use a stack?
 (a) Round Robin
 (b) Conversion to postfi x

 (c) Evaluation of postfi x
 (d) Conversion to prefi x

 Circular linked list a circular linked list is one in which the NeXt of the last node points to
the First node.
 Circular queue In a circular queue, the REAR is connected to the 0 th index of the array.
 Doubly linked list each node in a doubly linked list has two links namely: PreV and NeXt.
 Linked list a linked list is a data structure whose basic unit is a node. each node has two
parts namely: Data and LiNK. the Data part contains the value whereas the LiNK part has the
address of the next node.
 Queue a queue is a linear data structure that follows the principle of First in First Out.
 Stack it is a linear data structure that follows the principle of Last in First Out.

KEY TERMS

106   ■  A LG O RIT H M S : D ESI G N A N D A N A LY SIS

	 9.	 Which of the following is used in the dynamic implementation of a queue?
(a)	 Stack
(b)	 Linked List

(c)	 Array
(d)	 None of the above

	10.	 Which of the following is the best in terms of flexibility?
(a)	 Linked List
(b)	 Both

(c)	 Array
(d)	 All of the above

II.  Review Questions
	 1.	 What is an abstract data type?
	 2.	 What is meant by data structures? Classify them.
	 3.	 What are the applications of a queue?

III.  Application-based Questions
	 1.	 Write an algorithm to insert an element in a queue. In addition, write the steps to

delete an element.

	 2.	 Implement a queue using a linked list.

	 3.	 Write an algorithm to implement a stack using array.

	 4.	 Write an algorithm to implement a stack using a linked list.

	 5.	 Write an algorithm for
(a)	 Inserting a node at the beginning of a singly linked list
(b)	 Inserting a node at the end of a singly linked list
(c)	 Inserting a node after a specific position in a singly linked list
(d)	 Deleting a node at the beginning of a singly linked list
(e)	 Deleting a node from the end of a singly linked list
(f)	 Deleting a specific node from a singly linked list

	 6.	 Write an algorithm for
(a)	 Inserting a node at the beginning of a doubly linked list
(b)	 Inserting a node at the end of a doubly linked list
(c)	 Inserting a node after a specific position in a doubly linked list
(d)	 Deleting a node at the beginning of a doubly linked list
(e)	 Deleting a node from the end of a doubly linked list
(f)	 Deleting a specific node from a doubly linked list

	 7.	 Write an algorithm for inserting a node in a circular linked list.

	 8.	 Write an algorithm for deleting a node from a circular linked list.

	 9.	 Write an algorithm to reverse a linked list.

10.	 Write an algorithm to find the maximum element from a linked list.

11.	 Write an algorithm to find the minimum element from a linked list.

12.	 Write an algorithm to sort a linked list.

13.	 How do you find whether a given list has a cycle or a NULL terminated node?

B a s i c Data s t r u c t u r e s ■ 107

 14. Solve the above problem in O(n) time. (HINT: Explore Floyd’s Cycle fi nding
algorithm) .

 15. Write an algorithm to fi nd the n th node from the end in a linked list.

 1. (b)
 2. (a)

 3. (a)
 4. (c)

 5. (d)
 6. (c)

 7. (a)
 8. (a)

 9. (b)
 10. (a)

 Answers to MCQs

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept and applications of trees
 • Understand binary trees and its types
 • Store tree using an array and linked list
 • Draw a tree when pre-order, post-order, and in-order traversals of trees are given
 • Craft a tree when two traversals are given
 • Understand binary search tree
 • Explain B-tree
 • Defi ne and craft a heap
 • Understand heapsort
 • Defi ne and use binomial and balanced trees
 • Learn LL, LR, RR, and RL rotations

6.1 INTRODUCTION

 Trees are perhaps one of the most useful data structures. They are used in parsing, in compila-
tion, in game algorithms, and even in artifi cial intelligence algorithms. This chapter explores
the fascinating world of trees and the basic operations therein. Utmost care has been taken to
present the concepts in a simple way. The chapter begins with the defi nition of a tree, the rep-
resentation of different types of trees, and then explains their traversals. Special types of trees
like binary search trees and height balanced trees have also been dealt in the chapter. Finally,
the chapter introduces the concept of heaps, insertion of an element in a heap, and heapsort.

 6.2 BINARY TREES

 Figures 6.1(a) and (b) are some examples of trees. Figure 6.1(c) depicts an example of
a graph which is not a tree.

 Defi nition A tree is a non-linear data structure that has two components, namely nodes and
edges. nodes are joined by edges. This data structure has no cycle and no isolated vertex/edge.

 Trees

 C H A P T E R 6

T r e e s   ■  109

The most common tree that would be discussed in the chapter is a binary tree.
A binary tree is one that has maximum of two children. There are many variants of a
binary tree. A strictly binary tree is the one in which each node has either two children
or no child. In a complete binary tree, each node has two children except the last level
wherein the nodes do not have any child. Figure 6.2 shows examples of a complete
binary and a strictly binary tree.

Before proceeding any further, it would be better to understand the terms used in the
discussion that follows. Table 6.1 presents the basic terminology of trees.

(a)

A

B C

D E F G

(b)

A

B C

D E

Figure 6.2  (a) Complete binary and (b) strictly binary trees

A

B C

D E

A

B

C

A

B C

D E

(b)(a) (c)

Figure 6.1  (a) and (b) Examples of graphs which are trees; (c) is not a tree

Table 6.1  Basic terminology

Component Definition

Node Basic unit of tree that contains data and may have children

Edge The line that connects two nodes

Parent Parent of a node is a node from which that node has been derived

Leaf node A node that does not have any children

Root The node of the tree of which all other nodes are children

Degree of a node The number of children of a node is referred to as its degree

Degree of a tree The maximum degree of any node in a tree

Level of a tree The root is at level 0, its children at level 1, and so on

Depth Maximum level of any node is referred to as depth of a tree

Siblings Nodes having same parents

110   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

(a)

A

B C

D E

A B C D E

0 1 2 3 4 5 6 7

(b)

A

B C

D E F G

A B C D E F G

0 1 2 3 4 5 6 7

(c)

A

B

C

D

A B C D

0 1 2 3 4 5 6 7

Figure 6.3  Representation of trees using arrays (Contd)

For example, in Fig. 6.2(a), A is the root of the tree. D, E, F, G are the leaves.
Since D and E are the children of B, that is, they have same parent, therefore, D and E
are siblings. The degree of A is 2, that of B is 2, C is 2, and of D, E, F, and G is 0. The
maximum degree of any node in this tree is 2, therefore, the degree of the tree is 2. The
root A is at level 0, B and C are at level 1, and the leaves are at level 2. The depth of the
tree is 2.

6.3  REPRESENTATION OF TREES

A tree can be represented as an array or a linked list. The array representation of trees
requires the root node to be stored at the 0th index of the array. The right child of the root
is stored at the 2nd index and the left child is stored at the 1st index. In general, if a node
is stored at the nth index of an array, then its right child would be stored at the 2 2× +n nd
index and the left child would be stored at the 2 1× +n st index.

It may be noted, though, that such a representation can be used only in the case
of a binary tree. Some examples of the above representation are depicted in Fig. 6.3.
Moreover, such representation becomes inefficient when an unbalanced tree is stored as
an array. Figure 6.3(c) is one such example.

T r e e s   ■  111

A more efficient way of storing a tree is using a linked list. A doubly linked list has
two pointers, PREV and NEXT. If PREV is pointed to the left child and NEXT is pointed
to the right child, then the trees shown in Fig. 6.4 would be represented as depicted in the
figure. The linked list representation, though efficient, leads to the problem of dangling
pointers. This problem is handled via a representation called threaded trees, wherein
a NEXT or PREV, if not pointed to any node, points to the node determined by the
pre-order traversal. The concept of pre-order traversal is explained in Section 6.5. The
in-order representation of the tree shown in Fig. 6.4(b) is DBEAFCG. In the threaded
tree, D and G point to the root, as there is nothing to the left of D and to the right of G.
However, the NEXT of D points to B, as is evident from the in-order traversal and so

(a)

A

B C

D E

A B C D E

0 1 2 3 4 5 6 7

(b)

A

B C

D E F G

A B C D E F G

0 1 2 3 4 5 6 7

(c)

A

B

C

D

A B C D

0 1 2 3 4 5 6 7

Figure 6.3  (Contd) Representation of trees using arrays

(a)

(b)

(c)

A

B C

D E

A

B C

D E

A

D E

B C

F G

A

B

D E
C

F G

A

B

D E

C

F G

RootFigure 6.4  (a) and (b) Linked list representation of trees; (c) threaded representation of
the tree shown in (b) (Contd)

112   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

does the PREV of E. The rest of the pointers have also been arranged as per this proce-
dure. This representation reduces the number of un-pointed links and hence solves the
problem of dangling pointers.

6.4  APPLICATIONS OF TREES

This section explores the various applications of trees. Trees are used in many sub-
disciplines of Computer Science, from sorting data in a tape to organizing data in a
database. The understanding of these applications would give you a reason to study trees
and algorithms related to them. The various applications of trees are as follows.
•	 Organization of Data
	 ο	 Sorting
	 ο	 Searching
•	 To represent hierarchical relationship
•	 Compression of data using Huffman codes (refer to Illustration 6.2)
•	 To represent the parse structure of a sentence. Parsing, here, refers to a phase of a

compiler in which it takes tokens as an input and gives parse trees as the output.
•	 To parse a sentence in natural language processing. Natural language processing is

a part of artificial intelligence wherein text in natural language is converted into that
which can be understood by a computer.

•	 They are also used for sorting.
•	 Trees are often used to specify hierarchical relationships. In such a tree if ‘b’ domi-

nates ‘a’ then ‘b’ generally comes above ‘a’.
Figure 6.5 represents the hierarchical structure of an organization where Academics

is governed by VP (academic) and Administration by VP (administration) and both work
under the President.

(a)

(b)

(c)

A

B C

D E

A

B C

D E

A

D E

B C

F G

A

B

D E
C

F G

A

B

D E

C

F G

Root

Figure 6.4  (Contd) (a) and (b) Linked list representation of trees; (c) threaded
representation of the tree shown in (b)

T r e e s   ■  113

Illustration 6.2	 Another important application of the concept of trees can be Huffman
code. The code has input data represented as characters of variable length bit string. It is an
efficient alternative to the ASCII code used generally.

Example: The Huffman tree is shown in Fig. 6.7.

Illustration 6.1	 If in a single elimination tournament Sachin plays with Tachin (Group 1).
In the second group, Nitin plays with Nikhil; whoever wins in Group 1 plays with who-
ever wins in Group 2. The final round throws a winner who wins the tournament.
The tree for the above situation is shown in Fig. 6.6.

President

Vice President
(Administration)

Vice President
(Academics)

Chair of
Computer Science

Chair of
Mathematics

Dean (Arts) Dean (Business)
Director

(Planning)
Director

(Purchasing)

Figure 6.5  Representation of hierarchical structures using trees

Sachin

Sachin

Nitin

Sachin

Tachin

Nitin

Nikhil

a a

c

a

b

c

d

(a)

a b c d

a c

(b)

a b c d

a

a c

(c)

Figure 6.6  (a) Tournament selection level 1; (b) Tournament selection
(c) Tournament selection

114   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

In the above tree, a is represented by 1
h by 00
r by 010
s by 0110
u by 0111

Huffman gave an algorithm to create code that sees the frequency of occurrence of
characters to find the code which occupies minimum space. This code is used in digital
communication.

Observation
Let T be a graph with n vertices. Then, the following are equivalent:
(a)  T is a tree
(b)  T is connected and acyclic
(c)  T is connected and has (n - 1) edges
(d)  T is acyclic and has (n - 1) edges
Acyclic graph: A graph with no cycle is called an acyclic graph.

Illustration 6.3	 The 4-Queens problem: It is required to place 4-Queens on
a 4 × 4 chessboard, so that no 2-Queens are in the same row/same column or the
same diagonal. The problem can be solved by backtracking. However, a brief overview
of the concept has been provided here.

Solution Figure 6.8, 1 represents a queen. We start by placing the queen at (1,1). The
next queen is to be placed in the next row. However, it should not be placed in the same
column as the first row or in the same diagonal. We keep on placing the queens in this
fashion. However, if we are stuck in a situation wherein we cannot place any more
queens, then we backtrack to the last feasible option and try other options. The problem
has been informally dealt within this section. However, it has been formally dealt within
Chapter 12.

u s

r

h

a
1

1

1

0

1

0

0

0

usrh a

00 1 010 0110 0111

Root

Figure 6.7  Huffman tree

T r e e s   ■  115

�Therefore, the total number of nodes = 20 + 21 + 22 + … + 2n - 1 = 1 + 2 + 22 + … + 2n - 1.
Since, the sum of n terms of a GP is

S = a(rn - 1)/(r - 1)

where a is the first term and r is the common ratio.
S = (2n - 1)/(2 - 1) = (2n - 1)

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0

0 0 1 0
1 0 0 0
0 0 0 0
0 1 0 0

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Figure 6.8  A possible solution of the 4-Queens problem

Illustration 6.4	 Find the number of nodes in a complete binary tree.

Solution In a complete binary tree, there is a single node at the first level, two nodes at
the second level, four at the third, and so on. The situation is depicted in Fig. 6.9.

First level = 20 nodes

Second level = 21 nodes

Third level = 22 nodes

(n–1) levels (2n−1) nodes

Figure 6.9  Number of nodes in a binary tree

116   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Solution If depth is d, then number of nodes

N = (2n - 1)
where N is number of nodes.

N + 1 = 2d

log (N + 1) = d log2
d = log2(N + 1)
d = log(N + 1)

6.5  TREE TRAVERSAL

The detailed definition of traversal has been given in Chapter 7. Informally, it is the
order in which the vertices of a tree are processed. A binary tree can be traversed in three
ways namely pre-order, in-order, and post-order.

6.5.1  Pre-order Traversal
In a pre-order traversal, first the root is processed followed by the left sub-tree and then
the right sub-tree, which in turn are processed in the same order. The traversal procedure
can be summarized as
•	 Process the root
•	 Process the left sub-tree in pre-order
•	 Process the right sub-tree in pre-order

6.5.2  In-order Traversal
In an in-order traversal, first the left sub-tree is processed in in-order then the root is
processed followed by the right sub-tree in in-order. The traversal procedure can be
summarized as
•	 Process the left sub-tree in in-order
•	 Process the root
•	 Process the right sub-tree in in-order

Illustration 6.5	 In a complete binary tree, the depth is d and if number of nodes is N,
find depth in terms of N (Fig. 6.10).

d

A

B C

F GD E

Figure 6.10 

T r e e s   ■  117

6.6  TO DRAW A TREE WHEN PRE-ORDER AND IN-ORDER TRAVERSALS ARE GIVEN

Illustration 6.6	 The in-order traversal of a tree is DBEACF and its pre-order traversal is
ABCDEF. Draw the tree.

Solution The pre-order traversal has root at the beginning:
ABCDEF

Therefore, root of the required tree is A.

Step 1  First of all, look for the root in the in-order traversal

DBE A CF

                  left   right
So the in-order traversal of left sub-tree of the required tree is DBE.

Step 2  Now, look for DBE in pre-order
A BDE CF

Therefore, B must be the root of left sub-tree.

Step 3  Then, look for B in the in-order traversal of left sub-tree:
D B E

                  left        right
Therefore, left sub-tree is as shown in Fig. 6.12.

6.5.3  Post-order Traversal
In a post-order traversal, the left sub-tree is processed in post-order, then the right
sub-tree in post-order, followed by the root. The traversal procedure can be summa-
rized as
•	 Process the left sub-tree in post-order
•	 Process the right sub-tree in post-order
•	 Process the root
Figure 6.11 shows the in-order, pre-order, and post-order traversals of a tree.

A

B C

D E

• In-order traversal: Since A is the root and C is its right child,
 therefore, the in-order traversal would be (in-order traversal
 of the left sub-tree) AC, that is, DBEAC

• Post-order traversal: Since A is the root and C is its right child,
 therefore, the post-order traversal would be (post-order
 traversal of the left sub-tree) CA, that is DEBCA

• Pre-order traversal: Since A is the root and C is its right child,
 therefore, the pre-order traversal would be (pre-order traversal
 of left sub-tree) AC, that is, ABDEC

Figure 6.11  Traversals of a binary tree

118   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Now to create the right sub-tree, follow the same procedure.

CF in-order
CF pre-order

Therefore, C is the root and F is right child of C. The tree is as shown in Fig. 6.13.

A

B C

D E F

Figure 6.13  Tree for Illustration 6.6

A

FB

GDC

H

I J

E

Figure 6.14  Tree for Illustration 6.7

A

B
Right

sub-tree
D E

Figure 6.12 

Illustration 6.7	 Write the pre-order and in-order traversals of the tree shown in Fig. 6.14.

Solution Pre-order traversal of the given tree can be found out with the help of the
following algorithm:
•	 Process the root
•	  Process the left sub tree in pre-order
•	 Process the right sub-tree in pre-order

In the given tree, the root is A
The pre-order traversal of the left sub-tree can be found via the procedure given in
Fig. 6.15.

T r e e s   ■  119

In the same way, the pre-order traversal of the right sub-tree can be found via the
procedure depicted in Figs 6.16–19. Therefore, pre-order of the complete tree is

A BC DE FGHIJ

B

C D

left E

right

right

D

E

B

root

C

left

Figure 6.15  Pre-order traversal for right sub-tree

B C D E

Root of left sub-tree

A

B

C DE

In-order transversal

& E pre-orderD

root

Figure 6.17 

HF J

Right part

D

B

C

E

A

F G H I J

G IIn-order

Pre-order

Figure 6.18 

Figure 6.16  Pre-order traversal for right sub-tree

(b)

right
F

root

JI

G

H

(c)

F G H

I J

F G H I J

(a)

G

F

I

H

J

120   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Illustration 6.8	 Use the pre-order traversal ABCDEFGHIJ and the in-order traversal
CBDEAFGHIJ of the tree to find the structure of the tree.

Solution First of all, find the root of tree (by using the pre-order)
ABC DE FGHIJ

After that, look for the root in the in-order traversal of the tree
CBDE A FGIHJ

Then, look for CBDE in the pre-order traversal of the given tree.

Illustration 6.9	 The post-order traversal of a binary tree is
AB + C * DE/-

and its in-order traversal is
A + B * C - D/E

Find the tree.

Solution In the post-order traversal, we have the root at the end.
Therefore, root of the tree is ‘-’.
Now, look for ‘-’ in the in-order

A + B * C - D/E
The left sub-tree is A + B * C.
When we look at its post-order

AB + C
We see that * is the root of the left sub-tree (Fig. 6.20).

(A + B)

−

*

C

By in-order

(a) (c)

−

*

A B

C D E

/

+

(b)

−

*

A B

C D/E post-order

root

+

D/E in-order

Figure 6.20 

A

B F

C D G

E H

I J

Figure 6.19 

T r e e s   ■  121

Solution Reverse post-order,

A F   G H J   B D E C

Taking the reverse
C E D B J H G F A

Which is the post-order traversal (Fig. 6.21(b)).
The pre-order can be found by Fig. 6.21(a).

6.7  BINARY SEARCH TREE

Binary search tree is a binary tree (where each node has at most two children) in which
a new node is added at the left of the tree if it is smaller and to the right if it is bigger
in value.

Example: Create a binary tree (binary search tree) from the following values:

23, 10, 12, 5, 4, 91, 18, 2, 28

First value = 23
Let us make it the root
Second value = 10 which is less than 23
Therefore, it will be positioned to the left of the root (23).
Third value = 12. This is less than 23 and hence will be moved to its left. But 12 is
greater than 10, and will be moved to its right.
Now next value is 5; 5 is less than 23, that is, root → value. Therefore, we move to left,
that is, ptr = ptr → left
Now ptr → value = 10. But 5 is less than ptr → value. Therefore, we create a new node
on the left of 10.

Illustration 6.10	 The following figure shows the shortcut to find pre-order and post-
order traversals of a given tree (Fig. 6.21).

(a)
A B C D E F G H J

Pre-order Reverse post-order
start stop

A

B F

C D G

E H

J

(b)
A F G H J B D E C

A

B F

C D G

E H

J

Figure 6.21 

122   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Let us summarize with the help of creation of binary search tree.

Next value is 4 moving in the same way as we started
Now we encounter 91 which is
> root → value
Therefore, we create a new node in the right
Now next is 18
Now next is 2
and finally we have 28.
Figure 6.22 shows the complete binary search tree.

Figure 6.22   Creation of a binary search tree

(h)

23

10

5 12

4

2

18

91

(i)

23

10

5 12

4

2

18

91

28

23 root

(a)

10

23

(b)

23

10

12

(c)

23

10

5 12

(d)

23

10

5 12

4

(e)

23

10

5 12

4

91

(f) (g)

23

10

5 12

4 18

91

T r e e s   ■  123

	 Algorithm 6.1  Creation of binary search tree

Input: Binary search tree and the item which needs to be inserted
Output: The tree with an additional element.

Add node (x,root)

{
ptr=root;
if (ptr = = NULL)
 {
 Create a new node;
  node→value = x;
  node→left = node→right = NULL;
}
else
 {
 If (node→value < x)
 {
 Ptr = node→left
 if (ptr = NULL) create
 new node and new node→value = x
 else add node (x, ptr)
 }
else
 {
 ptr = node→right;
 if (ptr = NULL) create new node & new node→value = x
 else
 add node (x, ptr);
 }
}
} end of algorithm.

Illustration 6.11	 Search for node having value 12 in the tree shown in Illustration 6.10.

Solution The basic idea behind searching is summarized in the following pseudocode:

Put the pointer ptr = root.
  ptr = root

  if ptr→value = 12 (the value to be searched)
  Print success & exit.

  else

124   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Illustration 6.12	 How many comparisons are needed to search a value in a binary
search tree, of depth d?

Solution  In the worst case, it will be d and in the best case it will be 1; if the element to
be searched is present at root itself.

Illustration 6.13	 Describe the two major searching techniques in a linear array.

Solution

(a)  �Linear search: Here each and every element is seen and we proceed further one by
one. The pseudocode of linear search is as follows.

Linear search (a[], x, n)

{||*a[] is the array where element is to be searched, x is the element to be
searched and n is the number of elements in the array.

  if (ptr→value < 12)
  { ptr = ptr→right;
  }
  else
  ptr = ptr→left;(refer to Figure 6.23)

(b)

! 12
(move to right)

23

10 91

5 12

4 18

2

28

(c)

value found

23

10 91

5 12

4 18

2

(a)

23 ! = 12 (move to left)

10 91

5 12

4 18

2

28

28

Figure 6.23  Searching in a binary search tree

T r e e s   ■  125

for (i = 0; < n; i++)
{
 if (a[i] = = x)
 {
 print: “found”;
 exit ();
 }
} || if we come out of loop then || element not found.
 Print: “element not found”

(b) �	 Binary search: Here we have a sorted array a[], we check the value to be searched
at low (first index of array).

if (a[low] = = x)
 {
 Print: “found”;
 exit ();
 }
or at the last value.
else if (a[high] = = x)
 {
 print: “found”;
 exit ();
 }
Or we found out mid which is (low + high)/2
If (a[mid] = = x)
 {
 print: “found”;
 exit ();
 }
if (element is not found and,
 x < a[mid])
 {
then we take left subarray
that is, low is same
 high is mid − 1
 }
else (if x > a[mid]) {
then we take right subarray
that is, low = mid + 1
 high is same
}
}

The above algorithm has been formally discussed in Illustration 9.4, which is very
similar to binary search tree.

126   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

6.8  B-TREE

A B-tree is a balanced tree in which all the leaf nodes are at the same level. The order of
a B-tree is denoted by M. In order to keep the height of the tree minimum, a node has a
minimum of two and a maximum of (M/2) children. Each node has maximum of (M - 1)
keys. When a new value is inserted, then it is inserted at the requisite place. If the number
of values at a level exceeds (M - 1), then the tree is split into left and the right sub-trees.
In order to understand the concept, let us take an example of a B-tree with M = 5. It may
be noted that when the number of values exceed the maximum value (M - 1), then the ele-
ments to the left of the median move to the left sub-tree and those to the right move to the
right sub-tree. Figure 6.24 explains the example.

23First item: 23

15, 23Second item: 15

15, 19, 23Third item: 19

6, 15, 19, 23Fourth item: 6

6, 15, 17, 19, 23Fifth item: 17

The number of node
has exceeded (M − 1),

the median is 17

17

6, 15 19, 23

Sixth item: 2 17

2, 6, 15 19, 23

6, 17

9, 151, 2 19, 23

Next two items: 1, 9 17

1, 2, 6, 9, 15 19, 23

Again split the
node in two parts

Figure 6.24  Insertion in a B-tree

T r e e s   ■  127

6.9.1  Creation of a Heap
In order to create a heap, a simple algorithm is followed. The first element becomes the
root. The next element goes to the position indicated by Fig. 6.26(b). However, if the

6.9  HEAP

A binary heap is a binary tree in which the value of root is always greater (or less) than
either of its children. The elements in a complete binary tree are added in the order
depicted by Fig. 6.25. Heap can be of two types, max-heap or min-heap. In a max-heap,
the parent is greater than either of its child, whereas in a min-heap, the parent is always
lesser than either of its child.

1

3

6 7

12 13 14 15

2

4 5

8 9 10 11

Figure 6.25  An example of a min-heap

Figure 6.26  (a) The first element becomes the root of the heap; (b) the next element
becomes the left child of the root, if it is lesser than the root; (c) the next element becomes
the right child of the root, if it is lesser than the root; (d) since the child is greater than the
parent it is swapped; (e) 27 is greater than its new parent, so it is swapped with the root of

the heap resulting in (f)

21

(a)

21

18

(b) (c)

1618

21

21 16

27

18

(f)

27 16

21

18

(e)

27

18 16

21

(d)

128   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

element is greater than its parent, then it is swapped with its parent. The process contin-
ues till each parent is greater than either of its child. It may be noted here that a heap is
fundamentally different from a binary search tree. In a binary search tree, the right child
is greater than the parent, whereas the left child is smaller. In the case of max heap, the
parent is greater than either of its children. In order to understand the concept, let us
consider the following illustration.

Illustration 6.14	 Create a heap out of the following elements:

21, 18, 16, 27, 23, 17, 18

Solution
Step 1  �The first number is 21. A new node, root node, is created and its value is set

to 21 (Fig. 6.26(a)).

Step 2  �18 goes to the 2nd position in the binary tree depicted in Figs 6.26(a) and (b).

Step 3  16 becomes the right child of the root (Fig. 6.26(c)).

Step 4  �27 becomes the left child of 18. However, it is greater than 18, it is swapped
with 18, it is greater than its new parent. ‘So it is swapped with the root of the
heap’(Figs 6.26(d) and (e)).

Step 5  �23 becomes the right child of 21. However it is greater than 21, therefore, it is
swapped with 21 (Figs 6.27(a) and (b)).

(a)

23 16

27

21 1718 18

23 17

27

21 16

(b)

Figure 6.28  (a) 17 becomes the left child of 16 and then swapped
with 16; (b) adjusted tree

18

21 16

27

(a)

23 18

23 16

27

21

(b)

Figure 6.27  (a) 23 swapped with its parent; (b) Adjusted tree

Step 6  �17 then becomes the left child of 16 (Fig. 6.28(a) and the adjusted tree is Fig. 6.28(b)).

T r e e s   ■  129

	 Algorithm 6.2 I nsertion in a heap

Input: Heap h, int x
Output: A heap in which x is placed at appropriate position
Strategy: Discussed above

insert (Heap h, int x)
 {
 //Heap is stored in an array
 if (heap is empty)
 {
 h[0]=x;
 }
 else
 {
 // the current element is to be placed at position n
 if(x<h[n/2])
 {
 h[n]=x;
 }
 else
 {
 h[n]=x;
 while (h[n]<h[n/2])
 {
 swap (h[n], h[n/2]);
 }
 }
 }
 }

Complexity: Swaps are done at most logn times. So the worst-case complexity is
O n(log()), whereas the best-case complexity is O()1 .

6.9.2  Deletion from a Heap
Deletion of the leaf from a heap is easy as the leaf is simply removed as shown in Fig. 6.29(a).
However in the case of internal node, the deletion may require re-heapification, for exam-
ple deletion of a node 23 would result in a heap shown in Fig. 6.29(c).

6.9.3  Heapsort
In heapsort, the given elements are first arranged in a heap. Then the elements are
removed one by one. After every deletion, the elements are re-heapified.

If the heap in question is a max-heap, then we get the elements in the descending
order. In the case of a min-heap, the output is an ascending sequence.

130   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The following algorithm presents the formal procedure of heapsort.

	 Algorithm 6.3 H eapsort

Input: A list of elements
Output: Sorted elements
Strategy: Discussed above
Heapsort (List elements) returns sorted_list
 {
 heap h=heapify (elements);
//the elements are heapified and inserted into a heap namely h
 i=0;
 while(i!=n)
   {
   x=delete(
//the delete function removes the element at the root of the heap and inserts
it into x
   insert(sorted_list, x);
//the element x is inserted into sorted_list
   }
 }

Complexity: As explained earlier, the algorithm requires heapify. The worst-case com-
plexity of heapify is (log())n ; therefore, the complexity of the algorithm is O n n(log)  .

18

Delete 16

23 17

27

21 16

(a)

(b)

Re-heapify

17

27

23 is to be deleted

18 21

23

17

27

(c)

18

21

Figure 6.29  (a) Step 1: deletion of 16; (b) step 2: deletion of 23; (c) step 3:
repositioning of 21

T r e e s   ■  131

The above organization makes the simple merger of two trees.
There is another tree called Fibonacci trees in which, in the extreme case, each node

can even be a separate tree. However, it follows the minimum heap property. The opera-
tions can be lingered on to a later point. Two major operations in Fibonacci tree are merge
and decrease. Merge merges the two Fibonacci trees, the implementation of which is as
simple as concatenating two lists. The decrease operation splits the tree into different trees.

6.11  BALANCED TREES

A binary search tree can, at times, be skewed. For example, consider the following
example. A binary search tree has to be created from 12, 9, 5, 3, 2, 1. The first ele-
ment 12 becomes the root of the tree. Since 9 is lesser than 12, it becomes the left
node of the root. Now, 5 is lesser than 9, it becomes the left node of 9. In the same

6.10  BINOMIAL AND FIBONACCI HEAP

Binomial heap is a data structure similar to a binary heap with some additional con-
straints to facilitate the union operation. A binomial heap satisfies the property of a mini-
mum heap. That is, the element at the root is always less than that of either of its child.
The structure of a binomial tree follows the concept of recursion. A binomial tree of
order 0 has just one node. Figure 6.30(a) depicts the tree. A binomial heap of order 1 has
two nodes, the second being the child of the first. Figure 6.30(b) shows the tree. A bino-
mial heap of order 2 can be crafted via the above two trees. Figure 6.30(c) shows a binomial
heap of order 2, Fig. 6.30(d) shows a binomial heap of order 3, and finally, Fig. 6.30(e)
shows a binomial heap of order 4. In general, a binomial heap of order k has a binomial
tree of order 0 as its first child, that of order 1 as its second child, and so on. The leftmost
child of the root, in this case, would be a binomial tree of order (k - 1).

(d)

H

GF D

BE C

A

(e)

JM GF

NO

K

L H

P

I E

A

D

C B

A

(a) (b)

A

B

(c)

D

BC

A

Figure 6.30  Binomial tree; (a) binomial heap of order 0, (b) order 1, (c) order 2, (d) order 3; (e) order 4

132   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The above problem can be solved by what we call height balanced trees. In order to
understand the concept, let us try to understand the concept of balance factor. Balance
factor of a binary tree is defined as the difference of height of left sub-tree and right
subtree. A binary tree is called a balanced tree if the balanced factor of each node is 0, 1,
or -1. The figure depicts some examples of balanced and unbalanced trees. The tree of
Fig. 6.32(a) is not balanced since the BF of node A and B are 2. Similarly, the tree of
Fig. 6.32(b) is also not balanced. However, trees of Figs 6.32(c) and (d) are balanced,
since the balanced factor of each node is 0, 1, or, -1.

way, 3 becomes the left node of 5, 2 becomes the left node of 3 and 1 becomes the left
node of 2. The tree is depicted in Fig. 6.31.

1

2

3

5

9

12

The array has 31position but only 6 are filled.
Thus, the efficiency is less than 20%.

0 1 2 3 4 5 6 7 … 15 … 31

12 9 5 3 2 1

In the static representation of this tree 12,
being the root would be stored at the
0th index, 9 at 1st, 5 at 3rd, 3 at 7th,
2 at 15th, and finally 1 at 31st position.

Figure 6.31  A skewed binary tree

(a)

A

B C

D

E
BF = 0

BF = 0

BF = 2

BF = 2

BF = 0

BF = 0
F

(b)

A

B C

D

E
BF = 0

BF = 1

BF = 2

BF = 1

BF = −1

BF = 0
F

(c)

D F
BF = 0

BF = 0 BF = 0 BF = 0 BF = 0

F D

E F E F

A

B C
BF = 1

BF = 0

BF = 0

BF = 0

BF = −1

BF = 0

(d)

A

B C
BF = 0

BF = 0

BF = 0

Figure 6.32  Examples of trees that are not balanced (a and b)
and those that are balanced (c and d)

T r e e s   ■  133

tree unbalanced. So as to make the tree balanced again, the tree is reconfigured so that B
becomes the new root, A becomes the right node of the new root and C becomes the right
node of A. Since BR (the right sub-tree of B) as to the left of A earlier, indicating that
the value of each of its node is less than A; in the rearranged tree it goes to the left of A.

In order to understand the RR rotation, let us consider a tree in Fig. 6.34(a), which is
a balanced tree. But on adding a new node at the position depicted by Fig. 6.34(b), the
tree becomes unbalanced. As per the method suggested by the figure, the tree should be
reconfigured to that depicted in the figure, to make it balanced again. The idea is simple,
a new node D is added to the right of the right, as in right of CR, which is to the right
of A. The addition of this node would make the tree unbalanced. So as to make the tree
balanced again, the tree is reconfigured so that C becomes the new root, A becomes the
left node of the new root and CR becomes the right node of C. Since CL (the left sub-tree
of C) was to the right of A earlier, indicating that the value of each of its node is greater
than A; in the rearranged tree, it goes to the right of A.

One of the most innovative methods of dealing with the above problem, that is con-
verting an unbalanced tree to a balanced one, was shown in Fig. 6.33. The method
requires a minor change in the configuration of the given tree as and when a new node
is added to the tree; which makes the balance factor of the tree anything except for 0, 1,
or -1. In such cases, LL, RR, LR, or RR rotations are used to make the tree balanced.

For example, a tree in Fig. 6.33(a) is a balanced tree. But on adding a new node at the
position depicted by Fig. 6.33(b), the tree becomes unbalanced. As per the method sug-
gested by the figure, the tree should be reconfigured to that depicted in Fig. 6.33(b) (sec-
ond tree), to make it balanced again. The idea is simple. A new node D is added to the left
of left, as in left of BL, which is to the left of A. The addition of this node would make the

BF = 1

BF = 0 BF = 0

B

A

CD

BL

BR

(a) (b)

A BF = 1

BF = 0 BF = 0

B C

BL BR

LL Rotation

D Addition of this node would
make the tree unbalanced

Figure 6.33  LL rotation

134   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Figures 6.35 and 6.36 depict the concept of RL and LR rotations.

C

B

BF = 1

BF = 0

CL CR

D

A

LR Rotation

Addition of this node would
make the tree unbalanced

A

B

C

BF = 1

BF = 0 BF = 0

CL CR

D

Figure 6.35  LR rotation

Figure 6.34  RR rotation

BF = 1C

A

B D

CR

CL

RR Rotation

(a) (b)

A BF = 1

BF = 0 BF = 0

CB

CL CR

D
Addition of this node would
make the tree unbalanced

The above discussion explores the addition of a new node and the effect of that addi-
tion on the balance factor of a tree. The deletion of a node from a balanced AVL tree
also requires rearranging the tree in order to make it balanced. Such rearrangements are
referred to as R0, R1, and R - 1 rotations.

T r e e s ■ 135

 6.12 CONCLUSION

 The chapter introduced a very important concept called trees. The defi nition of trees has
been discussed fi rst in the chapter. From the defi nition, it can be inferred that every graph
is a tree but every tree is not a graph. The trees majorly discussed in the chapter are binary
trees that have a maximum of two children. There are many classifi cations of binary trees
one of which is a binary search tree. This data structure helps in the easy addition and
retrieval of values. However, such trees tend to become imbalanced as more values are
added. In order to handle this problem, balanced trees discussed in Section 6.11 are used.
The chapter also discussed the concept of heaps, which form the basis of one of the most
effi cient sorting called heapsort. The merging of two heaps, at times, becomes ineffi cient.
This problem is handled by Binomial and Fibonacci heaps discussed in the chapter.

BF = 1

BF = 0

BF = 0

A

B

B

BF = 1

BF = 0

C

D

C

A D

CL

CR

CR

CL E

LR Rotation

Addition of this node would
make the tree unbalanced

E

 Figure 6.36 rl rotation

 Points to Remember

 • Each tree is a graph.

 • A binary tree has at maximum two children.

 • The number of children, of each node, in a strictly binary tree is either 2 or 0.

 • The number of children, of each node, in a complete binary tree is two except for the last
level. The degree of nodes of the last level is 0.

 • In a balanced tree, the balanced factor is 0, 1, or −1.

 • A binomial heap is a minimal heap.

 • Heapsort is more effi cient than selection or bubble sort.

 • The tree traversals can be recursive or non-recursive.

136 ■ A lg o r i T h m s : D e s i g n A n D A n A ly s i s

 Balanced factor The balanced factor of a node is the difference of the height of the left sub-
tree and the height of the right sub-tree of the node.
 Balanced tree A balanced tree is one in which each node has balanced factor 0, 1, or −1.
 Binary tree it is one which has maximum of two children.
 Binary search tree it is a binary tree (where each node has at most two children) in which
the new node is added at the left of the tree if it is smaller and to the right if it is bigger in
value.
 B-tree A B-tree is a balanced tree in which all the leaf nodes are at the same level. in order to
keep the height of the tree minimum, a node has a minimum of two and a maximum of (M /2)
children. each node has maximum of (M − 1) keys.
 Binary heap A binary heap is a binary tree in which the value of root is always greater (or
less) than either of its children.
 Strictly binary tree it is the one in which each node has either two children or no child.
 In-order traversal in an in-order traversal, the left sub-tree is processed in in-order then the
root is processed followed by the right sub-tree in in-order.
 Pre-order traversal in a pre-order traversal, a root is processed followed by the left sub-tree
and then the right sub-tree, which in turn are processed in the same order.
 Post-order traversal in a post-order traversal, the left sub-tree is processed in post-order
then the right sub-tree in post-order followed by the root.
 Strictly binary tree in a strictly binary tree, each node has two nodes except the last level
wherein the nodes do not have any child.
 Tree A tree is a non-linear data structure that has two components namely nodes and edges.
nodes are joined by edges. This data structure has no cycle and no isolated vertex.

 I. Multiple Choice Questions
 1. Which of the following does not have a cycle and does not have an isolated vertex?

 (a) Tree
 (b) Plex

 (c) Graph
 (d) All of the above

 2. Which of the following is more fl exible Binomial or Fibbonici heap?
 (a) Binomial
 (b) Fibonacci

 (c) Both
 (d) Insuffi cient data

 3. Which property is followed by a Binomial heap?
 (a) Each node has a maximum of two children
 (b) Each node can have either two or zero children
 (c) The value of each node is less than its children
 (d) None of the above

EXERCISES

 KEY TERMS

T r e e s   ■  137

	 4.	 Which property is followed by a complete binary tree?
(a)	 Each node has a maximum of two children
(b)	 Each node can have either two or zero children
(c)	 The value of each node is less than its children
(d)	 None of the above

	 5.	 Which property is followed by a strictly binary tree?
(a)	 Each node has a maximum of two children
(b)	 Each node can have either two or zero children
(c)	 Each node has exactly two children except for the last level in which a node

does not have any children
(d)	 None of the above

	 6.	 Which of the following is the most efficient sorting technique?
(a)	 Heap sort
(b)	 Selection sort
(c)	 Bubble sort
(d)	 All the above are equally efficient

	 7.	 Which of the following is not a type of tree?
(a)	 Binomial
(b)	 Fibonacci

(c)	 Binary search
(d)	 All of the above are trees

	 8.	 In a binomial tree what is the order of second sub-tree of the root (from the right)?
(a)	 2
(b)	 1

(c)	 0
(d)	 None of the above

	 9.	 Which of the following is the best data structure in terms of height?
(a)	 B-tree
(b)	 Binary search tree

(c)	 AVL tree
(d)	 None of the above

	10.	 Which of the following is not true for a B-tree?
(a)	 A B-tree is a balanced tree in which all the leaf nodes are at the same level
(b)	 A node has a minimum of two and a maximum of (M/2) children
(c)	 Each node has maximum of (M - 1) keys
(d)	 All the above points are true for a B-tree

II.  Review Questions
	 1.	 Define a tree and give examples of graphs which are not trees.
	 2.	 Define the following:

(a)	 Binary tree
(b)	 Strictly binary tree
(c)	 Complete binary tree
(d)	 B-tree
(e)	 Heap

(f)	 Level
(g)	 Degree of a tree
(h)	 Siblings
(i)	 Root

138   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 3.	 What is a binary search tree? Write an algorithm to insert and delete values from a
binary search tree.

	 4.	 What is a heap? Write an algorithm to insert and delete values from a heap.

	 5.	 What is a B-tree? Write an algorithm to insert and delete values from a B-tree.

	 6.	 Write a non-recursive algorithm for in-order, pre-order, and post-order traversals.

	 7.	 How will you find out maximum element in a binary search tree?

	 8.	 Write an algorithm to delete a tree.

	 9.	 What are the advantages of an AVL trees?

	10.	 Write an algorithm to find the deepest element in a tree.

	11.	 Write an algorithm to find the average of the values of nodes of a binary search
trees.

	12.	 Write an algorithm to find the total sum of values of nodes of a tree.

	13.	 Using Illustration 6.11, write an algorithm for binary search ().

III.	 Numerical Problems
	 1.	 In the tree given below.

		

a

b

m

g h

d ef

c

i

j

k l

(a)	 Find parents of g and l.
(b)	 Find ancestors of h and f.
(c)	 Find descendants of c, b.
(d)	 Find terminal vertices.
(e)	 Find external vertices.
(f)	 Find sub-tree rooted at j

(g)	 Find sub-tree rooted at 6.
(h)	 Is the tree obtained in (g) a binary

tree?
(i)	 Find siblings of f and i.
(j)	 What can you say about two verti-

ces having same parent?
	 2.	 Draw the following graphs or explain why they cannot be drawn:

(a)	 Six edges, eight vertices
(b)	 Acyclic four edges, six vertices
(c)	 Tree, 5 vertices degree of each maximum 2
(d)	 Tree, 4 terminal vertices, 6 internal vertices
(e)	 Tree, 6 internal vertices having degree
	 2, 1, 1, 1, 3, 3

	 3.	 Explain why a forest is a union of trees.
	 4.	 Show that graph G with n vertices and fewer than n - 1 edges is not connected.

T r e e s   ■  139

	 5.	 How many trees can be formed from the following graph:

		

A

E DB

C

	 6.	 Draw tree structure of your organization (or college).
	 7.	 Eight-Queens problem:
		 Eight-Queens are to be placed on the 8 × 8 chessboard so that no two are in the

same row or same column or same diagonal.
	 8.	 Draw any three spanning trees out of the following graphs:

		

d

e f
g

a b
c

	 9.	 Which of the following graphs are a tree? Explain.

(a)	

(b)	

(c)	

(d)	

(e)	

	10.	 For what value of n is the complete graph a tree?
	11.	 For what n is the n cube a tree?
		 (For definition of n cube refer to graphs)
	12.	 Decode each of bit strings using Huffman code given.

		

root
1 0

1 1 0
S

1 0 E1 0
0 NP

L
1

D

(a)	 011000010
(b)	 01110100110

(c)	 111001110100111

140   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	13.	 With the help of tree of Q12, encode the following strings:
(a)	 SEAL
(b)	 LAP

(c)	 NEAD

14.	 What techniques are used except for Huffman code to store text?
15.	 Show that the tree is the planar graph.
16.	 If we draw a tree of an expression and then take its pre-order then it is called prefix

form.
		 Now find prefix form of the following:

(a)	 (A + B) + (C/D)
(b)	 ((A - C) * D) + (A + (B - D))
(c)	 (A + B) * (C - D)

(d)	 (A * B - C/D + E)/(A/B/C - D +
D)/(A + B +C)

(e)	 (A + B + C) * D

	17.	 If we make a binary tree of an expression and find its post-order transversal then it is
called postfix form. Find the postfix form of Q16.

	18.	 Draw binary tree for A + (B + C - D + E) * F/G, and write all three transversals.

	19.	 Draw tree for each of two traversals given below:

(a)	 Pre-order: + AB

	 In-order: A + B

(b)	 Post-order: AB + CD + *

	 In-order: A + B * C + D

(c)	 Pre-order: * + AB + CD

	 In-order: A + B * C + D

(d)	 Post-order: AB/CD/+
		 In-order: A/B + C/D

(e)	 Pre-order: sin x

	 Post-order: x sin

(f)	 Pre-order: || > AB > CD

	 In-order: A > B || C < D

(g)	 Pre-order: &&&& < AB < BC <
CD

	 In-order: (A < B) && (B < C) &&
(C < D)

20.	 Draw binary search tree from the following data:
(a)	 5, 4, 3, 2, 6, 7, 8, 9, 1, 11.
(b)	 100, 90, 80, 70, 60, 50, 40, 65, 55, 45.
(c)	 1, 4, 7, 11, 2, 5, 8, 12, 3, 6.
(d)	 2, 5, 8, 9, 10, 12, 14, 18, 21, 81.

	21.	 In the following binary search tree, write every step if we search 21:

		

38

39

3321

3520

90

40

30

60

		 In the above tree, what happens if we delete 30?

T r e e s ■ 141

 1. (a)
 2. (b)

 3. (c)
 4. (b)

 5. (c)
 6. (a)

 7. (d)
 8. (b)

 9. (a)
 10. (d)

Answers to MCQs

 22. Odd node 28 to the above tree.

 23. What happens if in tree of Q22 we try to add 40 again?

 24. In the following array, apply linear search and binary search to search 28 and hence
compare the number of comparisons

 [5, 14, 28, 29, 30, 35, 40, 45, 50]
 25. Find time complexity of linear search and binary search.

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of graphs
 • Defi ne a graph and understand its representation
 • Enlist the different types of graphs
 • Understand and implement graph traversal algorithms
 • Explain the concept of connected components
 • Understand topological sorting

 7.1 INTRODUCTION

 This chapter introduces the concept of graphs which is the soul of algorithm analysis
and design. It is the foundation of the building that would be constructed in our jour-
ney through the book. It is important to understand the representation and algorithm of
graphs before starting off with the design techniques (Section III of the book).

 7.2 CONCEPT OF GRAPH

 A graph is a non-linear data structure consisting of two components (V , E), where V is
the fi nite, non-empty set of vertices and E is the set of edges. The set E has elements
in the form (,) : ,x y x y V∈ . Figure 7.1 shows a graph having vertices depicted by the set
 V A B C D= { }, , , and set of edges E A B A C B C B D C D= { }(,), (,), (,)(,)(,) . This graph is an
 undirected graph . So, there is a path from A to B and also from B to A.

 Graphs

 C H A P T E R 7

A B

C

D

Figure 7.1 an example of an undirected graph

G r a p h s   ■  143

However, a graph, like that in Fig. 7.2, that has edges directing from one vertex to
another is called directed graph. In this case, though, there is a path from A to B but
there is no path from B to A.

7.3  REPRESENTATION OF GRAPH

A graph can be represented in many ways. Some of them are via matrix and via
linked list. The matrix representation of a graph generally has rows and col-
umns representing the vertices of the graph. The value at a particular position can
be 1 or 0 depending on whether there is an edge between the vertices represented by
the corresponding row and column. The matrix representation of a graph depicted in
Fig. 7.1 is as follows:

A B C D
A

B

C

D

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0



















The first element of the first row is 0 as there is no edge from A to A. However, there
is an edge between A and B, therefore, the matrix has 1 at the element at row 1 and
column 2. In the same way, the element at row 1 and column 4 is 0. The numbers here
can be more than 1 if there are more than one edge between two vertices.

The second way of representing the same graph is via linked lists. The linked
list of each vertex would contain the vertices connected to that vertex. For example,
the linked list of A would have B and C. The linked list of this graph is depicted in
Fig. 7.3.

A
B

C

D

Figure 7.2  An example of
a directed graph

144   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

A D

B C

E

G

F

Figure 7.4  A graph with a
Hamiltonian cycle

B C

A D

F

G

E

Figure 7.5  One of the
Hamiltonian cycles of the

graph shown in Fig. 7.4

7.4  CYCLIC GRAPHS: HAMILTONIAN AND EULERIAN CYCLES

A graph can also be classified as a cyclic or a non-cyclic graph. A cyclic graph is one
that has at least one path of the form v v vi i i, , ..., .+1 A graph that does not have a cycle
is referred to as a non-cyclic graph. A non-cyclic graph that does not have an isolated
vertex is also called a tree. The concept of trees has been discussed in detail in Chapter 6.
However, even cyclic graphs find their application in many disciplines—from network-
ing to biotechnology.

A special type of cycle called Hamiltonian cycle is also one of the greatly researched
topics in graph theory. A Hamiltonian cycle is one which covers all the vertices but no
vertex is repeated except for the first. It is, however, not always the case that a graph has
a Hamiltonian cycle. Figure 7.4 shows an example of a graph that contains Hamiltonian
cycle. The corresponding Hamiltonian cycle is shown in Fig. 7.5. There can be more
than one Hamiltonian cycle in a graph.

A

AB

B

C

C

B C

C

D

D

A B D

Figure 7.3  Linked list of
graph 1

G r a p h s   ■  145

A B

E D

C

Figure 7.6  Graph
with an Eulerian cycle

A B

E D

C

Figure 7.7  The Eulerian
path of the graph shown

in Fig. 7.6: ACDECBA

A

E

B

D C

Figure 7.8  An example of
a graph that has Hamiltonian

cycle but not an Eulerian cycle

A B

E

D C

Figure 7.9  The Hamiltonian
cycle of graph shown in Fig. 7.8

A B

D

E F

C

Figure 7.10  Example of graph having
neither Eulerian cycle nor Hamiltonian cycle

There is another type of cycle called Eulerian cycle. This cycle covers all the edges
but no edge is repeated twice. Figure 7.6 is one of the examples of graphs that have an
Eulerian cycle. Figure 7.7 is an example of a graph that has an Eulerian cycle but not
a Hamiltonian cycle. Figure 7.8 shows a graph that has a Hamiltonian cycle but not an
Eulerian cycle. The Hamiltonian cycle is shown in Fig. 7.9. Figure 7.10 shows a graph
that has neither of the cycles.

7.5  ISOMORPHIC AND PLANAR GRAPHS

Having understood the basics of graphs, let us move forward to the concept of isomer-
ism. In order to understand the concept let us take an example. Two persons were asked
to solve the following problem:

‘Draw and label five vertices a, b, c, d, and e, connect: a & b, b & c, c & d, d & e, a & e’.
They answered the same question in two different ways. The first person drew a graph as
depicted in Fig 7.11, whereas the second person drew a graph as depicted in Fig. 7.12.
Here, both graphs 1 and 2 have
(a)  Same number of vertices.
(b)  Same number of edges.
(c)  One-to-one correspondence.

146   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Any two graphs that follow the above three properties are referred to as isomorphic
graphs. The graphs G1 and G2 are isomorphic if for the same ordering of their vertices
and their adjacency matrices, discussed earlier, are equal convertible. For example, the
adjacency matrix of the graphs shown in Figs 7.11 and 7.12 are as follows.

Adjacency Matrix for Graph 1

a b c d e
a

b

c

d

e

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

























Adjacency Matrix for Graph 2

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0



















The matrices are same (in this case, even if the matrices are reducible to each other, they
are isomorphic), therefore, they are isomorphic.

If a graph can be drawn on a plane, then it is referred to as a planar graph. If it cannot
be drawn on a plane or it has intersecting edges, then it is called a non-planar graph. In
order to understand the concept, let us consider the following example.

a

b

cd

e

Figure 7.11  Graph drawn
by the first person

a

dc

e b

Figure 7.12  Graph drawn by
the second person

G r a p h s   ■  147

Illustration 7.1	 Three cities C
1
, C

2
, and C

3
 are to be connected via the expressway

to each of three destination cities C
4
, C

5
, C

6
. Can a system of roads be designed so that

roads do not cross each other?

Solution The graph shown in Fig. 7.13 depicts the situation. It can be seen that if the
first city is connected to all the three destination cities, the second can also be connected.
However, it is not possible to connect the third city to all the three destination cities
without having to intersect any edge.

A
B C

FED

Figure 7.14  A K33 graph is
always non-planar

C1

C4 C5 C6

C2

C3

Figure 7.13  Example of a non-planar
graph

That is, there is no way to connect C
3
 and C

6
. The answer to the above problem is that it

is not possible to design a system of roads that will not intersect each other. Therefore,
a 3 × 3 graph on a K

5
 graph is deemed to be non-planar. It may be stated here that K

5
 is

a fully connected graph with 5 vertices.
In fact a planar graph always satisfies a relation between the number of edges (e),

number of vertices (V), and the number of faces ( f ),

f = e - V + 2

If a graph is drawn in a plane divided into regions called faces, then it will be a planar
graph.

In the graph depicted in Fig. 7.14, the number of edges, e = 9 and the number of ver-
tices, V = 6. Therefore, number of faces = 9 - 6 + 2 = 5.

148   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Euler’s Formula for Graphs

In a planar graph with v vertices, e edges, and f faces

f = e - v + 2

We prove the theorem using mathematical induction. Mathematical induction has three
steps:

We start with verification of the theorem by taking a graph with a single edge
(Fig. 7.18(a)).

So, the relation is not satisfied, hence K
33

 is not a planar graph. In a planar graph 2e > 4f

Since, in the above graph if	 2e > 4f
then	 2e > 4(e - V + 2)
also	 e = 9, V = 6

therefore, 18 ≥ 20, which is a contradiction.
The above theorem is referred to as Kuratowski’s theorem, an example of which is

stated as follows.

Kuratowski’s Theorem
A graph is planar if it does not contain a sub-graph homomorphic to K

5
 or K

33
. A graph

can be reduced to another homomorphic graph by reducing an edge or a vertex.

For example, let us consider a graph G, depicted in Fig. 7.15.
The graph of Fig. 7.17 is K

33
. So, graph G can be reduced to K

33
 and therefore G″ is

not planar. Another theorem that helps us to find out whether the given graph is a planar
is called Euler’s theorem. The theorem relates e, v, and f, as stated earlier. The theorem
and its proof have been explained as follows:

a

b

c

d

e

f
g

h

Figure 7.15  Graph G

a

b

c

d

e

f
g

h

Figure 7.16  Graph G′,
homomorphic to G, obtained

by the reduction of G

a

b

c
e

d

f

Figure 7.17  Graph G’’,
homomorphic to G’, obtained

by the reduction of G’

G r a p h s   ■  149

If we increase V by 1 and e by 3, there would be 2 more faces (Figs. 7.19 – 7.21).
Even in this case, the above formula holds.

The theorem is, therefore, true for n = k + 1, if it is true for n = k. By the principle of
mathematical induction, the theorem is always true.

Figure 7.18(a)  Graph G’

A

B

Figure 7.18(c)  A planar
graph with v = 3

A

B CA B

C

Figure 7.18(b)  Adding an
extra edge to the graph

A

Extra face

D

B C

Figure 7.20  Adding two extra
edges to the graph

Figure 7.19  Adding
an extra edge to

graph of Fig. 7.18(c)

D

A

B C

Figure 7.21  Adding three extra
edges and one vertex to the graph

A

First face

Second face
D

B C

Definition  The traversal of a graph is the order in which the vertices must be visited.

That is, suppose, e = 1
i.e., one edge
Then, v = 2 and  f = 1

f = 1 - 2 + 2 = 1

So, in this case, the theorem holds.
In the second step, we suppose the relation to be true for e = k.
Let the theorem be true for n = k, that is, for k vertices,

f = e - v + 2

If we increase the number of vertices by 1 and edge by 1, then the number of faces
will remain same (Fig. 7.18(b)).

If we increase number of vertices by 1 and edges by 2, then there will be an extra
face (Fig. 7.18(c)).

150   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

7.6  GRAPH TRAVERSALS

Having seen the basics of graph theory, let us now move to some intricate problems.
One of the most used concepts in the chapters that follow is graph traversals.

This section explores the topic, presents its algorithm, and exemplifies the procedure.
Graph traversal can be either breadth first search (BFS) or depth first search (DFS). BFS
explores the first level of the graph followed by the next levels, whereas DFS explores
the given graph depth-wise. In order to implement DFS, we need a stack. However, BFS
can be implemented via a queue. Both the algorithms have their advantages and disad-
vantages. Figure 7.22 shows the two types of traversals.

7.6.1  Breadth First Search
The first algorithm discussed in this section is BFS. BFS uses a queue. An array already_
visited[ ] keeps track of the vertices that have already been visited. The array is a global
array. The algorithm starts with a loop that initializes each element of already_visited[ ]
as 0. Now when a node is processed, then its adjacent vertices are put into a queue. The
process is repeated till the queue is empty. Algorithm 7.1 depicts the above process.

	 Algorithm 7.1  Breadth first search

Input: Graph G
Output: Sequence of vertices
Strategy: Discussed above
Problem: � The problem in this algorithm can be understood by the following example:
Suppose there is a vertex at the fifth level which is to be found. However, each level has 128
vertices. The algorithm would be able to find out the answer, but after (128 × 3 + 1) iterations,
DFS would be a better choice in this case.

Algorithm BFS (v)
{
// BFS of G at the beginning we have vertex v for node i visited [i] = 1 if i has

Graph
traversal

Depth first
search

Breadth first
search

Uses stack
Explore the graph

depth-wise
Uses queue

Explore the graph
level by level

Figure 7.22  Types of graph traversals

G r a p h s   ■  151

Solution Since it is easier to see the adjacent nodes of a given node via linked list repre-
sentation, an adjacency list of the given graph is drawn first (Fig. 7.24). This is followed
by the implementation of the above algorithm. The stages of BFS have been shown as
follows:

Stages in BFS
First of all find the adjacency nodes of the root node.

B is adjacent to A (Fig. 7.25), so B is processed.
C is also adjacent to A (Fig. 7.26), therefore C is processed.

A

H

B C

GFED

Figure 7.23  Graph for Illustration 7.2

//already been visited. The graph G and array visited [] are global
for(i = 1 to n)
visited [i] = 0
// initialize the array elements to 0.
u = v
visited [v] = 1;
repeat
 {
 for all vertices w adjacent from u do
{ if (visited [w] = = 0)
 {
add w to q;
 visited [w] = 1;
 }
}
if q is empty then return;
Delete u from q;
} until (false);
}

Complexity: If there are l level and b children at each level, then the number of children
at the first level would be b, at the second level b2, and so on. So the total complexity
would be proportional to (bn + 1).

Illustration 7.2	 Find the BFS of the graph depicted in Fig. 7.23.

152   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

F, G and A are adjacent to C, however A has already been processed so F and G are
processed.

Similarly, next node to be processed is H (Figs 7.28 and 7.29).

Since A does not have any more adjacent nodes, we now find the nodes adjacent to
B (Fig. 7.27).

D and E are adjacent to B, so E and D are processed.
Since B does not have any more adjacent nodes, so we find the nodes adjacent to C.

Load nodes

[A]

[B]

[C]

[D]

[E]

[F]

[G]

[H]

A XD E

A XF G

H B

B H

C H

C H

D E F G X

B C

X

X

X

X

X

Figure 7.24  Adjacency list of the graph of Illustration 7.2

A

B

Figure 7.25  Illustration 7.2,
Step 1: Process A and then B

A

B C

Figure 7.26  Illustration 7.2,
Step 2: Process C

A

B C

D

Figure 7.27  Illustration 7.2, Step 3: Move to the
next level and Process D

G r a p h s   ■  153

A

E F G

B C

D

H

Figure 7.30  Finally, Process H

A

E F

B C

D

Figure 7.28  Illustration 7.2,
Step 4: Process E and then F

A

E F G

B C

D

Figure 7.29  Illustration 7.2, Step 5:
Process G and then move to the next level

Since all the nodes of this level have been processed, we now move on to the next
level (Fig. 7.30).

Finally, H is processed. Therefore, the order in which nodes have been processed is
A B C D E F G H.
Complexity: The above example also brings forth the point that if adjacency matrix is
used, then the complexity would be O(n). However, if an array is used, the process takes
O(n2) time.

7.6.2  Depth First Search
The next algorithm discussed in this section is DFS. DFS uses a stack. An array already_
visited[ ] keeps track of the vertices that have already been visited. The array is a
global array. The algorithm starts with a loop that initializes each element of already_
visited[ ] as 0. The algorithm is based on the concept of recursion. The algorithm is
called by passing the adjacent nodes of the root node to the function again. Recursion
uses stack. Therefore, the root node is processed first followed by the node adjacent to
it in the next level. The control then considers the next node as the present node. The
process is repeated till the stack is empty. Algorithm 7.2 depicts the above process.

	 Algorithm 7.2  Depth first search

Input: Graph G
Output: Sequence of vertices
Strategy: Discussed above

154   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

D is the first node adjacent to B, so D is processed in the next step (Fig. 7.32)

Problem: The problem in this algorithm can be understood by the following example:
�Suppose that the node which we are looking for is the second node of the second level and
there are 128 levels in the graph. The algorithm would go to the desired node after process-
ing 129 nodes. In such cases, BFS works in a better way.
(DFS)
Graph G(V, E) with n vertices and array visited [] initially set to 0.
{
visited [v] : = 1;
for each vertex w adjacent from V do
 {
if (visited [w] = 0) then DFS (w);
 }
}

Complexity: O(V + E), if we make use of adjacency list. If, on the other hand, an adja-
cency matrix is used, the complexity becomes O(V2).

Illustration 7.3	 Find the DFS of the graph depicted in Fig. 7.23.

Solution Since it is easier to see the adjacent nodes of a given node via linked list repre-
sentation, an adjacency list of the given graph is drawn first (Fig. 7.24).

This is followed by the implementation of the above algorithm. The stages of DFS
have been shown as follows.

Stages in DFS
First of all find the adjacency nodes of the root node.

B is adjacent to A
So process B (Fig. 7.31).

A

B

Figure 7.31  Step 1: Process A and then B

A

B

D

Figure 7.32  Step 2: Process D, being the first adjacent node of B

G r a p h s   ■  155

This is followed by what is referred to as backtracking. The control now goes to H and
process the next unprocessed adjacent node of H, since there is no node, adjacent to E,
which is still unprocessed (Fig. 7.35).

The node adjacent to F is then processed. Figure 7.36 shows the next step.
Finally, G is processed and the process ends (Fig. 7.37).

H is the first node adjacent to D, so H is processed in the next step (Fig. 7.33)

E is the unprocessed adjacent node of H, so E is processed in the next step (Fig. 7.34)

A

B

D

H

Figure 7.33  Step 3: Process H, being the
unprocessed adjacent node of D

A

B

ED

H

Figure 7.34  Step 4: Process E, being the only
unprocessed adjacent node of H

156   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Therefore, the order is
AB D HE FCG,
which is the DFS of the graph of Illustration 7.3.

7.7  CONNECTED COMPONENTS

The connected components of a graph, with respect to a vertex, are those that can be reached
from a given node via any node. Those components that cannot be reached from the given
vertex are referred to as disconnected components. For example, in Fig. 7.38, the components
A, B, C, D, and E are connected with respect to A as they can be reached from A. However,
F and G cannot be reached via A, therefore, they are disconnected with respect to A.

A

B

E
FD

H

Figure 7.35  Step 5: Process F, which is an
unprocessed adjacent node of H

A

B C

E FD

H

Figure 7.36  Step 6: Process C, which is an
unprocessed adjacent node of F

A

B C

E F GD

H

Figure 7.37  Step 7: Process G, which is an
unprocessed adjacent node of C

G r a p h s   ■  157

7.8  TOPOLOGICAL SORTING

Topological sorting is a method of sorting in which the vertices of a given graph are
traversed in the order in which they appear in the graph. The terminology makes more
sense if we are talking about a directed graph. In a directed graph, any order that has only
forward pointing vertices is a valid topological sorting. For example, based on the graph
shown in Fig. 7.40, the order depicted in Fig. 7.41 is one of the correct topological sorts,

The question that arises is how do we find out the connected components with respect
to a given vertex? The answer is simple. The traversal techniques, described earlier,
help us to find the connected components. One can start from the given vertex and then
apply BFS or DFS. The nodes that appear in either of the traversals depict the connected
components with respect to a given node. The rest of the components are, however,
disconnected.

If the ‘with respect to’ concept is not considered, then there are two connected com-
ponents in Fig. 7.38, namely C1 and C2. The components have been shown in Fig. 7.39.

F

G

A

B C

D E

Figure 7.38  A, B, C, D, E are connected
components with respect to A

F

G

A

B C

D E

C1

C2

Figure 7.39  C1 and C2 are disconnected

158   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 Algorithm 7.3 A lgorithm to find topological sort of a given graph

Input: A directed graph
Output: A sequence depicting the topological sort of the graph.
Constraints: The algorithm does not work for a graph having cycles.
Procedure: Topological sort (directed graph G) returns sequence S

{
 While (there is :some V V G Vj ∈ in : has no incoming edge.)
 ∀ ∈V V G Vi in : having no incoming edge.
 {
 S S Vi= ∪ { };
 Remove all the outgoing edges of Vi;
 }
Return S;
}

Complexity: Since the algorithm performs computations on N vertices, the complexity
of the topological sort is O(|V| + |E|), where |V| is the number of vertices and |E| is the
number of edges.

Example: Refer to Illustration 7.4.

whereas the one shown in Fig. 7.42 is not the correct topological sorts. For small graphs,
topological sorts can be found by not following any particular algorithms. However, for
larger graphs, they are found by following Algorithm 7.3.

F

G

A

B C

D E

Figure 7.40  Graph G

F G BA C

E D

Figure 7.41  A correct topological sort

F G

B

A C

E D

Figure 7.42  An incorrect topological sort

G r a p h s   ■  159

Step 1	 �First of all, find all the vertices having no incoming edge. In this case, the
vertex A is the one having no incoming edge. So A is the vertex that would go to
the output set S (Fig. 7.43). That is, S S A= ∪{ }.

Step 2	 Now, remove all the outgoing vertices of A (Fig. 7.44).

Illustration 7.4	 Find the topological sort of the graph depicted in Fig. 7.43.

Solution

F

G

A

B C

D E

Figure 7.43  Select A, as it does
not have any incoming edge

B

F

G

C

D E

Figure 7.45  Select B, as it does not
have any incoming edge

F

G

B C

D E

Figure 7.44  Remove all the
outgoing edges of A

Step 3	 In this step, either of B or C can be selected. Here, we select B (Fig. 7.45). That is,

S S B= ∪{ }

Step 4	 �Now, we remove all the outgoing vertices of B (Fig. 7.46).

160   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Step 5	 �In this step, C should be selected, as it does not have any incoming edge (Fig. 7.47).

S S C= ∪{ }

Step 6	 �Now, we remove all the outgoing vertices of C (Fig. 7.48).

F

G

C

D E

Figure 7.46  Remove all the outgoing edges of B

F

G

C

D E

Figure 7.47  Select C, as it does not have any incoming edge

F

GD E

Figure 7.48  Remove all the outgoing edges of C

Step 7	 Now E or F can be selected. Here, we select E (Fig. 7.49).

F

GD E

Figure 7.49  Select E, as it does not have any incoming edge

F

GD

Figure 7.50  Remove all the outgoing edges of E

Step 8	 Now, we remove all the outgoing vertices of E (Fig. 7.50).

G r a p h s   ■  161

The concept has been dealt with in Section 11.2 of Chapter 11. In fact, the concept finds
applications in almost all the design techniques discussed in Section III of the book. The
concept is used even in shortest path problems, discussed in Section III of the book. The
applications, however, have been enlisted as follows:
•	 Finding shortest path
•	 Routing packets in a network
•	 Finding paths in testing and many more.

7.10  CONCLUSION

This chapter explores the concept of graph including the definition of graph, its represen-
tation, types, and applications. The linked list representation discussed in the chapter is
used in traversal and sorting algorithms. The chapter also discussed the types of graphs

Step 9	 �In this step, D can be selected, followed by F and then G for the reasons explained
above.

Therefore, the topological sort of the graph is {A, B, C, E, D, F, G}.

7.8.1  Applications of Topological Sorting
Topological sorting has many applications. Some of the applications include ordering
of courses in a university. This is because each course has some prerequisites. A student
should not (in some cases cannot) opt for a course until he has completed the prerequisites.

The concept is also used in detecting deadlocks. One of the reasons for deadlock is two
processes are competing for resources currently held by others. In such cases, topologi-
cal sorting can determine whether the resources required by a process are available. The
readers are advised to explore the mechanism of formula evaluation in Excel. Topological
sorting is used in this evaluation also.

7.9  SPANNING TREE

For a given graph G = (V, E), the spanning tree is a connected sub-graph with no cycle,
which covers all the vertices of the tree.

For example, one of the spanning trees of the graph shown in Fig. 7.51(a) are depicted
in Fig. 7.51(b).

A B

C D
(a) (b)

A B

C D

Figure 7.51  (a) Graph G; (b) spanning tree of graph G

162 ■ a lG o r i t h m s : D e s i G n a n D a n a ly s i s

 EXERCISES

 I. Multiple Choice Questions

 1. Which of the following is true?
 (a) Every graph is a tree
 (b) Every tree is a graph

 (c) Both of the above
 (d) None of the above

that are important if we want to apply the concepts in solving problems related to rout-
ing and cryptography. The traversals of graphs have been discussed and exemplifi ed in
the chapter. Connected components are generally found by using either DFS or BFS;
therefore, the section has been included after discussing the former topics. The third sec-
tion of the book discusses the spanning tree and shortest path algorithms (like Kruskal,
Prim’s, etc.) in detail. This chapter surely forms the basis of the subject and hence should
be understood before proceeding further.

 Points to Remember

 • G3 3, or a Gs is never planar.
 • A graph can be represented using a matrix or a linked list.
 • An adjacency matrix requires V 2 space, whereas adjacency list requires (V + E) space.
 • There can be more than one topological sorts of a graph.
 • A spanning tree covers all the vertices of a graph.
 • A graph that satisfi es f = e − v + 2 (where f is the number of faces, e is the number of

edges, v is the number of vertices) is a planar graph.
 • DFS uses memory in a more effi cient way as compared to BFS.
 • In shortest path algorithms, BFS is preferred as compared to DFS.

 Cycle a cyclic graph is one that has at least one path of the form v v vi i i, , , .+1 … a graph that
does not have a cycle is referred to as a non-cyclic graph.

 Euler cycle a cycle that covers all the edges of a graph is called an euler cycle.
 Graph it is a non-linear data structure consisting of two components (V , E), where V is the
finite, non-empty set of vertices and E is the set of edges. the set E has elements in the form
(x,y): x,y ∈ v .

 Hamiltonian cycle a cycle that covers all the vertices of a graph without having to cover any
vertex twice, is called a hamiltonian cycle.

 Topological sorting the vertices are traversed in the order in which they appear in the
graph.

 KEY TERMS

G r a p h s   ■  163

	 2.	 A graph G = (V, E) is a fully connected graph with V n= . How many edges does
G have?

(a)	 n
n

×
+ 2

2

(b)	 n
n× − 2

2

(c)	 n

(d)	 None of the above

	 3.	 A graph can be represented by which of the following?
(a)	 Matrices
(b)	 Linked list

(c)	 Both
(d)	 None of the above

	 4.	 A cycle that covers all the vertices of the given graph, without having to cover any
vertex twice is called
(a)	 Hamiltonian cycle
(b)	 Euler cycle

(c)	 Hamming cycle
(d)	 None of the above

	 5.	 A cycle that covers all the edges of the given graph, without having to cover any
edge twice is called
(a)	 Hamiltonian cycle
(b)	 Euler cycle
(c)	 Hamming cycle
(d)	 None of the above

	 6.	 Which of the following is not true?
(a)	 Every graph has a Hamiltonian cycle
(b)	 A graph can have both Euler and Hamiltonian cycle
(c)	 A graph that has Euler cycle may not have a Hamiltonian cycle
(d)	 None of the above

	 7.	 Which of the following is never planar?
(a)	 3 × 3
(b)	 2 × 2

(c)	 1 × 1
(d)	 None of the above

	 8.	 Which of the following is never non-planar?
(a)	 3 × 3
(b)	 2 × 2

(c)	 4 × 4
(d)	 None of the above

	 9.	 If a graph satisfies the equation f = e − v + 2, then it is
(a)	 Planar
(b)	 Euler

(c)	 Hamiltonian
(d)	 None of the above

	10.	 Breadth first search requires which of the following?

(a)	 Stack

(b)	 Queue

(c)	 Both

(d)	 None of the above
	11.	 Depth first search can be implemented by using

(a)	 Stack
(b)	 Queue

(c)	 Both
(d)	 None of the above

164   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	12.	 Which of the following is topological sorting?
(a)	 Vertices of a graph are traversed in the order in which they appear in the graph
(b)	 Vertices of a graph are traversed in the opposite order in which they appear in

the graph
(c)	 None of the above
(d)	 Both of the above

	13.	 A tree that covers all the vertices of a given graph is called a
(a)	 Search tree
(b)	 Parse tree
(c)	 Spanning tree
(d)	 None of the above

	14.	 Which algorithm is used for graph colouring?
(a)	 Welsh-Powell
(b)	 Fulk Flockerson
(c)	 Bellman Ford
(d)	 None of the above

	15.	 What is chromatic number?
(a)	 Minimum number of colours required to colour a graph such that no two adja-

cent vertices have same colour
(b)	 Maximum number of colours required to colour a graph such that no two adja-

cent vertices have same colour
(c)	 Minimum number of colours required to colour a graph such that two adjacent

vertices have same colour
(d)	 Maximum number of colours required to colour a graph such that two adjacent

vertices have same colour

II.  Review Questions

	 1.	 What is a graph? How are graphs represented in computer?
	 2.	 Write the algorithm for depth first search and discuss its complexity.
	 3.	 Write the algorithm for breadth first search and discuss its complexity.
	 4.	 What is a planar graph?
	 5.	 State and prove Euler’s formula for planar graph.
	 6.	 What is a face? Can a graph have infinite faces?
	 7.	 Show that a planar graph can be coloured using just five colours.
	 8.	 Show that K

s
 is not planar.

	 9.	 Show that DFS into all nodes in G is reachable from root node.
10.	 Explain the concept of connected components. How do you find out the connected

components with respect to a given vertex?
11.	 Write an algorithm to find the minimum number of colours that can be assigned to

each vertex so that no two adjacent vertices will have same colour.

G r a p h s ■ 165

 III. Numerical Problems
 1. Determine whether the following graphs G1 and G2 are isomorphic.

 (a) b

d

c

e

f

g

a
1

2

3

45

6

7

G1 G2

 (b)
31 2

54

G2G1

a

c

d

e

b

 (c)

1 2

3

5

6

4
G2

a

c

d e b

G1

 (d)
1 2

3

5

6

4
G2

a

cd

e

b

G1

 Hint to the above problem is:
 Welsh–Powell Algorithm
 If input is graph G

(a) Order vertices in decreasing order degree.
(b) Assign fi rst colour say C

1
 to the fi rst vertex then in sequential order assign

next colour to each vertex.
 We can assign C

1
 to that vertex which is not adjacent to V

1
.

166   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

(e)	

G2G1

a b

c

def

g

h

	

2.	 Redraw the following so that edges do not cross.

(a)	

a c

b

de

(b)	

a

d e f

b c

(c)	 A B C

D E

3.	 Show that the following graphs are not planar by reducing them to K
5
 or K

33
.

(a)	 a b

de

f c

(b)	
a

b

d

e

f

c

4.	 Write DFS for the following:

A

B C

ED

F

5.	 For the above graph (Question 4) write the BFS.
6.	 Write BFS for the following graph:

A

C

F

B

D

E

G r a p h s ■ 167

 7. Write BFS and DFS for the following graph and explain each step.

A

M
C

B

GD
E

F

H
I

J
K

L

 8. Use Welsh–Powell algorithm to determine upper bound to the chromatic number of
the following graph .

A

B E

C D
 9. Find a topological sort of the following graph:

F

G

A

B C

D E

 10. Find a topological sort of the following graph:

F

G

A

B C

D E

 1. (b)
 2. (d)
 3. (c)

 4. (a)
 5. (b)
 6. (a)

 7. (c)
 8. (b)
 9. (a)

 10. (b)
 11. (c)
 12. (a)

 13. (c)
 14. (a)
 15. (a)

Answers to MCQs

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of sorting
 • Classify sorting algorithms
 • Understand the concept of stability with respect to sorting
 • Explain the importance of counting the number of swaps and comparisons in sorting

algorithms
 • Understand the procedure, complexity, and problems of the following algorithms:
 ο Selection
 ο Bubble
 ο Modifi ed bubble
 ο Insertion
 ο Shell
 ο Counting
 ο Radix
 ο Bucket
 • Compare various algorithms

 8.1 INTRODUCTION

 Nowadays landlines are not that important in India as they were in the 1980s and 1990s.
In those days, there was something called ‘Directory’. The Directory had the names
and phone numbers of the residents of a city. When I was young, I used to wonder
what would happen had the names in that directory not been in the sorted order. That
is exactly what the importance of sorting is. Though sorting has been one of the most
researched topic, it is not exactly known what would have happened had sorting not been
developed by human beings. The following discussion explores this topic and presents
the algorithms of the involved techniques.

 Section 8.3 discusses various classifi cations of sorting. Sections 8.4–8.10 discuss the
various sorting techniques. The techniques discussed in Sections 8.4–8.7 are quadratic as

 Sorting in Linear and
Quadratic Time

 C H A P T E R 8

S o r t i n g i n L i n e a r a n d Q ua d r at i c T i m e   ■  169

the time complexity of these algorithms is O(n2) (at least in the average case). However,
the techniques presented in Sections 8.8–8.10 are linear.

8.2  SORTING 

It may be noted that an array with a single element is deemed to be sorted.
The process is carried out to facilitate searching. A sorted array is easy to search and

maintain. Binary search, for instance, can be applied only to a sorted file. Searching a file,
via binary search, takes O n(log) time, whereas searching via linear search takes O n(),
which is considerably larger than the former (for larger values of n). For instance, if the
value of n is 1024, the ratio of time taken by linear search is approximately 10 times of
that taken in binary search.

8.3  CLASSIFICATION

Sorting can be classified in many ways. It can be internal or external; in place or not in
place; linear or quadratic; and classification on the basis of memory requirements. In the
following discussion, complexity analysis is done on the basis of number of swaps and
the number of comparisons (see Fig. 8.1).

Definition  Given a list of elements { , , , }a a an1 2 … , sorting is a procedure that rearranges the
elements of the array such that for any two elements in the sorted list, ai and aj, ai < aj.

Sorting

Based on number
of comparisons

Based on number
of swaps

Based on stability

Based on adaptability

Based on internal or
external memory

Recursive or
non-recursive

Figure 8.1  Classification of sorting

170   ■  Al g o r i t h m s : D e s i g n a n d A n a ly s i s

8.3.1  Classification Based on the Number of Comparisons
In this classification, the number of comparisons is the basis. For example, in the selec-
tion sort, there are O(n2) comparisons (same is the case with bubble sort).

8.3.2  Classification Based on the Number of Swaps
This can be considered as one of the criteria for deciding which algorithm is the best
amongst the given algorithms that are O(n2). For instance, though both bubble sort and
selection sort are O(n2) algorithms, bubble sort requires O(n2) swaps, whereas selection
sort requires O(n) swaps.

8.3.3  Classification Based on Memory
In this classification, the basis is the amount of memory required by the algorithm. As
discussed later, an algorithm may or may not require external memory. Moreover, the
extra memory required by an algorithm may depend on the number of elements present
in the list. For example, merge sort requires memory proportional to the number of ele-
ments in the array. The type of memory used by a sorting algorithm is also helpful in clas-
sification. The algorithms that use main memory are referred to as internal algorithms,
whereas those that use the secondary memory are called external algorithms.

8.3.4  Use of Recursion
Some algorithms, such as quick sort, use recursion. Some of them, such as selection sort,
can be implemented via a non-recursive algorithm. Some, however, can be implemented
using both. For example, merge sort can be implemented either by recursion or by a non-
recursive algorithm (see Fig. 8.2).

Based on recursion

Algorithms that use recursion

Algorithms that do not
use recursion

Algorithms that can be
implemented using recursion
or even without using them

Figure 8.2  Classification based on the use of recursion

S o r t i n g i n L i n e a r a n d Q ua d r at i c T i m e   ■  171

8.3.5  Adaptability
Some of the algorithms perform better in specific situations. For example, the conven-
tional bubble sort is an O(n2) algorithm irrespective of the input. However, the modified
selection sort presented in the following section performs better if the input is sorted
or partially sorted. So, the algorithms which consider the sortedness of the input are
referred to as adaptive algorithms.

8.3.6  Stable Sort
At times, a given list has more than one contender for a particular position in the sorted
list. In such cases, the sorted list can be different depending upon the relative positions
of those contenders. If the sorted list has same position of the contenders as in the given
list, it is referred to as stable; otherwise the sorting is unstable.

For example, two teams having three members each. If the relative ordering in the
sorted list is preserved, like in Fig. 8.3, then it is a stable sort.

In the other case, wherein the relative ordering is not preserved, it is called unstable
sort. For example, the sorting depicted in Fig. 8.4 is an unstable sort.

1 3 21 2 3

1 2 31 2 3

Figure 8.3  Stable sort

Tip: Algorithms such as merge sort can be implemented both by recursion and without
recursion.

172   ■  Al g o r i t h m s : D e s i g n a n d A n a ly s i s

The unstable sorting algorithms can be made stable by comparing the key also, this
would, however, increase the time and memory complexity of the procedure. One of the
questions that come in mind is regarding the utility of such algorithms. Such algorithms
are good when a two-level sorting is to be implemented. The following section discusses
the various sorting techniques.

8.4  SELECTION SORT

As discussed earlier, sorting means the arrangement of a set of numbers in an order. In
this section, a sorting technique called selection sort has been discussed.

In selection sort, the element at the first position is compared with all other elements.
The number being compared and the number, to which it is compared to, are swapped,
if the number to be compared is smaller. The same procedure is repeated for the element
at all the other positions. In order to understand the procedure, consider an array {7,
1, 5, 4, 9, 2, 3, 10, 8, 6}. The first element, namely 7, is compared with all other ele-
ments starting from 1. Since 1 is smaller than 7, it is swapped with 7. The same process
is repeated until the element at the first position is compared with all other elements.
Similarly, the elements at the second, third, and fourth positions are compared with all
other elements above them. The process has been depicted in Figs 8.5–8.9.

In a similar manner, iteration 6 would place 6 at the sixth position; iteration 7 would
place 7 at the seventh position; iteration 9 would place 9 at the ninth position, and 10 at
the tenth position. Tenth iteration would not be needed as the only element remaining
would be 10. One element, as stated earlier, cannot be unsorted.

Tip: The process shown in Fig. 8.7 is not the only way of implementing selection sort. The
minimum element in the remaining list can be found by divide and conquer, in each itera-
tion. This would reduce the complexity to O(n log n).

1 3 21 2 3

1 2 31 2 3

Figure 8.4  Unstable sort

S o r t i n g i n L i n e a r a n d Q ua d r at i c T i m e   ■  173

7
1
5
4
9
2
3
10
8
6

1
7
5
4
9
2
3
10
8
6

1
7
5
4
9
2
3
10
8
6

1
7
5
4
9
2
3
10
8
6

1
7
5
4
9
2
3
10
8
6

1
7
5
4
9
2
3
10
8
6

1
7
5
4
9
2
3
10
8
6

1
7
5
4
9
2
3
10
8
6

1
7
5
4
9
2
3
10
8
6

Figure 8.5  Selection sort, after iteration 1, the smallest
element comes at the first position

1

2

5

7

9

4

3

10

8

6

1

2

5

7

9

4

3

10

8

6

1

2

5

7

9

4

3

10

8

6

1

2

4

7

9

5

3

10

8

6

1

2

3

7

9

5

4

10

8

6

1

2

3

7

9

5

4

10

8

6

1

2

3

7

9

5

4

10

8

6

Figure 8.7  Selection sort, after iteration 3,
the third smallest element comes at the third

position

1

7

5

4

9

2

3

10

8

6

1

2

7

5

9

4

3

10

8

6

1

5

7

4

9

2

3

10

8

6

1

2

7

5

9

4

3

10

8

6

1

4

7

5

9

2

3

10

8

6

1

2

7

5

9

4

3

10

8

6

1

4

7

5

9

2

3

10

8

6

1

2

7

5

9

4

3

10

8

6

Figure 8.6  Selection sort, after iteration 2,
the second smallest element comes at the

second position

174   ■  Al g o r i t h m s : D e s i g n a n d A n a ly s i s

Therefore, in each iteration, the smallest element from amongst the yet unsorted
elements is found and placed at its proper position. The algorithm selects the smallest
element in each iteration; therefore, it is called selection sort (see Algorithm 8.1).

	 Algorithm 8.1  Selection sort

Input: An array ‘a’ containing n elements.
Output: A sorted array.
Constraints: No constraints
SELECTION SORT (a, n) returns a
 {
 i=0;
 // (n-1) iterations
 while(i<(n-1))
 {
 j=i+1;
 while(j<n)
 {

1
2
3
7
9
5
4

10
8
6

1
2
3
7
9
5
4
10
8
6

1
2
3
5
9
7
4
10
8
6

1
2
3
4
9
7
5
10
8
6

1
2
3
4
9
7
5

10
8
6

1
2
3
4
9
7
5
10
8
6

Figure 8.8  Selection sort, after iteration 4,
the fourth smallest element comes at the

fourth position

1
2
3
4
9
7
5
10
8
6

1
2
3
4
7
9
5
10
8
6

1
2
3
4
5
9
7
10
8
6

1
2
3
4
5
9
7
10
8
6

1
2
3
4
5
9
7
10
8
6

Figure 8.9  Selection sort, after iteration 5,
the fifth smallest element comes at the fifth

position

S o r t i n g i n L i n e a r a n d Q ua d r at i c T i m e   ■  175

 if(a[j]<a[i])
 {
 temp=a[j];
 a[j]=a[i];
 a[i]=temp;
 }
 j++;
 }
 i++;
 return a;
 }
 }

Complexity: Since there is a loop inside another loop, the first loop runs (n − 1)
times and for each (n − 1) iteration the inner loop runs (n − i − 1) times, where i is the
iteration number of iterations. The complexity of the algorithm, therefore, becomes
O(n2).

Number of comparisons: 2 1 2 3 1
1

2 2
2(() () ())

() ()
()n n

n n
n− + − + − +… =

−
=

−
=n

n n
O

2

Problem: The algorithm has a high complexity, as discussed above.

8.5  BUBBLE SORT

The technique discussed in Section 8.4 does not scale well. It has a high complexity and
lesser scope for improvement. In this section, a sorting technique called bubble sort has
been discussed. This section also introduces an improved version of bubble sort referred
to as modified bubble sort.

In bubble sort, the element at the first position is taken and compared with the
item at the second position. The number being compared and the number to which
it is compared to are swapped, if the number to be compared is smaller. The same
procedure is repeated for the element at the second and the third positions. In order
to understand the procedure, consider the same array that we considered in the previ-
ous section {7, 1, 5, 4 , 9, 2, 3, 10, 8, 6}. The first element, namely 7, is compared
with the second element that is 1. Since 1 is smaller than 7, it is swapped with 7. The
same process is repeated for the rest of the elements. The process has been depicted
in Figs 8.10–8.12.

In a similar manner, iteration 4 would place fourth largest element at the fourth posi-
tion from the end; iteration 7 would place fifth largest element at the fifth position from
the end and so on.

176   ■  Al g o r i t h m s : D e s i g n a n d A n a ly s i s

1
5
4
7
2
3
9
8
6
10

1
5
4
7
2
3
9
8
6
10

1
4
5
7
2
3
9
8
6
10

1
4
5
7
2
3
9
8
6
10

1
4
5
2
7
3
9
8
6
10

1
4
5
2
3
7
9
8
6
10

1
4
5
2
3
7
9
8
6
10

1
4
5
7
2
3
8
9
6
10

1
4
5
7
2
3
8
6
9
10

Figure 8.11  Bubble sort, after iteration 2, the second
largest element comes at the second last position

7

1

5

4

9

2

3

10

8

6

1

5

4

7

2

9

3

10

8

6

1

5

4

7

9

2

3

10

8

6

1

5

4

7

2

3

9

8

6

10

1

7

5

4

9

2

3

10

8

6

1

5

4

7

2

3

9

10

8

6

1

5

7

4

9

2

3

10

8

6

1

5

4

7

2

3

9

10

8

6

1

5

4

7

9

2

3

10

8

6

1

5

4

7

2

3

9

8

10

6

Figure 8.10  Bubble sort, after iteration 1, the largest
element comes at the last position

S o r t i n g i n L i n e a r a n d Q ua d r at i c T i m e   ■  177

In each iteration, the largest element from amongst the yet unsorted elements is found
and placed at its proper position (see Algorithm 8.2).

	 Algorithm 8.2  Bubble sort

Input: An array ‘a’ containing n elements.
Output: A sorted array.
Constraints: No constraints
BUBBLE SORT (a, n) returns a
 {
 i=0;
 // (n-1) iterations
 while(i<(n-1))
 {
 j=0;
 while(j<n-1-i)
 {
 if(a[j+1]<a[j])
 {
 temp=a[j];
 a[j]=a[i];
 a[i]=temp;
 }
 j++;
 }
 i++;
 }
 return a;
 }

1
4
5
7
2
3
8
6
9
10

1
4
5
7
2
3
8
6
9
10

1
4
5
7
2
3
8
6
9
10

1
4
5
7
2
3
8
6
9
10

1
4
5
2
7
3
8
6
9
10

1
4
5
2
3
7
8
6
9
10

1
4
5
2
3
7
8
6
9
10

1
4
5
2
3
7
6
8
9
10

Figure 8.12  Bubble sort, after iteration 3, the third largest element comes at the third last position

178   ■  Al g o r i t h m s : D e s i g n a n d A n a ly s i s

Complexity: Since there is a loop inside another loop, the first loop runs (n − 1) times
and for each (n − 1) iteration, the inner loop runs (n − i − 1) times, where i is the iteration
number iterations. The complexity of the algorithm, therefore, becomes O(n2).

Number of comparisons:
n2

2
Problem: The algorithm has a high complexity. However, the modified version pre-
sented in Algorithm 8.3 has a lower complexity.

= − + − +…+ =
−

=() ()
()

()n n
n

n1 2 1
1

2
2n

O

In the modified version of the algorithm, a flag is made which is initialized to a 0.
However, inside the inner loop, if the swaps are no more there, then the sorting may be
deemed as completed (Algorithm 8.3).

	 Algorithm 8.3 M odified bubble sort

Input: An array ‘a’ containing n elements.
Output: A sorted array.
Constraints: No constraints
MODIFIED BUBBLE SORT (a, n) returns a
 {
 i=0;
 flag=1;
 while(i<(n-1) && flag==1)
 {
 j=0;
 flag=0;
 while(j<(n-1-i)
 {
 if(a[j+1]<a[j])
 {
 temp=a[j];
 a[j]=a[j+1];
 a[j+1]=temp;
 flag=1;
 }
 j++;
 }
 i++;
 }
 return a;
 }

Tip: T here are two ways of judging a sorting algorithm. This can be done either by the
number of comparisons or by the number of swaps.

S o r t i n g i n L i n e a r a n d Q ua d r at i c T i m e   ■  179

Complexity: Since there is a loop inside another loop, the first loop runs (n − 1) times
and for each (n − 1) iteration, the inner loop runs (n − i − 1) times, where i is the iteration
number iterations. The complexity of the algorithm, therefore, becomes O(n2). However,
the above algorithm works well for the arrays which have already been sorted.

Number of comparisons:
n2

2
.

8.6  INSERTION SORT

Insertion sort is a sorting technique, which inserts an item at its correct position in a par-
tially sorted array. The technique is a well-known one as it is used in sorting playing cards.
In order to understand the technique, let us consider the following example. The number
cards {7, 1, 5, 4, 9, 2, 3, 10, 8, 6} are given and are required to arrange them in order.

The first card, numbered 7, comes first and is placed in the list containing sorted
cards (Fig. 8.13(a)). The next card has 1 on it; 1, being lesser than 7, is placed before 7
(Fig. 8.13(b)). The third card, numbered 5, is placed between 1 and 7 (Fig. 8.13(c)). The
steps of sorting have been depicted in Fig. 8.13 (see also Algorithm 8.4).

	 Algorithm 8.4 I nsertion sort

Input: An array ‘a’ containing n elements.
Output: A sorted array.
Constraints: No constraints
INSERTION SORT (a, n) returns a
 {
 i=1;
 while(i<=(n-1))
 {
 temp=a[i];
 j=i;
 while((temp<a[j-1])&&(j>=0))
 {
 a[j]=a[j-1];
 j--;
 }
 a[j]=temp;
 i++;
 }
 return a;
 }

Complexity: Since there is a loop inside another loop, the first loop runs (n − 1) times
and for each (n − 1) iteration, the inner loop runs for the requisite number of times.
The complexity of the algorithm, therefore, becomes O(n2). As a matter of fact, the
worst-case, best-case, and the average-case complexities of this algorithm is O(n2).

180   ■  Al g o r i t h m s : D e s i g n a n d A n a ly s i s

Number of comparisons:
n2

4
 in the average case.

Problem: The algorithm has a high complexity.

8.7  DIMINISHING INCREMENTAL SORT

This sorting technique is also called Shell sort as it was invented by Donald Shell. The
technique discussed in the previous section works well for an array, which is already
sorted. This technique is a generalization of the previous technique. As a matter of fact
the algorithm is same as insertion sort in the last step. However, till that time most of the
inversions have already been done (see Algorithm 8.5).

	 Algorithm 8.5  Shell sort

function shell_sort(arr,n){
gap = floor(n/3);
while(gap > 0)

7

(a)

7

1

(b)

7

5

1

(c)

7

5

4

1

(d)

9

7

5

4

1

(e)

9

7

5

4

2

1

(f)

9

7

5

4

3

2

1

(g)

10

9

7

5

4

3

2

1

(h)

10

9

8

7

5

4

3

2

1

(i)

10

9

8

7

6

5

4

3

2

1

(j)

Figure 8.13  Figure depicting the steps of insertion sort

S o r t i n g i n L i n e a r a n d Q ua d r at i c T i m e   ■  181

{
for(i = gap; i < n; i++)
 {
 temp = arr[i];
 j = i;
 while(j >= gap && arr[j - gap] > temp)
 {
 arr[j] = arr[j - gap];
 j -= gap;
}
arr[j] = temp;
}
gap = floor(gap/2);
}
 return arr;
 }

Complexity: The worst-case complexity of the above algorithm is O(n2). However, it is
best of all the O(n2) algorithms. As a matter of fact, the number of comparisons goes on
decreasing as and when we proceed.
Problem: The algorithm has a high complexity.

8.8  COUNTING SORT

The elements of the given array are up to a given number k. A temporary array, temp_
array[], is taken. This keeps track of the number of elements before a[i]. This helps
to place a[i] at its requisite position. The elements of the array, temp_array[], are ini-
tially set to 0. This is followed by keeping a[i] at the position depicted by its value,
in the temp_array. The number of elements before a[i] is then calculated. In order to
understand the algorithm, let us consider an example. The input array, for instance, is
{2, 8, 3, 6, 10}. The length of the temporary array, in this case, would be 11, as the maxi-
mum element in the array is 10 (see Fig. 8.14, Algorithm 8.6).

	 Algorithm 8.6 C ounting sort

Input: a[], int n (number of elements)
Output: b[], the sorted array
Temporary memory: temp_array[], having k elements where k is the maximum element of
the array.
Counting Sort (a[], n) returns sorted_array[]
 {
 for(i=0;i<k;i++)
 {

182   ■  Al g o r i t h m s : D e s i g n a n d A n a ly s i s

 temp_array[i]=0;
 }
 for(i=0;i<n;i++)
 {
 temp_array[a[i]]=temp_array[a[i]]+1;
 }
 for(i=1;i<k;i++)
 {
 temp_aray[i]=temp_array[i]+temp_array[i-1];
 }
 for(i=n-1;i>=0;i--)
 {
 temp_array[a[i]]=temp_array[a[i]]-1;
 sorted_array[temp_array[a[i]]]=10
 }
 }

Complexity: O(n).
Problem: Extra space needed

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0

The input array, n = 5

temp_arry[], initially

2 8 3 6 10

temp_arry[], after second
iteration

The output array, b, n = 5

2 3 6 8 10

Figure 8.14  Counting sort

S o r t i n g i n L i n e a r a n d Q ua d r at i c T i m e   ■  183

8.9  RADIX SORT

Radix sort algorithm sorts the elements of a given set by considering the digits at vari-
ous places. The process can be understood by taking an example. If the given set is {23,
34, 67, 89, 123, 63, 39, 212, 90}, then the following steps must be followed in order to
generate the sorted set.
Step 1	 Place elements according to units place in holders having indices from 0 to 9.
Figure 8.15 depicts the first step.

Next, we read the list from left to right. The output of this step would be {90, 212, 23,
123, 63, 34, 67, 89, 39}.

In the next step, the above array would be arranged in order of their tens place. The
situation is depicted in Fig. 8.16.

Next, we read the list from left to right. The output of this step would be {212, 23, 123,
34, 39, 63, 67, 89, 90}.

In the next step, the above array would be arranged in order of their hundreds place.
The situation is depicted in Fig. 8.17.

0 1 2 3 4 5 6 7 8 9

212 23

123

34

39

63

67

89 90

Figure 8.16  Radix sort, elements placed in order of their tens’ place

0 1 2 3 4 5 6 7 8 9

90 212 23

123

63

34 67 89

39

Figure 8.15  Radix sort, elements placed in order of their unit’s place

184   ■  Al g o r i t h m s : D e s i g n a n d A n a ly s i s

Next, we read the list from left to right. The output of this step would be {23, 34, 39,
63, 67, 89, 90, 123, 212} (see Algorithm 8.7).

	 Algorithm 8.7 R adix sort(a[], n) returns a sorted array

k=number of digits in the maximum element of the given array
for(i=1;i<=k;i++)
 {
 Sort the list in accordance with digit di.
 }

Complexity: There are k iterations, the complexity of the above algorithm is, therefore,
O(N).
Problem: The algorithm needs 9 arrays. The number of elements in the array should be
at least the maximum number of j digit numbers in the list, for all j.

8.10  BUCKET SORT

Bucket sort is a sorting technique that takes O(n) time. As per the literature review, it
has also been considered as a version of counting sort. The algorithm assumes that the
elements of the given array are in the range [0, k − 1] (see Algorithm 8.8). The process
depicted in the algorithm requires ith element to be put into its corresponding bucket and
then reading the data structure depicting the buckets.

	 Algorithm 8.8  Bucket sort(a[], n) returns a sorted array

{
k= the maximum number in the given array.
int Bucks[k];
//Bucks is the array depicting the buckets
//initialize the elements of Bucks to -1

0 1 2 3 4 5 6 7 8 9

23 123 212

34

39

63

67

89

90

Figure 8.17  Radix sort, elements placed in order of their hundreds place

S o r t i n g i n L i n e a r a n d Q ua d r at i c T i m e   ■  185

for(i=0;i<k;i++)
 {
 Bucks[i]=-1;
 }
for(i=0;i<n;i++)
 {
 Bucks[a[i]]=a[i];
 }
j=0;
for(i=0;i<k;i++)
 {
 if(Bucks[i]!=-1)
 {
 b[j]=Bucks[i];
 j++;
 }
 }
 return b[];
}

Complexity: The complexity of the above algorithm is O(n), as there are loops which
run one after another, however, there are no nested loops.
Problem: The requirement of extra memory makes the above algorithm a bit
repulsive.

8.11  CONCLUSION

The discussion in this chapter focuses on sorting algorithms having linear or quadratic
time complexity. However, there are some more sorting algorithms such as merge sort
and quick sort, which have been discussed in Chapter 9. The technique called heapsort
has been discussed in Section 6.12 of Chapter 6.

Table 8.1 presents the time complexity and important attributes of various algorithms
presented in the chapter.

Table 8.1  Summary of sorting algorithms

Algorithm Worst-case time
complexity

Linear/
quadratic

Stable/not
stable

Selection O(n2) Quadratic No

Bubble O(n2) Quadratic Yes

Insertion O(n2) Quadratic Yes

Shell O(n2) Quadratic No

Counting O(n) Linear

Radix O(n) Linear

Bucket O(n) Linear

186 ■ a Lg o r i t h m S : d e S i g n a n d a n a Ly S i S

The chapter forms the basis of data structures and algorithms and is amongst the most
important topics of the discipline. The questions on this topic are amongst the favourites
in interviews. The web resources of this book contain the implementations of all the
algorithms discussed in the chapter in C language.

 Points to Remember

 • In the classifi cation based on number of comparisons, the number of comparisons is the
basis.

 • In the classifi cation based on the number of swaps, the effi ciency of an algorithm
depends on the number of swaps.

 • In classifi cation based on memory, the basis is the amount of memory required by the
algorithm.

 • The sorting algorithms can also be classifi ed on the basis of recursion. Some algorithms,
such as quick sort use recursion. Some of them such as selection sort can be implemented
via a non-recursive algorithm.

 • Some of the algorithms perform better in specifi c situations.
 • In some situations, a given list has more than one contender for a particular position in

the sorted list. in such cases, the sorted list can be diff erent depending upon the relative
positions of those contenders.

 Adaptive sorting algorithms the algorithms which consider the ‘sortedness’ of the input
are referred to as adaptive.
 Insertion sort it is a sorting technique, which inserts an item at its correct position in a par-
tially sorted array.
 Selection sort the process of selection of least (or greatest) element from the remaining list
and replacing it with the current element is called selection sort.
 Sorting given a list of elements { a 1 , a 2 , …, a n }, sorting is a procedure which rearranges the
elements of the array such that for any two elements, in the sorted list, a i and a j , a i < a j if i < j.
 Stable/unstable sort at times, the sorted list can be different depending upon the relative
positions of those contenders. if the sorted list has same position of the contenders as the
given list, it is referred to as stable otherwise the sorting is unstable.

 KEY TERMS

 I. Multiple Choice Questions

 1. In which of the following sorting would be helpful?
 (a) Searching
 (b) Merging

 (c) Nursing
 (d) None of the above

 EXERCISES

S o r t i n g i n L i n e a r a n d Q ua d r at i c T i m e   ■  187

	 2.	 Which of the following can be a criteria (or criterion) for judging the efficiency of
a sorting algorithm?
(a)	 Number of swaps
(b)	 Number of comparisons

(c)	 Stability
(d)	 All of the above

	 3.	 Which of the following does not require auxiliary memory?
(a)	 Merge sort
(b)	 Quick sort

(c)	 None of the above
(d)	 Both of the above

	 4.	 Which of the following uses main memory?
(a)	 Internal
(b)	 External

(c)	 Both of the above
(d)	 None of the above

	 5.	 Which of the following uses external memory?
(a)	 Internal
(b)	 External

(c)	 Both of the above
(d)	 None of the above

	 6.	 What is the best-case complexity of modified bucket sort?
(a)	 O(n)
(b)	 O(n2)

(c)	 O(n log n)
(d)	 None of the above

	 7.	 Which of the following find the minimum value in the given array and swaps it with
the current position?
(a)	 Selection
(b)	 Bubble

(c)	 Insertion
(d)	 None of the above

	 8.	 Which of the following requires n2

2
 swaps both for the average and the worst case?

(a)	 Bubble
(b)	 Selection

(c)	 Insertion
(d)	 All of the above

	 9.	 Which of the following requires n swaps?
(a)	 Selection
(b)	 Bubble

(c)	 Insertion
(d)	 All of the above

10.	 Which one of the following is also called diminishing incremental sort?
(a)	 Insertion
(b)	 Shell

(c)	 Bubble
(d)	 Selection

11.	 What is the worst-case complexity of best known Shell sort?
(a)	 O n()
(b)	 O n n(log)

(c)	 O n n((log))2

(d)	 None of the above

12.	 Which one of the following is stable?
(a)	 Selection (b)	 Shell (c)	 Heap (d)	 Bubble

13.	 Which of the following is not stable?
(a)	 Selection (b)	 Bubble (c)	 Insertion (d)	 Merge

14.	 Which of the following is not an ()O n algorithm?
(a)	 Counting sort
(b)	 Bucket sort

(c)	 Radix sort
(d)	 Selection sort

188 ■ a Lg o r i t h m S : d e S i g n a n d a n a Ly S i S

 15. 128 MB data is to be sorted using a 16 MB RAM. Which of the following solution
would help us to accomplish the task?
 (a) A combination of quick sort and merge sort
 (b) A combination of selection and bubble
 (c) The task cannot be accomplished without more memory
 (d) Counting sort

 16. A picture has 128 colours. The number of pixels in the picture is 10,000. Which
sorting algorithm can be used to sort the pixels most effi ciently?
 (a) Insertion sort
 (b) Bubble sort

 (c) Selection sort
 (d) Counting sort

II. Review Questions

 1. Explain the procedure of bubble sort. What modifi cation is needed to improve the
effi ciency of conventional bubble sort?

 2. Explain the procedure of selection sort. Why is selection sort considered better than
bubble sort?

 3. Explain the procedure of insertion sort. Calculate the number of swaps and compar-
isons in insertion sort.

 4. Explain the procedure of shell sort. Why is Shell sort better than bubble sort?
 5. Explain the procedure of counting sort. Why is it a linear sorting algorithm?
 6. Explain the procedure of radix sort. How does it depend on the number of digits of the

given list?
 7. Differentiate between internal and external sorting.

III. Numerical Problems

 1. Sort the following lists and calculate the number of swaps and comparisons required
in each case:
 (a) 1, 100, 1000, 10,000, 100,000, 1,000,000
 (b) 1, 3, 5, 7, 9, 11
 (c) 1, 2, 1, 5, 1, 7, 8, 1, 9, 10, 1, 23, 1
 (d) 1, 1, 1, 1, 1, 1, 1, … (2048 times)
 By
 (e) Bubble sort
 (f) Insertion sort
 (g) Selection sort

 (h) Counting sort
 (i) Radix sort
 (j) Shell sort

 1. (a)
 2. (d)

 3. (b)
 4. (a)

 5. (b)
 6. (a)

 7. (a)
 8. (a)

 9. (a)
 10. (b)

 11. (c)
 12. (d)

 13. (a)
 14. (d)

 15. (d)
 16. (d)

Answers to MCQs

Chapter 9 Divide and Conquer

Chapter 10 greedy algorithms

Chapter 11 Dynamic Programming

Chapter 12 Backtracking

Chapter 13 Branch and Bound

Chapter 14 randomized algorithms

If you optimize everything, you will always be
unhappy.

— Donald Knuth

DESIGN TECHNIQUES
SECTION Ill

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of divide and conquer (D&C)
 • Explain Master theorem and apply it to solve recursive equations
 • Find the maximum and minimum number from a list using D&C
 • Infer quick sort and fi nd its complexity in all cases
 • Interpret the algorithm, analysis, and complexity of merge sort
 • Recognize the procedure and complexity of the following problems:
 ο Finding the pair having closest distance
 ο Convex hull
 ο Selection

 9.1 INTRODUCTION

 The term ‘ divide and conquer’ is generally used in the sociological context. It generally
refers to the strategy of breaking the unity in a given population in order to achieve some
intended goal. It is easy to psychologically handle and manipulate a smaller group rather
than handling a larger one. The divide and conquer strategy used in algorithms works
only if there is a way to club together the solutions of the sub-problems. In contrast, the
strategy used in sociological context does not require a strategy to merge the segregated
population.

 9.2 CONCEPT OF DIVIDE AND CONQUER

 In order to accomplish a task using the above technique, the following steps need to be
carried out:

 Step 1 Divide the domain into SMALL (atomic level), where SMALL is the basic unit
whose solution is known.
 Step 2 Solve individual sub-problems using the solution of SMALL.
 Step 3 Combine the sub-solutions to get the fi nal answer.

 Divide and Conquer

 C H A P T E R 9

D i v i d e a n d Co n q u e r   ■  191

In order to understand the above process, let us consider an example shown in
Algorithm 9.1. An array of n numbers is given and it is required to find the maximum
element of the array using divide and conquer approach.

	 Algorithm 9.1   MAX

Input: An array a[], consisting of n elements.
Output: The maximum element of the array, MAX.
Strategy: Divide the array into two parts and continue dividing the sub-parts till one element
remains in the array. For example, an array of eight elements would be divided into two arrays
of four elements. The two arrays would then be divided into four arrays of two elements each
and in the last step, the four arrays would be divided into eight arrays of one element each.

Now the largest element from two arrays (containing a single element) would be the
solution of the sub-problem. The procedure is repeated for the rest of the elements also. After
this step, four elements would remain. Now, these four elements would be paired in groups
of two, to give two elements which are greatest in their respective groups. This is followed by
the selection of the largest element.

Find_Max(int[] a, low, high) returns max {
// a[] is an integer array having n elements, low is the first index and high is
the last index of the array. //max is the maximum value of the array.
if (low == high)
 {
 max = a [low];
 return max;
 //if the array has just one element return it
 }
else
 {
 mid =(low +high)/2;
 int x= FindMax(a[], low, mid);
 int y = FindMax (a[], mid+1, high);
 if(x> y)
 {
 return x;
 }
 else
 {
 return y;
 }
 }
//return the maximum of the left and the right sub-array.
}

192   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Applications: The above strategy can also be used to calculate the minimum from the
array. In order to calculate the minimum value, instead of the maximum, choose the
minimum at each step. Figure 9.2 illustrates the process of selection of minimum ele-
ment using divide and conquer approach.

The rest of the chapter relies heavily on recursive equations and their solu-
tions. Therefore, it is important to understand the procedures of solving them.
Section 9.3 discusses Master theorem that helps us to find time complexity for such
equations.

Complexity: Initially, there are n elements, after the first iteration, there would be
n/2 elements in each array. The process stops when a single element remains in the array.
This would require log2n steps. After this a single element is selected in each step. So,
the complexity is proportional to log2n, i.e.,

	 T n O n() (log)= 2

Figure 9.1 illustrates the implementation of the above algorithm.

17 21 34 16

3421

34

12 17 5 21 8 34 16 1

12 17 5 21 8 34 16 1

12 17 5 21 8 34 16 1

12 17 5 21 8 34 16 1

Figure 9.1  Finding the maximum element by divide and conquer

D i v i d e a n d Co n q u e r   ■  193

9.3  MASTER THEOREM

The method of substitution and recursion trees, discussed in Chapter 4, helps us to solve
the recursive equations but is tedious. The other method to solve the recursive equations
is by Master theorem. Master theorem can be used to solve many recursive equations
without having to draw the recursion tree or using substitution. In fact, the solution of
the equations becomes easy using the theorem. Although the theorem can be applied
only to a particular type of recursive equation and the theorem requires learning the
three cases, it still makes the work easy.

The Master theorem can be employed to solve the recursive equations of the form:

	 T n a T
n

b
f n() ()= × 






 + 	 (9.1)

where f(n) is asymptotically positive, a b≥ >1 1and .

The theorem is used to find the asymptotic bounds of T(n). According to the theorem,

Case 1	 If f n n b a() ()log= θ , then T n n n b a() (log)log= ×θ

Case 2	 If f n O n b a s() (),(log)= −− ε then T n n b a() ()log= θ , where e is a positive number.

Case 3	 If f n n b a() (),(log) s= Ω −+ ε then T n f n() (())= θ , where e is a positive number.

12 5 8 1

15

1

12 17 5 21 8 34 16 1

12 17 5 21 8 34 16 1

12 17 5 21 8 34 16 1

12 17 5 21 8 34 16 1

Figure 9.2  Finding minimum element by divide and conquer approach

194   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The theorem is not technically correct as n/b may not always be an integer. However,
writing n/b or using ceiling or floor will give the same answer as far as asymptotic
notation is concerned. In order to understand the above theorem, let us examine a few
illustrations. The three illustrations that follow depict each case. Illustration 9.1 depicts
Case 1, Illustration 9.2 depicts Case 2, and Illustration 9.3 exemplifies the third case.

Illustration 9.1	 The recursive equation of time complexity of an algorithm is given by

T n T
n

n() = × 





 +4

2
2, find the asymptotic bounds of T(n).

Solution In the given equation, the value of ‘a’ is 4, the value of ‘b’ is 2, and the value
of f(n) = n2. In this equation, n n nb alog log= =2 4 2 .

Since,	 f n n b
a() = log , T n n n n n n nb a() log log loglog log= ×() = ×() = ×()θ θ θ2 4 2

Illustration 9.2	 The recursive equation of time complexity of an algorithm is given by

T n T
n

n() = × 





 +4

2
, find the asymptotic bounds of T(n).

