
Nmap Network Scanning

Official Nmap Project Gu ide to Network
Discovery and Security Scann ing

Gordon "Fyodor" Lyon

From port scanning basics for novices to the type of packet crafting
used by advanced hackers, this book by Nmap's author and maintainer
suits all levels of security and networking professionals. Rather than
simply document what every Nmap option does, Nmap Network
Scanning demonstrates how these features can be applied to solve real
world tasks such as penetration testing, taking network inventory,
detecting rogue wireless access points or open proxies, quashing network
worm and virus outbreaks, and much more. Examples and diagrams
show actual communication on the wire. This book is essential for
anyone who needs to get the most out of Nmap, particularly security
auditors and systems or network administrators.

Nmap Network Scanning : Official Nmap Project Guide to Network
Discovery and Security Scanning
by Gordon "Fyodor" Lyon

Book URL: http://nmap.org!bookl
ISBN-13: 9 7 8-0-9 7 9 9 5 8 7 - 1 - 7

ISBN-10: 0 - 9 7 9 9 5 8 7 - 1 - 7

Library of Congress Control Number (LCCN): 2 0 0 8 9 4 0 5 8 2

Library Of Congress Subject Headings:
I . Computer networks--Security measures
2. Computer security

Published by Insecure.Com LLC. For information on bulk purchases, special sales, rights, book distributors,
or translations, please contact us directly:

Insecure.Com LLC
370 Altair Way # 1 1 3
Sunnyvale, CA 94086-6161
United States
Email : sales@insecure.com; Phone: +1 -650-989-4206; Fax: +l-650-989-4206

Revision History:
First Edition: December 2008
Defcon Pre-Release: August 2008
Zero-Day Release: May 2008

Copyright © 2008 by Insecure.Com LLC. All rights reserved. Except where noted otherwise in this work,
no part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage or retrieval system, without the prior written permission
of the copyright owner.

Nmap is a registered trademark of lnsecure.Com LLC. Other product and company names mentioned herein
may be the trademarks of their respective owners. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

Table of Contents

Preface . xxi
I. Introduction . xxi
2. Intended Audience and Organization . xxi
3. Conventions . xxii
4. Other Resources . xxiii
5. Request for Comments . xxiv
6. Acknowledgements . xx iv

6. 1 . Technology Used to Create This Book . xxv
7. TCP/IP Reference . xxvi

I . Getting Started with Nmap . l
J . l . Introduction . 1
1 .2. Nmap Overview and Demonstration . l

1 .2. 1 . Avatar Online . l
1 .2.2. Saving the Human Race . 8
1 .2.3. MadHat in Wonderland . 9

1 .3. The Phases of an Nmap Scan . 1 2
1 .4. Legal Issues . 1 3

1 .4 . 1 . Is Unauthorized Port Scanning a Crime? . 1 4
1 .4.2. Can Port Scanning Crash the Target Computer/Networks? . 1 9
1 .4.3. Nmap Copyright . , . 20

1 .5. The History and Future of Nmap . 20
2. Obtaining, Compiling, Installing, and Removing Nmap . 25

2.1. Introduction . 25
2. 1 . 1 . Testing Whether Nmap is Already Installed . 25
2. 1 .2. Command-line and Graphical Interfaces . 25
2.1 .3. Downloading Nmap . 26
2.1 .4. Verifying the Integrity of Nmap Downloads . 26
2.1 .5. Obtaining Nmap from the Subversion (SYN) Repository . 28

2.2. Unix Compilation and Installation from Source Code . 29
2.2. 1 . Configure Directives . 30
2.2.2. If You Encounter Compilation Problems . 32

2.3. Linux Distributions . 33
2.3.1. RPM-based Distributions (Red Hat, Mandrake, SUSE, Fedora) . 33
2.3.2. Updating Red Hat, Fedora, Mandrake, and Yel low Dog Linux with Yum 34
2.3.3. Debian Linux and Derivatives such as Ubuntu . 35
2.3.4. Other Linux Distributions . 35

2.4. Windows . 36
2.4. 1 . Windows 2000 Dependencies . 37
2.4.2. Windows Self-installer . 37
2.4.3. Command-line Zip Binaries . 37

Installing the Nmap zip binaries . 37
2.4.4. Compile from Source Code . 38
2.4.5. Executing Nmap on Windows . 39

2.5. Sun Solaris . 40
2.6. Apple Mac OS X . 4 1

2.6. 1 . Executable Installer . 4 1

111

2.6.2. Compile from Source Code . 4 1
Compile Nmap from source code . 4 1
Compile Zen map from source code . 42

2.6.3. Third-party Packages . 42
2.6.4. Executing Nmap on Mac OS X . 42

2.7. FreeBSD I OpenBSD I NetBSD . 43
2. 7. 1 . OpenBSD Binary Packages and Source Ports Instructions . 43
2.7.2. FreeBSD Binary Package and Source Ports Instructions . 44

Installation of the binary package . 44
Installation using the source ports tree . 44

2.7.3. NetBSD Binary Package Instructions . 44
2.8. Amiga, HP-UX, IRIX, and Other Platforms . 44
2.9. Removing Nmap . 45

3. Host Discovery (Ping Scanning) . 47
3 . 1 . Introduction . 47
3 .2. Specifying Target Hosts and Networks . 47

3.2. 1 . Input From List (-iL) . 48
3.2.2. Choose Targets at Random (-iR <numtargets>) . 48
3.2.3. Excluding Targets (--exclude, --excludefile <filename>) . 48
3.2.4. Practical Examples . 49

3.3. Finding an Organization's IP Addresses . 49
3.3. 1 . DNS Tricks . 50
3.3.2. Whois Queries Against IP Registries . 54
3.3.3. Internet Routing Information . 55

3.4. DNS Resolution . 56
3.5. Host Discovery Controls . 57

3.5. 1 . List Scan (-sL) . 57
3.5.2. Ping Scan (-sP) . 58
3.5.3. Disable Ping (-PN) . 59

3 .6. Host Discovery Techniques . 60
3.6. 1 . TCP SYN Ping (-PS<port l ist>) . 6 1
3.6.2. TCP ACK Ping (-PA<port list>) . 62
3.6.3. UDP Ping (-PU<port l ist>) . 63
3.6.4. ICMP Ping Types (-PE, -PP, and -PM) . 64
3 .6.5. IP Protocol Ping (-PO<protocol list>) . 64
3.6.6. ARP Scan (-PR) . 64
3.6.7. Default Combination . 66

3.7. Putting It All Together: Host Discovery Strategies . 66
3.7. 1 . Related Options . 66
3.7.2. Choosing and Combining Ping Options . 68

TCP probe and port selection . 68
UDP port selection . 70
ICMP probe selection . 70
Designing the ideal combinations of probes . 70

3.8. Host Discovery Code Algorithms . 72
4. Port Scanning Overview . 73

4. 1 . Introduction to Port Scanning . 73
4. 1 . 1 . What Exactly is a Port? . 73

4. 1 .2. What Are the Most Popular Ports? . 75

IV

4.1 .3. What is Port Scanning? . 77
4.1 .4. Why Scan Ports? . 78

4.2. A Quick Port Scanning Tutorial . 79
4.3. Command-line Flags . 82

4.3. 1 . Selecting Scan Techniques . 82
4.3.2. Selecting Ports to Scan . 83
4.3.3. Timing-related Options . 85
4.3.4. Output Format and Verbosity Options . 85
4.3.5. Firewall and IDS Evasion Options . 87
4.3.6. Specifying Targets . 87
4.3.7. Miscellaneous Options . 87

4.4. 1Pv6 Scanning (-6) . 88
4.5. SOLUTION: Scan a Large Network for a Certain Open TCP Port . 88

4.5 . 1 . Problem . 88
4.5.2. Solution . 89
4.5.3. Discussion . 89
4.5.4. See Also . 94

5. Port Scanning Techniques and Algorithms . 95

5 . 1 . Introduction . 95
5.2. TCP SYN (Stealth) Scan (-sS) . 96
5.3. TCP Connect Scan (-sT) . JOO

5.4. UDP Scan (-sU) . 1 0 1
5.4. 1 . Disambiguating Open from Filtered UDP Ports . 102
5.4.2. Speeding Up UDP Scans . I 05

5.5. TCP FIN, NULL, and Xmas Scans (-sF, -sN, -sX) . 107
5.6. Custom Scan Types with --scanftags . 1 1 1

5.6. 1 . Custom SYN/FIN Scan . 1 1 1
5.6.2. PSH Scan . 1 1 2

5.7. TCP ACK Scan (-sA) . 1 1 3
5.8. TCP Window Scan (-sW) . 1 1 5
5.9. TCP Maimon Scan (-sM) . 1 1 6
5. 10. TCP Idle Scan (-sl) . : . 1 1 7

5 .10. 1 . Idle Scan Step by Step . 1 1 8
5 . 10.2. Finding a Working Idle Scan Zombie Host . 1 20
5.10.3. Executing an Idle Scan . 1 2 1
5. 10.4. Idle Scan Implementation Algorithms . 1 22

5. 1 1 . IP Protocol Scan (-sO) . 1 25
5. 12 . TCP FTP Bounce Scan (-b) . 1 27
5 . 13 . Scan Code and Algorithms . 1 28

5 . 13 . 1 . Network Condition Monitoring . 1 29
5 . 1 3.2. Host and Port Parallelization . 1 29
5 . 1 3.3. Round Trip Time Estimation . 1 30
5 . 1 3.4. Congestion Control . 1 30
5 . 13.5. Timing probes ·-· · · · · · · · · · · · · · · · · · 1 32
5 . 1 3.6. Inferred Neighbor Times . 1 32
5 . 1 3.7. Adaptive Retransmission . 1 32
5 . 1 3.8. Scan Delay . 1 32

6. Optimizing Nmap Performance . 1 35
6. 1 . Introduction . 1 35

v

6.2. Scan Time Reduction Techniques . · 1 35
6.2. 1 . Omit Non-critical Tests . 1 36
6.2.2. Optimize Timing Parameters . 1 37
6.2.3. Separate and Optimize UDP Scans . 1 37
6.2.4. Upgrade Nmap . 1 37
6.2.5. Execute Concurrent Nmap Instances . 1 38
6.2.6. Scan From a Favorable Network Location . 1 38
6.2.7. Increase Available Bandwidth and CPU Time . 1 38

6.3. Coping Strategies for Long Scans . 1 39
6.3 . 1 . Use a Multi-stage Approach . 1 39
6.3.2. Estimate and Plan for Scan Time . 1 40

6.4. Port Selection Data and Strategies . 1 40
6.5. Low-Level Timing Controls . 1 4 1
6.6. Timing Templates (-T) . 1 42
6.7. Scanning 676,352 IP Addresses in 46 Hours . 1 43

7. Service and Application Version Detection . 1 45

7. 1 . Introduction . 1 45
7.2. Usage and Examples . 1 47
7.3 . Technique Described . 1 49

7.3 . 1 . Cheats and Fallbacks . 1 5 1
7.3 .2. Probe Selection and Rarity . 1 52

7.4. Technique Demonstrated . 1 52
7.5 . Post-processors . 1 55

7.5 . 1 . Nmap Scripting Engine Integration . 1 55
7.5.2. RPC Grinding . 1 56
7.5.3. SSL Post-processor Notes . 1 57

7.6. nmap-service-probes File Format . 1 58
7.6. 1 . Exclude Directive . 1 58
7.6.2. Probe Directive . 1 59
7.6.3. match Directive . 1 59
7.6.4. softmatch Directive . 16 1
7.6.5. ports and sslports Directives . 162
7.6.6. totalwaitms Directive . 1 62
7.6.7. rarity Directive . 162
7.6.8. fallback Directive . 163
7.6.9. Putting It All Together . 163

7.7. Community Contributions . 164
7.7. 1 . Submit Service Fingerprints . 164
7.7.2. Submit Database Corrections . 164
7.7.3. Submit New Probes . 165

7.8 . SOLUTION: Find All Servers Running an Insecure or Nonstandard Application
Version . 1 66

7.8 . 1 . Problem . 166
7.8.2. Solution . . 1 66
7.8.3. Discussion . 167

7.9. SOLUTION: Hack Version Detection to Suit Custom Needs, such as Open Proxy
Detection . 1 68

7.9 . 1 . Problem . 168
7.9.2. Solution . 169

vi

7.9.3. Discussion . 1 69
8. Remote OS Detection . 1 7 1

8 . 1 . Introduction . 1 7 1
8 . 1 . 1 . Reasons for OS Detection . 1 7 1

Determining vulnerability of target hosts . 1 7 1
Tailoring exploits . 1 7 1
Network inventory and support . 1 72
Detecting unauthorized and dangerous devices . 1 72
Social engineering . 1 72

8.2. Usage and Examples . 1 72
8.3. TCP/IP Fingerprinting Methods Supported by Nmap . 1 76

8.3. 1 . Probes Sent . I 77
Sequence generation (SEQ, OPS, WIN, and T l) . 1 77
ICMP echo (IE) . 1 78
TCP explicit congestion notification (ECN) . 1 79
TCP (T2-T7) . 1 79
UDP (U I) . 1 79

8.3.2. Response Tests . 1 80
TCP ISN greatest common divisor (GCD) . 1 80
TCP ISN counter rate (ISR) . 1 80
TCP ISN sequence predictability index (SP) . 1 80
TCP IP ID sequence generation algorithm (Tl) . 1 8 1
ICMP IP ID sequence generation algorithm (II) . 1 8 1
Shared IP ID sequence Boolean (SS) . 1 82
TCP timestamp option algorithm (TS) . 1 82
TCP options (0, 01 -06) . 1 83
TCP initial window size (W, W I -W6) . 1 83
Responsiveness (R) . 1 84
IP don't fragment bit (DF) . I 84
Don't fragment (ICMP) (DFI) . 1 84
IP initial time-to-live (T) . 1 84
IP initial time-to-live guess (TG) . 1 85
Explicit congestion notification (CC) . 1 85
TCP miscellaneous quirks (Q) . 1 85
TCP sequence number (S) . I 86
ICMP sequence number(SI) . 1 86
TCP acknowledgment number (A) . 1 86
TCP flags (F) . 1 87
TCP RST data checksum (RD) . 1 87
IP type of service (TOS) . 1 87
IP type of service for ICMP responses (TOSI) . 1 87
IP total length (IPL) . 1 88
Unused port unreachable field nonzero (UN) . 1 88
Returned probe IP total length value (RIPL) . 1 88
Returned probe IP ID value (RID) . 1 88
Integrity of returned probe IP checksum value (RIPCK) . 1 88
Integrity of returned probe UDP length and checksum (RUL and RUCK) 1 88
Integrity of returned UDP data (RUD) . 1 88
ICMP response code (CD) . 1 89

Vil

IP data length for ICMP responses (DLI) . 1 89
8.4. Fingerprinting Methods Avoided by Nmap . 1 89

8.4. 1 . Passive Fingerprinting . 1 89
8.4.2. Exploit Chronology . 190
8.4.3. Retransmission Times . 1 90
8.4.4. IP Fragmentation . 1 9 1
8.4.5. Open Port Patterns . 1 9 1

8.5. Understanding an Nmap Fingerprint . 1 9 1
8.5. 1 . Decoding the Subject Fingerprint Format . 192

Decoding the SCAN line of a subject fingerprint . 193
8.5.2. Decoding the Reference Fingerprint Format . 194

Free-form OS description (Fingerprint line) . 195
Device and OS classification (Class lines) . 196
Test expressions . 1 97

8.6. OS Matching Algorithms . 198
8.7. Dealing with Misidentified and Unidentified Hosts . 199

8.7. 1 . When Nmap Guesses Wrong . 200
8.7.2. When Nmap Fails to Find a Match and Prints a Fingerprint . 20 1
8.7.3. Modifying the nmap-os-db Database Yourself . 202

8.8. SOLUTION: Detect Rogue Wireless Access Points on an Enterprise Network 202
8.8. 1 . Problem . 202
8.8.2. Solution . 202
8.8.3. WAP Characteristics . 203

9. Nmap Scripting Engine . 205
9 . 1 . Introduction . 205
9.2. Usage and Examples . 206

9.2. 1 . Script Categories . 207
9.2.2. Command-line Arguments . 209
9.2.3. Arguments to Scripts . 2 10
9.2.4. Usage Examples . 2 1 0

9.3. Script Format . 2 1 1
9.3 . l . description Field . 2 1 1
9.3.2. categories Field . 2 1 1
9.3.3. author Field . 2 1 1
9.3.4. license Field . 2 1 1
9.3.5. runlevel Field . 2 1 1
9.3.6. Port and Host Rules . 2 1 2
9.3.7. Action . 2 1 2

9.4. Script Language . 2 1 2
9.4. 1 . Lua Base Language . 2 1 2

9.5. NSE Scripts . 2 1 3
9.6. NSE Libraries . 236

9.6. 1 . List of All Libraries . 236
9.6.2. Adding C Modules to Nselib . 237

9.7. Nmap API . 239
9.7. 1 . Information Passed to a Script . 239
9.7.2. Network 110 API . 24 1

Connect-style network 1/0 . 24 1
Raw packet network 1/0 . 242

viii

9.7.3. Thread Mutexes . 243
9.7.4. Exception Handling . 244
9.7.5. The Registry . 245

9.8. Script Writing Tutorial . 245
9.8. 1 . The Head . 245
9.8.2. The Rule . 246
9.8.3. The Mechanism . 247

9.9. Writing Script Documentation (NSEDoc) . 248
9.9. 1 . NSE Documentation Tags . 250

9.10. Version Detection Using NSE . 25 1
9.1 I. Example Script: finger.nse . 253
9.12. Implementation Details . 254

9.12. 1 . Initialization Phase . 254
9.1 2.2. Matching Scripts with Targets . 255
9.12.3. Script Execution . 255

10. Detecting and Subverting Firewalls and Intrusion Detection Systems . 257
JO.I. Introduction . 257
10.2. Why Would Ethical Professionals (White-hats) Ever Do This? . 257
10.3. Determining Firewall Rules . 258

10.3.1 . Standard SYN Scan . 258
Sneaky firewalls that return RST . 259

10.3.2. ACK Scan . 260
10.3.3. IP ID Tricks . : 262
10.3.4. UDP Version Scanning . 264

10.4. Bypassing Firewall Rules . 265
10.4.1 . Exotic Scan Flags . 265
10.4.2. Source Port Manipulation . 266
10.4.3. 1Pv6 Attacks . 267
10.4.4. IP ID Idle Scanning . 269
10.4.5. Multiple Ping Probes . 269
10.4.6. Fragmentation . 269
10.4.7. Proxies . 270
10.4.8. MAC Address Spoofing . 270
10.4.9. Source Routing . 27 1
10.4.10. FTP Bounce Scan . 272
10.4.1 1 . Take an Alternative Path . 272
10.4.12. A Practical Real-life Example of Firewall Subversion . 272

10.5. Subverting Intrusion Detection Systems : . 276
10.5 . 1 . Intrusion Detection System Detection . 276

Reverse probes . 276
Sudden firewall changes and suspicious packets . 277
Naming conventions . 277
Unexplained TIL jumps . 278

10.5.2. Avoiding Intrusion Detection Systems . 279
Slow down . 280
Scatter probes across networks rather than scanning hosts consecutively 282
Fragment packets . 282
Evade specific rules . 283
Avoid easily detected Nmap features . 284

ix

10.5.3. Misleading Intrusion Detection Systems . 284
Decoys . 284
Port scan spoofing . 286
Idle scan . 286
DNS proxying . 286

10.5.4. DoS Attacks Against Reactive Systems . 287
10.5.5. Exploiting Intrusion Detection Systems . 288
10.5 .6. Ignoring Intrusion Detection Systems . 288

10.6. Detecting Packet Forgery by Firewall and Intrusion Detection Systems . 289
10.6. 1 . Look for TIL Consistency . 289
10.6.2. Look for IP ID and Sequence Number Consistency . 290
10.6.3. The Bogus TCP Checksum Trick . 29 1
10.6.4. Round Trip Times . 292
10.6.5. Close Analysis of Packet Headers and Contents . 293
10.6.6. Unusual Network Uniformity . 293

1 1 . Defenses Against Nmap . 295
I I . I . Introduction . 295
1 1 .2. Scan Proactively, Then Close or Block Ports and Fix Vulnerabilities . 295
1 1 .3 . Block and Slow Nmap with Firewalls . 296
1 1 .4. Detect Nmap Scans . 297
1 1 .5. Clever Trickery . 298

1 1 .5. 1 . Hiding Services on Obscure Ports . 299
1 1 .5 .2. Port Knocking . 300
1 1 .5.3. Honeypots and Honeynets . 30 I
1 1 .5.4. OS Spoofing . 302
1 1 .5.5. Tar Pits . 303
1 1 .5.6. Reactive Port Scan Detection . 304
1 1 .5.7. Escalating Arms Race . 304

12 . Zenmap GUI Users' Guide . 307
12 . 1 . Introduction . 307

12. 1 . l . The Purpose of a Graphical Frontend for Nmap . 307
1 2.2. Scanning . 308

1 2.2. 1 . Profiles . 309
1 2.2.2. Scan Aggregation . 309

12.3. Interpreting Scan Results . 3 1 1
12.3. 1 . Scan Results Tabs . 3 1 1

The Nmap Output tab . 3 1 2
The Ports I Hosts tab . 3 1 2
The Topology tab . 3 1 3
The Host Details tab . 3 1 4
The Scans tab . 3 1 5

1 2.3.2. Sorting by Host . 3 1 5
1 2.3.3. Sorting by Service . 3 1 6

1 2.4. Saving and Loading Scan Results . 3 1 6
12.4. 1 . The Recent Scans Database . 3 1 7

1 2.5. Surfing the Network Topology . 3 1 7
12.5. 1 . An Overview of the Topology Tab . 3 1 8
12.5.2. Legend . 3 1 8
1 2.5.3. Controls . 3 1 9

x

Action controls . 3 1 9
Interpolation controls . 320
Layout controls . 320
View controls . 321
Fisheye controls . 32 1

1 2.5.4. Keyboard Shortcuts . 322
1 2.5.5. The Hosts Viewer . 322

1 2.6. The Nmap Command Constructor Wizard . 322
12.7. The Profile Editor . 323

12.7. 1 . Creating a New Profi le . 324
12.7.2. Editing a Profile . 324
12.7.3. Deriving a New Profi le from an Old One . 325

12.8. Searching Saved Results . 325
12.9. Comparing Results . 328

12.9. 1 . Graphical Comparison . 329
12.9.2. Text Comparison . 329

12.10. Files Used by Zenmap . 330
12.10. 1 . The nmap Executable . 330
12. 10.2. System Configuration Files . 3 3 1
12. 10.3. Per-user Configuration Files . 332
12. 10.4. Output Files . 332

12.l l. Description of zenmap.conf . 333
12. 1 1 . 1 . Sections of zenmap.conf . 333

12.12. Command-line Options . 335
12 . 12. l . Synopsis . 335
12. 12.2. Options Summary . 335
12.1 2.3. Error Output . 336

1 2. 1 3. History . 336
13. Nmap Output Formats . 337

13 . l . Introduction . 337
1 3.2. Command-line Flags . 338

13.2. l . Controlling Output Type . 338
13 .2.2. Controlling Verbosity of Output . 339
13.2.3. Enabling Debugging Output . 343
13 .2.4. Handling Error and Warning Messages . 344
13 .2.5. Enabling Packet Tracing . 345
13 .2.6. Resuming Aborted Scans . 346

13.3. Interactive Output . 346
13.4. Normal Output (-oN) . 346
1 3.5. $crlpT klddl3 OuTPut (-oS) . 347
1 3.6. XML Output (-oX) . 348

13 .6. 1 . Using XML Output . 350
13.7. Manipulating XML Output with Perl . 352
13.8. Output to a Database . 354
13.9. Creating HTML Reports . 355

1 3.9. 1 . Saving a Permanent HTML Report . 355
13. 10. Grepable Output (-oG) . 356

13. 10 . 1 . Grepable Output Fields . 357
Host field . 357

xi

Ports field . 357
Protocols field . 359
Ignored State field . 359
OS field . 359
Seq Index field . 360
IP ID Seq field . 360
Status field . 360

13 . 10.2. Parsing Grepable Output on the Command Line . 36 1
14. Understanding and Customizing Nmap Data Files . 363

14 . 1 . Introduction . 363
14.2. Well Known Port List: nmap-services . 363
14.3. Version Scanning DB: nmap-service-probes . 365
14.4. SunRPC Numbers: nmap-rpc . 366
14.5. Nmap OS Detection DB: nmap-os-db . 366
14.6. MAC Address Vendor Prefixes: nmap-mac-prefixes . 368
14.7. IP Protocol Number List: nmap-protocols . 369
14.8. Files Related to Scripting . 369
14.9. Using Customized Data Files . 370

15 . Nmap Reference Guide . 373
15 . 1 . Description . 373
15.2. Options Summary . 374
15.3. Target Specification . 376
15.4. Host Discovery . 378
15.5. Port Scanning Basics . 383
15.6. Port Scanning Techniques . 384
15.7. Port Specification and Scan Order . 389
1 5.8. Service and Version Detection . 390
1 5.9. OS Detection . 392
15 . 10. Nmap Scripting Engine (NSE) . 393

· 1 5. 1 1 . Timing and Performance . 394
15. 12 . Firewall/IDS Evasion and Spoofing . 399
15 . 13 . Output . 403
15.14. Miscellaneous Options . 408
15 . 15 . Runtime Interaction . 4 1 0
1 5.16. Examples . 4 1 0
15 . 17. Bugs . 41 1
15. 18 . Author . 41 1
15. 19. Legal Notices . 4 1 2

15. 19. 1 . Nmap Copyright and Licensing . 4 1 2
1 5. 19.2. Creative Commons License for this Nmap Guide . 4 1 3
15 . 19.3. Source Code Availability and Community Contributions . 4 1 3
15. 19.4. No Warranty . 4 1 3
15 . 19.5. Inappropriate Usage . 4 1 4
1 5. 19.6. Third-Party Software . 4 1 4
1 5. 19.7. United States Export Control Classification . 4 1 4

A . Nmap XML Output DTD . 4 1 5
A. I . Purpose . 4 1 5
A.2. The Full DTD . 4 1 5

Index . 423

xii

List of Figures

I . 1Pv4 header . xx vii
2. TCP header . xx viii
3. UDP header . xx viii
4. ICMP header . xx ix
I . I . Trinity begins her assault . 8
1 .2. Trinity scans the Matrix . 9
1 .3. Strong opinions on port scanning legality and morality . 1 4
2. 1 . Executing Nmap from a Windows command shell . 40
3.1 . A business card explains everything . 50
3.2. Netcraft finds 36 Target web servers . 54
5.1. ICMPv4 destination unreachable header layout . 96
5.2. SYN scan of open port 22 . 97
5.3. SYN scan of closed port 1 1 3 . 98
5.4. SYN scan of filtered port 1 39 . 98
5.5. Connect scan of open port 22· (nmap -sT -p22 scanme.nmap.org) . 100
5.6. Idle scan of an open port . 1 1 9
5.7. Idle scan of a closed port . 1 1 9
5.8. Idle scan of a filtered port . 1 1 9
5.9. Congestion window and threshold . 1 3 1
5.10. Scan rate as affected by scan delay · ' · 1 33
8. 1 . ICMP echo request or reply header layout . 1 77
8.2. ICMP destination unreachable header layout . 1 77
10. l . BlackICE discovers an unusual intruder . 277
10.2. An attacker masked by dozens of decoys . 285
12.1. Typical Zenmap screen shot . 307
12.2. Zenmap's main window . 308
12.3. Target and profile selection . 309
12.4. Host selection . 3 1 5
12.5. OS icons . 3 1 6
12.6. Service selection . 3 1 6
12.7. Grouping a host's children . 3 1 9
12.8. Highlighting regions of the topology . 320
12.9. Choosing a profile . 323
12.10. The profile editor . 324
12.1 1 . The search dialog . 325
12.12. Keyword search . 326
12. 13. Expressions search . 326
12.14. Comparison tool . 328
12.15. Graphical comparison . 329
12.16. Text mode comparison . 330
13 . 1 . XML output in a web browser . 35 1

Xlll

!.-.

List of Tables

I . Formatting style conven�ions . xx ii i
3.1 . First pass at listing target.com IPs . 5 1
3.2. Most valuable TCP probe ports, i n descending order of accessibility . 68
5.1. ICMP destination unreachable (type 3) code values . 96
5.2. How Nmap interprets responses to a SYN probe . 98
5.3. How Nmap interprets responses to a UDP probe . 1 0 1
5.4. How Nmap interprets responses to a NULL, FIN, or Xmas scan probe . 1 07
5.5. How Nmap interprets responses to an ACK scan probe . 1 1 3
5.6. How Nmap interprets responses to a Window scan ACK probe . 1 1 5
5.7. How Nmap interprets responses to a Maimon scan probe . 1 1 7
5.8. How Nmap interprets responses to an IP protocol probe . 1 26
6. 1 . Required --top-ports values for reaching various effectiveness levels . 1 4 1
6.2. Low-level timing controls by function . 1 42
6.3. Timing templates and their effects . 1 42
7. 1 . versioninfo field formats and values . 1 60
8. 1 . 0 test values . 1 83
8.2. DFI test values . 1 84
8.3. CC test values . 1 85
8.4. S test values . 1 86
8.5. SI test values . 1 86
8.6. A test values . i 86
8.7. F test values . 1 87
8.8. TOSI test values . 1 87
8.9. CD test values . 1 89
8.10. DLI test values . 1 89
8.1 1 . Reference fingerprint test expression operators . 1 98
9. 1 . port. version values . 240
12.1 . Text di ff character codes . : . 330

xv

List of Examples

I . A typical Nmap scan . xxiii
I . I . Nmap list scan against Avatar Online IP addresses . 3
1 .2. Nmap results against an AO firewall . 5
1.3. Another interesting AO machine . 7
1.4. nmap-diff typical output . 1 1
1.5. nmap-report execution . 1 2
2.1. Checking for Nmap and determining its version number . 25
2.2. Verifying the Nmap and Fyodor PGP Key Fingerprints . 27
2.3. Verifying PGP key fingerprints (Successful) . 27
2.4. Detecting a bogus file . 27
2.5. A typical Nmap release digest file . 28
2.6. Verifying Nmap hashes . 28
2.7. Successful configuration screen . 30
2.8. Installing Nmap from binary RPMs . 33
2.9. Building and installing Nmap from source RPMs . 34
2.10. Installing Nmap from a system Yum repository . 35
3.1. Using the host command to query common DNS record types . 5 1
3.2. Zone transfer failure and success . 52
3.3. Nmap reverse-DNS and traceroute scan against www.target.com . 53
3.4. Using whois to find owner of www.target.com IP address . 53
3.5. Using whois to find netblock containing 161 .225 . 130. 163 . 55
3.6. Enumerating hosts surrounding www.stanford.edu with list scan . 58
3.7. Discovering hosts surrounding www.lwn.net with a ping scan . 59
3.8. Attempts to ping popular Internet hosts . 6 1
3.9. Retry host discovery using port 80 SYN probes . 62
3.10. Attempted ACK ping against Microsoft . 63
3. 1 1 . Raw IP ping scan of an offtine target . 65
3.12. ARP ping scan of an offtine target . 65
3.13. Generating 50,000 IP addresses, then ping scanning with default options . 7 1
3.14. Repeating ping scan with extra probes . 7 1
4.1. Viewing and increasing the ephemeral port range on Linux . 74
4.2. Simple scan: nmap scanme.nmap.org . 80
4.3. More complex: nmap -pO- -v -A -T4 scanme.nmap.org . 8 1
4.4. A simple IPv6 scan . 88
4.5. Discovering Playboy's IP space . 90
4.6. Pinging Playboy's web server for a latency estimate . 90
4.7. Digging through Playboy's DNS records . 9 1
4.8. Pinging the M X servers . 92
4.9.' TCP pinging the MX servers . 92
4.10. Launching the scan . 93
4.1 1 . Egrep for open ports . 94
5. 1 . A SYN scan showing three port states . 97
5.2. Using --packet-trace to understand a SYN scan . 99
5.3. Connect scan example . 1 0 1
5.4. UDP scan example . 1 02
5.5. UDP scan example . 102

xvii

5 .6. Improving Felix's UDP scan results with version detection . 1 03
5.7. Improving Scanme's UDP scan results with version detection . 1 04
5.8. Attempting to disambiguate UDP ports with TIL discrepancies . 1 05
5.9. Optimizing UDP Scan Time . 1 07
5 . 10. Example FIN and Xmas scans . 1 09
5 . 1 1 . SYN scan of Docsrv . 1 09
5 . 12 . FIN scan of Docsrv . 1 1 0
5 . 1 3 . A SYN/FIN scan of Google . I 1 2
5. 14. A custom PSH scan . 1 1 2
5 . 15 . A typical ACK Scan . 1 1 4
5 . 16. An ACK scan of Docsrv . 1 1 5
5 . 17. Window scan of docsrv.caldera.com . 1 1 6
5 . 18 . A failed Maimon scan . 1 1 7
5. 19 . An idle scan against the RIAA . 1 2 1
5.20. IP protocol scan of a router and a typical Linux 2.4 box . 1 27
5.2 1 . Attempting an FTP bounce scan . 1 28
5.22. Successful FTP bounce scan . 1 28
6. 1 . Bandwidth usage over local 100 Mbps ethernet network . 1 39
6.2. Estimating scan time . 1 40
7. 1 . Simple usage of version detection . 1 46
7.2. Version detection against www.microsoft.com . 1 47
7.3 . Complex version detection . 1 48
7.4. NULL probe cheat example output . 1 5 1
7.5. Enumerating RPC services with rpcinfo . 1 56
7.6. Nmap direct RPC scan . 1 57
7.7. Version scanning through SSL . 1 58
8 . 1 . OS detection with verbosity (-0 -v) . 1 73
8.2. Using version scan to detect the OS . 1 75
8.3. A typical subject fingerprint . 1 92
8.4. A cleaned-up subject fingerprint . 1 93
8.5. A typical reference fingerprint . 1 95
8.6. Some typical fingerprint descriptions and corresponding classifications . 1 97
8. 7. The MatchPoints structure . 1 99
8.8. Scan results against a consumer WAP . 203
9 . 1 . Typical NSE output . 206
9.2. Connect-style 110 . 242
9.3. Mutex manipulation . 244
9.4. Exception handling example . 244
9.5. An NSEDoc comment for a function . 249
9.6. An NSEDoc comment for a module . 249
9.7. An NSEDoc comment for a script . 250
9.8. A typical version detection cript (Skype version 2 detection) . 252
10 . l . Detection of closed and fil tered TCP ports . 259
\0.2. ACK scan against Scanme . 260
I0.3. Contrasting SYN and ACK scans against Para . 26 1
1 0.4. UDP scan against firewalled host . 264
10.5. UDP version scan against firewalled host . 265
10.6. FIN scan against stateless firewall . 266
I 0.7. Bypassing Windows IPsec filter using source port 88 . 267

xviii

10.8. Comparing IPv4 and IPv6 scans . 268
10.9. Exploiting a printer with the FfP bounce scan . 272
10. 10. Some interesting hosts and networks at Megacorp . 273
10. 1 1 . Ping scan against the target network . 273
10.12. Packet trace against a single IP . 273
10. 13 . Testing an idle scan . 274
10.14. Testing source routing . 275
10. 15 . Success at last . 275
10.16. Host names can be deceiving . 278
10. 17. Noting TTL gaps with traceroute . 279
10.18. Using the IP record route option . 279
10.19. Slow scan to bypass the default Snort 2.2.0 Flow-portscan fixed time scan detection
method . 28 1
10.20. Default Snort rules referencing Nmap . 283
10.21 . Using DNS Proxies (Recursive DNS) for a Stealth List Scan of Security Focus . 287
10.22. Detection of closed and filtered TCP ports . 290
10.23. Testing IP ID sequence number consistency . 29 1
10.24. Finding a firewall with bad TCP checksums . 29 1
I I . I . An all-TCP-port version scan . 299
1 1 .2. Deceiving Nmap with IP Personality . 303
13 . l . Scanrand output against a local network . 337
13.2. Grepping for verbosity conditionals . 34 1
13.3. Interactive output without verbosity enabled . 342
13.4. Interactive output with verbosity enabled . 343
13.5. Some representative debugging lines . 344
13.6. Using --packet-trace to detail a ping scan of Scanme . 345
13.7. A typical example of normal output . 347
13.8. A typical example of $crlpt KiDDi3 OutPut . 348
13.9. An example of Nmap XML output . 349
13. 10. Nmap XML port elements . 350
13 . l l . Nmap::Parser sample code . 353
13. 12. Nmap::Scanner sample code . 354
13 . 13 . A typical example of grepable output . 357
13 . 14. Grepable output for IP protocol scan . 359
13 . 15 . Ping scan grepable output . 36 1
13. 16. List scan grepable output . 361
13. 17. Parsing grepable output on the command line . 361
14. 1 . Excerpt from nmap-services . 364
14.2. Excerpt from nmap-service-probes . 365
14.3. Excerpt from nmap-rpc . 366
14.4. Excerpt from nmap-os-db . 367
14.5. Excerpt from nmap-mac-prefixes . 368
14.6. Excerpt from nmap-protocols . 369
15 . 1 . A representative Nmap scan . 374

xix

Preface

1 . Introduction
On September I , 1997, I released a security scanner named Nmap in the fifty-first issue of Phrack magazine.
My goal was to consolidate the fragmented field of special-purpose port scanners into one powerful and
flexible free tool, providing a consistent interface and efficient implementation of all practical port scanning
techniques. Nmap then consisted of three files (barely 2,000 l ines of code) and supported only the Linux
operating system. It was written for my own purposes, and released in the hope that others would find it
useful.

From these humble beginnings, and through the power of Open Source development, Nmap grew into the
world's most popular network security scanner1 , with millions of users worldwide. Over the years, Nmap
has continued to add advanced functionality such as remote OS detection, version/service detection, IP ID
idle scanning, the Nmap Scripting Engine, and fast multi-probe ping scanning. It now supports all major
Unix, Windows, and Mac OS platforms. Both console and graphical versions are available. Publications
including Linux Journal, Info World, LinuxQuestions. Org, and the Codetalker Digest have recognized Nmap
as "security tool of the year". It was even featured in several movies2, including The Matrix Reloaded, The
Bourne Ultimatum, and Die Hard 4.

Nmap ("Network Mapper") is a free and open source utility for network exploration and security auditing.
Many systems and network administrators also find it useful for tasks such as network inventory, managing
service upgrade schedules, and monitoring host or service uptime. Nmap uses raw IP packets in novel ways
to determine what hosts are available on the network, what services (application name and version) those
hosts are offering, what operating systems (and OS versions) they are running, what type of packet
filters/firewalls are in use, and dozens of other characteristics. It was designed to rapidly scan large networks,
but works fine against single hosts.

While Nmap is extremely powerful, 1t 1s also complex. More than 100 command-line options add
expressiveness for networking gurus, but can confound novices. Some of its options have never even been
documented. This book documents all Nmap features and, more importantly, teaches the most effective ways
of using them. It has taken nearly four years to write, with constant updating as Nmap has evolved.

This book is dedicated to the Nmap community of users and developers. Your passion, ideas, patches, feature
requests, flame wars, bug reports, and midnight rants have shaped Nmap into what it is today.

-Gordon "Fyodor" Lyon < fyodor @ i n secure . org>

2. Intended Aud ience and Organ ization
This book documents the free Nmap Security Scanner, from port scanning basics for novices to the types of
packet crafting used by advanced hackers. It should benefit Nmap users (or potential users) of all experience
levels.

1 Ba�ed on download frequency, number of Google hits, and Freshrneat.Net software "popularity" ranking.
2 http://nmap.org/movies.html

1 . Introduction xxi

l
Highlight

l
Highlight

Starting with the basics, this book gives an overview of Nmap by example in Chapter I . Then Chapter 2
covers obtaining, compiling and installing Nmap. Chapters 3 through 5 cover features in the order you might
use them when conducting a penetration test. First comes host discovery ("ping scanning"), which determines
the avai lable hosts on a network. Next, port scanning is covered in depth. In Chapter 5, all the Nmap scanning
techniques are detailed, with advice and examples. Scanning a large network can take a long time, so Chapter
6 is full of performance optimization advice. Chapter 7 details service and application version detection, in
which Nmap queries ports to determine exactly what is running rather than simply guessing based on the
port number. Chapter 8 covers one of Nmap's most loved features: remote OS detection. Chapter 9 details
one ofNmap's newest features: the Nmap Scripting Engine. NSE allows users and developers to easily extend
Nmap with new features by writing simple scripts to be efficiently executed against target machines. My
favorite chapter is number 10: Detecting and Subverting Firewalls and lnt.rusion Detection Systems. For
balance, that is followed by a chapter on defending against Nmap scans. Chapter 12 then fully documents
the Zenmap multi-platform Nmap GUI and results viewer. The next two chapters cover output formats and
data fi les. The final and longest chapter is the Nmap Reference Guide, a quick resource for looking up specific
Nmap options.

Scattered throughout the book are detailed instructions for performing common tasks such as scanning a
network for a certain single open TCP port or detecting wireless access points by scanning from the wired
side. First each problem is described, then an effective solution is provided. A final discussion section
describes the solution in more depth and may provide alternative solutions and insights into similar problems.

3. Conventions
Nmap output is used throughout this book to demonstrate principles and features. The output is often edited
to cut out l ines which are irrelevant to the point being made. The dates/times and version numbers printed
by Nmap are generally removed as well, since some readers find them distracting. Sensitive information
such as hostnames, IP addresses, and MAC addresses may be changed or removed. Other information may
be cut or lines wrapped so that they fit on a printed page. Similar editing is done for the output of other
applications. Example I gives a glimpse at Nmap's capabilities while also demonstrating output formatting.

xx ii 3. Conventions

l
Underline

l
Underline

Example 1. A typical Nmap scan

nmap -A -T4 scanme . nmap . or g
Start ing Nmap (http : / / nmap . org
I nteresting port s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) :
Not shown : 9 9 4 f i ltered port s
PORT STATE SERVICE VERS I ON
2 2 / tcp open ssh OpenSSH 4 . 3 (protocol 2 . 0)
2 5 / tcp closed smtp
5 3 / tcp open domain I SC B I ND 9 . 3 . 4
70 /tcp c losed gopher
8 0 /tcp open http Apache httpd 2 . 2 . 2 ((Fedor a) }
I _ HTML title : Go ahead and ScanMe !
1 1 3 /tcp closed auth
Device type : general purpose
Running : Linux 2 . 6 . X
OS deta i l s : Linux 2 . 6 . 2 0 - 1 (Fedora Core 5)

TRACEROUTE (us ing port 8 0 / t cp }
HOP RTT ADDRESS
[Cut first seven hops for brevity)
8 1 0 . 59 so-4 -2-0 . mpr3 . paol . us . above . net (6 4 . 1 2 5 . 2 8 . 1 4 2)
9 1 1 . 0 0 metroO . sv . svcolo . com (2 0 8 . 1 8 5 . 1 6 8 . 1 7 3)
1 0 9 . 9 3 scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52)

Nmap done : 1 I P addres s (1 host up } scanned i n 1 7 . 0 0 seconds

Special formatting is provided for certain tokens, such as filenames and application commands. Table
demonstrates the most common formatting conventions.

Table 1. Formatting style conventions

Token type Example

literal string I get much more excited by ports in the open state than those reported as
cl osed or f i lt ered.

Command-line options One of the coolest, yet least understood Nmap options is --packet-trace.

Filenames Follow the - i L option with the input filename such as
C : \net \dhcp- lease s . txt or / home /h 4 x / ho s t s -t o-pwn . l st .

Emphasis Using Nmap from your work or school computer to attack banks and military
targets is a bad idea.

Application commands Trinity scanned the Matrix with the command nmap -v -sS -0 10.2.2.2.

Replaceable variables Let <source> be the machine running Nmap and <t a rget > be
microsoft . com.

4. Other Resources
While this book is an important reference for Nmap, it isn't the only one. The Nmap web page at
http://nmap.org is not just for downloads. It also provides substantial documentation from Nmap developers

4. Other Resources xxiii

and third parties. For example, you can find the Nmap Reference Guide translated into a dozen languages
there. Other books, videos, and articles covering Nmap are also available.

The official web site for this book is at http://nmap.org/book/. Go there for errata, updates, and many sample
chapters.

Any serious Nmap user should subscribe to the nmap-hackers mailing list for announcements about Nmap
and Insecure.Org. Traffic is very light (about six posts per year) because it is reserved for only the most
important announcements. Developers and particularly devoted users can also subscribe to the nmap-dev
mailing list. Traffic is much higher (hundreds of posts per month), but it is a great place to learn about and
try new features before they are released and to pick up tips from advanced users. Subscription information
and archives for both lists are available at http://seclists.org.

While Nmap can be useful, it won't solve all of your security problems. Every few years I do a survey of
thousands of Nmap users to determine what other tools they like. The list is posted at http://sectools.org,
which has become one of my most popular web sites. Read through the list and you are sure to find many
gems you had never even heard of. Most of the tools are free and open source.

5. Request for Comments
While I tried my best to make this book comprehensive, accurate, and up-to-date, we a l l make mistakes. If
you find any problems or just have suggestions for making this book better, please let me know by email at
< f yodor @ in secure . org>. The open source principle of many readers and contributors is just as viable
for documentation as for software. As the next section attests, dozens of people have already generously
contributed their time and skills to make this book a success.

If you have a question or comment about Nmap (rather than this book itself), it is best sent to the Nmap
development list as described at Section 15 . 17, "Bugs" [4 1 1) .

6. Acknowledgements
When I first floated the idea o f writing a n Nmap book to the nmap-hackers mailing list, I was inundated with
suggestions and offers to help. This outpouring of enthusiasm convinced me to proceed. My complete naivety
about how much work was involved also contributed to my decision. It has been quite an undertaking, but
what kept me going chapter by chapter was a private review group called the nmap-writers. They provided
invaluable feedback, advice, and detailed review notes throughout the process. In particular, I would like to
thank the following people:

• David Fifield is l isted first (everyone else is alphabetical) because he was a tremendous help during the
book writing process. He solved a number of technical DocBook problems, created many of the final
il lustrations from my terrible drafts, dramatically improved the index, helped with proofreading, and even
wrote Chapter 1 2, Zenmap GUI Users ' Guide [307).

• Matt Baxter allowed the use of his beautiful TCP/IP header diagrams (in Section 7, "TCP/IP
Reference" [xx vi]). Several other diagrams in this book were done in that style to match.

• Saurabh Bhasin contributed detailed feedback on a regular basis.

xx iv 5 . Request for Comments

• Mark Brewis could always be counted on for good advice.

• Ellen Colombo was a big help from the beginning.

• Patrick Donnelly helped improve Chapter 9, Nmap Scripting Engine [205] .

• Brandon Enright printed out the whole book and reviewed it chapter by chapter.

• Brian Hatch has always been a big help.

• Loren Heal was a continual source of ideas.

• Dan Benage provided advice and proofread numerous chapters.

• Tor Houghton reviewed every chapter, probably giving me more feedback than anyone else.

• Doug Hoyte documented the many Nmap features he added, and also handled most of the book indexing.

• Marius Huse Jacobsen reviewed many chapters, providing detailed feedback.

• Kris Katterjohn performed thorough reviews of several chapters.

• Eric Krosnes sent useful technical review feedback and also regularly nagged me about book progress.
This was helpful since I didn't have a traditional editor to do so.

• Vlad Alexa Mancini created the Nmap eye logo for the cover (and the Nmap web site).

• Michael Naef kindly reviewed many chapters.

• Bill Pollock of No Starch Press was always happy to provide advice and answer book publishing questions
based on his decades of experience.

• David Pybus was one of the most frequent contributors of ideas and proofreading.

• Tyler Reguly helped by reviewing multiple chapters just when it was most needed.

• Chuck Sterling provided both high level advice and detailed proofreading of several chapters.

• Anders Thulin provided detailed reviews of many chapters.

• Bennett Todd sent dozens of suggestions.

• Diman Todorov wrote an initial draft of Chapter 9, Nmap Scripting Engine [205] .

• Catherine Tornabene read many chapters and sent extremely detailed feedback.

6.1 . Technology Used to Create This Book

As an author of open source tools myself, I'm a big believer in their power and capability. So I made an effort
to use them wherever possible in creating this book. I wasn't about to write it in Microsoft Word and then
handle layout with Adobe FrameMaker!

6. Acknowledgements xxv

Nmap Network Scanning was written with the GNU Emacs text editor in the DocBook XML format.

The free online chapters are created from the XML using Norman Walsh's XSL Stylesheets and the xsltproc
XSL processor.

The print version also uses Norman's stylesheets and xsltproc, but the output is to the XSL-FO format3. An
XSL-FO processor is then used to build a PDF. I would like to use Apache FOP4 for this, but a footnote-related
bug5 prevents this, so I switched to the RenderX XEP Engine. XEP is proprietary, but at least it runs on
Linux. I hope to switch back to FOP after the footnote bug is fixed.

Cover layout was done with Scribus and (due to printing company format requirements) Adobe InDesign.
Raster graphics for the cover and internal i l lustrations were created with The Gimp, while Inkscape was used
for vector graphics.

Subversion was used for revision control and the free web chapters are serviced by Apache httpd.

7. TCP/IP Reference
This book assumes basic familiarity with TCP/IP and networking concepts. You won't find a primer on the
OSI seven-layer model or a rundown of the Berkeley Socket API within these pages. For a comprehensive
guide to TCP/IP, I recommend "The TCP/IP Guide" by Charles Kozierok or the old classic "TCP/IP Illustrated,
Volume f' by W. Richard Stevens.

While TCP/IP familiarity is expected, even the best of us occasionally forget byte offsets for packet header
fields and flags. This section provides quick reference diagrams and field descriptions for the 1Pv4, TCP,
UDP, and ICMP protocols. These beautiful diagrams from http://www.fatpipe.org!-mjb/Drawings are used
by permission of author Matt Baxter.

3 http://en.wikipedia.org/wiki/XSL_Formatting_Objects
4 http://xmlgraphics.apache.org/fopl
5 https://issues.apache.org/bugzil/a/show _b11g.cgi ?id=37579

xx vi 7. TCP/IP Reference

Figure 1. 1Pv4 header

0.i .l ..l. ..l. ..l. ..l. ..l.

I
1..l. ..l. .l .1 .l ..l. ..l. 2..l. ..l. .l -1 .l .l .l J3.i .l .l .l .l .l .l

TI
Lerigth)

Flags�

l

s

J
IHL

Internet
Header

�r I 1 l -.7 T -3
------------------------t�

7. TCP/IP Reference x x vii

Figure 2. TCP header

OJ_ J_ J_ ..l J. J. J. 11..l_ J_ J_ ..l J. J. J. 2i J. J. ...l J. J. J_ l3J_ J_ J_ ..l J_ J_ J_

4 TI
B*s I

�I
1 Jc

I:

l .. T . ·r I ··2 I 3
------------------------tM

Figure 3. UDP header

2

---------------------------1.i

xx viii 7. TCP/IP Reference

Figure 4. ICMP header

,._�������-� ��-���-�� �-����-���-����-���__.. +
l --1...

Word----------------------------..�

7. TCP/IP Reference xx ix

-

Chapter 1 . Getting Started with Nmap

1 .1 . Introduction
Nmap ("Network Mapper") i s a free and open source utility for network exploration and security auditing.
Many systems and network administrators also find it useful for tasks such as network inventory, managing
service upgrade schedules, and monitoring host or service uptime. Nmap uses raw IP packets in novel ways
to determine what hosts are available on the network, what services (application name and version) those
hosts are offering, what operating systems (and OS versions) they are running, what type of packet
filters/firewalls are in use, and dozens of other characteristics. It was designed to rapidly scan large networks,
but works fine against single hosts. Nmap runs on all major computer operating systems, and both console
and graphical versions are available.

This chapter uses fictional stories to provide a broad overview of Nmap and how it is typically used. An
important legal section helps users avoid (or at least be aware ot) controversial usage that could lead to ISP
account cancellation or even civil and criminal charges. It also discusses the risks of crashing remote machines
as well as miscellaneous issues such as the Nmap license (GNU GPL), and copyright.

1 .2 . Nmap Overv.iew and Demonstration
Sometimes the best way to understand something is to see i t in action. This section includes examples of
Nmap used in (mostly) fictional yet typical circumstances. Nmap newbies should not expect to understand
everything at once. This is simply a broad overview of features that are described in depth in later chapters.
The "solutions" included throughout this book demonstrate many other common Nmap tasks for security
auditors and network administrators.

1 .2.1 . Avatar On l ine

Felix dutifully arrives at work on December 15th, although he does not expect many structured tasks. The
small San Francisco penetration-testing firm he works for has been quiet lately due to impending holidays.
Felix spends business hours pursuing his latest hobby of building powerful Wi-Fi antennas for wireless
assessments and war driving exploration. Nevertheless, Felix is hoping for more business. Hacking has been
his hobby and fascination since a childhood spent learning everything he could about networking, security,
Unix, and phone systems. Occasionally his curiosity took him too far, and Felix was almost swept up in the
1990 Operation Sundevil prosecutions. Fortunately Felix emerged from adolescence without a criminal
record, while retaining his expert knowledge of security weaknesses. As a professional, he is able to perform
the same types of network intrusions as before, but with the added benefit of contractual immunity from
prosecution and even a paycheck! Rather than keeping his creative exploits secret, he can brag about them
to client management when presenting his reports. So Felix was not disappointed when his boss interrupted
his antenna soldering to announce that the sales department finally closed a pen-testing deal with the Avatar
Online gaming company.

Avatar Online (AO) is a small company working to create the next generation of massive multi-player online
role-playing games (MMORPGs). Their product, inspired by the Metaverse envisioned in Neil Stevenson's

1 . 1 . Introduction

Snow Crash, is fascinating but still highly confidential. After witnessing the high-profile leak 1 of Valve
Software's upcoming game source code, AO quickly hired the security consultants. Felix's task is to initiate
an external (from outside the firewall) vulnerability assessment while his partners work on physical security,
source code auditing, social engineering, and so forth. Felix is permitted to exploit any vulnerabilities found.

The first step in a vulnerabil ity assessment is network discovery. This reconnaissance stage determines what
IP address ranges the target is using, what hosts are available, what services those hosts are offering, general
network topology details, and what firewall/filtering policies are in effect.

Determining the IP ranges to scan would normally be an elaborate process involving ARIN (or another
geographical registry) lookups, DNS queries and zone transfer attempts, various web sleuthing techniques,
and more. But in this case, Avatar Online explicitly specified what networks they want tested: the corporate
network on 6.209.24.0/24 and their production/DMZ systems residing on 6.207.0.0/22. Fel ix checks the
ARIN IP allocation records anyway and confirms that these IP ranges belong to A02. Felix subconsciously
decodes the CIDR notation3 and recognizes this as 1 ,280 IP addresses. No problem.

Being the careful type, Felix first starts out with what is known as an Nmap list scan (-sL option). This
feature simply enumerates every IP address in the given target netblock(s) and does a reverse-DNS lookup
(unless -n was specified) on each. One reason to do this first is stealth. The names of the hosts can hint at
potential vulnerabilities and allow for a better understanding of the target network, all without raising alarm
bells4. Felix is doing this for another reason-to double-check that the IP ranges are correct. The systems
administrator who provided the IPs might have made a mistake, and scanning the wrong company would be
a disaster. The contract signed with Avatar Online may act as a get-out-of-jail-free card for penetrating their
networks, but will not help if Felix accidentally roots another company's server! The command he uses and
an excerpt of the results are shown in Example 1 . 1 .

1 http://www.smh.com.au/articles/2003/I0/0311064988378345.html
2These IP addresses are actually registered to the United States Army Yuma Proving Ground, which is used to test a wide variety of
artillery, missiles, tanks, and other deadly weapons. The moral is to be very careful about who you scan, lest you accidentally hit a
highly sensitive network. The scan results in this story are not actually from this IP range.
3Classless Inter-Domain Routing (CIDR) notation is a method for describing networks with more granularity than class A (CIDR /8),
class B (CIDR /16), or class C (CIDR /24) notation. An excellent description is available at http://public.pacbell.net/dedicatedlcidr.html.
4It is possible that the target nameserver will log a suspicious bunch of reverse-DNS queries from Felix's nameserver, but most
organizations don't even keep such logs, much less analyze them.

2 1 .2. Nmap Overview and Demonstration

l
Highlight

l
Highlight

Example 1.1. Nmap list scan against Avatar Online IP addresses

felix> nmap -sL 6 . 2 0 9 . 2 4 . 0 / 2 4 6 . 2 0 7 . 0 . 0 / 2 2

Starting Nmap (http : / / nmap . org)
Host 6 . 2 09 . 2 4 . 0 not scanned
Host fw . corp . avataronl ine . com (6 . 2 0 9 . 2 4 . 1) not scanned
Host dev2 . corp . avataron line . com (6 . 2 0 9 . 2 4 . 2) not scanned
Host 6 . 2 0 9 . 2 4 . 3 not scanned
Host 6 . 2 09 . 2 4 . 4 not scanned
Host 6 . 2 09 . 2 4 . 5 not scanned

Host dhcp-2 1 . corp . avataron l ine . com (6 . 2 0 9 . 2 4 . 2 1)
Host dhcp-2 2 . corp . avataron l ine . com (6 . 2 0 9 . 2 4 . 2 2)
Host dhcp-23 . corp . avataron l ine . com (6 . 2 0 9 . 2 4 . 2 3)
Host dhcp- 2 4 . corp . avataronl ine . com (6 . 2 0 9 . 2 4 . 2 4)
Host dhcp-25 . corp . avataron l ine . com (6 . 2 0 9 . 2 4 . 2 5)
Host dhcp-26 . corp . avataron l ine . com (6 . 2 0 9 . 2 4 . 26)

Host 6 . 2 0 7 . 0 . 0 not scanned
Host gw . avataronl ine . com (6 . 2 0 7 . 0 . 1) not scanned
Host nsl . avataronl ine . com (6 . 2 0 7 . 0 . 2) not scanned
Host ns2 . avataronl ine . com (6 . 2 0 7 . 0 . 3) not s canned
Host ftp . avataronl ine . com (6 . 2 0 7 . 0 . 4) not scanned
Host 6 . 2 0 7 . 0 . 5 not scanned
Host 6 . 2 0 7 . 0 . 6 not scanned
Host www . avataronl ine . com (6 . 2 0 7 . 0 . 7) not scanned
Host 6 . 20 7 . 0 . 8 not scanned

Host cluster-c l 2 0 . avataronl ine . com
Host cluster-c l 2 1 . avataronl ine . com
Host cluster-c l 2 2 . avataronline . com
Host cluster-c l 2 3 . avataronl ine . com
Host cluster-c l 2 4 . avataronl ine . com

Host 6 . 2 0 7 . 3 . 2 53 not scanned
Host 6 . 2 0 7 . 3 . 2 5 4 not scanned
Host 6 . 2 0 7 . 3 . 2 5 5 not scanned

(6 . 2 0 7 . 2 . 1 2 0)
(6 . 2 0 7 . 2 . 1 2 1)
(6 . 2 0 7 . 2 . 1 2 2)
(6 . 2 0 7 . 2 . 1 2 3)
(6 . 2 0 7 . 2 . 1 2 4)

not scanned
not scanned
not scanned
not scanned
not scanned
not scanned

not scanned
not scanned
not scanned
not scanned
not scanned

Nmap done : 1 2 8 0 IP addres ses scanned in 3 3 1 . 4 9 seconds
felix>

Reading over the results, Felix finds that all of the machines with reverse-DNS entries resolve to Avatar
Online. No other businesses seem to share the IP space. Moreover, these results give Felix a rough idea of
how many machines are in use and a good idea of what many are used for. He is now ready to get a bit more
intrusive and try a port scan. He uses Nmap features that try to determine the application and version number
of each service I istening on the network. He also requests that N map try to guess the remote operating system
via a series of low-level TCP/IP probes known as OS fingerprinting. This sort of scan is not at all stealthy,
but that does not concern Felix . He is interested in whether the administrators of AO even notice these blatant
scans. After a bit of consideration, Felix settles on the following command:

nmap -sS -p- -PS22,80,113,33334 -PAS0,1 13,21000 -PU19000 -PE -A -T4 -oA avatartcpscan-121503
6.209.24.0/24 6.207.0.0/22

1 .2. Nmap Overview and Demonstration 3

These options are described in later chapters, but here is a quick summary of them.

- s s

-p-

Enables the efficient TCP port scanning technique known as SYN scan. Felix would have added a U at
the end if he also wanted to do a UDP scan, but he is saving that for later. SYN scan is the default scan
type, but stating it explicitly does not hurt.

Requests that Nmap scan every port from 1 -65535. The default is to scan only ports one through 1024,
plus about 600 others explicitly mentioned in the nmap-services database. This option format is
simply a short cut for -p l - 6 5 5 3 5 . He could have specified -p 0-6 5 5 3 5 if he wanted to scan the
rather i l legitimate port zero as well . The -p option has a very flexible syntax, even allowing the
specification of a differing set of UDP and TCP ports.

-PS2 2 , 8 0 , 1 1 3 , 3 3 3 3 4 -PAB 0 , 1 1 3 , 2 1 0 0 0 -PU 1 9 0 0 0 -PE

-A

-T4

These are a l l ping types used in combination to determine whether a host i s really available and avoid
wasting a lot of time scanning IP addresses that are not in use. This particular incantation sends a TCP
SYN packet to ports 22, 80, 1 1 3, and 33334; a TCP ACK packet to ports 80, 1 1 3, and 21000; a UDP
packet to port 1 9000; and a normal ICMP echo request packet. If Nmap receives a response from the
target host itself to any of these probes, it considers the host to be up and available for scanning. This
is more extensive than the Nmap default, which simply sends an echo request and an ACK packet to
port 80. In a pen-testing situation, you often want to scan every host even if they do not seem to be up.
After all , they could just be heavily filtered in such a way that the probes you selected are ignored but
some other obscure port may be available. To scan every IP whether it shows an available host or not,
specify the -PN option instead of all of the above. Felix starts such a scan in the background, though it
may take a day to complete.

This shortcut option turns on Advanced and Aggressive features such as OS and service detection. At
the time of this writing it is equivalent to -sV - s C -0 --traceroute (version detection, Nmap
Scripting Engine, remote OS detection, and traceroute). More features may be added to -A later.

Adjusts timing to the aggr e s s ive level (#4 of 5). This is the same as specifying -T aggress ive,

but is easier to type and spell . In general, the -T4 option is recommended if the connection between
you and the target networks are faster than dialup modems.

-oA avat artcp s can- 1 2 1 5 0 3

Outputs results in every format (normal, XML, grepable) to fi les named
avat artcp s can- 1 2 1 5 0 3 . <ex t en s i on> where the extensions are .nmap, .xml, and .gnmap
respectively. All of the output formats include the start date and time, but Felix likes to note the date
explicitly in the filename. Normal output and errors are sti ll sent to stdout5 as well .

5stdout i s the "C" notation for representing the standard output mechanism fo r a system, such a s t o the Unix xterm o r Windows command
window in which Nmap was initiated.

4 1 .2. Nmap Overview and Demonstration

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

6 . 2 0 9 . 2 4 . 0 / 2 4 6 . 2 0 7 . 0 . 0 / 2 2

These are the Avatar Online netblocks discussed above. They are given in CIDR notation, but Nmap
allows them to be specified in many other formats. For example, 6 . 2 0 9 . 2 4 . 0 I 2 4 could instead be
specified as 6 . 2 0 9 . 2 4 . 0 - 2 5 5 .

Since such a comprehensive scan against more than a thousand IP addresses could take a while, Felix simply
starts it executing and resumes work on his Yagi antenna. A couple hours later he notices that it has finished
and takes a peek at the results. Example 1 .2 shows one of the machines discovered.

Example 1.2. Nmap results against an AO firewall

Interest ing ports on fw . corp . avataron l ine . corn (6 . 2 0 9 . 2 4 . 1) :
(The 6 5 5 3 0 ports scanned but not shown below are in state : f i ltered)
PORT STATE SERVICE VERS I ON
22/ tcp open ssh OpenSSH 3 . 7 . lp2 (protocol 1 . 9 9)
53 /tcp open domain I SC BIND 9 . 2 . 1
11 0/tcp open pop3 Courier pop3d
113/tcp closed auth
143/tcp open irnap Cour ier Imap 1 . 6 . X - 1 . 7 . X
3128/tcp open http-proxy Squid webproxy 2 . 2 . STABLE5
Device type : general purpose
Running : Linux 2 . 4 . X l 2 . 5 . X
OS deta i l s : Linux Kernel 2 . 4 . 0 - 2 . 5 . 2 0
Upt ime 3 . 1 3 4 days

To the trained eye, this conveys substantial information about AO's security posture. Felix first notes the
reverse DNS name-this machine is apparently meant to be a firewall for their corporate network. The next
line is important, but all too often ignored. It states that the vast majority of the ports on this machine are in
the f i l t ered state. This means that Nmap is unable to reach the port because it is blocked by firewal l
rules. The fact that a l l ports except for a few chosen ones are in this state is a sign of security competence.
Deny-by-default is a security mantra for good reasons-it means that even if someone accidentally left
SunRPC (port 1 1 1) open on this machine, the firewall rules would prevent attackers from communicating
with it.

Felix then looks at every port line in turn. The first port is Secure Shell (OpenSSH). Version 3.7. l p2 is
common, as many administrators upgraded to this version due to potentially exploitable buffer management
bugs affecting previous versions. Nmap also notes that the SSH protocol is 1 .99, suggesting that the inferior
legacy SSHv l protocol is supported. A truly paranoid sysadmin would only allow SSH connections from
certain trusted IP addresses, but one can argue for open access i n case the administrator needs emergency
access while far from home. Security often involves trade-offs, and this one may be justifiable. Felix makes
a note to try his brute force password cracker and especially his private timing-based SSH user enumeration
tool against the server.

Felix also notes port 53. It is running ISC BIND, which has a long history of remotely exploitable security
holes. Visit the BIND security page6 for further details. BIND 9.2 . l even has a potentially exploitable buffer
overflow, although the default build is not vulnerable. Felix checks and finds that this server is not vulnerable
to the libbind issue, but that is beside the point. This server almost certainly should not be running an
externally-accessible nameserver. A firewall should only run the bare essentials to minimize the risk of a
disastrous compromise. Besides, this server is not authoritative for any domains-the real nameservers are

6 http://www.isc.org/products/BIND/bind-security.html

1 .2. Nmap Overview and Demonstration 5

l
Highlight

on the production network. An administrator probably only meant for clients within the firewall to contact
this nameserver, but did not bother locking it down to only the internal interface. Felix will later try to gather
important information from this unnecessary server using zone transfer requests and intrusive queries. He
may attempt cache poisoning as well. By spoofing the IP of wi ndows update . mi cros oft . com or
another important download server, Felix may be able to trick unsuspecting internal client users into running
a trojan-horse program that provides him with ful l network access behind the firewall.

The next two open ports are 1 10 (POP3) and 143 (IMAP). Note that 1 1 3 (auth) between them is c losed

instead of open. POP3 and IMAP are mail retrieval services which, like BIND, have no legitimate place
on this server. They are also a security risk in that they generally transfer the mail and (even worse)
authentication credentials unencrypted. Users should probably VPN in and check their mail from an internal
server. These ports could also be wrapped in SSL encryption. Nmap would have then l isted the services as
s s l /pop3 and s s l / imap. Felix will try his user enumeration and password guessing attacks on these
services, which will probably be much more effective than against SSH.

The final open port is a Squid proxy. This is another service that may have been intended for internal client
use and should not be accessible from the outside (and particularly not on the firewall). Felix's initially
positive opinion of the AO security administrators drops further. Felix will test whether he can abuse this
proxy to connect to other sites on the Internet. Spammers and malicious hackers often use proxies in this
way to hide their tracks. Even more critical, Felix will try to proxy his way into the internal network. This
common attack is how Adrian Lamo7 broke into the New York Times internal network in 2002. Lamo was
caught after he called reporters to brag about his exploits against the NY Times and other companies in
detail8.

The following lines disclose that this is a Linux box, which is valuable information when attempting
exploitation. The low three-day uptime was detected during OS fingerprinting by sending several probes for
the TCP timestamp option value and extrapolating the l ine back to zero.

Felix then examines the Nmap output for another machine, as shown in Example l .3.

7 http://e11. wikipedia.orglwik i/Adrian_Lamo
8 http:llwww.sec11rityfocus.com/11ewsl340

6 1 .2. Nmap Overview and Demonstration

Example 1.3. Another interesting AO machine

Interest ing ports on dhcp- 2 3 . corp . avataronline . com (6 . 2 0 9 . 2 4 . 2 3) :
(The 65526 ports scanned but not shown below are i n state : closed)
PORT STATE SERVICE VERS ION
135/tcp filtered msrpc
136/tcp filtered prof i l e
13 7/tcp fi ltered netbios-ns
138 /tcp fi ltered netbios-dgm
139/tcp fi l tered netbios - s s n
445/tcp open microsoft-ds Microsoft Windows XP microsoft-d s
1 002 /tcp open windows- icfw?
1 025/tcp open msrpc Mi crosoft Windows msrpc
16552 /tcp open unknown
Device type : general purpose
Running : Microsoft Windows NT/2K/XP
OS detai l s : Microsoft Windows XP Profes s i onal RCl + through final r e lease

Felix smiles when he spies this Windows XP box on the Network. Thanks to a spate of MS RPC vulnerabilities,
those machines are trivial to compromise if the OS patches aren't up-to-date. The second l ine shows that the
default state is closed, meaning the firewall does not have the same deny-by-default policy for this machine
as for itself. Instead they tried to specifically block the Windows ports they consider dangerous on 135-1 39.
This filter is woefully inadequate, as MS exports MS RPC functionality on many other ports in Windows
XP. TCP ports 445 and 1025 are two examples from this scan. While Nmap failed to recognize 16552, Felix
has seen this pattern enough to know that it is probably the MS Messenger Service. If AO had been using
deny-by-default filtering, port 16552 would not be accessible in the first place. Looking through the results
page, Felix sees several other Windows machines on this DHCP network. Felix cannot wait to try his favorite
DCOM RPC exploit against them. It was written by HD Moore and is available at
http://www.metasploit.com/toolsldcom.c. If that fails, there are a couple newer MS RPC vulnerabilities he
will try.

Felix continues poring over the results for vulnerabilities he can leverage to compromise the network. On
the production network, he sees that gw . avat aron l i ne . com is a Cisco router that also acts as a
rudimentary firewal l for the systems. They fall into the trap of only blocking privileged ports (those under
1024), which leaves a bunch of vulnerable SunRPC and other services accessible on that network. The
machines with names like cl u s t - * each have dozens of ports open that Nmap does not recognize. They
are probably custom daemons running the AO game engine. www . avataron l ine . com is a Linux box
with an open Apache server on the HTTP and HTTPS ports. Unfortunately, it is linked with an exploitable
version of the OpenSSL library. Oops! Before the sun sets, Felix has gained privileged access to hosts on
both the corporate and production networks.

As Felix has demonstrated, Nmap is frequently used by security auditors and network administrators to help
locate vulnerabilities on client/corporate networks. Subsequent chapters describe the techniques used by
Felix, as well as many other Nmap features, in much greater detail.

1 .2. Nmap Overview and Demonstration 7

1 .2.2. Saving the Human Race

Figure 1.1. Trinity begins her assault

Trinity is in quite a pickle! Having discovered that the world we take for granted is really a virtual "Matrix"
run by machine overlords, Trinity decides to fight back and free the human race from this mental slavery.
Making matters worse, her underground colony of freed humans (Zion) is under attack by 250,000 powerful
alien sentinels. Her only hope involves deactivating the emergency power system for 27 city blocks in less
than five minutes. The previous team died trying. In life's bleakest moments when all hope seems to be lost,
what should you turn to? Nmap, of course ! But not quite yet.

She first must defeat the perimeter security, which on many networks involves firewalls and intrusion detection
systems (IDS). She is well aware of advanced techniques for circumventing these devices (covered later in
this book). Unfortunately, the emergency power system administrators knew better than to connect such a
critical system to the Internet, even indirectly. No amount of source routing or IP ID spoofed scanning will
help Trinity overcome this "air gap" security. Thinking fast, she devises a clever plan that involves jumping
her motorcycle off the rooftop of a nearby building, landing on the power station guard post, and then beating
up all of the security guards. This advanced technique is not covered in any physical security manual, but
proves highly effective. This demonstrates how clever hackers research and devise their own attacks, rather
than always utilizing the script-kiddie approach of canned exploits.

Trinity fights her way to the computer room and sits down at a terminal. She quickly determines that the
network is using the private 10.0.0.0/8 network address space. A ping to the network address generates
responses from dozens of machines. An Nmap ping scan would have provided a more comprehensive list

8 1 .2. Nmap Overview and Demonstration

of available machines, but using the broadcast technique saved precious seconds. Then she whips out Nmap9.
The terminal has version 2.54BETA25 installed. This version is ancient (2001) and less efficient than newer
releases, but Trinity had no time to install a better version from the future. This job will not take long anyway.
She runs the command nmap -v -sS -0 10.2.1.3. This executes a TCP SYN scan and OS detection against
10.2. 1 .3 and provides verbose output. The host appears to be a security disaster-AIX 3.2 with well over a
dozen ports open. Unfortunately, this is not the machine she needs to compromise. So she runs the same
command against 10.2.2.2. This time the target OS is unrecognized (she should have upgraded Nmap!) and
only has port 22 open. This is the Secure Shell encrypted administration service. As any sexy PVC-clad
hacker goddess knows, many SSH servers from around that time (2001) have an exploitable vulnerability
in the CRC32 compensation attack detector. Trinity whips out an all-assembly-code exploit and utilizes i t
to change the root password of the target box to z 1 ONO 1 0 1 . Trinity uses much more secure passwords under
normal circumstances. She logs in as root and issues a command to disable the emergency backup power
system for 27 city blocks, finishing just in time ! Here is a shot of the action-squint just right and you should
be able to read the text.

Figure 1.2. Trinity scans the Matrix

In addition, a terminal-view video showing the whole hack is available on the Internet JO. At least it will be
until the MPAA finds out and sends sentinels or lawyers after the webmasters.

1 .2.3. MadHat in Wonderland

This story differs from the previous ones in that it i s actually true. Written by frequent Nmap user and
contributor MadHat, it describes how he enhanced and customized Nmap for daily use in a large enterprise.

9 A sexy leather-clad attacker from the previous team actually started the session. It is unclear at what point she died and left the remaining
tasks to Trinity.
IO http://11map.org/movies.ht111/

1 .2. Nmap Overview and Demonstration 9

In true open source spirit, he has released these valuable scripts on his Web site 1 1 • IP addresses have been
changed to protect the corporate identity. The remainder of this section is in his own words.

After spending the past couple of decades learning computers and working my way up from tech support
through sysadmin and into my dream job of Information Security Officer for a major Internet company, I
found myself with a problem. I was handed the sole responsibility of security monitoring for our entire IP
space. This was almost 50,000 hosts worldwide when I started several years ago, and it has doubled since
then.

Scanning all of these machines for potential vulnerabilities as part of monthly or quarterly assessments would
be tough enough, but management wanted it done daily. Attackers will not wait a week or month to exploit

a newly exposed vulnerability, so I can 't wait that long to find and patch it either.

Looking around for tools, I quickly chose Nmap as my port scanner. It i s widely considered to be the best
scanner, and I had already been using it for years to troubleshoot networks and test security. Next I needed
software to aggregate Nmap output and print differences between runs. I considered several existing tools,
including HD Moore's Nlog 12• Unfortunately none of these monitored changes in the way I desired. I had
to know whenever a router or firewall access control list was misconfigured or a host was publicly sharing
inappropriate content. I also worried about the scalability of these other solutions, so I decided to tackle the
problem myself.

The first issue to come up was speed. Our networks are located worldwide, yet I was provided with only a
single U.S.-based host to do the scanning. In many cases, firewalls between the sites slowed the scanning
down significantly. Scanning all 100,000 hosts took over 30 hours, which is unacceptable for a daily scan.
So I wrote a script called nmap-wrapper which runs dozens of Nmap processes in parallel, reducing the scan
time to fifteen hours, even including OS detection.

The next problem was dealing with so much data. A SQL database seemed like the best approach for scalability
and data-mining reasons, but I had to abandon that idea due to time pressures. A future version may add this
support. Instead, I used a flat file to store the results of each class C address range for each day. The most
powerful and extensible way to parse and store this information was the Nmap XML format, but I chose the
"grepable" (-oG option) format because it is so easy to parse from simple scripts. Per-host timestamps are
also stored for reporting purposes. These have proven quite helpful when administrators try to blame machine
or service crashes on the scanner. They cannot credibly claim a service crash at 7: 12AM when I have proof
that the scan ran at 9:45AM.

The scan produces copious data, with no convenient access method. The standard Unix diff tool is not smart
enough to report only the changes I care about, so I wrote a Perl script named nmap-diff to provide daily
change reports. A typical output report is shown in Example 1 .4.

1 1 http://www.unspecific.com/mnap/
12 http:llwww.securiteam.com/tools/3T5QMQONFK.html

IO 1 .2. Nmap Overview and Demonstration

Example 1.4. nmap-diff typical output

> nmap-dif f . pl -c3
5 IPs showed changes

1 0 . 1 2 . 4 . 8 (ftp-box . foocompan y . bi z)
2 1 /tcp open ftp
8 0 /tcp open http

4 4 3 / tcp open https
1 0 2 7 / tcp open I I S

+ 1 0 2 9 /tcp open ms- l sa
3 8 2 9 2 /tcp open landesk-cba

OS : Microsoft Windows Mi l l ennium Edit i on (Me)
Windows 2 0 0 0 Profes s i ona l or Advanced Server
or Windows XP

10 . 16 . 23 4 . 3 (medi a . foocompan y . bi z)
8 0 /tcp open http

+ 5 5 4 / tcp open rtsp

+ 7 0 7 0 /tcp open realserver

192 . 1 6 8 . 1 0 . 1 8 6 (testbox . foocompan y . bi z)
+ 8 0 8 2 /tcp open blackice-alerts

OS : Linux Kernel 2 . 4 . 0 - 2 . 5 . 2 0

1 72 . 2 4 . 1 2 . 58 (mtafoocompan y . bi z)
+ 2 5 / tcp open smtp

OS : FreeBSD 4 . 3 - 4 . 4PRERELEASE

172 . 2 3 . 76 . 2 2 (media2 . foocorp . bi z)
8 0 /tcp open http

1 0 2 7 / tcp open I I S
+ 1 0 4 0 / tcp open netsa int

1 75 5 / tcp open wms
3 3 7 2 /tcp open msdtc
6 6 6 6 /tcp open irc- serv
7 0 0 7 /tcp open a f s 3 -bos

OS : Microsoft Windows Mil l ennium Edit ion (Me)
Windows 2 0 0 0 Profess ional or Advanced Server
or Windows XP

Management and staff were impressed when I demonstrated this new system at an internal company security
symposium. But instead of allowing me to rest on my laurels, they began asking for new features. They
wanted counts of mail and web servers, growth estimates, and more. This data was all available from the
scans, but was difficult to access. So I created yet another Perl script, nmap-report, which made querying
the data much easier. It takes specifications such as open ports or operating systems and finds all the systems
that matched on a given day.

One problem with this approach to security monitoring is that employees do not always place services on
their !ANA-registered official ports. For example, they might put a web server on port 22 (SSH) or vice
versa. Just as I was debating how to address this problem, Nmap came out with an advanced service and
version detection system (see Chapter 7, Service and Application Version Detection [1 45]). nmap-report now
has a rescan feature that uses version scanning to report the true services rather than guessing based on port

1 .2. Nmap Overview and Demonstration 1 1

number. I hope to further integrate version detection in future versions. Example 1 .5 shows nmap-report
listing FTP servers.

Example 1.5. nmap-report execution

> nmap-report -p2 1 -rv
[. . .]

1 72 . 2 1 . 1 9 9 . 76 (ftpl . foocorp . bi z)
2 1 / tcp open s s l l ftp Serv-U ftpd 4 . 0

1 9 2 . 1 6 8 . 1 2 . 5 6 (ftp2 . foocorp . bi z)
2 1 / tcp open ftp NcFTPd

1 9 2 . 1 6 8 . 1 3 . 1 3 0 (dropbox . foocorp . bi z)
2 1 / t cp open ftp WU-FTPD 6 . 0 0LS

While being far from perfect, these scripts have proven themselves quite valuable at monitoring large networks
for security-impacting changes. Since Nmap itself is open source, it only seemed fair to release my scripts
to the public as well. I have made them freely available at http://www.unspecific.com/nmap.

1 .3. The Phases of an Nmap Scan
Now that we've seen some applications of Nmap, let's look at what happens when an Nmap scan runs. Scans
proceed in phases, with each phase finishing before the next one begins. As you can see from the phase
descriptions below, there is far more to Nmap than just port scanning.

Target enumeration. In this phase, Nmap researches the host specifiers provided by the user, which may
be a combination of host DNS names, IP addresses, CIDR network notations, and more. You can even use
(-iR) to ask Nmap to choose your targets for you ! Nmap resolves these specifiers into a list of 1Pv4 or IPv6
addresses for scanning. This phase cannot be skipped since it is essential for further scanning, but you can
simplify the processing by passing just IP addresses so Nmap doesn't have to do forward resolution. If you
pass the - s L -n options (list scan with no reverse-DNS resolution), Nmap will print out the targets and
perform no further scanning. This phase is discussed in Section 3.2, "Specifying Target Hosts and
Networks" [47] and Section 3.5. 1 , "List Scan (-sL)" [57].

Host discovery (ping scanning). Network scans usually begin by discovering which targets on the network
are online and thus worth deeper investigation. This process is called host discovery or ping scanning. Nmap
offers many host discovery techniques, ranging from quick ARP requests to elaborate combinations of TCP,
ICMP, and other types of probes. This phase is run by default, though you can skip it (simply assume all
target IPs are online) using the -PN (no ping) option. To quit after host discovery, specify -sP -n. Host
discovery is the subject of Chapter 3 [47] .

Reverse-DNS resolution. Once Nmap has determined which hosts to scan, i t looks up the reverse-DNS
names of all hosts found online by the ping scan. Sometimes a host's name provides clues to its function,
and names make reports more readable than providing only IP numbers. This step may be skipped with the
-n (no resolution) option, or expanded to cover all target IPs (even down ones) with -R (resolve all). Name
resolution is covered in Section 3.4, "DNS Resolution" [56] .

Port scanning. This is Nmap's fundamental operation. Probes are sent, and the responses (or non-responses)
to those probes are used to classify remote ports into states such as open, c l o s ed, or f i ltered. That

12 1 .3 . The Phases of an Nmap Scan

l
Highlight

l
Highlight

l
Underline

l
Underline

l
Highlight

l
Underline

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Underline

l
Underline

brief description doesn't begin to encompass Nmap's many scan types, configurability of scans, and algorithms
for improving speed and accuracy. An overview of port scanning is in Chapter 4 [73]. Detailed information
on algorithms and command-line options are in Chapter 5 [95] . Port scanning is performed by default, though
you can skip it and still perform some of the later traceroute and partial Nmap Scripting Engine phases by
specifying their particular command-line options (such as --t raceroute and - - s c r ipt) along with a
ping scan (-sP).