Solution In the given equation, the value of ‘a’ is 4, the value of ‘b’ is 2, and the value
of f(n) = n. In this equation, n n nb alog log= =2 4 2 .

Since,	 f n n T n n n nb ba a() = = () = () = ()−log log log, ()1 4 22θ θ θ

Illustration 9.3	 The recursive equation of time complexity of an algorithm is given by

T n T
n

n() = × 





 +4

2
3, find the asymptotic bounds of T(n).

Solution In the given equation, the value of ‘a’ is 4, the value of ‘b’ is 2, and the value
of f(n) = n3. In this equation n n nb alog log= =2 4 2.

Since,	 f n n T n f n nb a() = = =+log , () (()) ()1 3θ θ

Having seen one instance of each of the above three cases, let us now understand the
meaning of Eq. (9.1). The equation can be perceived as the time required to divide a
problem of size n, into a sub-problems of size n/b and then combining the results of
those sub-problems in time f(n). The strategy is same as that followed in divide and
conquer (D&C) approach, discussed earlier in the chapter.

As stated earlier, not every equation can be solved using the Master theorem.
Examples of some equations that cannot be solved using Master theorem are as follows:

T n n T
n

n() = × 





 +

2
2: The value of ‘a’ is n. So, ‘a’ is not constant.

D i v i d e a n d Co n q u e r   ■  195

•	 T n T
n n

n
()

log
= 






 +3

2
: The difference between f(n) and n b alog should be polynomial

•	 T n nT
n

n() = 





 +2

3
4 : ‘a’ is not constant

•	 T n T
n

n() = 





 −3

2
: f(n) is not positive

The application of Master theorem in finding the time complexity of an algorithm can
be understood by taking an example of binary search (Illustration 9.4) and merge sort
(Illustration 9.5).

Illustration 9.4	 Find the complexity of binary search using Master theorem.

Solution In binary search, an array consisting of n elements is divided into two arrays of
(n/2) elements each. The time required to combine the results is O(1). The value of ‘a’,
therefore, becomes 1 and the value of ‘b’ becomes ‘2’. Hence, the value of n b alog is n0 = 1.
Since, the value of f(n) is O(1), the time complexity of binary search becomes θ (log)2 n .

Illustration 9.5	 In the case of merge sort, wherein the equation of T(n) is

T n T
n

n() = × 





 +2

2
1 , find the asymptotic bounds of T(n).

Solution In the equation, the value of ‘a’ is 2, the value of ‘b’ is 2,
The value of n b alog becomes n1 and f(n) is n1.
Since f(n) and n b alog are same, the complexity becomes θ (log)n n× 2 .

Illustration 9.6	 Solve the following recursive equation by Master theorem:

T n T
n

n() = 





 +3

2
2

Solution The value of ‘a’ = 3, ‘b’ is 2, and f(n) is n2.

The value of	 log log
b
a =

2
3

Since	 n nlog2 3 2<

T n n() ()= θ 2

Illustration 9.7	 Solve the following recursive equation by Master theorem:

T n T
n

n() = 





 +2

3
2

196   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Solution The value of ‘a’ = 2, ‘b’ = 3, and f(n) = n2.

The value of	 log logb a = 3 2

Since	 n nlog3 2 2< (for large n’s)

T n n() ()= θ 2

Illustration 9.8	 Solve the following recursive equation by Master theorem:

T n T
n

n() = 





 +

2
7

Solution The value of ‘a’ = 1, ‘b’ = 2, and f(n) = 7n. The value of log logb a = 2 1. Since

n0 < n,
T n n() ()= θ

Illustration 9.9	 Solve the following recursive equation by Master theorem:

T n T
n

nn n() = 





 +2

2

Solution Since ‘a’ is not constant, Master theorem cannot be applied.

Illustration 9.10	 Solve the following recursive equation by Master theorem:

T n T n n() ()= +27 /3

Solution The value of ‘a’ = 27, ‘b’ = 3, and f (n) = n

The value of	 log logb a = =3 27 3

Since	 n3 > n (for large n’s)

T n n() ()= θ 3

Illustration 9.11	 Solve the following recursive equation by Master theorem:

T n T n n() (/)= +2 2

Solution The value of ‘a’ = 2, ‘b’ = 2, and f(n) = n.

The value of	 log logb a = =2 2 1

Since

∴	 T n n n() (log)= θ

Illustration 9.12	 Solve the following recursive equation by Master theorem:

T n T n n n() (/) log= +2 2

Solution Since the difference between f(n) and n b alog is not polynomial, Master theorem
cannot be applied. The equation, however, can be solved using substitution (refer to
Chapter 4).

D i v i d e a n d Co n q u e r   ■  197

Illustration 9.13	 Solve the following recursive equation by Master theorem:

T n T n n() (/)= +2 4

Solution The value of ‘a’ = 2, ‘b’ = 4, and f(n) = √n.

The value of	 log logb a = =2 4 2

Since	 n n2 > (for large n’s)

T n n() ()= θ 2

Illustration 9.14	 Solve the following recursive equation by Master theorem:

T n T
n

n
() = 














 +

1

2 2

1

Solution Again, the difference between f(n) and n b alog is not a polynomial, Master theo-
rem cannot be applied.

Illustration 9.15	 Solve the following recursive equation by Master theorem:

T n T n n() (/) != +16 4

Solution Here also, the difference between f(n) and n b alog is not polynomial, and hence
Master theorem cannot be applied.

Illustration 9.16	 Solve the following recursive equation by Master theorem:

T n
n

n n n() T log (/) log= 





 + +√2

2
2

Solution The value of ‘a’ = √2, ‘b’ = 2, and f (n) = log n.

The value of	 log log
log

log
b a = = =

2
2

2

2
2

Since	 n > logn

T n n() = () = () 2θ θ

9.3.1  Proof of Master Theorem
Step 1	 In this step, the following premise would be proved:

T n aT
n

f n n T n n() (),= 





 + >

2
1and () = 1 if = 1, then

T n n a f
n

b
a bb j

kj

n
() log log

= + 





=

−∑ 0

1

198   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Case 2	 When n/b is not an integer
In this case, we will either use floor or ceiling, that is,

T n aT
n

b
f n() ()= 













 +

Case 1	 Let us assume that n is an exact power of b

Let	 bk = n

Initially, the size of the problem is n. In the next iteration, there would be ‘a’ sub-
problems of size bk − 1. The cost of combining the solutions will be f(bk − 1). Each child
has ‘a’ children and the cost of combining the solutions would be f(bk − 2). In the ith
iteration, there would be ai nodes at distance i from the root and the cost of combining
the solutions would be f(bk − j) or f(n/bk).

In order to calculate the number of levels, let us put n/bj = 1
n = bj

j log b = log n

j = (log b/log n)

j = lognb

So, at the last level, the number of children would be a aj nb= log .

Since there are aj children at this level, the total cost would be a f
n

b
j

kj

nb 





=

−∑ 0

1log
.

The number of nodes in the last level would be a nb an blog log= . Therefore, T(n) can be
considered as

T n n a f
n

b
a bb j

kj

n
() log log

= + 





=

−∑ 0

1 (Fig. 9.3)

f(n)

f(n/b)f(n/b) f(n/b)

a children : Cost a f(n/b) f(n/b2) f(n/b2) f(n/b2)

a2 children : Cost a2 f(n/b2)

aj children : Cost aj f(n/b2)

jth level

Figure 9.3  Master theorem: The root has ‘a’ children and the cost of combining the
solutions of the sub-problems is f (n)

D i v i d e a n d Co n q u e r   ■  199

or

T n aT
n

b
f n() ()= 













 +

The first case can be considered as the upper bound since n

b

n

b

n

b

n

b






≥ 





≤ and .

Step 2	 In this step, the following premise would be proved:

If () ()n a T
n

b
f n= × 






 + , where f(n) is asymptotically positive, a b≥ >1 1and .

Then

Case 1	 If f n n b a() ()log= θ , then T n n n b a() (log)log= ×θ

Case 2	 If f n n b a() ()(log)= Ω −ε , then T n n b a() (log)log= θ , where e is a positive number.

Case 3	 If f n n b a() ()(log)= Ω +ε , then T n f n() (())= θ , where e is a positive number.

Having understood the procedure of solving the recursive equations, let us now move to
involved applications of divide and conquer. The following section discusses one such
application that is ‘Quick Sort’.

9.4  QUICK SORT

In quick sort, the pivot is compared with the first and the last element of the list. The
pointer which moves from left to right, starting from the first element, would henceforth
be called i. The pointer which moves from right to left, starting from the last element of
the list would henceforth be called j.

The pivot is compared with a[i], where a[] denotes the array. If a[i] is less than the
pivot, i is incremented. The process continues till a[i] remains less than pivot.

The pivot is then compared with a[j], where a[] denotes the array. If a[j] is greater
than the pivot, j is decremented. The process continues till a[i] remains less than pivot.

When a[i] > pivot and a[j] < pivot, they are swapped. The process stops when i
becomes greater than j. At this point, the pivot is placed at the position denoted by the
index where i becomes greater than j. This step places pivot at its appropriate position.
After this step, the elements less than pivot will be to the left of pivot and those greater
than pivot will be to the right of the pivot. The left sub-array and the right sub-array will
now undergo the above procedure. Finally, a sorted array is obtained. The following
algorithm presents a formal approach to quick sort.

	 Algorithm 9.2   Partition (a, x, y)

Input: An array: a[ ], low: the first index of the array, high: the last index of the array.
Output: A sorted array

200   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Strategy: Discussed above
// Within a[x], a[x+1],….,a[y-1] the elements are rearranged in such a manner
that if initially // t=a[x], then after the completion a[q]=t for some q between
x and high-1, a[k]<=t for m<=k<q, // and a[k]>=t for q<k<high. q is returned.

Algorithm: Partition

{
 v=a[m];
 i=m;
 j=p;
 repeat
 {
 repeat
 i=i+1;
 until (a[i]>=v);
 repeat
 j=j-1;
 until (a[j] <=v);
 if (i<j) then swap (a, i, j);
 } until (i>=j); a[i] >= a[j];
 a[m] = a[j]; a[j] =v; return j;
}
Algorithm: swap (a, i, j)
// Exchange a[i] with a[j].
{
 p= a[i];
 a[i] = a[j];
 a[j] = p;
}
Algorithm: QuickSort (low, high)
{
 // Sorts the elements a[low]… a[high] into ascending order;
 �// a [n+1] is considered to be defined and must be >= all the elements in a

[1: n].
 if (low<high) then // If there are more than one element
 {
 // divide array into two sub arrays.
 j= Partition (a, low, high);
 // j is the position of the partition element.
 Quicksort (low, j-1);
 QuickSort (j+1, high);
 }
}

Complexity: In the average case, the array would be divided into two arrays of equal
size. Each sub-array will be divided into two arrays of number of elements half of the

D i v i d e a n d Co n q u e r   ■  201

parent. The process continues till just one element remains in the child array. The situa-
tion is depicted in the following diagram. The process stops when

n
i2

1=

i.e., n i= 2
or, i n= log2

Since, there are log2n levels, the complexity of algorithm becomes O n n(log)× 2 .

Figure 9.4 depicts the tree corresponding to the situation.

9.4.1  Worst-case Complexity
If partition leads to segregation of the array into two parts, one having (n - 1) elements
and the other having 1 element (in the next iteration also the pattern is repeated). This
happens when the array is already sorted. In that case, the array would be divided into
two parts and the first part will always have a single element. The situation is depicted in
the following diagram. The number of comparisons in this case would be

T n n T n T() () (), ()= − + − =1 1 1 1

i.e.,      T n n n() () ()= − + − + ⋅⋅ ⋅ +1 2 1

or,    T n n
n

() = ×
−1

2

or,   T n O n() = () 2

Figure 9.5 depicts the above division and Fig. 9.6 depicts the working of partition and
quick sort.

n

4

n

4

n

8

n

8

n

8

n

8

n

2i

n

2

n

4

n

4

n

8

n

8

n

8

n

8

n

2

n

Figure 9.4  Average-case complexity of quick sort

202   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

n − 2 1

1n − 3

n − i

n − 1 1

n

Figure 9.5  Worst-case complexity of quick sort

Figure 9.6  Quick sort and partition (Contd)

Pivot = 12, a[i] = 17
a[j] = 1, swap a[i] and a[j]17 5 21 8 34 16 112

Pivot = 12, a[i] = 1
a[j] = 17, i++, j −−1 5 21 8 34 16 1712

Pivot = 12, a[i] = 5
a[j] = 16, i++, j−−1 5 21 8 34 16 1712

Pivot = 12, a[i] = 21
a[j] = 34, j−−1 5 21 8 34 16 1712

Pivot = 12, a[i] = 21
a[j] = 8, swap a[i] and a[j]1 5 21 8 34 16 1712

Pivot = 12, a[i] = 8
a[j] = 21, i++, j−−1 5 8 21 34 16 1712

Pivot = 12, i > j, so place
pivot at the position.

5 8 12 21 34 16 171

5 81 The above procedure is to be applied to
the sub-array to the left of the previous pivot.

5 81 The result of the application of procedure
to the left sub-array.

34 16 1721 The above procedure is to be applied to the
sub-array to the right of the previous pivot.

17 21 3416 The result of the application of procedure
to the right sub-array.

5 8 12 16 17 21 341 Final result

D i v i d e a n d Co n q u e r   ■  203

Pivot = 12, a[i] = 17
a[j] = 1, swap a[i] and a[j]17 5 21 8 34 16 112

Pivot = 12, a[i] = 1
a[j] = 17, i++, j −−1 5 21 8 34 16 1712

Pivot = 12, a[i] = 5
a[j] = 16, i++, j−−1 5 21 8 34 16 1712

Pivot = 12, a[i] = 21
a[j] = 34, j−−1 5 21 8 34 16 1712

Pivot = 12, a[i] = 21
a[j] = 8, swap a[i] and a[j]1 5 21 8 34 16 1712

Pivot = 12, a[i] = 8
a[j] = 21, i++, j−−1 5 8 21 34 16 1712

Pivot = 12, i > j, so place
pivot at the position.

5 8 12 21 34 16 171

5 81 The above procedure is to be applied to
the sub-array to the left of the previous pivot.

5 81 The result of the application of procedure
to the left sub-array.

34 16 1721 The above procedure is to be applied to the
sub-array to the right of the previous pivot.

17 21 3416 The result of the application of procedure
to the right sub-array.

5 8 12 16 17 21 341 Final result

Figure 9.6  (Contd) Quick sort and partition

Table 9.1  Merge sort terminology
Name Meaning

array1[] First array

n1 Number of elements in the first array

array2[] Second array

n2 Number of elements in the second array

C[] Array which stores the merged array

Low The lower index of the array, initially, its value is generally 1

High The higher index of the array, initially, its value is generally (n -1), where n
is the number of elements in the given array

Merge Procedure, which merges two sorted arrays

MergeSort Procedure, which sorts two arrays to give a sorted array

9.5  MERGE SORT

Merge sort is a sorting algorithm that takes O(n log n) time to complete as against quick
sort in which worst-case complexity is O(n2).

The algorithm is composed of two independent parts, Merge(array1[ ], array2[ ], n1,
n2) and MergeSort(array[ ], low, high). The Merge() function merges two sorted arrays
to give another sorted array. The MergeSort(…), on the other hand, uses Merge(…) to
sort a list of elements. The algorithm can be implemented both by using recursion and
without using recursion. However, the present section discusses the recursive version of
merge sort. Table 9.1 depicts the terminology of merge sort.

204   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 Algorithm 9.3  Merge

//The algorithm merges two arrays, array 1 and array 2, to form another array
c[]. The procedure for merging two sorted arrays is looking at the elements at the
indices indicated by i and j. The index k states the position at the result array.

Merge (array1 [], array2 [], n1, n2) returns c[]
{
 i=0;
 j=0;
 k=0;
 while((i<n1)&&(j<n2))
 {
 if(array1[i]<array2[j])
 {
 c[k]=array1[i];
 k++;
 i++;
 }
 else if(array2[j]<array1[i])
 {
 c[k]=array2[j];
 k++;
 j++;
 }
 else
 {
 c[k]=array1[i];
 k++;
 i++;
 j++;
 }
 }
 if(i<n1)
 {
 while(i<n1)
 {
 c[k++]=array1[i++];
 }
 }
 else if(j<n2)
 {
 while(j<n2)
 {
 c[k++]=array2[j++];
 }
 }
 return c[];
}

D i v i d e a n d Co n q u e r   ■  205

The following discussion analyse merge sort with the help of tree method. The analy-
sis is similar to the average case of quick sort discussed earlier. The first call will split
the array, having n elements into two arrays having n/2 elements each. In the next step,
there would be four arrays of (n/4) elements. At the end of the divide step, there would
be just one element (Fig. 9.8),

	 Algorithm 9.4  Merge sort

MergeSort(array, low, high)
{
int mid= (low + high)/2;
int array1[], array2[];
array1[]=MergeSort(array, low, mid);
array2[]=MergeSort(array, mid+1, high);
n1=n/2;
n2=n/2;
array3[]= Merge(array1, array2, n1,n2);
return array 3[];
}

In order to understand the algorithm, let us have a look at one illustration. The problem
requires you to sort an array using merge sort. The process is depicted in Fig. 9.7.

12 17 5 21 8 34 16 1

12 17 5 21 8 34 16 1

12 17 5 21 8 34 16 1

12 17 5 21 8 34 16 1

12 5 8 117 21 34 16

5 12 17 21 1 8 16 34

1 5 8 12 16 17 21 34

Figure 9.7  Steps of merge sort

206   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

n
i2

1=

i.e., n i= 2

or, i n= log2

Since, there are log2 n levels, the complexity of algorithm becomes O n n(log)× 2 .
The complexity of merge sort is same as that of the average-case complexity of quick

sort. However, the memory requirement of this algorithm is too large. The algorithm
requires a colossal amount of auxiliary memory and is, therefore, perceived as less effi-
cient, generally.

9.6  SELECTION

An array a[], having n elements is given as an input. ‘Selection’ selects the kth largest
element of a. The process makes use of the partition algorithm discussed earlier. The
first iteration finds the correct position of the first element. If the position is equal to k,
then the process stops, otherwise the next element is sent to the partition algorithm. The
process continues till the result obtained is equal to the value of k.

	 Algorithm 9.5 S election

Input: Array a[ ], and the first and the last index
Output: The requisite element

n

4

n

4

n

8

n

8

n

8

n

8

n

2i

n

2

n

4

n

4

n

8

n

8

n

8

n

8

n

2

n

Figure 9.8  Complexity of merge sort

D i v i d e a n d Co n q u e r   ■  207

SELECTION (a[], int low, int high, int k) returns value
{
 i=0;
 FOUND=0;
 while(FOUND !=1)
 {
 int pos=Partition(a[], low, high, a[i]);
 if(pos==k)
 {
 FOUND=1;
 return a[i];
 }
 }
}

Note:
The above algorithm assumes that a[] is unsorted. The use of SELECT makes sense only
if a[] is unsorted. Had a[] been sorted we would have gone to the kth position straight
away.

Complexity: The above algorithm runs O(n) in the worst case and O(1) times in the best
case.

The recursive algorithm of SELECT uses the same premise as binary search. If the
correct element is not found in the first iteration, the left or the right part of that position
is explored as per the case. The complexity, though reduces, but the need of the algo-
rithm is not justified as it is already sorted.

	 Algorithm 9.6 S elect recursive

SELECT RECURSIVE(a[], int low, int high, int k) returns value
{
 i=0;
 FOUND=0;
 while(FOUND !=1)
 {
 int pos=Partition(a[], low, high, a[i]);
 if(pos==k)
 {
 FOUND=1;
 return a[i];
 }
 else if(pos<k)
 {
 SELECT RECURSIVE (a[], low, pos, k)

208   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

 }
 else
 {
 SELECT RECURSIVE (a[], pos, high, k)
 }
 }
}

Complexity: The worst-case complexity of the above algorithm is O(n2), since parti-
tion requires O(n) time in the worst case. Partition is called O(n) in the worst case.
However, the average-case complexity of SELECT is O(n). This can be proved as
follows:

T n cn
n

n
() ≤ +

−1 Total time taken for processing (1) elements

+ Totaal time taken for processing (1) elementsi −










T n cn
n

C n C n() ()≤ + +
1

1 2

T n O n() ()≤

The algorithm can also be implemented without using recursion. The procedure has
been left as an exercise for the readers.

9.7  CONVEX HULL

Convex hull is a set of points that makes a cover of n points such that no point lies out-
side the cover. All the line segments must be inside the polygon. In order to understand
the point, let us consider the set of points, shown in Fig. 9.9. In this case, ABCDEA is
the convex hull of the set A B C D E F G, , , , , ,{ } . The process of finding a convex hull of a
given set of points has been explained in the following discussion.

A

B

C

D

E

F

G

Figure 9.9  Convex hull

D i v i d e a n d Co n q u e r   ■  209

The first step requires the elicitation of all the triangles that can be formed. In the
case of Fig. 9.9, these are as depicted in Table 9.2. As is evident from the table, there
are 34 triangles.

The next step would be to check whether a given point lies inside or outside a given
triangle. This requires 7 × 35 = 245 calculations.

The above algorithm is summarized in Algorithm 9.7.

	 Algorithm 9.7   Convex hull

Input: n vertices
Output: Set ‘a’ which represents the set of vertices forming convex hull

CONVEX HULL (Set of n points) returns a set of points which forms the convex hull,
in set a

Tip: I f there are n points, no three of which are collinear, then the number of triangles would

be 3
nC, that is, n n n× − × −

×
() ()1 2

2 3
. The first step of the above procedure would be O(n3).

Tip: If there are n points, no three of which are collinear, then the number of calculations

for finding out a convex hull would be n Cn× 3 , that is, n n n2 1 2
2 3

× − × −
×

() (). The first step of

the above procedure would be O(n4).

Table 9.2  Triangles that can be formed from the polygon
of Fig. 9.9

ABC AEF BFG

ABD AEG CDE

ABE AFG CDF

ABF BCD CDG

ABG BCE CEF

ACD BCF CEG

ACE BCG CFG

ACF BDE DFE

ACG BDF DFG

ADE BDG EFG

ADF BEF

ADG BEG

210   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

{

for any three points {ni, nj, nk}

 {

 FLAG=0;

 a=Ø;

 for each nt ∈ Set of nodes

 {

 if(nt does not lie in the triangle {ni, nj, nk}

 {

 FLAG=1;

 }

 }

 if(FLAG ==0)

 {

 a= a Union ni
 }

 }

return a;

}

Complexity: The complexity of the above algorithm is O(n4) as discussed above.
The divide and conquer approach of solving the above problem requires the hull to

be divided into an upper hull and a lower hull. The upper hull can further be divided into
two parts. The solutions of the two parts can be connected via a line called tangent. The
portion to the right of the left hull and to the left of the right hull is then ignored. The
complexity of such algorithm would be O(n log n).

The approach divides the set of n points into two sets, each having n/2 points. The
initial n points, though, need to be sorted. Sorting requires O(n log n) time. The pro-
cedure requires O(n) time to craft the final solution. The final equation of the above
therefore becomes

T n T
n

O n() = × 





 + 2

2
()

By Master theorem, the final solution becomes

O(n log n)

D i v i d e a n d Co n q u e r   ■  211

9.8  STRASSEN’S MATRIX MULTIPLICATION

Suppose you have two 2 × 2 matrices, A and B.

A
A A

A A

B
B B

B B

=










=










11 12

21 22

11 12

21 22

The multiplication of the above two matrices can be performed by eight scalar multipli-
cations, i.e.,

A A

A A

B B

B B

C C

C C
11 12

21 22

11 12

21 22

11 12

21 22









×









 =











If

C A B A B

C A B A B

C A B A B

C

11 11 11 21 21

12 11 12 12 22

21 21 11 22 21

= × + ×

= × + ×

= × + ×

222 21 12 22 22= × + ×A B A B

Therefore, the computational complexity is n3. This can be proved by Master theorem.

The recurrence relation of Strassen’s matrix multiplication is T n T
n

n() = 





 +8

2
2, which

gives T n n n() log= =2 8 3.

Strassen proposed a novel method of multiplication of two matrices, which had only
seven scalar multiplications. The recurrence relation of the method, therefore,
becomes

T n T
n

n() = 





 +7

2
2, which gives T n n n() log .= =2 7 2 81, instead of n

Tip: A 4 × 4 matrix can also be solved by the above equations. In that case C11, C12, C21, C22

would be 2 × 2 matrices. In general, an n × n matrix can be segregated into n n
2 2

× matrices.

This divide and conquer approach requires complexity of O(n).

212   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The equations are as follows:

P A A B B
Q A A B
R A B B
S A

= + +
= +
= +
=

()()
()()
()()
(

11 22 11 22

21 22 11

11 12 22

22))()
()()
()()
()

B B
T A A B
U A A B B
V A A

21 11

11 22 22

21 11 11 12

12 22

+
= +
= − +
= − (()B B21 22+

C P S T V
C R T
C Q S
C P R Q U

11

12

21

22

= + − +
= +
= +
= + − +

The matrix is given by	 C
C C

C C
=











11 12

21 22

The above method can be understood by considering the following illustration.

Illustration 9.17	 Multiply the following matrices using divide and conquer.

A B=

















=














1 2 1 2
3 8 2 2
5 1 4 9
6 2 5 0

1 2 5 6
3 4 7 8
9 1 4 5
2 3 6 7

, 


Solution
The matrix can be segregated into four 2 × 2 matrices, A11, A12, A21, and A22.

A

A

A

A

11

12

21

22

1 2
3 8

1 2
2 2

5 1
6 2

4 9
5 0

= 







= 







= 







= 







Tip: A 4 × 4 matrix can also be solved by the above equations. In that case C11, C12, C21, C22

would be 2 × 2 matrices. In general, an n × n matrix can be segregated into
n n
2 2

× matrices.
The divide and conquer given by Strassen has complexity O(n2.81).

D i v i d e a n d Co n q u e r   ■  213

9.9  MINIMUM DISTANCE BETWEEN n POINTS

Given a set of n points, where a point is a pair (x, y), having x and y as coordinates. It is
required to find two points that are nearest to each other. In order to accomplish the task,
the points are first arranged in ascending order (as per the values of x coordinates). This
is followed by finding out the mid-point. The strategy of divide and conquer then comes
to our rescue. The premise behind the division is that the distance between two points
has to be minimum, since there is just one value. While combining the sub-solutions, the
following strategy is used. The distances d1 and d2 between the units to be combined
is also compared with d3, the distance between the second point of the first pair and
the first point of the second pair (Figs 9.11 and 9.12). The minimum amongst the three
becomes the result of the function that combines the two units to form a larger unit. The
minimum_of_three (int, int, int) function returns the minimum value amongst the three
arguments (Algorithm 9.8).

The matrix can be segregated into four 2 × 2 matrices, B11, B12, B21, and B22

B

B

B

B

11

12

21

22

1 2

3 4

5 6

7 8

9 1

2 3

4 5

6 7

=










=










=










=










Now A × B is given by the set of equations given by Strassen. Each of P, Q, R, S, T,
U, V is evaluated by multiplying two 2 × 2 matrices, which can be done by applying
Strassen’s equation again. The process is summarized in Fig. 9.10.

1 2 1 2
3 8 2 2
5 1 4 9
6 2 5 0

1 2
3 8

1 2
2 2

5 1
6 2

4 9
5 0

1 2 5 6
3 4 7 8
9 1 4 5
2 3 6 7

1 2
3 4

5 6
7 8

9 1
2 3

4 5
6 7

Figure 9.10  Dividing a 4 × 4 matrix into four 2 × 2 matrices

214   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 Algorithm 9.8  Minimum_of_three(x, y, z) returns minimum_distance

Input: Distances d1, d2, and d3.
Output: The minimum distance

 {
//x, y and z are three distances depicted by d1, d2 and d3 in Fig. 9.11. Minimum
distance is the minimum amongst the three
 minimum_distance = (d1<d2)? (d1<d3? d1: d3):(d2<d3? d2: d3);
 return minimum_distance;
 }

Complexity: O(1);
The comparison operator, a op b? a:b means that if (a op b) is true a is returned; else b
is returned.

	 Algorithm 9.9  Minimum_distance (n points of the form (xi yi)) returns minimum distance

Input: n points (x1, y1), (x2, y2),…, (xn, yn)
Output: Minimum distance

{
Arrange points in increasing order of xi ‘s

Figure 9.11  Arrange the given points as per their x coordinates

d1
d2

d3

Figure 9.12  The strategy of combining the basic blocks

D i v i d e a n d Co n q u e r   ■  215

X[]= heap_sort(x1, x2, …, xn);
mid = find_mid(x1, x2, …, xn);
//find_mid finds the middle point of the given set
d1 = Minimum_distance ((x1, y1), (x2, y2),…, (mid, y));
d2 = Minimum_distance ((mid +1, y), (x2, y),…, (xn, yn));
d3 = |distance between mid and mid+1|;
d = minimum_of_three (d1, d2, d3);
return d;
}

Complexity: The complexity of heapify is O(n log n). That of minimum_of_three() is
O(1). However, it runs O(n) times. Hence, the overall complexity is O(n log n).

9.10  MISCELLANEOUS PROBLEMS

The earlier discussion focuses on the application of divide and conquer. There are some
more problems on which this technique can be applied. Some of them have been covered
in the following discussion. The reader is advised to go through the latest research in
this topic by exploring ACM Digital library and IEEE Explore. The aim of the following
discussion is to discuss the applicability of divide and conquer in the stated problems. It
is left to the reader to implement and analyse the following.

9.10.1  Multiplying Numbers Using Divide and Conquer
If an n-bit binary number is to be multiplied by another n-bit number, where n = 2m. The
numbers can be split into two halves. Let the numbers be n1 and n2. The number n1 is
split into two parts say n11 and n12. The number n2 is split into two parts say n21 and n22.
The numbers can be multiplied by using the following formula:

n n n n n n

n n n n n

n n

n

1 2 12
2

11 22
2

21

12 22 22 11 1

2 2

2

× = × + × × +

= × × + +

() ()

((

/ /

22 21
2

11 212n n nn) ())/× +

The above technique would make the problem which multiplies four multiplications of
(n/2) bits and three additions. The complexity of the above turns out to be

T n T
n

n() ()= 





 +4

2
θ

Applying Master theorem, we get T n n() ()= θ 2 .
The algorithm for the above procedure is as follows.

	 Algorithm 9.10 N umber multiplication

Input: Two n-bit numbers n1,n2
Output: A 2n-bit binary number

multiply (n1, n2) returns n

216   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

{
 n1 = n11 n12.
 n2 = n21 n22.

return multiply (multiply multiply multiply(m((,),) ((n n n
12 11 2 + uultiply

multiply multiply
()

()),) (,)/

n n

n n n nn

22 11

22 21
2

11 212+ +))

}

Complexity: q(n2)

9.10.2  Defective Chessboard Problem
A chessboard is generally a 2n × 2n pane board. In the case of a normal chessboard, all
the panes are identical. However, in the case of a defective chessboard, a pane would
be different from the rest of the three. This different panes need to be found out. The
strategy used to locate the ‘different pane’ would be the divide and conquer strategy, as
discussed in this sub-section.

As stated earlier, the divide and conquer algorithms work if the problem can be
divided into various sub-problems and those sub-problems can be independently solved.
These small solutions would be merged together to form a large correct solution.

The strategy is simple, the original chessboard is divided into four chessboard with
size 2n – 1 × 2n – 1. The defective location would be in one of these four sub-boards. The
rest three would be OK.

The bigger chessboard can be divided into the smaller ones until we are able to get
a 1 × 1 chessboard. The correctness of a single block is an elementary problem. At the
last step, the problem would become a yes/no problem. The solution of this would tell
us which of the four calling functions contain this defective cell.

The solution then propagates in a bottom-up fashion, which finally leads us to the
correct solution to the problem. As far the complexity of the problem is concerned, the
following equation depicts the recursive relation:

T n T n O() () ()= − +1 1

which gives T(n) = O(n), on applying Master theorem.

9.11  CONCLUSION

Divide and conquer algorithms are helpful when a problem in hand can be divided into
sub-problems. The core idea of solving the problem and the sub-problem should remain
the same. If same strategy can be applied to all the sub-problems, then one should opt for
divide and conquer approach. One disadvantage of this method is that usually it is imple-
mented via recursion, which requires a lot of memory and a different way of dealing
with the problem. Though divide and conquer successfully reduces the time complexity

D i v i D e a n D Co n q u e r ■ 217

of many problems, it is not the solution to all the problems. This chapter introduced the
concept of divide and conquer and discussed the ways to fi nd the time complexity of a
recursive algorithm, which forms the backbone of the paradigm. Figure 9.13 summa-
rizes the approach.

 Points to Remember

 • Master theorem helps in fi nding the complexity of an algorithm that uses the divide and
conquer approach.

 • Quick sort uses the partition algorithm.

 • Merge sort uses two algorithms—merge and merge sort.

 • Partition algorithm is also used in selection.

 • Quick sort is better than merge sort as it requires lesser space.

 • Divide and conquer is used to solve problems like multiplication of binary numbers and
convex hull.

 • The complexity of multiplying two n -bit numbers via divide and conquer is O (n 2).

 Convex hull it is a set of points which make a cover of n points such that no point lies outside
the cover.
 Merge sort a sorting technique based on the concept of divide and conquer, which uses
merge to craft a sorted array from two sorted arrays. it requires auxiliary memory of order
 O (n).
 Merge algorithm The algorithm takes two sorted arrays and returns one sorted array.
 Partition The algorithm takes two arguments, an integer and an array, and finds the correct
position of the given integer in the array.
 Quick sort a sorting technique based on the concept of divide and conquer, which uses par-
tition to find the correct position of a given element in the given array. The algorithm is better
than merge sort, which though has same complexity, requires auxiliary memory.

KEY TERMS

Divide the problem into sub-problems

Solve each sub-problem

Merge the solutions of the sub-problem
to get the final solution

 Figure 9.13 Divide and conquer

218 ■ a lg o r i T h M s : D e s i g n a n D a n a ly s i s

 I. Multiple Choice Questions

 1. Which of the following cannot be solved via divide and conquer?
 (a) Matrix chain multiplication
 (b) Merge sort

 (c) Quick sort
 (d) None

 2. Which of the following has best ‘worst-case complexity’?
 (a) Merge sort
 (b) Quick sort

 (c) Bubble sort
 (d) None of the following

 3. Which of the following is best taking into consideration both time and memory?
 (a) Bubble sort
 (b) Selection sort

 (c) Quick sort
 (d) Merge sort

 4. Which of the following depict the correct complexity of quick sort when the input
array is sorted?
 (a) O (n)
 (b) O (n 2)

 (c) O (n 3)
 (d) O (n log n)

 5. Which of the following depict the correct complexity of merge sort when the input
array is sorted?
 (a) O (n)
 (b) O (n 2)

 (c) O (n 3)
 (d) O (n log n)

 6. A researcher develops a technique to multiply two 2 × 2 matrices. The technique
requires six multiplications. The complexity of the module that combines the sub-solu-
tions is O (n 2). Which of the following correctly represent the recursive equation depict-
ing the complexity of the algorithm?

 (a) T n T
n

O n() ()= × 





 +6

2
2

 (b)
T n T

n
O n() ()= 






 + ×

2
6 2

 (c) T n T n O
n

() ()= × + 





6

2
2

 (d) None of the above

 7. Which of the following depicts the answer of the above question?
 (a) O (n 2.58)
 (b) O (n 2.8)

 (c) O (n 2)
 (d) None of the above

 8. The researcher makes an arbitrary change in the module that merges the solutions.
On analysing the module again, he fi nds out that the complexity of the module has
now become O (n 3). What would be the complexity of the overall algorithm now?
 (a) O (n 2.58)
 (b) O (n 2.8)

 (c) O (n 3)
 (d) None of the above

 9. What can be said about the algorithm after changes have been made as per question 8?
 (a) It is as good as Strassen’s matrix multiplication.
 (b) Its complexity is greater than that of Strassen’s matrix multiplication.
 (c) Nothing can be said on the basis of the above data.
 (d) Matrix multiplication cannot be judged on the basis of complexity.

EXERCISES

D i v i d e a n d Co n q u e r   ■  219

10.	 The researcher then develops a testing technique based on the concept of divide and
conquer which divides the program into three parts (each part takes one-third of
the paths), find paths in each part and then generates a combined solution using an
algorithm that takes O(n4) time. Which equation correctly depicts the solution?

(a)	 T n T
n

O n() ()= × 





 +3

3
4

(b)	 T n T
n

O n() ()= 





 + ×

3
3 4

(c)	 T n T n O
n

() ()= × + 





3

3
4

(d)	 None of the above

11.	 What is the complexity of the above algorithm?
(a)	 O(n2.5)
(b)	 O(n4)

(c)	 O(n1)
(d)	 None of the above

12.	 Which of the following can be used to solve recursive equations?
(a)	 Substitution
(b)	 Master theorem

(c)	 Tree method
(d)	 All of the above

13.	 Which of the following techniques use recursion?
(a)	 Divide and conquer
(b)	 Backtracking

(c)	 Both
(d)	 None of the above

14.	 Which of the following statements is true?
(a)	 Binary search is based on divide and conquer
(b)	 Divide and conquer cannot be applied to ternary search
(c)	 The time complexity of binary search is O(n).
(d)	 None of the above

15.	 If the sub-problems are such that each solution can be used at a later point (the
sub-problems need not to be homogeneous), which strategy can be used?
(a)	 Dynamic
(b)	 Divide and conquer

(c)	 Backtracking
(d)	 None of the above

II.  Review Questions

	 1.	 Explain the concept of divide and conquer with the help of an example.
	 2.	 Explain quick sort. Write the algorithm and derive its complexity in best, average, and

worst case.
	 3.	 Explain merge sort. Write the algorithm and derive its complexity in best, average, and

worst case.
	 4.	 Explain convex hull. Write the algorithm and derive its complexity.
	 5.	 Explain quick sort. Write the algorithm and derive its complexity in best, average,

and worst case.
	 6.	 Explain the procedure of finding out the minimum from a given list using divide and

conquer.
	 7.	 Explain the procedure of finding out the nearest pair from a given set of n points

using divide and conquer.

220 ■ a lg o r i T h M s : D e s i g n a n D a n a ly s i s

 8. What are the disadvantages of using divide and conquer?
 9. Explain Master theorem. Give an example of each of the tree cases.
 10. Prove Master theorem.

 III. Numerical Problems

 1. Solve the following using Master theorem:

 (a) T n T
n

n() = × 





 +4

4
2

 (b) T n T
n

n() = × 





 +4

3
3

 (c) T n T
n

n n() log= × 





 +4

2

 (d) T n T
n

n() .= × 





 +4

5
2 87

 (e) T n T
n

n() log= × 





 +36

36

 2. If the elements of an array are sorted, what would be the complexity of sorting when using
quick sort?

 3. If the elements of an array are sorted in the reverse order (say the elements are
arranged in increasing order, and they are arranged in decreasing order), what
would be the complexity?

 4. Devise an algorithm that takes an array as an input and gives a sorted array as
output. However, as against quick sort, it has two pivot elements. The intermediate
output should be as follows. The left side of the fi rst pivot should contain elements
less than the fi rst pivot, the elements between the two pivots should have elements
between the two pivots and the elements to the right of the second pivot should be
greater than the second pivot.

 5. Re-craft the above algorithm so that the number of inputs are k , where k ≤ n .
 6. Suggest another way of fi nding out the correct position of pivot, except partition

given in question 5.

 1. (a)
 2. (a)

 3. (c)
 4. (b)

 5. (d)
 6. (a)

 7. (a)
 8. (c)

 9. (b)
 10. (a)

 11. (b)
 12. (d)

 13. (c)
 14. (a)

15. (a)

Answers to MCQs

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of greedy algorithms
 • Defi ne spanning tree
 • Find spanning tree using greedy algorithms
 • Solve knapsack problem using greedy algorithms
 • Solve job sequencing problem using greedy algorithms
 • Explain Kruskal’s and Prim’s algorithms
 • Understand and solve single-source shortest path
 • Explain coin changing problem
 • Understand the importance of Huffman codes
 • Solve optimal storage, subset cover, and container-loading problem using the greedy

approach

 10.1 INTRODUCTION

 A study by the researchers in the University of Oxford published in the Nature
Communication brings out an interesting fact. The study proves that greed is good.
According to the study, in the hierarchically structured communities, the class at the top
takes care of the lowest in the hierarchy, while competing with the classes at the top of
other groups. The behaviour is similar to the chimps and monkeys. A strong chimp in the
group protects some of its stooges and in the process tries to establish its superiority. So,
this greed is good for those that are superior in their group and for those that at the lowest
level in that group. It is easy to fi nd examples of such type of behaviour in our vicinity also.
Greed is good in the case of algorithms also. The problem-solving approach that incor-
porates a pinch of greed helps to attain the goals in a better way, perhaps in a lesser time.

 10.2 CONCEPT OF GREEDY APPROACH

 Greedy approach of solving a problem calls for the selection of the most promising
intermediate solution at that instance. The intermediate solution which seems promising

 Greedy Algorithms

 C H A P T E R 1 0

222   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

at a point might not be that good in the long run. In order to solve a problem via greedy
approach, we select an input. If the solution satisfies the greedy goal, then it is taken in
the solution set; otherwise it is left. The process is depicted as follows in Algorithm 10.1.

	 Algorithm 10.1  Greedy (X, n)

 {
 SET Solution Set to ϕ
 SELECT y: y∈ X.
 �If y is a feasible solution, then include it in the solution set, else

proceed.
 �REPEAT the above two steps till all the elements of the array X have

been processed.
 Return solution set.
 }

The greedy algorithms work most of the times; however, they are not always optimal.
The economies run on the basis of greedy approach. Companies are able to survive
because of greedy approach. Even those who rule us follow the greedy approach. The
modus operandi may not be good for the people, the country, and the humanity, but at
least gives transient gains to those who make the policies.

This section explains the greedy approach by taking an example of minimum cost
spanning tree.

The spanning tree of a graph can be obtained by many methods. For a given graph
G = (V, E), the spanning tree is a connected sub-graph with no cycle, which covers
all the vertices of the tree. The spanning trees of the graph shown in Fig. 10.1(a) are
depicted in Fig. 10.1(b).

The present section examines the process of finding out the spanning tree of a graph
by greedy approach. As stated earlier, a spanning tree covers all the vertices; however,
in most of the practical applications, there is another goal which needs to be achieved.
The goal is to minimize the total weight of the edges selected (the graph is a weighted
graph). So, we can use greedy algorithms in order to accomplish the task. Since the main
aim of the problem is to minimize the cost, it is an optimization problem. Most of the
optimization problems follow the core principle of economics: to minimize the losses or
to maximize the gains.

The input of a minimum cost spanning tree is a weighted graph. The greedy approach
to find the minimum cost spanning tree calls for the decision (to select the requisite edge)
to be taken at every step.

Definition  A spanning tree of a graph is a tree that covers all the vertices and does not
contain any cycle.

G reedy A lgorithms   ■  223

A B

C D

(a)

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

(b)

Figure 10.1  (a) Graph G; (b) Spanning trees of graph given in (a)

224   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

B

A

D

C

E

Figure 10.3  Finding
spanning tree Step 1

The concept can be understood with the help of the following example. A minimum
cost spanning tree is to be formed from the graph depicting cities given in Fig. 10.2.
Table 10.1 gives the distance between the various cities, for example, the cell at row 2 and
column 3 of the table gives the distance between city 2 (read B) and city 3 (read C).

In order to form a spanning tree, taking A as the source node, go from A to E, first of all,
the minimum cost path from A is selected. As per the values given in Table 10.1, the mini-
mum cost edge is from A to B (from the vertex A). The edge AB is therefore selected in the
first iteration (Fig. 10.3). The vertices selected as yet would be termed as active henceforth.

B

A C

DE

Figure 10.2  Graph whose
spanning tree is to be found

Table 10.1  Cost matrix of Fig. 10.2
A B C D E

A 0 13 42 21 14

B 13 0 26 ∞ 53

C 42 26 0 32 10

D 21 ∞ 32 0 11

E 14 53 10 11 0

G reedy A lgorithms   ■  225

This is followed by selecting the minimum cost edge from B or A (which are now active).
Since the minimum cost edge from A or B is AE, we must head from A to E (Fig. 10.4). The
edges selected as of now are AB and AE and the active vertices are A, B, and E.

The edges adjacent to the active vertices are BC, AC, AD, ED, EC, and EB. The mini-
mum cost edge from amongst these edges is EC. The edge EC is now selected and the
final graph is shown in Fig. 10.5.

Now, the edges adjacent to the active vertices are BC, AC, AD, BE, AD, ED, and DC.
The minimum cost edge from amongst these edges is ED. The edge ED is now selected
and the final graph is shown in Fig. 10.6.

B

A

D

C

E

Figure 10.5  Finding spanning tree of graph in Fig. 10.2: Step 3

B

A

D

C

E

Figure 10.6  Finding spanning tree of graph in Fig. 10.2: Step 4

B

A

D

C

E

Figure 10.4  Finding spanning tree of graph in Fig. 10.2: Step 2

226   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Since all the vertices have been covered, the task is now accomplished. The number of
edges in a spanning tree of graph having n vertices should be (n − 1). The resultant tree
also has four edges. The above approach qualifies to be called greedy approach, as the
decision is taken by considering the path which is the most promising, at that point of time.
The sections that follow examine other methodologies to find the spanning tree of a graph.

10.3  0/1 KNAPSACK PROBLEM

In the knapsack problem, a subset of items is to be selected from the given set of items.
The subset should completely (or almost completely) fill the bag and the profit earned
by the selected elements should be maximum. The capacity of the bag, weights of the
items, and the profit earned by selecting the items are given as an input of the problem.

Input
•	 The set of items x x x x xn: , , ,...,1 2 3{ }.

•	 The weights of the above items W w w w wn: , , ,...,1 2 3{ } and

•	 The profits earned by picking the items P p p p pn: , , ,...,1 2 3{ } .

Output

•	 xn = 1 denotes that the item has been picked and xn = 0 means that the item has not
been picked.

Constraint
•	 The total weight of the selected items is less than or equal to the weight of the bag, i.e.,

	 x w x w x w m1 1 1 2 3 1× + × + × ≤... 	 (10.1)

	 where m is the weight of the bag.
•	 The profit earned is to be maximized, i.e.,

x p x p x p1 1 1 2 3 1× + × + ×

	 is to be maximized.

Solution strategy
1.	 Find out profit per unit weight of the items. This is because while selecting an edge,

it is important to maximize the profit at the same time it is desired to fill the bag as
much as possible.

2.	 Arrange the array obtained in the previous step in decreasing order.
3.	 Pick the items from the sorted array one by one till there is a space in the bag.

Definition  The selection of items from a given set in such a way that the total weight is less
than or equal to the given weight, and the profit earned by picking up the elements is
maximum is referred to as knapsack problem.

G reedy A lgorithms   ■  227

	 Algorithm 10.2  Knapsack (X, W, P, m) returns profit earned

{
//X is the array which has items, W is the array containing the weights of the
//items, P is the array containing profits of the items and m is the capacity of
//the Knapsack, t is the remaining weight, the variable p depicts profit earned
//Arrange the items in the non-increasing order of their p[i]/w[i];
t=m;
while (t>W[i])
 {
 Pick the item X[i];
 p=p+P[i];
 t=t-W[i];
 }
return p;
}

Figure 10.7 depicts the above procedure.

Start

Stop

Arrange elements in order of their
profit per unit weight

Set counter i = 0.

No

Yes

Check if
wi ≤ m

Set value of xi = 1

And the remaining weight
m = m − wi and

i = i + 1

Figure 10.7  Procedure for solving knapsack problem

228   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Applications

The problem, though, can be solved by many approaches; the approach discussed in this
section is one of the easiest. Moreover, the greedy approach is sure to optimize a smaller
instance of the problem. Knapsack problem is used in the following domains:
•	 data mining
•	 by the crawlers
•	 networking
•	 regression testing
•	 test data generation, etc.
However, the above approach will not work if the number of items is too high. In order
to understand this, consider the following complexity analysis:

Complexity Analysis

Suppose there are n items in a set. The complexity of finding out profit per unit weight
of each item would be O(n). Moreover, the array needs to be sorted. In order to carry
out the task, the complexity would be O(n2) or O n n(log)× 2 , depending upon the type of
algorithm selected. This is followed by picking of an item and checking whether there
is any more space in the bag. The total complexity will therefore be O n n(log) or O(n2),
depending upon the algorithm. Obviously, if n is too large, then the time complexity
would be too high.

However, Chapter 23 deals with Genetic Algorithms that helps to tackle the instance
of the problem wherein the number of items is too large.

10.4  JOB SEQUENCING WITH DEADLINES

Job sequencing, as the name suggests, is the ordering of jobs with given deadlines and
profits, in order to maximize the profit earned. Job sequencing, being an optimization
problem, can be easily solved by the greedy approach. In the problem, there are n tasks:
x x x xn1 2 3, , ,...,{ } having deadlines d d d dn1 2 3, , ,...,{ } and profits earned on accomplish-

ing those jobs are p p p pn1 2 3, , ,...,{ }. We are required to select the jobs in such a way
that the selected jobs can be finished well within the deadlines and the profit earned by
accomplishing the jobs is maximum. The ordering of profit helps to solve the problem
via greedy approach.

Approach
The jobs can be arranged in the order of their profits. This is followed by the picking of
the job with the highest profit and placing it at the index depicted by its deadline.

The rest of the jobs are to be picked such that they can be done on or before the dead-
line associated with them.

In order to do so, try placing the job at the position depicted by the deadline. If the
position is full, then traverse backward one position at a time. If, however, none of the
positions before (or on) the deadlines are empty, then that job cannot be done.

G reedy A lgorithms   ■  229

	 Algorithm 10.3  Job Sequencing(J[ ], P[ ], D[ ], n) returns X[ ]

Input
•  A set X depicting jobs: { , , , ..., }x x x xn1 2 3

•  A set D depicting deadlines: { , , , ..., }d d d dn1 2 3

•  A set P depicting the profits earned on the accomplishment of the ith job: { , , , ..., }p p p pn1 2 3

Output
•  The sequence in which jobs are to be done, in order to maximize the profit.

//P is the array containing profits earned when a particular job is carried out
//D[] is the array containing the corresponding deadlines
//n is the number of jobs
//X is the array that would contain the sequence in which jobs are to be
//executed in order to maximize the profit
{
netProfit = 0;
Arrange the jobs in the non-decreasing order of profits; rearrange the arrays of
Deadlines and Jobs correspondingly.
i=0;
while(i<n)
 {
 flag = 0;
 if(X[i] is not occupied)
 {
 flag=1;
 X[i]=J[i];
 }
 else
 {
 for(m=j[i];m>0;m--)
 {
 if(X[m] is not occupied)
 {
 flag=1;
 X[m]=J[i];
 }
 else
 {
 print: “Job cannot be completed”;
 }
 }
 }
 }
}

230   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Illustration 10.1	 Solve the following job sequencing problem using greedy algorithm.

Solution In order to solve the problem we proceed as follows.

Step 1  First of all arrange the jobs in order of their profit.

Step 2  Now pick the job that gives the highest profit, and place it at the position depicted
by its deadline.

Job Number 6

Step 3  For the job with second highest profit, place it at the number depicted by its
deadline.

Step 4  For the next highest profit job, place it at the number depicted by its deadline.
Since, the second position is already filled, therefore, any position before the second that
is empty is chosen.

Step 5  As per the above logic, position number 3 is filled by job number 6. Therefore,
proceed backward till an empty slot is detected.

Step 6  The rest of the jobs have deadlines whose positions have already been filled.
Therefore, the remaining jobs cannot be done.

Job Number 1 2 3 4 5 6

Profit 300 250 130 212 100 424

Deadline 4 2 3 3 3 3

Job Number: J 6 1 2 4 3 5

Profit: P 424 300 250 212 130 100

Deadline: D 3 4 2 3 3 3

Job Number 6 Job Number 1

Job Number 4 Job Number 2 Job Number 6 Job Number 1

Job Number 2 Job Number 6 Job Number 1

G reedy A lgorithms   ■  231

Hence, the profit incurred in doing the above jobs is
424 + 300 + 250 + 212 = 1186

Therefore, the total profit earned by accomplishing the selected jobs is 1186.
Complexity analysis: As per the complexity of the above algorithm is concerned, the
sorting part will take a minimum of n log n time, depending upon the technique employed
for sorting the array. The second part takes O(n2). Therefore, the overall complexity of
the algorithm is O(n2).

10.5  KRUSKAL’S ALGORITHM

The Kruskal’s algorithm finds out the minimum cost spanning tree by including the
minimum cost edge in each step of the solution in the output tree; provided that a cycle
is not formed by including that set in the solution.

In order to understand the algorithm, let us consider the following example. Phineas
Flynn and Ferb Fletcher are two brothers who intend to make a roller coaster that con-
nects their home (A) with Isabella’s Firesite office (B), Baljeets home (C), Buford house
(D), and Jeremy’s home (E). It turns out that the cost of connecting Phineas’ home to
Isabella’s office is $700. The cost of connecting their home with Jeremy’s home is $800.
Their home can be connected to Buford’s home in $750. However, their home cannot be
connected to any other house directly. Baljeet’s home can be connected to the Firesite
office in $820. The cost of connecting Baljeet’s house to Buford’s house is $810.
Baljeet’s home can be connected to Jeremy’s house in $600. Jeremy’s home can be con-
nected to Firesite office in $220 and to Buford’s house in $340. It may be assumed that
the path for which the cost is not given may be considered infeasible. Figure 10.8 shows
the diagram and Table 10.2 the corresponding costs.

A

E

C

D

B

Figure 10.8  Graph

Table 10.2  Cost matrix
Cost A B C D E

A 0 700 ∞ 750 800

B 700 0 820 ∞ 220

C ∞ 820 0 810 600

D 750 ∞ 810 0 340

E 800 220 600 340 0

232   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

The brothers realize that there is no point in creating redundant paths. The task can be
accomplished by making a spanning tree. Now, Phineas decides to make the roller coaster
that connects all the points, still costs the least. In order to do so he, first of all, decides
that a path BE should be constructed. This should be followed by the construction of the
path which costs minimum from amongst the paths left. In the above question, this path
is from B to E. Next, the path from E to C is selected. The edge BA will then be selected,
thus making a spanning tree. It may be stated here that the spanning tree of a graph having
n vertices has (n − 1) edges. Since the given graph has 5 vertices, the number of edges in
the spanning tree should have been 4. Figures 10.9–10.12 depict the steps followed.

The above algorithm is referred to as Kruskal’s algorithm. The algorithm selects an
edge e in the kth step if
•	 It is the edge of minimum cost from amongst the edges left.
•	 It does not form cycle with the edges that have already been selected.

Another example of the algorithm is as follows.

Illustration 10.2	 Trace the steps of Kruskal’s algorithm for the graph given in Fig. 10.13.

A

E

C

D

B

Figure 10.10  Select ED as it is
the minimum cost edge from

amongst the edges left

A

E

C

D

B

Figure 10.9  Select BE as it
is the minimum cost edge

A

E

C

D

B

Figure 10.11  Select EC as
it is the minimum cost edge

from amongst the edges
left

A

E

C

D

B

Figure 10.12  Finally,
select AB as it is the

minimum cost edge from
amongst the edges left

A

B

C

D

E

F

10

8

7

4

3 5

11

8

Figure 10.13  Graph

G reedy A lgorithms   ■  233

Solution
Given Graph:

Step 1  Since BC is the least cost edge, BC will be selected in the first iteration
(Fig. 10.14).

Step 2  Now from amongst the remaining edges BD has the least cost. Therefore, BD
will be selected (Fig. 10.15).

Step 3  Now from amongst the leftover edges, DE has the least cost and selecting
DE will not lead to formation of a cycle. Therefore, DE will be selected
(Fig. 10.16).

A

B

C

D

E

F

10

8

7

4

3 5

11

8

Figure 10.14  Step 1 of Kruskal’s
algorithm applied to the graph of

Fig. 10.13

A

B

C

D

E

F

10

8

7

4

3 5

11

8

Figure 10.15  Step 2 of Kruskal’s
algorithm applied to the graph of

Fig. 10.13

A

B

C

D

E

F

10

8

7

4

3 5

11

8

Figure 10.16  Step 3 of Kruskal’s
algorithm applied to the graph of

Fig. 10.13

234   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Step 4  Now since we cannot select CE, as it will lead to a cycle, AC and DF will be
selected in the next two steps, one by one.

Step 5  The above tree is the required spanning tree of the given graph. The algorithm
uses a heapify algorithm, which sorts the edges in order.

The formal algorithm is as follows. Algorithm 10.4 has two input parameters E,
which is the set of edges and n, which is the number of vertices. The first step sets the
parent of all the vertices as −1. The vertices will therefore be considered as isolated (not
connected to any other vertex). The minimum cost is then set to 0. As stated earlier, the
number of edges in a spanning tree is (n − 1), so the algorithm proceeds till (n − 1) ver-
tices have been selected or till the heap becomes empty. An edge is then selected from
the heap and taken in the solution, if it does not form a cycle. If, however, due to any of
the two reasons stated above, we are not able to form a tree with (n − 1) vertices, then it
is not possible to form a spanning tree.

	
Algorithm 10.4  Kruskal's algorithm 

Input: A 2D matrix E, which comprises the cost of respective edges and n, the number of
edges.
Output: The minimum cost spanning tree t.

A

B

C

D

E

F

10

8

7

4

3 5

11

8

Figure 10.17  Step 4 of Kruskal’s
algorithm applied to the graph of

Fig. 10.13

A

B

C

D

E

F

10

8

7

4

3 5

11

8

Figure 10.18  Step 5 of Kruskal’s
algorithm applied to the graph of

Fig. 10.13

G reedy A lgorithms   ■  235

Strategy: Discussed above
Kruskal (E, n) returns mincost

{
// E: set of edges and n: no. of vertices, t is the data structure which stores
the tree
The edges are arranged in ascending order of their costs using heapify algorithm.

for (i = 1 to n)
 {parent[i] = −1;
 }
i=0;
minimum cost = 0;

for (i=0; (i<n−1); i++)
 {
 if(heap not empty)
 {
 delete a minimum cost edge (u, v) from heap and heapify
 Find the vertices adjacent to u and v, call them j and k
 if (j and k are not same)
 {
 i=i+1;
 t (i, 1): = u;
 t (i,2): = v;
 mincost=mincost+cost [u,v];
 take the vertices j and k in the result set
 } // end of ‘if’
 } // end of for
If (i≠ n−1)
 {
 Print (“no spanning tree”);
 }
else

 {
 return mincost;
 }
}

Complexity: The algorithm arranges the vertices in order via heapify, this takes O(|E|
log |E|) time. Moreover, there are no nested loops in the above algorithm. The complex-
ity of a single loop is O(|E|). The overall complexity of the algorithm therefore comes
out to be O(|E| log |E|).

236   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Theorem 10.1	 Prove that Kruskal’s algorithm is true.

Proof In order to prove the above theorem, mathematical induction can be applied. Now,
the first step considers a graph with no edge. Since there is no edge, the theorem has to
be true. Even if there is a single edge, there would be no sorting and hence the only edge
would be selected in the spanning tree (Fig. 10.19).

Let the algorithm be true for n = k, which is true if k edges are selected. Now if one
more edge is added to the graph from the heap having sorted edges, then the edge would
keep the optimality of the graph intact. Moreover, according to the algorithm, the edge
can be selected only if it does not form a cycle. In any case, the edge is selected if it has
the least cost from amongst the left edges or it cannot be selected (Fig. 10.20).

10.6  PRIM’S ALGORITHM

The first section dealt with Kruskal’s algorithm that finds out the minimum cost span-
ning tree. Greed is good in the case of algorithms also. The problem-solving approach
that incorporates a pinch of greed helps to attain the goals in a better way, perhaps in a
lesser time, also accomplishes the task of finding the minimum cost spanning tree. The
algorithm is called Prim’s algorithm. The first step of the algorithm finds out the mini-
mum cost edge from the source node. This is followed by the addition of minimum cost
edges, in a way that no cycle is formed. As stated in the first section, a spanning tree has n
− 1 edges for a graph of n vertices. Therefore, the process continues till (n − 1) edges have

Graph with no edge

Graph with a single edge

Figure 10.19  Graph with no edge
and that with a single edge are
spanning trees in themselves

This edge would be selected if its cost

is least from amongst the remaining

edges not selected as yet

This edge cannot

be selected

1

3

2A

B
C

D

1

3

2A

B
C

D

1

3

2A

B
C

D

Figure 10.20  Step 2 of Kruskal’s algorithm

G reedy A lgorithms   ■  237

been selected. This may not always be the case. There are graphs wherein the above task
cannot be accomplished. In that case, an error message is printed. Algorithm 10.5 presents
the Prim’s method. The illustration following Algorithm 10.5 exemplifies the procedure.

	 Algorithm 10.5  Prim’s algorithm

Input: A 2D matrix E, which comprises the cost of respective edges and n, the number of
edges.
Output: The minimum cost spanning tree t.
Strategy: Discussed above
Prim(E,V) {
(k,l) = the edge of minimum cost;
mincost = cost(k,l).
// include the above edge in the tree
t(1,1)=k;
 t(1,2)=l;
 for(i=1 to n)

 {
 if (cost[i,l] < cost[i,k])
 {
near[i]=l;
 }
 else
 {
near[i]=k;
 }
 near[k]= near[l]=0;
 }
 for(i= 2 to n−1)
 {
 �Find j so that if (near [j] is not zero and (cost(j, near[j])

is minimum)
 {
 t[i,1]=j;
 t[i,2]= near[j]
 �Add the cost of (j, near[j]) to the minimum cost and make near[j]=0;
 }
for(k=1 to n)
 {
  if(near[k] is not zero and cost(k,near[k]))> cost[k,j])
 {
 near[k]=j;
 }
 }
 return mincost;
}

238   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Complexity: As is evident from the above algorithm, there is a loop within a loop. The
complexity of the algorithm, due to this nested loop, becomes O(n2). The complexity can
be reduced by using efficient data structures. The concept of red–black trees, given in
Appendix A2, can greatly reduce the complexity of the algorithm.

Illustration 10.3	 Trace Prim’s algorithm for the graph given in Fig. 10.21.

Solution
Given Graph:

Step 1  Start from A. Since from amongst all the edges from A, AC has the least cost, AC
will be selected in the first iteration (Fig. 10.22).

Step 2  Now from amongst the active edges (AB, CE, and CB), BC has the least cost.
Therefore, BC will be selected (Fig. 10.23).

A

B

C

D

E

F

8

1

7

2

5 2

15

3

Figure 10.21  Graph

A

B

C

D

E

F

8

1

7

2

5 2

15

3

Figure 10.22  Step 1 of Prim’s algorithm
applied to the graph of Fig. 10.21

A

B

C

D

E

F

8

1

7

2

5 2

15

3

Figure 10.23  Step 2 of Prim’s algorithm
applied to the graph of Fig. 10.21

G reedy A lgorithms   ■  239

Step 3  Now from amongst the active edges (AB, CE, and BD), BD has the least cost
and selecting BD will not lead to formation of a cycle. Therefore, BD will be selected.
In the above case, AB could not be selected even if its cost was lesser than BD, as
selecting AB would have formed a cycle (Fig. 10.24).

Step 4  Now DE will be selected (Fig. 10.25).

Step 5  Finally, from amongst the remaining edges DF will be selected (Fig. 10.26).

The above tree is the required spanning tree of the given graph.

10.7  COIN CHANGING

Consider a set of currency notes of denomination d d d dn1 2 3, , ,...,{ }. The set is arranged
in descending order. The amount ‘sum’ is to be made out of the above notes in such

A

B

C

D

E

F

8

1

7

2

5 2

15

3

Figure 10.24  Step 3 of Prim’s algorithm
applied to the graph of Fig. 10.21

A

B

C

D

E

F

8

1

7

2

5 2

15

3

Figure 10.25  Step 4 of Prim’s algorithm
applied to the graph of Fig. 10.21

A

B

C

D

E

F

8

1

7

2

5 2

15

3

Figure 10.26  Step 5 of Prim’s algorithm
applied to the graph of Fig. 10.21

240   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

a way that the number of currency notes used is minimum. The greedy approach for
accomplishing the above task would require selecting the maximum number of the high-
est denomination notes, followed by the second highest denomination, and so on. The
formal algorithm for the above problem is given as follows in Algorithm 10.6.

	 Algorithm 10.6  Coin changing (D, sum) returns Y

/*D is the set containing denominations in decreasing order. The “sum” is the
amount to be generated by using minimum number of currency notes. Y is the array
that contains the number of notes of a particular denomination.*/
{
Set solution set Y = ϕ;
// Y is the set whose ith element denotes the number of currency notes of
//denomination di.
seti=0;
remaining = sum; //the remaining variable denotes the amount left after the ith
//iteration
while((remaining==0)||(remaining <dm))
 {
 if(remaining >di)
 {
 yi= sum%di;
 remaining= remaining – (di*yi);
 }
 else
 {
 yi=0;
 }
 i++;
 }
return y;
}

Complexity: The number of iterations in the above algorithm would be maximum n. So,
the complexity of the above algorithm is O(n).

Illustration 10.4 	 Trace the steps of coin changing problem, if the set of denomina-
tions is {50, 10, 5, 2, 1} and the amount to be given is 573.

Solution In order to solve the problem, we would choose as many notes of denomina-
tion 50 as possible. This would be followed by choosing notes of denomination 10. It is
not feasible to choose notes of every denomination for a particular problem. In this case,
we would not pick any note of denomination 5. The solution of the problem is depicted
as follows:

G reedy A lgorithms   ■  241

Iteration 1
i=0;
di=50;
yi=573/50=11;
remaining= 573 – 11*50=23;

Iteration 2
i=1;
di= 10;
yi=23/10=2;
remaining= 23− 2*10=3;

Iteration 3
i=2;
di=5;
since di>remaining
yi=0;

Iteration 4
i=3;
di=2;
yi= 3/2 = 1;
remaining = 3 – 2*1=1;

Iteration 5
i=4;
di=1;
yi=1/1 = 1;
remaining = 1 – 1*1 =0;
Therefore, the solution set is {11, 2, 0, 1, 1}.

Failure of the Greedy Coin Changing Algorithm

The above algorithm does not work for every set of denominations. For instance, if the
set of denominations is {1, 6, 10}, the above algorithm is not optimal.

For example, consider the amount is 47. The algorithm selects 4 notes of denomina-
tion 10, 1 note of denomination 6, and 1 note of denomination 1. However, if the amount
is 12, then the algorithm selects one note of denomination 10 and 2 notes of denomina-
tion 1, thus selecting 3 notes. It can be observed that had we selected 2 notes of denomi-
nation 6, then the number of notes would have been less. So, the algorithm fails to ensure
optimization for all the sets of denominations.

242   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

10.8  HUFFMAN CODES

A text needs to be encoded in order to minimize the number of bytes required to store
it in the memory. If a piece of text is stored in the conventional way, which requires,
say 7 bits, for each alphabet, then quite a lot of memory would be utilized for the task
which could have been done in a much more efficient way. This section introduces
Huffman encoding which would accomplish the task of minimizing the number of bytes
to store a piece of text, using greedy approach.

The greedy approach would require assigning the code having minimum number
of bits to an alphabet which is repeated maximum number of times. For example, if
in a document, the alphabet ‘a’ is used 1024 times, whereas the rest of the alphabets
are not repeated so often, then it would be better to assign a 1-bit code to ‘a’, thus sav-
ing 1024 × 7 − 1024 × 1 = 6144 bits, assuming that each alphabet requires 7 bits in the
conventional method.

The greedy approach selects a lesser bit code for a more frequently used bit and
a code requiring more bits for a less frequently used alphabet. However, there is
a catch. It may happen that the assignment may lead to a situation wherein there
exists more than one decode for a single piece of encoded text. This situation, as
we understand, should never arise and hence a mechanism needs to be developed
which accomplishes the task of minimizing the number of bits in order to encode a
text and avoid the potential ambiguity while decoding. Huffman code is one such
technique.

This can be achieved by creating a tree like that given in Fig. 10.27. Note that, the
leaves represent the code for a particular alphabet. The code can be assigned in accord-
ance with the frequency of the alphabet.

1

1 0

1 0

0

1

Figure 10.27  Example for Huffman codes

G reedy A lgorithms   ■  243

Now consider a piece of text that contains the alphabets shown in Table 10.3.

Now, as it is evident from the above discussion that the symbol which has the highest
frequency is allotted a code which has a least length. Since ‘space’ is encountered the
maximum number of times, it is allotted code ‘0’. ‘01’ is allotted to the character ‘A’, ‘10’
to B, ‘110’ to C, and ‘111’ to G. Table 10.4 shows the codes for various characters.

The total number of bits required to store the given text is therefore 85. If a stand-
ard 8-bit code was used, then the number of bits would have been 343. Therefore,
approximately 75% of space is saved by using the above code.

10.9  SINGLE-SOURCE SHORTEST PATH

Have you ever thought how the message we send from our computer finds its path to
some other computer? The message travels via a complicated mesh of routers and tries
to go via a path which has least cost. There are two issues involved in the above problem.
The first issue that needs to be addressed is whether there is a path between source and
the receiver and if there are more than one path, then which is the shortest? The above
problem is a subclass of the problem which would be discussed in this section.

The section introduces single-source shortest path to find the shortest path from a
node designated as ‘source’ to all other nodes.

	 Algorithm 10.7  Single-source shortest path

Input
•  A graph G = (V, E)
•  The cost corresponding to each edge

Table 10.4  Codes for symbols
Symbol Code

Space 0

A 01

B 10

C 110

G 111

Table 10.3  Frequency of
alphabets in a given text

Alphabet Frequency

Space 20

A 15

B 7

C 4

G 3

244   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Output
•  Shortest paths from the source node to all other nodes

Strategy
•  Start from the source node and select the path which has minimum cost.
�•  �The paths from the node selected and the source node are then explored. In order to go to

a node, say X, the direct path from a source node and path via any of the selected nodes are
considered, whichever is smaller is selected.

The array selected_vertex[ ] keeps track of the vertex selected at any instant. The initial value
of each element is 0, it becomes 1 if that vertex is selected. Another array distance[ ] stores the
minimum distance of a node from the source vertex. In the algorithm, i is a counter and n is
the number of vertices in the graph.

Single Source shortest path returns distance[]
{
while (i<n)
 {
 selected_vertex[i]=0;
 }
i=0;
selected_vertex[i]= 1;
while(i<n)
{
From amongst (n−1) edges (maximum) originating from I vertex, select the one
which has minimum cost.
Let the selected vertex be k.
selected_vertex[k]=1;
for each vertex m adjacent to i such that selected_vertex[m]=0
 {
 if(distance[k]>distance[m]+cost[m, k])
 {
 distance[k] = distance[m]+cost[m,k];
 }
 }
}
return distance[]
}

Complexity: The first loop runs n times, the second loop runs n times, and in each itera-
tion, the inner loop runs, thus, making the complexity as O(n2). However, if all the short-
est paths are to be determined using the above algorithm, then the complexity would be
O(n3).

Illustration 10.5  Apply single-source shortest path to find the minimum distance
from A of graph G1 (Fig. 10.28) to each vertex.

G reedy A lgorithms   ■  245

Solution From A, there are three outgoing edges having costs 5, 9, and 2. The edge hav-
ing minimum cost is selected, as per the greedy approach (Fig. 10.29).

The minimum cost edge from amongst the remaining edges is CD. So in order to go
from A to D, the optimal path is A→C→D (Fig. 10.30).

A packet can traverse from A to B in two ways, either directly or through C. However,
the path from C costs 2 + 6 = 8, whereas the direct cost is 9 (Fig. 10.31).

A 9 B

CD

E

5

7

1

2 6

Figure 10.29  Graph G1, edge AC
selected

A 9 B

CD

E

5

7

1

2 6

Figure 10.28  Graph G1

A 9 B

CD

E

5

7

1

2 6

Figure 10.30  Graph G1, edge CD
selected

246   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

A packet can traverse from A to E directly. The path costs 5 (Fig. 10.32).

Though we select the minimum cost edge at a particular point, however, the cost is
also being compared with other costs (i.e., via k) the algorithm cannot be called just
greedy, it has a dynamic approach as well (Fig. 10.33).

Illustration 10.6 	 Phineas Flynn intends to create a Metropolitan Area Network which
connects the Firesite office to all other stations. Refer to Section 10.5 and solve the
single-source shortest path problem using the data.

Solution The problem was solved using Kruskal’s algorithm. Now, Phineas realizes that
there is no point in creating redundant paths (refer Section 10.5). The task can be accom-
plished by using the single-source shortest path. In order to do so, he first of all, decides
that a path AB should be constructed since A is the source. This should be followed by the
construction of the path which costs minimum from amongst the paths left. In the above

A 9 B

CD

E

5

7

1

2 6

Figure 10.32  Graph G1, edge AE
selected

A

E

C

D

B

Figure 10.33  Graph

A 9 B

CD

E

5

7

1

2 6

Figure 10.31  Graph G1, edge CB
selected

G reedy A lgorithms   ■  247

question, this path is from B to E. Next, the path from E to C is selected. The spanning
tree of a graph having n vertices has (n − 1) edges. Since the given graph has 5 vertices,
the number of edges in the spanning tree should have been 4. Figures 10.34–10.37 depicts
the steps followed.

As an exercise we are required to apply this algorithm for all the nodes and create
their matrices. We will observe that the space complexity of each iteration would be
O(n2) and that of finding all the matrices would be O(n3).

10.10  MISCELLANEOUS PROBLEMS

This section discusses some other problems which can be handled via greedy approach. The
problems are important but their algorithms are not that intricate. The section deals with
the container-loading problem, the subset cover problem, and the optimal storage problem.

10.10.1  Container Loading Problem
There are n containers, which are to be loaded on a ship. The capacity of the ship is c,
so not all containers can be selected. There is an x

i
 and a w

i
 associated with each item.

A

E

C

D

B

Figure 10.34  Select BE
as it is the minimum cost

edge

A

E

C

D

B

Figure 10.35  Select ED as
it is the minimum cost edge

from amongst the edges
left as per vertices B and E

are concerned

A

E

C

D

B

Figure 10.36  In order
to go to C, the possible

paths are B→E→C or B→C.
However, going from E

gives no added advantage.
The direct edge is therefore

selected

A

E

C

D

B

Figure 10.37  Finally,
select AB as it is the least

cost path between A and B

248   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Let x
i
 = 1 denote that the ith container has been selected and x

i
 = 0 denote that the con-

tainer has not been selected. The weight of the ith container is w
i
. The aim is to select

items in such a way that it maximizes the sum of weights of the selected items.

	 Algorithm 10.8  Container loading problem

Input
Items 1 ≤ i ≤ n
Weights: w w w wn= { , , ..., }1 2 where wi denotes the weight of ith element. Capacity of the ship: c.

Output
x x x xn= { , , ..., }1 2 , where xi = 1 denotes that the item has been selected and xi = 0 denotes that

the ith element has not been selected.

Strategy
First of all, the elements are arranged in order of their weights. Let m denote the capacity left
in the ship. Initially, the value of m would be c. The elements are then selected one by one till
no more elements can be selected.

Container Loading (W [], c) returns X
{
m=c;
i=0;
Sort the set of elements, in the decreasing order of the weights;
while (m < wi)
 {
 xi = 1;
 m = m − wi;
 i++;
 }
return x;
}

Complexity: The complexity depends on the type of sorting algorithm chosen. It would
be advisable to sort the elements using heapify as the complexity of heapify is just
n × log n. This step is followed by a loop which traverses a maximum of n times. So, the
overall complexity of the above algorithm is (n × log n).
Importance:  It has been observed by many researchers that underperformance
of the above algorithm results in unsatisfied customers and unnecessary costs. The
problem has, therefore, been dealt with by many researchers using heuristics meth-
ods. The paper ‘Container Loading Problem: A State of the Art Review’ by Andreas
Bortfeldt gives a broader perspective of the problem. The paper examines the various
approaches that have been used to solve the problem and their advantages and dis-
advantages. However, the present section has a limited scope of giving the solution
of the problem via greedy algorithms. In the paper, the author has observed that the

G reedy A lgorithms   ■  249

solutions proposed so far are very approximate and the practical constraints have not
been considered so far.

10.10.2  Subset Cover Problem
The subset cover problem requires finding out the set of sets, the union of which covers
all the elements of the given universal set.

The following algorithm presents a greedy approach to solve the above problem.

	 Algorithm 10.9  Subset cover problem

Input
•	 Universal Set: U
•	 Family of sets: S s s s s Um i= { } ⊆1 2, ,..., , such that
•	 Number of sets: m

Output
To find a family of sets Sj such that

i
m

i i j
p

jUs Us= ==1

and

i
m

i i j
p

jUs Us= =⊂1

Moreover, there is a cost associated with each set. It is also desirable to minimize the cost. That

is, if Ci the cost associated with Si then Cij

j

=∑ 1
 should be minimum.

Subset Cover(S, m) returns P
{
Arrange the sets Si in descending order of their cost.

  �Let the ordered sequence be T t t tm= { }1 2, ,..., where ti = Sk for some
I and k.

i = 0;

P = f;

while ()j
m

j i j
m

iUs UT= =⊂1

 {
 Pick Ti;

 P P Ti= ∪ ;

 i++;
 }
Return P;
}

250   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Problems of the above algorithm
•	 The algorithm minimizes the net cost; however, it may not be optimal in many cases.

The aim of the algorithm was to find the set cover of a set using greedy approach.
•	 At times, the cost associated with a set is not known. In such cases, the above algo-

rithm will not work.
Complexity: The complexity of the algorithm depends on the sorting algorithm used.
It would be advisable to use heapsort. The heapsort has a complexity of O(n log n).
Thus, making the complexity of the above algorithm O(n) + O(n log n), which is same
as O(n log n).

The following algorithm presents another greedy approach to solve the above prob-
lem. The following algorithm does not require the cost of each set.

	 Algorithm 10.10  Greedy subset cover problem

Subset Cover(S, m) returns P
{
i=0;
P = φ ;
while ()j

m
j i j

m
iUs UT= =⊂1

 {
 �Pick Ti, such that Ti is a set which contains maximum number of uncovered

elements at any instant.

 P P Ti= ∪ ;
 i++;
 }
Return P;
}

Here the cost of a set can be the reciprocal of the number of items, still not covered, in
the set. The above algorithm tries to minimize the net cost.

10.10.3  Optimal Storage
In a computer, there is a memory having length n. N programs are to be stored in the
memory each denoted by p

i
, and having length l

i
. The constraint is that the sum of

lengths of all the programs that is to be stored in the memory must be less than n. i.e.,

l ni ≤∑
The programs will also be accessed at some point in time and assuming that each time
the read write head starts from the initial position, the average access time of a program
needs to be minimized.

G reedy A lgorithms   ■  251

In order to accomplish the task, greedy approach can be used. First of all, the pro-
grams should be arranged in the increasing order of lengths. The smaller program should
be stored first followed by the next larger one. The concept is simple and also reduces
the average access time.

	 Algorithm 10.11  Storage

Input
n: Number of programs
li: Length of ith program

Output
Array a[ ] which stores the sequence of programs to be stored in the disk.

Strategy
The programs are arranged in order of their lengths (increasing order).
Then the programs are stored one by one in the memory.
Storage (n, l[], N) returns a[]
 {
 Arrange the programs in increasing order of their lengths.
 Using the arranged sequence store the programs on the disk.
 }

Complexity: The complexity of the above algorithm depends on the sorting used. If
heapify is used then the complexity will be O (n log n).

10.11  ANALYSIS AND DESIGN FOR GREEDY APPROACH

This chapter has presented the solutions for various problems via greedy approach.
The problem, however, is that there are many cases in which greedy approach does not
work. Moreover, it may not always give an optimal result. The problem needs to be ana-
lysed before applying greedy algorithm. Though it is difficult to say exactly if greedy
approach works for a particular problem, there is a way to see when greedy algorithms
give an optimal solution. The given problem can be converted into a weighted Matriod
and then be solved.

For most of the problems, if not all, the optimality can be proved with the help of
Matroids. A Matroid contains two things. The first being a set S and the second is T, the
set of subsets of S, such that

if A T B T∈ ⊆and

The set S, however, cannot be empty. There is another condition on sets of T. If there
is a set, say M, whose cardinality is less than another set, say N, then there must exist
x N M∈ − , such that M x T∪ { } ∈ .

252 ■ A LG O R I T H M S : D E S I G N A N D A N A LY S I S

 The above defi nition leads us to the concept of Graphic Matroid. An undirected
graph G, generates a Matriod. This is because the set S is the set of edges, which cannot
be empty. A set of edges is considered independent only if it is a forest. The set T satis-
fi es the condition

 if A T B A∈ ⊆and then B T⊆

 Since the subset of a forest is a forest. The last property can easily be proved using
mathematical induction.

10.12 CONCLUSION

Greedy approach helps us to survive in the world and to achieve our goals. Likewise,
greedy algorithms help to achieve the goal in various optimization problems. In most of
the cases, we get the best solution as in the case of Kruskal’s algorithm. However, greedy
approach may not always lead to the best situation. The case is depicted in the coin
changing problem presented in Section 10.7. The topics discussed in this chapter give
an idea of how to use greedy algorithms effectively and their problems. Chapter 11 on
Dynamic Programming discusses the problems seen in this chapter with a different per-
spective. It may also be stated here that greedy algorithms are at times more effi cient as
compared to other approaches.

 Points to Remember

   •     Greedy approach cannot be applied to every problem.   

  •     The approach is not guaranteed to give an optimal result.   

  •     The greedy approach is easy to implement.   

  •     A spanning tree of a graph of  n vertices has (n − 1) edges.

  •     Prim’s  and  Kruskal’s  algorithms  generate  minimum  cost  spanning  tree  using  greedy 
approach.

  •     Huff man code use greedy approach to generate an effi  cient set of codes for the given set 
of symbols. In this code, the symbol with higher usage gets a shorter code.

  •     Job sequencing and knapsack are optimization problems.    

 KEY TERMS

 Coin changing A set of currency notes of denomination d d d dm1 2 3, , ,...,{ } , arranged in
descending order, is given. The amount ‘sum’ is to be made out of the above notes in such a
way that the number of currency notes used is minimum.

G R E E DY A LG O R I T H M S ■ 253

 Greedy approach This method of solving a problem selects the most promising intermediate
solution at that instance. It may be noted though, that the intermediate solution which seems
promising at a point might not be that good in the long run.
 Knapsack problem In the knapsack problem, a subset of items is to be selected from the given
set of items. The subset should completely (or almost completely) fill the bag and the profit
earned by the selected elements should be maximum.
 Spanning tree A graph of spanning tree is a tree which covers all the vertices and does not
contain any cycle.

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following can be solved by greedy approach?

 (a) Knapsack problem
 (b) Job sequencing problem

 (c) Minimum cost spanning tree
 (d) All of the above

 2. Which of the following sorting technique is used in Kruskal’s algorithm?
 (a) Heapsort
 (b) Bubble sort

 (c) Selection sort
 (d) None of the above

 3. Which of the following approaches is used in Kruskal’s algorithm?
 (a) Greedy
 (b) Dynamic

 (c) Backtracking
 (d) None of the above

 4. Which of the following is the complexity of Kruskal’s algorithm?
 (a) O (n 2)
 (b) O (n 3)

 (c) O (n log n)
 (d) None of the above

 5. Which of the following sorting technique is used in Prim’s algorithm?
 (a) Heapsort
 (b) Bubble sort

 (c) Selection sort
 (d) None of the above

 6. Which of the following approaches is used in Prim’s algorithm?
 (a) Greedy
 (b) Dynamic

 (c) Backtracking
 (d) None of the above

 7. Which of the following is not the complexity of Prim’s algorithm?
 (a) O (n)
 (b) O (log n)

 (c) O (1)
 (d) None of the above

 8. Coin changing problem can be solved via which of the following?
 (a) Backtracking
 (b) Neurogenetic

 (c) Branch and bound
 (d) Greedy algorithms

 9. Which types of problems are generally handled by the greedy approach?
 (a) Optimization
 (b) Sociological

 (c) Psychological
 (d) None of the above

254   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

II.  Review Questions
	 1.	 What is meant by greedy approach? Write an abstraction of greedy approach.

	 2.	 Write the algorithm for knapsack problem via greedy approach and derive the com-
plexity of the algorithm.

	 3.	 Write the algorithm for job sequencing problem via greedy approach and derive the
complexity of the algorithm.

	 4.	 What is a spanning tree? How many spanning trees can a graph of n vertices have?
Explain the procedure of finding out the minimum cost spanning tree.

	 5.	 Write the algorithm for Prim’s algorithm and derive the complexity of the
algorithm.

	 6.	 Write the algorithm for Kruskal’s algorithm and derive the complexity of the
algorithm.

	 7.	 Amongst Kruskal’s and Prim’s which is a better approach, if any, and why?

	 8.	 Write an algorithm for coin changing problem and derive its complexity.

	 9.	 Does Prim’s algorithm work for a graph having negative weights? If not why?

	10.	 Does Kruskal’s algorithm work for a graph having negative weights? If not why?

III.  Application-based Questions
	 1.	 Apply Kruskal’s algorithm to find the minimum cost spanning tree in the following

graphs.

(a)	 Cost Matrix

 

0 1 2 4 8

1 0 3 5

2 3 0 6

4 5 6 0 7

8 7 0

∞
∞

∞ ∞

   E D

C

BA

(b)	 Cost Matrix
 

0 1 3 5 7

1 0 2 4 6

3 2 0 9 11

5 4 9 0 8

7 6 11 8 0    E D

C

BA

	10.	 The knapsack problem can be solved by which of the following approaches?
(a)	 Greedy
(b)	 Branch and bound

(c)	 Backtracking
(d)	 All of the above

G reedy A lgorithms   ■  255

(c)	 Cost matrix

 

0 1 3 5 7 9

1 0 2 4 6 8 10

3 2 0 11 15 17

5 4 11 0 12

7 6 15 12 0 19

9 8 19 0

10 17

∞

∞
∞

∞ ∞ ∞
∞

∞
∞

∞ ∞∞ ∞

0

(d)

 

E D

C

G

F

BA

  

(e)

  E

D C

G

1

2

7

3

6 5

12

11

10

F

BA

(f)

  E

D
G

1

2

7

6

5

12

11

10
10

F

BA

  

(g)

  E

D C

G

1

2

7

3

5

6

12

11

10

F

BA

256   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

(h)

  E

D

2

5

3
6

12

7

10

F

BA

  

(i)

 

A

A

C
1

2 3

41

D

(j)

 

A

A

C
1

2

1

3

4

1

D

	 2.	 Apply Prim’s algorithm to find the minimum cost spanning tree in the graphs shown
in Question number 1(a−j).

	 3.	 Find for which of the following cases the greedy coin changing algorithm is optimal?
(a)	 {1, 2, 5}
(b)	 {1, 4, 6}
(c)	 {1, 5, 10}
(d)	 {1, 6, 10}
(e)	 {1, 2, 4, 8}

(f)	 {1, 3, 5, 9}
(g)	 {1, 2, 4, 6}
(h)	 {1, 2, 4, 6, 10}
(i)	 {1, 2, 3, 5, 10}
(j)	 {1, 5, 25}

	 4.	 Trace coin changing problem for Question 1(a−j), when the value of amount is 137.
	 5.	 Prove that the greedy coin changing algorithm is optimal for {1, 2, 5, 10}.
	 6.	 Prove that the greedy coin changing algorithm is not optimal for {1, 8, 12}.
	 7.	 Indian rupee denominations are {1, 2, 5, 10, 20, 50, 100, 500, 1000}. Find whether the

greedy coin changing algorithm works for the above set. If not, give a counter example.

G R E E DY A LG O R I T H M S ■ 257

 8. The analysis of a text gives the following table(s), design a coding scheme for the
symbols such that the number of bits required to store the text is minimum and at
the same time, there should not be any ambiguity while decoding the text.

 Note that the above coding scheme is not that helpful for the part (c).

(a) Symbol Frequency

A 121

C 57

D 78

E 71

Space 45

(b) Symbol Frequency

A 12

C 5

D 32

E 18

Space 12

(c) Symbol Frequency

A 12

C 12

D 10

E 10

Space 12

 Answers to MCQs

 1. (d)
 2. (a)

 3. (a)
 4. (d)

 5. (d)
 6. (a)

 7. (d)
 8. (d)

 9. (a)
 10. (d)

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of dynamic programming
 • Recognize the difference between dynamic programming and divide and conquer

approaches
 • Apply dynamic programming to solve problems such as longest common subsequence,

matrix chain multiplication, Floyd’s algorithm, and travelling salesman problem
 • Understand optimal substructure lemma
 • Learn how to use dynamic programming to solve optimal binary search tree, coin

changing, etc.

11.1 INTRODUCTION

 As stated in the earlier chapters, the greedy approach does not give us a correct solution
in many cases. The divide and conquer approach can only be applied if the sub-problems
are symmetric and independent. For other problems, the above approaches would not
work. Dynamic programming helps us to fi nd the optimal solution of many such prob-
lems. There is another reason to use the dynamic approach. It was stated earlier that for
every iterative procedure, we can have a corresponding recursive procedure. For exam-
ple, the recursive procedure for calculating the n th Fibonacci term (given below), though
easy to understand, results in calculating a particular value many times.

 fi b(int n)
 {
 if (n==1)
 return 1;
 else if (n==2)
 return 1;
 else
 return (fi b (n-1) + fi b (n-2));
 }

Dynamic Programming

 C H A P T E R 1 1

Dy n a m i c P r o g r a m m i n g   ■  259

The calculation of 7th term, for instance, is done as shown in Fig. 11.1. From the figure,
it can be seen that the third term, fib(3), is calculated 5 times. The approach is a top-down
approach and is not capable of using values calculated earlier, so ends up evaluating the
same value many times. As a matter of fact, the calculation of nth term would require
O(2n) calculations, most of which would have been calculated earlier.

n = 2 n = 1

n = 7

n = 6

n = 5

n = 4

n = 3

n = 2 n = 1

n = 2 n = 2 n = 1 n = 2 n = 1

n = 3 n = 3 n = 2 n = 3 n = 2 n = 2 n = 1

n = 4 n = 4 n = 3

n = 5

Figure 11.1  Calculating the nth Fibonacci term

The above recursive method can be made efficient by storing the earlier calculated
values in a table. The following non-recursive procedure calculates the nth Fibonacci
term in a bottom-up fashion.

fib (n)// non-recursive procedure to calculate n Fibonacci terms
{
//a[] is the global array
a[1] = 1;
a [2] = 1;
for (i=3; i<n ; i++)
 {
 a[i] = a[i-1] + a[i-2];
 }
}

This method of storing the values in a global array would make the calculation of
the subsequent terms easy, as the values stored in the table would be used. Note that

260   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

the complexity of the above algorithm is just O(n) as against O(2n) of the previous
algorithm.

This approach of first designing a recursive procedure and then converting it into
a form which makes the calculations easy is the gist of dynamic programming. This
chapter explores the idea of dynamic programming and applies it to solve some of the
most important problems such as longest common subsequence, matrix chain multipli-
cation, and travelling salesman problem.

The chapter has been organized as follows. Section 11.3 discusses one of the most
important applications of dynamic programming, that is, longest common subsequence.
Section 11.4 discusses the matrix chain multiplication. Section 11.5 discusses the travel-
ling salesman problem. This is followed by the discussion on the optimal sub-structure
lemma. Section 11.7 explores optimal binary search trees and Section 11.8 discusses
Floyd’s algorithm. The last section discusses the miscellaneous problems.

11.2  CONCEPT OF DYNAMIC PROGRAMMING

Dynamic programming uses the results obtained in the previous steps to get the final
answer. The idea is to use the sub-solutions obtained in solving larger sub-problems.
This programming is different from the procedural or the object-oriented programming
techniques. Though it is a difficult approach, the problems dealt within this chapter will
enable us to understand it.

Dynamic programming might appear similar to the divide and conquer approach,
but there is a fundamental difference in the two approaches. Both the divide and con-
quer approach and dynamic programming require division of the problems; in the for-
mer, the sub-problems are independent, whereas in the latter, they are not (Fig. 11.2).
Moreover, the divide and conquer evaluates generally in a top-down fashion. The dynamic

Independent
sub-problems

Overlapping
sub-problems

Divide and
conquer

Dynamic
programming

Dividing the problem
into sub-problems

Figure 11.2  Dynamic versus divide and
conquer

Dy n a m i c P r o g r a m m i n g   ■  261

11.2.1  Implementing the Dynamic Approach
The development of a dynamic algorithm for a problem requires the following steps:
•	 Conversion of the given problem into a search problem. The search would be from a

large search space.
•	� The search space is generally segregated into various sub-spaces. This requires the

development of a partition algorithm. This can be accomplished by developing a
recursive algorithm.

•	� In the final step, the recursive calls are characterized and a non-recursive procedure
is developed for filling the table. The values of the table are filled in a way so that the
calculations can be used at a later stage.

Figure 11.4 depicts the approach.

programming generally uses the bottom-up approach. These two approaches have been
discussed as follows.

The use of the calculated values at a later stage is facilitated by storing the calculated
values in a table. The paradigm, therefore, requires memorization as well. The approach
can work in two ways: bottom-up and top-down. In the bottom-up approach, the solu-
tion starts with the basic input value and builds up the larger solution; the top-down
approach, on the other hand, breaks the bigger problem into smaller sub-problems and
then solves them (Fig. 11.3).

Top-down approach Bottom-up approach

Dynamic programming

Figure 11.3  Classification of dynamic programming

Convert the given
problem into a search
problem

Develop a partition
algorithm

Recursively call and
characterize a non-
recursive procedure

Divide the problem
in sub-spaces

Conversion Table filling

Figure 11.4  Implementing dynamic algorithms

262   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Since there can be 2n subsets of a set having n elements, the number of all possible
subsequences of X would be 2n.

For a sequence of 100 elements, this would be approximately 1032. If the execution
of a basic instruction takes 1 ms in a computer, then the execution of the whole proce-
dure would take 3.1 × 1021 years. It is certain that no one has that much time. This is the

11.3  LONGEST COMMON SUBSEQUENCE

An example of a problem that can be solved by dynamic approach is the longest common
subsequence (LCS). LCS can be perceived as a measure of similarity between two given
strings. That is, more the lengths of LCS, more similar are the given strings. Although LCS
is not the only measure of similarity, it is also one of the most important approach. There
are two approaches to find the longest common subsequence, namely brute force approach
and dynamic approach. As stated in Section 11.2, the dynamic approach uses the values
calculated earlier. The use of recursion and the above property makes it better than the
brute force approach. The dynamic approach also has two versions. The second has been
discussed with the help of illustrations that follow.

11.3.1  Brute Force Approach
One of the easiest ways of achieving the task of finding the longest common subse-
quence would be as follows:
•	 Enlist all the subsequences of the given sequence
•	 Find the common subsequences
•	 Return the longest subsequences
There can be more than one subsequence of same length. However, in that case, we
would be content in displaying all of them.

Let us assume that X has n characters and Y has m characters. The brute force
approach calls for finding out all the possible subsequences of X and then checking for
the existence of the longest common sequence that appears from left to right. However,
the common subsequence may not be contiguous.

For example, if X is CTGCTGA and Y is TGTGT, then the longest subsequence is
TGTG (Fig. 11.5).

T G T G

C T G C T G A

Figure 11.5  Longest
common subsequence

Definition  Two sequences X and Y having length M and N are given. It is required to find
the longest subsequence R[1…P]. As the name suggests R is present in both X and Y. If
nothing is common in X and Y then a NULL is returned.

Dy n a m i c P r o g r a m m i n g   ■  263

reason why a simpler approach is needed to accomplish the above task. The following
sections discuss this problem and its various solutions.

Advantage

The brute force approach guarantees a solution or returns a NULL if none is found.

Disadvantage

The first step takes O(n2n) time. The following steps would make the total time of the
process as O(n2n), which is too long.

The above approach therefore cannot be used in an application wherein the longest
subsequence is desired. In the following sub-section, dynamic approach is discussed,
which would greatly reduce our effort, not only because the complexity becomes too
less, but also because we would be able to use the values calculated earlier, thus reducing
the computation time.

11.3.2  Using the Dynamic Approach
In order to solve any problem via the dynamic approach, we need to convert that prob-
lem into a search problem. LCS is also, in fact, a search problem. We need to find the
longest string from amongst the search spaces which contains all the common strings.

The search space will have all the possible strings, which are the subsequences of X
or Y. The goal would be to find the strings that are common to both X and Y and have
the longest length.

The above step should be followed by the formulation of a recursive procedure, which
returns the best strings as per the constraints. This procedure would require the division
of the search space into many search spaces. If the search space is S and the sub-spaces
are S1, S2, …, etc., then the following condition must hold:

S Sii

k
=

=1∪
To make things simpler, let us divide the search space into only two subspaces, S1 and
S2. S1 would contain all the strings beginning with X[1] and S2 would contain the rest.

In order to use dynamic programming, we need to create a table which can use the
values calculated earlier. This can be done by devising a non-recursive procedure, to fill
the values in the table T. The procedure has been developed in the following discussion.

The recursive function would find the longest common subsequence by finding
the longer of R1 and R2, where R1 is the result obtained by considering S1 and R2 is
obtained by considering S2.

Here, we claim that if R1 is the result obtained by considering S1, then the first ele-
ment of R1 must be X[1], as was stated earlier. The first occurrence of X[1] in the second
string would give us the index which would help in developing the recursive solution to
the problem. Let this index be k. We can, therefore, say that R[2…p] is present in both
X[2 … M] and Y[k + 1, …, N].

264   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The above statement can be easily proved by the method of contradiction explained
in Section 4.4.1 of Chapter 4.

The procedure can now be formalized as follows:
•	 For finding R1
	 ο	 Determine smallest k such that Y[k]= X[1], if there is no such k then return NULL.
	 ο	 Find L = LCS(A[2…M], B[k + 1…N])
	 ο	 Return X[1]|L, where | denotes concatenation.
In the same way, R2 can be found.

The above concept needs to be implemented in a way that generates a table, which
should be able to use the values generated in the earlier steps. This can be done as
follows.

Suppose that the table is T. We need to fill the values of T[i,j];

	 Algorithm 11.1 L ongest common subsequence

Input: Two strings X and Y, the length of X is M and that of Y is N
Output: The longest common subsequence R of length p (which is as yet unknown)

LCS(X[1…M], Y[1…N])
{
for (i= 1; i<=M+1; i++)
 {
 T[i, N+1] = null;
 //Fill the last column with null’s
 }
for (j=1; j<=N+1 ; j++)
 {
 T[N+1, j] = null;
 //fill the last row with null’s
 }
for (i=M; i>=1; i--)
 {
 for (j=N ; J>=1;j--)
 {
 T[i, j]= fill_table(i, j);
 }
 }
return T[1, 1];
}

Complexity: The filling of the last row with NULLs takes O(M) time. The filling of last
column with NULL also takes O(N) time. The next part of the algorithm would take
O(MN) time multiplied by the time taken to evaluate fill_table(i,j). As we will see in

Dy n a m i c P r o g r a m m i n g   ■  265

the following discussion that fill will take O(max(M, N)) time. The overall time of the
algorithm, therefore, becomes O MN M N((,))×Max .

The fill table algorithm would take i and j as inputs (row number and the column
number) and returns the table entry as the output. The concept of the algorithm has been
discussed in the section.

	 Algorithm 11.2 T he fill_table(i, j) algorithm

{
If (i>N or j>M)
 {
 return null;
 }
k= smallest number such that Y[k]= X[i];
and k>=j;
 R=X[1]|T[i+1, k+1];
 R′=T[i+1, j];
return (longer (R, R′));
}

The implementation of the program along with the test cases has been included in the
web resources of this book. The reader can run the program with the given test cases in
order to analyse the behaviour of the above algorithm. There is another approach to find
the LCS. Though similar, it helps to find the LCS easily, at least manually. The approach
is given in Cormen [1]. In order to understand the approach, let us have a look at the
following illustrations.

Illustration 11.1	 Find the common subsequence of ‘ACGT’ and ‘AGCTA’.

Solution The example presents another approach to calculate the longest common subse-
quence. The last row and the last column of the table would contain NULLs. The second
last row is filled as follows. The symbol corresponding to this row is ‘A’. ‘A’ does not
match with any other symbol except that at the first column. Whenever a match of col-
umn and row occurs, the match (in this case ‘A’) is concatenated with the symbol at the
south-east (SE) of the matched cell (in this case NULL). In order to indicate the match, an
arrow pointing to the SE element is drawn. In the row having ‘T’, a match is found in the
last column, in all other cases (starting from the right), the arrow points to the cell having
more elements. In the row having ‘C’, the fourth column takes ‘T’ from the lower row, the
third from the left takes ‘T’ from its right cell (here ‘T’ could have been taken from the
bottom one as well). In the next cell, a match is found. The process is repeated in the row
containing ‘G’ and ‘A’. The final answer is ‘AGT’. The reader should try to find another
longest common subsequence for this example. The technique is used in DNA matching.

266   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

 A C G T

A AGT GT→ ↓GT ↓T NULL

G GT→ GT→ GT ↓T NULL

C CT→ CT T→ ↓T NULL

T T→ T→ T→ T NULL

A A NULL→ NULL→ NULL→ NULL

 NULL NULL NULL NULL NULL

Illustration 11.2	 Find the longest common subsequence if the input strings are
X = ‘ATCGATGCA’ and Y = ‘GTACTACGA’.

Solution We proceed in the same way as the previous example. The last row and column
is filled with NULLs. The second last row appends ‘A’ to the LCS. The third last row
adds ‘G’ to it. The final answer is ‘GACTA’ (the first cell of the first row).

 A T C G A T G C A

G GATCA→ GATCA→ GATCA→ GATCA ↓ATCA ↓TCA GCA ↓CA ↓A NULL

T TATCA→ TATCA ATCA→ ATCA→ ↓ATCA TCA CA→ ↓CA ↓A NULL

A ACTCA ATCA→ ATCA→ ATCA→ ATCA ↓TCA CA→ ↓CA A NULL

C CTCA→ CTCA→ CTCA TCA→ TCA→ ↓TCA CA→ CA ↓A NULL

T TACA→ TACA TCA→ TCA→ TCA→ TCA CA→ ↓CA ↓A NULL

A ACGA ACA→ ACA→ ACA→ ACA CA→ CA→ ↓CA A NULL

C CGA→ CGA→ CGA  CA→ CA→ CA→ CA→ CA ↓A NULL

G GA→ GA→ GA→ GA GA→ GA→ GA A ↓A NULL

A A A→ A→ A→ A A→ A→ A→ A NULL

 NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

The reader is expected to develop an algorithm both for filling the table and putting the
arrows. The corresponding program should be run for all the test cases given in the web
resources of this book. The reader is also expected to compare the running time of the
two algorithms stated above and find which gives better results in which cases.

Applications of LCS

The LCS finds applications in many fields. Some of them are as follows:
•	 DNA matching: It can be done with the help of the algorithm described in the fol-

lowing discussion. This book has a whole chapter dedicated to the fascinating branch
of bioinformatics (Chapter 24). Sequencing and sequence matching are some of the
prime tasks in bioinformatics.

Dy n a m i c P r o g r a m m i n g   ■  267

•	 Misspelt word: Everybody must have observed the spellcheck facility in the word
processor we work in or in our mobile. Have anyone ever wondered how it is done?

One of the easiest ways of doing this is to use the algorithm that is discussed in this
section.

11.4  MATRIX CHAIN MULTIPLICATION

Two matrices A and B are given. The order of A is p × q and the order of B is q × r.
The multiplication of A and B would require p × q × r scalar multiplications. Though
there are efficient ways of doing this, we will use this argument in the discussion that
follows.

There is another issue in matrix multiplication. If there are more than two matrices,
there can be more than one way of multiplying the matrices. Though the final result
would be the same, the number of scalar multiplications would greatly vary. Take, for
example, three matrices A of order 3 × 6, B of order 6 × 5, and C of order 5 × 4. The three
matrices can be multiplied by in two ways. A × (B × C) would require 120 scalar multi-
plications (multiplying B and C) and 72 scalar multiplications (multiplying the product
of B and C with A). The total number of multiplications in this case would be 192.

The other way would be to multiply A and B (90 multiplications) and then multiply-
ing the product with C (60 multiplications), thus resulting in 150 multiplications. The
number of scalar multiplications has reduced by almost 30% by the latter method. Thus,
it can be inferred that the order in which a matrix chain is multiplied determines the cost
of the task, which is the number of scalar multiplications in this case.

The above problem can also be depicted by rooted trees, wherein the leaves would
represent the matrices. In Fig. 11.6, M1 is the first matrix (A in the above discussion), M2
is the second (B in the above discussion), and M3 is the third (C in the above discussion).
This has been done as in the following discussion Mi has been used for the ith matrix.

(M1 × M2 × M3)

M2 × M3

M2 M3

M1

(b)

(M1 × M2) × M3

M1 × M2

M1 M2

M3

(a)

Figure 11.6  (a) Rooted tree for (M1 × M2) × M3; (b) rooted tree for
M1 × (M2 × M3)

268   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The above method is easy. However, in the cases wherein the number of matrices is
large, this technique would not work as the number of possible trees grows exponen-
tially with the increase in the number of matrices. This brute force approach for the
above problem can be summarized as follows.

Brute Force Algorithm for Matrix Chain Multiplication

•	 Create all the possible trees
•	 Find the cost of each tree
•	 Select one of the trees having minimum cost

Disadvantages

As stated earlier, the number of possible trees would grow exponentially with the
increase in the number of matrices. Enlisting various possible trees, calculating their
costs, and finding the minimum cost tree would simply not be possible; therefore, a bet-
ter approach is needed.

Dynamic Approach

As stated in the introduction of this chapter, the development of a dynamic algorithm for
a problem requires the following steps:
•	 Conversion of the given problem into a search problem. The search would be from a

large search space.

The various possible rooted trees of three matrices have been shown in Figs 11.6(a)
and 11.6(b).

The problem of matrix chain multiplication, therefore, reduces to finding the optimal
rooted tree. In the case of three or four matrices, it would not be difficult to make all the
possible rooted trees and then selecting the best tree.

Suppose there are n matrices, M1, M2, …, Mn, the degree of the matrices is stored
in an array D[0 … n]. The order of the ith matrix would be D[i − 1] × D[i]. The corre-
sponding rooted tree of multiplication has, say, i matrices in the left sub-tree and (n − i)
matrices in the right sub-tree (Fig. 11.7). The cost of the tree would be the cost of the left
sub-tree plus the cost of the right sub-tree plus D[0] × D[i] × D[n].

Left sub-tree
having matrices

M1, M2,…,Mi

Right sub-tree
having matrices

Mi + 1,…,Mn

L R

Figure 11.7  The rooted tree corresponding to matrix chain
multiplication. The cost of the tree would be cost of the left

sub-tree + cost of the right sub-tree + cost of multiplying
the matrices formed by the left and the right sub-trees

Dy n a m i c P r o g r a m m i n g   ■  269

•	 The search space is generally segregated into various sub-spaces. This requires the
development of a partition algorithm. This can be accomplished by developing a
recursive algorithm.

•	 In the final step, the recursive calls are characterized and a non-recursive procedure
is developed for filling the table. The values of the table are filled in a way so that the
calculations can be used at a later stage.

The objective function, in the case of matrix chain multiplication (MCM), is the cost.
The cost, in this problem, needs to be minimized.

The division of a tree into two sub-trees requires at least one leaf in each part (left
and right). If the tree corresponding to MCM is optimal, then its left tree must also be
optimal. The statement can easily be proved by using proof by contradiction stated in
Chapter 4.

The recursive algorithm can be stated as follows.

	 Algorithm 11.3 M atrix chain multiplication

Input: A one-dimensional matrix containing the orders of various matrices D[0…n]
Output: The optimal cost

MCM (D[0…n])
 {
 if (n==1)
 return (D[0] × D[1])
//The corresponding tree contains only a single vertex, as there is just one
matrix
 }
for (i=1; i< n-1; i++)
 {
 Cost_Left[i]= MCM D[0..i];
 Cost_Right[i]= MCM D[i+1…n];
 Cost[i] = Cost_Left[i]+ Cost_Right[i] + D[0] × D[i] × D[n];
//Cost_Left is the cost of the left subtree, Cost_Right is the cost of the
right sub-tree
 }
From amongst various Cost[i]’s find the minimum and return;
}

Corresponding Non-recursive algorithm for filling the entries in the table
MCM (D[j…k])
{
if (k==j+1)
 {
 return 0;
 }
// The diagonal of the table would have 0’s.

270   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

else
 {
 return min ([] [] [];MCM D j i MCM D j k D j D k D i…[]() + + …[) + × ×1
 }
//The value of an element in the table would depend on the element below it and
on the left of it.
}

Complexity: As there are O(n2) entries in the table and each entry requires O(n) time to
evaluate, the complexity of the above algorithm becomes O(n3).

The web resources of this book contains program of matrix chain multiplication and
the corresponding test cases. The reader is expected to execute the program and test the
behaviour of the program with respect to the test cases. Another approach is given in
Cormen [1], the reader is encouraged to implement and compare the two algorithms.

11.5  TRAVELLING SALESMAN PROBLEM

The travelling salesman problem (TSP) is an NP-hard problem. The problem can be
solved using a number of approaches. The easiest approach to solve the problem would
be enlisting all the possible paths, calculating their costs, and printing the path with the
minimum cost. This is called the brute force approach and has been discussed in this
section. The brute force approach is easier than the dynamic approach. However, using
the dynamic approach gives the advantage of the earlier values being used in the present
steps.

The problem can be stated as follows:
Given: A list of cities V and their pair-wise distances D such that D is a set where

x Di ∈ is the distance between l m l m V, , , . where () ∈
The aim of TSP is to find the shortest possible tour that can be made to each city

exactly once and keeping the net cost minimum.

11.5.1  Using Brute Force Approach
The brute force approach to solve the travelling salesman problem would be as follows:
•	 Find all the possible paths from source back to the source. The path should contain

all the vertices. The problem reduces to find all possible permutations of the paths.
This step has a complexity of O(n!).

•	 From the paths generated in the previous step, the path having least cost is selected.
It may be noted that the complexity of the above algorithm is O n n(!)× which is too
high. Moreover, since O n O n(!) ()> 2 , the above algorithm is not even as good as that
having exponential complexity. In order to get an idea of the complexity of the brute
force approach, let us consider the following example (Fig. 11.8).

Dy n a m i c P r o g r a m m i n g   ■  271

The minimum from amongst the above is 458. The corresponding path is
AEDCBA. It may be noted here that had the number of vertices been 20, it would
have taken (19!)/2 calculations to reach the solution. These many calculations would
take colossal time and hence the approach is impractical for a graph that contains
many vertices.

The dynamic approach discussed here will better the complexity of the above proce-
dure, though not too much. The following algorithm is good owing to its ability to store
the previous results.

The source is A and the destination is also A. All the various vertices are to be cov-
ered in a way so that no vertex is covered twice and the cost of the path traversed is
minimum. The possible paths are shown in Table 11.1.

C

B

A

D

E

113

98

58
133

56 167

137
142

135

147

Figure 11.8  A weighted graph

Table 11.1  Possible paths in
the graph depicted in Fig. 11.8
Path Cost

AECBDA 610

AECDBA 516

AEDBCA 588

AEDCBA 458

AEBDCA 540

AEBCDA 504

ABECDA 598

ABEDCA 576

ABDECA 682

ABCEDA 646

ACBEDA 670

ACEBDA 728

272   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

11.5.2  Using Dynamic Approach

Step 1	 �Convert the problem to a search problem: travelling salesman problem is a
search problem. The set of possible paths would form a search space. From this
search space, the paths that cover all the vertices without having to traverse any
vertex twice are to be chosen. From amongst the selected paths, the path(s) with
minimum cost is chosen.

Step 2	 �Develop a recursive procedure to solve the problem: The following function of
cost would help us to find the optimal cost of going from the source node to the
destination,

cost(,) min ,i S c j S jj S ij= −{ }(){ }∈ + cost

Step 3	 �Convert the above relation into a non-recursive procedure which should be able
to fill the table values.

The procedure for filling the table can be understood by taking an instance of the prob-
lem with n = 4, where n is the number of cities.

Let the source node be 1.
Now the cost of going to any other node from the source node would be simply the

cost of going from 1 to that node,

Cost

Cost

Cost

(,)

(,)

(,)

2

3

4

12

13

14

∅

∅

∅

=

=

=

c

c

c

That is, the first array would simply be the cost of going from the source node to that node.
In the next step, the cost of a node to another would be calculated. This step requires the

results of the previous step, which have already been calculated and stored in the next array.

Cost Cost(3,)2 3 23,{ }() = + ∅c

Cost Cost(4,)2 4 24,{ }() = + ∅c

Cost Cost(2,)3 2 32,{ }() = + ∅c

Cost Cost(4,)3 4 34,{ }() = + ∅c

Cost Cost(4,)4 2 42,{ }() = + ∅c

Cost Cost(4,)4 3 43,{ }() = + ∅c

In the next step, the following costs would be calculated.

Cost
Cost Cost Cost

1 2 3
2 3 3 2 1 2 412 13

, , min
, , , , ,

{ }() =
+ { }() + { }() {c c }}()

= + { }() + { }()










min(, , ,c c12 142 4 4 2Cost Cost

Cost Cost Cost1 3 4 3 4 4 313 14, , min , , ,{ }() = + { }() + { }()()c c

Dy n a m i c P r o g r a m m i n g   ■  273

Cost Cost Cost2 1 3 1 3 3 121 23, , min , , ,{ }() = + { }() + { }()()c c

Cost 2, Cost 3, Cost 4,3 4 4 323 24, min ,{ }() = + { }() + { }()()c c

Cost 2, Cost 1, Cost 4,1 4 4 121 24, min ,{ }() = + { }() + { }()()c c

Cost 3, Cost 1, Cost 2,1 2 2 131 32, min ,{ }() = + { }() + { }()()c c

Cost 3, Cost 2, Cost 4,2 4 4 332 34, min ,{ }() = + { }() + { }()()c c

Cost 3, Cost 1, Cost 4,1 4 4 131 34, min ,{ }() = + { }() + { }()()c c

Cost 4, Cost 1, Cost 2,1 2 2 141 42, min ,{ }() = + { }() + { }()()c c

Cost 4, Cost 2, Cost 4,1 3 4 341 43, min ,{ }() = + { }() + { }()()c c

Cost 4, Cost 1, Cost 4,2 3 4 142 43, min ,{ }() = + { }() + { }()()c c

The above costs would help us to reach the final answer, which is given by

Cost
Cost Cost

1 2 3 4
2 3 4 3 2 412 13

14

, , , min
, , , , , ,

{ }() =
+ { }{ } + { }{ }C C

C ++ { }{ }










Cost 4 2 3, ,

Figure 11.9 depicts the above process.

Depends on the values of shadowed boxes

Cost(1, {2,3,4}) = min(C12 + Cost{2, {3,4}}, C13 + Cost{3, {2,4}}, C14 + Cost{4, {2,3}})

Cost(1, {3,4])Cost(1, {2,4])Cost(1, {2,3])

Cost(2, {3,4]) Cost(3, {2,4])Cost(2, {1,3]) Cost(2, {1,4]) Cost(3, {1,2]) Cost(3, {1,4])

Cost(1, ∅) = c11 = 0 Cost(2, ∅) = c12 Cost(3, ∅) = c13 Cost(4, ∅) = c14

Cost(2,{3]) Cost(2,{4]) Cost(3,{2]) Cost(3,{4]) Cost(4,{2]) Cost(4,{3])

Cost(4, {1,2]) Cost(4, {1,3]) Cost(4, {2,3])

Figure 11.9  Travelling salesman problem, dynamic approach: the boxes using the cost of the
first vertex have not been marked with an arrow

274   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The following illustration would help the reader understand the above procedure.

Illustration 11.3	 Solve the following travelling salesman problem for n = 4.

Solution

A B C D

A 0 5 2 3

B 5 0 4 1

C 2 4 0 7

D 3 1 7 0

Cost

Cost

Cost

(,)

(,)

(,)

2 5

3 2

4 3

12

13

14

∅

∅

∅

= =

= =

= =

c

c

c

Cost Cost(3,)2 3 4 2 623,{ }() = + = + =∅c

Cost Cost(4,)2 4 1 3 424,{ }() = + = + =∅c

Cost Cost(2,)3 2 4 5 932,{ }() = + = + =∅c

Cost Cost(4,)3 4 7 3 1034,{ }() = + = + =∅c

Cost Cost(4,)4 2 1 3 442,{ }() = + = + =∅c

Cost Cost(4,)4 3 43,{ }() = + ∅c

Cost Cost Cost Cost1 2 3 2 3 3 2 1 2 412 13, , min , , , , ,{ }() = + { }() + { }() {c c }}()()
= + { }()() + { }() = + + =min , , min(,)c c12 142 4 4 2 5 4 3 4 7Cost Cost

In the same way, the other costs can be calculated. The reader is expected to
calculate all the values given in the above discussion and then find the value of
Cost Cost Cost1 2 3 4 2 3 4 3 2 412 13 14, , , min , , , , , ,{ }() = + { }{ } + { }{ }C C C ++ { }{ }()Cost 4 2 3, ,Cost Cost Cost1 2 3 4 2 3 4 3 2 412 13 14, , , min , , , , , ,{ }() = + { }{ } + { }{ }C C C ++ { }{ }()Cost 4 2 3, , ,
which would be the final answer.

11.6  OPTIMAL SUBSTRUCTURE LEMMA

This section discusses the optimal substructure lemma, which is the base of dynamic
approach. The statement and the proof of the lemma are as follows.
Statement: If T is an optimal binary search trees for keys {1, 2, 3, …, n} with root T0,
and T1 and T2 are the left and the right sub-trees, respectively, then T1 and T2 are the
optimal binary search trees for the keys {1, 2, …, k − 1} and {k = 1, …, n}. The key
associated with T0 is k.

Dy n a m i c P r o g r a m m i n g   ■  275

Proof I: The left sub-tree is optimal: It is given that the tree T is optimal. It implies that
the cost associated with T is minimum. Let the cost of the left sub-tree be CL and that
associated with the right sub-tree be CR. Let there be another tree T ′ with the right sub-
tree T2 (same as that of T) and the left sub-tree T1′, having a better cost than T1.

Now, the cost of the tree depends on the sum of the cost of the left sub-tree and that of
the right sub-tree. Since the cost of the right sub-tree of T ′ is same as that of T and that of
the left sub-tree is better than that of T (less), the overall cost of T ′ becomes better than
T. This contradicts our statement that T is the optimal tree. Hence, by contradiction, we
can say that there cannot be a sub-tree that is better than the left sub-tree of T. Therefore,
the left sub-tree of an optimal binary search tree is optimal.

II: The right sub-tree is optimal: It is given that the tree T is optimal. It implies that
the cost associated with T is minimum. Let the cost of the left sub-tree be CL and that
associated with the right sub-tree be CR. Let there be another tree T ′ with the left sub-
tree T1 (same as that of T) and the right sub-tree T2 ′, having a better cost than T2.

Now, the cost of the tree depends on the sum of the cost of the left sub-tree and that
of the right sub-tree. Since the cost of the left sub-tree of T ′ is same as that of T and that
of the right sub-tree is better than that of T (less), the overall cost of T ′ becomes better
than T. This contradicts our statement that T is the optimal tree. Hence, by contradiction,
we can say that there cannot be a sub-tree which is better than the right sub-tree of T.
Therefore, the right sub-tree of an optimal binary search tree is optimal.

The above arguments are based on the formulae for finding the cost of a sub-tree and
that of the overall tree, which are as follows:

The search time in T

	 Time Time for searching in the tree Ct P i Tii

n
= ×

=∑ 1
� Formula 1

The overall search time in an optimal binary search tree is

P P i T Pr ii

r
i× + × + ×

=

−∑1
1

1 Time for searching in the tree Time foor

searching in the tree
i r

n

i T
= +∑ 1

	 Formula 2

where Pi is the plausibility of searching ith node and Pr is the plausibility of searching
right sub-tree.

11.7  OPTIMAL BINARY SEARCH TREE PROBLEM

Searching is one of the fundamental problems in computer science. This section dis-
cusses the role of searching in dynamic approach in creating search trees. Linear search
has been discussed in Algorithm 1.2, Chapter 1. The complexity of linear search is O(n).
Binary search is better than linear search, as its complexity is O(n log n). The problem
of searching can be stated as follows.

A set of n items is given. It is desired to arrange them in such a way so that the cost
incurred for searching a particular node is minimum. Designing a binary search tree

276   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

would be helpful. However, it might happen that the items with higher frequency are
placed at the bottom of the tree, whereas those that are lesser number of times appear
towards the top. This would increase the overall cost of searching all the elements. So an
optimal binary search tree must be constructed to handle the above problem.

For example, if we intend to make a translator from English to Marathi, then the
words that are most frequently used should be placed at a higher level and those that are
less frequently used should be placed at a lower level.

11.7.1  Using Brute Force Approach
The brute force approach to form an optimal binary search tree (OBST) would be as
follows:
•	 Enlist all the possible trees.
•	 Calculate their cost. Suppose the cost of the kth key is Ck, the cost of the keys in the

left sub-tree would be C Pi ii

k
×

=

−∑ 1

1
, where Pi denotes the probability of occurrence of

the key i. Similarly, the cost of the right sub-tree would be C Pi ii k

n
×

= =∑ 1
. The total

cost of the tree would, therefore, become

C C P C Pk i i i ii k

n

i

k
+ × + ×

= ==

− ∑∑ 11

1

•	 Select the tree with minimum cost.
The above approach guarantees the solution. However, the number of calculations would
be exponential.

11.7.2  Using Dynamic Approach
The dynamic approach handles the problem in a better way. In fact, in this case, the
complexity of the procedure to solve the OBST problem, through dynamic approach,
would be cubic. A cubic complexity is not very good but is far better as compared to an
algorithm that has exponential complexity.

The above problem can be solved through dynamic programming because of the fol-
lowing reasons:
•	 The problem can be converted into a search problem. The goal of the problem is,

as stated earlier, to find the tree having least cost. The concept of cost has been
discussed above.

•	 The problem can be stated as a recurrence relation for calculating the cost of the tree.
The relation is as follows:

C r itoj C C Cij i r r i j r
k r

n

k

j

= = + +








− +
= +=
∑∑min , ,1

11

•	 The above relation can be converted into a non-recursive table which fills in a way
that the elements filled earlier help us to calculate the cost of the latter ones.
The structure of the table is as follows (Fig. 11.10).

Dy n a m i c P r o g r a m m i n g   ■  277

The non-recursive procedure to fill the table would be as follows:
	 ο	 Let X be a two-dimensional array.
	 ο	 Start filling the main diagonal of X with 0. The reason for doing so is that Cii would

always be 0.
	 ο	 for (S=0; S<n-1; S++)

	 {
	 for(i=1 ; i< n; i++)
		 {
		 X[i, i+S] =min min P A i r PS

n

k

i r

k
k r

n

k=
=

+

=
∑ ∑+ − +1

1

1([,])
		 }
	 }

The reader is advised to visit the web resources of this book. The resources contain
the implementation of optimal binary search trees, and the corresponding test cases.
The reader is advised to run same test cases in the implementation of binary trees and
observe the difference in the running time.

11.8  FLOYD’S ALGORITHM

The shortest path problem has been discussed in Sections 10.2, 10.5, and 10.6. These
methods used the greedy approach. As stated earlier, the problem finds its applications
in packet routing, creating optimal paths, etc. The greedy approach, though produce
good results. However, had an approach which could have created optimal sub-solutions
been used, it would have been better. This section discusses one such algorithm which
is Floyd’s algorithm. The algorithm was given by Robert Floyd in 1962. The algorithm
was published earlier by Roy in 1959 and Warshall in 1962. This is the reason that it is
referred to as Floyd–Warshall algorithm in some books.

Floyd’s algorithm finds out the shortest path. The algorithm uses a simple concept.
The distance between any two nodes, in a given graph, is either the value of distance

01

1

2

2

3

3

4

4

n

n

n−1

0

0

0

0

Fill the main Diagonal with 0’s

Take care of
the upper left part.
No need to fill the

lower right part

Figure 11.10  Structure of the table of optimal binary search tree

278   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

given in the matrix or the sum of the value of the source vertex to a vertex ‘x’ and that
from ‘x’ to the destination. It may be stated here that ‘x’ is neither the source nor the
destination. The algorithm might appear brute force algorithm but it uses the optimal
substructure lemma, and is therefore considered dynamic. Moreover, there is a scope of
improvement in Algorithm 11.4. It may be inferred from the algorithm that the ith col-
umn and the ith row are not altered in the ith iteration. The algorithm can also be altered
to print the values of the paths.

	 Algorithm 11.4  Floyd algorithm

Floyd (Weights, n)
Input: W, the matrix containing the weights, the weight of a node to itself is 0, and that of a
node, directly connected to it, is infinity. ‘n’ is the number of cities.
Output: A two dimensional matrix Distance, containing the shortest distance.

{
Distance=Weights;
for (i=0; i< n; i++)
 {
 for (j=0; j<n; j++)
 {
 for(k=0; k<n ;k++)
 {
 �Distance[i] [j] = minimum (Distance[i][j],

Distance[i][k]+Distance[K][J]);
 }
 }
 }
return Distance;
}

Complexity: The algorithm contains nested loops. The loop within two loops makes the
complexity of the algorithm O(n3).
Explanation: The distance between any two points is either
the direct distance or the sum of distance of the source to a
node say ‘x’ and that from ‘x’ to destination, whichever is
less.

Illustration 11.4	 Trace the steps of Floyd’s algorithm
for the graph depicted in Fig. 11.11.

Solution The weights associated with various edges have
been given in the table that follows.

A

D

B

C

Figure 11.11  Graph in
which the source is ‘A’ and

the destination is ‘D’

Dy n a m i c P r o g r a m m i n g   ■  279

W =

A B C D

A 0 4 1 8

B 2 0 3 1

C 5 2 0 6

D 3 2 1 0

Step 1	 The initial value of D is same as that of the weight matrix. That is,

D = W

D =

A B C D

A 0 4 1 8

B 2 0 3 1

C 5 2 0 6

D 3 2 1 0

Let the source be ‘A’

x = ‘B’

Distance from A to C = min (1, 4 + 3) = 1;
Distance from A to D = min (8, 4 + 1) = 5; // in this case, the distance of A to D via B is
less than the direct one. The matrix distance would now be updated. The new value of
distance will be

. A B C D

A 0 4 1 5

B 2 0 3 1

C 5 2 0 6

D 3 2 1 0

x = ‘C’

Distance from A to B = min (4, 1 + 2) = 3; //The distance of A to B is less via C
Distance from A to D = min (5, 1 + 6) = 5;
The updated value of the distance matrix is therefore as follows.

. A B C D

A 0 3 1 5

B 2 0 3 1

C 5 2 0 6

D 3 2 1 0

The reader is expected to apply the above steps to the rest of the rows as well.

This row has the final distances

280   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

11.9  MISCELLANEOUS PROBLEMS

The following discussion focuses on the application of the dynamic approach in solving
common problems such as coin changing and the calculation of binomial coefficients.
It may be stated here that the problems can be solved using other methods like greedy
algorithms. However, the solution via the dynamic approach uses the values calculated
earlier and hence is more efficient. The reader is requested to go through the solution of
the problems using other approaches and then compare the results.

11.9.1  Coin Changing Problem
The coin changing problem has already been discussed in Section 10.7. The approach
in that section was based on the greedy algorithms. The approach presented in this sec-
tion is dynamic as it possesses an optimal substructure. It may be noted that if an array
houses the various denominations in order to make the net value equal to ‘C’, then the
array is divided into parts and each sub-array will in itself be optimal.

Proof If the left array is not optimal, and there exists a better array which can replace
the left sub-array, then the argument of the optimality of the whole array will also not be
true. Hence, the left sub-array must be optimal.

Similarly, if the right array is not optimal, and there exists a better array which can
replace the right sub-array, then the argument of the optimality of the whole array will
also not be true. Hence, the right sub-array must be also optimal.

The above arguments prove that the optimal array possesses optimal sub-arrays.
C[p] = 0 if p = 0

min i: di≤ p{1 + C[p − di]} if p > 0

11.9.2  Calculating Binomial Coefficients
The nth power of the sum of two variables is given by ()x a Cx an

k
n k n k

k

n
+ = −

=∑ 0
. This

theorem is referred to as Binomial Theorem.
The coefficients r

nC are called Binomial coefficients. The coefficients can be calcu-
lated by using the following formula:

r
nC

n

n r r
=

−() ×
!

! !

However, using this formula would be computationally too expensive. It may be stated
here that calculation of factorial of n, followed by that of (n − r) and then dividing the
two would be an O(n!) task.

Another option would be using the recurrence relation for the calculation of r
nC,

which can be obtained as follows:

r
n

r
nC

n

n r r

n n

n r r r

n

r
C=

−()
=

× −
−() × × −

= × −

!

! !

()!

! ()!

1

1 1

Dy n a m i c P r o g r a m m i n g   ■  281

11.10  CONCLUSION

The chapter discusses the optimal substructure lemma approach to solve problems using
dynamic approach. The above discussion exemplifies the approach. It can be seen in the

where 0 1nC = .
This approach also takes O(n) time. A better option would be to use dynamic pro-

gramming to calculate the binomial coefficients. Here, dynamic approach can be used
as it can be used to store the results of the calculations which would help us to calculate
the rest of the values.

The table of binomial coefficients can be generated with the help of the following
non-recursive procedure given in Algorithm 11.5.

	 Algorithm 11.5 C alculating binomial coefficients

Input: None
Output: X, a two-Dimensional Array
Let X be a two-dimensional array

for (i=0; i<n; i++)
 {
 for(j=0; j<n j++)
 {
 if (i=1)
 {
 X[i, j] =1;
 }
 else
 {
 X[i, j] = X[i-1, j] + X[i, j-1];
 }
 }
 }

Complexity: There are (n2/2) spaces to be filled in the array X.
For n = 4, the array has been shown in Fig. 11.12.

1

1

1

1

2

1 3

1

0

1

2

3

4
4

1

3

6

1

1

0

1

2

3

4

The second row has one
at the ends and the
middle is the sum of the
values at [1,0] and [1,1]

4

Figure 11.12  Array X, which stores the binomial coefficients

282 ■ a lg o r i t h m s : D e s i g n a n D a n a ly s i s

above examples that the values calculated in the earlier steps can be used in the present
calculations. This is the reason for repeating the problems discussed in the previous chap-
ters. The reader is requested to implement the algorithms and check the running time and
the memory requirements of the algorithm implemented using dynamic approach and that
using other approaches, in order to get a better insight of the advantages of this approach.

 Points to Remember

 • the development of a dynamic algorithm for a problem requires the following steps:
 ο conversion of the given problem into a search problem. the search would be from a

large search space.
 ο the search space is generally segregated into various sub-spaces which can be accom-

plished by developing a recursive algorithm.
 ο in the fi nal step, the recursive calls are characterized and a non-recursive procedure

is developed for fi lling the table. the values of the table are fi lled in a way so that the
calculations can be used at a later stage.

 • the dynamic approach can work in two ways: bottom-up and top-down.
 • in the bottom-up approach, the solution starts with the basic input value and builds up

the larger solution.
 • the top-down approach, on the other hand, takes the bigger problem into smaller sub-

problems and then solves them.
 • The divide and conquer approach requires division of the problems and so does dynamic

programming; in the former, the sub-problems are independent, whereas in the latter
they are not.

 I. Multiple Choice Questions
 1. The n th Fibonacci term is the sum of the (n − 1) and the (n − 2) th Fibonacci term. The

fi rst and the second terms are 1 and 1, respectively. What would be the complexity of
fi nding the n th Fibonacci term by a non-recursive procedure?
 (a) O (n)
 (b) O (n 2)

 (c) O (n 3)
 (d) O n()ϕ where j is the gold number

 EXERCISES

 KEY TERMS

 Longest common subsequence two given strings can have more than one common subse-
quence. the lcs finds the largest from amongst them.

 Optimal substructure lemma if T is an optimal binary search trees for keys {1, 2, 3, …, n } with
root T 0 and T 1 and T 2 are the left and the right sub-trees, respectively, then T 1 and T 2 are the opti-
mal binary search trees for the keys {1, 2, …, k − 1} and { k = 1, …, n }. the key associated with T 0 is k .

Dy n a m i c P r o g r a m m i n g   ■  283

	 2.	 If the above procedure is implemented using a dynamic programming approach,
what would be the time complexity of the algorithm?
(a)	 O(n)
(b)	 O(n2)

(c)	 O(n3)
(d)	O n()ϕ where j is the gold number

	 3.	 In question 2, what would be the space complexity?
(a)	 O(n)
(b)	 O(n2)

(c)	 O(n3)
(d)	O n()ϕ where j is the gold number

	 4.	 Hibonacci, an alleged relative of Fibonacci, devises the following series:

f n f n f n f f() () (), () ()= − × − = =1 2 1 2 2 3and

He intends to calculate the sum of the first n terms of the above series. What would
be the complexity of the recursive procedure, which accomplishes the task?
(a)	 O(n)
(b)	 O(n2)

(c)	 O(n3)
(d)	 None of the above

	 5.	 If dynamic programming is used to accomplish the above task, what would be the
complexity of the best algorithm that can be implemented?
(a)	 O(n)
(b)	 O(n2)

(c)	 O(n3)
(d)	 None of the above

	 6.	 What would be the complexity of finding all the n binomial coefficients using
dynamic programming approach?
(a)	 O(n)
(b)	 O(n2)

(c)	 O(n3)
(d)	 None of the above

	 7.	 What would be the complexity of finding a sequence of elements which has maxi-
mum sum from a given array?
(a)	 O(n)
(b)	 O(n2)

(c)	 O(n3)
(d)	 None of the above

	 8.	 If dynamic programming is used to solve the above problem, what would be the complex-
ity of the best possible algorithm (which also makes use of the previously stored values)?
(a)	 O(n)
(b)	 O(n2)

(c)	 O(n3)
(d)	 None of the above

	 9.	 In the above problem, what would be the space complexity?
(a)	 O(n)
(b)	 O(n2)

(c)	 O(n3)
(d)	 None of the above

10.	 Which of the following is true?
(a)	 The divide and conquer approach requires division of the problems so does

dynamic programming.
(b)	 In the divide and conquer approach, sub-problems are independent.
(c)	 In the dynamic approach, the problems are not independent.
(d)	 All of the above.

11.	 The dynamic approach can work in which of the ways?
(a)	 Bottom-up
(b)	 Top-down

(c)	 Both
(d)	 None of the above

284   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

12.	 Which of the following statements is true?
(a)	 In the bottom-up approach, the solution starts with the basic input value and

builds up the larger solution
(b)	 In the top-down approach, we break the bigger problem into smaller sub-problems

and then solve them
(c)	 Both
(d)	 None of the above

II.  Review Questions
	 1.	 What is dynamic programming? Why is it called dynamic programming?
	 2.	 What are the elements of dynamic programming approach?
	 3.	 How does dynamic programming helps us to reduce the complexity of a problem?

	 4.	 The binomial coefficients are given by the formula
r
nC

n

n r r
=

−()
!

! !

(a)	 Write a non-recursive algorithm for finding the above coefficients for k = 1 to n.
Find the complexity of the procedure.

(b)	 Write a recursive algorithm for finding the above coefficients for k = 1 to n. Find
the complexity of the procedure.

	 5.	 Explain the dynamic approach to find the binomial coefficients.
	 6.	 The nth Fibonacci term is the sum of the n − 1th and n − 2th terms. The first and the

second terms are 1 each.
	 7.	 Write a non-recursive algorithm for finding the above terms for k = 1 to n. Find the

complexity of the procedure.
	 8.	 Write a recursive algorithm for finding the above term for k = 1 to n. Find the com-

plexity of the procedure.
	 9.	 Explain the dynamic approach to find the nth Fibonacci term.
10.	 Prove optimal substructure lemma for the coin changing problem.
11.	 How is the dynamic approach better than the greedy approach for the coin changing

problem?
12.	 Write a non-recursive procedure for calculating the values in the table for coin

changing problem.
13.	 Prove optimal substructure lemma for the optimal binary search tree problem.
14.	 How is the dynamic approach better in terms of time complexity for the optimal

binary search tree problem?
15.	 Write a non-recursive procedure for calculating the values in the table for the opti-

mal binary search tree problem.
16.	 Explain dynamic programming approach for longest common sub sequence.
17.	 Explain dynamic programming approach for matrix chain multiplication.
18.	 Explain dynamic programming approach for Floyd–Warshall algorithm.
19.	 Explain dynamic programming approach for travelling salesman problem.
20.	 Explain the use of dynamic programming in calculating the nth Fibonacci term.

Dy n a m i c P r o g r a m m i n g ■ 285

 III. Numerical Problems
 1. Find the longest common subsequence in the following strings:

 (a) ACACAACTGCACGAC and ACTGGCATG
 (b) ABHHKABADH and DGABHHGABAK

 2. What would be the complexity of LCS if both the input strings are same? Also fi nd
the complexity if both the strings are completely different. Which of the above two
cases, do you thing, constitute the best case.

 3. Find optimal parenthesis structure for the following:

Matrix Order

M1 2 3×

M2 3 9×

M3 9 4×

M4 4 2×

 4. In the above question what happens if all the matrices have order 5 × 5? In such cases,
do you think that the MCM algorithm explained in the text would be of any use?

 5. Solve the following travelling salesman problem using dynamic approach. The cost
matrix of the path is given as follows:

 A B C D E

A 0 2 3 5 32

B 2 0 45 2 12

C 3 45 0 12 17

D 5 2 12 0 23

E 32 12 17 23 0

 6. Can the above problem be solved if the last values in the last three columns are
infi nity.

 7. Using the cost matrix of problem 5 and take ‘A’ as the source. Apply Floyd’s algo-
rithm to fi nd the shortest path from A to any other vertex.

 8. In the above question, fi nd the shortest distance of any vertex to any other vertex.
 9. If in question 7, the second cell in the fi rst row is (−2), would Floyd’s algorithm

work?
 10. Compare the number of steps in question 7 with that on applying Prim’s algorithm.

Answers to MCQs

 1. (d)
 2. (a)
 3. (b)

 4. (d)
 5. (a)
 6. (a)

 7. (c)
 8. (a)
 9. (a)

 10. (d)
 11. (c)
 12. (c)

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of backtracking
 • Apply backtracking to solve the subset sum problem
 • Use backtracking to solve N-Queens problem
 • Solve m-colouring problem and Hamiltonian cycle problem via backtracking
 • Explain the problems in the approach

12.1 INTRODUCTION

 The strategies such as divide and conquer and greedy approach, discussed in the earlier
chapters, cannot solve all the problems. At times it is required to explore and analyse
all possible outputs. In such cases, brute force can be used. Although it provides the
solution but it is computationally expensive. In such situations, backtracking can be
used. Backtracking is one of the most common strategies used for designing algorithms.
It calls for the examination of each confi guration of the solution sets, which satisfy the
conditions imposed at the beginning of the problem. It may be noted that in backtrack-
ing, each confi guration is generated once. When the fi nal solution is produced, then the
procedure is stopped; if not, we go back to the same point from where we started the step
and examine the other confi gurations.

 Section 12.2 examines the concept of backtracking with the help of illustrations. The
example of mazes has been taken to explain the concept as it is one of the most common
problems studied in algorithms as well as the implementation of game theory.

 The chapter has been organized as follows. Section 12.3 discusses the subset
sum problem. Section 12.4 examines the 8-Queens problem and a general variant of
the problem called N-Queens problem. Section 12.5 discusses m-graph colouring.
Section 12.6 deals with the Hamiltonian cycle problem and Section 12.7 deals with
 miscellaneous problems.

 Backtracking

 C H A P T E R 1 2

B ac k t r ac k i n g   ■  287

12.2  CONCEPT OF BACKTRACKING

The general backtracking algorithm is presented in the following abstraction. In the
following algorithm, the first (j −1) values have already been generated. The array a[]
is a global array. It may also be noted that the following procedure uses recursion which
makes the implementation of the concept easy.

	 Algorithm 12.1  Backtracking (j) Abstraction

for each a[1] perform the following steps:
	 {
if B(a[i], a[2], … takes to the destination node

{
then print the answer
		 if(j<n) then Backtracking (j+1);
}
	 }
Backtracking Abstraction

To understand the concept of backtracking, let us consider the following example.
Consider a room shown in Fig. 12.1(a). The room has a door from which a person can
enter (marked In) and a door from which he can come out (marked Out). There are
many walls in the room depicted by lines. Now, he gets into the room and walks till he
finds a path that can lead him to the door marked Out. Suppose the person starts walking
along any turn that comes in the way.

The person then starts walking along the direction shown by the black arrow. He
turns when he sees the first turn (Fig. 12.1(b)). It is quite possible that this path may lead
to a dead end. This is what happens with the chosen path (Figs 12.1(c) and (d)).

When the person finds the dead end (Fig. 12.1(e)), then he backtracks and goes back
along the path he came from (Figs 12.1(f)–(h)).

In

Out

(a)

In

Out

(b)

In

Out

(c)

Figure 12.1  Maze problem

Tip: Backtracking can easily be implemented using recursion.

288   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

When he comes back to the point from where he took that unfortunate turn, he decides
moving forward (Fig. 12.1(i)) and takes the next turn (Fig. 12.1(j)).

In

Out

(j)

In

Out

(i)

Figure 12.1 (contd)  Maze problem

He sees another turn and goes in the direction depicted by the arrow of Fig. 12.1(k).
However, that turn also results in a dead end. So he decides to backtrack again (Fig. 12.1(l)).

In

Out

(k)

In

Out

(l)

Figure 12.1 (contd)  Maze problem

In

Out

(h)

In

Out

(g)

In

Out

(d)

In

Out

(e)

In

Out

(d)

In

Out

(f)

Figure 12.1 (contd)  Maze problem

B ac k t r ac k i n g   ■  289

The next path chosen by the person (Fig. 12.1(m)) takes him to the door (Fig. 12.1(n))
and he comes out.

In

Out

(m) (n)

In

Out

Figure 12.1 (contd)  Maze problem

The strategy followed by the person is more or less same as that followed by us in our life.
For instance, we may start a business with someone when an appropriate opportunity comes
and may not find it good enough at a later stage. Then, we come back to the same point and
look for another alternative. This makes sense as we cannot say anything about a path until
we travel on that path. The path may lead to the destination, or it may not. However, on
encountering a dead end, we must backtrack and look for another path in order to achieve the
goal. This is what backtracking is all about. So in a way it is inspired by nature.

In backtracking, there is a set of conditions that the values of xi must follow in order
to be a part of solution set: s x x xn= { }1 2, ,..., . These conditions are of two types: implicit
and explicit.

The conditions that control the selection of elements are referred to as constraints.
The elements xi must take values only from the domain set. This is referred to as explicit
constraints. The conditions that determine how various xi’s should be related to each
other are referred to as implicit constraints. For example, in Fig. 12.1, the paths can be
chosen from amongst the given paths. These paths must be such that for any two con-
nective elements, x xi iand +1 , the end of path xi must be the beginning of the path xi+1.

12.3  SUBSET SUM PROBLEM

The subset sum problem is one of the most important problems in algorithm analysis and
design as it is used in many disciplines from computer science to computational biology.
The problem calls for finding a subset of a given set which has the sum equal to the target
sum. There are several ways to solve subset sum problem. The problem can be solved via
greedy approach, dynamic approach, backtracking, and branch and bound. The present
section presents the backtracking approach to solve the problem. Although the brute force
algorithm would form all the subsets and then find the sum of each of the subsets, it is
computationally expensive as the number of subsets of a set having n elements is 2n. The
backtracking approach solves the problem in much lesser moves. In order to understand

290   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

1

2

4

8

16 17 18 19 24

10 11

25 26 27

20 21 22 23 28 29

14 15

30 31

9 12 13

5 6 7

3

Figure 12.2  State space tree of a subset problem having four elements

the concept, let us consider a set having four elements. The sum of the elements selected
in the result set should be same as that given as the input to the problem (target sum). The
state space tree depicted in Fig. 12.2 shows the various possible solutions.

The above state space tree represents the backtracking approach of solving the subset
sum problem. The root node (number 1) depicts the decision regarding the inclusion or
non-inclusion of the first element of the set in the result. If the first element is selected,
then node 2 is processed; else node 3 is processed. The nodes at the next level (node num-
ber 2 and node number 3) depict the decision regarding the inclusion or the non-inclusion
of the second element of the set in the result. The next level decides the inclusion or non-
inclusion of element number 3 of the given set and the last level decides whether the fourth
element of the original subset will be there in the solution or not. Table 12.1 summarizes
the solution depicted by the last level of the tree (called the leaf nodes).

Table 12.1 S olutions depicted by
various leaf nodes of the state space tree

Nodes Result sets

16

17

18

19

20 {x1,x3,x4}

21

22

x x x x1 2 3 4, , ,{ }
x x x1 2 3, ,{ }
x x x1 2 4, ,{ }
x x1 2,{ }

x x1 3,{ }
x x1 4,{ }

(Contd)

B ac k t r ac k i n g   ■  291

Table 12.2  Binary depiction of the result
Node x1 x2 x3 x4

16 1111

17 1110

18 1101

19 1100

20 1011

21 1010

22 1001

23 1000

24 0111

25 0110

26 0101

27 0100

28 0011

29 0010

30 0001

31 0000

23

24

25

26

27

28

29

30

31

x1{ }
x x x2 3 4, ,{ }
x x2 3,{ }
x x2 4,{ }
x2{ }
x x3 4,{ }
x3{ }
x4{ }

{ }

Table 12.1  Contd

The above set is nothing but various subsets of the original set x x x x1 2 3 4, , ,{ }. If 1 indi-
cates the inclusion of the element and 0 indicates the non-inclusion of the element, then
Table 12.2 depicts the above result.

Backtracking Approach

The above problem requires finding the subset having the required sum. The solution
starts with the processing of node 1. If the first node is selected then we move to node
number 2; else to node number 3. In the process if the total sum of the values selected

292   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

becomes larger than the required sum then we move back to the parent node and then to
an alternate path. However, the approach is computationally expensive. The process is
depicted in Algorithm 12.2.

	 Algorithm 12.2 S ubset sum problem by backtracking

Input: The set w[], the number of elements n, and the desired sum and the weight of the
knapsack.
Output: The result set consisting of elements that can be selected to contain the desired
weight and keeping the weight less than or equal to the weight of the knapsack.

ssp(sum, k, r)
	 {
// left child
	 flag[k] := 1;
	 If(sum + wt[k] = m)
	 Write (flag[i : k]);
	 else if(sum + wt[k] + wt[k+1] <= m)
	 ssp(sum + wt[k], k + 1, r - wt[k]);

// right child
	 If((sum + r - wt[k] >= m) and (sum + wt[k + 1] <= m))
	 {
	 flag[k] := 0;
	 ssp(sum, k + 1, r - wt[k]);
	 }
	 }

It may be noted that from a particular node we can either move to the left or to the
right. At any instance when the sum becomes equal to the target sum, then the result is
printed; else the next level is processed. The one-dimensional array flag indicates the
inclusion or the non-inclusion of an element.

12.4  N-QUEENS PROBLEM

The 8-Queens problem is one of the most common problems that can be solved by back-
tracking. The problem requires 8-Queens to be placed on a 8 × 8 chessboard in a way
that no queen can attack each other. The problem was crafted by Max Bazzel in 1948.
A general version of the problem which involved an n × n chessboard was given by
Franz Nauck. Two queens can attack each other if they are in the same row or same
column or same diagonal.

Tip: The solution of subset sum using backtracking can also be used to solve sudoku
problems.

B ac k t r ac k i n g   ■  293

In order to explain the algorithm, a definite representation is required. A cell is the
basic entity in a chessboard. A cell in a chessboard can be represented by two coordi-
nates (x, y), where x represents the row number and y represents the column number. For
example (2, 1) represents the cell at the first column of the second row.

It may be deduced from the above discussion that 2-Queens if placed at (x1, y1) and
(x2, y2) and, then the following constraints hold so that no 2-Queens can attack each other:

	 x x1 2≠ 	 (12.1)

	 y y1 2≠ 	 (12.2)

	 y x y x2 2 1 1− ≠ − 	 (12.3)

Equation (12.1) depicts the condition that 2-Queens cannot be placed in the same row.
Equation (12.2) depicts the condition that 2-Queens cannot be placed in the same column
and Eq. (12.3) depicts the condition that 2-Queens cannot be placed at the same diagonal.

We can begin the algorithm by placing a queen at the first column of the first row.
Now the second queen must be placed in the second row. It cannot be placed at the first
column and the second column as conditions depicted by Eqs (12.2) and (12.3) are vio-
lated by doing so. So, we place the second queen at the third column of the second row.
The queen of the third row will be placed at the fifth column. The process continues till
a particular queen cannot be placed in any of the columns of a particular row. In that
case we backtrack and place the queen at the last row at the next best place. The solution
of 8-Queens problem by backtracking has been discussed in Figs 12.3(a)–(h).

Figure 12.3(a) depicts the initiation of the algorithm. The first queen is placed at the
first cell of the first row.

Now we move to the second row. The second queen cannot be placed in the first cell
of the second row as it will be in the same column as the first queen. In addition, it cannot
be placed in the second column since it will be in the same diagonal as the first queen.
The second queen is therefore placed in the third cell of the second row (Fig. 12.3(b)).

Q

(a)

Figure 12.3(a)  8-Queens Problem

294   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Now we move to the third row. The third queen cannot be placed in the first cell of the
third row as it will be in the same column as the first queen. In addition, it cannot be placed
at the second column since it will be at the same diagonal as the second queen. At the third
and the fourth cells also it can be attacked by the second queen. The third queen is therefore
placed at the fifth cell of the third row (Fig. 12.3(c)).

As per the fourth queen is concerned, it cannot be placed at the first cell as it would be
attacked by the first queen. So, the fourth queen will be placed at the second cell of the fourth
row (Fig. 12.3(d)).

Q

Q

Q

Q

(d)

Figure 12.3(d)  8 Queens problem

Q

Q

Q

(c)

Figure 12.3(c)  8-Queens Problem

Q

Q

(b)

Figure 12.3(b)  8-Queens Problem

B ac k t r ac k i n g   ■  295

Figures 12.3(e) and 12.3(f) depict the position of the fifth and the sixth queens
that can be placed, respectively. Since a queen cannot be placed at the same row or
column or same diagonal as any other queen, they will be placed respectively at the cell
numbers 5 and 7, respectively.

Here comes the point where backtracking is required. We will not be able to place
the seventh queen at any of the cells. Now, we will have to go back one step and see if
we can place the sixth queen in any other row. Since this is not feasible we will have to
change the position of the fifth queen (Fig. 12.3(g)).

The reconfiguration will again lead us to a situation whereby the sixth queen cannot
be placed. In order to proceed further, the fourth queen will have to be placed in the next
best column. This results in the placement of the fourth queen in the seventh cell of the
fourth row. Placing the rest of the queens in this fashion leads to a situation wherein the
last queen cannot be placed (Fig. 12.3(h)).

Figure 12.3(e)(f)  8 Queens problem

The queen cannot be placed here

Q

Q

Q

Q

Q

(f)

Q

Q

Q

Q

Q

(e)

Figure 12.3(g)  8-Queens Problem

Q

Q

Q

Q

Q

(g)

296   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The continuous application of the backtracking algorithm will lead us to the follow-
ing situation. The solution can be represented by the set 1 5 8 6 3 7 2 4, , , , , , ,{ }. The solution
set has the following properties:
•	 It has 8 elements (same as that of the number of queens in the problem)
•	 All 8 numbers appear in the set.
•	 The placement of the numbers is such that the element represents the cell number of

a particular row.
For example, the first element of the set is 1 indicating that the first queen is to be

placed in the first cell of the first row. Similarly, the second queen is to be placed at
the fifth cell of the second row, and so on.

The solution is one from amongst the possible permutations of eight numbers.
The last point suggests that generation of permutations followed by the constraint

checking can also lead us to the solution, but the computational complexity of the pro-
cess would be too large. Backtracking can lead us to the solution in much lesser calcula-
tions. The formal algorithm to solve the above problem is presented in Algorithm 12.3.
The algorithm makes use of the place algorithm which checks whether a queen can be
placed at the position or not. Algorithm 12.4 describes the procedure.

	 Algorithm 12.3  N-Queens via backtracking

Algorithm N-Queens (k, n)
{
    for i := 1 to n step 1 do
    {
    If (place(k, i))
    {
       x[k] := i;
       if (k = n)
           Print(x[1 : n]);}
           else

Q

Q

Q

Q

Q

Q

Q

(h)

Figure 12.3(h)  8-Queens problem

B ac k t r ac k i n g   ■  297

1

(a)

Figure 12.4(a)  Solution of Illustration 12.1

           {
           {
            NQueens(k + 1, n);}
    }
    }
}

	 Algorithm 12.4  Place algorithm used by the N-Queens algorithm

Algorithm Place (k, i)
{
	 for(j := 1 to k - 1 step 1 )
	 {
	 If ((x[j] = i) || (Abs(x[j] - i) = (Abs(j - k)))
	 {
	 return false;
	 }
	 }
	 return true;
}

Illustration 12.1	 A 5 × 5 chessboard is such that the middle row and middle column
have been marked inaccessible. That is, you cannot place a queen at these places. Use
backtracking algorithm to place 4-Queens on this chessboard in a way that no queen
attacks each other.

Solution Let us place the first queen at the first cell of the first row (Fig. 12.4(a)).

Now, the next queen is to be placed in the second row. Since we cannot place the
queen at the first or the second cell and it is not allowed to place queen at the third cell,
the next queen can be placed at the fourth cell of the second row (Fig. 12.4(b)).

298   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

1

2

3

(c)

Figure 12.4(c)  Solution of Illustration 12.1

Figure 12.4(d)  Solution of Illustration 12.1

1

2

3

4

(d)

The next queen cannot be placed in the third row owing to the conditions imposed
at the beginning; therefore, it can be placed at the fourth row. The queen will be
attacked by another queen, if it is placed at the first or the second cell. The third cell is
already prohibited. Therefore, the queen can be placed at the fifth cell of the fourth row
(Fig. 12.4(c)).

As per the last queen is concerned, it cannot be placed at the first cell but can be
placed at the second cell of the fifth row (Fig. 12.4(d)).

Illustration 12.2	 A5 × 5 chessboard is such that the first row and first column have
been marked inaccessible. That is, you cannot place a queen at these places. Use back-
tracking algorithm to place 4-Queens on this chessboard in a way that no queen attacks
each other.

1

2

(b)

Figure 12.4(b)  Solution of Illustration 12.1

B ac k t r ac k i n g   ■  299

Solution Let us place the first accessible queen at the first accessible cell of the first row
(Fig. 12.5(a)).

Now, the next queen is to be placed in the second row. Since we cannot place the
queen at the first or the second cell and it is not allowed to place queen at the third acces-
sible cell, the next queen can be placed at the fourth cell of the second row (Fig. 12.5(b)).

The next queen cannot be placed in the third accessible row owing to the conditions
imposed at the beginning; therefore, it can be placed at the fourth row. The queen will
be attacked by another queen, if it is placed at the first or the second accessible cell. The
third cell is already prohibited. Therefore, the queen can be placed at the fifth cell of the
third row (Fig. 12.5(c)).

Figure 12.5(a)  Solution of Illustration 12.2

1

(a)

Figure 12.5(b)  Solution of Illustration 12.2

1

2

(b)

Figure 12.5(c)  Solution of Illustration 12.2

1

2

(c)

300   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Figure 12.5(e)(f)(g)(h)  Solution of Illustration 12.2

1

2

3

(g)

1

2

3

4

(h)

1

2

(f)

1

(e)

As per the last queen is concerned, it cannot be placed at the first cell but can be
placed at the second cell of the fourth row (Fig. 12.5(d)).

The solution can be found by backtracking till the first level and placing the queens
as per the Figs 12.5(e)–(h).

12.5  m-COLOURING PROBLEM

m-Colouring problem requires filling different
colours in a planar map. To understand the prob-
lem, let us take the map shown in Fig. 12.6. The
map is to be coloured in such a way that no two
adjacent regions have the same colour. That is,
the colour that is chosen for region 1 cannot be
used to colour region 2 or 3 or 4. If colour C1 is
selected for region 1, then C1 cannot be used to

Figure 12.5(d)  Solution of Illustration 12.2

1

2

3

(d)

1 2

43

Figure 12.6  Map in which different
regions are to be assigned colours

so that the number of colours is
minimum and no two adjacent

regions have same colour

B ac k t r ac k i n g   ■  301

fill the region 2. So, colour C2 is selected for the region 2. For
the third region also C2 can be chosen as regions 2 and 3 are
not adjacent. For region 4, C1 or C2 cannot be chosen, so
colour C3 is selected. Therefore, the map shown in Fig. 12.6 
can be filled with three colours.

It may be noted at this point that any map can be repre-
sented as a graph. The regions of the map can be mapped
to the nodes of the corresponding graph. The map shown in
Fig. 12.6 can be converted into a graph as shown in Fig. 12.7.

The graph corresponding to the given map can be stored in a two-dimensional
matrix. The matrix will help us to find out the edges adjacent to a vertex. In order to
accomplish the task of finding out whether the map can be filled by the given number
of colours, the first vertex can be assigned a colour. Now the next vertex is given the
first colour. However, if the second vertex is adjacent to the first vertex (to which
colour 1 was initially assigned), the second vertex is assigned colour 2. In the above
case, since the second vertex is adjacent to the first vertex, it is allotted the second
colour. Now, the third vertex is also adjacent to the first vertex; therefore, it can-
not be assigned the first colour, however, it can surely be allotted the second colour
as it is not adjacent to the second vertex. Regarding the fourth vertex, it cannot be
given any of the three colours allotted so far as it is adjacent to the rest of the three
vertices.

The concept of the problem can be explained as follows using Algorithm 12.5.

	 Algorithm 12.5 N ext vertex used by m-colouring

For each vertex

v , i from 1 to n, n being the number of verticesi

	 Assign c ;i = 1 to vi i

		 if ci has been assigned to vj, v is adjacent to vj i

			 i = i + 1

			 if no color is left then quit

The formal algorithm has two parts: next value and m-colouring. The next value
algorithm assigns the colour to a particular vertex. The algorithm assumes that there are
only k colours available from amongst the colours that can be assigned to the different
regions of a map or to the vertices of the corresponding graph. The colours are stored
in the array x[ ]. x[k] = 0 indicates that no colour is left and hence the algorithm should
terminate. Algorithm 12.6 presents the next vertex procedure and Algorithm 12.7 shows
the main algorithm.

1

2 3 4

Figure 12.7  Graph corresponding
to map shown in Fig. 12.6

302   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 Algorithm 12.6  m-Colouring via backtracking

{
	 while(true)
	 {
		 NextValue(k);
	 	 if(x[k] = 0){
return;}
	 	 if(k = n){
			 Print(x[1 : n]);}
		 else
		 {
			 mColoring(k + 1);}
		 }
}

	 Algorithm 12.7 N extValue(k)

{
	 while(true)
	 {
	 	 x[k] := (x[k] + 1) mod (m + 1);
	 	 if(x[k] = 0) {
			 return;}
	 	 for (j := 1 to n step 1 )
		 {
	 	 	 if((G[k,j] ≠0) && (x[k] = x[j])) {
			 break;}
		 }
	 	 if(j = n + 1) {
			 return;}
	 }
}

12.6  HAMILTONIAN CYCLE

Before starting off with the application of backtracking in ‘Hamiltonian cycle’, let us
go through the concept of Hamiltonian cycle. The Hamiltonian cycle can be defined as
follows:

B ac k t r ac k i n g   ■  303

Given: A graph G = (V, E); where V is the set of vertices and E is the set of edges, each
element of E is in the form (x, y) such that x y V, ∈ .
To find: A sequence of vertices s v v v vn1 2 3, , ,...,{ } such that
•	 No two vi’s are same
•	 ∀vi , there is direct edge between v vi iand +1

•	 No edge is repeated
•	 vn and v1 are directly connected
There is, however, a possibility that in a particular graph, there is no cycle which satisfies
all the above conditions. For example, the graph  has a Hamiltonian cycle.
The graph shown in Fig. 12.8 is G = (V, E) where V is the set A B C D, , ,{ } and E is the

set A B A C A D B D D C, , , , , , , , (,) .() () () (){ }
The cycle ABCDA is a Hamiltonian cycle as
• � All the vertices in the set are different except for the first and

the last
•  It covers all the vertices
•  No edge is repeated
•  The first vertex is joined with the last vertex hence it is a cycle.
As stated earlier, a graph may not have a Hamiltonian cycle.
Figure 12.9 depicts a graph with no Hamiltonian cycle.

Finding out whether a graph has a Hamiltonian cycle or not is com-
putationally expensive task. The problem can be solved by backtrack-
ing as well. The other way out is to enlist all the permutations of the
vertices and check which of them satisfies the above conditions. The
number of permutations of a set having n vertices is n

n p n= ! . The
generation of these permutations is not the only thing that needs to
be done. Every possible permutation will have to be checked for the
conditions stated above. The computational complexity of the above
task is very large. Even if a graph contains 20 vertices, the generation

of permutations will require 2.429 × 1014 calculations. A PC will take 78,002 years to
carry out the calculations assuming that one calculation is performed in 10−6 seconds.

Doing the same task by backtracking requires much lesser calculations and hence
helps us to reach to the solution.

12.6.1  Solution of Hamiltonian Cycle Using Backtracking
The solution set should contain n elements. These n elements represent the order in
which the graph needs to be traversed. The last element of the set should be directly
connected to the first element. In order to obtain the solution, the first vertex is to be
selected. The next vertex is selected if the following three conditions are satisfied:
•	 There is still a vertex that can be selected.
•	 There is a direct edge from the selected vertex to the next vertex.
•	 The set formed so far has less than n vertices.

A

D C

B

Figure 12.8  A graph
which contains a

Hamiltonian cycle

A

C D

B

Figure 12.9  A graph
that does not contain

Hamiltonian cycle

304   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The ‘next feasible vertex’ algorithm tests the above conditions (Algorithm 12.8). The
parameter r tests the above conditions for the x[r]th element of the set x being formed.
The ‘Hamiltonian algorithm’ depicts the steps in order to generate the solution set
(Algorithm 12.9). If all the n elements can be generated by the ‘next feasible vertex’
algorithm, then the final solution is obtained.

The inability of the ‘next feasible vertex’ algorithm to produce a set of n vertices
means that the given graph does not contain a Hamiltonian cycle.

	 Algorithm 12.8 H amiltonian problem

Algorithm Hamiltonian(r)
	 {
		 while(true)
		 {
		 NextValue(r);
	 	 if(x[r] = 0) {
return;
			 }
	 	 if(r = n){
			 Print(x[1 : n]);
			 }
		 else
			 {
Hamiltonian(r + 1);
			 }
	 }
}

	 Algorithm 12.9 N ext feasible vertex algorithm

Algorithm NextFeasible vertex(r)
{
	 while(true)
	 {
	 	 x[r] := (x[r] + 1) mod (n + 1);
	 	 if(x[r] = 0) {
			 return;}
	 	 if(G[x[r - 1], x[r]] ≠ 0)
		 {
	 	 	 for j := 1 to r - 1 step 1 do

B ac k t r ac k i n g   ■  305

				 if(x[j] = x[r]) {
					 break;}
	 	 	 if(j = r) then
	 	 	 	 if((r < n) || ((r = n) && G[x[n], x[1]] ≠ 0))
					 return;
		 }
	 }
}

12.7  MISCELLANEOUS PROBLEMS

This section discusses some miscellaneous problems that can be solved using
backtracking.

12.7.1  Knapsack Problem
Knapsack problem is one of the most famous optimization problems. The problem is as
follows:

A thief has to select a few things to put in his bag having capacity of m units. He can
select the things from amongst the n things in the given set x x x xn1 2 3, , ,...,{ }. The
weights of the elements of the above set are given by the set w w w wn1 2 3, , ,...,{ } and the
profits obtained by picking an item are p p p pn1 2 3, , ,...,{ }. As in the case of subset sum
problem, xn =1 denotes the inclusion of the item in the final set and xn = 0 means that
the item has not been selected. The problem is to select a subset of items (or perhaps
all the items) in such a way that the total weight of the selected items is less than or
equal to the weight of the bag (which is m in this case). The constraints are depicted in
Eq. (12.4),

	 x w x w x w m1 1 1 2 3 1× + × + × ≤... 	 (12.4)

xi can either be 1 or 0.
In addition, we need to pick the items in such a way that the profit earned is maxi-

mum, i.e.,

x p x p x p1 1 1 2 3 1× + × + × ... is maximum

The above problem is referred to as 0/1 knapsack problem.
Take, for example, a set of profits given by the set p = { }10 10 12 18, , , .

The set of weights is given by w = { }2 4 6 9, , , .

Let the value of m be 15.
The problem m can be solved by making a state space tree like in the case of subset

sum problem (Fig. 12.2). The state space tree represents the backtracking approach of

306   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

solving the knapsack problem as well. The root node (number 1) depicts the decision
regarding the inclusion or non-inclusion of the first element of the set in the result. If the
first element is selected, then node 2 is processed; else node 3 is processed. The nodes
at the next level (node number 2 and node number 3) depict the decision regarding the
inclusion or the non-inclusion of the second element of the set in the result. The next
level decides the inclusion or non-inclusion of element number 3 of the given set and
the last level decides whether the fourth element of the original subset will be there in
the solution or not. The backtracking comes into picture when the weight of the subset
being selected exceeds the value m.

The problem can be solved much more efficiently by the branch and bound approach
presented in Chapter 13. Some of the authors solve the problem by calling the bound
procedure that restricts the processing of some of the nodes. The approach is similar to
backtracking but is not strictly backtracking.

12.7.2  Other Problems
Job Assignment

The problem calls for assigning n jobs to n people in such a way that the net cost of
assigning jobs is minimized. The cost of assigning ith job to jth person is given by
cost(i,j). This is an optimization problem. The backtracking approach calls for creat-
ing a state space tree of the problem and then processing each node and finding out
the result. However, there is a catch if the value n, the number of jobs is large then the
algorithm becomes computationally expensive. The problem has been discussed in
Appendix A7.

Isomorphism

Two graphs G and G' are said to be isomorphic if there is a one-to-one correspondence
between the vertices. The problem calls for finding out a backtracking-based solution of
the problem which checks whether the two given graphs are isomorphic or not.

Maximum Clique in a Complete Graph

Finding a fully connected proper sub-graph from a graph is referred to as maximum
clique problem. However, in a fully connected sub-graph having n vertices, the number
of subsets of the vertices would be 2n. All of the above subsets except for the n subsets
which have only one vertex and one having 0 vertex. All the legal subsets can form their
graph. However, whether those graphs form a clique or not should be checked. This
must be followed by selecting the maximum clique.

The process can also be solved by backtracking. In order to do so, a state space tree
of the problem needs to be constructed. However, a better solution of the problem is
presented in Chapter 19 of the book.

B ac k t r ac k i n g ■ 307

12.8 CONCLUSION

 This chapter presented one of the most interesting approaches of algorithm design—back-
tracking. The problems that require the fi nal answer to be selected from amongst the
various possible permutations are generally solved by the approach. There are two meth-
ods of implementing backtracking: recursive and iterative. However, the selection of the
method of implementation depends on the problem at hand and the resources (such as
the CPU and the amount of memory) available. Even though the approach solves the
problems in a better way, there are approaches that are much better than backtracking.
Chapter 13 discusses the concept of branch and bound that makes use of bound function,
which reduces the number of nodes that need to be processed hence saving time. Having
said that, the approach solves the N-Queens problem that would be almost impossible to
handle via the approaches discussed in the previous chapters.

 Points to Remember

 • Backtracking can be easily implemented using recursion.
 • There are techniques such as branch and bound that are more effi cient than

backtracking.
 • The solution of N-Queens problem using backtracking requires two procedures. the fi rst

checks whether a queen can be placed at that position and the second is a recursive
procedure for the main algorithm.

 • The solution of Hamiltonian cycle and m-colouring also requires two procedures.

 Backtracking generating all the children in the state space tree and reverting back to the
parent if the child is unable to lead to the solution.
 Hamiltonian cycle given: a graph G = (V , E); where V is the set of vertices and E is the set of
edges, each element of E is in the form (x , y) such that x y V, ∈ .
 To �nd a sequence of vertices s v v v vn1 2 3, , ,...,{ } such that

 • no two a vi ’s are same
 • ∀vi there is a direct edge between vi and vi+1
 • no edge is repeated
 • v n and v 1 are directly connected

 m-Colouring problem colouring an m vertex graph in such a way that no two adjacent
vertices have same colour and the number of colours used is m is called m-colouring
problem.
 N-Queens problem the problem of placing N -Queens in an N × N chessboard so that no two
queens attack each other is called N -Queens problem.

KEY TERMS

308 ■ a lg o r i t h M s : D e s i g n a n D a n a ly s i s

 I. Multiple Choice Questions
 1. Who coined the term backtracking?

 (a) D.H. Lehmer
 (b) R.J. Walker

 (c) Prim
 (d) None of the above

 2. If a problem requires searching from a set or ask for an optimal solution, then which
of the following approaches would yield best results?
 (a) Backtracking
 (b) Greedy approach

 (c) Dynamic approach
 (d) None of the above

 3. Which of the following problems can be solved by backtracking?
 (a) 8-Queens
 (b) Sum of subset

 (c) Graph colouring
 (d) All of the above

 4. Which of the following are constraints of an N-Queens problem? If a queen has already
been placed at (x , y) then the other is to be placed at (m , n) This can be done provided
 (a) x m≠
 (b) y n≠

 (c) | y – n | = | x – m |
 (d) All of the above

 5. Which of the following is best suited for N-Queens problem?
 (a) Backtracking
 (b) Branch and bound

 (c) Both
 (d) None of the above

 6. What is the complexity of N-Queens problem via backtracking?
 (a) O (n)
 (b) O (n 2)

 (c) O (1)
 (d) None of the above

 7. What is the complexity of the subset sum problem via brute force?
 (a) O (2 n)
 (b) O (n2 n)

 (c) O (n 2)
 (d) None of the above

 8. What is the number of subsets of a set having cardinality n ?
 (a) 2 n
 (b) n 2

 (c) N
 (d) None of the above

 9. If a graph has n vertices and there are m colours to be fi lled, which of the following
is the correct complexity of graph colouring problem?
 (a) O nmn()
 (b) O mmn()

 (c) O nnn()
 (d) None of the above

 10. Which of the following needs backtracking to be solved?
 (a) Hamiltonian cycle
 (b) Euler’s cycle

 (c) Both of the above
 (d) None of the above

 II. Review Questions
 1. Explain the process of backtracking. What are the advantages of backtracking as

against brute force algorithms?
 2. Explain the solution of travelling salesman problem via backtracking.

EXERCISES

B ac k t r ac k i n g ■ 309

 3. Explain the solution of maze problem via backtracking.
 4. Explain the solution of Hamiltonian cycle problem via backtracking.
 5. Explain the solution of graph colouring problem via backtracking.
 6. Explain the solution of knapsack problem via backtracking.
 7. Can backtracking be implemented without recursion?
 8. Analyse the solution of knapsack problem via backtracking and fi nd its complexity.
 9. Analyse the solution of Hamiltonian cycle via backtracking and fi nd its complexity.
 10. Analyse the solution of graph colouring problem via backtracking and fi nd its

complexity.

 III. Application-Based Questions
 1. Implement N -queens problem via backtracking.
 2. Implement graph colouring problem via backtracking and fi nd solutions of the

 following maps.

a

bcd

1 2

3

45

6

 3. Implement Hamiltonian cycle via backtracking and fi nd the solution of the follow-
ing problems.

A

D

F

CB

E

A

D

F

CB

E

A

D

F

CB

E

 4. Implement maze problem given in Section 12.2 via backtracking.
 5. Implement knapsack problem via backtracking.

Answers to MCQs

 1. (a)
 2. (a)

 3. (d)
 4. (d)

 5. (a)
 6. (d)

 7. (a)
 8. (a)

 9. (a)
 10. (a)

 Branch and Bound

 C H A P T E R 1 3

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept and importance of branch and bound
 • Give the idea of optimization and relaxation
 • Apply branch and bound to solve the following problems:

 ο Travelling salesman
 ο Knapsack
 ο 8-puzzle

 • Recognize the complexity considerations of branch and bound

 13.1 INTRODUCTION

 The state space tree helps to fi nd the solution using the backtracking approach, as dis-
cussed in Chapter 12. The branch and bound approach is similar to the backtracking
approach in the sense that it also uses state space tree. However, there are some differ-
ences between the two approaches.

 The branch and bound approach is also used for unconstrained non-convex optimiza-
tion problems. Optimization has formally been discussed later in the chapter. Moreover,
the way a state space tree is traversed is also different. Branch and bound gives us fl ex-
ibility to traverse the tree in different ways. In this method, it is also seen whether the
node, currently being processed, is the most promising. This task is accomplished by
computing a BOUND at a node.

 The rest of the chapter has been organized as follows. Section 13.2 discusses the
concept of branch and bound and Section 13.3 discusses the travelling salesman prob-
lem. Section 13.4 discusses knapsack problem. Section 13.5 uses the approach to
solve the 8-puzzle problem. Section 13.6 discusses the effi ciency issues in branch
and bound. Section 13.7 discusses optimization and relaxation and the last section
concludes.

B r a n c h a n d B o u n d   ■  311

13.2.2  LIFO Search
In the Last In First Out (LIFO) search, the children of the root node are generated in the
first iteration. The first child is processed. In the next step, the children of the first child

13.2  CONCEPT OF BRANCH AND BOUND

The idea is to put a bound on a node so that if the bound is not better than the best value
obtained so far, then it is not considered promising. In this methodology, the children of
a node are generated only if the node is considered promising. At times, the children of
the best nodes are compared with the bounds of the nodes which are deemed promising.

As stated in Section 7.6 of Chapter 7, there are two major ways in which a given
graph can be traversed. They are depth first search and breadth first search. Branch and
bound technique is an extension of breadth first search.

The approach is better than backtracking as in this approach, the nodes, which are not
considered promising, are not explored. The bound on a node guarantees that a solution
obtained from expanding the node would be greater than a particular number. This is
referred to as lower bound. In case of upper bound, the number generated by the bound-
ing function should be less than a particular number. There are three types of traversals
used to process the nodes of the state space tree. They are as follows.

13.2.1  FIFO Search
In the First In First Out (FIFO) search, the children of the root node are generated in the first
iteration. In the next step, the children of the first child are generated, if it is not already killed
using a bounding function. The children, if not killed, are put in a queue and the children of
the second child of the root are explored. Except for those which are killed, the rest are put
in a queue.

The strategy is similar to the breadth first search traversal of graphs.
For example, in Fig. 13.1, the nodes 2, 3, and 4 are the children of the root node, 1.

The node 2 has children 5, 6, and 7. Say, node 5 is killed by the bounding function. The
rest are put in a queue. The children of node 3 are then generated. The process continues
till the goal state is found.

1

2 3 4

5 6 7

Process the root first,
then all the nodes in the
second level, and so on.

Killed

Figure 13.1  FIFO

312   ■  D e s i g n a n d A n a ly s i s o f A lg o r i t h m s

13.2.3  Example of Branch and Bound: 0/1 Knapsack
The problem has already been stated in Section 10.3 of Chapter 10. A brief description
of the problem has been stated as follows.

In the knapsack problem, a subset of items is to be selected from amongst the given
set of items. The output of the algorithm should be a subset that completely (or almost
completely) fills the bag and the profit earned by the selected elements should be maxi-
mized. The capacity of the bag is given as an input of the problem.

Input
•	 The set of items x x x x xn: , , ,...,1 2 3{ }.

•	 The weights of the above items W w w w wn: , , ,...,1 2 3{ } and

•	 The profits earned by picking the items P p p p pn: , , ,...,1 2 3{ }.

Output
•	 x

n
 = 1 denotes that the item has been picked and x

n
 = 0 means that the item has not

been picked.

Constraints
•	 The total weight of the selected items is less than or equal to the weight of the bag,

i.e.,

	 x w x w x w m1 1 1 2 3 1× + × + × …≤ 	 (13.1)

	 where m is the weight of the bag

are generated, if it is not already killed using a bounding function. The children, if not
killed are put in a stack and the children of the second child of the root are explored.
Except for those which are killed, the rest are put in a stack.

The strategy is similar to the depth first search traversal of graphs.
For example, in Fig. 13.2, the nodes 2, 3, and 4 are the children of the root node, 1.

The node 2 has children 5, 6, and 7. Say, node 5 is killed by the bounding function. The
rest are put in a stack.

The process continues till the goal state is found.

1

2 3 4

5 6 7

Process the root first, then
the first child of the root,
then the first child of the first
node, and so on.

Killed

Figure 13.2  LIFO

B r a n c h a n d B o u n d   ■  313

Goal The ‘profit earned’ is to be maximized, that is, x p x p x p1 1 1 2 3 1× + × + × ... is to be
maximized.

The concept of branch and bound can be best explained by 0/1 knapsack. The state
space tree of 0/1 knapsack is easy to craft. The left sub-tree of the root node repre-
sents the inclusion of the first element of the given set and the right sub-tree of the root
represents the exclusion of the first element. The root node has been numbered ‘1’ in
Fig. 13.3.

1. Root profit, p = 0
weight, w = 0

2. Profit, p = p − p1
weight, w = w + w1

4. Profit, p = p − p2
weight, w = w + w2

5. Profit, p = p
weight, w = w

6. Profit, p = p − p2
weight, w = w + w2

Item 1 not includedItem 1 included

At each level
choose the
node having

more negative
value of p

Item 2 included

Item 2 not includedItem 2 included

Item 2 not included

7. Profit, p = p
weight, w = w

3. Profit, p = 0
weight = 0

Figure 13.3  Applying branch and bound in knapsack problem

The left sub-tree of the node numbered ‘2’ denotes the inclusion of the second
element of the set and its right sub-tree denotes the inclusion of the second element
of the given set. Same is the case with the node numbered 3. The difference, though,
is that the left sub-tree of the node numbered ‘2’ means leaving both the first and the
second element have been included in the solution and the left sub-tree of ‘3’ denotes
the exclusion of the first element and inclusion of the second element of the given set
in the solution set.

The branch and bound approach uses the breadth first search of the above tree and
then tries to enhance it. In this approach, the children of nodes that are not deemed
promising would not be generated. Breadth first search can be implemented using a
queue. The nodes that are deemed promising would be placed in this queue.

314   ■  D e s i g n a n d A n a ly s i s o f A lg o r i t h m s

The nodes are placed in the queue if the profit associated with them is better than the
best so far. Otherwise, the node is not expanded.

The breadth first search is no better than depth first search; however, we can make
it better using our bounding function. The above strategy is also referred to as best first
search.

13.3  TRAVELLING SALESMAN PROBLEM

The travelling salesman problem is a combination of Hamiltonian cycle problem and
minimum spanning tree problem. The Hamiltonian cycle is a path leading to the source
node, without having to traverse any node more than once. The problem has already
been discussed in Section 12.6 of Chapter 12.

Formally, if a graph G = (V, E) is given, wherein the weight of an edge varies from
from v

i
 to v

j
, where v v Vi jand ∈ is given by w

ij
. The aim is to find a path v

1
v

i1
 v

i2
… v

1

where v vij ≠ 1 , such that the net cost of the path is minimum and all the v
ij
’s are distinct.

The brute force approach of this algorithm would require the elicitation of all (n − 1)!
paths followed by the calculation of the costs of those paths. Amongst these paths, the
one having a minimum cost would be selected.

The above approach is computationally very expensive and is not feasible even for a
moderately large value of n, n being the number of nodes.

A better approach was suggested in Chapter 10. The branch and bound algorithm
would not drastically reduce the complexity, but would help us to reach the solution
quickly. The algorithm is based on the concept of reduced matrix, which has been
explained here.

The reduced matrix is obtained as follows:
•	 Subtract the minimum element of a row from each element of the row, thus making

at least one element of the row equal to zero.
•	 Repeat the above for each column.
After the above process, there would be at least one zero in each row and each column.

13.3.1  Calculation of Cost
While carrying out the above steps, the value that is subtracted from each row and col-
umn is noted. The sum of the above values would give the cost of the reduced matrix.

13.3.2  Procedure
The given cost matrix is converted into a reduced matrix, as per the steps stated above.
The cost of converting the matrix into reduced matrix becomes the value of the root node
of the state space tree.

In the next step, the reduced cost matrix is taken as the input matrix and the following
calculations are carried out.

B r a n c h a n d B o u n d   ■  315

As an example consider a graph having 4 vertices {1, 2, 3, 4}. If node 1 of the given
graph is taken as the source node, then costs (1, 2), (1, 3), and so on are calculated. In
order to calculate the cost of (1, i), the elements of the first row and the ith column are
made ∞. Moreover, the element at the position (i, 1) is also made ∞. The resultant matrix
is then converted into reduced matrix and the respective costs are noted. For example,
if the cost of the reduced matrix is 20 and that of (1, 2), (1, 3), and (1, 4) are 20, 23,
and 40, respectively, then the children of the root node will have labels 20, 23, and 40.
Amongst these nodes, the one having minimum cost is selected. In the above example,
the selected node has cost 20. It implies that from the source node, which is 1 in this
case, one must move to 2.

Now, since 1 and 2 have been visited, the cost of (1, 2, 3) and (1, 2, 4) are calcu-
lated. The cost of (1, 2, 3) is calculated by making the elements of the third column of
the matrix obtained for calculating (1, 2) equal to ∞ and then reducing the matrix so
obtained. In the same way, the cost of (1, 2, 4) is calculated by making the elements of
the third column of the matrix obtained for calculating (1, 2) equal to ∞ and then reduc-
ing the matrix so obtained. Assume that the two values obtained above are 40 and 32, the
path leading to (1, 2, 3) would be selected.

Note that there were just four vertices in the graph. The last step would now be to
calculate (1, 2, 3, 4) is selected.

The state space tree of the above has been shown in Fig. 13.4. The above concept can
be understood by Illustration 13.1.

1

Cost 20

(1, 2, 3)

Cost 40

(1, 2, 4)

Cost 32

(1, 2)

Cost 20

(1, 3)

Cost 23

(1, 4)

Cost 40

Figure 13.4  Selection of node by least cost

Illustration 13.1 	 The matrix of a graph is shown as follows. Find the Hamiltonian
cycle, starting from the root node, having least cost.

316   ■  D e s i g n a n d A n a ly s i s o f A lg o r i t h m s

Solution The cost matrix of a graph is as follows. The cost of going from node 1 to
node 2 is 7, however, that of going from 2 to 1 is 2 (the element of the second row and
first column is 2). All the elements of the main diagonal are infinity.

∞
∞

∞
∞

∞























7 2 10 5
2 5 10 6
4 7 5 12
3 5 7 2

12 7 3 4

The first step in solving the travelling salesman problem is to reduce the matrix such that
each row and each column has a zero. This can be done by subtracting the least element
of a row from each element of the row and then repeating the same process for the col-
umn. For example, in the given matrix, the minimum element of the first row is 2. So 2 is
subtracted from each element of the first row. In the second row, the least element is 2,
in the third it is 4, 3 in the fourth, and 3 in the fifth. These elements are subtracted from
the respective rows. The process leads to the following matrix:

∞
∞

∞
∞

∞























5 0 8 3
0 3 8 4
0 3 1 8
1 3 5 0
9 4 0 1

The process is then repeated for the columns. The second and the fourth columns do
not have a zero. So the minimum element of the second column, which is 5 and that
of the fourth column, which is 1, is subtracted from the columns. The net value that is
subtracted from the original matrix in order to convert it to the reduced matrix is 17. So
the value associated with the root node of the state space tree is 17.

∞
∞

∞
∞

∞























2 0 7 3
0 3 7 4
0 0 0 8
1 0 5 0
9 1 0 0

The next step finds the node which must be visited after the first node in order to opti-
mize the cost of the selected path. This is done as follows. The matrices (1, 2), (1, 3),
(1, 4), and (1, 5) would be found and that having the least cost would become the node
whose children would be generated. In order to find, say (1, 2) the first row, second

B r a n c h a n d B o u n d   ■  317

column, and the element (1, 2) are made infinity. The resultant matrix would then be
reduced. The resultant matrix is as follows:

∞ ∞ ∞ ∞ ∞
∞ ∞

∞ ∞
∞ ∞
∞ ∞























3 7 4
0 1 8
1 5 0
9 0 0

From the second row, 3 needs to be subtracted so that at least one element of the row
becomes 0. The rest of the elements need not to be altered. The matrix (1, 2), therefore,
is as follows. The cost associated with this matrix would be 17 (the cost of the reduced
matrix) + 3 (the value subtracted in order to make the (1, 2) reduced). The value associ-
ated with the node depicting (1, 2) in the state space tree would be 20.

∞ ∞ ∞ ∞ ∞
∞ ∞

∞ ∞
∞ ∞
∞ ∞























0 4 1
0 1 8
1 5 0
9 0 0

In order to find, say (1, 3) the first row, third column, and the element (1, 3) are made
infinity. The resultant matrix would then be reduced. The resultant matrix is as follows:

∞ ∞ ∞ ∞ ∞
∞ ∞

∞ ∞
∞ ∞
∞ ∞























0 7 4
0 1 8

1 0 0
9 1 0

In this case, the matrix is already in the reduced form, therefore, nothing needs to be
done. The cost associated with the node depicting (1, 3) is 17.

In order to find, say (1, 4) the first row, fourth column and the element (1, 4) are made
infinity. The resultant matrix is then reduced. The resultant matrix is as follows:

∞ ∞ ∞ ∞ ∞
∞ ∞

∞ ∞
∞ ∞

∞ ∞























0 3 4
0 0 8

0 5 0
9 1 0

In this case also the matrix is already in the reduced form and hence, the cost associated
with the matrix is 17.

318   ■  D e s i g n a n d A n a ly s i s o f A lg o r i t h m s

In order to find, say (1, 5) the first row, fifth column and the element (1, 5) are made
infinity. The resultant matrix would then be reduced. The resultant matrix is as follows:

∞ ∞ ∞ ∞ ∞
∞ ∞

∞ ∞
∞ ∞

∞ ∞























0 3 7
0 0 1
1 0 5

1 0 0

In this case also the matrix is already in the reduced form and hence, the cost associated
with the matrix is 17.

The state space tree formed up to this point is depicted in Fig. 13.5. The nodes depict-
ing the path from (1, 3), (1, 4), and (1, 5) have the same cost. The first of these, that is,
the node depicting the path (1, 3) is chosen.

1

(1, 2) (1, 3) (1, 4) (1, 5)

The children of the node
having least cost are
generated at every level.

Figure 13.5  TSP using branch and bound

In the next step, the costs of (1, 3, 2), (1, 3, 4), and (1, 3, 5) are calculated. In order
to calculate the cost of (1, 3, 2), the following steps are followed. The elements of the
first row and the fourth column of the matrix (1, 3) are made infinity. In addition, the
elements (2, 1) and (3, 1) are made infinity. The resultant matrix would then be reduced.
The matrix (1, 2, 3) is as follows. The cost of this matrix is 22.

∞ ∞ ∞ ∞ ∞
∞ ∞ ∞
∞ ∞ ∞

∞ ∞ ∞
∞ ∞ ∞























3 0
0 7

1 0
9 0

This is followed by the crafting of matrices (1, 3, 4) and (1, 3, 5). From these three matri-
ces whichever has the least cost is explored. The formation of the matrices (1, 3, 4) and
(1, 3, 5) is left as an exercise for the reader. Moreover, the reader is also expected to find
the matrices of the next two levels. There would be three such matrices. The final matrix
not only gives the minimum cost of a node to another, but also the path from the root
node to that matrix also tells us the nodes to be traversed in order to optimize the cost.

B r a n c h a n d B o u n d   ■  319

13.4  KNAPSACK PROBLEM

The problem can be stated as follows.
Let there are n items {1, 2, 3, …, n}. The weight of the ith element is w

i
. The weights are

in the set w w w wn1 2 3, , ,..., . The profit earned on selecting the ith element in the solution
set is p

i
. The profits are the elements of the set p p pn1 2, ,...,{ }. The selection or the rejec-

tion of an item is depicted by x
i
. If the value of x

i
 is 1, then the ith element is deemed

to be selected. On the other hand, if the value of the ith element is 0, then it is deemed
to be rejected. The goal is to maximize the value of x pi ii

n

=∑ 1
, such that x w mi ii

n
≤

=∑ 1
,

where m is the maximum capacity of the knapsack.

13.4.1  Knapsack Using Branch and Bound (Least Cost)
The problem can be solved using the branch and bound methodology. The procedure of
doing so is as follows. The first node of the state space tree depicts the decision regard-
ing the inclusion or the non-inclusion of the first item. The left sub-tree of the root
indicates that the first item is selected and the left sub-tree indicates its non-inclusion.
The inclusion of the first node means that the first node would be there in the solution
set (except for the case wherein its weight exceeds the value of m). The left-hand side
of the root contains the cost of selecting the first item. This cost is the minus of the
profit earned if the items are selected in order of their occurrence, till the total weight
selected is less than m. The right-hand side would contain the cost incurred in leaving
the item 1.

The left sub-tree of the second level indicates the inclusion of the second item and the
right, the non-inclusion of the second item. The children of only that node is generated
which is better in terms of cost (more negative cost). The seemingly incompetent node
is not expanded. When the complete state space tree is formed, the items selected are
included in the solution set.

In order to understand the concept, let us explore Illustrations 13.2 and 13.3.

Illustration 13.2	 Apply branch and bound to solve the following knapsack problem.
The symbols have the usual meaning.

n = 3

m = 6

w = { }2 3 4, ,

p ={ , , }1 2 5

Solution If item 1 is included in the solution set, then item 2 can be selected but
item 3 cannot be selected. The profit earned in selecting items 1 and 2 would be 3 units
and hence the cost would be −3 units.

320   ■  D e s i g n a n d A n a ly s i s o f A lg o r i t h m s

The exclusion of the first item would not make room for the inclusion of the third
item. The profit earned would be 2 in this case and the cost would be −2. Since the least
cost method is used, the node indicating the inclusion of the first item would be chosen.

The inclusion of the second item would result in −3 as the cost, whereas its exclusion
would make room for the inclusion of the third item. The cost, in this case, would be −6.

In the next step, the node indicating the exclusion of item 2 is selected. This is followed
by the decision regarding the inclusion or the non-inclusion of the third item. The non-inclu-
sion of the third item leaves only the first term in the solution set and hence the cost becomes
−1. The solution set would therefore be {1, 0, 1} meaning that the first item is selected,
second is not selected, and the third is selected. The solution is depicted in Fig. 13.6.

−3

−3 −2

1 not included

2 not included

3 not included

1 included

2 included

3 included

−3 −6

−6 −1

Figure 13.6  State space tree of Illustration 13.2

Illustration 13.3	 Apply branch and bound to solve the following knapsack problem.
The symbols have the usual meaning.
n = 7
m = 15

w = { }2 3 5 7 1 4 1, , , , , ,

p = { }10 5 15 7 6 18 3, , , , , ,

Solution If item 1 is included in the solution set, then items 2, 3, 5, and 6 can be selected
but item 4 cannot be selected. The profit earned in selecting these items is 54 and hence
the cost would be −54 units.

The exclusion of the first item would make room for the inclusion of the fourth item.
The profit earned would be 27 in this case and the cost would be −27. Since the least
cost method is used, the node indicating the inclusion of the first item would be chosen.

The inclusion of the second item would result in −54 as the cost, whereas its exclusion
would make room for the inclusion of the fifth item. The cost, in this case, would be −38.

In the next step, the node indicating the exclusion of item 2 is selected. This is followed by
the decision regarding the inclusion or the non-inclusion of the third item. On the non-inclusion

B r a n c h a n d B o u n d   ■  321

13.5  8-PUZZLE PROBLEMS

8-Puzzle problem is an instance of N-puzzle problem defined in Section 20.3.1. The solu-
tion of the problem is done using a process planning. However, a brief description of the
problem and its solution by branch and bound has been discussed the following section.

of the third item, the cost becomes −54. The process continues for the rest of the items also.
The solution set would therefore be {1, 1, 1, 0, 1, 1, 0} meaning that the first item is selected,
second is not selected, and the third is selected. The solution is depicted in Fig. 13.7.

−54

−54

1 not included1 included

−54 −38

−54

−54 −31

−54−27

−54

−54 −39

−54−39

−51

−27

2 not included2 included

3 not included3 included

4 not included4 included

5 not included5 included

6 not included6 included

7 not included7 included

Figure 13.7  State space tree of Illustration 13.3

322   ■  D e s i g n a n d A n a ly s i s o f A lg o r i t h m s

13.5.1  First In First Out
The concept of First In First Out can be understood by considering the 8-puzzle prob-
lem. In the 8-puzzle problem, there are 9 cells and 8 numbers. One cell is empty so that
the rest of the cells can be moved. The goal is to reach the solution configuration, which
is the first cell having numbers 1, 2, and 3, in that order the second row having 4, 5,
and 6 in that order and the third row having 7 and 8. Here, not all the initial configura-
tions can lead to the solution. There are many ways of reaching the goal state. Of these,
the First In First Out (FIFO), Last In First Out (LIFO), and Least Cost (LC) methods are
discussed in this section.

In FIFO, the root node is expanded, that is, the children of the root node are generated.
In this process, some of the children may be killed by the bounding function. The first
child is then processed. The rest of the children, which are not killed, are put in queue.
The process can be understood by Fig. 13.8. The root depicts the given configuration. The
empty space, which is at the corner, can be moved either to the left or up. These two situ-
ations are depicted by the two children of the root. These two would be processed in that
order. The first child of the left configuration (the left child of the root’s child) gives the
same configuration as that of the root, and is hence not processed. This may be considered
as the first bounding condition, though there are many in this case. The second and the

1 2 3

4 6 8

7 5

1 2 3

4 6 8

7 5

1 2 3

4 6 8

7 5

1 2 3

4

6

8

7 5

1 2

34

87 5

1 2

6

3

4

87 5

1 2 3

4 6

87

5

1 2 3

4 6

7 8

5

1 2 3

4 6

87 5

Figure 13.8  Applying FIFO to the 8-puzzle problem

B r a n c h a n d B o u n d   ■  323

third child represents the cases wherein the empty cell is moved to the left and up, respec-
tively. After this, the two possible children of the right node of the root are generated.

The above process continues and the children at each possible level are generated. Though
the figure does not show all the children but one of the paths leading to the goal state has
been shown. The process is similar to the breadth first search traversal technique in graphs.

Though the method is easy to understand and implement, it does not find the solu-
tion efficiently. For instance, if the solution is at the tenth level, the above method will
generate all the possible children of the first nine levels and then move to the tenth level.

13.5.2  Last In First Out
The concept of Last In First Out can be understood by considering the 8-puzzle problem.
In LIFO, the root node is expanded, that is, the children of the root node are generated. In
this process, some of the children may be killed by the bounding function. The first child
is then processed. The rest of the children that are not killed are put in a stack. The process
can be understood by Fig. 13.9.

1 2 3
4 6 8
7 5

1 2 3
4 6 8
7 5

1 2 3
4 6 8
7 5

1 2 3
4 6

87 5

1 2 3
4

87
5 6

1 2 3
4

8
6

7 5

1 2 3
4 6

87
5

1 2 3
4 6

87 5

Figure 13.9  Applying LIFO in the 8-problem

324   ■  D e s i g n a n d A n a ly s i s o f A lg o r i t h m s

The root depicts the given configuration. The empty space, which is at the corner, can
be moved either to the left or up. These two situations are depicted by the two children of
the root. These two would be processed in that order. The first child of the left configura-
tion (the left child of the root’s child) gives the same configuration as that of the root and
is hence not processed. This may be considered as the first bounding condition, though
there are many in this case. The second child represents the cases wherein the empty cell
is moved to the right. After this, the child of this node is generated.

The above process continues and the first children at each possible level are generated.
Though the figure does not show all the children but one of the paths leading to the goal state
has been shown. The process is similar to the depth first search traversal technique in graphs.

Although the method is easy to understand and implement, it also does not find the
solution efficiently. For instance, if the solution is at the first child of the last child of the
root, the above method will generate all the possible children of the previous children
and then would come to the requisite node.

13.5.3  Least Cost Search
The above methods are inefficient. Some of the researchers like Sahni [11] have termed
these methods as blind. An efficient method is one which is able to tell us how good a
generated child is. If the generated child is too poor then it need not be explored as in
there is no need to generate its children. However, if the child is promising, its children
would be generated. In the above example, if the net cost associated with each child is
the cost in reaching that state plus the cost incurred in reaching the goal state from that
state, the node having least cost would be explored and its children would be generated.

The method is similar to the A* method used in artificial intelligence. However, that
is easier said than done. The most difficult part would be to design the cost function.
The concepts of hamming distances, etc., can be used to find the effective cost of a
node.

The least cost method would be used in text that follows. In the case of optimization
problems where profit is given, the cost is the negative of the profit. This idea has been
used to solve the knapsack problem.

13.6  EFFICIENCY CONSIDERATIONS

The following discussion focuses on the efficiency of the branch and bound method. The
efficiency of a method, as stated earlier, is determined by the time and the space.
The space would depend on the number of nodes of the state space tree.

As stated earlier, branch and bound can be implemented using the Least Cost (LC)
method, Last In First Out (LIFO), and the First In First Out (FIFO) methods. The least
cost method, however, has been an issue of contention explored in the following discus-
sion. One of the goals of selecting the bound should be to reduce the number of nodes in

B r a n c h a n d B o u n d   ■  325

the state space tree. The reduction in the number of nodes can be done with the bounding
function. The bound that is selected is generally initialized with a better value but it is
hard to determine whether this ‘better’ value will really decrease the number of nodes of
the state space tree. This, like most of the optimization problems, is a precarious issue.
It cannot be said, as of now, if the value of bound is greater than our value and it would
lead to reduction in the number of nodes.

The use of dominance relation has also come under the cloud of suspicion of not being
better in terms of the number of nodes generated. As we will see in the following discus-
sion, the answers to the above questions are not very much contrary to the expectations.

As stated earlier, there are three methods of generating the nodes in the state space
tree. They are least cost, FIFO, and LIFO. These methods, when used, generate the mini-
mum number of nodes when the value of the cost is the least upper bound.

Though there can be more than one upper bound, they do not outperform each other
in terms of the number of nodes generated. The analysis of the trees point to the fact that
the use of a better cost function does not increase the number of nodes if LIFO or FIFO
is used; however, this might be the case if least cost method is used.

The nature of the dominance relation and the notion of its being strong also deter-
mine the number of nodes of the state space tree. From the above discussion, it becomes
clear that the strategies for determining the dominance relation and the cost function are
the important factors when efficiency is of concern.

The generalization of LIFO, FIFO, and LC gives rise to what is called a heuristic
search. The search is based on the evaluation of a function called heuristic function. This
method finds extensive applications in artificial intelligence. The topics like knapsack
can be solved via heuristic search algorithms.

13.7  OPTIMIZATION AND RELAXATION

This section throws some light on the concepts of relaxation and optimization. The con-
cepts are important both for understanding this chapter and the concepts in NP class
(Chapter 19). Here, in most of the cases, an optimization problem that has a large
domain is a contender of NP-hard problem. Moreover, optimization is also studied in
Mathematics. Lately, methods based on artificial intelligence are being used to solve
such problems. Some of these methods have been discussed in Chapter 23.

13.7.1  Optimization
Generally, the given circumstances can be described in terms of some constraints. Under
the given circumstances, obtaining the best results is referred to as optimization. The

Tip: If there are more than one upper bound then neither of them would outperform the
other when space considerations are taken into account.

326   ■  D e s i g n a n d A n a ly s i s o f A lg o r i t h m s

techniques invented by Newton (calculus), Bernoulli, Euler, etc., laid the foundation of
calculus of variation. Both calculus and calculus of variation are important techniques of
optimization. The optimization problems are used in engineering and non-engineering
applications alike. Optimization finds its application in operations research as well. The
goal of optimization is to maximize or minimize a function called objective function. As
a matter of fact, maximizing f(x) is same as minimizing −f(x). So, the problems related to
maximization can be converted to minimization and vice versa. We have explored many
optimization problems in the previous chapters. For example, the travelling salesman
problem, the knapsack problem, and the job scheduling are all examples of optimizing
problems.

The optimization can be local or global. Local optimization methods are faster but do
not guarantee a solution that is the best. The global optimization techniques are, though
slow, but guarantee correct result.

There are many techniques for optimization. Different techniques are used as per the
problem. The techniques employed to solve optimization problems can be categorized
as follows.

In the first kind, the statistical methods are used to solve the optimization problems.
Techniques such as regression analysis, cluster analysis, and factor analysis come under
this class. The second kind of techniques uses stochastic process. The examples of tech-
niques that use this method are queuing theory, simulation methods, reliability theory,
etc. In the third type of techniques, mathematical programming is used. Techniques such
as calculus methods, linear programming, integer programming, and dynamic program-
ming come under this class (Fig. 13.10).

Solving
optimization problems

Statistical
methods

Stochastic
process

Mathematical
programming

Figure 13.10  Classification of optimization problems

Statement

Maximize f(x),

Subject to g x() ≤ 0
and p x() = 0
f(x) is referred to as objective function. g(x) is the inequality and p(x) is the equality
constraints.

B r a n c h a n d B o u n d   ■  327

The answer is stored in a vector called design vector.
When the constraints are given, then the problem is called constraint optimization

problem. When the constraints are not given, then the problem becomes an uncon-
strained problem. The existence of constraints and the nature of the design variables
help classify the optimization problems. In the second classification, the parameters are
not continuous functions that minimize or maximize the objective functions, whereas
in the second case they are. The former are called static optimization problems and the
latter are called dynamic optimization problems (Fig. 13.11).

Optimization
problems

With constraints
Without

constraints
DynamicStatic

Constraints
On the basis
of variables

Figure 13.11  Classification of optimization problems

Relaxation

Of constraints Of variables Of objective functions

Figure 13.12  Types of relaxation

One such optimization where the functions (both objective and constraint) are con-
vex is called convex optimization. Branch and bound is one of the methods of solving
convex optimization problems.

13.7.2  Relaxation
During the literature review, it was found that many authors associate branch and bound
with the concept of relaxation. The following discussion explores the idea of relaxation
and its applicability to branch and bound.

It is clear from the above discussion that branch and bound is used for optimization prob-
lems. Any optimization problem has three components: the objective function that needs to
be maximized or minimized, the constraints, and the variables, which are binary in nature
and would be used in the solution. The types of relaxation have been shown in Fig. 13.12.

328 ■ d e s I g n a n d a n a ly s I s o F a lg o r I t h m s

 The relaxation would generally reduce the given problem in the form which has
looser constraints. For example, obtaining answers in terms of variables that are non-
binary, perhaps from a set that is larger than the set of binary numbers.

 However, one may decide to relax the inequalities instead of constraints. In this case,
the inequalities can be replaced by what is called surrogate inequalities . The idea is to
replace

 a xi i
i

n

=
∑

1

 with

 a yi i
i

n

=
∑

1

 such that

 a x a yi i
i

n

i i
i

n

= =
∑ ∑≤

1 1

 One may also decide to relax the objective function. If the function, say, f (x) is to be
maximized, then instead of f (x) the function h (x) can be maximized which is always
greater than f (x).

 The relation can also be a mixture of the above techniques. For instance, in the case
of Lagrange’s relation, both objective functions and constraints are modifi ed.

13.8 CONCLUSION

 The chapter discusses the branch and bound strategy. The idea is an extension of back-
tracking discussed in the previous chapter. However, branch and bound reduces the nodes
of the state space tree and is therefore more effi cient than backtracking. The traversal of the
tree can be done by either LIFO or FIFO or the least cost method. The examples of these
methods have been discussed in the chapter. The chapter also provides food for thought
for the formulation of the bounding functions. The reader is expected to implement the
procedures given above and compare the running time with the dynamic approach.

 Points to Remember

 • The branch and bound approach is also used for unconstrained non-convex optimiza-
tion problems.

 • Branch and bound can be implemented using the Least Cost (LC) method, Last In First
Out (LIFO), and the First In First Out (FIFO) methods.

 • There are three methods of generating the nodes in the state space tree. They are least
cost, First In First Out, and Last In First Out.

B r a n c h a n d B o u n d ■ 329

 KEY TERMS

 FIFO Search In the FIFO search, the children of the root node are generated in the first itera-
tion. In the next step, the children of the first child are generated, if they are not already killed
using a bounding function. The children, if not killed, are put in a queue and the children of
the second child of the root are explored. Except for those which are killed, the rest are put in
a queue.
 LIFO Search In the LIFO search, the children of the root node are generated in the first
iteration. The first child is processed. In the next step, the children of the first child are
generated, if it is not already killed, using a bounding function. The children, if not killed,
are put in a stack and the children of the second child of the root are explored. except for
those which are killed, the rest are put in a stack.
 Optimization It refers to the technique which minimizes or maximizes an objective function,
subject to given constraints.
 Relaxation The relaxation would generally reduce the given problem in the form which has
looser constraints.

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following is used in FIFO search?

 (a) Queue (b) Stack (c) Both (d) None
 2. Which of the following is used in LIFO search?

 (a) Queue (b) Stack (c) Both (d) None
 3. Which of the following can be solved by the least cost method of branch and bound

technique?
 (a) Travelling salesman problem
 (b) Knapsack problem

 (c) Both
 (d) None

 4. Which of the following is considered as blind search?
 (a) LIFO (b) FIFO (c) Both (d) None

 5. Which of the following is a type of optimization?
 (a) Constrained
 (b) Unconstrained

 (c) Both
 (d) None

 • When the constraints are given then the problem is called constraint optimization prob-
lem. When the constraints are not given then the problem becomes an unconstrained
problem.

 • Optimization can be local or global. Local optimization methods are faster but do not
guarantee the best solution. The global optimization techniques, though slow, guarantee
the correct result.

330   ■  D e s i g n a n d A n a ly s i s o f A lg o r i t h m s

	 6.	 Which of the following is a type of relaxation?
(a)	 Relation of constraints
(b)	 Relaxation of variables

(c)	 Both
(d)	 None

	 7.	 Which of the following is a special case of backtracking?
(a)	 Branch and bound
(b)	 Divide and conquer
(c)	 Dynamic programming
(d)	 None of the above

	 8.	 Which of the following is not used in 8-puzzle problem?
(a)	 LIFO
(b)	 FIFO

(c)	 Least cost search
(d)	 Divide and conquer

	 9.	 Which of the following is true according to branch and bound techinique?
(a)	 It requires a bounding function.
(b)	 It reduces the space requirement of the state space tree.
(c)	 It is a special case of backtracking.
(d)	 All of the above.

	10.	 Which of the following can be considered as branch and bound?
(a)	 A*
(b)	 B*

(c)	 Linear search
(d)	 None of the above

II.  Review Questions
	 1.	 Discuss the concept of branch and bound. Compare it with backtracking.
	 2.	 Explain how to solve travelling salesman problem using branch and bound.
	 3.	 Explain how to solve the Knapsack using branch and bound.
	 4.	 Explain how to solve 8-puzzle problem using branch and bound.
	 5.	 Discuss the efficiency considerations in branch and bound.
	 6.	 Explain the concept of optimization.
	 7.	 What is relaxation? What is its importance with respect to branch and bound?

III.  Numerical Problems
	 1.	 The cost matrix of the input graphs has been given as follows. Solve the travelling

salesman problem in the following cases using branch and bound:

(a)	

∞
∞

∞

















7 1

3 7

9 8

				 (b) 

∞
∞

∞

















7 1

7 7

1 7

(c)	

∞
∞

∞
∞



















10 3 7

2 9 12

9 2 11

5 4 8

			 (d) 

∞
∞

∞
∞



















10 3 7

10 9 12

3 9 11

7 12 11

B r a n c h a n d B o u n d ■ 331

 (e)

∞
∞

∞
∞

∞





















7 2 10 5

2 5 10 6

4 7 5 12

3 15 7 2

12 7 31 42

 (f)

∞
∞

∞
∞

∞





















7 2 10 5

7 5 10 6

2 5 5 12

10 10 5 2

5 6 12 2

 2. Can branch and bound be applied to solve Illustration 9.1 of Chapter 9.
 3. The initial confi guration of 8-puzzle problem is as follows. Apply the following

methods to fi nd the solution (if possible).
 (a) LIFO (b) FIFO (c) Least cost

1 6 3

4 2 8

7 5

1 6 7

2 4 8

3 5

1 6 7

2 4 8

5 3

 4. Solve the following knapsack problem:
 n = 5
 P = [20, 10, 5, 4, 3]

 w = [10, 4, 3, 9, 8]
 m = 22

 where n is the number of terms, P denotes the profi t gained on selecting each item, w
is the weight of each item, and m is the capacity of knapsack.

 Answers to MCQs

 1. (a)
 2. (b)

 3. (c)
 4. (c)

 5. (c)
 6. (c)

 7. (a)
 8. (d)

 9. (d)
 10. (a)

 Randomized Algorithms

 C H A P T E R 1 4

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of randomized algorithms
 • Differentiate between Monte Carlo and Las Vegas approach
 • Explain the complexity classes of randomized algorithms
 • Use randomized algorithms to solve problems

 14.1 INTRODUCTION

 Randomization is a way of life. We make use of randomization in our daily life. The
concept is extensively used in gaming theory, generating the initial population of
genetic algorithm, assigning weights in neural networks, and so on. The use of randomi-
zation in genetic algorithms and neural networks has been dealt with in Chapter 23. On
the face of it, the use of randomization in algorithms may seem preposterous, illogical,
or even irrational. One might not fi nd it logical to use random algorithms after studying
the design techniques discussed in this section. One may think that even if the answer
to the problem is found using the concept of randomization, then it would be diffi cult to
explain how the results have been obtained.

 At times most of the things that cannot be explained have their reasons hidden in
simple mathematics. The probability theory along with statistical techniques has the
capacity to answer most of the things that are deemed inexplicable by us, such as rain-
ing, weather forecasting, migration of birds, and even the evolution of the earth. These
things might appear incomprehensible but the reason might lie in simple probability
theory.

 This chapter explores the concept of randomized algorithms. Randomized algo-
rithms generally improve the worst case time complexity. As an example, the sixth
section of this chapter introduces randomized quick sort, in which the worst case com-
plexity has been improved by incorporating randomization. The idea is that the reader
should be able to tackle diffi cult problems using the concept. The chapter intends to
cover the basics of randomization explanation of the various approaches used therein.

R a n d o m i z e d A lg o r i t h m s   ■  333

The problems have been given but an involved mathematical analysis is not the purpose
of this chapter.

The chapter examines the two approaches used in the randomized algorithms and
discusses the methods. It also discusses the complexity classes and examines some of
the basic problems that can be tackled using this approach.

14.2  RANDOMIZATION

According to the Oxford dictionary, a random process is one which does not follow any
specific pattern. The randomization process is an experiment that gives each item an
equal chance to be considered.

Before proceeding any further, let us try to understand what a random sequence is.
A good random sequence has generally two attributes:
•	 One cannot guess the next number as in the sequence generated by a random number

generator does not form a pattern.
•	 As far as possible, the probability of turning up of a particular number is the same.
For example, if a random number generator produces numbers from 1 to 10. Five random
numbers are generated from the generator and the sequence produced is 1, 1, 2, 1, 3;
then the given generator cannot be considered good as the sequence contains a ‘1’ many
more times as compared to other numbers. If the sequence is 5, 4, 3, 2, 1; even then it
is not a good random sequence as the output forms a pattern. However, if the sequence
is 2, 4, 1, 5, 3, then it can be considered a better sequence than the above two. Though
the above discussion in no way intending to state that non-repetition is the only criteria
for deciding the goodness of a random sequence, there are many tests for finding out the
goodness of a random sequence. Tests such as chi-square, coefficient of auto-correla-
tion, etc., help to judge the quality of a random sequence.

In order to generate a random number, we generally use a random number generator.
The pseudorandom number generator generates a random number when the requisite
function is invoked. Table 14.1 gives the functions/methods that need to be invoked in
order to generate a random number.

If the random number generated is either 0 or 1, then the output would henceforth be
referred to as randomized bits.

Table 14.1 G enerating a random number in various languages
Language Procedure to generate a random number

C Use rand() or random() after randomize()

C++ Use rand() or random() after invoking randomize()

C# Instantiate the random class and call the next
function

JAVA Instantiate the random class and call the next
method

334   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

14.3  MONTE CARLO vs LAS VEGAS ALGORITHMS

Randomized algorithms are those that use randomized bits as input. The algorithm is
random in the sense that either it produces a correct output in random amount of time or
it produces an output (which may or may not be correct) in a fixed amount of time. So,
either the time to produce a correct output is infinite (in the maximum case) or the output
obtained may not be the best.

The first type of algorithms always produces a correct answer. These are called Las
Vegas algorithms. The second type of algorithms terminates in a limited period of time
but the output produced may or may not be correct. Such algorithms are called Monte
Carlo algorithms. Figure 14.1 and Table 14.2 depict the classification.

Randomized algorithms

Monte Carlo: Chance of

producing an incorrect result

Las Vegas: Always produce

a correct result

Figure 14.1  Classification of randomized algorithms on the
basis of running time

Table 14.2 L as Vegas vs Monte Carlo
Las Vegas Monte Carlo

Eventually succeeds with a probability 1 Not the case

Running time may be infinity Running time is constant

14.3.1  Selection of Appropriate Technique
Normally, an algorithm designer would want his algorithm to succeed. In that case, he
would use a Las Vegas algorithm. However, in some cases, where time is a major con-
straint, Monte Carlo algorithms are used. For example, in the case of search, a program-
mer would want his algorithm to succeed with a probability 1. This can, however, be
done only if the number of elements in the list is not colossal. For such situations, the
Las Vegas algorithms are suitable. In the other cases, wherein the number of elements is
too large and there is a fitness associated with each item, we would want the selection
algorithm to produce the result with a good fitness but in a finite time. In such cases,
the Monte Carlo algorithms may be used. Such cases may arise in the designing of a
crawler, which is a part of a search engine. The search procedures, both using Las Vegas
and Monte Carlo, have been discussed as follows.

R a n d o m i z e d A lg o r i t h m s   ■  335

	 Algorithm 14.1  Randomized_Search (a[], x)

//The algorithm finds the position at which the element ‘x’ is present in the
array a
{
while(true)
 {
 i=rand()%n;
 if (a[i]==x)
 {
 Print “Found at “+x;
 exit();
 }
 }
}

Case 1  Example of Las Vegas Algorithm
The algorithm exits only if the required element is found. While designing the algo-
rithm, it was assumed that the element x is present in the array. Interestingly, the best
case complexity of the algorithm is O(1) and the worst case complexity is O(n), if there
are n elements in the given array. In the case of linear search also the best-case complex-
ity is O(1) and that of worst case is O(n). So, computationally, the Randomized_Search
algorithm is equivalent to the linear search algorithm. And more so, there is a probability
that it might perform better than the linear search.

Case 2  When the algorithm terminates in a constant time.
In this case, a minor change in the algorithm would help us to achieve the task. The infi-
nite while loop in the above algorithm, if replaced with a loop which terminates after k
iterations, would help us to achieve the task.

	 Algorithm 14.2  Randomized_Search_Modified (a[ ], x)

//The algorithm finds the position at which the element ‘x’ is present in the
array a
{
j=o;
while(j<k)
 {
 i=rand()%n;
 if (a[i]==x)
 {
 Print “Found at “+x;

336   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

 exit();
 }
 J=j+1;
 }
}

It may be noted that the algorithm exists if the required element is found or the num-
ber of iterations exceed k.

Some of the applications of Monte Carlo algorithms are as follows:
•	 The algorithms are used in physics and mathematics. The areas where these algo-

rithms used are computational physics, physical chemistry, etc.
•	 The algorithms have successfully been used in weather forecasting.
•	 Studying the evolution of galaxies is also one of the fascinating areas where these

algorithms are used.
•	 The correlated variations in digital ICs are studied using Monte Carlo algorithms.
•	 The algorithms have also been used in robotics and even in localization algorithms.

14.4  USES OF RANDOMIZED ALGORITHMS

The concept of randomization gives an idea of creation of structures with a non-zero
value of desired property. This is used in many applications of randomization, some of
which have been discussed as follows.

One of the most important applications of randomization is sampling. A sample selected
to carry out a particular task should be such that the ethos of the sample is same as that of
the population. The goodness of the sample would decide the accuracy of the experiment.

Samples are generally selected to carry out polls. A closer look at the problem would
reveal something interesting. While sampling, we would have no idea whether the sam-
ple, being selected, is the best or not. We would get the answer only if the result is
known. In an opinion or an exit poll, a pollster is never sure of the accuracy of the result,
till the final outcome is known. That is, a good sample can only be formed by combining
deterministic methods with the randomized ones.

An important consideration while selecting the sample can be the statistical analy-
sis of the sample. For example, an opinion poll is conducted to gauge the mood of the
nation on a particular issue. As stated earlier, the goodness of the sample would decide
the accuracy of the result. If the population of the country consists of 80% Hindus,
12% Muslims, and 8% people of other religions; the sample must also be of the same
composition (as far as possible). Further, in these 80% Hindus, there are 25% people of
caste A, 25% of caste B, 12.5% of caste C, and the rest of other castes; then the sample
must also have the same sub-composition in the people who are Hindus. Furthermore,
the sample must be chosen to reflect the gender segregation, the economic segregation,
and the educational segregation of the population. This is determinism.

R a n d o m i z e d A lg o r i t h m s   ■  337

This determinism is sure to make our results better. However, the subclasses of the sam-
ple must be selected randomly. Here comes the concept of randomization. For example,
there are 6.2% educated women of caste C, in the population of a 1000 million. Because of
constraints (economic and time), only 324 such women may be selected in the sample. This
can be done by using randomization. The selection must be completely random and free
from any pattern. Sampling technique can also be used to solve problems like quick sort.

The randomized algorithms have many other applications. One of the most important
applications is to be able to hide the details. In a deterministic algorithm, the steps to be
executed are known. Most of the algorithms studied so far are deterministic. For exam-
ple, in the linear search discussed in Section 5.3.1 of Chapter 5, the steps are known and
hence, it can be considered as deterministic. All the algorithms discussed in Chapter 8 are
deterministic as their steps can be traced. These steps in turn can be used to determine
the output of the algorithm, which in turn can be an input to some other algorithm. For
example, the input to the merge algorithm discussed in Chapter 9 is sorted lists, which
in turn can be generated by using sorting algorithms.

On the other hand, if one intends to hide the output, then instead of deterministic
algorithms, randomized algorithms can be used. The randomization makes the back-
tracking virtually impossible.

Hashing is one of the most important applications of randomization. The following
discussion briefly introduces the concept:

Hashing

A hash function is a function that computes the index of an array, from what is referred
to as a ‘key’. Ideally, a hash function should map to different locations, each time it is
executed. If the hash function returns the same index next time, then collision occurs. In
this case, solutions such as ‘bucket’ come to our rescue.

Theoretically, we cater to situations where either of the following are true:
•	 There is no space constraint; however, the time is limited.
•	 There is no time constraint; however, the space is limited.
Hashing takes care of both of the above. In real life situations, one neither has infinite
time nor infinite space.

14.5  COMPLEXITY CLASSES OF RANDOMIZED ALGORITHMS

The complexity classes discussed in Chapter 19 of this book have a randomized counter-
part. The following section discusses the complexity classes of randomized algorithms.
The reader can leave this section in the first reading or else can go through Chapter 19.

Randomized P or RP Problems

The set contains languages L such that if an input belongs to the language, then the
probability of the Turing machine accepting that input is greater than or equal to half.

338   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

If, on the other hand, the input does not belong to the language, then the probability of
the corresponding Turing machine accepting that input would be 0. The formal defini-
tion of the RP problems is as follows:

p x
x L

x L
()

,

,
= ≥

∈

∉







1
2
0

Co-randomized P or Co-RP Problems

The set contains languages L such that if an input does not belong to the language, then
the probability of the Turing machine accepting that input is greater than or equal to
half. If, on the other hand, the input belongs to the language, then the probability of the
corresponding Turing machine accepting that input would be 0,

p x
x L

x L
()

,

,
= ≥

∉

∈







1
2
0

Bounded-error Probabilistic Polynomial Algorithms (BPP)

These are a class of algorithms in which if the input does not belong to the language,
then the probability of corresponding machine accepting that input is less than or equal
to p, whereas in the other case, the probability is greater than (1 − p),

p x
p x L
p x L

()
,

(),
=

≤ ∉
≥ − ∈



 1

Probabilistic P Class (PP)

In this class of algorithms, if the input is accepted by the machine, then the probability is
less than p and in the other case, the probability is greater than or equal to p,

p x
p x L
p x L

()
,
,

=
≤ ∉
≥ ∈





Class Zero-error Probabilistic P (ZPP)

The class of languages, which are both RP and Co-RP are referred to as ZPP. The algo-
rithms are, in fact, the Las Vegas algorithms, in which the probability of getting an
answer is 1 (Fig. 14.2).

Figure 14.3 depicts the above classification.
Co-BPP may also be defined on the same lines and owing to its symmetry

Co-BPP = BPP. The proof of this is beyond the scope of this book. However, the
reader can refer to the paper by Impagliazzo et al.

R a n d o m i z e d A lg o r i t h m s   ■  339

Co-RP
ZPP

RP

Figure 14.2  ZPP class

Complexity classes

RP Co-RP BPP PP ZPP

Figure 14.3  Complexity classes of randomized algorithms

14.6  APPLICATIONS OF RANDOMIZED ALGORITHMS

In this section, we will discuss some of the applications of randomized algorithms.

14.6.1  Book Problem
A group of students studying in an engineering college, in the National Capital Region
(NCR) of India, live in a PG. All of them are from the same class. A day before the
exam of an elective paper, .NET, they decide to study from the book of their professor.
They find that there is just one copy of the book in the PG. Moreover, the city is facing
acute load shedding, therefore their mobiles and laptops are not charged. Hence, they
cannot click the photos of the requisite pages. The only option left now is to share the
book. In addition to the above facts, they know that they cannot study with each other.
So each one must have an exclusive access of the book, for the time the person is study-
ing. One of the boys, named Hari, is worried about his chance of getting the book. So,
he decides to develop a randomized algorithm to solve the above problem. Suppose
there are n people in the PG. Each person, therefore, can access the book with a prob-
ability p. Since Hari’s goal would be to analyse the situations that greatly increase his
chances of getting the book in the least number of turns. He performs the following
calculations:

p
n

=
1

Now, the probability of Hari getting the book in the first turn = p.

340   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The probability of Hari getting book in the second turn would be p × (1 − p).
(The probability of that person, not getting the book in the first turn would be (1 − p).
Getting a book in the first turn and getting it in the second turn are independent events
(see Appendix A6). Therefore, the two probabilities would be multiplied.)

The probability of Hari getting book in the mth turn would be (1 − p)m – 1 p.

Substituting the value of p in the above equation, we get 1 1 11

−





 × 








−

n n

m

.

The minimum number of turns to make the probability of Hari’s getting the book ≥p,

1 1 11

−





 × 






 ≥

−

n n
p

m

() log logm
n

np− −





 ≥1 1 1

m np

n

≥
−








+
log

log 1 1
1

For example, if the number of people in the PG is 10, then the number of turns which
would make the value of m maximum is infinity. Even if, n is not infinity, the requisite
value of m from the given value can be easily calculated from the above formula.

14.6.2  Load Balancing
There are n processors and m jobs. The jobs need to be catered immediately, so when a
job arrives, it is allotted to one of the processors. In order to maintain an even balanc-
ing, the jobs must be allocated to a processor judiciously. The problem becomes easy
if the jobs are all equal and the distribution of jobs is done in such a way that each
job is assigned to (i + 1)%n processor, i starting from 1. The approach is similar to
the Round-Robin scheduling in an operating system. However, the approach does not
always work. The approach works only if there is a central arbitrator. For this, there is
a central controller which is assigned the responsibility of allocating things and taking
them back.

There is another approach to tackle the problem. In this approach, the processes are
allocated in a randomized fashion to a processor. Surely, the evenness of Round Robin
cannot be matched using this approach. What can be, though, ensured is the maximum
probability of the distribution being almost even. It is like the army of one country firing
missiles on another, randomly, in a hope that at least some terrorists would be killed. So
let us discuss the solution of the above problem. Ideally, when the number of proces-
sors is same as the number of jobs, each processor should get one job. Although this can
rarely be achieved using a randomized approach.

R a n d o m i z e d A lg o r i t h m s   ■  341

Analysis
Let the aij be a binary variable that denotes whether a job j has been assigned to the
processor i. aij would be 1 if the job j is assigned to the processor i, otherwise it would
be 0. Let bi be the number of jobs assigned to the processor i.

The value of bi would therefore be αiji

n

=∑ 1
. The expectation of aij would be 1/n and

that of bi would be 1. The important part though is to assess the deviation from the ideal
behaviour.

The mathematical analysis of the scheduling is involved; however, it can be proved

that the probability of no processor receiving θ
log

log(log)
n
n









 jobs is minimum (1 − (1/n)).

14.6.3  Quick Sort
Quick sort is one of the most efficient algorithms for sorting. The following discussion
assumes that all the elements in the array being discussed are different. The algorithm
has already been discussed in Section 9.4 of Chapter 9. The reader is advised to go
through that section, if he has not already done so.

Quick sort requires a pivot element to be selected. The pivot element, in case of
randomized algorithms, is picked at random. If the array has just one element, then it is
deemed to be sorted, otherwise the array is divided into two parts. The first part would
contain all the elements lesser than the pivot and the second will contain all the elements
greater than the pivot.

The two arrays, thus formed, are sorted recursively thus forming the resultant array.
This type of algorithm, though randomized, ensures the probability of correct answer
being produced is 1.

Conventionally, the segregation of the array into two requires O(n) complexity.
Here, one can choose the pivot from amongst the n elements present in the array. The
probability of the correct pivot being selected is (1/n) if this selection leads to the for-
mation of two arrays, one containing k elements and the other containing (n − (k − 1))
elements.