Version detection. If some ports are found to be open, Nmap may be able to determine what server software
is running on the remote system. It does this by sending a variety of probes and matching the responses
against a database of thousands of known service signatures. Version detection is enabled by the -sV option.
It is fully described in Chapter 7 [1 45] .

OS detection. If requested with the -0 option, Nmap proceeds to OS detection. Different operating systems
implement network standards in subtly different ways. By measuring these differences it is often possible
to determine the operating system running on a remote host. Nmap matches responses to a standard set of
probes against a database of more than a thousand known operating system responses. OS detection is covered
in Chapter 8 [1 7 1] .

Traceroute. Nmap contains an optimized traceroute implementation, enabled by the --traceroute

option. I t can find the network routes to many hosts in parallel, using the best available probe packets as
determined by Nmap's previous discovery phases. Traceroute usually involves another round of reverse-DNS
resolution for the intermediate hosts. More information is found in Section 15.4, "Host Discovery" [378] .

Script scanning. The Nmap Scripting Engine (NSE) uses a collection of special-purpose scripts to gain even
more information about remote systems. NSE is powered by the Lua programming language and a standard
library designed for network information gathering. Among the facilities offered are advanced version
detection, notification of service vulnerabilities, and discovery of backdoors and other malware. NSE is a
large subject, fully discussed in Chapter 9 [205]. NSE is not executed unless you request it with options such
as -- script or - s c.

Output. Finally, Nmap collects all the information it has gathered and writes it to the screen or to a file.
Nmap can write output in several formats. Its default, human-readable format (interactive format) is usually
presented in this book. Nmap also offers an XML-based output format, among others. The ins and outs of
output are the subject of Chapter 13 [337].

As already discussed, Nmap offers many options for controlling which of these phases are run. For scans of
large networks, each phase is repeated many times since Nmap deals with the hosts in smaller groups. It
scans each group completely and outputs those results, then moves on to the next batch of hosts.

1 .4 . Legal Issues
When used properly, Nmap helps protect your network from invaders. But when used improperly, Nmap
can (in rare cases) get you sued, fired, expelled, jailed, or banned by your ISP. Reduce your risk by reading
this legal guide before launching Nmap.

1 .4. Legal Issues 13

l
Underline

l
Highlight

l
Highlight

l
Highlight

l
Highlight

1 .4.1 . Is Unauthorized Port Scanning a Crime?

The l�gal
_
ramifications of scanning networks with Nmap are complex and so controversial that third-r:arty

orgamzat1ons have even printed T-shirts and bumper stickers promulgating opinions on the matter 3, as
shown in Figure 1 .3 . The topic also draws many passionate but often unproductive debates and flame wars.
If you ever participate in such discussions, try to avoid the overused and ill-fitting analogies to knocking on
someone's home door or testing whether his door and windows are locked.

Figure 1.3. Strong opinions on port scanning legality and morality

While I agree with the sentiment that port scanning should not be il legal, it is rarely wise to take legal advice
from a T-shirt. Indeed, taking it from a software engineer and author is only slightly better. Speak to a
competent lawyer within your jurisdiction for a better understanding of how the law applies to your particular
situation. With that important disclaimer out of the way, here is some general information that may prove
helpful.

The best way to avoid controversy when using Nmap is to always secure written authorization from the target
network representatives before initiating any scanning. There is still a chance that your ISP will give you
trouble if they notice it (or if the target administrators accidentally send them an abuse report), but this is
usually easy to resolve. When you are performing a penetration test, this authorization should be in the
Statement of Work. When testing your own company, make certain that this activity clearly falls within your
job description. Security consultants should be familiar with the excellent Open Source Security Testing
Methodology Manual (OSSTMM)14, which provides best practices for these situations.

13These are from the now-defunct AmericanSushi.Com.
14 hllp:llwww.osstmm.org/

14 I .4. Legal Issues

While civil and (especially) criminal court cases are the nightmare scenario for Nmap users, these are very
rare. After all, no United States federal laws explicitly make port scanning il legal. A much more frequent
occurrence is that the target network will notice a scan and send a complaint to the network service provider
where the scan initiated (your ISP). Most network administrators do not seem to care or notice the many
scans bouncing off their networks daily, but a few complain. The scan source ISP may track down the user
corresponding to the reported IP address and time, then chide the user or even kick them off the service. Port
scanning without authorization is sometimes against the provider's acceptable use policy (AUP). For example,
the AUP for the huge cable-modem ISP Comcast presently says 15:

Network probing or port scanning tools are only permitted when used in conjunction with
a residential home network, or if explicitly authorized by the destination host and/or
network. Unauthorized port scanning, for any reason, is strictly prohibited.

Even if an ISP does not explicitly ban unauthorized port scanning, they might claim that some "anti-hacking"
provision applies. Of course this does not make port scanning illegal. Many perfectly legal and (in the United
States) constitutionally protected activities are banned by ISPs. For example, the AUP quoted above also
prohibits users from transmitting, storing, or posting "any information or material which a reasonable person
could deem to be objectionable, offensive, indecent, pornographic, . . . embarrassing, distressing, vulgar,
hateful, racially or ethnically offensive, or otherwise inappropriate, regardless of whether this material or its
dissemination is unlawful." In other words, some ISPs ban any behavior that could possibly offend or annoy
someone. Indiscriminate scanning of other people's networks/computers does have that potential. If you
decide to perform such controversial scanning anyway, never do it from work, school, or any other service
provider that has substantial control over your well-being. Use a dialup or commercial broadband provider
instead. Losing your DSL connection and having to change providers is a slight nuisance, but it is
immeasurably preferable to being expelled or fired.

While legal cases involving port scanning (without follow-up hacking attacks) are rare, they do happen. One
of the most notable cases involved a man named Scott Moulton who had an ongoing consulting contract to
maintain the Cherokee County, Georgia emergency 91 1 system. In December 1999, he was tasked with
setting up a router connecting the Canton, Georgia Police Department with the E91 1 Center. Concerned that
this might jeopardize the E91 I Center security, Scott initiated some preliminary port scanning of the networks
involved. In the process he scanned a Cherokee County web server that was owned and maintained by a
competing consulting firm named VC3. They noticed the scan and emailed Scott, who replied that he worked
for the 91 1 Center and was testing security. VC3 then reported the activity to the police. Scott lost his E91 1
maintenance contract and was arrested for allegedly violating the Computer Fraud and Abuse Act of America
Section l030(a)(5)(B) 16• This act applies against anyone who "intentionally accesses a protected computer
without authorization, and as a result of such conduct, causes damage" (and meets other requirements). The
damage claimed by VC3 involved time spent investigating the port scan and related activity. Scott sued VC3
for defamation, and VC3 countersued for violation of the Computer Fraud and Abuse Act as well as the
Georgia Computer Systems Protection Act.

The civil case against Scott was dismissed before trial, implying a complete lack of merit. The ruling made
many Nmap users smile:

"Court holds that plaintiffs act of conducting an unauthorized port scan and throughput
test of defendant's servers does not constitute a violation of either the Georgia Computer

IS ht1p:l/www.comcast.net/termsluse.jsp
16 ht1p:llwww4.law.cornell.edu/11scode/J81J030.html

1 .4. Legal Issues 15

Systems Protection Act or the Computer Fraud and Abuse Act."-Civ. Act. No.
I :00-CV-434-TWT (N.D. Ga. November 6, 2000)

This was an exciting victory in the civil case, but Scott still had the criminal charges hanging over his head.
Fortunately he kept his spirits high, sending the following note 17 to the nmap-hackers mailing list:

I am proud that I could be of some benefit to the computer society in defending and
protecting the rights of specialists in the computer field, however it is EXTREMELY costly
to support such an effort, of which I am not happy about. But I will continue to fight and
prove that there is nothing illegal about port scanning especially when I was just doing my
job.

Eventually, the criminal court came to the same conclusion and all charges were dropped. While Scott was
vindicated in the end, he suffered six-figure legal bills and endured stressful years battling through the court
system. The si lver lining is that after spending so much time educating his lawyers about the technical issues
involved, Scott started a successful forensics services company 18•

While the Moulton case sets a good example (if not legal precedent), different courts or situations could still
lead to worse outcomes. Remember that many states have their own computer abuse laws, some of which
can arguably make even pinging a remote machine without authorization illegal 19•

Laws in other nations obviously differ as well . For example, A 17-year-old youth was convicted in Finland20

of attempted computer intrusion for simply port scanning a bank. He was fined to cover the target's
investigation expenses. The Moulton ruling might have differed if the VC3 machine had actually crashed
and they were able to justify the $5,000 damage figure required by the act.

At the other extreme, an Israeli judge acqui tted2 1 Avi Mizrahi in early 2004 for vulnerability scanning the
Mossad secret service. Judge Abraham Tennenbaum even praised Avi as follows:

In a way, Internet surfers who check the vulnerabilities of Web sites are acting in the public
good. If their intentions are not malicious and they do not cause any damage, they should
even be praised.

In 2007 and 2008, broad new cybercrime laws took effect in Germany22 and England23. These laws are
meant to ban the distribution, use, and even possession of "hacking tools". For example, the UK amendment
to the Computer Misuse Act makes it i llegal to "supply or offer to supply, believing that it is likely to be
used to commit, or to assist in the commission of [a Computer Misuse Act violation]". These laws have
already led some security tool authors to close shop or move their projects to other countries. The problem
is that most security tools can be used by both ethical professionals (white-hats) to defend their networks
and black-hats to attack. These dangerous laws are based on the tool author or user's intent, which is subjective
and hard to divine. Nmap was designed to help secure the Internet, but I'd hate to be arrested and forced to
defend my intentions to a judge and jury. These laws are unlikely to affect tools as widespread and popular

17 http:l/seclists.orglnmap-hackers/200/10026.html
18 http://www.forensicstrategy.com/
19 An excellent paper on this topic by lawyer Ethan Preston is available at http:/lgrove.ujl.edul-techlawlvol6/issuel/pres1011.html. He
has also written an excellent paper relating to the legal risks of publishing security information and exploits at
http://www.mcandl.com/computer-security.html.
20 http://insecure.orglstflfin.html
21 http://www.theregister.co.11k/2004/03/0I lmossad_websi te_hacker _walksJree/
22 http://www.beskerming.comlcomme11tary/2007/08//21249/German_Sec11rity_Professionals_i11_1he_Mist
23 http://www.theregister.co. uk/2008101102/hacker _toll_ban_guidance/

16 1 .4. Legal Issues

as Nmap, but they have had a chil ling effect on smaller tools and those which are more commonly abused
by computer criminals (such as exploitation frameworks).

Regardless of the legal status of port scanning, ISP accounts will continue to be terminated if many complaints
are generated. The best way to avoid ISP abuse reports or civil/criminal charges is to avoid annoying the
target network administrators in the first place. Here are some practical suggestions:

• Probably at least 90% of network scanning is non-controversial. You are rarely badgered for scanning
your own machine or the networks you administer. The controversy comes when scanning other networks.
There are many reasons (good and bad) for doing this sort of network exploration. Perhaps you are scanning
the other systems in your dorm or department to look for publicly shared files (FTP, SMB, WWW, etc.).
Or maybe you are just trying to find the IP of a certain printer. You might have scanned your favorite web
site to see if they are offering any other services, or because you were curious what OS they run. Perhaps
you are just trying to test connectivity, or maybe you wanted to do a quick security sanity check before
handing off your credit card details to that e-commerce company. You might be conducting Internet
research. Or are you performing initial reconnaissance in preparation for a break-in attempt? The remote
administrators rarely know your true intentions, and do sometimes get suspicious. The best approach is
to get permission first. I have seen a few people with non-administrative roles land in hot water after
deciding to "prove" network insecurity by launching an intrusive scan of the entire company or campus.
Administrators tend to be more cooperative when asked in advance than when woken up at 3AM by an
IDS alarm claiming they are under massive attack. So whenever possible, obtain written authorization
before scanning a network. Adrian Lamo would probably have avoided jail if he had asked the New York
Times to test their security rather than telling reporters about the flaws afterward. Unfortunately they
would likely have said no. Be prepared for this answer.

• Target your scan as tightly as possible. A ny machine connected to the Internet is scanned regularly enough
that most administrators ignore such Internet white noise. But scanning enough networks or executing
very noisy/intrusive scans increases the probability of generating complaints. So if you are only looking
for web servers, specify -p8 0 rather than scanning all 65,536 TCP ports on each machine. If you are only
trying to find available hosts, do an Nmap ping scan rather than full port scan. Do not scan a CIDR /16
(65K hosts) when a /24 netblock suffices. The random scan mode now takes an argument specifying the
number of hosts, rather than running forever. So consider - i R 1 0 0 0 rather than - i R 1 0 0 0 0 if the
former is sufficient. Use the default timing (or even -T p o l i t e) rather than -T i n s ane. Avoid noisy
and relatively intrusive scans such as version detection (-sV). Similarly, a SYN scan (-ss) is quieter
than a connect scan (-sT) while providing the same information and often being faster.

• As noted previously, do not do anything controversial from your work or school connections. Even though
your intentions may be good, you have too much to lose if someone in power (e.g. boss, dean) decides
you are a malicious cracker. Do you really want to explain your actions to someone who may not even
understand the terms packet or port scanner? Spend $40 a month for a dial up, shell, or residential broadband
account. Not only are the repercussions less severe if you offend someone from such an account, but target
network administrators are less l ikely to even bother complaining to mass-market providers. A lso read
the relevant AUP and choose a provider accordingly. If your provider (like Comcast discussed above)
bans any unauthorized port scanning and posting of "offensive" material, do not be surprised if you are
kicked off for this activity. In general, the more you pay to a service provider the more accommodating
they are. A T L provider is highly unlikely to yank your connection without notice because someone reported
being port scanned. A dialup or residential DSUcable provider very well might. This can happen even
when the scan was forged by someone else.

1 .4. Legal Issues 17

• Nmap offers many options for stealthy scans, including source-IP spoofing, decoy scanning, and the more
recent idle scan technique. These are discussed in the IDS evasion chapter. But remember that there is
always a trade-off. You are harder to find if you launch scans from an open WAP far from your house,
with 17 decoys, while doing subsequent probes through a chain of nine open proxies. But if anyone does
track you down, they will be mighty suspicious of your intentions.

• Always have a legitimate reason for performing scans. An offended administrator might write to you first
(or your ISP might forward his complaint to you) expecting some sort of justification for the activity. In
the Scott Moulton case discussed above, VC3 first emailed Scott to ask what was going on. If they had
been satisfied with his answer, matters might have stopped there rather than escalating into civil and
criminal litigation. Groups scanning large portions of the Internet for research purposes often use a
reverse-DNS name that describes their project and run a web server with detailed information and opt-out
forms.

Also remember that ancillary and subsequent actions are often used as evidence of intent. A port scan by
itself does not always signify an attack. A port scan followed closely by an ITS exploit, however, broadcasts
the intention loud and clear. This is important because decisions to prosecute (or fire, expel, complain, etc.)
are often based on the whole event and not just one component (such as a port scan).

One dramatic case involved a Canadian man named Walter Nowakowski, who was apparently the first person
to be charged in Canada with theft of communications (Canadian Criminal Code Section S.342. 1) for accessing
the Internet through someone's unsecured Wi-Fi network. Thousands of Canadian "war drivers" do this every
day, so why was he singled out? Because of ancillary actions and intent. He was allegedly caught24 driving
the wrong way on a one-way street, naked from the waist down, with laptop in hand, while downloading
child pornography through the aforementioned unsecured wireless access point. The police apparently
considered his activity egregious enough that they brainstormed for relevant charges and tacked on theft of
communications to the many child pornography-related charges.

Similarly, charges involving port scanning are usually reserved for the most egregious cases. Even when
paranoid administrators notify the police that they have been scanned, prosecution (or any further action) is
exceedingly rare. The fact that a 91 1 emergency service was involved is likely what motivated prosecutors
in the Moulton case. Your author has scanned hundreds of thousands of Internet hosts while writing this
book and received no complaints.

To summarize this whole section, the question of whether port scanning is legal does not have a simple
answer. I cannot unequivocally say "port scanning is never a crime", as much as I would like to. Laws differ
dramatically between jurisdictions, and cases hinge on their particular details. Even when facts are nearly
identical, different judges and prosecutors do not always interpret them the same way. I can only urge caution
and reiterate the suggestions above.

For testing purposes, you have permission to scan the host scanme . nmap . org. You may have noticed
that it was used in several examples already. Note that this permission only includes scanning via Nmap and
not testing exploits or denial of service attacks. To conserve bandwidth, please do not initiate more than a
dozen scans against that host per day. If this free scanning target service is abused, it will be taken down and
Nmap will report Fai led t o r e s o l ve give n hos tname / I P : s canme . nmap . org.

2 4 http:llwww.ctv.calservlet/Artic/eNewslstory/CTVNews/1069439746264_64848946/

1 8 1 .4. Legal Issues

1 .4.2. Can Port Scanning Crash the Target
Computer/Networks?

Nmap does not have any features designed to crash target networks. It usually tries to tread lightly. For
example, Nmap detects dropped packets and slows down when they occur in order to avoid overloading the
network. Nmap also does not send any corrupt packets. The IP, TCP, UDP, and ICMP headers are always
appropriate, though the destination host is not necessarily expecting the packets. For these reasons, no
application, host, or network component should ever crash based on an Nmap scan. If they do, that is a bug
in the system which should be repaired by the vendor.

Reports of systems being crashed by Nmap are rare, but they do happen. Many of these systems were probably
unstable in the first place and Nmap either pushed them over the top or they crashed at the same time as an
Nmap scan by pure coincidence. In other cases, poorly written applications, TCP/IP stacks, and even operating
systems have been demonstrated to crash reproducibly given a certain Nmap command. These are usually
older legacy devices, as newer equipment is rarely released with these problems. Smart companies use Nmap
and many other common network tools to test devices prior to shipment. Those who omit such pre-release
testing often find out about the problem in early beta tests when a box is first deployed on the Internet. It
rarely takes long for a given IP to be scanned as part of Internet white noise. Keeping systems and devices
up-to-date with the latest vendor patches and firmware should reduce the susceptibility of your machines to
these problems, while also improving the security and usability of your network.

In many cases, finding that a machine crashes from a certain scan is valuable information. After all, attackers
can do anything Nmap can do by using Nmap itself or their own custom scripts. Devices should not crash
from being scanned and if they do, vendors should be pressured to provide a patch. In some usage scenarios,
detecting fragile machines by crashing them is undesirable. In those cases you may want to perform very
light scanning to reduce the risk of adverse effects. Here are a few suggestions:

• Use SYN scan (-ss) instead of connect scan (-sT). User-mode applications such as web servers can
rarely even detect the former because it is all handled in kernel space (some older Linux kernels are an
exception) and thus the services have no excuse to crash.

• Version scanning (-sV) risks crashing poorly written applications. Similarly, some pathetic operating
systems have been reported to crash when OS fingerprinted (-0). Omit these options for particularly
sensitive environments or where you do not need the results.

• Using -T2 or slower (-T l, -TO) timing modes can reduce the chances that a port scan will harm a system,
though they slow your scan dramatically. Older Linux boxes had an identd daemon that would block
services temporarily if they were accessed too frequently. This could happen in a port scan, as well as
during legitimate high-load situations. Slower timing might help here. These slow timing modes should
only be used as a last resort as they can slow scans by an order of magnitude or more.

• Limit the number of ports and machines scanned to the fewest that are required. Every machine scanned
has a minuscule chance of crashing, and so cutting the number of machines down improves your odds.
Reducing the number of ports scanned reduces the risks to end hosts as well as network devices. Many
NAT/firewall devices keep a state entry for every port probe. Most of them expire old entries when the
table fills up, but occasional (pathetic) implementations crash instead. Reducing the ports/hosts scanned
reduces the number of state entries and thus might help those sorry devices stay up.

1 .4 . Legal Issues 19

l
Highlight

1 .4.3. N map Copyright

While N�ap i s open source, i t still has a copyright license that must be respected. A s free software, Nmap
also cames no warranty. These issues are covered in much greater detail in Section 15 . 19, "Legal
Notices" (4 1 2) . Companies wishing to bundle and use Nmap within proprietary software and appliances are
especially encouraged to read this section so they don't inadvertently violate the Nmap license. Fortunately
the Nmap Project sells commercial redistribution licenses for companies which need one.

1 .5 . The H istory and Future of Nmap
Many ancient and well loved security tools, such as Netcat, tcpdump, and John the Ripper, haven't changed
much over the years. Others, including Nessus, Wireshark, Cain and Abel, and Snort have been under constant

development since the day they were released. Nmap is in that second category. It was released as a simple
Linux-only port scanner in 1997. Over the next 1 0+ years it sprouted a myriad of valuable features, including
OS detection, version detection, the Nmap Scripting Engine, a Windows port, a graphical user interface, and
more. This section provides a timeline of the most important events over a decade of Nmap history, followed
by brief predictions on the future of Nmap. For all significant Nmap changes (thousands of them), read the
Nmap Changelog25. Old releases of Nmap can be found at http://nmap.org/distl, and ancient versions at
http://nmap.org/dist-old!.

• September 1, 1997 - Nmap is first released in Phrack Magazine Issue 5 1 , article I t 26. It doesn't have
a version number because new releases aren't planned. Nmap is about 2,000 l ines long, and compilation
is as simple as gee -06 -o nmap nmap.c -Im.

• September 5, 1997 - Due to popular demand, a slightly modified version of the Phrack code is released,
calling itself version 1 .25. The gzipped tarball is 28KB. Version 1 .26 (48KB) is released 19 days later.

• January 1 1, 1998 - Insecure.Org is registered and Nmap moves there from its previous home at the
DataHaven Project27 ISP.

• March 14, 1998 - Renaud Deraison writes to inform me that he is writing a security scanner, and asks
if he can use some Nmap source code. Of course I say yes. Nine days later he sends me a pre-release
version of Nessus, noting that it "is designed for sysadmins, not 3133t H4ck3rZ".

• September 1, 1998 - Inspired by Nmap's first anniversary, I begin work on adding remote OS detection
for the upcoming Nmap 2.00. On October 7 I release the first private beta version to a handful of top Nmap
developers. We quietly work on this for several months.

• December 12, 1998 - Nmap version 2.00 is publicly released, introducing Nmafi OS detection for the
first time. An article describing the techniques was released in Phrack 54, Article 9 8. By this point Nmap
is broken up into many files, consists of about 8,000 lines of code, is kept in a private CVS revision control
system, and the tarball size is 275KB. The nmap-hackers mailing list is started, and later grows to more
than 55,000 members.

25 http://nmap.org/changelog.html
26 http:llnmap.orglp51-l I.html
27 http://www.dhp.com
28 http://nmap.org/phrack54-09. txt

20 1 .5 . The History and Future of Nmap

• April 11, 1999 - Nmap 2. 1 I BETA 1 is released. This is the first version to contain a graphical user
interface as an alternative to the traditional command-line usage. The bundled Unix-only GUI named
NmapFE was originally written by Zach Smith. Some people l ike it, but most prefer command-line
execution.

• April 28, 2000 - Nmap 2.50 is released29. By this point the tarball has grown to 461 KB. This release
includes timing modes such as -T aggre s s ive, direct SunRPC scanning, and Window and ACK scan
methods.

• May 28, 2000 - Gerhard Rieger sends a message30 to the nmap-dev list describing a new "protocol scan"
he has developed for Nmap, and he even includes a patch. This is so cool that I release31 Nmap 2.54BETA 1
with his patch less than 12 hours later.

• December 7, 2000 - Nmap 2.54BETA 16 is released32 as the first official version to compile and run on
Microsoft Windows. The Windows porting work was done by Ryan Permeh and Andy Lutomirski.

• July 9, 2001 - The Nmap IP ID idle scan is introduced with Nmap 2.54BETA26. A paper describing
the technique is released concurrently. This extremely cool (though not always practical) scan technique
is described in Section 5. 10, "TCP Idle Scan (-sI)" [1 1 7] .

• July 25, 2002 - I quit my job at Netscape/AOL and start my dream job working on Nmap ful l time.

• July 31, 2002 - Nmap 3.00 is released33. The tarball is 922K. This release includes Mac OS X support,
XML output, and uptime detection.

• August 28, 2002 - Nmap is converted from C to C++ and IPv6 supported is added as part of the Nmap
3.IOALPHA 1 release34.

• May 15, 2003 - Nmap is featured in the movie The Matrix Reloaded, where Trinity uses it (followed by
a real SSH exploit) to hack a power station and save the world. This leads to more publicity for Nmap
than it had ever seen before or has seen since then. Details and screen shots are available at
http://nmap. o rglmovies. html.

• July 21, 2003 - I finish a first implementation of Nmap service/version detection (Chapter 7, Service
and Application Version Detection [1 45]) and release it to a couple dozen top Nmap developers and users
as Nmap 3.40PVT1 . That is followed up by 16 more private releases over the next couple months as we
improve the system and add signatures.

• September 16, 2003 - Nmap service detection is finally released35 publicly as part of Nmap 3.45. A
detailed paper is released concurrently.

• February 20, 2004 - Nmap 3.50 is released36. The tarball is now 1 ,57 1 KB . SCO Corporation is banned
from redistributing Nmap because they refuse to comply with the GPL. They have to rebuild their Caldera

29 h11p://seclists.orglnmap-hackers/2000I0/40.html
30 h1tp:l/seclists.orglnmap-hackers/2000/0217.html
31 h1tp://seclists.orglnmap-hackers/2000I02!9.html
32 http:llseclists.orglnmap-dev/2000/q4/00/3.html
33 h11p:/linsec11re.orglstf/Nmap-3.00-Release.html
34 http://seclists.orglnmap-dev/2002/q31004/.html
35 http:llseclists.orglnmap-hackers/200310030.html
36 http://insecure.org/stf/Nmap-3.50-Release.html

1 .5 . The History and Future of Nmap 21

release ISOs to remove Nmap. This release includes the packet tracing and UDP ping options. It also
includes the OS classification system which classifies each of the hundreds of detected operating systems
by vendor name, operating system name, OS generation, and device type.

• August 31, 2004 - The core Nmap port scanning engine is rewritten for Nmap 3.7037• The new engine,
named ul t r a_scan features dramatically improved algorithms and parallelization support to improve
both accuracy and speed. The differences are particularly dramatic for hosts behind strict firewalls.

• June 25, 2005 - Google sponsors 10 colle�e and graduate students to work on Nmap ful l time for the
summer as part of Google's Summer of Code3 initiative. Projects include a second generation OS detection
system (Zhao Lei), a new cross-platform GUI named Umit (Adriano Monteiro Marques), and many other
cool projects described at http:!!seclists.orglnmap-hackers/200510008.html.

• September 8, 2005 - Nmap gains raw ethernet frame sending support with the release of version 3.9039.
This allows for ARP scanning (see Section 3.6.6, "ARP Scan (-PR)" [64]) and MAC address spoofing as
well as evading the raw IP packet ban introduced by Microsoft in Windows XP SP2.

• January 31, 2006 - Nmap 4.00 is released40. The tarball is now 2,388KB. This release includes runtime
interaction to provide on-demand completion estimates, a Windows executable installer, NmapFE updates
to support GTK2, and much more.

• May 24, 2006 - Google sponsors 10 more N map summer developers as part of their SoC program. Zhao
and Adriano return as part of 2006 SoC to further develop their respective projects. Diman Todorov is
sponsored to help develop the Nmap Scripting Engines. These and seven other talented students and their
projects are described at http:llseclists.orglnmap-hackers/200610009.html.

• June 24, 2006 - After two years of development and testing, the 2nd generation OS detection system is
integrated into Nmap 4.20ALPHA 141 • This new system is based on everything we've learned and the new
ideas we've conceived since the I st generation system debuted 8 years earlier. After a bit of time to grow
the DB, the new system proves much more accurate and granular than the old one. It is described in
Chapter 8, Remote OS Detection [1 7 1] .

• December 10, 2006 - The Nmap Scripting Engine is released42 as part of Nmap 4.21 ALPHA I . NSE
allows users to write (and share) simple scripts to automate a wide variety of networking tasks. The system
is a huge success, and is described in Chapter 9, Nmap Scripting Engine [205).

• December 20, 2006 - Nmap's Subversion source code repository opens to the public43. Until this time,
only a handful of developers had access to the private source repository. Everyone else had to wait for
releases. Now everyone can follow Nmap development day by day. There is even an nmap-svn mailing
list providing real-time change notification by email . Details are provided in Section 2 . 1 .5, "Obtaining
Nmap from the Subversion (SYN) Repository" [28) .

3 7 http://seclists.org/nmap-hackers/2004/0010.html
38 http://code.google.com/soc
39 http:llseclists.orglnmap-hackers/200510012.html
40 http://insec11re.org/stf/Nmap-4.00-Release.html
41 http://seclists.orglnmap-dev/2006/q2/0444.html
42 http://seclists.org/nmap-dev/2006/q4/0184.html
43 http://seclists.org/nmap-dev/2006/q4/0253.html

22 1 .5 . The History and Future of Nmap

• May 28, 2007 -Google sponsors six summer Nmap developers as part of their SoC program. Meanwhile,
Adriano's Umit GUI for Nmap is approved as an independent program for SoC sponsorship. Among the
sponsored students was David Fifield, who continued long after the summer ended and became one of
Nmap's top developers. The Nmap students and their projects are listed at
http:/lseclists.org/nmap-hackers/200710003.html.

• June 27, 2007 - Die Hard 4: Live Free or Die Hard is released in theaters. It includes a brief scene of
hacker Matthew Farrel l (Justin Long) demonstrating his Nmap skills. Then he leaves his computer to join
Bruce Willis in fighting a diabolical terrorist mastermind. One week later, The Bourne Ultimatum is
released and also contains an Nmap scene! The CIA uses Nmap in this movie to hack a newspaper's mail
server and read the email of a reporter they assassinated (nice guys)! Screen shots of Nmap movie cameos
are all available on the Nmap movies page44.

• July 8, 2007 - The Umit graphical front end is improved and integrated into the Nmap 4.22SOC 1
release45 for testing. Umit is later renamed to Zenmap, and the venerable NmapFE GUI is removed.
Zenmap is covered in Chapter 1 2, Zenmap GUI Users ' Guide [307].

• December 13, 2007 - Nmap 4.50 is released46 to celebrate Nmap's 10th anniversary !

• June 1, 2008 - Nmap 4.65 is released47 and includes, for the first time, an executable Mac OS X installer.
The Nmap source tarball is now four megabytes. This release includes 41 NSE scripts, 1 ,307 OS fingerprints,
and 4,706 version detection signatures.

• August 18, 2008 - The Nmap project completes its fourth Summer of Code, with our highest success
percentage ever (six out of seven sponsored students). They greatly improved Zenmap, the Nmap Scripting
Engine, OS detection, and Neat, as described at http://seclists.org/nmap-dev/2008/q4/0193.html.

• September 8, 2008 - Nmap 4.75 is released48 with almost 100 significant improvements over 4.68.
These include the Zenmap network topology and scan aggregation features (see Chapter 1 2, Zenmap GUI
Users' Guide [307]). It also includes port-frequency data from my Worldscan project, which I presented49

at Black Hat and Defcon in August.

While it is easy to catalogue the history of Nmap, the future is uncertain . Nmap didn't start off with any grand
development plan, and most of the milestones in the preceding timeline were not planned more than a year
in advance. Instead of trying to predict the shape of the Internet and networking way out in the future, I
closely study where it is now and decide what will be most useful for Nmap now and in the near future. So
1 have no idea where Nmap will be 10 years from now, though I expect it to be as popular and vibrant as
ever. The Nmap community is large enough that we will be able to guide Nmap wherever it needs to go.
Nmap has faced curve balls before, such as the sudden removal of raw packet support in Windows XP SP2,
dramatic changes in network filtering practices and technology, and the slow emergence of 1Pv6. Each of
those required significant changes to Nmap, and we'll have to do the same to embrace or at least cope with
networking changes in the future.

44 http://111nap.org/movies.html
45 http://seclists.org/nmap-dev/20071q3/0030.html
46 http:llinsecure.orglstf/Nmap-4.50-Release.html
47 http://seclists.org/111nap-dev/2008/q2/0558.h11nl
48 http:llseclists.org/111nap-hackers/2008/0004.html
49 http://i11secure.org!presef!fations/

1 .5 . The History and Future of Nmap 23

While the IO-year plan is up in the air, the coming year is easier to predict. As exciting as big new features
are, they won't be a focus. None of us want to see Nmap get bloated and disorganized. So this will be a year
of consolidation. The Zenmap and NSE systems are not as mature as the rest of Nmap, so improving these
is a big priority. New NSE scripts are great because they extend Nmap's functionality without the stability
risks of incorporating new source code into Nmap proper. Meanwhile, Zenmap needs usability and stability
improvements, as well as better results visualization. Another focus is the Nmap web si te, which will become
more useful and dynamic. A web discussion system, Nmap demo site, and wiki are planned.

Nmap may also grow in its ability to handle web scanning. When Nmap was first developed, different services
were often provided as separate daemons identified by the port number they listen on. Now, many new
services simply run over HTTP and are identified by a URL path name rather than port number. Scanning
for known URL paths is similar in many ways to port scanning (and to the SunRPC scanning which Nmap
has also done for many years). Nmap already does some web scanning using the Nmap Scripting Engine
(see Chapter 9, Nmap Scripting Engine [205]), but it would be faster and more efficient if basic support was
built into Nmap itself.

Some of the coolest Nmap features in the past, such as OS detection and version scanning, were developed
in secret and given a surprise release. You can expect more of these in coming years because they are so
much fun !

24 1 .5. The History and Future of Nmap

Chapter 2. Obtai n i ng , Comp i l i ng ,
Instal ling , and Removing Nmap

2.1 . Introduction
Nmap can often be installed or upgraded with a single command, so don't let the length of this chapter scare
you. Most readers will use the table of contents to skip directly to sections that concern them. This chapter
describes how to install Nmap on many platforms, including both source code compilation and binary
installation methods. Graphical and command-line versions of Nmap are described and contrasted. Nmap
removal instructions are also provided in case you change your mind.

2.1 .1 . Testing Whether N map is Already Instal led

The first step toward obtaining Nmap is to check whether you already have it. Many free operating system
distributions (including most Linux and BSD systems) come with Nmap packages, although they may not
be i nstalled by default. On Unix systems, open a terminal window and try executing the command nmap
--vers ion . If Nmap exists and is in your PATH, you should see output similar to that in Example 2. 1 .

Example 2.1. Checking for Nmap and determining its version number

felix->nmap --vers ion

Nmap ver sion 4 . 76 (http : / /nmap . org
fel ix->

lf Nmap does not exist on the system (or if your PATH is incorrectly set), an error message such as nmap :

Command not found is reported. As the example above shows, Nmap responds to the command by
printing its version number (here 4 . 7 6).

Even if your system already has a copy ofNmap, you should consider upgrading to the latest version available
from http://nmap.org/download.html. Newer versions often run faster, fix important bugs, and feature updated
operating system and service version detection databases. A list of changes since the version already on your
system can be found at http://nmap.org/changelog.html. Nmap output examples in this book may not match
the output produced by older versions.

2.1 .2 . Com mand-l ine and Graph ical Interfaces

Nmap has traditionally been a command-line tool run from a Unix shell or (more recently) Windows command
prompt. This allows experts to quickly execute a command that does exactly what they want without having
to maneuver through a bunch of configuration panels and scattered option fields. This also makes Nmap
easier to script and enables easy sharing of useful commands among the user community.

One downside of the command-line approach is that it can be intimidating for new and infrequent users.
Nmap offers more than a hundred command-line options, although many are obscure features or debugging
controls that most users can ignore. Many graphical frontends have been created for those users who prefer

2 . 1 . Introduction 25

a GUI interface. Nmap has traditionally included a simple GUI for Unix named NmapFE, but that was
replaced in 2007 by Zenmap, which we have been developing since 2005. Zenmap is far more powerful and
effective than NmapFE, particularly in results viewing. Zenmap's tab-based interface lets you search and
sort results, and also browse them in several ways (host details, raw Nmap output, and ports/hosts). It works
on Linux, Windows, Mac OS X, and other platforms. Zenmap is covered in depth in Chapter 1 2, Zenmap
GUI Users' Guide [307] . The rest of this book focuses on command-line Nmap invocations. Once you
understand how the command-line options work and can interpret the output, using Zenmap or the other
available Nmap GUis is easy. Nmap's options work the same way whether you choose them from radio
buttons and menus or type them at a command-line.

2.1 .3. Download ing N map

Nmap.Org i s the official source for downloading Nmap source code and binaries for Nmap and Zenmap.
Source code is distributed in bzip2 and gzip compressed tar files, and binaries are available for Linux (RPM
format), Windows (NSIS executable installer) and Mac OS X (. dmg disk image). Find all of this at
http://nmap.org/download.html.

2.1 .4. Verify ing the Integrity of N map Downloads

It often pays to be paranoid about the integrity of files downloaded from the Internet. Popular packages such
as Sendmail (example 1), OpenSSH (example2), tcpdump, Libpcap, BitchX, Fragrouter, and many others
have been infected with malicious trojans. Software distributions sites at the Free Software Foundation,
Debian, and SourceForge have also been successfully compromised. This has never happened to Nmap, but
one should always be careful. To verify the authenticity of an Nmap release, consult the PGP detached
signatures or cryptographic hashes (including SHA I and MD5) posted for the release in the Nmap signatures
directory at http://nmap.org/dist/sigs/?C=M&O=D.

The most secure verification mechanism is detached PGP signatures. As the signing key is never stored on
production servers, even someone who successfully compromises the web server couldn't forge and properly
sign a trojan release. While numerous applications are able to verify PGP signatures, I recommend GNU
Privacy Guard (GPG)3.

Nmap releases are signed with a special Nmap Project Signing Key, which can be obtained from the major
keyservers or http://nmap.org/data/nmap_gpgkeys. txt. My key is included in that file too. The keys can be
imported with the command gpg --import nmap_gpgkeys.txt. You only need to do this once, then you can
verify all future Nmap releases from that machine. Before trusting the keys, verify that the fingerprints match
the values shown in Example 2.2.

1 hup:/lcert.orgladvisories/CA-2002-28.html
2 http://cert.org/advisories/CA-2002-24.html
3 http://www.gnupg.org/

26 2. 1 . Introduction

Example 2.2. Verifying the Nmap and Fyodor PGP Key Fingerprints

flog-> gpg --fi ngerprint nmap f yodor
pub 1 0 2 4D / 3 3 5 9 985F 2 0 0 5 - 0 4 - 2 4

Key fingerpr int = 886 1 D0 5 7 C O D 7 DCEF E 7 3 0 9 9 6 C 1AF6 E C 5 0 3 3 5 9 985F
uid Fyodor < fyodor @ i nsecure . org>
sub 2 0 4 8g/D3C2 2 4 1C 2 0 0 5 - 0 4 - 2 4

pub 102 4D/689 3 55DO 2 0 0 5 - 0 4 - 2 4
Key fingerprint = 4 3 6 0 6 6A8 9A79 8 4 2 5 FDAO E 3 F 8 O l AF 9 F 0 3 6 8 9 3 5 5 D O

uid Nmap Pro j ect S igning Key (http : / / insecure . org/)
sub 2 0 4 8g/A50A6A9 4 2 0 0 5 - 0 4 - 2 4

For every Nmap package download file (e.g. nmap- 4 . 7 6 . tar . b z 2 and nmap- 4 . 7 6 -win3 2 . z i p),

there is a corresponding file in the s i gs directory with . gpg . txt appended to the name (e.g.
nmap-4 . 7 6 . tar . b z 2 . gpg . txt). This is the detached signature file.

With the proper PGP key in your keyring and the detached signature file downloaded, verifying an Nmap
release takes a single GPG command, as shown in Example 2.3. If the fi le has been tampered with, the results
will look like Example 2.4.

Example 2.3. Verifying PGP key fingerprints (Successful)

flog> gpg --verify nmap- 4 . 76 . tar . bz 2 . gpg . txt nmap- 4 . 76 . t ar . bz 2
gpg : Signature made F r i 1 2 Sep 2 0 0 8 0 2 : 0 3 : 59 AM PDT u s ing DSA key I D 6 8 9 3 5 5D O
gpg : Good s ignature from "Nmap Project Signing Key (http : / /www . insecure . org/) "

Example 2.4. Detecting a bogus file

flog> gpg --ver ify nmap-4 . 76 . tar . bz 2 . gpg . txt nmap- 4 . 7 6 -hacked . tar . bz 2
gpg : Signature made Fri 1 2 Sep 2 0 0 8 0 2 : 03 : 5 9 AM PDT u s ing DSA key I D 6893 5 500
gpg : BAD signature from "Nmap Pro j ect S igning Key (ht tp : / /www . insecure . org/) "

While PGP signatures are the recommended validation technique, SHA l and MD5 (among other) hashes
are made available for more casual validation. An attacker who can manipulate your Internet traffic in real
time (and is extremely skilled) or who compromises Nmap.Org and replaces both the distribution file and
digest file, could defeat this test. However, it can be useful to check the authoritative Nmap.Org hashes if
you obtain Nmap from a third party or feel it might have been accidentally corrupted. For every Nmap
package download file, there is a corresponding file in the s igs directory with . digest . txt appended
to the name (e.g. nmap- 4 . 7 6 . tar . b z 2 . dige s t . txt). An example is shown in Example 2.5. This is
the detached signature file. The hashes from the digest file can be verified using common tools such as
shal sum, md5sum, or gpg, as shown in Example 2.6, "Verifying Nmap hashes" [28].

2.1. Introduction 27

Example 2.5. A typical Nmap release digest file

f l og> cat s i gs /nmap-4 . 76 . tgz . digest . txt
nmap- 4 . 76 . tgz : MD5 5 4 BS C9 E3 F 4 4C lA DD El 7D F6 8 1 7 0 EB 7C FE
nmap- 4 . 76 . tgz : SHAl 4 3 7 4 CF9C A882 2 C 2 8 5DE9 DOOE 8F6 7 0 6 D O BCFA A403
nmap- 4 . 7 6 . tg z : RMD 1 6 0 AE 7B 8 0EF 4CE6 DBAA 6E65 76F9 CA3 8 4A22 3 B 8 9 BD3A
nmap-4 . 76 . tg z : SHA2 2 4 5 2 4D 4 79E 7 1 7D98DO 2 FBOA4 2B 9A4E6E52 4 0 2 7C9B6 1 D 8 4 3F95

D 4 1 9F 8 7 F
nmap- 4 . 76 . tg z : SHA2 5 6 OE96 0 E 0 5 53EB76 4 7 O C 8 5 1 7AO 0 3 8 0 9 2A3

D6DAEF1A CDCC9 6 5 8
nmap- 4 . 76 . tgz : SHA3 8 4 D 5 2 9 1 7FD 9EE6EE6 2 F 5 F 4 56BF E 2 4 5 6 7 5 D

3CAA4F 5 0 B l 7 1 DC 2 3 F E 7 8 0 8A8 C5E3A49}l..
nmap- 4 . 7 6 . tg z : SHA5 1 2 8 2 6CD89F 7 9 3 0A765 C9FE9B4 1 1 DAFD1 1 3

E 4 C l E 6 9 0 2 0A3 7FC8 3 7 56 4DC3 45FF O C 9 7
E 2 6 2B 4 0 3 A52F4ECE C 2 3 3 3 3AO 4 8 DEDA66

Example 2.6. Verifying Nmap hashes

f log> shal sum nmap- 4 . 7 6 . tgz
4 3 7 4cf9ca 8 8 2 2 c 2 8 5de9d 0 0 e 8 f 6 7 0 6d0bcfaa 4 0 3 nmap-4 . 76 . tgz
f log> md5 sum nmap- 4 . 76 . tgz
5 4b5c9 e 3 f 4 4 c l adde l 7df6 8 1 7 0eb7cfe nmap- 4 . 76 . tgz
f l og> gpg --pr int-md shal nmap- 4 . 76 . tg z

9 6 9DB6 5C

B6 EEEBC5
4A7 8ACBE
2 C 8 8 3 8 5 7
EF4 5ABE6

nmap- 4 . 76 . tg z : 4 3 7 4 CF9C A882 2 C 2 8 5DE9 D O OE 8F6 7 06DO BCFA A403

BE2 3C03F

0A2 8 7B27
A5AEED33
2A3A9503
6CEA49FF

While releases from Nmap.Org are signed as described in this section, certain Nmap add-ons, interfaces,
and platform-specific binaries are developed and distributed by other parties. They have different mechanisms
for establishing the authenticity of their downloads.

2.1 .5. Obta in ing N map from the Subversion (SVN)
Repository

In addition to regular stable and development releases, the latest Nmap source code is always available using
the Subversion (SYN) revision control system4. This delivers new features and version/OS detection database
updates immediately as they are developed. The downside is that SYN head revisions aren't always as stable
as official releases. So SYN is most useful for Nmap developers and users who need a fix which hasn't yet
been formally released.

SYN write access is strictly limited to top Nmap developers, but everyone has read access to the repository.
Check out the latest code using the command svn co --username guest --password " "

svn://svn.insecure.org/nmap/. Then you can later update your source code by typing svn u p i n your working
directory. The "guest" username is required due to an svnserve authorization bug.

While most users only follow the / nmap directory in svn (which pulls in /nbase , / n s ock, and I zenmap

on its own), there is one other interesting directory: /nmap-exp. This directory contains experimental
Nmap branches which Nmap developers create when they wish to try new things without destabilizing Nmap
proper. When developers feel that an experimental branch is ready for wider-scale testing, they will generally
email the location to the nmap-dev mailing list .

4 http://subversion.tigris.org

28 2. 1 . Introduction

Once Nmap is checked out, you can build it from source code just as you would with the Nmap tarball
(described later in this chapter).

If you would like real-time (or digested) notification and diffs by email when any changes are made to Nmap,
sign up for the nmap-svn mailing l ist at http://cgi. insecure.org/mailmanllistinfo!nmap-svn.

2.2. Un ix Compi lation and Instal lat ion from
Source Code
While binary packages (discussed i n later sections) are available for most platforms, compilation and
installation from source code is the traditional and most powerful way to install Nmap. This ensures that the
latest version is available and allows Nmap to adapt to the library availability and directory structure of your
system. For example, Nmap uses the OpenSSL cryptography libraries for version detection when available,
but most binary packages do not include this functionality. On the other hand, binary packages are generally
quicker and easier to install, and allow for consistent management (installation, removal, upgrading, etc.) of
all packaged software on the system.

Source installation is usually a painless process-the build system is designed to auto-detect as much as
possible. Here are the steps required for a default install :

I. Download the latest version of Nmap in .tar.bz2 (bzip2 compression) or .tgz (gzip compression) format
from http://nmap.org/download.html.

2. Decompress the downloaded tarball with a command such as:

bzip2 -cd nmap-<VERSION>.tar.bz2 I tar xvf •

With GNU tar, the simpler command tar xvjf nmap-<VERSION>.tar.bz2 does the trick. If you
downloaded the .tgz version, replace bzip2 with gzip in the decompression command.

3. Change into the newly created directory: cd nmap-<VERSION>

4. Configure the build system: Jconfigure

If the configuration succeeds, an ASCII art dragon appears to congratulate you on successful configuration
and warn you to be careful, as shown in Example 2.7.

2.2. Unix Compilation and Installation from Source Code 29

Example 2. 7. Successful configuration screen

f l og - / nmap> . / conf igure
checking bui ld system type . . . x 8 6_6 4 -unknown - l inux-gnu
[hundreds of l ines cut]
con f i gure : creating . / config . status
con f i g . statu s : creating Makef i l e
conf i g . status : creating nsock_config . h
con fi g . statu s : nsock_config . h i s unchanged

() / \ (
\ I < \ < \ . <)

\ \ \) \

(_' \ + . x (• \
(
\ /

I -
__ -----------I < o >

(_
(__

\ +

+ - . (- ' . - < . -
: <_ - < -

/ . / . +- . - I +--
(_ ' Ix I x _/ <

I x I (' I I
I I _/ I +

(_/

(0
\ _____ _

VVVVVVV W V\
(-- _AAAAAAA_A_/
\ / /_

__ .

I

I
I

\
_

__
\ I

\ I
I

\ __ _
\

\
I

I
\ /

\
NMAP I S A POWERFUL TOOL - - USE CAREFULLY AND RESPON S IBLY

Configurat ion complete . Type make (gmake on some * BSD machines) to comp i l e .

5. Build Nmap (and the Zenmap GUI if its requirements are met): make

Note that GNU Make is required. On BSD-derived Unix systems, this is often installed as gmake. So if
make returns a bunch of errors such as "Make f i l e , l i ne 1 : Need an operat or", try running
gmake instead.

6. Become a privileged user for system-wide install : su root

This step may be skipped if you only have an unprivileged shell account on the system. In that case, you
will l ikely need to pass the --pref i x option to conf i gure in step four as described in the next section.

7. Install Nmap, support files, docs, etc.: make install

Congratulations! Nmap is now installed as / u s r I local /bin/nmap ! Run it with no arguments for a
quick help screen.

As you can see above, a simple source compilation and install consists of little more than running
./configure;make;make install as root. However, there are a number of options available to configure that
affect the way Nmap is built.

2.2.1 . Configure Directives

Most of the Unix build options are controlled by the conf i gure script, as used in step number four above.
There are dozens of command-line parameters and environmental variables which affect the way Nmap is
built. Run ./configure --help for a huge list with brief descriptions. These are not applicable to building
Nmap on Windows. Here are the options which are either specific to Nmap or particularly important:

30 2.2. Unix Compilation and Installation from Source Code

--prefix=<di rect oryname>

This option, which is standard to the configure scripts of most software, determines where Nmap and
its components are installed. By default, the prefix is / u s r I local , meaning that nmap is installed in
/usr I local/bin, the man page (nmap . 1) is installed in / u s r I local /man/ma n l , and the data
files (nmap-os -db, nmap- services, nmap-servi ce-probe s, etc.) are installed under
/usr/loca l / s hare / nmap. If you only wish to change the path of certain components, use the
options --bi ndir, --datadir, and/or - -mandir . An example usage of --pr e f i x would be to
install Nmap in my account as an unprivileged user. I would run Jconfigure
--prefix=</home/ fyodor>. Nmap creates subdirectories like /home / fyodor /man/man l in the
install stage if they do not already exist.

--without - zenmap

This option prevents the Zenmap graphical frontend from being installed. Normally the build system
checks your system for requirements such as the Python scripting language and then installs Zenmap if
they are all available.

--with-openssl=<di rec t oryname>

The version detection system and Nmap Scripting Engine are able to probe SSL-encrypted services
using the free OpenSSL libraries. Normally the Nmap build system looks for these libraries on your
system and include this capability if they are found. If they are in a location your compiler does not
search for by defau l t , bu t you s ti l l want them to be used , spec i fy
--with-openssl=<di rect oryname>. Nmap then looks in <di rect oryname>llibs for the
OpenSSL libraries themselves and <di re ct oryname>/include for the necessary header files. Specify
--without -openssl to disable SSL entirely.

--with - l i bpcap= <di rect oryname>

Nmap uses the Libpcap library5 for capturing raw IP packets. Nmap normally looks for an existing copy
of Libpcap on your system and uses that if the version number and platform is appropriate. Otherwise
Nmap includes its own recent copy of Libpcap, which has been modified for improved Linux functionality.
The specific changes are described in l ibpcap/NMAP _MO D I F I CAT I ONS in the Nmap source
directory. Because of these Linux-related changes, Nmap always uses its own Libpcap by default on
that platform. If you wish to force Nmap to link with your own Libpcap, pass the option
--with - l i bpcap= <di rect oryname> to configure. Nmap then expects the Libpcap library to be
in <di rect oryname> / l ib/ l ibpcap . a and the include files to be in
<direct oryname>/include. Nmap will always use the version of Libpcap included in its tarball
if you specify --wi th-l ibpcap=i n c luded.

--with- libpcre=<direct oryname>

PCRE is a Perl-compatible regular expression library available from http://www.pcre.org. Nmap normally
looks for a copy on your system, and then falls back to its own copy if that fails. If your PCRE library
is not in your compiler's standard search path, Nmap probably will not find it. In that case you can tell
Nmap where it can be found by specifying the option --wi t h - l i bpcre= <di rectoryname> to
configure. Nmap then expects the library files to be in <di rect oryname>/ l ib and the include fi les
to be in <di rectoryname>/ i n c l ude. In some cases, you may wish to use the PCRE libraries

5 http://www.tcpdwnp.org

2.2. Unix Compilation and Installation from Source Code 3 1

included with Nmap in preference to those already on your system. In that case, specify
--wi th-l ibpcre=i ncluded.

--with-l ibdnet=<direct oryname>

Libdnet is an excellent networking library that Nmap uses for sending raw ethernet frames. The version
in the Nmap tree is heavily modified (particularly the Windows code), so the default is to use that
included version . If you wish to use a version already installed on your system instead, specify
- -wi th-l ibdnet=<direct oryname>. Nmap then expects the library files to be in
<di rect oryname>/ l i b and the include files to be in <di rectoryname>/ include.

- -wi th-localdirs

This simple option tells Nmap to look i n / u s r / l ocal / l i b and / u s r / local/ include for
important library and header fi les. This should never be necessary, except that some people put such
libraries in / u s r / l ocal without configuring their compiler to find them. If you are one of those
people, use this option.

2.2.2. If You Encounter Compi lation Problems

In an ideal world, software would always compile perfectly (and quickly) on every system. Unfortunately,
society has not yet reached that state of nirvana. Despite all our efforts to make Nmap portable, compilation
issues occasionally arise. Here are some suggestions in case the source distribution compilation fails.

Upgrade to the latest Nmap
Check http://nmap.org/download.html to make sure you are using the latest version of Nmap. The
problem may have already been fixed.

Read the error message carefully
Scroll up in the output screen and examine the error messages given when commands fail . It is often
best to find the first error message, as that often causes a cascade of further errors. Read the error message
carefully, as it could indicate a system problem such as low disk space or a broken compiler. Users with
programming skil ls may be able to resolve a wider range of problems themselves. If you make code
changes to fix the problem, please send a patch (created with diff -uw <oldfile> <newfile>) and
any details about your problem and platform to nmap-dev as described in Section 15 .17, "Bugs" [4 1 1] .
Integrating the change into the base Nmap distribution allows many other users to benefit, and prevents
you from having to make the changes with each new Nmap version.

Ask Google and other Internet resources
Try searching for the exact error message on Google or other search engines. You might also want to
browse recent activity on the Nmap development (nmap-dev) list-archives and a search interface are
available at http://seclists.org.

Ask nmap-dev
If none of your research leads to a solution, try sending a report to the Nmap development (nmap-dev)
mailing list, as described in Section 15 . 17, "Bugs" [41 1] .

Consider binary packages

32

Binary packages of Nmap are available on most platforms and are usually easy to install . The downsides
are that they may not be as up-to-date and you lose some of the flexibility of self-compilation. Later

2.2. Unix Compilation and Installation from Source Code

sections of this chapter describe how to find binary packages on many platforms, and even more are
available via Internet searching. Obviously you should only install binary packages from reputable
sources.

2.3. Linux Distr ibutions
Linux is the most popular platform for running Nmap. I n one user survey, 86% said that Linux was at least
one of the platforms on which they run Nmap. The first release of Nmap in 1997 only ran on Linux.

Linux users can choose between a source code install or using binary packages provided by their distribution
or Insecure.Org. The binary packages are generally quicker and easier to install , and are often slightly
customized to use the distribution's standard directory paths and such. These packages also allow for consistent
management in terms of upgrading, removing, or surveying software on the system. A downside is that
packages created by the distributions are necessarily behind the Nmap.Org source releases. Most Linux
distributions (particularly Debian and Gentoo) keep their Nmap package relatively current, though a few are
way out of date. Choosing the source install allows for more flexibility in determining how Nmap is built
and optimized for your system. To build Nmap from source, see Section 2.2, "Unix Compilation and
Installation from Source Code" [29]. Here are simple package instructions for the most common distributions.

2.3.1 . RPM-based Distributions {Red Hat, Mandrake,
SUSE, Fedora)

I build RPM packages for every release of Nmap and post them to the Nmap download page at
http://nmap.org/download.html. I build two packages : The nmap package contains just the command-line
executable and data fi les, while the zenmap package contains the optional Zenmap graphical frontend (see
Chapter 1 2, Zenmap GUI Users ' Guide [307]). The zenmap package requires that the nmap package be
installed first. One down side to installing the RPMs rather than compiling from source is that the RPMs
don't support OpenSSL for version detection and Nmap Scripting Engine probing of SSL services.

Installing via RPM is quite easy-it even downloads the package for you when given the proper URLs. The
following example downloads and installs Nmap 4.68, including the frontend. Of course you should use the
latest version at the download site above instead. Any existing RPM-installed versions are upgraded.
Example 2.8 demonstrates this installation process.

Example 2.8. Installing N map from binary RPMs

i rp� -vhU http : / /nmap . org/di s t / nmap- 4 . 6 8- 1 . i3 8 6 . rpm
Retrieving http : / /nmap . org/di s t / nmap- 4 . 6 8- 1 . i 3 8 6 . rpm
Preparing . . . # (1 0 0 %]

l : nmap # (1 0 0 %)
t rpm -vhU http : / /nmap . org/di s t / zenmap- 4 . 6 8 - l . noarch . rpm
Retrieving http : / /nmap . org/dist / z enmap- 4 . 6 8 - 1 . noarch . rpm
Preparing . . . # (1 0 0 %]

l : zenmap # (1 0 0 %]

As the fi lenames above imply, these binary RPMs were created for normal PCs (x86 architecture). I also
distribute x86_64 binaries for 64-bit Linux users. These binaries won't work for the relatively few Linux
users on other platforms such as SPARC, Alpha, or PowerPC. They also may refuse to install if your library

2.3. Linux Distributions 33

versions are sufficiently different from what the RPMs were initially built on. One option in these cases
would be to find binary RPMs prepared by your Linux vendor for your specific distribution. The original
install CDs or DVD are a good place to start. Unfortunately, those may not be current or available. Another
option is to install Nmap from source code as described previously, though you lose the binary package
maintenance consistency benefits. A third option is to build and install your own binary RPMs from the
source RPMs distributed from the download page above. Example 2.9 demonstrates this technique with
Nmap 4.68.

Example 2.9. Building and installing Nmap from source RPMs

> rpmbui ld --rebui l d http : / /nmap . org/di s t / nmap- 4 . 6 8- l . src . rpm

[hundreds of l i nes cut J
Wrot e : /home / fyodor /rpmd i r / RPMS / i 3 8 6 /nmap- 4 . 6 8 - l . i3 8 6 . rpm
[cut J
> S U
Pas sword :
rpm -vhU / home / fyodor/ rpmdir/RPMS / i 3 8 6 /nmap- 4 . 6 8- l . i3 8 6 . rpm
Preparing . . . # [1 0 0 %]

l : nmap # [1 0 0 %]

I t i s not necessary to rebuild Zenmap i n this fashion because the Zenmap RPM i s architecture-independent
("noarch"). For that reason there are no Zenmap source RPMs.

Removing RPM packages is as easy as rpm -e nmap zenmap.

2.3.2. Updating Red Hat, Fedora, Mandrake, and
Yel low Dog Linux with Yum

The. Red Hat, Fedora, Mandrake, and Yellow Dog Linux distributions have an application named Yum which
manages software installation and updates from central RPM repositories. This makes software installation
and updates trivial. Since distribution-specific Yum repositories are normally used, you know the software
has already been tested for compatibility with your particular distribution. Most distributions do maintain
Nmap in their Yum repository, but they don't always keep it up to date. This is particularly problematic if
you (like most people) don't always quickly update to the latest release of your distribution. If you are running
a two-year old Linux release, Yum will often give you a two-year-old version of Nmap. Even the latest
version of distributions often take months to update to a new Nmap release. So for the latest version of Nmap
on these systems, try the RPMs we distribute as described in the previous section. But if our RPMs aren't
compatible with your system or you are in a great hurry, installing Nmap from Yum is usually as simple as
executing yum install nmap (run yum install nmap zenmap if you would like the GUI too, though some
distributions don't yet package Zenmap). Yum takes care of contacting a repository on the Internet, finding
the appropriate package for your architecture, and then installing it along with any necessary dependencies.
This is shown (edited for brevity) in Example 2. 10. You can later perform yum update to install available
updates to Nmap and other packages in the repository.

34 2.3. Linux Distributions

Example 2.10. Installing Nmap from a system Yum repository

flog-#yum install nmap
Setting up Install Proces s
Parsing package instal l arguments
Resolving Dependencies
--> Running transact ion check
---> Package nmap . x86_6 4 2 : 4 . 52 - 1 . fcB set to be updated
--> Finished Dependency Resolut ion
Dependencies Resolved

Package

Install ing :
nmap

Transact ion S ummary

Install
Update
Remove

1 Package (s)
0 Package (s)
0 Package (s)

Arch

x86_6 4

Total down load s i z e : 1 . 0 M
Is this ok [y/NJ : y
Downloading Packages :

Ver s ion Repos itory

2 : 4 . 52 - l . fc 8 updates

(1 / 1) : nmap-4 . 52 - 1 . fc 8 . x8 1 0 0 % 1 ========================= 1 1 . 0 MB
Running Transact ion Test
Transaction Test S ucceeded

S i ze

1 . 0 M

0 0 : 02

Running Transaction
Installing : nmap # (1 / 1)

Instal led : nmap . x8 6_6 4 2 : 4 . 52 - 1 . fc B
Complete !

2.3.3. Debian Linux and Derivatives such as Ubuntu

LaMont Jones does a fabulous job maintaining the Nmap .deb packages, including keeping them reasonably
up-to-date. The proper upgrade/install command is apt-get install nmap. This works for Debian derivatives
such as Ubuntu too. Information on the latest Debian "stable" Nmap package is available at
http://packages.debian.org/stablelnmap and the development ("unstable") Nmap and Zenmap packages are
available from http://packages.debian.org/unstable/nmap and http://packages.debian.org!unstable/zenmap.

2.3.4. Other Linux Distributions

There are far too many Linux distributions available to list here, but even many of the obscure ones include
Nmap in their package tree. If they don't, you can simply compile from source code as described in Section 2.2,
"Unix Compilation and Installation from Source Code" [29] .

2.3. Linux Distributions 35

2.4. Windows
While Nmap was once a Unix-only tool, a Windows version was released in 2000 and has since become the
second most popular Nmap platform (behind Linux). Because of this popularity and the fact that many
Windows users do not have a compiler, binary executables are distributed for each major Nmap release.
While it has improved dramatically, the Windows port is not quite as efficient or stable as on Unix. Here are
some known limitations:

• You cannot generally scan your own machine from itself (using a loopback IP such as 1 27.0.0. I or any
of its registered IP addresses). This is a Windows limitation that we haven't yet worked around. If you
really want to do this, use a TCP connect scan without pinging (-s T -PN) as that uses the high level

socket API rather than sending raw packets.

• Nmap only supports ethernet interfaces (including most 802. I 1 wireless cards and many VPN clients) for
raw packet scans. Unless you use the - s T -PN options, RAS connections (such as PPP dialups) and
certain VPN clients are not supported. This support was dropped when Microsoft removed raw TCP/IP
socket support in Windows XP SP2. Now Nmap must send lower-level ethernet frames instead.

Scans speeds on Windows are generally comparable to those on Unix, though the latter often has a slight
performance edge. One exception to this is connect scan (- s T), which is often much slower on Windows
because of deficiencies in the Windows networking APL This is a shame, since that is the one TCP scan that
works against localhost and over all networking types (not just ethernet, like the raw packet scans). Connect
scan performance can be improved substantially by applying the Registry changes in the
nmap_per f ormance . reg fi le included with Nmap. By default these changes are applied for you by the
Nmap executable installer. This registry file is in the nmap- <versi on> directory of the Windows binary
zip file, and nmap- <versi on>/mswi n 3 2 in the source tarball (where <versi on> is the version number
of the specific release). These changes increase the number of ephemeral ports reserved for user applications
(such as Nmap) and reduce the time delay before a closed connection can be reused. Most people simply
check the box to apply these changes in the executable Nmap installer, but you can also apply them by
double-clicking on nmap_performance . reg, or by running the command regedit32

nmap_performance.reg. To make the changes by hand, add these three Registry DWORD values to
HKEY_LOCAL_MACHINE\ SYSTEM\CurrentCont rol Set \ Service s \ Tcpip\Parameters :

MaxUserPort
Set a large value such as 65534 (OxOOOOfffe). See MS KB Q 1 96271 6.

TCPTimedWai tDelay
Set the minimum value (OxOOOOOOl e). See MS KB Q 1495327.

StrictTimeWaitSeqCheck
Set to I so TCPTimedWaitDelay is checked.

6 http://support.microsoft.comlkb!QJ96271
7 http://support.microsoft.comlkb!Q 149532

36 2.4. Windows

Note
I would like to thank Ryan Permeh of eEye, Andy Lutomirski, and Jens Vogt for their hard
work on the Nmap Windows port. For many years, Nmap was a Unix-only tool, and it would
likely still be that way if not for their efforts.

Windows users have three choices for installing Nmap, all of which are available from the download page
at http://nmap.org/download.html.

2.4.1 . Windows 2000 Dependencies

Nmap supports Windows 2000, but a couple dependencies from Microsoft must be installed first. Those are
the Windows Installer 3 . 1 (v2)8 and the Security Update for Windows 2000 (KB835732)9. After installing
these, follow the general instructions in the following two sections to install Nmap.

2.4.2 . Windows Self-instal ler

Every Nmap release includes a Windows self-installer named nmap- <versi on>-set up . e x e (where
<version> is the version number of the specific release). Most Nmap users choose this option since it is
so easy. Another advantage of the self-installer is that it provides the option to install the Zenmap GUI.
Simply run the installer fi le and let it walk you through panels for choosing an install path and installing
WinPcap. The installer was created with the open-source Null soft Scriptable Install System 10• After it
completes, read Section 2.4.5, "Executing Nmap on Windows" [39] for instructions on executing Nmap on
the command-line or through Zenmap.

2.4.3. Command- l ine Zip B inaries

Note
Most users prefer installing Nmap with the self-installer discussed previously.

Every stable Nmap release comes with Windows command-line binaries and associated files in a Zip archive.
No graphical interface is included, so you need to run nmap . exe from a DOS/command window. Or you
can download and install a superior command shell such as those included with the free Cygwin system
available from http://www.cygwin.com. Here are the step-by-step instructions for installing and executing
the Nmap .zip binaries.

Install ing the Nmap zip binaries

I . Download the .zip binaries from http://nmap.org/download.html.

2. Uncompress the zip file into the directory you want Nmap to reside in. An example would be c : \Program

Files. A directory called nmap-vers ion should be created, which includes the Nmap executable
and data files. Microsoft Windows XP and Vista include zip extraction-just right-click on the file in

8 http://microsoft.comldownloads/details.aspx?Family/D=889482FC-5F56-4A38-8838-DE776FD4138C
9 http:/lmicrosofr.comldownloadsldetails.aspx?FamilylD=0692C27E-F63A-414C-B3EB-D2342FBB6COO
IO http://nsis.so11rceforge.11et/Main_Page

2.4. Windows 37

Explorer. If you do not have a Zip decompression program, there is one (called unzip) in Cygwin described
above, or you can download the open-source and free 7-Zip utility 1 1 • Commercial alternatives are WinZip 12

and PKZIP13•

3. For improved performance, apply the Nmap Registry changes discussed previously.

4. Nmap requires the free WinPcap packet capture library. We build our own WinPcap installer which is
available in the zip file as wi npcap-nmap- <versi on> . exe, where <version> is the Nmap version
rather than the WinPcap version. Alternatively, you can obtain and install the latest version from
http://www. winpcap.org. You must install version 4.0 or later.

5. Due to the way Nmap is compiled, it requires the Microsoft Visual C++ 2008 Redistributable Package
of runtime components. Many systems already have this installed from other packages, but you should
run vcredi s t_x 8 6 • exe from the zip file just in case you need it.

6. Instructions for executing your compiled Nmap are given in Section 2.4.5, "Executing Nmap on
Windows" [39).

2.4.4. Compi le from Source Code

Most Windows users prefer to use the Nmap binary self-installer, but compilation from source code is an
option, particularly if you plan to help with Nmap development. Compilation requires Microsoft Visual C++
2008, which is part of their commercial Visual Studio suite. Any of the Visual Studio editions should work,
including the free Visual C++ 2008 Express 14•

Compiling Nmap on Windows from Source

I . Download the latest Nmap source distribution from http://nmap.org/download.html. It has the name
nmap- <versi on>.tar.bz2 or nmap- <versi on>.tgz. Those are the same tar file compressed using gzip
or bzip2, respectively. The bzip2-compressed version is smaller.

2. Uncompress the source code file you just downloaded. Recent releases of the free Cygwin distribution 15
can handle both the . t a r . b z 2 and . tgz formats. Use the command tar xvjf nmap-version.tar.bz2

or tar xvzf nmap-version.tgz, respectively. Alternatively, the common WinZip application can decompress
the .tgz version.

3. Open Visual Studio and the Nmap solution file (nmap- <vers i on>/mswi n 3 2 / nmap . s ln).

4. Choose "Build Solution" from the "Build Menu". Nmap should begin compiling, and end with the line
"-- Done --" saying that all projects built successfully and there were zero failures.

5 . The executable and .data files can be found in nmap- <versi on>/mswi n 3 2 / Re le a s e / . You can
copy them to a preferred directory as long as they are all kept together.

1 1 hup://www. 7-zip.org
12 h1tp:llwww.wi11zip.com
13 http://www.pkware.com
14 http:llwww.microsoft.com/expresslvd
15 http://www.cygwin.com/

38 2.4. Windows

6. Ensure that you have WinPcap installed. You can obtain it by installing our binary self-installer or executing
winpcap-nmap- <vers i on> . exe from our zip package. Alternatively, you can obtain the official
installer at http://www. winpcap. org.

7 . Instructions for executing your compiled Nmap are given in the next section.

Many people have asked whether Nmap can be compiled with the gcc/g++ included with Cygwin or other
compilers. Some users have reported success with this, but we don't maintain instructions for building Nmap
under Cygwin.

2.4.5. Executing Nmap on Windows

Nmap releases now include the Zenmap graphical user interface for Nmap. If you used the Nmap installer
and left the Zenmap field checked, there should be a new Zenmap entry on your desktop and Start Menu.
Click this to get started. Zenmap is fully documented in Chapter 1 2, Zenmap GUI Users' Guide [307] . While
many users love Zenmap, others prefer the traditional command-line approach to executing Nmap. Here are
detailed instructions for users who are unfamiliar with command-line interfaces:

I . Make sure the user you are logged in as has administrative privileges on the computer (user should be a
member of the admi n i s t rators group).

2. Open a command/DOS Window. Though it can be found in the program menu tree, the simplest approach
is to choose "Start" -> "Run" and type cmd<enter>. Opening a Cygwin window (if you installed it) by
clicking on the Cygwin icon on the desktop works too, although the necessary commands differ slightly
from those shown here.

3. Change to the directory you installed Nmap into. Assuming you used the default path, type the following
commands.

c :

cd " \Program F i les \Nmap "

4. Execute nmap.exe. Figure 2.1 is a screen shot showing a simple example.

2.4. Windows 39

Figure 2.1. Executing Nmap from a Windows command shell

If you execute Nmap frequently, you can add the Nmap directory (c : \Program F i l e s \Nmap by default)
to your command execution path. The exact place to set this varies by Windows platform. On my Windows
XP box, I do the following:

I. From the desktop, right click on My Computer and then click "properties".

2. In the System Properties window, click the "Advanced" tab.

3. Click the "Environment Variables" button.

4. Choose Path from the System variabl es section, then hit edit.

5. Add a semi-colon and then your Nmap directory (c : \Program F i l e s \Nmap by default) to the end
of the value.

6. Open a new DOS window and you should be able to execute a command such as nmap scanme.nmap.org
from any directory.

2.5. Sun Solaris
Solaris has long been well-supported by Nmap. Sun even donated a complete SPARCstation to the project,
which is sti l l being used to test new Nmap builds. For this reason, many Solaris users compile and install
from source code as described in Section 2.2, "Unix Compilation and Installation from Source Code" [29).

Users who prefer native Solaris packages will be pleased to learn that Steven Christensen does an excellent
job of maintaining Nmap packages at http://www.sunfreeware.com for all modern Solaris versions and
architectures. Instructions are on his site, and are generally very simple: download the appropriate Nmap
package for your version of Solaris, decompress it, and then run pkgadd -d <packagename>. As is
generally the case with contributed binary packages, these Solaris packages are simple and quick to install.
The advantages of compil ing from source are that a newer version may be available and you have more
flexibility in the build process.

40 2.5. Sun Solaris

2.6. Apple Mac OS X
Thanks to several people graciously donating shell accounts on their Mac OS X boxes, Nmap usually compiles
on that platform without problems. Because not everyone has the development tools necessary to compile
from source, there is an executable installer as well . Nmap is also available through systems such as MacPorts
and Fink which package Unix software for Mac OS X.

2.6.1 . Executable Insta l ler

The easiest way to install Nmap and Zenmap o n Mac OS X is to use our installer. The Mac OS X section of
the Nmap download page 16 provides a file named nmap- <versi on> . dmg, where <versi on> is the
version number of the most recent release. The . dmg file is known as a "disk image". Installation instructions
follow:

I . Download the file nmap- <vers i on> . dmg. Double-click the icon to open it. (Depending on how you
downloaded the file, it may be opened automatically.)

2. The contents of the disk image will be displayed. One of the fi les will be a Mac meta-package file named
nmap-<versi on> . mpkg. Double-click it to start the installer.

3. Follow the instructions in the installer. You will be asked for your password since Nmap installs in a
system directory.

4. Once the installer is finished, eject the disk image by control-clicking on its icon and selecting "Eject".
The disk image may now be placed in the trash.

See the instructions in Section 2 .6.4, "Executing Nmap on Mac OS X" [42] for help on running Nmap and
Zenmap after they are installed.

The programs installed by the installer are universal binaries that will run on Mac OS X 10.4 (Tiger) or later.
Users of earlier versions will have to compile from source or use a third-party package.

2.6.2. Compi le from Source Code

Compiling Nmap from source on Mac OS X is no more difficult than on other platforms once a proper build
environment is in place.

Compile Nmap from source code

Compiling Nmap on Mac OS X requires Xcode17, Apple's developer tools that include GCC and the rest of
the usual build system. Xcode is not installed by default, but is available as an optional install on the Mac
OS X installation discs. If you do not have the installation discs or if you want a newer version, you can
download Xcode free of charge by following these steps.

16 http://mnap.orgldownload.html#macosx
17 h11p://developer.app/e.comltoolslxcodel

2.6. Apple Mac OS X 41

I . Apple restricts downloads of Xcode to members of the Apple Developer Connection. Browse to
http://connect.apple.com and fil l out some forms to create an account. Skip to the next step if you already
have an account.

2. Return to http://connect.apple.com and log in with your account credentials.

3. Hit the Downl oad link and then choose Devel oper Tool s .

4 . Download and i nstall the most recent Xcode.

These exact steps may change, but it is hoped that this general approach will continue to work.

Once you have i nstalled Xcode, follow the compilation instructions found in Section 2.2, "Unix Compilation
and Installation from Source Code" (29). Note that on some older versions of Mac OS X, you may have to
replace the command Jconfigure with Jconfigure CPP=/usr/bin/cpp.

Compile Zenmap from source code

Zenmap depends on some external libraries that do not come with Mac OS X, including GTK+ and PyGTK.
These libraries have many dependencies of their own. A convenient way to install all of them is to use a
third-party packaging system as described in Section 2.6.3. Once the dependencies are installed, follow the
instructions in Section 2.2, "Unix Compilation and Installation from Source Code" (29) to install Zenmap
as usual.

2.6.3. Third-party Packages

Another option for installing Nmap is to use a system which packages Unix software for Mac OS X. The
two discussed here are Fink 18 and MacPorts 19. See the respective projects' web sites for how to install the
package managers.

To install using Fink, run the command fink install nmap. Nmap will be installed as I sw/bi n / nmap. To
uninstall use the command fink remove nmap.

To install using MacPorts, run sudo port install nmap. Nmap will be installed as I opt / local /bin/ nmap.

To uninstall, run sudo port uninstall nmap.

These systems install the nmap executable outside the global PATH. To enable Zenmap to find it, set the
nmap_command_path variable in zenmap . conf to I sw/bi n / nmap or / op t / local/bin/nmap

as described in Section 1 2. 10. 1 , "The nmap Executable" (330).

2.6.4. Executing Nmap on Mac OS X
The terminal emulator in Mac OS X is called Terminal, and is located in the directory
/App l i ca t i o n s / Ut i l it ie s . Open it and a terminal window appears. This is where you will type your
commands.

18 http://www . .fi11kproject.0rg
19 http://www.macports. org

42 2.6. Apple Mac OS X

By default the root user is disabled on Mac OS X. To run a scan with root privileges prefix the command
name with sudo, as in sudo nmap -sS <target>. You will be asked for a password, which is just your
normal login password. Only users with administrator privileges can do this.

Zenmap requires the XI I application to be installed. If it was not installed by default it may be available as
an optional install on the Mac OS X installation discs.

When Zenmap is started, a dialog is displayed requesting that you type your password. Users with administrator
privileges may enter their password to allow Zenmap to run as the root user and run more advanced scans.
To run Zenmap in unprivileged mode, select the "Cancel" button on this authentication dialog.

2.7. FreeBSD I OpenBSD I NetBSD
The BSD flavors are well supported by Nmap, so you can simply compile i t from source as described in
Section 2.2, "Unix Compilation and Installation from Source Code" [29). Tills provides the normal advantages
of always having the latest version and a flexible build process. If you prefer binary packages, these *BSD
variants each maintain their own Nmap packages. Many BSD systems also have a ports tree which standardizes
the compilation of popular applications. Instructions for installing Nmap on the most popular *BSD variants
follow.

2.7.1 . OpenBSD Binary Packages and Source Ports
Instructions

According to the OpenBSD FAQ20, users "are HIGHLY advised to use packages over building an application
from ports. The OpenBSD ports team considers packages to be the goal of their porting work, not the ports
themselves." That same FAQ contains detailed instructions for each method. Here is a summary:

Installation using binary packages

I. Choose a mirror from http://www.openbsd.org/ftp.html, then FTP in and grab the Nmap package from
/pub/OpenBSD/ <versi on>/package s / <pl a t form>/ nmap- <versi on> . t g z . Or obtain it
from the OpenBSD distribution CD-ROM.

2. As root, execute: pkg_add -v nmap-<vers ion>.tgz

Installation using the source ports tree

I. If you do not already have a copy of the ports tree, obtain it via CVS using instructions at
http://openbsd.org/faq!faq 15.html.

2. As root, execute the following command (replace / u s r /por t s with your local ports directory if it
differs):

cd /usr/ports/net/nmap && make install clean

20 http://www.openbsd.org/faql

2.7. FreeBSD I OpenBSD I NetBSD 43

2. 7.2. FreeBSD Binary Package and Source Ports
Instructions

The FreeBSD project has a whole chapter21 in their Handbook describing the package and port installation
processes. A brief summary of the process follows.

Installation of the binary package

The easiest way to install the binary Nmap package is to run pkg_add -r nmap. You can then run the same
command with the zenmap argument if you want the X-Window front-end. If you wish to obtain the package
manually instead, retrieve it from http://freshports.org!securitylnmap and http://freshports.org/security/zenmap
or the CDROM and run pkg_add <packagename . tgz>.

Instal lation using the source ports tree

I. The ports tree is often installed with the system itself (usually in / u s r /port s). If you do not already
have it, specific installation instructions are provided in the FreeBSD Handbook chapter referenced above.

2. As root, execute the following command (replace / u s r /port s with your local ports directory if it
differs):

cd /usr/ports/security/nmap && make install clean

2. 7.3. Net BSD B inary Package Instructions

NetBSD has packaged Nmap for a n enormous number o f platforms, from the normal i386 to Play Station 2,

PowerPC, VAX, SPARC, MIPS, Amiga, ARM, and several platforms that I have never even heard of!
Unfortunately they are not very up-to-date. A list of NetBSD Nmap packages is available from
ftp://ftp.netbsd.orglpub!NetBSD!packages/pkgsrc/netlnmap!README.html and a description of using their
package system to install applications is available at http://netbsd.org/Documentation!pkgsrc!using.html.

2.8. Amiga, HP-UX, IR IX, and Other Platforms
One of the wonders of Open Source development is that resources are often directed towards what people
find exciting rather than having an exclusive focus on profits as most corporations do. It is along those lines
that the Amiga port came about. Diego Casorran performed most of the work and sent in a clean patch which

was integrated into the main Nmap distribution. In general, AmigaOS users should be able to simply follow

the source compilation instructions in Section 2.2, "Unix Compilation and Installation from Source Code" [29).

You may encounter a few hurdles on some systems, but I presume that must be part of the fun for Amiga

fanatics.

Nmap supports many proprietary Unix flavors such as HP-UX and SGI IRIX. The Nmap project depends
on the user community to help maintain adequate support for these systems. If you have trouble, try sending
a report with ful l details to the nmap-dev mailing list, as described in Section 15 . 17, "Bugs" [4 1 1) . Also let
us know if you develop a patch which improves support on your platform so we can incorporate it into Nmap.

21 http://www.freebsd.orgldoden_US.!S08859-!lbooks/handbook/ports.html

44 2.8. Amiga, HP-UX, IRIX, and Other Platforms

2 .9. Removing Nmap
I f your purpose for removing Nmap i s simply to upgrade to the latest version, you can usually use the upgrade
option provided by most binary package managers. Similarly, installing the latest source code (as described
in Section 2.2, "Unix Compilation and Installation from Source Code" [29]) generally overwrites any previous
from-source installations. Removing Nmap is a good idea if you are changing install methods (such as from
source to RPM or vice versa) or if you are not using Nmap anymore and you care about the few megabytes
of disk space it consumes.

How to remove Nmap depends on how you installed it initially (see previous sections). Ease of removal (and
other maintenance) is a major advantage of most binary packages. For example, when Nmap is installed
using the RPM system common on Linux distributions, it can be removed by running the command rpm -e
nmap zenmap as root. Analogous options are offered by most other package managers--consult their
documentation for further information.

If you installed Nmap from the Windows installer, simply open the Control Panel, select "Add or Remove
Programs" and select the "Remove" button for Nmap. You can also remove WinPcap unless you need it for
other applications such as Wireshark.