The recursive equation of the above discussion would be as follows:

T n
n

T k T n k
k

n() () ()= + − −
=∑1 1

0

The solution of the above equation has been discussed in Chapter 3. The complex-
ity comes out to be O(nlog n). It can also be inferred from the above relation that
T n n n() log≤ 2 , if the value of n is greater than or equal to 1.

The randomized quick sort is one of the most important applications of randomized
algorithms. The procedure reduces the worst case time for quick sort. It may be stated
that the average case running time for the algorithm is O(n log n) and the worst case run-
ning time is O(n2). That is, there is a large gap between the two running times. Although,

342   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

most of the times, the average case running times are considered for comparing the good-
ness of algorithms, the average case analysis would not be helpful in all the scenarios.
Moreover, it is difficult to find whether the next input would be one of the typical inputs
(as considered in the average case analysis). The scenario in which the input to quick
sort is an output of some other component is also a contentious case. In such situations
also, the input might not be typical and hence the average case analysis would fall flat.

The higher level algorithm for quick sort is as follows:
The procedure consists of two parts: Random_Partition() and Quick_Sort()
A[] is the array which is to be sorted, low is the first index of the array and high is the

last index of the array.

	 Algorithm 14.3  Random_Partition ()

Input: A, array; low: the first index; high: the last index
Random_Partion(A, low, high) returns s
{
�r = (Random()+low)%high; //randomly pick an integer between low and high
swap(A[low], A[r]);
Random_Partion(A, low, high);
}

Discussion: The swap function exchanges the element at low with that at the position
generated randomly.

The number of calls of the above algorithm in the Random_Quick_Sort is at most n.

	 Algorithm 14.4  Random_Quick_Sort ()

Input: A, array; low: the first index; high: the last index
Random_Quick_Sort(A, low, high) returns sorted array
{
pos=Random_Partition(A, low, high);
Random_Quick_Sort(A, low, pos-1);
Random_Quick_Sort(A, pos+1, high);
}

Discussion: The function calls the partition function which finds the position of the
pivot, referred to as pos.
Complexity: In an array of length n, the random quick sort has a complexity O(n log n).

The position returned by the partition algorithm would determine the goodness of
the algorithm. It is possible that we might get the median every time. In this case, the

R a n d o m i z e d A lg o r i t h m s   ■  343

equation of the time complexity would be T n T n n() ()≤ 





 +2

2
θ . The solution of this can

be found by using the Master theorem (refer to Chapter 9). This case would result in the
running time of O(n log n).

Consider, for example, a position that divides the array in the ratio 1:9. In this case,
the tree method for finding complexity can be used (Fig. 14.4).

In this case, the complexity comes out to be O(n log n), as the base of logarithm does
not affect the asymptotic complexity. Now consider a more general case, in which posi-
tion the array is divided in the ratio a:b. In this case also, the tree method for finding
complexity can be used (Fig. 14.5).

bn/a2 b2n/a2n/a2 bn/a2

n/a bn/a

n

Figure 14.5  Complexity when the array is divided in
the ratio a:b

9n/100 81n/100n/100 9n/100

n/10 9n/10

n

Figure 14.4  Complexity when the array is divided in
the ratio 1:9

344   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

In this case also the complexity comes out to be O(n log n), as the base of logarithm
does not affect the asymptotic complexity. It may be concluded from the above discus-
sion that every division results in an n log n complexity.

14.6.4  Equality of Polynomials
A polynomial is algebraic expression consisting of many (poly) terms (nomial). As per
the dictionary a polynomial is defined as follows.

Suppose there are two polynomials of order n. The first being a x a xn n
0 1

1+ +−
a x a xn

n2
2 0− +…+ and the second being a x x x0 ()() ()− − ⋅⋅ ⋅ −α β ξ [n factors]. If one

intends to check whether the above polynomials are equal or not, without having to
multiply the polynomials, then the following strategy may help:
•	 Randomly generate a number and check whether the value obtained is same in both

cases.
•	 If we are able to find a number for which the two are not equal, then we can surely

state that the two polynomials are not equal. If, however, after some runs, one is not
able to find a number for which the two polynomials are not equal, then there is a
probability that the two are equal. However, even after many runs, the equality of two
polynomials cannot be declared with certainty.

The algorithm for the above problem is as follows.

	 Algorithm 14.5  Check

Input: Two polynomials f and g, where f a x a x a x a xn n n
n= + + + ⋅⋅⋅ +− −

0 1
1

2
2 0 and

g a x x x= − − ⋅⋅⋅ −0 ()() ()α β ξ
Output: If the polynomials are equal, then the algorithm returns TRUE
Check (f, g)
{
x = random();// random() is a pseudo random number generator
�if(f(x) = g(x))//if the value of f and g at ‘x’ are equal then return TRUE
 {
 return TRUE;
 }
}

Complexity: The algorithm runs a constant number of times, therefore, the complexity
is O(1).

The above algorithm is an example of recursively enumerable machine. There are two
types of machines namely recursive and recursively enumerable. The first answers in a ‘yes’
or a ‘no’, as in if the machine accepts the input, it answers in a yes, else it answers in a ‘no’.

Tip: For any input, the randomized quick sort has an expected running time of O(n log n).

R a n d o m i z e d A lg o r i t h m s   ■  345

The second type of machine answers in a ‘yes’, if the input is accepted by the machine, in
the other case it does not do anything. The machines have been depicted in Fig. 14.6.

Input YesRecursive Enumerable

Figure 14.6 

The reason why one may not want to multiply the factors of the second polynomial to
establish the equality of the two polynomials is simple. If one multiplies the factors one
by one, the complexity would be O(n2). The randomized approach, though not certain,
is a better solution.

This technique makes sure that the algorithm ends after a definite time. However,
there is no assurance that the task would be accomplished with a probability 1. This is,
therefore, an instance of Monte Carlo algorithms.

The good part is that with every iteration, the probability of error decreases. For
example, for a polynomial having degree n and the root lies in the range [0, m]. The prob-
ability of error in the first iteration would be (n/m), in the second iteration, it becomes
(n/m)2. In the kth iteration, the probability of error reduces to (n/m)k. Note that if k
approaches infinity, the probability of error becomes 0.

14.7  CONCLUSION

The chapter explores the fascinating world of randomized algorithms. The algorithms
are being used to carry out tasks that were considered difficult at one point of time,
owing to being computationally expensive. In order to understand the concept, one
must appreciate the difference between the Monte Carlo and Las Vegas algorithm (refer
Section 14.3). An example of each of the above has been given so that the reader can
design the requisite algorithms as per the requirements.

The section on methods has specifically been included so that the topics studied
in data structures can be used in randomized algorithm design as well. The reader is
advised to explore ‘hashing’, in order to fine-tune the development skills.

Lastly, the topic on the complexity classes of randomized algorithms establishes the
fact that the study of these algorithms have grown to the level of conventional algo-
rithms. In order to appreciate this topic, as stated earlier, the reader is advised to go
through Chapter 19.

The reader is expected to go through the web resources of this chapter, where the
randomized approach for SAT 3 problem has been given.

Finally, nature also works randomly, but produces wonderful results. On the other
hand, we work in a deterministic fashion and mostly end up messing up the things. So,
despite not being deterministic, things do work out, mostly!

346 ■ a lg o R i t h m s : d e s i g n a n d a n a ly s i s

 Points to Remember

 • The type of algorithms that always produces a correct answer is called Las Vegas
algorithms.

 • The type of algorithms that terminates in a limited period of time but the output pro-
duced may or may not be correct are called monte Carlo algorithms.

 • In order to generate a random number in C#, the random class is used. To do so in C, the
rand() function is used.

 • Randomized algorithms improve the worst case complexity of some algorithms such as
quick sort.

 • The complexity classes for randomized algorithms are RP, Co-RP, BPP, PP, and ZPP.

 • Probability theory helps in the analysis of randomized algorithms.

 KEY TERMS

 Bounded-error probabilistic algorithms (BPP) these algorithms are a class of algorithms
in which if the input does not belong to the language, then the probability of corresponding
machine accepting that input is less than or equal to p , whereas in the other case, the prob-
ability is greater than (1 − p).
 Class zero-error probabilistic P (ZPP) The class of languages that are both RP and Co-RP
are referred to as zPP. the algorithms are, in fact the las Vegas algorithms, in which the
probability of getting an answer is 1.
 Co-RP problems the set contains languages l such that if an input does not belong to the
language, then the probability of the turing machine accepting that input is greater than or
equal to half. if, on the other hand, the input belongs to the language, then the probability of
the corresponding turing machine accepting that input would be 0.
 Las Vegas algorithms this type of randomized algorithms always produces a correct answer.
 Monte Carlo algorithms this type of algorithms terminates in a limited period of time but
the output produced may or may not be correct.
 Probabilistic P class (PP) in this class of algorithms, if the input is accepted by the machine, then
the probability is less than p and in the other case, the probability is greater than or equal to p .
 RP problems the set contains languages l such that if an input belongs to the language,
then the probability of the turing machine accepting that input is greater than or equal to
half. if, on the other hand, the input does not belong to the language, then the probability of
the corresponding turing machine accepting that input would be 0.

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following are the types of randomized algorithms?

 (a) Monte Carlo
 (b) Las Vegas

 (c) Both of the above
 (d) None of the above

R a n d o m i z e d A lg o r i t h m s   ■  347

	 2.	 Which of the following eventually terminates with a probability 1?
(a)	 Monte Carlo
(b)	 Las Vegas

(c)	 Both of the above
(d)	 None of the above

	 3.	 In which of the following the running time is constant?
(a)	 Monte Carlo
(b)	 Las Vegas

(c)	 Both of the above
(d)	 None of the above

	 4.	 In which of the following the output produced may not be correct?
(a)	 Monte Carlo
(b)	 Las Vegas

(c)	 Both of the above
(d)	 None of the above

	 5.	 Randomized quick sort is an example of which of the following?
(a)	 Monte Carlo
(b)	 Las Vegas

(c)	 Both of the above
(d)	 None of the above

	 6.	 Randomized search is an example of which of the following?
(a)	 Monte Carlo
(b)	 Las Vegas

(c)	 Both of the above
(d)	 None of the above

	 7.	 In which of the following, Monte Carlo algorithms are not used?
(a)	 Physics
(b)	 Simulation of evaluation of galaxies
(c)	 For finding correlated variations in digital ICs
(d)	 For firing missiles

	 8.	 In which of the following, the probability of the Turing machine accepting the
string that belongs to the language is greater than half, whereas in the other case,
the probability is 0.
(a)	 RP (b)	 Co-RP (c)	 BPP (d)	 PP

	 9.	 In which of the following, the probability of the Turing machine accepting the string
that does not belong to the language is greater than or equal to half, whereas in the
other case, the probability is 0.
(a)	 RP (b)	 Co-RP (c)	 BPP (d)	 PP

10.	 In which of the following, the probability of machine accepting the string that
belongs to the language is p, whereas in the other case, the probability is (1 − p).
(a)	 RP (b)	 Co-RP (c)	 BPP (d)	 PP

II.  Review Questions
	 1.	 What are randomized algorithms?
	 2.	 What is the difference between Las Vegas and Monte Carlo approaches?
	 3.	 What are the various complexity classes of randomized algorithms?

III.  Application-based Questions
	 1.	 Design a Monte Carlo algorithm for searching an element in an array.
	 2.	 Design a Las Vegas algorithm for searching an element in an array.
	 3.	 Design a randomized algorithm for quick sort.

348 ■ a lg o R i t h m s : d e s i g n a n d a n a ly s i s

 4. Design a randomized algorithm for the vertex cover problem (VCP). Find after how
many runs the probability of error would become less than 1/128.

 5. Design a randomized algorithm for the set cover problem (SCP). Find after how
many runs the probability of error would become less than 1/512.

 6. Design a randomized algorithm for the travelling salesman problem (TSP). Find
after how many runs the probability of error would become less than 1/1024.

 7. Design a randomized algorithm for the equality of polynomials. Find after how
many runs the probability of error would become less than 1/128.

 8. Design a randomized algorithm fi nding whether a number is prime or not. Find
after how many runs the probability of error would become less than 1/128. If there
are 16 processors what would be the probability of no processor receiving more
than 2 jobs?

 9. If there are 65,536 processors, then what would be the probability of no processor
receiving more than 4 jobs?

 10. Design a randomized algorithm for an even balancing in a hash table, so that mini-
mum number of collisions occurs. Analyse the algorithm developed.

 11. In networking, packet routing is one of the most important problems. The reader is
requested to go through Reference [20] for a detailed explanation of this problem
and then develop a randomized algorithm to solve it. Analyse your algorithm.

 12. Classify the algorithms developed above into various complexity classes.

 Answers to MCQs

 1. (c)
 2. (b)

 3. (a)
 4. (a)

 5. (b)
 6. (a)

 7. (d)
 8. (a)

 9. (b)
 10. (c)

Chapter 15 Transform and Conquer

Chapter 16 decrease and Conquer

Chapter 17 number Theoretic algorithms

Chapter 18 string matching

Chapter 19 Complexity Classes

Chapter 20 an introduction to Pspace

Chapter 21 approximation algorithms

Chapter 22 Parallel algorithms

Chapter 23 introduction to machine learning
approaches

Chapter 24 introduction to Computational Biology and
Bioinformatics

Look deep into nature, and then you will understand
 everything better.

— Albert Einstein

ADVANCED TOPICS
SECTION IV

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of transform and conquer
 • List the applications of presorting
 • Explain the concept of Gauss elimination
 • Use Horner’s rule for evaluating polynomials
 • Find the lowest common multiple of two numbers

 15.1 INTRODUCTION

 How can a diffi cult problem be dealt with in the real life? The problem can be converted
into a simpler form, it can be represented in a different way, it can be reduced to some
other form, or it can be simply ignored. Though the last option is seldom used, there are
instances where the last option can also be used. For instance, when many processes are
competing for the same set of resources while holding some, the progress of processes
can come to a halt. This situation is deadlock. Those who are familiar with operating
systems must be knowing that neglecting the deadlock is one of the most common ways
of handling deadlocks. However, in algorithms, we generally do not neglect a problem.
The rest of the options constitute what is called transform and conquer.

 Transform and conquer refers to changing the form of a problem into a simpler one,
in order to solve it. The transformation, as per the literature review, can be of three types.
Here, Levitin’s interpretation of the topic is generally considered as the most credible
one (Levitin, 2009). According to him, in the fi rst type of transformation, a diffi cult
instance of a problem is converted into its easier instance. The second type of transform
and conquer involves the change in the representation of the given problem and the third
is the reduction of the problem. The classifi cation is depicted in Fig. 15.1 .

 This chapter discusses briefl y the three types of transform and conquer method.
Problem reduction will be dealt with in detail in Chapter 19. Moreover, we have been
using this approach knowingly or unknowingly. For example, AVL trees discussed in
Appendix A8 is an example of transform and conquer.

 Transform and Conquer

 C H A P T E R 1 5

T r a n s f o r m a n d Co n q u e r   ■  351

The following problems also come under the purview of transform and conquer. These
are discussed in other chapters of the book—Heap creation (Sections 6.9 and 6.10),
AVL trees (Appendix A8), and Reduction (Chapter 19).

The chapter has been organized as follows. Section 15.2 introduces the concept of
presorting. Section 15.3 discusses an important method of solving linear equations:
Gauss elimination, Section 15.4 presents LU decomposition, Section 15.5 explores
Horner’s rule and exemplifies it. This is followed by a section on finding the LCM of
two numbers. The last section in the chapter explains how this method has been/can be
applied to other problems.

15.2  PRESORTING

One of the most common examples of the transform and conquer technique is presort-
ing, which is a special case of preprocessing. When a list is sorted before allowing it as
an input to some algorithm, it is referred to as presorting. Presorting is required in many
applications discussed as follows.

15.2.1  Applications of Presorting
Chapter 8 discussed the sorting in linear and quadratic time and Chapter 6 discussed the
concept of binary search trees. This method helps us to sort a given list. What do we do
with these sorted lists? How are they better than the unsorted lists we have? The answer
is easy. Sorting helps us in binary search. Binary search has been explained in Chapter 6.
It was stated that binary search is much more efficient as compared to the linear search
and it becomes possible only because the list has already been sorted.

There is another advantage of presorting: finding repeated elements. If the list is
sorted, then the repeated elements would appear at consecutive places, thus reducing the
time complexity of finding them. Figure 15.2 depicts the above idea.

Another important application of presorting is finding the median of a given
sequence. If the number of elements in a list is odd (say n) and the list is sorted, then

Transform and conquer

Change the problem into
easier instance

Change the problem into
a different representation

Reduce the problem

Figure 15.1  Types of transform and conquer

352   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

the (n + 1)/2 element would be the median element. In the case of a list having even
number of elements, the mean of (n/2)th and ((n + 2)/2)th element is the median of the
given sequence. Figure 15.3 depicts the concept and Fig. 15.4 depicts the applications
of presorting.

n = 7, therefore, median is at the fourth position.

2 5 7 8 9 10 11

Figure 15.3  Finding median using presorting

Applications of presorting

Finding an element
Finding the number of

occurences of an element
Finding medians

Figure 15.4  Applications of presorting

The sorted list will have the repeated elements at the
consecutive locations

2 5 7 7 8 9 10

Figure 15.2  Finding repeated elements using presorting

15.3  GAUSS ELIMINATION METHOD

In solving linear equations with two variables, one of the most common methods is
elimination. Carl Friedrich Gauss suggested a similar method for solving linear equa-
tions with three or more variables.

Let there be three linear equations with variables x, y, and z. In order to solve a set of
linear equations, the coefficients of x in the second and the third equations can be made
zero by using the first equation. This is followed by making the coefficient of y zero in
the third equation, by using the second equation.

Given equations
	 a x b y c z d1 1 1 1+ + = 	 (15.1)

	 a x b y c z d2 2 2 2+ + = 	 (15.2)

	 a x b y c z d3 3 3 3+ + = 	 (15.3)

T r a n s f o r m a n d Co n q u e r   ■  353

Apply the following operations:
•	 Multiply Eq. (15.1) by a2 and Eq. (15.2) by a1 and subtract the first equation from the

second.
•	 Multiply Eq. (15.1) by a3 and Eq. (15.3) by a1 and subtract the first equation from the

third.
The equations become

	 () () ()a b b a y c a c a z d a d a1 2 1 2 2 1 1 2 2 1 1 2− + − = − 	 (15.4)

	 () () ()b a b a y c a c a z d a d a3 1 1 3 3 1 1 3 3 1 1 3− + − = − 	 (15.5)

Now, multiply Eq. (15.4) by the coefficient of y in Eq. (15.5), and Eq. (15.5) by the coef-
ficient of y in Eq. (15.4) and subtract Eq. (15.4) from Eq. (15.5).

The equations become

	

(()() ()())

((

c a c a a b b a c a c a b a b a z

d a d
3 1 1 3 1 2 1 2 2 1 1 2 3 1 1 3

3 1 1

− − − − −
= − aa a b b a d a d a b a b a3 1 2 1 2 2 1 1 2 3 1 1 3)() ()())− − − − 	

(15.6)

From Eq. (15.6), the value of z can be obtained. This value, when substituted in Eq.
(15.4), will give the value of y. The values of z and y thus obtained can be substituted in
Eq. (15.1) to obtain x.

There is another way to interpret the above method.
The coefficient matrix of the given set of equations along with the constants is as follows:

a b c d

a b c d

a b c d

1 1 1 1

2 2 2 2

3 3 3 3

The first operation, that is, making the coefficients of x in the second and the third equa-
tions zero by using the first equation, and then making the coefficient of y zero in the
third equation, by using the second equation is basically a set of row operations, wherein
the coefficients of the first column, second row, and the third row are made zero with the
help of the first row. The corresponding matrix becomes

a b c d

a b b a c a c a d a d a

b a b a c a

1 1 1 1

1 2 1 2 2 1 1 2 2 1 1 2

3 1 1 3 3

0

0

() () ()

() (

− − −
− 11 1 3 3 1 1 3− −c a d a d a) ()

The next step would be to make the second column of the third row as zero. This can be
done by multiplying the second row by the coefficient of y in the third row, and the third
row by the coefficient of y in the second row, followed by subtracting the second row
from the third. This step leads to the creation of a triangular matrix,

a b c d

a b b a c a c a d a d a

c d

1 1 1 1

1 2 1 2 2 1 1 2 2 1 1 2

4 4

0

0 0

() () ()− − −

354   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The value of z becomes
d

c

′
′
4

4

. This value of z would be used to find the value of y from

the second row and finally the value of x from the first row.
The following Illustrations will enable us to understand the concept:

Illustration 15.1	 Solve the following set of equations using Gauss elimination method:

2 3 4 9

3 2 6

2 4

x y z

x y z

x y z

+ + =
+ + =
+ + =

Solution

Step 1  Eliminate x by multiplying the second equation by 2 and the first by 3, followed
by subtracting the second equation from the first. Similarly, x can be eliminated from
the third equation by multiplying the third equation by 2 and subtracting it from the first
equation. The new set of equations, thus obtained, is as follows:

2 3 4 9

5 10 15

2 1

x y z

y z

y z

+ + =
+ =
− = −

Finally, the variable y can be eliminated from the third equation by multiplying the
third equation by 5 and subtracting it from the second. The new set of equations, thus
obtained, is as follows:

2 3 4 9

5 10 15

20 20

x y z

y z

z

+ + =
+ =
− = −

The value of z, therefore, becomes 1 and the value of y becomes 1 (on substituting
z = 1 in the second equation). These values of y and z, when substituted in the first equa-
tion gives x = 1.

Illustration 15.2	 Solve the following set of equations using Gauss elimination method:

2 3

2 3

2 7 4

x y z

x y z

x y z

− − =
+ + =
+ − =

Solution

Step 1  Eliminate x by multiplying the second equation by 2 and subtracting the second
from the first. Similarly, x can be eliminated from the third equation by multiplying the
third equation by 2 and subtracting it from the first equation. The new set of equations,
thus obtained, is as follows:

T r a n s f o r m a n d Co n q u e r   ■  355

This method can also be used for solving a set of n equations. The process of solving
the equations remains the same. The coefficient matrix obtained would be converted into
triangular matrix, followed by the evaluation of the last variable and back substitution.
The algorithm for conversion of a given matrix into the triangular form is given in
Algorithm 15.1.

	 Algorithm 15.1 M atrix reduction for Gauss elimination

Input: A, the coefficient matrix of the given set of equations and n, the number of equations.
Output: The reduced matrix (mostly in triangular form), which helps us to find the values of
the variables.

{
for (i=1; i<=n ;i++)
 {
 �add the constants to the last column of the coefficient matrix, thus making

it augmented.
 }
for(i=1; i<=n-1; i++)

2 3
3 5 3

5 13 5

x y z
y z
y z

− − =
+ =

− =

Finally, the variable y can be eliminated from the third equation by multiplying the third
equation by 3 and the second by 5, followed by subtracting it from the second. The new
set of equations, thus obtained, is as follows:

2 3

3 5 3

64 0

x y z

y z

z

− − =
+ =

+ =

The value of z, therefore, becomes 0 and the value of y becomes 1 (on substituting
z = 0 in the second equation). These values of y and z, when substituted in the first equa-
tion gives x = 2.

How is Gauss elimination transform and conquer?
In the method, the given augmented matrix is converted to the triangular form, thus

reducing the effort to calculate the value of variable z. Figure 15.5 depicts the steps.

Given set of
equations

Obtain coefficient
matrix

Convert to
triangular form

Solve the
equations

Figure 15.5  Transform and conquer in Gauss elimination

356   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

 {
 for(j=(i+1); j< n ; j++)
 {
 for(k=i ; k<=(n+1), k++)
 {
 A[j, k] = A [j, k] – A [i, k] *A[j, i] / A[i, i];
 }
 }
 }
}

Complexity: The algorithm has a loop within a loop and a loop also in the inner loop,
thus making the complexity of the algorithm O(n3).

A similar method, in which the coefficient matrix of the given set of equations is reduced
to its diagonal form, is called Gauss–Jordan method. The method is similar to the above,
except that after obtaining the triangular matrix, the process does not stop. The value of the
last row’s last column is used to make all the elements of the last column, except for the
last row, zero. The same procedure is repeated, till a diagonal matrix is obtained.

The above method is far efficient than the Cramer’s rule and the solution of given set
of equations by finding the inverse of the coefficient matrix, which has been discussed
in Appendix A3.

15.4  LU DECOMPOSITION

Gauss elimination method, however, becomes incompetent in some cases. For exam-
ple, consider the case when the coefficients are same but the constants differ. In such
cases, another method called LU decomposition comes to our rescue. The concept of
LU decomposition is simple. Any matrix can be written as a product of upper triangular
matrix U and a lower triangular matrix L, that is,

A L U= ×
where A is the coefficient matrix, L is the lower triangular matrix, and U is the upper
triangular matrix.

a a a

a a a

a a a

l

l l

l l l

11 12 13

21 22 23

31 32 33

11

21 22

31 32 3

0 0

0

















=

33

12 13

23

1

0 1

0 0 1

































u u

u

a a a

a a a

a a a

l l u l u

l
11 12 13

21 22 23

31 32 33

11 11 12 11 13















=
() ()

221 21 12 22 21 13 22 23

31 31 12 32 31 13 32 2

() ()

() (

l u l l u l u

l l u l l u l u

+ +
+ + 33 33+















l)

The values of the unknowns can be found by equating the corresponding coefficients.
The values thus obtained are as follows.

T r a n s f o r m a n d Co n q u e r   ■  357

15.5  HORNER’S METHOD

The following discussion explores the efficient ways of evaluating polynomials at given
values. The evaluation of polynomials is important in many algorithms. If an efficient
method of the task is available, all such algorithms would become efficient. Now, the
reader must be wondering that if such a method was known to them in their high school,
it would have been greatly benefitted. This method is attributed to William George
Horner (1837–1976), who was a lecturer in mathematics in University of Sydney.

In fact, it is widely believed that the following method was known before him. In
fact, the felicitations given to him during his lifetime have been a source of contention.

According to the Horner’s rule or scheme, a given polynomial a x a x a xn n n
0 1

1
3

2+ +− −

+ ⋅ ⋅ ⋅ +an can be written as x a x a x a x an n n
n() ,0

1
1

2
3

3− − −+ + + ⋅ ⋅ ⋅ + which in turn can be
reduced to the form xP an n− +1 , where Pn−1 can be expressed as xP an n− −+2 1 and so on. At
any instance, the value of Pn k− can be expressed as P an k n k− + −+() ()1 .

The concept can be understood by the following examples.
The quadratic polynomial ax bx c2 + + can be written as x ax b c()+ + . The method

requires evaluation of ()ax b+ and then multiplying it by x, followed by the addition

l a l a l a

l u a u
a

l

a
11 11 21 21 31 31

11 12 12 12
12

11

12

= = =

= = =

; ;

, therefore,
aa

l u l a l a l u

l u l a

11

21 12 22 22 22 22 21 12

31 12 32 32

+ = = −

+ =

,

,

therefore,

ttherefore,

therefore,

l a l u

l u a u
a

l

a

32 32 31 12

11 13 13 13
13

11

= −

= = =, 113

11

21 13 22 23 23 23
23 21 13

22

31 13

a

l u l u a u
a l u

l

l u

+ = =
−

+

, therefore,

ll u l a l a l u l u32 23 33 33 33 33 31 13 32 23+ = = − −













 , therefore,










The above method, as a matter of fact, is also transforming the coefficient matrix into
the product of a lower and an upper triangular matrix and thus obtaining the result. The
steps in the process are summarized in Fig. 15.6.

Given set of
equations

Obtain coefficient
matrix

Convert to the
product of L and

U

Solve the
equations

Figure 15.6  Transform and conquer in LU decomposition

358   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

with c. There are two advantages of such reduction. First, the number of multiplications
is greatly reduced (generally) and second is that the above method eliminates the need
of calculating the powers of a number.

The cubic polynomial ax bx cx d3 2+ + + can be written as x ax bx c d()2 + + + .
The above procedure of converting a quadratic polynomial to a linear one is then fol-
lowed. The repeated application of this method reduces the given cubic polynomial to
x x ax b c d(())+ + + . This reduces the number of multiplications from 7 to 3 and also
eliminates the need of calculating the powers of x.

It is left for the reader to evaluate the reduction in the number of multiplications,
when a bi-quadratic polynomial is reduced using the above method.

Evaluating Expression Using Brute Force

In evaluating a x a x a x an n n
n0 1

1
3

2+ + + ⋅⋅ ⋅ +− − using brute force, the powers of x need to
be calculated. The number of multiplications involved in the calculation of x x xn n, ,...,−1 2

would be
1

2
1× −(())n n (refer to the formula for the sum of an AP in Section 2.3). The

evaluation of powers is followed by the multiplication of these results with the coeffi-
cients. There would be n such multiplications. The total number of multiplications involved

in the evaluation of a polynomial by brute force is therefore
1

2
1 2× + × +(() ())n n .

The above procedure can be expressed by the following algorithm.

	 Algorithm 15.2 H orner’s scheme

Input: The coefficients of the polynomial a x a x a x an n n
n0 1

1
3

2+ + + ⋅⋅⋅ +− − and the value of x0 for
which it needs to be evaluated.
Output: The value of a x a x a x an n n

n0 0 1 0
1

3 0
2+ + + ⋅⋅⋅ +− −

{
i=n.
Pi = ai
do
 {
 Pi-1 = ai-1 + PiX0
 i=i-1;
 }
while (i ≥ 0)
}

Complexity: O(n), where n is the degree of the polynomial.

Tip: The complexity of polynomial evaluation by brute force is O(n2).

T r a n s f o r m a n d Co n q u e r   ■  359

Illustration 15.3	 Evaluate the value of 3 7 373 2x x+ + at x = 3.

Solution

Method 1 The given polynomial can be written as x x x()3 7 372 1+ + .
The polynomial 3 72 1x x+ can in turn be written as x x()3 71 + .

•	 The value of 3 71x + at x = 3 is 3 3 7 16× + = .

•	 Therefore, the value of 3 7 3 72 1x x x x+ = + ×() becomes 3 16 = 48.

•	 The value of the original polynomial becomes x x x()3 7 37 3 48 372 1+ + = × + = 181.

Method 2 There is another method of calculating the above expression. The method
involves tracing of the steps of Algorithm 15.1.

The coefficients of the given polynomial are 3, 7, 0, 37 (in the order of exponents of x).
The expression is to be evaluated at x = 3. The second row of Table 15.1 shows the itera-
tions of the procedure.

Illustration 15.4	 Evaluate the value of 4 7 5 33 2x x x+ + + at x = 2.

Solution The coefficients of the given polynomial are 4, 7, 5, 3 (in the order of expo-
nents of x). The expression is to be evaluated at x = 2. The second row of Table 15.2 shows
the iterations of the procedure.

15.6  LOWEST COMMON MULTIPLE

As stated earlier, a number x may be expressed as the product of the powers of

prime numbers, that is, x p p pi i
k
ik= × × ×1

1
2
2 For example, 2134 may be expressed

as 2 × 11 × 97.

Table 15.1 E valuating an expression using Horner’s method

3 7 0 37

3 3 3 × 3 + 7 = 16 16 × 3 + 0 = 48 48 × 3 + 37 = 181

Coefficients

Table 15.2 E valuating an expression given in
Illustration 15.4 using Horner’s method

4 7 5 3

2 4 4 × 2 + 7 = 15 15 × 2 + 5 = 35 35 × 2 + 3 = 73

Coefficients

360   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

If two prime numbers are expressed as stated above, that is, two numbers say, ‘x’ and
‘y’ are written as

x p p p

y p p p

z

i i
k
ik

j j
k
jk

= × × ×

× × ×
1
1

2
2

1
1

2
2

...

... ,

and

= then the number

== × × ×p p pl l
k
lk

1
1

2
2 ...

where
if

otherwise
l

i i j

jm
m m m

m

=
>




,

,
 is called the least common multiple of ‘x’ and ‘y’.

The idea of an LCM is simple. As stated earlier, since a number may have numerous
factors, two numbers may also have common multiples. The least of these common
multiples is referred to as the GCD.

Though the above method appears simple, it is computationally expensive. The C
code given in the web resource of this book finds the LCM of two numbers using the
above approach. It can be inferred from the code that the computational complexity of
the process involved is O(n4).

The following illustrations explain the above process.

Illustration 15.5	 Find the LCM of 102685968 and 103733784.

Solution Since any number can be expressed as the powers of prime numbers, first of all
the two numbers should be expressed as the powers of prime numbers.

102685968 2 3 7 11

103733784 2 3 7 11

4 5 4 1

3 7 2 2

= × × ×

= × × ×

In the next step, the greater of the exponents of a common prime number is to be extracted.
•	 The powers of 2 in the two numbers are 4 and 3, out of which 4 is greater.
•	 The powers of 3 in the two numbers are 5 and 7, out of which 7 is greater.
•	 The powers of 7 in the two numbers are 4 and 2, out of which 4 is greater.
•	 The powers of 11 in the two numbers are 1 and 2, out of which 2 is greater.
So, the LCM of the two numbers is 24 × 37 × 74 × 112.

The above method, though easy, is computationally expensive. In Chapter 17, we will
see a more efficient method of calculating the GCD. Since

LCM GCD(,) (,)p q p q p q× = ×

Therefore, the LCM can be calculated by computing the GCD of the numbers and divid-
ing the answer by the product of the two numbers. Figure 15.7 depicts the process of
calculating the LCM of two numbers.

T r a n s f o r m a n d Co n q u e r   ■  361

Although the concept transform and conquer was being used in earlier chapters, this
chapter formally establishes it. It is one of the most natural concepts used in problem solving.

15.8  CONCLUSION

The chapter discussed one of the most important methods of solving a set of linear
equations that is Gauss elimination. The section also introduced LU decomposition.
Another important topic covered in the chapter was Horner’s rule. The applications of
these methods can be appreciated in modelling and simulation. The next section dis-
cussed the concept of LCM, though not very important, the topic was given to establish
the concept of transform and conquer.

15.7  NP-HARD PROBLEMS

Transform and conquer technique is used for solving NP-hard problems discussed in
Chapter 19. It is also used for solving NP-hard problems that are not NP-complete (dis-
cussed in Appendix A7). Section 19.5 of Chapter 19 can be perceived as conversion of
a problem into some other form and then handling it. The strategy involved is transform
and conquer. For example, if it is required to find the minimum cost Hamiltonian cycle
in a weighted, directed graph (travelling salesman problem), then the problem does not
remain NP-complete, as will be seen in Section 19.6. The reason is that until all the pos-
sible paths have been processed, there is no way of knowing whether the solution that we
have obtained is the minimum or not. We will also learn in Chapter 19 that the maximum
clique problem and minimum cover also belong to this class. Though it is easy to verify
that the clique obtained by a particular algorithm contains k nodes, it is almost impos-
sible to state whether the clique obtained is the maximum.

Appendix A7 discusses some of the ways to deal with such problems. Though, not
a part of most of the UG programs, the algorithms surely give an insight to an efficient
way of dealing with such problems. Figure 15.8 depicts the process.

Calculate the GCD of
two numbers by
Euler’s formula

Apply the equation:
LCM * GCD = p * q Find LCM

Figure 15.7  Transform and conquer in LCM calculation

Solving a hard problem Convert to an easier one
Use the solution of the easier

problem to solve the harder one

Figure 15.8  Transform and conquer in hard problems

362 ■ a lg o r i T h m s : d e s i g n a n d a n a ly s i s

 Heap and heapsort discussed in Chapter 6 can also be considered as an example of
transform and conquer. The reader is strongly encouraged to go through Appendix A7 on
NP-hard scheduling problems and Chapter 19, in order to fully understand the concept.

 Finally, as it is said ‘what’s in the name’, once we are well versed with algorithm
designing, we would automatically use the technique, even unknowingly.

 Points to Remember

 • Presorting is used in many applications like fi nding repeated elements and fi nding
medians.

 • Gauss elimination method is one of the effi cient ways of fi nding the solution to linear
equations.

 • LU decomposition helps in fi nding the solution to a set of linear equations.

 • The complexity of Gauss elimination is O (n 2).

 • Horner’s method is used to fi nd the value of a polynomial at a given value of the
independent variable.

 • The complexity of Horner’s algorithm is O (n).

 KEY TERMS

 Presorting When a list is sorted before giving it as an input to some algorithm, it is referred
to as presorting.
 Least common multiple if two prime numbers are expressed as stated above, that is, two
number say, ‘ x ’ and ‘ y ’ are written as

x p p p

y p p p

i i
k
ik

j j
k
jk

= × × ×

= × × ×
1

1
2

2

1
1

2
2

...

... ,

and

then the number

zz p p pl l
k
lk= 1

1
2

2× × ×...

 where
if
otherwise

l
i i j

jm
m m m

m

=
>




,
,

 is called the least common multiple of ‘x’ and ‘y’.

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following are the advantages of presorting?

 (a) Finding an element
 (b) Finding median
 (c) Finding the number of occurrences of an element
 (d) All of the above

T r a n s f o r m a n d Co n q u e r   ■  363

	 2.	 Which of the following are not a type of transform and conquer?
(a)	 Changing instance
(b)	 Changing representation

(c)	 Reduction
(d)	 Backtracking

	 3.	 Which of the following can be solved using transform and conquer?
(a)	 Finding LCM of two numbers
(b)	 AVL

(c)	 Both
(d)	 None of the above

	 4.	 Which of the following cannot be solved using transform and conquer?
(a)	 Searching a number in a list
(b)	 Balancing trees

(c)	 Both
(d)	 None of the above

	 5.	 Which of the following is the advantage of binary search?
(a)	 Reduces time complexity
(b)	 Reduces space complexity

(c)	 Both
(d)	 None

	 6.	 Which of the following is correct as regards Gauss elimination?
(a)	 In this method the coefficient matrix is converted into diagonal form
(b)	 In this method the determinant of coefficient matrix is evaluated
(c)	 In this method the inverse of coefficient matrix is evaluated
(d)	 All of the above

	 7.	 What is L in LU decomposition?
(a)	 Lower triangular matrix
(b)	 Upper triangular matrix

(c)	 Diagonal matrix
(d)	 None of the above

	 8.	 What is U in LU decomposition?
(a)	 Lower triangular matrix
(b)	 Upper triangular matrix

(c)	 Diagonal matrix
(d)	 None of the above

	 9.	 Which method is used in LU decomposition?
(a)	 Transform and conquer
(b)	 Backtracking

(c)	 Both
(d)	 None of the above

	10.	 Which method is used in Gauss–Jordan?
(a)	 Transform and conquer
(b)	 Backtracking

(c)	 Both
(d)	 None of the above

II.  Numerical Problems
	 1.	 Solve the following using Gauss elimination:

(a)

	

2 4

1

3 2 2

x y z

x y z

x y z

− + =
+ + =
− − =

(b)

	

x y z

x y z

x y z

+ + =
− + =
+ + =

6

2 5

3 8

(c)

	

x y z

x y z

x y z

x y z

+ + =
+ + =
− + =
+ − =

2 3

2 3 2 5

3 5 5 2

3 9 4

	 2.	 Find the LCM of the following:
(a)	 2348 and 1234
(b)	 326474439 and 264284
(c)	 247395305243240 and 242940294247

364 ■ a lg o r i T h m s : d e s i g n a n d a n a ly s i s

 3. Find the value of the following polynomials at x = 7.
 (a) 3 2 74 3 2x x x+ + +

 (b) 31 12 17 74 3 2x x x x+ + + +
 (c) 7 2 75 2x x x+ + −

 (d) 323 2 7342x x+ +

 Answers to MCQs

 1. (d)
 2. (d)

 3. (c)
 4. (a)

 5. (a)
 6. (b)

 7. (a)
 8. (b)

 9. (a)
 10. (a)

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of decrease and conquer (D&C)
 • Explain various types of decrease and conquer
 • Recognize how insertion sort, DFA, and BFS are related to decrease and conquer
 • Find out how to fi nd permutations of a number

 16.1 INTRODUCTION

 A problem can be easily solved if there is a way to solve the smaller version of the prob-
lem. This smaller version can be obtained by decreasing the number of inputs by a con-
stant number, or decreasing the number of inputs by a constant or variable factor. The
interesting part of this chapter is that there is practically nothing new to learn. The reader
is expected to revisit the algorithm which he has already read. The difference, however,
would be in the perspective, the way of seeing things. As per the literature review, the
approach is used along with other approaches to accomplish a goal. For instance, the
 brute force analysis, which we have been studying all along, is nothing but the fi rst vari-
ant of decrease and conquer wherein the input size is decreased by one step every time.
This can be understood by taking the following example. Suppose a teacher expects to
write 15 books in his teaching career. In the fi rst year, he gets one book published. This
takes him towards his goal and the remaining number of books reduces to 14. In the next
year, he publishes one more book. This takes him one more step towards his goal. In the
same way, he continues and in the next 15 years achieves his goal.

 If we analyse the above strategy, we might not fi nd anything new in it. Most of us
would fi nd it a natural way of doing a task. The difference, however, is in the way of
looking at it. The strategy can be viewed as a decrease and conquer approach of the fi rst
type. Here, the decrease in the input size is by a constant number (1). Had the above
person been writing three books a year, even then it would have been a decrease and
conquer approach wherein the factor is 3 instead of 1. The approach has been depicted
in Fig. 16.1 .

 Decrease and Conquer

 C H A P T E R 1 6

366   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The second way of implementing decrease and conquer is to reduce the size by a
constant factor. Dividing the problem into two sub-problems of equal size, as was done
in merge sort and quick sort, also falls under this category. According to some authors
like Levitin, the decrease and conquer approach is more efficient than the divide and
conquer approach. However, the definition of decrease and conquer approach suggests
something else. The implementation of decrease and conquer approach by a constant
factor is in fact same as divide and conquer.

For instance, merge sort divided the array into two equal (in almost all the cases)
parts and then solves the individual parts. So, the problem is being divided into two
sub-problems of equal sizes and handled and is hence decrease and conquer wherein the
decrease is by a constant factor. The approach has been depicted in Fig. 16.2.

START

Solve n/k parts STOP

Yes

No

i = 1

i = i/k

Is i < n?

Figure 16.2  Decrease and conquer, decrease by a constant multiple

START

Solve k parts STOP

Yes

No

i = 1

i = i − k

Is i < n?

Figure 16.1  Decrease and conquer, decrease by a constant number

D e c r e a s e a n d Co n q u e r   ■  367

There is another way of implementing decrease and conquer. This is using a recur-
sion formula that passes different input sizes at successive calls. The sizes are generally
not related to each other. One of the most common examples of this is the GCD algo-
rithm. The three approaches have been depicted in Fig. 16.3.

The above approaches have been explained in the sections that follow. The sec-
ond section is about finding power set of a given set. A new perspective of looking
at this problem has been presented in the section. The third section of the chapter
examines the applicability of decrease and conquer in breadth first search and depth
first search. The fourth section deals with permutation generation and the following
section presents variable decrease.

16.2  FINDING THE POWER SET OF A GIVEN SET

At times all the possible subsets of a given set need to be enlisted. For example, in order
to find all possible relations of a given set A, we need to find all the possible subsets of
A × A. In such cases, power set comes to our rescue.

A power set is defined as the set of all the subsets of a given set. For example, the
power set of {x} would be {{},{x}}. The power set of {1,2} is {{}, {1}, {2}, {1,2}}.
Here, a set having n elements has 2n subsets and hence the number of elements in its
power set would be 2n. In order to find the subset of a set consisting of more than one
element, the following recursive equation can be used:

	
Power set of Power set ofA x A A x x

A A x x

{ } ∪{ }() = { } ∪{ } ∪{ }
= { } { } { }

,

, , , ,{{ }{ }
� (16.1)

	 Power set of { } ∪{ }() = { } { }{ }x x, � (16.2)

In order to understand the above point, let us find the power set of {1, 2, 3, 4}. The power
set can be found by finding the power set of {1, 2, 3} and then taking union of each ele-
ment with {4} and then taking the union of the result with {4}.

Decrease and conquer

If number = 1, then
it is same as brute force

Like divide and conquer

Decrease by constant
multiple

Decrease by
non-constant number

Decrease by constant
number

Figure 16.3  Classification of decrease and conquer

368   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The power set of {1, 2, 3} can also be calculated in the same way. The process has
been depicted in Fig. 16.4.

The method followed to calculate the power set of a given set decreases the number
of elements by one in each step. Since we know that the power set of a set containing a
single element has the element and a NULL set as its elements. The method, therefore,
falls under the category of decrease and conquer. The sub-type of algorithm followed
here is decrease by a constant number (1, in this case). Actually, the strategy is not much
different from a brute force approach.

The insertion sort, explained in Section 8.6 of the book, also makes use of this strat-
egy. In the insertion sort also, one element is processed at a time thus decreasing the
number of input elements by one in the next iteration. The formal algorithm of the above
process is given as follows.

	 Algorithm 16.1  Power set

Input: Set A
Output: Set B, containing the subsets of A
Function used: con(A, x). The function generates a set having all the elements of set A and
the sets formed by taking union of each element of A with x.
Power_Set(A) returns set B
{
  Split A into two parts H|T, T is a single element and H is a set
  if(H==NULL)
   {
   B= {{}, T};
   }
  else

Power set of {1, 2, 3, 4}

Power set of {1, 2, 3}

Power set of {1, 2}

{{ }, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4},
{3, 4}, {1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 2, 3, 4}}

{{ }, {1}, c{2}} = {{ }, {1}, {2}, {1, 2}}

Power set of {1} {{1}, { }}

Figure 16.4  Calculating power set by decrease and conquer

D e c r e a s e a n d Co n q u e r   ■  369

   {
   B=con(Power_Set(H), T);
   }
  return B;
}

Complexity: The number of recursive calls of the above algorithm would be n. Each
call performs the O(logn) operation. Therefore, the complexity of the above algorithm

would be O n n×()∑ log() .

16.3  BREADTH FIRST SEARCH AND DEPTH FIRST SEARCH

The algorithms of depth first search and breadth first search have already been described
in Section 7.6. However, a brief overview of both has been given in this section.

In depth first search, one visits a node, processes it, and goes to its adjacent vertex
and repeats the process. When there is no node to process, then using backtracking, we
travel to a node whose adjacent nodes have not been visited. On reaching that node the
process starts again. Figure 16.5 depicts the process.

Hence, it is evident from the figure, the algorithm processes one node at a time thus
decreasing the remaining nodes by 1. Therefore, it is a type of decrease and conquer
algorithm.

In breadth first search, one visits a node, processes it, and goes to its adjacent verti-
ces. Here, all the adjacent vertices are processed first and then the control moves to the
node that was processed at the second position. The whole process is repeated for that
node also. The process stops when there is no node left to be processed.

Figure 16.5  Steps in depth first search (Contd)

(a)

A

B C

D

E F

G

H I

(b)

A

B C

D

E F

G

H I

(c)

A

B C

D

E F

G

H I

(d)

A

B C

D

E F

G

H I

370   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Figure 16.5  (Contd) Steps in depth first search

(i)

A

B C

D

E F

G
Backtracking

H I

The order in which nodes have been
processed is as follows.

A, B, D, E, F, G, H, I, C

(j)

A

B C

D

E F

G

H I

(e)

A

B C

D

E F

G

H I

(f)

A

B C

D

E F

G
Backtracking

H I

(g)

A

B C

D

E F

G

H I

(h)

A

B C

D

E F

G

H I

(a)

A

B C

D

E F

G

H I

(b)

A

B C

D

E F

G

H I

(c)

A

B C

D

E F

G

H I

(d)

A

B C

D

E F

G

H I

Figure 16.6  Steps in breadth first search (Contd)

Figure 16.6 depicts the process. As is evident from the figure, the algorithm pro-
cesses one node at a time thus decreasing the remaining nodes by 1. Therefore, it is a
type of decrease and conquer algorithm.

D e c r e a s e a n d Co n q u e r   ■  371

16.4  PERMUTATION GENERATION

Suppose there are three items say A, B, and C and we need all the possible arrangements
of two items, selected from these three numbers such that the repetition is not allowed
and the order is important. In this case, the solution would be {AB, BA, AC, CA, BC,
CB}. That is, there are six permutations.

Permutations, in fact, refer to arrangements of r elements from the given set such that
repetition is not allowed and order is important.

In order to generate permutations of a given sequence, many algorithms are
used. One of the most common algorithms is Johnson–Trotter algorithm. In this
algorithm, a pointer points to the largest element of the sequence and the element
is contently swapped with its immediate neighbour on the left. The process has
been depicted by an example shown in Fig. 16.7. The process has been explained
in Algorithm 16.2.

	 Algorithm 16.2  Johnson–Trotter algorithm

Input: A sequence of n elements, stored in array a
Output: All the permutations of that sequence

ALGORITHMPerm(a[])

Figure 16.6  (Contd) Steps in breadth first search

The order in which nodes have
been processed is as follows

A, B, C, D, E, F, G, H, I

(i)

A

B C

D

E F

G

H I

(e)

A

B C

D

E F

G

H I

(f)

A

B C

D

E F

G

H I

(g)

A

B C

D

E F

G

H I

372   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

{
Perm = null;
for (i=0;i<n;i++)
 {
 for(j=n-1 ; j>i+i ; j--)
 {
 swap(a[j], a[j-1]);
 print: a;
 }
 }
Perm = Perm + a;||+is concatenation
Return Perm in the reverse order
}

Complexity: The number of swaps in the above procedure would be n, in the second
iteration, the number of swaps would be (n − 1) and so on. So, the total number of move-
ments of the arrow would be

1 2
1

2
+ + ⋅⋅ ⋅ + = ×

+
n n

n

which is O(n2).

A C E G N T

A C E G T N

A C E T G N

A C T E G N

A T C E G N

T A C E G N

T A C E G N

T A C E N G

T A C N E G

T A N C E G

T N A C E G

T N A C E G

T N A C G E

T N A G C E

T N G A C E

T N G A C E

T N G A E C

T N G E A C

T N G E A C

T N G E C A

Figure 16.7  A few iterations of Johnson–Trotter algorithm

D e c r e a s e a n d Co n q u e r   ■  373

However, the algorithm does not stop here. After the process shown in Fig. 16.7 ends,
the arrow starts moving from right to left. The process is repeated recursively thus mak-
ing the total number of swaps equal to n! Now, one may wonder whether it is a brute
force algorithm. As a matter of fact it is, but an organized one. Some of the iterations of
the algorithm are shown in the following figure. The total number of iterations is 720,
since the number of items in the array is 6.

Topological sorting is another example of decrease and conquer algorithm. The
topic has already been discussed in Section 7.8. Thus, it can be said that any algo-
rithm that decreases the input size by a constant number (generally 1) falls in this
category.

16.5  DECREASE AND CONQUER: VARIABLE DECREASE

Chapter 17 deals with the concept of greatest common divisor and the algorithms
required to find the GCD of two numbers. However, in order to explain the idea of vari-
able decrease, the implementation of GCD has been taken as an example.

While calculating the greatest common divisor of a number using recursion, the argu-
ment passed in the ‘if part’ (refer to the code given below) is the modulus of the first number
by the second. This technique helps us to calculate the GCD of two numbers effectively and
efficiently. This procedure not only demonstrates the power of recursion but also depicts
what is called the technique of variable decrease. In order to understand the concept, let us
see the arguments that are generated in the various calls of the program which calculates
GCD using recursion. To show the arguments at each call, a minor change has been made
in the program. An additional print statement has been added in the ‘if part’ of the program.
The output of the program for various inputs has been shown in Fig. 16.8. As stated earlier,
here we conquer a problem by diminishing the arguments neither by a constant number, nor
by a constant factor but by a variable number. This is the third type of decrease and conquer
approach.

Figure 16.8  Calls of GCD using recursion

374   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 Algorithm 16.3 GC D using recursion

intgcd(int num1, int num2)
 {
 if((num1%num2)==0)
 {
 return num2;
 }
 else
 {
 return (gcd(num2, num1%num2));
 }
 }
void main()
 {
 int num1, num2, answer;
 clrscr();
 printf("\nEnter the first number\t:");
 scanf("%d",&num1);
 printf("\nEnter the second number\t:");
 scanf("%d", &num2);
 answer=gcd(num1, num2);
 �printf("\nThe greatest common divisor of %d and %d is %d", num1, num2, answer);
 getch();
 }

16.6  CONCLUSION

The chapter explores the concept of decrease and conquer. There are three ways
of implementing decrease and conquer, first is decrease by fixed size, second is
decrease by a constant factor, and the third is decrease by a variable factor. Though,
most of the algorithms discussed in this chapter have already been visited before,
they have been revisited in order to put things in perspective. As per the definition,
there is not much difference between decrease by constant factor and divide and con-
quer; therefore, the topics falling in that category have been covered in Chapter 9. It
may also be stated here that though brute force is sometimes considered the simplest
technique, it requires deep understanding and the ability to decode the problem. The
decrease by constant number also requires the same level of understanding. The
reader is advised to explore the web resources of the book to see the implementa-
tion of Johnson–Trotter algorithm and some more algorithms related to permutation
generation.

D e c r e A s e A n D co n q u e r ■ 375

 Points to Remember

 • Decrease and conquer is of three types.

 • In decrease and conquer approach of the fi rst type, the decrease in the input size is by a
constant number.

 • In decrease and conquer approach of the second type, the decrease in the input size is
by a constant factor.

 • In decrease and conquer approach of the third type, the decrease in the input size is by
a diff erent unrelated number.

 • Here, it may be stated that a set having n elements has 2 n subsets and hence, the number
of elements in its power set would be 2 n .

 Permutation the arrangement of elements such that the order is important and repetition
is not allowed is called permutations.
 Power set it is the set of all the subsets of a set and is referred to as power set of a set.

 KEY TERMS

 I. Multiple Choice Questions
 1. Which one of the following is a method for generating permutations?

 (a) Johnson–Trotter
 (b) Johnson–Gamble

 (c) Procter–Gamble
 (d) Johnson–Procter

 2. Which of the following is not a technique of decrease and conquer?
 (a) Decrease by constant number
 (b) Decrease by constant factor

 (c) Variable decrease
 (d) Decrease by harmonic factor

 3. Which of the following is closest to decrease by constant number, when the number
is 1?
 (a) Brute force
 (b) Divide and conquer

 (c) Both
 (d) None of the above

 4. Which of the following is closest to decrease by constant factor?
 (a) Brute force
 (b) Divide and conquer

 (c) Both
 (d) None of the above

 5. Which of the following does not employ decrease by constant number?
 (a) Breadth fi rst search
 (b) Depth fi rst search

 (c) Topological sorting
 (d) All of the above

 6. Which of the following uses decrease by constant number?
 (a) Merge sort
 (b) Quick sort

 (c) Topological sorting
 (d) All of the above

 EXERCISES

376 ■ A lg o r i t h m s : D e s i g n A n D A n A ly s i s

 7. Which of the following uses decrease by constant number?
 (a) Selection
 (b) Insertion sort

 (c) Both
 (d) None of the above

 8. Which of the following uses variable decrease?
 (a) Breadth fi rst search
 (b) Greatest common divisor

 (c) Topological sorting
 (d) All of the above

 9. A fake coin problem can be solved using which of the following?
 (a) Decrease by constant number
 (b) Decrease by constant factor

 (c) Both
 (d) None of the above

 10. Which of the following can be considered a part of decrease and conquer?
 (a) Divide and conquer
 (b) Backtracking

 (c) Branch and bound
 (d) None of the above

 II. Review Questions
 1. Explain the concept of decrease and conquer using insertion sort.
 2. What are the different types of decrease and conquer?
 3. How does decrease and conquer be used to multiply two numbers?
 4. Find the GCD (greatest common divisor) of two numbers using decrease and conquer.
 5. How would you generate all permutations of a given set of number using decrease

and conquer?
 6. Find a n using decrease and conquer.

 Answers to MCQs

 1. (a)
 2. (d)

 3. (a)
 4. (b)

 5. (d)
 6. (c)

 7. (b)
 8. (b)

 9. (c)
 10. (a)

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the techniques of fi nding the GCD of two numbers
 • Know the application of Euclid theorem
 • Use the extended Euclid theorem
 • Learn the techniques of solving linear modular equations
 • Explain the idea of cryptography and digital signatures

 17.1 INTRODUCTION

 The chapter deals with the concept of greatest common divisor, that is GCD. Before start-
ing the discussion, let us understand the meaning of divisor. ‘ a ’ is a divisor of ‘ b ’ if ‘ a ’
divides ‘ b ’ that is b | a . For example, 4 divides 44444, therefore, 4 is a divisor of 44444.
Two numbers may have common divisors. There can be situations in which there is more
than one common divisor. In such cases, the greatest of these common divisors is referred
to as the GCD of two numbers. This chapter discusses the algorithms used for fi nding
the GCD of two numbers. The brute force approach of fi nding the GCD of two numbers
would require the enlisting of all the possible factors of the two given numbers and then
fi nding the common numbers from the two result sets. Though fi nding GCD of small
numbers is not that diffi cult using the above approach, the GCD of two large numbers is
a little diffi cult to fi nd. In such cases, recursion comes to our rescue. Though recursion
increases the space requirement, it reduces the time complexity to a great extent.

 Finding GCD is an important task as it is also the basis of modular linear equations
and Chinese remainder theorem discussed in Sections 17.5 and 17.6, respectively. The
theorem helps to express the GCD of two numbers as their linear combination. This
theorem also helps us in cryptography algorithms. Finally, the concept of cryptogra-
phy and digital signatures has been introduced and the use of the above techniques in
cryptography has been discussed. The concept of symmetric and asymmetric keys has
also been discussed in the chapter. The chapter also discusses one of the most important
algorithms used in cryptography, RSA. The chapter, though highly mathematical, forms
the basis of the application of algorithms in the fi eld such as network security. However,

 Number Theoretic Algorithms

 C H A P T E R 1 7

378   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

the aim of this chapter is not to teach cryptography or network security. The goal is to
use the concepts studied in this book so far, such as recursion and complexity considera-
tions in the field of security. In fact, the concepts form the backbone of the school of
cryptography which believes in the invincibility of primes.

The rest of the chapter has been organized as follows. Section 17.2 introduces the
concept of GCD. The next section explains the use of Euclid theorem in finding the
GCD of two numbers. Extended Euclid theorem has been discussed in Section 17.4.
Sections 17.5 and 17.6 discuss the modular linear equations and the Chinese remainder
theorem, respectively. Section 17.7 deals with cryptography. Section 17.8 examines the
concept of digital signatures and the last section explores the RSA algorithm.

17.2  GCD OF TWO NUMBERS

A number x may be expressed as the product of powers of prime numbers, that is,
x p p pi i

k
ik= × ×1

1
2
2 For example, 2134 may be expressed as 2 × 11 × 97.

If two prime numbers are expressed as stated above, that is, two numbers, say, ‘x’
and ‘y’ are written as

x p p pi i
k
ik= × ×1

1
2
2 ... and

y p p pj j
k
jk= × ×1

1
2

2 ... , then the number

z p p pl l
k
lk= × ×1

1
2
2 ...

where
if

otherwise
l

i i j

jm
m m m

m

=




,

,

<
 is called the greatest common divisor of ‘x’ and ‘y’.

The concept of GCD is simple. As stated earlier, since a number may have numerous
factors, two numbers may also have common factors. The greatest of these common fac-
tors is referred to as the GCD.

Though the above method appears simple, it is computationally expensive. The C
code given in the web resource of this book finds the GCD of two numbers using the
above approach. It can be inferred from the code that the computational complexity of
the process involved is O(n4).

The following illustrations explain the above process.

Illustration 17.1	 Find the GCD of 102685968 and 103733784.

Solution Since any number can be expressed as the powers of prime numbers, first of all
the two numbers would be expressed as the powers of prime numbers.

102685968 2 3 7 11

103733784 2 3 7 11

4 5 4 1

3 7 2 2

= × × ×

= × × ×

Tip: The calculation of GCD by brute force is computationally expensive.

N u m b e r T h e o r e t i c A lg o r i t h m s   ■  379

In the next step, the smaller of the exponents of a common prime number is to be
extracted.
•	 The powers of 2 in the two numbers are 4 and 3, out of which 3 is smaller.
•	 The powers of 3 in the two numbers are 5 and 7, out of which 5 is smaller.
•	 The powers of 7 in the two numbers are 4 and 2, out of which 2 is smaller.
•	 The powers of 11 in the two numbers are 1 and 2, out of which 1 is smaller.
So, the GCD of the two numbers is 23 × 35 × 72 × 111 = 1047816.

In the following illustration, the case wherein the two numbers have some powers of
different primes are dealt with.

Illustration 17.2	 Find the GCD of 487265625 and 66150.

Solution The given numbers can be expressed as the product of the following:

487265625 3 5 7 11

66150 2 3 5 7

4 7 1 1

1 3 2 2

= × × ×

= × × ×
The minimum of the two exponents are chosen to form the GCD. In this case, the GCD
is the product of the following:

2 3 5 7 110 3 2 1 0× × × ×

which makes 4725. Therefore, the GCD of 487265625 and 66150 is 4725. The process
is depicted in Table 17.1.

Table 17.1 G CD of 487265625 and 66150
Prime numbers Exponents in the

first number
Exponents in the
second number

Minimum
exponent

2 0 1 0

3 4 3 3

5 7 2 2

7 1 2 1

11 1 0 0

17.3  EUCLID THEOREM

The above expensive method of calculating the GCD may be replaced by a cheaper
method, which uses recursion. The method goes as follows:

GCD
GCD if

if
(,)

(, %),
,

a b
b a b b

a b
= ≠

=




0
0

Tip: Euclid theorem has lesser complexity than the brute force method of calculating GCD.

Illustrations 17.3–17.6 explain the process.

380   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Illustration 17.3	 Find the GCD of 10214 and 2366.

Solution In the first iteration, the value of ‘a’ is 10214 and that of ‘b’ is 2366. In the
next iteration, ‘b’ becomes ‘a’ and (a mod b) becomes ‘b’. The process continues till b
becomes 0. The process is depicted in Table 17.2.

Table 17.2 G CD of 10214 and 2366
Iteration number a b

1 10214 2366

2 2366 750

3 750 116

4 116 54

5 54 8

6 8 6

7 6 2

8 2 0

Table 17.3 G CD of 4562 and 2134
Iteration number a b

1 4562 2134

2 2134 294

3 294 76

4 76 66

5 66 10

6 10 6

7 6 4

8 4 2

9 2 0

Illustration 17.4	 Find the GCD of 4562 and 2134.

Solution In the first iteration, the value of ‘a’ is 4562 and that of ‘b’ is 2134. In the
next iteration, ‘b’ becomes ‘a’ and (a mod b) becomes ‘b’. The process continues till b
becomes 0. The process is depicted in Table 17.3.

The value of ‘a’, when ‘b’ becomes 0 is the GCD of the two numbers. In this case, the
GCD is 2.

The value of ‘a’, when ‘b’ becomes 0 is the GCD of the two numbers. In this case, the
GCD is 2.

N u m b e r T h e o r e t i c A lg o r i t h m s   ■  381

Illustration 17.5	 Find the GCD of 12124 and 4452.

Solution In the first iteration, the value of ‘a’ is 12124 and that of ‘b’ is 4452. In the
next iteration, ‘b’ becomes ‘a’ and (a mod b) becomes ‘b’. The process continues till, b
becomes 0. The process is depicted in Table 17.4.

Table 17.4 G CD of 12124 and 4452
Iteration number a b

1 12124 4452

2 4452 3220

3 3220 1232

4 1232 756

5 756 476

6 476 280

7 280 196

8 196 84

9 84 28

10 28 0

Table 17.5 G CD of 21215 and 7995
Iteration number a b

1 21215 7995

2 7995 5225

3 5225 2770

4 2770 2455

5 2455 315

6 315 250

7 250 65

8 65 55

9 55 10

10 10 5

11 5 0

The value of ‘a’, when ‘b’ becomes 0 is the GCD of the two numbers. In this case, the
GCD is 28.

Illustration 17.6	 Find the GCD of 21215 and 7995.

Solution In the first iteration, the value of ‘a’ is 21215 and that of ‘b’ is 7995. In the
next iteration, ‘b’ becomes ‘a’ and (a mod b) becomes ‘b’. The process continues till b
becomes 0. The process is depicted in Table 17.5.

382   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The value of ‘a’ when ‘b’ becomes 0 is the GCD of the two numbers. In this case, the
GCD is 5.

The above process of calculating the GCD of two numbers is called Euclid theorem.
The process calculates the GCD of two numbers using recursion and is more efficient, in
terms of implementation, as compared to the method discussed in the previous section.

17.4  EXTENDED EUCLID THEOREM

The GCD of two numbers can also be expressed as the linear combination of the two
numbers in question. That is, GCD(,) .a b x a y b= × + ×

The values of x and y can be found by extended Euclid theorem.

The theorem can be stated as follows:
Let the GCD of two numbers be g, then g can be written as ax + by where the values

of x and y can be found by the following procedure.

	 Algorithm 17.1 E uclid_GCD

Input: Two numbers a and b.
Output: The GCD of the two numbers

EE(a,b)
 {
 if(b=0)
 {
 g=a;
 x=1;
 y=0;
 }
 else
 {
 g,x’,y’=EE(b, a mod b);

 g x y g y' x, , , , ;= − 





' a
b

 }
 }

The following illustrations exemplify the above procedure.

Illustration 17.7	 Find the values of x and y of extended Euclid for the numbers
10214 and 2366.

Tip: Extended Euclid theorem helps to express the GCD as the linear combination of the
two given numbers.

N u m b e r T h e o r e t i c A lg o r i t h m s   ■  383

Solution The GCD is calculated using the same process followed in Illustrations 17.3–17.6.
In the last step, while calculating GCD, x becomes 1 and y becomes 0. After which the
above algorithm is followed. The calculation of x and y is done in the bottom-up fashion.
The process is depicted in Table 17.6.

Table 17.6  Values of x and y for 10214 and 2366
Iteration number a b x y

1 10214 2366 −306 1321

2 2366 750 97 −306

3 750 116 −15 97

4 116 54 7 −15

5 54 8 −1 7

6 8 6 1 −1

7 6 2 0 1

8 2 0 1 0

Table 17.7  Values of x and y for 4562 and 2134
Iteration number a b x y

1 4562 2134 421 −900

2 2134 294 −58 421

3 294 76 15 −58

4 76 66 −13 15

5 66 10 2 −13

6 10 6 −1 2

7 6 4 1 −1

8 4 2 0 1

9 2 0 1 0

Illustration 17.8	 Find the values of x and y of extended Euclid for the numbers
4562 and 2134.

Solution The GCD is calculated using the same process followed in Illustrations 17.3–
17.6. In the last step, while calculating GCD, x becomes 1 and y becomes 0. After
which Algorithm 17.1 is followed. The calculation of x and y is done in the bottom-up
fashion. The process is depicted in Table 17.7.

Illustration 17.9	 Find the values of x and y of extended Euclid for the numbers
12124 and 4452.

The values of x and y in this case are −306 and 1321.

The values of x and y in this case are 421 and −900.

384   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Table 17.9  Values of x and y for 21215 and 7995
Iteration number a b x y

1 21215 7995 736 −1953

2 7995 5225 −481 736

3 5225 2770 255 −481

4 2770 2455 −226 255

5 2455 315 29 −226

6 315 250 −23 29

7 250 65 6 −23

8 65 55 −5 6

9 55 10 1 −5

10 10 5 0 1

11 5 0 1 0

Solution The GCD is calculated using the same process followed in Illustrations 17.3–17.6.
In the last step, while calculating GCD, x becomes 1 and y becomes 0. After which the
Algorithm 17.1 is followed. The calculation of x and y is done in the bottom-up fashion. The
process is depicted in Table 17.8.

Table 17.8  Values of x and y for 12124 and 4452
Iteration number a b x y

1 12124 4452 −47 128

2 4452 3220 34 −47

3 3220 1232 −13 34

4 1232 756 8 −13

5 756 476 −5 8

6 476 280 3 −5

7 280 196 −2 3

8 196 84 1 −2

9 84 28 0 1

10 28 0 1 0

The values of x and y in this case are −47 and 128, respectively.

Illustration 17.10	 Find the values of x and y of extended Euclid for the numbers
21215 and 7995.

Solution The GCD is calculated using the same process followed in Illustrations 17.3–17.6.
In the last step, while calculating GCD, x becomes 1 and y becomes 0. After which the
Algorithm 17.1 is followed. It may be stated here, that the calculation of x and y is done
in the bottom-up fashion. The process is depicted in Table 17.9.

The values of x and y in this case are 736 and −1953.

N u m b e r T h e o r e t i c A lg o r i t h m s   ■  385

17.5  MODULAR LINEAR EQUATIONS

A modular linear equation is an equation of degree one of the form ax b n≡ mod , which
means that (ax − b) is divisible by n. The following discussion would focus on the tech-
niques of solving the modular linear equations of the type ax b n≡ mod .

The equation requires that ax − b should be divisible by n. Here, the value of a and n
should be greater than 0. The solution of the above helps in RSA algorithm, described in
Section 17.9. Though an important point is that the above equation may not even have a
solution. There may be cases where the number of solutions is more than one.

Since ax b n≡ mod , ax b− is divisible by n, that is, ()ax b kn− = or ax kn b− = .
Since a and k are constants, one can say that b is the linear combination of a and n.

It was stated that even GCD (a, n) is a linear combination of a and n (see Section 17.5).
Therefore, it may be concluded that b is a multiple of the GCD(a, n). Though it can be
proved that the proportionality constant in this case is 1.

The technique of solving the modular linear equation is attributed to Cormen and is
as follows.

	 Algorithm 17.2 E xtended Euclid theorem

Input: A and b, the two given numbers.
Output: The GCD of the two numbers and the values of x and y which would help us to
express the GCD as the linear combination of the given numbers.

{
Use Extended Euler’s formula to find the value of (g, x, y) for the pair (a, n);
If (g|b)
 {

 x x
b
g

n0 1=








 mod ;

 i=1;
 while(i< g-1)
 {
 Print: x i

n
g

n0 =








 mod

 i++;
 }
else
 {
 print: “No solution”;
 }
}

If ax b n≡ mod and b is divisible by the GCD(a, n) then the given equation has solution.

386   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

17.6  CHINESE REMAINDER THEOREM

Sun Tzu, a Chinese mathematician, published a book called The Mathematical Classic
of Sunzi. The third chapter of the book contains the Chinese Remainder Theorem (CRT).
This is perhaps the earliest known reference of the CRT. However, in some Indian scrip-
tures, such as Brahma-Sphuta-Siddhanta, questions related to CRT have been found. The
theorem is particularly helpful in finding out the minimum number which when divided
by the given set of numbers say n n nn1 2, ,...,{ }() gives remainder say a a an1 2, ,...,{ }(). The
formal statement of the theorem is as follows.

If n1, n2, …, nk are pair-wise relatively prime positive integers and if a1, a2, …, ak
are any integers, then the simultaneous congruences x a n x a n x a nk k≡ ≡ ≡1 1 2 2(mod), (mod) ,..., (mod)

x a n x a n x a nk k≡ ≡ ≡1 1 2 2(mod), (mod) ,..., (mod) have a solution, and the solution is unique modulo n, where n = n1n2 …
nk. The modulo is given by x a N y a N y a N yk k k≡ × × + × × + ⋅⋅ ⋅ + × ×1 1 1 2 2 2 . The value
of N n n n ni k i= × ×(...)1 2 / and the value of yi is obtained by the equation y N ni i i≡ −1 mod .

The explanation of the above theorem is as follows (Cormen):
Since there is no common factor between Ni and ni the GCD N n i i ri i, , .() = ∀ ≤ ≤1 1
Therefore, y N ni i i≡ −1 mod exist.
The value of yi may be found by the extended Euler theorem:

N y ni i i× = 1 mod

     This implies that a N y a ni i i i i× × = mod

On the other hand, a N y n j ii i i j× × = ≠0mod , .if

Therefore, x a n i ri i≡ ≤ ≤mod , .for 1
If x0 and x1 were the solutions, then x x ni0 1 0− ≡ mod (), for all i, so that

x x Mi0 1 0− ≡ mod ().

17.6.1  Applications
The theorem has many applications. Some of them are as follows.
•	 The theorem is used to construct a sequence of Golden numbers for RSA algorithm.
•	 According to the book Microwave Radar: Imaging and Advanced Concepts, the

Chinese remainder theorem is used to solve many problems in radar systems also.
•	 Even interpolation technique such as ‘Lagrange’s interpolation’ is considered as a

special case of Chinese remainder theorem.
•	 The theorem can be used to find the numbers whose square ends in them.
•	 For those who are interested in mathematics, the CRT can be used to prove Gauss’

Quadratic Reciprocity.
In order to understand the theorem, let us consider the following example:
	 A student while playing with a file of her father made the following observations.
•	 When she clubbed the documents in groups of three, one document remained.
•	 When she clubbed the documents in groups of two, one document remained.

N u m b e r T h e o r e t i c A lg o r i t h m s   ■  387

•	 When she clubbed the documents in groups of five, one document remained.
•	 When she clubbed the documents in groups of seven, one document remained.
•	 When she clubbed the documents in groups of eleven, no document remained.
She designed the equations corresponding to the above situations. In the following equa-
tions, the number of documents in the given file is assumed to be x. The equations
obtained were as follows:

x ≡ 1 3mod

x ≡ 1 2mod

x ≡ 1 5mod

x ≡ 1 7mod

x ≡ 0 11mod

The value of N, in this case is 2 × 3 × 5 × 7 × 11 = 2310
The value of Ni’s were as follows:

N
N

n1
1

1155= =

N
N

n2
2

770= =

N
N

n3
3

462= =

N
N

n4
4

330= =

N
N

n5
5

210= =

This was followed by the calculation of yi’s,

y y y1
1

11155 2 1 2≡ × =− mod , mod ,that is,1155 is therefore 11

y y y2
1

2770 3 1 3≡ × =− mod , mod ,that is, 770 is therefore 22

y y y3
1

3462 5 1 5≡ × =− mod , mod ,that is, 462 is therefore 33

y y y4
1

4330 7 1 7≡ × =− mod , mod ,that is, 330 is therefore 14

y y y5
1

5210 11 0 11≡ × =− mod , mod ,that is, 210 is therefore 15

388   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Sender Channel Receiver

Hacker trying to read the message

Figure 17.1  Communication process

The final step required the calculation of x which is

x a N y a N y a N yk k k≡ × × + × × + ⋅⋅ ⋅ + × ×1 1 1 2 2 2

i.e.,	 x ≡ × × + × × + × × + × × =1 1155 1 1 770 2 1 462 3 1 330 1 4411

17.7  CRYPTOGRAPHY

Have you ever thought which is the easiest means of sharing information? Perhaps send-
ing e-mails! We send e-mails to carry out our most important tasks. We send it to our
friends, employers, employees, family, and foes. What if the contents of these mails are
made public or are changed in the channel? Same is the case with the data stored in our
computer or laptop. We would like it to be as safe as possible, both in terms of unauthen-
ticated access and that it should not be altered.

The discipline of information security takes care of the above. The two most impor-
tant parts of this discipline are cryptography and cryptanalysis. Let us begin our discus-
sion with the concept of communication and then understand what the two terms are.

In digital communication, a message is transmitted from a sender to a receiver. The
abstraction of the medium, via which the message is transmitted, is referred to as a chan-
nel. The process of communication can be shown as in Fig. 17.1.

However, while sending the message, there is always a possibility of someone lis-
tening to the communication. This is called eavesdropping. In order to prevent this, the
original text is converted into some other form. This can be done in two ways: the sym-
metric key cryptography and the asymmetric key cryptography.

N u m b e r T h e o r e t i c A lg o r i t h m s   ■  389

17.7.1  Symmetric Key Cryptography
As stated earlier, the encryption of a message into ciphertext, is generally done with the
help of a key. For example, the letter ‘A’, which has ASCII value 65 (binary equivalent
of 65 is 01000001) is to be transmitted. In order to make sure that if the data is read in
the channel, then no one should be able to decode that the binary equivalent of ‘A’ is
XOR-ed with the key produced by some key-generating algorithm. The key generated
is, say, 10101011. The XOR-ing of 10101011 and 01000001 is 11101010. The number
‘01000001’, that is, the given text, is called the plaintext. The data obtained by XOR-ing
the two numbers is the ciphertext. In such cases, the following equations hold:

P K C⊕ =

P is the plaintext, K is the key, and C is the ciphertext. At the receiver’s end, the plaintext is
obtained by XOR-ing the key, K with the ciphertext, C, that is C K P⊕ = . The process of
converting the plaintext to ciphertext is called cryptography. The technique(s) of finding
the key so that the plaintext can be obtained from the ciphertext is called ‘cryptanalysis’.

17.7.2  Asymmetric Key Cryptography
In this type of cryptography, the key(s) are of two types: public key and the private key. The
public key is available to all, whereas the private key is secret. The private key is known only
to the person. It may be stated here that the two keys are, generally, mathematically related.
These keys are used to encrypt a message, that is, to convert a message into ciphertext.

The idea of asymmetric key cryptography is to encrypt a text with a different key and
to decrypt it with a different key.

The above discussion can be summarized as follows.
If a person ‘A’ sends a message to ‘B’, then he uses the public key of ‘B’. The

encrypted message can now only be decrypted using the private key of ‘B’, which is
known to ‘B’. If anyone tries to decrypt the message, he will not be able to do so owing to
the fact that the secret key is similar to an inverse function of the public key. In Fig. 17.2,
PB represents the public key of B, SB represents the secret key of B. Document D when

Concept of Cryptography

1. Obtain B’s Public Key, say PB.

2. Compute C = PB(D)

3. Send ‘C’ to B

4. When B receives ‘C’, the following
computation is done

D = SB(C)

BA

SB(C) = D

DocumentC = PB(D)

Document: D

Figure 17.2  Cryptography

390   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Definition  Digital signatures is a type of electronic signature that has three components. The
first is the algorithm that generates key. Two types of keys are generated by this algorithm: the
public key and the private key. The second component is the signing algorithm that takes
the message and the private key as its input and the third component is the signature verifying
the algorithm that uses the public key to verify the authenticity of the message.

encrypted with the public key of B becomes C. Now, C can be converted back to D only
using the secret key of B. An eavesdropper would not be able to decode C as she would
not be having SB.

17.8  DIGITAL SIGNATURES

The second goal, stated at the beginning of this section, is achieved by digital signatures.
Digital signatures are used to verify whether the text was sent by a particular sender. It
helps demonstrate the authenticity of a message. The concept is similar to the analog
signature. Generally, a person is asked to give his signatures in a bank so that he can be
verified. This serves two purposes. It not only helps in authentication but also the person
in question cannot deny that the cheque was issued by him. The digital signatures serve
the same purpose. Digital signatures help in both authentication and non-repudiation.
One more task that can be accomplished using the technique is to demonstrate that the
message has not been violated.

The concept, generally, requires two keys: a public key and a private key. The private
key is used to create a digital signature and the public key is used to verify the digital
signature.

For example, when B sends a message M to A, then he computes SB(M) and sends
(SB(M), M) it to A. A, on receiving the message, uses the public key of B to compute
PB(SB(M)); if the result obtained is same as that of M, then the authenticity of the mes-
sage can be verified. The process is depicted in Fig. 17.3.

Concept of Digital Signature

1. B computes SB(M), SB is the secret key of B.

2. B sends (SB(M), M) to A

3. A computes PB(SB(M)).

4. If the result obtained in step 3 is same as
that of M, the authenticity of M is estabilished.

BA

SB(M), M

Send to A.

if, M = PB

(SB(M)), then
the message
is end by A.

Figure 17.3  Digital signatures

N u m b e r T h e o r e t i c A lg o r i t h m s   ■  391

The advent of digital signature helped the computer scientists to prevent forgery and
tampering. Digital signatures also helped in handling the issues such as security of data
and e-transactions, which were a point of contention during the development of Internet.
Digital signatures have legal validity in many countries including United States. The
concept can be summarized as follows.

17.9  RSA ALGORITHM

The need of secure data transmission was realized as early the late 1970s, and hence one
of the first public key cryptosystems, RSA was introduced. The encryption, as explained
earlier in the section is public, whereas the decryption can only be done using the secret
key. The algorithm is based on the practical difficulty of factoring the product of large
prime numbers. The algorithm was given by Ron Rivest, Adi Shamir, and Leonard
Adleman and is hence called RSA. The public key is produced by two large prime num-
bers. The algorithm is as follows:
1.	 Choose two distinct prime numbers, say p and q.
2.	 Compute n = p × q
3.	 Compute ϕ() ()()n p q= − −1 1
4.	 Choose e such that e and ϕ()n are co-primes.
	 e becomes the public key.
5.	 Compute d e n= ()−1 mod ()ϕ
	 d becomes the secret key.
The process of encryption and decryption can be explained as follows.

If the message is m, public key is e, then the encrypted text is computed using the
equation:

c m ne≡ mod

The decrypted text is given by the following equation:

m c nd≡ mod

The following steps explains the above process:
Step 1	 p = 163 and q = 167
Step 2	 n p q= × = 27221
Step 3	 ϕ() ()() ,n p q= − − =1 1 26 892
Step 4	 A number co-prime to the value obtained in the previous step is e = 7.
Step 5	 �Now d e× ≡ 1 26 892mod (,), the calculation of the value of d has been left as an

exercise for the readers.

17.10  CONCLUSION

The concepts such as GCD, Euclid theorem, extended Euclid theorem, and linear mod-
ular equations discussed in this chapter form the foundation of ‘applied algorithms’.

392 ■ A lg o r i t h m s : D e s i g n A n D A n A ly s i s

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following can be used to fi nd the GCD of two numbers?

 (a) Euclid theorem
 (b) Fermat’s theorem

 (c) RSA
 (d) None of the above

These concepts fi nd the application not only in algorithms but also in subjects such
as network security, etc. For example, while implementing RSA, it is important to
generate prime numbers, solve modular equations, etc. These concepts also form the
basis of mathematical approaches to more diffi cult problems. The reader is requested
to go through the web resources of this book that contains programs pertaining to
the above concepts, an introduction to the powers of prime numbers, and some extra
questions.

 Points to Remember

 • A number may have numerous factors, two numbers may also have common factors.
the greatest of these common factors is referred to as the gCD.

 • The two most important parts of information security are cryptography and cryptanalysis.

 • While sending the message, there is always a possibility of someone listening to the
communication. this is called eavesdropping.

 • The idea of asymmetric key cryptography is to encrypt a text with a diff erent key and to
decrypt it with a diff erent key.

 • Digital signatures help in both authentication and non-repudiation.

 • The private key is used to create a digital signature and the public key is used to verify
the digital signature.

 KEY TERMS

 Chinese remainder theorem if n 1 , n 2 , …, n k are pair-wise relatively prime positive integers,
and if a 1 , a 2 , …, a k are any integers, then the simultaneous congruences x ≡ a 1 (mod n 1), x ≡ a 2
(mod n 2), …, x ≡ a k (mod n k) have a solution, and the solution is unique modulo n , where n =
 n 1, n 2 , …, n k . the modulo is given by x a N y a N y a N yk k k≡ × × + × × + ⋅⋅⋅ + × ×1 1 1 2 2 2 . the value of
 N n n n ni k i= × ×(...)1 2 / and the value of y i is obtained by the equation y N ni i i≡ −1 mod .

 Cryptography Conversion of plaintext into ciphertext is referred to as cryptography.

 RSA It was one of the first public key cryptosystems. In cryptography using RSA, the encryp-
tion is public, whereas the decryption can only be done using the secret key.

N u m b e r T h e o r e t i c A lg o r i t h m s   ■  393

	 2.	 Which of the following is a technique of cryptography?
(a)	 RSA
(b)	 BSA

(c)	 DSA
(d)	 NSA

	 3.	 The GCD of two numbers can be expressed as a linear combination of the two num-
bers. Which of the following helps us to find the corresponding constants?
(a)	 Euler’s theorem
(b)	 Extended Euler

(c)	 Fermat’s theorem
(d)	 None of the above

	 4.	 How many prime numbers are there between 1 and 1020?
(a)	 ≈5 × 1018

(b)	 ≈23 × 1015
(c)	 ≈24 × 1015

(d)	 ≈25 × 1016

	 5.	 Which of the following is incorrect as regards prime number P?
(a)	 GCD(,)p x x Ni i= ∀ ∈1
(b)	 c p c xi1 2 1+ =

(c)	 xi does not divide P a Ni∀ ∈
(d)	 All of the above

	 6.	 Which of the following is used to find a number which leaves a given set of remain-
ders when divided by a given set of numbers?
(a)	 Chinese remainder theorem
(b)	 Euclid theorem

(c)	 Both
(d)	 None of the above

	 7.	 Who introduced CRT?
(a)	 Sun Tzu
(b)	 Xing Sang

(c)	 Sun Leo
(d)	 En Tzu

	 8.	 How many solutions can following modular linear ax ≡ b (mod n), where (a, n)/b
equation have?
(a)	 b − 1
(b)	 b − 2

(c)	 b
(d)	 0

	 9.	 Which of the following best describes cryptography?
(a)	 The conversion of plaintext into ciphertext
(b)	 The conversion of ciphertext to plaintext
(c)	 Both
(d)	 None of the above

10.	 For which of the following digital signatures are used?
(a)	 Measurement
(b)	 Optimization

(c)	 Authentication
(d)	 Virtualization

II.	 Review Questions
	 1.	 Define cryptography.
	 2.	 Explain the concept of digital signature.
	 3.	 Explain and exemplify RSA.
	 4.	 Prove Euclid formula.
	 5.	 Prove extended Euclid formula.
	 6.	 State and prove CRT.
	 7.	 Write an algorithm to find 10 prime numbers greater than 107.

394 ■ A lg o r i t h m s : D e s i g n A n D A n A ly s i s

 8. Write a program in C which implements RSA .
 9. Write a program to solve modular equation.

 III. Numerical Problems
 1. Solve the following if possible:

 (a) 3 5 27× ≡ mod ()
 (b) 2 3 5× ≡ mod ()
 (c) 9 2 10× ≡ mod ()

 (d) 7 1 3× ≡ mod ()
 (e) 3 2 21× ≡ mod ()

 2. Find the GCD of the following:
 (a) 2134, 1124
 (b) 1324, 4321
 (c) 11728, 82187
 (d) 11781, 1118
 (e) 8181, 1818

 (f) 2323, 23
 (g) 11111, 11
 (h) 31312, 213
 (i) 117217, 17
 (j) 123456, 12

 3. For all of the above values given in Problem 2, fi nd the value of x and y , so that
 ax + by = GCD(a , b) where a and b are given numbers.

 Answers to MCQs

 1. (a)
 2. (a)

 3. (b)
 4. (a)

 5. (d)
 6. (a)

 7. (a)
 8. (d)

 9. (a)
 10. (c)

 String Matching

 C H A P T E R 1 8

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the importance of string matching
 • Learn and implement naïve string matching
 • Explain rabin–karp algorithm
 • Defi ne deterministic fi nite acceptor and its use in string matching
 • Understand Knuth–Morris–Pratt automata
 • Understand the concept of tries and suffi x trees

 18.1 INTRODUCTION

 String matching, generally, fi nds a smaller string and its position within a larger string or all
occurrences of a pattern in a given document. The formal defi nition of string matching is
given in Section 18.2. String matching fi nds its applications in most important tasks such as
text editors, intrusion detection systems, DNA matching, etc. The implementation of string
matching also uses the longest common subsequence algorithm discussed in Chapter 11.
The topic is important not only for a student pursuing computer engineering but also for a
student pursuing biochemistry or biotechnology. The reason for matching the strings may
not always be to correct errors in a text editor. The purpose may be fi nding noise in com-
munication, intrusion detection in a system using trees, or even in bioinformatics.

 The fi rst part of the chapter discusses the most basic method of string matching that is
naïve string matching, followed by a more effi cient method called Rabin–Karp method,
which reduces the number of comparisons. The chapter then introduces deterministic
fi nite acceptors and explains the difference between a deterministic fi nite acceptor and
a non-deterministic fi nite acceptor. These accept regular languages. This is followed
by the most important method of this chapter: (Knuth–Morris–Pratt) KMP algorithm.
The chapter also introduces tries and explains the algorithm for the creation of a trie.
Section 18.8 discusses the concept of suffi x trees, which are used in directories.

 18.2 STRING MATCHING—MEANING AND APPLICATIONS

 Formally, string matching may be defi ned as follows.

396   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

For example, if the text T is ‘harsharsh’ and the pattern P is ‘arsh’, then the pattern
occurs at the first position in T (‘harsharsh’) and at the fifth position (‘harsharsh’). So
the answer to the string-matching problem in this case is 1 and 5.

The starting index in the text that follows is taken as 0. Had the starting index been
‘1’, the answer would have been 2 and 6. The important point is that the pattern occurs
in the given text, two times and at the indices guided by the starting index.

18.2.1  Applications
It is due to string matching that we easily find strings while working in MS Word or in a
web page. Matching of strings is also important for a web crawler as keyword searching
also requires the algorithms described in this chapter. Some of the applications of string
matching are as follows:
•	 The string matching algorithms are used in text editors. They help us in finding

occurrences of a particular pattern in a text. One of the most common algorithms that
is used to find the difference between two files is the longest common subsequence
as discussed in Chapter 11.

•	 These algorithms are used in computational biology, in DNA matching (largest match
of the shortest common superstring), in finding close mutation, and so on.

•	 The algorithms are also used in intrusion detection in a network and even in retriev-
ing musical pattern from a multimedia database. An intruder tries to get into a net-
work, generally, by trying out some common combinations which would let him in.
It turns out that this attempt has some pattern attached to it. The intrusion detection
is found by matching patterns. These systems take help of the pattern-matching algo-
rithms discussed in the following sections.

18.2.2  Algorithms and Data Structures
The following discussion uses many important algorithms for finding a particular pat-
tern in a given text. There are various algorithms that are used in string matching; those
that have been explained in the chapter are listed in Table 18.1:

Table 18.1 S tring-matching algorithms
Name of the algorithm Complexity

Naïve string matching O(m(n - m + 1))

Rabin–Karp O(m(n - m)) in the average case and O(n + m) in the best case

Finite automata O(n)

Knuth–Morris–Pratt O(n)

String Matching  Given a text T[0…(n − 1)] and a pattern P[0…(m − 1)], it is required to
find the beginning index of all the occurrences of P in T.

S t r i n g Ma tc h i n g   ■  397

Some of the most important data structures used in string matching are as follows.
•  Suffix tree
•  Tries
•  Deterministic finite automata

The above data structures have been explained and exemplified in the following sections.

18.3  NAÏVE STRING MATCHING ALGORITHM

This technique looks for each occurrence of the string P[0…(m − 1)] in T[0…(n − 1)],
by comparing all possible substrings of the original string. The task can be accom-
plished by running a loop from 0 to (n − m − 1) times. The counter of this loop would
indicate the position of the first character in T. m characters after this index would be
compared with P; if a match is found then the value of the counter of the outer loop
would be printed (denoted by ‘i’ in the algorithm). As is evident from the algorithm
that follows, the inner loop must run from 0 to (m − 1). Algorithm 18.1 represents the
course of action.

	 Algorithm 18.1 N aїve string matching

Input: T[0..(n-1)], P[0…(m-1)]
Naïve_string_Matching (T, P) returns position of P in T, if the string is found otherwise
returns -1.
 {
 flag1=0;
 for(i=0; i<(n-m-1); i++)
 {
 flag=0;
 for(j=0;j<m;j++)
 {
 {if(T[j]!=P[j])
 {
 flag=1;
 }
 }
 if(flag==0)
 {
 return j;
 }
 }
 return -1;
 }

Note that “return –1” is executed only if the procedure does not return any time between.

398   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Problem with the above algorithm The algorithm returns as soon as it finds the first
occurrence of the string. However, there can be more than one occurrence of P in T. The
following modification helps to tackle this problem.

Naïve_string_Matching (T, P) prints position of P in T, if the string is found otherwise prints
“Not Found”.

 {
 flag1=0;
 for(i=0; i<(n-m-1); i++)
 {
 flag=0;
 for(j=0;j<m;j++)
 {
 {if(T[j]!=P[j])
 {
 flag=1;
 }
 }
 if(flag==0)
 {
 Print i;
 flag1=1;
 }
 }
if(flag1==0)
 {
 print “Not Found”;
 }
 }

Complexity: The complexity of the above algorithm can be found easily. The outer
loop runs (n - m − 1) times and the inner m times. The complexity, therefore, becomes
O((n - m - 1)(m)). If n is constant, then the complexity becomes O(m2), otherwise O(mn).

Here, the above method is not the most efficient way of matching strings. The follow-
ing sections explore better ways of accomplishing the above task. The reader can find
the C code of the above algorithm in the web resources of this book.

18.4  RABIN–KARP ALGORITHM

The string matching procedure described in the earlier section requires m(n - m - 1)
comparisons, where m and n denote the length of P and T, respectively. The number of
comparisons can be reduced by a simple modification to the above algorithm. The sub-
strings having the same length as that of P and give the same modulus with a number,
say q, and can be isolated from T.

S t r i n g Ma tc h i n g   ■  399

These strings can then be compared with P. If the strings match, then the initial index
of the substring in T can be printed. For example, if the substring is ‘5623’, q is 13, and
T is ‘789562378563267’. ‘5623’ mod 13 is 7. The first step would be to find all strings
of length m from T. This is followed by taking mod 13 of all the substrings. In the above
case, the various substrings and their mod 13 are depicted in Table 18.2.

9 5 6 2

5

mismatch Match

6 2 3

5 6 2 3

5 6 2 3

Figure 18.1  String matching

Table 18.2 S ubstrings of length m from T,
and their mod 13

Substrings of length m Substring % 13

7895 4

8956 12

9562 7

5623 7

6237 10

2378 12

3785 2

7856 4

8563 9

5632 3

6326 8

3267 4

Contenders

The strings with the value 7 are the contenders for the correct match. In this case,
there are two such strings. These strings are then compared with P. The second string
does not match P and hence would be dubbed as a spurious match. The matching has
been depicted in Fig. 18.1. Algorithm 18.2 represents the course of action.

Tip: Rabin–Karp is more efficient than naïve string matching.

	 Algorithm 18.2 R abin–Karp algorithm

Input: T[0…(n-1)], P[0…(m-1)]
Output: The starting index of the matching substring, if string is found else -1.

400   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Rabin–Karp Algorithm(T[0…(n-1)], P[0..(m-1)]

 modT := mod(T[0..(m-1)], q); modP := mod(s[0..(m-1)], q)

 for i from 1 to n-m+1
 if modP = modT
 if P[i..i+m-1] = P
 return i
 modP := mod(s[i+1..i+m], q)
 return not found

Explanation: The modT variable holds the value of mod of the substring of T (equal in
length to P) and modP stores the value of mod of P with q. If these are equal, the char-
acters are compared, otherwise the control moves one step forward.
Complexity: The contentious point is to find the value of the substring in order to cal-
culate its mod. This, if done in the conventional way, would lead to quadratic complex-
ity. In order to make the things efficient, recursion can be used. The complexity which
becomes O(m(n − m + 1)) in the worst case. It may be noted though that the number of
comparisons are reduced as compared to naïve string matching.

18.5  DETERMINISTIC FINITE AUTOMATA

This section briefly discusses the concept of deterministic finite automata (DFA) and
non-deterministic finite automata (NFA). Moreover, the knowledge of DFA is also nec-
essary to understand the first phase of the compiler, which is lexical analysis. Both
DFA and NFA accept regular language. The first phase of compiler, for example, forms
tokens. This is done with the help of a regular expression. This regular expression is then
converted into an NFA. The NFA is converted to the corresponding DFA and finally the
DFA is minimized. The formal definition of a DFA is as follows.

A deterministic finite acceptor is a five-tuple calculus having the following
components:

•	 A finite, non-empty set of states, denoted by Q
•	 A finite, non-empty set of input symbols, denoted by Σ

•  An initial state, denoted by q0. The state q0 ∈ Q
•  A finite, non-empty set of final states, denoted by F, F Q⊆
• � A transition function, generally denoted by d, which maps

Q Q× ∑ →
For example, the DFA depicted in Fig. 18.2 can be described as

follows.
The initial state of the automata, depicted in Fig. 18.2 is q0.

The final state is {q2}. The set of states is the set = { }q q q q0 1 2 3, , , .
The set of states is given by ∑ = { }a b, . The transition is
given by

q0 q1

q3 a, b

ba

a

a

b

b q2

Figure 18.2  An automata
that accepts (ab)+

S t r i n g Ma tc h i n g   ■  401

δ (,)q a q0 1=

δ (,)q b q0 3=

δ (,)q a q1 3=

δ (,)q b q1 2=

δ (,)q a q2 1=

δ (,)q b q2 3=

δ (,)q a q3 3=

δ (,)q b q3 3=

The transition functions can also be depicted in Table 18.3.
A string is said to be accepted by an automata if by giving an input it reaches the final

state. In the above case, the strings ab, abab, ababab, and so on (ab, any number of times)
are accepted by the automata, whereas any other input leads us to the state q3, referred
to as a trap state. A trap state is one, wherein giving any input does not take us forward.
Moreover, a trap state is always a non-final state.

In the above discussion, the output of a given automata has been discussed. However,
in many situations, it is required to design an automata that accepts a given string. The
concept can be understood by the illustrations that follow.

Illustration 18.1	 Design an automata that accepts a string over {0, 1}, in which the
first symbol is 1 and the third symbol is 0.

Solution The required automata is depicted in Fig. 18.3.

If the first symbol is not 1 then the transition takes us to the trap state. In the same
way, if the third symbol is not 0 then the transition takes into the trap state. The second
symbol can either be 0 or 1, since nothing is given regarding the second input.

The automata can be defined as follows.
•	 Initial state q0

•	 Final state {q3}
•	 Set of states {q0, q1, q2, q3, q4}
•	 Σ = {0, 1}
•	 Transition diagram: Depicted in Fig. 18.3

Illustration 18.2	 Design an automata that accepts a string over {0, 1}, in which the
number of 1’s are multiples of 4.

q0 q1 q2

10

0,1 01

0,1

0,1

q4

q3

Figure 18.3  An automata that accepts a string
having first symbol 1 and the third symbol 0

Table 18.3 T ransition table of
automata depicted in Fig. 18.2
State a b

q0 q1 q3

q1 q3 q2

q2 q1 q3

q3 q3 q3

402   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Solution The required automata is depicted in Fig. 18.4.

The initial state of this automata is also the final state. If the number of 1’s are 4 or 8
or 12 etc., then the automata reaches the final state. Since nothing is given regarding 0
is, any state can have any number of 0’s.

The automata can be defined as follows:
•	 Initial state q0

•	 Final state {q0}
•	 Set of states {q0, q1, q2, q3}
•	 Σ = {0, 1}
•	 Transition diagram: Depicted in Fig. 18.4

18.5.1  Non-deterministic Finite Automata
A non-deterministic finite acceptor is a five-tuple calculus having the following components:
•	 A finite, non-empty, set of states, denoted by Q
•	 A finite, non-empty, set of input symbols, denoted by Σ
•	 An initial state, denoted by q0. The state q0 ∈ Q
•	 A finite, non-empty, set of final states, denoted by F, F Q⊆
•	� A transition function, generally denoted by d, which maps Q n× ∑ → any of the 2

subsets of Q

q1

q2

0

1

0

1

0

0

1

1

q0

q3

Figure 18.4  An automata that accepts a
string having number of 1’s multiple of 4

Difference between a deterministic finite acceptor (DFA) and a non-deterministic
finite acceptor (NFA)

•	 A DFA goes to a particular state on giving a particular input, that is, to a particular
state. An NFA, on the other hand, can move to more than one state.

•	 There are no NULL moves in a DFA. An NFA, on the other hand, may contain a
NULL move.

S t r i n g Ma tc h i n g   ■  403

For example, the automata depicted in Fig. 18.5 is a non-deterministic finite acceptor as
on giving ‘a’ to q0, the machine goes to both q1 and q2.

18.6  KNUTH–MORRIS–PRATT AUTOMATA

The KMP algorithm finds a substring in a given string in a way that is more efficient than
the naïve pattern-matching algorithm. The algorithm has two parts. The first part has a
complexity of O(m), m being the length of the string which is to be searched in a bigger
string. The second part has complexity O(n), n being the length of the given string, gen-
erally a bigger one (or at least equal). The complexity of the complete algorithm is,
therefore O(m + n), which is linear and hence better than the naïve string matching,
which has a quadratic complexity.

In the procedure explained in the following discussion, we would craft a KMP DFA.
The number of states in the DFA would be one more than the number of characters
in the pattern. The last state would represent the acceptor state. It should be obvious that
the maximum number of characters that would match is m (the number of characters
in P). Moreover, each state will be denoted by a number that would indicate the number
of characters matched. For example, if we are at state 1, it means that 1 character has
matched. Similarly, being in state 2 would mean that 2 characters have matched.

The approach relies on finding the maximum prefix of the pattern that is also the suf-
fix of the given text (till that instant). As stated earlier, the second part of the algorithm
requires O(n) time. This is because if the requisite DFA is constructed then the only

thing left would be to look for the corresponding entry in the DFA table.
However, the construction of this DFA table is a difficult task.

The construction of DFA starts with the transitions of the start state.
Suppose, the first character that is to be matched is ‘T’ and the charac-
ters in the pattern are ‘T’, ‘G’, ‘A’, and ‘C’. Now if the state encounters
a ‘T’, then the control moves to the next state; otherwise it stays there.
The situation is depicted in Fig. 18.6.

Tip: The KMP algorithm is the most efficient amongst the string matching algorithms
discussed.

q0 q1

q2 b

a

a
a, b

a

b q3

Figure 18.5  An NFA

0
T

G, A

Figure 18.6  Designing
transitions for the

initial state

404   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

0
T G

G, A

G, A

A, G

A
G

T

T

T

T

A

1
T

2
G

3
T

4
A

5 6

Figure 18.10  Final DFA

Pattern: TGC
In the next transition, the desired character, which in this case is ‘G’,
takes the control forward, whereas a ‘T’ would keep the control to the
state 2. Any other character would take the control back to
state 0 (Fig. 18.7).

Tip: The memory of the pattern to be searched is built in the KMP DFA

0
T

A

G, A

G

T

1

Figure 18.7  Designing
transitions for state 1

In the next state, if the machine encounters a ‘G’, then it moves forward, encounter-
ing any other character would take it back to the state 0 (Fig. 18.8). Figure 18.9 depicts
the configuration of the DFA. Resulting after designing state 3.

In the same way, the transitions for the rest of the states can also be designed. The
final DFA is depicted in Fig. 18.10.

Let us create the transition table of the DFA also.
1.	 As stated earlier, the automata would have one state more than the number of alpha-

bets in the pattern. The last state would be the accepting state.

0 T

G, A

G, A

A

A

G

T
T T

1 T2 G3

Figure 18.9  Designing transitions for state 3

0
T

G, A

A

G

T

T

1
T

2
G

3

Figure 18.8  Designing transitions for state 2

S t r i n g Ma tc h i n g   ■  405

2.	 If we are in the jth state and the next character matches then we move to the
(j + 1)th state. This is because in the transition table, one must try to fill the states
that would take the machine forward. For example, if we are at a state 0 and encoun-
ter a T, then we would want to go to state 1; in state 1 if we encounter a G we would
go to state 2. In state 2, if we encounter a C we would go to state 3. That is, if the
state is j and the next character is same as that in the pattern then move to the state
j + 1 (Table 18.4).

3.	 If, on the other hand, the pattern does not match, then the following procedure must
be followed. For example, if 1 is in the 0th state and encounters a G or A, it is not
expected to move and therefore, the corresponding transition should take us to T
(Table 18.5).

Table 18.7  Designing transitions for state 2

T G T G T A

T 1 1 3 5

G 0 2 0 4

A 0 0 0 6

Table 18.8  Designing transitions for state 3

T G T G T A

T 1 1 3 1 5

G 0 2 0 4

A 0 0 0 0 6

Similarly, in the second state if the input is G then one should move forward, in the
case where the input is T the state should remain same. In the case of A the control
should move to state 0 (Table 18.6).

Table 18.6  Designing transitions for state 1

T G T G T A

T 1 1 3 5

G 0 2 4

A 0 0 6

Table 18.4  Designing transition table

T G T G T A

T 1 3 5

G 2 4

A 6

Table 18.5  Designing transition table for
mismatch transition

T G T G T A

T 1 3 5

G 0 2 4

A 0 6

In the case of the third state, if one encounters a ‘G’ or an ‘A’, one must go back to
the state 0 (Table 18.7). The transitions for the next state are shown in Table 18.8, for the
state 4 in Table 18.9, and that for state 5 in Table 18.10.

406   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

18.7  TRIES

A trie is a tree in which the root point to various sub-trees. The sub-trees depict the strings
that are accepted by the tree. Every edge in a trie is marked with an alphabet and each
node, which is not a root is a depiction of a state. The string formed while travelling from
the root to any leaf is deemed to be accepted by the trie. The leaf node can, therefore, be
considered as the accepting state of the automata. The root is, obviously, the starting state.
It may be stressed that a trie, unlike a binary search tree, does not have just two children.

In order to create a trie from a given set of strings that must be accepted by the trie,
the steps given in Algorithm 18.3 must be carried out.

	 Algorithm 18.3 C reation of trie

Input: Set of strings, a string in this set would be denoted by wi
Output: A Trie

 TrieCreation(Set of strings) return Trie
{

Create an empty state, the root node, which would point to the various sub-
trees.
The first string w, from the set of given strings is taken. For each character
x w∈ , create a transition labelled x. The string w would be the path from
the root to the only leaf at this time in the tree.
Pick the next string from the given set. Follow the path from the root till
the characters match after which create a sub-tree which would be joined to
the node till which wi matched.
Repeat the above step till all the strings have their sub-trees or a part
of it.
return Trie;

}

Illustration 18.3	 Create a trie if the set of strings is {apple, ape, ampere, ample}.

Solution The creation of the trie would be as follows:
•	 Create a root node.
•	 Pick the first string from the set. In the given set, it is apple. Create a sub-tree having

edges labelled a, p, p, l, and e (Fig. 18.11).

Table 18.9  Designing transitions for state 4

T G T G T A

T 1 1 3 1 5

G 0 2 0 4 0

A 0 0 0 0 0 6

Table 18.10  Designing transitions for state 5

T G T G T A

T 1 1 3 1 5 1

G 0 2 0 4 0 4

A 0 0 0 0 0 6

S t r i n g Ma tc h i n g   ■  407

The sub-tree for the string

A

a

p

p

l

B

C

D

E

e

F

Figure 18.11  Creation of the root and sub-tree for the first string

The common part of the first and
the second string

A

a

p

p

e

l

B

C

D G

E

e

F

Figure 18.12  Expanding the trie for the second string

•	 This is followed by the creation of the uncommon part of the second substring and
joining it with the first sub-tree (Fig. 18.12).

408   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

A

a

p

m

p e

l

B

C

D G

l

M

E

e

F

p

e

r

H

I

J

K

e

N

e

L

Figure 18.14  Expanding the trie for the fourth string

•	 The third substring has only ‘a’ in common with the first one, the rest of the part is
created and joined with the first one (Fig. 18.13).

The uncommon part of the
first and the third string

A

a

p

m

p e

l

B

C

D G

E

e

F

p

e

r

H

I

J

K

e

L

Figure 18.13  Expanding the trie for the third string

•	 The same process is followed for the fourth one (Fig. 18.14).

S t r i n g Ma tc h i n g   ■  409

m

p

p

e

l

A

a

B

C

D G

E

e

F

p

l

e

e

r

H

I

M

N

J

K

e

L

Figure 18.15  The final trie

•	 The final tree is depicted in Fig. 18.15.

18.8  SUFFIX TREE

A suffix tree is a trie formed by taking all the suffixes of a given string. For example,
consider the string ‘Harihan’. The various suffixes of this string are as follows:

arihan rihan ihan han

an n

The trie of the above strings is depicted in Fig. 18.16. Such a trie is referred to as a suffix
tree. The suffix tree is formed by taking all the n suffixes of a string of length n. Here,
the leaves depict the accepting state. In the worst case, the complexity of creating such
a tree would be O(n2). The better option, in such cases, would be to club together the
characters, which would form the labels of the efficient version of the tree.

The suffix tree has many applications. For example, the formation helps in find-
ing the longest common subsequence. The longest common subsequence has already
been explained in Chapter 11. The reader is advised to explore the work of some of the
authors who have proposed efficient versions of suffix trees. The versions are, however,
beyond the scope of the book.

410   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

18.9  CONCLUSION

The chapter explores an immensely important topic: string matching. The first algorithm
presented in the chapter (naïve string matching) though computationally expensive, is
easy to implement. The number of comparisons can be reduced by a minor modification
suggested in the Rabin–Karp method. The method along with an illustration has been
explained in the chapter.

The concept of DFA has also been dealt with in the text. The section also differen-
tiates between a DFA and an NFA and introduces the concept of regular expressions.
The power of a DFA can be judged by the fact that the most important method of string
matching, that is, the KMP method is based on the construction of an efficient DFA,
which is capable of pattern matching.

The chapter also introduces the trie and suffix tree. The construction of a trie has been
dealt with in detail, by taking an appropriate example.

The chapter is not only important to those who want to pursue their career in
computer science but also to those who intend to work in computational biology.

r i

r

a

i

A

h

B

C

D

E

h

a

F

n

G

H

r

a

i

I

J

K

h

a

L

n

M

N

i

h

O

P

Q

a

R

n

S

h

a

T

Z3

Z1

X

Y

Z

Z2

U

V

n

W

a

n

n

n
a

h

Figure 18.16  An example of suffix tree

s t r i n g m Atc h i n g ■ 411

 Points to Remember

 • The complexity of naïve string matching is O (m (n - m + 1)) .

 • Rabin–Karp algorithm has the best case complexity as O (n + m) .

 • The worst case complexity of Rabin–Karp is O (m (n − m)) .

 • KMP is the most effi cient algorithm for string matching.

 • For every regular language, there is an NFA.

 • Corresponding to every NFA there is a DFA.

 • An NFA can have a NULL move, a DFA cannot.

 • An NFA can go to more than one state on giving an input, a DFA cannot.

 Deterministic finite acceptor A deterministic finite acceptor is a five-tuple calculus having
the following components:

 • A fi nite, non-empty set of states, denoted by Q .
 • A fi nite, non-empty set of input symbols, denoted by Σ.
 • An initial state denoted by q 0 . the state q 0 ∈ Q .
 • A fi nite, non-empty set of fi nal states, denoted by F , F Q⊆ .
 • A transition function generally denoted by δ , which maps Q Q× ∑ → .

 Non-deterministic finite acceptor A non-deterministic finite acceptor is a five-tuple calcu-
lus having the following components:
 • A fi nite, non-empty set of states, denoted by Q .
 • A fi nite, non-empty set of input symbols, denoted by Σ.
 • An initial state denoted by q 0 . the state q 0 ∈ Q .
 • A fi nite, non-empty set of fi nal states, denoted by F , F Q⊆ .
 • A transition function, generally denoted by δ , which maps Q Qn× ∑ → any of the 2 subsets of

 Q Qn× ∑ → any of the 2 subsets of .

 String matching it refers to finding a small string and its position in a larger string. given a
text t[0…(n − 1)] and a pattern P[0…(m − 1)], it is required to find the beginning index of all
the occurrences of P in t.

 Suffix tree A trie of all suffixes of a particular string is called a suffix tree.

 Tries A trie is a tree in which the root points to various sub-trees. the sub-trees depict the
strings that are accepted by the tree. every edge in a trie is marked with an alphabet and each
root, which is not a node, is a depiction of a state.

 KEY TERMS

The topic is used in areas such as DNA matching, which makes it all the more
important. The reader is advised to go through Jones & Pevzner and Attwood et al.,
(2009) for a deeper understanding. Some of the programs have been included in the
web resources of this book.