If you installed Nmap from source code, removal is slightly more difficult. If you still have the build directory
available (where you initially ran make install), you can remove Nmap by running make uninstall. If you
no longer have that build directory, type nmap -V to obtain the Nmap version number. Then download that
source tarball for that version of Nmap from http://nmap.org!dist! or http://nmap.org!dist-old/. Uncompress
the tarball and change into the newly created directory (nmap- <versi on>). Run ./configure, including
any install-path options that you specified the first time (such as --pr e f i x or --datadi r). Then run
make uninstall. Alternatively, you can simply delete all the Nmap-related files. If you used a default source
install of Nmap versions 4.50 or higher, the following commands remove it.

cd /usr/ local
rm -f bin /nmap bin/nmapfe bin/ xnmap
rm -f man/man l /nmap . 1 man/man l / zenmap . 1
rm -rf share/ nmap
. /bin /uninstal l_zenmap

You may have to adjust the above commands slightly if you specified --pref ix or other install-path option
when first installing Nmap. The files relating to zenmap, nmapfe, and xnmap do not exist if you did not
install the Zenmap frontend.

2.9. Removing Nmap 45

Chapter 3. Host Discovery (" Ping
Scanning ")

3.1 . Introduction
One of the very first steps in any network reconnaissance mjssion i s to reduce a (some6mes huge) set of IP
ranges into a list of ac6ve or interesting hosts. Scanning every port of every single IP address i s slow and
usually unnecessary. Of course what makes a host interesting depends greatly on the scan purposes. Network
administrators may only be interested in hosts running a certain service, while security auditors may care
about every single device with an IP address. An administrator may be comfortable using just an ICMP ping
to locate hosts on his internal network, while an external penetration tester may use a diverse set of dozens
of probes in an attempt to evade firewall restrictions.

Because host discovery needs are so diverse, Nmap offers a wide variety of options for customizing the
techniques used. Despite the name ping scan, this goes well beyond the simple ICMP echo request packets
associated with the ubiquitous ping tool. Users can skip the ping step entirely with a list scan (- s L) or by
disabling ping (-PN), or engage the network with arbitrary combinations of multi-port TCP SYN/ACK,
UDP, and ICMP probes. The goal of these probes is to solicit responses which demonstrate that an IP address
is actually active (is being used by a host or network device). On many networks, only a small percentage
of IP addresses are active at any given time. This is particularly common with private address space such as
10.0.0.0/8. That network has 16.8 million IPs, but I have seen it used by companies with fewer than a thousand
machines. Host discovery can find those machines in a sparsely allocated sea of IP addresses.

This chapter first discusses how Nmap ping scanning works overall, with high-level control op6ons. Then
specific techniques are covered, including how they work and when each is most appropriate. Nmap offers
many ping techniques because it often takes carefully crafted combina6ons to get through a series of firewalls
and router filters leading to a target network. Effec6ve overal l ping scannjng strategies are discussed, followed
by a low-level look at the algorithms used.

3.2. Specifying Target Hosts and Networks
Everything on the Nmap command-line that isn't an option (or option argument) is treated as a target host
specification. The simplest case is to specify a target IP address or hostname for scanning.

Sometimes you wish to scan a whole network of adjacent hosts. For this, Nmap supports CIDR-style
addressing. You can append /<n umbi t s> to an IPv4 address or hostname and Nmap will scan every IP
address for which the first <n umbi t s > are the same as for the reference IP or hostname given. For example,
192. 168. 10.0/24 would scan the 256 hosts between 192.168. 10.0 (binary: 1 1000000 10101000

00001010 O O O O O O O O) and 192. 168. 10.255 (binary: 1 1000000 10101000 00001010 1 1 1 1 1 1 1 1),

inclusive. 192. 168. 10.40/24 would scan exactly the same targets. Given that the host s canme . nmap . org

i s at the IP address 64. 13 . 134.52, the specification scanme.nmap.org/ 16 would scan the 65,536 IP addresses
between 64. 1 3.0.0 and 64. 13 .255.255. The smallest allowed value is /0, which scans the whole Internet. The
largest value is /32, which scans just the named host or IP address because all address bits are fixed.

3 . 1 . Introduction 47

l
Underline

l
Underline

CIDR notation is short but not always flexible enough. For example, you might want to scan 192. 168.0.0/16
but skip any IPs ending with .0 or .255 because they may be used as subnet network and broadcast addresses.
Nmap supports this through octet range addressing. Rather than specify a normal IP address, you can specify
a comma-separated list of numbers or ranges for each octet. For example, 192. 168.0-255. 1 -254 wi ll skip all
addresses in the range that end in .0 or .255. Ranges need not be limited to the final octets: the specifier
0-255.0-255. 13 .37 will perform an Internet-wide scan for all IP addresses ending in I 3.37. This sort of broad
sampling can be useful for Internet surveys and research.

1Pv6 addresses can only be specified by their fully qualified 1Pv6 address or hostname. CIDR and octet
ranges aren't supported for 1Pv6 because they are rarely useful.

Nmap accepts multiple host specifications on the command line, and they don't need to be the same type.
The command nmap scanme.nmap.org 192.168.0.0/8 10.0.0,1,3-7.0-255 does what you would expect.

3.2.1 . Input From List (-iL)

Passing a huge list of hosts is often awkward on the command line, yet it is a common need. For example,
your DHCP server might export a list of 10,000 current /eases that you wish to scan. Or maybe you want to
scan all IP addresses except for those ones to locate hosts using unauthorized static IP addresses. Simply
generate the list of hosts to scan and pass that fi lename to Nmap as an argument to the - i L option. Entries
can be in any of the formats accepted by Nmap on the command line (IP address, hostname, CIDR, 1Pv6, or
octet ranges). Each entry must be separated by one or more spaces, tabs, or newlines. You can specify a
hyphen (-) as the filename if you want Nmap to read hosts from standard input rather than an actual file.

3.2.2. Choose Targets at Random (-iR

<numtargets>)

For Internet-wide surveys and other research, you may want to choose targets at random. This is done with
the - i R option, which takes as an argument the number of IPs to generate. Nmap automatically skips certain
undesirable IPs, such as those in private, multicast, or unallocated address ranges. The argument 0 can be
specified for a never-ending scan. Keep in mind that some network administrators bristle at unauthorized
scans of their networks. Carefully read Section 1 .4, "Legal Issues" [1 3] before using -iR.

If you find yourself really bored one rainy afternoon, try the command nmap -sS -PS80 -iR 0 -p 80 to
locate random web servers for browsing.

3.2.3. Excluding Targets (--exclude, --excludefile

<filename>)

I t i s common to have machines which you don't want to scan under any circumstances. Machines can be so
critical that you won't take any risk of an adverse reaction. You might be blamed for a coincidental outage
even if the Nmap scan had nothing to do with it. Or perhaps you have legacy hardware that is known to crash
when scanned, but you haven't been able to fix or replace it yet. Or maybe certain IP ranges represent
subsidiary companies, customers, or partners that you aren't authorized to scan. Consultants often don't want
their own machine included in a scan of their client's networks. Whatever the reason, you can exclude hosts
or entire networks with the --exc lude option. Simply pass the option a comma-separated list of excluded

48 3.2. Specifying Target Hosts and Networks

l
Highlight

l
Underline

l
Highlight

l
Underline

targets and netblocks using the normal Nmap syntax. Alternatively, you can create a file of excluded
hosts/networks and pass that to Nmap with the --exc lude f i l e option.

3.2.4. Practical Examples

While some tools have simple interfaces that only allow a list of hosts or maybe let you specify the start and
end IP addresses for a range, Nmap is much more powerful and flexible. But Nmap can also be more difficult
to learn-and scanning the wrong IP addresses is occasionally disastrous. Fortunately, Nmap offers a dry
run using the list scan (-sL option). Simply execute nmap -sL -n <targets> to see which IPs would be
scanned before you actually do it.

Examples may be the most effective way to teach the Nmap host specification syntax. This section provides
some, starting with the simplest.

nmap scanme.nmap.org, nmap scanme.nmap.org/32, nmap 64.13.134.52
These commands all do the same thing, assuming that scanme.nmap.org resolves to 64.1 3 . 134.52. They
scan that one IP and then exit.

nmap scanme.nmap.org/24, nmap 64.13.134.52/24, nmap 64.13.134.0-255
These all ask Nmap to scan the 256 IP addresses from 64. 1 3.134.0 through 64. 13 . 134.255. In other
words, they ask to scan the class C sized address space surrounding scanme.nmap.org.

nmap 64.13.134.52/24 --exclude scanme.nmap.org,insecure.org
Tells Nmap to scan the class C around 64. 13 . 1 34.52, but to skip scanme.nmap.org and insecure.org if
they are found within that address range.

nmap 10.0.0.0/8 --exclude 10.6.0.0/16,ultra-sensitive-host.company.com
Tells Nmap to scan the whole private 10 range except that it must skip anything starting with 10.6 as
well as ultra-sensitive-host.company.com.

egrep 'Alease' /var/lib/dhcp/dhcpd.leases I awk ' {print $2}' I nmap -iL -
Obtain the list of assigned DHCP IP addresses and feed them directly to Nmap for scanning. Note that
a hyphen is passed to - i L to read from standard input.

nmap -6 2001:800:40:2a03::3
Scans the IPv6 host at address 2001 :800:40:2a03: :3.

3.3. Find ing an Organ ization's IP Addresses
Nmap automates many aspects of network scanning, but you sti l l must tell it which networks to scan. I
suppose you could specify -iR and hope Nmap hits your target company randomly, or you could try the
brute force method of specifying 0 . 0 . 0 . 0 I 0 to scan the whole Internet. But either of those options could
lake months or years, and possibly get you into trouble. So it is important to carefully research target netblocks
before scanning them. Even if you are conducting a legitimate penetration test and the client gave you a list
of their netblocks, it is important to double check them. Clients sometimes have out-of-date records or simply
write them down wrong. An authorization letter signed by your client won't help if you accidentally break
into the wrong company.

3.3. Finding an Organization's IP Addresses 49

l
Highlight

l
Highlight

l
Highlight

l
Highlight

In many cases, you start with only a company's domain name. This section demonstrates a few of the most
common and effective ways to turn that into a list of netblocks owned, operated by, or affiliated with the
target company. Typical Linux command-line utilities are demonstrated, but similar tools are available for
other platforms.

At the ShmooCon conference in 2006, a fel low came up to me and complained that Nmap documentation
specified many example ways to scan target . com. He noted that ICANN had reserved the domain name
example . com for this purpose, and pressured me to revise the man page accordingly. While he was
technically right, it was a strange thing to obsess about. His motivation became clear when he handed me
his business card:

Figure 3.1. A business card explains everything

TARGET CORPORATION
----- ®

- -Information Security
OpenPGP fingerprint

33 South Sixth Street. Ml1111eap01ts, Minnesota 55402
612-304 --

-- @target .com

Apparently, many Nmap users copied examples straight from the man page and ran them without changing
the target specifier. So target.com was flooded with scans and corresponding IDS alerts. In honor of that
incident, the goal of this section is to determine IP ranges assigned to and used by Target Corporation.

3.3.1 . DNS Tricks

The primary purpose of DNS is to resolve domain names into IP addresses, so it is a logical place to start.
In Example 3. 1 , I use the Linux host command to query some common DNS record types.

50 3.3. Finding an Organization's IP Addresses

Example 3.1. Using the host command to query common DNS record types

> host -t ns target . com
target . com name server ns 4 . target . com .
target . com name server n s 3 . target . com .
�arget . com name server n s l -auth . spr intl ink . net .
target . com name server ns2-auth . sprintl ink . net .
target . com name server n s 3 -a u t h . spri n t l ink . n e t .

host -t a t arget . corn

arget . com has address 1 6 1 . 2 2 5 . 1 3 0 . 1 6 3
rget . com has addre s s 1 6 1 . 2 2 5 . 1 3 6 . 0
host -t aaaa target . com
rget . com has no AAAA record
host -t mx target . com

get . com ma il is handled by 50 smtp02 . target . com .
get . com mai l i s handled by 5 smtpO l . target . com .
st -t soa target . com

rget . com has SOA record extdns 0 2 . target . com . hostma ster . target . com .

Next I resolve the IP addresses for the hostnames above (using host again) and I try a few common subdomain
names such as www . target . com and ftp . target . com. Starting with names like n s 3 . t arget . com

and smtpO 1 . target . com, I try changing the digits to find new machines. All of this leaves me with the
following target.com names and addresses:

Table 3.1. First pass at listing target.com IPs

IP Addresses

161 .225 . 1 30. 1 30

161 .225 . 136.1 36

161 .225 . 130. 1 50

161 .225. 136.0, 161 .225 . 130. 163

161 .225. 140. 120

198.70.53.234, 198.70.53 .235

172. 17.14.69

207.171 . 166.49

While a substantial hostname list can be generated in this manner, the mother lode of hostnames comes from
azone transfer. Most DNS servers now reject zone transfer requests, but it is worth a try because many stil l
allow it. Be sure to try every DNS server you have found through domain NS records and port scanning
corporate IP ranges. So far we have found seven Target nameservers: n s 3 . t arget . com,

ns4 . target . com, n s S . t arget . com, n s l-auth . sprint l i nk . net,

ns2-auth . sprint l ink . net, n s 3 -auth . sprint l ink . net, and extdn s 0 2 . t arget . com.

Unfortunately, all of those servers either refused the transfer or did not support the TCP DNS connections
tequired for a zone transfer. Example 3 .2 shows a failed target . com zone transfer attempt using the

mon dig (domain information groper) tool 1, followed by a successful one against an unrelated organization
(cpsr . org).

�map's zone-transfer NSE script could have been used instead (see Chapter 9, Nmap Scripting Engine (205)).

3.3. Finding an Organization's IP Addresses 5 1

l
Highlight

Example 3.2. Zone transfer failure and success

> dig @ n s 2 -auth . spr intl ink . net -t AXFR target . com
< < > > DiG 9 . 5 . 0b3 < < > > @ns2-auth . sprint l ink . net -t AXFR target . com

Trans fer f a i l ed .

> dig @ n s 2 . eppi . com -t AXFR cpsr . org
< < > > DiG 9 . 5 . 0bl < < > > @ns2 . eppi . com -t AXFR cpsr . or g

cpsr . org 1 0 8 0 0 I N SOA ns l . f indpage . com . root . cpsr . org .
cpsr . or g . 1 0 8 0 0 I N NS n s . stimpy . net .
cpsr . or g . 1 0 8 0 0 I N NS n s l . f indpage . com .
cpsr . or g . 1 0 8 0 0 I N NS ns2 . eppi . com .
cpsr . or g . 1 0 8 0 0 I N A 2 0 8 . 9 6 . 5 5 . 2 0 2
cpsr . org . 1 0 8 0 0 I N MX 0 smtp . electricembers . net .
diac . cpsr . org . 1 0 8 0 0 I N A 6 4 . 1 4 7 . 1 6 3 . 1 0
groups . cpsr . org . 1 0 8 0 0 I N NS n s l . el ectricember s . net .
l ocalhost . cpsr . org . 1 0 8 0 0 I N A 1 2 7 . 0 . 0 . 1
mai l . cpsr . or g . 1 0 8 0 0 IN A 2 0 9 . 2 0 9 . 8 1 . 73
peru . cpsr . or g . 1 0 8 0 0 I N A 2 0 8 . 9 6 . 5 5 . 2 0 2
www . peru . cpsr . org . 1 0 8 0 0 I N A 2 0 8 . 9 6 . 5 5 . 2 0 2
[. . .]

A common mistake when gathering forward DNS results like these is assuming that all systems found under
a domain name must be part of that organization's network and safe to scan. In fact, nothing prevents an
organization from adding records pointing anywhere on the Internet. This is commonly done to outsource
services to third parties while keeping the source domain name for branding. For example, www . target . com

resolves to 2 0 7 . 1 7 1 . 1 6 6 . 4 9 . Is this part of Target's network, or is it managed by a third party we might
not want to scan? Three quick and easy tests are DNS reverse-resolution, traceroute, and whois against the
relevant IP address registry. The first two steps can be done by Nmap, while the Linux whois command
works well for the third. These tests against target . com are shown in Example 3.3 and Example 3.4.

52 3.3. Finding an Organization's IP Addresses

Example 3.3. Nmap reverse-DNS and traceroute scan against www.target.com

i nmap -PN -T4 --traceroute www . target . com

Starting Nmap (http : / / nmap . org)
Interesting por t s on 1 6 6 -4 9 . amazon . com (2 0 7 . 1 7 1 . 1 6 6 . 4 9) :
Not shown : 9 9 8 f i ltered por t s
PORT S TATE SERVICE
80 /tcp open http
443 /tcp open https

TRACEROUTE
HOP RTT
[cut]
9 84 . 9 4
10 87 . 9 1
11 94 . 8 0
12 86 . 4 0
13 185 . 1 0
14 84 . 70
15 85 . 73
16 85 . 6 8

(u s ing port 8 0 /tcp)
ADDRES S

ae-2 . ebr 4 . NewYork l . Level3 . net (4 . 6 9 . 1 3 5 . 1 86)
ae-3 . ebr 4 . Washingtonl . Leve l 3 . net (4 . 6 9 . 1 3 2 . 9 3)
ae- 9 4 -9 4 . csw4 . Washingtonl . Level3 . net (4 . 6 9 . 1 3 4 . 1 9 0)
ae- 2 1 -6 9 . carl . Washington3 . Level3 . net (4 . 6 8 . 1 7 . 7)
AMAZONCOM . carl . Washington3 . Level3 . net (4 . 7 1 . 2 0 4 . 1 8)

72 . 2 1 . 2 0 9 . 3 8
72 . 2 1 . 1 9 3 . 3 7
1 6 6-4 9 . amazon . com (2 0 7 . 1 7 1 . 1 6 6 . 4 9)

Nmap done : 1 IP address (1 host up) scanned in 2 0 . 5 7 seconds

Example 3.4. Using whois to find owner of www.target.com IP address

> whois 2 0 7 . 1 7 1 . 1 6 6 . 49
[Querying whois . ar i n . net]
[who is . ar in . net]

OrgName :
OrgID :
Address :
City :

Ama zon . com, I nc .
AMAZON- 4
6 0 5 5th Ave S
S EATTLE

StateProv : WA
PostalCode : 9 8 1 0 4
Country : U S
[. . .]

In Example 3.3, the reverse DNS (two places) and interesting traceroute results are bolded. The Amazon.com
domain name makes it highly likely that the web site is run by Amazon rather than Target itself. Then the
whois results showing "Amazon.com, Inc." as the IP space owner removes all doubt. The web site is Target
branded, but displays "Powered by Amazon.com" at the bottom. If we were hired by Target to test their
security, we would need separate permission from Amazon to touch this address space.

Web databases can also be used to find hostnames under a given domain. For example, Netcraft has a web
site DNS search feature at http://searchdns.netcraft.com/?host. Typing . t arget . com in to the form brings
36 results, as shown in Figure 3 .2. Their handy table shows the netblock owner too, which catches cases
such as Amazon running www . t arget . com. We a lready knew about some of the discovered hosts, but
we would have been unlikely to guess names such as s endasmoochie . t arget . com.

3.3. Finding an Organization's IP Addresses 53

l
Highlight

Figure 3.2. Netcraft finds 36 Target web servers

Found 36 sites

Site Site First seen Report Netblock OS

1 . www.target.com fil October 1 995 Amazon.com , Inc. unknown

2. weeklyad. target. com fil January 2005 Akarnai Technologies Linux

3. sites. target. corn fil August 2005 Target Corporation F5 Big-IP

4. red card. target. com fil November Target Corporation FS Big-IP
2005

5. www.target.com.au ii June 2000 APNIC Windows 2000

6. targetrewards. target com fil August 2005 Target Corporation F5 Big-IP

7. cinemared.targel.com fil August 2005 Target Corporation F5 Big- I P

8. recipes.target.com Iii November Allrecipes.com , Inc. Windows

2005 Server 2003

9. bookmarked.target.com ii September l mplex.net Linux

Google can also be used for this purpose with queries such as s i t e : t arget . com.

3.3.2. Whois Queries Against IP Registries

After a set of initial "seed" IPs are discovered, they must be researched to ensure they belong to the company
you expect and to determine what netblocks they are part of. A small company might have a tiny allocation
of 1-16 IP addresses, while larger corporations often have thousands. This information is kept in regional
databases, such as ARIN (American Registry for Internet Numbers) for North America and RIPE for Europe
and the Middle East. Modern whois tools take an IP address and automatically query the appropriate registry.

Small and mid-sized companies normally don't have IP space allocated by the likes of ARIN. Instead, they
are delegated netblocks from their ISPs. Sometimes you get this ISP information from IP queries. This
generally leaves you with a big netblock and you don't know which portion of it is allocated to your target.
Fortunately, many ISPs now subdelegate customer ranges using Shared Whois (SWIP) or Referral Whois
(RWhois). If the ISP has done this, you learn the customer's exact netblock size.

One of the IP addresses previously discovered for target.com was 1 6 1 . 2 2 5 . 1 3 0 . 1 6 3. Example 3.5
demonstrates a whois query (automatically directed against ARIN) to determine the owner and IP allocation
information for this IP.

54 3.3. Finding an Organization's IP Addresses

l
Highlight

Example 3.5. Using whois to find netblock containing 161.225.130.163

erying whoi s . ar i n . net]
hois . arin . net]

Target Corporat ion
TARGE T - 1 4
1 0 0 0 Nicollet T P S 3 1 6 5
Minneapo l i s
MN
5 5 4 0 3
us

1 6 1 . 2 2 5 . 0 . 0 - 1 6 1 . 2 2 5 . 2 5 5 . 2 5 5
1 6 1 . 2 2 5 . 0 . 0 / 1 6
TARGETNET
NET- 1 6 1 -2 2 5 - 0 - 0 - 1
NET- 1 6 1 - 0 -0 - 0 - 0
Direct As s ignment

Server : NS3 . TARGET . COM
Server : NS4 . TARGE T . COM

1 9 9 3 - 0 3 - 0 4
2 0 0 5 - 1 1 - 0 2

qTechHandle : DOMAI 4 5-ARIN
gTechName : Domainnames admin
qTechPhone : + 1 -6 1 2- 6 9 6 -2 5 2 5
gTechEmail : Domainname s . admin@target . com

Not surprisingly, Target owns a huge Class B netblock, covering all 65,536 IPs from 161 .225.0.0 through
161 .225.255.255. Since the OrgName is Target, this isn't a case where we are seeing results from their ISP.

The next step is to similarly look up all previously discovered IPs which don't fal l within this range. Then
you can begin with more advanced queries. The command whois -h whois.arin.net \? gives the ARIN query
syntax. It would be nice if you could search for all netblocks matching a given address, OrgID, or
OrgTechEmail, but IP registries generally don't allow that. However, many other helpful queries are allowed.
For example, whois -h whois.arin.net @target.com shows all the ARIN contacts with email addresses at
target.com. The query whois -h whois.arin.net "n target*" shows all the netblock handles starting with
target. It is not case sensitive. Similarly, whois -h whois.arin.net "o target*" shows all of the
organizational names starting with t arget . You can look up the address, phone number, and contact email
associated with each entry to determine whether they are part of the company you wish to scan. Often they
are 3rd parties who happen to have a similar name.

3.3.3. Internet Routing Information

The core routing protocol of the Internet i s the Border Gateway Protocol (BGP). When scanning mid-sized
and large organizations, BGP routing tables can help you find their IP subnets all over the world. For example,
suppose you want to scan IP addresses belonging to Microsoft Corporation. A DNS lookup for
microsoft . com provides the IP address 2 0 7 . 4 6 . 1 9 6 . 1 1 5 . A whois query as discussed in the previous

3.3. Finding an Organization's IP Addresses 55

l
Highlight

section shows that the whole 207.46.0.0/ 16 block belongs to Microsoft at their appropriate "One Microsoft
Way" address in Redmond. That provides 65,536 IP addresses to scan, but BGP tables expose many more.

Entities such as Microsoft are assigned autonomous system (AS) numbers for routing purposes. A handy
tool for determining the AS number advertised for a given IP address is available at http://asn.cymru.com/.
Typing 2 0 7 . 4 6 . 0 . 0 into this form provides Microsoft's AS number 8075. Next, I want to find all of the
IP prefixes which route to this AS. A handy tool for doing so is available at http://www.robtex.com!as/.
Typing in AS 8 0 7 5 and hitting Go on that page leads to a summary screen showing 42 prefixes found. Those
prefixes represent 339,456 IP addresses and can be enumerated by clicking the BGP tab.

While obtaining BGP information from canned web forms such as these is convenient, obtaining routing
data from actual routers is more fun and may allow more powerful custom queries. Several organizations
provide such a service. For an example, telnet to route-vi ews . routevi ews . org or visit
http://routeviews.org. Of course these services provide read-only access to the data. If you need to manipulate
global routing tables as part of a diabolical plan to take over the Internet, that is beyond the scope of this
book.

3.4. DNS Resolution
The key focus of Nmap host discovery i s determining which hosts are up and responsive on the network.
That narrows down the field of targets, since you can't hack a host which doesn't exist. But don't let discovery
end there. You wouldn't date girls (or guys) just because they're breathing, and selecting boxes on the network
to penetrate deserves special care too. A great source of information (about networked hosts, not potential
dates) is DNS, the domain name system. Even security conscious organizations often assign names which
disclose the function of their systems. It's not uncommon to see wireless access points named wap or
wire l e s s , firewalls named fw, f i rewa l l , or fw- 1 , and development web servers with not-yet-published
content named dev, s t aging, www-i nt , or beta. Locations or department names are also often disclosed,
as in the company whose Chicago office firewall is named fw . chi.

By default, Nmap performs reverse-DNS resolution for every IP which responds to host discovery probes
(i.e. those that are online). If host discovery is skipped with -PN, resolution is performed for all IPs. Rather
than use the slow standard DNS resolution libraries, Nmap uses a custom stub resolver which performs
dozens of requests in parallel.

While the defaults generally work well , Nmap offers four options for controll ing DNS resolution. They can
substantially affect scanning speed and the amount of information gathered.

-n (No DNS resolution)
Tells Nmap to never do reverse DNS resolution on the active IP addresses it finds. Since DNS can be
slow even with Nmap's built-in parallel stub resolver, this option reduces scanning times.

-R (DNS resolution for all targets)
Tells Nmap to always do reverse DNS resolution on the target IP addresses. Normally reverse DNS is
only performed against responsive (online) hosts.

- - s y s t em-dns (Use system DNS resolver)

56

By default, Nmap resolves IP addresses by sending queries directly to the name servers configured on
your host and then listening for responses. Many requests (often dozens) are performed in parallel to
improve performance. Specify this option to use your system resolver instead (one IP at a time via the

3.4. DNS Resolution

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

getnameinfo call). This is slow and rarely useful unless you find a bug in the Nmap parallel resolver
(please let us know if you do). The system resolver is always used for IPv6 scans.

--dns-servers <serverl > [, <server2> [, . . .]] (Servers to use for reverse DNS queries)
By default, N map determines your DNS servers (for rDNS resolution) from your resolv.conf fi le (Unix)
or the Registry (Win32). Alternatively, you may use this option to specify alternate servers. This option
is not honored if you are using - - s y s t em-dn s or an IPv6 scan. Using multiple DNS servers is often
faster, especially if you choose authoritative servers for your target IP space. This option can also improve
stealth, as your requests can be bounced off just about any recursive DNS server on the Internet.

This option also comes in handy when scanning private networks. Sometimes only a few name servers
provide proper rDNS information, and you may not even know where they are. You can scan the network
for port 53 (perhaps with version detection), then try Nmap l ist scans (-s L) specifying each name server
one at a time with --dn s - serve r s until you find one which works.

3.5. Host Discovery Controls
By default, Nmap will include a ping scanning stage prior to more intrusive probes such as port scans, OS
detection, Nmap Scripting Engine, or version detection. Nmap usually only performs intrusive scans on
machines that are shown to be available during the ping scan stage. This saves substantial time and bandwidth
compared to performing ful l scans against every single IP address. Yet this approach is not ideal for all
circumstances. There are times when you do want to scan every IP (-PN), and other times when you want
to perform host discovery and nothing more (-sP). There are even times when you want to print out the
target hosts and exit prior to even sending ping probes (-s L). Nmap offers several high-level options to
control this behavior.

3.5.1 . List Scan (-sL)

List scan is a degenerate form of host discovery that simply l ists each host on the network(s) specified,
without sending any packets to the target hosts. By default, Nmap still performs reverse-DNS resolution on
the hosts to learn their names. Nmap also reports the total number of IP addresses at the end. List scan is a
good sanity check to ensure that you have proper IP addresses for your targets. If the hosts sport domain
names you do not recognize, it is worth investigating further to prevent scanning the wrong company's
network.

There are many reasons target IP ranges can be incorrect. Even network administrators can mistype their
own netblocks, and pen-testers have even more to worry about.Jn some cases, security consultants are given
the wrong addresses. In others, they try to find proper IP ranges through resources such as whois databases
and routing tables. The databases can be out of date, or the company could be loaning IP space to other
organizations. Whether to scan corporate parents, siblings, service providers, and subsidiaries is an important
issue that should be worked out with the customer in advance. A preliminary list scan helps confirm exactly
what targets are being scanned.

Another reason for an advance list scan is stealth. In some cases, you do not want to begin with a ful l-scale
assault on the target network that is l ikely to trigger IDS alerts and bring unwanted attention. A list scan is
unobtrusive and provides information that may be useful in choosing which individual machines to target.
It is possible, though highly unlikely, that the target will notice all of the reverse-DNS requests. When that

3.5. Host Discovery Controls 57

l
Highlight

-

is a concern, you can bounce through anonymous recursive DNS servers using the --dn s - s erver s option
as described in the section called "DNS proxying" [286).

A list scan is specified with the -sL command-line option. Since the idea is to simply print a list of target
hosts, options for higher level functionality such as port scanning, OS detection, or ping scanning cannot be
combined with - s L. If you wish to disable ping scanning while still performing such higher level functionality,
read up on the -PN option. Example 3.6 shows list scan being used to enumerate the CIDR /28 network
range (16 IP addresses) surrounding the main Stanford University web server.

Example 3.6. Enumerating hosts surrounding www.stanford.edu with list scan

felix-> nmap -sL www . stanford . edu / 2 8

Start ing Nmap (http : / /nmap . org)
Host www9 . Stan ford . EDU (1 7 1 . 6 7 . 1 6 . 8 0) not scanned
Host wwwl O . Stanford . EDU (1 7 1 . 6 7 . 1 6 . 8 1) not scanned
Host scriptorium . Stan ford . EDU (1 7 1 . 6 7 . 1 6 . 82) not scanned
Host coursework-a . Stanford . EDU (1 7 1 . 6 7 . 1 6 . 83) not scanned
Host coursewor k-e . Stanford . EDU (1 7 1 . 6 7 . 1 6 . 8 4) not scanned
Host www3 . Stanford . EDU (1 7 1 . 6 7 . 1 6 . 8 5) not scanned
Host leland-dev . St anford . EDU (1 7 1 . 6 7 . 1 6 . 8 6) not scanned
Host coursework-preprod . Stanford . EDU (1 7 1 . 6 7 . 1 6 . 8 7) not scanned
Host stanfordwho-dev . Stanford . EDU (1 7 1 . 6 7 . 1 6 . 8 8) not scanned
Host workgroup-dev . Stanford . EDU (1 7 1 . 6 7 . 1 6 . 89) not scanned
Host cour seworkbeta . Stanford . EDU (1 7 1 . 6 7 . 1 6 . 9 0) not scanned

Rost '«'fl'tl� . Stanfor d . '£.DU \ 111 . 6 1 . H i . 9 1) not scanned
Host coursework - i . Stanford . EDU (1 71 . 6 7 . 1 6 . 9 2) not scanned
Host leland2 . Stanford . EDU (1 71 . 6 7 . 1 6 . 9 3) not scanned
Host coursewor k - j . Stanford . EDU (1 71 . 6 7 . 1 6 . 9 4) not scanned
Host 1 7 1 . 6 7 . 1 6 . 9 5 not scanned
Nmap done : 16 IP addresses (0 hosts up) scanned in 0 . 3 8 seconds

3.5.2. Ping Scan (-sP)

This option tells Nmap to only perform a ping scan, then print out the available hosts that responded to the

scan. No further testing (such as port scanning or OS detection) is performed, except for Nmap Scripting

Engine (-- s cr ipt) host scripts and traceroute probing (--traceroute) if you specified those options.

This is one step more intrusive than a l ist scan, and can often be used for the same purposes. It performs light

reconnaissance of a target network quickly and without attracting much attention. Knowing how many hosts

are up i s more valuable to attackers than the list of every single IP and host name provided by list scan.

Systems administrators often find this option valuable as well. It can easily be used to count available machines
on a network or monitor server availability. This is often called a ping sweep, and is more reliable than
pinging the broadcast address because many hosts do not reply to broadcast queries.

Example 3.7 shows a quick ping scan against the CIDR /24 (256 IPs) surrounding one of my favorite web
sites, Linux Weekly News.

58 3.5. Host Discovery Controls

F

1

l
a
SI
n
SI

1
l

u

1
1
d
h
h

A

v

s

l
Highlight

Example 3. 7. Discovering hosts surrounding www . l wn . net with a ping scan

i nmap -sP -T4 www . lwn . net / 2 4

Starting Nmap (http : / /nmap . or g
Host 66 . 2 1 6 . 6 8 . 0 seems to b e a subnet broadcast address (returned 1 extra ping)
Host 66 . 2 1 6 . 6 8 . 1 appears to be up .
Host 66 . 2 1 6 . 6 8 . 2 appears to be up .
Host 66 . 2 1 6 . 6 8 . 3 appears t9 be up .
Host server l . camnetsec . com (6 6 . 2 1 6 . 6 8 . 1 0) appears to be up .
Host akqa . com (6 6 . 2 1 6 . 6 8 . 1 5) appears to be up .
Host asria . org (6 6 . 2 1 6 . 6 8 . 1 8) appears to be up .
Host webcubic . net (6 6 . 2 1 6 . 6 8 . 1 9) appears to be up .
Host dizzy . yel lowdog . com (66 . 2 1 6 . 6 8 . 2 2) appears to be up .
Host www . outdoorwire . com (6 6 . 2 1 6 . 6 8 . 2 3) appears to be up .
Host www . inspectorhost ing . com (6 6 . 2 1 6 . 6 8 . 2 4) appear s to be up .
Host jwebmedia . com (6 6 . 2 1 6 . 6 8 . 2 5) appear s to be up .
[. . .]
Host rs . lwn . net (6 6 . 2 1 6 . 6 8 . 4 8) appears to be up .
Host 66 . 2 1 6 . 6 8 . 52 appears to be up .
Host cuttlefi sh . laughingsqu id . net (6 6 . 2 1 6 . 6 8 . 53) appears to be up .
[. . .]
Nmap done : 256 I P addresses (1 0 5 hosts up) scanned in 1 2 . 6 9 seconds

This example only took 13 seconds, but provides valuable information. In that class C sized address range,
105 hosts are online. From the unrelated domain names all packed into such a small IP space, it is clear that
LWN uses a colocation or dedicated server provider. If the LWN machines turn out to be highly secure, an
attacker might go after one of those neighbor machines and then perform a local ethernet attack with tools
such as Ettercap or Dsniff. An ethical use of this data would be a network administrator considering moving
machines to this provider. He might e-mail a few of the l isted organizations and ask their opinion of the
service before signing a long-term contract or making the expensive and disruptive datacenter move.

The - s P option sends an ICMP echo request and a TCP ACK packet to port 80 by default. Since unprivileged
Unix users (or Windows users without WinPcap installed) cannot send these raw packets, a SYN packet is
sent instead in those cases. The SYN packet is sent using a TCP connect system call to port 80 of the
target host. When a privileged user tries to scan targets on a local ethernet network, ARP requests (-PR) are
used unless the -- send-ip option is specified.

The - s P option can be combined with any of the techniques discussed in Section 3.6, "Host Discovery
Techniques" [60] for greater flexibil ity. If any of those probe type and port number options are used, the
default probes (ACK and echo request) are overridden. When strict firewalls are in place between the source
host running Nmap and the target network, using those advanced techniques is recommended. Otherwise
hosts could be missed when the firewall drops probes or their responses.

3.5.3. Disable Ping (-PN)

Another option is to skip the Nmap discovery stage altogether. Normally, Nmap uses this stage to determine
active machines for heavier scanning. By default, Nmap only performs heavy probing such as port scans,
version detection, or OS detection against hosts that are found to be up. Disabling host discovery with the
-PN option causes Nmap to attempt the requested scanning functions against every target IP address specified.
So if a class B sized target address space (/ 16) is specified on the command l ine, all 65,536 IP addresses are

3.5. Host Discovery Controls 59

l
Highlight

l
Highlight

l
Underline

scanned. Proper host discovery is skipped as with a list scan, but instead of stopping and printing the target
list, Nmap continues to perform requested functions as if each target IP is active.

There are many reasons for disabling the Nmap ping tests. One of the most common is intrusive vulnerability
assessments. One can specify dozens of different ping probes in an attempt to elicit a response from all
available hosts, but it is still possible that an active yet heavily firewalled machine might not reply to any of
those probes. So to avoid missing anything, auditors frequently perform intense scans, such as for all 65,536
TCP ports, against every IP on the target network. It may seem wasteful to send hundreds of thousands of
packets to IP addresses that probably have no host listening, and it can slow scan times by an order of
magnitude or more. Nmap must send retransmissions to every port in case the original probe was dropped
in transit, and Nmap must spend substantial time waiting for responses because it has no round-trip-time
(RTT) estimate for these non-responsive IP addresses. But serious penetration testers are willing to pay this
price to avoid even a slight risk of missing active machines. They can always do a quick scan as well, leaving
the massive -PN scan to run in the background while they work. Chapter 6, Optimizing Nmap

Performance [1 35] provides more performance tuning advice.

Another frequent reason given for using -PN is that the tester has a list of machines that are already known
to be up. So the user sees no point in wasting time with the host discovery stage. The user creates their own
list of active hosts and then passes it to Nmap using the -i L (take input from list) option. This strategy is
rarely beneficial from a time-saving perspective. Due to the retransmission and RTT estimate issues discussed
in the previous paragraph, even one unresponsive IP address in a large list will often take more time to scan
than a whole ping scanning stage would have. In addition, the ping stage allows Nmap to gather RTT samples
that can speed up the following port scan, particularly if the target host has strict firewall rules. While
specifying -PN is rarely helpful as a time saver, it is important if some of the machines on your list block
all of the discovery techniques that would otherwise be specified. Users must strike a balance between scan
speed and the possibility of missing heavily cloaked machines.

3.6. Host Discovery Techn iques
There was a day when finding whether an IP address was registered to an active host was easy. Simply send
an ICMP echo request (ping) packet and wait for a response. Firewalls rarely blocked these requests, and
the vast majority of hosts obediently responded. Such a response has been required since 1989 by RFC 1 122,
which clearly states that "Every host MUST implement an ICMP Echo server function that receives Echo
Requests and sends corresponding Echo Replies".

Unfortunately for network explorers, many administrators have decided that security concerns trump RFC
requirements and have blocked ICMP ping messages.Example 3.8 uses an ICMP-only Nmap ping scan
against six popular Web sites, but receives only two responses. This demonstrates that hosts can no longer
be assumed unavailable based on failure to reply to ICMP ping probes. The "-sP -PE" options in this
example specify an ICMP-only ping scan. The -R option tells Nmap to perform reverse-DNS resolution
against all hosts, even down ones.

60 3.6. Host Discovery Techniques

l
Highlight

Example 3.8. Attempts to ping popular Internet hosts

f nmap -sP -PE -R -v microsoft . com ebay . com cit ibank . com google . com \
s l a s hdot . org yahoo . com

Starting Nmap (http : / /nmap . org)
Host origin2 . microsoft . com (2 0 7 . 4 6 . 2 50 . 2 5 2) appears to be down .
Host pages . ebay . com (6 6 . 1 3 5 . 1 9 2 . 8 7) appears to be down .
Host ldl -www . citi corp . com (1 9 2 . 1 93 . 1 9 5 . 1 3 2) appears to be down .
Host 216 . 2 39 . 5 7 . 9 9 appears to be up .
Host slashdot . org (6 6 . 3 5 . 2 5 0 . 1 5 0) appears to be down .
Host w3 . rc . dcn . yahoo . com (2 1 6 . 1 0 9 . 1 2 7 . 3 0) appears to be up .
Nmap done : 6 I P addres ses (2 hosts up) scanned in 3 . 76 seconds

Fortunately, Nmap offers a wide variety of host discovery techniques beyond the standard ICMP echo request.
They are described in the following sections. Note that if you specify any of the -P options discussed in this
section, they replace the default discovery probes rather than adding to them.

3.6.1 . TCP SYN Ping (-PS<port list>)

The -PS option sends an empty TCP packet with the SYN flag set. The default destination port is 80
(configurable at compile time by changing DEFAULT_TCP _PROBE_PORT_SPEC in nmap . h), but an
alternate port can be specified as a parameter. A list of ports may be specified (e.g.
-PS22-25 , 8 0 , 1 1 3 , 1 0 5 0 , 3 5 0 0 O), in which case probes will be attempted against each port in parallel.

The SYN flag suggests to the remote system that you are attempting to establish a connection. Normally the
destination port will be closed, and a RST (reset) packet will be sent back. If the port happens to be open,
the target will take the second step of a TCP three-way-handshake by responding with a SYN/ACK TCP
packet. The machine running Nmap then tears down the nascent connection by responding with a RST rather
than sending an ACK packet which would complete the three-way-handshake and establish a full connection. 2

Nmap does not care whether the port is open or closed. Either the RST or SYN/ACK response discussed
previously tell Nmap that the host is available and responsive.

On Unix boxes, only the privileged user root is generally able to send and receive raw TCP packets. For
unprivi leged users, a workaround is automatically employed whereby the connect system call is initiated
against each target port. This has the effect of sending a SYN packet to the target host, in an attempt to
establish a connection. If connect returns with a quick success or an ECONNREFUSED failure, the
underlying TCP stack must have received a SYN/ACK or RST and the host is marked available. If the
connection attempt is left hanging until a timeout is reached, the host is marked as down. This workaround
is also used for 1Pv6 connections, as raw 1Pv6 packet building support is not yet available in Nmap.

Example 3.8 failed to detect four out of six machines because they did not respond to ICMP echo requests.
Repeating the experiment using a SYN probe to port 80 (HTIP) garners responses from all six, as shown in
Example 3.9.

2rhe RST packet is sent by the kernel of the machine running Nmap in response to the unexpected SYN/ACK, not by Nmap itself.

3.6. Host Discovery Techniques 61

l
Highlight

l
Highlight

l
Highlight

l
Underline

Example 3.9. Retry host discovery using port 80 SYN probes

nmap -sP -PS B O -R -v microsoft . com ebay . com c i t ibank . com goog l e . com \
s lashdot . or g yahoo . com

Start ing Nmap (http : / /nmap . org)
Host origin2 . microsoft . com (2 0 7 . 46 . 2 4 9 . 2 5 2) appears to be up .
Hos t pages . ebay . com (66 . 1 35 . 1 92 . 8 7) appears t o be up .

Hos t 1d1 -www . c i t i corp . com (1 92 . 1 93 . 1 95 . 1 3 2) appears to be up .
Host 2 1 6 . 23 9 . 5 7 . 9 9 appears to be up .
Host s l as hdot . or g (6 6 . 35 . 2 5 0 . 1 5 0) appears to be up .
Host w3 . rc . dcn . yahoo . com (2 1 6 . 1 0 9 . 1 2 7 . 3 0) appear s to be up .
Nmap done : 6 I P addre s ses (6 hosts up) s canned in 0 . 4 8 seconds

In addition to detecting all six machines, the second run is much faster. It takes less than half a second because
the machines are scanned in parallel and the scan never times out waiting for a response. This test is not
entirely fair because these are all popular web servers and thus can be expected to listen on TCP port 80.
However, it sti l l demonstrates the point that different types of hosts respond to different probe types. Nmap
supports the usage of many scan types in parallel to enable effective scanning of diverse networks.

3.6.2. TCP ACK Ping {-PA<port list>)

The TCP ACK ping i s quite similar to the SYN ping. The difference, as you could likely guess, i s that the
TCP ACK Hag is set instead of the SYN Hag. Such an ACK packet purports to be acknowledging data over
an established TCP connection, but no such connection exists. So remote hosts should always respond with
a RST packet, disclosing their existence in the process.

The -PA option uses the same default port as the SYN probe (80) and can also take a list of destination ports
in the same format. If an unprivileged user tries this, or an IPv6 target is specified, the connect workaround
discussed previously is used. This workaround is imperfect because connect is actually sending a SYN
packet rather than an ACK.

The reason for offering both SYN and ACK ping probes is to maximize the chances of bypassing firewalls.
Many administrators configure routers and other simple firewalls to block incoming SYN packets except
for those destined for public services like the company web site or mail server. This prevents other incoming
connections to the organization, while allowing users to make unobstructed outgoing connections to the
Internet. This non-stateful approach takes up few resources on the firewall/router and is widely supported
by hardware and software filters. As just one example of the prevalence of this method, the Linux
Netfilter/iptables firewall software offers the - - s yn convenience option, which the man page describes as
follows.

Only match TCP packets with the SYN bit set and the ACK and RST bits cleared. Such
packets are used to request TCP connection i nitiation; for example, blocking such packets
coming in an interface will prevent incoming TCP connections, but outgoing TCP
connections will be unaffected. It is equivalent to --tcp-Hags SYN,RST,ACK SYN.

When firewall rules such as this are in place, SYN ping probes (-PS) are likely to be blocked when sent to
closed target ports. In such cases, the ACK probe excels by cutting right through these rules.

62 3.6. Host Discovery Techniques

Another common type of firewall uses stateful rules that drop unexpected packets. This feature was initially
found mostly on high-end firewalls, though it has become much more common over the years. The Linux
Netfi lter/iplables system supports this through the - - state option, which categorizes packets based on
connection state as described in the following man page excerpt:

Possible states are INVALID meaning that the packet is associated with no known
connection, ESTABLISHED meaning that the packet is associated with a connection which
has seen packets in both directions, NEW meaning that the packet has started a new
connection, or otherwise associated with a connection which has not seen packets in both
directions, and RELATED meaning that the packet is starting a new connection, but is
associated with an existing connection, such as an FTP data transfer, or an ICMP error.

The ACK probe is unlikely to work against firewalls taking this approach, as such an unexpected packet will
be classified in the INVALID state and probably dropped. Example 3.10 shows an attempted ACK ping
against Microsoft. Their stateful firewall drops the packet, leading Nmap to wrongly conclude that the host
is down. The SYN probe has a much better chance of working in such cases. This raises the question of
which technique to use when the firewall rules of the target networks are unknown or inconsistent. The
proper answer is usually both. Nmap can send SYN and ACK probes to many ports in parallel, as well as
performing other host discovery techniques at the same time. This is further discussed in Section 3. 7, "Putting
It All Together: Host Discovery Strategies" [66).

Example 3.10. Attempted ACK ping against Microsoft

J. nmap -sP -PA www . microsoft . com

Starting Nmap (http : / /nmap . or g)
Warning : Hostname www . microsoft . com resolves to 5 IPs . U sing 2 0 7 . 4 6 . 1 9 2 . 2 5 4 .
Note : Host seems down . I f i t i s rea l l y up, but blocking ping probe s , try -PN
imap done : 1 IP address (0 hosts up) scanned in 2 . 22 s econds

3.6.3. UDP Ping (-PU<port list>)

Another host discovery option i s the UDP ping, which sends an empty (unless --data-length is specified)
UDP packet to the given ports. The port list takes the same format as with the previously discussed -PS and
-PA options. If no ports are specified, the default is 3 1 ,338. This default can be configured at compile-time
by changing DEFAULT_ UDP _PROBE_PORT_SPEC in nmap . h. A highly uncommon port is used by default
because sending to open ports is often undesirable for this particular scan type.

Upon hitting a closed port on the target machine, the UDP probe should elicit an ICMP port unreachable
packet in return. This signifies to Nmap that the machine is up and available. Many other types of ICMP
errors, such as host/network unreachables or TTL exceeded are indicative of a down or unreachable host. A
lack of response is also interpreted this way. If an open port is reached, most services simply ignore the
empty packet and fail to return any response. This is why the default probe port is 31 ,338, which is highly
unlikely to be in use. A few services, such as the Character Generator (chargen) protocol, will respond to an
empty UDP packet, and thus disclose to Nmap that the machine is available.

The primary advantage of this scan type is that it bypasses firewalls and filters that only screen TCP. For
example, I once owned a Linksys BEFW 1 1 S4 wireless broadband router. The external interface of this device

3.6. Host Discovery Techniques 63

filtered all TCP ports by default, but UDP probes would still elicit port unreachable messages and thus give
away the device.

3.6.4. ICMP Ping Types (-PE, -PP, and -PM)

In addition to the unusual TCP and UDP host discovery types discussed previously, Nmap can send the
standard packets sent by the ubiquitous ping program. Nmap sends an ICMP type 8 (echo request) packet
to the target IP addresses, expecting a type 0 (echo reply) in return from available hosts. As noted at the
beginning of this chapter, many hosts and firewalls now block these packets, rather than responding as
required by RFC 1 122. For this reason, ICMP-only scans are rarely reliable enough against unknown targets
over the Internet. But for system administrators monitoring an internal network, this can be a practical and
efficient approach. Use the -PE option to enable this echo request behavior.

While echo request is the standard ICMP ping query, Nmap does not stop there. The ICMP standard (RFC
792) also specifies timestamp request, information request, and address mask request packets as codes 13,
15, and 17, respectively. While the ostensible purpose for these queries is to learn information such as address
masks and current times, they can easily be used for host discovery. Nmap does not currently implement
information request packets, as they are not widely supported (RFC I 122 insists that "a host SHOULD NOT
implement these messages"). Timestamp and address mask queries can be sent with the -PP and -PM options,
respectively. A timestamp reply (ICMP code 14) or address mask reply (code 1 8) discloses that the host is
avai lable. These two queries can be valuable when administrators specifically block echo request packets,
but forget that other ICMP queries can be used for the same purpose.

3.6.5. I P Protocol Ping (-PO<protocol list>)

The newest host discovery option i s the IP protocol ping, which sends IP packets with the specified protocol
number set in their IP header. The protocol list takes the same format as do port lists in the previously
discussed TCP and UDP host discovery options. If no protocols are specified, the default is to send multiple
IP packets for ICMP (protocol 1), IGMP (protocol 2), and IP-in-IP (protocol 4). The default protocols can
be configured at compile-time by changing DEFAULT_PROTO_PROBE_PORT_SPEC in nmap . h. Note
that for the ICMP, IGMP, TCP (protocol 6), and UDP {protocol 17), the packets are sent with the proper
protocol headers while other protocols are sent with no additional data beyond the IP header (unless the
- - data - l ength option is specified).

This host discovery method looks for either responses using the same protocol as a probe, or ICMP protocol
unreachable messages which signify that the given protocol isn't supported by the destination host. Either
type of response signifies that the target host is alive.

3.6.6. ARP Scan (-PR)

One of the most common Nmap usage scenarios is to scan an ethernet LAN. On most LANs, especially those
using private address ranges granted by RFC 1918, the vast majority of IP addresses are unused at any given
time. When Nmap tries to send a raw IP packet such as an ICMP echo request, the operating system must
determine the destination hardware (ARP) address corresponding to the target IP so that it can address the
ethernet frame properly. This requires it to issue a series of ARP requests. This is shown in Example 3 . 1 1 ,
where a ping scan is attempted against a local ethernet host. The --send-ip option tells Nmap to send IP

64 3.6. Host Discovery Techniques

l
Highlight

l
Highlight

l
Highlight

l
Highlight

level packets (rather than raw ethernet) even though it is a local network. Wireshark output of the three ARP
requests and their timing has been pasted into the session.

Example 3.11. Raw IP ping scan of an offiine target

t nmap -n -sP --send-ip 1 9 2 . 1 6 8 . 33 . 3 7

Starting Nmap (http : / /nmap . org
0 . 000000 00 : 0 1 : 2 9 : f 5 : 2 7 : f2 -> f f : ff : f f : f f : f f : f f ARP Who has 1 9 2 . 1 6 8 . 3 3 . 3 7 ?
0 . 999836 00 : 0 1 : 2 9 : f5 : 2 7 : f2 - > f f : f f : ff : ff : ff : ff ARP Who has 1 92 . 1 6 8 . 3 3 . 3 7 ?
1 . 999684 00 : 0 1 : 2 9 : f5 : 2 7 : f2 - > f f : f f : ff : ff : ff : f f ARP Who has 1 9 2 . 1 6 8 . 3 3 . 3 7 ?

Note : Host seems down . I f i t i s rea l l y up, but blocking ping probes , try -PN
Nmap done : 1 IP address (0 hosts up) scanned in 2 . 0 4 seconds

This example took more than two seconds to finish because the (Linux) OS sent three ARP requests, one
second apart, before giving up on the host. Given that ARP replies usually come within a couple millisecorids,
multi-second waits are excessive. Decreasing this timeout period is no priority for OS vendors because the
vast majority of packets are sent to hosts that actually exist. Nmap, on the other hand, must send packets to
16 million IPs when given a target such as 10.0.0.0/8. A two second wait for each becomes a huge delay
even though many targets are pinged in parallel.

There is another problem with raw IP ping scans on LANs. When a destination host is found to be unresponsive
as in the previous example, the source host generally adds an incomplete entry for that destination IP in its
kernel ARP table. ARP table space is finite, and some operating systems react badly when it fil ls up. When
Nmap is used in raw IP mode (- - send- ip), Nmap sometimes has to wait several minutes for ARP cache
entries to expire before it can continue with host discovery.

ARP scanning resolves both problems by putting Nmap in control. Nmap issues the raw ARP requests and
handles retransmission and timeout periods at its own discretion. The system ARP cache is bypassed.
Example 3.12 shows the difference. This ARP scan takes just over a tenth of the time taken by its IP equivalent.

Example 3.12. ARP ping scan of an offtine target

nmap -n -sP -PR --packet -trace --send-eth 1 92 . 1 6 8 . 3 3 . 3 7

Starting Nmap (http : / /nmap . org)
SENT (0 . 0 06 0 s) ARP who-has 1 9 2 . 1 6 8 . 3 3 . 3 7 tell 1 9 2 . 1 6 8 . 0 . 1 00
SENT (0 . 1 1 8 0 s) ARP who-has 1 9 2 . 1 6 8 . 3 3 . 3 7 tell 1 92 . 1 6 8 . 0 . 1 0 0
Note : Host seems down . I f it i s r e a l l y up, but block ing ping probes , t r y -PN
Nmap done : 1 IP address (0 hosts up) scanned in 0 . 2 3 seconds

In Example 3 . 12, neither the -PR or - - s end-eth options have any effect. This is because ARP is the
default scan type when scanning ethernet hosts that Nmap detects are on a local ethernet network. This
includes traditional wired ethernet as well as 802. 1 1 wireless networks. Not only is ARP scanning more
efficient as discussed above, it is also more accurate. Hosts frequently block IP-based ping packets, but they
generally cannot block ARP requests or responses and still communicate on the network. Even if different
ping types (such as -PE or -PS) are specified, Nmap uses ARP instead for any of the targets which are on
the same LAN. If you absolutely don't want to do an ARP scan, specify -- send-ip as shown in
Example 3. 1 1 , "Raw IP ping scan of an offl ine target" [65].

3 .6. Host Discovery Techniques 65

l
Highlight

l
Highlight

Giving Nmap control to send raw ethernet frames also allows Nmap to control the source MAC address. If
you have the only PowerBook in the room at a security conference and a massive ARP scan is initiated from
a MAC address registered to Apple, heads may turn in your direction. You can spoof your MAC address
with the --spoof-mac option, as discussed in Section 10.4.8, "MAC Address Spoofing" [270).

3.6.7. Default Combination

I f none of these host discovery techniques are chosen, Nmap uses a default which is equivalent to the -PA

-PE arguments for Windows or privileged (root) Unix users. Attentive readers know that this means a TCP
ACK packet to port 80 and an ICMP echo request query are sent to each machine. An exception to this i s
that an ARP scan is used for any targets which are on a local ethernet network. For unprivileged Unix shell
users, the default is equivalent to -PS (a TCP connect call against port 80 of the target hosts). For security
auditing, I recommend using a more comprehensive set of ping types, such as those discussed in the section
called "Designing the ideal combinations of probes" [70] .

3.7. Putt ing It Al l Together: Host Discovery
Strateg ies

3.7.1 . Related Options

Previous sections describe the major options used to control the Nmap host discovery phase and customize
the techniques used. However, there are many more general Nmap options which are relevant here. This
section provides a brief description of how these option flags relate to ping scanning. See Chapter 15, Nmap
Reference Guide [373] for complete descriptions of each option.

-v (same as --verbose)
By default, Nmap usually only prints active, responsive hosts. Verbose mode causes Nmap to print down
hosts, as well as extra information about active ones.

--source-port <port n um> (same as -g)

Setting a constant source port works for ping scanning (TCP and UDP) as it does with other Nmap
features. Some naive firewall administrators make a ruleset exception in order to keep DNS (port 53)
or FTP-DATA (port 20) working. Of course this opens a hole big enough to drive an Nmap ping scan
through. Section 10.4.2, "Source Port Manipulation" [266] provides further details on this technique.

-n, -R
The -n option disables a l l DNS resolution, while the -R option enables DNS queries for a l l hosts, even
down ones. The default behavior is to l imit DNS resolution to active hosts. These options are particularly
important for ping scanning because DNS resolution can greatly affect scan times.

--dn s - servers <serverl > [, <server2> [, . . .]] (Servers to use for reverse DNS queries)
By default Nmap will try to determine your DNS servers (for rDNS resolution) from your resolv.conf
fi le (Unix) or the Registry (Win32). Alternatively, you may use this option to specify alternate servers.
This option is not honored if you are using --system-dn s or an IPv6 scan. Using multiple DNS
servers is often faster and more stealthy than querying just one. The best performance is often obtained
by specifying all of the authoritative servers for the target IP space.

66 3.7. Putting It All Together: Host Discovery Strategies

l
Highlight

l
Highlight

--data-length <l ength>
This option adds <lengt h> random bytes of data to every packet, and works with the TCP, UDP, and
ICMP ping scan types (for privileged users scanning IPv4). This helps make the scan less conspicuous
and more like the packets generated by the ubiquitous ping diagnostics program. Several intrusion
detection systems (IDS), including Snort, have alerts for zero-byte ping packets. This option evades
those alerts. An option value of 32 makes an echo request look more like it came from Windows, while
56 simulates the default Linux ping.

--ttl <val ue>
Setting the outgoing TTL is supported for privileged users doing 1Pv4 ping scans. This can be useful as
a safety precaution to ensure a scan does not propagate beyond the local network. It can also be used to
simulate a native ping program even more convincingly. Some enterprise networks suffer from known
routing loops which they can't easily fix. Reducing the outgoing TTL with --t t l helps to reduce router
CPU load when loops are encountered.

Canned timing options (-T3, -T4 , -TS, etc.)
Higher -T values speed up ping scanning, just as they speed other Nmap features. With a moderately
fast and reliable connection between the source and target networks (i.e. anything more than a dial-up
modem), the -T4 option is recommended.

--max-para l l e l i sm, --min-paral lel i sm <va l ue>
These affect how many probes may be outstanding at once. With the default ping type (two probes), the
parallelism value is roughly the number of machines scanned in parallel. Reducing the ping techniques
to one probe per host (e.g. -PE) will double the number of hosts scanned at once for a given parallelism
level, while increasing to four probes per host (e.g. -PE -PS2 2 , 1 1 3 , 50 0 0 O) halves it. Most users
simply stick to the canned timing options such as -T4 .

--min-rtt-t imeout, - -max-rtt-t imeout, -- i n i t i a l -rtt-t imeout <t ime>
These options control how long Nmap waits for a ping response.

Input options (-iL <fi lename>, - i R <n umber>)
Host input options are supported as in the rest of Nmap. Users often combine the input-from-list (- i L)
option with -PN to avoid ping-scanning hosts that are already known to be up. Before doing this in an
attempt to save time, read Section 3 .5.3, "Disable Ping (-PN)" [59]. The - i R option chooses hosts at
random from allocated Internet IP space. It takes as an argument the number of random hosts you wish
to scan. Use zero for a never-ending (until you abort or kill the Nmap process) scan.

Output options (-oA, -oN, -oG, -ox, etc.)
All of the Nmap output types (normal, grepable, and XML) support ping scanning. Chapter 13, Nmap
Output Formats [337] further describes how they work.

--randomi ze-hos t s

Shuffling the host scan order with this option may make the scan less conspicuous, though i t also can
make the scan output a bit more difficult to follow.

--reason

The normal Nmap output indicates whether a host is up or not, but does not describe which discovery
test(s) the host responded to. For this detail, add the --reason option. The results can be confusing
for host discovery since Nmap does not always try every probe. It stops as soon as it gets a first response.

3.7. Putting It All Together: Host Discovery Strategies 67

l
Highlight

l
Highlight

l
Highlight

So Nmap might report an ICMP echo response from a host during the run, but then a RST response
might be received first during a second run and lead Nmap to report that.

--packet-trace

When you want even more details than --reason provides, try --packet-trace. This option
shows every packet send and received by Nmap, including details such as sequence numbers, TTL
values, and TCP flags.

-D <decoyl , decoy2, . . . >

- 6

Decoys are fully supported fo r privileged 1Pv4 ping scans, camouflaging the true attacker.

The TCP connect-based ping scans (-PS) support the 1Pv6 protocol, including multi-port mode (such
as -PS 2 2 , 8 0 , 1 1 3 .

-s <source I P a ddress>, - e <sendi ng devi ce name>

As with other functions of Nmap, the source address and sending device can be specified with these
options.

General options
By default, unless -sP or - s L are specified, Nmap moves onto more intrusive scanning after the host
discovery stage. Thus many dozens of general port scanning, OS detection, and version detection options
can be used. See the reference guide or relevant chapters for further information.

3. 7.2. Choosing and Combin ing Ping Options

Effective scanning requires more than knowing all o f the options described i n this and previous sections.
Users must understand how and when to use them to suit the target network topology and scanning goals.

TCP probe and port selection

The TCP ping options are some of the most powerful discovery techniques in Nmap. An administrator may
be able to get away with blocking ICMP echo request packets without affecting most users, but a server
absolutely must respond to SYN packets sent to the public services it provides. Meanwhile, ACK packets
often get through non-stateful firewal ls. I would recommend using both of SYN and ACK probes, using lists
of ports based on any knowledge you might have of the target networks as well as more generally popular
ports. A quick scan of more than 10,000 IP addresses across the Internet showed the ports in Table 3.2 to be
particularly valuable. Of hosts with a default-drop fi lter (the hardest type to reach), these are the 14 ports
most likely to be accessible (open or closed).

Table 3.2. Most valuable TCP probe ports, in descending order of accessibility.

Port number I Service Reasoning

8 0 /http The prevalence of Web servers on the Internet leads many newbies to believe
that the Web is the Internet.

2 5 / smtp Mail is another Internet "killer app" that companies allow through their firewalls.

2 2 / s s h SSH seems to have finally surpassed Telnet as the standard for remote terminal
administration.

68 3.7. Putting It All Together: Host Discovery Strategies

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

Port number I Service Reasoning

443 /https SSL is a popular way for web sites to protect confidential directory information.

2 1 / ftp This file transfer protocol lives on, though many firewall administrators would
not mourn its passing.

1 1 3/auth The auth (identd) service allows servers (usually mail or IRC) to request the
username of clients connected to them. Administrators often leave this port
unfiltered to avoid long timeouts that can occur when firewal l rules prevent
servers from connecting back to port 1 1 3 . Using this port for ping scanning can
sometimes lead to false positives, as some administrators have been known to
configure their firewalls to forge RST packets back in response to auth queries
to any IP on their network, even when no machine exists at that IP. Administrators
do this to avoid server timeouts while still preventing the ports from being
accessed.

23 /telnet Many devices still offer this administrative interface, though it is a security
nightmare.

53/domain Domain name servers are extremely widespread.

5 5 4 / rtsp Real Time Stream Control Protocol is used by media servers, including
QuickTime and RealServer.

3389/ms-term-server Microsoft Terminal Services allows users (and sometimes hackers) to access
applications and data on a remote computer.

1 7 2 3 /pptp Point-to-Point Tunneling Protocol is often used to implement VPN solutions on
Microsoft Windows.

3 8 9 / ldap The Lightweight Directory Access Protocol is often used to store contact
directories and the like.

6 3 6 / ldapssl LDAP over SSL i s popular for accessing confidential information.

256 /FWl-securemote Checkpoint Firewall- I devices often have this administration port open.

In addition to popular ports such as the ones in the list above, choosing at least one high-numbered port is
recommended. Many poorly configured firewalls only have default-deny for the privileged ports, meaning
those below 1 ,024. I usually pick a high numbered port out of the air, such as 40,000 or 10,042, to catch
machines behind this sort of firewall.

In choosing the ports to probe, remember to emphasize platform diversity. If you are l imiting your ping scan
to two ports, HTTP (80) and SSH (22) are probably better than HTTP (80) and HTTPS (443) because the
latter two are related web services, and many machines that have HTTPS will often have HTTP available
anyway. Finding two accessible ports on the same machine is no better for ping scanning purposes than
finding one. The goal is to choose ports so that a broad set of hosts will match at least one of them.

Note that the valuable port table does not include many client-oriented ports such as the ubiquitous Windows
SMB port 135. The primary reason is that this table only looked at hosts behind default-deny firewalls, where
the vast majority of ports are filtered. In those situations, Windows ports such as 1 35- 139 and 445 are usually
blocked. When these machines are not behind a firewall, the open ports are unimportant for ping scanning
because the thousands of closed ports work just as well .

3. Z Putting It All Together: Host Discovery Strategies 69

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

UDP port selection

In selecting UDP ports, remember that an open port is unlikely to respond to the probes. Unfiltered ports are
desired. To avoid open ports, you might consider excluding common UDP services like DNS (port 53) and
SNMP (161). On the other hand, firewal l rules are often so broad that those probes (particularly to port 53)
might get through and hit a closed port. So I would recommend choosing at least port 53 and an arbitrarily
selected high-numbered port such as 37,452.

ICMP probe selection

For ICMP, the standard ping (echo request) is usually worth trying. Many administrators specifically allow
this because it is useful for debugging or because RFC 1 1 22 requires it. I would also use at least one of the
address mask or timestamp requests. These are valuable for networks where administrators intentionally
block echo request packets, but forget about other ICMP queries.

Designing the ideal combinations of probes

How all of these ping types are combined into a ping scan strategy depends on characteristics of the target
network and on the scan goals. For internal networks, the default ping type usually works well . The default
is also fine for most casual scanning, where missing an occasional host is no big deal. Adding more probes
can help catch those occasional stealthy machines, at the expense of making the ping scan take a bit longer.
Time taken is roughly proportional to the number of probes sent to each machine. For security scans of target
networks over the Internet, adding more probes is usually advisable. Try to include a diverse set of the
techniques discussed previously. Here is a set of ping options that should catch the vast majority of hosts:
-PE -PA -PS2 1 , 2 2 , 2 3 , 2 5 , 8 0 , 1 1 3 , 3 1 3 3 9 -PAS O , 1 1 3 , 4 4 3 , 1 0 0 4 2 . Adding in
- - s our ce-port 53 might be worthwhile as well. How much better will the results be, and how much
longer will it take? That depends on the target network, of course, but the Nmap random target selection
option (- iR) makes it easy to perform a quick test. Example 3 . 13 shows Nmap generating 50,000 random
IP addresses and then performing a default ping scan. You should remember that the default is a TCP ACK
packet to port 80, and an ICMP echo request packet.

70 3.7. Putting It All Together: Host Discovery Strategies

l
Highlight

l
Highlight

l
Highlight

l
Highlight

Example 3.13. Generating 50,000 IP addresses, then ping scanning with default options

t runap -n -sL -iR 5 0 0 0 0 -oN - I grep " not scanned " I awk ' { print $ 2) ' \
I sort -n > 50K_IPs
head -5 50K_IPs

� 100 . 1 4 7 . 9
) , 1 00 . 1 48 . 1 1 9
3 . 1 0 . 160 . 3 3
3 . 1 0 . 2 01 . 1 1
3 . 1 01 . 154 . 139
t runap -SP -T4 - i L 50K_IPs
' runap -SP -T4 - i L 5 0K_IPs - s -oA 5 0KHost s_DefaultPing
ft;arting Nmap (http : / / nmap . org)
Rost dialup-4 . 1 7 7 . 9 . 7 5 . SanDiego l . Leve l 3 . net (4 . 1 7 7 . 9 . 7 5) appears to be up .
Host dialup-4 . 1 8 1 . 1 0 0 . 9 7 . SanJose l . Level3 . net (4 . 1 8 1 . 1 0 0 . 9 7) appears to be up .
Bost firewal l2 . baymountain . com (8 . 7 . 9 7 . 2) appears to be up .
(thousands of lines cut J
Host 222 . 9 1 . 1 2 1 . 22 appears to be up .
Nmap done : 50000 IP addresses (3 3 4 8 hosts up) scanned in 1 5 9 8 . 0 7 seconds

Scanning the 50,000 address took just under 27 minutes, and 3,348 hosts were detected. Most of the DNS
names were already in cache due to a previous scratch run, though it still would have likely been faster had
DNS resolution been disabled with -n. To determine the effects of using a wider range of ping techniques,
the same 50K hosts were rescanned with 13 probes per port rather than the default of two. As shown in
Example 3. 14, Nmap was able to detect 1 , 125 (34%) more hosts. It took about 7 1 minutes, which is more
than 2.5 times as long. Given all the new hosts detected, that extra time was well spent. Note that not all of
the new hosts wil l be legitimate. Increasing the number of ping probes increases the chances that Nmap will
hit network artifacts that make a non-existent host appear to be active. Firewalls that return a RST for SYN
or ACK packets to port 1 1 3 are one example of this.

Example 3.14. Repeating ping scan with extra probes

t nmap -SP -PE -PP -PS2 1 , 2 2 , 2 3 , 2 5 , 8 0 , 1 1 3 , 3 1 3 3 9 -PA 8 0 , 1 1 3 , 4 4 3 , 1 00 4 2 \
-T4 --source-port 53 - i L 5 0K_I Ps -oA 50KHosts_ExtendedPing

Starting Nmap (http : / /nmap . or g)
Bost sim71 24 . agni . l indenlab . com (8 . 1 0 . 1 4 4 . 1 2 6) appears to be up .
Bost firewall2 . baymountain . com (8 . 7 . 9 7 . 2) appears to be up .
Host 12 . 1 . 6 . 2 01 appears to be up .
Host psor . inshealth . com (1 2 . 1 3 0 . 1 4 3 . 43) appears to be up .
[thousands of hos t s cut)
Bost ZM088019 . ppp . dion . ne . j p (2 22 . 8 . 8 8 . 1 9) appears t o be up .
Host 22 2 . 92 . 1 3 6 . 1 02 appears to be up .
Nmap done : 5 0 0 0 0 IP addres se s (4 4 73 host s up) scanned in 4 2 5 9 . 2 8 seconds

When performing security audits for clients, I normally start TCP analysis with a port scan against the most
common 1000 ports (the default) with comprehensive ping scan options like those shown in Example 3.14,
"Repeating ping scan with extra probes" [7 1] . Such a scan does not take particularly long, allowing me to
quickly start working. I also launch -PN (ping disabled) scans against all 65K TCP ports in the background
while I work. When they finish, which may be days later, I compare them to my initial quick scan and
investigate any new ports or machines found.

3.7. Putting It All Together: Host Discovery Strategies 71

3.8. Host Discovery Code Algorithms
One of the greatest benefits of Open Source software like Nmap is that curious users are always able to study
the source code when they want answers about its operation. The highest level ping scanning function is
next host (in t arget s . cc, which calls ma s sp i ng to initialize a list of targets. Ma s sping in turn
passes the list off to u l t ra_s can (in s can_engine . cc). Ultra_scan is Nmap's general-purpose scanning
function and does all the hard work of sending, receiving, and interpreting packets. For more on ul tra_scan
see Section 5 . 13, "Scan Code and Algorithms" [1 28) .

While source code analysis is the only way to truly get the complete picture of Nmap operation down to
every trivial detail, it is not always the easiest approach to understanding Nmap. In many cases, the most
effective way to explore Nmap's behavior given a set of command-line options is to add the
--packet-trace option, which prints out all of the packets sent and received by Nmap.

Because the source code and the --packet-tr ace option are excellent resources for learning the nitty-gritty
details of Nmap operation, I'll only discuss how host discovery works at a high level here. When Nmap is
executed, it may be passed networks containing hundreds of thousands or even mill ions of hosts. So Nmap
breaks them into blocks that are small enough to deal with at one time (dozens up to a few thousand hosts).
ul t r a_scan then works its way through the block, sending packets as fast as its congestion controls allow.
Rather than sending all the probes requested by the user to each host all at once, Nmap sends the first probe
to all the targets, then the second probe, and so on. When a conclusive response to a probe is received, that
host is marked as up or down as appropriate and no further probes are sent to it. A target host which fails to
respond to any probes, even after retransmissions, is marked as down. Nmap waits until every host has either
received a conclusive response or has timed out. Eventually, Nmap runs out of new hosts in the block and
the number of outstanding probes dwindles to zero as retransmissions complete. The ping scanning subsystem
returns the results so that Nmap can begin port scanning or any other requested probing of the target machines.
When Nmap finishes completely with a block of hosts, it prints the results and passes the next block to the
ping scanner.

Multiple hosts, usually with multiple probes per host, are handled in parallel . The number of outstanding
probes and timeout periods are modified in real-time based on network latency and reliability. The
u l t r a_scan performance algorithms are further· described in Section 5 . 13, "Scan Code and
Algorithms" [1 28) .

72 3.8. Host Discovery Code Algorithms

Chapter 4. Port Scanning Overview

4.1 . Introduction to Port Scann ing
While Nmap has grown in functionality over the years, it began as an efficient port scanner, and that remains
its core function. The simple command nmap <target> scans the most commonly used 1 ,000 TCP ports
on the host <t arge t >, classifying each port into the state open, c l o s ed, f i ltered, u n f i l tered,
open l f il tered, or c losed l f i ltered.

4.1 .1 . What Exactly is a Port?

Ports are simply a software abstraction, used to distinguish between communication channels. Similar to the
way IP addresses are used to identify machines on networks, ports identify specific applications in use on a
single machine. For example, your web browser will by default connect to TCP port 80 of machines in HTIP
URLs. If you specify the secure HTIPS protocol instead, the browser will try port 443 by default.

Nmap works with two protocols that use ports: TCP and UDP. A connection for each protocol is uniquely
identified by four elements: source and destination IP addresses and corresponding source and destination
ports. All of these elements are simply numbers placed in the headers of each packet sent between hosts.
The protocol is an eight-bit field, which specifies what type of packet is contained in the IP data (payload)
section. For example, TCP is protocol number six, and UDP is 17. 1Pv4 addresses have a length of 32-bits,
while ports are 16-bits long. IPv6 addresses are 128-bits in length. Further IP, TCP, and UDP header layout
details can be found in Section 7, "TCP/IP Reference" [xxvi].

Because most popular services are registered to a well-known port number, one can often guess what services
open ports represent. Nmap includes an nmap- services file, containing the well-known service for
registered port and protocol numbers, as well as common ports for trojan backdoors and other applications
that don't bother registering with the Internet Assigned Numbers Authority (IANA). Nmap prints this service
name for reference along with the port number.

Because the port number field is 16-bits wide, values can reach 65,535. The lowest possible value, zero, is
invalid. The Berkeley sockets API, which defines how programs are usually written for network
communication, does not allow port zero to be used as such. Instead, it interprets a port zero request as a
wildcard, meaning that the programmer does not care which is used. The system then chooses an available
port number. For example, programmers rarely care what source port number is used for an outgoing
connection. So they set it to zero and let the operating system choose one.

While port zero is invalid, nothing stops someone from specifying it in the header field. Some malicious
trojan backdoors listen on port zero of compromised systems as a stealthy way to offer i l legitimate access
without appearing on most port scans. To combat this, Nmap does allow scanning of port zero when it is
specified explicitly (e.g. -p0 - 6 5 5 3 5).

The first class of valid ports, numbers one through 1 ,023, are known as reserved ports. Unix systems (unlike
Windows) require that applications have special (root) privileges in order to bind to and listen on these ports.
The idea is to allow remote users to trust that they are connecting to a valid service started by an administrator
and not by some wicked, unprivileged user. If the registered port for SSH was 2,222 instead of 22, a malicious

4 . 1 . Introduction to Port Scanning 73

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

user could start up a rogue SSH daemon on that port, collecting passwords from anyone who connects. As
most common server applications listen on reserved ports, these are often the most fruitful to scan.

The ephemeral port range is another class of ports. This pool of ports is made available by the system for
allocation as needed. When an application specifies port zero (meaning "any port"), the system chooses a
port from this range. The range varies by operating system, and is usually configurable. It should contain at
least a couple thousand ports to avoid running out when many concurrent connections are open. The Nmap
connect scan can use hundreds at a time as it scans every specified port on each target machine. On Linux,
you can view or set the range using the file /pro c / s y s / net / ipv4 / ip_loca l_port_range.
Example 4.1 shows that on my Linux system, the range is 32,768 to 61 ,000. Such a large range should be
sufficient in almost all cases, but I expand it just to demonstrate how to do so.

Example 4.1. Viewing and increasing the ephemeral port range on Linux

fel i x / # cat /proc / sys/net / ipv 4 / ip_loca l_port_range
3 2 7 6 8 6 1 0 0 0
fel i x / # echo " 1 0 0 0 0 6 5 0 0 0 " > /proc / sy s / net / ipv4 / ip_loca l_port_range
fel i x / # · cat /proc / sys /net / ipv 4 / ip_local_port_range
1 0 0 0 0 6 5 0 0 0
fel i x / #

SunRPC ports are often found i n the ephemeral range. Other applications open ephemeral ports temporarily
for a file transfer or other event. FTP clients often do this when requesting an active mode transfer. Some
P2P and instant messaging clients do so as well.

The IANA has their own port classification scheme, which differs slightly from the vernacular of this book.
Their authoritative port list at http://www.iana.org!assignmentslport-numbers divides the space into the
following three classes:

well-known ports
These are reserved ports (within the range of I to 1 ,023, as discussed above) which have been registered
with the IANA for a certain service. Familiar examples are ports 22, 25, and 80 for the services SSH,
SMTP, and HTTP, respectively.

registered ports
These ports fall within the range 1 ,024 to 49, 151 and have been registered with the IANA in the same
way the well known ports have. Most of these are not as commonly used as the well-known ports. The
key difference is that unprivileged users can bind to these ports and thus run the services on their registered
port. Users cannot do so on most platforms for well-known ports, since they reside in the reserved port
range.

dynamic and/or private ports
The IANA reserves the port numbers from 49152 through 65535 for dynamic uses such as those discussed
in the ephemeral ports section. Proprietary services that are only used within a company may also use
these ports.

When this book mentions registered or well-known ports without any reference to the IANA, it usually means
ports registered with Nmap in the nmap- services file, regardless of whether they fall in the reserved
port range.

74 4. 1 . Introduction to Port Scanning

l
Highlight

l
Highlight

l
Highlight

Nmap's port registration file (nmap-services) contains empirical data about how frequently each TCP
or UDP port is found to be open. By default, Nmap scans the 1 ,000 most popular ports of each protocol it is
asked to scan. There are many options for specifying an alternate set of ports (by frequency or by listing
them explicitly), as described in Section 4.3.2, "Selecting Ports to Scan" [83].

4.1 .2. What Are the Most Popular Ports?

I spent the Summer of 2008 scanning tens of mill ions of Internet hosts and collecting data from enterprises
to determine how frequently each port number is found open. It is important to be familiar with the most
common service ports, and also interesting to see which ones made the list. The following two lists provide
the top TCP and UDP ports as determined by our empirical scan data. The l isted service is the one found in
our nmap-servi ces file. We try to list the most common service for each port there, though of course it
is possible for a port to be used for different things.

Top 20 (most commonly open) TCP ports

1 . Port 80 (HTTP)-If you don't even know this service, you're reading the wrong book. This accounted for
more than 14% of the open ports we discovered.

2. Port 23 (Telnet)-Telnet l ives on (particularly as an administration port on devices such as routers and
smart switches) even though it is insecure (unencrypted).

3. Port 443 (HTTPS)-SSL-encrypted web servers use this port by default.

4. Port 21 (FfP)-FfP, like Telnet, is another insecure protocol which should die. Even with anonymous
FTP (avoiding the authentication sniffing worry), data transfer is still subject to tampering.

S. Port 22 (SSH)-Secure Shell, an encrypted replacement for Telnet (and, in some cases, FTP).

6. Port 25 (SMTP)-The Standard Mail Transfer Protocol (also insecure).

7. Port 3389 (ms-term-server)-Microsoft Terminal Services administration port.

8. Port 1 10 (POP3)-Post Office Protocol version 3 for email retrieval (insecure).

9. Port 445 (Microsoft-DS)-For SMB communication over IP with MS Windows services (such as file/printer
sharing).

n Port 139 (NetBIOS-SSN)-NetBIOS Session Service for communication with MS Windows services
(such as file/printer sharing). This has been supported on Windows machines longer than 445 has.

IL Port 143 (IMAP)-lnternet Message Access Protocol version 2. An insecure email retrieval protocol.

12. Port 53 (Domain)-Domain Name System (DNS), an insecure system for conversion between host/domain
names and IP addresses.

13. Port 135 (MSRPC)-Another common port for MS Windows services.

14. Port 3306 (MySQL)-For communication with MySQL databases.

4. l . Introduction to Port Scanning 75

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

15. Port 8080 (HTIP-Proxy)-Commonly used for HTIP proxies or as an alternate port for normal web
servers (e.g. when another server is already listening on port 80, or when run by unprivileged UNIX users
who can only bind to high ports).

16. Port 1723 (PPTP)-Point-to-point tunneling protocol (a method of implementing VPNs which is often
required for broadband connections to ISPs).

17. Port 1 1 l (RPCBind)-Maps SunRPC program numbers to their current TCP or UDP port numbers.

18. Port 995 (POP3S)-POP3 with SSL added for security.

19. Port 993 (IMAPS)-IMAPv2 with SSL added for security.

� Port 5900 (VNC)-A graphical desktop sharing system (insecure).

Top 20 (most commonly open) UDP ports

I . Port 631 (IPP)-Internet Printing Protocol.

2. Port 161 (SNMP)-Simple Network Management Protocol.

3. Port 137 (NETBIOS-NS)-One of many UDP ports for Windows services such as file and printer sharing.

4. Port 123 (NTP)-Network Time Protocol.

5 . Port 138 (NETBIOS-DGM)-Another Windows service.

6. Port 1434 (MS-SQL-DS)-Microsoft SQL Server.

7. Port 445 (Microsoft-DS)-Another Windows Services port.

8. Port 135 (MSRPC)-Yet Another Windows Services port.

9. Port 67 (DHCPS)-Dynamic Host Configuration Protocol Server (gives out IP addresses to clients when
they join the network).

10. Port 53 (Domain)-Domain Name System (DNS) server.

1 1 . Port 1 39 (NETBIOS-SSN)-Another Windows Services port.

12 Port 500 (ISAKMP)-The Internet Security Association and Key Management Protocol is used to set up
IPsec VPNs.

13. Port 68 (DHCPC)-DHCP cl ient port.

14. Port 520 (Route)-Routing Information Protocol (RIP).

15. Port 1900 (UPNP)-Microsoft Simple Service Discovery Protocol, which enables discovery of Universal
plug-and-play devices.

16. Port 4500 (nat-t-ike)-For negotiating Network Address Translation traversal while initiating IPsec
connections (during Internet Key Exchange).

76 4 . 1 . Introduction to Port Scanning

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

17. Port 514 (Syslog)-The standard UNIX log daemon.

18. Port 491 52 (Varies)-The first of the !ANA-specified dynamic/private ports. No official ports may be
registered from here up until the end of the port range (65536). Some systems use this range for their
ephemeral ports, so services which bind a port without requesting a specific number are often allocated
49152 if they are the first program to do so.

19. Port 162 (SNMPTrap)-Simple Network Management Protocol trap port (An SNMP agent typically uses
161 while an SNMP manager typically uses 1 62).

ll Port 69 (TFTP)-Tri vial File Transfer Protocol .

4.1 .3. What is Port Scanning?

fort scanning is the act of remotely testing numerous ports to determine what state they are in. The most
:111teresting state is usually open, meaning that an application is listening and accepting connections on the
port. Many techniques are available for conducting such a scan. Chapter 5, Port Scanning Techniques and
Algorithms [95] explains the circumstances under which each is most appropriate.

While many port scanners have traditionally lumped all ports into the open or closed states, Nmap is much
more granular. It divides ports into six states. These states are not intrinsic properties of the port itself, but
describe how Nmap sees them. For example, an Nmap scan from the same network as the target may show
port 1 3 5 /tcp as open, while a scan at the same time with the same options from across the Internet might
show that port as fi I tered.

The six port states recognized by Nmap

open
An application is actively accepting TCP connections or UDP packets on this port. Finding these is often
the primary goal of port scanning. Security-minded people know that each open port is an avenue for
attack. Attackers and pen-testers want to exploit the open ports, while administrators try to close or
protect them with firewalls without thwarting legitimate users. Open ports are also interesting for
non-security scans because they show services available for use on the network. Before you get too
excited about an open port, note that it is possible that the application is protected with a TCP wrapper
(tcpd) or that the application itself is configured to only service approved client IP addresses. Such cases
still leave more attack surface than a closed port.

A closed port is accessible (it receives and responds to Nmap probe packets), but there is no application
listening on it. They can be helpful in showing that a host is on line and using an IP address (host discovery,
or ping scanning), and as part of OS detection. Because closed ports are reachable, they may be worth
scanning later in case some open up. Administrators may want to consider blocking such ports with a
firewall so they appear in the filtered state, discussed next.

Nmap cannot determine whether the port is open because packet filtering prevents its probes from
reaching the port. The filtering could be from a dedicated firewall device, router rules, or host-based
firewall software. These ports frustrate attackers because they provide so little information. Sometimes
they respond with ICMP error messages such as type 3 code 13 (destination unreachable: communication

4 . 1 . Introduction to Port Scanning 77

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

administratively prohibited), but filters that simply drop probes without responding are far more common.
This forces Nmap to retry several times just in case the probe was dropped due to network congestion
rather than filtering. This sort of filtering slows scans down dramatically.

unfiltered
The unfiltered state means that a port is accessible, but Nmap is unable to determine whether it is open
or closed. Only the ACK scan, which is used to map firewall rulesets, classifies ports into this state.
Scanning unfiltered ports with other scan types such as Window scan, SYN scan, or FIN scan, may help
resolve whether the port is open.

openlfiltered
Nmap places ports in this state when it is unable to determine whether a port is open or filtered. This
occurs for scan types in which open ports give no response. The lack of response could also mean that
a packet filter dropped the probe or any response it elicited. So Nmap does not know for sure whether
the port is open or being filtered. The UDP, IP protocol, FIN, NULL, and Xmas scans classify ports this
way.

closedlfiltered
This state is used when Nmap is unable to determine whether a port is closed or filtered. It is only used
for the IP ID Idle scan discussed in Section 5. 10, "TCP Idle Scan (-sl)" [1 1 7] .

While Nmap attempts to produce accurate results, keep in mind that a l l of its insights are based on packets
returned by the target machines (or firewalls in front of them). Such hosts may be untrustworthy and send
responses intended to confuse or mislead Nmap. Much more common are non-RFC-compliant hosts that do
not respond as they should to Nmap probes. FIN, NULL, and Xmas scans are particularly susceptible to this
problem. Such issues are specific to certain scan types and so are discussed in the relevant sections of
Chapter 5, Port Scanning Techniques and Algorithms [95] .

4.1 .4. Why Scan Ports?

Port scanning is not only performed for fun and amusement. There are numerous practical benefits to regularly
scanning your networks. Foremost among these is security. One of the central tenets of network security is
that reducing the number and complexity of services offered reduces the opportunity for attackers to break
in. Most remote network compromises come from exploiting a server application listening on a TCP or UDP
port. In many cases, the exploited application is not even used by the targeted organization, but was enabled
by default when the machine was set up. Had that service been disabled, or protected by a firewall, the attack
would have been thwarted.

Realizing that every open port is an opportunity for compromise, attackers regularly scan targets, taking an
inventory of all open ports. They compare this list of listening services with their list of favorite exploits for
vulnerable software. It takes just one match to compromise a machine, creating a foothold that is often used
to infest the whole network. Attackers who are less discriminate about who they target will often scan for
just the default port of an exploitable application. This is much faster than scanning every port, though the
service will be missed when running on a non-default port. Such attackers are often derided as "script kiddies",
because they often know little more about security than how to run an exploit script written by someone
more skilled. Across many organizations, such attackers are bound to find vulnerable hosts. They can be
quite a nuisance, though their sheer numbers and relentless pounding against Internet-accessible machines
often drive people to patch systems quickly. This reduces the likelihood of more serious, targeted attacks
succeeding.

78 4. 1 . Introduction to Port Scanning

l
Highlight

l
Highlight

l
Highlight

An important defense against these crackers is for systems administrators to scan their own networks regularly
with tools such as Nmap. Take the list of open ports, and shut down any services that aren't used. Ensure
that those which must remain available are fully patched and that you are on the vendor's security notification
list. Firewall rules should be added where possible, limiting access to only legitimate users. Hardening
instructions are available on the Web for most popular applications, reducing the cracker's opportunity even
further. Nmap cannot do most of this for you, but it creates the list of available services to start out with.
Some administrators try to use netstat instead, but that doesn't scale well . It requires access to every machine,
and some mobile machines are easy to miss. Plus, you can't run netstat on your average wireless access
point, VoIP phone, or printer. In addition, there is always the risk that a compromised machine will have a
trojaned netstat which gives out false information. Most of the modern rootkits installed by attackers include
this functionality. Relying solely on Nmap is a mistake too. A combination of careful design, configuration
auditing, and regular scanning is well advised.

While security is the most common reason for port scanning, administrators often find that it suits other
purposes as well . Creating an inventory of machines and the services they offer can be useful for asset
tracking, network design, policy compliance checks, software license tracking, availability testing, network
debugging, and more.

4.2. A Quick Port Scann ing Tutorial
One of my goals in developing Nmap is to keep the most common usage simple, while retaining the flexibility
for custom and advanced scans. This is accomplished with the command-line interface by offering dozens .
of options, but choosing sane defaults when they are not specified. A newbie can start out with a command
as simple as nmap <target >. Meanwhile, advanced users sometimes specify so many options that their
terminal line wraps around.

A similar balance must be struck with command output. The most important results should stick out even
to the occasional user who hasn't even read the man page. Yet the output should be comprehensive and
concise enough to suit professional penetration testers who run Nmap against thousands of machines daily.
Users smart enough to read this book or the Nmap source code benefit from greater control of the scanner
and insights into what Nmap output really means.

This tutorial demonstrates some common Nmap port scanning scenarios and explains the output. Rather than
attempt to be comprehensive, the goal is simply to acquaint new users well enough to understand the rest of
this chapter.

The simplest Nmap command is just nmap by itself. This prints a cheat sheet of common Nmap options and
syntax. A more interesting command is nmap <target>, which does the following:

I . Converts <targe t > from a hostname into an IPv4 address using DNS. If an IP address is specified
instead of a hostname this lookup is skipped.

2. Pings the host, by default with an ICMP echo request packet and a TCP ACK packet to port 80, to determine
whether it is up and running. If not, Nmap reports that fact and exits. I could have specified -PN to skip
this test. See Chapter 3, Host Discovery (Ping Scanning) [47).

3. Converts the target IP address back to the name using a reverse-DNS query. Because of the way DNS
works, the reverse name may not be the same as the <targe t > specified on the command-line. This
query can be skipped with the -n option to improve speed and stealthiness.

4.2. A Quick Port Scanning Tutorial 79

4. Launches a TCP port scan of the most popular 1 ,000 ports l isted in nmap- servi ces . A SYN stealth
scan is usually used, but connect scan is substituted instead for non-root Unix users who lack the privileges
necessary to send raw packets.

5. Prints the results to standard output in normal human-readable format, and exits. Other output formats
and locations (files) can be specified, as described in Chapter 1 3, Nmap Output Formats [337) . Example 4.2
displays the results when scanme.nmap.org is used as <t a rget >.

Example 4.2. Simple scan: nmap scanme.nmap.org

nmap scanme . nmap . org

Starting Nmap (http : / / nmap . org
I nteresting por t s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) :
Not shown : 9 9 4 f i ltered port s
PORT STATE SERVICE
2 2 / tcp open ssh
2 5 / tcp closed smtp
5 3 / tcp open domain
7 0 / tcp closed gopher
8 0 / tcp open http
1 1 3 / tcp c losed auth

Nmap done : 1 I P address (1 host up) scanned in 4 . 9 9 seconds

The first output l ine in Example 4.2 simply gives the URL for downloading Nmap. The time Nmap started
and version number are normally provided as well, though these were are generally removed from this book
for consistency and to avoid line wrapping.

The next l ine provides the target IP address (1Pv4 in this case), and reverse DNS name (also known as the
PTR record) if it is available. Nmap promises to show the "interesting ports", though all ports scanned are
accounted for. The ports considered most interesting because they are open or in a rarely-seen state for that
host are itemized individually. When many ports are in a single non-open state, they are considered a default
state, and aggregated onto a single l ine to avoid diluting the results with thousands of uninteresting entries.
In this case, Nmap notes that 994 ports are filtered.

The interesting ports table comes next, and provides the key scan results. The columns vary depending on
options used, but in this case provide the port number and protocol, state, and service protocol for each port.
The service here is just a guess made by looking up the port in nmap-services . The service would be
listed as unknown if any of the ports had no name registered in that file. Three of these ports are open and
three are closed.

Finally, Nmap reports some basic timing stats before it exits. These stats are the number of targets specified,
the number of those that the ping scan found to be up, and the total time taken.

While this simple command is often all that is needed, advanced users often go much further. In Example 4.3,
the scan is modified with four options. -pO - asks Nmap to scan every possible TCP port, -v asks Nmap to
be verbose about it, -A enables aggressive tests such as remote OS detection, service/version detection, and
the Nmap Scripting Engine (NSE). Finally, -T4 enables a more aggressive timing policy to speed up the
scan.

80 4.2. A Quick Port Scanning Tutorial

l
Highlight

Example 4.3. More complex: nmap -pO- -v -A -T4 scanme.nmap.org

nmap -pO- -v -A -T4 scanme . nmap . org

Starting Nmap (http : / /nmap . org)
Completed Ping Scan at 0 0 : 03 , O . O l s elapsed (1 total hos t s)
Scanning scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) (6 5 5 3 6 por t s]
Discovered open port 2 2 / t cp o n 6 4 . 1 3 . 1 3 4 . 52
Discovered open port 5 3 / tcp on 6 4 . 1 3 . 1 3 4 . 52
Discovered open port 8 0 / tcp on 6 4 . 1 3 . 1 3 4 . 52
SYN Stea lth Scan T iming : About 6 . 2 0 % done ; ETC : 0 0 : 1 1 (0 : 0 7 : 3 3 remaining)
Completed SYN Stealth Scan at 0 0 : 1 0 , 4 6 3 . 5 5 s elapsed (6 5 53 6 total por t s)
Completed Service scan at 0 0 : 1 0 , 6 . 03 s elapsed (3 services on 1 host)
Initiat ing OS detect ion (try # 1) against scanme . nmap . or g (6 4 . 1 3 . 1 3 4 . 5 2)
Initiating Traceroute at 0 0 : 1 0
64 . 1 3 . 1 3 4 . 5 2 : guessing hop distance at 9
Completed SCRIPT ENGINE at 0 0 : 1 0 , 4 . 0 4 s e lapsed
Host s canme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) appears to be up . . . good .
Interest ing ports on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 5 2) :
Not shown : 6 5 5 3 0 f i l tered port s
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 4 . 3 (protocol 2 . 0)
2 5/tcp closed smtp
53/tcp open domain I SC BIND 9 . 3 . 4
70/tcp closed gopher
80/tcp open http Apache ht tpd 2 . 2 . 2 ((Fedora))
I _ HTML title : Go ahead and ScanMe !
113/tcp closed auth
Device type : general purpose
Running : Linux 2 . 6 . X
OS details : Linux 2 . 6 . 2 0 - 1 (Fedora Core 5)
Uptime guess : 2 . 4 5 7 days (s ince Thu Sep 1 8 1 3 : 1 3 : 2 4 2 0 0 8)
TCP Sequence Predict ion : D i f ficulty=2 0 4 (Good luck !)
IP ID Sequence Generat ion : All zeros

TRACEROUTE (us ing port 8 0 / tcp)
HOP RTT ADDRESS •
[First eight hops cut for brevity)
9 1 0 . 36 metroO . sv . svcolo . com (2 0 8 . 1 8 5 . 1 6 8 . 1 73)
10 1 0 . 29 scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 5 2)

Nmap done : 1 I P addre ss (1 host up) scanned in 4 7 7 . 2 3 seconds
Raw packet s sent : 1 3 1 4 3 2 (5 . 783MB) I Rcvd : 3 5 9 (1 4 . 9 6 4KB)

Nmap certainly provided the requested verbosity in Example 4.3! Fortunately the extra output is easy to
understand. The first 1 3 new lines are runtime information letting the user know what is happening as she
stares expectantly at the terminal, hoping for good news. What constitutes good news depends on whether
she is a systems administrator who has to fix problems, a pen-tester who needs some issues to report on, or
a black-hat cracker trying to exploit them. About a dozen similar l ines were removed for brevity. The
"discovered open port" l ines provide as-it-happens notification of open ports so that she can start banging
on them before the scan even finishes. The "scan timing" line provides a completion time estimate, so she
knows whether to keep staring at the screen or have lunch. Since network conditions (latency, congestion,
bandwidth, etc.) and packet filtering rules vary so much, the same scan options may take 30 seconds to

4.2. A Quick Port Scanning Tutorial 8 1

complete against one host and 45 minutes against another. If you want the current time estimate while
scanning, just press enter.

The port table shows no new ports. All the extra ports scanned are in the filtered state, raising the filtered
port total from 994 to 65,530. While there are no new itemized ports, the entries have changed. A new
VERS I ON column provides the application name and version details for the listening service. This comes
from service detection, one of the features enabled by the -A option. Another feature of service detection is
that all of the service protocols in the SERVICE column have actually been verified. In the previous scan,
they were based on the relatively flimsy heuristic of an nmap- services port number lookup. That table
lookup happened to be correct this time, but it won't always be.

Another feature added by -A is the Nmap Scripting Engine, which is discussed in depth in Chapter 9, Nmap
Scripting Engine [205] . The only script shown here is HTML t it l e. Dozens of other scripts exist, but none
found useful output for this machine. The traceroute results were also added by -A. This option is more
efficient and more powerful than most traceroute programs since probes are performed in parallel and Nmap
uses scan results to determine a favorable probe type (TCP packets to port 80 in this case).

Most of the remaining new l ines come from OS detection (also enabled by -A), which is discussed in depth
in Chapter 8, Remote OS Detection [1 7 1] . The final l ine shows that all this extra info came at a price-the
scan took almost 100 times longer than Example 4.2, "Simple scan: nmap scanme.nmap.org" [80] to complete
(477 seconds compared to 5).

4.3. Command- l ine Flags
While the tutorial showed how simple executing an Nmap port scan can be, dozens of command-line flags
are available to make the system more powerful and flexible. This section covers only options that relate to
port scans, and often describes only the port-scanning-related functionality of those options. See Chapter 15,
Nmap Reference Guide [373] for a comprehensive list of option flags and everything they do.

4.3.1 . Selecting Scan Techniques

One of the first considerations when contemplating a port scan is deciding what techniques to use. Nmap
offers about a dozen such methods and this section provides a brief summary of them. Full coverage comes
in the next chapter. Only one scan method may be used at a time, except that UDP scan (- sU) may be
combined with any one of the TCP scan types. As a memory aid, port scan type options are of the form
- s <C>, where <C> is a prominent character in the scan name, usually the first. The one exception to this is
the deprecated FTP bounce scan (-b). By default, Nmap performs a SYN Scan, though it substitutes a connect
scan if the user does not have proper privileges to send raw packets (requires root access on Unix) or if 1Pv6
targets were specified.

Port scanning methods supported by Nmap

TCP SYN Stealth (-ss)

82

This is far and away the most popular scan type because it the fastest way to scan ports of the most
popular protocol (TCP). It is stealthier than connect scan, and it works against all functional TCP stacks
(unlike some special-purpose scans such as FIN scan).

4.3. Command-line Flags

l
Highlight

l
Highlight

TCP Connect (-s T)
Connect scan uses the system call of the same name to scan machines, rather than relying on raw packets
as most of the other methods do. It is usually used by unprivileged Unix users and against IPv6 targets
because SYN scan doesn't work in those cases.

UDP (-sU)
Don't forget UDP ports-they offer plenty of security holes too.

TCP FIN, Xmas, and Null (- sF, -sX, - sN)
These special purpose scan types are adept at sneaking past firewalls to explore the systems behind
them. Unfortunately they rely on target behavior that some systems (particularly Windows variants)
don't exhibit.

TCP ACK (-sA)
ACK scan is commonly used to map out firewall rulesets. In particular, it helps understand whether
firewall rules are stateful or not. The downside is that it cannot distinguish open from closed ports.

TCP Window (- sW)

Window scan is like ACK scan, except that it is able to detect open versus closed ports against certain
machines.

TCP Maimon (- sM)
This obscure firewall-evading scan type is similar to a FIN scan, but i ncludes the ACK flag as well .
This allows i t to get by more packet filtering firewalls, with the downside that it works against even ·

fewer systems than FIN scan does.

TCP Idle (-s I <zombie hos t >)
Idle scan is the stealthiest scan type of all, and can sometimes exploit trusted IP address relationships.
Unfortunately, it is also slow and complex.

IP protocol (- so)

Protocol scan determines which IP protocols (TCP, ICMP, IGMP, etc.) are supported by the target
machine. This isn't technically a port scan, since it cycles through IP protocol numbers rather than TCP
or UDP port numbers. Yet it still uses the -p option to select scanned protocol numbers, reports its
results with the normal port table format, and even uses the same underlying scan engine as the true port
scanning methods. So it is close enough to a port scan that it belongs here.

TCP FfP bounce (-b <FTP bounce proxy>)

This deprecated scan type tricks FTP servers into performing port scans by proxy. Most FTP servers
are now patched to prevent this, but it is a good way to sneak through restrictive firewalls when it works.

4.3.2. Selecting Ports to Scan

Nmap's port registration file (nmap-services) contains empirical data about how frequently each TCP
« UDP port is found to be open. This data was collected by scanning tens of millions of Internet addresses,

ncombining those results with internal scan data contributed by large enterprises. By default, Nmap scans
1,000 most popular ports of each protocol it is asked to scan. Alternatively, you can specify the -F (fast)
"on to scan only the JOO most common ports in each protocol or --top-po r t s to specify an arbitrary
ber of ports to scan.

4.3. Command-line Flags 83

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

When none of these canned port sets suit your needs, an arbitrary list of port numbers can be specified on
the command-line with the -p option. The syntax of the -p option can be complex, and is best described
with examples.

Port selection examples with the -p option

-p 2 2

Scan a single port (in this case port 22) by specifying just that number as the -p argument.

-p s s h

Port names may be specified rather than numbers. Note that a name may match multiple ports.

-p 2 2 , 2 5 , 8 0

Multiple ports may be separated with commas. Note that no protocol is specified, so these same port
numbers will be used for whatever scan methods are specified on the command-line. If a TCP scan such
as SYN scan (- s s) is specified, TCP ports 22, 25, and 80 are scanned. Those correspond to the services
SSH, SMTP, and HTTP, respectively. If a UDP scan is selected (- sU), those three UDP ports are
scanned. If both are specified, those three ports are scanned for each protocol, for a total of six scanned
ports. With IP protocol scan (- so), those three IP protocols (corresponding to XNS IDP, Leaf- I , and
ISO-IP) are scanned.

-p8 0 - 8 5 , 4 4 3 , 8 0 0 0 - 8 0 0 5 , 8 0 8 0 - 8 0 8 5
Port ranges may be specified by separating the beginning and end port with a hyphen. Multiple ranges
or individual ports can be specified with commas. This option scans ports 80, 8 1 , 82, 83, 84, 85, 443,
8000, etc. Based on the port numbers, this user is probably scanning TCP and looking for web servers.

-p- 1 0 0 , 6 0 0 0 0 -

-p-

You can omit the beginning of a range to imply port one, or the end to imply the last port possible (65535
for TCP and UDP, 255 for protocol scan). This example scans ports one through 100, and all ports
greater or equal to 60,000.

Omit beginning and end numbers to scan the whole range (excluding zero).

-pT : 2 1 , 2 3 , 1 1 0 , U : 5 3 , 1 1 1 , 1 3 7 , 1 6 1
Separate lists of TCP and UDP ports can be given by preceding the lists with T: (for TCP) or U:. This
example scans three TCP ports (FTP, Telnet, and POP3), and four UDP services (DNS, rpcbind, NetBIOS,
and SNMP). Specifying both TCP and UDP ports only matters if you also tell Nmap to do a UDP scan
(- sU) and one of the TCP scan methods, such as - s s, - sA, or -sF.

-p http*
Wildcards may be used to match ports with similar names. This expression matches eight port numbers,
including http (80), http-mgmt (280), https (443), and http-proxy (8080). Depending on your command
shell , you may need to escape the asterisk so it isn't treated as a filename glob.

-p 1 - 1 0 2 3 , [1 0 2 4 - J

84

Enclosing a range in brackets causes those port numbers to be scanned only if they are registered in
nmap- servi ces . In this example, all the reserved ports (1- 1 ,023), plus all the higher ports registered
in nmap- services . That was Nmap's default behavior before nmap- services was augmented
with open port frequency data for more precise selection.

4.3. Command-line Flags

l
Highlight

4.3.3. Timing-related Options

Port scanning i s often the most time consuming part of an Nmap scan (which might also include OS detection,
version detection, and NSE scripts). While Nmap tries to be quick and efficient by default, manual optimization
often helps. Nmap offers dozens of options for tailoring scan intensity and speed to match your exact needs.
This section lists the most important options for optimizing port scan times. Options which take an amount
of time are given in milliseconds unless you append s (seconds), m (minutes), or h (hours) to the value. For
further details on any of these options, see Section 15. 1 1 , "Timing and Performance" [394]. A much more
thorough treatment, with examples and best-practices for improving Nmap performance is available in
Chapter 6, Optimizing Nmap Performance [1 35] .

Top port scan performance options

-TO through -TS
These timing templates affect many variables, offering a simple way to adjust overal l Nmap speed from
very slow (-T 0) to extremely aggressive (-T 5). A timing template may be combined with the more
granular options describe below, and the most granular option takes precedence.

--min-rtt-t imeout, --max-rtt-t imeout, - - i n i t i al-rtt-t imeout
The minimum, maximum, and initial amount of time that Nmap will wait for a port scan probe response.

--host-t imeout
Asks Nmap to give up on hosts that take more than the given amount of time to scan.

--min-rate, --max-rate
Sets the floor and ceiling, respectively, to the number of probe packets Nmap sends per second.

--max-retr i e s
Specifies the maximum number of port scan probe retransmissions to a single port.

--min-hostgroup, --max-hos t group
Sets the minimum and maximum number of hosts that Nmap will port scan in parallel.

--min-para llelism, --max-para l l e l i sm

Limits the minimum or maximum number of port scan probes (across all hosts scanned concurrently)
that Nmap may have outstanding.

--scan-delay, --max-s can-de l ay
Asks Nmap to wait at least the given amount of time between sending probes to any individual host.
The scan delay can grow as Nmap detects packet loss, so a maximum may be specified with
--max-scan-de lay.

4.3.4. Output Format and Verbosity Options

Nmap offers the ability to write its reports i n its standard format, a simple line-oriented "grepable" format,
or XML. These reports are enabled with the -oN (normal), - oG (grepable), and -ox (XML) options. Each
option takes a filename, and they may be combined to output in several formats at once. Several options are

available to increase output verbosity. This section lists the most important output-related options and
they apply to port scanning. For further details on any of these options, see Section 15 . 13, "Output" [403].

4.3. Command-line Flags 85

l
Highlight

A much more thorough treatment of output options and formats, with many examples, is available ii
Chapter 1 3, Nmap Output Formats [337].

Top Nmap output options applicable to port scans

- v

-d

Increases the verbosity level, causing Nmap to print more information about the scan in progress. Open
ports are shown as they are found and completion time estimates are provided when Nmap thinks a scan
will take more than a few minutes. Use it twice or more for even greater verbosity.

Increases the debugging level, causing Nmap to print out details about i ts operation that can be useful
for tracking down bugs or simply understanding how it works. Higher levels result in massive amounts
of data. Using the option once sets the debugging level to one, and it is incremented for each additional
-d. Or you may follow the -d with the desired level, as in -d5. If you don't see enough information,
try a higher level. The maximum effective level is nine. If your screen is flooded with too much debugging
data, reduce the level. Reducing scan intensity, such as the number of ports or targets scanned and the
features used, can also help to isolate only the debug messages you want.

--packet-trace

Causes Nmap to print a summary of every packet sent or received. This is often used for debugging, but
is also a valuable way for new users to understand exactly what Nmap is doing under the covers. To
avoid printing thousands of lines, you may want to specify a limited number of ports to scan, such as
-p2 0 - 3 0 .

-oN <fi l ename> (normal output)
Write output in Nmap's normal format to <fi l ename>. This format is roughly the same as the standard
interactive output printed by Nmap at runtime.

-ox <fi l ename> (XML output)
Write output in Nmap's XML format to <fi l ename>. Normal (human readable) output will still be
printed to stdout unless you ask for XML to be directed there by specifying - as <fi l ename>. This
is the preferred format for use by scripts and programs that process Nmap results.

-oG <fi l ename> (grepable format output)
Write output in Nmap's so-called grepable format to <fi l e name>. This tabular format fits the output
of each host on a single line, making it easy to grep for open ports, certain operating systems, application
names, or other data. Normal output will still be printed to stdout unless you ask for the grepable output
to be directed there by specifying - as <fi l ename>. While this format works well for parsing with
simple grep and awk command-lines, significant scripts and programs should use the XML output
instead. The XML format contains substantial information that grepable format has no place for, and
extensibility makes XML easier to update with new information without breaking tools that rely on it.

-oA <ba sename> (output to all formats)

86

As a convenience, you may specify -oA <ba sename> to store scan results in normal, XML, and
grepable formats at once. They are stored in <ba sename>.nmap, <ba s ename>.xml, and
<ba sename>.gnmap, respectively. As with most programs, you can prefix the filenames with a directory
path, such as - / nmaplog s / f oocorp/ on Unix or c : \ hacki n g \ s co on Windows.

4.3. Command-line Flags

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

l
Highlight

--resume <fi l ename>

Resume an aborted scan by specifying the normal (-oN) or grepable (-oG) output fi le which was created
during the ill-fated scan. Don't use any options other than - - r e sume, as Nmap will use the ones
specified in the output file. It then parses the file and resumes scanning (and logging to the file) at the
host which the previous Nmap execution was working on when it ceased.

--append-output

Tells Nmap to append scan results to any output files specified (with arguments such as -oN or - ox)
rather than overwriting them.

--open
Only show open ports in the Nmap interesting port tables.

4.3.5. Firewal l and IDS Evasion Options

Nmap offers many options for sneaking past IDSs undetected or evading firewall rules. For a n overview,
see Section 15 . 12, "Firewall/IDS Evasion and Spoofing" [399). For a comprehensive look at firewall and
IDS evasion techniques, along with practical examples, see Chapter 10, Detecting and Subverting Firewalls
and Intrusion Detection Systems [257) .

4.3.6. Specifying Targets

To scan a single host (or a few of them), simply add their names or IP addresses to the end of your Nmap
command line. Nmap also has a structured syntax to make scanning large networks easy. You can give Nmap
a file listing targets, or even ask Nmap to generate them randomly. This is all described in Section 3.2,
"Specifying Target Hosts and Networks" (47) .

4.3.7. Miscel laneous Options

Here are some options that can be quite handy even though they don't fit into specific categories. The
descriptions focus on how each option relates to port scanning. See the Chapter 1 5, Nmap Reference
Guide (373) for more comprehensive coverage of each option.

-6

-r

Asks Nmap to scan the target using the 1Pv6 protocol. This process is described in Section 4.4, "1Pv6
Scanning (-6)" [88).

Nmap randomizes the port scan order by default to make detection slightly harder. The -r option causes
them to be scanned in numerical order instead.

Tells Nmap to skip the ping test and simply scan every target host provided. Other options for controlling
host discovery are described in Chapter 3, Host Discovery (Ping Scanning) [47) .

--reason

Adds a column to the interesting ports table which describes why Nmap classified a port as it did.

4.3. Command-line Flags 87

l
Highlight

l
Highlight

4.4. 1 Pv6 Scann ing (-6)
Since 2002, Nmap has offered 1Pv6 support for its most popular features. In particular, ping scanning
(TCP-only), connect scanning, and version detection all support IPv6. The command syntax is the same as
usual except that you also add the -6 option. Of course, you must use IPv6 syntax if you specify an address
rather than a hostname. An address might look like 3 f fe : 7 5 0 1 : 4 8 1 9 : 2 O 0 0 : 2 1 O : f 3 f f : fe03 : 1 4d0,
so hostnames are recommended. Example 4.4 shows a typical port scanning session. The output looks the
same as it usually does, with the 1Pv6 address on the "interesting ports" line being the only 1Pv6 give away.

Example 4.4. A simple 1Pv6 scan

nmap -6 -sV www . eurov6 . or g

Start ing Nmap (http : / /nmap . org
I nteresting port s on n s l . euro6 ix . com (2 0 0 1 : 8 0 0 : 4 0 : 2a 03 : : 3) :
Not shown : 9 9 6 c losed port s
PORT STATE SERVICE VERS I ON
2 1 / tcp open ftp Pure-FTPd
2 2 / tcp open ssh OpenSSH 3 . 5pl (protocol 2 . 0)
5 3 / tcp open domain ! SC B IND 9 . 2 . 1
8 0 /tcp open http Apache httpd

Nmap done : 1 I P address (1 host up) scanned in 5 6 . 7 8 seconds

While IPv6 hasn't exactly taken the world by storm, it gets significant use in some countries and most modern
operating systems support it. To use Nmap with 1Pv6, both the source and target of your scan must be
configured for 1Pv6. If your ISP (like most of them) does not al locate IPv6 addresses to you, free tunnel
brokers are widely available and work fine with Nmap. I use the free 1Pv6 tunnel broker service at
http://www.tunnelbroker.net. Other tunnel brokers are listed at Wikipedia 1 • 6to4 tunnels are another popular,
free approach.

Systems that support 1Pv6 don't always have their IPv4 and IPv6 firewall rules in sync. Section 10.4.3, "1Pv6
Attacks" [267) shows a real-life example of reaching ports through IPv6 that are filtered in 1Pv4.

4.5. SOLUTION : Scan a Large Network for a
Certain Open TCP Port

4.5.1 . Problem

You wish to quickly find all machines o n a network that have a certain TCP port open. For example, after a
new Microsoft ITS vulnerability is found, you might want to scan for all machines with TCP port 80 open
and ensure that they aren't running a vulnerable version of that software. Or if you investigate a compromised
box and find that the attacker left a backdoor running on port 3 1 337, scanning your whole network for that
port might quickly identify other compromised systems. A ful l (all ports) scan would be done later.

1 http://en.wikipedia.org/wiki/List_of_/Pv6_1u1111el_brokers

88 4.4. IPv6 Scanning (-6)

4.5.2. Solution

The straightforward way i s to run:

nmap -PN -p<portnumber> -oG < logfi lenarne . grunap> <target networks>

Here is a concrete example of searching 4096 IPs for web servers (port 80 open):

nmap -PN -p80 -oG logs/pb-port80scan- % D.gnmap 216.163.128.0/20

The "%0'' in the filename is replaced with the numeric date on which the scan was run (e.g. "090107" on
September I , 2007). While this scan command works, a little effort choosing appropriate timing values for
the network being scanned reduces scan time substantially. The scan above took 1 ,236 seconds, while the
optimized version below provided the same results in 869 seconds:

IDlap -T4 -PN -p80 --max-rtt-timeout 200 --initial-rtt-timeout 150 --min-hostgroup 512 -oG
logs/pb-port80scan2-% D.gnmap 216.163.128.0/20

And much of that time is spent doing reverse-DNS resolution. Excluding that by adding -n to the
command-line above reduces the 4096-host scan time to 193 seconds. Being patient for three minutes is far
easier than for the 21 minutes taken before.

The commands above store grepable-format results in the specified fi le. A simple egrep command will then
find the machines with port 80 open:

·

egrep '["0-9)80/open' logs/pb-port80scan2-*.gnmap

The egrep pattern is preceded with ["0-9) to avoid bogus matching ports such as 3 180. Of course that can't
pen since we are only scanning port 80, but it is a good practice to remember for many-port scans. If you

tnly want the IP addresses and nothing else, pipe the egrep output to awk '{print $2}' .

. 5.3. Discussion

etimes a story i s the best way to understand decisions, such as how I decided upon the command lines
the solution section. I was bored at home, and started exploring the network of a popular magazine named

'layboy. Their main site includes a huge trove of images, but most are locked away behind a paid subscription
entication system. I was curious as to whether I could find any other systems on their network which
up images for free. I figured that they might have staging or development servers which rely on obscurity
r than password authentication. While such servers could theoretically listen on any port number, the
likely is TCP port 80. So I decide to scan their whole network for that open port as quickly as possible.

first step is determining which IP addresses to scan. I perform a whois search of the American Registry
Internet Numbers (ARIN) for organizations named Playboy. The results are shown in Example 4.5.

4.5. SOLUTION: Scan a Large Network for a Certain Open TCP Port 89

Example 4.5. Discovering Playboy's IP space

core-> whoi s -h whoi s . ar i n . net n playboy
[Querying whoi s . ar in . net]
[whois . ar in . ne t]

OrgName : P layboy
OrgI D : PLAYBO
Addres s : 6 8 0 N . Lake Shore Drive
C i t y : Chicago
Stat eProv : I L
PostalCode : 6 0 6 1 1
Country : US

NetRange : 2 1 6 . 1 6 3 . 1 2 8 . 0 - 2 1 6 . 1 6 3 . 1 4 3 . 2 5 5
C IDR : 2 1 6 . 1 6 3 . 1 2 8 . 0 / 2 0
NetName : PLAYBOY-BLK- 1
NetHandle : NET- 2 1 6 - 1 6 3 - 1 2 8- 0 - 1
Paren t : NET- 2 1 6 -0-0-0-0
NetType : Direct A s s i gnment
NameServer : NS l -CH I . PLAYBOY . COM
NameServer : NS2-CH I . PLAYBOY . COM
[. . .]

This shows 4096 IPs {the net range 216. 163. 1 28.0/20) registered to Playboy. Using techniques discussed in
Section 3.3, "Finding an Organization's IP Addresses" [49) I could have found many more netblocks they
control, but 4096 IPs are sufficient for this example.

Next I want to estimate latency to these machines, so that Nmap will know what to expect. This isn't required,
but feeding Nmap appropriate timing values can speed it up. This is particularly true for single-port -PN

scans, such as this one. Nmap does not receive enough responses from each host to accurately estimate
latency and packet drop rate, so I will help it out on the command line. My first thought is to ping their main
web server, as shown in Example 4.6.

Example 4.6. Pinging Playboy's web server for a latency estimate

t ping -cs www . playboy . com
P ING www . phat . playboy . com (2 0 9 . 2 4 7 . 22 8 . 2 0 1) from 2 05 . 2 1 7 . 1 5 3 . 56
6 4 bytes from free-ch i . playboy . com (2 0 9 . 2 4 7 . 2 2 8 . 2 0 1) : i cmp_seq=l
6 4 bytes from free-ch i . playboy . com (2 0 9 . 2 4 7 . 22 8 . 2 0 1) : i cmp_seq=2
6 4 bytes from free-ch i . playboy . com (2 0 9 . 2 4 7 . 2 2 8 . 2 0 1) : i cmp_seq=3
6 4 bytes from free-ch i . playboy . com (2 0 9 . 2 4 7 . 2 2 8 . 2 0 1) : i cmp_seq=4
6 4 bytes from free-ch i . playboy . com (2 0 9 . 2 4 7 . 2 2 8 . 2 0 1) : i cmp_seq=5

--- www . phat . p layboy . com ping statistics ---
5 packets transmitted, 5 received, 0% los s , t ime 4 0 4 7ms
rtt min/avg/max/mdev = 5 6 . 6 5 2 / 5 7 . 00 4 / 5 7 . 52 2 / 0 . 3 3 3 ms

t ime=5 7 . 5 ms
t ime=5 6 . 7 ms
t ime=56 . 9 ms
t ime=5 7 . 0 ms
t ime=56 . 6 ms

The maximum round trip time is 58 milliseconds. Unfortunately, this IP address (209.247.228.201) is not
within the 2 16. 163 . 1 28.0/20 netblock I wish to scan. I would normally add this new netblock to the target
list, but have already decided to limit my scan to the original 4096 IPs. These times are probably perfectly
fine to use, but finding actual values from IPs on the target network would be even better. I use dig to obtain

90 4.5. SOLUTION: Scan a Large Network for a Certain Open TCP Port

Playboy's public DNS records from a nameserver shown in the previous whois query. The output is shown
in Example 4.7.

Example 4.7. Digging through Playboy's DNS records

e�>dig @nsl-chi . playboy . com p layboy . com . any
<>> DiG 8 . 3 <<>> @ n s l -chi . playboy . com playboy . com . any

yboy . com . 1 0 I N A 2 09 . 2 4 7 . 2 2 8 . 2 0 1
yboy . com . 1 0 I N MX 1 0 mx . la . playboy . com .
yboy . com . 10 IN MX 5 mx . chi . playboy . com .
yboy . com . l D IN NS n s l 5 . customer . leve l 3 . net .

ayboy . com . 10 I N N S n s 2 1 . customer . leve l 3 . net .
ayboy . com . 1 0 I N NS n s 2 9 . customer . level 3 . net .

ayboy . com . l D I N NS n s l -chi . p layboy . com .
lyboy . com . 1 0 IN NS n s 2-chi . playboy . com .
ayboy . com . 1 0 IN SOA n s l -chi . playboy . com . dns . playboy . com .

2 0 0 4 0 9 2 0 1 0 serial
1 2 H refresh
2 h 3 0m retry
2wld expiry
l D) minimum

ADDITIONAL SECTI ON :
chi . playboy . com . 1 0 IN A 2 1 6 . 1 6 3 . 1 4 3 . 4

.la . playboy . com . 1 0 IN A 2 1 6 . 16 3 . 1 2 8 . 1 5
1-chi . playboy . com . l D I N A 2 0 9 . 2 4 7 . 2 2 8 . 1 3 5
2-chi . playboy . com . 1 0 IN A 6 4 . 2 0 2 . 1 05 . 3 6

Total query t ime : 1 0 7 msec

The DNS query reveals two MX (mail) servers within the target 216. 163. 128.0/20 netblock. Since the names
mx . chi and mx . la imply that they are in different regions (Chicago and Los Angeles), I decide to test
diem both for latency. The ping results are shown in Example 4.8.

4.5. SOLUTION: Scan a Large Network for a Certain Open TCP Port 91

Example 4.8. Pinging the MX servers

core- > ping -cs mx . chi . playboy . com
P ING mx . chi . playboy . com (2 1 6 . 1 6 3 . 1 4 3 . 4) S 6 (8 4) bytes of data .

--- mx . ch i . playboy . com ping statistics ---
S packet s transmitted, 0 received, 1 0 0 % packet l os s , t ime 4 0 0 0ms

core- > ping -cs mx . la . playboy . com
PING mx . la . playboy . com (2 1 6 . 1 6 3 . 1 2 8 . l S) S 6 (8 4) bytes of data .

--- mx . la . p layboy . com ping stat i s t i c s ---
S packe t s t ransmitted, 0 received, 1 0 0 % packet l os s , t ime 4 0 l lms

Well, that attempt was a miserable failure! The hosts seem to be blocking ICMP ping packets. Since they
are mail servers, they must have TCP port 25 open, so I try again using hping22 to perform a TCP ping
against port 25, as demonstrated in Example 4.9.

Example 4.9. TCP pinging the MX servers

cor e # hping2 --syn -p 2 S -c S mx . chi . playboy . com
ethO default rout ing inter face selected (according to /proc)
HPING mx . ch i . playboy . com (ethO 2 1 6 . 1 6 3 . 1 4 3 . 4) : S set , 4 0 headers + O data bytes
46 bytes from 2 1 6 . 1 6 3 . 1 4 3 . 4 : f lags=SA seq=O ttl=Sl id=l 4 2 2 1 rtt=S6 . 8 ms
46 bytes from 2 1 6 . 1 6 3 . 1 4 3 . 4 : flags=SA seq=l ttl=Sl id=1 4 2 4 4 rtt=S6 . 9 ms
4 6 bytes from 2 1 6 . 1 6 3 . 1 4 3 . 4 : flags=SA seq=2 ttl=Sl id=l 4 2 7 4 rtt=S 6 . 9 ms
46 bytes from 2 1 6 . 1 6 3 . 1 4 3 . 4 : flags=SA seq=3 ttl=Sl id= l 4 3 8 3 rtt=6 1 . 8 ms
46 bytes from 2 1 6 . 1 6 3 . 1 4 3 . 4 : flags=SA seq= 4 ttl=Sl id=l 4 3 8 7 rtt=S 7 . S ms

--- mx . ch i . playboy . com hping stati stic ---
S packets transmitted, S packets recei ved , 0% packet loss
round-trip min/avg/max S 6 . 8 / S 8 . 0 / 6 1 . 8 ms

core# hping2 --syn -p 2S -c S mx . la . playboy . com
ethO default rout ing inter face se lected (according to /pro c)
HPING mx . la . playboy . com (ethO 2 1 6 . 1 6 3 . 1 2 8 . l S) : S set , 4 0 headers + 0 data bytes
46 bytes from 2 1 6 . 1 6 3 . 1 2 8 . l S : f l ags=SA seq=O ttl=S2 id=S 8 7 2 8 rtt=l6 . 0 ms
46 bytes from 2 1 6 . 1 6 3 . 1 2 8 . l S : f lags=SA seq=l tt l=S2 id= S 8 7 S 3 rtt=l S . 4 ms
46 bytes from 2 1 6 . 1 6 3 . 1 2 8 . l S : flags=SA seq=2 ttl=S2 id= S 8 7 9 0 rtt=l5 . 5 ms
46 bytes from 2 1 6 . 1 6 3 . 1 2 8 . 1 5 : flags=SA seq=3 ttl=52 id=5 8 8 7 0 rtt=l6 . 4 ms
4 6 bytes from 2 1 6 . 1 6 3 . 1 2 8 . 1 5 : f lags=SA seq=4 t t l=52 id=S 8 9 0 7 rtt=lS . 5 ms

--- mx . la . playboy . com hping stat i st i c ---
S packets t ransmi tted, S packets received , 0 % packet loss
round-trip min/avg/max = 1 5 . 4 / 1 5 . 8 / 1 6 . 4 ms

These are the results I was looking for. The LA host never takes more than 16 mill iseconds to respond, while
the Chicago one takes up to 62 milliseconds. This is not surprising, given that I am probing from a machine
in California. It pays to be cautious, and latency can increase during heavy scanning, so I decide to let Nmap
wait up to 200 mill iseconds for responses. I'll have it start with a timeout of 150 ms. So I pass it the options

2 http://www.hpi11g.org

92 4.5. SOLUTION: Scan a Large Network for a Certain Open TCP Port

--max-rtt-t imeout 2 0 0 - - i n i t i a l -rt t -t imeout 1 5 0 . To set a generally aggressive timjng
mode, I specify -T4 at the beginning of the l ine.

Since I value minimizing completion time of the whole scan over minimizing the amount of time before the
first batch of host results is returned, I specify a large scan group size. The option --mi n-ho stgroup

5 1 2 is specified so that at least 5 12 IPs will be scanned in parallel (when possible). Using an exact factor
of the target network size (4096) prevents the small and less efficient 96-host block which would occur at
the end if l specified --mi n-ho stgroup 5 0 0. All of these timing issues are explained in much more
depth in Chapter 6, Optimizing Nmap Performance [1 35] .

There is no need to waste time with a prior ping stage, since a ping would take as long as the single-port
scan itself. So -PN is specified to disable that stage. Substantial time is saved by skipping reverse-DNS
resolution with the -n argument. Otherwise, with ping scanning disabled, Nmap would try to look up all
4096 IPs. I am searching for web servers, so I request port 80 with -p80 . Of course I will miss any HITP
servers running on non-standard ports such as 81 or 8080. SSL servers on port 443 won't be found either.
One could add them to the -p option, but even one more port would double the scan time, which is roughly
proportional to the number of ports scanned.

The final option is -oG followed by the filename in which I want grepable results stored. I append the target
network to the command, then press enter to execute Nmap. The output is shown in Example 4 . 10.

Example 4.10. Launching the scan

nmap -T4 -p8 0 -PN --max-rtt-t imeout 2 0 0 --initial-rtt-timeout 1 5 0 \
- -min-host group 5 1 2 -n -oG pb-port 8 0 scan-%D . gnmap 2 1 6 . 1 6 3 . 1 2 8 . 0 / 2 0
ning : You spe c i f ied a highly aggress ive - -min-hostgr oup .
rting Nmap (http : / /nmap . org)

teresting ports on 2 1 6 . 1 6 3 . 1 2 8 . 0 :
T STATE SERVICE

teresting ports on 2 1 6 . 1 6 3 . 1 2 8 . 1 :
T STATE S E RVICE

/tcp filtered http

eresting ports on 2 1 6 . 1 6 3 . 1 2 8 . 2 :
T STATE SERVICE

erest ing port s on 2 1 6 . 1 6 3 . 1 2 8 . 3 :
T STATE SERVICE

erest ing ports on 2 1 6 . 1 6 3 . 1 43 . 2 5 5 :
T STATE S E RVICE

http

IP addresses (4 0 9 6 host s up) scanned in 1 9 2 . 9 7 seconds

ap scans all 4096 1Ps in about three minutes. The normal output shows a bunch of ports in the f i ltered

. Most of those IPs are probably not active hosts-the port simply appears fi ltered because Nmap receives

4.5. SOLUTION: Scan a Large Network for a Certain Open TCP Port 93

no response to its SYN probes. I obtain the list of web servers with a simple egrep on the output file, as
shown in Example 4. 1 1 .

Example 4.11. Egrep for open ports

egrep ' [A 0- 9) 8 0 /open ' pb-port8 0 scan- * . gnmap
Host : 2 1 6 . 1 6 3 . 1 4 0 . 2 0 () Port s : 8 0 / open / tcp/ /http / / /
Host : 2 1 6 . 1 6 3 . 1 4 2 . 1 3 5 () Port s : 8 0 / open / tcp/ /http/ / /

After all that effort, only two accessible web servers are found out of 4096 IPs ! Sometimes that happens.
The first one, 216. 163. 140.20 (no reverse DNS name) brings me to a Microsoft Outlook Web Access (webmail)
server. That might excite me if I was trying to compromise their network, but it isn't gratifying now. The
next server (reverse name mirrors.playboy.com) is much better. It offers those gigabytes of free images I
was hoping for! In particular it offers Linux ISO images as well as substantial FreeBSD, CPAN, and Apache
archives ! I download the latest Fedora Core ISOs at a respectable 6 Mbps. The abundance of bandwidth at
Playboy is not surprising. Later I scan other Playboy netblocks, finding dozens more web servers, though
some of their content is inappropriate for this book.

While this is an unusual reason for port scanning, single port sweeps are common for many other purposes
expressed previously. The techniques described here can be easily applied to any single-port TCP sweep.

4.5.4. See Also

Version detection can be used to find specific applications listening on a network. For example, you could
seek a certain vulnerable version of OpenSSH rather than find all hosts with port 22 open. This is also useful
for single-port UDP scans, as the techniques in this solution only work well for TCP. Instructions are provided
in Section 7.8, "SOLUTION: Find All Servers Running an Insecure or Nonstandard Application Version" [166].

Chapter 6, Optimizing Nmap Performance [1 35] looks at scan speed optimization in much more depth.

94 4.5. SOLUTION: Scan a Large Network for a Certain Open TCP Port

Chapter 5. Port Scanning Techniques
and Algorithms

5.1 . Introduction
As a novice performing automotive repair, I can struggle for hours trying to fit my rudimentary tools (hammer,
duct tape, wrench, etc.) to the task at hand. When I fail miserably and tow my jalopy to a real mechanic, he
ilvariably fishes around in a huge tool chest until pulling out the perfect gizmo which makes the job seem
effortless. The art of port scanning is similar. Experts understand the dozens of scan techniques and choose
the appropriate one (or combination) for a given task. Inexperienced users and script kiddies, on the other
lland, try to solve every problem with the default SYN scan. Since Nmap is free, the only barrier to port
ICIJlning mastery is knowledge. That certainly beats the automotive world, where it may take great skill to
determine that you need a strut spring compressor, then you still have to pay thousands of dollars for it.

1be previous chapter described port scanning with Nmap in general terms, including a brief summary of
Nmap's supported scan types in Section 4.3 . 1 , "Selecting Scan Techniques" [82). This chapter describes
each of those scan types in depth. T}'pical usage scenarios and instructions are given for each scan type, as
me on-the-wire packet traces il lustrating how they work. Then the ul t r a_scan algorithm (which most
IC8ll methods use) is discussed, with an emphasis on aspects that can be tweaked to improve performance . .

Most of the scan types are only available to privileged users. This is because they send and receive raw IP
packets, (or even ethernet frames) which requires root access on Unix systems. Using an administrator
account on Windows is recommended, though Nmap sometimes works for unprivileged users on that platform
when WinPcap has already been loaded into the OS. Requiring root privileges was a serious l imitation when
Nmap was released in 1997, as many users only had access to shared shell accounts. Now, the world is
different. Computers are cheaper, far more people have always-on direct Internet access, and desktop Unix
systems (including Linux and Mac OS X) are prevalent. A Windows version of Nmap is now available,
allowing it to run on even more desktops. For all these reasons, users rarely need to run Nmap from limited
llhared shell accounts. This is fortunate, as the privileged options make Nmap far more powerful and flexible.

When discussing how Nmap handles probe responses, many sections discuss ICMP error messages by their
type and code numbers. The type and code are each eight-bit fields in ICMP headers that describe the
message's purpose. Nmap port scanning techniques are concerned only with ICMP type 3, which are destination
anreachable messages. Figure 5 . 1 shows the ICMP header layout of such a packet (it is encapsulated in the
data section of an IP packet, as shown in Figure I, "1Pv4 header" [xxvii]).

5 . 1 . Introduction 95

Figure 5.1. ICMPv4 destination unreachable header layout

o�� o 2 3 0 ,_....�T-y�p�e�(3�)_._-+-'-C-o�d�e
�(�0--1�5�) _,._�_,_,_._C�h�e

-c�ks
�u�m

_.__.._.___.__'--'l -r
a----�--....__.._ __

u_n_u_se_d,,_,(m�u-s_t_b_e_O�)_,..._...r-T"' __ """""'_,__....� _j_
1 2 3

D ata: Origi nal (received) I P header, p lus at least the fi rst 8 data bytes

There are sixteen codes representing different destination unreachable messages. They are all shown in
Table 5. 1 , though Nmap only cares about codes 0-3, 9, JO, and 1 3, which are marked with an asterisk.

Table 5.1. ICMP destination unreachable (type 3) code values

Code Description

O* Network unreachable

l * Host unreachable

2* Protocol unreachable

3* Port unreachable

4 Fragmentation needed but don't-fragment bit set

5 Source route failed

6 Destination network unknown

7 Destination host unknown

8 Source host isolated (obsolete)

9* Destination network administratively prohibited

10* Destination host administratively prohibited

1 1 Network unreachable for type of service (TOS)

12 Host unreachable for TOS

1 3* Communication administratively prohibited by filtering

14 Host precedence violation

1 5 Precedence cutoff in effect

5.2. TCP SYN (Stealth) Scan (-s s)

SYN scan is the default and most popular scan option for good reason. It can be performed quickly, scanning
thousands of ports per second on a fast network not hampered by intrusive firewalls. SYN scan is relatively
unobtrusive and stealthy, since it never completes TCP connections. It also works against any compliant
TCP stack rather than depending on idiosyncrasies of specific platforms as Nmap's FIN/NULIJXmas, Maimon
and idle scans do. It also allows clear, reliable differentiation between open, c l osed, and f i l t ered
states.

96 5.2. TCP SYN (Stealth) Scan (-sS)

SYN scan may be requested by passing the - s s option to Nmap. It requires raw-packet privileges, and is
the default TCP scan when they are avai lable. So when runn ing Nmap as root or Administrator, - s s is
usually omitted. This default SYN scan behavior is shown in Example 5. 1 , which finds a port in each of the
three major states.

Example 5.1. A SYN scan showing three port states

krad# nmap -p22 , 1 1 3 , 1 3 9 scanme . nmap . org

Starting Nmap (h t tp : / /nmap . org)
Interest ing por t s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) :
PORT STATE SERVICE
22/tcp open ssh
1 1 3 / tcp closed auth
139/tcp filt ered netbios-ssn

Nmap done : 1 IP address (1 host up) scanned in 1 . 3 5 seconds

While SYN scan is pretty easy to use without any low-level TCP knowledge, u nderstanding the technique
helps when interpreting unusual results. Fortunately for us, the fearsome black-hat cracker Ereet Hagiwara
has taken a break from terrorizing Japanese Windows users 1 to illustrate the Example 5 . 1 SYN scan for us
at the packet level. First, the behavior against open port 22 is shown in Figure 5.2.

Figure 5.2. SYN scan of open port 22

As this example shows, Nmap starts by sending a TCP packet with the SYN flag set (see Figure 2, "TCP
header" [xxviii] if you have forgotten what packet headers look like) to port 22. This is the first step in the TCP
three-way handshake that any legitimate connection attempt takes. Since the target port is open, Scanme
takes the second step by sending a response with the SYN and ACK flags back. In a normal connection,
Ereet's machine (named krad) would complete the three-way handshake by sending an ACK packet
acknowledging the SYN/ACK. Nmap does not need to do this, since the SYN/ACK response already told
it that the port is open. If Nmap completed the connection, it would then have to worry about closing it. This
usually involves another handshake, using FIN packets rather than SYN. So an ACK is a bad idea, yet
something still has to be done. If the SYN/ACK is ignored completely, Scanme will assume it was dropped
and keep re-sending it. The proper response, since we don't want to make a ful l connection, is a RST packet
IS shown in the diagram. This tells Scanme to forget about (reset) the attempted connection. Nmap could

nd this RST packet easily enough, but it actually doesn't need to. The OS running on krad also receives
SYN/ACK, which it doesn't expect because Nmap crafted the SYN probe itself. So the OS responds to

lbe unexpected SYN/ACK with a RST packet. All RST packets described i n this chapter also have the ACK

/tnp:l/www.microsoft.comljapanlsecuritylbulleti11s!MS04-003e.mspx

5.2. TCP SYN (Stealth) Scan (-sS) 97

bit set because they are always sent in response to (and acknowledge) a received packet. So that bit is not
shown explicitly for RST packets. Because the three-way handshake is never completed, SYN scan is
sometimes called half-open scanning.

Figure 5.3 shows how Nmap determines that port 1 13 is closed. This is even simpler than the open case. The
first step i s always the same-Nmap sends the SYN probe to Scanme. But instead of receiving a SYN/ACK
back, a RST is returned. That settles it-the port is closed. No more communication regarding this port is
necessary.

Figure 5.3. SYN scan of closed port 113

Finally, Ereet shows us how a filtered port appears to Nmap in Figure 5.4. The initial SYN is sent first, as
usual, but Nmap sees no reply. The response could simply be slow. From previous responses (or timing
defaults), Nmap knows how long to wait and eventually gives up on receiving one. A non-responsive port
is usually filtered (blocked by a firewall device, or perhaps the host is down), but this one test is not conclusive.
Perhaps the port is open but the probe or response were simply dropped. Networks can be flaky. So Nmap
tries again by resending the SYN probe. After yet another timeout period, Nmap gives up and marks the port
f i l tered. In this case, only one retransmission was attempted. As described in Section 5. 1 3, "Scan Code
and Algorithms" [1 28], Nmap keeps careful packet loss statistics and will attempt more retransmissions when
scanning less reliable networks.

Figure 5.4. SYN scan of filtered port 139

Nmap will also consider a port f i l tered if it receives certain ICMP error messages back. Table 5.2 shows
how Nmap assigns port states based on responses to a SYN probe.

Table 5.2. How Nmap interprets responses to a SYN probe

Probe Response Assigned State

TCP SYN/ ACK response open

TCP RST response c l o s ed

98 5.2. TCP SYN (Stealth) Scan (-sS)

Probe Response Assigned State

No response received (even after retransmissions) f i l tered

ICMP unreachable error (type 3, code 1 , 2, 3, 9, 10, or 13) f i l tered

While the pretty illustrations in this section are useful when you have them, Nmap reports exactly what i t is
doing at the packet level when you specify the --packet-trace option in addition to any other desired
command-line flags. This is a great way for newbies to understand Nmap's behavior when Ereet is not around
to help. Even advanced users find it handy when Nmap produces results they don't expect. You may want
to increase the debug level with -d (or even -d5) as well. Then scan the minimum number of ports and
hosts necessary for your purpose or you could end up with l iterally mil lions of output lines. Example 5.2
repeats Ereet's three-port SYN scan with packet tracing enabled (output edited for brevity). Read the
command-line, then test yourself by figuring out what packets will be sent before reading on. Then once you
read the trace up to "The SYN Stealth Scan took l .25s", you should know from the RCVD lines what the
port state table will look like before continuing on to read it.

Example 5.2. Using --packet-trace to understand a SYN scan

krad# nmap -d --packet-trace -p22 , 1 1 3 , 1 3 9 scanme . nmap . org

Starting Nmap (http : / /nmap . org)
SENT (0 . 0 1 3 0s) I CMP krad > scanme echo request (t ype= 8 /code=0) t t l = 5 2 id= l 8 2 9
SENT (0 . 0 1 6 0 s) TCP krad : 6 3 5 4 1 > scanme : 8 0 A iplen= 4 0 seq=9 1 9 1 1 0 7 0 ack=9 9 8 5 0 9 1 0
RCVD (0 . 02 8 0s) I CMP scanme > krad echo reply (type=O/ code=O) iplen= 2 8
We got a ping packet back from scanme : id = 4 8 8 2 1 seq = 7 1 4 checks um = 1 6 0 0 0
massping done : num_host s : 1 num_responses : 1
Initiat ing SYN Stealth Scan aga i n s t scanme . nmap . org (scanme) (3 port s] at 0 0 : 53
SENT (0 . 1 3 4 0 s) TCP krad : 6 3 5 1 7 > scanme : l l 3 S iplen= 4 0 seq= 1 0 4 3 8 6 3 5
SENT (0 . 1 3 7 0 s) TCP krad : 6 3 5 1 7 > scanme : 2 2 S iplen= 4 0 seq= 1 0 4 3 8 6 3 5
SENT (0 . 1 4 0 0 s) TCP krad : 6 3 5 1 7 > scanme ! l 3 9 S iplen=40 seq= l 0 4 3 8 6 3 5
RCVD (0 . 1 4 6 0 s) TCP scanme : 1 1 3 > krad : 6 3 5 1 7 RA iplen= 4 0 seq=O ack=1 0 4 3 8 6 36
RCVD (0 . 1 5 1 0 s) TCP scanme : 2 2 > krad : 6 3 5 1 7 SA iplen= 4 4 seq=75 8 9 7 1 0 8 ack=l 0 4 3 8 6 36
SENT (1 . 2 5 5 0 s) TCP krad : 6 3 5 1 8 > scanme : 1 3 9 S iplen= 4 0 seq= l 0 3 7 3 0 9 8 win=3 0 7 2
The SYN Stealth Scan took l . 2 5 s t o scan 3 t ot a l por t s .
Interesting port s on scanme . nmap . org (6 4 . 13 . 13 4 . 52) :
PORT STATE SERVICE
2 2/tcp open ssh
113/tcp closed auth
139/tcp fi ltered netbios-ssn

Nmap done : 1 IP address (1 host up) scanned in 1 . 4 0 seconds

SYN scan has long been called the stealth scan because it is subtler than TCP connect scan (discussed next),
which was the most common scan type before Nmap was released. Despite that moniker, don't count on a
default SYN scan slipping undetected through sensitive networks. Widely deployed intrusion detection
systems and even personal firewalls are quite capable of detecting default SYN scans. More effective
techniques for stealthy scanning are demonstrated in Chapter 10, Detecting and Subverting Firewalls and
Intrusion Detection Systems [257].

5.2. TCP SYN (Stealth) Scan (-sS) 99

5.3. TCP Connect Scan (-sT)

TCP connect scan is the default TCP scan type when SYN scan is not an option. This is the case when a user
does not have raw packet privileges or is scanning 1Pv6 networks. Instead of writing raw packets as most
other scan types do, Nmap asks the underlying operating system to establish a connection with the target
machine and port by issuing the connect system call . This is the same high-level system call that web
browsers, P2P clients, and most other network-enabled applications use to establish a connection. It is part
of a programming interface known as the Berkeley Sockets APL Rather than read raw packet responses off
the wire, Nmap uses this API to obtain status information on each connection attempt. This and the FrP
bounce scan (Section 5 . 12, "TCP FTP Bounce Scan (-b)" [1 27]) are the. only scan types available to
unprivileged users.

When SYN scan is available, it is usually a better choice. Nmap has less control over the high level connect
call than with raw packets, making it less efficient. The system call completes connections to open target
ports rather than performing the half-open reset that SYN scan does. Not only does this take longer and
require more packets to obtain the same information, but target machines are more likely to log the connection.
A decent IDS will catch either, but most machines have no such alarm system. Many services on your average
Unix system will add a note to syslog, and sometimes a cryptic error message, when Nmap connects and
then closes the connection without sending data. Truly pathetic services crash when this happens, though
that is uncommon. An administrator who sees a bunch of connection attempts in her logs from a single system
should know that she has been connect scanned.

Figure 5.5 shows a connect scan in action against open port 22 of scanme.nmap.org. Recall that this only
required three packets in Figure 5.2, "SYN scan of open port 22" [97] . The exact behavior against an open
port depends on the platform Nmap runs on and the service l istening at the other end, but this six packet
example is typical.

Figure S.S. Connect scan of open port 22 (nmap -sT -p22 scanme.nmap.org)

The first two steps (SYN and SYN/ACK) are exactly the same as with a SYN scan. Then, instead of aborting
the half-open connection with a RST packet, krad acknowledges the SYN/ACK with its own ACK packet,
completing the connection. In this case, Scanme even had time to send its SSH banner string
(SSH- 1 . 9 9 -0penSSH_3 . l p l \n) through the now-open connection. As soon as Nmap hears from its
host OS that the connection was successful, it terminates the connection. TCP connections usually end with
another handshake involving the FIN flag, but Nmap asks the host OS to terminate the connection immediately
with a RST packet.

While this connect scan example took twice as many packets as a SYN scan, the bandwidth differences are
rarely so substantial. The vast majority of ports in a large scan will be c l o sed or f i 1 t ered. The packet

100 5.3. TCP Connect Scan (-sT)

ttaces for those are the same as described for SYN scan in Figure 5.3, "SYN scan of closed port 1 13" [98]
and Figure 5.4, "SYN scan of filtered port 1 39" [98]. Only open ports generate more network traffic.

The output of a connect scan doesn't differ significantly from a SYN scan. Example 5.3 shows a connect
acan of Scanme. The -sT option could have been omitted since Nmap is being run from a non-privileged
1eeount so connect scan is the default type.

Example 5.3. Connect scan example

-sT scanme . nmap . or g

rting Nmap (http : / /nmap . org)
eresting port s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 5 2) :

shown : 9 9 4 filtered ports
T STATE SERVICE

open ssh
closed smtp
open domain
closed gopher

http
au th

p done : 1 IP address (1 host up) scanned in 4 . 7 4 seconds

5.4. UDP Scan (-su)

While most popular services on the Internet run over the TCP protocol, UDP services are widely deployed .
DNS, SNMP, and DHCP (registered ports 53, 161/ 162, and 67/68) are three of the most common. Because
UDP scanning is generally slower and more difficult than TCP, some security auditors ignore these ports.
This is a mistake, as exploitable UDP services are quite common and attackers certainly don't ignore the
whole protocol. Fortunately, Nmap can help inventory UDP ports.

UDP scan is activated with the -sU option. It can be combined with a TCP scan type such as SYN scan
(-sS) to check both protocols during the same run.

UDP scan works by sending an empty (no data) UDP header to every targeted port. Based on the response,
or lack thereof, the port is assigned to one of four states, as shown in Table 5.3.

Table 5.3. How Nmap interprets responses to a UDP probe

Assigned State

Any UDP response from target port (unusual) open

No response received (even after retransmissions) open I f i l tered

CMP port unreachable error (type 3, code 3) c l o sed

Other ICMP unreachable errors (type 3, code I , 2, 9, 10, or 1 3) f i l tered

most curious element of this table may be the open I f i 1 tered state. It is a symptom of the biggest
Henges with UDP scanning: open ports rarely respond to these probes. The target TCP/IP stack simply

5.4. UDP Scan (-sU) 101

passes the (empty) packet up to the listening application, which usually discards it immediately as invalid.
If ports in all other states would respond, then open ports could all be deduced by elimination. Unfortunately,
firewalls and filtering devices are also known to drop packets without responding. So when Nmap receives
no response after several attempts, it cannot determine whether the port is open or f i 1 tered. When Nmap
was released, filtering devices were rare enough that Nmap could (and did) simply assume that the port was
open. The Internet is better guarded now, so Nmap changed in 2004 (version 3.70) to report non-responsive
UDP ports as open I f i l tered instead. We can see that in Example 5.4, which shows Ereet scanning a
Linux box named Felix.

Example 5.4. UDP scan example

krad# nmap -sU -v felix

Starting Nmap (http : / / nmap . org
I nteresting port s on felix . nmap . org (1 9 2 . 1 6 8 . 0 . 42) :
(The 9 9 7 port s scanned but not shown bel ow are in state : c losed)
PORT STATE SERVICE
53 / udp open l fi ltered doma in
6 7 / udp open l f iltered dhcpserver
1 1 1 / udp open l f i l tered rpcbind
MAC Addres s : 0 0 : 02 : E3 : 1 4 : 1 1 : 02 (Li te-on Communicat ions)

Nmap done : 1 I P address (1 host up) scanned in 9 9 9 . 2 5 seconds

This scan of Felix demonstrates the open I f i 1 tered ambiguity issue as well as another problem: UDP
scanning can be slow. Scanning a thousand ports took almost 17 minutes in this case due to ICMP response
rate l imiting performed by Felix and most other Linux systems. Nmap provides ways to work around both
problems, as described by the following two sections.

5.4.1 . Disambiguating Open from Fi ltered UDP Ports

In the case of the Felix scan, all but the three open I f i l tered ports were closed. So the scan was still
successful in narrowing down potentially open ports to a handful. That is not always the case. Example 5.5
shows a UDP scan against the heavily filtered site Scanme.

Example 5.5. UDP scan example

krad# nmap -su -T4 scanme . nmap . org

Start ing Nmap (http : / / nmap . org)
Al l 1 0 0 0 scanned port s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) are open l fi ltered

Nmap done : 1 IP addre s s (1 host up) scanned in 5 . 5 0 seconds

In this case, the scan didn't narrow down the open ports at all. All 1000 are open I f i l tered. A new
strategy is called for.

Table 5 .3, "How Nmap interprets responses to a UDP probe" [1 0 1) shows that the open I f i l tered state
occurs when Nmap fails to receive any responses from its UDP probes to a particular port. Yet it also shows
that, on rare occasions, the UDP service listening on a port will respond in kind, proving that the port is open.

102 5.4. UDP Scan (-sU)

The reason these services don't respond often is that the empty packets Nmap sends are considered invalid.
Unfortunately, UDP services generally define their own packet structure rather than adhering to some common
general format that Nmap could always send. An SNMP packet looks completely different than a SunRPC,
DHCP, or DNS request packet.

To send the proper packet for every popular UDP service, Nmap would need a large database defining their
probe formats. Fortunately, Nmap has that in the form of nmap-service-probe s , which is part of the
service and version detection subsystem described in Chapter 7, Service and Application Version
Detection [145].

When version scanning is enabled with -sv (or -A), it will send UDP probes to every open I f i l tered
pon (as well as known open ones). If any of the probes elicit a response from an open I f i l tered port,
the state is changed to open. The results of adding -sV to the Fel ix scan are shown in Example 5.6.

Example 5.6. Improving Felix's UDP scan results with version detection

�ad# nmap -sUV -F felix . nmap . org

http : / / nmap . org)
teresting ports on felix . nmap . org (1 9 2 . 1 6 8 . 0 . 4 2) :
t shown : 9 9 7 c losed port s
RT STATE SERVICE VERS I ON

open domain I SC BIND 9 . 2 . 1
open l f iltered dhcpserver
open rpcbind 2 (rpc # 1 0 0 0 0 0)

Address : 00 : 02 : E3 : 1 4 : 1 1 : 0 2 (Li te-on Communicat ions)

IP address (1 host up) scanned i n 1 0 3 7 . 5 7 seconds

This new scan shows that port 1 1 1 and 53 are definitely open. The system isn't perfect though-port 67 is
llill open I f il tered. In this particular case, the port is open but Nmap does not have a working version
probe for DHCP. Another tough service is SNMP, which usually only responds when the correct community
Siring is given. Many devices are configured with the community string pub l i c, but not all are. While these
results aren't perfect, learning the true state of two out of three tested ports is still helpful.

After the success in disambiguating Felix results, Ereet turns his attention back to Scanme, which listed all
ports as open I f il tered last time. He tries again with version detection, as shown in Example 5.7.

5.4. UDP Scan (-sU) 103

Example 5.7. Improving Scanme's UDP scan results with version detection

krad# nmap -sUV -T4 scanme . nmap . org

Start ing Nmap (http : / /nmap . org)
I nteresting port s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) :
Not shown : 9 9 9 open l f i ltered por t s
PORT STATE SERVICE VERS I ON
53 /udp open domain I SC BIND 9 . 3 . 4

Nmap done : 1 I P address (1 host up) scanned in 3 6 9 1 . 8 9 seconds

This result took an hour, versus five seconds for the previous Scanme scari, but these results are actually
useful. Ereet's smile widens and eyes sparkle at this evidence of an open ISC BIND nameserver on a machine
he wants to compromise. That software has a Jong history of security holes, so perhaps he can find a flaw in
this recent version .

While Ereet will focus his UDP attacks on port 53 since it is confirmed open, he does not forget about the
other ports. Those I 007 are listed as open I f i l t er ed. As we witnessed with the dhcpserver port on Felix,
certain open UDP services can hide even from Nmap version detection. He has also only scanned the default
ports so far, there are 64529 others that could possibly be open. For the record, 53 is the only open UDP port
on Scanme.

While this version detection technique is the only way for Nmap to automatically disambiguate
open I f i l t ered ports, there are a couple tricks that can be tried manually. Sometimes a specialized
traceroute can help. You could do a traceroute against a known-open TCP or UDP port with a tool such as
hping22. Then try the same against the questionable UDP port. Differences in hop counts can differentiate
open from filtered ports. Ereel attempts this against Scanme in Example 5.8. The first hping2 command does
a UDP traceroute against known-open port 53. The -t 8 option tells hping2 to start at hop eight and is only
used here to save space. The second command does the same thing against presumed-closed port 54.

2 htlp:llwww.hping.org

104 5.4. UDP Scan (-sU)

Example 5.8. Attempting to disambiguate UDP ports with TTL discrepancies

ad# hping2 --udp --traceroute -t 8 -p 5 3 scanme . nmap . org
ING scanme . nmap . org (pppO) : udp mode set , 28 headers + 0 data bytes
p=8 TTL 0 during trans i t from 2 06 . 2 4 . 2 1 1 . 7 7 (dcr2 . SanFranc i scosfo . savvi s . net)

•9 TTL 0 during transit from 2 0 8 . 1 72 . 1 4 7 . 9 4 (bpr 2 . PaloAltoPaix . savvi s . net)
•10 TTL 0 dur ing transit from 2 0 6 . 2 4 . 2 4 0 . 1 9 4 (meer . Pa loAltoPaix . savvi s . net)
•11 TTL 0 during tran s it from 2 0 5 . 2 1 7 . 1 5 2 . 2 1 (vlan2 1 . sv . meer . net)

- scanme . nmap . org hping stat i s t i c - - -
packets transmi tted, 4 packets received , 6 7% packet l o s s

und-trip min/avg/max = 1 3 . 4 / 1 3 . 8 / 1 4 . l m s

ad# hping2 --udp --traceroute -t 8 - p 5 4 scanme . nmap . org
ING scanme . nmap . org (pppO) : udp mode set , 28 headers + 0 data bytes
p=S TTL 0 during transit from 2 0 6 . 2 4 . 2 1 1 . 7 7 (dcr2 . SanFranciscosfo . savvi s . net)
p=9 TTL 0 dur ing transit from 2 0 8 . 1 72 . 1 4 7 . 9 4 (bpr 2 . PaloAltoPaix . savvi s . net)
p=l O TTL 0 dur ing transit from 2 0 6 . 2 4 . 2 4 0 . 1 9 4 (meer . PaloAltoPa i x . s avvi s . net)
p=l l TTL 0 dur ing transit from 2 05 . 2 1 7 . 1 5 2 . 2 1 (vlan2 1 . sv . meer . net)

- scanme . nmap . org hping statistic ---
packets transmitted, 4 packets received , 67% packet loss

und-trip min/avg/max = 1 2 . 5 / 1 3 . 6 / 1 4 . 7 ms

In this example, Ereet was only able to reach hop eleven of both the open and closed ports. So these results
can't be used to distinguish port states against this host. It was worth a try, and does work in ·a significant
number of cases. It is more likely to work in situations where the screening firewal l is at least a hop or two
before the target host. Scanme, on the other hand, is running its own Linux iptables host-based firewal l . So
there is no difference in hop count between filtered and open ports.

Another technique is to try application-specific tools against common ports. For example, a brute force
SNMP community string cracker could be tried against port 16 1 . As Nmap's version detection probe database
grows, the need to augment its results with external specialized tools is reduced. They will sti l l be useful for
special cases, such as SNMP devices with a custom community string.

5.4.2. Speed ing Up UDP Scans

The other big challenge with UDP scanning is doing it quickly. Open and filtered ports rarely send any
response, leaving Nmap to time out and then conduct retransmissions just in case the probe or response were
lost. Closed ports are often an even bigger problem. They usually send back an ICMP port unreachable error.
But unlike the RST packets sent by closed TCP ports in response to a SYN or connect scan, many hosts rate
limit ICMP port unreachable messages by default. Linux and Solaris are particularly strict about this. For
example, the Linux 2.4.20 kernel on Felix l imits destination unreachable messages to one per second (in
net / ipv4 I icmp . c). This explains why the scan in Example 5.4, "UDP scan example" [1 02] is so slow.

Nmap detects rate limiting and slows down accordingly to avoid flooding the network with useless packets
that the target machine will drop. Unfortunately, a Linux-style limit of one packet per second makes a
65,536-port scan take more than 1 8 hours. Here are some suggestions for improving UDP scan performance.
Also read Chapter 6, Optimizing Nmap Performance [1 35) for more detailed discussion and general advice.

5.4. UDP Scan (-sU) 105

Increase host parallelism
If Nmap receives just one port unreachable error from a single target host per second, it could receive
100/second just by scanning 100 such hosts at once. Implement this by passing a large value (such as
100) to --min-hostgroup.

Scan popular ports first
Very few UDP port numbers are commonly used. A scan of the most common 100 UDP ports (using
the -F option) will finish quickly. You can then investigate those results while you launch a multi-day
65K-port sweep of the network in the background.

Add --ve r s i on - i nten s i t y 0 to version detection scans
As mentioned in the previous section, version detection (- sv) is often needed to differentiate open from
filtered UDP ports. Version detection is relatively slow since it involves sending a large number of
application protocol-specific probes to every open or open I f i ltered port found on the target
machines. Specifying --ve r s i on-intensity 0 directs Nmap to try only the probes most likely
to be effective against a given port number. It does this by using data from the nmap-service-probes

file. The performance impact of this option is substantial , as will be demonstrated later in this section.

Scan from behind the firewall
As with TCP, packet filters can slow down scans dramatically. Many modern firewalls make setting
packet rate limits easy. If you can bypass that problem by launching the scan from behind the firewall
rather than across it, do so.

Use --ho s t - t imeout to skip slow hosts
ICMP-rate-limited hosts can take orders of magnitude more time to scan than those that respond to every
probe with a quick destination unreachable packet. Specifying a maximum scan time (such as 900000
for 15 minutes) causes Nmap to give up on individual hosts if it hasn't completed scanning them in that
much time. This allows you to scan all of the responsive hosts quickly. You can then work on the slow
hosts in the background.

Use -v and chill out
With verbosity (-v) enabled, Nmap provides estimated time for scan completion of each host. There is
no need to watch it closely. Get some sleep, head to your favorite pub, read a book, finish other work,
or otherwise amuse yourself while Nmap tirelessly scans on your behalf.

A perfect example of the need to optimize UDP scans is Example 5.7, "Improving Scanme's UDP scan results
with version detection" [1 04). The scan obtained the desired data, but it took more than an

.
hour to scan this

one host! In Example 5.9, I run that scan again. This time I add the -F --ver s ion-intensity O
options and the hour long scan is reduced to 1 3 seconds ! Yet the same key information (an ISC Bind daemon
running on port 53) is detected.

106 5.4. UDP Scan (-sU)

Example 5.9. Optimizing UDP Scan Time

adt nmap -sUV - T 4 -F --vers ion-intensity 0 scanme . nmap . org

rting Nmap (http : / / nmap . or g)
teresting port s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) :

shown : 99 open l f i ltered port s
T STATE S ERVICE VERS I ON
udp open domain ISC B IND 9 . 3 . 4

IP address (1 host up) scanned in 1 2 . 9 2 seconds

5.5. TCP FIN , NU LL, and Xmas Scans (-sF,

-sN, -sx)

These three scan types (even more are possible with the - - s canf lags option described in the next section)
Clploita subtle loophole in the TCP RFC to differentiate between open and c l osed ports. Page 65 of RFC
793 says that "if the [destination] port state i s CLOSED an incoming segment not containing a RST causes
a RST to be sent in response." Then the next page discusses packets sent to open ports without the SYN,
RST, or ACK bits set, stating that: "you are unlikely to get here, but if you do, drop the segment, and return."

When scanning systems compliant with this RFC text, any packet not containing SYN, RST, or ACK bits ·

will result in a returned RST if the port is closed and no response at all if the port is open. As long as none
of those three bits are included, any combination of the other three (FIN, PSH, and URG) are OK. Nmap
Clploits this with three scan types:

Null scan (- sN)
Does not set any bits (TCP flag header is 0)

FIN scan (-sF)
Sets just the TCP FIN bit.

Xmas scan (-sX)
Sets the FIN, PSH, and URG flags, lighting the packet up like a Christmas tree.

These three scan types are exactly the same in behavior except for the TCP flags set in probe packets.
Responses are treated as shown in Table 5.4.

Table 5.4. How Nmap interprets responses to a NULL, FIN, or Xmas scan probe

Assigned State

open I f i ltered

c l osed

P unreachable error (type 3, code I , 2, 3, 9, IO, or 1 3) f i ltered

key advantage to these scan types is that they can sneak through certain non-stateful firewalls and packet
ltering routers. Such firewalls try to prevent incoming TCP connections (while allowing outbound ones)

5.5. TCP FIN, NULL, and Xmas Scans (-sF, -sN, -sX) 107

by blocking any TCP packets with the SYN bit set and ACK cleared. This configuration is common enough
that the Linux iptables firewall command offers a special --syn option to implement it. The NULL, FIN,
and Xmas scans clear the SYN bit and thus Hy right through those rules.

Another advantage is that these scan types are a little more stealthy than even a SYN scan. Don't count on
this though-most modern IDS products can be configured to detect them.

The big downside is that not all systems follow RFC 793 to the letter. A number of systems send RST
responses to the probes regardless of whether the port is open or not. This causes all of the ports to be labeled
c l osed. Major operating systems that do this are Microsoft Windows, many Cisco devices, and IBM
OS/400. This scan does work against most Unix-based systems though. Since Nmap OS detection tests for
this quirk, you can learn whether the scan works against a particular type of system by examining the
nmap-os -db file. Test T2 sends a NULL packet to an open port. So if you see a line like T2 (R=N) , that
system seems to support the RFC and one of these scans should work against it. If the T2 line is longer, the
system violated the RFC by sending a response and these scans won't work. Chapter 8, Remote OS
Detection [1 7 1] explains OS fingerprinting in further detai l .

Another downside of these scans is that they can't distinguish open ports from certain filtered ones. If the
packet filter sends an ICMP destination prohibited error, Nmap knows that a port is filtered. But most filters
simply drop banned probes without any response, making the ports appear open. Since Nmap cannot be sure
which is the case, it marks non-responsive ports as open I f i l tered. Adding version detection (-sV) can
disambiguate as it does with UDP scans, but that defeats much of the stealthy nature of this scan. If you are
willing and able to connect to the ports anyway, you might as well use a SYN scan.