412 ■ A lg o r i t h m s : D e s i g n A n D A n A ly s i s

 EXERCISES

 I. Multiple Choice Questions
 1. In which of the following ‘string matching’ is used?

 (a) DNA matching
 (b) Text editors
 (c) Finding musical patterns from multimedia databases
 (d) All of the above

 2. What would be the complexity of ‘naïve string matching’, if the text T is of length
‘ n ’ and the pattern P is of length ‘ m ’?
 (a) O (m 2)
 (b) O (m (n - m))

 (c) O (n 2)
 (d) None of the above

 3. What is the best case complexity of Rabin–Karp algorithm?
 (a) O (n)
 (b) O (n + m) in the best case

 (c) O (m 2)
 (d) None of the above

 4. What is the worst case complexity of Rabin–Karp algorithm?
 (a) O (m (n − m))
 (b) O (m 2)

 (c) O (n 2)
 (d) None of the above

 5. What is the complexity of string matching using deterministic automata?
 (a) O (n)
 (b) O(m)

 (c) O (n 2)
 (d) None of the above

 6. What is the complexity of Knuth–Morris–Pitt algorithm?
 (a) O (n)
 (b) O (nm)

 (c) O (n 2)
 (d) None of the above

 7. Which of the following data structures is best suited when many of the strings to be
matched have the common prefi x with the fi rst string?
 (a) Trie
 (b) Try

 (c) Do not try
 (d) Trial

 8. Which of the following is the trie of all the possible suffi xes of a string?
 (a) Suffi x tree
 (b) Suffi x array

 (c) Suffi x–Prefi x
 (d) Prefi x tree

 9. Which of the following is also called a prefi x tree?
 (a) Tries
 (b) Suffi x tree

 (c) Binary search tree
 (d) None of the above

 10. Which language is accepted by a deterministic fi nite acceptor?
 (a) Regular
 (b) Irregular

 (c) English
 (d) Spanish

 11. Which of the following is accepted by a non-deterministic fi nite acceptor?
 (a) Regular
 (b) Irregular

 (c) English
 (d) Spanish

S t r i n g Ma tc h i n g   ■  413

12.	 Which of the following is true?
(a)	 Corresponding to every DFA, there is an NFA
(b)	 Corresponding to every NFA, there is a DFA
(c)	 Both
(d)	 None of the above

13.	 Which of the following is true?
(a)	 An NFA can have a NULL transition
(b)	 An NFA can go to more than one states on giving an input
(c)	 Both of the above
(d)	 None of the above

14.	 Which data structure is used in string matching?
(a)	 DFA
(b)	 Trie

(c)	 Prefix tree
(d)	 All of the above

15.	 Which is the most efficient string matching algorithm?
(a)	 Knuth–Morris–Pitt
(b)	 Rabin–Karp
(c)	 Naïve
(d)	 All of the above are equally efficient

16.	 Which of the following is not used in string matching?
(a)	 Longest common subsequence
(b)	 Master theorem

(c)	 Naïve string matching
(d)	 All of the above

II.  Review Questions
	 1.	 Define string matching. What are the various applications of string matching?
	 2.	 Explain the naïve string-matching algorithm. What is its complexity?
	 3.	 Explain the Rabin–Karp algorithm. What is its complexity?
	 4.	 Explain the Knuth–Morris–Pratt algorithm. Discuss its complexity.
	 5.	 What are tries? Explain the algorithm for their formation.
	 6.	 What are suffix trees? What are the applications of suffix trees?
	 7.	 In the string ‘78956237856327’, if the value of q in Rabin–Karp is 7, how many

spurious matches are there?
	 8.	 Design a DFA that accepts

(a)	 All the strings in {0, 1} in which the third symbol is 1 and the fifth is 0
(b)	 The number of 1’s are multiple of 4 and that of 0’s are multiple of 5
(c)	 The string starts with a ‘01’ and ends with a ‘01’
(d)	 The string starts with a ‘01’ or ends with a ‘01’
(e)	 The number of 1’s are 2 more than the number of 0’s
(f)	 Having odd number of zeros and even number of ones

	 9.	 Formulate an algorithm to convert an NFA to a DFA.
10.	 Formulate an algorithm to convert a regular expression to an NFA.

414 ■ A lg o r i t h m s : D e s i g n A n D A n A ly s i s

 11. Form the trie of all the suffi xes of the word ‘banana’.
 12. Form a suffi x tree of all the prefi xes of ‘banana’.
 13. Explain how Knuth–Morris–Pitt algorithm has complexity O (n).

 Answers to MCQs

 1. (d)
 2. (b)
 3. (b)
 4. (a)

 5. (b)
 6. (a)
 7. (a)
 8. (a)

 9. (a)
 10. (a)
 11. (a)
 12. (a)

 13. (c)
 14. (d)
 15. (a)
 16. (b)

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Defi ne P-type problems
 • Distinguish between P and NP problems
 • Defi ne NP-complete problems and NP-hard problems
 • Understand that all the NP-hard problems are not NP-complete

 19.1 INTRODUCTION

 Algorithms are designed to solve a problem or to accomplish a particular task. The
problem in question can be of many types. Broadly, the problems can be classifi ed
into two types: decision problems and optimization problems. The decision problems
determine whether an algorithm accepts an input, say w . If the input is accepted, the
algorithm answers in a ‘yes’, otherwise it answers in a ‘no’. The corresponding machine
is a recursive machine. There is another type of machine called recursive enumerable
machine, which answers in a ‘yes’ (Fig. 19.1). In such machines, one gets an answer
only if the input is accepted, in other cases, neither the machine produces an error mes-
sage nor does it produce a result.

Input Recursive enumerable
machine

Output: Yes
Input

Recursive machine

Output: Yes

Output: No

(a) (b)

 Figure 19.1 types of machines: (a) recursive machine,
(b) recursive enumerable machine

 Complexity Classes

 C H A P T E R 1 9

The other type of problems, generally referred to as optimization problems, maximizes
or minimizes the value of the objective function. The latter are a bit diffi cult to solve, as
discussed in the sections that follow. Figure 19.2 summarizes the discussion.

416   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

In the discussion that follows, the classes P, NP, etc. would be discussed in terms of
Turing machine. The Turing machines are one of the most powerful automata. In fact, all
computational functions can be defined in terms of Turing machines. The machine con-
sists of a tape and a read–write head. Formally, it consists of the following components:
•	 Finite, non-empty set of input symbols, ∑.
•	 Finite, non-empty set of states, Q.

The basic definitions related to automata theory are presented in Fig. 19.3. Formally,
a decision problem (M) can be defined as a language (L) which returns a ‘1’, if the given
string (w) is accepted by the language,

L w L M w= ∈ ={ }: () 1

Problems

Decision problems Optimization problems

Answers in a “yes” or “no” Maximization problems

Minimization problemsRecursive enumerable

Figure 19.2  Types of problems

Alphabet: x: x ∈ Σ, Σ being the �nite, non-empty set of input symbols.
In the discussion that follows, Σ contains at least two alphabets.

Strings: If Σ is the �nite, non-empty set of input symbols, then Σ is
the set of strings over Σ.

Language accepted by machine: If a machine accepts all w ∈ Σ*,
then L is said to be accepted by M.

Figure 19.3  Basic definitions

Definition:

Decision problem  A problem that answers in a ‘yes’ or a ‘no’ is referred to as a decision
problem.

Optimization problem  A problem that maximizes or minimizes an objective function is
called an optimization problem.

Co m p l e x i t y C l a s s e s   ■  417

•	 Initial state, q0, which belongs to the set of states
•	 Finite non-empty set of tape symbols, T.
•	 Transition function that maps the combination of input and state to that of state and

tape symbol.
•	 Set of final states, which is a subset of the set of states.

Alan Turing introduced these machines in 1936. It is worth noting that though the
machines were introduced before the physical computers (the first computer, ENIAC,
was completed in 1946), these are still the best bet to define a computable function
(Sipser, 1997). A string is deemed as accepted by a machine if the corresponding com-
putation of the machine terminates in accepting state. Otherwise, the given string is not
accepted by the machine. The number of steps in the computation of a given string by a
given machine would be denoted by tm and the worst case running time by Tm.

M runs in polynomial time if Tm ≤ nk. Correspondingly, the class P can be defined as
follows (Sipser, 1997):

Definition  P L L L M= =| () for a turi g machine that runs in polynomial timen{{ }
The corresponding Turing machine should terminate in finite number of steps, bounded by
polynomial time.

Informally, the class P may be defined as the class of decision problems which can be solved
in polynomial time, by some deterministic algorithm.

Table 19.1 S ome examples of problems that belong to the P class
Problem Concept given by Reference

SAT2 Cook in 1971 Section 19.3

Minimum spanning tree Kruskal in 1956 Section 10.5

Shortest path Dijkstra in 1959 Section 10.1

Solvability of linear equations Appendix

Minimum cut Edmonds in 1972 Section 19.3

Edge cover or arc cover Edmonds in 1965 Section 19.3

Bipartite matching Hall in 1948 Web resources

Sequencing with deadlines Section 10.4

The class NP, on the other hand, contains problems that can be solved by non-
deterministic algorithms in polynomial time. The problems were defined in terms of
non-deterministic machines by Cook (1971). The non-deterministic machines have been
defined in Section 20.4. Formally, NP can be defined as follows (Karp, 1972):

The informal definition is attributed to the work of Jack Edmonds (1965). The Turing
machine mentioned above is a one-tape Turing machine. Examples of some of the prob-
lems that belong to the P class are as follows (Table 19.1).

418   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Examples of some of the problems that belong to the NP class are as shown in Table 19.2.

Definition  NP = {L L = L(M) for a non-deterministic machine that runs in polynomial
time}

Informally, the class NP may be defined as the class of decision problems which can be
solved in polynomial time, by some non-deterministic algorithm.

Table 19.2 S ome examples of problems that
belong to the NP class

Problem Reference

SAT2 Section 19.3

Clique problem Section 19.3

Chromatic number problem Section 19.3

Important points regarding complexity classes

•	 A problem that belongs to the class P also belongs to the class NP.
•	 All NP problems are not NP-hard.
•	 A problem for which the solution can be verified in polynomial time is NP-complete.
•	 There are some NP-hard problems, which are not NP.
•	 �The problem that belongs to both NP-hard class and the NP class are called NP-complete

problems.

Here, all the problems that belong to the class P are in fact in the class NP as well.
The NP-complete problems are those for which no polynomial time algorithm is known.

However, the solution of these problems, if given, can be verified in polynomial time.
Then, there are problems for which no polynomial time algorithm is known and even

their solutions, if given, cannot be verified in polynomial time. Such problems are called
NP-hard problems. For example, the travelling salesman problem (TSP) is an optimi-
zation problem and hence is an NP-hard problem. There are two versions of the TSP;
in one of the versions, the cost is given and it is required to find a path having a given
cost from the given graph. For this variant, though there is no polynomial time solution,
the answer can be verified in polynomial time. Such problems would be referred to as
NP-complete problems. In the second variant of TSP, it is required to find the minimum
cost Hamiltonian cycle of the given graph. There is no polynomial time algorithm that
accomplishes the given task. Moreover, the solution obtained by a non-deterministic
algorithm cannot be deemed as correct until and unless we have all the possible paths
and the corresponding costs. This variant is one of the problems which is NP-hard but not
NP-complete.

A problem that is NP-hard and NP is called an NP-complete problem. The TSP
(in which the desired cost is given) belongs to this class.

Co m p l e x i t y C l a s s e s   ■  419

A problem can be solved by reducing the problem to some other problem whose solu-
tion is known. The solution of the known problem can then be used to solve the given
instance of the former. However, this method works only if the reduction can be done in
polynomial time. In the discussion that follows if a problem A can be converted into B,
in polynomial time, then A reduces to B or A B∝ .

P

NP

Figure 19.4  P and NP problems

Definition

Reduction  If a problem A can be solved by a deterministic polynomial time algorithm, then
that solves B in polynomial time.

The pioneers of the subject, like Richard M. Karp, have categorically stated the fol-
lowing points regarding reducibility:
•	 If A B∝ and B C∝ , then A C∝ .
•	 If A B∝ and B belongs to the class P, then A belongs to the class P.

19.2  CONCEPT OF P AND NP PROBLEMS

The problems of the class P are also called tractable, as they are solvable in polyno-
mial time. For the problems of the class NP, on the other hand, there is no polynomial
time algorithm and are hence intractable. According to literature review, a problem that
belongs to the class P, also belongs to the class NP (Fig. 19.4).

The question whether a given problem is tractable or not is a precarious one. For
instance, some of the authors believe that finding the shortest path in a graph is tracta-
ble. The complexity of the requisite algorithm being O(n log n), whereas the problem of
finding the longest path is intractable, as the corresponding algorithm is NP. However,
it is also possible that till now we have not been able to find the requisite algorithm and
hence we are calling it intractable. The day an efficient polynomial time algorithm is
designed for the longest path problem, the problem would become tractable.

There is another famous problem one instance of which is tractable, whereas the
other is intractable. The problem is the CNF satisfiability (conjunctive normal form)
problem. The CNF is the conjunction of clauses. A clause, in turn, is a disjunction of

420   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

literal, and literal is a variable or its negation. A Boolean function is one that maps
{0, 1}n to {0, 1}. For example, for two variables ‘a’ and ‘b’, the literals are as follows:
•	 a
•	 ~a
•	 b
•	 ~b
The possible clauses are as follows:
•	 a b∧
•	 a b∧ ∼
•	 ∼ a b∧
•	 ∼ ∼a b∧

In addition, the possible number of CNFs in the above case is infinite.
The CNF satisfiability problem is to find the values of literals which satisfy a given

CNF. A 2CNF form has two literals in each term and a 3CNF form has three literals in
each term. The 2CNF problem is tractable whereas the 3CNF is intractable (The problem
has been defined in the following discussion.). Though the problem cannot be solved in
polynomial time, whether it can be verified in polynomial time.

Definition

Verifies  An algorithm ‘ALG’ verifies language L if L w y A x y= ∈{ } { } ={ }0 1 0 1 1, * : , *, (,)there exists = so that

L w y A x y= ∈{ } { } ={ }0 1 0 1 1, * : , *, (,)there exists = so that

19.3  IMPORTANT PROBLEMS AND THEIR CLASSES

Path Problem (PP)

Given a graph G V E= (,) to find out whether there is a path from u to v, u v V, ∈ , which
is of length l, such that l ≤ n for some n.

This problem answers in a ‘yes’ or a ‘no’, and is hence a decision problem. Moreover,
since there exists an algorithm that accomplishes the above task in polynomial time, the
PP is a problem that belongs to the P class.

Shortest Path Problem (SPP)

Given a graph G V E= (,) and the corresponding matrix, the problem is to find the short-
est path from u to v, v V∈ .

This problem is an optimization problem, since it requires us to find a path that minimizes
the distance between the given vertices. However, there are many algorithms which accom-
plish the above task in polynomial time. Hence, the problem belongs to the class P.

Longest Path Problem (LPP)

Given a graph G V E= (,) and the corresponding matrix, the problem is to find the longest
path from u to v, v V∈ .

Co m p l e x i t y C l a s s e s   ■  421

This problem is an optimization problem, since it requires us to find a path that maxi-
mizes the distance between the given vertices. However, the problem is an NP-complete
problem, as against the shortest path problem.

Subset Sum Problem

Given a set S and a number k, the problem is to find out the subset of the given set having
sum of its elements equal to k.

For example, if the set S is {1, 2, 3, 4, 5} and the value of desired sum is 6, then the
possible subsets that have the sum of its elements as 6 are {1, 5} and {2, 4}. The prob-
lem seems simple. However, if a set has n elements and the desired sum is, say m, then
the brute force approach would require the crafting of all possible 2n subsets, calculating
their sum, and finding out which subset gives the desired sum. The number of subsets of
a set having n elements is 2n, the problem is therefore an exponential one. However, the
above problem requires enlisting of all the subsets of a given set, finding the sum of all
of them, and then checking whether the sum of elements of that subset is same as the
given number or not. The problem, though not unsolvable, has exponential time com-
plexity. There is no algorithm for the problem that runs in polynomial time. However, if
the solution is known, it is easy to verify the solution in polynomial time. Therefore, the
problem can be categorized as an NP-complete problem.

0–1 Integer Programming

Given a set of equations of the form A X B× = , where A and B are integer vectors, then
there exists a vector X in {0, 1}, which satisfies the above equation.

The problem does not have a polynomial time algorithm. However, if the answer is given,
it would be easy to find whether it is correct or not. Therefore, the problem can be catego-
rized as an NP-complete problem.

Clique Problem

A clique is a complete sub-graph of a given graph. The problem is to find whether a
clique of a given number of nodes exists, in the given graph, or not.

Suppose there are n nodes in a graph. There would be 2n subsets of the set of nodes.
Each graph would be checked (if it is a complete graph). The procedure is of exponen-
tial complexity. However, if the solution to the above problem is found given, then it
would be easy to see whether the solution is correct or not. The problem is, therefore, an
NP-complete problem.

Maximum Clique Problem

As stated earlier, a clique is a complete sub-graph of a given graph. The problem is to
find the biggest clique of a given number.

The problem is not just NP-complete. Until we have the cost of all the paths, it would
not be possible to find which is the maximum clique. The problem, therefore, can be
categorized as NP-hard problem.

422   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Set Packing

Given a family of sets, say Sj{ } and a number k. The problem is to find out whether there
are k mutually disjoint sets.

Again finding the solution of the problem has exponential complexity. However, if
the solution of the problem is given, it would be easy to check whether it is correct.

Node Cover

Given a graph G = (V, E), it is required to find a set of vertices V′ such that V V′ ⊆ and
∀ ∈ =x E x u v, (,)if then either u or v or both should belong to the set V′.

The problem is not solvable in polynomial time. However, if the solution of the prob-
lem is given it can be verified in polynomial time and hence, it is an NP-complete problem.

Set Cover

Given a finite family of sets S S Sk1 2, ,...,{ } and an integer k. It is required to find whether
there are k sets such that the union of the selected sets yield a set with all the elements
present in the given family.

In order to solve the problem, all possible sub-facilities would have to be considered,
this would be followed by applying union operations to all the groups. The complexity
of this task would be exponential. However, if the solution is given, it would be easy
to find whether it is the correct solution or not. This is the reason why this problem is
considered as an NP-complete problem.

Tip: The following problems are also considered as NP-complete problems. The problems
also mentioned in the paper titled ‘Reducibility among Combinatorial Problems’ by Richard
M. Karp. The problems are related to the problems discussed above. The reader can find
the definitions of the following problems in Karp (1972).
•	 Feedback node set
•	 Feedback arc set
•	 Undirected Hamiltonian cycle
•	 Exact cover
•	 Hitting set
•	 Steiner tree
•	 3-D Matching

Directed Hamiltonian Cycle

A Hamiltonian cycle has already been defined in Section 12.6 of Chapter 12. The problem
to find whether a Hamiltonian cycle occurs for a given graph is an NP-complete problem.

 Satisfiability

The discussion that follows uses ∧ for conjunction, ∨ for disjunction, and ~ for nega-
tion. A Boolean variable is one which can have value either ‘true’ or ‘false’. A Boolean
expression is one which returns a ‘true’ or a ‘false’ for a given assignment of literals xi ’s.
A literal here refers to a Boolean variable or its negation. A Boolean formula is satisfiable
if it is possible to find a set of values of literals for which it is true. If a Boolean formula

Co m p l e x i t y C l a s s e s   ■  423

is true for all possible values of xi’s, then it is said to be valid. If a formula is valid, then
the satisfiability of that formula follows. That is, validity is reducible to satisfiablity.
Opposite of satisfiability is unsatisfiablity and that of validly is invalidity. A formula is
unsatisfiable if there is no set of values which make the formula true. A formula f is not
satisfiable if ~f is valid. In the same way, if a formula f is valid then ~f is not satisfiable.

For example, the following formula is satisfiable as x x x1 2 3= = =True, False, and True
makes the formula True. However, it is not valid, as there are some values of xi’s that
make the expression False,

()x x x1 3 2∧ ∨
Now, let us come to the computational complexity of the above problem. If there are

n literals in an expression, then there would be 2n possible set of values that could be
assigned to literals. This would be followed by finding if there is any set for which the
expression is true. The task, though not impossible, is that of exponential complexity.

We henceforth restrict our discussion to a special class of expressions that have literals
combined in pairs of two, associated by a conjunction. Between these pairs would be a dis-
junction. There can be many such pairs. For example, () () ()x x x x x x1 3 2 1 1 3∧ ∨ ∧ ∨ ∧ is an
expression of the said type. Such problems that involve assignment of truth values to the xi’s
in the above type would be referred to as SAT2. SAT2 is a problem that belongs to the class P.

There is another class in which the literals form parts connected by disjunction, wherein
each part has three literals and these literals are connected by conjunctions. Here, the con-
dition is that the parts should not have a literal and its negation. Moreover, no two parts
should be exactly same. It is a harder decision problem. The corresponding problem finds
whether there is a set of values of xi’s for which the given expression is true. The problem
is generally referred to as SAT3 problem. The SAT3 problem is an NP-complete prob-
lem. There is no known algorithm that can solve the SAT3 problem in polynomial time.
However, if the solution of the problem is given, it can be verified in polynomial time.

The list of NP-complete problems has been presented in Fig. 19.5.

• Satisfiability
• Integer programming
• Clique
• Set packing
• Node cover
• Set cover
• Feedback node set
• Feedback arc set
• Directed Hamiltonian cycle
• Undirected Hamiltonian cycle
• Chromatic number
• Clique cover
• Exact cover
• Hitting set
• Steiner tree
• 3-D Matching
• Knapsack

List of Karp’s NP-Complete Problems

Figure 19.5  List of NP-complete problems

424   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Related to SAT3 we have an important theorem. The theorem, referred to as Cook’s
theorem, is as follows.

19.4  COOK’S THEOREM

The theorem is one of the most basic theorem in the NP theory. It can be stated as follows:

Satisfiability is in 	 P if P = NP

The premise of the above is a simple fact that every NP-complete problem can be
reduced to satisfiability. If someone would be able to come up with an algorithm that
solves the SAT3 problem, then all the NP-complete problems (that can be reduced to
SAT3) would be solved. The concept can be understood with the help of Fig. 19.6.

Problem P1

Solution: S2

SAT3

Solution: S1
Gives

Reduces to

If solved

Figure 19.6  Reducibility to SAT3

19.5  REDUCIBILITY

The concept of reducibility has been discussed in Section 19.1. The application of reduc-
ibility to solve problems that are NP type has been discussed in this section. The con-
cepts discussed here would help the user to convert a similar NP problem to one which
can be solved and hence tackle the problem.

19.5.1  How to Convert a CNF into an AND-OR Graph?
The conversion of a CNF into an AND-OR graph is described in the following discus-
sion. The conversion algorithm is a polynomial time algorithm. As stated earlier, since
the reduction is polynomial time, and a CNF is known to be an NP-complete prob-
lem, the AND-OR graph becomes an NP-complete problem. The procedure requires
the creation of a root node. The root node will have at least two children. The first
child, generally from the left, depicts the node, referred to as E, will have a number
of children equal to the number of ∧s in the CNF. For example, in the expression
() ()x x x x x x1 2 3 2 2 3∧ ∧ ∨ ∧ ∧∼ ∼ , there would be two children of E. In the expression
() () ()x x x x x x x x x1 2 3 1 2 3 1 2 3∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧∼ ∼ ∼ ∼ , there would be three children of E.
The rest of the children of the root node would be the literals in the given expression.
In the above cases, there would be three such nodes x1, x2, and x3. Each literal, in turn
would have two nodes on denoting the case wherein the value of that literal is true and

Co m p l e x i t y C l a s s e s   ■  425

the other denoting the cases wherein the value of that literal would be false. The children
of E would be connected to the requisite nodes, after that. In order to understand the pro-
cess, let us consider the conversion of the following expression into an AND-OR graph.

() () ()x x x x x x x x x1 2 3 1 2 3 1 2 3∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧∼ ∼ ∼

Step 1	 �Create a root node, say ROOT. The root node would have four children E, x1, x2,
and x3 (Fig. 19.7).

Step 2	 �Each literal would have two children, one depicting the value when it is true and
the other depicting the value when it is false (Fig. 19.8).

Step 3	 �The next step requires the children of E. The number of children of E would be
same as the number of conjunctions in the CNF. In the given expression, there
are three such conjunctions, E would therefore have three children (Fig. 19.9).

ROOT

E x1 x2 x3

Figure 19.7  Creation of the ROOT and its
children

ROOT

E x1 x2 x3

T F T F

T F

Figure 19.8  Creation of the children of literals

ROOT

E x1 x2 x3

T F T F

T F

21 3

Figure 19.9  Creation of children of E

426   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Step 4	 �In the last step, the children of E would be connected to the appropriate nodes
(children of xi’s). In the above case, 1 would be connected to x1, x2, and x3’s
true value; 2 would be connected to the false value of x1, true of x2, and false of
x3; 3 would be connected to true of x1, false of x2, and true of x3 (Fig. 19.10).

ROOT

E x1 x2 x3

T F T F

T F

21 3

Figure 19.10  Connecting the nodes of E to the appropriate nodes

ROOT

E x1 x2 x3

T F T F

T F

21 3

Figure 19.11  Final answer

Step 5	 �Finally, the root node and the node E would represent ANDing (shaded circles in
Fig. 19.11).

Co m p l e x i t y C l a s s e s   ■  427

19.5.2  Maximum Clique from SAT3
The SAT3 problem can be reduced to maximum clique using the following process. Here,
the reduction presented is a polynomial time reduction, which makes maximum clique an
NP-hard problem. A clique is a complete sub-graph of a given graph. The problem is to find
the maximum clique of a given graph. The graph shown in Fig. 19.12 has many cliques. The
maximum clique is of size 5. The discussion explores the conversion of SAT3 into the corre-
sponding decision problem of maximum clique (whether a clique of order k exists in a graph).

A

B C

D

FG

Figure 19.12  A graph
with MAX clique of size 5

The problem, as discussed earlier, is NP-hard. The brute force requires the enlist-
ing of all possible subsets of nodes. If there are n nodes in a graph, the total number of
subsets of these nodes would be 2n. This follows the enlisting of subsets which form a
complete graph. This is followed by finding the clique having maximum size. The pro-
cess has, therefore, exponential complexity.

In order to carry out the reduction, we first start with a 3CNF. Let the number of
clauses in a CNF be k. Since there are three literals in each clause, there would be 3 × n
literals. A graph is formed corresponding to this CNF. For each literal, a node is created
in the corresponding graph. The value of the node would be same as that of the literal.
A literal would be joined to all others, which are not in the same clause. This way a lit-
eral would be connected to 3 × n − 3 nodes.

For example, for the CNF

() () () ()x x x x x x x x x x x x1 2 3 1 2 3 1 2 3 1 2 3∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧∼ ∼ ∼() () () ()x x x x x x x x x x x x1 2 3 1 2 3 1 2 3 1 2 3∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧∼ ∼ ∼ .

The value of k = 4, since there are 4 clauses.
•	 There would be 4 × 3 = 12 nodes in the corresponding graph.
•	 Each node would be connected to 4 × 3 – 3 = 9 other nodes.

The corresponding graph is shown in Fig. 19.13.
Note that each node is connected to all other nodes except for those depicting the

literals in the same clause.
Claim: If the graph formed has a clique of size k, then the formula is satisfiable.
In order to accomplish the task of finding the requisite clique, each of the literal in

the clique should come from a different clause. One such clique has been depicted in the
graph in Fig. 19.13 (see bold line).

428   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Now, literals that form the clique come from different clauses. The proof proceeds
by assigning one literal per clause ‘true’. Since there is no contradiction, the assignment
makes sense (It was earlier stated that a clause cannot contain both literal and its nega-
tion). The literals would form a clique if the formula is satisfiable and vice versa.

The above discussion points towards the fact that a 3CNF can be converted to clique.
Therefore, clique is an NP-complete problem. The corresponding optimization problem
is NP-hard.

19.5.3  Independent Set
An independent set is the set of nodes with no edge between them. The decision prob-
lem is to find whether an independent set of order k exists in the graph. For example, in
Fig. 19.14, the nodes {A, D, F} form an independent set, as there is no edge between
A and D, A and F, D and F.

A

B

C D

E

F

Figure 19.14  An example of an
independent set

∼x2

∼x3 ∼x1

x1

x2

x1 x3

x3

x2

x1x3

x2

Figure 19.13  Reduction of CNF to maximum clique

The corresponding optimization problem is to find the maximum independent set in a
graph. The former is NP-complete, whereas the latter is though NP-hard but not NP-complete.

If one is able to find the largest clique in a graph, then the maximum independent set
can be found by simply taking the complement of that graph. It may be stated here that
every graph has a corresponding complementary graph.

19.5.4  Vertex Cover
The vertex cover of a graph is the set of all the vertices such that each edge has at least
one of the vertices in the set.

Co m p l e x i t y C l a s s e s   ■  429

It was shown in the last sub-section that the independent set can be deduced from
the max clique problem. Now, having got the independent set, one can find the vertices
that are not in the largest independent set. The solution would give the minimum ver-
tex cover of the graph. The vertex cover problem has been dealt with in Chapter 21 on
Approximation Algorithms.

Now, it is clear that 3CNF can be converted into max clique, max clique to inde-
pendent set, and independent set to vertex cover. It is left for the reader to deduce that
SAT3 can also be converted to graph colouring. Figure 19.15 summarizes the discussion.

SAT3

Graph colouring Max clique

Independent set

Vertex cover

Figure 19.15  Reductions explored in Section 19.5

Satisfiability

Clique 0–1 Integer programming Chromatic number

Exact cover

Knapsack

Node cover

Directed Hamiltonian Set cover

Undirected Hamiltonian

Figure 19.16  Reducibility

The earlier section gives an idea of reducibility. The concept can be applied to many prob-
lems. The 0-1 integer problem, for instance, can be reduced to satisfiability. As per Richard
Karp, the reduction of a problem into another can be understood by Fig. 19.16. Here, some
of the most common problems have been included. Karp (1972), in one of his pioneering
works, presented the graph depicting the concept for all the NP-complete problems.

430   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

19.6  PROBLEMS THAT ARE NP-HARD BUT NOT NP-COMPLETE

The problems discussed in the earlier sections are NP-complete. However, some prob-
lems have a harder version. For example, if it is required to check whether a TSP of given
cost exists in a graph or not, then though the solution would require a non-polynomial
algorithm but the verification can easily be done. If, on the other hand, one is required
to find the minimum cost Hamiltonian cycle in a weighted, directed graph, then the
problem does not remain NP-complete. The reason being that until all the possible paths
have been processed, there is no way of knowing whether the solution that we have got is
the minimum or not. Such problems are NP-hard problems, which are not NP-complete.

Another example of such problem is that of a maximum clique. Though it is easy to
verify that the clique obtained by a particular algorithm contains k nodes, it is almost
impossible to state whether the clique obtained is the maximum.

Minimal set cover is another problem, which is an NP-hard problem that is not
NP-complete. Now, if one is able to obtain the solution of the harder version of the prob-
lem, some of the complete versions would automatically be solved. For example, if one
is able to obtain the maximum clique, it would be obvious that a clique exists. If one is
able to obtain the minimum cost Hamiltonian cycle in the given graph the existence of
Hamiltonian cycle would automatically be proved.

It may therefore be concluded that all the NP-hard problems are not NP-complete
(Fig. 19.17).

NP

P

NP-Hard

NP-Complete

Figure 19.17  Relation between P, NP,
NP-complete and NP-hard problems

The complete description of such problems along with a tool that helps to solve such
problems can be found in the web resources of this book.

19.7  CONCLUSION

In Chapter 5, various algorithms were discussed, which were used to solve a variety
of problems. The algorithms were of the type O(1) like the addition of an element in a
linked list. As far as complexity is concerned, these are the cheapest algorithms. The lin-
ear time algorithms, such as linear search, take O(n) time. The time taken by a quadratic

Co m p l e x i t y C l A s s e s ■ 431

algorithm is much more than that by a linear algorithm. Examples of such algorithms
are selection sort and bubble sort. The cubic algorithms such as conventional matrix
multiplication take a longer time as compared to the above algorithms.

 All the above are of the type P, as the time taken by the above are O (n p). The algo-
rithms that take O (k n) algorithm such as TSP are much harder to solve. The problems
belonging to the above class can, however, be solved by non-deterministic algorithms.
This class is called NP. The NP algorithms that can at least be verifi ed in polynomial time
are called NP-complete problems. The harder ones are referred to as NP-hard problems.
The NP-complete problems have also been dealt with in Chapter 23, where the problems
have been handled by using a heuristic search process called genetic algorithms.

 Points to Remember

			•	 			Each	P-type	problem	is	an	NP	problem.			

		•	 			Not	every	NP-complete	problem	is	NP-hard.			

		•	 			Problems	that	are	both	NP	and	NP-hard	are	NP-complete.			

		•	 			2CNF	is	satisfi	able, 3CNF	is	not.			

		•	 			Finding	Euler	cycle	is	not	an	NP-complete	problem,	however	Hamiltonian	cycle	is.			

		•	 			Finding	longest	path	between	two	nodes	is	a	NP-complete	problem	whereas	fi	nding	out	
the shortest path is not.

		•	 			Generally,	most	of	the	NP-complete	problems	can	be	converted	to	SAT3.			

		•	 			If	solution	of	SAT3	is	found,	then	all	the	NP-complete	problems	would	become	P	type.			

		•	 			The	concept	of	reducibility	can	be	used	to	solve	np-complete problems,	once	SAT3	is	solved.			

		•	 			Each	computational	function	has	a	corresponding	Turing	machine.					

 KEY TERMS

 Decision problem A problem that answers in a ‘yes’ or a ‘no’ is referred to as a decision
problem.
 Optimization problem A problem that maximizes or minimizes an objective function is
called an optimization problem.
 P Class P L L L M= =| () for a turning machine that runs in polynomial timee{ } .
 the corresponding turing machine should terminate in a finite number of steps, bounded by
polynomial time. informally, the class p may be defined as the class of decision problems that
can be solved in polynomial time, by some deterministic algorithm.
 Reduction if a problem A can be solved by a deterministic polynomial time algorithm, then
that solves B in polynomial time. the reducibility is generally written as A B∝ (A reduces to B).
 NP-complete problems the np-complete problems are those for which no polynomial time
algorithm	is	known.	However,	the	solution	of	these	problems,	if	given,	can	be	verified	in	poly-
nomial time.

432 ■ A lg o r i t h m s : D e s i g n A n D A n A ly s i s

 EXERCISES

 I. Multiple Choice Questions
 1. A problem that can be solved by a deterministic machine in polynomial time is

 (a) P
 (b) NP

 (c) NP-complete
 (d) NP-hard

 2. A problem that can be solved by a non-deterministic algorithm in polynomial time is
 (a) P
 (b) NP

 (c) NP-complete
 (d) NP-hard

 3. A problem that has output as ‘Yes’, if the given input is accepted, otherwise ‘No’ is
 (a) Decision problem
 (b) Optimization problem

 (c) Both
 (d) None of the above

 4. A problem that requires maximization or minimization of the objective function is a
 (a) Decision problem
 (b) Optimization problem

 (c) Both
 (d) None of the above

 5. A problem that cannot be solved by a polynomial time algorithm but is verifi able in
polynomial time is
 (a) P
 (b) NP

 (c) NP-complete
 (d) NP-hard

 6. An NP-hard problem is
 (a) NP
 (b) NP-complete

 (c) P
 (d) None of the above

 7. An NP-complete problem is
 (a) NP
 (b) NP-hard

 (c) Both
 (d) None of the above

 8. SAT2 is
 (a) P
 (b) NP

 (c) NP-hard
 (d) NP-complete

 9. SAT3 is
 (a) NP
 (b) NP-complete

 (c) P
 (d) None of the above

 10. Longest path problem is
 (a) P
 (b) NP-complete

 (c) NP-hard but not NP-complete
 (d) None of the above

 11. TSP is
 (a) P
 (b) NP-complete
 (c) NP-hard but not NP-complete
 (d) None of the above

Co m p l e x i t y C l A s s e s ■ 433

 12. Which of the following is correct?
 (a) All the problems can be solved in polynomial time
 (b) P = NP
 (c) If SAT3 can be solved in polynomial time, then P = NP
 (d) None of the above

 13. A 3 clique problem is
 (a) NP
 (b) NP-hard but not NP-complete

 (c) NP-complete
 (d) None of the above

 14. A 2 clique problem is
 (a) NP
 (b) NP-hard but not NP-complete

 (c) NP-complete
 (d) None of the above

 15. If vertex cover is NP-complete then which of the following is NP-complete?
 (a) Independent set
 (b) SAT3

 (c) Both
 (d) None of the following

 II. Review Questions
 1. Defi ne complexity class P, NP, NP-complete, and NP-hard.
 2. Discuss the following problems and prove that they are NP-complete :

 (a) SAT3
 (b) 3CNF
 (c) 3 COLOR
 (d) Hamiltonian cycle
 (e) Travelling salesman problem
 (f) Vertex cover
 (g) Clique problem

 (h) Independent set
 (i) Subset sum
 (j) Integer programming
 (k) Partition
 (l) Knapsack
 (m) Scheduling

 3. Prove that SAT3 can be reduced to vertex cover.
 4. Prove that vertex cover can be reduced to independent set.
 5. Prove that independent set can be reduced to set cover.
 6. Prove that SAT3 can be reduced to graph colouring.

 Answers to MCQs

 1. (a)
 2. (b)
 3. (a)
 4. (b)

 5. (c)
 6. (d)
 7. (c)
 8. (a)

 9. (b)
 10. (b)
 11. (b)
 12. (c)

 13. (c)
 14. (a)
 15. (c)

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of PSpace
 • Explain the relation between different classes of problems
 • Defi ne the concept of QSAT and why is it considered a PSpace problem
 • Learn the concept of regular expressions
 • Understand planning problems

 20.1 INTRODUCTION

 In the earlier chapters, we have explored the concept of P and NP classes. P problems are
those that are solvable in polynomial time. In fact every P problem is also an NP prob-
lem. For NP problems, the point of contention is whether the solution of the problem
can be verifi ed in polynomial time or not. These issues were discussed in Chapter 19.

 The focus, till now, has been on time. However, in the fi rst chapter, we had seen that
space is an equally important resource as time. In fact, making a program effi cient both
in terms of time and space has been a goal of the algorithms that we design.

 So the complexity classes must also be extended to the concept of space. This chapter
explores the concept of space as a resource and defi nes some classes with respect to the above
premise. The decision problems solvable in polynomial space are called PSpace problems.
In fact, every problem that can be solved in polynomial time requires polynomial space.

 For example, linear search requires O (n) space, so does bubble sort and selection
sort. Even if the algorithm takes a longer time, it is possible that the space require-
ment is not too high. In dynamic programming, we have seen cases wherein the space
requirement is large O (n 2) but the time requirement is not that large O (n). Every poly-
nomial time algorithm that we would see in the book would take polynomial space. So
the claim is that a polynomial time algorithm would require polynomial space, that is,
 P PSpace⊆ (Fig. 20.1).

 Tip: each problem that requires polynomial time requires polynomial space.

 Introduction to PSpace

 C H A P T E R 2 0

I n t r o d u c t i o n to P S pac e   ■  435

PSpace

P

Figure 20.1  P is a subset of PSpace

PSpace

NP

Figure 20.2  NP is a subset of
PSpace

PSpace

P Type problems

NP
Co-NP

Figure 20.3  P is the intersection of NP and Co-NP

The above argument leads to the conclusion that P NP PSpace⊆ ⊆ , though PSpace is
perceived to contain problems that are not P or NP.

Interestingly, it has not been established that P PSpace≠ . So it might be the case that
the relation depicted in Fig. 20.1 is not absolutely true.

Definition  A problem that is solvable by a Turing machine via polynomial space is called a
PSpace problem.

One of the most common examples found during the literature review was that of
counting till an exponential number. In order to do that, we need a linear space possibly
n bits, if the base is 2. Even if the base is not 2, then the number of bits would increase
but the space requirements would still remain polynomial.

Moreover, even if a problem is NP, then the space requirements also remain polyno-
mial. In Chapter 19, it was discussed that SAT3 is an NP-complete problem. Furthermore,
many problems can be converted into SAT3. The reductions of problems such as maxi-
mum clique and subset sum were also discussed in this chapter.

SAT3 requires values to be assigned to n variables and checking if the given Boolean
expression is true. These values can be stored in an n bit array. A ‘1’ would indicate that
the variable is true and a ‘0’ would indicate that the variable is false.

That is, SAT3 despite being an NP-complete problem requires a polynomial space.
Since SAT3 is NP-complete and problems discussed in Chapter 19 could be converted
into SAT3, the next claim is that NP is also a subset of PSpace, that is, NP PSpace⊆
(Fig. 20.2). The relation between the various classes is shown in Fig. 20.3.

436   ■  A LG OR I T H M S : DE S I G N AND ANA LY S I S

Those who have studied the “Theory of Computation” must be familiar with Turing
machines. It was found that adding non-determinism to a Turing machine does not
greatly increase its power, in fact not even by a small amount. This premise leads to the
conclusion that PSpace is same as NPSpace.

PSpace = NSpace

20.2  QUANTIFIED SATISFIABILITY

SAT3 is one of the most amazing problems in complexity classes. It was discussed in
Chapter 19 that almost all the NP-complete problems can be easily converted into SAT3.
The question that arises is whether we have a corresponding problem in PSpace which
despite its hardness can be used to understand all such problems.

The answer is yes. The problem that is as amazing and interesting in PSpace is
quantified satisfiability (QSAT). The problem can be stated as follows.

QSAT

Let f be a CNF formula consisting of n variables x x1 2, ,...{ }. For what assignments of
x x1 2, ,...{ }, the following formula is true:

∃ ∀ ∃ ∀x x x x x fn1 2 3 4...

One of the brute force approaches to solve the problem would be to try all possible solutions
recursively. If we recursively try all the possibilities for the given variables we end up get-
ting a tree. The root of the tree would contain x

1
. The left part of the tree would be traversed

if the value of x
1
 is 0, if the value of x

1
 is 1 then the right part of the tree would be traversed.

In the same way, the next level would have x
2
. If the value of x

2
 is true then the left

part of the tree would be processed; otherwise the right part would be processed. The
creation of the whole tree would require exponential number of spaces.

The solution of the above problem has been depicted in Fig. 20.4.

For Q1x1 Q2x2 … (f (x1, x2, x3, …))

b0 = Q2x2 … (f (0, x2, x3, …))

b1 = Q2x2 … (f (1, x2, x3, …))

If Q1 = ∀

Yes No

b0 ∧ b1 b0 ∨ b1

Figure 20.4  Solution of QSAT by Valentine Kabanets;
here Q is a quantifier.

I n t r o d u c t i o n to P S pac e   ■  437

The QSAT has two versions, one with the varying number of alternating quantifiers
and the other with a fixed number of alternating quantifiers. The second version is obvi-
ously simpler than the first one and hence can be perceived as a subset of the first.

The conclusion of the earlier discussion is that the QSAT problem is a PSpace prob-
lem. We now move to another class of PSpace problem, which is planning problems.

20.3  PLANNING PROBLEMS

Suppose if we have been asked to design an artificial life system. In the system, there
are various species. We must decide the rules that govern their evolution and interaction.
Hence, the task is complex. Although there are artificial life systems such as the variants
of Langton’s loop (Langton designed a self-replicating system in which a new loop is
generated on the completion of one cycle Berry and Ravindra (1999)) which carry out
the above task, in a fascinating way, the concept of planning is still a contentious issue in
such systems. For example, in developing a system that has two species A and B. B are
bad and their company can even corrupt A’s. The designing of such a system requires the
enlisting of many possibilities.

The above problem is an instance of planning problem is one in which we find all
the possible configurations of the environment, if a change is made in the environment.
Some of the problems that require planning are Rubik’s cube, N-puzzle problem, artifi-
cial life simulations, etc.

20.3.1  N-Puzzle Problem
An N-puzzle problem has an m × m board and tiles numbered from 1 to N. There is also a
blank space so that the tiles can move. The value of N is related to m as N = m2 – 1. There
are many versions of N-puzzle problem wherein the values of N are 8 (in a 3 × 3 board),
15 (in a 4 × 4 board), 24 (in a 5 × 5 board), and so on. As stated earlier, the blank space
allows tiles to move. The goal state is an instance like that shown in Fig. 20.5.

1 2 3

4 5

7 8

6

8-puzzle 15-puzzle

1 2 3

5 6

9 10

7

13 14

4

8

11 12

15

24-puzzle

1 2 3

6 7

11 12

8

16 17

4

9

13 14

18

21 22 23 24

2019

5

10

15

Figure 20.5  The goal state of a 8-, 15-, and 24-puzzle problem

The formal definition of the automata is as follows.
The automata has a set of states (Q), the initial state (q

0
), the goal state (F), the path

cost (C), and successor function (f) (Bedau, 2003).

438   ■  A LG OR I T H M S : DE S I G N AND ANA LY S I S

Formally,
P = (Q, q

0
, F, f, C )

where

Q = Set of states
q

0
 = Initial state

F = Final state. This can be one of the goal states already defined.
f = Function called successor function which generates the next state. This state can

be described by a move left, right, up, or down.
C = Path cost. It is the number of steps in the path considering each move to be of

unit cost.
The problem is a planning problem and it requires the elicitation of transition rules,

the corresponding costs, and the heuristics used. In a planning problem, a move leads to
a new configuration.

8-Puzzle Problem

An 8-puzzle problem has a 3 × 3 board and 8 tiles numbered from 1 to 8. One cell of
the frame is empty which helps in the movement of tiles. The problem is to change the
initial state to goal state by sliding the tiles, one at a time, in minimum moves. One of
the instances of the initial and the final states are depicted in Fig. 20.6.

4 5 7

2 1

3 6

8

1 2 3

4 5

7 8

6

Initial state Goal state

Figure 20.6  Example of
a 8-puzzle problem

4 5 7

3 1

8 6

2

9

15

10

12

11

13 14

Initial state

1 2 3

5 6

9 10

7

13 14

4

8

11

15

12

FInal state

Figure 20.7  Example of a 15-puzzle
problem

15-Puzzle Problem

A 15-puzzle problem has a 4 × 4 board and 15 tiles numbered from 1 to 15. One cell of
the frame is empty which helps in the movement of tiles. The problem is to change the
initial state to goal state by sliding the tiles, one at a time, in minimum moves. One of
the instances of the initial and the final state are depicted in Fig. 20.7.

I n t r o d u c t i o n to P S pac e   ■  439

20.3.2  Solution
There are various techniques of solving the N-puzzle problem. The brute force algorithm
is one of the most obvious. Considering the fact that there can be at maximum 3 moves,
if the empty space is somewhere in between the board and 1, if the empty space is at
corner of the board.

If a state space tree is constructed and depth-limited search is applied, then at the nth
level, a solution can be found. In this case, the complexity would be O(3n).

The above solution is simply not implementable. Assume that we stop at the 18th
level of the tree; the total number of moves comes out to be 1162261466. If we take
a processor that can perform 103 instructions per second, then the above process
takes 1162261 seconds, that is, 13.4 days. Now, if we process the state space tree till
the 25th level, then the above processor would take 26.8 years. How many of us would
be ready to spare this much part of your life to see the solution?

It is evident from the above discussion that the above problem is an NP-complete
problem. This has been proved by Kendall (2005). According to the literature review, in
order to solve a 3 × 3 problem, which is solvable, 0.01 seconds are required, whereas for
a 24-puzzle problem, 12 billion years are required.

Those who are familiar with the artificial intelligence can appreciate the use of A* in
solving such problems. However, genetic algorithms, described in Chapter 23 can also
be of help. The state space tree of a 3 × 3 board is shown in Fig. 20.8.

Figure 20.8  State space tree of a 8-puzzle problem

In N-puzzle problem, there are total of N + 1 tiles that contain distinct numbers and a
blank space. These N + 1 tiles can result in (N + 1)! initial configurations. Out of these many
configurations, only half of the configurations are solvable and others are not. Thus, only
(N + 1)!/2 initial configurations can lead to goal configuration using limited number of moves.

440   ■  A LG OR I T H M S : DE S I G N AND ANA LY S I S

Given an initial configuration, it can be checked whether the configuration can be
solved or not. The steps for determining solvability are as follows:

Step 1  Shift the blank tile at the bottom right corner of the grid. This can be easily done.
Step 2  Calculate permutation inversion for each tile. An inversion is when a tile precedes
another tile with a lower number on it.

Let us now come to the formal definition of planning problems. As per Kleinberg, the
planning problems can be defined as follows.

20.4  REGULAR EXPRESSIONS

In Chapter 18, the concept of deterministic and non-deterministic finite acceptors (DFA
and NFA) was discussed. The language accepted by a DFA or an NFA is a regular lan-
guage. The regular language stems from a regular expression. A regular expression is
defined as follows:
•	 Any symbol that belongs to ∑; the non-empty, finite, set of symbols is a regular

expression.
•	 If r is a regular expression, then the following are also regular expressions:

ο  r r1 2+
ο  r r1 2

ο  r r1 2
* *or for that matter

•	 Any expression that is formed with the help of the above is a regular expression.
In order to understand the concept, let us consider the following examples.

Illustration 20.1	 Design a regular expression over {0, 1}, in which the third symbol
is 1 and the fifth is 0.

Solution The first symbol of the expression can be 0 or 1. Same is the case with the
second and the fourth symbol. All these can be expressed as (0 + 1), meaning that
these symbols can either be 0 or 1. Moreover, there can be any number of symbols
after the fourth symbol and they can either be 0 or 1. The rest of the symbols are,
therefore, represented by (0 + 1)*. The required expression, therefore, is as follows:

()() () ()*0 1 0 1 1 0 1 0 0 1+ + + +

Illustration 20.2	 Design a regular expression, over {0, 1}, in which there are no con-
secutive 0’s or 1’s.

Solution The required expression would either be of the form (0101010101…) or
(1010101010…). Therefore, either (01)* or (10)* would generate the expression.

Planning Problem  Is it possible to apply sequence of operators to get from initial
configuration to goal configuration?

I n t r o d u c t i o n to P S pac e   ■  441

The required expression is, therefore, as follows:

()*01 10+

Illustration 20.3	 Design a regular expression over {0, 1} wherein the number of 1’s
are even.

Solution The question is similar to Illustration 18.2 of Chapter 18. Consider the following
DFA (Fig. 20.9) which accepts all the strings over {0,1} wherein the number of 1’s are even.

q0

0

1 1

1

00

q1

q2

Figure 20.10  A DFA that accepts all the strings in which the number of 1’s are even

q0

10 0

1

q1

Figure 20.9  A DFA that accepts all the strings in which the number of 1’s are even

The regular expression corresponding to the DFA is as follows. Note that there is no con-
straint as regards the number of 0’s. So, we can have any number of zeros at any position,

()* * * *0 10 10

Illustration 20.4	 Design a regular expression over {0, 1} wherein the number of 0’s
is a multiple of 3’s.

Solution Consider the following DFA (Fig. 20.10) which accepts all the strings over
{0,1} wherein the number of 0’s are a multiple of 3’s.

The regular expression corresponding to the DFA is as follows. Note that there is no
constraint as regards the number of 1’s. So, we can have any number of ones at any position,

()* * * * *1 01 01 01

442   ■  A LG OR I T H M S : DE S I G N AND ANA LY S I S

As stated in Chapter 18, any NFA can be converted into an equivalent DFA. Moreover,
a regular expression exists for any NFA. The following figure shows the corresponding
NFA for a regular expression. Figure 20.11 shows the basic rules that would help to
convert a regular expression to an NFA.

∈

∈

∈∈

r1

r1
∗

r1 + r2

∈

∈

∈

∈

r1

r2

r1 r2
∈r1 r2

Regular expression NFA

Figure 20.11  Regular expression to NFA

Using the above rules, any regular expression can be easily converted into an NFA.
As a matter of fact, this concept is used by the first phase of the compiler also. The first
phase of the compiler is called a lexical analyser. This phase converts the regular expres-
sions into corresponding NFAs. These NFAs are then converted into DFAs and finally,
these DFAs are minimized. This phase of compiler generates tokens that are then used
by the second phase to form parse trees. In fact, the concept of regular expressions and
finite acceptors are also used in word processors.

Having understood the concept of regular expressions, let us now move to the point
of contention. We are provided with a string and a regular expression and we are required
to find whether that string is accepted by the given expression or not.

To be able to do that via the brute force approach, one needs to enlist all the possible
strings that can be formed by the given regular expression and then check whether the
given string is one of those generated by the regular expression.

In order to accomplish the above task, an infinite number of strings will have to
be generated and stored. The task will not only require infinite time but also infinite

I n t r o d u c t I o n to P S Pac e ■ 443

space. A better option would be to create an NFA and then convert it to a DFA. This
technique is computationally better than the previous one.

 Having discussed the concept of regular expressions and the formation of fi nite
acceptors from these expressions, it is left for the reader to see whether he can develop an
algorithm to check whether the languages accepted by two regular expressions are same.

 Try developing the algorithm; you will reach the conclusion that the problem is a
PSpace problem.

 20.5 CONCLUSION

 The chapter discussed the concept of PSpace. The concept is an extension of what has
already been discussed in Chapter 19. The reader is therefore requested to go through
Chapter 19 before starting with this concept. It is also important to understand the impor-
tance of saving space in the design of an algorithm. The reader is advised to go through the
works of Stockmeyer and Savage in order to get an insight of QSAT and its relation with
PSpace. Adi Shamir also has to his credit a work which proved that the proofs that can be
verifi ed in polynomial time are exactly those that can be generated in polynomial space.

 Points to Remember

 • P is a subset of PSpace

 • NP is a subset of PSpace

 • PSpace is same as NPSpace

 KEY TERMS

 PSpace a problem that is solvable by a turing machine via polynomial space is called a
PSpace problem.
 QSAT Let f be a cnF formula consisting of n variables x x1 2, , ...{ } . For what assignments of
 x x1 2, , ...{ } , the following formula is true:

 ∃ ∀ ∃ ∀x x x x x fn1 2 3 4 ...

 Finding the sequence of operations in order to reach final state.
 Regular expression
 • any symbol that belongs to ∑, the non-empty, finite, set of symbols, is a regular expression.
 • If r is a regular expression then the following are also regular expressions:

 � r r1 2+
 � r r1 2
 � r r1 2

* *or for that matter
 � any expression that is formed with the help of the above is a regular expression.

444 ■ a LG o r I t H M S : d e S I G n a n d a n a LY S I S

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following is true?

 (a) P PSpace⊆
 (b) NP PSpace⊆

 (c) PSpace NPSpace=
 (d) All of the above

 2. Which of the following is correct?
 (a) Each problem that requires polynomial time requires polynomial space.
 (b) Each problem that requires polynomial space requires polynomial time.
 (c) Each problem that requires polynomial time requires non-polynomial space.
 (d) None of the above

 3. The problem of counting till an exponential number is obtained is
 (a) P
 (b) NP

 (c) PSpace
 (d) None of the above

 4. A PSpace-complete problem is
 (a) NPSpace
 (b) PSpace hard

 (c) Both
 (d) None of the above

 5. QSAT is
 (a) Only PSpace
 (b) Only PSpace hard not PSpace complete
 (c) Both
 (d) None of the above

 6. NPSpace is same as PSpace can be argued owing to
 (a) Savitach’s theorem
 (b) Turing theorem

 (c) Both
 (d) None of the above

 7. The proofs that can be verifi ed in polynomial time are exactly those that can be
generated in polynomial space. This statement is true because of the work by
 (a) Adi Shamir
 (b) Adi Chopra

 (c) Adi Puri
 (d) None of the above

 8. If one can increase not decrease the length of a sentence using the given grammat-
ical transformations and fi nd out if the given sentence can be produced by these
transformations is a
 (a) P
 (b) PSpace

 (c) NPSpace
 (d) Both b and c

 9. The above problem is called
 (a) Word problem
 (b) Sentence problem

 (c) Tense problem
 (d) None of the above

 10. If chess is converted into polynomial time, then it would be
 (a) Only PSpace
 (b) PSpace complete

 (c) Both
 (d) None of the above

I n t r o d u c t I o n to P S Pac e ■ 445

 II. Review Questions
 1. Defi ne PSpace problem. Discuss why P is a subset of PSpace.
 2. Discuss why PSpace is same as that of NPSpace.
 3. What is meant be a PSpace-complete problem?
 4. Prove that QSAT is PSpace complete.
 5. Defi ne planning problems and discuss why 15-puzzle is PSpace.
 6. Search some of the solitaire games that are PSpace complete.

 Answers to MCQs

 1. (a)
 2. (a)

 3. (c)
 4. (a)

 5. (b)
 6. (a)

 7. (a)
 8. (d)

 9. (a)
 10. (c)

Approximation Algorithms

 C H A P T E R 2 1

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of approximation algorithms
 • Explain the idea of r-approximation algorithms
 • Use approximation algorithms to solve problems such as load balancing, vertex

cover, and subset cover
 • Learn the difference between heuristic and approximation algorithms
 • Use linear programming in approximation algorithms

 21.1 INTRODUCTION

 In the previous chapters, the terms NP, NP-hard, and NP-complete have been discussed
and explained. The chapter on NP also discussed the problems whose polynomial time
algorithms have either not been found or are only valid for a subset of the inputs. The
present chapter would help us to tackle such problems. The way of handling such prob-
lems is the same as that used in daily life.

 Imagine that it is the fi rst day of your job and you have been entrusted upon the
responsibility of fi nding the solution to a very hard problem. Now the problem is that if
you refuse to do the work, your job would be in danger. On the other hand, the problem
is so hard that you are almost sure that you would not get an exact solution. In such
cases, what will you do? Either you will take a lot of time to fi nd the solution of the
above problem, thus endangering your job. Or you will fi nd an approximate solution to
that problem in a limited time. There is another possibility, though. You might come up
with a solution that works correctly in almost all the cases. The last type of solution is
not that reliable. The reason is that you might solve those instances of the problem that
come in your mind at that point in time. So, you might end up solving a small subset of
the problem at hand, not the problem itself. Therefore, it is better to be able to develop
an algorithm that gives an approximate solution to the problem every time, rather than
giving a ‘good’ solution in some of the cases. Once you start using your algorithm for an
unknown case, it is diffi cult to know whether the solution which you have got is ‘good’

A p p r ox i m at i o n A lg o r i t h m s   ■  447

or not. So, your algorithm might be giving you ‘good’ solution only in some of the cases,
while in most of the cases it may give a ‘not good’ solution.

The previous chapters have discussed the concept of NP-hard problems. In such
problems also, the same issue prevails. There is no polynomial time algorithm to solve
such problems. At the same time, these algorithms are too important to be ignored. So,
there must be a way to solve these problems ‘approximately’ or to be able to develop an
approximation algorithm for such problems. Some of the clues that might help us in our
journey of finding approximate solutions to the NP-hard problems will be unfolded in
the following discussion.

If the input domain of NP-hard problems is small, then they can be handled. Moreover,
if we are able to find a sub-exponential algorithm for the above problems, even then the
time would be considerably reduced as compared to a conventional exponential algorithm.
The concept of reducibility, discussed in the earlier chapters, might also help us to tackle
such problems. In other cases, it is practically impossible to find an optimal solution, so
it is advisable to adopt a method which guarantees a solution that is near to the optimal
one. It is definitely difficult to argue about the closeness to an optimal solution when it is
not possible to find it. This chapter would give an idea so as to how to tackle this issue.

The techniques studied so far such as greedy and dynamic approach would also help in
finding the approximation solution to a problem. The approximation methods would use
one of the following techniques:

•	 Greedy approach: The decision at a particular point is taken considering profit or loss
at that time.

•	 Dynamic programming: Produce better results than the greedy algorithms.
•	 Linear programming: An introduction has been given in this chapter. The technique

has also been applied to vertex cover problem. However, Appendix A4 of this book
explores this technique.

Before proceeding further, one is expected to revise the following concepts and terms.
The idea of ‘optimal solution’ introduced in Section 19.1, the concept of ‘feasible solu-
tion’ given in Section 19.1, and the list of NP-hard problems given in Section 19.4 are
required to proceed further. Before proceeding further, one is expected to shed the inhi-
bitions developed in the mind owing to our study of this course up to now. Here, there
are some problems, such as maximum clique problem, for which good approximation
algorithms are not known.

The chapter is organized as follows. Section 21.2 of the chapter introduces the
basic terms. Section 21.2 introduces taxonomy. Section 21.4 of the chapter presents an
approximate solution to the vertex cover problem, Section 21.6 of this chapter discusses

Approximation Algorithms  These are the algorithms which find an approximate solution
to computationally hard problems.

448   ■  A LGORITHMS : D E SIGN A N D A N A LY SIS

approximation algorithms, and the last section presents the conclusions. The chapter is
sure to change the way one looks at the theory of algorithms.

21.2  TAXONOMY

The convention followed in the chapter is same as that in Cormen [1]. The terms optimal
solution, feasible solution, and cost have same meanings as that discussed in the previ-
ous chapters. A solution that satisfies all the given constraints is referred to as a feasible
solution. An optimal solution is one which is good. The meaning of r can be inferred
from the following inequality:
•	 The problem would be denoted by P
•	 The instance of P would be denoted by I
•	 The cost of the optimal solution of P would be denoted by C*

•	 The cost of the solution obtained by the algorithm would be denoted by C(I)

The following constraints govern the system:

maximum
C I
C

C
C I

() ,
()*

*







 ≤ ρ, where r is the maximum value of the ratio of the optimal

and the effective cost.
There are two types of optimization problems—maximization and minimization.

For the maximization problems,

ρ ≤1

For the minimization problems,

ρ ≥1

The importance and concept of these terms have been discussed in the following sec-
tions. The chapter discusses the concept of r-approximation problems. The application of
this concept tells us how close the approximation algorithm is to the optimal solution (C*).
For example, the optimal solution of a 2-approximation algorithm would be at maximum
2 times better than the approximation algorithm. As proved in Section 21.4, the approximate
solution to a vertex cover problem is a 2-approximation. It means that the optimal solution
will have at maximum double the number of vertices as compared to that obtained using
approximation algorithm. In the same way, the optimal solution of a 3-approximation algo-
rithm (say of an instance I′ of a travelling salesman problem (P)) has at maximum 3 times
the number of edges as compared to the optimal solution. The goodness of an approxima-
tion algorithm has been discussed along with the corresponding algorithms.

21.3  APPROXIMATION ALGORITHM FOR LOAD BALANCING

This section discusses the load balancing problem and its solution using an approximation
algorithm.

A p p r ox i m at i o n A lg o r i t h m s   ■  449

Problem: There are m processors and n processes. The processes are to be assigned to
the processors in a way that none of the processors is either overburdened or idle. If the
time taken by the first job is t

1
, that by the second is t

2
, and so on. The time required to

complete a task by the ith machine would be denoted by T
i
. The value of T

i
 would be the

sums of t
j
’s, which are the task allocated to the machine i, that is,

T ti jj= ∈∑ jobs that have been
assigned to the machine

The makespan is defined as the maximum of T
i
’s. In order to achieve the task, we start

with all the processors idle. We then take one job at a time and assign it to the least
occupied processors. The approach is a greedy one as we are trying to minimize the
makespan.

The above problem is referred to as load balancing as the aim is to balance the loads
assigned to the processors.

The algorithm for the above procedure is as follows.

	 Algorithm 21.1 G reedy approximate load balancing

Input: m, the number of processors; n, the number of processes; the array t t t= { }1 2, , ... ,
containing the times required by the ith process to complete.
Output: A 2-dimensional matrix D, wherein the ith row depicts the ith machine and the values
in that row are the processes that have been assigned to that machine.

{
for(i=0; i<m; i++)
 {
 Ti = 0;
 ith row of matrix D = NULL;
 }
for (j = 0; j<n; j++)
 {
 Find the processor which has minimum Tj;
 Assign the task, j to the processor i.
 Tj = Tj + ti;

D i D i Jobi[] [] = [] [] ∪{ };
 }
return D;
}

Load Balancing Problem  The value of maximum Ti is to be minimized, that is minimize
(maximum Ti), where Ti is the time taken by a machine to complete all the jobs that have
been assigned to processor i.

450   ■  A LGORITHMS : D E SIGN A N D A N A LY SIS

Complexity: Consider the second loop. The loop has a search procedure in between, the
worst case complexity of the above algorithm would therefore be O(nm).
Correctness of this approach: The approach does not always give correct results. The
results are near to the optimal, which would be proved in the discussion that follows.

Theorem 21.1

Optimal Makespan ≥
∀∑1

m
t jj

Proof  The total time taken to complete all the tasks, had there been just one processor,
would have been t jj∀∑ . The balanced division of all the tasks, to m processors would

result in average time
1
m

t jj∀∑ . Since makespan is the maximum time taken by any of

the processors, the makespan would be greater than (or equal to)
1
m

t jj∀∑ . The above

argument can be summarized as follows.
p = The balanced division of all the tasks, to m processors makes the average

time
1
m

t jj∀∑ .

q = Makespan is the maximum time taken by any of the processors.
r = Makespan is greater than average,

q r→

Substituting
1
m

t jj∀∑ for average (by p), we get

Makespan ≥
∀∑1

m
t jj

Theorem 21.2	 The time taken by the above algorithm is less than twice the optimal
	 timespan.

Proof  Consider a situation in which the last job leads to a situation wherein the scene
becomes the most optimal. The removal of that job would lead to a situation wherein the
timespan is less than the optimal timespan, that is,

T t Ti i− ≤ Optimal

T t Ti i≤ + Optimal

Since, t Ti ≤ Optimal

T Ti ≤ 2× Optimal

Scope of improvement: Had the jobs been arranged in ascending order of time, the
greedy algorithm can be altered to make the timespan ≤ 3 2 (optimal time).

A p p r ox i m at i o n A lg o r i t h m s   ■  451

The following sections discusses two approaches for the VCP. The first approach is that
followed in Cormen and the second approach is a modified version of the former, which
adds a greedy paradigm alongwith. The input to this problem is a graph G = (V, E),
where V is the set of vertices and E is the set of edges.

21.4.2  Cormen Approximation Approach
The following procedure uses S, the temporary
set which stores the edges that can be selected in
the next step. The set R stores the selected edges
and the set F gives the set of vertices.
Step 1	 Initialize the set S with E. Randomly
select an edge (say, BD), remove it from the
set S, and put it in the set R. The set R now
becomes {(B, D)} and the set S becomes S =
{(A, B), (B, C), (D, E), (D, F), (C, E), (E, F),
(E, G), (E, H)} (F, G) (Fig. 21.2(a)).

21.4  VERTEX COVER PROBLEM

The vertex cover problem (VCP) selects the set of vertices V′ from a graph G V E= (,),
such that V V′ ⊆ and ∀ ∈(,)x y E, either x ∈V′ or y ∈V′. It may be noted that even V V⊆
and ∀ ∈(,)x y E either x ∈V and y ∈V. So, even V is the vertex cover of a given set.
Although it is easy to find the vertex cover of a given graph, it is surely difficult to
find the minimum vertex cover of a set. The problem has already been discussed in
Chapter 19. The following method gives a new overview of the problem.

The following method selects minimal set of vertices (approximately) which satisfy
the above property.

21.4.1  Vertex Cover Problem Using Approximation Algorithm
The solution of the VCP using approximation algorithm has been explained using the
graph shown in Fig. 21.1

B

C

A

D

H

F

G

E

Figure 21.1  Graph 1

B

C

A

D

H

F

G

E

Figure 21.2 (a)  Step 1, approximation
algorithm for VCP

452   ■  A LGORITHMS : D E SIGN A N D A N A LY SIS

Step 3	 In the next step, one of the edges from the set S is selected and the procedure
stated in Steps 1 and 2 are repeated. Now, the set S becomes {(G, F)} (Fig. 21.2(c)).

Step 2	 The edges, except for the selected edge, adjacent to the vertices selected, are removed
from the set S. Now, the set S becomes {(C, E), (E, F), (E, G), (E, H)} (Fig. 21.2(b)).

B

A

D

H

F

G

C E

Figure 21.2 (c)  Step 3, approximation
algorithm for VCP

B

A

D

H

F

G

C E

Figure 21.2 (d)  Step 4,
approximation algorithm for VCP

B

C

A

D

H

F

G

E

Figure 21.2 (b)  Step 2,
approximation algorithm for VCP

Step 4	 In the next step, the edge GF is selected (Fig. 21.2(d)). It may be observed that
if the vertices contained in the selected edges are selected, the vertex cover of the given
graph would be obtained.

A p p r ox i m at i o n A lg o r i t h m s   ■  453

The other approach explained in this section is a blend of approximation and greedy
approach. During an extensive literature review, it was found that clubbing the greedy
paradigm with the approximation approach is an acceptable approach. Cormen has fol-
lowed this approach in the set cover problem and in many other problems.

The approach arranges the vertices in order of the vertices. The set S is initialized to
E. The vertex with the highest order is selected first. This is followed by removing all its
adjacent edges from the set S. Then the vertex with the highest order from the set S (the
set containing remaining vertices) is selected. The procedure has been presented in the
following algorithm.

21.4.3  Modified Vertex Cover
Input: G = (V, E), G is the graph having vertices stored in the set V and edges stored in
the vertices E.
•	 Arrange the vertices V such that if V

i
  precedes

V
j
, then the order of V

i
 is more than that of V

j
.

•	 Initialize S to E.
•	 Select V

0
. Remove all the edges adjacent to

V
0
 from set S.

•	 From the remaining vertices (considering the
set S), select the first element of the set V and
repeat the procedure stated in the previous step.
The application of the above algorithm on

graph 1, shown in Fig. 21.1, has been depicted
in Figs 21.3(a)–(d).

B

A

D

H

F

G

C E

Figure 21.2 (e)  Final answer

After Step 4, the set R becomes {(B, D), (C, E), (F, G)}. The set F, therefore, becomes,
{B, D, C, E, F, G} (Fig. 21.2(e)). The goal, in this case, was to minimize the number
of elements in the set R. The length of the vertex cover obtained by this algorithm is 6.
However, it can be seen that the optimal vertex cover would have value 3. So the value

of �c
c*

 becomes 1
2

.

B

C

A

D

H

F

G

E

Figure 21.3 (a)  Step 1, modified
approximation algorithm for VCP

454   ■  A LGORITHMS : D E SIGN A N D A N A LY SIS

In the last step, the vertex D is selected. The vertex cover of the set, therefore,
becomes {B, E, D}.

Hence, the modified vertex cover performs better than its previous counterpart.
However, it might not be the case every time. What can be stated, though, is that the for-
mer will in no case be better than the modified one, provided that the given graph is not
a bipartate. It can be safely stated that the above algorithm finds a near-optimal vertex
cover for a graph.

The running time of the former is O(E + V) and that of latter is O(E ln E). The former
appears better than the latter, but the cost-effectiveness of the latter is better than the
former in many cases.

21.5  SET COVER PROBLEM

Similar to the previous problem, the set cover problem is an NP-hard problem. The opti-
mal solution to the problem though can be found but it takes an exponential time. In this
case also, we relax the condition of finding out the optimal solution and instead settle
for a near-optimal solution.

B

C

A

D

H

F

G

E

Figure 21.3 (d)  Step 4, vertex cover
obtained from the modified vertex

cover algorithm

B

C

A

D

H

F

G

E

Figure 21.3 (c)  Step 3, modified
approximation algorithm for VCP, B,

D, and F are the elements in the set V
having highest order, B is selected

B

C

A

D

H

F

G

E

Figure 21.3 (b)  Step 2, modified
approximation algorithm for VCP, E is

the first element of the set V

A p p r ox i m at i o n A lg o r i t h m s   ■  455

The approach used by most of the researchers is a blend of the approximation and
the greedy paradigm. The approach is as follows. In the discussion that follows, U is the
universal set.

21.5.1  Greedy Approach for Approximate Set Cover
Initially, the result set would be empty. At any point we select a set, from amongst the
remaining sets, whose elements when taken out, minimizes the remaining U that is the
universal set. The elements of the selected set are then taken out from the universal set
and included in the set C, which was initially empty. The process is continued till the
set C becomes equal to the initial universal set. Finally, the set C is returned. It is easy
to see that the complexity of the algorithm is a quadratic one (O(n2)). However, a linear
algorithm for the above is also possible.

Illustration 21.1	 Apply approximate set cover to the following problem:

Solution

U = { }2 3 5 7 9 12 14 18 20 21 25 27, , , , , , , , , , ,

S1 2 3 5 7= { }, , ,

S2 9 12= { },

S3 2 3 9 12 18 20 14= { }, , , , , ,

S4 27= { }

S5 7= { }
S6 3 5 7 18 20 27 25= { }, , , , , ,

S7 14 21 25= { }, ,

The cardinality of various sets is as follows (Table 21.1).
According to the above approach, the set S3 or S6 should be taken

out first, as they have maximum number of elements. Let us take
S3. The set U, after taking out the elements of the set S3, becomes
{5, 7, 27, 21, 25}. Now selecting S6 would make the remaining U
minimal. The set F, set of selected sets, becomes {S3, S6} and the
set U after taking out the elements of the set S6 becomes {21}. In the
next step, the set S7 would be selected, as it is the only set contain-
ing 21. The set cover of the above problem is, therefore, {S3, S6, S7}.

Another version of the problem has been discussed as follows.
The version has weights associated with each set.

Table 21.1  Cardinality
of a set

Set Cardinality

S1 4

S2 2

S3 7

S4 1

S5 1

S6 7

S7 3

456   ■  A LGORITHMS : D E SIGN A N D A N A LY SIS

21.5.2  Subset Cover (Sets with Weights Associated with Them)
Consider a set of sets S S S1 2 3, ,...,{ }. The number of elements in a set S

i
 is denoted as Si .

The weight associated with a set S
i
 is given by w

i
. The aim is to select a set of sets S

i
,

which has maximum Si and minimum weight.

That is,
∪S
w
i

i∑
 is minimum.

The above problem is an NP-hard problem. In order to obtain the correct answer, all
possible combination of sets will have to be crafted. This would be followed by the cal-
culation of the ratio of the total cost and the number of elements. The combination that
has the least value would then be selected.

Since the above procedure would be computationally very expensive, let us pick the

sets which have a small value of
S
w
i

i

. This approach, though gives better results in some

cases, but would fail to produce correct answers all the times. The algorithm to calculate
the set cover, using approximation approach is as follows.

	 Algorithm 21.2  Approximation algorithm for subset cover

Input: Set of sets S, consisting of S S S1 2 3, ,...,{ } their weights wi and the number of elements
in each set.
Output: The set of sets which will have the minimum total weight and maximum number of
elements.
{
 S = φ;
 While ()
 {

 Select the set, Sj, which has minimum
S
w
i

i∑
 ;

 S S Sj= ∪ ;

 }
return Sj.
}

Complexity: The complexity of the above algorithm is O n O()× of the algorithm which

finds the set having minimum value of
S
w
i

i∑
 from the remaining sets.

The algorithm produces good results. However, for some of the cases, the algorithm
fails to find the optimal result.

A p p r ox i m at i o n A lg o r i t h m s   ■  457

21.6  r -APPROXIMATION ALGORITHMS

One of the major differences between the approximation algorithms and heuristics is
that the approximation algorithms guarantee that the algorithm is at least r times the
optimal solution. An obvious question that arises is whether there is any way of knowing
the value of r, when we do not know the optimal solution? The answer is yes.

Though heuristic algorithms may give us a better solution, there is no way of know-
ing so as to how good the solution is. This is not the case in approximation algorithms.
The approximation algorithms find solution which is near to the optimal solution and
the factor to which the solution is near to can be found. The idea is reflected in the
above discussion. Usually, this constant factor is very low. For example, if it takes 1032
seconds to find the exact solution of a certain travelling salesman problem, whereas it
takes only 1015 seconds to find a near-optimal solution (constant factor being 5%) using
an approximation algorithm, then one should go for an approximate algorithm (if there
is no need for exact solution). For the approximation algorithm that solves the VCP, this
constant factor is 2. This section exemplifies so as to how the upper bound of the solu-
tion can be found.

It was already stated that there are two types of optimization problems: maximization
and minimization. Let us revisit the definition of both of them, with respect to approxi-
mation algorithms.

Maximization problems A maximization problem is one in which we need to maximize
the solution. Example of such an algorithm is maximum clique problem (MCP), in which
we try to find a complete sub-graph of a given graph. In such algorithms, the value of ρ <1.
Minimization problems A minimization problem is one in which we need to minimize the
solution. Example of such an algorithm is travelling salesman problem, in which we find
the minimum cost Hamiltonian cycle is to be found. In such algorithms, the value of ρ >1.

An algorithm for which one can find out the value of r is referred to as a r approxi-
mation algorithm. For instance, the load balancing problem, explained in the following
discussion, is a 2-approximation algorithm.

The various classes of problems have been shown in Fig. 21.4.

21.6.1  Load Balancing Problem Using 2-Approximation Algorithm
There are n jobs to be executed on m machines. The time of execution of a job is given,
say t

i
. Each machine is assigned some jobs and the total execution time on each machine

is, say T
j
. The problem is to distribute the jobs on the given machines so that the makes-

pan, that is, the time by which all the jobs are finished, is minimum. It may be stated
here that a job can be executed on a single machine.

Tip: The heuristic algorithms find a reasonable solution in a reasonable time, the approxi-
mation algorithms find solution up to a constant factor.

458   ■  A LGORITHMS : D E SIGN A N D A N A LY SIS

One of the algorithms that have been proposed to accomplish the above task requires
a particular job to be given to a machine that has minimum load. Since the number of
jobs are n and each time a job has to be assigned, the machine with the minimum load
needs to be found; therefore, the running time of the algorithms becomes O(n log n).

Theorem 21.3	 Load balancing is a 2-approximation algorithm.
Proof  The problem is similar to that discussed in Section 21.3. Suppose at any instance
M

i
 is a machine with the minimum load. Now the machine is assigned a job having

execution time t
k
 before which the load of the machine was T

i
. Let LB be the lower

bound.

T t Tk iafter assigning job = +

≤ +tk LB

≤ +LB LB

≤ 2LB

Therefore, the problem is a 2-approximation problem.
There is another approach to solve the load balancing problem. The approach described
above is based on greedy paradigm. The other approach can be found in TU Eindhoven,
Advanced Algorithms (2IL 45 Course Notes). It is left to the reader to prove that the
algorithm is a (1/3) approximation algorithm.

Minimization r > 1

Maximization r < 1

NP-hard problems

Can be solved if
P = NP

Can be solved if the
input size is small

Can be solved using
heuristic algorithms

Can be solved via
approximation

algorithms

Figure 21.4  Solution of NP-hard problems

A p p r ox i m at i o n A lg o r i t h m s   ■  459

21.6.2  Travelling Salesman Problem
The travelling salesman problem (TSP) can be stated as follows.

If a graph G = (V, E) is given, wherein the weight of an edge from v
i
 to v

j
 ()v v Vi jand ∈

is given by w
ij
. The aim is to find a path v

1
v

i1
v

i 2
…v

1
where v

ij
 ≠ v

1
, such that the net cost

of the path is minimum and all the v
ij
’s are distinct.

The problem has been discussed earlier in many chapters. The problem can be han-
dled using the approximation approach by using the triangles inequality. The reader
is advised to design an approximation algorithm for TSP and prove that the algorithm
is a 2-approximation algorithm. The solution to this problem has been included as
a project in the web resources of this book. The reader is advised to go through the
resources.

The TSP can be handled by minimizing the cost of most costly edge cycle.

21.7  USE OF LINEAR PROGRAMMING IN APPROXIMATION ALGORITHMS

The section discusses the use of linear programming in approximation algorithms. The
example of vertex cover has been taken to explain the concept. The following discussion
briefly revises the VCP, introduces its weighed version, and applies linear programming
to solve the problem.

VCP Using Linear Programming

The VCP selects a set of vertices V′, from a given graph G = (V, E), such that if x V∈ ′,
then for all e E∈ , (e = (a, b)), x = a or x = b.

The minimum VCP is a variant of the VCP, wherein the vertices of the given graph
have weights associated with them. The goal of the problem is to find a subset of the set
of vertices such that each edge in the set E has at least one of the vertices in the set V′.
In addition, the sum of the weights of the vertices in the set V′ should be as low as pos-
sible. Note that the word minimum is deliberately not used in the previous sentence as
it would make the problem NP-hard. Moreover, the phrase ‘as low as possible’ suits the
idea of approximation algorithms.

The solution discussed in this chapter uses linear programming discussed in
Appendix A4. The solution is, in fact, one of the most promising ways of solving prob-
lems using approximation algorithms.

The weighted VCP can be described as follows (henceforth would be referred to as
integer linear programming for weighted VCP, ILPVCP).

Minimize f x wi()∑ × , subject to

x y e E e x y+ ≥ ∈ =1, , (,)for all

x x V= { } ∈0 1, , for all ′

460   ■  A LGORITHMS : D E SIGN A N D A N A LY SIS

The function f can be defined as follows:

f
x V
x V

=
∈
∉





1
0
,
,
if
if

′
′

The above is an NP-hard problem. The problem can be relaxed by relaxing the condition
that x is either 0 or 1. The following version of the problem, henceforth referred to as
relaxed liner programming for minimum weight vertex cover problem (RLPVCP), has
the condition (i.e., x either 0 or 1).

Minimize ∑ ×f x wi() , subject to

x y e E e x y
x x V

+ ≥ ∈ =
= ∈

1
0 1

, , (,)
[,],

for all
for all ′

However, any solution of ILPVCP would always satisfy RLPVCP. As a matter of fact
the lower bound of RLPVCP would be the solution of the ILPVCP. The procedure for
solution can be summarized in the following algorithm.

	 Algorithm 21.3 R elaxed linear programming for VCP

Input: Graph G = (V, E) with W, having weights of the vertices
Output: Set V’, V ’ ⊆ V

{
//Initially the set V ’ is null
V ′ = φ ;
Solve for V′ using Linear Programming, wherein
One intends to minimize ∑ ×f x wi() , subject to

x y for all e E e+ ∈ =≥ 1, , (,)x y ;

x for all x V= ∈[0, 1] ′, ;
for all, x V∈ ′
{
if x ≥








1
2

 {
 V V′ ′= ∪ { }x ;
 }
}
return V′;
}

Complexity: Although there is a loop (for all x belongs to V ′ ), the complexity of the algo-
rithm cannot be considered as O(n). The reason is the inclusion of linear programming

A p p r ox i m At i o n A lg o r i t h m s ■ 461

 Tip: the vertex cover problem using relaxed linear programming is a 2-approximation
algorithm.

 Points to Remember

 • Heuristic algorithms do not tell us anything regarding the goodness of the solution.
 • The approximation algorithms help us in judging the nearness of the solution obtained .
 • The value of ρ for minimization problem is greater than 1.
 • The value of ρ for maximization problem is less than 1.

solution in the algorithm. The implementation of the linear programming part would
decide the complexity of the algorithm.

21.8 CONCLUSION

 The chapter introduces the concept of approximation algorithms. The algorithms are
used to fi nd the approximate solution of the NP-hard problems. The algorithms are bet-
ter than heuristics as they guarantee at least r times the optimal solution. The concept
has been explained by taking examples of vertex cover and subset sum problem. The fact
that it is not diffi cult to prove that a given approximation algorithm is a r approximation
has been exemplifi ed by the load balancing problem. The chapter introduces the topic
and explains the concept. Though researchers are trying hard to come up with good
approximation algorithms, for almost all the problems given in the chapter, it is not pos-
sible to include each and every approach in the text. The readers are requested to visit
the requisite journals for an in-depth coverage.

 KEY TERMS

 Approximation algorithms these are the algorithms that find approximate solution to
computationally hard problems.
 Load balancing the problem assigns m processors to n processes, in a way that none of the
processors is either overburdened or idle. if T i is the time taken by the machine i to complete
the tasks, the value of timespan which is the maximum of T i ’s is to be minimized.
 Maximization problems A maximization problem is one in which we need to maximize the
value of the desired variable.
 Minimization problems A minimization problem is one in which we need to minimize the
value of the desired variable.
 Minimum vertex cover problem the minimum vertex cover problem is a variant of the
vertex cover problem, wherein the vertices of the given graph have weights associated with
them. the goal of the problem is to find a subset of the set of vertices such that each edge in
the set E has at least one of the vertices in the set V ′. in addition, the sum of the weights of the
vertices in the set V ′ should be as low as possible.

462 ■ A lg o r i t h m s : D E s i g n A n D A n A lY s i s

 Subset sum with weights associated with each set Consider a set of sets S S S1 2 3, , ...,{ } .
the number of elements in a set S i is denoted as Si . the weight associated with a set S i is
given by w i . the aim is to select a set of sets which has maximum number of elements and
minimum weight.

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following can give a ‘good solution’ to an NP-hard problem?

 (a) Heuristic
 (b) Approximation

 (c) Both of the above
 (d) None of the above

 2. Which of the following can guarantee that the solution is at least r times as good as
the optimal solution?
 (a) Heuristic
 (b) Approximation

 (c) Both of the above
 (d) None of the above

 3. Which of the following is a 2-approximation algorithm?
 (a) Greedy load balancing
 (b) Travelling salesman with triangular inequality
 (c) Both
 (d) None of the above

 4. The greedy (approximation) vertex cover problem is a
 (a) 2-approximation problem
 (b) 3-approximation problem

 (c) Both
 (d) None of the above

 5. Which of the following are the types of optimization algorithms?
 (a) Minimization
 (b) Maximization

 (c) Both
 (d) None of the above

 6. Which type of approximation algorithm is the greedy set cover, given in the chapter?
 (a) 2-approximation
 (b) 3-approximation

 (c) 5-approximation
 (d) None of the above

 7. For which type of problems are approximation algorithms used?
 (a) NP-hard
 (b) P

 (c) Both
 (d) None of the above

 8. Which type of approximation algorithm is the max-3CNF (approximation)?
 (a) 2-approximation
 (b) 3-approximation

 (c) 5-approximation
 (d) None of the above

 9. Which of the following approaches can be used to solve TSP?
 (a) Approximation
 (b) Randomization

 (c) Heuristics
 (d) All of the above

 10. In which of the following approximation algorithms is not needed?
 (a) Searching
 (b) Subset sum

 (c) TSP
 (d) Maximum clique

A p p r ox i m At i o n A lg o r i t h m s ■ 463

 II. Review Questions
 1. Prove that MAX-3-CNF is a 3-approximation algorithm.
 2. Give an approximation algorithm for maximum clique.
 3. Prove that approximate vertex cover (using greedy) is a polynomial time 2-approx-

imation algorithm.
 4. Prove that if the set E and V of a graph G are given, then the complexity of the mod-

ifi ed vertex cover is O (E ln E).
 5. Prove that the modifi ed vertex cover will be at least as good as approximate vertex

cover. Otherwise, give an example to contradict the statement.
 6. Prove that greedy set cover is a O (ln | U | + 1) time algorithm.
 7. Design a greedy set cover algorithm that is better than that given in Section 21.4.
 8. Use problem reduction approach to design a greedy algorithm that solves subset

sum problem using set cover problem.
 9. Prove that approximate vertex cover using linear programming is 2-approximation

algorithm.
 10. Prove that approximate vertex cover is 3-approximate algorithm.
 11. Differentiate between the weighted vertex cover and vertex cover algorithms.
 12. Explain the algorithm for weighted vertex cover using approximation.
 13. Explain three approaches for approximation algorithm.
 14. Explain the algorithm for weighted subset problem.
 15. Explain load balancing using approximation algorithm.

 Answers to MCQs

 1. (c)
 2. (b)

 3. (b)
 4. (a)

 5. (c)
 6. (a)

 7. (a)
 8. (a)

 9. (d)
 10. (a)

 Parallel Algorithms

 C H A P T E R 2 2

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Learn about the various generations of computers
 • Understand the concept of parallel processing
 • Defi ne Moore’s law
 • Classify the types of parallel processing
 • Explain the PRAM model
 • Understand broadcast algorithm
 • Learn the concept, algorithm, and implementation of prefi x and pointer jumping
 • Find the maximum value and minimum value from a given list.

 22.1 INTRODUCTION

 The development of computing can be attributed to both the advancement in hard-
ware and that in software. This development is aptly depicted by the fi ve generations
of computers. The computing devices belonging to a newer generation of computer
are generally more powerful, consume less power, and take less space than the previ-
ous one.

 This chapter discusses the concepts of parallel processing. The concept of paral-
lel processing was introduced in the third generation computers. The chapter has
been organized as follows. Section 22.2 discusses the various generations of comput-
ers. Section 22.3 deals with parallel computers. The basics have been discussed in
Section 22.4. Section 22.5 discusses the PRAM model. Section 22.6 deals with fi nding
the maximum element. Section 22.7 deals with prefi x computation. Section 22.8 dis-
cusses the merge procedure. Section 22.9 introduces hypercube model and their cor-
responding algorithms. The last section concludes.

 22.2 GENERATIONS OF COMPUTERS

 The fi rst computer, ENIAC (Electronic Numerical Integrator and Calculator), was a huge,
most ineffi cient (as per von Neumann), and did not have a good architecture to boast

Pa r a l l e l A lg o r i t h m s   ■  465

about. The first computer based on the stored program concept was IAS. (It was built by
engineers at the Institute of Advanced Studies and hence the name.) The above develop-
ments started, what is now referred to as the first generation computers. The first genera-
tion computers used vacuum tubes. The flip side of using vacuum tubes was the fragility
and the inapt size associated with them. Machine-level language was being used at that
point in time. The computers were single user. The fact that they performed the I/O using
CPU made them all the more inefficient.

The second generation computers were based on transistors. The computers also sup-
ported floating-point arithmetic. The period of second generation computers also saw
the rise of languages such as FORTRAN and COBOL. The examples of computers of
second generation include UNIVAC and IBM 7030.

The third generation used integrated circuits (ICs). This generation used micropro-
gramming pipelining. The introduction of cache has also been attributed to this genera-
tion. The concept of virtual memory was also introduced in this generation. Examples of
this generation of computers include IBM 360, etc.

The fourth generation computers are generally associated with semiconductor mem-
ory. The computers of this generation used LSI and MSI technology. The advent of the
fourth generation computers saw the rise of parallel computing, in which many calcula-
tions could be carried out in parallel. Various techniques were invented and developed to
make use of parallelism. The examples of computers of this generation include IBM 3090.
This generation used very large integrated circuits (VLSI) technology.

The fifth generation computers were associated with the concept of superscalar pro-
cessors and cluster computing. Computers of this generation could perform at the speed
of teraflops. (Teraflops is a measure of computing speed equal to one trillion floating-
point operations per second.)

Firstly, we would discuss the concept of multiprocessors. If we have more than one
processor at our disposal, then the task at hand can be divided and given to different
processors for computations. In such cases, the cost of computation is the product of
the execution time and the number of processors. The concept is similar to the calcula-
tion of man-hours in a software project. Suppose one has employed two employees to
complete a project and they promise to finish the task in a month’s time. By employ-
ing 10 employees he can complete the same task in a shorter time. Though mathemat-
ics leads us to believe that the same task would require 6 days if 10 people work on it,
this may not be completely true. This is because the division of a task in smaller parts,
solving each part and clubbing the result, requires time. So the approach does not only
require ‘divide’ but also ‘conquer’.

If it takes t
1
 time to complete a task by sequential processing, and time t

2
 is required

to complete the task via parallel processing, the total time in the case of parallel compu-
tation is proportional to t

2
 and n, where n is the number of processors.

A type of parallel algorithm in which the ratio of the costs of solving a problem on
a multiprocessor to that on a single processor is constant is referred to as cost-optimal.

466   ■  ALGORITHMS : D ESIG N A N D A N AL Y SIS

During an extensive literature review, it was found that this concept has been widely
used to compare the algorithms.

If the costs of combining the results of the tasks performed by the different proces-
sors are negligible and so is the cost of splitting the algorithm into multiple parallel
tasks, then the complexity can simply be found by dividing the number of steps in the
worst case by the number of processors.

22.3  PARALLEL COMPUTERS

The need for faster computing compelled the conception and development of parallel com-
puters. The implementation of this concept has not only helped in the increase in productiv-
ity but also lower costs and effective solutions of complex problems. There are numerous
ways of implementing parallelism. These are multiprogramming, multithreading, multi-
tasking, etc. These techniques are implemented at the OS and the programming level.

The speed of a processor is generally very high. If just one process executes at a time,
then the time during which the process is doing its input–output tasks, the processor
would be idle. In order to overcome this problem, many processes are executed simul-
taneously. The processor executes a particular process for some time and then move on
to the next. The order in which these processes would be executed by the processor and
the time for which they are executed is decided by the processor scheduling technique
employed by the operating system. The above is referred to as multiprocessing.

A process may further be divided into many independent sub-processes. These sub-
processes referred to as threads do not share resources and hence, can be executed
in parallel. The threads of a single process do not get separate memory space. This
concept of multithreading is the common feature of languages such as JAVA and C#.
Multitasking generally refers to doing many tasks in parallel by a system. The concept
of pipelining discussed in the following sections would help to understand the concept
of pipelining.

The above methods of implementing parallelism is not the only way of implemen-
tation of parallel processing. It can also be implemented via hardware-oriented tech-
niques. The following discussion throws light on the physical architecture of parallel
computers. The chapter presents the models such as parallel random access machines.

Parallelism, as stated earlier, can be implemented in many ways. The functional par-
allelism is implemented either by having more than one functional unit in a system or by
a concept called pipelining.

Pipelining is, again, of many types. However, the core idea behind it can be under-
stood by the following example. Imagine a simple computer, which fetches the instruc-
tion, decodes it, and then executes it. If there are 10 such instructions and each task takes
one unit of time (though fetch, decode, and execute would take different amounts of
time, for the sake of simplicity the times are assumed to be equal), the total time required
would be 3 × 10 = 30 units.

Pa r a l l e l A lg o r i t h m s   ■  467

The following discussion throws some light on the classification of parallel proces-
sors. Computer architecture comprises both hardware organization including hardware
components (such as central processor units, databases, and caches) and requisite soft-
ware requirements (opcodes, registers, etc., in the different instruction sets) that are
adequate for an assembly/language programmer. We initiated our discussion with von
Neumann architectural model which was built as a sequential machine for executing
subsequent scalar data. Although over a period of time, operating phenomenon certainly
improvised from bit serial to word parallel operations. Similarly, it improves from fixed-
point to floating-point operations. But apparently this type of architectural model was
strategically less efficient since it facilitated sequential execution of instructions in a
program.

Execution of scalar data could be achieved
(a)  By sequential method
(b)  By look-ahead method

It was initially introduced to prefetch instruction overlapped I/E (instruction fetch/
decode and execute) operations and to perform functional parallelism. Functional par-
allelism can be implemented by using multiple functional units simultaneously or by

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

1 2 3 4 5 6 7 8 9 10 11 12

Figure 22.1  Pipelining

On the other hand, if a computer is developed which while decoding the first instruc-
tion, fetches the second one and while executing the first one fetches the third and
decodes the second (Fig. 22.1). The whole process would take only 12 units of time in
order to execute 10 instructions.

468   ■  ALGORITHMS : D ESIG N A N D A N AL Y SIS

practising pipelining at various levels (instruction execution, arithmetic computation,
and memory access operation). Pipelining performs identical operations repeatedly over
vector data strings. Vector operations were carried out implicitly by software control
looping using scalar pipeline processors.

Explicit vector instructions originated with the introduction of vector processors. The
two families of pipeline vector processors are
(a)  �Memory to memory architecture: Supports the pipelined flow of vector operands

directly from the memory to pipelines and then back to the memory.
(b) � Register to register architecture: Supports vector register to interface between the

memory and functional pipelines. Register to register architecture is classified under
Flynn’s classification as SIMD and MIMD.
SIMD: �Vector computers equipped with scalar and vector hardware appear as single

instruction multiple data machines.
MIMD: �Intrinsic parallel computers execute programs in multiple instructions mul-

tiple data mode. Sharing memory multiprocessor and message passing
multicomputers are two major classes of parallel computers.

Multiprocessors and multicomputers are distinguished on the basis of memory
sharing and interprocessor communication mechanism. Multiprocessors communicate
through shared variable in a common memory, whereas multicomputer communicates
through message passing among the nodes.

22.4  BASICS

Gordon E. Moore, a co-founder of Intel, in one of his papers predicted that the process-
ing speed of computers would roughly double in every 2 years. Interestingly, the dura-
tion was reduced to 18 months in 1975. However, the basic idea remains the same. On
the face of it, the law does not suffice. The average speed of a computer was around 8
MHz in 1970s. The average speed in 2009 was in the range of 1.3–2.8 GHz. The fol-
lowing figure shows the variation of speed of a processor and the time had Moore’s law
been true, in terms of computation power. However, the law still holds if we consider
the number of transistors instead of speed. According to ‘www.mooreslaw.org’ ‘in the
year 2000 the number of transistors in the CPU numbered 37.5 million, while in 2009,
the number went up to an outstanding 904 million’. So the law is more or less valid if
we consider the number of transistors and not the speed of a processor. The concept has
been depicted in Fig. 22.2.

The statement of Moore’s law is as follows.

Moore’s Law  Moore’s law states that the number of transistors in a dense integrated
circuit doubles every 2 years.

Pa r a l l e l A lg o r i t h m s   ■  469

However, there is a flip side. There comes a time when saturation occurs. So instead
of focussing on doubling the speed of a processor every 2 years, the focus has now
shifted to getting an equivalent amount of work, as discussed in this chapter. Even in the
present context, the manufacturers sell dual core, quad core, etc. So there is a tendency to
fill in more and more cores. This would be beneficial if we are able to use these cores as
well. Since the advance at the hardware level is commendable, the algorithm developers
should be able to make full use of the above. Here comes the need of parallel computing.
This chapter discusses the models and applications of parallel computing. Interestingly,
these computers are used not only because of their exceptional computational power, but
also because of their ability to fetch data at a faster pace. This is because if there is more
than one processor, they would be able to access memory in a parallel fashion.

22.5  PARALLEL RANDOM ACCESS MACHINE

The standard random access machine model (SRAM) has one processor, where various
operations such as load and store takes unit time. In contrast, the parallel RAM (PRAM)
model contains many processors and each processor can have its own memory. But there
is a shared memory. The processors can access the shared memory. The input and the
output are stored in a common shared memory. Moreover, the model is synchronous,
owing to a common clock. The working of this model can be depicted by Fig. 22.3.

• From shared memory

Read Compute

• Local

Write

• To shared memory

Figure 22.3  Working of PRAM

Year

800000000

0
P

ro
ce

ss
eo

r
sp

ee
d

in
 M

H
z

100000000

200000000

300000000

400000000

500000000

600000000

700000000

900000000

1960 1970 1980 1990 2000 2010 2020

Figure 22.2  The variation of speed of a processor and
time had Moore’s law been true

470   ■  ALGORITHMS : D ESIG N A N D A N AL Y SIS

The read and write can occur in one of the following ways.
•	 Exclusive read exclusive write (EREW)
•	 Exclusive read concurrent write (ERCW)
•	 Concurrent read exclusive write (CREW)
•	 Concurrent read concurrent write (CRCW)

The names of the above techniques are self-explanatory, more so if we are familiar with
basics of operating systems or with database management system. The last model is the
ideal one; however, it is most difficult to implement. The first is closest to implementation.

The contentious point is the concurrent write. Here, the system may employ one of
the three policies. The first is priority CRCW, wherein if more than one process intends
to write, then the processor with a higher priority is allowed to write. In the other varia-
tion which is arbitrary CRCW, the processor that is allowed to write is chosen randomly.
If, however, each processor intends to write the same value to the common shared mem-
ory, then they are allowed to do so. This is called common CRCW.

In order to make the PRAM algorithms more effective, the number of processors

selected should be
n

nlog
. This is followed by a local phase. The local phase precedes

the global phase. The time for local phase would be O(log n). As a matter of fact, the
time for global phase would also be same. However, the computations done by (n/log n)
processors would be input to some other algorithms, say, tournament algorithms.

Global memory

Nodes with private memories

Control

Figure 22.4  The PRAM model

PRAM is just one of the many parallel architecture models. Generally, when memory
is associated with each processor, then NUMA model is referred to. The shared mem-
ory models are, as a matter of fact, more expensive but according to many researchers
they are good from the programmers’ point of view.

The model works as follows. The processors do not, per se, communicate directly
with each other. The communication, if it has to occur, happens owing to a common
memory. One processor writes in the common memory and the other reads. The model
is depicted in Fig. 22.4.

Pa r a l l e l A lg o r i t h m s   ■  471

If the value of n is 128, then (n/log n) becomes (128/8), which is 32. So 32 processors
would be used by dividing the 128 values into 32 parts each having 8 items. The local
phase would deal with their 8 elements and the global phase would take the 32 results
produced by different processors.

22.6  FINDING MAXIMUM NUMBER FROM A GIVEN SET

Finding maximum or minimum from a list of elements is a O(n) task, if the list is not
sorted. However, this is true for a system having a single processor. For a multiprocessor
system, the complexity would be much less. The following discussion throws some light
on the algorithms for finding maximum in such systems.

22.6.1  Using CRCW
In order to find the maximum from a series of n numbers, the following procedure can be
employed. The procedure requires n2 processors. Each processor checks the ith (ith row)
and the jth number (jth column). If the element at the jth column is greater than that at
the ith row, a ‘1’ is inserted at the cell; otherwise a ‘0’ is inserted. This step requires O(1)
time. In the next step, the values in the cells would be seen. The last column via which
result would be interpreted would be initialized to 1. If a ‘1’ is found in the row, then the
corresponding value in the last column becomes ‘0’. The cell having a ‘1’ in the last col-
umn would be the maximum value. The procedure has been depicted in Algorithm 22.1.

	 Algorithm 22.1  Parallel_Maximum (num[], n)

Input: A 1-dimensional array of numbers num, the number of items in the list n.
Parallel_Maximum(num [], n)
 {
 create a 2D array having elements of a[] both at rows and columns
 for (i=1; i<=n; i++)
 {
 for(j=1; j<=n; j++)
 {
 if(a[0, i] > a[i, 0])
 {
 a[i, j]=1;
 }
 }
 }
 for(i=1; i<=n ; i++)
 {
 a[i, n+1]=0;
 }
for (i=1; i<=n; i++)
 {
 flag=0
 for(j=1; j<=n; j++)

472   ■  ALGORITHMS : D ESIG N A N D A N AL Y SIS

 {
 if(a[i, j] ==1)
 {
 flag=0
 }
 }
 if(flag==1)
 {
 a[i, n+1]=1;
 }
 }
for(i=1; i<=n ;i++)
 {
 if(a[i, n+1]==1)
 {
 print “maximum”;
 }
 }
}

Illustration 22.1	 Find the maximum number using Algorithm 22.1.

Solution Example: num[ ] = {2, 5, 9, 4, 3}
	 n = 5;
	 a[ ]=

2 5 9 4 3

2 0 1 1 1 1 0

5 0 0 1 0 0 0

9 0 0 0 0 0 1

4 0 1 1 0 0 0

3 0 1 1 1 0 0

Maximum: 9.

22.6.2  Using EREW
The maximum from a list num [ ] having n elements can also be found using the follow-
ing procedure that does not require n2 processors. However, in this case, the processor
needs to know whether it is the left or the right child of a node. In addition, the processor
must be aware of its left and the right child. The procedure is simple. The processors are
arranged in a tree structure as shown in Fig. 22.5. One element is given to each processor
present as leaves. For each processor at the last but one level (denoted by index i), if the
element with the processor (2i +1) is greater than that at (2i + 2), then the element in the
variable temp is same as that at (2i + 1); otherwise it is same as that at (2i + 2). Finally,
the value at temp is compared with that at the processor i. Out of temp and the element
with the ith processor, whichever is greater is stored with the ith processor.

Pa r a l l e l A lg o r i t h m s   ■  473

The number of processors required in this case is n. However, the complexity would
not be O(1).

22.7  PREFIX COMPUTATION

If a set of elements A in a set R is given, the set A is x x x xn1 2 3, , , ...,{ }. The computation
of the set prefix involves the evaluation of x x opx x opx opx x opx op xn1 1 2 1 3 2 1 2, , , ..., ...{ },
where op is an associate operator, that is, x op x opx x opx opx1 2 3 1 2 3() ()={ } . Moreover, it
has been assumed that op is closed under R, that is, x opx R1 2 ∈ . The elements of the
resultant set are called prefixes. For the sake of simplicity, it has been assumed that
x opx1 2 requires a single unit of time.

A brute force algorithm that uses a single processor would take 1 2

1
× =

=∑ i O n
i

n
()

time. A better algorithm would take O(n) time. However, the use of parallel algorithm
would make the things much better. Let us see how.

P1

P4

P8

P16

P9

P17 P18 P19

P10 P11

P20 P21 P22 P23

P14 P15

P28 P29 P30 P31

P12 P13

P24 P25 P26 P27

P5 P6 P7

P2 P3

If the element with P16 is greater than that at P17, then the element
at P16 would be stored in temp, otherwise that at P17 would be stored in
the variable temp. The value of temp is then compared with the value at
the ith processor; whichever is greater is stored with the ith processor.

Same is the case with P4 and P1

Figure 22.5  Finding the maximum from a list

474   ■  ALGORITHMS : D ESIG N A N D A N AL Y SIS

Divide the input set into log n sets. For example, a set having 16 elements can be
divided into 4 sets of 4 elements each. A set of 256 elements would be divided into 8 sets
of 32 elements each and so on.

This is followed by the calculation of prefix of each set. The last element of the
results can be stored in the global memory. This last element is operated as per the given
operator with each element of the next set.

22.8  MERGE

The merge takes two sorted lists as input and produces a sorted list. The PRAM-based
algorithm for merge works as follows. The given array is divided into two parts. For
example, in Fig. 22.6, the array X has been divided into two parts X1 and X2.

2 4 5 7 8 9 12 13 2 3 4 6 7 10 11 14

2 5 8 12 4 7 9 13 2 4 7 11 3 6 10 14

2 3 2 4 4 6 5 7 7 9 8 10 11 13 12 14

2 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14

2 4 5 7 8 9 12 13 2 3 4 6 7 10 11 14

2 4 5 7 8 11 12 3 4 6 7 9 10 13 14

X1

Odd indices Odd indicesEven indices

Merge

Shuffle

Merge

Even indices

X2

Figure 22.6  Merge using PRAM

This is followed by the following procedure:

Step 1	 �Separate the elements at odd places from the elements at the even places, for
both X1 and X2.

Step 2	 Merge the two arrays containing elements placed at odd indices.
Step 3	 Do the same for arrays containing elements placed at even indices.
Step 4	 Merge the 2 arrays obtained in Steps 2 and 3.
Step 5	 Leaving the first and last element, make pairs of all the remaining elements.

Pa r a l l e l A lg o r i t h m s   ■  475

Step 6	 �Write the first elements as it is, then check whether the first element of the pair is
less than the second element, if true, write it to the final answer, if no, then swap
the two elements and continue this to obtain the final answer.

22.9  HYPERCUBE ALGORITHMS

In a multiprocessor system, there is more than one processor. The interconnection of
these processors can be directed by a hypercube. That is, a hypercube refers to the
arrangement of processors. The dimension of a hypercube determines the maximum
number of links required to send a message via the processors. A hypercube of dimen-
sion n would have 2n processors.

The node of a hypercube would have processors. The numbering of vertices of a
hypercube would be as follows. The vertices of the hypercube would be 0 and 1 in the
case of a hypercube of dimension 1. The vertices of the hypercube, having dimension 2
would be 00, 01, 10, and 11. In the case of a hypercube with dimension three, the verti-
ces would be 000, 001, 010, 011, 100, 101, 110, and 111. A hypercube of dimension n
would have an n bit binary number associated with each processor.

The length of the path from one processor to another is given by the hamming dis-
tance of the binary numbers associated with the two processors. For example, the length
of the path between two processors having code 101 and 110 would be 2. Hence, the
hamming distance can easily be found by counting the number of 1’s in the ‘XOR’ing
of two numbers.

As stated earlier, a hypercube of dimension 1 would have two processors, which
can be identified by 0 and 1. The bits indicating the processors of a hypercube of order
two can be easily created by prefixing the above numbers with 0 and then with 1. This
would result in 00, 01, 10, and 11. Similarly, the hypercube of dimension 3 would have
processors, which can be identified by the numbers. Figure 22.7 depicts hypercubes of
various dimensions.

A hypercube of dimension 1 A hypercube of dimension 2 A hypercube of dimension 3

010

001

110

101100

111

011

000

Figure 22.7  Hypercube of order n

476   ■  ALGORITHMS : D ESIG N A N D A N AL Y SIS

The hypercube structure can be used to implement parallel processing in the follow-
ing ways.

22.9.1  Broadcasting
A hypercube of dimension ‘d’ takes O(d) time to accomplish basic operations such
as broadcasting and prefix computation. The algorithms, therefore, become optimal as
compared to others.

At times it becomes essential to send a message from one processor to a group
of processors. This group is a subset of the set of processors in the given hypercube.
The broadcasting is accomplished as follows.

In order to broadcast a message, the following procedure is adopted.

	 Algorithm 22.2  Broadcast

BROADCAST (Message M)
 PTR is a Pointer to a node
 1. SET PTR = ROOT.
 2. if (PTR has children)
 {
 a. Make two copies of M received and send it to the children;
 b. Each child on receiving the copy of M becomes PTR and repeats step 2.
 }

Complexity: O(d). Since it is a hypercube algorithm, the complexity would be O(d).
The process is depicted in Fig. 22.9.

In the discussion that follows, we assume that any processor in a hypercube has
everything required for a basic computation, a memory, a CPU, and main memory.
The depiction of this autonomous system is given in Fig. 22.8. Since a processor in a
hypercube is connected to only two other processors, there might arise cases wherein
the message is intended for a processor which is not an immediate neighbour of the
sender. In such cases, the time in communication would be same as the length of the path.
The length of the path is maximum n. Therefore, the delay in communication can be at
maximum n.

RAM Local memory

Figure 22.8  A processor in a
hypercube

Pa r a l l e l A lg o r i t h m s   ■  477

M

MM

The children make two copies of M each
and send the copies to thier children

Figure 22.9(b)  The root sends two copies of M to its children

M
The root makes two copies of M
and sends the copies to its children

Figure 22.9(a)  The root receives M

M

MM

The children make two copies of M and
send the copies to thier children

M M M M

Figure 22.9(c)  The children of nodes make two copies each of M and
send them to their children

478   ■  ALGORITHMS : D ESIG N A N D A N AL Y SIS

12 3 4 2 5 2 7

Figure 22.10(a)  The process starts from the leaves

M

MM

Finally, M reaches all the leaves and
the process stops.

M

M M M M M M M M

M M M

Figure 22.9(d)  M reaches the leaves and the algorithm stops

22.9.2  Prefix Computation Using Hypercube Algorithm
The prefix computation can also be accomplished using hypercube algorithms. The ele-
ments of the given list are stored in the leaves of the corresponding tree. The prefix is
computed as follows.

There are two phases in prefix computation.
In the first phase, a non-terminal node at the last but one level receives values from its

children. The values received from the left and the right child are, say, ‘a’ and ‘b’. The
node, after receiving the values from its children, calculates their sum and retains the
value of the left child. The process continues till the node. Figures 22.10(a)–(d) depict
the steps of the first phase. The second phase of the procedure is as follows. The root
sends ‘a’ to the left child and ‘b’ to the right child. The child, when receives data (say
‘c’) from its parent sends the data and the sum of the ‘b’ and ‘c’ to the right child.
Figure 22.10(e) depicts the resultant tree.

When a node receives ‘c’ from its parent, then it calculates the sum of ‘a’ and ‘c’ and
stores it as the result.

Pa r a l l e l A lg o r i t h m s   ■  479

1

2, 5

2 3 4 2

4, 6

5 2 7

1, 6 2, 9

Figure 22.10(b)  The element at the left along with the sum of
the elements at the left and the right are written at the node

(one level up)

5,6,11

1

6,9,15

2, 5

2 3 4 2

4, 6

5 2 7

1, 6 2, 9

Figure 22.10(c)  The process continues for the next higher level

6, 11, 9, 15

5,6,11

1

6,9,15

2, 5

2 3 4 2

4, 6

5 2 7

1, 6 2, 9

Figure 22.10(d)  The process continues for the next higher level

480   ■  ALGORITHMS : D ESIG N A N D A N AL Y SIS

22.10  CONCLUSION

The chapter deals with the concepts, algorithms, and implementations of parallel algorithms.
The basics of parallel processing, the evolution of computers, etc., have been discussed in
the chapter. The idea of PRAM and the hypercube are the important topics discussed in
the chapter. Finding maximum element from a given list, calculating prefixes, etc., have
already been discussed in the chapter. However, the model can also be used to calculate
ranks (for hint refer to Fig. 22.11). Note that, initially, the data part in all the nodes, except
for the last is 1. This indicates that the nodes are connected to a node immediately after
them. This is followed by jumping the pointers by one. However, this is not possible for the
last and the last but one node. So their data part remains the same. The distance between
the nodes in the next step becomes four, and finally the data part of the nodes in the last but
one step is added to the nodes to which they are connected. Finally, the answer is obtained.

3 6 5 4 0 1

/2 2 2 2 1 0

3 6 5 4 0 1

// / /4 4 3 2 1 0

6

//////5 4 3 2 1 0

1

3 6 5 4 0 1

1 1 1 1 0 /

Figure 22.11  Pointer jumping

6, 15

0, 5, 6

0, 2, 5

0, 2 2, 3 5, 4 9, 2 6, 1 7, 5 12, 2 14, 7

5, 4, 6

6, 6, 9

6, 1, 6 12, 2, 9

Figure 22.10(e)  The final values are substituted at the root

Pa r a l l e l a lg o r i t h m s ■ 481

 KEY TERMS

 Arbitrary CRCW in arbitrary CrCW, the processor that is allowed to write is chosen
randomly.
 Common CRCW in common CrCW, each processor intends to write the same value to the
common shared value.
Cost-optimal a type of parallel algorithm in which the ratio of the costs of solving a problem
on a multiprocessor to that on a single processor is constant is referred to as cost-optimal.
 Moore’s law moore’s law states that the number of transistors in a dense integrated circuit
(iC) doubles every 2 years.
 Priority CRCW in priority CrCW, if more than one process intends to write, then the proces-
sor with a higher priority is allowed to write.
 Threads a process may further be divided into many sub-processes. these sub-processes
are referred to as threads that do not share resources and hence can be executed in parallel.

 Points to Remember

 • The complexity of an algorithm can be found by dividing the number of steps in the
worst case of the algorithm by the number of processors.

 • The numerous ways of implementing parallelism are multiprogramming, multithread-
ing, multitasking, etc.

 • The threads of a single process do not get separate memory space.

 • The evolution of computer can be divided into fi ve generations.

 • The function parallelism is implemented either by having more than one functional unit
in a system or by a concept called pipelining.

 • The standard ram model (SRAM) has one processor.