Using these scan methods is simple. Just add the - sN, -sF, or - s x options to specify the scan type.
Example 5 . 10 shows two examples. The first one, a FIN scan against Para, identifies all five open ports (as
open I f i 1 tered). The next execution, an Xmas scan against scanme.nmap.org doesn't work so well. It
detects the closed port, but is unable to differentiate the 995 filtered ports from the four open ones, all 999
are listed as open I f i l tered. This demonstrates why Nmap offers so many scan methods. No single
technique is preferable in all cases. Ereet will simply have to try another method to learn more about Scanme.

108 5.5. TCP FIN, NULL, and Xmas Scans (-sF, -sN, -sX)

Example 5.10. Example FIN and Xmas scans

krad# nmap -sF -T4 para

Starting Nmap (http : / /nmap . org
Interesting ports on para (1 9 2 . 1 6 8 . 1 0 . 1 9 1) :
Not shown : 9 9 5 closed port s
PORT STATE SERVICE
22/tcp open l fi ltered ssh
53 /tcp open l f i ltered doma i n
111 /tcp open j f i ltered rpcbind
515/tcp open ! f i ltered printer
6000/tcp open l f i ltered X l l
MAC Address : 00 : 6 0 : 10 : 3 8 : 32 : 9 0 (Lucent Technologie s)

Nmap done : 1 IP address (1 host up) scanned i n 4 . 6 4 seconds

krad# nmap -sx -T4 scanme . nmap . org

Starting Nmap (http : / / nmap . org)
Interesting ports on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 5 2) :
Not shown : 9 9 9 open j fi ltered port s
PORT STATE SERVICE
113/tcp closed auth

Nmap done : 1 IP address (1 host up) scanned in 2 3 . 1 1 seconds

Demonstrating the full, firewall-bypassing power of these scans requires a rather lame target firewall
configuration . Unfortunately, those are easy to find. Example 5. 1 1 shows a SYN scan of a SCO/Caldera
machine named Docsrv.

Example 5.11. SYN scan of Docsrv

I nmap -ss -T4 docsrv . ca lder a . com

Starting Nmap (http : / / nmap . org)
Jnteresting ports on docsrv . ca ldera . com (2 1 6 . 2 5 0 . 1 2 8 . 2 4 7) :
The 997 ports scanned but not shown below are in state : f i l tered)

fORT STATE SERVICE
80/tcp open http
l l3 /tcp closed auth
507 /tcp open er s

!fniap done : 1 IP address (1 host up) scanned i n 2 8 . 6 2 seconds

This example looks OK. Only two ports are open and the rest (except for 1 13) are filtered. With a modern
stateful firewall, a FIN scan should not produce any extra information. Yet Ereet tries it anyway, obtaining
the output in Example 5 . 12.

5.5. TCP FIN, NULL, and Xmas Scans (-sF, -sN, -sX) 109

Example 5.12. FIN scan of Docsrv

nmap -sF -T4 docsrv . caldera . com

Starting Nmap (http : / /nmap . org)
I nteresting port s on docsrv . ca ldera . com (2 1 6 . 2 5 0 . 1 2 8 . 2 4 7) :
Not shown : 9 6 1 c losed ports
PORT STATE SERVICE
7 /tcp
9 /tcp
1 1 / tcp
1 3 / tcp
1 5 / tcp
1 9 /tcp
2 1 / tcp
2 2 / tcp
2 3 / tcp
2 5 / t cp
3 7 / t cp
7 9 / tcp
8 0 / tcp
1 1 0 /tcp
1 1 1 / tcp
1 3 5 /tcp
1 4 3 / tcp
3 6 0 / tcp
3 8 9 / tcp
4 6 5 / t cp
5 0 7 / tcp
5 1 2 / tcp
5 1 3 / tcp
5 1 4 / tcp
51 5 /tcp
6 3 6 / tcp
7 1 2 /tcp
9 5 5 / tcp
9 9 3 / t cp
9 9 5 / tcp
1 4 3 4 / tcp
2 0 0 0 / tcp
2 76 6 / tcp
3 0 0 0 / tcp
3 3 0 6 / tcp
6 1 1 2 / tcp
3 2 7 70 /tcp
3 2 7 7 1 / tcp
3 2 7 72 /tcp

open J fi ltered echo
open J fi ltered discard
open J f i ltered systat
open J f i ltered dayt ime
open J fi ltered net stat
open J fi ltered chargen
open J f i l tered ftp
open J f i ltered ssh
open f i l t ered te lnet
open f i l t ered smtp
open f i ltered t ime
open f i ltered finger
open fi l tered http
open f i l t ered pop3
open f i ltered rpcbind
open f i l t ered msrpc
open f i ltered imap
open f i ltered scoi2 odialog
open f i l t ered ldap
open f i l t ered smtps
open f i l tered crs
open f i l t ered exec
open J f i ltered login
open J f i ltered she l l
open J fi ltered printer
open f i ltered ldaps s l
open f i l t ered unknown
open f i ltered unknown
open f i ltered imaps
open f i ltered pop 3 s
open f i ltered ms-sql-m
open f i l t ered cal lbook
open f i l t ered l isten
open f i ltered PPP
open f i l t ered mysql
open f i ltered dt spc
open f i l t ered somet imes-rpc3
open f i l t ered somet imes-rpc5
open f i l t ered somet ime s-rpc 7

Nmap done : 1 I P address (1 host up) scanned in 7 . 6 4 seconds

Wow ! That is a lot of apparently open ports. Most of them are probably open, because having just these 39
filtered and the other 961 closed (sending a RST packet) would be unusual. Yet it is still possible that some
or all are filtered instead of open. FIN scan cannot determine for sure. We will revisit this case and learn
more about Docsrv later in this chapter.

1 10 5.5 . TCP FIN, NULL, and Xmas Scans (-sF, -sN, -sX)

5.6. Custom Scan Types with - - scanflags

Truly advanced Nmap users need not limit themselves to the canned scanned types. The - - scanf lags

option allows you to design your own scan by specifying arbitrary TCP flags. Let your creative juices flow,
while evading intrusion detection systems whose vendors simply paged through the Nmap man page adding
specific rules!

The --scanf lags argument can be a numerical flag value such as 9 (PSH and FIN), but using symbolic
names is easier. Just mash together any combination of URG, ACK, PSH, RST, S YN, and F I N. For example,
--scanflags URGACKPSHRSTSYNF I N sets everything, though it's not very useful for scanning. The
order these are specified in is irrelevant.

In addition to specifying the desired flags, you can specify a TCP scan type (such as -sA or -sF). That base
type tells Nmap how to interpret responses. For example, a SYN scan considers no-response indicative of a
filtered port, while a FIN scan treats the same as open I f i ltered. Nmap will behave the same way
it does for the base scan type, except that it will use the TCP flags you specify instead. If you don't specify
a base type, SYN scan is used.

5.6.1 . Custom SYN/FIN Scan

One interesting custom scan type is SYN/FIN. Sometimes a firewall administrator or device manufacturer
will attempt to block incoming connections with a rule such as "drop any incoming packets with only the ·
SYN flag set". They limit it to only the SYN flag because they don't want to block the SYN/ACK packets
which are returned as the second step of an outgoing connection.

The problem with this approach is that most end systems will accept initial SYN packets which contain other
(non-ACK) flags as well. For example, the Nmap OS fingerprinting system sends a SYNIFIN/URG/PSH
packet to an open port. More than half of the fingerprints in the database respond with a SYN/ACK. Thus
they allow port scanning with this packet and generally allow making a full TCP connection too. Some
systems have even been known to respond with SYN/ACK to a SYN/RST packet ! The TCP RFC is ambiguous
IS to which flags are acceptable in an initial SYN packet, though SYN/RST certainly seems bogus.

Example 5.13 shows Ereet conducting a successful SYN/FIN scan of Google. He is apparently getting bored
with scanme.nmap.org.

5.6. Custom Scan Types with --scanflags l l l

Example 5.13. A SYN/FIN scan of Google

krad# nmap -ss --scanflags SYNF IN -T4 www . google . com

Starting Nmap (http : / /nmap . org)
Warning : Hostname www . google . com resolves to 4 IPs . U s ing 7 4 . 1 2 5 . 1 9 . 9 9 .
I nterest ing ports on cf-in-f 9 9 . google . com (7 4 . 1 2 5 . 1 9 . 9 9) :
Not shown : 9 9 6 filtered ports
PORT STATE SERVICE
8 0 / t cp open http
1 1 3 / tcp c losed auth
1 79 / tcp c l osed bgp
4 4 3 / tcp open https

Nmap done : 1 I P address (1 host up) scanned in 7 . 5 8 seconds

Similar scan types, such as SYN/URG or SYN/PSH/URG/FIN will generally work as wel l . If you aren't
getting through, don't forget the already mentioned SYN/RST option.

5.6.2. PSH Scan

Section 5.5, "TCP FIN, NULL, and Xmas Scans (-sF, -sN, -sX)" [1 07] noted that RFC-compliant systems
allow one to scan ports using any combination of the FIN, PSH, and URG flags. While there are eight possible
permutations, Nmap only offers three canned modes (NULL, FIN, and Xmas). Show some personal flair by
trying a PSH/URG or FIN/PSH scan i nstead. Results rarely differ from the three canned modes, but there is
a small chance of evading scan detection systems.

To perform such a scan, just specify your desired flags with --scanfl ags and specify FIN scan (-sF)
as the base type (choosing NULL or Xmas would make no difference). Example 5 . 14 demonstrates a PSH
scan against a Linux machine on my local network.

Example 5.14. A custom PSH scan

krad# nmap -sF --scanflags PSH para

Start ing Nmap (http : / /nmap . org
I nteresting port s on para (1 9 2 . 1 6 8 . 1 0 . 1 9 1) :
(The 9 9 5 ports scanned but not shown be low are in state : c losed)
PORT STATE SERVICE
2 2 /tcp open l fi ltered s sh
5 3 / tcp open l fi ltered domain
1 1 1 / t cp open l f i ltered rpcbind
5 1 5 / tcp open l f i ltered printer
6 0 0 0 /tcp open l fi ltered Xl l
MAC Address : 0 0 : 6 0 : 1 0 : 3 8 : 3 2 : 9 0 (Lucent Technologies)

Nmap done : 1 I P address (1 host up) scanned in 5 . 9 5 seconds

Because these scans all work the same way, I could keep just one of -sF, -sN, and -sX options, letting
users emulate the others with --scanf l ags . There are no plans to do this because the shortcut options

1 12 5 .6. Custom Scan Types with --scanflags

ilreeasier to remember and use. You can still try the emulated approach to show off your Nmap skills. Execute
llD8p -sF --scanftags FINPSHURG target rather than the more mundane nmap -sX target.

Warning
In my experience, needlessly complex Nmap command-lines don't impress girls. They usually
respond with a condescending sneer, presumably recognizing that the command is redundant.

.7. TCP ACK Scan (-sA)

This scan is different than the others discussed so far in that it never determines open (or even
pen I fi ltered) ports. It is used to map out firewall rulesets, determining whether they are stateful or

bot and which ports are filtered.

ACK scan is enabled by specifying the -sA option. Its probe packet has only the ACK flag set (unless you
se --scanflags). When scanning unfiltered systems, open and c l o sed ports will both return a RST

packet. Nmap then labels them as un f i l tered, meaning that they are reachable by the ACK packet, but
whether they are open or closed is undetermined. Ports that don't respond, or send certain ICMP error

ssages back, are labeled f i l tered. Table 5.5 provides the full details.

Table 5.5. How Nmap interprets responses to an ACK scan probe

Assigned State

u n f i l t ered

o response received (even after retransmissions) f i l tered

ICMP unreachable error (type 3, code I , 2, 3, 9, IO , or 13) f i l tered

ACK scan usage is similar to most other scan types in that you simply add a single option flag, -sA in this
ease. Example 5. 15 shows an ACK scan against Scanme.

5.7. TCP ACK Scan (-sA) 1 13

Example 5.15. A typical ACK Scan

krad# nmap -sA -T4 scanme . nmap . or g

Start ing Nmap (http : / /nmap . org)
Interesting port s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) :
Not shown : 9 9 4 f i l tered ports
PORT STATE SERVICE
2 2 / tcp unfi l tered ssh
2 5 / t cp unfi l tered smtp
5 3 / tcp unfi l tered domain
7 0 / t cp unfi l tered gopher
8 0 / tcp unfi ltered http
1 1 3 / tcp u n f i ltered auth

Nmap done : 1 I P address (1 host up) scanned in 4 . 0 1 seconds

One of the most interesting uses of ACK scanning is to differentiate between stateful and stateless firewalls.
See Section 10.3.2, "ACK Scan" [260] for how to do this and why you would want to.

Sometimes a combination of scan types can be used to glean extra information from a system. As an example,
start by reviewing the FIN scan of Docsrv in Example 5 . 12, "FIN scan of Docsrv" [1 1 0]. Nmap finds the
closed ports in that case, but 39 of them are listed as open I f i l tered because Nmap cannot determine
between those two states with a FIN scan. Now look at the ACK scan of the same host in Example 5.16, "An
ACK scan of Docsrv" [1 1 5] . Two of those 39 previously unidentified ports are shown to be f i l tered. The
other 37 (based on the default port line above the table) are in the state unfiltered. That means open
or c l o sed. If one scan type identifies a port as open or f i lt ered and another identifies it as open or

c l o sed, logic dictates that it must be open . By combining both scan types, we have learned that 37 ports
on Docsrv are open, two are f i ltered, and 961 are c l o sed. While logical deduction worked well here
to determine port states, that technique can't always be counted on. It assumes that different scan types always
return a consistent state for the same port, which is inaccurate. Firewalls and TCP stack properties can cause
different scans against the same machine to differ markedly. Against Docsrv, we have seen that a SYN scan
considers the SSH port (t cp / 2 2) f i ltered, while an ACK scan considers it unfi ltered. When
exploring boundary conditions and strangely configured networks, interpreting Nmap results is an art that
benefits from experience and intuition.

1 14 5.7. TCP ACK Scan (-sA)

Example 5.16. An ACK scan of Docsrv

t nmap -sA -T4 docsrv . caldera . com

Starting Nmap (http : / / nmap . org)
Interest ing ports on docsrv . ca lder a . com (2 1 6 . 25 0 . 1 2 8 . 2 4 7) :
Not shown : 9 9 8 unfiltered port s
PORT STATE SERVICE
135/tcp fi ltered msrpc
1 4 3 4 /tcp fi l tered ms-sql-m

Nmap done : 1 I P address (1 host up) scanned in 7 . 2 0 s econds

5.8. TCP Window Scan (-sw)

Window scan is exactly the same as ACK scan except that it exploits an implementation detai l of certain
systems to differentiate open ports from closed ones, rather than always printing u n f i l t ered when a RST
is returned. It does this by examining the TCP Window value of the RST packets returned. On some systems,
open ports use a positive window size (even for RST packets) while closed ones have a zero window. Window
scan sends the same bare ACK probe as ACK scan, interpreting the results as shown in Table 5.6.

Table 5.6. How Nmap interprets responses to a Window scan ACK probe

Probe Response Assigned State

TCP RST response with non-zero window field open

TCP RST response with zero window field closed

No response received (even after retransmissions) f i l tered

ICMP unreachable error (type 3, code 1, 2, 3, 9, 10, or 13) f i lt ered

This scan relies on an implementation detail of a minority of systems out on the Internet, so you can't always
trust it. Systems that don't support it will usually return all ports cl osed. Of course, it is possible that the
machine really has no open ports. If most scanned ports are cl osed but a few common port numbers (such
as 22, 25, and 53) are open, the system is most likely susceptible. Occasionally, systems will even show
the exact opposite behavior. If your scan shows 997 open ports and three closed or filtered ports, then those
three may very well be the truly open ones.

While this scan is not suited for every situation, it can be quite useful on occasion. Recall Example 5 . 12,
"FIN scan of Docsrv" [1 1 0], which shows many open I f i lt ered ports not found in a basic SYN scan.
The problem is that we can't distinguish between open and filtered ports with that FIN scan. The previous
aection showed that we could distinguish them by combining FIN and ACK scan results. In this case, a
Window scan makes it even easier by not requiring the FIN scan results, as shown in Example 5 . 17 .

5 .8 . TCP Window Scan (-sW) 1 15

Example 5.17. Window scan of docsrv.caldera.com

nmap - sW -T4 docsrv . caldera . com

Start ing Nmap (http : / /nmap . org)
I nteresting ports on docsrv . caldera . com (2 1 6 . 2 5 0 . 1 2 8 . 2 4 7) :
Not shown : 9 6 1 c losed ports
PORT STATE SERVI CE
7 /tcp open echo
9 / tcp open di scard
1 1 / tcp open systat
1 3 / tcp open dayt ime
1 5 / tcp open net stat
1 9 / tcp open chargen
2 1 / tcp open ftp
2 2 / t cp open ssh
2 3 / t cp open telnet
2 5 / t cp open smtp
3 7 / tcp open t ime
7 9 / tcp open f inger
8 0 / tcp open http
1 1 0 / tcp open pop3
1 1 1 / tcp open rpcbind
1 3 5 / tcp f i l tered msrpc
(1 4 open port s omit ted for brevity]
1 4 3 4 / t cp f i l t ered ms-sql-m
2 0 0 0 / tcp open cal l book
2 76 6 / tcp open l i sten
3 0 0 0 /tcp open PPP
3 3 0 6 /tcp open mysql
6 1 1 2 /tcp open dtspc
3 2 7 7 0 /tcp open somet imes-rpc3
3 2 7 7 1 / t cp open somet ime s-rpc5
3 2 7 7 2 /tcp open somet ime s-rpc7

Nmap done : 1 I P address (1 host up) scanned in 7 . 3 0 seconds

These results are exactly what Ereet wanted ! The same 39 interesting ports are shown as with the FIN scan,
but this time it distinguishes between the two filtered ports (MS-SQL and MSRPC) and the 37 that are
actually open. These are the same results Ereet obtained by combining FIN and ACK scan results together
in the previous section. Verifying results for consistency is another good reason for trying multiple scan
types against a target network.

5.9. TCP Maimon Scan (-sM)

The Maimon scan is named after its discoverer, Uriel Maimon. He described the technique in Phrack Magazine
issue #49 (November 1996). Nmap, which included this technique, was released two issues later. This
technique is exactly the same as NULL, FIN, and Xmas scan, except that the probe is FIN/ACK. According
to RFC 793 (TCP), a RST packet should be generated in response to such a probe whether the port is open

or closed. However, Uriel noticed that many BSD-derived systems simply drop the packet if the port is open.
Nmap takes advantage of this to determine open ports, as shown in Table 5. 7.

1 16 5 .9. TCP Maimon Scan (-sM)

Table 5.7. How Nmap interprets responses to a Maimon scan probe

Probe Response Assigned State

No response received (even after retransmissions) open I f i l tered

TCP RST packet c l osed

ICMP unreachable error (type 3, code 1 , 2, 3, 9, 10, or 1 3) f i l tered

The Nmap flag for a Maimon scan is - sM. While this option was quite useful in 1996, modern systems rarely
exhibit this bug. They send a RST back for all ports, making every port appear closed. This result is shown
in Example 5. 18.

Example 5.18. A failed Maimon scan

f nmap -sM -T4 para

Starting Nmap (http : / /nmap . org
All 1 0 0 0 scanned port s on para (1 9 2 . 1 6 8 . 1 0 . 1 9 1) are : c losed
MAC Address : 00 : 6 0 : 1 0 : 3 8 : 3 2 : 9 0 (Lucent Technologie s)

Nmap done : 1 IP address (1 host up) scanned in 4 . 1 9 seconds

5.1 0 . TCP Id le Scan (-s I)

In 1998, security researcher Antirez (who also wrote the hping2 tool frequently used in this book) posted to
the Bugtraq mailing list an ingenious new port scanning technique. Idle scan, as it has become known, allows
for completely blind port scanning. Attackers can actually scan a target without sending a single packet to
the target from their own IP address ! Instead, a clever side-channel attack allows for the scan to be bounced
off a dumb "zombie host". Intrusion detection system (IDS) reports will finger the innocent zombie as the
attacker. Besides being extraordinarily stealthy, this scan type permits discovery of IP-based trust relationships
between machines.

While idle scanning is more complex than any of the techniques discussed so far, you don't need to be a
TCP/IP expert to understand it. It can be put together from these basic facts:

• One way to determine whether a TCP port is open is to send a SYN (session establishment) packet to the
port. The target machine will respond with a SYN/ACK (session request acknowledgment) packet if the
port is open, and RST (reset) if the port is closed. This is the basis of the previously discussed SYN scan.

• A machine that receives an unsolicited SYN/ACK packet will respond with a RST. An unsolicited RST
will be ignored.

• Every IP packet on the Internet has a fragment identification number (IP ID). Since many operating systems
simply increment this number for each packet they send, probing for the IPID can tell an attacker how
many packets have been sent since the last probe.

By combining these traits, it is possible to scan a target network while forging your identity so that it looks
like an innocent zombie machine did the scanning.

5. 10. TCP Idle Scan (-sl) 1 17

5.1 0.1 . Idle Scan Step by Step

Fundamentally, an idle scan consists of three steps that are repeated for each port:

I. Probe the zombie's IP ID and record it.

2. Forge a SYN packet from the zombie and send it to the desired port on the target. Depending on the port
state, the target's reaction may or may not cause the zombie's IP ID to be incremented.

3. Probe the zombie's IP ID again. The target port state is then determined by comparing this new IP ID with
the one recorded in step 1 .

After this process, the zombie's IP I D should have increased by either one or two. A n increase of one indicates
that the zombie hasn't sent out any packets, except for its reply to the attacker's probe. This lack of sent
packets means that the port is not open (the target must have sent the zombie either a RST packet, which
was ignored, or nothing at all). An increase of two indicates that the zombie sent out a packet between the
two probes. This extra packet usually means that the port is open (the target presumably sent the zombie a
SYN/ACK packet in response to the forged SYN, which induced a RST packet from the zombie). Increases
larger than two usually signify a bad zombie host. It might not have predictable IP ID numbers, or might be
engaged in communication unrelated to the idle scan.

Even though what happens with a closed port is s lightly different from what happens with a filtered port,
the attacker measures the same result in both cases, namely, an IP ID increase of 1 . Therefore it is not possible
for the idle scan to distinguish between closed and filtered ports. When Nmap records an IP ID increase of 1
it marks the port c l osed I f i l tered.

For those wanting more detail, the following three diagrams show exactly what happens in the three cases
of an open, closed, and filtered port. The actors in each are:

I the attacker, � the zombie, and the target.

1 18 5 . 10. TCP Idle Scan (-sI)

Figure 5.6. Idle scan of an open port

Step I : Probe the zombie's
IP ID.

The attacker sends a SYN/ACK
to the zombie. The zombie, not
expecting the SYN/ ACK, sends
back a RST, disclosing its IP ID.

Step 2: Forge a SYN packet
from the zombie.

'� ��; �
The target sends a SYN/ACK in
response to the SYN that appears
to come from the zombie. The
zombie, not expecting it, sends
back a RST, incrementing its
IP ID in the process.

Figure 5.7. Idle scan of a closed port

Step I : Probe the zombie's
IP ID.

'�ACK �i6'>1 �
The attacker sends a SYN/ACK
to the zombie. The zombie, not
expecting the SYN/ACK, sends
back a RST, disclosing its IP ID.
This step is always the same.

Step 2: Forge a SYN packet
from the zombie.

1---r �
The target sends a RST {the port
is closed) in response to the SYN
that appears to come from the
zombie. The zombie ignores the
unsolicited RST, leaving its
IP ID unchanged.

Figure 5.8. Idle scan of a filtered port

Step I : Probe the zombie's
IP ID.

'�ACK �i6'>1 �
Just as in the other two cases,
the attacker sends a SYN/ACK to
the zombie. The zombie discloses
its IP ID.

Step 2: Forge a SYN packet
from the zombie.

�
The target, obstinately filtering
its port, ignores the SYN that
appears to come from the zom
bie. The zombie, unaware that
anything has happened, does not
increment its IP ID.

Step 3: Probe the zombie's
IP ID again.

'�ACK �� �
The zombie's IP ID has in
creased by 2 since step 1, so
the port is open !

Step 3: Probe the zombie's
IP ID again .

'�ACK
�� �

The zombie's IP ID has increased
by only 1 since step 1 , so the port
is not open.

Step 3: Probe the zombie's
IP ID again .

'�ACK
�� �

The zombie's IP ID has increased
by only 1 since step 1 , so the port
is not open. From the attacker's
point of view this filtered port is
indistinguishable from a closed
port.

Idle scan is the ultimate stealth scan. Nmap offers decoy scanning (-D) to help users shield their identity,
but that (unlike idle scan) sti l l requires an attacker to send some packets to the target from his real IP address
in order to get scan results back. One upshot of idle scan is that intrusion detection systems will generally

5. 10. TCP Idle Scan (-sI) 1 19

send alerts claiming that the zombie machine has launched a scan against them. So it can be used to frame
some other party for a scan. Keep this possibility in mind when reading alerts from your IDS.

A unique advantage of idle scan is that it can be used to defeat certain packet fi ltering firewalls and routers.
IP source address filtering is a common (though weak) security mechanism for limiting machines that may
connect to a sensitive host or network. For example, a company database server might only allow connections
from the public web server that accesses it. Or a home user might only allow SSH (interactive login)
connections from his work machines.

A more disturbing scenario occurs when some company bigwig demands that network administrators open
a firewall hole so he can access internal network resources from his home IP address. This can happen when
executives are unwilling or unable to use secure VPN alternatives.

Idle scanning can sometimes be used to map out these trust relationships. The key factor is that idle scan
results list open ports from the zombie host's perspective. A normal scan against the aforementioned database
server might show no ports open, but performing an idle scan while using the web server's IP as the zombie
could expose the trust relationship by showing the database-related service ports as open.

Mapping out these trust relationships can be very useful to attackers for prioritizing targets. The web server
discussed above may seem mundane to an attacker until she notices its special database access.

A disadvantage to idle scanning is that it takes far longer than most other scan types. Despite the optimized
algorithms described in Section 5 . 10.4, "Idle Scan Implementation Algorithms" [1 22), A 1 5-second SYN
scan could take 15 minutes or more as an idle scan. Another issue is that you must be able to spoof packets
as if they are coming from the zombie and have them reach the target machine. Many ISPs (particularly
dialup and residential broadband providers) now implement egress filtering to prevent this sort of packet
spoofing. Higher end providers (such as colocation and T l services) are much less likely to do this. If this
fi ltering is in effect, Nmap will print a quick error message for every zombie you try. If changing ISPs is not
an option, you might try using another IP on the same ISP network. Sometimes the filtering only blocks
spoofing of IP addresses that are outside the range used by customers. Another challenge with idle scan is
that you must find a working zombie host, as described in the next section.

5.1 0.2. Find ing a Working Idle Scan Zombie Host

The first step in executing an IP ID idle scan is to find an appropriate zombie. It needs to assign IP ID packets
incrementally on a global (rather than per-host it communicates with) basis. It should be idle (hence the scan
name), as extraneous traffic wi l l bump up its IP ID sequence, confusing the scan logic. The lower the latency
between the attacker and the zombie, and between the zombie and the target, the faster the scan will proceed.

When an idle scan is attempted, Nmap tests the proposed zombie and reports any problems with it. If one
doesn't work, try another. Enough Internet hosts are vulnerable that zombie candidates aren't hard to find.
Since the hosts need to be idle, choosing a well-known host such as www.yahoo.com or google.com will
almost never work.

A common approach is to simply execute a Nmap ping scan of some network. You could use Nmap's random
IP selection mode (-iR), but that is likely to result in far away zombies with substantial latency. Choosing
a network near your source address, or near the target, produces better results. You can try an idle scan using
each available host from the ping scan results until you find one that works. As usual, it is best to ask
permission before using someone's machines for unexpected purposes such as idle scanning.

1 20 5. 10. TCP Idle Scan (-sI)

We didn't just choose a printer icon to represent a zombie in our i l lustrations to be funny-simple network
devices often make great zombies because they are commonly both underused (idle) and built with simple
network stacks which are vulnerable to IP ID traffic detection.

Performing a port scan and OS identification (-0) on the zombie candidate network rather than just a ping
scan helps in selecting a good zombie. As long as verbose mode (-v) is enabled, OS detection will usually
determine the IP ID sequence generation method and print a line such as "IP ID Sequence Generation:
Incremental". If the type is given as I ncremental or Broken l i t t le-endian incremental,
the machine i s a good zombie candidate. That i s still no guarantee that it will work, as Solaris and some other
systems create a new IP ID sequence for each host they communicate with. The host could also be too busy.
OS detection and the open port list can also help in identifying systems that are likely to be idle.

While identifying a suitable zombie takes some initial work, you can keep re-using the good ones.

5.1 0.3. Executing an Id le Scan

Once a suitable zombie has been found, performing a scan is easy. Simply specify the zombie hostname to
the - s I option and Nmap does the rest. Example 5. 19 shows an example of Ereet scanning the Recording
Industry Association of America by bouncing an idle scan off an Adobe machine named Kiosk.

Example 5.19. An idle scan against the RIAA

t nmap -PN -p- - s I k iosk . adobe . com www . riaa . com

Starting Nmap (h t tp : / /nmap . org)
Idlescan using zombie k iosk . adobe . com (1 92 . 1 5 0 . 1 3 . 1 1 1 : 8 0) ; C l a s s : Increment a l
Interest ing port s o n 2 0 8 . 2 2 5 . 9 0 . 1 2 0 :
(The 6 5522 port s scanned but not shown bel ow are in state : c losed)
Port State Service
21 /tcp open ftp
25/tcp open smtp
80/tcp open http
111 /tcp open sunrpc
135/tcp open loc-srv
443/tcp open https
102 7 /tcp open ! I S
1030/tcp open iadl
2306/tcp open unknown
5631 /tcp open pcanywheredat a
7937/tcp open unknown
7938/tcp open unknown
36 890/tcp open unknown

Nmap done : 1 I P address (1 host up) scanned in 2 5 9 4 . 4 7 seconds

From the scan above, we learn that the RIAA is not very security conscious (note the open PC Anywhere,
portmapper, and Legato nsrexec ports). Since they apparently have no firewall, it is unlikely that they have
an IDS. But if they do, it will show kiosk.adobe.com as the scan culprit. The -PN option prevents Nmap
from sending an initial ping packet to the RIAA machine. That would have disclosed Ereet's true address.
The scan took a long time because -p- was specified to scan all 65K ports. Don't try to use kiosk for your
scans, as it has already been removed.

5 . 10. TCP Idle Scan (-sl) 1 2 1

By default, Nmap forges probes to the target from the source port 80 of the zombie. You can choose a different

port by appending a colon and port number to the zombie name (e.g. - s I k i o s k . adobe . com: 113).

The chosen port must not be filtered from the attacker or the target. A SYN scan of the zombie should show

the port in the open or cl osed state.

5.1 0.4. Idle Scan Implementation Algorithms

While Section 5 . 10. 1 , "Idle Scan Step by Step" [1 1 8) describes idle scan a t the fundamental level, the Nmap

implementation is far more complex. Key differences are parallelism for quick execution and redundancy

to reduce false positives.

Parallelizing idle scan is trickier than with other scan techniques due to indirect method of deducing port

states. If Nmap sends probes to many ports on the target and then checks the new IP ID value of the zombie,

the number of IP ID increments will expose how many target ports are open, but not which ones. This isn't

actually a major problem, as the vast majority of ports in a large scan will be c l osed I f i l tered. Since

only open ports cause the IP ID value to increment, Nmap will see no intervening increments and can mark

the whole group of ports as c l o sed I f i 1 t ered. Nmap can scan groups of up to 100 ports in para\\e\. U
Nmap probes a group then finds that the zombie IP ID has increased <N> times, there must be <N> open
ports among that group. Nmap then finds the open ports with a binary search. It splits the group into two and
separately sends probes to each. If a subgroup shows zero open ports, that group's ports are all marked
c l o sed I f i ltered. If a subgroup shows one or more open ports, it is divided again and the process
continues until those ports are identified. While this technique adds complexity, it can reduce scan times by
an order of magnitude over scanning just one port at a time.

Reliability is another major idle scanning concern. If the zombie host sends packets to any unrelated machines
during the scan, its IP ID increments. This causes Nmap to think it has found an open port. Fortunately,
parallel scanning helps here too. If Nmap scans J OO ports in a group and the IP ID increase signals two open
ports, Nmap splits the group into two fifty-port subgroups. When Nmap does an IP ID scan on both subgroups,
the total zombie IP ID increase better be two again ! Otherwise, Nmap will detect the inconsistency and rescan
the groups. It also modifies group size and scan timing based on the detected reliability rate of the zombie.
If Nmap detects too many inconsistent results, it will quit and ask the user to provide a better zombie.

Sometimes a packet trace is the best way to understand complex algorithms and techniques such as these.
Once again , the Nmap --packet - trace makes these trivial to produce when desired. The remainder of

this section provides an annotated packet trace of an actual seven port idle scan. The IP addresses have been
changed to At t acker, Z ombie, and Target and some irrelevant aspects of the trace lines (such as TCP
window size) have been removed for clarity.

Att acker# nmap - s I Zombie -PN -p2 0-2 5 , 1 1 0 -r --packet-trace -v Target
Starting Nmap (http : / / nmap . org)

-PN \s necessary for stea\th, otherwise p\ng packets wou\d 'oe sent to the target from Attacker's rea\ address.
Version scanning would also expose the true address, and so -sV is not specified. The -r option (turns off
port randomization) is only used to make this example easier to follow.

Nmap firsts tests Zombie's IP ID sequence generation by sending six SYN/ACK packets to it and analyzing
the responses. This helps Nmap immediately weed out bad zombies. It is also necessary because some systems
(usually Microsoft Windows machines, though not all Windows boxes do this) increment the IP ID by 256
for each packet sent rather than by one. This happens on little-endian machines when they don't convert the

1 22 5. 10. TCP Idle Scan (-sl)

IP ID to network byte order (big-endian). Nmap uses these initial probes to detect and work around this
problem.

SENT (0 . 0 0 6 0 s) TCP Attacker : 5 1 8 2 4 > Zombie : 8 0 SA id=3 5 9 9 6
SENT (0 . 0 9 0 0 s) TCP Attacker : 5 1 8 2 5 > Zombie : 8 0 SA id=2 5 9 1 4
SENT (0 . 1 80 0 s) TCP Attacker : 5 1 82 6 > Zombie : 8 0 SA id=3 9 5 9 1
RCVD (0 . 1 5 5 0 s) TCP Zombie : 8 0 > Attacker : 5 1 8 2 4 R id=15669
SENT (0 . 2 7 0 0 s) TCP Attacker : 5 1 8 2 7 > Zombie : 8 0 SA id=4 3 6 0 4
RCVD (0 . 2 3 8 0 s) TCP Zombie : 8 0 > Attacker : 5 1 8 2 5 R id•l5670
SENT (0 . 3 6 0 0 s) TCP Attacker : 5 1 8 2 8 > Zombie : 8 0 SA id= 3 4 1 86
RCVD (0 . 32 8 0 s) TCP Zombie : 8 0 > Attacker : 5 1 8 2 6 R id•l5671
SENT (0 . 4 5 1 0 s) TCP Attacker : 5 1 8 2 9 > Zombie : 8 0 SA id=2 7 9 4 9
RCVD (0 . 4 1 9 0 s) TCP Zombie : 80 > Attacker : 5 1 8 2 7 R id•l5672
RCVD (0 . 50 9 0 s) TCP Zombie : 8 0 > Attacker : 5 1 82 8 R id•15673
RCVD (0 . 59 9 0 s) TCP Zombie : 8 0 > Attacker : 5 1 82 9 R id•l5674
Idlescan using zombie Zombie (Zombie : 8 0) ; C l as s : I ncrement a l

This test demonstrates that the zombie is working fine. Every IP ID was a n increase o f one over the previous
one. So the system appears to be idle and vulnerable to IP ID traffic detection. These promising results are
still subject to the next test, in which Nmap spoofs four packets to Zombie as if they are coming from Target.
Then it probes the zombie to ensure that the IP ID increased. If it hasn't, then it is likely that either the
attacker's ISP is blocking the spoofed packets or the zombie uses a separate IP ID sequence counter for each
host it communicates with. Both are common occurrences, so Nmap always performs this test. The last-known
Zombie IP ID was 1 5674, as shown above.

(0 . 59 9 0 s) TCP Target : 5 1 8 2 3 > Zombie : 8 0 SA i d= 1 3 9 0
(0 . 6 5 1 0 s) TCP Target : 5 1 8 2 3 > Zombie : 8 0 SA id=2 4 0 2 5
(0 . 7 1 1 0 s) TCP Target : 5 1 8 2 3 > Zombie : 8 0 SA id= l 5 0 4 6
(0 . 7 7 1 0 s) TCP Target : 5 1 8 2 3 > Zombie : 8 0 SA id=4 8 6 5 8
(1 . 0BOOs) TCP Attacker : 5 1 9 8 7 > Zombie : 8 0 SA id=2 7 6 5 9
(1 . 22 9 0 s) TCP Zombie : 8 0 > Attacker : 5 1 9 8 7 R id•15679

The four spoofed packets coupled with the probe from Attacker caused the Zombie to increase its IP ID from
15674 to 15679. Perfect! Now the real scanning begins. Remember that 1 5679 is the latest Zombie IP ID.

'tiating Idlescan against Target
(1 . 2290s) TCP Zombie : 8 0 > Target : 2 0 S id= l 3 2 0 0
(l . 2290s) TCP Zombie : 80 > Target : 2 1 S id=3 7 3 7
(l . 2290s) TCP Zombie : 80 > Target : 22 S id=6 5 2 9 0
(l . 2290s) TCP Zombie : 8 0 > Target : 2 3 S id= l 0 5 1 6
(l . 46 1 0 s) TCP Attacker : 52 0 5 0 > Zombie : 8 0 SA id=3 3 2 0 2
(l . 6090s) TCP Zombie : B O > Attacker : 52 0 5 0 R id•15680

p probes ports 20-23. Then it probes Zombie and finds that the new IP ID is 1 5680, only one higher
the previous value of 1 5679. There were no IP ID increments in between those two known packets,
ing ports 20-23 are probably c l osed I f i l tered. It is also possible that a SYN/ACK from a Target
has simply not arrived yet. In that case, Zombie has not responded with a RST and thus its IP ID has
incremented. To ensure accuracy, Nmap wil l try these ports again later.

5 . 10. TCP Idle Scan (-sl) 1 23

SENT (l . 8 5 1 0 s) TCP Attacker : 5 1 9 8 6 > Zombie : 80 SA id=4 9 2 7 8

RCVD (l . 9 9 9 0 s) TCP Zombie : B O > Attacker : 5 1 9 86 R id=l5681

Nmap probes again because four tenths of a second has gone by since the last probe it sent. The Zombie (if

not truly idle) could have communicated with other hosts during this period, which would cause inaccuracies

later if not detected here. Fortunately, that has not happened: the next IP ID is 1 5681 as expected.

SENT (2 . 0 0 0 0 s) TCP Zombie : B O > Target : 2 4 s id=2 3 9 2 8

SENT (2 . 0 0 0 0 s) TCP Zombie : B O > Target : 2 5 S id=5 0 4 2 5

SENT (2 . 0 0 0 0 s) TCP Zombie : B O > Target : l l O s id=l 4 2 0 7

SENT (2 . 2 3 0 0 s) TCP Attacker : 52 0 2 6 > Zombie : B O SA id=2 6 9 4 1

RCVD (2 . 3 8 0 0 s) TCP Zombie : 8 0 > Attacker : 52 0 2 6 R id=l5684

Nmap probes ports 24, 25, and 1 10 then queries the Zombie IP ID. I t has jumped from 1 5681 to 15684. I t

skipped 1 5682 and 1 5683, meaning that two of those three ports are l ikely open. Nmap cannot tell which

two are open, and i t could also be a false positive. So Nmap drills down deeper, dividing the scan into

subgroups.

SENT (2 . 6 2 1 0 s) TCP Attacker : 5 1 8 6 7 > Zombie : B O SA id=l 8 8 6 9

RCVD (2 . 7 6 9 0 s) TCP Zombie : 8 0 > Attacker : 5 1 8 6 7 R id=l 5 6 8 5

SENT (2 . 7 6 9 0 s) TCP Zombie : B O > Target : 2 4 s id=3 0 0 2 3
SENT (2 . 7 6 9 0 s) TCP Zombie : 8 0 > Target : 2 5 s id= 4 7 2 5 3
SENT (3 . 0 0 0 0 s) TCP Attacker : 5 1 9 7 9 > Zombie : 8 0 SA id= l 2 0 7 7
RCVD (3 . 1 4 8 0 s) TCP Zombie : B O > Attacker : 5 1 9 79 R id=l5687

The first subgroup is ports 24 and 25. The IP ID jumps from 1 5685 to 1 5687, meaning that one of these two
ports is most likely open. Nmap tries the divide and conquer approach again, probing each port separately.

SENT (3 . 3 9 1 0 s) TCP Attacker : 5 1 8 2 6 > Zombi e : 8 0 SA id= 3 2 5 1 5
RCVD (3 . 5 3 9 0 s) TCP Zombie : B O > Attacker : 5 1 8 2 6 R id= l 5 6 8 8
SENT (3 . 53 9 0 s) TCP Zombie : B O > Target : 2 4 s id=4 7 8 6 8
SENT (3 . 7 7 1 0 s) TCP Attacker : 52 0 1 2 > Zombie : B O SA id= l 4 0 4 2
RCVD (3 . 9 1 9 0 s) TCP Zombie : B O > Attacker : 52 0 1 2 R id= l 5 6 8 9

A port 24 probe shows no jump in the IP ID. So that port is not open. From the results so far, Nmap has
tentatively determined:

• Ports 20-23 are c l o sed I f i l tered

• Two of the ports 24, 25, and 1 10 are open

• One of the ports 24 and 25 are open

• Port 24 is c l osed I f i l tered

Stare at this puzzle long enough and you'll find only one solution: ports 25 and 1 10 are open while the other
five are c l osed I f i l tered. Using this logic, Nmap could cease scanning and print results now. It used
to do so, but that produced too many false positive open ports when the Zombie wasn't truly idle. So Nmap
continues scanning to verify its results:

SENT (4 . 1 6 0 0 s) TCP Attacker : 5 1 8 5 8 > Zombie : B O SA id=6 2 2 5
RCVD (4 . 3 0 8 0 s) TCP Zombie : B O > Attacker : 5 1 8 5 8 R id=l5690
SENT (4 . 3 0 8 0 s) TCP Zombie : B O > Target : 2 5 S id=3 5 7 1 3

1 24 5 . 10. TCP Idle Scan (-sI)

NT (4 . 5 4 1 0 s) TCP Attacker : 5 1 8 56 > Zombie : B O SA id=2 8 1 1 8
VD (4 . 6 89 0 s) TCP Zombie : B O > Attacker : 5 1 8 5 6 R id= 1 5 6 92

iscovered open port 2 5 / tcp on Target
NT (4 . 6 9 0 0 s) TCP Zombie : B O > Target : l l O S id=9 9 4 3
NT (4 . 92 1 0 s) TCP Attacker : 5 1 8 36 > Zombie : B O SA id=6 2 2 5 4

D (5 . 06 9 0 s) TCP Zombie : B O > Attacker : 5 1 83 6 R id= l 5 6 9 4

Probes of ports 25 and 1 10 show that they are open, as we deduced previously.

(5 . 06 9 0s) TCP Zombie : B O > Target : 2 0 s id= 8 1 6 8
(5 . 06 9 0 s) TCP Zombie : B O > Target : 2 1 s id=3 6 7 1 7

T (5 . 06 9 0 s) TCP Zombie : B O > Target : 2 2 s id= 4 0 6 3
(5 . 06 9 0 s) TCP Zombie : B O > Target : 2 3 s id=5 4 7 7 1
(5 . 32 0 0 s) TCP Attacker : 5 1 9 6 2 > Zombie : B O SA id=3 8 7 6 3
(5 . 4690s) TCP Zombie : B O > Attacker : 5 1 9 6 2 R id= 1 5 6 95

ENT (5 . 79 1 0 s) TCP Attacker : 5 1 8 8 7 > Zombie : B O SA id=6 1 0 3 4
RCVD (5 . 93 9 0 s) TCP Zombie : B O > Attacker : 5 1 8 8 7 R id= 1 5 6 9 6

Just to be sure, Nmap tries ports 20-23 again. A Zombie IP ID query shows no sequence jump. On the off
chance that a SYN/ACK from Target to Zombie came in late, Nmap tries another IP ID query. This again
shows no open ports. Nmap is now sufficiently confident with its results to print them.

E
e Idlescan took 5 seconds to scan
teresting ports on Target :
RT STATE SERVICE

O/tcp closed l f i l tered ftp-data
l/tcp closed l f i l tered ftp
2/tcp closed l fi ltered ssh
3/tcp closed l f i ltered te lnet
4/tcp closed l f i l tered priv-ma i l
5/tcp open smtp
10/tcp open pop3

7 port s .

Nmap finished : 1 IP address (1 host up) scanned in 5 . 9 4 9 seconds

For complete detai ls on the Nmap idle scan implementation, read idle_scan . cc from the Nmap source
code distribution.

While port scanning is a clever abuse of predictable IP ID sequences, they can be exploited for many other
purposes as well . Examples are peppered throughout this book, particularly in Chapter 10, Detecting and
Subverting Firewalls and Intrusion Detection Systems [257) .

5.1 1 . I P Protocol Scan (-so)

IP protocol scan allows you to determine which IP protocols (TCP, ICMP, IGMP, etc.) are supported by
target machines. This isn't technically a port scan, since it cycles through IP protocol numbers rather than
TCP or UDP port numbers. Yet it still uses the -p option to select scanned protocol numbers, reports its
results within the normal port table format, and even uses the same underlying scan engine as the true port
scanning methods. So it is close enough to a port scan that it belongs here.

5 . 1 1 . IP Protocol Scan (-sO) 1 25

Besides being useful in its own right, protocol scan demonstrates the power of open-source software. While
the fundamental idea is pretty simple, I had not thought to add it nor received any requests for such
functionality. Then in the summer of 2000, Gerhard Rieger conceived the idea, wrote an excellent patch
implementing it, and sent it to the nmap-hackers mailing list. I incorporated that patch into the Nmap tree
and released a new version the next day. Few pieces of commercial software have users enthusiastic enough
to design and contribute their own improvements!

·

Protocol scan works in a similar fashion to UDP scan. Instead of iterating through the port number field of
a UDP packet, it sends IP packet headers and iterates through the eight-bit IP protocol field. The headers are
usually empty, containing no data and not even the proper header for the claimed protocol. An exception is
made for certain popular protocols (including TCP, UDP, and ICMP). Proper protocol headers for those are
included since some systems won't send them otherwise and because Nmap already has functions to create
them. Instead of watching for ICMP port unreachable messages, protocol scan is on the lookout for ICMP
protocol unreachable messages. Table 5.8 shows how responses to the IP probes are mapped to port states.

Table 5.8. How Nmap interprets responses to an IP protocol probe

Probe Response Assigned State

Any response in any protocol from target host open (for protocol used by response, not necessarily
probe protocol)

ICMP protocol unreachable error (type 3, code 2) c l osed

Other ICMP unreachable errors (type 3, code I , 3, 9, f i ltered (though they prove ICMP is open if sent
JO, or 1 3) from the target machine)

No response received (even after retransmissions) open I f i l tered

Like open ports in the TCP or UDP protocols, every open protocol is a potential exploitation vector. In
addition, protocol scan results help determine the purpose of a machine and what sort of packet filtering is
in place. End hosts usually have little more than TCP, UDP, ICMP, and (sometimes) IGMP open, while
routers often offer much more, including routing-related protocols such as GRE and EGP. Firewalls and
VPN gateways may show encryption-related protocols such as IPsec and SWIPE.

Like the ICMP port unreachable messages received during a UDP scan, ICMP protocol unreachable messages
are often rate l imited. For example, no more than one ICMP destination unreachable response is sent per
second from a default Linux 2.4.20 box. Since there are only 256 possible protocol numbers, this is Jess of
a problem than with a 65,536-port UDP scan. The suggestions in Section 5.4.2, "Speeding Up UDP
Scans" [1 05] apply to speeding up IP protocol scans as well.

Protocol scan is used the same way as most other scan techniques on the command line. Simply specify -so
in addition to whatever general Nmap options please you. The normal port (-p) option is used to select
protocol numbers. Or you can use -F to scan all protocols listed in the nmap-protoco l s database. By
default, Nmap scans all 256 possible values. Example 5.20 shows Ereet scanning a router in Poland followed
by a typical Linux box on my local network.

1 26 5. l l . IP Protocol Scan (-sO)

Example 5.20. IP protocol scan of a router and a typical Linux 2.4 box

I nmap -so 6 2 . 2 3 3 . 1 73 . 9 0 para

Starting Nmap (http : / / nmap . or g
nterest ing protocols o n ntwklan-6 2 - 2 3 3 - 1 73-9 0 . devs . futuro . pl (6 2 . 23 3 . 1 73 . 9 0) :
ot shown : 2 4 0 c losed por t s

OTOCOL STATE SERVICE
open i cmp
open I f i l tered ip
open t cp
open I f i l t ered egp
open I f i l tered i gp
fi ltered udp
open I f i ltered gre
f i lt ered swipe
open I f i l t ered narp
filtered mobile
filtered sun-nd
open I f i l t e r ed iso-ip
open I f i l t ered e igrp
open I f i lt ered ospfigp
open I f i lt ered ipip
f i l tered pim

eresting protocols on para
shown : 2 5 2 closed port s

TOCOL STATE SERVICE
open i cmp
open / fi l t ered i gmp
open t cp
filt ered udp

(1 9 2 . 1 6 8 . 1 0 . 1 9 1) :

0 0 : 6 0 : 1 D : 3 8 : 3 2 : 9 0 (Lucent Technol ogies)

.1 2. TCP FTP Bounce Scan (-b)

interesting feature of the FTP protocol (RFC 959) is support for so-called proxy FTP connections. This
a user to connect to one FTP server, then ask that files be sent to a third-party server. Such a feature
for abuse on many levels, so most servers have ceased supporting it. One of the abuses this feature
is causing the FTP server to port scan other hosts. Simply ask the FTP server to send a file to each
ting port of a target host in turn. The error message will describe whether the port is open or not. This

good way to bypass firewal ls because organizational FTP servers are often placed where they have more
to other internal hosts than any old Internet host would. Nmap supports FTP bounce scan with the
·on. It takes an argument of the form <username>: <password>® <server>: <port >. <Server>

name or IP address of a vulnerable FTP server. As with a normal URL, you may omit
ername>: <pa s s word>, in which case anonymous login credentials (user: anonymous

rd:-wwwu ser@) are used. The port number (and preceding colon) may be omitted as well, in which
lhe default FTP port (21) on <server> is used.

5 . 12. TCP FTP Bounce Scan (-b) 1 27

In Example 5.21 , I attempt to bounce off the main Microsoft FfP server to scan Google.

Example 5.21. Attempting an FTP bounce scan

nmap -PN -b ftp . microsoft . com google . com

Start ing Nmap http : / / nmap . org
Your FTP bounce server doesn ' t a l l ow privileged por t s , skipping them .
Your FTP bounce server suck s , it won ' t let us feed bogus port s !

Frequent users of the FfP bounce scan better get used to that error message. This vulnerability was widespread
in 1997 when Nmap was released, but has largely been fixed. Vulnerable servers are still around, so it is
worth trying when all else fails. If bypassing a firewall is your goal, scan the target network for open port
21 (or even for any FfP services if you scan all ports with version detection), then try a bounce scan using
each. Nmap will tell you whether the host is vulnerable or not. If you are just trying to cover your tracks,
you don't need to (and, in fact, shouldn't) limit yourself to hosts on the target network. Before you go scanning
random Internet addresses for vulnerable FfP servers, consider that sysadmins may not appreciate you
abusing their servers in this way.

Example 5 .22 shows a successful bounce scan against a few interesting ports on Scanme. The verbose option
(-v) was given to provide extra detail. The given server type of "JD FfP Server" means that this is an HP

JetDirect print server.

Example 5.22. Successful FTP bounce scan

krad- > nmap -p 2 2 , 2 5 , 1 3 5 -PN -v -b XXX . YY . 1 1 1 . 2 scanme . nmap . org

Start ing Nmap (http : / / nmap . org
Attempt ing connection to ftp : / /anonymous : -wwwuser@ @ XXX . YY . l l l . 2 : 2 1
Connected : 22 0 JD FTP Server Ready
Login credentials accepted by ftp server !
Init iat ing TCP ftp bounce scan against scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52)
Adding open port 2 2 / t cp
Adding open port 2 5 /tcp
Scanned 3 por t s in 1 2 seconds via the Bounce scan .
I nterest ing port s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 5 2) :
PORT STATE SERVICE
2 2 / tcp open ssh
2 5 /tcp open smtp
1 3 5 / tcp f i l tered msrpc

Nmap done : 1 IP address (1 host up) scanned in 2 1 . 7 9 seconds

5.1 3. Scan Code and Algorithms
In 2004, Nmap's primary port scanning engine was rewritten for greater performance and accuracy. The new
engine, known as ul tra_scan after its function name, handles SYN, connect, UDP, NULL, FIN, Xmas,

ACK, window, Maimon, and IP protocol scans, as well as the various host discovery scans. That leaves onlf
idle scan and FfP bounce scan using their own engines.

1 28 5 . 13 . Scan Code and Algorithms

While the diagrams throughout this chapter show how each scan type works, the Nmap implementation is
far more complex since it has to worry about port and host parallelization, latency estimation, packet loss
detection, timing profiles, abnormal network conditions, packet filters, response rate limits, and much more.

This section doesn't provide every low-level detail of the ul tra_s can engine. If you are inquisitive enough
to want that, you are better off getting it from the source. You can find ul tra_s can and its high-level
helper functions defined in s can_engine . cc from the Nmap tarball. Here I cover the most important
algorithmic features. Understanding these helps in optimizing your scans for better performance, as described
in Chapter 6, Optimizing Nmap Performance [1 35].

5.1 3 .1 . Network Condition Monitoring

Some authors brag that their scanners are faster than Nmap because of stateless operation. They simply blast
out a Hood of packets then listen for responses and hope for the best. While this may have value for quick
surveys and other cases where speed is more important than comprehensiveness and accuracy, I don't fi nd
it appropriate for security scanning. A stateless scanner cannot detect dropped packets in order to retransmit
and throttle its send rate. If a busy router half way along the network path drops 80% of the scanner's packet
flood, the scanner will still consider the run successful and print results that are woeful ly inaccurate. Nmap,
on the other hand, saves extensive state in RAM while it runs. There is usually plenty of memory available,
even on a PDA. Nmap marks each probe with sequence numbers, source or destination ports, ID fields, or
other aspects (depending on probe type) which allow it to recognize responses (and thus drops). It then adjusts
its speed appropriately to stay as fast as the network (and given command-line options) allow without crossing
the line and suffering inaccuracy or unfairly hogging a shared network. Some administrators who have not
installed an IDS might not notice an Nmap SYN scan of their whole network. But you better believe the
administrator will investigate if you use a brute packet flooding scanner that affects his Quake ping time !

While Nmap's congestion control algorithms are recommended for most scans, they can be overridden. The
--min-rate option sends packets at the rate you specify (or higher) even if that exceeds Nmap's normal
congestion control limits. Similarly, the --max-ret r i e s option controls how many times Nmap may
retransmit a packet. Options such as --min-rate 1 0 0 - -max-ret r i e s 0 will emulate the behavior
of simple stateless scanners. You could double that speed by specifying a rate of 200 packets per second
rather than 100 pps, but don't get too greedy-an extremely fast scan is of little value if the results are wrong
or incomplete. Any use of --mi n-rate is at your own risk.

5.1 3.2. Host and Port Paral lel ization

Most of the diagrams i n this chapter illustrate using a technique to determine the state of a single port. Sending
a probe and receiving the response requires a round trip time (RTT) between the source and target machines.
If your RIT is 200 ms and you are scanning 65,536 ports on a machine, handling them serially would take
at least 3.6 hours. Scan a network of 20,000 machines that way and the wait balloons to more than eight
years. This is clearly unacceptal,)le so Nmap parallelizes its scans and is capable of scanning hundreds of
ports on each of dozens of machines at the same time. This improves speeds by several orders of magnitude.
The number of hosts and ports it scans at a time is dependent on arguments described in Chapter 6, Optimizing
Nmap Performance [1 35], including --mi n-hostgroup, - -mi n-para l l e l i sm, - T 4 ,
--max-rt t-timeout, and many others. It also depends on network conditions detected by Nmap.

5 . 13 . Scan Code and Algorithms 1 29

When scanning multiple machines, Nmap tries to efficiently spread the load between them. If a machine
appears overwhelmed (drops packets or its latency increases), Nmap slows down for that host while continuing
against others at full speed.

5.1 3.3. Round Trip Time Est imation

Every time a probe response is received, Nmap calculates the microseconds elapsed since the probe was
sent. We'll call this the instanceRTI, and Nmap uses it to keep a running tally of three crucial timing-related
values: srtt , rttvar, and t imeout. Nmap keeps separate values for each host and also merged values
for a whole group of hosts scanned in parallel. They are calculated as follows:

srtt

The smoothed average round trip time. This is what Nmap uses as its most accurate RTI guess. Rather
than use a true arithmetic mean, the formula favors more recent results because network conditions
change frequently. The formula is:

newsrtt = oldsrtt + (i nstanceRTT - oldsrtt) I 8

rttvar

This is the observed variance or deviation in the round trip time. The idea is that if RTI values are quite
consistent, Nmap can give up shortly after waiting the srt t . If the variance is quite high, Nmap must
wait much longer than the srt t before giving up on a probe because relatively slow responses are
common. The formula follows (ABS represents the absolute value operation):

newrt tvar = oldrttvar + (ABS (i nstanceRTT - oldsrtt) - oldrttvar) I 4

t imeout

This is the amount of time Nmap is willing to wait before giving up on a probe. It is calculated as:

t imeout = newsrtt + newrt tvar * 4

When a probe times out, Nmap may retransmit the probe or assign a port state such as f i 1 tered
(depending on scan type). Nmap keeps some state information even after a timeout just in case a late
response arrives while the overall scan is still in progress.

These simple time estimation formulas seem to work quite well. They are loosely based on similar techniques
used by TCP and discussed in RFC 2988, Computing TCP's Retransmission Timer. We have optimized those
algorithms over the years to better suit port scanning.

5.1 3.4. Congestion Control

Retransmission timers are far from the only technique Nmap gleaned from TCP. Since Nmap i s most
commonly used with TCP, it is only fair to follow many of the same rules. Particularly since those rules are
the result of substantial research into maximizing throughput without degrading into a tragedy of the commons
where everyone selfishly hogs the network. With its default options, Nmap is reasonably polite. Nmap uses
three algorithms modeled after TCP to control how aggressive the scan is: a congestion window, exponential
backoff, and slow start. The congestion window controls how many probes Nmap may have outstanding at
once. If the window is full, Nmap won't send any more until a response is received or a probe times out.
Exponential backoff causes Nmap to slow down dramatically when it detects dropped packets. The congestion

130 5 . 13 . Scan Code and Algorithms

window is usually reduced to one whenever drops are detected. Despite slow being in the name, slow start
is a rather quick algorithm for gradually increasing the scan speed to determine the performance limits of
the network.

All of these techniques are described in RFC 2581 , TCP Congestion Control. That document was written
by networking gurus Richard Stevens, Vern Paxson, and Mark Allman. It is only 10 pages long and anyone
interested in implementing efficient TCP stacks (or other network protocols, or port scanners) should find
it fascinating.

·

When Nmap scans a group of targets, it maintains in memory a congestion window and threshold for each
target, as well as a window and threshold for the group as a whole. The congestion window is the number
of probes that may be sent at one time. The congestion threshold defines the boundary between slow start
and congestion avoidance modes. During slow start, the congestion window grows rapidly in response to
responses. Once the congestion window exceeds the congestion threshold, congestion avoidance mode begins,
during which the congestion window increases more slowly. After a drop, both the congestion window and
threshold are reduced to some fraction of their previous value.

There is an important difference between TCP streams and Nmap port scans, however. In TCP streams, it's
normal to expect ACKs in response to every packet sent (or at least a large fraction of them). In fact, proper
growth of the congestion window depends on this assumption. Nmap often finds itself in a different situation:
facing a target with a default-deny firewall, very few sent packets will ever be responded to. The same thing
happens when ping scanning a block of network addresses that contains only a few live hosts. To compensate
for this, Nmap keeps track of the ratio of packets sent to responses received. Any time the group congestion
window changes, the amount of the change is multiplied by this ratio. In other words, when few packets
receive responses, each response carries more weight.

A graphical description of how the group congestion window and threshold vary during a typical port scan
is shown in Figure 5.9. The congestion window is shown in black and the congestion threshold is in gray.

Figure 5.9. Congestion window and threshold

"'

i
100

60
---· - --- ------ ·

The congestion window starts low and the congestion threshold starts high. Slow start mode begins and the
window size increases rapidly. The large "stairstep" jumps are the result of timing pings. At about 10 seconds,
the congestion window has grown to 80 probes when a drop is detected. Both the congestion window and
threshold are reduced. The congestion window continues to grow until about 80 seconds when another drop
is detected. Then the cycle repeats, which is typical when network conditions are stable.

5 . 13 . Scan Code and Algorithms 13 1

Drops during a scan are nothing to be afraid of. The purpose of the congestion control algorithms is to
dynamically probe the network to discover its capacity. Viewed in this way, drops are valuable feedback
that help Nmap determine the correct size for the congestion window.

5.1 3.5. Timing probes

Every technique discussed in this algorithms section involves (at some level) network monitoring to detect
and estimate network packet loss and latency. This really is critical to obtaining fast scan times. Unfortunately,
good data is often difficult to come by when scanning heavily firewalled systems. These filters often drop
the overwhelming majority of packets without any response. Nmap may have to send 20,000 probes or more
to find one responsive port, making it difficult to monitor network conditions.

To combat this problem, Nmap uses timing probes, also known as port scan pings. If Nmap has found at
least one port responsive on a heavily filtered host, it will send a probe to that port every 1 .25 seconds that
it goes without receiving responses from any other ports. This allows Nmap to conduct a sufficient level of
monitoring to speed up or slow down its scans as network conditions allow.

5.1 3.6. Inferred Neighbor Times

Sometimes even port scan pings won't help because no responsive ports at all have been found. The machine
could be down (and scanned with -PN), or every single port could be filtered. Or perhaps the target does
have a couple responsive ports, but Nmap has not been lucky enough to find them yet. In these cases, Nmap
uses t iming values that it m aintains for the whole group of machines it is scanning at the same time. As long
as at least one response has been received from any machine in the group, Nmap has something to work
with. Of course Nmap cannot assume that hosts in a group always share similar timing characteristics. So
Nmap tracks the t iming variances between responsive hosts in a group. If they differ wildly, Nmap infers
long timeouts for neighboring hosts to be on the safe side.

5.1 3.7. Adaptive Retransmission

The simplest of scanners (and the stateless ones) generally don't retransmit probes at all. They simply send
a probe to each port and report based on the response or lack thereof. Slightly more complex scanners will
retransmit a set number of times. Nmap tries to be smarter by keeping careful packet loss statistics for each
scan against a target. If no packet loss is detected, Nmap may retransmit only once when it fails to receive
a probe response. When m assive packet loss is evident, Nmap may retransmit ten or more times. This allows
Nmap to scan hosts on fast, reliable networks quickly, while preserving accuracy (at the expense of some
speed) when scanning problematic networks or machines. Even Nmap's patience isn't unlimited though. At
a certain point (ten retransmissions), Nmap will print a warning and give up on further retransmissions. This
prevents malicious hosts from slowing Nmap down too m uch with intentional packet drops, slow responses,
and similar shenanigans. Such an attack is known as tarpitting and is com monly used against spammers.

5.1 3.8. Scan Delay

Packet response rate l imiting is perhaps the most pernicious problem faced by port scanners such as Nmap.
For example, Linux 2.4 kernels limit ICMP error messages returned during a UDP (-su) or IP protocol
(- so) scan to one per second. If Nmap counted these as normal drops, it would be continually slowing down
(remember exponential backoft) but still end up having the vast majority of its probes dropped. Instead,

1 32 5 . 13 . Scan Code and Algorithms

Nmap tries to detect this situation. When a large proportion of packets are being dropped, it implements a
short delay (as little as 5 milliseconds) between each probe sent to a single target. If drops continue to be a
major problem, Nmap will keep doubling the delay until the drops cease or Nmap hits the maximum allowed
scan delay. The effects of scan delay while UDP scanning ports 1 -50 of a response rate-limited Linux host
are shown in Figure 5. 10. At the beginning, the scan rate is unlimited by scan delay, though of course other
mechanisms such as congestion control impose their own limits. When drops are detected, the scan delay is
doubled, meaning that the maximum scan rate is effectively halved. In the graph, for example, a maximum
scan rate of five packets per second corresponds to a scan delay of 200 milliseconds.

Figure 5.10. Scan rate as affected by scan delay

cu ,.._

:g E:

The maximum scan delay defaults to one second between probes. The scan delay is sometimes enabled when ·

a slow host can't keep up, even when that host has no explicit rate limiting rules. This can reduce total network
traffic substantially by reducing wasted (dropped) probe packets. Unfortunately even small scan delay values
can make a scan takes several times as long. Nmap is conservative by default, allowing second-long scan
delays for TCP and UDP probes. If your priorities differ, you can configure maximum scan delays with
--max-scan-delay as discussed in Chapter 5, Port Scanning Techniques and Algorithms (95) .

5 . 1 3. Scan Code and Algorithms 1 33

Chapter 6. Optimizing Nmap
Performance

6.1 . Introduction
One of my highest Nmap development priorities has always been performance. A default scan (nmap
<hostname>) of a host on my local network takes a fifth of a second. That is barely enough time to blink,
but adds up when you are scanning hundreds or thousands of hosts. Moreover, certain scan options such as
UDP scanning and version detection can i ncrease scan times substantially. So can certain firewall
configurations, particularly response rate limiting. While Nmap utilizes parallelism and many advanced
algorithms to accelerate these scans, the user has ultimate control over how Nmap runs. Expert users carefully
craft Nmap commands to obtain only the information they care about while meeting their time constraints.

While Nmap performance is a high priority, accuracy is even more important. Authors of competing scanners
have given high-profile conference presentations about how their scanner only takes four seconds to scan
an entire class B address space. These scanners are actually trivial to write, since they omit all the congestion
control and packet loss detection algorithms, leaving just a tight loop spewing probe packets as fast as the
system can generate or the wire can bear. Such scanners are often promoted as stateless-meaning they have
also omitted the code to track and retransmit probes. You can achieve similar behavior with Nmap by adding
Hags such as --mi n-rate 1 0 0 0 to request that Nmap send at least 1 ,000 packets per second, and
--max-retries O to disable retransmission of timed-out probes. Yet I rarely recommend this. Ninety-nine
percent of the packets may be dropped by the next router upstream, and the scanner will never know the
difference.

Unmetered packet blasting scanners such as Scanrand 1 are useful i n some situations, but Nmap takes a much
more conservative and accurate route. Nmap assumes the worst (high latency and packet loss) of the target
networks at first, then speeds up as it gathers statistics showing that it can safely do so. While this happens
automatically, an administrator can quicken the learning process by passing hints about the network to Nmap.
An example of such a hint would be --max-rtt-t imeout 2 0 0 , which allows Nmap to assume that any
responses to a target host probe will come within 200 milliseconds.

This chapter first discusses high-level methodologies for improving scan times. Then it covers how timing
templates and low-level controls are used to speed up Nmap without impacting accuracy. It finishes with a
tutorial by Jack Mogren of the Mayo Clinic, detailing how he improved scan time against his 676,352-IP
network from nearly a week to 46 hours. Considering the huge importance of scanner performance, this
chapter may seems short. This is because the chapter focuses on high-level general scanning performance
tips, while tips for optimizing specific scan techniques are spread throughout this book where those techniques
are covered.

6.2. Scan Time Reduction Techn iques
The ideal solution to long scan times is to reduce them. This section offers many high-level tips for doing
so. Unlike many circumstances in life, tuning your Nmap command line can make a huge difference.

1 http://sectools.orgltools4.html#scanra11d

6. 1 . Introduction 1 35

Hot-rodding your Honda Accord with a coffee-can exhaust tip, a three-foot-high spoiler, and a big red "type
R" sticker won't reduce your 0-60 time much. Yet Section 6.7, "Scanning 676,352 IP Addresses in 46
Hours" [1 43) describes how Jack Mogren shaved days off his Nmap runtime by simply adding a few stickers
(I mean options) to his Nmap command line.

6.2.1 . Omit Non-critical Tests

The electronic equivalent to buying a Hummer when you never leave the pavement or carry more than
groceries is to launch an intense and comprehensive Nmap scan to obtain a relatively trivial amount of
information. Wasting a few seconds per host rarely matters on a home network, but can make daily WAN
scans infeasible for large enterprises. The following list details the most common over-scanning mistakes,
starting with the most egregious newbie bloopers and followed by more subtle problems that even advanced
users confront.

Specify ping scan (-sP) when you only need to determine what hosts are online.
Some people determine whether a host is online using the command nmap <hostname>. While this
works, it is overkill . Nmap will send two packets to determine that the host is up, then at least 1 ,000 to
port scan the host. The problem is amplified when a whole network is scanned this way to find all online
hosts, or one particular host.

Rather than waste time port scanning, specify -sP to do a ping scan when all you wish to know is what
hosts are up or what their MAC addresses are.

Limit the number of ports scanned.
By default, Nmap scans the most common 1 ,000 ports. On a fast network of responsive machines, this
may take a fraction of a second per host. But Nmap must slow down dramatically when it encounters
rate limiting or firewalls that drop probe packets without responding. UDP scans can be agonizingly
slow for these reasons. Yet the vast majority of open ports fall into just a few hundred port numbers. A
port scan will be about 10 times as fast if you only scan 100 ports instead of the default 1 ,000. You can
scan just the most popular 100 ports with the -F (fast scan) option, specify an arbitrary number of top
ports with --top-port s , or provide a custom list of ports to -p.

Skip advanced scan types (- s c, -sV, -0, --tra ceroute, and -A).

1 36

Some people regularly specify the -A Nmap option, which gives them the works. It causes Nmap to do

OS detection, version detection, script scanning (NSE), and traceroute as well as the default port scan.
Version detection can be extraordinarily useful , but can also bog down a large scan. So can NSE. When

pressed for time, you can always skip - s c and -sv on the large scale scan and then perform them on
individual ports as necessary later.

OS detection is not nearly as slow as version detection, but it can still easily take up 5- 10 seconds per
online host. Even without this, you can often guess the OS based on the name, open ports, and MAC

address on a LAN. And in many cases you may not care for the OS. So -0 is another candidate for
only-as-necessary use. As a compromise, you can specify --os scan-limit --max-os-tr ies 1
which tells Nmap not to retry OS detection attempts which fail to match, and also to skip OS detection
against any on line hosts that don't have at least one open TCP port and one closed TCP port. OS detection
isn't as accurate against such hosts anyway.

6.2. Scan Time Reduction Techniques

Remember to turn off DNS resolution when it isn't necessary.
By default, Nmap performs reverse-DNS resolution against every host that is found to be online. It is
done against all hosts if you skip the ping step with -PN or specify -R. This was a major bottleneck
when host DNS libraries were used to look up one IP at a time.

While Nmap now has a fast parallel reverse-DNS system to speed queries, they still can take a substantial
amount of time. Disable them with the -n option when you don't need the data. For simple scans (such
as ping scans) against a large number of hosts, omitting DNS can sometimes reduce scan time by 20%
or more. DNS time is not a major factor in more involved scans which probe thousands of ports or utilize
intensive features such as version detection. If you want the Nmap host machine to handle name resolution
(using the gethostbyaddr function), specify the --systern-dn s option. Doing so can slow scans
down dramatically.

6.2.2. Optimize Tim ing Parameters

Nmap offers dozens of options for providing hints and rules to control scan activity. These range from high
level timing aggressiveness levels provided by the -T option (described in Section 6.6, "Timing Templates
(·T)" [1 42)) to the finer-grained controls described in Section 6.5, "Low-Level Timing Controls" [1 4 1] . You
can even combine the two. These options are particularly useful when scanning highly filtered networks
where Nmap receives few responses to determine its own timing estimates. Scan time can often be safely
cut in half. Most of these options will have little effect against a local LAN filled with responsive hosts, as
Nmap can determine optimal values itself in that case.

6.2.3. Separate and Optimize U DP Scans

Scanning UDP ports i s important because many vulnerable services use that protocol, but the timing
characteristics and performance requirements of UDP scans are much different than TCP scans. Of particular
concern is ICMP error rate-limiting, which is extremely common and affects UDP scans far more often than
TCP.

for these reasons, I don't recommend combining TCP and UDP scans when performance is critical, even
!bough Nmap supports doing so with options such as - s SU. You often want different timing flags for each

tocol, requiring separate command lines. Section 5.4.2, "Speeding Up UDP Scans" [1 05) provides valuable
tricks and real-life examples for improving UDP scan performance .

. 2.4. Upgrade Nmap

have been many cases where I have investigated reports of poor Nmap performance only to find that
reporter used an ancient version that was many years out of date. The newest versions of Nmap have

portant algorithmic improvements, bug fixes, performance-enhancing features such as local network ARP
ning, and more. The first response to performance problems should be to compare your version of Nmap
nmap -V) with the latest version available from http://nmap.org. Upgrade if necessary. If it is still not
enough, try the other techniques in this chapter.

6.2. Scan Time Reduction Techniques 1 37

6.2.5. Execute Concurrent Nmap Instances

Some people try to speed up Nmap by executing many copies in parallel against one target each. For example,
the Nessus scanner used to do this by default. This is usually much less efficient and slower than letting
Nmap run against the whole network. Nmap has its own parallelization system that is customized to its needs,
and Nmap is able to speed up as it learns about network reliability when it scans a large group. Further, there
is substantial overhead in asking the OS to fork 65,536 separate Nmap instances just to scan a class B. Having
dozens of copies of Nmap running in parallel is also a memory drain since each instance loads its own copy
of the data files such as nmap- services and nmap-o s-db.

While launching single-host Nmap scans in parallel is a bad idea, overal l speed can usually be improved by
dividing the scan into several large groups and executing those concurrently. Don't go overboard though.
Five or ten Nmap processes are fine, but launching 100 Nmap processes at once is not recommended.
Launching too many concurrent Nmap processes leads to resource contention. Another sort of concurrency
is to run Nmap from different hosts at once. You can have cron (or At on Windows) schedule local hosts
on each of your networks to start scanning machines local to them at the same time, then mail the results to
a central data server. Scanning your Australian network from the U.S. will be slower than scanning it from
a local machine on that network. The difference will be even greater if the U.S. machine must traverse extra
firewalls to reach the distant network.

6.2.6. Scan From a Favorable Network Location

Restrictive firewalls can turn a five-second scan into a multi-hour chore. The latency and packet loss associated
with some Internet routes doesn't help either. If you can run Nmap from host(s) local to the target network,
do so. Of course if the goal i s to view the network as an external attacker would, or to test the firewall,
external scanning is required. On the other hand, scanning and securing the internal network provides defense
in depth which i s critical against internal threats and those wily attackers who circumvent the firewall (see
Chapter 10, Detecting and Subverting Firewalls and Intrusion Detection Systems [257)).

When doing reverse DNS resolution, especially if you have a heavily burdened local nameserver, it can help
to use a less busy nameserver or directly query the authoritative nameservers. This gain is usually slight and
only worth doing for repeated or enormous scans. Of course, there are sometimes non-performance reasons
for choosing nameservers.

6.2. 7. I ncrease Avai lable Bandwidth and CPU Time

You can occasionally improve Nmap scan times by increasing your available bandwidth or CPU power. This
may be done either by installing a new data l ine or CPU, or by halting concurrently running applications
which compete for these resources. For example, Nmap will run slower if you concurrently saturate your
DSL line by downloading a pirate torrent of The Matrix Reloaded.

It is far more common that Nmap is constrained by its own congestion control algorithms than being
CPU-bound or l imited by the available local bandwidth. These controls help prevent network flooding and
increase accuracy. Increasing CPU power and local bandwidth won't help this sort of self-limiting by
Nmap--timing options must be adjusted instead. You can test whether Nmap is CPU constrained by monitoring
your CPU load with an application such as top on Unix or the Task Manager on Windows. If your CPU
spends most of its time idle, then upgrading won't help much. To test Nmap's bandwidth usage, run it in

138 6.2. Scan Time Reduction Techniques

verbose mode (- v). Nmap will then report the number of bytes sent and received and its execution time, as
shown in Example 6. 1 .

Example 6.1. Bandwidth usage over local 100 Mbps ethernet network

t nrnap -v -n -p- sec . t itan . net

Starting Nmap (http : / /nmap . org
1 10 lines cut J iteresting ports on 1 9 2 . 1 6 8 . 0 . 8 :

t shown : 6 5 5 3 4 c losed port s
RT STATE SERVICE
/tcp open ssh
C Address : 0 0 : 1A : 6B : C 1 : 33 : 3 7 (US I)

p done : 1 IP addre s s (1 host up) scanned i n 2 . 2 0 s econds
Raw packets sent : 6 5 5 3 6 (2 . 8 8 4MB) I Rcvd : 6 5 5 3 6 (2 . 6 2 1MB)

Multiply the byte values by eight and divide by the execution time to get the average bandwidth usage in
bits per second. In Example 6. 1 , Nmap received 2,621 ,000 bytes (Nmap considers 1 ,000,000 bytes to be a
MB) in 2.20 seconds. So receive traffic was about 9.5 Mbps (send rate was 1 0.5 Mbps). Therefore the
100 Mbps ethernet link isn't likely constraining Nmap, and upgrading to gigabit ethernet won't help much.

Some consumer broadband devices and other equipment has a hard time dealing with the rate of packets sent
by Nmap, even though the small packet size (usually Nmap sends empty headers) keeps bandwidth low. In
Example 6. 1, "Bandwidth usage over local 100 Mbps ethernet network" [1 39], Nmap sent about 30,000
packets per second and received a similar number. Such high packet rates can cause problem with low-quality
devices. In this case, we see that both send and receive packet counts were 65,536, which is the number of
scanned ports (65,535) plus one for the initial ARP ping probe. Therefore Nmap did not encounter any packet
drops requiring retransmission. This suggests again that the networking equipment was not a limiting
factor-Nmap was probably CPU bound.

6.3. Coping Strateg ies for Long Scans
While optimizing scan options to speed up a scan can take you a long way, there is a limit to how fast Nmap
can run while preserving accuracy and treating competing network flows fairly. Large scans involving
thousands of hosts, all 65K ports, UDP, or version detection are likely to take a while even after optimization.
This section provides powerful strategies for coping with these long scans.

6.3.1 . Use a Multi-stage Approach

A comprehensive security audit will need to include UDP and TCP scanning of all 65,536 ports for each
protocol, usually with -PN just in case a machine is up but heavily filtered. Yet fewer than 100 of those port
numbers are commonly used and most hosts are responsive with moderate host discovery options. So specify
-F to perform a quick scan popular ports on known-online hosts first. That lets you analyze the online hosts
and most of the open ports while you start the huge -PN scan of all TCP and UDP ports with version and
00 detection in the background. Short cut options for speeding up the quick scan are discussed in Section 6.2. 1 ,
"Omit Non-critical Tests" [1 36]. Once the slow scan is done, compare it to the earlier results to find any
newly discovered hosts or ports.

6.3. Coping Strategies for Long Scans 1 39

6.3.2. Estimate and Plan for Scan Time

I n many cases, the most frustrating aspect of long scans is having n o idea when they will complete. Nmap
is now more helpful than it used to be in that it provides regular scan time estimates as long as verbose mode
(-v) is enabled.

Example 6.2. Estimating scan time

nmap -T4 -sS -pO- -iR 5 0 0 -n --min-hostgroup 1 0 0 -v

Starting Nmap (http : //nmap . org)
I n i t iating SYN Stea l t h Scan against 2 9 host s [6 5 536 por t s /hos t) at 2 3 : 2 7
[. . .]
SYN Stealth Scan Timing : About 0 . 3 0 % done ; ETC : 0 9 : 45 (1 0 : 1 5 : 4 5 remaining)

Example 6.2 shows us that the SYN scan is likely to take ten hours and eighteen minutes (23 :27 to 9:45) to
scan 29 hosts. So the total time Nmap will spend scanning the network can be roughly extrapolated by

multiplying 21 minutes per host by the number of hosts online. If version detection or UDP are being done
as well, you'll also have to watch the timing estimates for those.

Another option is to wait until Nmap has fully completed scanning its first group of hosts. Then extrapolate
the time taken for the size of that set over the size of the entire target network. This is simpler because you
don't need to worry about individual scan components. Basing your estimates on the number of target IP

addresses finished versus the target IP space size can be misleading, as online hosts are rarely evenly distributed
among that IP space. They are usually found in clumps, often near the beginning of the IP space. So if the
scan itself includes host discovery (i.e. no -PN option), a more accurate measure is to ping scan the entire
network first and then base your estimates on the number of online hosts Nmap has completed scanning
versus the number found online by the ping scan.

While occasional estimates are printed automatically in verbose mode, you can always request the current
· estimate by pressing <enter> (see Section 15. 15 , "Runtime Interaction" [41 O]). If the estimate is within
your timeframe, you can schedule something else to do while it proceeds. That beats checking whether Nmap
is done every 20 minutes. An estimate showing that Nmap won't finish on time is even more valuable. You
can immediately work on optimizing the scan or lengthening the engagement. Your options are much more
limited if you only determine the scan is too slow after the deadline passes and Nmap is still running.

6.4. Port Selection Data and Strateg ies
Port scanning can be the most time consuming portion of an Nmap scan, even when the scan includes version
detection or NSE scripts. Port scan time is roughly proportional to the number of ports scanned, so reducing
the number of ports provides a significant performance boost. The down side is that reduced scans are less
comprehensive, so you might miss open ports.

The reality is that there are 65,536 ports in each protocol, and most of them are almost never open. I spent
a summer conducting large-scale scans to determine the prevalence of each TCP and UDP port. The results
include data from scanning tens of mill ions of Internet IP addresses as well as enterprise networks scanned
from within. This section provides empirical results you can rely on to strike the right balance between speed
and effectiveness in your scans.

140 6.4. Port Selection Data and Strategies

While more than a hundred thousand (total) TCP and UDP ports exist, the vast majority of open ports fall
within a much smaller set. According to our research, the top 10 TCP ports and top I ,075 UDP ports represent
half of the open ports for their protocol. To catch 90% of the open ports, you need to scan 576 TCP ports
and 1 1 ,307 UDP ports. By default, Nmap scans the top 1 ,000 ports for each scan protocol requested. This
catches roughly 93% of the TCP ports and 49% of the UDP ports. With the -F (fast) option, only the top
100 ports are scanned, providing 78% TCP effectiveness and 39% for UDP. To specify a different number
of ports, specify that value to the --top-ports option. Table 6.1 provides an approximation of the number
ofTCP or UDP ports you must scan to reach a given effectiveness rate for that protocol.

Table 6.1. Required - -top-port s values for reaching various effectiveness levels

Effectiveness TCP ports required UDP ports required

10% I 5

20% 2 1 2

30% 4 27

40% 6 1 35

50% IO 1 ,075

60% 1 8 2,618

70% 44 5 , 157

80% 1 22 7,981

85% 236 9,623

90% 576 1 1 ,307

95% 1 ,558 1 3,035

99% 3,328 1 5,094

100% 65,536 65,536

While Nmap can handle port selection for you automatically (when you rely on defaults or use options such
as -F or --top-ports), specifying ports explicitly with -p is often useful. In either case, familiarity with
the most commonly seen open ports is important. The top ports according to our data are described in
Section 4.1 .2, "What Are the Most Popular Ports?" [75) .

6.5. Low-Level Tim ing Controls
Nmap offers many fine-grained options for controlling scan speed. Most people use these options to speed
Nmap up, but they can also be useful for slowing Nmap down. People do that to evade IDS systems, reduce
network load, or even improve accuracy if network conditions are so bad that even Nmap's conservative
default is too aggressive.

Table 6.2 lists each low-level timing control option by function. For detailed usage information on every
option, read Section 1 5 . 1 1 , "Timing and Performance" [394) . It is assumed that the reader is already familiar
with the Nmap scanning algorithms described in Section 5 . 13 , "Scan Code and Algorithms" [1 28) .

6.5. Low-Level Timing Controls 141

Table 6.2. Low-level timing controls by function

Function Options

Hostgroup (batch of hosts scanned concurrently) size --min-hostgroup, - -max-hostgroup

Number of probes launched in parallel --min-paralle l i sm, --max-parallelism

Probe timeout values --min-rtt-t imeout, --max-rtt-t imeout,
- - i n i t i a l - r t t - t imeout

Maximum number of probe retransmissions allowed --max-ret r i e s

Maximum time before giving up on a whole host --host-t imeout

Control delay inserted between each probe against an - - s c an-del ay, --max- s can-de lay
individual host

Rate of probe packets sent per second --min-rate, - -max-rate

Defeat RST packet response rate by target hosts - -de feat- r s t -ratel imit

6.6. Tim ing Templates (-T)
While the fine-grained timing controls discussed i n the previous section are powerful and effective, some
people find them confusing. Moreover, choosing the appropriate values can sometimes take more time than
the scan you are trying to optimize. So Nmap offers a simpler approach, with six timing templates. You can
specify them with the -T option and their number ((}-5) or their name. The template names are paranoid (O),
s neaky (1), polite (2), normal (3), aggre s s ive (4), and in sane (5). The first two are for IDS

evasion. Polite mode slows down the scan to use Jess bandwidth and target machine resources. Normal mode
is the default and so -T3 does nothing. Aggressive mode speeds scans up by making the assumption that
you are on a reasonably fast and reliable network. Finally insane mode assumes that you are on an
extraordinarily fast network or are willing to sacrifice some accuracy for speed.

These templates allow the user to specify how aggressive they wish to be, while leaving Nmap to pick the
exact timing values. The templates also make some minor speed adjustments for which fine-grained control
options do not currently exist. For example, -T4 prohibits the dynamic scan delay from exceeding 10 ms
for TCP ports and -TS caps that value at 5 ms. Templates can be used in combination with fine-grained
controls, and the granular options will override the general timing templates for those specific values. I
recommend using -T4 when scanning reasonably modern and reliable networks. Keep that option (at the
beginning of the command line) even when you add fine-grained controls so that you benefit from those
extra minor optimizations that it enables.

Table 6.3 shows how the timing variables vary for each -T value. All time values are in milliseconds.

Table 6.3. Timing templates and their effects

TO Tl T2 T3 T4 TS

Name Paranoid Sneaky Polite Normal Aggressive Insane

min-rtt-t imeout JOO JOO 100 100 100 50

max-rtt-t imeout 300,000 1 5,000 10,000 10,000 1 ,250 300

142 6.6. Timing Templates (-T)

TO Tl T2 T3 T4 TS

initial -rtt -t imeout 300,000 1 5,000 1 ,000 1 ,000 500 250

max-retries 10 10 10 10 6 2

Initial (and minimum) scan delay 300,000 1 5,000 400 0 0 0

(--scan-delay)
Maximum TCP scan delay 300,000 1 5,000 1 ,000 1 ,000 1 0 5

Maximum UDP scan delay 300,000 1 5,000 1 ,000 1 ,000 1 ,000 1 ,000

host-timeout 0 0 0 0 0 900,000

min-parallelism Dynamic, not affected by timing templates

max-paral l e l i sm I I I Dynamic Dynamic Dynamic

min-hostgroup Dynamic, not affected by timing templates

max-hostgroup Dynamic, not affected by timing templates

min-rate No minimum rate limit

max-rate No maximum rate limit

defeat-rst-ratel imit Not enabled by default

If you are on a decent broadband or ethernet connection, I would recommend always using -T 4 . Some people
love -TS though it is too aggressive for my taste. People sometimes specify -T2 because they think it is
less likely to crash hosts or because they consider themselves to be polite in general. They often don't realize
just how slow -T polite really is. They scan may take ten times longer than a default scan. Machine
crashes and bandwidth problems are rare with the default timing options (-T3) and so I normally recommend
that for cautious scanners. Omitting version detection is far more effective than playing with timing values
for reducing these problems.

While -TO and -Tl may be useful for avoiding IDS alerts, they will take an extraordinarily long time to
scan thousands of machines or ports. For such a long scan, you may prefer to set the exact timing values you
need rather than rely on the canned -TO and -Tl values.

6.7. Scanning 676,352 I P Addresses in 46
Hours
This story was submitted by Jack L. Mogren of the Mayo Clinic. It functions as a tutorial, demonstrating the
llleps he took to implement a regular Nmap scanning regime and reduce scan time of this huge network from
a week to 46 hours.

The Mayo Clinic has built a relatively large private network, with ARP tables indicating over 70,000 IP
addresses in use. Our network management used to focus on creating and maintaining the physical architecture
across three major campuses and several dozen satellites across the country. Our motto was "You need it?
We11 build it". There was little regard for what was actually connected to the network. Network management
conveniently ended at the data jack and suffered from the candy bar syndrome. It was crunchy and secure
from the outside, but soft and chewy on the inside. We had well protected boundaries but few internal controls.

6. 7. Scanning 676,352 IP Addresses in 46 Hours 143

This attitude changed abruptly in January 2003 when the Slammer worm (W32.SQLExp) and its variants
broke into our environment. Suddenly it became very important to know what was connected to our network.
In the case of Slammer, we needed to know where all the devices running MS SQL Server 2000 or MSDE
2000 were located and who the administrators were. Lacking this information, the effort to eradicate Slammer
lasted several months.

Thus was born the effort to "Know what's on the network". It sounds simplistic, but given size, complexity
and network history, this was a major step forward and a new direction for our network management services.

Nmap has proven to be a valuable tool in this effort. You can't beat the price, and I appreciate the advantages
that the open-source community brings to its development. Especially OS fingerprinting and the many
contributions provided by end users.

I began experimenting with Nmap. My goal was to create a meaningful network inventory by using the Nmap
-0 option to quickly perform remote host identification via TCP/IP fingerprinting.

Let me start with a few words about our IP environment and my scanning platform. We currently own one

class B and 44 class C ranges as well as using most of the private address space. That adds up to 676,352
possible IP addresses. I performed my scans from a Compaq DL380 running Red Hat Linux 8.0. My first
attempt was this vanilla TCP SYN scan with OS detection (-0) and only ICMP echo requests for host

discovery (-PE):

nmap -0 -PE -v -ox mayo . xml - i L ip_networks . txt

Unfortunately, that proceeded so slowly that it would have taken a week to scan our entire network. Given
that all significant parts of our network were connected by at least a T I l ine (1 .54 Mbps), I added the i n sane

canned timing policy (-T 5). I also added fast scan mode (-F), which cut the number of ports scanned from
about 1600 w 12002. I also added --osscan-l imi t so Chae Nmap doesn 't waste time OS scanning hosts
with no ports open. This resulted in the following command:

nmap -0 -TS -PE -F --osscan- l imit -v -ox mayo . xml - i L ip_networks . txt

Unfortunately, this looked l ike it would sti l l take a few days. So I edited the nmap-services file to trim
down the number of ports to 270. The scan then finished in a little over 49 hours and found 66,558 devices.
Tweaking the timing variables, removing the verbose option, and redirecting output to / dev /null reduced
that time to 46 hours. That left me with this f

i
nal command:

nmap -0 -TS -PE -F --osscan-l imit --max-rtt -t imeout 1 0 0 \
--max-para l l e l i sm 1 0 0 --min-hostgroup 1 0 0 -ox mayo . xml \
- i L ip_networks . txt

I plan to perform this scan on a weekly basis and provide the output in the XML format to an MS SQL
database. Our other scan methods already feed into this database and we are able to create reports that help
us meet our original goal of knowing what's on the network. I may decide to distribute the load by running
subsets of the scanning on several systems.

2With Nmap version 4.75 or higher, -F is even more effective in that it cuts the number of scanned ports to JOO.

144 6.7. Scanning 676,352 IP Addresses in 46 Hours

Chapter 7. Service and Appl ication
Version Detection

7.1 . Introduction
While Nmap does many things, its most fundamental feature i s port scanning. Point Nmap at a remote
machine, and it might tell you that ports 2 5 / t cp, 8 0 / t cp, and 5 3 / udp are open. Using its
nmap- servi ces database of more than 2,200 well-known services, Nmap would report that those ports
probably correspond to a mail server (SMTP), web server (HTTP), and name server (DNS) respectively.
This lookup is usually accurate-the vast majority of daemons listening on TCP port 25 are, in fact, mail
servers. However, you should not bet your security on this! People can and do run services on strange ports.
Perhaps their main web server was already on port 80, so they picked a different port for a staging or test
server. Maybe they think hiding a vulnerable service on some obscure port prevents "evil hackers" from
finding it. Even more common lately is that people choose ports based not on the service they want to run,
but on what gets through the firewal I . When ISPs blocked port 80 after major Microsoft ITS worms CodeRed
and Nimda, hordes of users responded by moving their personal web servers to another port. When companies
block Telnet access due to its horrific security risks, I have seen users simply run telnetd on the Secure Shell
(SSH) port instead.

Even if Nmap is right, and the hypothetical server above is running SMTP, HTTP, and DNS servers, that is ·
not a lot of information. When doing vulnerability assessments (or even simple network inventories) of your
companies or clients, you really want to know which mail and DNS servers and versions are running. Having
an accurate version number helps dramatically in determining which exploits a server is vulnerable to. Do
keep in mind that security fixes are often back-ported to earlier versions of software, so you cannot rely
solely on the version number to prove a service is vulnerable. False negatives are rarer, but can happen when
silly administrators spoof the version number of a vulnerable service to make it appear patched.

Another good reason for determining the service types and version numbers is that many services share the
same port number. For example, port 2 5 8 / t cp is used by both the Checkpoint Firewall- I GUI management
interface and the yak Windows chat client. This makes a guess based on the nmap-services table even
less accurate. Anyone who has done much scanning knows that you also often find services listening on
unregistered ports-these are a complete mystery without version detection. A final problem is that fi ltered
UDP ports often look the same to a simple port scanner as open ports (see Section 5 .4, "UDP Scan
(-sU)" [10 l]). But if they respond to the service-specific probes sent by N map version detection, you know
for sure that they are open (and often exactly what is running).

Service scans sometimes reveal information about a target beyond the service type and version number.
Miscellaneous information discovered about a service is collected in the "info" field. This is displayed in
the VERS I ON column inside parentheses following the product name and version number. This field can
include SSH protocol numbers, Apache modules, and much more.

Some services also report their configured hostnames, which differ from machines' reverse DNS hostnames
surprisingly often. The hostname field is reported on a Service I nf o l ine following the port table. It
sounds like a minor information leak, but can have consequences. One year at the CanSecWest security
conference, I was huddled up in my room with my laptop. Suddenly the tcpdump window in the corner of

7. 1 . Introduction 145

my screen went wild and I realized my machine was under attack. I scanned back and found an unusual high
port sitting open. Upon connecting, the port spewed a bunch of binary characters, but one ASCII field in the
output gave a configured domain name. The domain was for a small enough security company that I knew
exactly who was responsible. I had the front desk ring his hotel room, and boy was he surprised when I asked
him to stop probing my box.

Two more fields that version detection can discover are operating system and device type. These are also
reported on the Service I n f o line. We use two techniques here. One is application exclusivity. If we

identify a service as Microsoft Exchange, we know the operating system is Windows since Exchange doesn't
run on anything else. The other technique is to persuade more portable applications to divulge the platform
information. Many servers (especially web servers) require very little coaxing. This type of OS detection is
intended to complement Nmap's OS detection system (-0) and can sometimes report differing results.
Consider a Microsoft Exchange server hidden behind a port-forwarding Unix firewall .

The Nmap version scanning subsystem obtains a l l of this data by connecting to open ports and interrogating
them for further information using probes that the specific services understand. This allows Nmap to give a
detailed assessment of what is really running, rather than just what port numbers are open. Example 7.1
shows the actual output.

Example 7.1. Simple usage of version detection

nmap -A - T 4 -F insecure . or g

Start ing Nmap (http : / /nmap . or g
Interesting port s on insecure . erg (2 0 5 . 2 1 7 . 1 53 . 53) :
(The 1 2 06 port s scanned but not shown bel ow are in stat e : f i ltered)
PORT STATE SERVICE VERSION
2 2 /tcp open s s h OpenSSH 3 . l p l (protocol 1 . 9 9)
2 5 /tcp open smtp Qma i l smtpd
5 3 /tcp open domain I SC BIND 9 . 2 . 1
8 0/tcp open http Apache httpd 2 . 0 . 3 9 ((Unix) mod_perl / 1 . 9 9_0 7 -dev)
1 1 3 / tcp c losed auth
Device t ype : general purpos e
Runn in g : Linux 2 . 4 . X 1 2 . 5 . X
OS deta i l s : Linux Kernel 2 . 4 . 0 - 2 . 5 . 2 0

Nmap f i n i shed : 1 IP address (1 host up) s canned in 3 4 . 9 6 2 seconds

Nmap version detection offers the following advanced features (fully described later):

• High speed, parallel operation via non-blocking sockets and a probe/match definition grammar designed
for efficient yet powerful implementation.

• Determines the application name and version number where available-not just the service protocol.

• Supports both the TCP and UDP protocols, as well as both textual ASCII and packed binary services.

• Multi-platform support, including Linux, Windows, Mac OS X, FreeBSD/NetBSD/OpenBSD, Solaris,
and all the other platforms on which Nmap is known to work.

146 7.1 . Introduction

• If SSL is detected, Nmap connects using OpenSSL (if available) and tries to determine what service is
listening behind that encryption layer. This allows it to discover services like HTTPS, POP3S, IMAPS,
etc. as well as providing version details.

• If a SunRPC service is discovered, Nmap launches its brute-force RPC grinder to find the program number,
name, and version number.

• 1Pv6 is supported, including TCP, UDP, and SSL over TCP.

• Community contributions: if Nmap gets data back from a service that it does not recognize, a service
fingerprint is printed along with a submission URL. This system is patterned after the extremely successful
Nmap OS Detection fingerprint submission process. New probes and corrections can also be submitted.

• Comprehensive database: Nmap recognizes more than one thousand service signatures, covering more
than 180 unique service protocols from ACAP, AFP, and AIM to XML-RPC, Zebedee, and Zebra.

7.2 . Usage and Examples
Before delving into the technical details of how version detection is implemented, here are some examples
demonstrating its usage and capabilities. To enable version detection, just add - s V to whatever Nmap flags
you normally use. Or use the -A option, which turns on version detection and other Advanced and Aggressive
features later. It is really that simple, as shown in Example 7.2.

Example 7.2. Version detection against www.microsoft.com

I nmap -A -T4 -F www . microsoft . com

Starting Nmap (http : / /nmap . org)
lnteresting ports on 8 0 . 6 7 . 6 8 . 3 0 :
The 1208 ports scanned but not shown below are i n state : closed)

f()��!cp ����
E

::�
VI CE

�:!���I SSH (protocol 1 . 5)
/tcp open http AkamaiGHost (Akamai ' s HTTP Acceleration service)
3/tcp open ssl /http AkamaiGHost (Akamai ' s HTTP Acceleration service)
vice type : general purpose
nning : Linux 2 . l . X l 2 . 2 . X
details : Linux 2 . 1 . 1 9 - 2 . 2 . 2 5

Nmap finished : 1 IP address (1 host up) scanned in 1 9 . 2 2 3 seconds

This preceding scan demonstrates a couple things. First of all , it is gratifying to see www.Microsoft.Com
served off one of Akamai's Linux boxes. More relevant to this chapter is that the listed service for port 443
is s s l / ht tp. That means that service detection first discovered that the port was SSL, then it loaded up
OpenSSL and performed service detection again through SSL connections to discover a web server running
AkamiGHost behind the encryption. Recall that -T 4 causes Nmap to go faster (more aggressive timing) and
-F tells Nmap to scan only ports registered in nmap-services.

Example 7.3 is a longer and more diverse example.

7.2. Usage and Examples 147

Example 7.3. Complex version detection

nmap -A -T4 localhost

Starting Nmap (http : / /nmap . org
I nteres t ing port s on felix (1 2 7 . 0 . 0 . 1) :
(The 1 6 4 0 port s s canned but not shown below are in state : c losed)
PORT STATE SERVICE VERS I ON
2 1 / t cp open ftp WU-FTPD wu-2 . 6 . 1 - 2 0
2 2 / t cp open s s h OpenSSH 3 . lpl (protocol 1 . 9 9)
5 3 / tcp open domain I SC B IND 9 . 2 . 1
7 9 / tcp open finger L inux fingerd
1 1 1 / tcp open rpcbind 2 (rpc # 1 00 0 0 0)
4 4 3 / tcp open s s l / http Apache httpd 2 . 0 . 3 9 ((Unix) mod_perl / 1 . 9 9_04-dev)
5 1 5 / tcp open printer
6 3 1 / tcp open ipp CUPS 1 . 1
9 5 3 / tcp open rndc?
5 0 0 0 / tcp open s s l / ftp WU-FTPD wu-2 . 6 . 1 - 2 0
5 0 0 1 / tcp open s s l / ssh OpenSSH 3 . lpl (protocol 1 . 9 9)
5 0 0 2 /tcp open s s l / domain I SC B I ND 9 . 2 . 1
5 0 03 / t cp open s s l / f inger Linux f ingerd
6 0 0 0 / tcp open X l l (access denied)
8 0 0 0 / tcp open http-proxy Junkbuster webproxy
8 0 8 0 /tcp open http Apache httpd 2 . 0 . 3 9 ((Uni x) mod_per l / 1 . 9 9_04-dev)
8 0 8 1 / t cp open http Apache httpd 2 . 0 . 3 9 ((Unix) mod_per l / 1 . 9 9_0 4 -dev)
Device type : general purpose
Runni ng : L inux 2 . 4 . X l 2 . 5 . X
OS detai l s : Linux Kernel 2 . 4 . 0 - 2 . 5 . 2 0

Nmap fini shed : 1 I P address (1 host up) scanned in 4 2 . 4 9 4 seconds

You can see here the way RPC services are treated, with the brute-force RPC scanner being used to determine
that port 1 1 1 is rpcbind version 2. You may also notice that port 5 15 gives the service as pr i nter, but that
version column is empty. Nmap determined the service name by probing, but was not able to determine
anything else. On the other hand, port 953 gives the service as "rndc?". The question mark tells us that
Nmap was not even able to determine the service name through probing. As a fallback, rndc is mentioned
because that has port 953 registered in nmap-services . Unfortunately, none of Nmap's probes elicited
any sort of response from rndc. If they had, Nmap would have printed a service fingerprint and a submission
URL so that it could be recognized in the next version. As it is, Nmap requires a special probe. One might
even be available by the time you read this. Section 7. 7, "Community Contributions" [1 64] provides details
on writing your own probes.

It is also worth noting that some services provide much more information than just the version number.
Examples above include whether X 1 1 permits connections, the SSH protocol number, and the Apache module
versions list. Some of the Apache modules even had to be cut from the output to fit on this page.

A few early reviewers questioned the sanity of running services such as SSH and finger over SSL. This was
actually just fun with stunnel 1 , in part to ensure that parallel SSL scans actually work.

1 http://www.stunnel.org/

148 7.2. Usage and Examples

7.3. Technique Described
Nmap version scanning is actually rather straightforward. It was designed to be as simple as possible while
still being scalable, fast, and accurate. The truly nitty-gritty details are best discovered by downloading and
reviewing the source code, but a synopsis of the techniques used follows.

Nmap first does a port scan as per your instructions, and then passes all the open or open I f i l t ered

TCP and/or UDP ports to the service scanning module. Those ports are then interrogated in parallel, although
a single port is described here for simplicity.

I . Nmap checks to see if the port is one of the ports to be excluded, as specified by the Exel ude directive
in nmap- service-probes . If it is, Nmap will not scan this port for reasons mentioned in Section 7.6,
"nmap-service-probes File Format" [1 58] .

2. I f the port is TCP, Nmap starts by connecting to it . If the connection succeeds and the port had been in
the open I fi ltered state, it is changed to open. This is rare (for TCP) since people trying to be so
stealthy that they use a TCP scan type which produces open I f i l tered ports (such as FIN scan)
generally know better than to blow all of their stealth by performing version detection.

3. Once the TCP connection is made, Nmap listens for roughly five seconds. Many common services,
including most FTP, SSH, SMTP, Telnet, POP3, and IMAP servers, identify themselves in an initial
welcome banner. Nmap refers to this as the "NULL probe", because Nmap just listens for responses
without sending any probe data. If any data is received, Nmap compares it to hundreds of signature regular ·

expressions in its nmap-servi ce-probe s file (described in Section 7.6, "nmap-service-probes File
Format" [158]). If the service is fully identified, we are done with that port! The regular expression includes
substrings that can be used to pick version numbers out of the response. In some cases, Nmap gets a "soft
match" on the service type, but no version info. In that case, Nmap continues but only sends probes that
are known to recognize the soft-matched service type.

4. At this point, Nmap UDP probes start, and TCP connections end up here if the NULL probe above fails
or soft-matches. Since the reality is that most ports are used by the service they are registered to in
nmap-services, every probe has a list of port numbers that are considered to be most effective. For
example, the probe called GetRequest that recognizes web servers (among other services) lists 80-85,
8000-8010, and 8080-8085 as probable ports. Nmap sequentially executes the probe(s) that match the
port number being scanned.

Each probe includes a probe string (which can be arbitrary ASCII text or \xHH escaped binary), which
is sent to the port. Responses that come back are compared to a list of regular expressions of the same
type as discussed in the NULL probe description above. As with the NULL probe, these tests can either
result in a full match (ends processing for the remote service), a soft match (limits future probes to those
which match a certain service), or no match at all . The exact list of regular expressions that Nmap uses
to test for a match depends on the probe fallback configuration. For instance, the data returned from the
X I I Probe is very unlikely to match any regular expressions crafted for the GetRequest probe. On the
other hand, it is likely that results returned from a Probe such as RTSPRequest might match a regular
expression crafted for GetRequest since the two protocols being tested for are closely related. So the
RTSPRequest probe has a fallback to GetRequest matches. For a more comprehensive explanation, see
Section 7.3 . 1 , "Cheats and Fallbacks" [1 5 1] .

7.3. Technique Described 149

If any response during version detection is ever received from a UDP port which was in the
open I f i 1 tered state, that state is changed to open. This makes version detection an excellent
complement to UDP scan, which is forced to label all scanned UDP ports as open I f i 1 tered when
some common firewall rules are in effect. While combining UDP scanning with version detection can
take many times as long as a plain UDP scan, it is an effective and useful technique. This method is
described in Section 5.4. 1 , "Disambiguating Open from Filtered UDP Ports" [1 02].

5. In most cases, the NULL probe or the probable port probe(s) (there is usually only one) described above
matches the service. Since the NULL probe shares its connection with the probable port probe, this allows
service detection to be done with only one brief connection in most cases. With UDP only one packet is
usually required. But should the NULL probe and probable port probe(s) fail, Nmap goes through all of
the existing probes sequentially. In the case of TCP, Nmap must make a new connection for each probe
to avoid having previous probes corrupt the results. This worst-case scenario can take a bit of time,
especially since Nmap must wait about five seconds for the results from each probe because of slow
network connections and otherwise slowly responding services. Fortunately, Nmap util izes several
automatic techniques to speed up scans:

• Nmap makes most probes generic enough to match many services. For example, the GenericLines
probe sends two blank lines {"\ r \ n \ r \ n") to the service. This matches daemons of many diverse
service types, including FfP, ident, POP3, UUCP, Postgres, and whois. The GetRequest probe matches
even more service types. Other examples include "he lp \ r \ n" and generic RPC and MS SMB probes.

• If a service matches a so ftma t c h directive, Nmap only needs to try probes that can potentially match
that service.

• All probes were not created equal ! Some match many more services than others. Because of this, Nmap
uses the rarity metric to avoid trying probes that are extremely unlikely to match. Experienced Nmap
users can force all probes to be tried regardless or limit probe attempts even further than the default by
using the --ver s ion-intensity, --ver s ion-all , and --vers ion-l ight options discussed
i n Section 7.3.2, "Probe Selection and Rarity" [1 52].

6. One of the probes tests whether the target port is running SSL. If so (and if OpenSSL is available), Nmap
connects back via SSL and restarts the service scan to determine what is listening behind the encryption.
A special directive allows different probable ports for normal and SSL tunneled connections. For example,
Nmap should start against port 443 (HTTPS) with an SSL probe. But after SSL is detected and enabled,
Nmap should try the GetRequest probe against port 443 because that port usually has a web server listening
behind SSL encryption.

7. Another generic probe identifies RPC-based services. When these are found, the Nmap RPC grinder
(discussed later) is initiated to brute force the RPC program number/name and supported version numbers.
Similarly, an SMB post-processor for fingerprinting Windows services may be added eventually.

8. If at least one of the probes elicits some sort of response, yet Nmap is unable to recognize the service, the
response content is printed to the user in the form of a.fingerprint. If users know what services are actually
listening, they are encouraged to submit the fingerprint to Nmap developers for integration into Nmap,
as described in Section 7. 7. 1 , "Submit Service Fingerprints" [1 64].

1 50 7.3. Technique Described

7.3.1 . Cheats and Fal lbacks

Even though Nmap waits a generous amount of time for services to reply, sometimes an application is slow
to respond to the NULL probe. This can occur for a number of reasons, including slow reverse DNS lookups
performed by some services. Because of this, Nmap can sometimes match the results from a subsequent
probe to a match line designed for the NULL probe.

For example, suppose we scan port 25 (SMTP) on a server to determine what is listening. As soon as we
connect, that service may conduct a bunch of DNS blacklist lookups to determine whether we should be
treated as spammers and denied service. Before it finishes that, Nmap gives up waiting for a NULL probe
response and sends the next probe with port 25 registered, which is "HELP\ r \ n". When the service finally
completes its anti-spam checks, it prints a greeting banner, reads the Help probe, and responds as shown in
Example 7.4.

Example 7.4. NULL probe cheat example output

20 hcsw . org ESMTP Sendmail 8 . 1 2 . 3 / 8 . 1 2 . 3 /Debian- 7 . 1 ; Tue , [cut]
14-2 . 0 . 0 This is sendmail version 8 . 1 2 . 3
14-2 . 0 . 0 Topics :
4-2 . 0 . 0 HELO EHLO MAIL RCPT DATA
4-2 . 0 . 0 RSET NOOP QUIT HELP VRFY

EXPN VERB
STARTT LS

ETRN DSN

For more info use " HELP <topic> " .

AUTH

To report bugs in the implementation send email to
4-2 . 0 . 0 sendmail-bugs@sendmail . org .
4-2 . 0 . 0 For local information send email to Postmaster at your site .
14 2 . 0 . 0 End of HELP info

Nmap reads this data from the socket and finds that no regular expressions from the Help probe match the
data returned. This is because Nmap normally expects to receive the ESMTP banner during the NULL probe
and match it there.

Because this is a relatively common scenario, Nmap "cheats" by trying to match responses to any of the
NULL Probe match lines if none of the probe-specific Jines match. In this case, a null match line exists which
reports that the program is Sendmail, the version is 8 . 12.3/8 . 12.3/Debian-7. l , and the hostname is hcsw.org.

The NULL probe cheat is actually just a specific example of a more general Nmap feature: fallbacks. The
fallback directive is described in detail in Section 7.6, "nmap-service-probes File Format" [1 58] . Essentially,
any probe that is likely to encounter results that can be matched by regular expressions in other probes has
a fallback directive that specifies these other probes.

For example, in some configurations of the popular Apache web server, Apache won't respond to the
GetRequest ("GET I HTTP / 1 . 0 \ r \ n \ r \ n") probe because no virtual host name has been specified.
Nmap is still able to correctly identify these servers because those servers usually respond to the HTTPOptions
probe. That probe has a fallback to the GetRequest regular expressions, which are sufficiently general to
recognize Apache's responses to the HTTPOptions probes.

7.3 . Technique Described 15 1

7.3.2. Probe Selection and Rarity

In determining what probes to use, Nmap considers their rarity. This is an indication of how \ike\-y \\'e
probe is to return useful data. If a probe has a high rarity, it is considered less common and is less l ikely to
be tried. Nmap users can specify which probes are tried by changing the intensity level of the version scan,
as described below. The precise algorithm Nmap uses when determining which probes to use follows:

I . For TCP, the NULL probe is always tried first.

2. All probes that have the port being scanned listed as a probable port (see Section 7.6, "nmap-service-probes
File Format" [1 58)) are tried in the order they appear in nmap-servi ce-probe s.

3. Al l other probes that have a rarity value less than or equal to the current intensity value of the scan are
tried, also in the order they appear in nmap-servi ce-probe s.

Once a probe is found to match, the algorithm terminates and results are reported.

Because all of Nmap's probes (other than the NULL probe) have a rarity value associated with them, it is
relatively easy to control how many of them are tried when performing a version scan. Simply choose an
intensity level appropriate for a scan. The higher an intensity level, the more probes will be tried. So if a
very comprehensive scan is desired, a high intensity level is appropriate-even though it may take longer
than a scan conducted at a lower intensity level. Nmap's default intensity level is 7 but Nmap provides the
following switches for different scanning needs:

--ve r s i on-intensity <i n t en s i ty l e vel bet ween O and 9>

Sets the intensity level of a version scan to the specified value. If 0 is specified, only the NULL probe
(for TCP) and probes that list the port as a probable port are tried. Example: nmap -sV --version-intensity
3 scanme.nmap.org

--ve r s i on-intensity

Sets the intensity level to 2. Example: nmap -sV --version-light scanme.nmap.org

--ver s ion-a l l
Sets the intensity level to 9. Since all probes have a rarity level between I and 9, this tries all of the
probes. Example: nmap -sV --version-all scanme.nmap.org

7.4. Techn ique Demonstrated
If the English description above i s not clear enough, you can see for yourself how it works by adding the
--vers ion-trace (and usually -d (debugging)) options to your Nmap command l ine. This shows al l
the connection and data read/write activity of the service scan. An annotated real-world example follows.

. nmap -sSV - T4 -F -d --version-trace insecure . erg

Starting Nmap (http : / /nmap . org)
Host insecure . erg (2 0 5 . 2 1 7 . 1 53 . 53) appears to be up . . . good .

1 52 7.4. Technique Demonstrated

Initiating SYN Stealth Scan against insecure . erg (2 0 5 . 2 1 7 . 1 53 . 53) at 1 9 : 53
Initiating service scan against 4 services on 1 host at 1 9 : 5 3

The SYN scan has found 4 open ports-now we are beginning a service scan against each of them in parallel.
We start with a TCP connection for the NULL probe:

Starting probes against new service : 2 05 . 2 1 7 . 1 5 3 . 5 3 : 2 2 (tcp)
NSOCK (2 . 0 7 50s) TCP connection requested to 2 05 . 2 1 7 . 1 5 3 . 53 : 2 2 (IOD # 1) E I D 8
Starting probes against new service : 2 05 . 2 1 7 . 1 53 . 5 3 : 2 5 (tcp)
NSOCK (2 . 0 7 70s) TCP connection requested to 2 05 . 2 1 7 . 1 53 . 53 : 2 5 (IOD # 2) E I D 1 6
Starting probes against new service : 2 05 . 2 1 7 . 1 53 . 5 3 : 53 (tcp)
NSOCK (2 . 0 8 3 0 s) TCP connection requested to 2 05 . 2 1 7 . 1 53 . 53 : 53 (IOD # 3) E I D 2 4
Starting probes against new service : 2 05 . 2 1 7 . 1 5 3 . 5 3 : 80 (tcp)
NSOCK (2 . 0 8 60s) TCP connection requested to 2 05 . 2 1 7 . 1 53 . 53 : 8 0 (IOD # 4) E I D 3 2
NSOCK (2 . 0 8 70s) Callback : CONNECT SUCCESS for E I D 3 2 [2 05 . 2 1 7 . 1 53 . 53 : 8 0)
NSOCK (2 . 0 8 7 0 s) Read request from IOD # 4 [2 05 . 2 1 7 . 1 53 . 53 : 8 0)

NSOCK (2 . 0 8 7 0 s)
NSOCK (2 . 0 8 7 0 s)

NSOCK (2 . 0 870s)
NSOCK (2 . 0 8 7 0 s)

NSOCK (2 . 0 8 70 s)
NSOCK (2 . 0 8 70 s)

(t imeout : 5 0 0 0ms) E I D 4 2
Callback : CONNECT SUCCESS for E ID 2 4 [2 0 5 . 2 1 7 . 1 5 3 . 53 : 53)
Read request from IOD # 3 [2 05 . 2 1 7 . 1 53 . 5 3 : 53)
(t imeout : 5 0 0 0ms) E I D 5 0
Callback : CONNECT SUCCESS for E ID 1 6 [2 0 5 . 2 1 7 . 1 5 3 . 5 3 : 2 5)
Read request from IOD # 2 [2 05 . 2 1 7 . 1 53 . 5 3 : 2 5)
(t imeout : 5 0 0 0ms) E I D 5 8
Callback : CONNECT SUCCESS for E I D 8 [2 05 . 2 1 7 . 1 53 . 53 : 2 2)
Read request from IOD # 1 [2 05 . 2 1 7 . 1 53 . 5 3 : 2 2)
(t imeout : 5 0 0 0ms) E I D 6 6

At this point, NULL probe connections have successfully been made to al l four services. It starts at 2 seconds
because that is how long the ping and SYN scans took.

NSOCK (2 . 0 8 8 0 s) Callback : READ SUCCESS for E ID 66 [2 0 5 . 2 1 7 . 1 53 . 5 3 : 2 2)
(2 3 bytes) : SSH-l . 9 9-0penSSH_3 . lpl .

Service scan match : 2 05 . 2 1 7 . 1 5 3 . 53 : 2 2 i s ssh .
Version : I OpenSSH l 3 . lpl l protocol 1 . 9 9 1

SSH was nice enough to fully identify itself immediately upon connection as OpenSSH 3. l p l . One down,
three to go.

NSOCK (2 . 0 8 8 0 s) Cal lback : READ SUCCESS for E ID 5 8 [2 0 5 . 2 1 7 . 1 5 3 . 53 : 2 5)
(2 7 bytes) : 2 2 0 core . lnxnet . net ESMTP . .

Service scan soft match : 2 05 . 2 1 7 . 1 53 . 53 : 2 5 i s smtp

The mail server on port 25 also gave us a useful banner. We do not know what type of mail server it is, but
starting with 2 2 0 and including the word ESMTP tells us it is a mail (SMTP) server. So Nmap softmatches
smtp, meaning that only probes able to match SMTP servers are tried from now on. Note that non-printable
characters are represented by dots-so the " . . " after ESMTP is real ly the "\r \ n" l ine termination sequence.

NSOCK (2 . 0 8 80s) Read request from IOD # 2 [2 0 5 . 2 1 7 . 1 53 . 53 : 2 5)
(t imeout : 4 9 9 6ms) E I D 7 4

NSOCK (7 . 0 8 80s) Callback : READ TIMEOUT for EID 7 4 [2 0 5 . 2 1 7 . 1 5 3 . 53 : 2 5)
NSOCK (7 . 0 8 80s) Write reques t for 6 bytes to IOD # 2 E I D 8 3

[2 05 . 2 1 7 . 1 53 . 53 : 2 5) : HELP . .

7.4. Technique Demonstrated 153

NSOCK (7 . 0 8 8 0s) Read request from IOD # 2 (2 05 . 2 1 7 . 1 5 3 . 53 : 2 5]
(t imeout : 5000ms) EID 9 0

Nmap listens a little longer on the SMTP connection, just in case the server has more to say. The read request
times out after five seconds. Nmap then finds the next probe which is registered to port 25 and has SMTP
signatures. That probe simply consists of HELP \ r \n, which Nmap writes into the connection.

NSOCK (7 . 0 8 8 0s) Callback : READ TIMEOUT for EID 50 (2 0 5 . 2 1 7 . 1 5 3 . 53 : 5 3]
NSOCK (7 . 0 8 8 0 s) Write request for 3 2 bytes to IOD #3 EID 9 9

(2 05 . 2 1 7 . 1 53 . 53 : 53] : version . bind

NSOCK (7 . 0 8 8 0s) Read request from IOD #3 (2 05 . 2 1 7 . 1 53 . 53 : 53]
(t imeout : 5 0 0 0ms) E ID 1 0 6

The DNS server o n port 5 3 does not return anything at all. The first probe registered to port 5 3 in
nmap- servi ce-probes is DNSVersionBindReq, which queries a DNS server for its version number.
This is sent onto the wire.

NSOCK (7 . 0 8 8 0s) Callback : READ TIMEOUT for EID 42 (2 05 . 2 1 7 . 1 5 3 . 53 : 8 0]
NSOCK (7 . 0 8 8 0 s) Write request for 1 8 bytes to IOD # 4 EID 1 1 5

[2 05 . 2 1 7 . 1 53 . 53 : 8 0] : GET I HTTP/ 1 . 0
NSOCK (7 . 0 8 8 0 s) Read request from IOD # 4 (2 0 5 . 2 1 7 . 1 53 . 53 : 8 0]

(timeout : 5000ms) EID 1 2 2

The port 80 NULL probe also failed to return any data. A n HTIP GET request i s sent, since that probe is
registered to port 80.

NSOCK (7 . 0 920s) Callback : READ SUCCESS for EID 1 2 2
(2 0 5 . 2 1 7 . 1 53 . 53 : 8 0] [EOF] (1 5 8 5 8 bytes)

Service scan match : insecure . erg (2 05 . 2 1 7 . 1 5 3 . 53) : 80 i s http .
Version : ! Apache httpd l 2 . 0 . 3 9 1 (Unix) mod__perl / 1 . 99_07-dev . .

Apache returned a huge (15KB) response, so it is not printed. That response provided detailed configuration
information, which Nmap picks out of the response. There are no other probes registered for port 80. So if
this had failed, Nmap would have tried the first TCP probe in nmap-servi ce-probes . That probe simply
sends blank lines ("\ r \ n \r \ n"). A new connection would have been made in case the GET probe confused
the service.

NSOCK (7 . 0 920s) Callback : READ SUCCESS for EID 106 (2 05 . 2 1 7 . 1 5 3 . 53 : 5 3]
(5 0 bytes) : . O version . bind 9 . 2 . 1

Service scan match : insecure . erg (2 05 . 2 1 7 . 1 5 3 . 5 3) : 53 i s domain .
Version : I I SC BIND l 9 . 2 . l l I

Port 53 responded to our DNS version request. Most of the response (as with the probe) is binary, but you
can clearly see the version 9.2. 1 there. If this probe had failed, the next probe registered to port 53 is a DNS
server status request (14 bytes: \ O \xOC \ 0 \ 0 \x l 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0). Having this backup probe
helps because many more servers respond to a status request than a version number request.

NSOCK (7 . 0 9 2 0s) Callback : READ SUCCESS for EID 90 (2 05 . 2 1 7 . 1 5 3 . 53 : 2 5]
(55 bytes) : 2 1 4 qmai l home page : http . . .

1 54 7.4. Technique Demonstrated

Service scan match : insecure . org (2 0 5 . 2 1 7 . 1 53 . 53) : 2 5 i s smtp .
Version : l qmai l smtpd l I I

Port 25 gives a very helpful response to the Help probe. Other SMTP servers such as Postfix, Courier, and
Exim can often be identified by this probe as well . If the response did not match, Nmap would have given
up on this service because it had already softmatched smtp and there are no more SMTP probes in
nmap-servi ce-probes .

The service scan took 5 seconds to scan 4 services on 1 host .

This service scan run went pretty well. No service required more than one connection. It took five seconds
because Qmail and Apache hit the five-second NULL probe timeout before Nmap sent the first real probes.
Here is the reward for these efforts:

Interesting ports on insecure . org (2 05 . 2 1 7 . 1 5 3 . 53) :
(The 1212 ports scanned but not shown below are in state : closed)
PORT STATE SERVICE VERS ION
22/tcp open ssh OpenSSH 3 . lp l (protocol 1 . 9 9)
25/tcp open smtp qma i l smtpd
53/tcp open domain I SC BIND 9 . 2 . 1
80/tcp open http Apache httpd 2 . 0 . 3 9 ((Unix) mod_perl/ 1 . 9 9_07-dev)

Hlnap finished : 1 IP address (1 host up) scanned in 7 . 1 0 4 seconds

7.5. Post-processors
Nmap is usually finished working on a port once it has deduced the service and version information as
demonstrated above. However, there are certain services for which Nmap performs additional work. The
post-processors presently available are Nmap Scripting Engine integration, RPC grinding, and SSL tunneling.
Windows SMB interrogation is under consideration.

7.5.1 . Nmap Script ing Eng ine Integration

The regular-expression based approach of version detection i s powerful, but i t cannot recognize everything.
Some services cannot be recognized by simply sending a standard probe and matching a pattern to the
response. Some services require custom probe strings or a complex multi-step handshaking process. Others
require more advanced processing than a regular expression to recognize a response. For example, the
Skype v2 service was designed to be difficult to detect due to the risk that i ncumbent carriers (such as phone
companies providing DSL lines) would consider them a competitor and degrade or block the service from
their subscribers. The only way we could find to detect this service i nvolved analyzing responses to two
different probes. Similarly, we could recognize more SNMP services if we tried a few hundred different
community names by brute force. Neither of these tasks are well suited to traditional Nmap version detection,
but both are easily accomplished with the Nmap Scripting Language. For these reasons, version detection
now calls NSE by default to handle some tricky services, as described in Section 9.10, "Version Detection
Using NSE" [25 1) .

7.5. Post-processors 155

7.5.2. RPC Grind ing

SunRPC (Sun Remote Procedure Call) is a common Unix protocol used to implement many services including
NFS. Nmap ships with an nmap-rpc database of almost 600 RPC programs. Many RPC services use
high-numbered ports and/or the UDP transport protocol, making them available through many poorly
configured firewalls. RPC programs (and the infrastructure libraries themselves) also have a long history of
serious remotely exploitable security holes. So network administrators and security auditors often wish to
learn more about any RPC programs on their networks.

If the portmapper (rpcbind) service (UDP or TCP port 1 1 1) is available, RPC services can be enumerated
with the Unix rpcinfo command. Example 7.5 demonstrates this against a default Solaris 9 server.

Example 7.5. Enumerating RPC services with rpcinfo

> rpcinfo -p ultra
program vers pro to port
1 0 0 0 0 0 4 tcp 1 1 1 rpcbind
1 0 0 0 0 0 4 udp 1 1 1 rpcbind
1 00232 1 0 udp 3 2 7 7 7 sadmind
1 00 0 8 3 1 tcp 32775 ttdbserverd
1 00 2 2 1 1 tcp 32 7 7 7 kcms_server
1 00 0 6 8 5 udp 32 7 7 8 cmsd
1 0 02 2 9 1 tcp 3 2 779 me tad
1 00 2 3 0 1 tcp 3 2 7 8 1 metamhd
1 002 4 2 1 tcp 32783 rpc . metamedd
1 0 0 0 0 1 4 udp 32 7 8 0 rstatd
1 00 0 02 3 udp 3 2 78 2 rusersd
1 00 0 02 3 tcp 32 785 rusersd
1 0 0 0 0 8 1 udp 32 7 8 4 walld
1 0 0 0 1 2 1 udp 32 7 8 6 sprayd
1 0 0 0 1 1 1 udp 3 2 7 8 8 rquotad
1 0 0 0 2 4 1 udp 3 2 7 9 0 status
1 0 0 0 2 4 1 tcp 3 2 7 8 7 status
1 0 0 1 3 3 1 udp 3 2 7 9 0 nsm_addrand
1 00 1 3 3 1 tcp 3 2 7 8 7 nsm_addrand
[Dozens of l i nes c u t for brevi ty]

This example shows that hosts frequently offer many RPC services, which increases the probability that one
is exploitable. You should also notice that most of the services are on strange high-numbered ports (which

may change for any number of reasons) and split between UDP and TCP transport protocols.

Because the RPC information is so sensitive, many administrators try to obscure this information by blocking
the portmapper port (1 1 1). Unfortunately, this does not close the hole. Nmap can determine all of the same
information by directly communicating with open RPC ports through the following three-step process.

I . The TCP and/or UDP port scan finds all of the open ports.

2. Version detection determines which of the open ports use the SunRPC protocol.

3. The RPC brute force engine determines the program identity of each RPC port by trying a null command
against each of the 600 programs numbers in nmap-rpc. Most of the time Nmap guesses wrong and

1 56 7.5 . Post-processors

receives an error message stating that the requested program number is not l istening on the port. Nmap
continues trying each number in its list until success is returned for one of them. Nmap gives up in the
unlikely event that it exhausts all of its known program numbers or if the port sends malformed responses
that suggest it is not really RPC.

The RPC program identification probes are done in parallel, and retransmissions are handled for UDP ports.
This feature is automatically activated whenever version detection finds any RPC ports. Or it can be performed
without version detection by specifying the -sR option. Example 7.6 demonstrates direct RPC scanning
done as part of version detection.

Example 7.6. Nmap direct RPC scan

nmap -F -A -sSU ultra

Starting Nmap (http : / /nmap . org
Interesting ports on ultra . nmap . org (1 92 . 1 6 8 . 0 . 5 0) :
(The 2171 ports scanned but not shown below are in state : closed)
PORT STATE SERVICE VERS ION
[A whole bunch of por t s c u t for brevi ty]

32776/tcp open kcms_server 1 (rpc # 1 00 22 1)
32 7 7 6 /udp open sadmind 1 0 (rpc #1 00232)

32777 /tcp open kcms_server 1 (rpc # 1 0 0 22 1)
32777/udp open sadmind 1 0 (rpc # 1 00 23 2)
32778 /tcp open me tad 1 (rpc # 1 00229)
32778 /udp open cmsd 2-5 (rpc # 1 0 0 06 8)
32779 /tcp open me tad 1 (rpc # 1 00229)
32779 /udp open rstatd 2-4 (rpc # 1 0 0 0 0 1)
32780/tcp open metamhd 1 (rpc # 1 00 2 3 0)
32780/udp open r statd 2-4 (rpc # 1 0 0 00 1)
32786 /tcp open status 1 (rpc # 1 00 0 2 4 J
32786 /udp open sprayd 1 (rpc # 1 0 0 0 1 2)
32787/tcp open status 1 (rpc # 1 0 0 02 4)
32787 /udp open rquotad 1 (rpc # 1 0 0 0 1 1)
Device type : general purpose
Running : Sun Solari s 9
OS details : Sun Solari s 9

Nmap finished : 1 IP address (1 host up) scanned in 252 . 70 1 seconds

7.5.3. SSL Post-processor Notes

As discussed in the technique section, Nmap has the ability to detect the SSL encryption protocol and then
launch an encrypted session through which it executes normal version detection. As with the RPC grinder
discussed previously, the SSL post-processor is automatically executed whenever an appropriate (SSL) port
is detected. This is demonstrated by Example 7.7.

7.5. Post-processors 157

Example 7.7. Version scanning through SSL

nmap -PN -sSV -T4 -F www . amazon . com

Starting Nmap (http : / /nmap . org)
I nteresting ports on 2 0 7- 1 7 1 - 1 8 4- 1 6 . amazon . com (2 0 7 . 1 71 . 1 8 4 . 16) :
(The 1 2 1 4 ports scanned but not shown below are in state : filtered)
PORT STATE SERVICE VERSION
80 /tcp open http Apache Stronghold httpd 2 . 4 . 2 (based on Apache 1 . 3 . 6)
4 4 3 /tcp open s s l/http Apache Stronghold httpd 2 . 4 . 2 (based on Apache 1 . 3 . 6)

Nmap f inished : 1 IP address (1 host up) scanned i n 3 5 . 03 8 seconds

Note that the version information is the same for each of the two open ports, but the service is http on port
80 and s s l /http on port 443. The common case of HTTPS on port 443 is not hard-coded-Nmap should
be able to detect SSL on any port and determine the underlying protocol for any service that Nmap can detect
in clear-text. If Nmap had not detected the server listening behind SSL, the service listed would be
s s l /unknown. If Nmap had not been built with SSL support, the service listed would have simply been
s s 1 . The version column would be blank in both of these cases.

The SSL support for Nmap depends on the free OpenSSL library2. It is not included in the Linux RPM
binaries, to avoid breaking systems which lack these l ibraries. The Nmap source code distribution attempts
to detect OpenSSL on a system and link to it when available. See Chapter 2, Obtaining, Compiling, Installing,
and Removing Nmap [25] for details on customizing the build process to include or exclude OpenSSL.

7.6. runap-service-probes Fi le Format

As with remote OS detection (-0), Nmap uses a flat fi le to store the version detection probes and match
strings. While the version of nmap-services distributed with Nmap is sufficient for most users,
understanding the file format allows advanced Nmap hackers to add their own services to the detection
engine. Like many Unix fi les, nmap-servi ce-probes is line-oriented. Lines starting with a hash (#)
are treated as comments and ignored by the parser. Blank lines are ignored as well. Other lines must contain
one of the directives described below. Some readers prefer to peek at the examples in Section 7.6.9, "Putting
It All Together" [1 63] before tackling the following dissection.

7.6.1 . Exclude Directive

Syntax: Excl ude <port speci fi ca t i on >

Examples:

Exclude 5 3 , T : 9 1 0 0 , U- 30 0 0 0- 4 0 0 0 0

This directive excludes the specified ports from the version scan. It can only be used once and should be
near the top of the file, above any Probe directives. The Exclude directive uses the same format as the Nmap
-p switch, so ranges and comma separated lists of ports are supported. In the nmap-service-probes
included with Nmap the only ports excluded are TCP port 9100 through 9107. These are common ports for

2 http://www.openssl.org

1 58 7.6. nmap-service-probes File Format

pinters to listen on and they often print any data sent to them. So a version detection scan can cause them
*> print many pages full of probes that Nmap sends, such as SunRPC requests, help statements, and X 1 1
probes.

This behavior is often undesirable, especially when a scan is meant to be stealthy. However, Nmap's default
behavior of avoiding scanning this port can make it easier for a sneaky user to hide a service: simply run it
on an excluded port such as 9100 and it is less likely to be identified by name. The port scan will still show
it as open. Users can override the Exclude directive with the --a l l ports option. This causes version
detection to interrogate all open ports.

7.6.2. Probe Directive

Syntax: Probe <prot ocol> <probename> <probesends t ri n g>

Examples:

obe TCP GetRequest q l GET I HTTP/ 1 . 0 \r\n\r \n l
obe UDP DNSStatusRequest q l \ 0 \ 0 \xl 0 \0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 1
obe TCP NULL q I I

The Probe directive tells Nmap what string to send to recognize various services. All of the directives
discussed later operate on the most recent Probe statement. The arguments are as follows:

<protocol>

This must be either TCP or UDP. Nmap only uses probes that match the protocol of the service it is
trying to scan.

<probename>

This is a plain English name for the probe. It is used in service fingerprints to describe which probes
elicited responses.

<probes t ri ng>

Tells Nmap what to send. It must start with a q, then a delimiter character which begins and ends the
string. Between the delimiter characters is the string that is actually sent. It is formatted similarly to a
C or Perl string in that it al lows the following standard escape characters: \ \ \ 0 , \a , \ b, \ f , \ n , \ r ,
\t , \v, \xHH. One Probe l ine in nmap- servi ce-probe s has an empty probe string, as shown
in the third example above. This is the TCP NULL probe which just listens for the initial banners that
many services send. If your delimiter character (I in these examples) is needed for your probe string,
you need to choose a different delimiter.

7.6.3. match Directive

Syntax: match <servi ce> <pa t t ern> [<versi on i n fo>]

Examples:

match ftp m/ A 22 0 . *Welcorne to PureFTPd (\d\S+) / p/PureFTPd/ v/ $ 1 /
match ssh m/ASSH- ([. \d) +) -OpenSSH_ (\S+) / p/OpenSSH/ v/$2/ i /protocol $ 1 /
match mysql m/A . \ 0 \ 0 \ 0 \n (4 \ . [- . \w) +) \0 . . . \ 0/s p/MySQL/ i / $ 1 /

7.6. nmap-service-probes File Format 1 59

match chargen m l @ABCDEFGHIJKLMNOPQRSTUVWXYZ I
match uucp m l A login : Pas sword : Login incorrect \ . $ 1 p / SunOS uucpd/ o / SunOS/
match printer m l A ([\w-_ .] +) : lpd : I l legal service request \n$ 1 p / lpd/ h/$1/
match a f s m l A [\d\D] { 2 8) \ s * (OpenAF S) ([\d\ .] { 3) [A \ s \ 0] *) \ 0 1 p/ $ 1 / v / $ 2 /

The match directive tells Nmap how to recognize services based on responses to the string sent by the previous
Probe directive. A single Probe line may be followed by dozens or hundreds of match statements. If the
given pattern matches, an optional version specifier builds the application name, version number, and
additional info for Nmap to report. The arguments to this directive follow:

<servi ce>

This is simply the service name that the pattern matches. Examples would be s s h, smtp, http, or
s nrnp. As a special case, you can prefix the service name with s s l / , as in s s l / vrnware-auth. In
that case, the service would be stored as vrnware-auth tunneled by SSL. This is useful for services
which can be fully recognized without the overhead of making an SSL connection.

<pa t t ern>

This pattern is used to determine whether the response received matches the service given in the previous
parameter. The format is l ike Perl , with the syntax being rn/ [regex] I [opts] . The "m" tells Nmap
that a match string is beginning. The forward slash (/) is a del imiter, which can be substituted by almost
any printable character as long as the second slash is also replaced to match. The regex is a Perl-style
regular expression3. This is made possible by the excellent Perl Compatible Regular Expressions (PCRE)
library (http://www.pcre.org). The only options currently supported are 'i ', which makes a match
case-insensitive and 's ' which includes newlines in the '. ' specifier. As you might expect, these two
options have the same semantics as in Perl . Subexpressions to be captured (such as version numbers)
are surrounded by parentheses as shown in most of the examples above.

<versi on i n fo>

The <versi on i n fo> section actually contains s ix optional fields. Each field begins with an identifying
letter (such as h for "hostname"). Next comes a delimiter character which the signature writer chooses.
The preferred delimiter is slash (' I ') unless that is used in the field itself. Next comes the field value,
followed by the delimiter character. The following table describes the six fields:

Table 7.1 . versioninfo field formats and values

Field format Value description

p / vendorproductnarne / Includes the vendor and often service name and is of the form "Sun
Solaris rexecd'', "ISC BIND named", or "Apache httpd".

v/ve r s i o n / The application version "number", which may include non-numeric
characters and even multiple words.

i / i n f o / Miscellaneous further information which was immediately available
and might be useful . Examples include whether an X server is open to
unauthenticated connections, or the protocol number of SSH servers.

h / ho s tnarne / The hostname (if any) offered up by a service. This is common for

protocols such as SMTP and POP3 and is useful because these

3 http:llwww.perl.com/doclmanual/html/podlperlre.html

160 7.6. nmap-service-probes File Format

Field format Value description

hostnames may be for internal networks or otherwise differ from the
straightforward reverse DNS responses.

o/operatingsys tem/ The operating system the service is running on. This may legitimately
be different than the OS reported by Nmap IP stack based OS detection.
For example, the target IP might be a Linux box which uses network
address translation to forward requests to an Microsoft ITS server in the
DMZ. In this case, stack OS detection should report the OS as Linux,
while service detection reports port 80 as being Windows.

d/devicetype / The type of device the service is running on. Some services disclose
this information, and it can be inferred in many more cases. For example,
the HP-ChaiServer web server only runs on printers.

Any of the six fields can be omitted. In fact, all of the fields can be omitted if no further information on
the service is available. Any of the version fields can include numbered strings such as $ I or $2, which
are replaced (in a Perl-like fashion) with the corresponding parenthesized substring in the <pa t t ern>.

In rare cases, a helper function can be applied to the replacement text before insertion. The $P () helper
function will filter out unprintable characters. This is useful for converting Unicode UTF- 16 encoded
strings such as W \ 0 0 \ 0 R\ O K \ OG \ OR\ 00\ 0 U \ O P \ 0 into the ASCII approximation WORKGROUP. It
can be used in any ver s ioninfo field by passing it the number of the match you want to make
printable, like this: i I $ P (3) I .

Another helper function i s $ SUBST () . This i s used for making substitutions i n matches before they
are printed. It takes three arguments. The first is the substitution number in the pattern, just as you would
use in a normal replacement variable such as $ 1 or $ 3 . The second and third arguments specify a
substring you wish to find and replace, respectively. All instances of the match string found in the
substring are replaced, not just the first one. For example, the VanDyke VShell sshd gives its version
number in a format such as 2_2_3_5 7 8 . We use the versioninfo field v I $ SUBST (1 , 1 1_11 , 11 • 11) I
to convert it to the more conventional form 2 . 2 . 3 . 5 7 8 .

7.6.4. softmatch Directive

Syntax: s oftmatch <servi ce> <pa t t ern >

Examples:

ftp m/A220 [- . \w J + ftp . * \ r \n$ / i
smtp m l A 2 2 0 [- . \w) +SMTP . * \r\n l
pop3 m l A \ +OK [-\ (\) \ (\) ! , / + : <>@ . \w) + \r \n$ 1

The softmatch directive is similar in format to the match directive discussed above. The main difference is
that scanning continues after a softmatch, but it is limited to probes that are known to match the given service.
This allows for a normal ("hard") match to be found later, which may provide useful version information.
See Section 7.3, "Technique Described" [1 49] for more details on how this works. Arguments are not defined
here because they are the same as for mat ch above, except that there is never a <vers i on i n fo> argument.
Also as with match, many so ftmatch statements can exist within a single Probe section.

7.6. nmap-service-probes File Format 161

7.6.5. ports and sslports Directives

Syntax: ports <port l i s t >

Examples:

port s 2 1 , 4 3 , 1 1 0 , 1 1 3 , 1 9 9 , 5 0 5 , 5 4 0 , 1 2 4 8 , 5 4 3 2 , 3 0 4 4 4
ports 1 1 1 , 4 0 4 5 , 3 2 7 5 0 - 32 8 1 0 , 3 8 9 7 8

This l ine tells Nmap what ports the services identified by this probe are commonly found on. It should only
be used once within each Probe section. The syntax is a slightly simplified version of that taken by the
Nmap -p option. See the examples above. More details on how this works are in Section 7.3, "Technique
Described" [1 49) .

Syntax: s s lports <port l i s t >

Example:

sslport s 4 43

This is the same as 'port s ' directive described above, except that these ports are often used to wrap a service
in SSL. For example, the HTTP probe declares "s s lpor t s 4 4 3" and SMTP-detecting probes have an
"s s lport s 4 6 5" line because those are the standard ports for HTTPS and SMTPS respectively. The
<port l i s t > format is the same as with por t s . This optional directive cannot appear more than once per
Probe.

7.6.6. totalwaitms Directive

Syntax: t o t a l wai tms <mi 1 1 i seconds>

Example:

totalwaitrns 5 0 0 0

This rarely necessary directive specifies the amount of time Nmap should wait before giving up on the most
recently defined Probe against a particular service. The Nmap default is usually fine.

7.6.7. rarity Directive

Syntax: rarity <va l ue bet ween 1 and 9>

Example:

rarity 6

The rarity directive roughly corresponds to how frequently this probe can be expected to return useful results.
The higher the number, the more rare the probe is considered and the less likely it is to be tried against a
service. More details can be found in Section 7.3.2, "Probe Selection and Rarity" [1 52) .

162 7.6. nmap-service-probes File Format

7.6.8. f allback Directive

Syniax: fallback <Comma separa ted l i s t of probes>

Example:

lback GetRequest , GenericLines

tbis optional directive specifies which probes should be used as fall backs for if there are no matches in the
current Probe section. For more information on fallbacks see Section 7.3 . 1 , "Cheats and Fallbacks" [1 5 1] .
For TCP probes without a fall back directive, Nmap first tries match lines in the probe itself and then does
an implicit fall back to the NULL probe. If the fall back directive is present, Nmap first tries match lines from
the probe itself, then those from the probes specified in the fallback directive (from left to right). Finally,
Nmap will try the NULL probe. For UDP the behavior is identical except that the NULL probe is never tried.

7.6.9. Putting It Al l Together

Here are some examples from nmap-servi ce-probe s which put this a l l together (to save space many
lines have been skipped). After reading this far into the section, the following should be understood.

e Exclude directive takes a comma separated l i s t of port s .
e format is exactly the same as the -p switch .
lude T : 91 00-9 1 0 7

is is the NULL probe that just compares any banners given to u s
t t t t############### # # # # # # #NEXT PROBE###

TCP NULL q 1 1
it for at least 5 seconds for data . Otherwise an Nmap default i s used .
alwaitms 5000
ndows 2003
h ftp m/A220 [-] Microsoft FTP Service\r\n/ p/Microsoft ftpd/

ch ftp m/A220 ProFTPD (\d\S+) Server/ p/ProFTPD/ v/ $ 1 /
tmatch ftp m/ A220 [- . \w] +ftp . * \r \n$/ i
h ident m l A f lock\ (\) on closed filehandle . *midentd l p/midentd/ i /broken/
h imap ml A \ * OK Welcome to Binc IMAP v (\d [- . \w] +) I p/Binc IMAPd/ v$ 1 /
tmatch imap m/ A \ * OK [- . \w] +imap (- . \w] + \r\n$/i
ch lucent-fwadm m l A 0 0 0 1 ; 2 $ 1 p/Lucent Secure Management Server/
h meetingmaker m/ A \xc l , $ / p/Meet ing Maker calendaring/

opster 1 . 2 . 0 . 1 on Linux 1 . 1
ch napster m l A 1 $ 1 p/Lopster Napster P2P c lient/

q l help\r\n\r\n l

7.6. nmap-service-probes File Format 163

match chargen m l @ABCDEFGHIJKLMNOPQRSTUVWXYZ I
match echo m 1 Ahelp\r\n\r\n$ 1

7.7. Community Contributions
No matter how technically advanced a service detection framework is, it would be nearly useless without
comprehensive database of services against which to match. This is where the open source nature of Nm
really shines. The Insecure.Org lab is pretty substantial by geek standards, but it can never hope to run m
than a tiny percentage of machine types and services that are out there. Fortunately experience with
detection fingerprints has shown that Nmap users together run all of the common stuff, plus a staggerin
array of bizarre equipment as well . The Nmap OS fingerprint database contains more than a thousand entries,
including all sorts of switches, WAPs, VoIP phones, game consoles, Unix boxes, Windows hosts, printeis,
routers, PDAs, firewalls, etc. Version detection also supports user submissions. Nmap users have contributed
thousands of services. There are three primary ways that the Nmap community helps to make this an
exceptional database: submitting service fingerprints, database corrections, and new probes.

7.7.1 . Submit Service Fingerprints

If a service responds to one or more of Nmap's probes and yet Nmap is unable to identify that service, Nmap
prints a service fingerprint like this one:

SF-Port21-TCP : V=3 . 4 0PVT16 %D=9 / 6 %Time=3FSA96 1C%r (NULL, 3F, " 2 2 0 \x2 0stage\x20F
SF : TP\x20server \x2 0 \ (Version\x2 0 2 \ . 1WU\ (1 \) \+SC0-2 \ . 6 \ . l \ +-sec \) \x20ready\
SF : . \ r \n ") %r (GenericLines , 8 1 , " 2 20\x20stage\x2 0FTP\x20server \x20 \ (Version\x
SF : 2 0 2 \ . 1WU\ (1 \) \ +SC0-2 \ . 6 \ . 1 \ +-sec \) \x20ready\ . \r\n500\x2 0 ' ' : \ x20command\
SF : x2 0not\x2 0understood\ . \r\n500\x2 0 ' ' : \x20command\x2 0not\x2 0understood\ . \
SF : r \n ") ;

If you receive such a fingerprint, and are sure you know what daemon version is running on the target host,
. please submit the fingerprint at the URL Nmap gives you. The whole submission process is anonymous
(unless you choose to provide identifying info) and should not take more than a couple minutes. If you are
feeling particularly helpful, scan the system again using -d (Nmap sometimes gives longer fingerprints that
way) and paste both fingerprints into the fingerprint box on the submission form. Sometimes people read
the fi le format section and submit their own working match lines. This is OK, but please submit the service
fingerprint(s) as well because existing scripts make integrating and testing them relatively easy.

For those who care, the information in the fingerprint above is port number (21), protocol (TCP), Nmap
version (3.40PVT 16), date (September 6), Unix time in hex, and a sequence of probe responses in the form
r({ <probename> } , { <responselengt h > } , " { <responses t ri ng> } ").

7. 7.2. Submit Database Corrections

T.his is another easy way to help improve the database. When integrating a service fingerprint submitted for
"chargen on Windows XP" or "FooBar FTP server 3.9.21 3", it is difficult to determine how general the
match is. Will it also match chargen on Solaris or FooBar FTP 2.7? Since there is no good way to tell, a very
specific name is used in the hope that people will report when the match needs to be generalized. The only
reason the Nmap DB is so comprehensive is that thousands of users have spent a few minutes each to submit

164 7.7. Community Contributions

new information. If you scan a host and the service fingerprint gives an incorrect OS, version number,
application name, or even service type, please let us know as described below:

Upgrade lo the latest Nmap (Optional)
Many Linux distributions and other operating systems ship with ancient versions of Nmap. The Nmap
version detection database is improved with almost every release, so check your version number by
running nmap -V and then compare that to the latest available from http://nmap.org/download.html.
The problem you are seeing may have already been corrected. Install ing the newest version takes only
a few minutes on most platforms, and is valuable regardless of whether the version detection flaw you
are reporting still exists. But even if you don't have time to upgrade right now, submissions from older
releases are still valuable.

Be absolutely certain you know what is running
Invalid "corrections" can corrupt the version detection DB. If you aren't certain exactly what is running
on the remote machine, please find out before submitting.

Generate a fingerprint
Run the command nmap -0 -PN -sSV -T4 -d --version-trace -p<port> <target >, where <port >

is the port running the misidentified service on the <t a rget > host. If the service is UDP rather than
TCP, substitute -sUV for -s SV.

Send us your correction
Now simply submit your correction to us at http:!linsecure.org!cgi-bin!submit.cgi?corr-service. Thanks
for contributing to the Nmap community and helping to make version detection even better !

7.7.3. Submit New Probes

Suppose Nmap fails to detect a service. If it received a response to any probes at all, it should provide a
fingerprint that can be submitted as described above. But what if there is no response and thus a fingerprint
is not available? Create and submit your own probe ! These are very welcome. The following steps describe
the process.

Steps for creating a new version detection probe

l. Download the latest version of Nmap from http://nmap.org and try again. You would feel a bit silly
spending time developing a new probe just to find out that it has already been added. Make sure no
fingerprint is available, as it is better to recognize services using existing probes if possible than to create
too many new ones. If the service does not respond to any of the existing probes, there is no other choice.

2. Decide on a good probe string for recognizing the service. An ideal probe should elicit a response from
as many instances of the service as possible, and ideally the responses should be unique enough to
differentiate between them. This step is easiest if you understand the protocol very well, so consider
reading the relevant RFCs and product documentation. One simple approach is to simply start a client for
the given service and watch what initial handshaking is done by sniffing the network with Wireshark or
tcpdump, or connecting to a listening Netcat.

3. Once you have decided on the proper string, add the appropriate new Probe l ine to Nmap (see Section 7.3,
''Technique Described" [1 49] and Section 7.6, "nmap-service-probes File Format" [1 58]) . Do not put in
any match lines at first, although a por t s directive to make this new test go first against the registered

7.7. Community Contributions 165

ports is OK. Then scan the service with Nmap a few times. You should get a fingerprint back sh ·
the service's response to your new probe. Send the new probe line and the fingerprints (against diffi
machines if possible, but even a few against the same daemon helps to note differences) to Fyodor
<fyodor @ in secure . org>. It will l ikely then be integrated into future versions of Nmap. Any d
you can provide on the nature of your probe string is helpful as well. For custom services that only a
on your network, it is better to simply add them to your own nrnap-servi ce-probes rather than
global Nmap.

7.8. SOLUTION : Find Al l Servers Runn ing a
Insecure or Nonstandard Appl ication Version
7.8.1 . Problem

A common task i s scanning a range ofIP addresses to find all servers o f a particular version or even satisfying
a particular property. This is something that Nmap's version detection excels in.

One of the most popular database application is the open-source MySQL server. MySQL can be configured
to disallow all remote logins from untrusted IPs. This is a good security practice when remote logins aren't
required. A case in point: in 2005 a MySQL remote code execution vulnerability was discovered and
published4. Fortunately, an attacker must be able to log in first-no doubt saving the Internet from yet another
devastating worm. In light of problems like this and the fact that SQL logins and passwords are frequently
guessable or discoverable through SQL injection attacks, intuition, and inside knowledge of the network,
remote logins should be denied when possible.

The problem for a network administrator is to discover MySQL servers that needlessly allow logins from
untrusted IPs and take appropriate defensive measures.

Note
This solution was contributed by Nmap developer Doug Hoyte.

7.8.2. Solution

Nmap's version detection comes i n handy i n this situation because i t adds the word unauthorized to the
service detection info line when the server forbids our host any access. If we want to scan the network of
10.0.0.0/24 a simple yet effective strategy is to run the following command from an untrusted source:

nmap -sV -p 3306 -oG 10.0.0-mysqls-032506.gnmap 10.0.0.0/24

Next we can use the Unix grep utility to find IPs that accept connections from our IP and don't disallow
logins by default (grep's -v switch specifies inverse results and only prints out lines that don 't match the
given pattern):

grep 'Ports: 3306/open/tcp//mysql' 10.0.0-mysqls-032506.gnmap I grep -v unauthorized

4 http://www.sec11riryfoc11s.com/bidll2781

7.8. SOLUTION: Find All Servers Running an Insecure or Nonstandard Application
166 Version

The resulting output shows the MySQL servers that allow remote logins:

Host : 1 0 . 0 . 0 . 3 3 (foe . com) Ports : 3306 /open/tcp//mysql/ /MySQL 4 . 1 . 1 1 /
Host : 1 0 . 0 . 0 . 72 (bar . com) Ports : 3306 /open/tcp//mysql/ /MySQL 4 . 0 . 2 4-standard/
Host : 10 . 0 . 0 . 9 9 () Port s : 3 3 0 6 /open/tcp/ /mysql//MySQL 4 . l . l l-Debian_4sarge2/
Host : 10 . 0 . 0 . 1 5 4 () Ports : 3 3 0 6 /open/tcp/ /mysql/ /MySQL 4 . 0 . 25-standard/
Host : 10 . 0 . 0 . 1 5 5 () Ports : 3 3 0 6 /open/tcp/ /mysql/ /MySQL 4 . 0 . 2 5-standard/

7.8.3. Discussion

The trick to this i s understanding some MySQL protocol basics and knowing how to read the
nmap-service-probe s file. Grepping the file for Probe and mysql match lines leads to the following
(line wrapped) output:

$ cat /usr/local/share/nmap/nmap-service-probes I egrep ' A (Probe l match mysql) '
Probe TCP NULL q I I
match mysql m/ A . \ 0 \ 0\ 0 \xff j \x0 4 . * Host . * i s not allowed to connect to this

MySQL server$/ p/MySQL/ i /unauthorized/
match mysql m l A . \ 0 \ 0 \ 0\xffj \x04Host hat keine Berechtigung, eine Verbindung

zu diesem MySQL Server herzustellen\ . I p/MySQL/
i/unauthori zed; German/

m/ A . \ 0 \ 0 \ 0 . . . Al sistema ' [- . \w] + ' non e consentita la
connessione a questo server MySQL$ / p/MySQL/
i/unauthori zed; Italian/

m l A . \ 0 \ 0 \ 0\xffi?\x0 4 ?Host . * i s blocked because of many connect ion
errors\ . I p/MySQL/ i /blocked - too many connect ion errors/

m/ A . \ 0 \ 0\ 0 . (3 \ . [- . \w] +) \ 0 . * \x08\x0 2 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $ / s
p/MySQL/ v/ $ l /

m/ A . \ 0 \ 0 \ 0 \n (3 \ . [- . \w] +) \ 0 . . . \ 0 / s p/MySQL/ v/ $ 1 /
m/ A . \ 0 \ 0 \ 0 \n (4 \ . [- . \w] +) \ 0 . . . / s p/MySQL/ v/$ 1 /
m ! A . \ 0 \ 0 \ 0 \n (5 \ . [- . \w] +) \ 0 . . . \ O i s p/MySQL/ v/$ 1 /

tch mysql m l A . \ 0 \ 0 \0\xff j \x0 4 ' [\d . J + ' . * MySQL l s p/MySQL/
GenericLines q i \r\n\r\n l
GetRequest q l GET / HTTP/ 1 . 0 \r\n\r\n l
HTTPOptions q ! OPTIONS / HTTP/ 1 . 0\r\n\r\n l

We see that the mysql match lines are designed to be triggered by the NULL probe so no custom probes
ll'C needed to determine which servers allow remote logins (for that see Section 7.9, "SOLUTION: Hack
Version Detection to Suit Custom Needs, such as Open Proxy Detection" [1 68)). By looking at these mysql
match lines that we discover MySQL services that don't allow remote logins wi l l result in an info field

taining the word unauthor i zed .

.ta addition to service types and version numbers, there are many cases where version detection is able to
Jaalier useful information on scan targets. The probes file is full of such gems that can turn a time-consuming

kof protocol research, script coding, locating test servers, and debugging into a simple Nmap command.
few interesting tidbits of information that version detection can sometimes reveal are:

Whether a CVS pserver is properly configured

7.8. SOLUTION: Find All Servers Running an Insecure or Nonstandard Application
Version 167

• The usernames used by popular peer-to-peer fi le sharing clients

• Whether an X server is accepting connections

• Language and other localization parameters of many services

• The wordsize of the target's CPU

• The configured botnames of popular IRC bots such as eggdrop

• Whether posting is allowed on Internet news (NNTP) servers

The version detection database is constantly growing and being refined thanks to the amazing Nmap user
community and their service fingerprint submissions. This solution is a good example of how investigating
the capabilities of Nmap's service detection can provide elegant, sometimes non-obvious solutions to many
diverse problems.

7.9. SOLUTION : Hack Version Detection to
Su it Custom Needs, such as Open Proxy
Detection

7.9.1 . Problem

A n important part o f securing any network i s identifying dangerous hosts. Nmap's service detection system
is a flexible, reliable way to do this. It can help identify vulnerable versions of software, find misconfigured
servers, and more. But sometimes actually trying to misuse services in ways the stock version scan doesn't
dare to is the best way to determine if they are actually vulnerable.

Open proxies are servers that will blindly relay requests from untrusted hosts to servers of their choosing.
Running these inside a network can be extremely dangerous for many reasons, as attackers can:

• Launch attacks that appear to come from your network

• Steal bandwidth or other network services from you

• Pretend to be an internal client to further escalate their privileges inside your organization

This provides good motivation for hacking version detection to specifically try to exploit open proxies. We
could probably map out which ports are proxies by using Nmap's normal proxy match lines, but the best,
and only real way to prove an application is vulnerable is to actually exploit it yourself.

168

Note
This solution was contributed by Nmap developer Doug Hoyte.

7.9. SOLUTION: Hack Version Detection to Suit Custom Needs, such as Open Proxy
Detection

7.9.2. Solution

The first thing we do i s copy the nmap-servi ce-probe s file so we can work on a temporary copy:

mkdir - /proxydetect
cp /usr/local / share/nmap/nmap-service-probes - /proxydetect

Next we want to temporarily force Nmap to use our temporary file:

export NMAPD I R= $HOME/proxydetect

Now we need to add a probe and match I ine to the fi le, so open up your favorite editor and place the following
text into your copy of nmap-servi ce-probe s . A good place to put it is after all the match l ines in the
NULL probe, but immediately before the next Probe line (GenericLines).

Probe TCP ProxyProbe q l GET http : / / insecure . org/ HTTP/ 1 . 1 \r \ nHost : insecure �
. org\r\n\r\n l
rarity 1
ports 1 - 6 5 5 3 5
totalwaitms 2 0 0 0 0
match proxy m l A HTTP / l . [0 1] 2 0 0 OK\ r ? \n . *T I TLE> I nsecure . O l s p/Open HTTP P roxy ! ! /

Now Nmap will actually try to request an HTTP download from i nsecure . org by treating any scanned
ports as proxies. We will start to see the following in scans of networks containing open proxies:

PORT STATE SERVICE VERS ION
80/tcp open proxy Open HTTP Proxy ! !

7.9.3. Discussion

The placement of our probe, the low r a r i t y value, and extensive por t s range help ensure that our custom
probe is tried very soon into the service scan so that other probes like GetRequest don't simply identify this
as a proxy before we've had a chance to use our active probe.

We also used a total wai tms directive to make Nmap wait longer for this probe to time out. This can be
necessary because not only are we dealing with the latency and unreliability of the connection between us
and the proxy, but also the latency and unreliability of the connection between the proxy and the server
containing the page we requested (i n secure . org).

Keep in mind that many other protocols can be proxied in addition to HTTP. Version detection will identify
proxies for many of them including FTP, .POP3, IMAP, and SMTP. SOCKS proxies have special match
lines that determine information on the authentication options the proxy has configured. As we did in this
solution, often we can use version detection to tell whether such proxies are open or not by using custom
probes files. However, more complicated tests are probably best done with NSE scripts.

7.9. SOLUTION: Hack Version Detection to Suit Custom Needs, such as Open Proxy
Detection 169

Chapter 8. Remote OS Detection

8.1 . Introduct ion
When exploring a network for security auditing or inventory/administration, you usually want to know more
lban the bare IP addresses of identified machines. Your reaction to discovering a printer may be very different
than to finding a router, wireless access point, telephone PBX, game console, Windows desktop, or Unix
server. Finer grained detection (such as distinguishing Mac OS X 10.4 from 10.3) is useful for determining
vulnerabil ity to specific flaws and for tailoring effective exploits for those vulnerabilities.

In part due to its value to attackers, many systems are tight-lipped about their exact nature and operating
system configuration. Fortunately, Nmap includes a huge database of heuristics for identifying thousands of
different systems based on how they respond to a selection of TCP/IP probes. Another system (part of version
detection) interrogates open TCP or UDP ports to determine device type and OS details. Results of these
two systems are reported independently so that you can identify combinations such as a Checkpoint firewall
awarding port 80 to a Windows IIS server.

While Nmap has supported OS detection since 1998, this chapter describes the 2nd generation system released
in 2006.

8.1 .1 . Reasons for OS Detection

While some benefits of discovering the underlying OS and device types o n a network are obvious, others
are more obscure. This section lists the top reasons I hear for discovering this extra information.

Determining vu lnerabi l ity of target hosts

It is sometimes very difficult to determine remotely whether an available service is susceptible or patched
for a certain vulnerability. Even obtaining the application version number doesn't always help, since OS
distributors often back-port security fixes without changing the version number. The surest way to verify
that a vulnerability is real is to exploit it, but that risks crashing the service and can lead to wasted hours or
even days of frustrating exploitation efforts if the service turns out to be patched.

OS detection can help reduce these false positives. For example, the Rwho daemon on unpatched Sun Solaris
7 through 9 may be remotely exploitable (Sun alert #57659). Remotely determining vulnerability is difficult,
but you can rule it out by finding that a target system is running Solaris 1 0.

Taking this from the perspective of a systems administrator rather than a pen-tester, imagine you run a large
Sun shop when alert #57659 comes out. Scan your whole network with OS detection to find machines which
need patching before the bad guys do.

Tailoring exploits

Even after you discover a vulnerability in a target system, OS detection can be helpful in exploiting it. Buffer
overflows, format-string exploits, and many other vulnerabilities often require custom-tailored shellcode
with offsets and assembly payloads generated to match the target OS and hardware architecture. In some

8. l . Introduction 17 1

cases, you only get one try because the service crashes if you get the shellcode wrong. Use OS detection first
or you may end up sending Linux shellcode to a FreeBSD server.

Network inventory and support

While it isn't as exciting as busting root through a specially crafted format string exploit, there are many
administrative reasons to keep track of what is running on your network. Before you renew that IRIX support
contract for another year, scan to see if anyone still uses such machines. An inventory can also be useful for
IT budgeting and ensuring that all company equipment is accounted for.

Detecting unauthorized and dangerous devices

With the ubiquity of mobile devices and cheap commodity networking equipment, companies are increasingly
finding that employees are extending their networks in undesirable ways. They may install a $20 wireless
access point (WAP) in their cubicle without realizing (or caring) that they just opened up the protected
corporate network to potential attackers in the parking lot or nearby buildings. WAPs can be so dangerous
that Nmap has a special category for detecting them, as demonstrated in Section 8.8, "SOLUTION: Detect
Rogue Wireless Access Points on an Enterprise Network" [202]. Users may also cause sysadmins grief by
connecting insecure and/or worm-infected laptops to the corporate network. Regular scanning can detect
unauthorized devices for investigation and containment.

Social engineering

Another possible use is social engineering. Lets say that you are scanning a target company and Nmap reports
a "Datavoice TxPORT PRISM 3000 T l CSU/DSU 6.22/2.06". You could call up the target pretending to
be Datavoice support and discuss some issues with their PRISM 3000. Tel l them you are about to announce
a big security hole, but are first providing the patch to valued customers. Some naive administrators migbl
assume that only an authorized engineer from Datavoice would know so much about their CSU/DSU.
course the patch you send them is a Trojan horse that gives you remote access to sniff and traipse through
their network. Be sure to read the rest of this chapter for detection accuracy and verification advice befi
trying this. If you guess the target system wrong and they call the police, that will be an embarrassing st
to tell your cellmates.

8.2. Usage and Examples
The inner workings of OS detection are quite complex, but it is one of the easiest features to use. Sim
add -0 to your scan options. You may want to also increase the verbosity with -v for even more OS-rela
details. This is shown in Example 8. 1 .