 • The read and write in a parallel random access machine (PRAM) can occur in one of the
following ways :

 ο exclusive read exclusive write (ereW)

 ο exclusive read concurrent write (erCW)

 ο Concurrent read exclusive write (CreW)

 ο Concurrent read concurrent write (CrCW)

 • In order to make the PRAM algorithms more eff ective, the number of processors selected

should be
n
nlog

 .

 It is left for the reader to work out the algorithm for pointer jumping and list ranking
based on hypercube.

482 ■ a lg o r i t h m s : D e s i g N a N D a N a lY s i s

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following is commonly attributed to the fi rst generation computers?

 (a) Vacuum tubes
 (b) Transistors

 (c) Integrated circuits
 (d) None of the above

 2. Which of the following is commonly attributed to the second generation computers?
 (a) Vacuum tubes
 (b) Transistors

 (c) Integrated circuits
 (d) None of the above

 3. Which of the following is commonly attributed to the third generation computers?
 (a) Vacuum tubes
 (b) Transistors

 (c) Integrated circuits
 (d) None of the above

 4. Which of the following was the fi rst computer?
 (a) ENIAC
 (b) IAS

 (c) IBM 360
 (d) None of the above

 5. Which of the following was the fi rst computer based on the stored program concept?
 (a) ENIAC
 (b) IAS

 (c) IBM 360
 (d) None of the above

 6. Which generation of computers is credited with bringing forth the concept of virtual
memory?
 (a) First
 (b) Second

 (c) Third
 (d) Fourth

 7. The superscalar processors and cluster computing is generally associated with
which of the following generations?
 (a) Second
 (b) Third

 (c) Fourth
 (d) Fifth

 8. In a PRAM model, which of the following is essential?
 (a) A common memory
 (b) Private memory

 (c) Both
 (d) None of the above

 9. What is SRAM in context of parallel computing?
 (a) Standard RAM
 (b) Static RAM

 (c) Sober RAM
 (d) None of the above

 10. What is PRAM in context of parallel computing?
 (a) Parallel RAM
 (b) Processing RAM

 (c) PRE RAM
 (d) None of the above

 II. Review Questions
 1. Write a brief about the various generations of computers. The note should throw

some light on the software technology used in those generations. In addition, give at
least one example of each.

 2. Differentiate between multiprocessing and multiprocessor.

Pa r a l l e l a lg o r i t h m s ■ 483

 Answers to MCQs

 1. (a)
 2. (b)

 3. (c)
 4. (a)

 5. (b)
 6. (d)

 7. (d)
 8. (a)

 9. (a)
 10. (a)

 3. Differentiate between multiprocessing and multithreading.
 4. Explain the various classifi cations of parallel computers.
 5. What is pipelining? Explain with the help of an example.
 6. What are the various types of pipelining?
 7. State and explain Moore’s law.
 8. Discuss the PRAM model and a problem that can be solved using PRAM.

 III. Application-based Questions
 1. Write an algorithm to fi nd the maximum number from a given list using the PRAM

model.
 2. Write an algorithm to fi nd the minimum number from a given list using a PRAM

processor.
 3. Write an algorithm to compute prefi xes using PRAM model.
 4. Write an algorithm explaining pointer jumping using the PRAM model.
 5. Write an algorithm to compute prefi x using the hypercube.
 6. Write an algorithm to compute maximum using hypercube.

 Introduction to Machine
Learning Approaches

 C H A P T E R 2 3

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the importance of artifi cial intelligence
 • Give the concept and types of machine learning
 • Understand the basics of neural networks
 • Explain the process of genetic algorithms
 • Understand various operators such as crossover, mutation, and selection
 • Apply genetic algorithm to subset sum problem
 • Explore various methods of solving TSP using genetic algorithms
 • Apply genetic algorithm to vertex cover and maximum clique

 23.1 INTRODUCTION

 Solving any problem (as introduced in Chapters 12 and 13) is basically a search for the cor-
rect solution from amongst the various possible permutations. For instance, there are four
cities and travelling salesman problem is to be applied to fi nd out the shortest Hamiltonian
cycle. In order to fi nd out the solution, fi rst of all, we will generate all possible permutations
of the set {1, 2, 3, 4}. There would be 4 × 3 × 2 × 1 = 24 such permutations. These permuta-
tions will then be checked for feasibility. The inability to form paths owing to absence of edge
between two vertices will make the generated path infeasible. This step would be followed by
the evaluation of net cost of each of the feasible paths. Thereafter, the solution will be reached.

 The chapter has been organized as follows. Section 23.2 introduces the concept
of artifi cial intelligence while Section 23.3 explains the concept of machine learning.
Section 23.4 introduces neural networks and Section 23.5 throws light on genetic algo-
rithms. Section 23.6 explains the application of genetic algorithms on the knapsack
problem and subset sum problem.

 23.2 ARTIFICIAL INTELLIGENCE

 Imagine what happens if we are making a software for a GPS company and the number
of cities to be covered is 100. The number of permutations in that case would be O (100!).

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  485

The feasibility of the path and the evaluation of cost of each path will still require more
resources. The process of finding out the correct solution in such cases can be a tedious
task and at times even impossible.

In such cases, the artificial intelligence (AI)-based techniques such as genetic algo-
rithms come to our rescue. Hence, first of all let us define artificial intelligence.

Now, in order to understand the definition, it would be essential to figure out what all
can be done via human intelligence. A person can be considered intelligent if
•	 He understands his environment: This means that a person should possess scientific

temperament, that is, the understanding of nature and natural phenomenon.
•	 He understands himself: The individual should be able to comprehend and control his

actions. In order to do so, he needs to understand the factors affecting his actions and
in that way can be resourceful to the society.

•	 He understands that every fact or theory can be nullified and works with that under-
standing: This, according to some, is the highest order of intelligence. This implies
accepting that everything including varied theories are inferences drawn to satisfy the
human curiosity.
AI intends to replicate the above behaviour. Some of the tasks that can be performed

using AI are
•	 Humdrum tasks
•	 Theorem proofing

The most difficult to implement from amongst the above are the mundane tasks.
The tasks that are very easy for us become very difficult for a machine. However, those
that are difficult for us sometimes are easy for a computer. For example, it is easy for
a computer to perform very large calculations but it is difficult for a machine to com-
municate with a person. Conventional computing has helped us in the computational
tasks. However, until the development of AI, it was considered implausible to perform
the mundane tasks via machine.

Hence, AI intends to make computers as good as human beings. Now let us consider
one more reason as to why a particular person is considered as intelligent. One of the
most common traits in so-called intelligent people is their ability to remember some-
thing. Now remembering something can be considered as the ability to search what is
already stored in the memory. This searching is much faster than the algorithmic search-
ing techniques such as linear or binary search.

In order to understand the reason for faster memory in human beings, we must appre-
ciate that there are millions of neurons in the human body. These neurons are connected
to each other via trillions of synapses. So technically, there can be trillions of events

Artificial Intelligence (AI)  It may be defined as the capability of a computer
to perform those activities that are usually done via manual intelligence.

486   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

Before introducing the concept of machine learning, let us understand the idea of
learning. In fact, the last sentence is recursive, learning helps us to develop concepts.

stored in the memory of a human being. Recapping an event from amongst these events
in a few seconds requires fabulous retrieving mechanisms.

AI helps us to imitate the search process via genetic algorithms, which may be
defined as follows.

Genetic algorithm is one of the many techniques used in machine learning. The con-
cept of machine learning has been dealt with in the next section. The chapter discusses
the concept of genetic algorithms from Section 23.5 onwards.

23.3  MACHINE LEARNING

Creativity and learning are two of the many important human skills which are difficult
to computerize. Though artificial creativity still eludes the scientific fraternity, machine
learning (ML) has made significant advances in the recent past. As a matter of fact many
AI researchers put forth the example of machine learning, when asked about the devel-
opment of the subject. Like a sequence of small acts make something big, in the same
way little variations in common patterns may indicate something radically different. ML
techniques precisely intend to analyse such patterns.

There are many approaches that help to make machines learn. This chapter throws
light on the three most significant ones. These are as follows:
•	 Symbol-based
•	 Connectionist
•	 Evolutionary
The classification has been depicted in Fig. 23.1.

Symbol-based

Connectionist

Evolutionary

Neural networks

Genetic algorithms

Machine learning
approaches

Figure 23.1  Machine learning approaches

Genetic algorithms  These are heuristic search processes based on the theory of survival
of the fittest.

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  487

Concept, as a matter of fact, is the development of the features of a class by generalizing
the domain.

Learning has been defined in the Oxford dictionary as the process of gaining knowl-
edge through studying, being taught, or experience. The definition itself tells us how
to implement learning in machines. In fact, experience is one of the important ways of
learning.

Suppose we intend to accomplish a task and we are able to do so. Our experience
would help us to do the same task or perhaps a similar task, in a better way, the next
time. Let us see why:
•	 The experience helps us to identify the problems and possible solutions in doing a

given task.
•	 We generally develop heuristics which helps us to attain goals.
•	 Learning inculcates adaptability.

The following example would help us to understand the concept in a better way.
Suppose a professor of great intellect has taught artificial intelligence to you. He

is extremely particular about the words you use, the impact of research, and so on.
You work under him, publish a few papers, and then decide on teaching and writing
books. Then you are appointed in a college that might not have the same ethos as that
of the college in which you studied. So, what do you do? Leave teaching job in the
college and wait for a better opportunity or try adapting yourself to the needs of the
students? The second option is better. One of the prime goals of teaching is to get a
better insight of the subject. That does not always come from a student studying in a
high ranking college but that might as well come from other students as well. If the
aim of teaching is learning, then your adaptability would help you to achieve the task.
This can also be stated as follows. The urge to learn has made you adaptable. This
adaptability in the structure is one of the ways of learning. This technique, of making
changes in the structure, in order to learn from a given data, is referred to as the con-
nectionist model.

The third approach is that of the evolutionary learning. This is one of the most pow-
erful approaches of machine learning. In searching from a large domain wherein each
item has a fitness associated with it, genetic algorithms are used. As a matter of fact,
the evolutionary approach not just comprises genetic algorithms, but also comprises
genetic programming and artificial life to a little extent. However, the latter two are
beyond the scope of this book. The first, that is, genetic algorithms has been discussed
in Sections 23.5.

Tip: Evolutionary approaches of learning mainly consists of
•	 Genetic algorithm
•	 Genetic programming
•	 Artificial life

488   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

The reader is expected to go through the research papers given in Bedau (2003) in
order to get an insight of artificial life.

23.3.1  Learning
One of the main goals of learning is to infer the definition of the general class using
the given data. This can be done in two ways namely the data intensive approach and
the explanation-based approach. In the data intensive approach, the data are given to the
learner. These data can be in the form of positive examples, for instance. It is not neces-
sary that these examples are from the same domain as the problem. During the literature
review, one of the best examples was found in Luger. The example was that of the analogy
between current and water. When a teacher says that the current is like water he means
that the electrons flow in the wire due to potential difference in the same way as water
flows in a pipe due to the pressure difference between the source and the destination. It
does, in no way mean that we can wash our hand with current.

The task of learning, though, can also be achieved by interpreting the set of rules and
then deriving the definition of the general class which is referred to as the explanation-
based approach.

The above rules or data should have a predefined organization which would help us
to extract and interpret the data. The issues in representation are dealt in Knight (1991).

The learned knowledge is then operated upon by operators like those explained in
Section 23.5 of this chapter. These operators refine the available data and even help us
to derive new inferences.

The reason why this chapter focuses on genetic algorithms is because the above
operations are followed by what is referred to as heuristic search, which is the use of
heuristics to search in a concept space. However, the search can also be a version-based
search which is based on the idea of generalization leading to ordering.

The bias in inductive learning can be used to curtail certain outcomes. This would
produce a better concept in a lesser time. The next section discusses an important para-
digm in learning, that is, neural networks.

23.4  NEURAL NETWORKS

When a computer recognizes our retina, or when a person’s attendance is recorded using
a biometric system, or when the government of the country decides to use biometric
data to uniquely identify a person, the advancement of AI-pattern recognition amazes us.

There are a large number of ways in which the above tasks can be accomplished. One
of the most important is neural networks. Neural networks are inspired by the working
of neurons. The pattern-matching technique used in the above software is similar to the
pattern-matching technique used by our brain. The brain organizes the basic structural
unit of our nervous system called a neuron. There are millions of neurons in our body.
These neurons connect with each other via synapse. The structure of a neuron has been

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  489

The nervous system helps the brain to carry out parallel computation, which gives
human abilities such as pattern-matching. The scientific fraternity has been trying to
mimic the human brain in order to incorporate these abilities in a machine. Here it may
be stated that learning is one of the abilities which the fraternity intends to replicate in
a machine. The artificial neural network is a step towards making machines learnable.

When we recognize another person by seeing, it is called perceptual recognition.
This is not just the work of our brain, but because of what is referred to as mind. The
brain works like a parallel computer and aids us to identify a person, or a place, or say
for that matter an event, in approximately 200–300 ms. It is amazing that a normal desk-
top computer would take a much longer time to accomplish the same task as the search
space is massive.

As stated earlier, learning develops with experience. Our experience helps us to clas-
sify the patterns. The experience helps us to classify, regulate, and process information.
This quintessence is captured by what is referred to as a neural network.

These neural networks, like brain, learn by adjusting the synaptic connections. These
models are therefore referred to as connectionist models.

As stated earlier, the basic unit of a neural network is a neuron. The type of neural
network is determined by its connections. The various components of a neural network
are as follows:
1.	 Neurons: The basic building block of a neural network.
2.	 Synapse: The connection of neurons through links is referred to as synapse. In an

ANN, each synapse is associated with a weight.
3.	 The inputs which are multiplied by the respective weights and then summed using an

adder. The output is fed to the next component.

Definition  An artificial neural network (ANN) is an information processing paradigm that is
inspired by the way biological nervous systems, such as the brain process information.

Nucleus

Cell body

Dendrities

Axon

Figure 23.2  A neuron

depicted in Fig. 23.2. The neuron contains a cell, which has a nucleus and branches
called dendrites and axon.

490   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

4.	 Activation function: The output of a neural network is determined using an activation
function.
The conventions used in the following discussion are as below:

	 •	 The inputs are denoted by x
i
’s, for example, x

1
 is the first input.

	 •	� The weight of a synapse from neuron 1 to hidden layer 2 would be denoted by w
12

and so on.

	 •	 The bias factor is denoted by b
k
.

	 •	 The activation function is denoted by j.
	 •	 The output is denoted by y

k

The inputs to the neural network are x1 2, ,...,x xn. The weights are w
k1

, etc. Then, the
output at the summation point u

k
 would be as follows:

u w xk kj j
j

m

=
=

∑
1

The bias is added to the above output. The sum of the output and the bias has been
denoted by v

k
:

v u bk k k= +()

v
k
 is given as an argument to the activation function, which decides the output:

y vk k= ϕ()

The model of the neural network has been depicted in Fig. 23.3.

x1 wk1

bk

Yk
wk2

j

wk3

x2

x3

Figure 23.3  Model of a neural network

Ykj
x2

bk

wk2

wk3

1

wk1x1

x3

Figure 23.4  Model of a neural network taking
bias as an input

If the bias is considered as an input with weight 1, the model is depicted in Fig. 23.4.

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  491

As stated earlier, there are many types of activation functions. Some of them are as
follows:

Threshold Function

The output of this function is 1, if the value of v described above is greater than 1, oth-
erwise the output is 0. The function can be described as follows:

y
v

k
k=

≥



1 1

0

,

,

if

otherwise

Figure 23.5 depicts the above activation function.

j(v)

Figure 23.5  The threshold function

j(v)

Figure 23.6  The sigmoid function

Sigmoid Function

If the value of v, described above, is finite then the function can be described as follows:

ϕ()
()

v
e av

=
+ −

1

1
Figure 23.6 depicts the above activation function.

Although neural networks help to carry out many important tasks, like recognizing
patterns, genetic algorithms help in optimized searches. The next section briefly dis-
cusses genetic algorithms.

492   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

23.5  GENETIC ALGORITHMS

Genetic algorithm (GA) is a heuristic search process based on the theory of survival
of the fittest (Cormen, 1990). The concept is generally used in optimization problems.
However, it has been observed that the solutions obtained via the process are not robust.
In order to incorporate robustness, diploid genetic algorithms (DGAs) are used. It may
be noted at this point that genetic algorithm is not just a tool as perceived by many
software engineering theorists. It may be used as a black box that optimizes the data by
those who are unaware of the problem reduction approaches and have little knowledge
of AI. It is not just a box in which we give a set of data, vary the parameters, and obtain
the expected results. It is an intricate process that has an aura of its own. People like
David E. Goldberg spent his whole life in order to explain the advantages of the process
to the mankind. Genetic algorithms are being used for solving NP class of problems, in
generating test data, in the generation of pseudorandom number generation, and even in
bioinformatics. However, GAs are not just a machine learning approach but the details
of GAs needs to be understood; problem reduction approach should be used in order to
accomplish the task. The task accomplished by using GAs would most of the times be
an optimized search.

A GA starts with creating a population of chromosomes. Each chromosome has cells.
The cells of a chromosome can be binary or decimal or even hexadecimal. This choice
depends on the problem. For example, in subset sum problem, ‘1’ at a certain position
may indicate the inclusion of that element in the requisite sumset. The number of chro-
mosomes in a population also depends on the problem at hand. Figure 23.7 depicts an
instance of the population and the corresponding chromosomes and cells.

Chromosome
Cell

Binary population

0 0 1 0 1

1 0 0 0 0

0 0 1 0 1

1 0 0 0 1

0 0 1 0 1

0 0 0 1 0

0 0 1 0 1

1 1 0 0 1

0 1 1 1 0

1 0 0 0 1

Figure 23.7  A binary population

The above population may be subjected to the genetic operators in order to optimize
the results. Some of the genetic operators discussed in the chapter are crossover, muta-
tion, and roulette wheel selection.

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  493

23.5.1  Crossover
Crossover helps to produce new chromosomes having the features of both the parents.
The crossover population amalgamates two chromosomes in order to produce a new
chromosome. There are many types of crossovers such as
•	 One-point crossover
•	 Two-point crossover
•	 Multipoint crossover
•	 Uniform crossover

One-point Crossover

One-point crossover is a crossover wherein a new chromosome is formed by taking the
left part of the first chromosome, with respect to a randomly selected point and the right
side of the second chromosome from that point. In order to carry out one-point crosso-
ver, the following steps need to be performed:
1.	 Select any two chromosomes from the population.
2.	 Generate a random number up to the number of cells in a chromosome.
3.	 From the first chromosome selected, extract the cells up to the cell number generated

in the previous step.
4.	 From the next index up to the end, extract cells from the second chromosome.
5.	 Another chromosome can be created in the same way but taking cells from the sec-

ond chromosome first and then from the first chromosome. The process has been
depicted in Fig. 23.8.

Chromosome 1

Crossover point

Binary population

Chromosome 2

0 0 1 0 1

1 0 0 0 0

0 0 1 0 1

1 0 0 0 1

0 0 1 0 1

0 0 0 1 0

0 0 1 0 1

1 1 0 0 1

0 1 1 1 0

1 0 0 0 1

0 0 0 0 1

1 1 1 0 1

New chromosomes generated

and

Figure 23.8  One-point crossover

494   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

Two-point Crossover

Two-point crossover is a crossover wherein two random positions govern the formation
of a new chromosome. In order to carry out the two-point crossover, the following steps
need to be performed:
1.	 Select any two chromosomes from the population.
2.	 Generate two random numbers up to the number of cells in a chromosome.
3.	 From the first chromosome selected, extract the cells up to the first cell number gen-

erated in the previous step.
4.	 From the next index up to the second index generated, extract cells from the second

chromosome.
5.	 Then from the second index up to the end, extract cells from the first cell.
6.	 Another chromosome can be created in the same way but taking cells from the sec-

ond chromosome first and then from the first chromosome.
The process has been depicted in Fig. 23.9.

Chromosome 1

Crossover points

Binary population

Chromosome 2

0 0 1 0 1

1 0 0 0 0

0 0 1 0 1

1 0 0 0 1

0 0 1 0 1

0 0 0 1 0

0 0 1 0 1

1 1 0 0 1

0 1 1 1 0

1 0 0 0 1

New chromosomes generated

and

0 0 0 0 1

1 1 1 0 1

Figure 23.9  Two-point crossover

Multipoint Crossover

In multipoint crossover, more than two random points govern the formation of a new
chromosome.

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  495

In order to carry out the multipoint crossover, the following steps need to be performed:
1.	 Select any two chromosomes from the population.
2.	 Generate random numbers up to the number of cells in a chromosome.
3.	 From the first chromosome selected, extract the cells up to the first number generated

in the previous step.
4.	 From the next index up to the second index generated, extract cells from the second

chromosome.
5.	 Then from the second index up to the next index, extract cells from the first cell.
6.	 Continue this process till a new chromosome is generated having equal number of

cells as either of the chromosomes.
7.	 Another chromosome can be created in the same way but taking cells from the sec-

ond chromosome first and then from the first chromosome.
The process has been depicted in Fig. 23.10.

Chromosome 1

Crossover points

Binary population

Chromosome 2

0 0 1 0 1

1 0 0 0 0

0 0 1 0 1

1 0 0 0 1

0 0 1 0 1

0 0 0 1 0

0 0 1 0 1

1 1 0 0 1

0 1 1 1 0

1 0 0 0 1

New chromosomes generated

and

0 1 1 0 1

1 0 0 0 1

Figure 23.10  Multipoint crossover

Uniform Crossover

In this alternate cells from the 1st and 2nd chromosome are selected to generate a new
chromosome.

23.5.2  Mutation
Mutation is carried out in order to break the local maxima. In the mutation operation, a
chromosome is randomly selected and one of its bit is flipped. If it is ‘1’ then it is made
‘0’, else it is made 1.

496   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

It may be noted, though, that the mutation rate is generally kept low. The inspiration
comes from the nature. Whereas the crossover helps to amalgamate features of a male
and a female, mutation helps making the child different from the existing population.
However, this difference can make him better than others or may make him worthless.
The nature takes such risks in order to preserve the charm of uncertainty.

23.5.3  Selection
The selection process selects the chromosomes having high fitness values from amongst
the population and replicates those chromosomes. In the process, the more fit chromo-
somes become the majority community and the probability of their selection and the final
solution increases. It may be stated here that the fitness of a chromosome is evaluated by the
fitness function. The fitness function is decided keeping in mind the goal. For example, if
the cost of the path is to be minimized, then the fitness function would be such that more the
path of the cost, lesser will be the fitness function. The fitness function in this case can be

1

1+ −e λ

where l is proportional to the length of the path.
Coming back to the selection techniques, there are many selection techniques

described in literature. However, roulette wheel selection is one of the most common
selection techniques. The technique replicates chromosomes having high fitness value
with a greater probability. For example, software is to be developed to find the root

Selected chromosomeMutation point

Make the bit 0, as it is 1

Binary population

0 0 1 0 1

1 0 0 0 0

0 0 1 0 1

1 0 0 0 1

0 0 1 0 1

0 0 0 1 0

0 0 1 0 1

1 1 0 0 1

0 1 1 1 0

1 0 0 0 1

Figure 23.11  Mutation

In order to carry out mutation, the following steps need to be performed:
1.	Select any chromosomes from the population.
2.	Generate a random number up to the number of cells in a chromosome.
3.	From the chromosome selected, flip cells having index generated in Step 2.
The process has been depicted in Fig. 23.11.

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  497

of an algebraic equation. In order to accomplish the task, a value is generated and the
value of the left-hand side of the equation is evaluated. The deviation of the answer
obtained is calculated with the desired value, which in this case is 0. The fitness function
is designed in such a way that if the value of deviation is low, the fitness of the solution
obtained (and hence the chromosome generating the solution) is higher. Suppose the
various chromosomes have fitness values shown in Table 23.1.

In order to apply roulette wheel selection, the commutative frequency (of fitness) is
calculated. Table 23.2 shows the commutative frequency table. The corresponding pie
chart is depicted in Fig. 23.12.

1

2

3

4

5

6

Figure 23.12  Pie chart depicting probability of selection
of each chromosome is proportional to their fitness

Table 23.1  Fitness of the
chromosome

Chromosome Fitness

1 10

2 7

3 5

4 4

5 3

6 1

Table 23.2 C ommutative frequency table

Chromosome Fitness Commutative
frequency

1 10 10

2 7 17

3 5 22

4 4 26

5 3 29

6 1 30

Now a random number is generated mod 30. Say it is 21. The next step would be to
select the chromosome which depicts this commutative frequency in the above table. In
this case it is chromosome number 3. So the third chromosome would be replicated and
the final population would contain two copies of the chromosome. However, the process
is repeated many times.

23.5.4  Process
The process of genetic algorithm is given in Algorithm 23.1. The process consists of
population generation, crossover, mutation, and selection until a desirable solution is
reached. The process may be repeated many a times, each time a new generation is

498   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

formed. If the initial number of chromosomes is high, then the answer would be found
in lesser number of generations.

	 Algorithm 23.1 S imple genetic algorithm

Step 1.	 Generate initial population
Step 2.	 Evaluate fitness of each chromosome
Step 3.	 Perform crossover
Step 4.	 Perform mutation
Step 5.	 Evaluate fitness and perform roulette wheel selection
Step 6.	 �If solution is not found or the number of generators cross a particular value then go

to Step 3 else print the result
Step 7.	 End

The application of the above process has been explained in the sections that follow.

23.6  KNAPSACK PROBLEM

There is a thief who has to select a few items from amongst the given items. Let the
capacity of the bag be ‘c’. Let there be n things. The problem can be stated as follows:
•  Set of items is given by the set y y y yn1 2 3, , ,...,{ } .
•  The weights of the above items are given by the set: w w w wn1 2 3, , ,...,{ } and
•  The profits obtained from each of the above items are p p p pn1 2 3, , ,...,{ }.
	 Let x

n
 = 1 denotes that the item has been picked and x

n
 = 0 means that the item has not

been picked. The problem is to select items in such a way that the total weight of the
selected items is less than or equal to the weight of the bag. The constraint is depicted
in Eq. (23.1),

	 x w x w x w m1 1 2 2 3 3× + × + × ≤... 	 (23.1)

The items are to be picked in such a way that the profit earned is maximum,

x p x p x p1 1 1 2 3 3× + × + × ... is maximum

The above problem is referred to as 0/1 knapsack problem.

Brute Force Algorithm

The problem can be solved by brute force algorithm. However, the complexity of the process
is too high. Algorithm 23.2 shows the brute force approach to solve the subset sum problem.

Knapsack problem  The assortment of objects from a given set in such a way that the total
weight is less than or equal to the given weight, and the profit earned by picking up the
elements is maximum.

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  499

	 Algorithm 23.2  Brute force approach for subset sum problem

Step 1.	 Find out the profit per unit weight of all the items.
Step 2.	 Arrange the array obtained in the decreasing order.
Step 3.	 Now, pick the items from the array one by one till there is a space in the bag.

The problem, however, crops up when the number of items is too large. In that case,
the brute force approach does not work. In such cases, a method based on GA can be
used, as it is an optimization problem.

The most important thing while applying GAs is to design the fitness function. In
this case, the fitness function should have a high value if the profit earned is high and
weight of the selected subset is low. In order to solve knapsack problem via GAs, the
cells of the chromosomes may represent the inclusion or non-inclusion of the item.
Algorithm 23.3 depicts the solution of the problem by using GAs.

	 Algorithm 23.3 GA s approach for knapsack problem

Step 1.	 �Generate a binary population having number of cells equal to the cardinality of
the set.

Step 2.	 Each cell of a chromosome depicts the inclusion or non-inclusion of a cell.
Step 3.	 �The chromosomes which have the total weight of the elements greater than the

target can be straightaway rejected.
Step 4.	 �Else the fitness of the chromosome can be calculated. The fitness of a chromosome

may be defined as fitness =
1

1+ eλ , where l is the ratio of profit of the chromosome

and the weight.
Step 5.	 The chromosomes are then arranged in order of their fitness.
Step 6.	 Then crossover is carried out.
Step 7.	 The mutation operator is then applied in order to break the local maxima.
Step 8.	 �If the solution is obtained then the process terminates else the next generation is

generated.

23.7  SUBSET SUM USING GA

The subset sum problem is a significant problem in algorithm analysis and design. We have
already introduced the problem in Section 12.3 of Chapter 12. There are several ways to
solve the subset sum problem. The problem can be solved via greedy approach, dynamic
approach, backtracking, and branch and bound. However, the most basic way would be
to form all the subsets and then cycle through all of them. Now for every subset, we must
check if the subset sums to the required number. Since there are 2n subsets of a set having n
elements and the sum of each subset is to be taken, therefore, the running time of the above
procedure would be of order O (2NN). Algorithm 23.4 elucidates the steps of the procedure.

500   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

	 Algorithm 23.4  Brute force algorithm for subset sum problem

Given:
•  A set having n elements.
•  A value m
Required
To find a subset of the given set such that the elements of the subset have sum = m.

Brute force algorithm
1.  Find all the subsets of the given set.
2.  For each subset
	 a.  Find the sum of elements of the subset.
	 b.  If the sum of the subset is equal to the required sum then
	 i. P rint the answer and quit.
	 c.  else
	 i. C ontinue
3. E nd

There is another algorithm which runs in time O(2N/2). The algorithm is based on the
strategy of divide and conquer. The set containing N elements is divided into two sets of
N/2 elements each. Each of these two sets is then sorted. The complexity of this algo-
rithm is lower than the above set. This section explains a GA-based approach to solve
the subset sum problem.

Illustration 23.1	 Find the subset of the set 2 3 6 7 10, , , ,{ } having sum as 10.

Solution The given set is {2, 3, 6, 7, 10} and the value of the sum is 10. The various
subsets of the given set are as follows:

ϕ, , , , , , , , , , , , , , , , ,2 3 6 7 10 2 3 2 6 2 7 2 10 3 6 3 7{ } { } { } { } { } { } { } { } { } { } { }} { } { } { }
{ } { } { } { }

, , , , , ,

, , , , , , , , , , , , ,

3 10 6 7 7 10

2 3 6 2 3 7 2 3 10 2 6 7 2 6,, , , , , , , , , , , , ,

, , , , , , ,

10 2 7 10 3 6 7 3 6 10 6 7 10

2 3 6 7 2 3 6 1

{ } { } { } { } { }
{ } 00 3 6 7 10 3 6 7 10 2 6 7 10

2 3 6 7 10

{ } { } { } { }
{ }

, , , , , , , , , , , ,

, , , ,

The sum of each of the above set is
0
2
3
6
7
10
5
8

9
12
9
10
13
13
16
17

11
12
15
15
18
19
16
19

20
23
18
20
26
25
28

The solution is therefore {10} and {3, 7}.

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  501

23.7.1  Solution Using GA
The above method works for small sets. However, for large sets, the method will not
work. The number of calculations and the complexity of the algorithm will be too large.
The time taken by a normal PC to implement the above algorithm might be in months so
the applications based on the above system will not be realizable. So there is a need to
use some AI technique in order to implement the algorithm.

Since the above problem is an optimization problem and finding the solution is basi-
cally the search for correct subset, GAs are best suited for solving subset sum problem.

The below steps must be followed in order to solve the problem via GA.

Step 1	 Generate initial population of the GA. Each chromosome has the same number
of cells as are there in the given set; 1 in a set indicates the inclusion of the correspond-
ing element of the set, whereas 0 indicates the non-inclusion of that particular element.

For example, if set A = { }2 3 6 7 10, , , , and value = 10.
After the generation of the population one of the chromosomes is 11001.
Step 2	 Then it indicates the inclusion of the first, second, and the fifth element of the
set. In this case, the subset generated by the above mapping is {2, 3, 10}.
Step 3	 Then the sum of the elements of the subset is evaluated. The sum of the above
subset becomes 15. This is followed by the calculation of deviation of the sum obtained
from the required value. The deviation in this case is 5.
Step 4	 The chromosomes are then arranged in the order of deviation. If the deviation is
zero, then the chromosome represents the solution.
Step 5	 If the solution is not obtained, then the crossover and mutation operations are
applied in order to reach to the solution. The selection procedure explained in the introduc-
tion depends on the fitness of a chromosome. In this case, less the deviation, more is the
fitness; therefore, more fit chromosomes will be generated as the process moves forward.

Example: The subset sum problem is not just one of the problems of ADA, it has many
applications. It is used in cryptography. The very popular knapsack cipher uses the con-
cept of subset sum for the decryption part. The problem also finds applications in web
crawlers. The importance of subset sum problem makes the efficiency of its solution all
the more important.

The most important thing while applying GAs is to design the fitness function. In this
case, the fitness function should have high value if the difference between the desired
sum and the sum of the subset selected is low. In order to solve the subset sum problem
via GAs, the cells of the chromosomes may represent the inclusion or non-inclusion of
the item. Algorithm 23.5 depicts the solution of the problem by using GAs.

	 Algorithm 23.5 GA s approach for subset sum problem

Step 1.	 �Generate a binary population having number of cells equal to the cardinality of
the set.

502   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

Step 2.	 Each cell of a chromosome depicts the inclusion or non-inclusion of a cell.
Step 3.	 �The chromosomes that have the sum of the elements greater than the target can be

straightaway rejected.
Step 4.	 �Else the fitness of the chromosome can be calculated. The fitness of a chromosome

may be defined as fitness =
1

1+ eλ , where l is the modulus of difference of the sum of

the selected subset and the target subset.
Step 5.	 The chromosomes are then arranged in order of their fitness.
Step 6.	 Then crossover is carried out.
Step 7.	 The mutation operator is then applied in order to break the local maxima.
Step 8.	 �If the solution is obtained, then the process terminates else the next generation is

generated.

The process is shown as follows:
Set A = {2, 1, 4, 3, 6, 8}
Value = 15
No of chromosomes: 15
The population is

001100
000100
101000
010000
000001
100100
100000
101010
010000
010001
100000
010000
100001
000000
110000

The sums of the subsets corresponding to the above population are {7, 3, 6, 1, 8, 5, 2,
12, 1, 9, 2, 1, 10, 0, 3}. Deviation of the above sum from the required value is {8, 12, 9,
14, 7, 10, 13, 3, 14, 6, 13, 14, 5, 15, 12}. The fitness of the above chromosomes calcu-
lated by taking the inverse of the above value and multiplying the solution with 100 are
{12.5, 8.333334, 11.111112, 7.1428576, 14.285715, 10.0, 7.692308, 33.333336,
7.1428576, 16.666668, 7.692308, 7.1428576, 20.0, 6.666667, 8.333334}. The fitness

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  503

is then arranged in order and the corresponding chromosomes are also arranged. The
arranged population is as follows:

000000
010000
010000
010000
100000
100000
000100
110000
100100
101000
001100
000001
010001
100001
101010

This is followed by the application of roulette wheel selection. The rest of the procedure
is same as the general procedure of simple GA explained in the first section of the chapter.

23.8  TRAVELLING SALESMAN PROBLEM

The TSP can be used in many disciplines such as planning, logistics, and the manufacture
of microchips. In the theory of computational complexity, the decision version of the TSP
belongs to the class of NP-complete problems. Thus, it is likely that the worst case run-
ning time for any algorithm for the TSP increases exponentially with the number of cities.

The sub-section presents a brief overview of the techniques proposed by various
researchers to solve TSP. Since TSP has always been a topic of interest, many research-
ers have suggested the various solutions of the TSP using different AI approaches. Some
of the solutions are as follows:
•	 In the solution proposed by Aybars Uğur, all points depicting the cities have been

taken on the surface of a sphere. The method follows rigorous mathematical analysis
in order to generate the solution. The complexity and the mathematical calculations
of the method make it less useful.

Definition  The travelling salesman problem (TSP) is an NP-hard problem. It is applied in
operations research and theoretical computer science. Given: A list of cities V and their pair-
wise distances D such that D is a set where x Di ∈ is the distance between (l, m), l, m Œ V.

The aim of TSP is to find the shortest possible tour that visits each city exactly once and
keeping the new cost minimum.

504   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

•	 Gokturk Ucoluk suggested a GAs-based solution of TSP problem. According to the
work, mutation and crossover operators are not applicable to the problem. The author
has introduced a new operator for generating random population. However, it may
be noted that many researchers have applied crossover and mutation operators in the
TSP and got better results as compared to the above work. So there is little reason to
exclude crossover and mutation from the GA process in order to solve TSP. It may be
stated though that crossover and mutation can be applied on binary population after
which encoding can be done. It would be pointless to apply crossover to the decimal
population.

•	 Many researchers have used minimum spanning tree (MST)-based graph pyramid for
finding out optimal solutions for computationally hard pattern recognition problems.
Though the time complexity using this procedure has been calculated as O(|E2|), the
complexity has been given only for restricted conditions and many assumptions. So,
we cannot really compare the method on the basis of complexity with other methods.

•	 An improved immune genetic algorithm was proposed by Jingui Lu to solve the TSP.
A new selection strategy was included into the conventional GA to improve the per-
formance of GA.

•	 A hybrid GA that incorporates the generalized partition crossover (GPX) operator to
produce an algorithm that is competitive with the state of the art for the TSP was pro-
posed by Darrell Whitley. The approach gives satisfactory results as per the experi-
ments carried out by the author.

•	 Bhasin & Singla (2012) proposed a problem reduction approach to convert the binary
population generated by GAs into the sequence of cities that can give a solution of
the TSP. The fitness function of the city has been crafted in accordance with the cost
of the path. The present section explains this approach and exemplifies it.

However, no paper was found that compared the above approaches with each other. So it
is difficult to state which approach is the best. In addition, different researchers have taken
different assumptions and different environments in order to carry out the experiments.

23.8.1  GA Approach to Solve Travelling Salesman Problem
As stated earlier, there are many methods of solving TSP via GAs. The following section,
however, uses the approach proposed by Bhasin et al. According to the technique, in order
to solve TSP with the help of GAs, the steps given in Algorithm 23.6 may be followed.

	 Algorithm 23.6 GA s approach for travelling salesman problem

Step 1.	 �First of all a binary population is generated with the help of pseudorandom number
generator of the language.

Step 2.	 �Each chromosome of the population is divided into parts having m bits. Each set of m
bits depicts a valid city.

Step 3.	 Each set is mapped with a valid city.

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  505

Step 4.	 The path generation
a.  From the matrix obtained, path is generated.

Step 5.	 Each path is tested for feasibility.
Step 6.	 Repeat the above process for each row and generate a different path for each row.
Step 7.	 Path selection

a. �C alculate the cost of traversing each path using the cost matrix of the cities and
select the path with lowest cost.

Step 8.	 Re-analysis
a. �T he solution can be enhanced by crossover and mutation operations. The

population formed after applying the above operators may generate better results.

Figure 23.13 depicts the above process.

Generate initial population Design a fitness function Apply RWS

Divide each chromosome
into m bits

Calculate the cost of
each valid path

Select the path with
minimum cost

Map each set with a
valid city

Cacluate the feasibility
of each path

The solution can be optimized
by applying crossover and

mutation operator

Apply path generation
procedure

Generate path for each
chromosome

Figure 23.13  TSP via GAs

Illustration 23.2	 Suppose there are 5 cities {A, B, C, D, E} and the distances between
the cities are given by the following matrix:

0 2 3 2 4

2 0 1 2 1

3 1 0 3 5

2 2 3 0 7

4 1 5 6 0























Solve the above travelling salesman problem using GAs.

Solution The above matrix depicts the distance between any two cities. Since the above
represents the cost of the path between any two cities, it has to be a symmetric matrix.

506   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

Now a population of 10 chromosomes having 15 cells each is generated.
Each chromosome will now be divided in the groups of three and a sequence of num-

bers would be generated. For example, the first chromosome depicts the sequence 14420.
The repeated value will now be replaced by the missing numbers in order. In this case,
the missing number is 3. The sequence now becomes 14320. Now all the paths that are
generated by the above population would be checked for feasibility. Those paths that are
feasible will now go to the next step (Table 23.4).

In order to solve the problem, an initial population is generated. The following popu-
lation has 10 chromosomes each having 5 × m cells, since there are 5 cities in the prob-
lem. The value of m will be three as explained in the following discussion.

Since there are 5 cities, 3 cells are needed in order to map the bits with the cities.
Table 23.3 depicts the mapping of cities with the binary bits.

Table 23.3  Mapping of chromosomes

Bits Binary equivalent Number % 5

000 0 0

001 1 1

010 2 2

011 3 3

100 4 4

101 5 0

110 6 1

111 7 2

Table 23.4 C hromosomes

0 0 1 1 0 0 1 0 0 0 1 0 1 0 1

0 1 0 0 1 0 1 1 1 1 0 1 1 1 1

0 1 1 1 1 1 1 1 0 0 0 0 1 1 1

1 0 1 1 0 0 1 1 1 0 1 0 0 0 0

0 0 0 1 1 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 0 0 0 1 0 1

0 1 1 0 0 1 1 0 0 1 0 0 1 1 1

1 0 1 1 0 1 0 1 0 0 0 1 1 0 0

1 1 1 1 0 0 1 0 1 1 0 1 0 0 0

1 1 1 1 1 1 1 1 0 0 1 0 1 0 0

In the next step, the fitness of each path will be evaluated. In this case, the fitness may

be given by fitness =
+ −

1

1 1e *λ , where l is the cost of each path.

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  507

The rest of the process is same as that applied earlier. However, it may be noted that
crossover and mutation should be carried out on the binary population, not the sequence.

23.9  VERTEX COVER PROBLEM

The vertex cover problem calls for selecting the set of vertices of a graph (V, E), such
that the edges adjacent to the selected vertices give the set V of the original graph.

Given a graph G = (V, E), the vertex cover problem calls for the crafting of the set
V ' such that V V′ ⊆ such that all the edges of the set E are covered by the vertices of the
set V '.

For example, for the graph shown in Fig. 23.14, the vertex cover is
{A, B}. This is because the edges having A as one of their vertices are
{(A, B), (A, C)} and the edges having B as one of their vertices are
{(B, C), (A, C)}. The union of these two sets gives {(A, B), (A, C), (B, C)},
which is same as the set depicting the edges of the given graph. However,
it may be noted at this point that there can be more than one answer to the
above problem. The set {A, C} or the set {B, C} represents an equally
good solution.

However, there can be graphs in which the vertex cover has more verti-
ces, even equal to the number of vertices in the original set. For example,
the vertex cover of the graph shown in Fig. 23.15 is the set {A, B, C}.

The problem has already been covered in chapter on approxima-
tion algorithms; however, this section contains a brief description of the
algorithm.

The approximation algorithm of the above problem selects a vertex and removes
the edges which have that vertex as one of its end points from the set of vertices. The
selected vertex is added to the set A and the reduced set of edges becomes the set of
edges for the next iteration. The following two algorithms depict the same procedure
written in different forms (Algorithms 23.7 and 23.8).

23.9.1  Approximation Algorithm
Vertex Cover Algorithm 1

	 Algorithm 23.7  Vertex cover algorithm 1

Select x ∈ V from the set of vertices V.
Remove x from the set V to create a reduced set V’.
Find all the edges which have x as one of their end points. For all such edges carry out the
following steps:
Remove all such edges from the set of edges. Continue till the set of edges reduces to a
NULL set.

A

B C

Figure 23.14  Graph 1

A B

C D

Figure 23.15  Graph 2

508   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

	 Algorithm 23.8  Vertex cover algorithm 2

A←∅
 while (E != ∅)
 pick any {x, y} ∈ E
 A ← A∪ {x, y}
 delete all edges incident to either x or y
return A

However, the solution of the problem via the above algorithm can be tedious. For
example, it is very difficult to find the vertex cover of the graph shown in Fig. 23.16 by
approximation algorithms.

A
B

C

F

G
D

E

H

I

Figure 23.16  Graph

The brute force algorithm will not work for a graph having many vertices. In such
cases, GAs come to our rescue. The solution of the problem via GAs would be on the
same lines as the previous problems. In order to apply GAs to vertex cover, the following
steps may be followed (Algorithm 23.9).

23.9.2  Solution of Vertex Cover via GAs

	 Algorithm 23.9 GA s approach for vertex cover problem

Step 1.	 Generate an initial population having n chromosomes.
Step 2.	 �The number of vertices in each chromosome should be same as the number of

vertices in the graph.
Step 3.	� Since the population is binary, a mapping is needed to map each chromosome with the

set of vertices. In order to handle the above problem, each 1 depicts the inclusion of the
vertex, whereas a 0 depicts the non-inclusion. For example, if the graph consists of 6 cells,
then chromosome 100101 implies that the first fourth and last vertices are to be taken.

Step 4.	� First of all, the sequence selected will be checked for feasibility. Each chromosome
is assigned a fitness value based on the above step. The value will be more if the
number of vertices selected is less.

Step 5.	 �The above step is followed by the ordering of the sequences formed on the basis of
their fitness value and then applying roulette wheel selection.

I n t r o d u c t i o n to M ac h i n e L e a r n i n g A p p r oac h e s   ■  509

Step 6.	� The final population generated is subjected to crossover and mutation operations in
order to further optimize the results.

Step 7.	 �Many generations can be created and the results of the previous with the next one be
compared.

However, it may be stated at this point that there can be some graphs in which opti-
mization of the result is not possible, for example, a graph in which the vertex cover is
the set of vertices itself.

23.10  MAXIMUM CLIQUE PROBLEM

The problem has been discussed in the previous chapters. However, a brief overview
of the problem has been given in the section. The overview is followed by an overview
of the technique for applying GA to the problem.

A clique of a graph G is a set of vertices MC (maximal clique) in which u v,{ }∈MC
implies u v E,{ }∈ . A maximum clique of a graph G is a clique whose size is as large as
that of any other clique in the graph G. A maximal clique (MC) of a graph G is a clique
for which it is not possible to add an additional vertex to MC and MC remains a clique
(Kleinberg, 2011).

In a graph, vertices may represent individual genes. In such cases, the edges between
vertices depict the molecules that are interrelated. Such molecules, as a matter of fact,
have high tendency of co-occurrence. By this analogy, a clique should indicate the set of
modules which are correlated to each other. The maximum clique problem, therefore, is
also important in computational biology.

The brute force algorithm for finding out the maximum clique will not work for a
graph having many vertices, in this case also. In such cases, we can use GAs. The solu-
tion of the problem via GAs would be on the same lines as the previous problems. In
order to apply GAs to maximum clique problem, the following steps may be followed
(Algorithm 23.10).

23.10.1  Solution of Maximum Clique via GAs

	 Algorithm 23.10 GA s approach for maximum clique problem

Step 1.	 Generate an initial population having n chromosomes.
Step 2.	� The number of vertices in each chromosome should be same as the number of

vertices in the graph.
Step 3.	� The population is binary; therefore, a mapping is needed to map each chromosome

with the set of vertices. A ‘1’ in a chromosome depicts the inclusion of the vertex,
whereas a 0 depicts the non-inclusion.

Step 4.	� Now, the sequence selected will be checked for feasibility. Each chromosome
is assigned a fitness value based on the above step. The value will be more if the
number of vertices selected is more.

510 ■ a Lg o r I t h M s : d e s I g n a n d a n a LY s I s

 Step 5. the above step is followed by the ordering of the sequences formed on the basis of
their fi tness value and then applying roulette wheel selection.

 Step 6. the fi nal population generated is subjected to crossover and mutation operations in
order to further optimize the results.

 Step 7. Many generations can be created and the results of the previous with the next one
should be compared.

 However, it may be stated at this point that like in the case of vertex cover, there can
be some graphs for which optimization of the result is not possible.

23.11 CONCLUSION

 This chapter throws light on the applicability of GAs to those problems which cannot
be solved by standard algorithmic approaches. However, it may be stated that fi rst of
all a theoretically sound problem reduction approach is needed in order to apply GA.
This should be followed by the design of a good fi tness function. The application of
crossover and mutation should also not be mindless. The mutation rate should always be
low. It may also be stated that our approach can be tested and verifi ed by changing the
crossover rate and fi nding the optimal rate. Same can be done for the mutation rate also.
The type of crossover can also be changed to see which type best suits the problem at
hand (both in terms of nature and data). Lastly, we should be clear about the goals. If we
want to achieve good optimization GAs but if the goal is robustness, then approaches
such as diploid genetic algorithms can be used.

 Points to Remember

			•	 			Genetic	algorithms	are	heuristic	search	processes.			

		•	 			The	fundamental	operators	of	GAs	are	crossover,	mutation,	and	replication.			

		•	 			Crossover	can	be	of	many	types	like	one-point	crossover,	two-point	crossover,	and	uni-
form crossover.

		•	 			The	crossover	rate	should	not	be	too	high.			

		•	 			Mutation	is	generally	achieved	by	fl	ipping	a	bit	of	the	binary	population.			

		•	 			The	mutation	rate	is	generally	much	lower	than	the	crossover	rate.			

		•	 			Genetic	algorithms	do	not	always	provide	the	correct	solution.			

 Artificial intelligence It may be defined as the capability of a computer to perform those
activities that are usually done via manual intelligence.

 Crossover the crossover population amalgamates two chromosomes in order to produce a
new chromosome.

 KEY TERMS

I n t r o d u c t I o n to M ac h I n e L e a r n I n g a p p r oac h e s ■ 511

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following statements is correct?

 (a) Genetic algorithms are heuristic search processes based on the theory of survival
of the fi ttest

 (b) Genetic algorithms are like a black box which optimize results
 (c) Genetic algorithms can be used mindlessly without any problem reduction

approach for publishing papers in software engineering.
 (d) All of the above

 2. Which of the following is not an operator in genetic algorithms?
 (a) Crossover
 (b) Mutation

 (c) Reproduction
 (d) Reincarnation

 3. For which type of problems GAs are most appropriate?
 (a) Optimization
 (b) Solving food problems

 (c) Pattern machining
 (d) All of the above

 4. A simple GA population consists of which of the following?
 (a) Chromosomes
 (b) Ketones

 (c) Genotypes
 (d) None of the above

 5. What is the purpose of applying mutation operator?
 (a) Breaking global maxima
 (b) Breaking local maxima

 (c) Amalgamation of features
 (d) None of the above

 6. What is the purpose of applying crossover operator?
 (a) Breaking global maxima
 (b) Breaking local maxima

 (c) Amalgamation of features
 (d) None of the above

 7. Which of the following is a type of crossover?
 (a) Single-point crossover
 (b) Multipoint crossover

 (c) Uniform crossover
 (d) All of the above

 8. Which of the following should be low?
 (a) Crossover rate
 (b) Mutation rate

 (c) Both of them should be equal
 (d) Any of the above can be higher

 9. What can be used to search a solution in a huge space?
 (a) Genetic algorithms
 (b) Fuzzy logic

 (c) Both
 (d) None

 Genetic algorithms they are heuristic search processes based on the theory of survival of
the fittest.

 Mutation in a binary chromosomes In the mutation operation, a chromosome is randomly
selected	and	one	of	its	bits	is	flipped.	If	it	is	‘1’	then	it	is	made	‘0’,	else	it	is	made	1.		

 Selection the selection process selects the chromosomes having high fitness values from
amongst the population and replicates those chromosomes.

512   ■  A LGOR I TH M S : DES I GN AND ANA LY S I S

10.	 Which of the following is better?
(a)	 Genetic algorithms
(b)	 Randomized algorithms

(c)	 Both are equally good
(d)	 None of the above

II.  Review Questions
	 1.	 What is artificial intelligence?
	 2.	 What is meant by machine learning?
	 3.	 Classify the techniques of machine learning.
	 4.	 Explain symbol-based learning.
	 5.	 Explain the concept of learning. Can it be implemented in computers?
	 6.	 Explain the model of neural network.
	 7.	 What are genetic algorithms? For what type of problems are they used?
	 8.	 Explain the various steps involved in GAs.
	 9.	 What are the different types of crossovers?
10.	 What is the reason for carrying out mutation?
11.	 Explain the process of reproduction in genetic algorithms.
12.	 Examine the steps in order to solve travelling salesman problem using GAs.
13.	 Explain the steps to solve subset sum problem using GAs.
14.	 Explain the steps in order to solve vertex cover problem using GAs.
15.	 Explain the steps to solve maximum clique problem via GAs.

III.  Numerical Problems
	 1.	 Design appropriate fitness function for the following problems (different from that

given in the text)
(a)	 Subset sum
(b)	 Vertex cover
(c)	 Maximum clique

(d)	 Travelling salesman problem
(e)	 Knapsack problem

	 2.	 Implement GAs taking crossover rate = 2% and number of chromosomes in the ini-
tial population = 100. Plot the graph of fitness value obtained in various generations
n in the following problems.
(a)	 Subset sum problem: Input set {1, 2, 5, 9, 10, 15, 17, 23, 25}. Desired sum =32
(b)	 Vertex cover problem

Input graph

Graph-1

a

b

c

e
d

Graph-2

1 2

6 3

5 4

I n t r o d u c t I o n to M ac h I n e L e a r n I n g a p p r oac h e s ■ 513

 (c) Maximum clique problem
 Input graph

 Graph-1

a

h
c

g

f e d

b

 3. Repeat the above problem taking crossover rate as 80%. It may be stated at this point
that some of the research papers have taken crossover rate as 60–80%. Analyse the
results obtained and state the problems in taking such high crossover rates.

 4. Repeat problem number 2 by taking mutation rate as 0.2%. Plot a graph of the fi tness
value and the generation number.

 Answers to MCQs

 1. (a)
 2. (d)

 3. (a)
 4. (a)

 5. (b)
 6. (c)

 7. (d)
 8. (b)

 9. (a)
 10. (a)

 Introduction to Computational
Biology and Bioinformatics

 C H A P T E R 2 4

 OBJECTIVES
 After studying this chapter, the reader will be able to
 • Understand the concept of bioinformatics
 • Differentiate between bioinformatics and computational biology and between DNA

computing and bioinformatics
 • Explain the applications of bioinformatics
 • Explain the basic terms used in bioinformatics literature
 • Use algorithms to solve problems in biology

 24.1 INTRODUCTION

 Biology and computer science are like Jensen and Winchester of series Supernatural.
The two protagonists in the series go around the country to hunt friends. A viewer in
America cannot think of the series with just one character. The two disciplines comput-
ers and biology also have come together to fi nd the demon of ‘unsolved problems’ in
biology through computer science. It is a win-win situation for both. Biology will have
the answers for many problems, which are dependent on empirical analysis. Computer
science, on the other hand, will fi nd some real-life problems to solve.

 As a matter of fact, biology is not just dependent on computer science, but also on
statistics. This is because of the huge data that is constantly generated by numerous
sources. These data require quantization tools, and the use of these tools has made the
people who work on them and create them immensely important for biology. Let us just
go through a few examples so as to why statistics is important in biology. The statistical
and mathematical techniques help manipulate biological databases, which are used to
store information. The tools help us to answer biological questions, count bacteria colo-
nies, etc. The importance of counting can be gauged from the fact that just by counting
the variations, Gregor Mendel and Thomas Morgan derived the laws of genetic inherit-
ance. The discipline also helps in another immensely important process, that is, drug
designing. Although this topic is beyond the scope of this book, it is the one of the most
important application of bioinformatics.

I n t r o d u c t i o n to Co m p u tat i o n a l B i o lo g y a n d B i o i n f o r m at i c s   ■  515

This chapter has been designed for a computer science student. The goal is to intro-
duce him/her to the fascinating discipline of bioinformatics and computational biology;
so that he should be able to apply the skills he has developed during the course to solve
some real-life problems. The chapter is not meant to be taken as a ‘life science’ text.

24.2  BASICS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

Broadly, both computational biology and bioinformatics have same goals. An extensive
literature review was carried out to write this chapter. Many contradicting views were
reported as regards the difference between bioinformatics and computational biology.
One of the most convincing distinctions was given by Achuthsankar S. Nair. According
to him, bioinformatics is for the life science people who master the use of computa-
tional techniques, whereas computational biology is for the computer science people
who learn biology. The goals of the two are seemingly same (Luscombe, 2001).

According to many researchers, bioinformatics is not just the analysis of biologi-
cal data but much more than that. It is used in drug designing to locate genes via DNA
sequencing, predicting the structure of RNAs through the sequences, and so on. Analysis
of data, nevertheless, remains one of the most important goals of this discipline.

The biological data that bioinformatics intends to work upon can be stored using
databases and worked upon using ontologies. Each domain of disclosure has a set of
entities that are fundamental to it. The formal name, properties, and interrelationship
of these types are called ontology. The analysis of these data requires the knowledge
of algorithms, which we have studied till now. This chapter also introduces some of the
important algorithms to accomplish specific tasks in the discipline.

The term ‘bioinformatics’ was coined by a Dutch biologist, Paulien Hogeweg. Her
dedication towards the discipline can be judged from the fact that she founded the
‘Theoretical Biology and Bioinformatics Research group’ in 1977. The most important
events related to the growth of the discipline are listed in Table 24.1.

The concept central to the subject is sequencing, and the problems involved therein. For
example, the huge amount of data makes the case of conventional algorithms too weak.

This discipline has no commonality with DNA computing. DNA computing is con-
cerned with the creation of biocomputers using DNA, etc. The latter uses biology to
make computers and bioinformatics uses computer science to solve problems in biology.

Definition  Bioinformatics is a field that applies computer science to solve the problems of
biologists and is concerned with the management and analysis of biological data.

Definition  DNA computing is concerned with the creation of biocomputers using DNA
and enzymes.

516   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Table 24.1  Important events in bioinformatics
Year Event

1956 The first protein sequence of Bovine insulin reported

A decade later First nucleic acid sequence reported

1972 Creation of Protein Data Bank

1987 The SWISSPROT protein sequence database began

1988 The Human Genome organization (HUGO) founded

1989 The first complete genome map was published

1990 The Human Genome Project started

1993 A physical map of the human genome was produced by Genethon, Human
Genome Research Centre in France

1996 The final version of the Human Genetic Map was produced by Genethon

Bioinformatics is also used in many disciplines, some of which are as follows.
•	 Signal processing
•	 Genomics, which deals with finding the function and structure of a genome using

sequencing, etc.
•	 Biophysics, which uses the theory of physics to study biological systems.
•	 Biochemistry, which deals with the study of chemical processes in biological systems.

Sequencing is one of the most important tasks in bioinformatics. The task involves
the determination of the order of amino acids in a protein or that of nucleotides in a
deoxyribonucleic acid (DNA) or a ribonucleic acid (RNA).

Strictly speaking, computational biology is not concerned with the biomedicines,
rather with the evolutionary biology. However, the use of data-intensive methodologies
is as important in computational biology as in bioinformatics.

24.3  BASICS OF LIFE SCIENCES

This section discusses the basics of life sciences for a student of computer science. The
goal of the following discussion is to briefly describe the terms used in bioinformatics/
computational biology. As stated earlier, the following text is not meant for life science
people.

24.3.1  Cell
The cell, discovered by Robert Hooke in 1665, is the basic unit of a living being. It is
not only the basic structural unit but also the basic functional unit, as they also contain
the hereditary information. Organisms are made up of cells. On this basis, there can be
two segregations of animals:
•	 Unicellular, those made up of a single cell
•	 Multicellular, those made up of many cells.

I n t r o d u c t i o n to Co m p u tat i o n a l B i o lo g y a n d B i o i n f o r m at i c s   ■  517

A cell may be prokaryotic or eukaryotic. The former does not contain a nucleus,
whereas the latter contains nucleus. The above classification is also valid as per organ-
isms are concerned. The lower forms of life are referred to as prokaryotic. One of the
examples of a prokaryotic is a bacterium. Eukaryotic are somewhat developed organisms.
Some of the examples of eukaryotic are human beings and animals that we see around us.

24.3.2  DNA and RNA
There are two kinds of genetic material, DNA and RNA. Interestingly, the stored pro-
gram concept of computer science would be the best analogy to explain this concept.
Like the computer contains both the data and the program. The program would operate
on the data. In the same way, the cell contains both the material for protein synthesis and
the algorithms required therein.

The basic unit of a DNA or an RNA is a nucleotide. A nucleotide has a base, a phos-
phate group, and sugar. The bases are adenine (A), cytosine (C), guanine (G), and thy-
mine (T) in the case of DNA and A, C, G, and U (uracil) in the case of RNA. In DNA,
the sugar is deoxyribose while that of an RNA is ribose.

DNA is a nucleic acid that encodes the genetic information. A DNA has double-
stranded structure. These are held together by bonds. Though a DNA contains two strands,
the information can be gathered from a single strand. These bonds are formed between
the basepairs. In the case of DNA, these pairs can exist between A and T, and G and C
(Fig. 24.2). It may be stated here that DNA is used for storing biological information.

Endoplasmic
reticulam

Golgi complex

Cell membrane

Nucleus

Nucleolus
Vacuole
Lysosome
Cytoplasm
Mitochondrion

Figure 24.1  A Cell

A cell contains protoplasm within a membrane. The various components of a cell are
shown in Fig. 24.1. The membrane envelopes a cell and maintains the requisite potential
of a cell. Almost all the cells contain DNA and RNA. These are described in the follow-
ing sub-section. However, the DNA contains the heredity information and the RNA has
the functionality to build proteins. The structure of a cell is maintained by cytoskeleton.

518   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The concept of information and the hugeness of data can be gauged from the fact
that a single drop of blood contains information regarding the cell, which helps to
gather information regarding nucleus. This information, in turn, can be used to find
details of genomes. The data that can be generated using this can be as long as 3.2 GBs
of text.

RNA helps not only in encoding but also in the decoding and regulation of genes.
RNA, though somewhat similar to DNA, is less stable. There are three types of RNA:
•	 transfer RNA (t-RNA)
•	 messenger RNA (m-RNA)
•	 and ribosomal RNA (r-RNA)
It may also be stated here that an RNA is single-stranded unlike a DNA (Fig. 24.3).

Adenine (A) Thymine (T) Guanine (G) Cytosine (C)

H2N

N

N

N
H

N

O

NH

N
H

O

O

NH2

N

NH

N
H

N

NH2

N

N
H

O

Figure 24.2  DNA

I n t r o d u c t i o n to Co m p u tat i o n a l B i o lo g y a n d B i o i n f o r m at i c s   ■  519

24.3.3  Genome
The DNAs are packed into chromosomes. A chromosome has DNA, RNA, and proteins.
There are 23 pairs of chromosomes in a human being. These are collectively known as
genomes. The study of these genomes can lead to fascinating discoveries. This study is
referred to as genomics.

ATCGs AUCGs

Base pair

Sugar
phosphate
backbone

DNA

Deoxyribonucleic acid Ribonucleic acid

RNA

C

C

N

C

N

C

O

NH2

Cytosine

H

N
C

N
N

H

HC C

N

N

C

O

H

H

Guanine

C

N
C

N
N

C C

H

N

C

NH2

H

Adenine

C

C

N

C

NH

C

O

H

O

H

Uracil

Nitrogenous bases

Replaces thymine in RNA

C

C

N

C

N

C

O

NH2

Cytosine

H

N
C

N
N

H

HC C

N

N

C

O

H

H

Guanine

C

N
C

N
N

C C

H

N

C

NH2

H

Adenine

C

C

N

C

N

H

H

C

O

H

O

H3C

Thymine

Nitrogenous bases

Figure 24.3  Comparison of DNA and RNA

520   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The study of genomes has also
revealed that the humans differ from one
another only by 0.2% of their genome.
The analysis of these data clearly points
to the fact that we are basically similar.

24.3.4  Amino Acids
An amino acid is a basic constituent of
a protein. Chemically, an amino acid
contains both amino group and a car-
boxylic acid group. In animals, there
are 20 amino acids and in plants, there are
more than a hundred. Of these 20 amino
acids, 12 are produced within the body
of the adult human beings. The various
amino acids are given in Table 24.2,
and the structures of amino acids are
depicted in Fig. 24.4.

A protein is a biomolecule that is
produced by cells using the information
contained in the DNA. The structure of
a protein can be one of the following.

Table 24.2 A mino acids
Name Abbreviation

Alanine A

Arginine R

Asparagines N

Aspartic acid D

Cysteine C

Glutamine Q

Glutamic acid E

Glycine G

Histidine H

Isoleucine I

Leucine L

Lysine K

Methionine M

Phenylalanine F

Proline P

Serine S

Threonine T

Tryptophan W

Tyrosine Y

Valine V

Figure 24.4   Structures of amino acids (Contd)

COOHH2N

Glycine (Gly, G)

COOHH2N

l-Alanine (Ala, A)

COOHH2N

l-Valine (Val, V)

COOHH2N

l-Leucine (Leu, L)

COOHH2N

l-Isoleucine (Ile, I)

COOH

OH

H2N

l-Serine (Ser, S)

COOH

OH

H2N

l-Threonine (Thr, T)

COOHH2N

SH

l-Cysteine (Cys, C)

COOHH2N

S

l-Methionine (Met, M)

COOHN
H

l-Proline (Pro, P)

COOH

COOH

H2N

l-Aspartic acid (Asp, D)

COOH

CONH2

H2N

l-Asparagine (Asn, N)

COOH

COOH

H2N

l-Glutamic acid (Glu, E)

COOH

CONH2

H2N

l-Glutamine (Gln, Q)

COOHH2N

NH2

l-Lysine (Lys, K)

H2N

NH

COOHH2N

l-Arginine (Arg, R)

COOHH2N

NH
N

l-Histidine (His, H)

COOHH2N

l-Phenylalanine (Phe, F)

COOH

OH

H2N

l-Tyrosine (Tyr, Y)

COOHH2N

NH

l-Tryptophan (Trp, W)

COOH

SeH

H2N

l-Selenocysteine (Sec, U)

COOHH2N

HN

N

O

l-Pyrrolysine (Pyl, O)

NH

I n t r o d u c t i o n to Co m p u tat i o n a l B i o lo g y a n d B i o i n f o r m at i c s   ■  521

COOHH2N

Glycine (Gly, G)

COOHH2N

l-Alanine (Ala, A)

COOHH2N

l-Valine (Val, V)

COOHH2N

l-Leucine (Leu, L)

COOHH2N

l-Isoleucine (Ile, I)

COOH

OH

H2N

l-Serine (Ser, S)

COOH

OH

H2N

l-Threonine (Thr, T)

COOHH2N

SH

l-Cysteine (Cys, C)

COOHH2N

S

l-Methionine (Met, M)

COOHN
H

l-Proline (Pro, P)

COOH

COOH

H2N

l-Aspartic acid (Asp, D)

COOH

CONH2

H2N

l-Asparagine (Asn, N)

COOH

COOH

H2N

l-Glutamic acid (Glu, E)

COOH

CONH2

H2N

l-Glutamine (Gln, Q)

COOHH2N

NH2

l-Lysine (Lys, K)

H2N

NH

COOHH2N

l-Arginine (Arg, R)

COOHH2N

NH
N

l-Histidine (His, H)

COOHH2N

l-Phenylalanine (Phe, F)

COOH

OH

H2N

l-Tyrosine (Tyr, Y)

COOHH2N

NH

l-Tryptophan (Trp, W)

COOH

SeH

H2N

l-Selenocysteine (Sec, U)

COOHH2N

HN

N

O

l-Pyrrolysine (Pyl, O)

NH

Figure 24.4  (Contd) Structures of amino acids

Structures of Protein

A protein can have the following structures:
•	 Primary: Containing the linear sequence of amino acids.
•	 Secondary: It determines the regions of local regularity, within a fold.
•	 Tertiary: The overall fold of protein sequence.
•	 Quaternary: The structure that considers the protein–protein and protein–nucleic

acid interactions.
Having gone through the basics of life sciences, let us now move on to sequencing and
the problems therein.

24.4  SEQUENCING AND PROBLEMS THEREIN

As stated earlier, sequencing is one of the most important tasks in bioinformatics. The
protein sequencing, which earlier relied on the separation of protein and peptide fol-
lowed by identification of amino acids, has come a long way. The number of sequences
available today is around 30,000. This sequencing required special methods. The earlier
sequencing methods were applicable to RNAs only. The reason being that they are short,
containing a maximum of 95 nucleotides.

522   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

A human DNA, on the other hand, contains as many as 250 × 106 basepairs. A sin-
gle experiment can sequence up to 500 basepairs. So in order to sequence a DNA,
many basepairs would have to be segregated. In the recent past, many methods of DNA
sequencing have been developed.

Many advanced methods of collection of biological data have been developed. This
data need to be analysed and managed. This analysis would help in genome analysis,
robotics, etc. These methods are collectively referred to as bioinformatics.

24.4.1  Sequence–Structure Deficit
As stated earlier, the number of sequences stored in the sequence database is doubling
each year. However, the number of unique 3D structures in Protein Data Bank is less
than 1500. This is called the sequence–structure deficit.

The quest to understand a human genome started as early as 1980s, when the project
to determine the full nucleotide sequences and to locate some genes began in the United
States. There was, therefore, an urgent need to develop new methods for the analysis.
This is called the genome project.

24.4.2  Folding Problem
Scientists have been able to find many sequences. Now, the question that arises is the
ability of these sequences to dictate the formation of other sequences. For example,

•	 Can we craft a protein structure using an amino acid sequence?
•	 Can the structure of proteins be predicted by their sequences?
•	 Can the linear sequence of amino acids find the final 3D fold?

The concept, though theoretically feasible, has kept many scientists puzzling. The
research was started around half a century ago. Now, it has grown into a full-fledged
research topic.

24.5  ALGORITHMS

Now let us see how algorithms can help us in bioinformatics. The two most important
problems in bioinformatics are

•	 Pattern recognition •	 Prediction

In both the cases, algorithms come to our rescue. The methods that we have studied
so far, such as dynamic algorithms, help us in sequencing. However, there is a problem

Tip: One of the most important applications of finding sequence is homology and anal-
ogy. Homology is finding out whether two sequences are related by a divergence in the
common ancestor. When the folds are similar but the sequences are different, then they
are called analogous proteins.

I n t r o d u c t i o n to Co m p u tat i o n a l B i o lo g y a n d B i o i n f o r m at i c s   ■  523

the things have come to such a pass that comparisons fail to detect structural similarity
and even alignments are not significant. The following discussion explains some of the
most basic algorithms.

The discussion that follows discusses the fundamentals of sequence comparison and
sequence alignment. In order to compare two sequences, they need to be aligned. The
result of alignment is comparison. As a matter of fact, more than two sequences can be
aligned. There are many types of sequence alignments. Some of them have been stated
in the following section. The section also discusses the scoring schema which is used in
the algorithm that follows.

Sequence comparison is used not just to find the variation or similarity in two
sequences but also to find whether the given sequences have emerged from some com-
mon sequence. One of the easiest methods of sequence comparison is the Dotplot. The
concept of Dotplot is very simple. The two sequences are written in the headers of the
row and column of a 2D matrix. The cell where the row and the column have the same
value is marked with a X. The formation of the final matrix is followed by finding the
longest diagonal of X’s.

In order to understand the Dotplot, let us consider two sequences ATGATGCTGA
and TAGCATCTGA. The corresponding Dotplot is shown in Fig. 24.5.

A T G A T G C T G A

T X X X

A X X X

G X X X

C X

A X X X

T X X X

C X

T X X X

G X X X

A X X X

Figure 24.5  Dot plot

The longest sequence as per the above Dotplot is CTGA (the dark X’s).
The advantage of Dotplot is that it is visual and hence easy to comprehend. The prob-

lem, though, is that if the sequence is too large then this method becomes cumbersome.
Protein sequence alignment is a bit more complex as compared to DNA sequence

alignment. There are 20 amino acids. Properties such as size, polarity, charge, and
hydrophobicity of these amino acids are also considered while aligning the sequence.
This makes the alignment all the more difficult.

524   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

There is another method of comparison, that is, sequence alignment. In this method,
the best alignment between the sequences is determined, which is used to find the simi-
larity. The various types of sequence alignment are as follows:

•	 Global
•	 Local
•	 Multiple sequence

The global sequence alignment finds similarity over the entire length of the
sequence. The method is suitable if the given sequences are of equal length. On the
other hand, if the given sequences have short patches of similarity, then local similarity
is used. When more than two sequences are to be compared, then multiple sequence
method is used.

The alignment is done with the help of a scoring scheme. In a scoring scheme, higher
the score, more is the similarity. In a scoring scheme, an amino acid residue is matched,
the score increases, and penalty is given for a mismatch. One of the easiest ways of
doing this is to increase the score by 1 when the residues match, 0 if we cannot say
anything regarding the match, and −1 if a mismatch occurs. The method can also be
implemented using a matrix.

As stated earlier, the best global alignment is difficult to find. Let us see why. The
brute force strategy of finding the best alignment would be to enlist all the alignments
and then find the one with the best score. The possible number of alignments between

two sequences of length N is
2N

Nπ
 .

This massive number of alignments can be reduced by dynamic programming as
explained in Chapter 11. The algorithm has been discussed in Section 11.3 of Chapter 11.

24.6  CONCLUSION

The chapter introduced the discipline of bioinformatics. It has greatly helped in many
fields such as drug design. It is now being used to tackle problems, which at one point
in time were considered impossible to solve. For instance, the proteins produced by
our body can become faulty. This can be detected by finding active sites of molecules.
Computational biology helps us to tackle the above problem and many more such
problems.

The reader of this book may not be well versed in biology. This is the reason why a
primer of biology-related terms, which are used in the discipline, has been included in
the chapter. The goal of including this chapter in the book is to motivate the reader to use
the algorithms studied till now to handle real-life problems. One of the most important
tasks in bioinformatics is sequence detection. The concepts studied in dynamic algo-
rithm would help in solving the problem.

I n t r o d u c t I o n to co m p u tat I o n a l B I o lo g y a n d B I o I n f o r m at I c s ■ 525

 Points to Remember

 • DNA computing is concerned with the creation of biocomputers using DNA, etc.

 • A cell may be prokaryotic or eukaryotic. The former do not contain a nucleolus, whereas
the latter contains a nucleus.

 • DNA is a nucleic acid that encodes genetic information. The nucleotide in DNA contains
the bases namely adenine (a), guanine (g), cytosine (c), and thymine (t).

 • A DNA has double-stranded structure.

 • RNA helps not only in encoding but also in decoding and regulation of genes.

 • RNA, though somewhat similar to DNA, is less stable. There are three types of RNA: trans-
fer rna (t-rna), messenger rna (m-rna), and ribosomal rna (r-rna) .

 • There are 23 pairs of chromosomes in a human being. These are collectively known as
genome.

 • The study of genomes has also revealed that humans diff er from one another only
by 0.2% of their genome.

 • There are many types of sequence alignment .

 • Sequence comparison is used not just to fi nd the variation or similarity in two
sequences but also to fi nd whether the given sequences have emerged from some
common sequence.

 • One of the easiest methods of sequence alignment is the Dotplot .

 KEY TERMS

 Bioinformatics It is a field that applies computer science to solve the problems of biologists
and is concerned with the management and analysis of biological data .
 DNA computing It is concerned with the creation of biocomputers using dna and enzymes.

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following uses computer science to solve problems of biology?

 (a) Computational biology
 (b) Bioinformatics

 (c) Both
 (d) None of the above

 2. Which of the following statements is true?
 (a) DNA computing is same as bioinformatics
 (b) DNA computing is same as computational biology
 (c) Both
 (d) None of the above

526   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 3.	 Which of the following can be used to store biological data?
(a)	 Ontology
(b)	 Databases

(c)	 Both
(d)	 None of the above

	 4.	 Bioinformatics is used in which of the following?
(a)	 Signal processing
(b)	 Genomics

(c)	 Biophysics
(d)	 All of the above

	 5.	 Sequencing is a task that can be accomplished by which of the following?
(a)	 Biochemistry
(b)	 Bioinformatics

(c)	 Biophysics
(d)	 None of the above

	 6.	 Which of the following envelopes a cell and maintains the required potential difference?
(a)	 Cell membrane
(b)	 Cytoskeleton

(c)	 Both
(d)	 None of the above

	 7.	 Which of the following maintains the structure of a cell?
(a)	 Cell membrane
(b)	 Cytoskeleton

(c)	 Both
(d)	 None of the above

	 8.	 A cell that contains a nucleus is
(a)	 Prokaryotic
(b)	 Eukaryotic

(c)	 Both
(d)	 None of the above

	 9.	 A cell that does not contain a nucleus is
(a)	 Prokaryotic
(b)	 Eukaryotic

(c)	 Both
(d)	 None of the above

	10.	 Which of the following bases are contained in a DNA?
(a)	 Adenine
(b)	 Guanine
(c)	 Cytosine

(d)	 Thymine
(e)	 All of the above

	11.	 A DNA has which type of structure?
(a)	 Double-stranded structure
(b)	 Single-stranded structure

(c)	 Both
(d)	 None of the above

	12.	 Which of the following is not a type of RNA?
(a)	 m-RNA (b)	 t-RNA (c)	 r-RNA (d)	 x-RNA

	13.	 Which of the following bases is not present in DNA?
(a)	 A (b)	 C (c)	 U (d)	 G

	14.	 How many pairs of chromosomes are present in a human being?
(a)	 23
(b)	 46

(c)	 13
(d)	 None of the above

	15.	 An amino acid contains
(a)	 An amino group
(b)	 A carboxylic acid group

(c)	 Both
(d)	 None of the above

	16.	 How many amino acids are present in an animal?
(a)	 20
(b)	 40

(c)	 10
(d)	 None of the above

I n t r o d u c t I o n to co m p u tat I o n a l B I o lo g y a n d B I o I n f o r m at I c s ■ 527

 17. How many base pairs are there in a human DNA?
 (a) 3 × 10 9
 (b) 3 × 10 8

 (c) 2 × 10 10
 (d) None of the above

 18. Which of the following is the folding problem?
 (a) To craft a protein structure using an amino acid sequence
 (b) To predict the structure of proteins from their sequences
 (c) To fi nd the fi nal 3D fold from the linear sequence of amino acids
 (d) None of the above

 19. Which of the following properties of amino acids are also considered while aligning
the sequence
 (a) Size
 (b) Polarity
 (c) Charge

 (d) Hydrophobicity
 (e) All of the above

 20. One of the easiest methods of sequence alignment is
 (a) Dotplot
 (b) Dotdot

 (c) Plotplot
 (d) Plotdot

 II. Review Questions
 1. Explain folding problem.
 2. What is meant by sequencing and what are the problems in carrying out sequencing?
 3. What is bioinformatics? How is it different from DNA computing?
 4. Explain the scope and importance of bioinformatics.
 5. Briefl y explain the history of bioinformatics.
 6. What is computational biology? Is it different from bioinformatics?
 7. Explain how analysis and design of algorithms help us to solve problems in biology?

 Answers to MCQs

 1. (c)
 2. (d)
 3. (c)
 4. (d)
 5. (b)

 6. (a)
 7. (b)
 8. (b)
 9. (a)
 10. (e)

 11. (a)
 12. (d)
 13. (c)
 14. (a)
 15. (c)

 16. (a)
 17. (a)
 18. (d)
 19. (e)
 20. (a)

FEATURES OF
C H A P T E R 2 0

An Introduction to PSpace

C H A P T E R 2 2

Parallel Algorithms

C H A P T E R 2 3

Introduction to Machine
Learning Amroac hes

Span of Coverage
The book covers fundamental concepts
and complexity analysis of algorithms in
Section I, data structures in Section 11,
and various design techniques in
Section 111. Finally, in Section IV, it
deals with the advanced topics such as
decrease and conquer, transform and
conquer, number theoretics, PSpace,
parallel algorithms, and applications
of algorithms in machine learning and
computational biology.

Algorithm 9.5 Selection

Input: Arraya[l,and the first and the last index
0utput:The requisite element

SELECTION (a [] , i n t low, i n t high, i n t k) r e t u r n s va:
Treatment of Concepts

The exDlanations and Droblems related Note:

to design paradigms are supported with
mathematical expressions, various examples,

and algorithms.

Tip: The dynamic implementation o f a queue can be
begin0 algorithms o f linked lists (refer to Section 5.4).

Points to Remember
Points to Remember section at the end of each

chapter enables quick recapitulation of the
important concepts discussed in the chapter.

1. The above algorithm assumes that a[] is unsorted. The 1
only if a [] is unsorted. Had a[] been sorted we would h
straight away.

Complexity: The above algorithm mns O(n) in the worst ca
case.

The recursive algorithm of SELECT uses the same prei
correct element is not found in the first iteration, the left or I

is explored as per the case.

Tips
The text is interspersed with Tips that
highlights important points in each
chapter.

. Backtracking can be easily implemented using recursion

. There are techniques such a s branch and bound
backtracking.

THE BOOK

Figures and Tables
Each chapter is interspersed with

numerous simple figures and tables that
complement the discussions in the text.

Illustration 10.2 Trace the steps of Kruskal’s algorithr
Fig. 10.13.

Solution

Tablell. l Possible paths in
the graph depicted in Fig. 11.8

AECBDA 610
AECDBA 516
AEDBCA 588

Figure11.8 Awei pa^ cost

Solved Examples
Numerous simple and relevant solved examples
are given as Illustrations in each chapter to aug-
ment the understanding of concepts.

EXERCISES

I. Multiple Choice Questions

Chapter-end Exercises 1. Who coined the term backtracking?

All chapters end with an Exercises
section that include multiple choice

questions with answers, review
questions, and application-based

questions/numerical problems.

A P P E N D I X A 2

2-3-4 and Red-Black Trees
A P P E N D I X A 4

Linear Programming
A P P E N D I X A 6

Proba bil i tv
A P P E N D I X A 1 0

Problems

II. Review Questions
1. Explain the process of backtracking. What are the adv

against brute force algorithms?

~ 111. Application-Based Questions
1. Implement N-queens problem via backtracking.
2. Implement graph colouring problem via backtracking i

1”Trrino m n n u

Answers t o MCQs

1. (a) 3. (d) 5. (a) 7. (a)
2. (a) 4. (d) 4. (d) 8. (a)

Appendices
Appendices (A1 to A9) deal with topics on
probability, matrix operations, Red-black tress,
linear programming, DFT, scheduling, and a
reprise of sorting, searching, and amortized
algorithms. The last Appendix A10 includes
some interesting problems based on almost all
the topics discussed in the book for practice
and better understanding.

vDetailed Contents

Companion Online Resources for Faculty and Students

1www.oup.co.in www.oupinheonline.com hemarketing.in@oup.com

I nstruc tors Students
PowerPoint Presentation Web links

Solutions Manual Projects

Teaching Notes

Solutions to Case Studies

and more...

Resources are book specific and may vary from title to title.

Search By:
•	 Author
•	 Title
•	 ISBN

1

Step 11: My Subscriptions

Step 1: Getting Started

•	 Go to www.oupinheonline.com

Step 3: Select Title
Select title for which you are looking for
resources.

Step 8: Message after completing the registration form
Thank you for registering with us. We shall revert to you within 48 hours
after verifying the details provided by you. Once validated please login
using your username and the password and access the resources.

Step 9: Verification
You will receive a confirmation on your mobile & email ID.

You can view Subscriptions in your account

Step 2: Browse quickly by:

•	 BASIC SEARCH
  Author
  Title
  ISBN
•	 ADVANCED SEARCH
 w	Subjects
 w Recent titles

Browse by Subjects

1. Biotechnology
2. Business Management
3. Chemical Engineering
4. Civil Engineering
5. Computer Science and IT
6. Economics
7. Electrical Engineering
8. Electronics
9. Engineering General
10. Hospitality
11. Life sciences
12. Mechanical Engineering
13. Media Studies

2

Recent
Newly Released titles for which
online resources are available
to download.

3

1

2

3

Step 4: Search Results with Resources available

Step 5: To download Results

Click here

Step 6: Login to download

New Instructor?
Register

Step 10: Visit us again after validation
•	 Go to www.oupinheonline.com
•	 Login from Member Login

Step 7: Registration Form
Please fill correct details and *marked fields are mandatory

•	 Click on the title
•	 Select Chapter or “Select All”
•	 Click on “Download All”
•	 Click on “I Accept’”
•	 A zip file will be downloaded on your

system. You may use this along with the
textbook.

Steps to Register

Username should
be email ID

Please fill correct Mobile no.
to get SMS after verification

SUBMIT

For any further query please write to us at hemarketing.in@oup.com with your mobile number

Companion Site for Higher Education

Companion Online Resources for Faculty and Students

To aid teachers and students, the book is
accompanied with online resources which are
available at http://oupinheonline.com/book/
bhasin-algorithms/9780199456666. The
contents of online resources include:

For Faculty
• Chapter-wise PowerPoint Slides
• Solution manual for select chapter-end problems
• Assignment questions with answers

For Students
• �Additional MCQs for test generator (with answers)

for each chapter
• C language implementation of algorithms
• Interview questions with answers

Pure mathematics is, in its way, the poetry of
logical ideas.

— Albert Einstein

Appendix A1 Amortized Analysis—revisited

Appendix A2 2-3-4 and red–Black trees

Appendix A3 matrix operations

Appendix A4 linear Programming

Appendix A5 Complex numbers and
introduction to dFt

Appendix A6 Probability

Appendix A7 scheduling

Appendix A8 searching reprise

Appendix A9 Analysis of sorting Algorithms

Appendix A10 Problems

APPENDICES

 OBJECTIVES
 After studying this appendix, the reader will be able to
 • Explain the concept of amortized analysis
 • Learn the concept of multi_pop operation in stack
 • Understand the idea of dynamic tables
 • Apply aggregate, accounting, and potential methods

 A1.1 INTRODUCTION

 Many data structures have been discussed in the book so far. A data structure comes with its
own set of operations, some of which are more expensive than others. For example, a stack
has two operations: push and pop. The push operation inserts an item in the given stack, if
the stack is not already full. The pop operation takes out an element from the given stack,
if the stack is not empty. The push operation is more expensive than the pop operation. If
the expensive operations are carried out lesser number of times, then the average cost of
an operation can be reduced. It may be stated that the discussion that follows talks neither
about probability nor randomization. In amortized analysis, the average of sequence of n
worst case operations is considered. The amortized analysis presents the average cost per
operation in the worst case. It was introduced by Tarjan in 1985. However, the aggregate
method which is now considered a part of amortized analysis was introduced way back
in 1972. The amortized analysis is of three types: aggregate method, accounting method,
and potential method. The topic has already been introduced in Section 4.5 of Chapter 4.
The following discussion explains the above three types by taking appropriate examples.

 A1.2 AGGREGATE ANALYSIS

 In aggregate analysis method, the different operations are not differentiated on the basis
of cost. In order to understand the concept, the following example may be considered.
One of the most common examples of aggregate analysis is that of multi_pop operation
in a stack.

 Amortized Analysis—Revisited

 A P P E N D I X A 1

A m o r t i z e d A n a ly s i s — R e v i s i t e d   ■  531

As stated earlier, a single pop takes out an item from the given stack. The multi-pop
operation takes out k elements from the given stack. The algorithm for multi_pop is
as follows.

	 Algorithm A1.1  multi_pop

Input: Stack S; the value of the index TOP; k the number of times pop is to be carried out
Output: The algorithm either removes the data from the stack or displays an error

mupti_pop (S, k, TOP)
 {
 if (TOP ==-1)
 {
 Print “Underflow”;
 exit();
 }
 else
 {
 multi_pop(S, k-1, TOP--);
 }
 }

Complexity: In the worst case, the value of k would be n, thus making the complexity
of algorithm O(n). The average complexity would be O(n)/n, that is, O(1). However,
if one analyse the algorithm, he/she will find that actually this would not be the case.
Theoretically, the above discussion suggests that if the multi-pop operation is carried
out n times, then the complexity would be O(n2), which would never be the case because
k pops would be followed by k pushes. As stated earlier, push is less expensive as com-
pared to pop. So the total complexity of n multi-pop operations would be less than
O(n2). Nevertheless, there can be no case wherein the average complexity exceeds the
complexity carried out by the aggregation method.

Conclusion: As stated earlier, in any data structure, not all the operations are of same
costs, some are more expensive than others. A task will have a mix of these operations.
The aggregate analysis would always find the total time taking into consideration the
operation which would be of maximum cost, and then calculates the average. The
average found by this method would, therefore, help us to analyse the algorithm in a
better way.

A1.3  DYNAMIC TABLES: AGGREGATION, ACCOUNTING, AND POTENTIAL AMORTIZED ANALYSIS

Another common example of amortized analysis is that of dynamic tables. Consider a
situation wherein we need to allocate space for a table. However, we do not know what

532   ■  A LG ORIT H MS : DESI G N A ND A N A LYSIS

would be the size of the table in the future, that is, the size of the table might change
dynamically. In that case, a simple rule can be followed, the size of the table initially,
is that of a single row. If a new data arrives and the table is filled, the size of the table
becomes double.
•	 For the first insertion, the size of the table is one unit and at that space the item is

inserted.
•	 For the second insertion, a new table having double the size of previous table, in this

case 2 units, is created. Data are copied from the previous table to the new table and
then a new item is inserted. Note that the new table is completely filled as one row
has been copied from the old table and a new row has been inserted.

•	 For the third insertion, a new table is created. The size of the new table would be four
units. Two rows from the previous table would be copied to the new table and then a
new row would be inserted.

•	 For the fourth insertion, no new table needs to be created.
•	 When the fifth item is inserted in the table, a new table of size eight units needs to be

created. Four items from the previous table would be copied to the new table and then
the fifth item would be inserted.

•	 For the sixth, seventh, and eighth insertions, no new table needs to be created.
•	 For the ninth insertion, a new table of size 16 would have to be created. Eight items

from the previous table would be copied to the new table and then a new item would
be inserted in the new table.

•	 For the 10th, 11th, 12th, 13th, 14th, 15th, and 16th insertions, there would not be any
need of creating a new table.

Table A1.1 shows the variation of the table size with the number of items if the above
approach is used and Fig. A1.1 depicts the pictorial representation of the scenario. From
the table, it can be inferred that the size of the table never exceeds thrice the number of
items in the table.

1

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Ratio (Table size /
No. of items)

Number of items Empty positions

Figure A1.1  Relationship between the number of items and the table size in a dynamic table.

A m o r t i z e d A n a ly s i s — R e v i s i t e d   ■  533

Table A1.1 S ize of a dynamic table and the number of items in it
Number
of items

New table
created

Size of
the table

Filled
positions

Empty
positions

Ratio (table size/
number of items)

  1 Yes 1 1 0 1

  2 Yes 2 2 0 1

  3 Yes 4 3 1 1.333333

  4 No 4 4 0 1

  5 Yes 8 5 3 1.6

  6 No 8 6 2 1.333333

  7 No 8 7 1 1.142857

  8 No 8 8 0 1

  9 Yes 16 9 7 1.777778

10 No 16 10 6 1.6

11 No 16 11 5 1.454545

12 No 16 12 4 1.333333

13 No 16 13 3 1.230769

14 No 16 14 2 1.142857

15 No 16 15 1 1.066667

16 No 16 16 0 1

17 Yes 32 17 15 1.882353

18 No 32 18 14 1.777778

19 No 32 19 13 1.684211

20 No 32 20 12 1.6

21 No 32 21 11 1.52381

22 No 32 22 10 1.454545

23 No 32 23 9 1.391304

24 No 32 24 8 1.333333

25 No 32 25 7 1.28

26 No 32 26 6 1.230769

27 No 32 27 5 1.185185

28 No 32 28 4 1.142857

29 No 32 29 3 1.103448

30 No 32 30 2 1.066667

31 No 32 31 1 1.032258

32 No 32 32 0 1

33 Yes 64 33 31 1.939394

534   ■  A LG ORIT H MS : DESI G N A ND A N A LYSIS

Had we considered just the maximum size of the table, it would have been i in the ith

iteration, thus making the total equal to i
n n

O n
i

n
=

+
=

=∑ ()
()

1

21

2 . However, as per the

above analysis, the table size is O(3n) = O(n).
In the accounting method, we credit some number when an insertion is made. If the

credit amount is not used at that point in time, it is used at a later stage. The idea is
simple. In order to understand the concept, consider that based on the number of elec-
tronic devices in your house, you figure out that in no case can the electricity bill of your
house can be greater than `3000 per month. Now, you allocate `3000 each month to
the electricity bill in your budget. It is quite possible that the bill is less than `3000, in
which case you keep the remaining amount for the next bill. This will lead to a situation

wherein your credit would never become negative. That is, C Cjn

i
jn

i
≤

= =∑ ∑1 1 * where Ci
*

is the amortized cost of the ith iteration and C
i
 is the actual cost.

In the case of dynamic tables, if we assign `3 as the amortized cost of insertion,
then 1 rupee would be used for immediate insertion and 2 would be stored for the future
(in the case of a new table creation). Table A1.2 shows the amortized cost and the actual
cost in the case of insertion in a dynamic table.

Table A1.2  Accounting method for dynamic table
Number
of items

New table
created

Size of
the table

Filled
positions

Amortized
cost

Actual
cost

Used Left

1 Yes 1 1 3 1 1 2

2 Yes 2 2 3 2 2 3

3 Yes 4 3 3 3 3 3

4 No 4 4 3 1 1 5

5 Yes 8 5 3 5 5 3

6 No 8 6 3 1 1 5

7 No 8 7 3 1 1 7

8 No 8 8 3 1 1 9

9 Yes 16 9 3 9 9 3

10 No 16 10 3 1 1 5

11 No 16 11 3 1 1 7

12 No 16 12 3 1 1 9

13 No 16 13 3 1 1 11

14 No 16 14 3 1 1 13

15 No 16 15 3 1 1 15

16 No 16 16 3 1 1 17

17 Yes 32 17 3 17 17 3

(Contd)

A m o r t i z e d A n a ly s i s — R e v i s i t e d   ■  535

Table A1.2  (Contd)
Number
of items

New table
created

Size of
the table

Filled
positions

Amortized
cost

Actual
cost

Used Left

18 No 32 18 3 1 1 5

19 No 32 19 3 1 1 7

20 No 32 20 3 1 1 9

21 No 32 21 3 1 1 11

22 No 32 22 3 1 1 13

23 No 32 23 3 1 1 15

24 No 32 24 3 1 1 17

25 No 32 25 3 1 1 19

26 No 32 26 3 1 1 21

27 No 32 27 3 1 1 23

28 No 32 28 3 1 1 25

29 No 32 29 3 1 1 27

30 No 32 30 3 1 1 29

31 No 32 31 3 1 1 31

32 No 32 32 3 1 1 33

33 Yes 64 33 3 33 33 3

It is evident from the table that the amount left never becomes negative. The reader
is expected to figure out from where did the figure of 3 (on insertion) come. What if the
figure would have been 4 or 2 instead of 3? On analysis, the reader will find out that
had we used figure ‘2’ on insertion, the amount left would have become negative. In the
case of ‘4’, this would not be the case but we will end up spending more with no added
advantage. The difference between the amortized and the actual cost is also, therefore,
important if we want to keep the things well within our budget. This essence is captured
in the potential method.

As per Cormen (1990), the total amortized cost of n operations in the case of poten-
tial method is

C D Di i i
i

n

+ − −
=
∑ ϕ ϕ() ()1

1

The quantity ϕ ϕ() ()D Di i− −1 is referred to as potential difference. D is the data structure
and j is a function which is 0 for the initial value of the data structure and is not nega-
tive for any value of the data structure. If the amortized cost is high then the value of
the potential difference is positive, otherwise it is negative. The value of j for dynamic
table is taken as ϕ = −  2 2i iln

. The reader is expected to analyse the relation between
the potential difference and the value of i for Table A1.2.

536 ■ A lG o r i t H m s : d e s i G n A n d A n A ly s i s

 A1.4 CONCLUSION

 The performance of a data structure can be easily judged using amortized analysis. The
analysis is of three types. The aggregate method, though easy, is less precise. The other
two methods require a thorough analysis of the data structure performance before decid-
ing on the amortized cost or the potential function. It may be stated here that one can
come up with a different strategy for assigning cost to an operation or deciding the value
of the potential function. The analysis helps to arrive at the bounds in complex problems.
The method can also be applied to red–black trees, Fibonacci heaps, hash tables, etc.
The mandate of this appendix was to accustom the reader with the three methods. The
reader is expected to apply amortized analysis in the above cases as well.

 Points to Remember

 • For a particular data structure, diff erent operations have diff erent costs.

 • The amortized analysis considers the average cost of a sequence of n worst case
operations.

 • The analysis does not depend on probability or randomization.

 • The amortized analysis is of three types: aggregate, accounting, and potential.

 • In aggregate analysis method, the diff erent operations are not diff erentiated on the
basis of cost.

 • The aggregate method is the easiest amongst the three methods.

 • The accounting and potential methods yield better results as compared to the aggre-
gate method.

 Amortized analysis In an amortized analysis, the time essential to carry out a chain of data
structure operations is averaged over all the operations carried out.

 KEY TERM

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following is the basis of amortized analysis?

 (a) Probability
 (b) Randomization

 (c) Both of the above
 (d) None of the above

 2. Which of the following are not the types of amortized analysis?
 (a) Aggregate
 (b) Potential

 (c) Accounting
 (d) Integration

A m o r t i z e d A n a ly s i s — R e v i s i t e d   ■  537

	 3.	 Which of the following methods is least suitable for the analysis of dynamic tables?
(a)	 Aggregate
(b)	 Accounting

(c)	 Potential
(d)	 All of the above are equally good

	 4.	 Which of the following correctly represents the potential difference with reference
to the potential method of the amortized analysis?
(a)	 ϕ ϕ() ()D Di i− −1

(b)	 ϕ()Di
(c)	 ϕ()Di−1

(d)	 All of the above
	 5.	 Which of the following is the maximum ratio of the table size to the number of ele-

ments in the case of dynamic tables which doubles its size when an overflow occurs?
(a)	 2
(b)	 3

(c)	 4
(d)	 None of the above

	 6.	 In the case of potential method or amortized analysis, the value of j cannot be
(a)	 Negative
(b)	 Positive

(c)	 Zero
(d)	 None of the above

	 7.	 In which of the following problems should amortized analysis be applied?
(a)	 Insertion in an array
(b)	 Insertion in a dynamic table

(c)	 Both
(d)	 None of the above

	 8.	 For which of the following, amortized analysis must be carried out?
(a)	 Single pop from a stack
(b)	 Single push in a stack

(c)	 Both of the above
(d)	 None of the above

	 9.	 In which of the following, there is hardly any need to carry out the amortized
analysis?
(a)	 Red–black trees
(b)	 Splay trees

(c)	 A 1-dimensional array
(d)	 None of the above

	10.	 The average worst case analysis of a hash table can be carried out using
(a)	 Amortized analysis
(b)	 Asymptotic analysis

(c)	 Mortal analysis
(d)	 None of the above

II.	 Review Questions
	 1.	 What is amortized analysis?
	 2.	 What are the types of amortized analysis?
	 3.	 Explain aggregate method of amortized analysis by taking an example of multi_pop

from a stack.
	 4.	 Explain accounting method of amortized analysis by taking an example of dynamic

tables.
	 5.	 Explain potential method of amortized analysis by taking an example of dynamic

tables.

III.	 Application-based Questions
	 1.	 In the dynamic table had the size been tripled instead of being doubled, what would

have been the ratio of table size and the number of elements?

538 ■ A lG o r i t H m s : d e s i G n A n d A n A ly s i s

 2. In the above question suggest a model for accounting analysis, for example, what
should be credited in the case of insertion. Analyse your model by carrying out an
empirical analysis for n = 1 to 129.

 3. Suggest a formula for the potential function in the above case.
 4. Consider a binary heap, having two operations associated with it: fi nd_min(), which

fi nds the minimum element of the heap and insert, which inserts an element in the
heap. Design a potential function which makes the average cost of insert as O (lg n)
and that of fi nd_min() as O (1).

 5. Design a queue using two stacks and design a potential function for the so formed
data structure, which makes the average complexity of insert and delete as O (1).

Answers to MCQs

 1. (d)
 2. (d)

 3. (a)
 4. (a)

 5. (a)
 6. (a)

 7. (b)
 8. (d)

 9. (c)
 10. (a)

 OBJECTIVES
 After studying this appendix, the reader will be able to
 • Defi ne the concept of 2-3-4 and red–black trees
 • Learn the creation of a 2-3-4 tree
 • Explain the insertion in a 2-3-4 tree
 • Understand the algorithm for searching an element in a 2-3-4 tree
 • Defi ne the concept of a red–black tree
 • Insertion and searching in a red–black tree

 A2.1 INTRODUCTION

 One of the major problems in binary search trees is that, at times, they become skewed.
The problem can be handled by variants of binary search trees. This appendix discusses
two such variants of binary search trees: 2-3-4 trees (or 2-4 trees) and red–black trees.
The topics have not been included in the main chapters as they generally form a part
of an advanced course in algorithms. The concept ‘insertion and searching’ has been
included in this appendix. The reader is expected to go through the concept of binary
search trees before beginning to go through the following discussion.

 The appendix has been divided into the following sections. The second section dis-
cusses the concept of insertion and searching in a 2-3-4 tree. The third section discusses
the concept of insertion in a red–black tree. The last section concludes.

 A2.2 2-3-4 TREE

 A 2-3-4 tree is a tree wherein all the leaves are at the same level and there is
 A single value in a node and the node has two children

 or
 Two values in a node and the node has three children

 or
 Three values in a node and the node has four children.

 A node in a 2-3-4 tree can either be a 2-node, a 3-node, or a 4-node tree depending upon
the number of children it has (Fig. A2.1).

 2-3-4 and Red–Black Trees

 A P P E N D I X A 2

540   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

The advantage of having all the nodes at the same level is that while searching a node
in this tree the upper bound would always be O(log n). As a matter of fact a 4-node tree
requires more pointers as compared to a 2-node. So a tree having more than 2 nodes
would require lesser memory as that having 4 nodes. In order to insert an element in
a 2-3-4 tree, the following steps need to be pursued (Algorithm A2.1).

	 Algorithm A2.1  INSERT 2-3-4(int key)

//Inserts the ‘key’ at its appropriate position with due consideration to the properties of the
//trees stated earlier
Input: ‘key’, the value to be inserted and T, the tree
{

Step 1.	 Find the position of the key (value to be inserted);
Step 2.	 Place the key at its appropriate position;
Step 3.	 �If the number of values in that node becomes greater than three, then the node is

split in two parts the median element is promoted to the parent and the rest of the
elements are put into the left and the right nodes (two nodes created);

}

5

2-node: The values less than
5 will go to the left sub-tree
and that those greater than
5 will go to the right sub-tree.

Data Structure:
struct node2 p
{
int data;
node * left_child;
node* right_child;
};

5 7

3-node: The values less than
5 will go to the left sub-tree
of 5 and those greater
than 5 (but less than 7) will
go to the right sub-tree of 5.
The values which are greater
than 7 will go the right
sub-tree of 7.

Data Structure:
struct
node3 p
{
int data1;
int data 2;
node * left_child;
node * middle_child;
node* right_child;
};

5 7 10

4-node: The values less than
5 will go to the left sub-tree
of 5 and those greater
than 5 (but less than 7) will
go to the right sub-tree of 5.
The values which are greater
than 7 will go the right
sub-tree of 7. Finally, the
values greater than 10 will
go to the right sub-tree of 10.

Data Structure:
struct node4 p
{
int data1;
int data 2;
int data 3;
node * left_child1;
node * left_child2;
node* right_child1;
node * right_child2;
};

Figure A2.1  Legal nodes in a 2-3-4 tree

2 - 3 - 4  and R ed – B la c k T rees   ■  541

Illustration A2.1	 Create a 2-3-4 tree out of the following values:

20, 11, 26, 7, 90, 67

Solution Initially, the tree is empty.
Step 1	 Key = 20 (Fig. A2.2)

Step 2	 Key = 11 (Fig. A2.3)

Step 3	 Key = 26 (Fig. A2.4)

Step 4	 Key = 7 (Fig. A2.5)

Step 5	 Key = 90 (Fig. A2.6)

20

20 Inserted

Figure A2.2  20 inserted in the 2-3-4 tree.

11, 20

Since a node can have 3 values, 11 would be inserted in the same node

Figure A2.3  Insertion of ‘11’

11, 20. 26

Since a node can have 3 values, 26 would also be inserted in the same node

Figure A2.4  26 inserted in the 2-3-4 tree.

11

7 20, 26

7, 11, 20, 26

Now the number of values in the node
becomes 4, so the node needs to be split.

Take the second value to the
parent and split the node

Figure A2.5  Insertion of ‘7’.

11

7 20, 26, 90

90 will be in the right of 11.

Figure A2.6  Insertion of ‘90’.

542   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Step 6	 Key = 67 (Fig. A2.7)

Searching in a 2-3-4 tree
A 2-3-4 tree is essentially a binary search tree, so searching for a key in this tree

would be same as in a binary search tree (Fig. A2.8). Algorithm A2.2 shows the search-
ing ‘key’ in a 2-3-4 tree, T.

The right node of the root would split into two
parts. The value ‘26’ would go to the root
and ‘67’ will come along with ‘90’

11, 26

7 20 67, 90

Figure A2.7  Inserting ‘67’.

root 5 7 5 7 10

2-node: The left tree of the
root would henceforth be
referred to as ‘left sub-tree’
and the right tree of the root
would henceforth be referred
to as the ‘right sub-tree’.

4-node:

Data Structure:

struct node4 p
{
int data1;
int data 2;
int data 3;
node * left_child1;
node * left_child2;
node* right_child1;
node * right_child2;
};

The sub-tree along with
left_child1 would be
referred to as ‘left sub-tree1’.

The sub-tree along with
left_child2 would be
referred to as ‘left sub-tree2’.

The sub-tree along with
right_child2 would be
referred to as ‘right sub-tree1’.

The sub-tree along with
right_child2 would be
referred to as ‘right sub-tree2’.

3-node: The left tree of the
root would henceforth be
referred to as ‘left sub-tree’
and the right tree of the
root would henceforth be
referred to as the ‘right
sub-tree’, the sub-tree initiating
from the middle pointer would
be referred to as the ‘middle
sub-tree’

Figure A2.8  Terminology of 2-3-4 node

2 - 3 - 4  and R ed – B la c k T rees   ■  543

	 Algorithm A2.2  Search (T, Key)

Input: Tree, T and the value to be inserted (key)

{
Ptr= root;
If root is a 2-node
{
 if (Key < root-> data)
 {
 Search (Left sub-tree of root, Key);
 }
 else if(Key > root->data)
 {
 Search (Right sub-tree of root, Key);
 }
}
else if root is a 3-node
{
 if (Key < root-> data1)
 {
 Search (Left sub-tree of root, Key);
 }
 else if((Key > (root->data1))&&(key (<root->data2))
 {
 Search (Middle sub-tree of root, Key);
 }
 if (Key < root-> data2)
 {
 Search (Right sub-tree of root, Key);
 }
}
else if root is a 4-node
{
 if (Key < root-> data1)
 {
 Search (Left1 sub-tree of root, Key);
 }
 else if((Key > (root->data1))&&(key (<root->data2))
 {
 Search (Left2 sub-tree of root, Key);
 }
 else if((Key > (root->data2)&&(key <root->data3))
 {
 Search (Right1 sub-tree of root, Key);
 }
 If (Key > root-> data3)

544   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

 {
 Search (Right2 sub-tree of root, Key);
 }
 }
}

Having discussed 2-3-4 trees, let us now move to the red–black trees. As a matter of fact
there is a one-to-one correspondence between the 2-3-4 trees and the red–black tree.
A 2-3-4 tree can be converted into a red–black tree and vice versa.

A2.3  RED–BLACK TREES

Making searc hing effective and efficient has always been and will remain one of the
supreme goals of the computing fraternity. Binary search trees are an effective method
of accomplishing the task. Binary search trees (BSTs) are the binary trees, in which the
value of the data stored at the left child of a node is less than that of the node and that
stored on the right child of the node is greater than the node. The red–black trees are a
type of BSTs which follow the following properties.

The nodes of a red–black tree are either red (denoted by in the following discus-

sion) or black (denoted by in the following discussion).
•	 The root of the tree is always black.
•	 A black node can have a black or a red child.
•	 A red node cannot have a red child. It can only have a black child.
•	 The black depth of a terminal node is the number of black nodes encountered while

travelling from the terminal node to the root.
•	 The black depth of a terminal node is always same.

The leaves of a red–black tree would always be a NULL node (denoted by in the
following discussion). Each black or red node (last in the hierarchy) will have NULL
nodes as children.

Based on the above discussion, let us try to segregate the non-red–black trees from
the red–black trees.

Figure A2.9 is a red–black tree as
•	 The root of this tree is black
•	 The red nodes have black children
•	 The black depth of each terminal node is same.

Definition  Black Depth  The number of black nodes from the terminal to the root is called
the black depth of the node.

2 - 3 - 4  and R ed – B la c k T rees   ■  545

The root is black

The children of red
nodes are black

The black depth of
each terminal node is 2

Figure A2.9  An example of a red–black tree

The root is not black

A red node cannot
have red children

Figure A2.10  An example of a tree which is not red–black tree

The black depth of this node
and its sibling is 3, whereas
for the other nodes it is 2

Figure A2.11  An example of a tree which is not red–black tree

Figure A2.10 is not a red–black tree as
•	 The root of this tree is red
•	 A red node cannot have a red child, but in Fig. A2.10, this is not the case

Figure A2.11 is not a red–black tree as
•	 The black depth of the terminals are not same

546   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Having been able to segregate trees in red–black and those which are not, let us move
our discussion to the problems in red–black trees. The following discussion throws light
on two such problems namely double red problem.

Double Red Problem

The case wherein the child of a red node is a red node is called the double red problem.
Figure A2.12 depicts the double red problem. The problem will arise in insertion.

The root is not black

Figure A2.12  An example of a tree which is not red–black tree due to double red problem

2 3

1

1 32

Figure A2.13(a)  Conversion of a red–black tree into a 2-4 tree I

The red–black tree has maximum height if there are red and black nodes at the alter-
nate levels. If all the nodes of the tree are black, then it will have minimum length.
The height of a red–black tree, h, satisfies the following constraint:

log log4 2n h n< <

where n is the number of nodes.
The red–black trees are fundamentally similar to the 2-4 trees. As a matter of fact,

any red–black tree can be converted to a 2-4 tree and any 2-4 tree can be converted into a
red–black tree. In order to convert a red–black tree to a 2-4 tree, the following procedure
may be used.

Select a black node and its red children. The node can have either two red nodes,
in which case the corresponding node of the 2-4 tree will have 3 keys. Fig. A2.13(a)
depicts the case.

The selected node can have a red node, in which case the corresponding node of
the 2-4 tree will have 2 keys. Fig. A2.13(b) depicts the case.

2 - 3 - 4  and R ed – B la c k T rees   ■  547

Insertion of a Node in a Red–Black Tree

The red–black trees, as stated earlier, are BSTs, so the first step of insertion is the same
as that in the case of a BST. The value to be inserted is searched in the given tree; if
it already exists, then the insertion returns an error. In the other case, the appropriate
position of the value to be inserted is searched. If it is the leaf node, then the insertion
is easy. However, still the colour of the node needs to be decided (it has to be either red
or black).

We begin by colouring the terminal node red. However, this may lead to the double
red problem, defined earlier in the discussion. The following cases explain the various
possibilities that may arise:
Case 1  When the parent is black, the double red problem will not crop up nor does the
black depth of the leaf node change (Fig. A2.15).

2

1

12

Figure A2.13(b)  Conversion of a
red–black tree into a 2-4 tree II

1 1

Figure A2.13(c)  Conversion
of a red–black tree into

a 2-4 tree III

4

2

1

5 6

3

7

2 1 3

5 6
4 7

Figure A2.14  An example of conversion of red–black tree into a 2-4 tree

There can also be a case wherein the selected node will not have any red child. In this
case the corresponding node of the 2-4 tree will have 1 key. Fig. A2.13(c) depicts the case.

Fig. A2.14 shows the conversion of a complete red–black tree into a 2-4 tree.

548   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

4

2

1

5 6

3

7

The new node added
does not create a double
red problem nor does it
change the black depth
of the leaf nodes.

Figure A2.15  Addition of node in a red–black tree

The new node added creates
a double red problem.

1

2 4

5

Figure A2.16(a)  Insertion of a node may lead to double red problem

Case 2  If the parent, however, is red, then a double red problem crops up. The following
figures explains the steps to be taken in order to handle the problem, the following rota-
tion is carried out (Fig. A2.16(a)):

Case 3  The sibling of the parent is red.
In the case where the sibling of the parent is black, the double red problem can be

handled by changing the colour of the node starting from the bottom. This may lead to
the shifting of the double red problem to one level up. At this level one of the two cases
(the uncle of the node to be inserted is red or black) will have to be handled.

2 - 3 - 4  and R ed – B la c k T rees   ■  549

4

1

2

5
The new node added creates
a double red problem.

Figure A2.16(b)  Handling double red problem

A2.4  CONCLUSION

The deletion of a node from a red–black tree and a 2-3-4 tree has been included in the web
resources of this book. The reader is expected to go through the material for a compre-
hensive coverage of the topic. The trees discussed in the appendix are variants of binary
search trees but are more efficient than the BSTs. Appendix A8 contains the insertion and
deletion of a node in a binary search tree. One must understand that those algorithms to
be able to compare the efficiency of red–black trees with binary search trees.

Finally, the 2-3-4 trees are primarily used as theoretical foundation of red–black
trees. The red–black trees in turn are used in K-mean clustering in data mining, data-
bases, and searching words in a dictionary.