172 8.2. Usage and Examples

pie 8.1. OS detection with verbosity (-0 -v)
p -0 -v scanme . nmap . org

rting Nmap (http : / /nmap . org
erest ing ports on scanme . nmap . org (6 4 . 13 . 1 3 4 . 5 2) :
shown : 994 filtered ports

T STATE SERVICE
open ssh
closed smtp
open domain
closed gopher
open http

tcp closed auth
ce type : general purpose
ing : Linux 2 . 6 . X
etails : Linux 2 . 6 . 2 0-1 (Fedora Core 5)
e guess : 1 1 . 4 33 days (s ince Thu Sep 1 8 1 3 : 1 3 : 0 1 2 0 0 8)
Sequence Prediction : Difficulty=2 0 4 (Good luck !)

ID Sequence Generation : A l l zeros

1 IP address (1 host up) scanned in 6 . 2 1 seconds
Raw packets sent : 2 0 2 1 (9 0 . 526KB) I Rcvd : 23 (1 3268)

- v options caused Nmap to generate the following six extra l ine items:

ice type
All fingerprints are classified with one or more high-level device types, such as router, pr i nter,
firewa ll , or (as in this case) general purpose. These are further described in the section called
"Device and OS classification (Class lines)" [1 96) . Several device types may be shown, in which case
they will be separated with the pipe symbol as in "Dev i ce Type : r outer I f irewa l l".

ning

This field is also related to the OS classification scheme described in the section called "Device and OS
classification (Class lines)" [1 96) . It shows the OS Family (Li nux in this case) and OS generation
(2 . 6 . X) if available. If there are multiple OS families, they are separated by commas. When Nmap
can't narrow down OS generations to one specific choice, options are separated by the pipe symbol ('I')
Examples include OpenBSD 3 . X , NetBSD 3 . X I 4 . X and L i nux 2 . 4 . X I 2 . 5 . X I 2 . 6 . X.

If Nmap finds too many OS families to print concisely, it wi l l omit this line. When there are no perfect
matches, Nmap changes the field to Runn i ng (JUST GUE S S I NG) and adds an accuracy percentage
(100% is a perfect match) in parentheses after each candidate family name. If no fingerprints are close
matches, the line is omitted.

This line gives the detailed description for each fingerprint that matches. While the Devi ce t ype
and Running lines are from predefined enumerated l ists that are easy to parse by a computer, the OS
details line contains free-form data which is useful to a human reading the report. This can include more
exact version numbers, device models, and architectures specific to a given fingerprint. In this example,
theonly matching fingerprint was Li nux 2 . 6 . 2 0 - 1 (Fedora Core 5) . When there are multiple
exact matches, they are comma-separated. If there aren't any perfect matches, but some close guesses,

8.2. Usage and Examples 173

the field is renamed Aggress ive OS gue s s e s and fingerprints are shown followed by a percentage
in parentheses which specifies how close each match was.

Uptime guess
As part of OS detection, Nmap receives several SYN/ACK TCP packets in a row and checks the headers
for a timestamp option. Many operating systems use a simple counter for this which starts at zero at
boot time then i ncrements at a constant rate such as twice per second. By looking at several responses,
Nmap can determine the current values and rate of increase. Simple linear extrapolation determines boot
time. The timestamp algorithm is used for OS detection too (see the section called "TCP timestamp
option algorithm (TS)" [1 82]) since the increment rate on different systems varies from 2 Hz to l ,OOO Hz.

The uptime guess is labeled a "guess" because various factors can make it completely inaccurate. Some
operating systems do not start the timestamp counter at zero, but initialize it with a random value, making
extrapolation to zero meaningless. Even on systems using a simple counter starting at zero, the counter
eventually overflows and wraps around. With a 1 ,000 Hz counter increment rate, the counter resets to
zero roughly every 50 days. So a host that has been up for 102 days will appear to have been up only
two days. Even with these caveats, the uptime guess is accurate much of the time for most operating
systems, so it is printed when available, but only in verbose mode. The uptime guess is omitted if the
target gives zeros or no timestamp options in its SYN/ACK packets, or if it does not reply at all. The
line is also omitted if Nmap cannot discern the timestamp increment rate or it seems suspicious (like a
30-year uptime).

Network Distance
A side effect of one of the OS detection tests al lows Nmap to compute how many routers are between
it and a target host. The distance is zero when you are scanning localhost, and one for a machine on the
same network segment. Each additional router on the path adds one to the hop count. The Network
D i s t ance line is not printed in this example, since Nmap omits the line when it cannot be computed
(no reply to the relevant probe).

TCP Sequence Prediction
Systems with poor TCP initial sequence number generation are vulnerable to blind TCP spoofing attacks.
In other words, you can make a ful l connection to those systems and send (but not receive) data while
spoofing a different IP address. The target's logs will show the spoofed IP, and you can take advantage
of any trust relationship between them. This attack was all the rage in the mid-nineties when people
commonly used rlogin to allow logins to their account without any password from trusted IP addresses.
Kevin Mitnick is alleged to have used this attack to break into Tsutomu Shimomura's computers in
December 1994.

The good news is that hardly anyone uses rlogin anymore, and many operating systems have been fixed
to use unpredictable initial sequence numbers as proposed by RFC 1948. For these reasons, this line is
only printed in verbose mode. Sadly, many vendors still ship vulnerable operating systems and devices1 •
Even the fixed ones often vary in implementation, which leaves them valuable for OS detection purposes.
The class describes the ISN generation algorithm used by the target, and difficulty is a rough estimate
of how hard the system makes blind IP spoofing (0 is the easiest). The parenthesized comment is based
on the difficulty index and ranges from Tri vial j oke to Easy, Medi um, Formidable, Worthy
cha l lenge, and finally Good luck ! Further details about sequence tests are provided in the section
called "TCP ISN greatest common divisor (GCD)" [1 80] .

1 A fascinating visual look at this is available from http:/llcamtttf.coredttmp.cx/newtcpl

174 8.2. Usage and Examples

While the rlogin family is mostly a relic of the past, clever attackers can still find effective uses for blind
TCP spoofing. For example, it al lows for spoofed HTTP requests. You don't see the results, but just the
URL (POST or GET request) can have dramatic side effects. The spoofing allows attackers to hide their
identity, frame someone else, or exploit IP address restrictions.

IP ID sequence generation
Many systems unwittingly give away sensitive information about their traffic levels based on how they
generate the lowly 16-bit ID field in IP packets. This can be abused to spoof a port scan against other
systems and for other mischievous purposes discussed in Section 5. 10, "TCP Idle Scan (-sI)" [1 17] . This
field describes the ID generation algorithm that Nmap was able to discern. More information on how it
classifies them is available in the section called "TCP IP ID sequence generation algorithm (Tl)" [1 8 1] .
Note that many systems use a different IP ID space for each host they communicate with. In that case,
they may appear vulnerable (such as showing the I n cremental class) while still being secure against
attacks such as the idle scan. For this reason, and because the issue is rarely critical, the IP ID sequence
generation line is only printed in verbose mode. If Nmap does not receive sufficient responses during
OS detection, it will omit the whole line. The best way to test whether a host is vulnerable to being an
idle scan zombie is to test it with - s I .

While TCP fingerprinting is a powerful method for OS detection, interrogating open ports for clues i s another
effective approach. Some applications, such as Microsoft IIS, only run on a single platform (thus giving it
away), while many other apps divulge their platform in overly verbose banner messages. Adding the - sv

option enables Nmap version detection, which is trained to look for these clues (among others). In Example 8.2,
Nmap catches the platform details from an FfP server.

Example 8.2. Using version scan to detect the OS

' nmap -sv -0 -v 1 2 9 . 1 2 8 . X . XX
ftarting Nmap (http : / / nmap . org
(nteresting port s on [hostname)
t shown : 994 closed port s

P<)RT STATE SERVICE
1/tcp open ftp
/tcp open ssh
11/tcp open rpc
5/tcp filtered microsoft-ds
26/tcp open oracle-tns
775/tcp open rpc
exact OS matches for host

)
(1 2 9 . 1 2 8 . X . XX) :

VERS ION
HP-UX 1 0 . x ftpd 4 . 1
OpenSSH 3 . 7 . lpl (protocol 1 . 9 9)

Oracle TNS Listener

P Sequence Prediction : Class=truly random
Difficulty=99 9 9 9 9 9 (Good luck !)

P ID Sequence Generation : Incremental
rvice Info : OS : HP-UX

In this example, the line "No exact OS matches for host" means that TCP/IP fingerprinting
failed to find an exact match. Fortunately, the Service I nfo field a few lines down discloses that the
OS is HP-UX. If several operating systems were detected (which can happen with NAT gateway boxes that
redirect ports to several different machines), the field would be OS s and the values would be comma separated.
The Service Info line can also contain hostnames and device types found during the version scan. The
focus of this chapter is on TCP/IP fingerprinting though, since version detection was covered in Chapter 7,
Service and Application Version Detection [1 45] .

8 .2 . Usage and Examples 175

With two effective OS detection methods available, which one should you use? The best answer is usually
both. In some cases, such as a proxy firewall forwarding to an application on another host, the answers may
legitimately differ. TCP/IP fingerprinting will identify the proxy while version scanning will generally detect
the server running the proxied application. Even when no proxying or port forwarding is involved, using
both techniques is beneficial. If they come out the same, that makes the results more credible. If they come
out wildly different, investigate further to determine what is going on before relying on either. Since OS and
version detection go together so well, the -A option enables them both.

OS detection is far more effective if at least one open and one closed TCP port are found. Set the
--os s can-l imit option and Nmap will not even try OS detection against hosts which do not meet this

criteria. This can save substantial time, particularly on -PN scans against many hosts. You still need to enable
OS detection with -0 (or -A) for this to have any effect.

Another OS detection option is - - o s s can-gue s s . When Nmap is unable to detect a perfect OS match,
it sometimes offers up near-matches as possibilities. The match has to be very close for Nmap to do this by
default. If you specify this option (or the equivalent - - f u z z y option), Nmap will guess more aggressively.
Nmap still tells you when an imperfect match is printed and display its confidence level (percentage) for

each guess.

When Nmap performs OS detection against a target and fails to find a perfect match, it usually repeats the
attempt. By default, Nmap tries five times if conditions are favorable for OS fingerprint submission, and
twice when conditions aren't so good. The --max-os-tr i e s option lets you change this maximum number
of OS detection tries. Lowering it (usually to l) speeds Nmap up, though you miss out on retries which could
potentially identify the OS. Alternatively, a high value may be set to allow even more retries when conditions
are favorable. This is rarely done, except to generate better fingerprints for submission and integration into
the Nmap OS database.

Like just about every other part of Nmap, results ultimately come from the target machine itself. While rare,
systems are occasionally configured to confuse or mislead Nmap. Several programs have even been developed
specifically to trick Nmap OS detection (see Section 1 1 .5.4, "OS Spoofing" [302)). Your best bet is to use

· numerous reconnaissance methods to explore a network, and don't trust any one of them.

TCP/IP fingerprinting requires collecting detailed information about the target's IP stack. The most commonly
useful results, such as TTL information, are printed to Nmap output whenever they are obtained. Slightly
less pertinent information, such as IP ID sequence generation and TCP sequence prediction difficulty, is
only printed in verbose mode. But if you want all of the IP stack details that Nmap collected, you can find
it in a compact form called a subject fingerprint. Nmap sometimes prints this (for user submission purposes)
when it doesn't recognize a host. You can also force Nmap to print it (in normal, interactive, and XML

formats) by enabling debugging with (-d). Then read Section 8.5, "Understanding an Nmap Fingerprint" [1 9 1]
to interpret it.

8.3. TCP/IP Fingerprinting Methods
Supported by Nmap
Nmap OS fingerprinting works by sending up to 1 5 TCP, UDP, and ICMP probes to known open and closed
ports of the target machine. These probes are specially designed to exploit various ambiguities in the standard
protocol RFCs. Then Nmap listens for responses. Dozens of attributes in those responses are analyzed and

176 8.3. TCP/IP Fingerprinting Methods Supported by Nmap

combined to generate a fingerprint. Every probe packet is tracked and resent at least once if there is no
response. All of the packets are IPv4 with a random IP ID value. Probes to an open TCP port are skipped if
no such port has been found. For closed TCP or UDP ports, Nmap will first check if such a port has been
found. If not, Nmap will just pick a port at random and hope for the best.

The following sections are highly technical and reveal the hidden workings of Nmap OS detection. Nmap
can be used effectively without understanding this, though the material can help you better understand remote
networks and also detect and explain certain anomalies. Plus, some of the techniques are pretty cool. Readers
in a hurry may skip to Section 8.7, "Dealing with Misidentified and Unidentified Hosts" (1 99) . But for those
of you who are ready for a journey through TCP explicit congestfon notification, reserved UDP header bits,
initial sequence numbers, bogus flags, and Christmas tree packets: read on!

Even the best of us occasionally forget byte offsets for packet header fields and flags. For quick reference,
the 1Pv4, TCP, UDP, and ICMP header layouts can be found in Section 7, "TCP/IP Reference" [xxvi] . The
layout for ICMP echo request and destination unreachable packets are shown in Figure 8 . 1 and Figure 8.2.

Figure 8.1. ICMP echo request or reply header layout

Offset o 2 3

0 ,_._Ty�p�e-(�O�o�r-8�) -1-'-�C�o�d�e
�(-O�) ��__.__._.___.__.C_he

�c�k�s
-
u
�
m
.._,__.__.-'l -r

._._..,._._....1d�e-n.ti�fi_e�r..,__.._._..,_..._.s�e-q�u.e�n�c.e_N�u.m_...b.e�r._
1 3

Data: Echo reply (type 0) m ust return any data sent in echo request

Figure 8.2. ICMP destination unreachable header layout

Offset o 2 3 l'-''--'--'----'--'--'----'--+--'--'--.L.-L-'---'�___._....___.__,__.__.____,__._-L-_,__.__..__..__.___..___.---'I

�'"""'"'_,.........,.....,........,_,_�u�n�u�se�d_..,(m�u�s�t�b-ep
O
�)_..._,...._ -io-�� _i

1 2 3

Data : Original (received) I P header, p lus at least the first 8 data bytes

8.3.1 . Probes Sent

This section describes each IP probe sent by Nmap as part of TCP/IP fingerprinting. I t refers to Nmap response
tests and TCP options which are explained in the following section.

Sequence generation (SEQ, OPS, WIN, and Tl)

A series of six TCP probes i s sent to generate these four test response lines. The probes are sent exactly 1 10
milliseconds apart so the total time taken is 550 ms. Exact timing is important as some of the sequence
algorithms we detect (initial sequence numbers, IP IDs, and TCP timestamps) are time dependent. This

8.3. TCP/IP Fingerprinting Methods Supported by Nmap 177

timing value was chosen to take above 500 ms so that we can reliably detect the common 2 Hz TCP timestamp

sequences.

Each probe is a TCP SYN packet to a detected open port on the remote machine. The sequence and

acknowledgment numbers are random (but saved so Nmap can differentiate responses). Detection accuracy

requires probe consistency, so there is no data payload even if the user requested one with --dat a-length.

These packets vary in the TCP options they use and the TCP window field value. The following list provides

the options and values for all six packets. The listed window field values do not reflect window scaling. EOL

is the end-of-options-list option, which many sniffing tools don't show by default.

• Packet #1 : window scale (10), NOP, MSS (1460), timestamp (TSval: OxFFFFFFFF; TSecr: 0), SACK

permitted. The window field is I .

• Packet #2: MSS (1400), window scale (0), SACK permitted, timestamp (TSval: OxFFFFFFFF; TSecr:

0), EOL. The window field is 63.

• Packet #3: Timestamp (TS val : OxFFFFFFFF; TSecr: 0), NOP, NOP, window scale (5), NOP, MSS (640).

The window field is 4.

• Packet #4: SACK permitted, Timestamp (TS val : OxFFFFFFFF; TSecr: 0), window scale (IO), EOL. The

window field is 4.

• Packet #5: MSS (536), SACK permitted, Timestamp (TSval: OxFFFFFFFF; TSecr: 0), window scale

(10), EOL. The window field is 16.

• Packet #6: MSS (265), SACK permitted, Timestamp (TSval: OxFFFFFFFF; TSecr: 0). The window field

is 5 12.

The results of these tests include four result category l ines. The first, SEQ, contains results based on sequence
analysis of the probe packets. These test results are GCD, SP, I SR, T I , I I , TS , and SS. The next line, OPS

contains the TCP options received for each of the probes (the test names are 01 through 0 6). Similarly, the
WIN line contains window sizes for the probe responses (named W l through W6). The final line related to
these probes, T l , contains various test values for packet # I . Those results are for the R, OF, T, TG, W, S, A,

F , O, RD, and Q tests. These tests are only reported for the first probe since they are almost always the same
for each probe.

ICMP echo (IE)

The IE test involves sending two ICMP echo request packets to the target. The first one has the IP DF bit
set, a type-of-service (TOS) byte value of zero, a code of nine (even though it should be zero), the sequence
number 295, a random IP ID and ICMP request identifier, and a random character repeated 120 times for
the data payload.

The second ping query is similar, except a TOS of four (IP _TOS_RELIAB I L I TY) is used, the code is zero,
1 50 bytes of data is sent, and the IP ID, request ID, and sequence numbers are incremented by one from the
previous query values.

The results of both of these probes are combined into a IE line containing the R, DF I , T, TG, TOSI, CD,
S I , and DLI tests. The R value is only true (Y) if both probes elicit responses. The T, and CD values are for

178 8.3. TCP/IP Fingerprinting Methods Supported by Nmap

the response to the first probe only, since they are highly unlikely to differ. The DF I , TOS I , S I , and DLI

are custom tests for this special dual-probe ICMP case.

These ICMP probes follow immediately after the TCP sequence probes to ensure valid results of the shared
IP ID sequence number test (see the section called "Shared IP ID sequence Boolean (SS)" [1 82]).

TCP expl icit congestion notification (ECN)

This probe tests for explicit congestion notification (ECN) support in the target TCP stack. ECN is a method
for improving Internet performance by allowing routers to signal congestion problems before they start
having to drop packets. It is documented in RFC 3168. Nmap tests this by sending a SYN packet which also
has the ECN CWR and ECE congestion control flags set. For an unrelated (to ECN) test, the urgent field
value of OxF7F5 is used even though the urgent flag is not set. The acknowledgment number is zero, sequence
number is random, window size field is three, and the reserved bit which immediately precedes the CWR
bit is set. TCP options are WScale (10), NOP, MSS (1460), SACK permitted, NOP, NOP. The probe is sent
to an open port.

lf a response is received, the R, DF, T, TG, W, o, cc, and Q tests are performed and recorded.

TCP (T2-T7)

The six T2 through T 7 tests each send one TCP probe packet. With one exception, the TCP options data in
each case is (in hex) 0 3 0 3 OAO 1 0 2 0 4 0 1 0 9 0 8 OAFFFFFFFF 0 0 0 0 0 0 0 0 0 4 0 2 . Those 20 bytes correspond
to window scale (10), NOP, MSS (265), Timestamp (TSval: OxFFFFFFFF; TSecr: 0), then SACK permitted.
The exception is that T 7 uses a Window scale value of 1 5 rather than 10. The variable characteristics of each
probe are described below:

• T2 sends a TCP null (no flags set) packet with the IP DF bit set and a window field of 1 28 to an open port.

• T3 sends a TCP packet with the SYN, FIN, URG, and PSH flags set and a window field of 256 to an open
port. The IP OF bit is not set.

• T4 sends a TCP ACK packet with IP DF and a window field of 1024 to an open port.

• TS sends a TCP SYN packet without IP OF and a window field of 31337 to a closed port.

• T6 sends a TCP ACK packet with IP DF and a window field of 32768 to a closed port.

• 1i sends a TCP packet with the FIN, PSH, and URG flags set and a window field of 65535 to a closed
port. The IP OF bit is not set.

In each of these cases, a line is added to the fingerprint with results for the R, DF, T, TG, w, S, A, F, o, RD,
llld Q tests.

This probe is a UDP packet sent to a closed port. The character 'C' (Ox43) is repeated 300 times for the data
Acid. The IP ID value is set to Ox 1042 for operating systems which allow us to set this. If the port is truly
dosed and there is no firewall in place, Nmap expects to receive an ICMP port unreachable message in

8.3. TCP/IP Fingerprinting Methods Supported by Nmap 179

return. That response is then subjected to the R, DF, T, TG, TOS, IPL, UN, RI PL, R I D, RI PCK, RUCK, RUL,
and RUD tests.

8.3.2. Response Tests

The previous section describes probes sent by Nmap, and this one completes the puzzle by describing the
barrage of tests performed on responses. The short names (such as DF, R, and RI PCK) are those used in the
nmap-os -db fingerprint database to save space. All numerical test values are given in hexadecimal notation,
without leading zeros, unless noted otherwise. The tests are documented in roughly the order they appear in
fingerprints.

TCP ISN greatest common d ivisor (Geo)
The SEQ test sends six TCP SYN packets to an open port of the target machine and collects SYN/ACK
packets back. Each of these SYN/ACK packets contains a 32-bit initial sequence number (ISN). This test
attempts to determine the smallest number by which the target host increments these values. For example,
many hosts (especially old ones) always increment the ISN in multiples of 64,000.

The first step in calculating this is creating an array of differences between probe responses. The first element
is the difference between the 1 st and 2nd probe response ISNs. The second element is the difference between
the 2nd and 3rd responses. There are five elements if Nmap receives responses to all six probes. Since the
next couple of sections reference this array, we wil l call it di f f 1 . If an ISN is lower than the previous one,
Nmap looks at both the number of values i t would have to subtract from the first value to obtain the second,
and the number of values it would have to count up (including wrapping the 32-bit counter back to zero).
The smaller of those two values is stored in di f f l . So the difference between Ox20000 followed by Ox 15000
is OxBOOO. The difference between OxFFFFFFOO and OxCOOO is OxCOFF. This test value then records the
greatest common divisor of all those elements. This GCD is also used for calculating the SP result.

. TCP ISN counter rate (ISR)

This value reports the average rate of increase for the returned TCP initial sequence number. Recall that a
difference is taken between each two consecutive probe responses and stored in the previously discussed
d i f f l array. Those differences are each divided by the amount of time elapsed (in seconds-will generally
be about 0.1) between sending the two probes which generated them. The result is an array, which we'll call
seq_rates containing the rates of ISN counter increases per second. The array has one element for each
d i f f l value. An average is taken of the array values. If that average is less than one (e.g. a constant ISN

is used), I SR is zero. Otherwise I SR is eight times the binary logarithm (log base-2) of that average value,
rounded to the nearest i nteger.

TCP ISN sequence predictabil ity index (SP)

While the I SR test measures the average rate of initial sequence number increments, this value measures
the ISN variability. It roughly estimates how difficult it would be to predict the next ISN from the known
sequence of six probe responses. The calculation uses the difference array (seq_rates) and GCD values
discussed in the previous section.

This test is only performed if at least four responses were seen. If the previously computed GCD value is
greater than nine, The elements of the previously computed seq_rates array are divided by that value.

180 8.3. TCP/IP Fingerprinting Methods Supported by Nmap

We don't do the division for smaller GCD values because those are usually caused by chance. A standard
deviation of the array of the resultant values is then taken. If the result is one or less, SP is zero. Otherwise
the binary logarithm of the result is computed, then it is multiplied by eight, rounded to the nearest integer,
and stored as SP.

Please keep in mind that this test is only done for OS detection purposes and is not a full-blown audit of the
target ISN generator. There are many algorithm weaknesses that lead to easy predictability even with a high
SP value.

TCP IP ID sequence generation algorithm (TI)

This test examines the IP header ID field for every response to the TCP S E Q probes. The test is only included
if at least three probes were returned. It then classifies the target IP ID generator based on the algorithm
below. Note that difference values assume that the counter can wrap. So the difference between an IP ID of
65,100 followed by a value of 700 is 1 136. The difference between 2,000 followed by 1 , 100 is 64,636. Here
are the calculation details:

I . I f all of the ID numbers are zero, TI is set to z .

2 . I f the IP I D sequence ever increases by a t least 20,000, T I i s set to R D (random).

3. If all of the IP IDs are identical, TI is set to that value in hex.

4. If any of the differences between two consecutive IDs exceed 1000, and is not evenly divisible by 256,
TI is set to RI (random positive increments). If the difference is evenly divisible by 256, it must be at
least 256,000 to cause this RI result.

5. If all of the differences are divisible by 256 and no greater than 5 120, TI is set to BI (broken increment).
This happens on systems like Microsoft Windows where the IP ID is sent in host byte order rather than
network byte order. It works fine and isn't any sort of RFC violation, though it does give away host
architecture details which can be useful to attackers.

6. If all of the differences are less than ten, T I is set to I (incremental). We allow difference up to ten here
(rather than requiring sequential ordering) because traffic from other hosts can cause sequence gaps.

7. If none of the previous steps identify the generation algorithm, the test is omitted from the fingerprint.

MP IP ID sequence generation algorithm (I I)

is test i s similar to T I above, except that it evaluates IP IDs from the ICMP responses to our two ping
bes. It is only included if both responses are received. IP ID differences are absolute (assume wrapping)
are calculated as described in T I . The result is easier to calculate than T I . There is no RD result because
aren't enough samples to support it. I I is calculated as follows:

If both ID numbers are zero, I I is set to z

If both IP IDs are identical, T I is set to that value in hex.

8.3. TCP/IP Fingerprinting Methods Supported by Nmap 181

3. If the absolute difference IDs exceed 1000, and is not evenly divisible by 256, I I is set to RI (random
positive increments). If the difference is evenly divisible by 256, it must be at least 256,000 to cause this
RI result.

4. If the IP ID difference is divisible by 256 and no greater than 51 20, I I is set to BI (broken increment).
This happens on systems like Microsoft where the IP ID is sent in host byte order rather than network
byte order. It works fine and isn't any sort of RFC violation, though it does give away host architecture
details which can be useful to attackers.

5. If the difference is less than ten, I I is set to I (incremental). We allow difference up to ten here (rather
than requiring sequential ordering) because traffic from other hosts can cause sequence gaps.

6. If none of the previous steps identify the generation algorithm, the test is omitted from the fingerprint.

Shared IP ID sequence Boolean (ss)
This Boolean value records whether the target shares its IP ID sequence between the TCP and ICMP protocols.
If our six TCP IP ID values are 1 17, 1 18 , 1 19, 1 20, 1 2 1 , and 1 22, then our ICMP results are 1 23 and 124, it is
clear that not only are both sequences incremental, but they are both part of the same sequence. If, on the
other hand, TCP IP ID values are 1 17- 1 22 but the ICMP values are 32,917 and 32,918, a different sequence
is being used.

This test is only included if I I is RI, B I , or I and T I is the same. If SS is included, the result is S if the
sequence is shared and O (other) if it is not. That determination is made by the following algorithm:

Let avg be the final TCP sequence response IP ID minus the first TCP sequence response IP ID, divided
by the difference in probe numbers. If probe # 1 returns an IP ID of 10,000 and probe #6 returns 20,000, avg
would be (20,000 - 10,000) I (6 - 1), which equals 2,000.

If the first ICMP echo response IP ID is less than the final TCP sequence response IP ID plus three times
avg, the S S result is s . Otherwise it is 0.

TCP timestamp option algorithm (TS)

TS is another test which attempts to determine target OS characteristics based on how it generates a series
of numbers. This one looks at the TCP timestamp option (if any) in responses to the SEQ probes. It examines
the TSval (first four bytes of the option) rather than the echoed TSecr (last four bytes) value. It takes the
difference between each consecutive TSval and divides that by the amount of time elapsed between Nmap
sending the two probes which generated those responses. The resultant value gives a rate of timestamp
increments per second. Nmap computes the average increments per second over all consecutive probes and
then calculates the TS as follows:

I . If any of the responses have no timestamp option, TS is set to U (unsupported).

2. If any of the timestamp values are zero, Ts is set to 0 .

3. I f the average increments per second falls within the ranges 0 - 5 . 6 6 , 7 0 - 1 5 0 , or 1 5 0-3 5 0 , T s i s set
to 1 , 7, or 8, respectively. These three ranges get special treatment because they correspond to the 2 Hz,
JOO Hz, and 200 Hz frequencies used by many hosts.

1 82 8.3. TCP/IP Fingerprinting Methods Supported by Nmap

4. In all other cases, Nmap records the binary logarithm of the average increments per second, rounded to
the nearest integer. Since most hosts use 1 ,000 Hz frequencies, A is a common result.

TCP options (o, 01-0 6)

This test records the TCP header options in a packet. It preserves the original ordering and also provides
some information about option values. Because RFC 793 doesn't require any particular ordering,
implementations often come up with unique orderings. Some platforms don't implement all options (they
are, of course, optional). When you combine all of those permutations with the number of different option
values that implementations use, this test provides a veritable trove of information. The value for this test is
a string of characters representing the options being used. Several options take arguments that come
immediately after the character. Supported options and arguments are all shown in Table 8 . l .

Table 8.1. O test values

Option Name Character Argument (if any)

End of Options List (EOL) L

No operation (NOP) N

Maximum Segment Size (MSS) M The value is appended. Many systems echo the value used
in the corresponding probe.

Window Scale (WS) w The actual value is appended.

Timestamp (TS) T The T is followed by two binary characters representing the
TSval and TSecr values respectively. The characters are 0
if the field is zero and 1 otherwise.

Selective ACK permitted (SACK) s

As an example, the string M5B4NW3NNT 1 1 means the packet includes the MSS option (value Ox5B4)
followed by a NOP. Next comes a window scale option with a value of three, then two more NOPs. The
final option is a timestamp, and neither of its two fields were zero. If there are no TCP options in a response,
the test will exist but the value string will be empty. If no probe was returned, the test is omitted.

While this test is generally named o, the six probes sent for sequence generation purposes are a special case.
Those are inserted into the special OPS test l ine and take the names 01 through 06 to distinguish which
probe packet they relate to. The "O" stands for "options". Despite the different names, each test 01 through
06 is processed exactly the same way as the other O tests.

TCP initial window size (w, Wl-W6)

This test simply records the 16-bit TCP window size of the received packet. I t is quite effective, since there
are more than 80 values that at least one OS is known to send. A down side is that some operating systems
have more than a dozen possible values by themselves. This leads to false negative results until we collect
all of the possible window sizes used by an operating system.

While this test is generally named w, the six probes sent for sequence generation purposes are a special case.
Those are inserted into a special WIN test line and take the names Wl through W6 . The window size is recorded
for all of the sequence number probes because they differ in TCP MSS option values, which causes some

8.3. TCP/IP Fingerprinting Methods Supported by Nmap 183

operating systems to advertise a different window size. Despite the different names, each test is processed
exactly the same way.

Responsiveness (R)

This test simply records whether the target responded to a given probe. Possible values are Y and N. If there
is no reply, remaining fields for the test are omitted.

A risk with this test involves probes that are dropped by a firewall. This leads to R=N in the subject fingerprint.
Yet the reference fingerprint in nmap-os-db may have R=Y if the target OS usually replies. Thus the
firewall could prevent proper OS detection. To reduce this problem, reference fingerprints generally omit
the R=Y test from the I E and U l probes, which are the ones most likely to be dropped. In addition, if Nmap
is missing a closed TCP port for a target, it will not set R=N for the TS, T 6 , or T 7 tests even if the port it
tries is non-responsive. After all , the lack of a closed port may be because they are all filtered.

IP don't fragment bit (DF)

The IP header contains a single bit which forbids routers from fragmenting a packet. If the packet is too large
for routers to handle, they will just have to drop it (and ideally return a "destination unreachable, fragmentation
needed" response). This test records Y if the bit is set, and N if it isn't.

Don't fragment (ICMP) (DFI)

This i s simply a modified version of the D F test that i s used for the special I E probes. I t compares results
of the don't fragment bit for the two ICMP echo request probes sent. It has four possible values, which are
enumerated in Table 8.2.

Table 8.2. DFI test values

· Value Description

N Neither of the ping responses have the DF bit set.

s Both responses echo the DF value of the probe.

y Both of the response DF bits are set.

0 The one remaining other combination-both responses have the DF bit toggled.

IP in itial time-to-live (T)

IP packets contain a field named time-to-live (TTL) which is decremented every time they traverse a router.
If the field reaches zero, the packet must be discarded. This prevents packets from looping endlessly. Because
operating systems differ on which TTL they start with, it can be used for OS detection. Nmap determines
how many hops away it is from the target by examining the ICMP port unreachable response to the Ul probe.
That response includes the original IP packet, including the already-decremented TTL field, received by the
target. By subtracting that value from our as-sent TTL, we learn how many hops away the machine is. Nmap
then adds that hop distance to the probe response TTL to determine what the initial TTL was when that ICMP
probe response packet was sent. That initial TTL value is stored in the fingerprint as the T result.

184 8.3. TCP/IP Fingerprinting Methods Supported by Nmap

Even though an eight-bit field l ike TIL can never hold values greater than OxFF, this test occasionally results
in values ofOx 100 or higher. This occurs when a system (could be the source, a target, or a system in between)
corrupts or otherwise fails to correctly decrement the TIL. It can also occur due to asymmetric routes.

Nmap can also learn from the system interface and routing tables when the hop distance is zero (localhost
scan) or one (on the same network segment). This value is used when Nmap prints the hop distance for the
user, but it is not used for T result computation.

IP initial time-to-l ive guess (TG)
It is not uncommon for Nmap to receive no response to the U l probe, which prevents Nmap from learning
how many hops away a target is. Firewalls and NAT devices Jove to block unsolicited UDP packets. But
since common TIL values are spread well apart and targets are rarely more than 20 hops away, Nmap can
make a pretty good guess anyway. Most systems send packets with an initial TIL of 32, 60, 64, I 28, or 255.
So the TIL value received in the response is rounded up to the next value out of 32, 64, 1 28, or 255. 60 is
not in that list because it cannot be reliably distinguished from 64. It is rarely seen anyway. The resulting
guess is stored in the TG field. This TIL guess field is not printed in a subject fingerprint if the actual TIL
(T) value was discovered.

Expl icit congestion notification (cc)

This Lest is only used for the ECN probe. That probe is a SYN packet which includes the CWR and ECE
congestion control flags. When the response SYN/ACK is received, those flags are examined to set the CC
(congestion control) test value as described in Table 8.3.

Table 8.3. cc test values

Value Description

y Only the ECE bit is set (not CWR). This host supports ECN.

N Neither of these two bits is set. The target does not support ECN.

s Both bits are set. The target does not support ECN, but it echoes back what it thinks is a
reserved bit.

0 The one remaining combination of these two bits (other).

TCP miscel laneous quirks (Q)

This tests for two quirks that a few implementations have in their TCP stack. The first is that the reserved
field in the TCP header (right after the header length) is nonzero. This is particularly likely to happen in
response to the ECN test as that one sets a reserved b i t in the probe. If this is seen in a packet, an "R" is
recorded in the Q string.

The other quirk Nmap tests for is a nonzero urgent pointer field value when the URG flag is not set. This is
also particularly likely to be seen in response to the ECN probe, which sets a non-zero urgent field. A "U"
is appended to the Q string when this is seen.

The Q string must always be generated in alphabetical order. If no quirks are present, the Q test is empty but
still shown.

8.3. TCP/IP Fingerprinting Methods Supported by Nmap 185

TCP sequence number (s)
This test examines the 32-bit sequence number field in the TCP header. Rather than record the field value
as some other tests do, this one examines how it compares to the TCP acknowledgment number from the
probe that elicited the response. It then records the appropriate value as shown in Table 8.4.

Table 8.4. S test values

Value Description

z Sequence number is zero.

A Sequence number is the same as the acknowledgment number in the probe.

A+ Sequence number is the same as the acknowledgment number in the probe plus one.

0 Sequence number is something else (other).

ICMP sequence number(SI)

This test looks a t the sequence number i n ICMP echo response packets. I t i s only used for the two I E echo
request probes. The four values it can take are shown in Table 8.5.

Table 8.5. SI test values

Value Description

z Both sequence numbers are set to 0.

s Both sequence numbers echo the ones from the probes.

<NNNN> When they both use the same non-zero number, it is recorded here.

0 Any other combination.

TCP acknowledgment number (A)
This test is the same as S except that it tests how the acknowledgment number in the response compares to
the sequence number in the respective probe. The four possible values are given in Table 8.6.

Table 8.6. A test values

Value Description

z Acknowledgment number is zero.

s Acknowledgment number is the same as the sequence number in the probe.

S+ Acknowledgment number is the same as the sequence number in the probe plus one.

0 Acknowledgment number is something else (other).

186 8.3. TCP/IP Fingerprinting Methods Supported by Nmap

TCP flags (F)

This field records the TCP flags in the response. Each letter represents one flag, and they occur in the same
order as in a TCP packet (from high-bit on the left, to the low ones). So the value SA represents the SYN
and ACK bits set, while the value AS is i llegal (wrong order). The possible flags are shown in Table 8.7.

Table 8.7. F test values

Character Flag name Flag byte value

E ECN Echo (ECE) 64

u Urgent Data (URG) 32

A Acknowledgment (ACK) 16

p Push (PSH) 8

R Reset (RST) 4

s Synchronize (SYN) 2

F Final (FIN) 1

TCP RST data checksum (RD)
Some operating systems return ASCII data such as error messages in reset packets. This is explicitly allowed
by section 4.2.2 . 12 of RFC 1 122. When Nmap encounters such data, it performs a CRC 16 checksum and
reports the results. When there is no data, RD is set to zero. Some of the few operating systems that may
return data in their reset packets are HP-UX and versions of Mac OS prior to Mac OS X.

IP type of service (TOS)

This test simply records the type of service byte from the IP header of ICMP port unreachable packets. This
byte is described in RFC 791 . The value is not recorded for other responses (such as TCP or echo response
packets) because variations there are usually caused by network devices or host services rather than reflecting
the target OS itself.

IP type of service for ICMP responses (TOSI)

This test compares the IP type of service (TOS) bytes from the responses to both I E test ICMP echo request
probes. The possible values are shown in Table 8.8.

Table 8.8. TOSI test values

Value Description

z Both TOS values are zero.

s Both TOS values are each the same as in the corresponding probe.

<NN> When they both use the same non-zero number, it is recorded here.

0 Any other combination.

8.3. TCP/IP Fingerprinting Methods Supported by Nmap 187

IP total length (IPL)

This test records the total length (in octets) of an IP packet. It is only used for the port unreachable res
elicited by the Ul test. That length varies by implementation because they are allowed to choose how m

data from the original probe to include, as long as they meet the minimum RFC 792 requirement.
requirement is to include the original IP header and at least eight bytes of data.

Unused port unreachable field nonzero (UN)
An ICMP port unreachable message header is eight bytes long, but only the first four are used. RFC 7

states that the last four bytes must be zero. A few implementations (mostly ethernet switches and so
specialized embedded devices) set it anyway. The value of those last four bytes is recorded in this field.

Returned probe IP total length value (RIPL)

ICMP port unreachable messages (as are sent in response to the u 1 probe) are required to include the
header which generated them. This header should be returned just as they received it, but some implementatio
send back a corrupted version due to changes they made during IP processing. This test simply records t
returned IP total length value. If the correct value of Ox 148 (328) is returned, the value G (for good) is sto
instead of the actual value.

Returned probe IP ID value (RID)

The u 1 probe has a static IP ID value of Ox 1042. If that value is returned in the port unreachable message,
the value G is stored for this test. Otherwise the exact value returned is stored. Some systems, such as Solaris,
manipulate IP ID values for raw IP packets that Nmap sends. In such cases, this test is skipped . We have
found that some systems, particularly HP and Xerox printers, flip the bytes and return Ox4210 instead.

Integrity of returned probe IP checksum value (RIPCK)

The IP checksum is one value that we don 't expect to remain the same when returned in a port unreachable
message. After all, each network hop during transit changes the checksum as the TTL is decremented.
However, the checksum we receive should match the enclosing IP packet. If it does, the value G (good) is
stored for this test. If the returned value is zero, then z is stored. Otherwise the result is I (invalid).

Integrity of returned probe UDP length and checksum (RUL and
RUCK)

The UDP header length and checksum values should be returned exactly as they were sent. If so, G is recorded
for these tests. Otherwise the value actually returned is recorded. The proper length is Ox l 34 (308).

Integrity of returned UDP data (RUD)

If the UDP payload returned consists of 300 'C' (Ox43) characters as expected, a G is recorded for this test.
Otherwise I (invalid) is recorded.

188 8 .3 . TCP/IP Fingerprinting Methods Supported by Nmap

MP response code (co)
code value of an ICMP echo reply (type zero) packet is supposed to be zero. But some implementations
ngly end other values, particularly if the echo request has a nonzero code (as one of the I E tests does).
response code values for the two probes are combined into a CD value as described in Table 8.9.

Description

Both code values are zero.

Both code values are the same as in the corresponding probe.

When they both use the same non-zero number, it is shown here.

Any other combination.

P data length for ICMP responses (DLI)

n data is included with an ICMP echo request packet, i t i s supposed to be returned intact i n the
sponding echo response. But some implementations truncate the data anyway. This tests looks at both
P responses to the I E probes, and assigns a value as described in Table 8 . 10.

hie 8.10. DLI test values

Description

Neither response includes any data.

Both responses return all data sent in the corresponding request.

If at least one of the responses truncates the data, the largest amount of data returned (in
either packet) is stored here. When they both truncate the data length to the same non-zero
number, it is shown here. This value only counts actual data, not the IP or ICMP headers .

. 4. Fingerprint ing Methods Avoided by
map

map supports many more OS detection techniques than any other program, and we are always interested
hearing about new ideas. Please send them to the Nmap development l ist (nmap-dev) for discussion.

ever there are some methods that just aren't a good fit. This section details some of the most interesting
. While they aren't supported by Nmap, some are useful in combination with Nmap to verify findings

learn further details .

. 4.1 . Passive Fingerprinting

sive fingerprinting uses most of the same techniques as the active fingerprinting performed by Nmap.
difference is that a passive system simply sniffs the network, opportunistically classifying hosts as it
rves their traffic. This is more difficult than active fingerprinting, since you have to accept whatever

8.4. Fingerprinting Methods Avoided by Nmap 189

communication happens rather than designing your own custom probes. It is a valuable technique, but doesn't

belong in a fundamentally active tool such as Nmap. Fortunately, Michal Zalewski has written the excellent

pOf2 passive OS fingerprinting tool. He also devised a couple of the current Nmap OS fingerprinting tests.

Another option is SinFP3 by GomoR, which supports both active and passive fingerprinting.

TCP/IP fingerprinting works well for distinguishing different operating systems, but detecting different
versions of the same operating system can be troublesome. The company must change their stack in some
way we can differentiate. Fortunately, many OS vendors regularly update their systems to comply with the
latest standards. But what about those who don't? Most of them at least get around to fixing exploitable stack
bugs eventually. And those fixes are easy to detect remotely. First send the exploit payload, be it a land
attack, teardrop, ping of death, SYN flood, or WinNuke. Send one attack at a time, then immediately try to
contact the system again. If it is suddenly non-responsive, you have narrowed down the OS to versions which
didn't ship with the fix.

0
Warning
If you use denial of service (DoS) exploits as part of your OS detection suite, remember to
perform those tests last.

8.4.3. Retransmission Times

TCP i mplementations have significant leeway in exactly how long they wait before retransmitting packets.
The proof-of-concept tools Ring and Cron-OS are available to exploit this. They send a SYN packet to an
open port, then ignore the SYN/ACK they receive rather than acknowledging it with an ACK (to complete
the connection) or a RST (to kill it). The target host will resend the SYN/ACK several more times, and these
tools track every subsecond of the wait. While some information can indeed be gleaned from this technique,
there are several reasons that I haven't incorporated the patch into Nmap:

• It usually requires modifying the source host firewal l rules to prevent your system from replying with a
RST packet to the SYN/ACK it receives. That is hard to do in a portable way. And even if it was easy,
many users don't appreciate applications mucking with their firewall rules.

• It can be very slow. The retransmissions can go on for several minutes. That is a long time to wait for a
test that doesn't give all that much information in the first place.

• It can be inaccurate because packet drops and latency (which you have to expect in real-world environments)
can lead to bogus results.

I have enumerated these reasons here because they also apply to some other proposed OS detection methods.
I would love to add new tests, but they must be quick and require few packets. Messing with host firewall
is unacceptable. I try to avoid making ful l TCP connections for stack fingerprinting, though that is done for
OS detection as part of the version scanning system.

2 http:lllcamtufcoredump.cxlpOfsht1nl
3 http:/lwww.gomor.org/bin/view/Sinfp

190 8.4. Fingerprinting Methods Avoided by Nmap

8.4.4. IP Fragmentation

I P fragmentation i s a complex system and implementations are riddled with bugs and inconsistencies. Possible
tests could examine how overlapping fragments are assembled or time the defragmentation timeouts. These
tests are avoided for Nmap because many firewalls and other inline devices defragment

'
traffic at gateways.

Thus Nmap may end up fingerprinting the firewall rather than the true destination host. In addition, fragments
are difficult to send on some operating systems. Linux 2.6 kernels have a tendency to queue the fragments
you are trying to send and assemble them itself before transmission.

8.4.5. Open Port Patterns

The target host OS can often be guessed simply by looking a t the ports which are open. Microsoft Windows
machines often have TCP ports 1 35 and 1 39 open. Windows 2000 and newer also listen on port 445.
Meanwhile, a machine running services on port 22 (ssh) and 631 (Internet Printing Protocol) is l ikely running
Unix.

While this heuristic is often useful, it just isn't reliable enough for Nmap. Combinations of ports can be
obscured by firewall rules, and most mainstream protocols are available on multiple platforms. OpenSSH
servers can be run on Windows4, and the "Windows SMB" ports can be serviced by Samba5 running on a
Unix machine. Port forwarding clouds the issue even further. A machine which appears to be running
Microsoft IIS might be a Unix firewall simply forwarding port 80 to a Windows machine.

For these reasons, Nmap does not consider open port numbers during TCP/IP stack fingerprinting. However,
Nmap can use version detection information (see Chapter 7, Service and Application Version Detection [1 45))
to separately discover operating system and device type information. By keeping the OS detection results
discovered by OS detection and version detection separate, Nmap can gracefully handle a Checkpoint firewall
which uses TCP port forwarding to a Windows web server. The stack fingerprinting results should be
"Checkpoint Firewall- I " while version detection should suggest that the OS is Windows. Keep in mind that
only a small fraction of version detection signatures include OS and device type information-we can only
populate these fields when the application divulges the information or when it only runs on one OS or device
type.

8.5. Understand ing an Nmap Fingerprint
When Nmap stores a fingerprint in memory, Nmap uses a tree of attributes and values in data structures that
users need not even be aware of. But there is also a special ASCII-encoded version which Nmap can print
for users when a machine is unident.ified. Thousands of these serialized fingerprints are also read back every
time Nmap runs (with OS detection enabled) from the nmap-os -db database. The fingerprint format is a
compromise between human comprehension and brevity. The format is so terse that it looks like l ine noise
ID many inexperienced users, but those who read this document should be able to decipher fingerprints with
eue. There are actually two types of fingerprints, though they have the same general structure. The fingerprints
ofknown operating systems that Nmap reads in are called reference fingerprints, while the fingerprint Nmap
· Jays after scanning a system is a subject fingerprint. The reference fingerprints are a bit more complex
· e they can be tailored to match a whole class of operating systems by adding leeway to (or omitting)

8.5. Understanding an Nmap Fingerprint 19 1

tests that aren't so reliable while allowing only a single possible value for other tests. The reference fingerprin
also have OS details and classifications. Since the subject tests are simpler, we describe them first.

8.5.1 . Decod ing the Subject Fingerprint Format

If Nmap performs OS fingerprinting on a host and doesn't get a perfect OS matches despite promising
conditions (such as finding both open and closed ports accessible on the target), Nmap prints a subject
fingerprint that shows all of the test results that Nmap deems relevant, then asks the user to submit the data
to Nmap.Org. Tests aren't shown when Nmap has no useful results, such as when the relevant probe responses
weren't received. A special l ine named SCAN gives extra details about the scan (such as Nmap version
number) that provide useful context for integrating fingerprint submissions into nmap-os -db. A typical

subject fingerprint is shown in Example 8.3.

Example 8.3. A typical subject fingerprint

OS : SCAN (V=4 . 6 2 %D=S/ 2 1 %0T=80%CT=l%CU=36 06 9 %PV=Y%DS=l %G=Y%M=00 1 839%TM=483 466E
OS : 0 %P=i 6 8 6 -pc-linux-gnu) SEQ (SP=C9 %GCD=l % ISR=CE%TI=Z % I I=I %TS=8) 0PS (Ol=MSB4S
OS : Tl lNW0 %02=MSB4ST l lNW0%03=MSB4NNTl lNW0%04=MSB4STl lNW0%05=MSB4STl lNW0%06=M
OS : SB4STl l) WIN (Wl=l6A0%W2=1 6A0%W3=16A0%W4=1 6A0%W5=1 6A0%W6=16AO) ECN (R=Y%DF=Y
OS : %T=4 0 %W=l6D0%0=MSB4NNSNW0%CC=N%Q=) Tl (R=Y%DF=Y%T=40%S=0%A=S+%F=AS%RD=0%Q=
OS :) T2 (R=N) T3 (R=Y%DF=Y%T=40%W=l 6A0%S=O%A=S+ %F=AS%0=MSB4ST1 1NW0%RD=0%Q=) T4 (R
OS : =Y%DF=Y%T=40%W=0%S=A%A=Z%F=R%0=%RD=0%Q=) T5 (R=Y%DF=Y%T=40%W=0%S=Z%A=S+%F=
OS : AR%0=%RD=0 %Q=) T6 (R=Y%DF=Y%T=40%W=0%S=A%A=Z%F=R%0=%RD=0%Q=) T7 (R=Y%DF=Y%T=
OS : 4 0 %W=0 %S=Z%A=S+%F=AR%0=%RD=0%Q=) U l (R=Y%DF=N%T=40%TOS=C0% IPL= l 6 4 %UN=0%RIP
OS : L=G%RID=G%RIPCK=G%RUCK=G%RUL=G%RUD=G) IE (R=Y%DFI=N%T=40%TOSI=S%CD=S%S I=S%
OS : DLI=S)

Now you may look at this fingerprint and immediately understand what everything means. If so, you can
simply skip this section. But I have never seen such a reaction. Many people probably think some sort of
buffer overflow or unterminated string error is causing Nmap to spew garbage data at them. This section

. helps you decode the information so you can immediately tell that blind TCP sequence prediction attacks
against this machine are moderately hard, but it may make a good idle scan (-s I) zombie. The first step in
understanding this fingerprint is to fix the l ine wrapping. The tests are all squished together, with each line
wrapped at 71 characters. Then OS : is prepended to each l ine, raising the length to 74 characters. This makes
fingerprints easy to cut and paste into the Nmap fingerprint submission form (see Section 8 .7.2, "When
Nmap Fails to Find a Match and Prints a Fingerprint" [20 1]) . Removing the prefix and fixing the word
wrapping (each l ine should end with a right parenthesis) leads to the cleaned-up version in Example 8.4.

192 8.5. Understanding an Nmap Fingerprint

Example 8.4. A cleaned-up subject fingerprint

SCAN (V=4 . 62%D=5 / 2 1 %0T=80%CT=l%CU=36 06 9%PV=Y%DS=l %G=Y%M=0 0 1 8 3 9 %
TM=483466E0%P=i6 86-pc-l inux-gnu)

SEQ (SP=C9%GCD= 1 % ISR=CE%TI=Z % I I=I %TS=8)
OPS (Ol=M5B4ST11NW0%02=M5B4ST 1 1NW0%03=M5B4NNT1 1NW0%04=M5B4ST1 1NW0%

05=M5B4ST11NW0%06=M5B4ST1 1)
WIN (Wl=l6A0%W2=16A0%W3=1 6A0%W4=1 6A0%W5=16A0%W6=16A0)
ECN (R=Y%DF=Y%T=40%W=l6D0 %0=M5B4NNSNW0%CC=N%Q=)
Tl (R=Y%DF=Y%T=40%S=0%A=S+ %F=AS%RD=0%Q=)
T2 (R=N)
T3 (R=Y%DF=Y%T=40%W=l6A0%S=O%A=S+%F=AS%0=M5B4ST 1 1NW0%RD=0%Q=)
T4 (R=Y%DF=Y%T=4 0%W=0%S=A%A=Z%F=R%0=%RD=0%Q=)
T5 (R=Y%DF=Y%T=4 0%W=0%S=Z%A=S+%F=AR%0=%RD=0%Q=)
T6 (R=Y%DF=Y%T=40%W=0%S=A%A=Z%F=R%0=%RD=0%Q=)
T7 (R=Y%DF=Y%T=4 0%W=0%S=Z %A=S+%F=AR%0=%RD=0%Q=)
Ul (R=Y%DF=N%T=4 0%TOS=C0% IPL= l 6 4 %UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUL=G%RUD=G)
IE (R=Y%DF I=N%T=40%TOSI=S%CD=S%SI=S%DLI=S)

While this still isn't the world's most intuitive format (we had to keep it short), the format is much clearer
now. Every line is a category, such as SEQ for the sequence generation tests, T3 for the results from that
particular TCP probe, and IE for tests related to the two ICMP echo probes.

Following each test name is a pair of parentheses which enclose results for individual tests. The tests take
the format <test name>= <val ue>. All of the possible categories, tests, and values are described in
Section 8.3, "TCP/IP Fingerprinting Methods Supported by Nmap" [1 76]. Each pair of tests are separated by
a percentage symbol (%). Tests values can be empty, leading to a percentage symbol or category-terminating
right-parenthesis immediately following the equal sign. The string "0=%RD=0 %Q=) " in T 4 of our example
shows two of these empty tests. A blank test value must match another blank value, so this empty TCP quirks
Q value wouldn't match a fingerprint with Q set to RU.

In some cases, a whole test is missing rather than just its value. For example, T2 of our sample fingerprint
has no W (TCP window), S (sequence number), A (acknowledgment number), T (TIL), or TG (TIL guess)
tests. This is because the one test and value it does include, R=N, means that no response was returned for
the T2 probe. So including a window value or sequence number would make little sense. Similarly, tests
which aren't well supported on the system running Nmap are skipped. An example is the R I D (IP ID field
returned in ICMP packet) test, which doesn't work well on Solaris because that system tends to corrupt the
ID field Nmap sends out. Tests which are inconclusive (such as failing to detect the IP ID sequence for the
T I and I I tests) are also omitted.

Decoding the SCAN l ine of a subject fingerprint

The SCAN line is a special case in a subject fingerprint. Rather than describe the target system, these tests
describe various conditions of the scan. These help us integrate fingerprints submitted to Nmap.Org. The
tests in this line are:

• Nmap version number (V).

• Date of scan (D) in the form month/day.

8.5. Understanding an Nmap Fingerprint 193

• Open and closed TCP ports (on target) used for scan (OT and CT). Unlike most tests, these are printed in
decimal formal. If Nmap was unable to find an open or a closed port, the test is included with an empty
value (even when Nmap guesses a possibly closed port and sends a probe there).

• Closed UDP port (CU). This is the same as CT, but for UDP. Since the majority of scans don't include
UDP, this test's value is usually empty.

• Private IP space (PV) is Y if the target is on the 1 0 . 0 . 0 . 0 I 8, 1 7 2 . 1 6 . 0 . 0 I 1 2 , or 1 9 2 . 1 6 8 . 0 . 0I 16

private networks (RFC 1918). Otherwise i t is N.

• Network distance (DS) is the network hop distance from the target. I t i s 0 i f the target i s localhost, 1 if
directly connected on an ethernet network, or the exact distance if discovered by Nmap. If the distance is
unknown, this test is omitted.

• Good results (G) is Y if conditions and results seem good enough to submit this fingerprint to Nmap.Org.
It i s N otherwise. Unless you force them by enabling debugging (-d) or extreme verbosity (-vv), G=N

fingerprints aren't printed by Nmap.

• Target MAC prefix (M) is the first six hex digits of the target MAC address, which correspond to the vendor
name. Leading zeros are not included. This field is omitted unless the target is on the same ethernet network
(DS= l).

• The OS scan time (TM) is provided in Unix time_t format (in hexadecimal).

• The platform Nmap was compiled for is given in the P field.

8.5.2. Decoding the Reference Fingerprint Format

When Nmap scans a target to create a subject fingerprint, i t then tries to match that data against the thousands
of reference fingerprints in the nmap-os -db database. Reference fingerprints are initially formed from
one or more subject fingerprints and thus have much in common. They do have a bit of extra information to
facilitate matching and of course to describe the operating systems they represent. For example, the subject
fingerprint we just looked at might form the basis for the reference fingerprint in Example 8.5.

1 94 8.5. Understanding an Nmap Fingerprint

pie 8.5. A typical reference fingerprint

rprint Sony PlayStation 3 game console
Sony I embedded I I game console

P•F7-1 01 %GCD=<7% ISR=FC-1 06 %TI=RD%TS=2 1)
l•M5B4NNSNW1NNT1 1 %02=M5B4NNSNW1NNT1 1 %03=M5B4NW1NNT 1 1 %
4•M5B4NNSNWlNNT1 1 %05=M5B4NNSNWlNNT1 1 %06=M5B4NNSNNTl l)
l•FFFF%W2=FFFF%W3=FFFF%W4=FFFF%W5=FFFF%W6=FFFF)

l•Y%DF=N%T=41 %TG=41 %W=FFFF%0=M5B4NNSNW1 %CC=N%Q=)
Y%DF=N%T=4 1 %TG=4 1 %S=0%A=S+%F=AS%RD=0%Q=)
Y%DF=N%T=4 1 %TG=41 %W=0%S=Z%A=O J S%F=AR%0=%RD=0%Q=)
Y%DF=N%T=41 %TG=41 %W=FFFF%S=0%A=S+%F=AS%0=M5B4NNSNW1NNT1 1 %RD=0%Q=)

•Y%DF=N%T=4 1 %TG=41 %W=0%S=A l 0%A=Z%F=R%0=%RD=0%Q=)
Y%DF=N%T=40%TG=4 0%W=0%S=Z%A=O I S+%F=AR%0=%RD=0%Q=)

•Y%DF=N%T=40%TG=40%W=0 %S=A I O%A=Z%F=R%0=%RD=0 %Q=)
•Y%DF=N%T=40%TG=40%W=0%S=Z%A=O I S%F=AR%0=%RD=0%Q=)
F•N%T=FF%TG=FF%TOS=0% IPL=38%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUL=G%RUD=G)
FI=N%T=FF%TG=FF%TOSI=S%CD=S%SI=S%DLI=S)

Some differences are immediately obvious. Line wrapping is not done because that is only important for the
mission process. The SCAN line is also removed, since that information describes a specific scan instance

1llher than general target OS characteristics.

You probably also noticed the two new lines, Fi ngerpr i nt and C l a s s , which are new to this reference
lngerprint. A more subtle change is that some of the individual test results have been removed while others
have been enhanced with logical expressions.

Free-form OS description (Fingerprint l ine)

The Fingerpr int l ine first serves as a token so Nmap knows to start loading a new fingerprint. Each
fingerprint only has one such l ine. Immediately after the F i ngerpr int token (and a space) comes a textual
description of the operating system(s) represented by this fingerprint. These are in free-form English text,
designed for human interpretation rather than a machine parser. Nevertheless, Nmap tries to stick with a
consistent format including the vendor, product name, and then version number. Version number ranges and
comma-separated alternatives discussed previously can be found in this field. Here are some examples:

qerprint HP LaserJet printer (4 0 5 0 , 4 1 0 0 , 4 2 0 0 , or 8 1 5 0)
qerprint Sun Solaris 9 or 1 0 (SPARC)
qerprint Linux 2 . 6 . 2 2 - 2 . 6 . 2 4
qerprint Microsoft Windows Server 2003 SPl
qerprint Microsoft Windows XP Professional SPl
qerprint Minolta Di550 laser printer

I n an ideal world, every different OS would correspond to exactly one unique fingerprint. Unfortunately,
OS vendors don't make life so easy for us. The same OS release may fingerprint differently based on what
aetwork drivers are in use, user-configurable options, patch levels, processor architecture, amount of RAM
available, firewall settings, and more. Sometimes the fingerprints differ for no discernible reason. While the
reference fingerprint format has an expression syntax for coping with slight variations, creating multiple
fingerprints for the same OS is often preferable when major differences are discovered.

Just as multiple fingerprints are often needed for one OS, sometimes a single fingerprint describes several
systems. If two systems give the exact same results for every single test, Nmap has l ittle choice but to offer

8.5. Understanding an Nmap Fingerprint 1 95

up both as possibilities. This commonly occurs for several reasons. One is that vendors may release a new
version of their OS without any significant changes to their IP stack. Maybe they made important changes
elsewhere in the system, or perhaps they did little but want to make a bunch of money selling "upgrades".
In these cases, Nmap often prints a range such as Apple Mac OS X 1 0 . 4 . 8 - 1 0 . 4 . 1 1 or Sun

S o l ar i s 9 or 1 0 .

Another cause of duplicate fingerprints i s embedded devices which share a common OS. For example, a
printer from one vendor and an ethernet switch from another may actually share an embedded OS from a
third vendor. In many cases, subtle differences between the devices still allow them to be distinguished. But
sometimes Nmap must simply list a group of possibilities such as Ci sco 1 2 0 0-s eries WAP , HP

ProCurve 2 6 5 0 swi t ch , or Xerox Phaser 7 4 0 0N or 8 5 5 0 DT pri nter.

There are also cases where numerous vendors private label the exact same OEM device with their own brand
name and model number. Here again, Nmap must simply list the possibi l i ties. But distinguishing these is
less important because they are all fundamentally the same device.

Tip
If the description printed by Nmap (which comes from the Fi ngerprint line) isn't informative
enough for you, more detailed information may be available in comments above the fingerprint
itself in nmap-os -db. You can find it installed on your system as described in Chapter 14,
Understanding and Customizing Nmap Data Files [363], or look up the latest version at
http://nmap.org/datalnmap-os-db. Search for the exact OS description that Nmap gives you.
Keep in mind that there may be several F i ngerpr i:n t lines with exactly the same description,
so you may have to examine them all. Or use the Nmap XML output, which shows the line
number of each match.

Device and OS classification (Class l ines)

While the F i ngerprint description works great for analysts reading Nmap output directly, many people
· run Nmap from other scripts and applications. Those applications might use the OS information to check for

OS-specific vulnerabilities or just create a pretty graph or report.

A more structured OS classification system exists for these purposes. It is also useful when there are multiple
matches. If you only get a partial fingerprint (maybe no open ports were found on the target so many tests
had to be skipped), it might match dozens of different fingerprints in the nmap-os -db database. Pri nting
the details for all of those fingerprints would be a mess. But thanks to OS classification, Nmap can find
commonality. If all of the matches are classified as Linux, Nmap will simply print that the target is a Linux
box.

Every fingerprint has one or more C l a s s l ines. Each contains four well-defined fields: vendor, OS name,
OS family, and device type. The fields are separated by the pipe symbol (I) .

The device type is a broad classification such as router, pr inter, or game console and was discussed
previously in this chapter. General-purpose operating systems such as Linux and Windows which can be
used for just about anything are classified as general purpo se.

196 8.5. Understanding an Nmap Fingerprint

The vendor is the company which makes an OS or device. Examples are Apple, C i s co, Mi crosoft,
and Linksys. For community projects such as OpenBSD and Linux without a controlling vendor, the OS
family name is repeated for the vendor column.

OS family includes products such as Wi ndows, Li nux, IOS (for Cisco routers), Solar i s , and OpenBSD.
There are also hundreds of devices such as switches, broadband routers, and printers which use undisclosed
operating systems. When the underlying OS isn't clear, embedded is used.

OS generation is a more granular description of the OS. Generations of Linux include 2 . 4 . x and 2 . 6 . x,

while Windows generations include 9 5 , 9 8 , Me, 2 0 0 0 , XP, and V i s t a. FreeBSD uses generations such
as 4 . X and 5 . x. For obscure operating systems which we haven't subdivided into generations (or whenever
the OS is listed simply as embedded), this field is left blank.

Each field may contain just one value. When a fingerprint represents more than one possible combination
of these four fields, multiple C l a s s l ines are used. Example 8.6 provides some example F i ngerp r i nt

lines followed by their corresponding classifications.

Example 8.6. Some typical fingerprint descriptions and corresponding classifications

Fingerprint D-Link DSL-500G ADSL router
Class D-Link I embedded I I broadband router

Fingerprint Linksys WRT54GC or TRENDnet TEW-43 1BRP WAP
Class Linksys I embedded I I WAP
Class TRENDnet I embedded I I WAP

Fingerprint Apple Mac OS X 1 0 . 3 . 9 (Panther) - 1 0 . 4 . 7 (Tiger)
Class Apple I Mac OS X I 1 0 . 3 . X I general purpose
Class Apple I Mac OS X I 1 0 . 4 . X I general purpose

Fingerprint Sony PlayStation 3 game console
Class Sony I embedded I I game console

I f these examples aren't enough, a listing of classifications recognized by the latest version of Nmap is
maintained at http://nmap.org/data/os-classes. txt.

Test expressions

The test expressions don't have to change between a subject and reference fingerprint, but they almost always
do. The reference fingerprint often needs to be generalized a little bit to match all instances of a particular
OS, rather than just the machine you are scanning. For example, some Windows XP machines return a
Window size of F 4 2 4 to the T 1 probe, while others return FAF 0 . This may be due to the particular ethernet
device driver in use, or maybe how much memory is available. In any case, we would like to detect Windows
XP no matter which window size is used.

One way to generalize a fingerprint is to simply remove tests that produce inconsistent results. Remove all
of the window size tests from a reference fingerprint, and systems will match that print no matter what size
they use. The downside is that you can lose a lot of important information this way. If the only Window sizes
that a particular system ever sends are F 4 2 4 and FAF O, you really only want to allow those two values, not
all 65,536 possibil ities.

8.5. Understanding an Nmap Fingerprint 197

While removing tests is overkill in some situations, it is useful in others. The R=Y test value, meaning there

was a response, is usually removed from the U l and I E tests before they are added to nmap-os -db. These

probes are often blocked by a firewall, so the lack of a response should not count against the OS match.

When removing tests is undesirable, Nmap offers an expression syntax for allowing a test to match multiple

values. For example, W=F 4 2 4 I FAF 0 would allow those two Windows XP window values without allowing
any others. Table 8 . 1 1 shows the permitted operators in test values.

Table 8.11. Reference fingerprint test expression operators

Op Name Symbol Example Description

Or I O= I ME I MNNTNW Matches if the corresponding subject fingerprint test

takes the value of any of the clauses. In this example,
the initial pipe symbol means that an empty options
list will match too.

Range - SP= 7 -A Matches if the subject fingerprint's corresponding test
produces a numeric value which falls within the range

specified.

Greater than > SP=> 8 Matches if the subject fingerprint's corresponding test

produces a numeric value which is greater than the
one specified.

Less than < GCD=<S Matches if the subject fingerprint's corresponding test
produces a numeric value which is less than the one
specified.

Expressions can combine operators, as in GCD=< 7 I 6 4 I 2 5 6 I > 1 0 2 4 , which matches if the GCD is less

than seven, exactly 64, exactly 256, or greater than 1024.

·a.6. OS Match ing Algorithms
Nmap's algorithm for detecting matches is relatively simple. It takes a subject fingerprint and tests it against
every single reference fingerprint in nmap-os -db.

When testing against a reference fingerprint, Nmap looks at each probe category line from the subject
fingerprint (such as SEQ or T 1) in turn. Any probe lines which do not exist in the reference fingerprint are

skipped. When the reference fingerprint does have a matching line, they are compared.

For a probe line comparison, Nmap examines every individual test (R, OF, w, etc.) from the subject category
l ine in turn. Any tests which do not exist i n the reference line are skipped. Whenever a matching test is found,

Nmap increments the P o s s iblePoi n t s accumulator by the number of points assigned to this test. Then
the test values are compared. If the reference test has an empty value, the subject test only matches if its
value is empty too. If the reference test is just a plain string or number (no operators), the subject test must
match it exactly. If the reference string contains operators (I , -, >, or <), the subject must match as described
in the section called "Test expressions" [1 97] . If a test matches, the NumMatchPoint s accumulator is
incremented by the test's point value.

198 8.6. OS Matching Algorithms

Once all of the probe lines are tested for a fingerprint, Nmap divides NumMatchPo i n t s by
PossiblePoint s . The result is a confidence factor describing the probabi lity that the subject fingerprint
matches that particular reference fingerprint. It is treated as a percentage, so 1 . 0 0 is a perfect match while
0 . 9 5 is very close.

Test point values are assigned by a special MatchPoints entry (which may only appear once) in
nmap-os-db. This entry looks much like a normal fingerprint, but instead of providing results for each
lest, it provides point values (non-negative integers) for each test. Tests l isted in the Mat ch Points structure
only apply when found in the same test they are listed in. So a value given for the W (Window size) test in
Tl doesn't affect the w test in T3 . An example Mat chPoi nt s structure is given in Example 8.7.

Example 8. 7. The MatchPoints structure

tchPoints
Q (SP=25%GCD=75% I SR=25%TI=l 0 0 % I I= l 00 %SS=80%TS= l 0 0)
(01=20%02=20%03=2 0%04=2 0%05=20%06=2 0)
(Wl=l5%W2=15%W3=1 5%W4=15%W5=15%W6=15)
(R•l00%DF=20%T=l5%TG=l5%W=l5%0= 1 5 %CC= l 0 0%Q=20)

(R=100%DF=20%T=l 5%TG=l 5%S=20%A=2 0%F=30%RD=2 0%Q=2 0)
(R=80%DF=20%T=1 5%TG=l5%W=25%S=2 0 %A=20%F=30%0= 1 0%RD=20%Q=20)
(R=80%DF=20%T=l5%TG=l5%W=25%S=2 0 %A=20 %F=30%0= 1 0%RD=20 %Q=2 0)

• <R=100%DF=2 0%T=1 5%TG=l5%W=2 5 %S=2 0%A=20 %F=30%0= 1 0%RD=20%Q=20)
(R=100%DF=2 0%T=l 5%TG=l5%W=25 %S=20%A=20 %F=30 %0= 1 0%RD=20%Q=20)
(R=1 00%DF=20%T=l 5 %TG=l5%W=25%S=20%A=20 %F=30 %0=1 0%RD�20%Q=20)
(R=80%DF=20%T=l 5%TG=l5%W=25%S=20 %A=20%F=30%0= 1 0%RD=20%Q=20)
(R=50%DF=20%T=l5%TG=l5%TOS=50% IPL=l 0 0 %UN= l 0 0%RIPL= l 0 0 %RID=l 0 0%RIPCK= l 0 0 % �
RUCK=100%RUL=l 0 0%RUD=l 0 0)
(R=50%DFI=40%T=l 5%TG=l 5%TOSI=25%CD= l 00%SI=l 0 0 %DLI=l0 0)

Once all of the reference fingerprints have been evaluated, Nmap orders them and prints the perfect matches
(if there aren't too many). If there are no perfect matches, but some are very close, Nmap may print those.
Guesses are more likely to be printed if the - - o s s can- gue s s option is given.

8.7. Deal ing with Misidentified and
Un identified Hosts
While Nmap has a huge database, it cannot detect everything. Nmap has no chance to detect most toasters,
refrigerators, chairs, or automobiles because they have no IP stack. Yet I wouldn't rule any of these out,
given the ever-expanding list of connected devices. The Nmap fingerprint DB includes plenty of game
consoles, phones, thermometers, cameras, interactive toys, and media players.

Having an IP address is necessary but not sufficient to guarantee a proper fingerprint. Nmap may still guess
wrong or fail to produce any guess at all. Here are some suggestions for improving your results:

Upgrade to the latest Nmap
Many Linux distributions and other operating systems ship with ancient versions of Nmap. The Nmap
OS database is improved with almost every release, so check your version number by running nmap

-V and then compare that to the latest available from http://nmap.org/download.html. Installing the
newest version takes only a few minutes on most platforms.

8.7. Dealing with Misidentified and Unidentified Hosts 1 99

Scan all ports
When Nmap detects OS detection problems against a certain host, it will issue warnings. One of the
most common is: "Warning: OS detection will be MUCH less reliable because we did not find at least
I open and I closed TCP port". It is possible that such ports really are unavailable on the machine, but
retrying your scan with -p- to scan all ports may find some that are responsive for OS detection. Doing
a UDP scan (-s U) too can help even more, though it will slow the scan substantial ly.

Try a more aggressive guess
If Nmap says there are no matches close enough to print, something is probably wrong. Maybe a firewall
or NAT box in the way is modifying the probe or response packets. This can cause a hybrid situation
where one group of tests look like they are from one OS, while another set look completely different.
Adding the - - o s s can-gue s s may give more clues as to what is running.

Scan from a different location
The more network hops your packet has to go through to reach its target, the greater the chances that a
network device will modify (or drop) the probe or response. NAT gateways, firewalls, and especially
port forwarding can confuse OS detection. If you are scanning the IP of a load balancing device which
simply redirects packets to a diverse network of servers, it isn't even clear what the "correct" OS detection
result would be.

Many ISPs filter traffic to "bad" ports, and others use transparent proxies to redirect certain ports to
their own servers. The port 25 or 80 you think are open on your target may actually be spoofed from
your ISP to connect to ISP proxy servers. Another behavior which can confuse OS detection is when
firewalls spoof TCP reset packets as if they are coming from the destination host. This is particularly
common from port 1 1 3 (identd). Both the reset spoofing and transparent proxies can often be detected
by noticing that every machine on a target network seems to exhibit the behavior-even those which
otherwise seem to be down. If you detect any such nonsense, be sure to exclude these ports from your
scan so they don't taint your results. You may also want to try from a completely different network
location. The closer you are to the target, the more accurate the results will be. In a perfect case, you
would always scan the target from the same network segment it resides on.

8.7.1 . When Nmap Guesses Wrong

Occasionally Nmap will report an OS guess which you know i s wrong. The errors are usually minor (such
as reporting a machine running Linux 2.4. 16 as "Linux kernel 2.4.8 - 2.4. 1 5"), but there have been reports
of Nmap being completely off (such as reporting your web server as an Apple Writer printer). When you
encounter such problems (minor or major), please report them so everyone can benefit. The only reason the
Nmap DB is so comprehensive is that thousands of users have spent a few minutes each to submit new
information. Please follow these instructions:

Have a recent version of Nmap

200

Run nmap -V to determine which version of Nmap you have. You don't need to be running the absolute
latest version ofNmap (though that would be ideal), but make sure your version is 4.20 or higher because
we only need second generation OS fingerprints, not the old style produced by previous versions. You
can determine the latest available version of Nmap by visiting http://nmap.org/download.html. If you
upgrade, you might find that the identification has already been fixed.

8.7. Dealing with Misidentified and Unidentified Hosts

Be absolutely certain you know what is running
Invalid "corrections" can corrupt the OS DB. If you aren't certain exactly what is running on the remote
machine, please find out before submitting.

Generate a fingerprint
Run the command nmap -0 -sSU -F -T4 -d <target>, where <target > is the misidentified system
in question. Look at the OS detection results to ensure that the misidentification is sti l l present.

If the Nmap output for the host OS results says (JUST GUESS I NG) , it is expected that results may
be a little off. Don't submit a correction in this case.

Otherwise, the map command should have produced results including the line OS f i ngerp r i nt : .
Below that is the fingerprint (a series of lines which each start with OS :).

Check that OS detection works against other hosts
Try scanning a couple other hosts on the target network which you know have a different OS. If they
aren't detected properly, maybe there is some network obstruction between the systems which is corrupting
the packets.

If you have gotten this far and are sti l l able to submit, good for you ! Please submit the information at
http://insecure. o rglcg i-binlsubmit. cg i ? co rr-os

8.7.2. When Nmap Fai ls to Find a Match and Prints a
Fingerprint

When Nmap detects that OS detection conditions seem ideal and yet it finds no exact matches, it will print
out a message like this:

O OS matches for host (I f you know what OS i s running on i t , see
tp : / /nmap . org/submit /) .
P/IP fingerprint :
: SCAN (V=4 . 62%D=5/20%0T=2 1 %CT=1 %CU=422 9 3%PV=Y%DS=1 %G=Y%M=0 0 8 0 7 7 %TM=4833 6D6
: D%P=i686-pc-l inux-gnu) SEQ (SP=l 1 %GCD=lE8 4 8 % I SR=A4%TI=I % I I= I %SS=S%TS=A) OPS
: (Ol=MSB4NWONNSNNT1 1 %02=M5 7 8NWONNSNNT1 1 %03=M2 80NWONNT 1 1 %04=M5B4NWONNSNNT1
: 1%05=M2 18NW0NNSNNT1 1 %06=Ml 09NNSNNT l l) WIN (W1=21F0%W2=2 0 8 8 %W3=2258 %W4=2 1FO
: %W5=20C0%W6=20 9D) ECN (R=Y%DF=N%T=4 0%W=2238%0=M5B4NWONNS%CC=N%Q=) T l (R=Y%DF
: =N%T=40%S=O%A=S+%F=AS%RD=0%Q=) T2 (R=N) T3 (R=Y%DF=N%T=4 0 %W=2 09D%S=O%A=S+%F=
:AS%0=Ml 09NWONNSNNT1 1 %RD=0 %Q=) T 4 (R=Y%DF=N%T=4 0 %W=0%S=A%A=Z %F=R%0=%RD=0%Q=
:) T5 (R=Y%DF=N%T=40%W=0%S=Z%A=S+%F=AR%0=%RD=0%Q=) T6 (R=Y%DF=N%T=4 0%W=0%S=A%
:A=Z%F=R%0=%RD=0%Q=) T7 (R=Y%DF=N%T=4 0%W=0%S=Z%A=S+%F=AR%0=%RD=0%Q=) Ul (R=Y%
: DF=N%T=FF%TOS=0%IPL=3 8%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUL=G%RUD=G) IE (R
: •Y%DFI=N%T=FF%TOSI=Z%CD=S%SI=S%DLI=S)

e consider submitting the fingerprint so that all Nmap users can benefit. It only takes a minute or two
it may mean you don't need to see that ugly message again when you scan the host with the next Nmap
ion ! Simply visit the URL Nmap provides for instructions.

Nmap finds no matches and yet prints no fingerprint, conditions were not ideal . Even if you obtain the
gerprint through debug mode or XML output, please don't submit it unless Nmap asks you to (as in the

ious example).

8.7. Deal ing with Misidentified and Unidentified Hosts 201

8. 7.3. Mod ifying the runap-os-db Database Yourself

People often ask about integrating a fingerprint themselves rather than (or in addition to) submitting i t to
Nmap.Org. While we don't offer detailed instructions or scripts for this, it is certainly possible after you
become intimately familiar with Section 8.5, "Understanding an Nmap Fingerprint" [1 9 1] . I hope this is useful
for your purposes, but there is no need to send your own reference fingerprint creations to us. We can only
integrate raw subject fingerprint submissions from the web form.

8.8. SOLUTION : Detect Rogue Wireless
Access Points on an Enterprise Network

8.8.1 . Problem

With the ubiquity o f mobile devices and cheap commodity networking equipment, companies are increasingly
finding that employees are extending their networks in undesirable ways. Among the most dangerous devices
are 802. 1 1 wireless access points (WAPs). Users may install a $20 WAP in their cubicle so they can work
from the break room, without realizing (or caring) that they just opened the protected corporate network to
potential attackers in the parking lot or nearby buildings.

Some WAP installations are even worse than those installed by naive users. Breaching a building's security
is much riskier for an attacker than accessing corporate data from far away through a network. It carries the
risk of being arrested on the spot. So attackers have been known to install compact WAPs so they can then
intrude on the network at will from the relative safety of a car down the street. A WAP taped under a desk
or otherwise hidden is unlikely to be noticed for a while.

While the focus of this solution is finding WAPs, the same strategy can be used to find just about anything.
You might need to locate all Cisco routers to apply a new patch or Solaris boxes to determine whether you

· have enough systems to warrant paying for support.

One way to find unauthorized wireless devices is to sweep the area with a wireless sniffer such as Kismet6

or NetStumbler7. Another approach is to scan the wired side with Nmap. Not surprisingly, this solution
focuses exclusively on the latter approach. Each technique can miss certain WAPs, so the best approach is
to do both and merge the results.

8.8.2. Solution

Scan your whole address space using the - A option. You can speed i t u p by limiting scanned ports to 1-85,

1 1 3, 443, and 8080-8100. Those should find both an open and closed port on most WAPs, which improves
OS detection accuracy. If your network spans multiple ethernet segments, scan each segment from a designated
machine on the same segment. This speeds up the scan (especially since you can do them in parallel), and
also gives you the MAC address of each device. Scanning from the same segment also allows you to spot
stealth devices. Even a WAP with all ports filtered will generally respond to an ARP request. Results should
be saved in at least normal and XML formats, so you might as well use -oA. Consider all of the

6 http://www.kismetwireless.net/
7 http://www.netstumbler.com/

202 8.8. SOLUTION: Detect Rogue Wireless Access Points on an Enterprise Network

performance-enhancing options described in Chapter 6, Optimizing Nmap Performance [1 35). A good and
relatively safe start for performance options is -T4 --min-hostgroup 5 0 --max-rtt-t imeout
1 0 0 0 --i n i t i a l -r t t -t imeout 3 0 0 --max-retries 3 --ho s t - t imeout 2 0m
--max-scan-de l ay 1 0 0 0 . Put this all together for a command like:

nmap -A -oA -/nmap-logs/wapscan -p 1-85,113,443,8080-8100 -T4 --min-hostgroup 50 --max-rtt-timeout
1000 --initial-rtt-timeout 300 --max-retries 3 --host-timeout 20m --max-scan-delay 1000
<target_network>

When the scan completes, search for WAP characteristics. On a network of fewer than a couple hundred live
hosts, your best bet is to look at each one i ndividually. For larger networks, you will likely need to automate
the task. Searching for individual characteristics can be done with grep, though a Perl script which analyzes
the XML output is preferable. This is pretty easy thanks to existing modules, such as Nmap::Scanner and
Nmap::Parser, for parsing Nmap XML output. See Section 13 .7, "Manipulating XML Output with Perl" [352)
for examples.

Once you determine a list of candidates, it is probably best to open the normal Nmap output file and examine
each one to eliminate false positives. For example, a Linksys device may be flagged as a possible WAP even
though it could be one of their plain switches without any wireless functionality.

Once you find the WAPs, it is time to track them down. This can usually be done by querying the switch
they connect to for their physical ethernet port number.

8.8.3. WAP Characteristics

Now it is time to discuss the WAP characteristics to look for. Understanding these is useful for manual
inspections or for modifying the WAP finder script to search for something else. You will probably see many
of them immediately by looking at the scan of a typical WAP in Example 8.8.