1

2 4

5
The new node added creates
a double red problem.

Figure A2.16(c)  Handling double red problem

550 ■ A LG O R I T H M S : D E S I G N A N D A N A LY S I S

 EXERCISES

 I. Multiple Choice Questions
 1. The root of a red–black tree can be

 (a) Red
 (b) Black

 (c) Both
 (d) None of the above

 2. The black depth of leaf nodes in a red–black tree
 (a) Is same for all leaves
 (b) May differ by one for the leaf nodes

 (c) May be different for different nodes
 (d) None of the above

 3. Which of the following never crops up while deleting a node from a red–black tree?
 (a) Double red problem
 (b) Double black problem
 (c) Difference in the black depth of the leaves
 (d) None of the above

 4. A red–black tree can be converted into which of the following?
 (a) 2-4 trees
 (b) Binary search trees

 (c) Both
 (d) None of the above

 Points to Remember

 • A node in a 2-3-4 tree can either be a 2-node, a 3-node, or a 4-node tree depending upon
the number of children it has.

 • In a red–black tree, the root of the tree is always black.

 • In a red–black tree, a black node can have a black or a red child but a red node can only
have a black child.

 • The black depth of a terminal node is always same.

 KEY TERMS

 2-3-4 Tree A 2-3-4 tree is a tree wherein all the leaves are at the same level and there is
 a single value in a node and the node has two children
 or
 two values in a node and the node has three children
 or
 three values in a node and the node has four children.

 Black depth The black depth of a terminal node is the number of black nodes encountered
while travelling from the terminal node to the root.
Red–black tree A red–black tree is a binary search tree in which the nodes are coloured as
red or black. The root of the tree is always black and the black depth of all the terminal nodes
is same.

2 - 3 - 4  and R ed – B la c k T rees   ■  551

	 5.	 A red–black tree is a variant of which of the following?
(a)	 Plex
(b)	 Binary search tree

(c)	 Both
(d)	 None of the above

	 6.	 In a 2-3-4 tree which of the nodes are legal?
(a)	 2-node
(b)	 3-node

(c)	 4-node
(d)	 All of the above

	 7.	 In a 2-3-4 tree which of the following is true for a 3-node?
(a)	 It has three children
(b)	 It can have two data items

(c)	 Both
(d)	 None of the above

	 8.	 The depth of leaf nodes in a 2-3-4 tree
(a)	 Are same for all leaves
(b)	 May differ by 1

(c)	 May be different for different nodes
(d)	 None of the above

	 9.	 Which of the following is more efficient?
(a)	 A 2-3-4 tree with more 4-nodes
(b)	 A 2-3-4 tree with more 2-nodes

(c)	 Both are equally good
(d)	 None of the above

	10.	 Which of the following is not a type of binary search tree?
(a)	 2-3-4 tree
(b)	 Red–black tree

(c)	 Heap
(d)	 None of the above

II.  Review Questions
	 1.	 What is a 2-3-4 tree?
	 2.	 Write an algorithm to insert a value in a 2-3-4 tree.
	 3.	 Write an algorithm to search a value in a 2-3-4 tree.
	 4.	 What is the complexity of searching an element in a 2-3-4 tree?
	 5.	 Which of the two is more efficient: a tree having more 4-nodes or a tree having

more 2-nodes?
	 6.	 What is a red–black tree?
	 7.	 How do you insert an element in a red–black tree?
	 8.	 How do you search an element in a red–black tree? Write the algorithm.
	 9.	 Explain the double red problem. When does it arise? How is it handled?
	10.	 Explain so as to how to convert a red–black tree into a 2-4 tree.
	11.	 Can all the 2-4 trees be converted into red–black trees?

III.  Application-based Questions
	 1.	 Create a 2-3-4 tree from the following values:

(a)	 21, 20, 34, 67, 6, 5, 9, 10
(b)	 1, 2, 3, 4, 5, 6, 7, 8

(c)	 8, 7, 6, 5, 4, 3, 2, 1
(d)	 100, 1000, 10,000, 100,000, 1, 10

	 2.	 In the above question find the number of pointers required in the tree formed.
	 3.	 If a pointer takes two bytes of memory and an integer also takes two bytes of memory,

what would be the memory requirement of the trees formed in question number 1?
	 4.	 Create binary search trees out of the values given in question number 1.

552 ■ A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Answers to MCQs

 1. (b)
 2. (a)

 3. (a)
 4. (a)

 5. (b)
 6. (d)

 7. (c)
 8. (a)

 9. (b)
 10. (c)

 5. What would be the memory requirement in each case, if the above binary search
trees are stored in arrays?

 6. Explain the linked list representation of the binary search trees formed above.
 7. What is the number of pointers in each tree; compare the number with that obtained

in question number 3.
 8. On the basis of the above question, can you state which of the two, binary search

trees or 2-3-4 trees, are more effi cient.
 9. Create red–black trees from the data given in question number 1.
 10. From the fi rst tree (formed in the above question), perform the following operations.

 (a) Insert 27
 (b) Insert 2
 (c) Insert 100
 (d) Insert 69

 (e) Delete 20
 (f) Delete 5
 (g) Delete 10
 (h) Delete 34

 (i) Now insert 5 (It
was deleted in (f))

 (j) Insert 10

 Matrix Operations

 A P P E N D I X A 3

 OBJECTIVES
 After studying this appendix, the reader will be able to
 • Explain the concept and applications of matrices
 • Defi ne the types of matrices
 • Understand the operations on matrices
 • Solve linear system of equations using Cramer’s rule and inverse of matrices

 A3.1 BASICS

 A matrix is a two-dimensional array of elements. An element of a matrix is represented
by two subscripts. The fi rst subscript depicts the row and the second depicts the col-
umn number. The number of rows and the number of columns decide what is referred
to as, the order of a matrix. For example, the following matrix has three rows and four
columns:

2 23 1 4
9 5 3 12
7 6 21 2

















 The elements of a matrix of order 3 × 4 are depicted as follows. The element a
ij
 , means

 i th row and j th column.

a a a a
a a a a
a a a a

11 12 13 14

21 22 23 24

31 32 33 34

















 For example, a
32

 means the element in 3rd row and the 2nd column.
 Row matrix A matrix that has just one row is referred to as a row matrix. The order of
a row matrix is 1 × n . The following matrix A is a row matrix. The order of A is 1 × 3.

 A = []2 3 5

554   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Column matrix A matrix that has just one column is referred to as a column matrix. The
order of a column matrix is n × 1. The following matrix B is a column matrix. The order
of B is 3 × 1.

B =
3
5
7

















Diagonal matrix A diagonal matrix is one that has elements only at the main diagonal.
That is, a i jij = ≠0, . The following matrix C of order 3 × 3 is a diagonal matrix.

C =
















2 0 0
0 8 0
0 0 9

The above matrix can also be represented as {2, 8, 9}.
Scalar matrix A scalar matrix is a diagonal matrix in which all the elements at the main

diagonal are same. That is, a
i j

k i jij =
≠
=





0,
,

. The following matrix D depicts a scalar

matrix, wherein the value of k is 2.

D =
















2 0 0
0 2 0
0 0 2

Identity matrix An identity matrix is a scalar matrix in which the value of k is 1. That is,

a
i j
i jij =

≠
=





0
1
,
,

. The following matrix E depicts a scalar matrix, wherein the value of k

is 1.

E =
















1 0 0
0 1 0
0 0 1

The matrices F and G represent identity matrices of order 2 and 4.

F =










1 0
0 1

G =



















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

M atri x O p erations   ■  555

Upper triangular matrix An upper triangular matrix is one in which the elements
below the main diagonal are 0. That is, a i jij ≠ ≤0 if . The following matrix H is an
upper triangular matrix.

H =
















2 4 5
0 8 5
0 0 9

Lower triangular matrix A lower triangular matrix is the one in which the elements
above the main diagonal are 0. That is, a i jij ≠ 0 if ≥ .

The following matrix I is a lower triangular matrix.

I =
















2 0 0
3 8 0
7 9 9

A3.2  OPERATIONS ON MATRICES

The following discussion explores some of the basic operations on matrices. This would
help the reader to implement transformations in graphics and manipulate signals. The
following topics intend to introduce the concepts and all are not inclusive.

A3.2.1  Equality of Matrices
Two matrices are equal if their order is same and the corresponding elements are equal.

For example, If A =










2 3
3 5

 and A
x
z x y

=
+











3
, then A = B, if x = 2, x + y = 5, and z = 3.

This implies that y = 3. The algorithm for checking the equality of matrices is as follows
(Algorithm A3.1).

	 Algorithm A3.1  Bool Equal (A, B)

Input: Two matrices A and B having order n × m
Output: The algorithm returns a True if the matrices are equal, otherwise it returns a False

{
//flag is initially zero. If any corresponding element is not equal, then it
//becomes 1.
f﻿lag=0;
for (i=0; i<n; i++)
 {
 for (j=0; j<m; j++)
 {
 if(A[i,j] != B [i, j])
 {
 flag=1;
 }

556   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

 }
}
if(flag==1)
 {
 return False;
 }
return True;
}

Complexity: Owing to the nesting of loops, the complexity of the above algorithm is O(mn).

A3.2.2  Addition of Matrices
Two matrices can be added only if they have the same order. The addition of two matri-
ces A and B gives C, where the (i, j)th element of A when added to the (i, j)th element of
B, gives the (i, j)th element of C. That is,

c a b i jij ij ij= + ∀ ,

For example, if A =










2 3
3 5

 and B =










1 3
3 2

, then A B+ =










3 6
6 7

.

The algorithm of addition of two 2-dimensional matrices has been given in Section 5.3.4
(Chapter 5). The complexity of addition is O(mn), if the matrix has order n × m.

A3.2.3  Subtraction of Matrices
Two matrices can be subtracted only if they have same order. The subtraction of two
matrices A and B gives C, where the (i, j)th element of A when subtracted to the (i, j)th
element of B gives the (i, j)th element of C. That is,

c a b i jij ij ij= − ∀ ,

For example, if A =










2 3
3 4

 and B =










1 3
3 2

, then A B− =










1 0
0 2

The algorithm of subtraction of two 2-dimensional matrices is similar to that of addi-
tion which is given in Section A3.2.2. The complexity of subtraction is O(mn), if the
matrix has order n × m.

A3.2.4  Scalar Multiplication
The scalar multiplication means multiplying each element of a matrix with a scalar, say k.
The scalar multiplication of a matrix A with k, gives C, where the (i, j)th element of A
when multiplied with k, gives the (i, j)th element of C. That is,

c k a i jij ij= × ∀ ,

For example, if A =










2 3
3 5

 and k = 3, then k A× =










6 9
9 15

M atri x O p erations   ■  557

The algorithm of multiplication of a matrix A with a scalar k is as follows. The com-
plexity of the algorithm is O(mn), if the matrix has order n × m (Algorithm A3.2).

	 Algorithm A3.2  Scalar_Multiplication (A, k) returns C

Input: A matrix A and a scalar K
Output: The algorithm returns a matrix C
{
for (i=0; i<n; i++)
 {
 for (j=0; j<m; j++)
 {
 C [i, j] = k × A[i, j] }
 }
returnC;
}

Complexity: Owing to the nesting of loops, the complexity of the above algorithm is
O(mn).

A3.2.5  Transpose of a Matrix
The transpose of a matrix A is obtained by converting the rows of the matrix into col-
umns or columns into rows. For example, the transpose of the matrix

A =
















2 23 1 4
9 5 3 12
7 6 21 2

is given by

AT =



















2 9 7
23 5 6
1 3 21
4 12 2

A3.2.6  Symmetric Matrix
A matrix is deemed as symmetric, if it is equal to its transpose. That is,

A = AT

For example, the matrix A =
















1 3 5
3 7 9
5 9 11

 is a symmetric matrix if it is equal to its
transpose.

558   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

The algorithm to determine whether a matrix A is symmetric or not is as follows
(Algorithm A3.3). The complexity of the algorithm is O(n2), if the matrix has order n × n.

	 Algorithm A3.3  Boolean is symmetric (A, n)

Input: A matrix A and the order of the matrix n.
Output: The algorithm returns true if the given matrix is symmetric otherwise it returns a false

flag=0;

for (i=0; i<n; i++)
 {
 for (j=0; j<n-i; j++)
 {
 if (a[i, j]! = a[j, i]
 return false
 }
 }
return true;// note that the control reaches here only if all a[i, j]’s are
//same as a[j, i]’s.
}

Complexity: Owing to the nesting of loops, the complexity of the above algorithm is
O(n2).

A3.2.7  Skew-symmetric Matrix
A matrix is deemed as skew-symmetric, if it is equal to negative of its transpose. That is,

A AT= − ×1

For example, the matrix A = −
− −

















0 3 5
3 0 9
5 9 0

 is a skew-symmetric matrix as it is equal to

the negative of its transpose.

The algorithm to determine whether a matrix A is skew symmetric or not is as follows
(Algorithm A3.4). The complexity of the algorithm is O(n2), if the matrix has order
n × n.

Tip: If any of the elements at the diagonal of a matrix is non-zero, then it cannot be
skew-symmetric.

Tip: A matrix of order n × m is symmetric, if m = n & aij = aji

M atri x O p erations   ■  559

	 Algorithm A3.4  Boolean is skew-symmetric (A, n)

Input: A matrix A and the order of the matrix n
Output: The algorithm returns true if the given matrix is symmetric otherwise it returns a false

flag=0;

for (i=0; i<n; i++)
 {
 for (j=0; j<n-i; j++)
 {
 if (a[i, j]! = −1 × a[j, i]
 return false
 }
 }
return true;// note that the control reaches here only if all a[i, j]’s are same
as the negatives of a[j, i]’s.
}

Complexity: Owing to the nesting of loops, the complexity of the above algorithm is
O(n2).

A3.2.8  Multiplication of Matrices
Two matrices can be multiplied only if the number of rows of the first matrix is equal to
the number of columns of the second. That is, if the matrix A has order n × m and matrix
B has order q × p, then they can be multiplied only if q = m.

The multiplication is carried out in the following way. The order of the resultant matrix
on multiplying two matrices of order n × m and m × p would be n × p. In order to find
the (i, j)th element of the product matrix, the elements of the ith row of the first matrix
are multiplied with the corresponding elements of the jth column of the second matrix
and the products are summed. The algorithm for the multiplication of matrices is given in
Chapter 10. The complexity of multiplication is O(n3), if the two matrices are of order n × n.
The process is depicted in Fig. A3.1.

Multiply the elements of the cells
having same colour and add the results.

Figure A3.1  Multiplication of matrices

A more efficient algorithm for matrix multiplication has been discussed in Section 9.8
(Chapter 9).

560   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

A3.2.9  Determinant of a Matrix

The determinant of a 2 × 2 matrix
a b
c d

a b
c d

a d b c







 =









 = × − × . This helps in find-

ing the determinant of higher order matrices. The determinant of a 3 × 3 matrix can be
found by that of order 2 which is stated as follows:

a a a
a a a
a a a

a
a a
a a

a
a11 12 13

21 22 23

31 32 33

11
22 23

32 33
12

















= − 221 23

31 33
13

21 22

31 32

11 22 33 23 32 12 21

a
a a

a
a a
a a

a a a a a a a

+

= × − × − ×() (aa a a a a a a a33 23 31 13 21 32 22 31− × + × − ×) ()

For example,
4 1
6 2

4 2 6 1 2= × − × =

2 3 1
6 7 5
4 8 9

2
7 5
8 9

3
6 5
4 9

1
6 7
4 8

2 63 40 3 54 20
















= − + = × − − × − +() () 11 48 28 36× − =−()

a a a a a a a a a a a a a a11 22 31 23 31 12 21 31 23 31 13 21 31 22() () (× − × − × − × + × − × aa31)

A3.2.10  Minor and Cofactor of an Element
The minor of an element a[i, j] can be obtained by finding the determinant of the matrix
which can be obtained by hiding the ith row and the jth column of the matrix (Fig. A3.2).

The minor of the element a[1, 2]
can be obtained by finding the
determinant of the matrix obtained by
hiding 1st row and the 2nd column.

Figure A3.2  Finding minor

For example, the minor of a[1, 1] can be found as follows.

minor of [1,1] ina
2 3 1
6 7 5
4 8 9

7 5
8 9

231 1

















= = =M ,

The cofactor of an element can be calculated from its minor using the following formula:

C Mi j
i j

i j, ,()= − +1

M atri x O p erations   ■  561

A3.2.11  Inverse of a Matrix
The inverse of a matrix, A is B such that A × B = B × A = I, where I is an identity matrix
of order n. The order of A is n × n. The inverse of A is generally denoted by A−1.

The inverse of a matrix can be found as follows:
•	 For each element a[i, j], find the cofactor.
•	 Replace each element with its cofactor.
•	 Find the transpose of the matrix obtained in the previous step.

For example, the cofactor of a[1, 1] is

cofactor of ina[,]1 1
2 3 1
6 7 5
4 8 9

7 5
8 9

23
















= =

cofactor of ina[,]1 2
2 3 1
6 7 5
4 8 9

6 5
4 9

34 1 34
















= = × − = −

cofactor of ina[,]1 3
2 3 1
6 7 5
4 8 9

6 7
4 8

20
















= =

cofactor of ina[,]2 1
2 3 1
6 7 5
4 8 9

3 1
8 9

19 1 19
















= = × − = −

cofactor of ina[,]2 2
2 3 1
6 7 5
4 8 9

2 1
4 9

14
















= =

cofactor of ina[,]2 3
2 3 1
6 7 5
4 8 9

2 3
4 8

4 1 4
















= = × − = −

cofactor of ina[,]3 1
2 3 1
6 7 5
4 8 9

3 1
7 5

8
















= =

cofactor of ina[,]3 2
2 3 1
6 7 5
4 8 9

2 1
6 5

4 1 4
















= = × − = −

562   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

cofactor of ina[,]3 3
2 3 1
6 7 5
4 8 9

2 3
6 7

4
















= = −

Replace each element of the matrix by its cofactor

23 34 20
19 14 4
8 4 4

−
− −

− −

















Now, take the transpose of the matrix obtained in the previous step:

23 19 8
34 14 4
20 4 4

−
− −

− −

















A3.3  SOLVING SYSTEM OF LINEAR EQUATIONS: CRAMER’S RULE

For a system of simultaneous linear equations

a
1
x + b

1
y = c

1

a
2
x + b

2
y = c

2

The value of the variables can be found by using Cramer’s rule. In order to find the equa-
tions, the following determinants are required to be evaluated:

D
a b
a b

= 1 1

2 2

D
c b
c b1

1 1

2 2

=

D
a c
a c2

1 1

2 2

=

The procedure of solution is as follows (Algorithm A3.4).

	 Algorithm A3.4  Cramer’s Rule

//For two equations in two variables
Input: System of linear equations
Output: Values of the unknown variables

{

Find D, D1 and D2

If (D ≠ 0)

M atri x O p erations   ■  563

 {
 x=D1/D
 y=D2/D
 }
else if (D==0)
 {
 if ((D1==D2) &&(D2==D)&&(D==0))
 {
 Put y=k
 get x in terms of k
 }
}
else
 {
 Print "No solution";
 }
}

Illustration A3.1	 Find the values of variables by using Cramer’s rule.

2x + 3y = 5

4x − y = 3

Solution Using Cramer’s rule, we get

D =
−

= − − = −
2 3
4 1

2 12 14

D1

5 3
3 1

5 9 14=
−

= − − = −

D2

2 5
4 3

6 20 14= = − = −

So, x = D
1
/D = 1, y = D

2
/D = 1

Illustration A3.2	 Find the values of variables by using Cramer’s rule.

2x + 3y = 5

4x + 6y = 10

Solution Using Cramer’s rule, we get

D = = − =
2 3
4 6

12 12 0

564   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

D1

5 3
10 6

30 30 0= = − =

D2

2 5
4 10

20 20 0= = − =

So Put y = k

2x + 3k = 5

x = (5 − 3k)/2

((5 − 3k)/2, k)

Illustration A3.3	 Find the solution of the following equations:

2x + 3y = 5

2x + 3y = 7

Solution

D = = − =
2 3
2 3

6 6 0

D1

5 3
7 3

15 21 6= = − = −

D2

2 5
2 7

14 10 4= = − =

So as D = 0 and D
1
 ≠ D

2

No solution
For system of linear equations:

a
1
x + b

1
y + c

1
z = d

1

a
2
x + b

2
y + c

2
z = d

2

a
3
x + b

3
y + c

3
z = d

3

D
a b c
a b c
a b c

D
d b c
d b c
d b c

D
a d c
a d c= = =

1 1 1

2 2 2

3 3 3

1

1 1 1

2 2 2

3 3 3

2

1 1 1

2 2 2, ,
aa d c

D
a b d
a b d
a b d3 3 3

3

1 1 1

2 2 2

3 3 3

, =

	 Algorithm A3.5  Cramer’s rule for three equations

//For three equations in three variables
Input: System of linear equations
Output: Values of the unknown variables

M atri x O p erations   ■  565

{
Find D, D1, and D2

If (D≠0)
 {
 x=D1/D
 y=D2/D
 z=D3/D
 }
else if (D=0)
 {
 If(D1=D2=D3=0)
 {
 Print "Many solutions";
 }
 }
else
 {
 Print "No solution";
 }
}

Illustration A3.4	 Find the values of variables by using Cramer’s rule.

x y z

x y z

x y z

+ + =
+ + =
+ + =

3

2 2 5

2 3 6

Solution

D = = × − − × − + × − =
1 1 1
1 2 2
1 2 3

1 6 4 1 3 2 1 2 2 1() () ()

D1

3 1 1
5 2 2
6 2 3

3 6 4 1 15 12 1 10 12 1= = × − − × − + × − =() () ()

D2

1 3 1
1 5 2
1 6 3

1 15 12 3 3 2 1 6 5 1= = × − − × − + × − =() () ()

566   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

D3

1 1 1
1 2 5
1 2 6

1 12 10 1 6 5 1 2 2 1= = × − − × − + × − =() () ()

As D

x D D

y D D

z D D

 ≠ 0

1

1

1

1

2

3

= =

= =

= =

/

/

/

Illustration A3.5	 Find the value of variables by using Cramer’s rule.

x y z

x y z

x y z

+ + =
+ + =
+ + =

1

2 3 4

3 5 7

Solution

D = = × − − × − + × − =
1 1 1
1 2 3
1 3 5

1 10 9 1 5 3 1 3 2 0() () ()

D1

1 1 1
4 2 3
7 3 5

1 10 9 1 20 21 1 12 14 0= = × − − × − + × − =() () ()

D2

1 1 1
1 4 3
1 7 5

1 20 21 1 5 3 1 7 4 0= = × − − × − + × − =() () ()

D3

1 1 1
1 2 4
1 3 7

1 14 12 1 7 4 1 3 2 0= = × − − × − + × − =() () ()

As D = D
1
 = D

2
 = D

3
 = 0

So given set of equations has infinite solutions.

Illustration A3.6	 Find the value of variables by using Cramer’s rule.

x y z

x y z

x y z

+ + =
+ + =

+ + =

3

2 3 5

2 3 4 6

M atri x O p erations   ■  567

Solution

D = = × − − × − + × − =
1 1 1
1 2 3
2 3 4

1 8 9 1 4 6 1 3 4 0() () ()

D1

3 1 1
5 2 3
6 3 4

3 8 9 1 20 18 1 15 12 2= = × − − × − + × − = −() () ()

D2

1 3 1
1 5 3
2 6 4

1 20 18 3 4 6 1 6 10 4= = × − − × − + × − =() () ()

D3

1 1 3
1 2 5
2 3 6

1 12 15 1 6 10 3 3 4 2= = × − − × − + × − = −() () ()

As D = 0 but D
1
, D

2
, D

3
 are different, therefore, the given system is inconsistent.

A3.4  SOLVING SYSTEM OF LINEAR EQUATIONS: INVERSE METHOD

The system of equations can also be solved by using the inverse of matrices. The coeffi-
cients of the variables in the given system of equations are written in a matrix, say A. The
constants are written in another matrix, say B. This is followed by finding the inverse
of A. If the inverse exists, then A B− ×1 is found. The result of the above calculation
gives the solution.

If the inverse of A cannot be found, then the following cases arise. In the first case,
both adjoint of A and determinant are 0, hence the system is dependent. In this case, the
value of variables can be found in terms of one of the variables.

In the second case, the determinant is 0; however, the adjoint is not zero. In this case,
the system is inconsistent. The following examples will help in understanding the above
technique.

Illustration A3.7	 Solve the following system of equations by finding the inverse of the
coefficient matrix:

2 4
3 3

2 3 6

x y z
x y z
x y z

+ + =
− + =
+ + =

568   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Solution The coefficient matrix, in the above case is

2 1 1
1 1 3
1 2 3

−
















The adjoint of the above matrix is

− −
−

− −

















9 1 4
0 5 5
3 3 3

The determinant is −15, therefore, the inverse is

1
15

9 1 4
0 5 5
3 3 3

−

− −
−

− −

















The above equation when multiplied by B gives

1
1
1

















Therefore, the values of x, y, and z are same, 1.

Illustration A3.8	 Can the following system of equations be solved by using the inverse
method of the co-efficient matrix?

x y z
x y z
x y z

+ + =
+ + =

− + =

4
2 2 2 6

4
Solution The coefficient matrix, in the above case is

1 1 1
2 2 2
1 1 1−

















The adjoint of the above matrix is

4 2 0
0 0 0
4 2 0

−

−

















The determinant is 0; therefore, the inverse cannot be found. However, in this case
adj (A × B) is 0, therefore, the given system of equations does not have any solutions.

M AT R I x O p E R AT I O N S ■ 569

 A3.5 ELEMENTARY ROW OPERATIONS

 The row operations help us to solve equations, to fi nd inverse, and so on. The concept
has already been used in Chapter 15. The row operations of matrices are as follows.

 Interchanging rows of a matrix is an elementary row operation. For example, the fol-
lowing transformation interchanges the second and the third row.

2 1 1
1 1 3
1 2 3

2 1 1
1 2 3
1 1 3

−














 −

















∼

 Multiplying the elements of a row by a non-zero scalar is also an elementary row opera-
tion. For example, the following transformation multiplies the second row by 2.

2 1 1
1 1 3
1 2 3

2 1 1
2 2 6
1 2 3

−
















−
















∼

 Adding or subtracting a scalar multiple of a row with any other row is an elementary
row transformation.

 A3.6 CONCLUSION

 The chapter introduces the concept of matrices. Though it is a topic of mathematics, it is
widely used in a variety of sub-disciplines in computer science. For example, in computer
graphics, the transformations are carried out with the help of matrices. Moreover, the knowl-
edge of matrices is also essential in implementing some techniques in applied cryptography
and cellular automata. The readers are expected to fi nd the complexity of the algorithm
developed while solving the exercises. The web resource of this book contains all the pro-
grams of the algorithms dealt with in the chapter. The readers are encouraged to implement
the programs in languages like C# and JAVA in order to get a better insight of the topic.

 Points to Remember

 For two matrices of order n × n

 • The complexity of the algorithm for addition of matrices is O (n 2).

 • The complexity of subtraction is O (n 2).

 • The complexity of multiplication is O (n 3).

 • The complexity of multiplication by divide and conquer using Strassen’s matrix multi-
plication is O (n 2.7).

 • The Cramer’s rule for solving the system is an equation is one of the most ineffi cient
methods.

570 ■ A LG O R I T H M S : D E S I G N A N D A N A LY S I S

 KEY TERMS

 Column matrix A matrix that has just one column is referred to as a column matrix. The order
of a column matrix is n × 1.
 Diagonal matrix A diagonal matrix is one which has elements only at the main diagonal.
That is, a i jij = ≠0, .

Identity matrix An identity matrix is a scalar matrix in which the value of k is 1. That is,

 a
i j
i jij =
≠
=





0
1

,
,

 Lower triangular matrix A lower triangular matrix is one in which the elements above the
main diagonal are 0. That is, a i jij = ≥0 if
Matrix A matrix is a two dimensional array of elements. An element of a matrix is represented by
two subscripts. The first subscript depicts the row and the second depicts the column number.
 Row matrix A matrix which has just one row is referred to as a row matrix. The order of a row
matrix is 1 × n .
 Scalar matrix A scalar matrix is a diagonal matrix in which all the elements are same. That is,

 a
i j
i jij =
≠
=





0
1

,
,

 Skew-symmetric matrix A matrix is deemed as skew-symmetric, if it is equal to negative of
its transpose. That is, A = −1 × AT

 Symmetric matrix A matrix is deemed as symmetric, if it is equal to its transpose. That is, A = A T .
Upper triangular matrix An upper triangular matrix is one in which the elements below the
main diagonal are 0. That is, a i jij = ≤0 if

 EXERCISES

 1. Solve the following equations by Cramer’s rule:

(a)

2 4
4 3 6
9 2 3 13

x y z
x y z
x y z

+ + =
− + =
+ + =

(b)

x y z
x y z
x y z

+ + =
− + =
+ + =

2 8 11
3 3 1
2 3 6

(c)

x y z
x y z
x y z

+ + =
− + =
− − =

2 2 5
5 5
7 2 3 2

 (d)

2 4
4 2 2 8

2 3 6

x y z
x y z
x y z

+ + =
+ + =

+ + =

(e)

2 4
2 7

2 3 6

x y z
x y z
x y z

+ + =
+ + =

+ + =

 2. Solve equation numbers a–e by using matrix inverse method.
 3. Defi ne the following:

 (a) Row matrix
 (b) Column matrix
 (c) Diagonal matrix
 (d) Scalar matrix

 (e) Identity matrix
 (f) Upper triangular matrix
 (g) Lower triangular matrix

 Linear Programming

 A P P E N D I X A 4

 OBJECTIVES
 After studying this appendix, the reader will be able to
 • Explain the importance of linear programming
 • Understand the graphical method of solving a linear programming problem
 • Learn the simplex method to solve a linear programming problem
 • Understand the concept of dual and get an idea of the dual simplex method

 A4.1 INTRODUCTION

 In the second half of 1940s, the American mathematicians were faced with practical
problems of the industry. The same probl ems persisted in the army owing to the war
that was going on. The problems had few constraints and a function to be maximized
or minimized. In order to handle these problems, they developed a method called linear
programming. A linear programming problem has constraints represented by equations
or inequalities and a function that needs to be maximized or minimized.

 A linear programming problem uses graphical, simplex, or a dual simplex method.
The problems having a few constraints and two variables can easily be solved using the
graphical method explained in Section A4.2. However, most of the real-time problems
have a large number of variables and constraints. Methods like simplex can be used to
tackle such problems. Linear programming has helped in solving many optimization
problems and hence saving money of many companies. This is the reason why the Noble
Prize was awarded to Kantorovich and Koopmans in 1975 for their contribution in linear
programming.

 One of the most important applications of linear programming has been in solving
the food problems. A farm animal, for example, needs to be given a balanced diet which
has at least the minimum quantity of nutrients, at the same time keeping the total cost
as low as possible. The amounts of different foods are depicted by various variables.
The minimum amount of each variable is represented by various constraints and the
objective function can be obtained by adding the products of quantity of a food with the
respective prices. An example of food problem is presented in Illustration A4.4 .

572   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Linear programming is not just a mathematical tool; it is also an important part of
operational research. The chapter briefly describes the various techniques and exempli-
fies them. The appendix has been organized as follows. The second section presents
the graphical method of solving linear programming. The third section introduces the
simplex method, fourth section presents the duality principle and introduces the dual
simplex method. The last section gives the conclusion.

A4.2  GRAPHICAL METHOD

A linear programming problem can be represented as follows:

Maximize (or minimize) Z c x c x c xn n= + + ⋅⋅ ⋅ +1 1 2 2

Subject to

a x a x a x bn n11 1 12 2 1 1+ + ⋅⋅ ⋅ + ≤ ≥()or

a x a x a x bn n21 1 22 2 2 2+ + ⋅⋅ ⋅ + ≤ ≥()or

a x a x a x bm m mn n m1 1 2 2+ + ⋅⋅ ⋅ + ≤ ≥()or

In order to solve the problem, the following steps need to be followed:
Step 1	 Plot the inequalities.
Step 2	 Find the common region (if any)
Step 3	 Find the vertices of the common region.
Step 4	 The value of the objective function is obtained at the values of variables obtained
in Step 3. From amongst these values, the maxima or minima is selected.

The maxima or minima will exist at one of the points obtained in Step 3. The maxi-
mum or the minimum value is obtained in Step 4. In order to understand the formulation
of a linear programming problem, let us consider the following example.

Illustration A4.1	 Formulation of a Linear Programming Problem: Hari’s Dilemma
Hari wants to start a business. He has 200,000 rupees. He intends to start a C# training
institute. He rents a basement in the central market of the city he lives in. The monthly
rent of the shop is `11,000. The owner wants 1 month’s rent in advance. The total
amount that needs to be given to the owner, therefore, is `22,000. The rest of the money
is to be spent judiciously. He intends to buy a signboard for the institute, 10 chairs for
students, 2 rolling chairs, a table, and a board. A chair for a student ranges between
`500 and `1500, rolling chairs between `3000 and `6000, table between `2500 and
`7500, and a board between `1000 and `1500. The total amount spent should be mini-
mum. As per his advisors, he must spend at least ̀ 150,000 to start the intended institute.
State the above problem as a linear programing problem.

L inear P rogramming   ■  573

Solution If the amount spend on a chair is ‘x’, on table is ‘y’, on a rolling chair is ‘z’ and
board is ‘t’, then the following inequalities must hold.

500 1500

3000 6000

2500 7500

1000 1500

≤ ≤
≤ ≤
≤ ≤
≤ ≤

x

z

y

t

and

10 2 178 000x y z t+ + + ≤ ,

The above inequalities are referred to as constraints. In general, the constraints depict
the conditions that must be satisfied while solving a given problem. Any value that satis-
fies all the constraints is called a feasible value. Moreover, in the above example,

x y z t, , , ≥ 0

as none of the costs can be negative. These are referred to as the non-zero constraints.
The aim is to minimize the cost, i.e. minimize

Z x y z t= + + +10 2

The function that needs to be minimized or maximized is referred to as an objective
function. The set of values of variables (x, y, z, and t in this case) which satisfy the objec-
tive function and maximize (or minimize, as the case may be) the objective function is
called optimal values.

The above problem is an optimization problem.
Let us try to solve a special case of the above problem. In the problem discussed

above, Hari gets a white board from his cousin for `400 and 2 rolling chairs for `1000.
The variables z and t are no longer needed. In addition, ̀ 2400 has been reduced from the
estimated amount. The above inequalities now reduce to

500 1500

2500 7500

≤ ≤
≤ ≤
x

y

and

10 175 600

0

x y

x y

+ ≤
≥

,

,

The aim is to minimize the cost, i.e. minimize

Z x y= +10

There are many techniques to reach the optimal solution. The easiest is the use of graphs
in linear programming. This graphical method begins with plotting the inequalities on a
graph and then, if the common region is a closed curve, finding the vertices of the poly-
gon depicting the common region. This method is called the corner point method. For
example, in the ongoing illustration, the common region is depicted in Fig. A4.1.

574   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

The corner points of the common region are (500, 2500), (1500, 2500), (500, 7500), and
(1500, 7500). Clearly, the value of the objective function is minimum at x = 500 and y = 2500.

A more involved example of the graphical method is as follows.

Illustration A4.2	 Maximize Z x y= + +3 4 1 subject to the following constraints:

2 6

2 6

0 0

x y

x y

x y

+ ≤
+ ≤
≥ ≥,

Solution First of all, the inequalities need to be plotted. This is followed by finding the
common region. The following graph (Fig. A4.2) depicts the common region of the
inequalities.

The corner points of the common region are (0, 0), (3, 0), (0, 3), and (2, 2). The val-
ues of the objective function at these points are 1, 10, 14, and 15, respectively. Clearly,
the value of the objective function is maximum for x = 2 and y = 2.

For some of the problems, however, it is not possible to find the maximum or the
minimum value of the objective function. For example, had the inequalities in the above
question been as follows, it would not be possible to find the optimal solution.

x

−50000

−1
60

00
0

−1
40

00
0

−1
20

00
0

−1
00

00
0

−8
00

00

−6
00

00

−4
00

00

−2
00

00

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

12
00

00

14
00

00

16
00

00

18
00

00

20
00

00

22
00

00

50000

100000

150000

200000

250000

300000

y
10x + y < 175600; x > 0 and y > 0

2500 <= y <= 7500; x > 0 and y > 0

500 <= x <= 1500; x > 0 and y > 0

Figure A4.1  Solution of optimization problem via graphical method

L inear P rogramming   ■  575

Illustration A4.3	 Maximize Z = 3x + 4y +1 subject to the following constraints:

2 6

2 6

0 0

x y

x y

x y

+ ≤
+ ≤
≥ ≥,

8

6

4

2

−1 1 2 3 4 5 6 7 8 9
x

y

−2

−2

−4

−6

−8

−3−4−5−6−7−8

2x + y < 6; x > 0 and y > 0

x + 2y <= 6; x > 0 and y > 0

Figure A4.2  Graph for Illustration A4.2

x
−0.5

−1

−2

−1−1.5−2−2.5 0.5

1

2

3

4

5

6

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

y

2x + y >= 6; x > 0 and y > 0

x + 2y >= 6; x > 0 and y > 0

Figure A4.3  Graph for Illustration A4.3

576   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Solution First of all, the inequalities need to be plotted. This is followed by finding the com-
mon region. The following graph (Fig. A4.3) depicts the common region of the inequalities.

The corner points of the common region are (0, 6), (6, 0), and (2, 2). The values of
the objective function at these points are 1, 10, and 14, respectively. However, in this
case, we cannot say that the maximum value of the objective function is 14 at x = 0
and y = 3. The reason is that the region is an open-ended one.

The graphical method for finding the solution of an optimization problem works well
if the number of inequalities is less and the number of variables is two. In other cases,
the method either does not work or becomes cumbersome. Another method of solving an
optimization problem using linear programming is the simplex method.

The diet problem: The aim of this problem is to select the quantity of n food items
so that the net cost of the food is minimum and at the same time, fulfils the minimum
dietary requirements of different nutrients. The following illustration (Illustration A4.4)
explains the concept.

Illustration A4.4	 The Vitamin A content of a food X is 3 units and that of food Y is 2
units. The Vitamin B content of X is 2 units and that of food Y is 3 units. The minimum
requirement in a diet of Vitamin A is 10 units and so is that of Vitamin B. The cost of food
X is 5 units and that of food Y is 7 units. What amount of X and Y should be included in the
diet in order to fulfil the minimum dietary requirements and keep the cost as low as possible?

Solution The above problem can be formulated as follows. Let the quantity of the food
X be x and that of Y be y. The constraints are as follows:

3 2 10

2 3 10

x y

x y

+ ≥
+ ≥

Moreover, the quantity of X or that of Y cannot be negative,

x

y

≥
≥

0

0

The objective function, in this case, is the sum of the products of the quantities (in this
case x and y) and the corresponding costs (in this case, 5 and 7).

z x y= +5 7

The graph of the above problem is as follows (Fig. A4.4).
The corner points of the above graph are (0, 5), (5, 0), and (2, 2). The values of the

objective function at these points are 35, 25, and 24, respectively. Clearly, the value of
the objective function at (2, 2) is minimum. Therefore, the quantity of food X should
be 2 and that of Y should be 2.

A4.3  SIMPLEX METHOD

As stated in the introduction, a problem that has just two variables can be solved easily
using the graphical method. However, if the number of variables is more than two, the

L inear P rogramming   ■  577

simplex method helps in solving the given problem. The method was developed in 1947,
by George B. Dantzig. The constraints in this method are converted into equations.
Using the simplex method, there can be any number of constraints and those constraints
can have any number of variables. Theoretically, the solution of the given problem lies
at the corners of the n-dimensional polyhedron formed by the given equations. The
method involves crafting of new tables by modifying the old ones. The method has been
explained and identified in the following example. In order to understand the method,
the following terms must be understood:
Slack variables These are the variables added to the left side of the ≤ type inequality to
convert it into an equation.

For example, the inequality ax by c+ ≤ can be converted into an equation
ax by s c+ + = , by adding a slack variable s.

Surplus variables These are the variables subtracted from the left side of the ≥ type
inequality to convert it into an equation.

For example, the inequality ax by c+ ≤ can be converted into an equation
ax by s c+ − = , by subtracting a surplus variable s.

Basic solution If there are n variables and m constraint equations/inequalities, then the
basic solutions can be obtained by setting (n − m) variables equal to 0.
Degenerate solutions If one or more variables in the basic feasible solution are zero(s),
then the solutions are called degenerate solutions.
The Standard form The following conditions must be satisfied by the standard form in
a linear programming problem (LPP) in order to apply the simplex method.
•	 The objective function should be maximization type.

x
−5

−2

−4

−6

−8

−6−7−8−9 −4

2

4

6

8

−3 −2 −1 1 2 3 4 5 6 7 8 9

y

2x + 3y >= 10; x >= 0 and y >= 0

3x + 2y >= 10; x >= 0 and y >= 0

Figure A4.4  Food problem

578   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

•	 Each constraint should be converted into an equation.
•	 The right-hand side of the equations should be negative.
The standard form of an LPP can be stated as follows:

Maximize Z c x c x c xn n= + + ⋅⋅ ⋅ +1 1 2 2

Subject to

a x a x a x s bn n11 1 12 2 1 1 1+ + ⋅⋅ ⋅ + + =

a x a x a x s bn n21 1 22 2 2 2 2+ + ⋅⋅ ⋅ + + =

a x a x a x s bm m mn n m1 1 2 2 1+ + ⋅⋅ ⋅ + + =

In order to solve the problem, an initial table is created as follows. The first row contains
the coefficients of the variables in the objective function, starting from the third column.
The second row of the table contains the headers of the columns. The first column would
contain the coefficients of the basics in the objective functions, the second column would
contain the basics, the third would contain the solution of the basics, and next columns
would contain the coefficients of the corresponding variables. As per the last two rows
are concerned, the last row is obtained by subtracting the elements of the previous row
from the coefficients of the variables in the objective function (in the first row).

The variable corresponding to the highest valued element in the last row is then seen.
This becomes the incoming variable in the next table. The elements corresponding to
the column having header ‘Solution’ are then divided by the elements in the selected
column. The ratio is written in the last column. From this column, the row having the
least value is selected. The corresponding variable becomes the outgoing variable. In
the second table, the outgoing variable would be replaced by the incoming variable. The
intersection of the selected row and selected column is then selected. The row of which
this element is a member is then divided by this element. The element at the intersec-
tion of the selected row and column now becomes 1. With the help of this 1, the other
elements in the selected column (except for the elements in the last two rows) should
be converted to 0. In order to accomplish this task, in this case, we multiply the row by
the corresponding element in the second row and subtract it from the succeeding rows.

The process continues till a positive number is obtained in the last row. When the
process stops, the solutions corresponding to the basics give the answers.

In order to understand the process, let us go through the following illustration.

Illustration A4.5	 Solve the following problem using simplex method:

Maximize: z x y= +4 3

Subject to the following constraints:
2 6

2 9

0

0

x y

x y

x

y

+ ≤
+ ≤
≥
≥

L inear P rogramming   ■  579

Solution In the first step, the inequalities need to be converted to equations

2 6

2 9

0

0

0

0

1

2

1

2

x y s

x y s

x

y

s

s

+ + =

+ + =

≥
≥
≥

≥

and the objective function becomes z x y s s= + + +4 3 0 01 2

Number of equations = 2
Number of variables = 4
Number of basics = 4 − 2 = 2
So, we substitute x = 0 and y = 0 in the above equations and hence the value of s

1

becomes 6 and that of s
2
 becomes 9.

The problem is solved by making some tables, described as follows. As stated earlier,
the second row of the table contains the headers of the columns. The first column would
contain the coefficients of the basics in the objective functions, the second column would
contain the basics, the third would contain the solution of the basics, and next columns
would contain the coefficients of the corresponding variables. Consider the last two
rows; the last row is obtained by subtracting the elements of the previous row from the
coefficients of the variables in the objective function (in the first row).

The initial table, therefore, is as follows (Table A4.1)

Table A4.1  Table 1 of simplex method

Solution

4 3 0 0

X Y S1 S2

2 1 1 0

1 2 0 1

0 0 0 0

4 3 0 0

Basics

0 S1

S2

6

0 9

The coefficients of basics
in the objective function

The coefficients of variables
in the objective function

Variables

The coefficients of
variables in the equations

Numbers obtained by
multiplying coefficients of
basics with the elements
of the requisite column.

Numbers obtained by subtracting the elements of the previous row from
coefficients of the variables in the objective function (in the first row).

580   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Table A4.2  Table 2 of simplex method

Solution

4 3 0 0

X Y S1 S2

1 1/2 1/2 0

0 3/2 −1/2 1

6

4

4 2 2 0

0 1 −2 0

Basics

The coefficients of basics
in the objective function

4 X

S2

3

0 6

The coefficients of variables
in the objective function

Variables

Selected Row (minimum
value)

Numbers obtained by
multiplying constants of
basics with the elements
of this column.

The highest value in this case is 1. This corresponds to the column
having y. The incoming variable is therefore y. The elements in the
solution column are then divided by the elements of the selected column.

The variable corresponding to the highest valued element in the last row is then
seen (In this case x for 4). This becomes the incoming variable in the next table. The
elements corresponding to the column having header “Solution” are then divided
by the elements in the selected column (2 and 1 in this case). The ratio is writ-
ten in the last column (an extra column added in Table A4.2, having 3 and 9, in this
case). From this column, the row having the least value is selected (3 in this case,
corresponding to s

1
). The corresponding variable becomes the outgoing variable.

In the second table, the outgoing variable would be replaced by the incoming vari-
able. The intersection of the selected row and selected column is then selected. The
row of which this element is a member is then divided by this element. In this case,
the elements of the row would become (3, 1, ½, ½, 0). The element at the intersec-
tion of the selected row and column now becomes 1. With the help of this 1, the
other elements in the selected column (except for the elements in the last two rows)
are to become 0. In order to accomplish this task, in this case, we multiply the row by
the corresponding element in the second row (1 in this case) and subtract it from the
second row. The elements of the second row now become (8, 0, 3/2, −½, 1).

The second table is therefore as follows (Table A4.2).

L inear P rogramming   ■  581

A4.4  FINDING DUAL AND AN INTRODUCTION TO THE DUAL SIMPLEX METHOD

The dual of a given problem can be found as follows.
Check: All the inequalities are of ≥ type or ≤ type. If not, then they can be made so

by multiplying the inequalities by −1.
Step 1	 Write the matrix corresponding to the coefficients of the variables in the given
inequalities and a matrix corresponding to the constants of the inequalities.
Step 2	 The number of variables in the dual would be equal to the number of rows in the
above matrices. Call these variables y

1
, y

2
, y

3
, and so on. Create a row matrix consisting

of these variables.
Step 3 	Multiply the above matrix with the matrix of coefficients obtained in the first
step. The result would be the left side of the new constraints.
Step 4	 The right-hand side of the constraints would be the coefficients of the given
objective functions. If the given inequalities are of ≤ type convert to ≥ type and vice versa.
Step 5	 If the objective function of the given problem is to be maximized, the objective
function of the dual would have to be minimized and if the objective function is to be
minimized, then the objective function of the dual would have to be maximized.

Table A4.3  Table 3 of simplex method

Solution

4 3 0 0

X Y S1 S2

1 0 2/3 −1/3

0 1 −1/3 2/3

Basics

The coefficients of basics
in the objective function

4 X

Y

1

3 4

The coefficients of variables
in the objective function

Variables

The process continues as the last row has some positive entries. The steps explained
above are repeated. A new table (Table A4.3) is then crafted. Note that, at every step, the
values of x and y obtained are feasible, though the optimal values are obtained in the last
step. The reader is expected to complete the last row of the table to see whether there is
any requirement of making a new table.

582   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Illustration A4.6 exemplifies the above steps.

Illustration A4.6	 Find the dual of the following:

Maximize: z x y= +4 3

Subject to the following constraints:

2 6

2 9

0

0

y y

x y

x

y

+ ≤
+ ≤
≥
≥

Solution The matrix corresponding to the coefficients of the variables in the inequalities

is
2 1

1 2









 , the matrix corresponding to the constants is

6

9









 and that corresponding to

the coefficients of the variables in the objective function is
4

3









 .

The dual of the given problem therefore is as follows:

2 4

2 3

0

0

1 2

1 2

1

2

y y

y y

y

y

+ ≥

+ ≥

≥

≥

The objective function of the dual can be obtained by multiplying the constants of the
constraints (of the given problem) with the new variables. Moreover, in the given prob-
lem, the objective function needs to be maximized; in the dual, the new objective should
be minimized. That is, Minimize z y y* = +6 91 2 .

Dual Simplex Method
The dual simplex method is similar to the simplex method discussed in the Section A4.4.
In the dual simplex method, we first select the outgoing variable and then the incom-
ing variables. The method starts with a basic solution which is infeasible, as against the
simplex method which starts with a feasible solution. The goal therefore is to convert the
infeasible solutions to the feasible ones. The solution is obtained by the following steps.
•	 In order to obtain the solution using this method, first of all, the inequalities are con-

verted into the ≤ type, if they are ≥ type.

Tip: The optimal solution of a problem is same as that of its dual.

L I N E A R P R O G R A M M I N G ■ 583

 • The inequalities are converted into equations by adding the slack variables.
 • The initial basic solution is obtained by setting (n − m) variables equal to zero.
 • The initial table is formed in the same way as explained in the previous illustration.
 • The next step is to select the key row and the outgoing variable. This is followed by

the selection of the key column and the incoming variable.
 • The process is continued till a feasible solution is obtained or it becomes clear that no

feasible solution is possible.

 A4.5 CONCLUSION

 Linear programming is one of the greatest inventions of the 20 th century. It is a practi-
cal model for solving optimization problems. As a matter of fact, many problems can be
reduced to this technique. Moreover, it is one of the methods which help to solve one of
the most important classes of NP problems, that is, optimization problems. It is used in
compiler design for register allocation, in sports for scheduling basketball, in bioinfor-
matics for constraint-based metabolic models, in marketing for advertising, in fi nance
for portfolio management, in medicine for radioactive cancer treatment, and so on. This
appendix explains the graphical method and simplex method of linear programming, the
dual of a problem, and introduces the concept of dual simplex. The topic though not a
part of the core algorithm syllabus, it is necessary to solve many problems discussed in
the text.

 Points to Remember

 • A linear programming problem has constraints represented by equations or inequalities
and a function that needs to be maximized or minimized.

 • A linear programming problem uses graphical, simplex, or a dual simplex method.

 • A graphical method is used when the number of variables is not greater than two.

 • The solution of an LPP lies at the corners of a feasible region.

 • The solution of the dual of a problem is same as that of the problem.

 KEY TERMS

 Basic solution If there are n variables and m constraint equations/inequalities, then the basic
solutions can be obtained by setting (n − m) variables equal to 0.
Constraints The inequalities in an LPP are referred to as constraints. The constraints depict
the conditions that must be satisfied while solving a given problem.
 Degenerate solutions If one or more variables in the basic feasible solution are zero(s), then
the solutions are called degenerate solutions.
 Feasible solution Any value that satisfies all the constraints is called a feasible value .

584 ■ A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Objective function The function that needs to be minimized or maximized is referred to as
an objective function.
 Optimal solution The set of values of variables (x , y , z , and t in this case) that satisfy the
objective function and maximize (or minimize, as the case may be) the objective function is
called optimal values.
 Slack variables These are the variables added to the left side of the ≤ type inequality to
convert it into an equation.
Standard form of LPP Maximize (or minimize) Z c x c x c xn n= + + ⋅⋅⋅ +1 1 2 2

 Subject to

 a x a x a x bn n11 1 12 2 1 1+ + ⋅⋅⋅ + ≤ ≥()or

 a x a x a x bn n21 1 22 2 2 2+ + ⋅⋅⋅ + ≤ ≥()or

 a x a x a x bm m mn n m1 1 2 2+ + ⋅⋅⋅ + ≤ ≥()or

 Surplus variables These are the variables subtracted from the left side of the ≥ type inequal-
ity to convert it into an equation.

 EXERCISES

 I. Review Questions
 1. Explain the importance and applications of linear programming.
 2. Explain the graphical method of solving a linear programming problem.
 3. Explain the simplex method of solving the linear programming problem.
 4. What are surplus and slack variables?
 5. Explain the steps to obtain the dual of a given problem.
 6. What is the difference between simplex and dual simplex method?
 7. Explain the difference between optimal and feasible solution?
 8. Can graphical method be used to solve an LPP having 3 variables? If not, which

method would you suggest to solve such LPP?
 9. An LPP has some ≤ type inequalities and some ≥ type inequalities; can simplex

method be applied to solve such problem?
 10. Explain one use of fi nding dual of a given LPP.

 II. Applications
 1. A meal consists of two foods X and Y. X costs `9 per unit and Y costs `12 per

unit. X contains 4 units of vitamin A and 2 units of vitamin B. The food Y, on the
other hand, contains 2 units of vitamin A and 4 units of vitamin B. It is required
to have at least 12 units of vitamin A in the diet and at least 10 units of vitamin B.
Express the problem as a linear programming problem and solve it using graphical
method.

 2. In the above problem, the maximum requirement of A is 20 and 15 units of vitamin B.
What would be the answer in this case?

L inear P rogramming   ■  585

3.	 In a factory, the manufacturing of a chair requires 3 hours on the machine A and 4 hours
on machine B. That of a table requires 4 hours on machine A and 4 hours on machine
B. The machine A is available for 8 hours and machine B for 10 hours per day. If the
profit earned by selling a table to a vendor is `100 and that by selling a table is `200,
how many chairs and how many tables should be manufactured by the factory in
order to maximize the profit?

4.	 In the above problem, if the management decides to install another machine C,
in the factory, the machine would be used for finishing purposes. A chair would
require 1 hour on C and a table requires 1.5 hours on C. Formulate the above prob-
lem as a linear programming problem and solve it using the graphical method.

5.	 In the tri-state area, there are two depots of gasoline. The first depot, X has 7000 L of
gasoline and the second depot, Y, has 4000 L of gasoline. There are three stations A,
B, and C. The requirements of A, B, and C are, 2000, 2000, and 3000, respectively.
The cost of transportation of gasoline from X to A is 2 (per unit per km), that from
X to B is 3 (per unit per km), from X to C is 4 (per unit per km), from Y to A is 4 per
unit per km, from Y to B is 3 per unit per km, and from Y to C is 4 per unit per km.
The distances are given in the following table.

. A B C

X 10 12 23

Y 21 20 13

	 Find the amount of gasoline that should be transported from the depots to the stations
in order to minimize the cost of transportation.

6.	 Solve the above problems (Question 1-5) using simplex method.
7.	 Find the dual of the following:

(a)	 Maximize Z x y= +9 11 subject to

7 8 30

2 5 21

0

0

x y

x y

x

y

+ ≤
+ ≤

≥
≥

(b)	Maximize Z x y= +9 9 subject to

x y

x y

x

y

+ ≤
+ ≤

≥
≥

3

2 5 81

0

0

586   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

(c)	 Maximize Z x y= +11 3 Subject to

x y

x y

x

y

− ≤
+ ≤

≥
≥

13

2 7 213

0

0

(d)	 Maximize Z x y= +2 Subject to

3 4 32

9 5 11

0

0

x y

x y

x

y

+ ≤
+ ≤

≥
≥

(e)	 Maximize Z x y= + 6 , Subject to

17 81 113

2 2 10

0

0

x y

x y

x

y

+ ≤
+ ≤

≥
≥

	 8.	 Solve the above linear programming problems (Question 7) using graphical method
(if possible).

	 9.	 Write a program to find the dual of a standard LPP.
10.	 Write a program to solve a standard LPP using simplex method.

 Complex Numbers and
Introduction to DFT

 A P P E N D I X A 5

 OBJECTIVES
 After studying the appendix, the reader will be able to
 • Explain the concept of complex numbers
 • Learn the polar form of complex numbers
 • Understand the procedure to fi nd the power and roots of a complex number
 • Apply algorithm for fi nding the discrete Fourier transform of a signal

 A5.1 INTRODUCTION

 So far we have studied the various techniques to develop and analyse algorithms. These
techniques are also widely used in electronics to carry out the spectrum analysis. One
of the ways of doing so is to fi nd the Fourier transform of the signal. The following
discussion gives a brief introduction of spectrum and the need of Fourier transform. The
second section discusses the basics of complex roots of unity. This concept is used to
calculate the DFT of a signal, which has been discussed in the last section.

 The word spectrum was used in a paper presented by Newton in 1672. In the paper,
he showed that white light can be split into seven colours and these colours can recom-
bine to form white light again. Since all the colours have a particular frequency, the out-
put from a prism can be considered as a spectrum. The spectrum of a signal is obtained
by a mathematical tool like Fourier transform.

 The frequency spectrum of a signal represents its frequency components. The process
of splitting a signal into its frequency components, with the help of some mathematical
tool, is referred to as the spectrum analysis of that signal. The spectrum analysis of a
signal is also called frequency analysis. Spectrum estimation, on the other hand, is the
process of estimating the frequency components of a signal by measurements. The latter
is important as all the signals cannot be represented in mathematical form. If mathemati-
cal form of a signal is given, then we carry out the spectrum analysis. On the other hand,
if we have a real-time signal and the requisite instruments, then spectrum estimation can
be carried out. It is important to understand the difference between the two.

588   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The signals that are generally dealt with, in signal processing, are of four types.
These are continuous periodic, continuous non-periodic, discrete periodic, and discrete
non-periodic. A periodic signal is one which repeats itself after a fixed interval of time.
For such signal ()f t f T t() = + , that is, the signal f(t) has same value after every T, which
is the fundamental period. For example, a sine function is periodic as it repeats itself
after an interval of 2p. The fundamental period of sin is therefore 2p. The fundamental
period of sin w t is 2p/w .

A continuous signal is one in which the left-hand limit at every point is same as the
right-hand limit and both of them are equal to the value of the function at that point.
A sine function, for example, is both continuous and periodic at every point.

A deterministic signal is generally represented by a mathematical function. The
spectrum of a signal can be found by mathematical tools such as Fourier series and
Fourier transform. In order to find the Fourier transform of a signal in an effective and
efficient way, the know how of complex numbers is essential. This appendix gives a
brief introduction of complex numbers and presents the related algorithms. The appen-
dix then goes on to introduce the concept of discrete Fourier transform (DFT) and pre-
sents an efficient way to calculate the DFT.

A5.2  COMPLEX NUMBERS

Complex numbers are to computer science and electronics as water to mankind. These
numbers are used in converting the time-domain signals to frequency domain and
vice versa. Various algorithms in digital signal processing also use complex numbers.
There are numerous other applications of these numbers. Because of this importance, it
becomes essential to understand the basics of complex numbers to be able to use them
in various applications. The following discussion throws light on the basics of complex
numbers, their power, and roots. The complex roots of unity and their properties have
also been discussed in this section. This is required in order to understand DFT.

A5.2.1  Complex Number: Cartesian and Polar Form
A complex number has a real and an imaginary part. The imaginary part is written along
with ‘i’ which is −1. In a complex number z x iy= + , the real part is ‘x’ and the imagi-
nary part is ‘y’. The above form is referred to as the Cartesian form. A complex number
that does not have an imaginary part is purely real and the one that does not have a real
part is purely imaginary. The complex number 3i is purely imaginary. The complex
number 7 is purely real. A complex number can also be written in the polar form, which

is r i(cos sin)θ θ+ , where r x y= +2 2 and θ = −tan 1 y

x
. This is because of the following:

	 x r= cosθ 	 (A5.1)

	 y r= sinθ 	 (A5.2)

Co m p l e x N u m b e r s a n d I n t r o d u c t i o n to D F T   ■  589

Squaring and adding the above two equations (A5.1 and A5.2)

r x y2 2 2= + , therefore	 r x y= +2 2

Dividing Eqns (A5.1) and (A5.2)

tanθ =
y

x

θ = −tan 1 y

x

The following illustrations would help in understanding the conversion of Cartesian
form to polar form.

A5.2.2  Conversion of a Complex Number into Polar Form
(i)	� The complex number 1 + i has 1 as its real part and 1 as its imaginary part. The

value of r becomes 1 1 22 2+ = and θ π= =−tan 1 1 4.

	 Therefore, 1 2
4 4

+ = +





i icos sin

π π

(ii)	� The complex number 1 − i has 1 as its real part and −1 as its imaginary part. The

value of r becomes 1 1 22 2+ − =() and θ π= − = −−tan 1 1 4 (as cos is positive and
sin is negative in the fourth quadrant).

	 Therefore, 1 2
4 4

2
4 4

− = −





 + −
















 = 






 − 

i i icos sin cos sin
π π π π


















(iii)	�� The complex number − +1 i has −1 as its real part and 1 as its imaginary part. The

value of r becomes () tan− + = = − =−1 1 2 1 3 42 2 1and θ π (as cos is negative
and sin is positive in the second quadrant).

	 Therefore, 1 2
3

4

3

4
2

3

4

3
+ = 






 + 
















 = 






 +i i icos sin cos sin

π π π π
44



















(iv)	� The complex number −1 − i has −1 as its real part and −1 as its imaginary part. The

value of r becomes () () tan− + − = = =−1 1 2 1 5 42 2 1and θ π (as both cos and sin
are negative in the third quadrant).

	 Therefore, 1 2
5

4

5

4
− = 






 + 
















i icos sin

π π

A5.2.3  Power and Root of a Complex Number
Although the nth power of a complex number can be found by multiplying the com-
plex number n times, as per the following procedure (Algorithm A5.1), the procedure is
inefficient.

590   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 Algorithm A5.1 P ower of a complex number (z, n) returns a complex number

Input: The complex number, Z; the exponent, n.
Output: p, which is, zn

{
//p.real indicates the real part of p and p.imaginary indicates the imaginary
part of p
p.real = 1;
p.imaginary =0;
for(i= 1; i< =n; i++)
 {
 p.real = p.real × z.real – p.imaginary × z.imaginary;
 p.imaginary = p.real × z.imaginary + p.imaginary × z.real;
 }
return p;
}

Complexity: A single loops makes the complexity of the above algorithm O(n). The
number of multiplications would be 4n. This complexity can be improved using the
method explained in the following discussion.

A5.2.4  Finding Powers and Roots of a Complex Number Using the Polar Form
As stated earlier, the polar form is another way of expressing a complex number. The
real part of the complex number is in terms of cosine of some angle and the imaginary
part in terms of sine. The polar form helps to find the root and power of a number easily.
The power of a complex number can be found by converting the number into polar form
and then applying the following formula:

((cos sin)) ((cos sin))r i r n i n r en n n nθ θ θ θ θ+ = + =

The algorithm to find the power of complex number using polar form is as follows
(Algorithm A5.2).

	 Algorithm A5.2 P ower of a complex number (z, n) returns a complex number

Input: The complex number, z; the exponent, n.
Output: p which is, zn

{
r = +z.real z.imaginary2 2;

θ = −tan ;1 z.imaginary
z.real

Co m p l e x N u m b e r s a n d I n t r o d u c t i o n to D F T   ■  591

//to find correct quadrant
 if((z.real <0) &&(z.imaginary >0))
 {
 θ π θ= − ;
 }
 else if ((z.real <0) &&(z.imaginary <0))
 {
 θ π θ= + ;
 }
 else if ((z.real >0) &&(z.imaginary <0))
 {
 θ θ= − ;
 }
θ θ= n ;
r = rn

p.real = r cos q
p.imaginary = r sin q;
return p;
}

Complexity: There is no loop and a recursive function call in the algorithm. This makes
the complexity of this algorithm as O(1). The number of multiplications would be O(1).

Illustration A5.1	 Calculate 1 3
6

+()i .

Solution The complex number 1 3+()i needs to be converted to polar form. The real
part of the complex number is 1 and the imaginary part is 3(). Therefore,

r cos q = 1

and	 r sin q = 3	

The value of r is therefore,

r = =2 3, tan ,θ and θ π= 3

Since, ((cos sin)) ((cos sin)).r i r n i nn nθ θ θ θ+ = +

Therefore, ((cos / sin /)) ((cos sin)) .2 3 3 2 2 2 646 6π π π π+ = + =i i

A5.2.5  Roots of a Complex Number
The nth root of unity can be found by the following formula:

((cos sin)) cos sin/ /r i r
k

n
i

k

n
n nθ θ

θ π θ π
+ =

+
+

+

















1 1 2 2
, k varies from 0 to (n − 1).

The procedure for calculating the n, nth roots is as follows (Algorithm A5.3).

592   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 Algorithm A5.3 R oot of a complex number (z, n) prints the roots of the complex number

Input: The complex number, z; the value of n.

Output: p, which is, z n

1

{

r z.real z.imaginary= +2 2;

 θ = −tan 1 z.imaginary
z.real

;

//to find correct quadrant
 if((z.real <0) &&(z.imaginary >0))
 {
 θ π θ= − ;

 }
 else if ((z.real <0) &&(z.imaginary <0))
 {
 θ π θ= + ;

 }
 else if ((z.real >0) &&(z.imaginary <0))
 {
 θ θ= − ;

 }
for(k=0; k< n ;k++)
 {
 θ θ π= +() /2 k n ;
 r r n= 1/ ;

 p.real = r cos q;
 p.imaginary = r sin q;;
 print: p;
 }
}

Complexity: There is a loop in the algorithm, which makes the complexity of this
algorithm as O(n).

A5.2.6  Cube Roots of Unity
Since 1 can be written as (cos 0 + i sin 0), the nth root of unity can also be found by using
the above formula. For example, the cube roots of unity can be found by

1 0 0 1
0 2

3

0 2

3

1 3 1 3cos sin cos sin
/ /+()() =

+
+

+















i

k
i

kπ π
, k varies from 0 to 2.

Co m p l e x N u m b e r s a n d I n t r o d u c t i o n to D F T   ■  593

That is, the first root is cos sin
0 2 0

3

0 2 0

3
1

+
+

+





 =

π π
i

The second root is cos sin cos sin
0 2 1

3

0 2 1

3

2

3

2

3

1

2

3

2

+ ×
+

+ ×





= +






= − +

π π π π
i i

i
 ,

generally denoted by w .

The third root is cos sin cos sin
0 2 2

3

0 2 2

3

4

3

4

3

1

2

3

2

+ ×
+

+ ×





 = +






 = − −

π π π π
i i

i
 ,

generally denoted by w 2.
The following points may be observed as regards the cube roots of unity:
•	 The sum of the cube roots of unity is 0.
•	 The product is one.
•	 Each complex root is the conjugate of other.
•	 Each is the square root of the other.
•	 Each is the square of the other.
•	 Each is the reciprocal of the other.

A5.2.7  nth Roots of Unity
The nth roots of unity are the solutions of xn = 1. They are denoted by ω ω ω ω0 1 2 1

n n n
n
n, , ,..., −  ,

where ω π
i
n i ne= 2 / .

Product of Roots of Unity

The product of these roots can be calculated as follows:

ω ω ω ω0 1 2 1
n n n

n
n× × × −...

= × × ×
−

e e en n

n

n

2 0 2 1 2 1π π π

...
()

=
+ + + −

e
n

n

2 0 1 2 1π (... ())

=
−

e
n n

n

2 1

2

π ()

= −e n2 1π ()

= 1

Sum of Roots of Unity

The sum of these roots of unity can be calculated as follows:

ω ω ω ω0 1 2 1
n n n

n
n+ + + −...

= + + ⋅⋅ ⋅ +
−

1
2 1 2 1

e en

n

n

π π

, ,
()

which is a geometric progression (GP) (Section 2.2.3 Chapter 2) having a = 1 and

r e n=
2 1π

. The sum of this GP is therefore,

594   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

1 1
2

2

1

e

e

n

n

n

×

−

−










π

π

= 0

Cancellation Law

The ω ωin
ik

n
k=

The value of ωin
ik

e
ik

in

2≠

e
k

n

2≠

which is same as ωn
k.

A5.3  DISCRETE FOURIER TRANSFORM

For a given vector x x x xn1 2 3, , ,...{ }, the discrete Fourier transform (DFT) is defined as

y a j nj j
ij

i

n
= × = −

=

−∑ ω , , ,...,()0 1 1
0

1
, where w  is the complex cube roots of unity.

The algorithm for DFT is as follows (Algorithm A5.4).

	 Algorithm A5.4  DFT(x) returns y

{
 for (j=0; j<n; j++)
 {
 yj = 0;
 for(i=0; i<n; i++)
 {
 y y xj j i n

ij= + ×ω
 }
 }
 return y;
}

Complexity: The complexity of the above algorithm is O(n2) owing to nested loops.

A5.4  USE OF DIVIDE AND CONQUER IN DFT

The DFT can be made efficient by dividing the problem into independent sub-problems,
solving them, and then combining the results. This calls for the application of divide
and conquer approach. The approach requires the division of the input into two vectors,
the first containing the values at the odd index and the second containing the values at

Co m p l e x N u m b e r s a n d I n t r o d u c t i o n to D F T   ■  595

the even index. The two arrays are then given as input to the algorithm and the results
contribute to the final answer.

Concept: Any polynomial x a x a x a xn
n= × + × + ⋅⋅ ⋅ + ×0

0
1

1 , can be written as

x x x x= + ×1 2

where x a x a x1 0
0

2
2= × + × + ⋅⋅ ⋅ and x a x a x2 1

0
3

2= × + × + ⋅⋅ ⋅
On substituting x2 = t, we get

x a x a x a t a t1 0
0

2
2

0
0

2
2= × + × + ⋅⋅ ⋅ = × + × + ⋅ ⋅ ⋅

and x a x a x a t a t2 1
0

3
2

0
0

2
2= × + × + ⋅⋅ ⋅ = × + × + ⋅ ⋅ ⋅

The above substitution reduces the n degree bound FFT into (n/2) degree bound FFT.
The algorithm is given as follows (Algorithm A5.5).

	 Algorithm A5.5  FFT (x, n)

//x is the given vector, n is the number of elements in the array
 {
 if (n==1)
 {
 return x;
 }
 else
 {

 ω
π

n

k
ne=

2

;
 x a a1 0 2= { }, ,... ;
 x a a2 1 3= { }, ,... ;
 y1 = FFT (x1);
 y2 = FFT (x2);
 w  = 1;
 for (i = 0; i<n/2 -1; i++)
 {
 y y yi k k= +1 2ω ;
 y y yi n k k+ = +/ ;2

1 2ω
 ω ωω= n;
 }
 return y;
}

Complexity: The complexity of the above algorithm can be found by applying the
Master theorem.

The recursive equation for the above is T n T
n

O n() ()= 





 +2

2
, as the FFT of order n

is converted into that of order (n/2) on the recursive call. Moreover, the complexity of
the above is n log n, which is better than that of Algorithm A5.4.

596 ■ A lg o r i t h m s : D e s i g n A n D A n A ly s i s

 EXERCISES

 KEY TERMS

A5.5 CONCLUSION

 This appendix presents the basics of complex numbers. The procedure of the conver-
sion of a complex number to its polar form has been discussed in the appendix. This
polar form helps us to fi nd the power and the roots of a complex number. This has also
been exemplifi ed in the above discussion. The properties of complex cube roots of unity
have also been discussed. These cube roots of unity help us to fi nd the DFT of a signal.
The reader is expected to implement the algorithms present in the chapter and analyse
the effi ciency. It is also desirable from the reader to explore the applicability of divide
and conquer in fi nding the Fourier transform of a discrete signal.

 Points to Remember

 • The word spectrum was used in a paper presented by Newton in 1672.

 • The spectrum of a signal is obtained by a mathematical tool like Fourier transform.

 • The process of splitting a signal into its frequency components, with the help of some
mathematical tool, is referred to as the spectrum analysis of that signal.

 • Spectrum estimation is the process of estimating the frequency components of a signal
by measurements.

 • The signals that are generally dealt with, in signal processing, are of four types. These are
continuous periodic, continuous non-periodic, discrete periodic, and discrete non-periodic.

 • A periodic signal is one which repeats itself after a fi xed interval of time.

 • A continuous signal is one in which the left-hand limit at every point is same as the right-
hand limit and both of them are equal to the value of the function at that point.

 Complex number A complex number may have a real and an imaginary part. For z = a + ib , a
is the real part and b is the imaginary part.
 DFT The discrete Fourier transform of a given vector x x x xn1 2 3, , ,...,{ } , the Discrete Fourier
transform (DFT) is defined as

 y a j nj j
ij

i

n
= × = −

=

−∑ ω , , , ...,()0 1 1
0

1
 , where w is the complex cube roots of unity.

 Polar form A complex number can be represented in polar form. The polar form of a complex

number z = a + ib is r (cos q + i sin q), where r a b= +2 2 and θ = 







−tan 1 b
a

 .

 I. Review Questions
 1. Write an algorithm to fi nd the power of a given complex number.
 2. Write an algorithm to convert a complex number into its polar form.

Co m p l e x N u m b e r s a n d I n t r o d u c t i o n to D F T   ■  597

3.	 Write an algorithm to find the nth root of a complex number.
4.	 Write an algorithm to find the DFT of a given signal using divide and conquer.

II.  Applications-based Questions
1.	 Write an algorithm to find the (m/n)th power of a complex number.
2.	 Write an algorithm to find the DFT of a given signal by dividing the signal in four

parts on each call of the algorithm.
3.	 Can dynamic programming be used to find the nth root of a complex number?
4.	 Can dynamic programming be used to find the DFT of a given signal?
5.	 Design a calculator of complex numbers (in the language of your choice) which can

perform the following tasks:
(a)	 Addition
(b)	Subtraction
(c)	 Multiplication
(d)	Division

(e)	 Power
(f)	 Root
(g)	Conjugate

 Probability

 A P P E N D I X A 6

 OBJECTIVES
 After studying this appendix, the reader will be able to
 • Explain the concept of probability
 • Understand pigeonhole principle, independent events, and Bay’s theorem
 • Apply probability distribution
 • Learn the various probability distributions such as binomial, Poisson’s, and normal

distribution

 A6.1 INTRODUCTION

 There are many methods for analysing an algorithm. One of them is probabilistic analy-
sis. The introduction to this was given in Section 4.6 of Chapter 4. The topic requires the
basic know-how of the concept of probability. Moreover, the knowledge of probability
is also required in designing randomized algorithms as well. This chapter introduces
the concept of probability and intends to introduce the reader to the concept by using
problems.

 The chapter has been organized as follows. Section A6.2 of this chapter deals with the
basic concept, Section A6.3 deals with independent events, and Section A6.4 explores
the concept of probability distribution. Some of the most important distributions such
as ‘binomial distribution’, ‘Poisson’s distribution,’ and ‘normal distribution’ have been
dealt with in Sections A6.5–A6.7, respectively. This chapter has been designed for a
reader having basic knowledge of combinations and permutations. So the reader is
advised to go through the principles of counting before starting off with this appendix.

 A6.2 BASICS

 This section deals with the basics of probability including the taxonomy of probability
theory such as event, sample space, probability of success, sure event and impossible
event, and pigeonhole principle.

P r o b a b i l i t y   ■  599

The probability of happening of an event may be defined as the ratio of the number
of favourable cases to the total number of cases. If the number of favourable cases is n
and that of unfavourable cases is m, then the

Probability of success is p n
n m

=
+

probability of failure is q m
m n

=
+

∴	 p q n m
n m

+ =
+
+

=1.

The probability of an event lies between 0 and 1.
A certain event is one in which each element of a sample space is a favourable event.

In this case, the probability of success is 1.

An impossible event is one in which the sample space is an empty set. In this case,
the probability of success, p is 0.
If there are two events A and B having probability P(A) and P(B), then

P P P P() () () ()A B A B A B∪ = + − ∩

where P()A B∪ is the probability of A union B and P()A B∩ is the probability of A
intersection B.

A6.2.1  Taxonomy
An event is the possible outcome of an experiment. The set of these events consti-
tutes what is called the sample space. Some examples of sample space are as follows.
Table A6.1 enlists some of the events and the corresponding sample spaces.

Table A6.1  Examples of sample space
Event Sample space

A dice is thrown {1, 2, 3, 4, 5, 6}

Two dice are thrown {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5),
(2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4),
(4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3),
(6,4), (6,5), (6,6)}

A coin is tossed {H, T}, H stands for a head turning up and T for a tail turning up.

Two coins are tossed {HH, HT, TH, TT}

A coin is tossed and a dice
is thrown

{(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3),
(T, 4), (T, 5), (T, 6)}

Tip: The probability of an impossible event is 0 that of a sure event is 1 and in all other cases,
it lies between 0 and 1.

600   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

In the case of mutually exclusive events, P() ,A B∩ =0 so

P P P() () ()A B A B∪ = +
The following illustrations exemplify the above concepts.

Illustration A6.1	 Two cards are drawn from a well-shuffled pack of 52 cards. What is
the probability that the two cards belong to the same suite?

Solution In a well-shuffled pack of 52 cards, there are four suites namely spade, dia-
mond, club, and heart. There are 13 cards in each suite. Now, as per the question, the
two cards can either be drawn from the first or the second or the third or the fourth suite.

Thus, 13C
2
 combinations can crop us in all the four cases. This makes the total number

of favourable cases as 4 × 13C
2
. Here, the total number of cases is 52C

2
. The probability

of success of the said event is, therefore, 4 × 13C
2 / 52C

2
.

Illustration A6.2	 There are 5 boys and 7 girls in a group. Find the probability of a
subgroup of four be formed with at least one girl.

Solution The subgroup must have at least one girl. The number of girls can, therefore,
be 1, 2, 3, or 4. The corresponding number of cases are as follows:

Number of ways in which a group can be formed having a single girl = 5C
3
 × 7C

1
 (3 boys

and 1 girl)

Number of ways in which a group can be formed having two girls = 5C
2
 × 7C

2
 (2 boys

and 2 girls)

Number of ways in which a group can be formed having three girls = 5C
1
 × 7C

3
 (1 boy

and 3 girls)

Number of ways in which a group can be formed having four girls = 5C
0
 × 7C

4
 (0 boy

and 4 girls)

The total number of favourable cases = 5C
3
 × 7C

1
 + 5C

2
 × 7C

2
 + 5C

1
 × 7C

3
 + 5C

0
 × 7C

4

The total number of cases = 12C
4.

The required probability = (5C
3
 × 7C

1
 + 5C

2
 × 7C

2
 + 5C

1
 × 7C

3
 + 5C

0
 × 7C

4
)/12C

4
.

Illustration A6.3	 A pair of dice is thrown. Find the probability that the sum of num-
bers appearing is a multiple of three.

Solution The total number of cases is 6 × 6 = 36.
The favourable cases are
(1, 2), (2, 1), (1, 5), (5, 1), (2, 4), (4, 2), (3, 3), (5, 4), (4, 5), (3, 6), (6, 3), (6, 6).
The number of favourable cases is 12.
Therefore, the required probability is = 12/36 = 1/3.

Illustration A6.4	 A bag contains 5 red and 3 black balls. Two balls are drawn at
random. What is the probability of both being red?

P r o b a b i l i t y   ■  601

Solution Two red balls can be drawn in 5C
2
 ways.

Two balls can be drawn in 8C
2
 ways.

Therefore, the probability of success is 5C
2
/8C

2
.

Illustration A6.5	 In the above illustration, what is the probability of drawing a red and
a black ball?

Solution A red and a black ball can be drawn in 5C
1
 × 3C

1
 ways.

Two balls can be drawn in 8C
2
 ways.

Therefore, the probability of success is 5C
1
 × 3C

1
/8C

2
.

Illustration A6.6	 What is the probability of having 52, 53, and 54 Sundays in a leap
year?

Solution A leap year has 366 days. The number of weeks is 52. So, there would be
52 Sundays. The remaining two days can be {Sunday Monday, Monday Tuesday, Tuesday
Wednesday, Wednesday Thursday, Thursday Friday, Friday Saturday, Saturday Sunday}.

So, out of seven possibilities two have Sundays. The probability of having 52 Sundays
in a leap year is 1, as it is a sure event.

The probability of having 53 Sundays is 2/7 (as explained above).
And finally, the probability of having 54 Sundays in a leap year is 0 (as it is an impos-

sible event).

A6.2.2  Pigeonhole Principle
The pigeonhole principle is one of the most important principles of counting. The prin-
ciple has been stated, proved, and exemplified in the following discussion.

Statement
If n pigeons fly into K pigeonholes, K < n as there are more than one pigeon in at least
one of the pigeonhole.
Proof  We can prove the above theorem by contradiction. If the given statement is false,
then we can account for K pigeonholes (there are n pigeons) but n > K so rest of the
pigeons cannot be accounted for. Therefore, there are more than one pigeon in at least
one pigeonhole.

The principle is helpful in solving many problems and is also used in proving the
pumping lemma in the theory of automata. However, the above principle does not deter-
mine which pigeonhole has more than one pigeon. Figures A6.1(a) and (b) depicts the
above with the help of an example.

Figure A6.1(a)  Shown are 5 pigeons, 4 pigeonholes, so there is
at least 1 pigeonhole with more than one pigeon

602   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Illustration A6.7	 Show that if we select 201 distinct CS courses numbered between
1 and 200 (both inclusive) at least two are consecutively numbered.

Solution Let the selected courses be,

C
1
, C

2
, …, C

201

Now the first 200 courses can be numbered distinctly but the 201th course will have number
from 1 to 200 only (there are no other numbers). Same is the case for the rest of the courses.
Problems 1–8 in the Exercises section can be solved using the pigeonhole principle.

A6.3  INDEPENDENT EVENTS

Two events are said to be independent if the occurrence or non-occurrence of one does
not affect the probability of the occurrence of the other. Mathematically, in the case
of independent events, the probability of intersection of two events is the product of

The applications of the above principle also include proving in functions and rela-
tions. For instance, let there be a function f from X to Y and number of elements in Y is
less than that in X, then there are at least two elements in X that map to some value in Y.
Figure A6.2 depicts the concept.

Figure A6.1(b)  Shown are some of the possible cases so as to how 5 pigeons can fit
into 4 pigeonholes. Note that there is at least one pigeonhole in each case

where number of pigeons > 1

1

−1

2

−2

1

4

Figure A6.2  Many to one mapping in the case
number of elements in Y < number of elements in X

P r o b a b i l i t y   ■  603

probability of the two. In the case of independent events, the conditional probability of
A, provided that B has occurred becomes P(A). Similarly, the conditional probability of
B provided that A has occurred becomes P(B),

i.e.,	

P P P
P P
P P

() () ()
)
)

A B A B
(A/B) (A
(B/A) (B

∩ =
=
=

	

and

Since P P
P

P P
P

P(A/B) (A B)
(B)

(A (B)
(B)

(A=
∩

= =
))

and, P P
P

P P
P

P(B/A) (B A)
(A)

(B (A)
(A)

(B=
∩

= =
))

If A
1
, A

2
, …, A

n
 are independent events, then

P P P Pn n(A A A (A (A (A1 2 1 2∩ ∩ ∩ =, ...,)), ...,)

Illustrations A6.8 through A6.12 exemplify the above concept.

Illustration A6.8	 Events A and B are such that P(A) = 1/2 and P(B) = 7/12. In addi-

tion, given that P A or B() =1 4. State whether A and B are independent or not.

Solution

P A or B() = P A B∩() since A B A B∪ = ∩()
= − ∩()1 A BP
= 1 – P(A) P(B) (since A and B are independent)

= 1 – (1/2 × 7/12)

= 1 – 7/24

= 17/24 but P A or B() is 1/4.

Therefore, A and B are not independent events.

Illustration A6.9	 If A and B are independent events and P(A) = 1/4, P(B) = 1/2,

P(A B)∩ =1 8/ , find P(not A and not B).

Solution

P P

P

P
P

A and B = A B

A B (by De Mo an s Law)

(A B)
= 1 (A

() ∩()
= ∪()
= − ∪

−

rg ’

[

1
)) (B) (A B)]

1 (A) (B) (A) (B)]
=1 / / /

+ − ∩
= − + −

− + −
= −

P P
P P P P[

()
(
1 4 1 2 1 8

1 33 4 1 8
1 5 8
3 8

/ /

/

−
= −
=

)
/

604   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

P P

P

P
P

A and B = A B

A B (by De Mo an s Law)

(A B)
= 1 (A

() ∩()
= ∪()
= − ∪

−

rg ’

[

1
)) (B) (A B)]

1 (A) (B) (A) (B)]
=1 / / /

+ − ∩
= − + −

− + −
= −

P P
P P P P[

()
(
1 4 1 2 1 8

1 33 4 1 8
1 5 8
3 8

/ /

/

−
= −
=

)
/

Illustration A6.10	 A bag contains 5 white, 7 red, and 4 black balls. If 4 balls are
drawn at random, one by one, with replacement, what is the probability that none is
white?

Solution
P(not getting white ball in first trial) = 11/16

P(not getting white ball in second trial) = 11/16

Similarly,
P(not getting white ball in third and fourth trials) = 11/16

Therefore, P(I) = P(II) = P(III) = P(IV)
Since the events are independent

∴ P = 







11
16

4

Illustration A6.11	 A can solve 90% of problems and B can solve 70%. What is the
probability that at least one of them will solve the problem, selected at random?

Solution There are three possible cases:
(a)  Either both solve the problem

P P P A B= () ()

= ×





 =

90
100

70
100

63
100

(b)  A solves the problem that B does not

P P P′ A B= () ()
= ×






 =

90
100

30
100

27
100

(c)  B solves the problem but A does not

P P P′ = () ()

= ×





 =

A B

10
100

70
100

7
100

Therefore, the required probability =
+ +

= =
63 27 7

100
97

100
0 97.

P r o b a b i l i t y   ■  605

Illustration A6.12	 In Illustration A6.11, what is the probability that the problem
would be solved?

Solution The answer can be found by subtracting P(A) × P(B) from 1, i.e., [1 – P(A) P(B)]

= − () ()
− −






 −







= − ×





1

1 90
100

1 70
100

10
100

30
100

P PA B

=1

1



= −

=

1 3 100
97

100

/

A6.3.1  Bay’s theorem
It is perhaps one of the most important theorems in probability that helps us to find the
conditional probability in special cases. Let us understand the meaning of conditional
probability before starting off with the topic.

P(A/B) is the probability of occurrence of A provided that B has already occurred.
This is called conditional probability. In order to understand the concept, consider the
following illustration. Suppose there are two bags A and B. A contains 5 red and 3 black
balls and B contains 3 red and 5 black balls, then the probability of drawing a red ball
provided the first bag is selected is P(R/I) which is 5/8. Similarly, the probability of
drawing a red ball provided the second bag is selected is P(R/II) which is 3/8. So what
happens if a ball has been drawn from some bag and its colour is noticed and we have
been asked to find the probability from which the ball is drawn being the first one.

In such situations, Bay’s theorem comes to our rescue. The statement of Bay’s theo-
rem is as follows.

Bay’s Theorem

Let S be the sample space and E
1
, E

2
, …, E

n
 be n mutually exclusive events associated

with random experiment. If A is the event that occurs with E
1
 or E

2
 or E

n
, then

P E A P E P A E
P E P A E

i
i i

j jj

n() () (/)/ =
() ()=∑ 1

The illustration that follows exemplifies the concept.

Illustration A6.13	 In a bolt manufacturing factory, machines A, B, and C pro-
duce 25%, 35%, and 40%, respectively of total bolts. Of them 5%, 4%, and 2%, respec-
tively, are defective. A bolt is drawn at random from the product. If bolt drawn is found
to be defective, what is the probability that it was produced by machine B?

606   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Solution
P(Bolt produced by machine A) = P(A) = 25/100
P(Bolt produced by machine B) = P(B) = 35/100
P(Bolt produced by machine C) = P(C) = 40/100

P(Bolt is defective given that it was produced by A) = P(defective/A) = 5/100
P(Bolt is defective given that it was produced by B) = 4/100
P(Bolt is defective given that it was produced by C) = 2/100

We are required to find out,
P(Bolt is produced by A, given that it is defective) P(A/defective)
Applying Bay’s theorem, we get

P P P
P P P

()A/defective (defective/A) (A)
(defective/A) (A) (defe

=
+ cctive/B) (B) (defective/C) (C)P P P+

=
×

×





 + ×

1
3

6
10

1
3

6
10

1
3

4
10







 + ×








=

1
3

5
10

2 5/

Illustration A6.14	 An urn A contains 2 white, 1 black, and 3 red balls. The urn B
contains 3 white, 2 black, and 4 red balls; C contains 4 white, 3 black, and 2 red balls.
An urn is chosen at random, and ball is drawn if it is red, find probability that it was
drawn from B.

Solution
P(red ball from A) = 3/6 = P(R/A)
P(red ball from B) = 4/9 = P(R/B)
P(red ball from C) = 2/9 = P(R/C)

Now, since nothing is given about the probabilities of selection of bags A, B, and C.

Let, P(A) = P(B) = P(C) = 1/3

We have to find P(bag A given that we selected a red ball)

P P P
P P P P P P

(A/R) (R/A) (A)
(R/A) (A) (R/B) (B) (R/C) (C)

=
+ +

=
×

×

3
6

1
3

3
6

11
3

4
9

1
3

2
9

1
3

3
6

3
6

4
9

2
9

3
6
7
6

3 7







 + ×






 + ×








=
+ +

= = /

P r o b a b i l i t y   ■  607

P P P
P P P P P P

(A/R) (R/A) (A)
(R/A) (A) (R/B) (B) (R/C) (C)

=
+ +

=
×

×

3
6

1
3

3
6

11
3

4
9

1
3

2
9

1
3

3
6

3
6

4
9

2
9

3
6
7
6

3 7







 + ×






 + ×








=
+ +

= = /

Illustration A6.15	 In the above question, what will be the probability (if two balls are
drawn instead of 1) of selecting a red and a black ball.

Solution
P(red or black/A) = (3C

1
 × 1C

1
)/6C

2

i.e., P(red or black/A) = 1/5
P(red or black/B) = 2/9
P(red or black/C) = 1/6

Therefore, P(A/red or black ball is drawn)

=
×

×





 + ×






 + ×








=
+ +

=

1
3

1
5

1
3

1
5

1
3

2
9

1
3

1
6

1
15

1
15

2
27

1
18

6××
=

3
35

18
35

Illustration A6.16	 A man is known to speak truth in 3 out of 4 times. He throws a
dice and reports that it is a six. Find probability that it is actually a six.

Solution

P

P

(reports six/six occurred 3/4

(reports six/six occurred) 1/4

) =

=

PP

P

(six occurred) /6

(six occurred) /6 /6

=

= − =

1

1 1 5

608   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

P

P
P(six occurred/reports six

(six occurred
(reports six/six oc)

)

=
ccurred)

(six occurred (reports six/six occurred)
(six does n
P P
P

) +
oot occurred (six occurred

(reports six/six does not occurre
))P

P dd)

3/8

=
×

×





 + ×








=

1
6

3
4

1
6

3
4

5
6

1
4

Illustration A6.17	 In the previous question, find the probability that if person has not
reported six, then six occurred.

Solution Please try yourself.

Illustration A6.18	 An insurance company insured 3000 scooters, 4000 cars, and
5000 trucks. The probability that scooter meets an accident is 0.002, for car it is 0.003,
and for truck it is 0.004. If one of the insured vehicles meets with an accident, what is
the probability that it is a scooter?

Solution
Let the scooter is insured = S.
So, P(Scooter) = P(S) = 3000/12000 = 1/4
P(Car) = P(C) = 4000/12000 = 1/3
P(Truck) = P(T) = 5000/12000 = 5/12
P(accident/S) = 0.002
P(accident/C) = 0.003
P(accident/T) = 0.004
Now, we have to find P(scooter/accident)

i.e., (S/accident) (accident/S) (S)
(accident/S) (accid

P P P
P P

=
+ eent/C) (accident/T) (T)+ P P

By putting the values, we get 3/9.

Illustration A6.19	 In the previous illustration, find the probability that the vehicle is
a car.

Solution Please try yourself.

Illustration A6.20	 In a question set, there are 40 questions of Algorithms (A), 30 of
theory of computation (TOC) and 30 of artificial intelligence (AI). The probability that
an average student solves a problem of algorithms is 0.1, that of TOC is 0.2 and that of

P r o b a b i l i t y   ■  609

AI is 0.2. A student is able to solve a problem, find the probability that the question is of
algorithms.

Solution The probability of solving a question of algorithms is
P(Sol/A) = 0.1
P(Sol/AI) = 0.2
P(Sol/TOC) = 0.2
P(A) = 0.4
P(AI) = 0.3
P(TOC) = 0.3
We have to find the probability of a question of algorithm provided that the person is
able to solve it, that is P(A/Sol).
Applying, Bay’s theorem
P(A/Sol) = (P (Sol/A) × P(A))/(P(Sol/A) × P(A) + P(Sol/TOC) × P(TOC) + P(Sol/AI) × P(AI))
	 = 0.25

A6.4  PROBABILITY DISTRIBUTION

If a random variable X takes values x
1
, x

2
, …, x

n
 with probabilities P

1
, P

2
, …, P

n
 then

X:   x
1
, x

2
, x

3
, …, x

n

P(X): P
1
, P

2
, P

3
, …, P

n

is known as probability distribution of X.
Thus, a tabular description of random variables along with corresponding probabili-

ties is called probability distribution. The probability distribution of random variable X
is defined only when we have probabilities Pi

s satisfying

Pi∑ =1

i.e.,	 P
1
 + P

2
 + P

3
 +, …, + P

n
 = 1

The following illustrations (21–30) exemplify the above concept.

Illustration A6.21	 Is the following distribution a probability distribution?

X: 0 1 2 3

P(x): 0.3 0.1 0.1 0.2

Solution Since in the case of a probability distribution, the sum of the probabilities is
unity, it is imperative to check the sum of probabilities. If the sum comes out to be one,
then the distribution is a probability distribution, otherwise it is not.

The sum of probabilities = P(0) + P(1) + P(2) + P(3)

= 0.3 + 0.1 + 0.2 + 0.2

= 0.8 ≠ 1
Therefore, it is not a probability distribution.

610   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Illustration A6.22	 A random variable X has the following probability distribution:

X: 0 1 2 3 4 5 6 7

P(x): 0 K 2K 2K 3K K2 2K2 7K2 + K

Find	(a)  the value of K
	 (b)  P(X ≥ 6)
	 (c)  P(X < 6)
	 (d)  P(0 < X < 5)

Solution
(a)	 Since the sum of probabilities of P

i
’s must be 1.

	 Therefore,	 0 + K + 2K + 2K + 3K + K2 + 2K2 + 7K2 + K
	 i.e.,	 P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) = 1
	 i.e.,	 10K2 – 9K – 1 = 0

		 K = -1 or 1/10
	 Since P(1) = K, and the probability cannot be negative.

	 Therefore, K = 1/10.
(b)	 P(X ≥ 6) = P(6) + P(7)
		 = 2K2 + 7K2 + K
		 = 9K2 + K
		 = 19/100
(c)	 P(X < 6) = 1 – P(X ≥ 6)

		 = 1 – 19/100

		 = 81/100

(d)	 P(0 < X < 5) = P(1) + P(2) + P(3) + P(4)

		 = K + 2K + 2K + 3K

		 = 8K

		 = 8/10 = 4/5

Illustration A6.23	 From a lot of 7 containing 3 defective items, a sample of 4 is
drawn at random. Let X denotes the number of defective items in the sample. If sample
is drawn without replacement, then find
(a)	 Probability distribution of X
(b)	 P(X ≤ 1)
(c)	 P(X < 1)
(d)	 P(0 < X < 2)

Solution
(a)	 Probability of no defective item

= 7C
4
/10C

4
 = 1/6

	 P(X = 1), i.e., probability of one defective item = (3C
1
 × 7C

3
)/10C

4
 = 1/2

P r o b a b i l i t y   ■  611

	 That of two defective items = (3C
2
 × 7C

2
)/10C

4
 = 3/10

	 And finally, probability of drawing 3 defective items = (3C
3
 × 7C

1
)/10C

4
 = 1/30

	 Therefore, probability distribution of X is

X: 0 1 2 3

P(X): 1/6 1/2 3/10 1/30

(b)	 P(X ≤ 1) = P(0) + P(1) = 1/6 + 1/2 = 4/6 = 2/3

(c)	 P(X < 1) = P(0) = 1/6

(d)	 P(0 < X < 2) = 1/2

Illustration A6.24	 A random variable X can take all non-negative integral values and
probability X takes value r is Kar (a < 1 and a > 0). Then find P(0).

Solution
P(0) + P(1) + P(2) + … = 1

Ka0 + Ka1 + Ka2 + …

K/(1 – a) = 1

K = 1 – a
Therefore,	 P(r) = (1 – a)ar

	 P(0) = (1 – a)a0 = 1 – a

Illustration A6.25	 Find probability distribution of number of heads in the toss of a
coin two times.

Solution The coin has been tossed twice. The number of heads can be 0, 1, or 2.

Now, P(0) = TT(Probability of getting the tail both times) =
1
2

1
2

1
4

× =

	 P(1) = Probability of getting a tail and a head = TH + HT =
1
4

1
4

1
2

+ =

	 P(2) = Probability of getting two heads = HH = 1
4

1
4

= .

X: 0 1 2

P(X): 1/4 1/2 1/4

Illustration A6.26	 Three cards are drawn from a pack of 52 playing cards. Find the
probability distribution of the number of aces.

Solution
P(X = 0) = 48C

3
/52C

3
 = 4324/5525

P(X = 1) = 4C
1
 × (48C

2
/52C

3
) = 1128/5525

P(X = 2) = 4C
2
 × (48C

1
/52C

3
) = 72/5525

P(X = 3) = 4C
3
/52C

3
 = 1/5525

Therefore,

612   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

X: 0 1 2 3

P(x):
4324
5525

1128
5525

72
5525

1
5525

Illustration A6.27	 An urn contains 4 white and 3 red balls. Find the probability dis-
tribution of the number of red balls in a random draw of 3 balls.

Solution The number of red balls can be 0, 1, 2, or 3. The corresponding probabilities
are as follows:

P(X = 0) = 4C
3
/7C

3
 = 4/35

P(X = 1) = (7C
1
 × 4C

2
)/7C

3
 = 18/35

P(X = 2) = (3C
2
 × 4C

1
)/7C

3
 = 12/35

P(X = 3) = 3C
3
/7C

3
 = 1/35

Therefore, the probability distribution is as follows:

X: 0 1 2 3

P(X):
4

35
18
35

12
35

1
35

A6.4.1  Mean and Variance of a Probability Distribution
If X is a discrete random variable that has values x

1
, x

2
, …, x

n
 with probabilities P

1
, P

2
,

…, P
n
, then the mean of X is defined as follows:

Mean = (P
1
x

1
 + P

2
x

2
 +, …, + P

n
x

n
)/(P

1
 + P

2
 +, …, + P

n
)

In the case of a probability distribution, Pi∑ =1
Therefore, X PXi i= ∑ .
The variance of probability distribution

x x
1

x
2

… x
n

P P
1

P
2

… P
n

is Px Pxi i i i∑ ∑−()2 2
.

Therefore, the root of variance is referred to as the standard deviation.
The following illustrations explore the concept of mean and variance of a probability

distribution.

Illustration A6.28	 A dealer of TV from his past experience estimates the probability
of selling of his TV in a day. The probabilities are

P r o b a b i l i t y   ■  613

x
i
: 0 1 2 3 4 5 6

P
i
: 0.03 0.2 0.23 0.25 0.12 0.10 0.07

Find the mean
(where x = 0, is a Monday and so on)

Solution

Mean = Pxi i∑

= (0 × 0.3) + (1 × 0.2) + (2 × 0.23) + (3 × 0.25) + (4 × 0.12) + (5 × 0.10) + (6 × 0.07)

= 2.75

Illustration A6.29	 Find variance of number of heads in two tosses of a coin.

Solution We made a table for different probabilities when we get different number of
heads

x P(x)

0 TT = 1/4

1 TH + HT = 1/2

2 HH = 1/4,

Now we extend the table and find P
i
x

i
 and P

i
x

i
2.

x
i

P
i

P
i  
x

i
P

i  
x

i
2

0 1/4 0 0
1 1/2 1/2 1/2
2 1/4 1/2 1
 Pxi i∑ =1 Pxi i∑ =2 3 2/

Since variance = Px Pxi i i i∑ ∑−()2 2

	 = 3/2 – (1)2

	 = 3/2 – 1
	 = 1/2

Illustration A6.30	 Two dice are thrown. If X denotes the number of sixes, then find
the expectation of X.

Solution Clearly, X can take values 0, 1, 2.

P(0) = q × q = 5/6 × 5/6 = 25/36

P(1) = Pq + qP = 10/36

P(2) = PP = 1/36

614   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Therefore, distribution is

X: 0 1 2

P(X): 25
36

10
36

1
36

x
i

P
i

P
i  
x

i
P

i  
x

i
2

0 25/36 0 0

1 10/36 10/36 10/36

2 1/36 2/36 4/36

 Pxi i∑ =12 36/ Pxi i∑ =2 14 36/

E X Pxi i()= =∑ 1 3/

A6.5  BINOMIAL DISTRIBUTION

Trials of a random experiment are called Bernoulli’s trials if they satisfy the following
conditions:
(a)	 They are finite in number.
(b)	 They are independent of each other.
(c)	� Each trial results in either success or failure and the sum of probabilities of success

and failure is 1.
The probability of rth success in a binomial distribution with number of trial = n, prob-
ability of success = p, and the probability of failure = q is

P(X = r) = nC
r
Prqn – r

Illustration A6.31	 A dice is thrown 4 times. Find the probability distribution of num-
ber of heads.

Solution If we throw a coin, then we may get a head or a tail,
Therefore,	 P(head) = 1/2

P(tail) = 1 – P = 1/2
Now if we throw it 4 times, then we may get head once, twice, thrice, 4 times, or not
even once. Let X denote the number of heads then,

X = 0, qqqq = P0q4

X = 1, Pqqq + qPqq + qqPq + qqqP = 4Pq3

X = 2, PPqq + qqPP + PqqP + qPPq + PqPq + qPqP = 6P2q2

X = 3, PPPq + PPqP + PqPP + qPPP = P3q

X = 4, PPPP = P4

P r o b a b i l i t y   ■  615

We can generalize the above result as

P(X = 0) = nC
0
 P0qn; n = 4

P(X = 1) = nC
1
 P1qn – 1

P(X = 2) = nC
2
 P2qn – 2

P(X = 3) = nC
3
 P3qn – 3

and, 	 P(X = 4) = nC
4
 P4qn – 4

So, probability of rth success becomes
P(X = r) = nC

r
Prqn – r

The mean of the above distribution is nP and variance is nPq.
Hence, if an event occurs n times such that

(a)	 n is finite
(b)	 p + q = 1
Then, P(X = r) = nC

r
Prqn – r, mean = nP, variance = nPq.

Illustration A6.32	 A coin is tossed five times. What is the probability of getting at
least three heads?

Solution The value of n = 5, as the experiment is repeated five times. Moreover, the
probability of getting a head on throwing a coin is 1/2, so is the probability of not getting
a head. So, p = 1/2 and q = 1/2.
Since, P(rth success) = nC

r
 prqn–r

(P) Probability of getting a head = 1/2,
(q) Probability of not getting a head = (1 – P) = 1/2 = 1/2
P (at least three successes)

= P(r = 3) + P(r = 4) + P(r = 5)
= 5C

3
(1/2)3(1/2)2 + 5C

4
(1/2)4(1/2) + 5C

5
(1/2)5

= 1/2

Illustration A6.33	 A pair of dice is tossed six times. If getting a sum of 9 is considered
as a success, what is the probability of getting the sum of 9 five times in the six throws?
Solution In this case, the value of n = 6, as the experiment is repeated 6 times.
Since, P(rth success) = nC

r
Prqn – r.

P → Probability of getting 9 as a sum in the throw of a pair of dice.

The number of favourable cases are 4, as the pairs (3, 6), (6, 3), (5, 4), (4, 5) give sum 9.

Total number cases = 6 × 6 = 36

P = 4/36 = 1/9
q = 1 – 1/9 = 8/9
r = 5
P(r = 5) = 6C

5
 (1/9)5 (8/9)1

= 6 × 8/96 = 48/96

616   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Illustration A6.34	 Find the probability of 4 turning up at least once in 2 tosses of a
fair dice.

Solution The dice has been tossed two times, therefore, n = 2.
P = Probability of getting a 4 in the throw of a dice = 1/6
q = 5/6
P(rth success) = nC

r
 prqn – r

Therefore, probability = P(1th) + P(2th)
	 = 2C

1
(1/6)1(5/6)1 + 2C

2
(1/6)2(5/6)0

	 = 2(1/6)(5/6) + (1/6)(1/6)
	 = 11/36

Illustration A6.35	 A coin is tossed 5 times. What is the probability that head appears
an even number of times?

Solution Since the coin has been tossed five times, the value of n = 5. Since in a throw
of a coin either a head or a tail appears:

P → Probability of getting head → 1/2,
q = 1 – P = 1/2.
We need the head appearing even number of times.
Therefore, the required probability = P(2th) + P(4th)

= 5C
2
(1/2)2(1/2)3 + 5C

4
(1/2)4(1/2)1

= (10/25)+ (5/25) = 15/32

Illustration A6.36	 The probability of a man hitting of target is 1/4. If he fires 7 times,
what is the probability of his hitting the target at least twice?

Solution The man hits the target 7 times. Therefore, n = 7
P = 1/4 (given),
q = 1 – P = 3/4
Since, P(rth success) = nC

r
Prqn – r

As per the question, the target must hit 7 times; therefore, the required probability

= P(r = 2) + P(r = 3) + P(r = 4) + P(r = 5) + P(r = 6) + P(r = 7)

= 7C
2
(1/4)2(3/4)5 �+ 7C

3
(1/4)3(3/4)4 + 7C

4
(1/4)4(3/4)3 + 7C

5
(1/4)5(3/4)2

+ 7C
6
(1/4)6(3/4)1 + 7C

7
(1/4)7(3/4)0

= (21)(35/47) + (35)(34/47) + (35)(33/47) + (21)(32/47) + (7)(3/47) + (1/47)

= 4547/8192

Illustration A6.37	 Eight coins are thrown simultaneously. Find the chance of obtain-
ing at least six heads.

Solution
Since eight coins have been thrown, the value of n = 8.

P r o b a b i l i t y   ■  617

The probability of getting a head, P = 1/2
q = 1 – P = 1/2
Since, P(rth success) = nC

r
Prqn – r; therefore,

the required probability = P(r = 6) + P(r = 7) + P(r = 8)
= 8C

6
(1/2)6(1/2)2 + 8C

7
(1/2)7(1/2) + 8C

8
(1/2)8(1/2)0

= 1/28[8C
6
 + 8C

7
 + 8C

8
]

= [28 + 8 + 1]/28

= 37/256

Illustration A6.38	 Three cards are drawn successively with replacement from a well-
shuffled pack of 52 cards. What is probability that
(i)	 All the three cards are spade
(ii)	 Only two cards are spade
(iii)	 None is a spade

Solution
(i)	 n = 5, as card is drawn five times with replacement
	 The probability of getting a spade, P = 13/52 = 1/4
(q) Probability of not getting a spade q = 1 – P = 3/4
	 As per the question, r = 5
	 Since, P(rth success) = nC

r
Prqn – r; therefore, the required probability = P(r = 3)

		 = 5C
3
(1/4)3(3/4)2

		 = 45/512
(ii)	 n = 5
	 P = 1/4
	 q = 1 – P = 3/4
	 Since, P(rth success) = nC

r
Prqn – r; therefore, the required probability = P(r = 2)

		 = 5C
3
(1/4)2(3/4)1

		 = 15/32
(iii)	 n = 5
	 P = 1/4
	 q = 1 – P = 3/4
	� Since, P(rth success) = nC

r
Prqn – r; in this case, r = 0; therefore, the required prob-

ability = 3C
0
(1/4)0(3/4)3

		 = 27/64

Illustration A6.39	 A bag contains 7 red, 5 white, and 8 black balls of 4 balls are
drawn one by one with replacement. What is the probability that
(i)	 None is white
(ii)	 All are white
(iii)	 Any two are white

618   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Solution
(i)	 n = 4, as experiment is done 4 times
	� Probability of coming white ball = (number of white balls/total number of balls)

= 5/20 = 1/4
	 P = 1/4, q = 3/4
	 P(rth success) = nC

r
Prqn – r

		 = 4C
0
(1/4)0(3/4)4 = 81/256

(ii)	 r = 4
	 P = 1/4, q = 3/4
	 P(rth success) = nC

r
Prqn – r

		 = 4C
4
 (1/4)4 = 1/256

(iii)	 r = 1
	 Therefore, P = nC

1
 (1/4) (3/4)3

		 = (4C
1
) × (1/4) × (27/64)

		 = 4 × (27/256) = 27/128

Illustration A6.40	 The frequency and values of x are given in the following table. Fit
a binomial distribution to the following:

x → 0 1 2 3 4 5 6 7 8 9 10

f → 6 20 28 12 8 6 0 0 0 0 0

Solution

x → 0 1 2 3 4 5 6 7 8 9 10

f → 6 20 28 12 8 6 0 0 0 0 0 ∑ =f 80

f
x

→ 0 20 56 36 32 30 0 0 0 0 0 ∑ =fx 174

Mean = ∑ ∑()fx f/ = 174/80 = 20175

However, in a binomial distribution, mean is np,

Therefore, np = 2.175

n is 10
P = 0.2175
q = 1 – 0.2175
n = 10

The total frequency, N = 80
Probability of 0th success = N nC

r
Prqn – r

= 80 10C
0
 (0.2175)0 q10

= 80 (0.2175)0 (0.7825)10

P r o b a b i l i t y   ■  619

Similarly,

r P(r)

0 10C
0
 80 × (0.2175)0 (0.7825)10

1 10C
1
 80 × (0.2175)1 (0.7825)9

2 10C
2
 80 × (0.2175)2 (0.7825)8

3 10C
3
 80 × (0.2175)3 (0.7825)7

4 10C
4
 80 × (0.2175)4 (0.7825)6

5 10C
5
 80 × (0.2175)5 (0.7825)5

6 10C
6
 80 × (0.2175)6 (0.7825)4

7 10C
7
 80 × (0.2175)7 (0.7825)3

8 10C
8
 80 × (0.2175)8 (0.7825)2

9 10C
9
 80 × (0.2175)9 (0.7825)1

10 10C
10

 80 × (0.2175)10

A6.5.1  Recurrence Formula for Binomial Distribution
Since,	 P(r) = nC

r
Prqn – r

=
−() ()−n

r n r
q pn r r!

! !

And,	 P r n
n r r

p qr n r+()=
− − +

()+ − −1 1 1!
()!()!1 1

Therefore,

	

P r
P r

n
n r

r
r

p
q

n r
r

p
q

()
()

!
()!

!
()!

+
− − +

=
−
+


















1
1 1

1

Therefore,	 P r n r
r

p
q
e r+()=

−
+
















1

1
()

Mean and variance of binomial distribution

Mean = rP r
r

n ()
=∑ 0

r C P qn
r

r n r
r

n −
=∑ 0

= 0 + (1. nC
1
qn – 1 P) + (2. nC

2
qn – 2 P2) +, …, + n nC

n
Pn

Putting value n rC
n

n r r
=

−()
!

!

620   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

we get,

= + −() +
− −

+…+





=

− − − −

−

nP q n q P n n q P P

nP C

n n n n

n

1 2 3 2 1

1

1 1 2
2 1

()()
.

00q C q P C Pn n n n
n

n− − − −
−

−+ +…+ 
1 1

1
2 1

1
1

= nP(p + q)n – 1

= nP{Since p + q = 1}

Variance of binomial distribution,

σ µ2 2 2
0

= −
=∑ r P r
r

n ()

(()) ()r r r P r
r

n
+ − −

=

−∑ 1 2
0

1 µ

rP r r r P r
r

n

r

n () () ()+ − −
== ∑∑ 1

0
2

0
µ

µ µ− + −
=∑2

0
1r r P r

r

n () ()

= + − + − ={ }− −µ µn n P q P P r C P qn n
r

r n r() () ()1 2 2 2

µ µ+ − −n n P()1 2 2

Since m = nP and (P + q) = 1; therefore, variance = nPq
Standard deviation of binomial distribution,

Standard deviation = nPq
Measure of skewness of binomial distribution, Υ 1 = −()q P nPq or 1 2−()P nPq

Measure of Kurtosis = β2 3= +
−1 6Pq
nPq

If, P < 1/2, skewness is positive

P > 1/2, skewness is negative

P = 1/2, skewnes is zero

A6.6  POISSON’S DISTRIBUTION

The Poisson’s distribution is a special case of a binomial distribution, in which the value
of n approaches infinity and the value of p approaches 0,

P(X = r) = nC
r
prqn – r

If we put n → ∞, and P → 0,

P(X = r) = nC
r
qn – rPr

= n(n – 1)(n – 2), …, (n – r + 1)(1 – P)n – rPr

P r o b a b i l i t y   ■  621

Let, nP = m(mean)

=
− − − +

−() ()

=() −() −(

−n n n n r
r

m n m n

m r n n n

n r r

r

()()...()
!

/ /

/ !

1 2 1 1

1 2))… − +(){ } ()  −() −() n r n m n n m n rr1 1 1/ / / /

=()







−







−







− +





× −m r n

n
n
n

n
n

n r
n

nr / ! ... (1 2 1 1 λ /))n r− as, n → ∞ each of (r – 1)

factors tend to 1

(1 – 1/n) (1 – 2/n) … [1 – {(r – 1)/n}]

also limx

n

x
e→∞ −






 =1 1

Therefore, P(X = r) = mre-m/r!, which is Poisson’s probability distribution.

A6.6.1  Recurrence Formula for Poisson’s Distribution
The probability of rth success is given by the following formula:

P(r) = mre-m/r!

P(r + 1) = mr + 1e-m/(r + 1)!

Therefore,	
P r
P r

m
r

()
()
+

=
+

1
1

P r m
n

P r+()=
+

1
1

()

So in a Poisson’s distribution, if n → ∞; (here, n stands for number of trials) and P → 0
(Probability of success),
nP taken as m(mean of distribution)
Probability of rth success = P(r) = (e–mmr/r!)
Variance = m

Illustration A6.41	 Prove that if P(x) = e – mmx/x! then for, x = 0, 1, 2 we get a prob-
ability function, i.e., P(x) = e – mmr/r! is actually a probability distribution.

Solution Since

P x

e m x

e m
x

e e

x

m x
x

m
x

x

m m

()

!

!

=

∞

−
=

∞

−
=

∞

−

∑
∑

∑

=

=

=
=

0

0

0

1

/

622   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Hence, it is a Poisson’s distribution.

Illustration A6.42	 The probability that an individual will suffer from a bad reaction
is 0.001. Find out the probability that out of 2000 individuals, exactly 3 will suffer a bad
reaction.

Solution

P = Probability that an individual will suffer from a bad reaction = 0.001

n = 2000

Therefore,	 nP = 2000 × 0.001
	 = 2

In addition, note that P is very small and n >> P.
So we can apply Poisson’s distribution. Therefore, m = nP = 2 and

P(3) = e-mm3/3!

= e-2.23/3! = e-2.4/3 = 4e-2/3

= (4/3e2) = 0.180

Illustration A6.43	 In the above question, find probability that more than 2 individu-
als will suffer a bad reaction.

Solution In this case,

r = 3, 4, 5, …, 2000, which is very difficult to evaluate

Therefore, let us find the probability of r = 0, 1, 2 and subtract the sum from 1 (note that
the sum of all probabilities of a distribution is 1)

i.e.,	 P(X > 2) = 1 – (P(X = 0) + P(X = 1) + P(X = 2))

= 1 – (20e-2/0! + 2e-2/1! + 22e-2/2!)

= 1 – 5e2 = 0.323

Illustration A6.44	 If 3% of the bulbs manufactured by a company are defective, then
find the probability that a sample of 100 bulbs will not contain any defective bulb.

Solution Let P be the probability of finding defective bulb, P = 3/100

n = 100

m = nP = 3

P(r = 0) = e-mmr/r!
= e-330/0! = e-3 = 1/e3

= 0.049

Illustration A6.45	 In the above question, find probability of finding three defective
bulbs.

P r o b a b i l i t y   ■  623

Solution
P = 3/100

n = 100  m = 3

P(r = 3) = e-333/3!

= 0.2241

Illustration A6.46	 In QA6.44, find the probability that more than 5 bulbs are defective.

Solution

P(X ≥ 5) = 1 – P(X < 5)

= 1 – {P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)}

P(X = 0) = e-mm0/0! = e-m = e-3

P(X = 1) = e-mm/1! = e-3.3/1! = e-3

P(X = 2) = e-mm2/2! = e-3.9/2 = (9/2)e-3

P(X = 3) = e-mm3/3! = e-3 (27/3 × 2) = (9/2)e-3

P(X = 4) = e-mm4/4! = (e-3.27/4 × 2 × 1) = (27/8)e-3

Therefore, 1 – {P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)}

= 1 – e-3(1 + 3 + 9/2 + 9/2 + 27/8)

= 0.0838

Illustration A6.47	 Six coins are tossed 6400 times. Find the probability of getting
6 heads r times.

Solution
Probability of getting one head = 1/2
Arrange number of six heads with 64,000 throws

 nP

= 100

i.e.,	 m = 100

So, 	 P(X = r) = mre-m/r!

= 100re-100/100!

Illustration A6.48	 If in a Poisson’s distribution P(X = 2) = (2/3) P(X = 1), then find
P(X = 3).

Solution

P(X = 2) = (2/3)P(X = 1)

e-mm2/2! = (2/3)(e-mm/1!)
m = 4/3

624   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Therefore,	 P(X = 3) = e-4(4/3)3/3!

= × −32 81 4/ e

Illustration A6.49	 The probability that a man aged 35 years will die before reach-
ing 40 years is 0.018. Out of 400 men aged 35 years, what is the probability that 2 men
will die within the next 5 years?

Solution

P = 0.018
n = 400

m = nP = 7.2

r = 2

P(X = 2) = e-7.2(7.2)2/2!

= 0.1936

Illustration A6.50	 Fit a Poisson’s distribution to the following:

x 0 1 2 3 4

f 122 160 15 2 1

Solution

x f xf

0 	 122 	 0

1 	 60 	 60

2 	 15 	 30

3 	 2 	 6

4 	 1 	 4

 N = 200 100

Mean (m) = f x x f x() / () / .∑ ∑ = =100 200 0 5

m = nP = 0.5

P = 0.5/4 = 0.125

Now, P(X = 0) = Ne-m = Ne-0.5

= 200e-0.5

P(X = 1) = Ne-mm/1! = 200 × e-0.5 × 0.5

P(X = 2) = Ne-mm2/2!

P(X = 3) = Ne-mm3/3!
P(X = 4) = Ne-mm4/4!

P r o b a b i l i t y   ■  625

by taking integral approximation, we get

X 0 1 2 3 4

P(X) 121 61 15 3 0

A6.7  NORMAL DISTRIBUTION

The normal distribution is also a special case of binomial distribution, where the value of
P approaches 1/2 and that of n approaches ∞ (see web resources of the book for normal
distribution table),

The function depicting the distribution is given by

f x e
x

() / ()=
−

−







1 σ π
µ

σ2
1
2

2

x can assume values -∞ to ∞.
m is the mean and standard deviation is s.
f(x) is also written as N(m, s2)

f(x)

m
Please note that:
(a)	 f(x) ≥ 0

(b)	 f x x() .d =
−∞

∞

∫ 1

	 i.e., total area of normal curves is 1 (unity).
	 Proof:

= =
−

−







−∞

∞ −

−∞

∞

∫ ∫
1
2

1
2

1
2 2

2

2

σ π σ π

µ
σ σ πe dx e dt
x

t

	 Putting
x t e t t−







 = = −

−∞

∞

∫
µ

σ π2
1 2d

	 and dx t e t t= = −

−∞

∞

∫σ
π

2 2 2

d d

	 Now, e t−∞
=∫

2

20

π
γ()function

	 Therefore, area =
1 1

2
1

0π π
πe dtt−∞

× =∫ =

(c)	 Normal distribution has maximum value at x = m.
	 Proof: for maximum | minimum value

626   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	
d
dx
f x() = 0

	 So,	
1
2

1
2

2

σ π

µ
σd

dx
e

x
−

−


















	
1
2

2
2

0
1
2

2
2

2

σ π σ
µ

µ
σe x
x

−
−








×
−

−







=()

i.e., (x - m) = 0

i.e., x = m.

In addition, f ‘’(m) < 0.
So the above function has maxima at (x = m).
(d)	 To solve problems and normal distribution:

	 Put, z x
=

− µ
σ

 we will get the following curve with maxima at z = 0

	
(i)

	  

Total area = 1.

	 (ii)

	  

Half area = ½, P(X < l), and (X > 0).

	 (iii)

	  

This value can be found by seeing the normal distribution table.
X = l

	 (iv)

	  

P(X > l) = 0.5 − P(X < l)

By table

	   e.g., P(X > 1) = 0.5 – P(0 < X < 1)
	 = 0.5 – 0.34143
	 = 0.1587.

P r o b a b i l i t y   ■  627

	 (v)  P(-l
1
< X < l

2
)

	  

= P(−l1 < X < 0) + P(0 < X < l2)

= P(0 < X < l1) + P(0 < X < l2)

(due to symmetry)

Illustration A6.51	 The mean weight of 500 female students in a college is 151 lbs
and standard deviation is 151 lbs. Assuming that weights are normally distributed, find
how many students weight between 120 lbs and 155 lbs.

Solution
X = 151 lbs = m

s = 151 lbs

Therefore,	 Z X
=

−151
151

Now, P(120 < X < 155), when X = 120, Z =
−120 151

151
 =

−31
151

And when	 X = 155

Z =
−1

151
So we need,

P Z− −







31
151

1
151

< < Z = 0

=

Z = 0

Z

0

−31

151

−1

151

Z1

151

31

151
=

y1 y2

31

151

1

151

628 ■ a lg o r i t h m s : D E s i g n a n D a n a ly s i s

Let, x
1
 = P (Z > 0) =

 = 0.5

 x P Z2 = < <





0 1

151

 Now, P X x x y>





 = − =

1
151 1 2 1 say()

 And y P X P X2 = >





= − <








1
151

0 5 31
151

.

 So, answer is y
1
 – y

2
 = 0.6

 Therefore, number of students = 500 × 0.6 = 300

 A6.8 CONCLUSION

The appendix explores the topic of probability. The concept of probability or chance of
happening of an event is one of the most important constituents of probalistic analysis and
randomized algorithms as stated earlier. Moreover, the topic lays the foundation of mathe-
matical analysis of an algorithm. The topic also fi nds its applications in non-deterministic
fi nite acceptor design. The reader is advised to go through the concepts of counting in
order to fully understand the topic. The basic know-how of permutations, combinations,
multisets, and sequences would help the reader to deal with the problems of probability
in a better way. The topic has been dealt with via the problem-solving approach as the
goal of this chapter was that the reader should be able to apply the concepts of probability
in the real world. However, it may be stated here that the above discussion only provides
an introduction to the topic and does not intend to present an all-inclusive version of it.

 Points to Remember

 • P P P P() () () ()A B A B A B∪ = + − ∩

 • In the case of mutually exclusive events, P()A B∩ = 0 so P A B A B() () ()∪ = +P P

 • If A 1 , A 2 , … A n are independent events then P P P Pn n(...) () () ()A A A A A A21 2 1∩ ∩ ∩ = …

 • Mean of a distribution is P xi i∑ and its variance is, P x P xi i i i
2 2

∑ ∑−() .

 • The probability of r th success in a binomial distribution with number of trial = n , prob-
ability of success = p and the probability of failure = q is P(X = r) = n C r P r q n – r

 • In the case of the Poisson’s distribution, the value of n approaches infi nity and the value
of p approach 0. the probability of r th success is given by P (X = r) = (e-mmr)/r! .

 • The function depicting the distribution is given by f x e
x

() / ()=
−

−







1 2
1
2

2

σ π
µ

σ

P r o b a b i l i t y ■ 629

 EXERCISES

 KEY TERMS

 Bay’s Theorem let s be the sample space and E 1 , E 2 , …, E n be n mutually exclusive events
associated with random experiment. if a is the event that occurs with E 1 or E 2 or E n then

 P E A
P E P A E

P E P
A

E

i
i i

j
j

j

n

()
() ()

()

/
/

=








=∑ 1

 Certain event a certain event is one in which each element of a sample space is a favourable
event. in this case, the probability of success is 1.
 Event an event is the possible outcome of an experiment.
 Independent events two events are said to be independent if the occurrence or
non-occurrence of one does not affect the probability of the occurrence of the other.
mathematically, in the case of independent events, the probability of intersection of two
events is the product of probability of the two.
 Impossible event an impossible event is one in which the sample space is an empty set. in
this case, the probability of success, p is 0.
 Pigeonhole principle if n pigeons fly into K pigeonholes, at K < n there are more than one
pigeon in at least one of the pigeonhole.
 Probability it is the ratio of the number of favourable events to the number of unfavourable
events.
Sample space the set of these events constitute what is called the sample space.

 Pigeonhole principle
 1. State and prove pigeonhole principle.
 2. Ten persons have fi rst name Hari, Shiva, and Brahm and last name Sharma, Singh,

and Bhasin. Show that at least two persons have the same fi rst and last name.
 3. An inventory contains 100 items, each marked ‘available’ or ‘unavailable’. There

are 60 available items. Show that there are at least two items in the list exactly four
terms apart.

 4.
If,

a

K K m
K mk =





≤
>

, /
/
2

1 2

 (a) How many elements are there in domain of a
 5. In Q #4 show that range of a is n {1, …, n }.
 6. In (Q #4) & (Q #5), show that a

 i
 = a

 j
 for some i ≠ j .

 7. Show that in decimal expression of quotient of two integers, eventually some block
of digits repeat.

 8. Show that every set of 15 socks chosen among 14 pairs of socks contains at least one
matched pair.

630   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Basics
	 9.	 Find the probability of having 53 Mondays in a leap year.
	10.	 Find the probability of having 50 Tuesdays in a leap year.
	11.	 Find the probability of having 60 Mondays in a leap year.
	12.	 A class has 10 boys and 15 girls. Find the probability of forming a group of 4 hav-

ing at least 2 girls.
	13.	 In the above question, find the probability of forming a group having at most two

girls.
	14.	 In question number 12, find the probability of forming a group having two girls.
	15.	 Three cards are drawn from a well-shuffled pack of 52 cards. Find the probability

of the entire set of selected cards belonging to the same suite.
	16.	 In question number 15, find the probability of all the cards belonging to the same

suite.
	17.	 In question number 15, find the probability of two cards belonging to one suite and

the third to a different.
	18.	 An integer is selected from the first 200 integers. Find the probability that the

selected integer is a multiple of 7 or 11.
	19.	 In question number 18, find the probability that the number selected is neither a

multiple of 7 nor 11.
	20.	 In question number 18, find the probability that the number is not a multiple

of 7 but 11.
	21.	 Two cards are drawn from a well-shuffled pack of 52 cards. Find the probability

that both are face cards.
	22.	 In question number 21, find the probability that one is a face card and the other is

not.
	23.	 In question number 21, find the probability that none of the selected card is a face

card.

Independent Events
	24.	 A and B are independent events, P(A) = 0.35 and P(A B)∪ = 0 6. . Find P(B).
	25.	 If A and B are independent events P(A) = 0.4 and P(B) = p, P(A ∪ B) = 0.6. Then

find p.
	26.	 A bag contains 5 white, 7 red, and 4 black balls. If four balls are drawn at random

one by one with replacement. What is the probability that all are white?
	27.	 The odds against A solving a problem are 4 to 3, and that against B are 7 to 5. Find

probability that problem will be solved.
	28.	 In two successive throw of a pair of dice, find probability of getting a total of 8 each

time.
	29.	 A can hit a target 4 times in 5 shots, B 3 times in 4 shots, and C 2 times in 3 shots.

Find probability that target will be hit.
	30.	 In the previous question, find probability that the target will not hit.

P r o b a b i l i t y   ■  631

Probability Distribution
	31.	 Determine whether the following is a random probability distribution?

(a) X: 0 1 2

(b) P(x): 0.5 0.4 0.1

where P(x) is the probability of X
i
.

	32.	 Four cards are drawn from a pack of 52 playing cards. Find probability distribution
of the number of aces.

	33.	 Four bad oranges are mixed accidently with 16 good ones. Find the probability
distribution of the number of bad oranges in a draw of two oranges.

	34.	 Two cards are drawn successively with replacement from a well-shuffled pack
of 52 cards. Find the probability distribution of the number of kings.

	35.	 A bag contains 3 green and 5 white balls. Find the probability distribution of the
number of green balls drawn when 3 balls are drawn.

	36.	 A random variable has following probability distribution

(i) X: -2 -1 0 1 2 3

(ii) P(x): 0.1 K 0.2 2K 0.3 K

(a)	 Find the value of K

	37.	 A random variable X has following probability distribution:

(i) X: 0 1 2 3 4 5 6 7 8

(ii) P(x): a 3a 5a 7a 9a 11a 13a 15a 17a

(a)	 Find,
	 1.  ‘a’   2.  P(X < 3)   3.  P(X ≥ 3)   4.  P(0 < X < 5)

	38.	 From a lot of 30 bulbs which include 6 defective bulbs, a sample of 4 bulbs are
drawn with replacement. Find probability distribution of number of defective bulbs.

	39.	 In the above question find the mean.
40.	 In (Q #8) find the variance.

Binomial Distribution
41.	 Fit a binomial distribution for the following data and compare theoretical frequen-

cies with actual ones

(i) x: 0 1 2 3 4 5

(ii) f: 2 14 20 34 22 8

42.	 A coin is tossed 5 times. What is the probability of getting atleast 3 success?
43.	 A pair of dice is thrown 7 times. If getting a total of 7 is considered a success, what

is the probability of
(a)	 no success (b)	 6 successes

632   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

44.	 Two cards are drawn from a well-shuffled pack of 52 cards. Find the probability
distribution of the number of aces.

45.	 The probability that a student entering a university will graduate is 0.4. Find the
probability that out of 3 students
(a)	 none will graduate (b)	 only one will graduate

46.	 In the above question, find the probability that all will graduate.
47.	 The items produced by a company contain 10% defective items. Show that the

probability of getting 2 defective items in a sample of items is
i. (28 × 96)/108.

48.	 Five dice are thrown simultaneously. If occurrence of 3, 4, or 5 in a single die is
considered success. Find probability of at least 3 successes.

49.	 In a hurdle race, a player has to cross 10 hurdles. The probability that he crosses a
hurdle is 5/6. Find probability that he will cross fewer than 2 hurdles.

50.	 A bag contains 7 green, white, and red balls. If 4 balls are drawn one by one with
replacement, what is the probability that one is red?

Poisson’s Distribution
51.	 The following data were collected showing the number of accidents in each

of 200 sectors in the city of Faridabad (including colonies, housing enclaves, etc.)

(i) Number of accidents 0 1 2 3 4

(ii) Frequency 109 65 22 3 1
(a)	 Fit a Poisson’s ratio to the data.

52.	 Prove that in a Poisson’s distribution, mean deviation about mean = (2/e)X standard
deviation.

53.	 Suppose a book of 585 pages contain 43 errors distributed randomly. What is the
probability that 10 pages selected at random contain no errors?

54.	 If 20% of the bolts selected at random are defective, then find the probability that
out of 4 bolts chosen at random, none will be defective.

55.	 In the above question, find probability that less than 2 bolts will be defective.
56.	 Establish that Poisson’s distribution is an approximation to binomial distribution.
57.	 Discuss the properties of Poisson’s distribution.
58.	 A dice is tossed 120 times. Find probability that face 4 will turn up 18 times.
59.	 In the above question, find probability that the face 4 will turn up 14 or less times.
60.	 In (Q #58), find P(X < 40).

Normal Distribution
61.	 Prove that in a binomial distribution, curve area (total) = 1.
62.	 Prove that normal distribution curve has maximum value at mean.
63.	 What is normal distribution, when it is used?
64.	 A sample of 100 dry battery cells tested to find the length of life produced the fol-

lowing results.

P r o b a b i l i t y ■ 633

 (a) x = 10 hours, s = 3 hours. Assuming that data are normally distributed, what
percentage of cells have life more than 12 hours?

 65. In the above question, what percentages of cells have life less than 5 hours?
 66. In (Q #64) what percentages of bulbs have value between 10 and 14 hours?

 Answers

 Selected Problems
 31. Yes
 32.

 33.

 34. (a) 1/81 (b) 1/9 (c) 8/9
 41. P = 0.432
 q = 0.568
 n = 5
 N = 100.
 42. P = 1/2, q = 1/2
 P (X ≥ 3) = 1/2
 43. (5/6) 7 , 35(1/6) 7

 44.

 45. 0.216, 0.432
46. 0.064
 48. 1/2
 49. 5/2(5/9) 9
 50. 5/4(11/16) 3
 51.

 53. 0.4795
54. 0.4096
 55. 0.8192

X: 0 1 2

P(x):

12
19

32
95

3
95

X: 0 1 2 3

P(x):

5
28

15
28

32
95

3
95

X = 0 1 2

P(x) =

144
169

24
169

1
169

r 0 1 2 3 4

υ 109 66 20 4 1

 OBJECTIVES
 After reading this appendix, the reader will be able to
 • Understand the importance of scheduling
 • Enlist and explicate the various job scheduling problems
 • Understand as to why job scheduling are NP-complete
 • Learn some of the tools which help in scheduling our tasks

 A7.1 INTRODUCTION

 The problem discussed in this appendix constitutes one of the most important class of
problems in algorithm design: scheduling problem. It fi nds its applications not only in
operating systems but also in the planning of manufacturing systems. The problem is
important but the solution is not easy. The following discussion discusses the various
versions of job scheduling and as to why the problem is NP-complete. The approach
to solve the problem has also been discussed in this appendix. The prerequisites of this
appendix are the chapters on NP problems, approximation algorithms, and artifi cial
intelligence approaches. The reader is requested to go through these topics before start-
ing with this appendix.

 A7.1.1 Scheduling Problems
 Scheduling problems are the problems that require allocation of resources or/and that of
time slots with some constraints. These problems are generally optimization problems.
One of the most common examples of the problem is that of job scheduling. The prob-
lem requires the allocation of jobs to machines as per the given constraints. A schedule
is generally generated as the output, keeping in view the optimization objectives. The
constraints of the job scheduling problem are as follows:
 • A job is assigned to a particular machine
 • A machine can do a single job at a particular time
 • If a machine has been allotted a job, it would complete the job and then move to the

next job.

 Scheduling

 A P P E N D I X A 7

S c h e d u l i n g   ■  635

The problem can be classified as a single machine, multi-machine, single-stage, and
multistage problem. A single machine version has just one machine and many jobs; the
multi-machine version has more than one machine at its disposal, the single-stage mul-
tiple machine problems generally requires parallel machines. The models that are used
to solve these problems can be identical parallel machine, uniform parallel machines,
and unrelated parallel machines. The concept of parallel computations has already been
discussed in the chapter on PRAMS (Chapter 22).

The multistage multi-machine problems can be classified as Flow Shop, Open Shop,
Job Shop, and Group Shop. The taxonomy of these problems is as follows:
•	 Completion time: The completion time is the earliest time in which a job is completed.
•	 Lateness: It is defined as the difference between the completion time and the arrival

time of a job.
•	 Tardiness: It is same as lateness if lateness is greater than zero, otherwise it is zero.
•	 Earliness: It is the negative of lateness or zero, whichever is greater.
•	 Makespan or the maximum completion time: It is the maximum of the completion

times of the given jobs.
The solution to the problem is one of the permutations. Permutation generation in

itself is an algorithmically colossal task. The constraints checking of the generated per-
mutations would further increase the complexity.

The appendix has been organized as follows. Section A7.2 discusses the various versions
of the problem, Section A7.3 discusses the established approaches to deal with the
problem, Section A7.4 gives a brief overview of the tools that can be used to tackle the
problem, and the last section gives the conclusion.

A7.2  DEFINITIONS AND DISCUSSIONS

The following section introduces various job scheduling problems. The discussion
throws light on why the problems are NP-complete.

A7.2.1  Job Scheduling
If there are n jobs {J1, J2, J3, …, Jn}. The time required to carry out these jobs is given
by the set {t1, t2, …, tn} and the number of processors, k. The task is to schedule the jobs
in such a way that the maximum time to execute the tasks tmax is minimum.

Discussion: The problem is an NP-complete problem. This was proved by J. D. Ullman
in one of his papers in the Journal of System and Computer Sciences (Vol. 10, Issue 3).
In the paper, he proved that the problem is NP-complete even if each job takes one unit
of time. Moreover, even if the jobs are scheduled by two processors and each job takes
a unit time or two, the problem is still NP-complete. This implies that processor schedul-
ing is an NP-complete problem. Interestingly, this 10 page paper has been cited 973 times
(Google Scholar, 30th January, 2015), so it must be a very important work.

636   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Since there are k processors, at a time k jobs can be executed. The jobs {J1, J2, J3, …,
Jn} are allotted to processors {p1, p2, …, pk}. A problem, as stated in chapter of NP prob-
lems, is an NP problem if it can be solved by a non-deterministic algorithm in polyno-
mial time. Apparently in order to prove that a problem is NP-complete, it must be shown
that there is no polynomial time algorithm for the problem. The task in itself is a tedious
one. Moreover, it was also stated in Chapter 19 (NP Problems) that an NP-complete
problem answers in a yes or a no; therefore, it is important to express the scheduling
problem as a yes–no type problem in order to classify it as an NP-complete problem. The
following definition given by J.D. Ullman expresses the problem as a yes–no problem.

A7.2.2  NP-complete Job Scheduling Problem
Given a set of n jobs, a partial order < on S, a weighing function W, number of proces-
sors k and a time t, does there exist a total function f from S to {0, 1, …, (t − 1)} such that
•	 If J < J′, then f(J) + W(J) ≤ f(J′)
•	 for each J in S, f(J) + W(J) ≤ t
•	 for each i, between 0 and t, there are at least k values of J for which f(J) ≤ i <

f(J) + W(J)?
	 (J. D. Ullman, NP-complete Scheduling Problems, Journal of Computer and System

Sciences, 10, 384–393)

Discussion: The above representation would allow the Turing machine to able to check
the solution in n symbols (and hence in polynomial time). The problem, therefore, can-
not be solved in a polynomial time but can be verified in polynomial time. Hence, the
problem is an NP-complete problem.

The principle of reducibility can then be applied to strengthen the argument. One may
note that every NP-complete problem can be converted into the SAT problem, as stated
by Karp. This principle has been used to show that a lot of problems are NP-complete.
In fact in the paper Ullman also took a special case wherein W(J) = 1 for all J’s. Another
version of the problem assumed that the jobs take either one unit time or maximum of
two units of time. It has been proved that both the above cases cannot have a polynomial
time deterministic algorithm.

A7.2.3  Single Execution Time Scheduling with Variable Number of Processors
The definition of the problem uses a function which precedes as the argument (Job)
precedes. That is,
•	 If J < J′, then f(J) < f(J′)
•	 The inverse function f  −1(J) has ci members
Here, ci is the sequence of integers from c0 to ct - 1

Discussion: The above problem can be represented as a Turing machine that requires
O(n) memory. Hence, the problem can be verified in polynomial time. The scheduling
problem, stated earlier, can be converted into the single execution time scheduling with

S c h e d u l i n g   ■  637

variable number of processors. Therefore, the former is also an NP-complete problem.
The conversion of the former to the latter has been shown by Ullman. As a matter of fact
the SAT3 problem can be converted into the single execution time scheduling with vari-
able number of processors in polynomial time. The SAT3 problem is an NP-complete
problem, so is the former.

Another important scheduling problem is the pre-emptive scheduling problem. The
problem can be stated as follows.

A7.2.4  Pre-emptive Scheduling
Given a set S of n jobs, a partial order < on S, a weighting function W, a number of
processors k, and a time limit t, does there exist a total function f from S to subsets of
{0, 1,  …, t − 1}, such that
•	 f(J) has W(J) members for all J in S,
•	 if J < J', i is in f(J) and i' in f(J'), then i < i', and
•	 for each i, there are at most k values of J for which f(J) contains i?

Discussion: It has been proved that the pre-emptive scheduling problem is an
NP-complete problem as the scheduling problem introduced at the beginning of the dis-
cussion can be converted into the pre-emptive scheduling in polynomial time.

A7.3  HOW TO HANDLE SCHEDULING PROBLEMS?

The simplest way of dealing with the problem is to enumerate all the possible solutions
and then select the best solution. But this is easier said than done. The enumeration of all
the combinations, in itself, takes exponential time. The problem does not end here. The
fitness values for all these enumerations are then calculated. This fitness value would
be calculated as per the problem. This procedure would require a colossal amount of
time (exponential if better algorithms are used and factorial if convention are used). The
complexity would render the above approach useless.

The other method of handling such problems is as follows. In order to explain the
approach, an example of airline scheduling has been taken. It is a known fact that the air-
lines need to produce hundreds of schedules everyday. These schedules must take care of
the given constraints like the availability of routes, that of the staff, and so on. Moreover,
there are some of the factors that cannot be planned in advance, for example, the weather
and storm. So airlines require efficient algorithms capable of taking care of all the prob-
lems and at the same time.

The following example would take care of a very few constraints and probably in no
airlines the things would be so simple. However, it is important to be able to solve small
problems rather than starting with huge problems and going nowhere. It is like a Sheldon
Cooper trying to put forth a theory that makes relativity look small, but effectively not
being better than any of his counterparts.

638   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Example: In the market analysis, it was found that there are n routes which the airlines
must cater to, in order to make profit. Each flight would be characterized by the starting
time, the time of arrival, the source airport, and the destination airport. The airlines must
have the following seven flights in its roaster of a day.

Flight Origin Destination Departure time Flight time

1 New Delhi Mumbai 22:00 23:50

2 Mumbai Banglore 23:50 2:00

3 Banglore Calcutta 1:00 3:40

4 Mumbai New Delhi 08:00 10:00

5 Chandigarh New Delhi 09:00 10:00

The indicated times are that in which the flights as well as the airports must be served.
Now the problem is to find whether a single plane can be used for more than one seg-
ment. One may note that this would be possible only if the source of the first segment is
same as the destination of the second and there is an ample time to let the passengers of
the first flight to get off the first plane and that of the second to get into the second with
the requisite time in between the two tasks.

Moreover, this is also possible if the two flights do not have anything in common but
there is an ample time for the plane to reach from the destination of the first to the source
of the second (probably the destination of the first is near to the source of the second).

In this case, the concept of reachability comes into picture. Kleinberg (Algorithm
Design, Pearson) in his book has defined reachability as follows. The flight i is reachable
from flight j if it is possible to use same plane for i that was used for the flight j.

The problem can be expressed as an NP-complete problem as follows:
Is it possible to use k planes to serve m flights as per the given schedule? The inputs

to the problem are
•	 k, the number of planes
•	 n, the number of flights
•	 Schedule containing source airport, destination airport, starting time, and destination time.

The output of the above problem is a yes or a no. A yes is produced if it is possible to
accomplish the above task using k planes, otherwise a no is produced.

The problem can be handled by converting the problem into a flow problem. The fea-
sibility of the latter would ensure the solvability of the former. The problem can also be
solved via dynamic approach. Both the methods are computationally expensive and may
lead to intractability. However, availability of tools has helped tackling some versions of the
scheduling problems efficiently. Some of the tools have been discussed in the next section.

A7.4  TOOLS

The intricate scheduling algorithms can be implemented using tools available for
MATLAB and implementations in R. However, the purpose of the following section is

S c h e d u l i n g   ■  639

not to discuss such implementations but to introduce you to practice tools which would
help you in scheduling your meetings and manage your tasks efficiently. The tools dis-
cussed in this section are Doodle, Volentter Spot, YouCanBookMe, and Wiggio. The sci-
ence that goes in the development of such tools requires the concepts discussed in this
appendix. The readers are requested to go to the websites of the tools and explore the fea-
tures of each of them. Perhaps, one can develop such tool as a project. Such project would
help in the development of designing an algorithm and programming skills of the reader.

Doodle
One of the most important scheduling problems is the scheduling of meeting between
the group members. Doodle is one of the free tools for scheduling such group meetings.
Doodle is fundamentally a polling podium. In order to schedule meetings, the time of
the meeting and the list of persons to be invited are added as input. The persons are then
required to fill their data (as in the availability of time and dates). The software schedules
the meetings accordingly. The concept is simple but the science that goes in is deep.

Volunteer Spot
Volunteer Spot is a free scheduling service that teachers, coaches, and others use to
coordinate volunteers. The tool helps one to post calendars and signup sheets online.
The software also takes care of the point where at which the slots are filled.

YouCanBook.Me
YouCanBook.Me is a free scheduling tool that integrates with your Google Calendar.
YouCanBook.Me allows people to book fixed blocks of time in your calendar. You spec-
ify the length of each block of time and the dates and times you are available. Visitors to
your calendar can click a block and enter their email addresses to reserve a block of your
time. When a block of time is reserved you receive an email alert.

Wiggio
Wiggio is another tool that makes the scheduling of group meetings easier. The tool
also helps in resource scheduling and planning of projects. The tools has some brilliant
features like
•	 Group calendar
•	 Mass messaging system
•	 Group polling system

A7.5  CONCLUSION

The appendix focuses on the definition of scheduling problems. The reason so as to why
they are NP-complete lies in the definition itself. The reader is requested to explore some
of the open source tools (like that in MATLAB) that help in tackling the scheduling prob-
lems. The reader should also go through some of the research papers on the application
of soft computing techniques in scheduling problems (See the Project in the exercise).

640 ■ A lg o r i t h m S : d e S i g n A n d A n A ly S i S

 Points to Remember

 • The job scheduling problem can be classifi ed as a single machine, multi-machine, single-
stage, and multistage problem.

 • The multistage multi-machine problems can be classifi ed as Flow Shop, Open Shop, Job
Shop, and Group Shop.

 • Doodle, Volunteer Spot, YouCanBook.Me, and Wiggio are some of the tools that are used
in scheduling.

 EXERCISES

 I. Multiple Choice Questions
 1. Scheduling problems are the problems which require

 (a) Allocation of resources
 (b) Allocation of time slots

 (c) Both
 (d) None of the above

 2. The scheduling problems are generally
 (a) P problems
 (b) NP-complete

 (c) NP-hard but not NP-complete
 (d) None of the above

 3. The scheduling problems generally fall in which of the category?
 (a) Optimization
 (b) Always solvable
 (c) Cannot be verifi ed in polynomial time
 (d) None of the above

 4. Which of the following is the defi nition of the completion time in job scheduling?
 (a) The completion time is the earliest time in which a job is completed
 (b) The completion time is the earliest time in which at least one job is completed

 KEY TERMS

 Earliness It is the negative of lateness or zero, whichever is greater.
Job scheduling This problem requires the allocation of jobs to machines as per the given
constraints. A schedule is generally generated as the output keeping in view the optimization
objectives.
 Lateness it is defined as the difference between the completion time and the arrival time of
a job.
Makespan or the maximum completion time It is the maximum of the completion times
of given jobs.
Scheduling problems These are the problems that require allocation of resources or/
and that of time slots with some constraints. These problems are generally optimization
problems.
 Tardiness It is same as lateness if lateness is greater than zero. Otherwise it is zero.
Completion time It is the earliest time in which a job is completed.

S c h e d u l i n g ■ 641

 (c) Both
 (d) None of the above

 5. Which of the following correctly defi nes lateness in job scheduling?
 (a) It is defi ned as the difference between the completion time and the arrival time

of a job
 (b) It is the maximum arrival time
 (c) It is the minimum arrival time
 (d) None of the above

 6. Which of the following is same as lateness if lateness is greater than zero, otherwise
it is zero ?
 (a) Tardiness
 (b) Tidiness

 (c) Tiredness
 (d) None of the above

 7. Which of the following is the maximum completion time of given jobs?
 (a) Makespan
 (b) Makeslow

 (c) Make
 (d) None of the above

 8. Which of the following tools are used in scheduling?
 (a) Doodle
 (b) Volunteer Spot

 (c) YouCanBook.Me
 (d) All of the above

 9. Which of the following approaches are used to solve a scheduling problem?
 (a) Dynamic programming
 (b) Linear programming

 (c) Both
 (d) None of the above

 10. Which of the following are the multistage multi-machine problems?
 (a) Flow Shop
 (b) Open Shop

 (c) Job Shop
 (d) Group Shop

 II. Review Questions
 1. What is job shop scheduling?
 2. Defi ne job scheduling? Explicate the types of job scheduling.
 3. Prove that the above scheduling problems (question number 2) are NP-complete.
 4. Explain some of the tools that help you to schedule tasks.

 III. Project
 1. Go through some of the research papers of Job Shop scheduling.
 2. Classify the techniques used to solve the problem.
 3. Select a paper that solves the problem using genetic algorithms and implement the

algorithm.

Answers to MCQs

 1. (c)
 2. (c)

 3. (a)
 4. (a)

 5. (a)
 6. (a)

 7. (a)
 8. (d)

 9. (c)
 10. (c)

 Searching Reprise

 A P P E N D I X A 8

 OBJECTIVES
 After studying this appendix, the reader will be able to
 • Compare searching techniques
 • Understand the insertion in binary search tree
 • Explain the deletion of a node in a binary search tree
 • Learn insertion and deletion in an AVL tree

 A8.1 INTRODUCTION

 Searching is one of the most important procedures in computer science. We use search-
ing not only in Internet but also in databases and even in the text editors. The aim of
an algorithm developer should be to constantly come up with effective and effi cient
procedures for searching. In Chapter 5, we have already discussed linear search. The
complexity of linear search is O (n), so it becomes ineffi cient when the value of n is too
large. Another method of searching is using binary search. Binary search is used when
the elements in the list are sorted. The complexity of binary search is O (log n), which is
better as compared to linear search. The binary search divides the array into two equal
halves. The Fibonacci search, on the other hand, divides the given array into two unequal
parts. The position at which the array is split is decided by the Fibonacci series. In the
series, the fi rst element is 1, second is 1, and the rest of the elements are the sum of last
two terms. The terms of the series are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,
610, and so on. The array in Fibonacci search must be ordered. The last index of the
array must be a Fibonacci number. For example, if the fi rst index of the array is 1 and
the last index is 34 (one of the Fibonacci terms), then the array is split at position 21 (the
term in the Fibonacci series before 34). In this process, we divide the array into two
parts, the fi rst having 21 elements and the second having 13 elements. This makes the
search faster, on an average. As a matter of fact, the complexity of the algorithm is
 O (log n), which is same as that of binary search, but in many cases, it performs better
than the binary search. The variants of binary search fi nd the point of splitting the array
via different methods. Interpolation search is one such method. Table A8.1 summarizes
the above points.

S e a r c h i n g R e p r i s e   ■  643

There are many data structures that ease the search of a key. Binary search tree is one of
them. The following discussion focuses on binary search tree and the insertion and deletion
in them. This appendix has been organized as follows. The following section discusses the
insertion in a binary search tree. Section A8.3 discusses deletion in the tree. Section A8.4
presents the problems of BST and AVL trees and the last section gives the conclusion.

A8.2  BINARY SEARCH TREE—REVISITED

A tree is a graph that has no cycle or no isolated vertex. A binary tree is one in which
all the nodes have at maximum two children. A binary search tree (BST) is a binary tree
in which the keys at the left are less than that at the root and that at the right are greater
than the root. The topic was introduced in Section 6.7 of Chapter 6. Creation of a BST
and searching for a key in it have been already discussed. Before proceeding with the
insertion and deletion, the following points may be noted with reference to a BST.

The leftmost node of the left sub-tree is the smallest in a BST. The process of finding
the leftmost node of the left sub-tree has been depicted in Algorithm A8.1. In the algo-
rithm, the pointer ptr is set to the root of the given tree. Till the left pointer of the ptr is
NULL, ptr is set to the left pointer of ptr.

	 Algorithm A8.1  Smallest_BST(T)

Input: The given BST, T
Output: The least key in the given BST
//ptr is a pointer to a node. It has three parts: data, ptr->left (points to
the left sub-tree of ptr),
//ptr->right (points to the right sub-tree of ptr). ‘root’ is the root node of
the tree,
Smallest_BST(T)
 {
 ptr = root;
//If ptr is the leftmost nnode of the left sub-tree
if(ptr->left == NULL)
 {

Table A8.1  Techniques of searching

Technique Complexity When to use Disadvantage

Linear search O(n) Elements are not sorted Becomes inefficient when the value of n is
large

Binary search O(log n) Elements are sorted The elements need to be sorted before
applying binary search

Fibonacci search O(log n) Elements are sorted The elements need to be sorted before
applying the search

644   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

 return (ptr->data);
 }
else
 {
 Smallest_BST(left sub tree of T);
 }
}

Complexity: On an average, the above algorithm takes O(log n) time. In the case of a
skewed tree, the complexity would be O(n).

The rightmost node of the right sub-tree is the largest node in a BST. The process of
finding the rightmost node of the right sub-tree has been depicted in Algorithm A8.2. In
the algorithm, the pointer ptr is set to the root of the given tree. Till the right pointer of
the ptr is NULL, ptr is set to the right pointer of ptr.

	 Algorithm A8.2 L argest_BST(T)

Input: The given BST, T
Output: The largest key in the given BST
//ptr is a pointer to a node. It has three parts: data, ptr->left (points to
the left sub-tree of ptr),
//ptr->right (points to the right sub-tree of ptr). ‘root’ is the root node of
the tree,
Largest_BST(T)
 {
 ptr= root;
//If ptr is the rightmost node of the left sub-tree
if(ptr->right == NULL)
 {
 return (ptr->data);
 }
else
 {
 Largest_BST(right sub tree of T);
 }
}

Complexity: On an average, the above algorithm takes O(log n) time. In the case of a
skewed tree, the complexity would be O(n).

The number of nodes in a BST can also be calculated recursively. A BST having a
single node would return 1. In all other cases, the number of nodes is

the number of nodes of the left sub-tree
+ the number of nodes in the right sub-tree + 1

 Algorithm A8.3 presents the procedure.

S e a r c h i n g R e p r i s e   ■  645

	 Algorithm A8.3 N umber_of_nodes_BST(T)

Input: A BST, T
Output: The number of nodes in the BST
Number_of_nodes_BST(T)
 {
 ptr = root;
 if ((ptr-> left == NULL) && (ptr->right == NULL))
 {
 return 1;
 }
 else
 {
 �return ((Number_of_nodes_BST (left sub-tree of T) + Number_of_nodes_BST

(right sub-tree of T) + 1);
 }
 }

The following discussion explores the addition and deletion of a key in a BST.
The insertion of a key in a BST can be performed by Algorithm A8.4. While inserting

a key in a BST, the first step is to find the appropriate position of the key. As stated ear-
lier, if the key is less than the value at the node, we proceed to the left, else right. Once
we have found the appropriate position of key, we insert it.

	 Algorithm A8.4 I nsert(T, key)

Input: Tree T, key
Output: A binary search tree with key inserted at the appropriate position
Insert (T, key)
//T is a BST and key is to be inserted at the appropriate place in it, ptr is
a pointer to a node
/*ptr or node has a data part, a left pointer (ptr->left) which points to the
left sub-tree and a right pointer (ptr->right) which points to the right sub-
tree.*/
/*The Memory_allocate function allocates memory to the node, the sizeof(a)
function calculates the size in bytes of the argument, a */
ptr = root;
if (ptr! = NULL)
{
if (key > ptr->data)
 {
 Insert (right sub-tree of T, key);
 }
else if (key < ptr->data)

646   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

 {
 Insert (left sub-tree of T, key);
 }
}
else
{
 ptr = Memory_allocate(sizeof(node));
 ptr->data = key;
 ptr->left = NULL;
 ptr->right = NULL;
 }
}

Complexity: The key in a BST is always inserted at the last level. Now, depending on
whether the tree is balanced or skewed the insertion will take O(log n) or O(n) time,
where n is the number of nodes in the given tree.

Illustration A8.1	 In the BST given in Fig. A8.1, insert 50.

43

23 86

9

164

37

29 41

75

60 79

95

91 98

Figure A8.1  Binary search tree for Illustration A8.1

43

23 86

9

164

37

29 41

75

60 79

95

91 98

ptr

Figure A8.2  Key > Ptr-> data, therefore, the right sub-tree of ptr is processed

Solution The steps of insertion have been explained in the following Figs A8.2–A8.6.

S e a r c h i n g R e p r i s e   ■  647

43

23 86

9

164

37

29 41

75

60 79

95

91 98

ptr

Figure A8.5  Key < Ptr-> data, therefore, the left sub-tree of ptr is processed

43

23 86

9

164

37

29 41

75

60 79

95

91 98

ptr

Figure A8.3  Key > Ptr-> data, therefore, the left sub-tree of ptr is processed

43

23 86

9

164

37

29 41

75

60 79

95

91 98

ptr

Figure A8.4  Key < Ptr-> data, therefore, the left sub-tree of ptr is processed

‘ptr’ in the figures refers to the pointer used in Algorithm A8.4. The reader is expected
to look out for the trace of the algorithm, in order to understand the steps clearly. This
illustration exemplifies a case where in the complexity of insertion is O(log n). The next
illustration depicts a case wherein the complexity is O(n).

The number of comparisons in the above illustration is four. Note that the number of
nodes in the given tree is 15 (= n), the comparisons are nearly log

2
 n. In fact, the average

case insertion time in a BST is O(log n).

648   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

Solution The ptr is first set to the root. Since the key is less than the value at the root node,
the left sub-tree of the root is processed. The process is continued (Figs A8.8–A8.11).

However, in the case of a skewed tree, the number of comparisons can be as large as
O(n). Illustration A8.2 depicts the case.

Illustration A8.2	 Consider the tree as given in Fig. A8.7. The value 3 is to be inserted
in the tree.

43

23 86

9

164

37

29 41

75

60 79

50

95

91 98

ptr is now NULL, so a new node is created

Figure A8.6  A new node is created and the data part of the node becomes the key. The left
and the right pointers to the node become NULL

43

23

9

4

ptr

Figure A8.8  The value of the key is less than that of ptr->data (3 < 23);
therefore, the left sub-tree is processed

43

23

9

4

ptr

Figure A8.7  The pointer ptr is initially set to the root. The value of the key is less
than that of ptr-> data; therefore, the left sub-tree is processed

S e a r c h i n g R e p r i s e   ■  649

43

23

9

4 ptr

Figure A8.10  The value of the key is less than that of ptr->data (3 < 4);
therefore, the left sub-tree is processed

43

23

9

4

3

Figure A8.11  A new node is created. The data part of the node is set to 3 and
the left and the right pointers are set to NULL

Note that the number of comparisons in this case is 4, which is also the number of
nodes in the given tree. Therefore, in this case (note that the given tree is a skewed tree),
the number of comparisons is O(n).

A8.3  DELETION IN A BST

In the case of deletion, the following procedure is followed. If the node to be deleted
is the leaf node of the tree, then the node is simply deleted. Suppose if it is not the leaf
node, the successor of the node to be deleted is found (Figs A8.12 and A8.13). The node
is replaced with its successor and the problem now reduces to deletion of the node where
this value goes (Figs A8.14–A8.16).

43

23

9

4

ptr

Figure A8.9  The value of the key is less than that of ptr->data (3 < 9);
therefore, the left sub-tree is processed

650   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

43

23 86

9

164

37

29 41

75

60 79

95

91 98

Figure A8.12  If 29 is to be deleted, the left pointer in the parent is set to NULL

43

23 86

9

164

37

41

75

60 79

95

91 98

Figure A8.13  Deletion of 29

43

23 86

9

164

37

29 41

75

60 79

95

91 98

Figure A8.14  Twenty-three is to be deleted

43

23 86

9

164

37

29 41

75

60 79

95

91 98

Figure A8.15  The in-order successor of 23 is 29; 29 comes in the place earlier occupied
by 23 and then 29 is deleted

S e a r c h i n g R e p r i s e   ■  651

The algorithm for deletion in a BST is as follows (Algorithm A8.5).

	 Algorithm A8.5  Deletion_BST(Key)

Input: Tree T, key
Output: A binary search tree with the node having value ‘key’ deleted
//The SUCCESSOR function find the successor of a node and the Parent(a) finds
the parent of a
Algorithm Deletion_BST(Key)
{
 ptr = root;
 while (ptr ->data != key)
 {
 if (key < ptr->data)
 {
 ptr=ptr->left
 }
 else
 {
 ptr = ptr->right;
 }
 }
 //When the node is a leaf node
 if ((ptr->left ==NULL) && (ptr->right == NULL))
 {
 x = parent (ptr);
 x->left = NULL;
 x->right=NULL;
 }
 else if ((ptr->left ==NULL) || (ptr->right ==NULL)&&!((ptr->left ==NULL)
&& (ptr->right ==NULL))
 //When the node has just one child
 {
 y= SUCCESSOR(ptr);

43

29 86

9

164

37

41

75

60 79

95

91 98

Figure A8.16  Since 29 is at the left node, it is simply deleted

652   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

 ptr->data = y-> data;
 ptr->left = NULL;
 ptr->right = NULL;
 }
 else
 {
 y = SUCESSOR (ptr);
 ptr->data = y->data;
 Deletion_BST(y);
 }
}

Complexity: The complexity of the first while loop can be O(log n) or O(n) depending
upon whether the tree is balanced or skewed (in the best case, it can even be O(1)).

The key, if terminal, would be deleted in time O(1), otherwise the pointers would
have to be reset.

The BSTs, therefore, are good for lookup and insertion. However, in the case of dele-
tion, they can be expensive as deletion may lead to many swapping, as explained in the
previous illustration.

A8.4  PROBLEM WITH BST AND AVL TREES

The BSTs are good for insertion and lookup wherein they show an average case com-
plexity of O(log n). However, when the tree is skewed, the complexity increases to O(n).
The problem is solved using the AVL trees. The concept of AVL trees was introduced in
Chapter 6 where the insertion of elements in the trees has been discussed.

The following discussion focuses on the deletion of elements in the AVL trees. The
deletion of a node from a given AVL tree may lead to balance factor other than 0, 1, or -1.
The two cases that make the balance factor of an AVL tree other than 0, 1, and -1 are
as follows.

In the first case, the deletion of a node from the right sub-tree may lead to balance fac-
tor of the root becoming 2. In order to handle such situation, the root of the right sub-tree
is shifted to the root. The rotation is shown in Fig. A8.18. When a node is deleted from the
right sub-tree of the root, the balance factor of the root becomes 2 (Fig. A8.19). In such
cases, the rotation (R1) shown in Fig. A8.20 is carried out.

There is another case where in nodes are removed from the left sub-tree of the left
child, and the right sub-tree of its right child. In such cases, the right child of the left
child of the root becomes the root node, the left child of the root becomes the left child
of the root in the new tree and the root in the old tree becomes the right child of the new
root. The sub-tree of the left child of the root in the old tree remains its sub-tree. The
right sub-tree of its right child becomes the left sub-tree of the right child of the root
and the left sub-tree of the right child of the left child of the root in the old tree becomes

S e a r c h i n g R e p r i s e   ■  653

Balance factor = 0

1

2

T3: h

T2: h T1: h

Balance factor = 1

The height of sub-trees is h

1

2

T3: h-1

T2: h-1 T1: h

Balance factor = 1

Node deleted from the right sub-tree

Figure A8.19  Balance factor of the root becomes 2 due to the deletion of element
from the right sub-tree and the right sub-tree of the left child of the root

Balance factor = 0

1

2

T1: h

T2: h T1: h

Balance factor = 1

The height of sub-trees is h

1

2

T1: h-1

T2: h T1: h

Balance factor = 1

Node deleted from the right sub-tree

Figure A8.17  Balance factor of the root becomes 2 due to the deletion of
element from the right sub-tree

2

1

Balance factor = 1

Node deleted from the right sub-tree

T1: h-1T2: h

T1: h

Figure A8.18  R1 rotation

2

1

T2: h-1 T3: h-1

T1: h

Balance factor = 1

Node deleted from the right sub-tree

Figure A8.20  R1 rotation

654 ■ a lg o r i T h m S : D e S i g n a n D a n a ly S i S

the right sub-tree of the left child of the new root. The fourth sub-tree is placed at the
remaining position. This is referred to as the R-1 rotation.

A8.5 CONCLUSION

 The appendix discusses various strategies of searching. The advantages and disadvan-
tages of each technique have been presented. The chapter also covers the data structures
used for effective searching. The insertion and deletion in a BST and deletion of a node
in an AVL tree have also been discussed in the appendix. The reader is expected to go
through the web resources of the book to look for the corresponding programs.

 EXERCISES

 I. Multiple Choice Questions
 1. Which of the following is true for a binary search tree?

 (a) The value at the root is less than any element on the right sub-tree
 (b) The value at the root is more than any element on the left sub-tree
 (c) All the above
 (d) None of the above

 2. Which of the following is the correct formula for the number of nodes in a BST?
 (a) Number of elements in the left sub-tree + Number of elements in the right sub-tree
 (b) Number of elements in the left sub-tree + Number of elements in the right sub-

tree +1
 (c) Number of elements in the left sub-tree + Number of elements in the right sub-

tree -1
 (d) None of the above

 3. Which is the successor of an element?
 (a) The leftmost element of the right sub-tree
 (b) The rightmost element of the left sub-tree
 (c) None of the above
 (d) Can be any of the above

 4. Which is the maximum element in a BST?
 (a) The leftmost element
 (b) The rightmost element

 (c) Can be any of the above
 (d) None of the above

 5. Which is the minimum element in a BST?
 (a) The leftmost element
 (b) The rightmost element

 (c) Can be any of the above
 (d) None of the above

 6. What is the complexity of searching an element in an unsorted array?
 (a) O (n)
 (b) O (log n)

 (c) O (n 2)
 (d) None of the above

S e a r c h i n g R e p r i s e   ■  655

  7.	 Which of the following is the best complexity of searching an element in a sorted
array?
(a)	 O(n)
(b)	 O(log n)

(c)	 O(n2)
(d)	 None of the above

  8.	 Binary search cannot be used in which of the following case?
(a)	 When the elements in the array are sorted
(b)	 When the elements in the array are unsorted
(c)	 In both the cases
(d)	 None of the above

  9.	 Which of the following can be used in searching an element from a graph?
(a)	 Breadth first search
(b)	 Depth first search

(c)	 Both
(d)	 None of the above

10.	 What is the complexity of inserting an element in a BST having n elements?
(a)	 O(n)
(b)	 O(log n)

(c)	 Depends on the type of BST
(d)	 None of the above

11.	 Which of the following is used if deletion from an AVL tree leads to balance factor
becoming 2?
(a)	 R0
(b)	 R1

(c)	 R-1
(d)	 All of the above

12.	 Which of the following is not a valid rotation in the case of deletion from an AVL
tree?
(a)	 R0
(b)	 R1

(c)	 R-1
(d)	 R2

13.	 What is the complexity of insertion in an AVL tree?
(a)	 O(n)
(b)	 O(log n)

(c)	 depends on the case
(d)	 None of the above

14.	 What is the complexity of lookup in an AVL tree?
(a)	 O(n)
(b)	 O(log n)

(c)	 depends on the case
(d)	 None of the above

15.	 Which of the following is a type of BST?
(a)	 AVL
(b)	 Red–black

(c)	 2-3-4
(d)	 All of the above

II.  Review Questions
	 1.	 Which is more efficient, linear search and/or binary search?
	 2.	 Which data structure is most suitable to string the given values in an ordered

fashion?
	 3.	 Write an algorithm for deleting a node from a BST.
	 4.	 Write an algorithm for inserting a node in a BST.
	 5.	 Write an algorithm for finding the image of a BST.
	 6.	 Write an algorithm for finding the node having the least value in a BST.

656   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

	 7.	 Write an algorithm for finding the node having largest value in a BST.
	 8.	 Write an algorithm for finding the number of nodes in a BST.
	 9.	 Can we have a duplicate value in a BST?
10.	 Explain deletion of a node from an AVL tree.

III.  Application-Based Questions
	 1.	 The image of a BST is found as follows. The left sub-tree of the given BST is made

the right and the right is made the left recursively. For example, the image of the tree
depicted in Fig. A8.21 is depicted in the same figure. Write an algorithm to find the
image of BST.

43

23 86

9

164

37

29 41

75

60 79

95

91 198

Figure A8.22  Binary search tree for Illustration A8.1

23

9

164

37

29

23

37

29

9

16 4

Figure A8.21  A BST and its image

	 3.	 In the above question, find the number of pointers that needs to be rearranged in
order to carry out the task.

	 4.	 In the case where the tree in Question 2 is represented as in an array, suggest a
non-recursive procedure to find the image.

	 5.	 Can the complexity of the above algorithm reduce by using auxiliary arrays?
	 6.	 Design an algorithm to find the number of leaves in a BST.
	 7.	 Design an algorithm to find the number of internal nodes in a BST.
	 8.	 In the tree of Fig. A8.22 insert the following values (trace the steps of the procedure)

(a)	 81
(b)	 10

(c)	 19
(d)	 39

(e)	 32

	 2.	 Trace the steps of finding the image of the BST depicted in Fig. A8.22

S e a r c h i n g r e p r i S e ■ 657

 9. In the tree of Fig. A8.22 delete the following values (trace the steps)
 (a) 23
 (b) 37

 (c) 95
 (d) 75

 (e) 86

 10. In the BST of Fig. A8.22 , fi nd the node having the least value.
 11. Create an AVL tree from the following values

 (a) 2
 (b) 3
 (c) 6

 (d) 9
 (e) 10
 (f) 1

 (g) 5
 (h) 8

 12. In the AVL tree formed in Question 11, insert the following values
 (a) 4 (b) 7 (c) 12

 13. From the fi nal AVL, formed in Question 12, delete the following values
 (a) 1 (b) 10 (c) 6

 14. Construct a binary search tree from the values given in Question 11.
 15. Perform the additions and deletions of question 12 and 13 from the tree of

 question 14 and compare the complexity with that of the AVL tree.

 Answers to MCQs

 1. (c)
 2. (b)
 3. (a)

 4. (b)
 5. (a)
 6. (a)

 7. (b)
 8. (b)
 9. (c)

 10. (c)
 11. (d)
 12. (d)

 13. (b)
 14. (b)
 15. (b), (c)

 OBJECTIVES
 After studying this appendix, the reader will be able to
• Enlist the characteristics of a sorting algorithm
• Give various scenarios for which sorting algorithm should be analysed
• Carry out lab exercises

 A9.1 INTRODUCTION

 Sorting is the rearrangement of a given set of elements in order of their keys. A good
sorting algorithm should have the following characteristics:
 • The keys that are equal should not be reordered. This characteristic makes an algo-

rithm stable.
 • The number of swaps in the worst case should be as low as possible. The reader is

requested to go through Chapters 8 and 9. It can be inferred from the algorithms that
this number should not exceed O (n).

 • The sorting algorithm should execute faster when the given list is sorted or almost
sorted. This characteristic is referred to as adaptability.

 • The number of comparisons should be as low as possible.
 • The amount of extra space needed by the algorithm should be as small as possible.

 Chapter 8 discussed various linear and quadratic sorting algorithms. The complexities
of algorithms discussed in the chapter were either O (n) or O (n 2). Chapter 9 discussed quick
sort and merge sort. The worst-case complexity of quick sort is O (n 2) and the average-case
complexity is O (n log n). In the case of merge sort, the complexity is O (n log n). The com-
plexity of various algorithms has been summarized in Chapter 8. The worst-case complexity
is not the only deciding criteria for an algorithm. There are many factors like the behaviour
when the array is almost sorted, and so on. However, the reader is expected to understand
the advantages of each algorithm to be able to select the appropriate algorithm in a situation.

 An algorithm should be analysed for the following cases in order to access it:
 • Sorted
 • Sorted reverse
 • Random
 • Repeated values

 Analysis of Sorting
Algorithms

 A P P E N D I X A 9

A n a ly s i s o f S o r t i n g A lg o r i t h m s   ■  659

The reader is expected to perform the above analysis for the following lab exercises.
The data of results of their execution are also given (on the machines stated in the following
exercises). The reader should answer the following questions by analysing the given data.

A9.2  LAB 1: QUICK SORT

A9.2.1  Goal: Implement and Analyse Quick Sort for Small Input
Size (Exactly Reverse of What We Should Have Done)
The implementation of quick sort in an Intel i3 machine with a 4GB RAM, 500 GB hard
disk (Windows 8.1 Operating System), the following results were obtained when the
input was sorted. The list to be sorted contains 75 numbers. The following snapshot
shows the time elapsed in 4 executions of the program:

The following snapshot shows the results of the execution of quick sort when the list
is reversed:

660   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The following snapshot shows the results of the execution of the program when the
list is random:

The time is not just that required in the linking and loading of a program. A compiled
program becomes a process. The process is put in the scheduling queue by the operating
system. As per the policy and the number of programs executing at that time, the process is
allocated the processor. The total time of execution, therefore, consists of all the above things
and can therefore vary greatly. Moreover, in the implementation, the running time was cal-
culated in milliseconds, which could have been a source of error. However, the above data
gives a good idea of how the average running time varies by changing the ethos of the input.

A9.2.2  Related Problems
1.	 Analyse the above results and discuss whether quick sort is really better than any of

the O(n2) algorithm a small input size.
2.	 What do you think is the reason of getting such variations in the result?
3.	 Run the above algorithm for an input size of 1000, 3000, 5000, 10,000, and 20,000

(5 runs in each case), report the results, and analyse them.
4.	 Find the average and standard deviation of the 5 trials (in each case) and plot their

graph with the input size.
5.	 Check if the results would be different, if an i5 is used in the above case?

A9.3  LAB 2: SELECTION SORT

A9.3.1  Goal: Implement and Analyse Selection Sort
The asymptotic complexity gives an idea of the variation of the time with the size of
the input, but it cannot compare the algorithms with the same asymptotic complexity.
For example, the asymptotic complexity of both selection sort and bubble sort is O(n2);
however, selection sort performs better than bubble sort.

Table A9.1 presents the running time of standard selection time program in C on a
Pentium(R), 1.8 GHz machine with a 64-bit OS (Windows 8), 500 GB hard disk.

A n a ly s i s o f S o r t i n g A lg o r i t h m s   ■  661

Table A9.1 R esults of execution of selection sort

Input
size

Experiments

Sum Average
Standard
deviation1 2 3 4 5

500 0 54.945 54.945 0 0 109.89 21.978 30.09462

1000 0 100 109.89 109.89 109.89 429.67 85.934 48.22907

1500 274.725 219.78 219.78 219.78 219.78 1153.845 230.769 24.57215

2000 329.67 329.67 329.67 384.615 329.67 1703.295 340.659 24.57215

2500 494.505 494.505 494.505 494.505 494.505 2472.525 494.505 0

3000 569.349 604.349 659.349 659.349 659.349 3151.745 630.349 41.59327

3500 824.175 824.175 824.175 769.23 824.175 4065.93 813.186 24.57215

4000 989.01 1043.956 989.01 989.01 989.01 4999.996 999.9992 24.5726

4500 1263.736 1263.736 1263.736 1263.736 1263.791 6318.735 1263.747 0.024597

5000 1483.516 1483.516 1483.516 1483.516 1483.516 7417.58 1483.516 0

8000 3571.428 3571.428 3571.428 3571.483 3571.428 17857.2 3571.439 0.024597

9000 4450.549 4450.549 4450.494 4450.494 4450.549 22252.64 4450.527 0.030125

9500 4945.055 5000 4945.055 4945.055 4945.055 24780.22 4956.044 24.57215

10,000 5439.348 5604.395 5494.505 5494.505 5494.505 27527.26 5505.452 60.24734

The corresponding graph of the average and the standard deviation of the running
time with the input size is as follows (Fig. A9.1).

1
0

2000

4000

6000

8000

10000

12000

2 3 4 5 6

Standard deviation

Average

Figure A9.1  Variation of average and standard deviation of running time with the
input size in the case of selection sort

A9.3.2  Related Problems
1.	 Analyse the above results and discuss whether selection sort is really better than

other O(n2) algorithms?
2.	 What do you think is the reason of getting such variations in the result?

662   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

3.	 Run the above algorithm for an input size of 20,000 and 30,000 (5 runs in each case),
report the results, and analyse them.

4.	 Find the average and standard deviation of the 5 trials (in each case) and plot their
graph with the input size.

5.	 Check if the results would be different, if an Intel i5 is used in the above case?
6.	 Implement the version of selection sort that selects the smallest element by divide

and conquer and then replace it with the element at the ith position for i varying
from 0 to n − 2.

A9.4  LAB 3: INSERTION SORT

A9.4.1  Goal: Implement and Analyse Insertion Sort
Table A9.2 presents the running time of standard Insertion Sort program in C on a
Pentium(R), 1.8 GHz machine with a 64-bit OS (Windows 8), 500 GB hard disk.

Table A9.2 R esults of execution of insertion sort

Input
size

Experiments

Sum Average
Standard
deviation1 2 3 4 5

1000 0.274 0.219 0.274 0.164 0.274 1.205 0.241 0.049193

2000 1 0.659 0.659 0.549 0.659 3.526 0.7052 0.171544

3000 1.208 1.318 1.153 1.318 1.318 6.315 1.263 0.077782

4000 2.252 2.252 2.307 2.197 2.307 11.315 2.263 0.046016

5000 4.835 4.835 4.89 4.725 4.835 24.12 4.824 0.060249

8000 8.241 8.351 8.461 8.186 8.274 41.513 8.3026 0.106819

10,000 13.131 12.857 13.296 13.076 13.912 66.272 13.2544 0.399734

1
0

2000

4000

6000

8000

10000

12000

2 3 4 5 6

Standard deviation

Average

Figure A9.2  Variation of average and standard deviation of running time with the input
size in the case of insertion sort.

The corresponding graph of the average and the standard deviation of the running
time with the input size is as follows (Fig. A9.2).

A n a ly s i s o f S o r t i n g A lg o r i t h m s   ■  663

A9.4.2  Related Problems
1.	 Analyse the above results and discuss whether insertion sort is really better than other

O(n2) algorithms?
2.	 What do you think is the reason of getting such variations in the result?
3.	 Run the above algorithm for an input size of 20,000 and 30,000 (5 runs in each case),

report the results, and analyse them.
4.	 Find the average and standard deviation of the 5 trials (in each case) and plot their

graph with the input size.
5.	 Check if the results would be different, if an Intel i5 is used in the above case?
6.	 Implement the version of insertion sort that inserts a sub-list in a sorted list in an

adaptive manner.

A9.5  LAB 4: BUBBLE SORT

A9.5.1  Goal: Implement and Analyse Bubble Sort
Table A9.3 presents the running time of standard bubble sort program in C on a
Pentium(R), 1.8 GHz machine with a 64 bit OS (Windows 8), and 500 GB hard disk.

Table A9.3 R esults of execution of insertion sort

Input size

Experiments

Sum Average
Standard
deviation1 2 3 4

1000 0.164 0.164 0.109 0.109 0.546 0.1365 0.031754

2000 0.384 0.329 0.329 0.384 1.426 0.3565 0.031754

3000 0.549 0.604 0.549 0.659 2.361 0.59025 0.052658

4000 1.043 0.934 0.879 0.934 3.79 0.9475 0.068743

6000 1.758 1.813 1.978 1.813 7.362 1.8405 0.095263

10,000 4.45 4.45 4.395 4.395 17.69 4.4225 0.031754

1
0

2000

4000

6000

8000

10000

12000

2 3 4 5 6

Standard deviation

Average

Figure A9.3  Variation of average and standard deviation with the input
size in case of insertion sort.

664   ■  A lg o r i t h m s : D e s i g n a n d A n a ly s i s

The corresponding graph (Fig. A9.3) of the average and the standard deviation of the
running time with the input size is as follows.

A9.5.2  Related Problems
1.	 Analyse the above results and discuss whether bubble sort is really better than other

O(n2) algorithms.
2.	 What do you think is the reason of getting such variations in the result?
3.	 Run the above algorithm for an input size of 20,000 and 30,000 (5 runs in each case),

report the results, and analyse them.
4.	 Find the average and standard deviation of the 5 trials (in each case) and plot their

graph with the input size.
5.	 Check if the results would be different, if an Intel i5 is used in the above case?

A9.6  PROBLEMS BASED ON SORTING

Question 1: There are n letters and corresponding envelopes. Each letter has a unique
identification number (which is an integer). The envelopes are also marked with the
same identification numbers. Now each letter is to be inserted into the correct enve-
lope. Develop an algorithm to accomplish the task. Analyse the time complexity of the
algorithm.
Solution 1: The easiest approach would be to select a letter and find the correct envelope
for it. Since, there are n envelopes, finding the correct envelope of the first letter would
require n comparisons. The process would require (n − 1) comparisons for the second
letter and so on. The total number of comparisons in this fashion would be (n + (n − 1)
+ (n − 2) … 1), that is, n(n − 1)/2. Hence, O(n2) comparisons would be required to
accomplish the task. The above approach is the brute force approach, as every possible
permutation is being checked.
Solution 2: The second approach is to sort the letters (and envelopes in order of their
identification numbers) and then carry out the required task (of putting the letters in
the correct envelopes) in O(n) time. The sorting may be carried out using an efficient
method like heapsort. This would result in the accomplishment of the task in O(n log n)
time as against O(n2), in the previous example.
Solution 3: If the identification numbers are between 1 and some finite (not very large)
number, then the task can be accomplished using counting sort. This reduces the com-
plexity to O(n). The letters (and the envelopes) are sorted using counting sort. This is
followed by the insertion of the requisite letter in the corresponding envelope.
Question 2: CTU, a deemed university in the capital of some developing country, holds
elections for the president for its student union. There are three candidates in the fray.
Each candidate has been assigned an ID. The students enter the ID of the candidate he/
she wishes to vote for. The votes are stored in an array. The problem is to find out which
candidate wins.

A n A ly s i s o f s o r t i n g A lg o r i t h m s ■ 665

 Solution: The problem can be tackled using counting sort. The input array contains the
three IDs repeated unknown number of times. An array B can be made having three
locations. The following algorithm would achieve the above task.

 Algorithm A9.1 Winner

 Input: A
 Output: the iD of the candidate who wins

 Winner (A[], ID1, ID2, ID3)
 {
 B[0]=B[1]=B[2]=0;
 for (i=0; i<n ; i++)
 {
 if (A[i]==ID1)
 B[0]++;
 else if(A[i]==ID2)
 B[1]++;
 else if(A[i]==ID3)
 B[2]++;
 }
 if (B[0]>B[1])&&(B[0]>B[2])
 {
 return ID1;
 }
 else if((B[1]>B[0]) &&(B[1]>B[2]))
 {
 return ID2;
 }
 else
 {
 return ID3;
 }
 }

 I. Multiple Choice Questions

 1. If an input is placed at its appropriate position in a binary search tree, then traversing the tree
in in-order is
 (a) Tree sort
 (b) Selection sort

 (c) Insertion sort
 (d) None of the above

 2. What is the worst-case complexity of selection sort?
 (a) O (n 2)
 (b) O (n log n)

 (c) O (n)
 (d) None of the above

 EXERCISES

666 ■ A lg o r i t h m s : D e s i g n A n D A n A ly s i s

 Answers to MCQs

 1. (a)
 2. (a)

 3. (b)
 4. (b)

 5. (a)
 6. (c)

 7. (a)
 8. (d)

 9. (c)
 10. (c)

 3. In a version of selection sort that selects the smallest element by divide and conquer and then
replaces it with the element at the i th position for i varying from 0 to n − 2, the complexity is
 (a) O (n 2)
 (b) O (n log n)

 (c) O (n)
 (d) None of the above

 4. Which of the following performs better, in general?
 (a) Selection sort
 (b) Bubble sort

 (c) Both are equally good
 (d) Cannot say

 5. What is the best-case complexity of merge sort?
 (a) O (n log n)
 (b) O (n 2)

 (c) O (n)
 (d) None of the above

 6. Which of the following is not stable?
 (a) Bubble sort
 (b) Insertion sort

 (c) Selection sort
 (d) All of the above

 7. Which of the following is stable?
 (a) Merge sort
 (b) Heapsort

 (c) Both
 (d) None of the above

 8. Which of the following requires auxiliary memory O (log n)
 (a) Quick sort
 (b) Bubble sort

 (c) Selection sort
 (d) None of the above

 9. Which of the following is true for a randomized quick sort?
 (a) The input is randomized
 (b) The pivot is selected randomly

 (c) Any of the above
 (d) None of the above

 10. Merge sort can be implemented
 (a) By using recursion
 (b) By iteration

 (c) Any of the above
 (d) None of the above

 A10.1 INTRODUCTION

 The appendix has been designed to test the skills of the reader. The problems cover
almost all the major topics in this book. Some of the problems given in this appendix
have been solved in more than one way. The reason for doing so is to encourage the
reader to develop more than one algorithm for a given problem and choose the best after
careful consideration and analysis. The reader is expected to go through the problems,
develop his own solution, and then analyse them. Some of the solutions to the prob-
lems given below are not absolute (e.g. Problem 10.4). The reader must also develop
algorithms for the unsolved problems and implement them. The given algorithms must
also be implemented and tested for all possible classes of inputs. The analysis done by
implementing and running an algorithm would also help in understanding the hardware
and operating system issues.

 A10.2 PROBLEMS

 A10.2.1 To Design an O (n) Algorithm to Find the n th Fibonacci Term
 Solution : The fi rst two terms of Fibonacci series are 1 and 1. Any other term can be
obtained by adding the previous two terms. The recursive version of the problem was
introduced in Section 4.1 of Chapter 4. The complexity of the recursive Fibonacci series
is O (2 n). Algorithm A10.1 fi nds the n th Fibonacci term in O (n) time.

 Algorithm A10.1 Fibonacci_term

 Input: n, the index
 Output: a[n-1], the n th Fibonacci term
 Fibonacci_term(int n)
 // a[] is an array
 {
 a[0] = 1;

AQ: Please
note that
‘Chapter
Objectives’
is missing.
Please
check

 Problems

 A P P E N D I X A 1 0

668   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

a[1] = 1;
for(i = 2; i<n; i++)
 {
 a[i] = a[i-1]+a[i-2];
 }
//print the nth Fibonacci term
Print: a[n-1];
}

Complexity: O(n), as the algorithm has a single loop. The space complexity of the algo-
rithm is also O(n) as it uses an array of length n.

The above algorithm is better than the recursive version as it takes lesser time. The
above algorithm is also an excellent example of how a simple change can reduce the
complexity of the algorithm, both in terms of time and space.

Related Questions
1.	� Write a program in C to implement the above algorithm and note the time of execu-

tion if the value of n is
(a)	 5
(b)	 10
(c)	 100

(d)	 1000
(e)	 10,000

2.	 Compare the running time with the running time of the algorithm to calculate the nth
Fibonacci term using recursion.

3.	 Compare the space complexity of the two versions (with and without recursion).

A10.2.2  To Find Whether a Strictly Binary Tree is a Heap
Solution: In Section 6.3 of Chapter 6, it was stated that if a node is stored at index ‘i’
of an array, then the left child of the node would be stored at ‘2i + 1’, and the right child
would be stored at ‘2i + 2’. In Algorithm A10.2, the array is traversed from i = 0 to i =
n/2, at each position if the values stored at the indices ‘2i + 1’ and ‘2i + 2’ are less than
that at ‘i’, then the tree is a heap.

	 Algorithm A10.2  Check (a, n)

Input: a, an array in which the tree is stored, n is the number of elements in the array
Output: I the tree is a heap, “Heap” is printed, otherwise the algorithm prints “Not a heap”
Check (a, n)
{
FLAG = 0;
for(i=0; i<n/2; i++)
 {
 if ((a[2i + 1] < a[i])&&(a[2i + 2] < a[i]))

P ro b lems   ■  669

 {
 }
 else
 {
 FLAG = 1;
 break; // this takes the control out of the loop
 }
 }
if (FLAG == 0)
 {
 Print: “ Heap”;
 }
else
 {
 Print: “Not a heap”;
 }
}

Complexity: Since the algorithm has a single loop, the complexity is O(n).
Extrapolate: The reader is encouraged to write this algorithm for a tree stored in a doubly
linked list. If ptr is a leaf node of the tree, then ptr->left= NULL and ptr->right- >NULL.
In all other cases, the data at ptr (ptr->data) should be greater than the data at (ptr->left)
and that at (ptr->right).

Related Questions
1.	 Write an algorithm to find the minimum element from a Max-heap.
2.	 Write an algorithm to find the maximum element from a Min-heap.
3.	 Write an algorithm to find the sum of elements in a heap.
4.	 Write an algorithm to find whether a given strictly binary tree is a binary search tree.
5.	 Write an algorithm to find the sum of elements of a binary search tree.

A10.2.3  To Develop an O(n) Algorithm to Sort Numbers Between 0 to (n − 1)
The algorithm uses an array of size n. If an item is placed at the index denoted by the
item itself, the array would then contain elements in the sorted order.

Algorithm A10.3 uses an array of length n. The getItem() function gives an incoming
element. The function returns a NULL when there is no input.

	 Algorithm A10.3  Efficient sorting

Input: n, the number of items
Output: The array a[] would contain elements in the sorted order, after the algorithm has
been executed.
Sort_n(n)
{

670   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

for (i=0; i<n; i++)
 {
 a[i] = -1;// Here (-1) denotes a NULL
 }
while(True)
 {
 item = getItem();
 if (item != NULL)
 {
 a[item]= item;
 }
 else
 {
 break;
 //the statement takes the control out of the loop
 }
 }
}

Complexity: The loop runs x (≤ n) times. The complexity is, therefore, O(n).
The algorithm, though good in terms of time complexity has a grave limitation. If the

number of items is too large, then it would not be advisable to use the above algorithm.
The problem is the same as that faced in the case of sequential search.

Related Questions
1.	 In the above problem, consider that the number of elements is (n/2) and the elements

are in the range 0 − (n − 1). How would you modify the above algorithm to that hav-
ing better space complexity? (probably on the expense of time complexity).

2.	 In the above problem, how would you search for a given number in ln(n) time?
3.	 Modify the algorithm to compress the array, so that there is no (−1) (or NULL) in the

modified array.

A10.3  DIVISION OF A LIST INTO TWO PARTS WHOSE SUM HAS MINIMUM DIFFERENCE

Problem: A list of n numbers is given. It is desired to separate the numbers into two
halves such that if the sum of elements of the first half is S

1
 and that of the second half is

S
2
, then |S

1
 – S

2
| is minimum. Assume that the number of elements, n, is a multiple of 2.

Discussion: The question is tricky. As a matter of fact, an exact solution would require
brute force analysis, which is computationally very expensive. So, let us look at some
of the solutions that would help us to accomplish the task (almost). The first solution
presented as follows, though easy to understand, does not scale well in many cases.

Solution: Put the first two elements at a[0] and a[n/2] positions. Initially, the sum of the
elements of the left sub-array would be S1 = a[0] and S2 = a[n/2]. For each element (=x)

P ro b lems   ■  671

that comes, find whether |S1 + x – S2| is lesser than |S1 – x – S2|. If it is the case, then put
x in the first sub-array, otherwise in the second.

	 Algorithm A10.4  Minimum_Difference (a)

Input: a, the given array and n, the number of elements
Output: The array which contains elements such that the difference of the sums of the sub
arrays on the left and right is minimum.
Minimum_Differnce(n)
 {
 a[0]= getItem();
 a[n/2]=getItem();
 i=0;
 j=n/2;
 S1=a[i];
 S2=a[j];
 while(True)
 {
 int item=getItem();
 if(item != NULL)
 {
 if(|S1+x –S2| <= |S1 – x- S2|)
 {
 i++;
 a[i]=x;
 S1+=x;
 }
 else
 {
 j++;
 a[j]=x;
 S2+= x;
 }
 }
 else
 {
 break;
 }
 }
 }

Complexity: The algorithm contains a loop which runs n times; hence, the complexity
of the algorithm is O(n).

Analysis: When all the elements are equal, the algorithm delivers. However, in other
cases, it does not perform that well. In order to understand this, try solving the following
questions.

672   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Related Questions
1.	 The following series of number is given as an input to the above algorithm.

1, 2, 3,4, …, n

	 Implement the above algorithm in C and observe the result for the following values of n
(a)	 5
(b)	 10

(c)	 100
(d)	 1000

2.	 In the above question, if the series is changed to 3, 100, 6, 98, 9, 96, … ,observe that
the odd terms have common difference (−2) and the even terms have common differ-
ence (3). Run the program for the following values of n.
(a)	 5
(b)	 10

(c)	 15
(d)	 25

3.	 Now, give random numbers as input to the above program and observe the result for
at least 10 trials (take n = 100), and report the result.

4.	 Suggest another algorithm to solve the above problem which gives a better result.

A10.4  COMPLEXITY-RELATED PROBLEMS

What is the complexity of the following?

for(i = 0; i<n; i++)
 {
 for(j=n; j>=1; j/=2)
 {
 for(k=n; k>=1; k=k/4)
 {
 //body requires q(1) time
 }
 }
 }

Complexity: The innermost loop runs log
4
n times. Initially, the value of k is n, it

becomes k/4 next time, and so on. When
n i

4
1






 = that is, log

4
 n = i. The second loop

runs log
2
n times. The outermost loop runs O(n) times. The complexity of the nested loop

is, therefore, O(log
2
n × log

4
n × n) or O(n(logn)2).

Related Problems
1.	 If the comments inside the loops are replaced by the following statement

print: (i*j*k);
(a)	 What would be the output?
(b)	 Can you accomplish the task accomplished by the above code using a method

having lesser complexity?

P ro b lems   ■  673

2.	 A computer takes 5 minutes to solve an instance of longest common subsequence dis-
cussed in Chapter 11. The computer is then replaced with another which is 100 times
faster than the previous one. What would be the time taken to solve the same problem
if the complexity of the problem is O(n3)?

3.	 In the above question what would be the time taken if the complexity is O(2n)?
4.	 What is meant by O(nO(n))? If an algorithm has complexity O(nO(1)), is it better than

that having complexity O(nO(n))?
5.	 Which is better—an algorithm having complexity log n! or that having complexity

O((log n)2)?

A10.5  ALGORITHM TO STORE SUBSETS HAVING TWO ELEMENTS

A set of n elements is given. The problem is to find all possible subsets having two ele-
ments. Algorithm A10.5 stores the result in a 2-dimensional array b, having two columns
and n(n − 1)/2 rows. The first column stores the first element of the subset and the sec-

ond column stores the second element. The number of rows in b is 2
nC , that is,

n n()−1
2

.

The index k, which is initially 0, increments at each iteration. The indices i and j are
the counters of the two loops.

	 Algorithm A10.5  Subset 2

Input: a, the array which contains the elements of the given set; n, the number of elements
in the set
Output: b, the two-dimensional array containing the subsets
Subset2(a, n)
{
k=0;
for(i=0; i<n;i++)
 {
 for(j=(i+1); j<n; j++)
 {
 b[0][k]=a[i];
 b[1][k]=a[j];
 k++;
 }
 }
return b;
}

Complexity: The inner loop runs n times and the inner runs for (n − 1 − i) times. The
total number of runs would be

674   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

() () ()n n n n n
− + − + − + ⋅⋅ ⋅ + = ×

−1 2 3 1 1
2

Thus, the complexity is O(n2).

Note: The above approach is easy to understand and implement. However, had the num-
ber of items in each subset been three, the complexity would have become O(n3), had
the number been four, the complexity would have been O(n4), and so on. In order to
understand the concept, the reader may solve the questions that follow.

Related Questions
1.	 Design an algorithm that prints all the subsets, of a set having n elements, which have

three elements.
2.	 In the above questions had the number of elements in each subset is m.
3.	 Find the complexity of all the subsets of a given set.

A10.6  DIVIDE AND CONQUER

Divide and conquer divides the given problem into sub-problems, solves the sub-prob-
lems and then combines the results to give the final result. The approach, in general,
reduces the time complexity. The topic has been discussed in Chapter 9. However, the
approach cannot be used always used. In the cases where the division of the problem of
size n leads to sub-problems of size which is almost n, divide and conquer should not
be used. In addition, in the cases where divide and conquer leads to n problems of size
(n/b), the technique should not be used.

A10.6.1  Non-recursive Binary Search
A sorted array ‘a’ is given. The first index of ‘a’ is ‘low’ the last index is ‘high’. An
element ‘item’ is to be found in the array using the concept of divide and conquer. The
problem has already been discussed in Section 9.2 of Chapter 9. Algorithm A10.6 pre-
sents the non-recursive version of binary search.

	 Algorithm A10.6  Non-recursive binary search

Input: a, array containing elements from index low to high. The item to be searched is ‘item’.
Output: The algorithm prints “Found”, if ‘item’ is found in the array ‘a’, otherwise it prints “Not
Found”.
Binary_Search_Non_Recursive (a, item, low, high)
{
low = 0;
high = n-1;
While (low==high)
 {
 mid= (low + high)/2;

P ro b lems   ■  675

 if (a [low] == item)
 {
 Print: “Found”;
 break;
 }
 else if(a[high] == item)
 {
 Print: “Found”;
 break;
 }
 else if(a[mid] ==item)
 {
 Print: “Found”;
 break;
 }
 else if(item < a[mid])
 {
 low= low+1;
 high = mid -1;
 }
 else if(item> a[mid])
 {
 low= mid +1;
 high =- high -1;
 }
 else
 {
 Print: “Not Found”;
 }
 }
}

Complexity: The complexity of the algorithm is O(log n).
The last element of each row is highest in the row. So, we apply binary search in the

last row. If ‘item’ is found in the last row, then the algorithm prints “Found”, otherwise
the search is directed to the row, identified by the single element that crops up in the
search. Binary_Search is then applied to that row.

A10.6.2  Binary Search in a 2-Dimensional array

	 Algorithm A10.7 B inary_Search_2D

Input:
1.	 a[n, n], a two dimensional array containing n rows and n columns, where n is a power of 2.
2.	 ‘item’, which is to be searched in the above array.

676   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

Output: The algorithm prints “Found”, when the element (item) is found in the array otherwise
it prints “Not Found”.
Condition: The given array is sorted such that an element in a particular column in ith row is
less than the element in that column in the jth row, where j > i. In addition, an element in the
ith column of a particular row is less than the item in the jth column of the same row if j > i.
Example:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Binary_Search_2D(a,0,n-1, 0, m-1)
//The arguments denotes the respective indices of rows and columns
 {
 if((n==1)&&(m==1))
 {
 if (a[0,0]==item)
 {
 Print: “Found”;
 exit();
 //exit() terminates the program
 }
 }
 else if(n==1)
 {
 //copy the elements of a to a single dimensional array b
 Binary_Search(b, o, n-1);
 }
 else
 {
 if (item == a[0, n-1])
 {
 Print: “Found”;
 exit();
 }
 else if(item == a[n-1, n-1])
 {
 Print: “Found”;
 exit();
 }
 else if(item == a[n/2, n-1];

P ro b lems   ■  677

 {
 Print: “Found”;
 exit();
 }
 else if(item < a[n/2, n-1, 0, n-1])
 {
 Binary_Search_2D(a, 0, n/2 -1, o, n-1];
 }
 else if (item > a[n/2, n-1])
 {
 Binary_Search(a, n/2-1, n-1, o, n-1])
 }
 }
 }

Complexity: The algorithm applies binary search in the last column, which takes
O(log n) time in the row selected by the previous algorithm, which again takes O(log n)
time. Hence, the complexity of the algorithm is O(log n).

A10.6.3  Complexity of Divide and Conquer
Note: The reader is advised to go through Master theorem (Chapter 9) before attempting
the following problems.

Problem: A problem is solved using divide and conquer such that each time it is divided
into 8 problems of size (n/2). The cost of combining the results of the sub-problems is
O(n2). What is the complexity of the algorithm?

The recursive equation representing the complexity of the above is

T n T n O n() ()= × 





 +8

2
2

Here, the value of ‘a’ (see Master theorem, Chapter 9) is 8 and that of ‘b’ is 2. The value
of n n nb balog log= =8 3. Since the value of f(n) is O(n2), the complexity of the algorithm is
O(n3).

Related Questions
	1.	 Design a search algorithm that divides a sorted array into four parts. If the element is

found at low, high, mid1, mid2, or mid3, then the algorithm should print “Found”, oth-
erwise it should select the appropriate sub-array and continue the search in that array.

	2.	 What would be the complexity of the above algorithm?
	3.	 What is the problem if the number of divisions in search is too high (as in binary search

divides array into four parts, the above problem divides it into four parts, and so on).
	4.	 Design a variant of merge sort wherein the array is divided into m parts instead of 2.

Each of the m sub-arrays should have (n/m) elements.

678   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

	5.	 What is the complexity of the algorithm developed in Question 4.
	6.	 Write a non-recursive algorithm for merge sort.
	7.	 Write a non-recursive algorithm for quick sort.
	8.	 Can the algorithm given in Section A10.7.2 be modified, so that each call of the

algorithm results in the application of the algorithm in a
n n
2 2
× array?

	9.	 Can the algorithm given in Section A10.7.1 be applied to an array in which the ele-

ments are not ordered?

	10.	If T n T
n

n nT n T
n

n n() , ,= 





 + = 






 + >27

3
27

3
13 3 () and T(1) = 1, find T(243).

A10.7  APPLICATIONS OF DYNAMIC PROGRAMMING

Problem 1: A sequence is such that any term is the product of the previous two terms.
The first two terms of the sequence are 1 and 2. Find the sequence and analyse the
algorithm.

Solution 1: The problem is similar to Fibonacci series. The solution can be easily
obtained using recursion. Algorithm A10.8 presents a recursion-based solution to the
above problem.

	 Algorithm A10.8  Problem1_algo

Input: a[1] = 1 and a[2] = 2, a[] being the array in which the terms would be stored.
Output: a[], the array containing the desired sequence.
//a[] is a global array, a[0] = 1 and a[1] = 2, n is the number of elements in
the sequence;
//Prob (int) calculates the ith term of the sequence and Main calls Prob
recursively
Algorithm Prob (int i) returns int
{
if (i==1)
 return 1;
else if (i==2)
 return 2;
else
 return (Prob(i-1) + Prob (i-2));
}
Main returns a[]
{
for (i=0; i<n; i++)
 {
 a[i] = Prod(i);
 }
return a;
}

P ro b lems   ■  679

Analysis: The complexity of the algorithm can be calculated as follows. The calculation
of the nth term, in this case, would require the evaluation of the (n − 1) and the (n − 2)th
term. The time complexity can be stated as follows.

T(n) = T(n − 1) + T(n − 2), T(1) = 1 and T(2) = 2.

Notice that the equation is similar to that obtained in the Fibonacci series. The com-
plexity is therefore near to O(2n).

Solution 2: The other approach, using the concept of bottom-up approach of the dynamic
programming, accomplishes the above task in O(n) time. The approach is as follows.

Prob ()
{
a[0] = 1;
a[1] = 2;
for (i=2; i<n; i++)
 {
 a[i] = a[i-1] * a[i-2];
 }
return a;
}

Analysis: The above algorithm uses a single loop and hence the complexity is O(n).

Problem 2: Given a list of n numbers, find the sum of the sub-list of neighbouring ele-
ments having maximum sum.

Solution 1: The first approach uses a brute force method to accomplish the above task.
The approach requires O(n3) time. The algorithm is as follows.

	 Algorithm A10.9  Neighbouring_sub_list_sum

Input: a[], the list and n, the number of elements in the list
Output: integer which is the sum of the sub-list of neighbouring elements having maximum
sum
MaximumSumOfNeighbours(a[], n)
//a[] is an array having n elements
{
/*sum[] is an array containing all the possible sums
t=0;
for(k=0; k<n; k++)
{
for(i=k; i<n; i++)
 {
 sum[t]=0;
 for(j=0; j<=i; j++)
 {

680   ■  A LG O R I T H M S : D E S I G N A N D A N A LY S I S

 sum[t]+=a[j];
 }
 t++;
 }
}
Max = sum[0];
for(i=1; i<t; i++)
 {
 if(a[t]>Max)
 {
 Max = a[t];
 }
 }
return Max;
}

Analysis: The above algorithm has three levels of nesting (of loops). The complexity is
therefore O(n3).

Solution 2: The other approach uses the concept of longest common subsequence,
explained in Section 11.3 of Chapter 11. The reader is expected to develop the algorithm
using the approach.

Related Questions
	1.	 In the above problem if the sum of all the terms is to be calculated, what would be

the complexity?
	2.	 A sequence is such that any term is 9 times the product of the previous three terms.

The first three terms of the sequence are 1, 2, and 3. Find the sequence using recur-
sion and analyse the algorithm.

	3.	 Solve the above problem using dynamic approach.
	4.	 Given a list of n numbers, find the sum of the sub-list having maximum sum (note

that the elements need not to be contiguous).
	5.	 Given a list of n numbers, find the sum of the sub-list of neighbouring elements hav-

ing minimum sum.
	6.	 Given a list of n numbers, find the sum of the sub-list having maximum product.
	7.	 Given a list of n numbers, find the sum of the sub-list of neighbouring elements hav-

ing maximum product.
	8.	 Can an array be divided into two parts such that the sum of the two parts is same?
	9.	 Can an array be divided into two parts such that the product of the two parts is same?
	10.	Develop an algorithm that finds the sub-list having maximum median.

Note: For problems on NP and number theoretic, refer to the web resources of this book.

Bibliography

BOOKS

Arora, S., Barak, B., Computational Complexity: A Modern Approach, Cambridge University Press, 2009.
Attwood, Parry Smith, Phukan, Introduction to Bioinformatics, Pearson, 2009.
Bishop, C.M., Neural Networks for Pattern Recognition, Oxford University Press, Oxford, England, 1995.
Bishop, C.M., Pattern Recognition and Machine Learning, Springer-Verlag, New York, 2008.
Brigham, E.O., The Fast Fourier Transform and its Applications, Prentice Hall, Englewood Cliffs, NJ, 1988.
Cormen, L., Rivest, S., Introduction to Algorithms, Second Edition, Prentice Hall of India, 1990.
Dantzig, G.B., Linear Programming and Extensions, Princeton University Press, 1963.
Dave and Dave, Design and Analysis of Algorithms, Pearson, 2008.
David, G., The Theory of Linear Economic Models, McGraw-Hill, 1960.
Duhamel, P., B. Piron, and J.M. Etcheto, On Computing the Inverse DFT, IEEE Trans. Acoust., Speech and Sig.

Processing 36(2), 285–286, 1988.
Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Read-

ing, MA, 1989.
Goldberg, D.E., The Design of Innovation: Lessons from and for Competent Genetic Algorithms, Addison-

Wesley, Reading, MA, 2002.
Horowitz, et al., Algorithms, Second Edition, University Press, 2007.
Jones and Pevzner, An Introduction to Bioinformatics Algorithms, MIT Press, 2004.
Kanitkar, Data Structures Through C, BPB Publications, 2003.
Kleinberg, T., Algorithm Design, Pearson, 2011.
Knuth, D., Sorting and Searching: The Art of Computer Programming, Vol. 3, Second ed., Addison–Wesley, 1998.
Levitin, Introduction to Design and Analysis of Algorithms, Perason, 2009.
Motwani, R. and P. Raghavan, Randomized Algorithms, Cambridge University Press, New York (NY), 1995.
Neapolitan, N., Foundations of Algorithms, Fourth Edition, Jones & Barlett, 2013.
Oppenheim, A.V., R.W. Schafer, and J.R. Buck, Discrete-time Signal Processing, Upper Saddle River, NJ,

Prentice Hall, 1999.
Papadimitriou, C., Computational Complexity: Polynomial Space, 1st ed., Chapter 19, Addison Wesley,

pp. 455–490, 1993.
Papadimitriou, C., Computational Complexity: Randomized Computation, 1st ed., Chapter 11, Addison Wes-

ley, 1993, pp. 241–278.
Rich, E., K. Knight, Artificial Intelligence, McGraw-Hill, 1991.
Russell, S.J. and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed., Pearson Education, 2003.
Sahini, H., Fundamentals of Data Structures, Galgotia Booksource, 1999.

682   ■  B I B L I O G R A P H Y

Samuel, K., Mathematical Methods and Theory in Games: Programming and Economics, Volume 1,
Addison-Wesley, 1959.

Sharma, Data Structures Using C, Pearson, 2013.
Sipser, M., Introduction to the Theory of Computation, PWS Publishing, Section 8.2–8.3, The Class PSPACE,

PSPACE Completeness, 1997, pp. 281–294.
Sipser, M., Introduction to the Theory of Computation: Space Complexity, 2nd ed., Chapter 8, Thomson Course

Technology, 2006.
Smith, S.W., The Discrete Fourier Transform, The Scientist and Engineer’s Guide to Digital Signal Processing,

Second ed., Chapter 8, California Technical Publishing, San Diego, CA, 1999.
Strang, G., Introduction to Linear Algebra, 4th ed., Wellesley-Cambridge Press, Wellesley, MA, February 2009.
Strayer, J.K., Linear Programming and Applications, Springer-Verlag, 1989.
Tenenbaum, et al., Data Structures Using C, Pearson, 2006.
Ullman, J. D., NP-complete Scheduling Problems, Journal of Computer and System Sciences, 10, 384–393.
Vašek C., Linear Programming, W. H. Freeman & Co., 1983.
Weiss, Data Structure and Algorithm Analysis in C++, Pearson, 2013.
Williamson and Shmoys, The Design of Approximation Algorithms, Cambridge University Press, 2012.

LECTURE NOTES

Artificial-Life, Inc.: Smart-Bots: Solutions for the Networked Economy, http://www.artificial-life.com/products/
papers/ALifeSolutions.pdf, July 2002.

Aspnes, J., Lecture Notes on Randomized Algorithms, Available on http://cs-www.cs.yale.edu/homes/aspnes/
classes/469/notes.pdf.

Diehl, S., VRML — Virtual Reality Modeling Language, in: Gesellschaft für Informatik: Informatik-Lexikon,
Stuttgart 1997 http://www.gi-ev.de/informatik/lexikon/inf-lex-vrml.shtml#dokanf, July 2002.

Lecture notes on Approximation Algorithms, Yale, Available on http://www.cs.yale.edu/homes/aspnes/
pinewiki/ApproximationAlgorithms.html?highlight=%28CategoryAlgorithmNotes%29

Lecture notes on Decrease and Conquer, Available on http://www.cs.utsa.edu/~bylander/cs3343/chapter5hand-
out.pdf

R Fiebrink, Lecture Notes on Amortized Analysis, Princeton University, Available on http://www.cs.princeton.
edu/~fiebrink/423/AmortizedAnalysisExplained_Fiebrink.pdf.

Nandy, S.C., Lecture Notes on Randomized Algorithms, Available on http://www.tcs.tifr.res.in/~workshop/
nitrkl_igga/randomized-lecture.pdf.

PAPERS

Aaronson, S., Is P versus NP formally independent?, Bulletin of the European Association for Theoretical
Computer Science 81 (Oct. 2003).

Agarwal, P.K., J. Xie, J. Yang, and H. Yu., Scalable Continuous Query Processing by Tracking Hotspots,
Proceedings of the 32nd International Conference on Very Large Databases, 32, 2006, pp. 31–42.

Agrawal, M., N. Kayal, and N. Saxena, PRIMEs In Annals of Mathematics 160, 2 (2004) 781–793.
Applegate, D., R. Bixby, V. Chvátal, and W. Cook, On the Solution of Traveling Salesman Problems, Docu-

menta Mathematica, Extra Volume ICM III (1998), 645–656.
Baker, T., J. Gill, and R. Solovay, Relativizations of the P = NP Question, SIAM Journal on

Computing 4, 4 (1975), 431–442.

B ibliography   ■  683

Bedau, M.A., Artificial life: organization, adaptation, and complexity from the bottom up, Science Direct-
Trends in Cognitive Sciences, Vol. 7, Issue 11, November 2003, pp. 505–512.

Berry, T. and S. Ravindran, A fast string matching algorithm and experimental results. In: Holub, J., M. Simánek,
(Eds.), Proceedings of the Prague Stringology ClubWorkshop 1999, Collaborative Report DC-99-05, Czech
Technical University, Prague, Czech Republic, pp. 16–26, 2001.

Bhasin, H. and N. Singla, Article: Genetic based Algorithm for N-Puzzle Problem, 51(22) (2012) 44–50.
Boyer, R., J. Moore, A Fast String Searching Algorithm, Communication of the ACM, Vol. 20(10) (1977) 762–772.
Brown, M.R. and R.E. Tarjan, Design and Analysis of a Data Structure for Representing Sorted Lists, SIAM

Journal on Computing 9(3) (1980) 594–614.
Cook, S. The Complexity of Theorem-proving Procedures. In: Proceedings of the 3rd ACM Symposium on the

Theory of Computing, ACM, NY, 1971, 151–158.
Cooley, J., P. Lewis, and P. Welch, The finite Fourier transform, IEEE Trans. Audio Electroacoustics 17(2)

(1969) 77–85.
Crochemore, M., A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter, Speeding

Up Two String Matching Algorithms, Algorithmica, Vol. 12, No. 4–5, 1994, pp. 247–267.
Edmonds, J., Paths, Trees and Owers, Canadian Journal of Mathematics 17 (1965), 449–467.
Faro, S., T. Lecroq, The Exact Online String Matching Problem: A Review of the Most Recent Results, ACM

Computing Surveys (CSUR) Surveys Homepage Archive, Vol. 45, Issue 2, Article No. 13, February 2013.
Fredman, M.L. and R.E. Tarjan, Fibonacci Heaps and their uses in Improved Network Optimization Algo-

rithms, Journal of the ACM 34(3) (1987) 596–615.
Garey, M. and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,

W.H. Freeman and Company, NY, 1979.
Grover, L., A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th ACM Sympo-

sium on the Theory of Computing, ACM, NY, 1996, pp. 212–219.
Gurevich, S., R. Hadani, and N. Sochen, The finite harmonic oscillator and its applications to sequences, com-

munication and radar, IEEE Transactions on Information Theory 54 (9) (2008) 4239–4253.
Hayles, N.K., How We Became Posthuman, Virtual Bodies in Cybernetics, Literature, and Informatics,

Chicago, 1999.
Hong, Y., X. Ke, and C. Yong, An improved Wu-Manber Multiple Patterns Matching Algorithm, Performance,

Computing, and Communications Conference, IPCCC 2006, 25th IEEE International, 6, 2006, p. 680.
Huddleston, S. Naher, and K. Melhorn, A New Data Structure for Representing Sorted Lists, Acta

Informatica, 17, 1982, pp. 157–184.
Huddleston, S., and K. Melhorn, Robust Balancing in B-trees, 5th GI Conference on Theoretical Computer

Science, Lecture Notes in Computer Science, 104, Springer Verlag, New York, 1981, pp. 234–44.
Impagliazzo, R. and Wigderson, A.P = BPP if E requires exponential circuits: Derandomizing the XOR lemma,

In: Proceedings of the 29th ACM Symposium on the Theory of Computing, ACM, NY, 1997, pp. 220–229.
Karp, R., Reducibility Among Combinatorial Problems, Complexity of Computer Computations, R. Miller and

J. Thatcher (Eds.), Plenum Press, 1972, pp. 85–103.
Knuth, D., J. Morris, and V. Pratt, Fast Pattern Matching in Strings, SIAM Journal on Computing, Vol. 6(1)

(1977) 322–350.
Levin, L., Average Case Complete Problems, SIAM Journal on Computing 15 (1986), 285–286.
Luger, G.F., A. William, Stubblefield, Artificial Intelligence: Structures and Strategies for Complex Problem

Solving, Addison-Wesley Longman Publishing Co. Boston, MA, 1997.
Luscombe, Greenbaum, and Gerstein, What is Bioinformatics? An introduction and Overview, Yearbook of

Medical Informatics, 2001.

684   ■  B I B L I O G R A P H Y

Michailidis, P., and K. Margaritis, On-line String Matching Algorithms: Survey and Experimental Results,
International Journal of Computer Mathematics, Vol. 76, Issue 4, 2001.

Rabin, M.O., Probabilistic Algorithm for Testing Primality, Journal of Number Theory 12 (1980) 128–138.
Razborov, A., Lower Bounds on the Monotone Complexity of Some Boolean Functions, Soviet

Mathematics-Doklady 31 (1985) 485–493.
SaiKrishna, V., A. Rasool, and N. Khare, String Matching and its Applications in: Diversified Fields, Interna-

tional Journal of Computer Science Issues, Volume 9, Issue 1, Jan 2012, pp. 219–226.
Sudan, M., Probabilistically Checkable Proofs, Commun. ACM 52, 3 (March 2009) 76–84.
Turing, A., On Computable Numbers, With an Application to the Etscheidungs Problem, Proceedings of the

London Mathematical Society 42 (1936), 230–265.
Vargas-Rubio, J.G. and B. Santhanam, On the Multiangle Centered Discrete Fractional Fourier Transform,

IEEE Sig. Proc. Lett. 12(4) (2005) 273–276.
Williams, G., Approximation Algorithms: Introduction to Optimization, Decision Support and Search Method-

ologies. In: Burke and Kendall (Eds.), Kluwer, 2005. (Invited Survey).

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

0/1 Knapsack problem 226 312

0-1 Integer programming 421

2-3-4 Tree 539

2d Array 81

8-puzzle problems 322 438

15-puzzle problem 438

Knuth-Morris-Pratt (KMP) algorithm 395

Ω Notation 23

ω Notation 31

θ Notation 24

A

Abstract data types 79

Accounting method 66

Adaptability 171 487

Addition of matrices 556

Aggregate analysis 530

Algorithm 2

Amino acid 520

Amortized analysis 65

Analogous proteins 522

Applications of stack 93

Approximation algorithms 446

Arithmetic progression 20

Array 79 679

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Artificial intelligence 484 485

Artificial life 437

Asymmetric key cryptography 388 389

Asymptotic 22

B

Balanced trees 131

Basepairs 522

Basic solution 577

Bay’s theorem 605

Binary search tree 644

Binary tree 109

Binomial and Fibonacci heap 131

Binomial coefficients 280

Binomial distribution 614

Bioinformatics 515

Biological databases 514

Book problem 339

Bounded-error probabilistic polynomial algorithms (BPP) 338

Branch and bound 311

Breadth first search 150 369

Broadcasting 476

Brute force approach 262 365

B-Tree 126

Bubble sort 175 184 664

C

Cells 492 516

Certain event 599

Chinese remainder theorem 386

Circular queue 102

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Class NP 417

Class P 417

Class zero-error probabilistic P (ZPP) 338

Clique problem 421

Coin changing algorithm 241

Coin changing problem 239 280

Column matrix 554

Complete binary tree 109

Completion time 635

Complexity 10

Computational biology 515

Concept of dynamic programming 260

Concurrent read concurrent write 470

Concurrent read exclusive write 470

Connectionist 486

Connectionist model 487

Constraint optimization problem 327

Constraints 289 573

Convex hull 208

Convex optimization 327

Cook’s theorem 424

Co-randomized P 338

Corner point method 573

Co-RP problems 338

Counting sort 181

Cramer’s rule 562

Crossover 493

Cryptanalysis 388

Cryptography 388

Cube roots of unity 592

Cyclic graph 144

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

D

Data intensive approach 488

Decision problems 415

Defective chessboard problem 216

Degenerate solutions 577

Deoxyribonucleic acid 516

Depth first search 153 369

Determinant of a matrix 560

Deterministic finite acceptor 400

Deterministic finite automata 400

Diagonal matrix 554

Digital signatures 390

Diminishing incremental sort 180

Diploid genetic algorithms 492

Directed Hamiltonian cycle 422

Discrete Fourier transform 594

Divide and conquer 190

Divisor 377

DNA computing 515

DNA matching 395 396

Domain 2

Double red problem 546

Double-stranded structure 517

Doubly linked list 88

do–while loop 9

Dynamic implementation of stack 92

Dynamic optimization 327

Dynamic programming 258

E

Eavesdropping 388

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Efficiency 11

Efficiency considerations 324

Elementary row operations 569

ENIAC 417 464

Equality of matrices 555

Equality of polynomials 344

Euclid theorem 379

Eulerian cycle 145

Euler’s formula 148

Event 599

Evolutionary 486

Exclusive read concurrent write 470

Exclusive read exclusive write 470

Explanation-based approach 488

Explicit 289

Explicit constraints 289

Extended Euclid theorem 382

External algorithms 170

F

Factorial 59

Feasible value 573

Fibonacci series 45 59

FIFO search 311

Finding maximum 471

Flowcharts 6

Floyd’s algorithm 277

Folding problem 522

for loop 9

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

G

GCD 377

Generating functions 43

Genetic algorithms 486 492

Genomes 518 519

Geometric progression 21

Graphs 142

Graph traversals 150

Greatest common divisor 377

H

Hamiltonian cycle 144 302 418

Hard problems 418

Heap 127

Heapsort 129

Heuristic search 488

Homology 522

Huffman codes 242

Humdrum tasks 485

Hypercube algorithms 475

I

IAS 465

Identity matrix 554

if loop 8

Implicit 289

Implicit constraints 289

Impossible event 599

Independent events 602

Inductive learning 488

Infix expression 96

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

In-order traversal 116

Insertion sort 179 662

Internal algorithms 170

Intractable 419

Inverse method 567

Inverse of a matrix 561

Isomorphic graphs 146

Isomorphism 306

J

Job assignment 306

Job scheduling 635

Job sequencing 228

K

Knapsack problem 305 319 498

Knuth–Morris–Pratt automata 403

Kruskal’s algorithm 231

Kuratowski’s theorem 148

L

Lateness 635

LIFO search 311

Linear search 6 80

Linked list 82

Load balancing 340

Logarithm 18

Longest common subsequence 262 395

Longest path problem (LPP) 420

Look-ahead method 467

Lower triangular matrix 555

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

M

Machine learning 486

Makespan 635

Marriage problem 68

Master theorem 193

Mathematical induction 63

Matrix chain multiplication 267

Matrix representation of a graph 143

Maximum element of the array 10

Maximum clique in a complete graph 306

Maximum clique problem 421 509

m-Colouring problem 300

Memory to memory architecture 468

Merge 474

Merge sort 61 203

Messenger RNA 518

MIMD 468

Minimum distance 213

Minor and cofactor of an element 560

Modular linear equation 385

Moore’s law 468

Multimedia database 396

Multiplication of matrices 559

Multiplying numbers 215

Multipoint crossover 493

Multiprocessors 465

Mutation 495 496

Mutually exclusive 600

N

Naïve string-matching algorithm 397

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Neural nertworks 488

Neuron 488 489

Node cover 422

Non-deterministic algorithms 4

Non-deterministic finite automata 402

Non-linear recurrence equation 48

Non-zero constraints 573

Normal distribution 625

NP-complete job scheduling problem 636

NP-complete problems 418

N-puzzle problem 437

Nth roots of unity 593

Nucleotide 517

NUMA model 469

Number of comparisons 170

O

Objective function 573

One-point crossover 493

O notation 22 31

Ontologies 515

Optimal binary search tree problem 275

Optimal storage 250

Optimal substructure lemma 274

Optimal values 573

Optimization 11 326

Optimization and relaxation 325

Optimization problems 3 415 573

P

Page rank algorithm 3

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Parallelism 466

Parallel_Maximum (num[], n) 471

Parallel RAM 469

Path problem (PP) 420

Pattern-matching 489

Permutation generation 371

Pigeonhole principle 601

Pipelining 466

Pivot 199

Planar graph 147

Planning problems 437

Poisson’s distribution 620

Population of chromosomes 492

Postfix 94

Post-order traversal 117

Potential amortized analysis 531

Potential method 67

Power set 367

Power and root of a complex number 589

Pre-emptive scheduling 637

Prefix 97

Prefix computation 473

Prefix computation using hypercube algorithm 478

Pre-order traversal 116

Prim’s algorithm 236

Probabilistic analysis 67

Probabilistic P class (PP) 338

Probability 599

Probability distribution 609

Problem with BST and AVL trees 652

Product of roots of unity 593

Prokaryotic or eukaryotic 517

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Proof by contradiction 61

Protein and peptide 521

Protoplasm 517

Pseudocode 7

Pseudorandom number generator 4

PSpace 435

PSpace problems 434

Q

QSAT 436

Quantified satisfiability 436

Quaternary 521

Queue 99

Quick sort 199 341 659

R

Rabbit problem 42

Rabin–Karp algorithm 395 398

Radix sort 183

Randomized approach 345

Range 2

Recurrence equation 46

Recursion 41 170

Recursive enumerable machine 415

Recursive machine 415

Red–black trees 544

Reducibility 424

Reduction 419

Reflexivity 32

Register to register architecture 468

Regular expressions 440

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Related problems 661

Relaxation 327

Reversing the order 81

Ribonucleic acid 516 517

Ribosomal RNA 518

RL and LR rotations 134

Roulette wheel selection 496

Row matrix 553

RP problems 337

RR rotation 134

RSA algorithm 391

S

Sample space 599

Satisfiability 422

Scalar matrix 554

Scalar multiplication 556

Scheduling problems 634

Selection 496

Selection sort 172 660

Sequence alignment 524

Sequence detection 524

Sequence–structure deficit 522

Sequencing 521

Sequential method 467

Set cover 422

Set packing 422

Shortest path algorithms 3

Shortest path problem (SPP) 420

Sigmoid function 491

SIMD 468

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Simplex method 576

Single-source shortest path 243

Skew-symmetric matrix 558

Slack variables 577

Sorting 81 169

Spanning tree 161 222

Sparse matrix 82

Stable sort 171

Stack 90

Standard form 577

Standard random access machine model 469

Static implementation of stack 90

Static optimization 327

Strassen’s matrix 211

Strictly binary tree 109

String matching 395 396

Structures of protein 521

Subset sum problem 249 289 421

Subset sum using GA 499

Substitution 43

Subtraction of matrices 556

Sudoku problems 292

Suffix tree 409

Sum of roots of unity 593

Surplus variables 577

Surrogate inequalities 328

Swaps 170

switch case 8

Symmetric key cryptography 389

Symmetric matrix 557

Symmetry property 33

Synapse 488 489

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

T

Tail recursion 69

Tardiness 635

Tarjen’s method 66

Tertiary 520

Text editors 396

Theorem proofing 485

Theory of survival of the fittest 492

Threshold function 491

Topological sorting 157

Tractable 419

Transfer RNA 518

Transitivity 33

Transpose of a matrix 557

Transpose symmetry 33

Travelling salesman problem 270 314 418 503

Tree method 43 60

Tree traversal 116

Trichotomy 33

Tries 395 406

Turing machines 416

Two-point crossover 493

U

Unambiguous 11

Unconstrained problem 327

Uniform crossover 493

Upper triangular matrix 555

Using CRCW 471

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

V

Variable decrease 373

Vertex cover problem 451 507

Viva problem 67

W

while loop 9