Example 8.8. Scan results against a consumer WAP

nmap -A -v wap . nmap . org

Starting Nmap (http : / /nmap . org
Interesting ports on wap . nmap . org (1 92 . 1 6 8 . 0 . 6) :
Not shown : 999 closed ports
PORT STATE SERVICE VERSION
80/tcp open http Netgear MR-series WAP (MR8 1 4 ; Embedded HTTPD 1 . 00)
MAC Address : 0 0 : 09 : 5B : 3F : 7D : 5E (Netgear)
Device type : WAP
Running : Compaq embedded, Netgear embedded
OS details : WAP : Compaq iPAQ Connection Point or Netgear MR81 4
Service Info : Device : WAP

Nmap done : 1 IP address (1 host up) scanned in 1 0 . 9 0 seconds
Raw packets sent : 1 703 (75 . 7 06KB) I Rcvd : 1 6 86 (7 7 . 552KB)

This device shows many obvious clues to being a WAP (Device type : WAP is pretty blatant) and some
more subtle ones. But WAPs aren't always so easy to discover. This section provides a list of WAP
characteristics, starting with the most powerful and ending with heuristics that are long shots or more likely

8.8. SOLUTION: Detect Rogue Wireless Access Points on an Enterprise Network 203

to produce false positives. Each characteristic listed is accompanied by an XPath8 expression that shows
where to find it in Nmap XML output. Since this is security related, I suggest trying all of them and removing
false positives manually.

TCP/IP fingerprinting device type
As described in the section cal led "Device and OS classification (Class lines)" [1 96), every reference
fingerprint has at least one classification (which includes device type) associated with it. Because WAPs
are so controversial, we try to use that (or give two classifications) when multiple types would fit. So
devices like the D-Link DI-624 wireless broadband router is classified as WAP rather than switch or
router. The device type can be found in XML output using the XPath expression
/ nmaprun / h o s t / o s /osclas s / @ t ype. (That is, the type attribute of the o s c l a s s element of
the os element of any of the host elements inside the root nmaprl..in element).

TCP/IP fingerprinting details
While devices with Wireless capability should be classified as device type WAP, it is worth searching
the detailed OS description for terms such as wire l e s s or wap just to be sure. The description is in
/ nmaprun / ho s t / o s / o smat ch / @ name in XML output.

Version detection device type
Version detection also tries to determine device types, but by fingerprinting the target's running services
rather than its IP stack. Check whether the XML devicetype attribute located at
/ nmaprun /host /ports /port / service/ @devicetype is WAP. To be completely safe,
checking the / nmaprun / h o s t /por t s /port / serv i ce / @ extrainfo field for the substrings
wap or wireless is worthwhile.

Vendor (from MAC address, TCP/IP fingerprinting, and version detection)
Certain vendors specialize in producing the low-cost consumer networking devices which are most

likely to covertly find their way onto office networks. Examples are Linksys, Netgear, Belkin, SMC,

D-Link, Motorola, Trendnet, Zyxel, and Gateway. You can check for these vendors based on the MAC

address lookup (which is at /nmaprun /ho s t / addre s s / @ vendor in XML output), OS detection

(/nmapru n / ho s t / os / o s c l a s s / @ vendor in XML output), or version detection

(/nmaprun / ho s t /port s /port I service/ @product in XML output) results. Be sure to search

for the vendor as a substring of the fields, since the field may contain incorporation type (e.g. Inc.) or

other information.

This test may lead to many false positives. If you use a vendor heavily for authorized devices, such as

putting Netgear NICs in your desktop machines, you may have to remove that vendor and rerun the

script.

Hostname
It doesn't hurt to check hostnames (reverse DNS resolution) for terms such as wap, wireless, or

a i rport. These can be found at /nmaprun / h o s t / ho s t names /hostname / @ name in XML

output. Non-administrative employees rarely change DNS names, but this can be useful for pen-testers,

new administrators, and others who may be scanning a new network looking for authorized access points.

8 h11p:llwww.w3.org!TR/xpath

204 8.8. SOLUTION: Detect Rogue Wireless Access Points on an Enterprise Network

Chapter 9. Nmap Scri pt ing Eng ine

9.1 . Introduction
The Nmap Scripting Engine (NSE) i s one of Nmap's most powerful and flexible features. It allows users to
write (and share) simple scripts to automate a wide variety of networking tasks. Those scripts are then
executed in parallel with the speed and efficiency you expect from Nmap. Users can rely on the growing
and diverse set of scripts distributed with Nmap, or write their own to meet custom needs.

We designed NSE to be versatile, with the following tasks in mind:

Network discovery
This is Nmap's bread and butter. Examples include looking up whois data based on the target domain,
querying ARIN, RIPE, or APNIC for the target IP to determine ownership, performing identd lookups
on open ports, SNMP queries, and listing available NFS/SMB/RPC shares and services.

More sophisticated version detection
The Nmap version detection system (Chapter 7, Service and Application Version Detection [1 45]) is able
to recognize thousands of different services through its probe and regular expression signature based
matching system, but it cannot recognize everything. For example, identifying the Skype v2 service
requires two independent probes, which version detection isn't flexible enough to handle. Nmap could.
also recognize more SNMP services if it tried a few hundred different community names by brute force.
Neither of these tasks are well suited to traditional Nmap version detection, but both are easily
accomplished with NSE. For these reasons, version detection now calls NSE by default to handle some
tricky services. This is described in Section 9. 10, "Version Detection Using NSE" [25 1] .

Vulnerability detection
When a new vulnerability is discovered, you often want to scan your networks quickly to identify
vulnerable systems before the bad guys do. While Nmap isn't a comprehensive vulnerability scanner,
NSE is powerful enough to handle even demanding vulnerability checks. Many vulnerabil i ty detection
scripts are already available and we plan to distribute more as they are written.

Backdoor detection
Many attackers and some automated worms leave backdoors to enable later reentry. Some of these can
be detected by Nmap's regular expression based version detection. For example, within hours of the
MyDoom worm hitting the Internet, Jay Moran posted an Nmap version detection probe and signature
so that others could quickly scan their networks for MyDoom infections. NSE is needed to reliably
detect more complex worms and backdoors.

Vulnerability exploitation
As a general scripting language, NSE can even be used to exploit vulnerabilities rather than just find
them. The capability to add custom exploit scripts may be valuable for some people (particularly
penetration testers), though we aren't planning to turn Nmap into an exploitation framework such as
Metasploi t 1 •

1 htrp:l!www.metasploit.com

9. 1. Introduction 205

These listed items were our initial goals, and we expect Nmap users to come up with even more inventive
uses for NSE.

Scripts are written in the embedded Lua programming language2. The language itself is well documented in
the books Programming in Lua, Second Edition and Lua 5 .1 Reference Manual. The reference manual is
also freely available online3, as is the first edition of Programming in Lua4. Given the availability of these
excellent general Lua programming references, this document only covers aspects and extensions specific
to Nmap's scripting engine.

NSE is activated with the - s c option (or - - s cr ipt if you wish to specify a custom set of scripts) and
results are integrated into Nmap normal and XML output. Two types of scripts are supported: service and
host scripts. Service scripts relate to a certain open port (service) on the target host, and any results they
produce are included next to that port i n the Nmap output port table. Host scripts, on the other hand, run no
more than once against each target IP and produce results below the port table. Example 9. 1 shows a typical
script scan. Service scripts producing output i n this example are s sh-hostkey, which provides the system's
RSA and DSA SSH keys, and rpci n f o, which queries portmapper to enumerate available services. The
only host script producing output in this example is smb-os-d i s covery, which collects a variety of
information from SMB servers. Nmap discovered all of this information in a third of a second.

Example 9.1. Typical NSE output

nmap -sc -p22 , l l l , 1 3 9 -T4 localhost

Starting Nmap (http : / /nmap . org)
I nteresting port s on f log (1 2 7 . 0 . 0 . 1) :
PORT STATE SERVICE
2 2 /tcp open s sh
I ssh-hostkey : 1 0 2 4 bl : 36 : 0d : 3 f : 5 0 : dc : l 3 : 96 : b2 : 6e : 3 4 : 3 9 : 0d : 9b : la : 3 8 (DSA)
I _ 2 0 4 8 77 : d0 : 2 0 : lc : 4 4 : 1 f : 8 7 : a 0 : 3 0 : aa : 8 5 : cf : e8 : ca : 4c : l l (RSA)
1 1 1 /tcp open rpcbind
.1 rpcinfo :
I 1 00 0 0 0 2 , 3 , 4 1 1 1 /udp rpcbind
I 1 0 0 0 2 4 1 5 6 4 5 4/udp status
I_ 1 0 0 0 0 0 2 , 3 , 4 1 1 1 /tcp rpcbind
1 3 9/ tcp open netbios-ssn

Host script result s :
I smb-os-discovery : Unix
I LAN Manager : Samba 3 . 0 . 3 1 - 0 . fc8
I_ Name : WORKGROUP

Nmap done : 1 IP address (1 host up) scanned in 0 . 33 seconds

9.2. Usage and Examples
While NSE has a complex implementation for efficiency, it is strikingly easy to use. Simply specify -sc to
enable the most common scripts. Or specify the - - s cript option to choose your own scripts to execute

2 http://www.lua.org/
3 http://www.lua.orglmanual/5.J/
4 http://www.lua.org/pil/

206 9.2. Usage and Examples

providing categories, script file names, or the name of directories ful l of scripts you wish to execute. You
customize some scripts by providing arguments to them via the - - s cr ipt-args option. The two
·ning options, --script-trace and --scr ipt-updatedb, are generally only used for script
gging and development. Script scanning is also included as part of the -A (aggressive scan) option .

. 2.1 . Script Categories

E scripts define a list of categories they belong to. Currently defined categories are a uth, de fault,
iscovery, external, intrus ive, malware, sa fe, ver s i on, and vuln. Category names are

IOl case sensitive. The following list describes each category.

These scripts try to determine authentication credentials on the target system, often through a brute-force
attack. Examples include snmp-brute, http-auth, and ftp-anon.

These scripts are the default set and are run when using the -sc or -A options rather than listing scripts
with --script. This category can also be specified explicitly l ike any other using
--script=de fault. Many factors are considered in deciding whether a script should be run by
default:

Speed
A default scan must finish quickly, which excludes brute force authentication crackers, web spiders,
and any other scripts which can take minutes or hours to scan a single service.

Usefulness
Default scans need to produce valuable and actionable information. If even the script author has
trouble explaining why an average networking or security professional would find the output
valuable, the script should not run by default. The script may still be worth including in Nmap so
that administrators can run for those occasions when they do need the extra information.

Verbosity
Nmap output is used for a wide variety of purposes and needs to be readable and concise. A script
which frequently produces pages full of output should not be added to the default category.
When there is no important information to report, NSE scripts (particularly default ones) should
return nothing. Checking for an obscure vulnerability may be OK by default as Jong as it only
produces output when that vulnerability discovered.

Reliability
Many scripts use heuristics and fuzzy signature matching to reach conclusions about the target host
or service. Examples include s n i f fer-detect and sql - i n j ect ion. If the script is often
wrong, it doesn't belong in the de fault category where it may confuse or mislead casual users.
Users who specify a script or category directly are generally more advanced and likely know how
the script works or at least where to find its documentation.

Intrusiveness
Some scripts are very intrusive because they use significant resources on the remote system, are
likely to crash the system or service, or are likely to be perceived as an attack by the remote
administrators. The more intrusive a script is, the less suitable it is for the default category.

9.2. Usage and Examples 207

Privacy
Some scripts, particularly those in the external category described later, divulge information
third parties by their very nature. For example, the whoi s script must divulge the target IP add
to regional whois registries. We have also considered (and decided against) adding scripts whi
check target SSH and SSL key fingerprints against Internet weak key databases. The mom
privacy-invasive a script is, the less suitable it is for defau l t category inclusion.

We don't have exact thresholds for each of these criteria, and many of them are subjective. All of these
factors are considered together when making a decision whether to promote a script into the default

category. A few default scripts are identd-owner s (determines the username running remote services

using identd), http-auth (obtains authentication scheme and realm of web sites requiring
authentication), and ftp-anon (tests whether an FfP server allows anonymous access).

d i s covery

These scripts try to actively discover more about the network by querying public registries, SNMP-enabled
devices, directory services, and the like. Examples include html -t i t le (obtains the title of the root
path of web sites), smb-enum- shares (enumerates Windows shares), and snmp-sysdescr (extracts
system details via SNMP).

external

Scripts in this category may send data to a third-party database or other network resource. An example
of this is who i s , which makes a connection to whois servers to learn about the address of the target.
There is always the possibility that operators of the third-party database will record anything you send
to them, which in many cases will include your IP address and the address of the target. Most scripts
involve traffic strictly between the scanning computer and the client; any that do not are placed in this
category.

intrus ive
These are scripts that cannot be classified in the safe category because the risks are too high that they
will crash the target system, use up significant resources on the target host (such as bandwidth or CPU
time), or otherwise be perceived as malicious by the target's system administrators. Examples are
http-open-proxy (which attempts to use the target server as an HTTP proxy) and snmp-brute
(which tries to guess a device's SNMP community string by sending common values such as publ ic,

pr i vate, and ci sco).

malware
These scripts test whether the target platform is infected by malware or backdoors. Examples i nclude
smtp- s t r angeport, which watches for SMTP servers running on unusual port numbers, and

auth-spoof, which detects identd spoofing daemons which provide a fake answer before even

receiving a query. Both of these behaviors are commonly associated with malware infections.

safe

208

Scripts which weren't designed to crash services, use large amounts of network bandwidth or other
resources, or exploit security holes are categorized as safe. These are less likely to offend remote
administrators, though (as with all other Nmap features) we cannot guarantee that they won't ever cause
adverse reactions. Most of these perform general network discovery. Examples are s s h-hostkey

(retrieves an SSH host key) and html - t i t le (grabs the title from a web page).

9.2. Usage and Examples

version
The scripts in this special category are an extension to the version detection feature and cannot be selected
explicitly. They are selected to run only if version detection (- sV) was requested. Their output cannot
be distinguished from version detection output and they do not produce service or host script results.
Examples are skypev2 -ver s i on, pptp-vers ion, and iax2-vers ion.

vuln

These scripts check for specific known vulnerabilities and generally only report results if they are found.
Examples include realvnc-aut h-bypa s s and xampp-de fault -auth.

9.2.2. Command-l ine Arguments

These are the five command l ine arguments specific to script-scanning:

-sc
Performs a script scan using the default set of scripts. It is equivalent to --scr ipt=de fault . Some
of the scripts in this default category are considered intrusive and should not be run against a target
network without permission.

--script <script -ca t egori es> l <di rectory> l <fi l ename> l a l l

Runs a script scan (l ike -sC) using the comma-separated list of script categories, i ndividual scripts, or
directories containing scripts, rather than the default set. Nmap first tries to interpret the arguments as
categories, then (if that fails) as files or directories. A script or directory of scripts may be specified as .
an absolute or relative path. Absolute paths are used as supplied. Relative paths are searched for in the
following places until found: - -datadir / ; $NMAPDIR/ ; - / . nmap / (not searched on Windows);
NMAPDATADIR/ or . / . A script s / subdirectory is also tried in each of these.

If a directory is specified and found, Nmap loads all NSE scripts (any filenames ending with . nse)

from that directory. Filenames without the nse extension are ignored. Nmap does not search recursively
into subdirectories to find scripts. If individual file names are specified, the file extension does not have
to be nse.

Nmap scripts are stored in a script s subdirectory of the Nmap data directory by default (see Chapter 14,
Understanding and Customizing Nmap Data Files [363]). For efficiency, scripts are indexed in a database
stored in scr ipt s I s er i pt . db. which lists the category or categories in which each script belongs.
Give the argument al 1 to execute all scripts in the Nmap script database.

Scripts are not run in a sandbox and thus could accidentally or maliciously damage your system or invade
your privacy. Never run scripts from third parties unless you trust the authors or have carefully audited
the scripts yourself.

--script-args
provides arguments to the scripts. See Section 9.2.3, "Arguments to Scripts" [2 1 0) for a detailed
explanation .

--script-trace
This option is similar to --packet-trace, but works at the application level rather than packet by
packet. If this option is specified, all incoming and outgoing communication performed by scripts is
printed. The displayed information includes the communication protocol, source and target addresses,

9.2. Usage and Examples 209

and the transmitted data. If more than 5% of transmitted data is unprintable, hex dumps are given instead.
Specifying --packet-trace enables script tracing too.

- - s cr ipt -updatedb

This option updates the script database found in script s / s cript . db which is used by Nmap to

determine the available default scripts and categories. It is only necessary to update the database if you
have added or removed NSE scripts from the default script s directory or if you have changed the
categories of any script. This option is used by itself without arguments: nmap --script-updatedb.

Some other Nmap options have effects on script scans. The most prominent of these is � sv. A version scan
automatically executes the scripts in the ver s ion category. The scripts in this category are slightly different
than other scripts because their output blends in with the version scan results and they do not produce any
script scan output.

Another option which affects the scripting engine is -A. The aggressive Nmap mode implies the -sc option.

9.2.3. Arguments to Scripts

Arguments may be passed to NSE scripts using the - - s cr ipt-args option. The script arguments are
generally name-value pairs. They are provided to scripts as a Lua table named args inside nmap . registry.
The argument names are keys for the corresponding values. The values can be either strings or tables.
Subtables can be used to pass arguments to scripts with finer granularity, such as passing different usernames
for different scripts. Here is a typical Nmap invocation with script arguments:

$ nmap -sC --script-args user=foo , pass=bar , whois= { whodb=nofollow+ripe }

The aforementioned command results in this Lua table:

{ user= " foo" , pass="bar " , whois= { whodb="nofol low+ripe " } }

You could therefore access the username {foo) inside your script with this statement:

local username = nmap . regi s t ry . args . user

Subtables used to override options for scripts are usually named after the script to ease retrieval.

9.2.4. Usage Examples

A simple script scan using the default set of scripts:

$ nmap -sC example . corn

Executing a specific script with tracing enabled:

$ nrnap --script= . / showSSHVers ion . nse --script-trace example . corn

Execute all scripts in the mycustomscr ipt s directory as well as all default scripts in the safe category:

$ nmap --script=rnycustorns cript s , safe example . corn

210 9.2. Usage and Examples

9.3. Script Format
NSE scripts consist of two-five descriptive fields along with either a port or host rule defining when the

script should be executed and an action block containing the actual script instructions. Values can be assigned

to the descriptive fields j ust as you would assign any other Lua variables. Their names must be lowercase

as shown in this section.

9.3.1 . description Field

The des cript ion field describes what a script i s testing fo r and any important notes the user should be

aware of. Depending on script complexity, the description may vary from a few sentences to a few paragraphs.

The first paragraph should be a brief synopsis of the script function suitable for stand-alone presentation to
the user. Further paragraphs may provide much more script detail.

9.3.2. categories Field

The categor ies field defines one or more categories to which a script belongs (see Section 9.2 . 1 , "Script
Categories" [207]). The categories are case-insensitive and may be specified in any order. They are l isted in
an array-style Lua table as in this example:

categories = { "defaul t " , "discovery " , " safe " }

9.3.3. author Field

The author field contains the script authors' names and contact information. If you are worried about spam,
feel free to omit or obscure your email address, or give your home page URL instead. This optional field is
not used by NSE, but gives script authors due credit or blame.

9.3.4. license Field

Nmap is a community project and we welcome all sorts of code contributions, including NSE scripts. So if
you write a valuable script, don't keep it to yourself! The optional l i cense field helps ensure that we have
legal permission to distribute all the scripts which come with Nmap. All of those scripts currently use the
standard Nmap license (described in Section 15 . 19 . 1 , "Nmap Copyright and Licensing" [4 1 2)). They include
the following line:

license = "Same as Nmap--See http : / /nmap . org/book/man-legal . html "

The Nmap license is similar to the GNU GPL. Script authors may use a BSD-style l icense (no advertising
clause) instead if they prefer that.

9.3.5. runlevel Field

This optional field determines script execution order. When this section i s absent, the run level defaults to
1.0. Scripts with a given runleve l execute after any with a lower runlevel and before any scripts with
a higher run leve l against a single target machine. The order of scripts with the same runl evel is

9.3. Script Format 2 l l

undefined and they often run concurrently. One application of run levels is allowing scripts to depend on
each other. If script A relies on some information gathered by s cr ipt B, give B a lower run level than
A. Ser ipt B can store information in the NSE registry for A to retrieve later. For information on the NSE
registry, see Section 9.7.5, "The Registry" [245] .

9.3.6. Port and Host Rules

Nmap uses the script rules to determine whether a script should be run against a target. A script contains
either a port rule, which governs which ports of a target the scripts may run against, or a host rule, which
specifies that the script should be run only once against a target IP and only if the given conditions are met.
A rule is a Lua function that returns either t rue or fal se. The script action is only performed if its rule
evaluates to t rue. Host rules accept a host table as their argument and may test, for example, the IP address
or hostname of the target. A port rule accepts both host and port tables as arguments for any TCP or UDP
port in the open, open I f i l tered, or unfiltered port states. Port rules generally test factors such as
the port number, port state, or listening service name in deciding whether to run against a port. Example
rules are shown in Section 9.8.2, "The Rule" [246].

9.3. 7. Action

The action i s the heart o f a n NSE script. I t contains all o f the instructions to be executed when the script's
port or host rule triggers. It is a Lua function which accepts the same arguments as the rule and can return
either n i l or a string. If a string is returned by a service script, the string and script's filename are printed
in the Nmap port table output. A string returned by a host script is printed below the port table. No output
is produced if the script returns n i l . For an example of an NSE action refer to Section 9.8.3, "The
Mechanism" [247] .

9.4. Script Language
The core of the Nmap Scripting Engine i s a n embeddable Lua interpreter. Lua i s a lightweight language
designed for extensibility. It offers a powerful and well documented API for interfacing with other software
such as Nmap.

The second part of the Nmap Scripting Engine is the NSE Library, which connects Lua and Nmap. This
layer handles issues such as initialization of the Lua interpreter, schedul ing of parallel script execution, script
retrieval and more. It is also the heart of the NSE network I/O framework and the exception handling
mechanism. It also i ncludes utility libraries to make scripts more powerful and convenient. The utility library
modules and extensions are described in Section 9.6, "NSE Libraries" [236] .

9.4.1 . Lua Base Language

The Nmap scripting language i s an embedded Lua5 interpreter which was extended with libraries for interfacing
with Nmap. The Nmap API is in the Lua namespace nmap. This means that all cal ls to resources provided
by Nmap have an nmap prefix. nmap . new_s ocket () , for example, returns a new socket wrapper object.
The Nmap library layer also takes care of initializing the Lua context, scheduling parallel scripts and collecting
the output produced by completed scripts.

5 http://www. lua.org/

2 12 9.4. Script Language

During the planning stages, we considered several programming languages as the base for Nmap scripting.
Another option was to implement a completely new programming language. Our criteria were strict: NSE
had to be easy to use, small in size, compatible with the Nmap license, scalable, fast and parallelizable.
Several previous efforts (by other projects) to design their own security auditing language from scratch
resulted in awkward solutions, so we decided early not to follow that route. First the Guile Scheme interpreter
was considered, but the preference drifted towards the Elk interpreter due to i ts more favorable license. But
parallelizing Elk scripts would have been difficult. In addition, we expect that most Nmap users prefer
procedural programming over functional languages such as Scheme. Larger interpreters such as Perl, Python,
and Ruby are well-known and loved, but are difficult to embed efficiently. In the end, Lua excelled in all of
our criteria. It is small , distributed under the liberal MIT open source license, has coroutines for efficient
parallel script execution, was designed with embeddability in mind, has excellent documentation, and is
actively developed by a large and committed community. Lua is now even embedded in other popular open
source security tools including the Wireshark sniffer and Snort IDS.

9.5. NSE Scripts
This section lists (alphabetically) a l l NSE scripts packaged with Nmap at the time of this writing. I t comes
straight from the script source code thanks to the NSEDoc documentation system described in Section 9.9,
"Writing Script Documentation (NSEDoc)" [248). Of course no paper documentation can stay current with
software developed as actively as NSE is. For the most comprehensive and up-to-date documentation, see
the online NSE Documentation Portal at http://nmap.org/nsedoc/.

asn-query . nse

Categories: discovery, external

Maps IP addresses lo autonomous system (AS) numbers.

The script works by sending DNS TXT queries to a DNS server which in turn queries a third-party service
provided by Team Cymru (team-cymru.org) using an in-addr.arpa style zone set up especially for use by
Nmap.

The responses to these queries contain both Origin and Peer ASNs and their descriptions, displayed along
with the BGP Prefix and Country Code.

The script caches results to reduce the number of queries and should perform a single query for all scanned
targets in a BGP Prefix present in Team Cymru's database.

Be aware that any targets against which this script is run will be sent to and potentially recorded by one or
more DNS servers and Team Cymru. In addition your IP address will be sent along with the ASN to a DNS
server (your default DNS server, or whichever one you specified with the dn s script argument).

Script Arguments

dns

The address of a recursive nameserver to use (optional).

Usage

nmap --script asn-query . nse [--scr ipt-args dns=<DNS server>] <target>

9.5. NSE Scripts 213

Sample Output

Host s cr ipt result s :
I asn-query :

I BGP : 6 4 . 1 3 . 1 2 8 . 0 / 2 1 I Country : US
I Origin AS : 1 05 6 5 SVCOLO-AS - S i l i con Val ley Colocat ion , I nc .
I Peer AS : 3 5 6 1 6 4 6 1
I BGP : 6 4 . 1 3 . 1 2 8 . 0 / 1 8 I Country : U S
I Origin AS : 1 0 5 6 5 SVCOLO-AS - S i l i con Va l ley Coloca t ion, I nc .
I _ Peer AS : 1 7 4 2 9 1 4 6 4 6 1

auth-owners . nse

Categories: default, safe

Attempts to find the owner of an open TCP port by querying an auth (identd - port 1 1 3) daemon which must
also be open on the target system.

Sample Output

2 1 / tcp open ftp ProFTPD 1 . 3 . 1
I _ auth-owners : nobody
2 2 / t cp open ssh OpenSSH 4 . 3p2 Debian 9etch2 (protocol 2 . 0)
J _ auth-owners : root
2 5 / tcp open smtp Pos t f i x smtpd
I _ auth-owners : pos t f i x
8 0 / tcp open http Apache httpd 2 . 0 . 6 1 ((Unix) PHP / 4 . 4 . 7 . . .)
I _ auth-owners : dhapache
1 1 3 / tcp open au th?
I_ auth-owner s : nobody
5 8 7 /tcp open s ubmi s sion Pos t f i x smtpd
J _ auth-owners : pos t f i x
5 6 6 6 / tcp open unknown
I _ auth-owners : root

auth-spoo f . nse

Categories: malware

Checks for an identd (auth) server which is spoofing its replies.

Tests whether an identd (auth) server responds with an answer before we even send the query. This sort of
identd spoofing can be a sign of malware infection though it can also be used for legitimate privacy reasons.

dayt ime . nse

Categories: discovery

Retrieves the day and time from the UDP Daytime service.

214 9.5 . NSE Scripts

dns-random-srcport . nse

Categories: external, intrusive

Checks a DNS server for the predictable-port recursion vulnerability. Predictable source ports can make a
DNS server vulnerable to cache poisoning attacks (see CVE-2008- 1447).

The script works by querying porttest.dns-oarc.net. Be aware that any targets against which this script is run
will be sent to and potentially recorded by one or more DNS servers and the porttest server. In addition your
IP address will be sent along with the porttest query to the DNS server running on the target.

dns-random-txid . nse

Categories: external, intrusive

Checks a DNS server for the predictable-TXID DNS recursion vulnerability. Predictable TXID values can
make a DNS server vulnerable to cache poisoning attacks (see CVE-2008-1447).

The script works by querying txidtest.dns-oarc.net. Be aware that any targets against which this script is run
will be sent to and potentially recorded by one or more DNS servers and the txidtest server. In addition your
IP address will be sent along with the txidtest query to the DNS server running on the target.

dns-recurs ion . nse

Categories: default, intrusive

Checks if a DNS server allows queries for third-party names.

It is expected that recursion will be enabled on your own internal nameservers.

dns-zone-t rans fer . nse

Categories: default, intrusive, discovery

Requests a zone transfer (AXFR) from a DNS server.

The script sends an AXFR query to a DNS server. The domain to query is determined by examining the
name given on the command line, the DNS server's hostname, or it can be specified with the
dnszonetran s fer . domai n script argument. If the query is successful all domains and domain types
are returned along with common type specific data (SONMX/NS/PTR/A).

If we don't have the "true" hostname for the DNS server we cannot determine a likely zone to perform the
transfer on.

Useful resources

• DNS for rocket scientists: http://www.zytrax.com/books/dns/
• How the AXFR protocol works: http://cr.yp.to/djbdnslaxfr-notes.html

9.5. NSE Scripts 2 15

Script Arguments

dn s zonetrans fer . domain
Domain to transfer.

Usage

nmap --scr ipt dns -zone-trans fer . nse \
--scr ipt-args ' dnszonetrans fer= { doma in=<doma i n> } '

Sample Output

53 / tcp open domai n
I dns-zone-tran s fer :

I foe . com . SOA n s 2 . foo . com . piou . foo . com .
I foe . com . TXT

I foe . com . NS n s l . foo . com .
I foe . com . NS n s 2 . foo . com .

I foe . com . NS ns3 . foo . com .
I foe . com . A 1 2 7 . 0 . 0 . 1
I foe . com . MX mai l . foe . com .
I anan s i e . foo . com . A 1 2 7 . 0 . 0 . 2

I dhalgren . foo . com . A 1 2 7 . 0 . 0 . 3
I drupa l . foo . com . CNAME
I goodman . foo . com . A 1 2 7 . 0 . 0 . 4 i
I goodman . foo . com . MX ma i l . foe . com .

I i saac . foo . com . A 1 2 7 . 0 . 0 . 5
I j u l i e . foo . com . A 1 2 7 . 0 . 0 . 6
I ma i l . foe . com . A 1 2 7 . 0 . 0 . 7
I n s l . foo . com . A 1 2 7 . 0 . 0 . 7
I n s 2 . foo . com . A 1 2 7 . 0 . 0 . 8
I ns3 . foo . com . A 1 2 7 . 0 . 0 . 9
I stubing . foo . com . A 1 2 7 . 0 . 0 . 1 0
I vicki . foo . com . A 1 2 7 . 0 . 0 . 1 1
I votetrus t . foo . com . CNAME

I www . foo . com . CNAME

, _ foe . com . SOA n s 2 . foo . com . piou . foo . com .

finger . nse

Categories: default, discovery

Attempts to retrieve a list of usernames using the finger service.

ftp-anon . nse

Categories: default, auth, safe

Checks if an FTP server allows anonymous logins.

Sample Output

I _ ftp-anon : Anonymous FTP login a l lowed

216 9 .5 . NSE Scripts

ftp-bounce . nse

Categories: default, intrusive

Checks to see if an FfP server al lows port scanning using the FfP bounce method.

html-tit l e . nse

Categories: default, discovery, safe

Shows the Litle of the default page of a web server.

The script will follow no more than one HITP redirect, and only if the redirection leads to the same host.
The script may send a DNS query to determine whether the host the redirect leads to has the same IP address
as the original target.

Sample Output

Interest ing ports on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) :
PORT STATE SERVICE
80/tcp open http
I _ html-tit le . nse : Go ahead and ScanMe !

http-auth . nse

Categories: default, auth, intrusive

Retrieves the authentication scheme and realm of a web service that requires authentication.

Sample Output

80/tcp open http

I http-auth : HTTP Service requires authenticat ion
I Auth type : Bas i c , realm = Pas sword Required

I_ HTTP server may accept admin : admin combinat i on for Bas i c authent i cation

http-open-proxy . nse

Categories: default, discovery, external, intrusive

Checks if an HITP proxy is open.

The script attempts to connect to www.google.com through the (possible) proxy and checks for a Server :
gws header field in the response.

If the target is an open proxy, this script causes the target to retrieve a web page from www.google.com.

http-pas swd . nse

Categories: intrusive, vuln

9.5. NSE Scripts 217

Checks if a web server is vulnerable to directory traversal by attempting to retrieve I etc/pas swd using

various traversal methods such as requesting . . I . . I . . I . . /etc/pas swd.

http-t race . nse

Categories: discovery

Sends an HTTP TRACE request and shows header fields that were modified in the response.

Sample Output

8 0 / tcp open http

I http-trace : Response di ffers from request . First 5 addit i onal lines :
I Cookie : U ID=d 4 2 8 7aa38d0 2 f 4 0 9 8 4 lb4e0c 0 0 5 0c l 3 1 . . .
I Country : u s
I I p_i s_advertise_combined : yes
I Ip_conntype-Confidence : - 1
I _ I p_l ine_speed : medium

iax2-version . nse

Categories: version

Detects the UDP IAX2 service.

The script sends an Inter-Asterisk eXchange (IAX) Revision 2 Control Frame POKE request and checks for
a proper response. This protocol is used to enable VoIP connections between servers as well as client-server
communication.

irc-info . nse

Categories: default, discovery

Gathers information from an IRC server.

It uses STATS, LUSERS, and other queries to obtain this information.

Sample Output

6 6 6 5 / t cp open ire
I ire-info : Server : target . example . erg

I Ver s ion : hyperion- l . 0 . 2b (3 8 1) . target . examp le . erg
I L server s / Lusers : 0 / 4 2 0 4
I Upt ime : 1 06 day s , 2 : 46 : 3 0
I Source host : source . example . erg
I _ Source ident : OK n=nmap

ms-sql-info . nse

Categories: default, discovery, intrusive

Attempts to extract information from Microsoft SQL Server instances.

2 18 9.5. NSE Scripts

mysql-info . nse

Categories: default, discovery, safe

Connects to a MySQL server and prints information such as the protocol and version numbers, thread ID,
status, capabilities, and the password salt.

If service detection is performed and the server appears to be blocking our host or is blocked because of too
many connections, then this script isn't run (see the portrule).

Sample Output

3306 / tcp open mysql

I mysql-info : Protocol : 1 0

I Version : 5 . 0 . 5 1a-3ubuntu5 . 1

I Thread I D : 7
I Some Capabi l i ties : Connect with DB, Transaction s , Secure Connection
I Status : Autocommit
I_ Salt : bYyt \NQ/ 4V6 IN+ * 3 ' imj

nbstat . nse

Categories: default, discovery, safe

Attempts to retrieve the target's NetBIOS names and MAC address.

By default, the script displays the name of the computer and the logged-in user; if the verbosity is turned up,
it displays all names the system thinks it owns.

Usage

sudo nmap -su --scr ipt nbstat . nse -p1 3 7 <host>

Sample Output

(no verbose)
j_ nbstat : NetBIOS name : TST, NetBIOS user : RON , NetBIOS MAC : 0 0 : 0c : 2 9 : f 9 : d9 : 2 8

(verbose)
nbstat : NetBIOS name : TST, NetB I OS user : RON, NetBIOS MAC : O O : Oc : 2 9 : f9 : d9 : 2 8
Name : TST< O O > Flags : <unique><act ive>
Name : TST<2 0 > F lags : <unique><active>
Name : WORKGROUP< O O > Flags : <group><act ive>
Name : TST< 0 3 > Flags : <unique><act ive>
Name : WORKGROUP<le> Flags : <group><act ive>
Name : RON< 0 3 > Flags : <unique><active>
Name : WORKGROUP< ld> F lags : <unique><active >

_ Name : \ x 0 1 \ x 0 2�MSBROWSE�\x 0 2 < 0 1 > F lags : <group><active>

pop3-brute . nse

Categories: intrusive, auth

9.5. NSE Scripts 219

Tries to log into a POP3 account by guessing usernames and passwords.

pop3-capabilities . nse

Categories: default

Retrieves POP3 email server capabilities.

Sample Output

1 1 0 /tcp open pop3
I _ pop3-capabi l ities : USER CAPA RESP-CODES U I DL P IPEL INING STLS TOP SASL (PLAIN)

pptp-ve rs ion . nse /

Categories: version

Attempts to extract system information from the point-to-point tunneling protocol (PPTP) service.

realvnc-auth-bypass . nse

Categories: default, vuln

Checks if a VNC server is vulnerable to the RealVNC authentication bypass (CVE-2006-2369).

robot s . txt . nse

Categories: default, discovery, safe

Checks for disallowed entries in robo t s . txt .

. The higher the verbosity or debug level, the more disallowed entries are shown.

Sample Output

8 0 / tcp open http syn-ack
I robot s . txt : has 1 5 6 d i s a l l owed entries (4 0 shown)
I /news ?output=xhtml & / search /groups / images /catalogs
I /catalogues /news /nwshp /news ?btcid= * & /newa?btaid= * &
I / setnewsprefs? / index . html ? / ? / addurl / image ? /pagead/ /re lpage/

I /relcontent / sorry/ / imgres /keyword/ /u/ /univ/ /cobrand / custom
I / advanced_group_search /googlesite /preferences / setprefs / swr /url /default
I /m? /m/ ? /m/ l cb Im/new s ? /m/setnewspref s ? Im/search? /wml ?
I _ /wml / ? /wml / search?

rpcinfo . nse

Categories: default, safe, discovery

Connects to portmapper and fetches a list of all registered programs.

220 9.5. NSE Scripts

Sample Output

111 /tcp open rpcbind
I rpcinfo :
I 1 0 0 0 0 0 2 1 1 1 / udp rpcbind
I 1 0 0 0 0 5 1 , 2 , 3 7 0 5 / udp mountd
I 1 0 0 0 0 3 2 , 3 , 4 2 0 4 9 / udp nf s
I 1 0 0 0 2 4 1 3 2 7 6 9 / udp status
I 1 0 0 0 2 1 1 , 3 , 4 3 2 7 6 9 / udp n lockmgr
I 1 0 0 0 0 0 2 1 1 1 / tcp rpcbind
I 1 0 0 0 0 5 1 , 2 , 3 7 0 6 / tcp mountd
I 1 0 0 0 0 3 2 , 3 , 4 2 0 4 9 / tcp nf s
I 1 0 0 0 2 4 1 5 0 46 8 /tcp status

, _ 1 0 0 0 2 1 1 , 3 , 4 5 0 4 6 8 / tcp nlockmgr

skypev2-version . nse

Categories: version

Detects the Skype version 2 service.

smb-check-vulns . nse

Categories: intrusive

Checks if a host is vulnerable to MS08-067, a Windows RPC vulnerability that can allow remote code
execution. This script is intended to check for more vulnerabilities in the future.

Checking for MS08-067 is very dangerous, as the check is likely to crash systems. On a fairly wide scan
conducted by Brandon Enright, we determined that on average, a vulnerable system is more likely to crash
than to survive the check. Out of 82 vulnerable systems, 52 crashed. As such, great care should be taken
when using this check.

You have the option to supply a username and password, but it shouldn't be necessary for a default
configuration.

Script Arguments

smb*

This script supports the smbusername, smbpas sword, smbhash, smbgue st, and smbtype

script argurrfents of the smb module.

9.5. NSE Scripts 221

Usage

nmap --script smb-check-vulns . nse -p4 4 5 <host>
s udo nmap -sU -sS --scr ipt smb-check-vulns . nse -p U : l 3 7 , T : l 3 9 <host>

Sample Output

Host script result s :
J _ smb-check-vulns : Thi s host i s vulnerable to MS 0 8 - 0 6 7

smb-enum-domains . nse

Categories: discovery, intrusive

Attempts to enumerate domains on a system, along with their policies. This will likely only work without
credentials against Windows 2000.

After the i nitial bind to SAMR, the sequence of calls is:

• Connect 4 : get a connect_handle
• EnumDomai n s : get a list of the domains (stop here if you just want the names).
• QueryDomain : get the SID for the domain.
• OpenDomain : get a handle for each domain.
• QueryDoma i n i n f o 2 : get the domain information.
• QueryDomainUser s : get a list of the users in the domain.

Script Arguments

smb *
This script supports the smbu sername, smbpas sword, smbhash, smbgue st , and smbtype
script arguments of the smb module.

Usage

nmap --scr ipt smb-enum-doma in s . nse -p4 4 5 <host >
sudo nmap -sU -ss --scr ipt smb-enum-domains . nse -p U : l 3 7 , T : l 3 9 <host>

Sample Output

Host s cr ipt result s :
I smb-enum-doma in s :
I Domain : LOCALSYSTEM
I I _ S I D : S-l-5-2 1 - 2 9 5 6 4 6 3 4 9 5 - 2 6 5 6 0 3 2 9 72 - 1 2 7 1 6 7 8 5 6 5
I J _ User s : Admini strator, Guest , SUPPORT_3 8 8 9 4 5 a 0
J J _ Creat i on t ime : 2 0 0 7 - 1 1 -2 6 1 5 : 2 4 : 0 4
J I _ Pas swords : min lengt h : 1 1 characters ; min age : 5 day s ; max age : 6 3 days

I J _ Pas sword l ockout : 3 attempts in under 1 5 minutes w i l l lock the account u J
n t i l manual l y reset
I J _ Pas sword h i story : 5 pas swords
I I _ Pas sword propert ies :
J J _ Password complexity requ irements exist

I J _ Admin i strator account cannot be locked out
I Doma i n : Bui lt i n

222 9.5. NSE Scripts

I I _ S I D : S-1-5-32
I I _ User s :
I I _ Creation t ime : 2 0 0 7- 1 1 - 2 6 1 5 : 2 4 : 0 4
I I _ Pas swords : min length : n / a ; min age : n / a ; max age : 4 2 days
I I _ Account lockout d isabled
I I _ Pas sword properties :
I I _ Pas sword complexity requirements do not exist

I _ I _ Administrator account cannot be locked out

smb-enum-sess ions . ns e

Categories: discovery, intrusive

Enumerates the users logged into a system either locally, through a remote desktop client (terminal services),
or through a SMB share.

Enumerating the local and terminal services users is done by reading the remote registry. Keys under
HKEY_USERS are SIDs that represent the currently logged in users, and those SIDs can be converted to
proper names by using the LsaLookupSids function. Doing this requires any access higher than anonymous.
Guests, users, or administrators are all able to perform this request on the operating systems I (Ron Bowes)
tested.

Enumerating SMB connections is done using the s rvsvc . net s e s senum function, which returns who's
logged in, when they logged in, and how long they've been idle for. Unfortunately, I couldn't find a way to
get the user's domain with this function, so the domain isn't printed. The level of access required for this
varies between Windows versions, but in Windows 2000 anybody (including the anonymous account) can
access this, and in Windows 2003 a user or administrator account is required.

Since both of these are related to users being logged into the server, it seemed logical to combine them into
a single script.

I learned the idea and technique for this from sysinternals' tool, PsLoggedOn.exe. I use similar function calls
to what they use, so thanks go out to them. Thanks also to Matt, for giving me the idea to write this one.

Script Arguments

smb*

This script supports the smbusername, smbpas sword, smbha s h, smbgue st , and smbtype

script arguments of the smb module.

Usage

smb-enum-sessions . ns e -p4 4 5 <host >
- s s --scr ipt smb-enum- s e s s ions . nse - p U : l 3 7 , T : l 3 9 <host>

-enum-sess ions :
sers logged in :
_ TESTBOX\Adrninistrator s ince 2 0 0 8- 1 0 - 2 1 0 8 : 1 7 : 1 4
_ DOMAIN\rbowes s ince 2 00 8 - 1 0- 2 0 0 9 : 03 : 23

9.5. NSE Scripts 223

Act ive SMB Ses s ions :
I _ I _ ADMINISTRATOR i s connected from 1 0 . 1 0 0 . 2 5 4 . 1 3 8 for [j ust logged in, i
probably you] , idle for [not idle]

smb-enum-shares . nse

Categories: discovery, intrusive

Attempts to list shares using the srvsvc . Net ShareEnurnAl l MSRPC function, then retrieve m

information about each share using s rvsvc . Net ShareGet Info .

Running Net ShareEnurnAl l will work anonymously on Windows 2000, and requires a user-level ace
on any other Windows version. Call ing NetShareGe t i n f o requires an administrator account on e
version of Windows I (Ron Bowes) tested.

Although Net ShareEnurnAl l is restricted on certain systems, actually connecting to a share to check if
it exists will always work. So, if Net ShareEnurnAl l fails, a list of common shares will be attempted.

After a list of shares is found, whether or not it's complete, we attempt to connect to each of them anonymously,
which lets us divide them into the classes "anonymous" and "restricted."

/
When possible, once the list of shares is determined, NetShareGe t i n fo is cal led to get additional
information on the share. Odds are this will fail, unless we're doing an authenticated test.

Script Arguments

smb*
This script supports the smbu sername, smbpas sword, smbhash, smbgue s t , and smbtype
script arguments of the smb module.

Usage

nmap --scr ipt smb-enum-shares . nse -p4 4 5 <host>
s udo nmap -sU -ss --scr ipt smb-enum-shares . nse -p U : l 3 7 , T : l 3 9 <host>

Sample Output

Standard :
I smb-enum-shares :
I Anonymous shares : IPC$
I_ Restricted shares : F$, ADMIN$, C$

Verbose :
Host scr ipt results :
I smb-enum-shares :
I Anonymous share s :
I I PC$
I I _ Type : STYPE_I PC_HI DDEN
I I _ Comment : Remote IPC

I I _ User s : 1 , Max : <unlimited>
I I _ Path :
I test
J I _ Type : STYPE_DI SKTREE

224 9.5. NSE Scripts

I I _ Comment : This i s a test share, with a maximum of 7 users
I I _ Users : 0 , Max : 7
I I _ Path : C : \ Document s and Set t ings \Ron \Desktop\test
I Restricted share s :
I ADMIN$

I I _ Type : STYPE_DI SKTREE_H I DDEN
I I _ Comment : Remote Admin
I I _ User s : 0 , Max : <unl imited>
I I _ Path : C : \WINNT
I C$
I I _ Type : STYPE D I SKTREE_H I DDEN
I I _ Comment : Defaul t share

I I _ User s : 0 , Max : <unl imited>
I _ I _ Path : C : \

smb-enum-users . nse

Categories: discovery, intrusive

Attempts to enumerate the users on a remote Windows system, with as much information as possible, through
a variety of techniques (over SMB and MSRPC, which uses port 445 or 1 39). Some functions in SAMR are
used to enumerate users, and some brute-force guessing using LSA functions is attempted.

One technique used is calling the QueryDi splay i n f o function in the SAMR l ibrary. If this succeeds, it
will return a detailed list of users. This can be done anonymously against Windows 2000, and with a user-level
account on other Windows versions (but not with a guest-level account).

To perform this test, the fol lowing functions are used:

• Bind: bind to the SAMR service.
• Connect 4: get a connect_handle.
• EnumDoma i n s : get a list of the domains.
• QueryDoma i n : get the sid for the domain.
• OpenDomai n: get a handle fo(each domain.
• QueryDi splayi n f o : get the list of users in the domain.
• Close: Close the domain handle.
• Close: Close the connect handle.

The advantage of this technique is that a lot of details are returned, including the ful l name and description;
the disadvantage is that it requires a user-level account on every system except for Windows 2000.
Additionally, it only pulls actual user accounts, not groups or aliases.

Regardless of whether this succeeds, a second technique is used to pull user accounts, called LSA bruteforcing.
LSA bruteforcing can be done anonymously against Windows 2000, and requires a guest account or better
on other systems. It has the advantage of running with less permission, and will also find more account types
(i.e., groups, aliases, etc.). The disadvantages is that it returns less information, and that, because i t's a
brute-force guess, it's possible to miss accounts.

This isn't a brute-force technique in the common sense, however: it's a brute-forcing of users' Rills. A user's
RID is a value (generally 500, 501 , or 1000+) that uniquely identifies a user on a domain or system. An LSA

9.5. NSE Scripts 225

function is exposed which lets us convert the RID (say, 1000) to the username (say, "Ron"). So, the techniq
will essentially try converting 1000 to a name, then 1001, 1002, etc., until we think we're done.

Users are broken into groups of five Rills, then checked individually (checking too many at once causes
problems). We continue checking until we reach 1 100, and get an empty group. This probably isn't the most
effective way, but it seems to work. It might be a good idea to modify this, in the future, with some more
intell igence. I (Ron Bowes) performed a test on an old server with a lot of accounts, and I got these results:
500, 501, 1000, 1030, 1031 , 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065,
1066, 1067, 1070, 1075, 1081 , 1088, 1090. The jump from 1000 to 1030 is quite large and can easily result
in missing accounts, in an automated check.

Before attempting this conversion, the SID of the server has to be determined. The SID is determined by
doing the reverse operation, that is, converting a name into a RID. The name is determined by looking up
any name present on the system. We try:

• The computer name and domain name, returned in SMB_COM_NEGOT IATE;
• An nbstat query to get the server name and the user currently logged in; and
• Some common names: "administrator", "guest", and "test".

In theory, the computer name should be sufficient for this to always work, and so far has in my tests, but I
included the rest of the names for good measure.

The names and details from both of these techniques are merged and displayed. If the _£utput is verbose, then
extra details are shown. The output is ordered alphabetically.

Credit goes out to the enum.exe, sid2user.exe, and user2sid.exe programs, the code I wrote for this is largely
based on the techniques used by them.

Script Arguments

smb*

This script supports the smbusername, smbpas sword, smbhash, smbguest , and smbtype
script arguments of the smb module.

Usage

nmap --scr ipt smb-enum-user s . nse -p4 4 5 <host>
s udo nmap - s U -ss --scr ipt smb-enum-users . nse -p U : l 3 7 , T : l 3 9 <host>

Sample Output

Host script result s :
I smb-enum-user s :
I _ TESTBOX\Adminis t rator , EXTERNAL\DnsAdmin s , TESTBOX\Guest , EXTERNAL\HelpServi J
ces Group, EXTERNAL\PARTNERS $, TESTBOX\SUPPORT_3 8 8 9 4 5a 0

Host scr ipt result s :
I smb-enum-user s :
I Administrator
I I _ Type : User
I I _ Doma i n : LOCALSYSTEM
I I _ F u l l name : Bui lt-in account for administering the computer /domain

226 9.5. NSE Scripts

I _ Flags : Normal accou n t , Password doesn ' t expire
DnsAdmins

I_ Type : Alias
I_ Domain : EXTRANET

Event Viewer
I_ Type : User
I_ Doma in : SHARED

ProxyUsers
I_ Type : Group
' - Domain : EXTRANET

Computer Account s
I _ Type : Group
' - Domain : EXTRANET

Helpdes k
I _ Type : Group
' - Domain : EXTRANET

Guest
I _ Type : User
I _ Domain : LOCALSYSTEM
I _ Full name : Bui lt - i n account for gues t acce s s to the computer/domai n

I _ Flags : Normal account , Di sabled, Pas sword not required , Password doesn ' �

t expire
I Staff
I I _ Type : Alias
I I _ Domain : LOCALSYSTEM
I Students
I I _ Type : Alias

j_ I_ Domain : LOCAI:.SYSTEM

smb-os-discovery . nse

Categories: default, discovery, safe

Attempts to determine the operating system over the SMB protocol (ports 445 and 139).

Although the standard smb* script arguments can be used, they likely won't change the outcome in any
meaningful way.

Script Arguments

smb*

This script supports the smbu sername, smbpas sword, smbhas h, smbgue s t , and smbtype
script arguments of the smb module.

Usage

pap --scr ipt smb-os-di scovery . nse -p4 4 5 1 2 7 . 0 . 0 . 1
!ludo nmap -sU -ss --scr ipt smb-os -di scovery . nse -p U : l 3 7 , T : 1 3 9 1 2 7 . 0 . 0 . 1

Sample Output

smb-os-di scovery : Windows 2 0 0 0
LAN Manager : Windows 2 0 0 0 LAN Manager

9.5. NSE Scripts 227

I Name : WORKGROUP\TESTl
I _ System t ime : 2 0 0 8 - 0 9 - 0 9 2 0 : 5 5 : 5 5 UTC-5

smb-securi ty-mode . nse

Categories: discovery, safe

Returns information about the SMB security level determined by SMB.

Here i s how to interpret the output:

User-level authentication: Each user has a separate username/password that is used to log into the system.
This is the default setup of pretty much everything these days.

Share-level authentication: The anonymous account should be used to log in, then the password is given (in
plaintext) when a share is accessed. All users who have access to the share use this password. This was the
original way of doing things, but isn't commonly seen, now. If a server uses share-level security, it is vulnerable
to sniffing.

Challenge/response passwords supported: If enabled, the server can accept any type of password:

• Plaintext
• LM and NTLM
• LMv2 and NTLMv2

If it isn't set, the server can only accept plaintext passwords. Most servers are configured to use
challenge/response these days. If a server is configured to accept plaintext passwords, it is vulnerable to
sniffing. LM and NTLM are fairly secure, although there are some brute-force attacks against them.

Message signing: If required, all messages between the client and server must be signed by a shared key,
derived from the password and the server challenge. If supported and not required, message signing is
negotiated between clients and servers and used if both support and request it<By default, Windows clients
don't sign messages, so if message signing isn't required by the server, messages probably won't be signed;
additionally, if performing a man-in-the-middle attack, an attacker can negotiate no message signing. If
message signing isn't required, the server is vulnerable to man-in-the-middle attacks.

This script will allow you to use the smb* script arguments (to set the username and password, etc.), but it
probably won't ever require them.

Script Arguments

smb*

228

This script supports the smbu sername, smbpas sword, smbha sh, smbguest , and smbtype
script arguments of the smb module.

9.5. NSE Scripts

Usage

nmap --script smb-secur ity-mode . nse -p4 4 5 1 2 7 . 0 . 0 . 1
sudo nmap -su - sS --scr ipt smb-secur ity-mode . nse -p U : l 3 7 , T : l 3 9 1 2 7 . 0 . 0 . 1

Sample Output

smb-secur ity-mode : User-level authentication
smb-security-mode : Cha l l enge/response pas swords supported

I _ smb-security-mode : Mes sage s ign ing supported

smb-server-stat s . ns e

Categories: discovery, intrusive

Attempts to grab the server's statistics over SMB and MSRPC, which uses TCP ports 445 or 1 39.

An administrator account is required to pul l these statistics on most versions of Windows, and Vista doesn't
seem to let even the administrator account pull them.

Some of the numbers returned here don't feel right to me, but they're definitely the numbers that Windows
returns. Take the values here o/ith a grain of salt.

Script Arguments

smb*

This script supports the smbu sername, smbpas sword, smbha sh, smbgue st, and smbtype
script arguments of the smb module.

--scr ipt smb-server-stat s . nse -p4 4 5 <host>
nmap -sU -ss --scr ipt smb-server-stat s . ns e -p U : l 3 7 , T : l 3 9 <host>

smb-server-stat s :
Server stat i s t ics col lected s ince 2 0 0 8 - 1 0 - 1 7 0 9 : 3 2 : 4 1 (4d0h24m2 9 s) :
I _ Traffic 1 3 3 4 6 7 bytes (0 . 3 8 b/ s) sent , 1 6 76 9 6 bytes (0 . 4 8b / s) received
I_ Fai led logins : 5
I _ Permi s s ion errors : 1 , System error s : 0
I _ Print j obs spooled : 0

_ I _ Files opened (including pipes) : 1 8

Categories: discovery, intrusive

Pulls back information about the remote system from the registry. Getting all of the information requires an
ministrative account, although a user account will still get a lot of it. Guest probably won't get any, nor

will anonymous. This goes for all operating systems, including Windows 2000.

9.5. NSE Scripts 229

Windows Vista doesn't appear to have the WINREG binding (or it's different and I don't know it), so this
doesn't support Vista at all.

Script Arguments

smb*
This script supports the smbusername, smbpas sword, smbhash, smbguest, and smbtype
script arguments of the smb module.

Usage

nmap --scr ipt smb-system- info . nse -p4 4 5 <host>
sudo nmap -sU -sS --scr ipt smb-system- info . nse -p U : l 3 7 , T : l 3 9 <host>

Sample Output

Host s cr ipt result s :
I smb-system-info :
I OS Det a i l s
I I _ Microsoft Windows Server 2 0 0 3 Service Pack 2 (ServerNT 5 . 2 build 3790)
I I _ Instal led on 2 0 0 7 - 1 1 -2 6 2 3 : 4 0 : 4 0

I I _ Reg i stered to IPC (organ i zat i on : MYCOMPANY)

I I _ Path : % SystemRoot% \ system3 2 ; % SystemRoot % ; % SystemRoot% \ System32 \Wbem; C : \Pr J

ogram F i l e s \Microsoft SQL Server \ 9 0 \Tools \binn \ ; C : \Program Files\ I BM\Rational J
ppScan\
I I _ Systemroot : C : \WINDOWS
I I _ Page f i l e s : C : \pagef i l e . sys 2 0 4 6 4 0 9 2 (cleared at shutdown => 0)
I Hardware
I I _ CPU 0 : Intel (R) Xeon (TM) CPU 2 . 8 0GHz [2 7 8 0mhz Genuine intel)
I I _ I dent i f ier 0 : x 8 6 Fami ly 1 5 Model 2 Stepping 9
I I _ CPU 1 : I ntel (R) Xeon (TM) CPU 2 . 8 0GHz [2 78 0mhz Genuine i nte l]
I I _ Iden t i f ier 1 : x 8 6 Fami l y 1 5 Model 2 Stepping 9

· I I _ CPU 2 : I ntel (R) Xeon (TM) CPU 2 . 8 0GHz [2 78 0mhz Genuine i ntel)

I I _ I denti f ier 2 : x 8 6 Fami ly 1 5 Model 2 Stepping 9
I I _ CPU 3 : I ntel (R) Xeon (TM) CPU 2 . 8 0GHz [2 7 8 0mhz Genuineinte l)
I I _ I denti fier 3 : x 8 6 Fami l y 1 5 Mode l 2 Stepping 9

I I _ Video dr iver : RAGE XL PCI Fami ly (Microsoft Corporat ion)
I Browsers
I I _ I nternet Explorer 7 . 0 0 0 0
I _ I _ Firefox 3 . 0 . 3 (en-US)

smtp-commands . nse

Categories: default, discovery, safe

Attempts to use EHLO and HELP to gather the Extended commands supported by an SMTP server.

Sample Output

2 5 / tcp open smtp
I smtp-commands : EHLO uninvited . examp le . net Hel lo root at localhost (1 2 7 . 0 . 0 . l J
) , S I ZE 5 2 4 2 8 8 0 0 , P IPEL INING, HELP
I _ HELP Commands supported : AUTH HELO EHLO MAIL RCPT DATA NOOP QU I T RSET HELP

230 9.5. NSE Scripts

atp-open-relay . ns e

Categories: demo

Olecks if an SMTP server is an open relay.

lllltp-strangeport . nse

Categories: malware

Checks if SMTP is running on a non-standard port.

This may indicate that crackers or script kiddies have set up a backdoor on the system to send spam or control
the machine.

Sample Output

/tcp open smtp
smtp-strangeport : Mai l server on unusual port : p o s s ible malware

sniffer-detect . nse

Categories: discovery

Checks if a target on a local Ethernet has its network card in promiscuous mode.

The techniques used are described at http://www.securityfriday.com/promiscuous_detection_OJ.pdf

Sample Output

Host script result s :
_ sni ffer-detect : Likely in promi scuous mode (te st s : " 1 1 1 1 1 1 1 1 ")

snmp-brute . nse

Categories: intrusive, auth

Attempts to find an SNMP community string by brute force guessing.

snmp-sysdescr . nse

Categories: default, discovery, safe

Attempts to extract system information from an SNMP version I service.

Sample Output

I snmp-sysdescr : HP ETHERNET MULTI -ENVIRONMENT, ROM A . 2 5 . 80 , JETDIRECT , JD 1 1 7 , EEP �
ROM V . 2 8 . 22 , C I DATE 0 8 / 0 9 / 2 0 0 6
t _ System upt ime : 2 8 days , 1 7 : 1 8 : 5 9 (2 4 8 1 5 3 9 0 0 t imeti ck s)

9.5. NSE Scripts 231

sql-in j ection . nse

Categories: intrusive, vuln

Spiders an HTTP server looking for URLs containing queries vulnerable to an SQL injection attack.

The script spiders an HTTP server looking for URLs containing queries. It then proceeds to combine c
SQL commands with susceptible URLs in order to obtain errors. The errors are analysed to see if the
is vulnerable to attack. This uses the most basic form of SQL injection but anything more complicated
better suited to a standalone tool. Both meta-style and HTTP redirects are supported.

We may not have access to the target web server's true hostname, which can prevent access to virtu
hosted sites. This script only follows absolute links when the host name component is the same as the t
server's reverse-DNS name.

s sh-hostkey . ns e

Categories: safe, default, intrusive

Shows SSH hostkeys.

Shows the target SSH server's key fingerprint and (with high enough verbosity level) the public key itself.
It records the discovered host keys in nmap . regi stry for use by other scripts. Output can be controlled

with the s s h_ho stkey script argument.

Script Arguments

s s h_ho s t key
.

Controls the output format of keys. Multiple values may be given, separated by spaces. Possible values
are
• " ful 1 " : The entire key, not just the fingerprint.
• " bubble " : Bubble Babble output,
• " v i sual " : Visual ASCII art representation.
• " a l l " : All of the above.

Usage

nmap host
nmap host
nmap host

--script SSH-hostkey --scr ipt-args ssh_hostkey=fu l l
- -scr ipt SSH-hostkey --scr ipt-args s sh_hostkey=al l
--scr ipt SSH-hostkey --scr ipt-args s sh_hostkey= ' visual

Sample Output

2 2 /tcp open ssh

bubble '

s sh-hostkey : 2 0 4 8 f 0 : 5 8 : ce : f 4 : aa : a 4 : 5 9 : l c : 8e : dd : 4d : 0 7 : 4 4 : c 8 : 2 5 : 1 1 (RSA)
2 2 / tcp open ssh

232

s sh-hostkey : 2 0 4 8 f 0 : 5 8 : ce : f 4 : aa : a 4 : 5 9 : lc : 8e : dd : 4d : 0 7 : 4 4 : c 8 : 2 5 : 1 1 (RSA)
+-- [RSA 2 0 4 8] ----+
I . E* + I
I oo I
I • o . I
I o . . I

9.5. NSE Scripts

0 s 0 .
= 0 + .

. * 0

0 .
I _ +----------------- +
22/tcp open s s h
I ssh-hostkey : 2 0 4 8 xuvah-degyp-nabu s - zegah-hebur-nopig-bubig-difeg-hisym-rume �
f-cuxex (RSA)

1 - ssh-·rsa AAAAB3NzaC l yc 2EAAAABiwAAAQEAwVuv2gcr 0maaKQ6 9VVI Ev2ob40xnu I 6 4 fkeOnCXD �

llUx5tTA+ve fXUWEMxgMuA7iX4irJHy2 zer ONQ3 Z3yJvr 5scPgTYiaEOp5Uo/eGFG9Agpk5wE8CoF Oe �

47iCAPHqz lmP2V7aNURLMODb3 jVZu I 0 7A2 ZRrMGrD8d888E20RVORvl rYeTYCqcMMoVFmX9 1 3gWEdk 4 �

yx3w5sD8v501 Iuydlvl 9mPfyhr I 5E l El n l /Xjp5NO/xP2GUBrdkDMxKaxqTPMie / f0dXBUPQQN6 9 7a 5 �
q+51BRPhKYOtn6yQKCd9 s lQ22nxn72Jmi lRzbMyYJ52FosDT 7 55Qmb46GLrDMaZMQ==

sshvl . nse

Categories: default, safe

Checks if an SSH server supports the obsolete and less secure SSH Protocol Version 1 .

sslv2 . nse

Categories: default, safe

Determines whether the server supports obsolete and less secure SSL-v2, and discovers which ciphers it
supports.

Sample Output

43/tcp open https syn-ack
sslv2 : server s t i l l supports SSLv2

SSL2_RC4_ 1 2 8_WI TH_MD5

SSL2_DES_ l 9 2_EDE3_CBC_WI TH_MD5

SSL2_RC2_CBC_l 2 8_CBC_WI TH_MD5
SSL2_DES_6 4_CBC_WITH_MD5
SSL2_RC4_1 2 8_EXPORT4 0_WI TH_MD5
SSL2_RC2_CBC_l 2 8_CBC_WITH_MD5

telnet-brute . nse

Categories: auth, intrusive

Tries to get Telnet login credentials by guessing usernames and passwords.

upnp-info . nse

mpts to extract system information from the UPnP service.

9.5. NSE Scripts 233

Sample Output

I upnp-info : System/ 1 . 0 UPnP/ 1 . 0 IGD/ 1 . 0

I _ Locat ion : http : / / 1 9 2 . 1 6 8 . l . 1 : 8 0 / UPnP / IGD . xml

whoi s . nse

Categories: discovery, external, safe

Queries the WHOIS services of Regional Internet Registries (RIR) and attempts to retrieve information
the IP Address Assignment which contains the Target IP Address.

The fields displayed contain information about the assignment and the organisation responsible for mana ·
the address space. When output verbosity is requested on the Nmap command line (-v) extra inform
about the assignment will be displayed.

To determine which of the RIRs to query for a given Target IP Address this script utilises Assignments
hosted by IANA. The data is cached localJy and then parsed for use as a lookup table. The locally cac
files are refreshed periodicalJy to help ensure the data is current. If, for any reason, these files are not available
to the script then a default sequence of Whois services are queried in turn unti l : the desired record is found;
or a referral to another (defined) Whois service is found; or until the sequence is exhausted without fi nding
either a referral or the desired record.

The script will recognize a referral to another Whois service if that service is defined in the script and will
continue by sending a query to the referred service. A record is assumed to be the desired one if it does not
contain a referral.

To reduce the number unnecessary queries sent to Whois services a record cache is employed and the entries
in the cache can be applied to any targets within the range of addresses represented in the record.

In certain circumstances, the ability to cache responses prevents the discovery of other, smalJer IP address
assignments applicable to the target because a cached response is accepted in preference to sending a Whois
query. When it is important to ensure that the most accurate information about the IP address assignment is
retrieved the script argument whodb should be used with a value of " nocache " (see script arguments).
This reduces the range of addresses that may use a cached record to a size that helps ensure that smaller
assignments will be discovered. This option should be used with caution due to the potential to send large
numbers of whois queries and possibly be banned from using the services.

In using this script your IP address will be sent to iana.org. AdditionalJy your address and the address of the
target of the scan will be sent to one of the RIRs.

Script Arguments

whodb

234

Takes any of the folJowing values, which may be combined:
• whodb=nof i le Prevent the use of IANA assignments data and instead query the default services.

• whodb=nof o l l ow Ignore referrals and instead display the first record obtained.

• whodb=nocache Prevent the acceptance of records in the cache when they apply to large ranges

of addresses.
• whodb= (service- ids] Redefine the default services to query. Implies nof i le.

9.5. NSE Scripts

Usage

t Bas ic usage :
nmap target --script whoi s

t To prevent the use o f IANA a s s ignments data supply the nof i le va lue
t to the whodb argument :
nmap target --script whoi s --script-args whodb=nofile
nmap target --scr ipt whoi s --scr ipt-args whois= { whodb=no f i l e }

I Supplying a sequence of whoi s services will also prevent the use of
t IANA assignments data and override t he defau lt sequence :
nmap target --script who i s --scr ipt-args whodb=arin+ripe+afrinic
nmap target --scr ipt who i s --script-args whois= (whodb=apn i c * lacnic }
t The order in which the services are supplied i s the order in which
t they wi l l be quer ied . (N . B . commas or semi-colons should not be
t used to del imit argument values .)

t To return the first record obtained even i f i t conta ins a referral
t to another service, supply the nofollow va lue to whodb :
nmap target --script who i s --scr ipt-args whodb=nofol low
nmap target --script whoi s --scr ipt-args whois= (whodb=nofollow+ripe }
t Note that only one service (the first one supp l i e d) w i l l be used in
t conjunction with nofol l ow .

t To ensure discovery of smal ler a s si gnments even i f larger ones
t exist in the cache , supply the nocache value to whodb :
nmap target --script whoi s --scr ipt-args whodb=nocache
nmap target --scr ipt whoi s --script-args whois= { whodb=nocache }

Sample Output

Host script resul t s :
I whoi s : Record found at whoi s . ar i n . net
I netrange : 6 4 . 1 3 . 1 3 4 . 0 - 6 4 . 1 3 . 1 3 4 . 6 3
I netname : NET-6 4 - 1 3- 1 43 - 0 - 2 6
I orgname : T i t a n Networks
J orgid : I NSEC
_ country : US s tateprov : CA

xampp-default-auth . nse

Categories: auth, vuln

Check if an XAMP or XAMPP FTP server uses a default username and password.

XAMP is an Apache distribution designed for easy installation and administration.

Sample Output

l/tcp open ftp
xampp-de fault -auth : Login succes s with u/p : nobody /xampp

9.5. NSE Scripts 235

9.6. NSE Libraries
In addition to the significant built-in capabilities of Lua, we have written or integrated many extensi
libraries which make script writing more powerful and convenient. These libraries (sometimes called modules
are compiled if necessary and installed along with Nmap. They have their own directory, nsel ib, whi
is installed in the configured datadir. Scripts need only require 6 the default libraries in order to use them.

9.6.1 . List of Al l Libraries

This list is just an overview to give an idea of what libraries are available. Developers will want to consult
the complete documentation at http://nmap.org!nsedoc!.

base64
Base64 encoding and decoding. Follows RFC 4648.

bin
Pack and unpack binary data.

bit
Bitwise operations on integers.

comm
Common communication functions for network discovery tasks l ike banner grabbing and data exchange.

datafiles
Read and parse some of Nmap's data fi les: nmap-protocols , nmap-rpc, and nmap- services.

dns
Simple DNS library supporting packet creation, encoding, decoding, and querying.

http
Client-side HTTP library.

ipOps
Utility functions for manipulating and comparing IP addresses.

Ii stop
Functional-style list operations.

match
Buffered network UO helper functions.

msrpc
Call various MSRPC functions.

netbios
Creates and parses NetBIOS traffic. The primary use for this is to send NetBIOS name requests.

6 http:/lwww.lua.orglmanual/5.l/man1ial.html#pdf-require

236 9.6. NSE Libraries

nmap

Interface with Nmap internals.

openssl

OpenSSL bindings.

packet

Facilities for manipulating raw packets.

pc re

Perl Compatible Regular Expressions.

pop3

POP3 functions.

shortport

Functions for building short portrules.

smb

Server Message Block (SMB, also known as CIFS) traffic.

snmp

SNMP functions.

sshl

Functions for the SSH- I protocol .

ssh2

Functions for the SSH-2 protocol.

stdnse

Standard Nmap Scripting Engine functions.

strbuf

String buffer facilities.

tab

Arrange output into tables.

unpwdb

Username/password database l ibrary.

url

URI parsing, composition, and relative URL resolution.

9.6.2. Add ing C Modu les to Nsel ib

A few of the modules included i n nselib are written i n C or C++ rather than Lua. Two examples are bit
and pc re. We recommend that modules be written in Lua if possible, but C and C++ may be more appropriate

9.6. NSE Libraries 237

if performance is critical or (as with the pcre and ope n s s l modules) you are l inking to an existi

library. This section describes how to write your own compiled extensions to nselib.

The Lua C API is described at length in Programming in Lua, Second Edition, so this is a short sum
C modules consist of functions that follow the protocol of the lua_CFunction 7 type. The functions

registered with Lua and assembled into a library by call ing the luaL_regi ster function. A s

initialization function provides the interface between the module and the rest of the NSE code. By conven

the initialization function is named in the form 1 uaopen_ <modul e>.

The smallest compiled module that comes with NSE is bit, and one of the most straightforward is openss

These modules serve as good examples for a beginning module writer. The source code for bit is found
nse_b i t . cc and nse_bi t . h, while the ope n s s l source is in nse_openssl . cc
n s e_open s s l . h. Most of the other compiled modules follow this n se_ <module

convention.

Reviewing the ope n s s l module shows that one of the functions in nse_ope n s s l . cc is l_md5, whi

calculates an MDS digest. Its function prototype is:

stat i c int l_mdS (lua_State * L) ;

The prototype shows that l_md5 matches the lua_CFunction type. The function is static because it does not

have to be visible to other compiled code. Only an address is required to register it with Lua. Later in the
file, l_md5 is entered into an array of type luaL_reg and associated with the name md5 :

static const struct luaL_reg open s s l lib [J = {
" mdS " , l_mdS) ,
NULL, NULL)

) ;

This function will now be known as md5 to NSE. Next the library is registered with a call to

luaL_regi ster inside the initialization function luaopen_ope n s s l , as shown next. Som e lines
relating to the registration of OpenSSL BIGNUM types have been omitted:

LUAL I B_AP I int l uaopen_openssl (lua_State * L) {
luaL_regi ster (L , OPENSSLLIBNAME , open s s l l i b) ;
return l ;

The function luaopen_open s s l is the only function in the file that is exposed in nse_opens sl . h.
OPENSSLLI BNAME is simply the string " opens s l " .

After a compiled module i s written, i t must be added to NSE by including i t i n the list of standard l ibraries
in n s e_ini t . cc. Then the module's source file names must be added to Makefi l e . i n in the appropriate
places. For both these tasks you can simply follow the example of the other C modules. For the Windows
build, the new source files must be added to the mswi n3 2 I nmap . vcpro j project file using MS Visual
Studio (see Section 2.4.4, "Compile from Source Code" [38]).

7 http:llwww./11a.org/man11al/5. J/manual.html#/11a_CF11nction

238 9.6. NSE Libraries

9.7. Nmap API
NSE scripts have access to several Nmap facilities for writing flexible and elegant scripts. The API provides
target host details such as port states and version detection results. It also offers an interface to the Nsock
library for efficient network 1/0.

9.7.1 . Information Passed to a Script

An effective Nmap scripting engine requires more than just a Lua interpreter. Users need easy access to the
information Nmap has learned about the target hosts. This data is passed as arguments to the NSE script's
action method. The arguments, host and port, are Lua tables which contain information on the target
against which the script is executed. If a script matched a hostrule, it gets only the host table, and if it
matched a portrule it gets both host and port. The following list describes each variable in these two
tables.

host
This table is passed as a parameter to the rule and action functions. It contains information on the
operating system run by the host (if the -0 switch was supplied), the IP address and the host name of
the scanned target.

host . os
The os entry in the host table is an array of strings. The strings (as many as eight) are the names of the
operating systems the target is possibly running. Strings are only entered in this array if the target machine
is a perfect match for one or more OS database entries. If Nmap was run without the -0 option, then
host . os is n i l .

host . ip
Contains a string representation of the IP address of the target host. If the scan was run against a host
name and the reverse DNS query returned more than one IP addresses then the same IP address is used
as the one chosen for the scan.

host . name
Contains the reverse DNS entry of the scanned target host represented as a string. If the host has no
reverse DNS entry, the value of the field is an empty string.

host . target name
Contains the name of the host as specified on the command line. If the target given on the command
line contains a netmask or is an IP address the value of the field is ni 1 .

host . direct ly_connected
A Boolean value indicating whether or not the target host is directly connected to (i.e. on the same
network segment as) the host running Nmap.

hos t . mac_addr
MAC address of the destination host (six-byte long binary string) or n i l , if the host is not directly
connected.

9.7. Nmap API 239

host . mac_addr_src

Our own MAC address, which was used to connect to the host (either our network card's, or (with
-- spoof-mac) the spoofed address).

host . i nterf ace
A string containing the interface name (dnet-style) through which packets to the host are sent.

host . bin_ip

The target host's IPv4 address as a 32-bit binary value.

host . bin_ip_src
Our host's (running Nmap) source IPv4 address as a 32-bit binary value.

port

The port table is passed to an NSE service script (i.e. only those with a portrule rather than a hostrule)
in the same fashion as the host table. It contains information about the port against which the script is
running. While this table is not passed to host scripts, port states on the target can still be requested from
Nmap using the nmap . get_port_st ate () cal l .

port . number

Contains the port number of the target port.

port . protocol

Defines the protocol of the target port. Valid values are 1 1 t cp 11 and 11 udp 11 •

port . service

Contains a string representation of the service running on port . number as detected by the Nmap
service detection. If the port . ver s ion field is n i l , Nmap has guessed the service based on the port

number. Otherwise version detection was able to determine the listening service and this field is equal
to port . ver s i o n . name.

port . ve r s i o n

240

This entry is a table which contains information retrieved by the Nmap version scanning engine. Some
of the values (such as service name, service type confidence, and the RPC-related values) may be
retrieved by Nmap even if a version scan was not performed. Values which were not determined default
to n i l . The meaning of each value is given in the following table:

Table 9.1 . port . version values

Name Description

name Contains the service name Nmap decided on for the port.

name -confidence Evaluates how confident Nmap is about the accuracy of name, from I
(least confident) to 10.

product, ver s i on, These five variables are described in <versi on i n fo> [1 60] .
extrainfo, hostname,

o s t ype, devi cet ype

service -tunnel Contains the string 11 none 11 or 11 s s 1 11 based on whether or not Nmap
used SSL tunneling to detect the service.

9.7. Nmap API

Name Description

service_fp The service fingerprint, if any, is provided in this value. This is described
in Section 7.7, "Community Contributions" [1 64] .

rpc_ status Contains a string value of good_prog if we were able to determine the
program number of an RPC service listening on the port, unknown if
the port appears to be RPC but we couldn't determine the program number,
not_rpc if the port doesn't appear be RPC, or untested if we haven't
checked for RPC status.

r p c _ p r o g r a m , The detected RPC program number and the range of version numbers
r p c _ l 0 w v e r , supported by that program. These will be n i l if rpc_stat us is anything
rpc_highver other than good_prog.

port . state

Contains information on the state of the port. Service scripts are only run against ports in the open or
open I fil tered states, so port . state generally contains one of those values. Other values might
appear if the port table is a result of the get_port_state function. You can adjust the port state
using the nmap . set_port_s ta t e () call . This is normally done when an open I f i l t ered port
is determined to be open.

9. 7.2 . Network 1/0 API

To allow for efficient and parallelizable network 110, NSE provides an interface to Nsock, the Nmap socket
library. The smart callback mechanism Nsock uses is ful ly transparent to NSE scripts. The main benefit of
NSE's sockets is that they never block on 1/0 operations, allowing many scripts to be run in parallel. The
110 parallelism is fully transparent to authors of NSE scripts. In NSE you can either program as if you were
using a single non-blocking socket or you can program as if your connection is blocking. Even blocking I/O
calls return once a specified timeout has been exceeded. Two flavors of Network 1/0 are supported:
connect-style and raw packet.

Connect-style network 1/0
This part of the network API should be suitable for most classical network uses: Users create a socket, connect
it to a remote address, send and receive data and finally close the socket. Everything up to the Transport
layer (which is ei ther TCP, UDP or SSL) is handled by the library.

An NSE socket is created by call ing nmap . new_s ocket, which returns a socket object. The socket object
supports the usual connect, send, rece ive, and close methods. Additionally the functions
recei ve_bytes, recei ve_l ines, and recei ve_buf allow greater control over data reception.
Example 9.2 shows the use of connect-style network operations. The try function is used for error handling,
as described in Section 9.7.4, "Exception Handling" [244].

9.7. Nmap API 241

Example 9.2. Connect-style 1/0

require (" nmap ")

local socket = nmap . new_socket ()
socket : set_t imeout (l 0 0 0)
t r y = nmap . new_try (funct ion () socket : close () end)
try (socket : connect (host . ip , port . number))
try (socket : send (" login "))
response = try (socket : rece ive ())
socket : close ()

Raw packet network 1/0
For those cases where the connection-oriented approach is too high-level, NSE provides script develo
with the option of raw packet network 1/0.

Raw packet reception is handled through a Libpcap wrapper inside the Nsock library. The steps are to
a capture device, register listeners with the device, and then process packets as they are received.

The pcap_open method creates a handle for raw socket reads from an ordinary socket object. This method
takes a callback function, which computes a packet hash from a packet (including its headers). This hash
can return any binary string, which i s later compared to the strings registered with the pcap_register
function. The packet hash callback will normally extract some portion of the packet, such as its source
address.

The pcap reader is instructed to listen for certain packets using the pcap_reg i s ter function. The function
takes a binary string which is compared against the hash value of every packet received. Those packets whose
hashes match any registered strings will be returned by the pcap_recei ve method. Register the empty
string to receive all packets.

A script receives all packets for which a listener has been registered by calling the pcap_recei ve method.
The method blocks until a packet is received or a timeout occurs.

The more general the packet hash computing function is kept, the more scripts may receive the packet and
proceed with their execution. To handle packet capture inside your script you first have to create a socket

with nmap . new_socket and later close the socket with socket_ob j ect : close-just like with the
connection-based network 1/0.

Receiving raw packets is important, but sending them is a key feature as well . To accomplish this, NSE can

access a wrapper around the l i bdnet l ibrary. Raw packet writes do not use a standard socket object like

reads do. Instead, call the function nmap . new_dnet to create a dnet object with ethernet sending methods.
Then open an i nterface with the ethernet_open method. Raw ethernet frames can then be sent with
ethernet_send. When you're done, close the ethernet handle with ethernet_c l ose.

Sometimes the easiest ways to understand complex APis is by example. The s n i f fer -detect . nse

script included with Nmap uses raw packet capture and sending in an attempt to detect promiscuous-mode
machines on the network (those running sniffers).

242 9.7. Nmap API

7.3. Thread Mutexes

script execution thread (e.g. ftp-anon running against an FTP server on the target host) yields to
scripts whenever it makes a call on network objects (sending or receiving data). Some scripts require

concurrency control over thread execution. An example is the whoi s script which queries whois servers
each target IP address. Because many concurrent queries often result in getting one's IP banned for abuse,
because a single query may return additional information for targets other threads are running against,

Is useful to have other threads pause while one thread performs a query.

solve this problem, NSE includes a mutex function which provides a mutex8 (mutual exclusion object)
le by scripts. The mutex allows for only one thread to be working on an object. Competing threads

"ting to work on this object are put in the waiting queue until they can get a "lock" on the mutex. A solution
lhe whoi s problem above is to have each thread block on a mutex using a common string, thus ensuring
only one thread is querying whois servers at once. That thread can store the results in the NSE registry

releasing unlocking the mutex. The next script in the waiting queue can then run. It will first check
registry and only query whois servers if the previous results were insufficient.

11ie first step is to create a mutex object using a statement such as:

The mutexfn returned is a function which works as a mutex for the ob j ect passed in. This object can be
any Lua data type except nil , booleans, and number s . The returned function allows you to lock, try ·

kl lock, and release the mutex. Its first and only parameter must be one of the following:

'lock"
Make a blocking lock on the mutex. If the mutex is busy (another thread has a Jock on it), then the thread
will yield and wait. The function returns with the mutex locked.

•try lock "
Makes a non-blocking Jock on the mutex. If the mutex is busy then it immediately returns with a return
value of false. Otherwise the mutex locks the mutex and returns t rue.

'done "

Releases the mutex and allows another thread to Jock it. If the thread does not have a lock on the mutex,
an error will be raised.

•running"

Returns the thread locked on the mutex or ni 1 if the mutex is not locked. This should only be used for
debugging as it interferes with garbage collection of finished threads.

A simple example of using the API is provided in Example 9.3. For real-life examples, read the
asn-query . nse and who i s . n s e scripts in the Nmap distribution.

1 http.lien. wikipedia.orglwik i/Mutual_exclusion

9.7. Nmap API 243

Example 9.3. Mutex manipulation

local mutex = nmap . mutex ("My Scr ipt ' s Unique I D ") ;
function action (host , port)

mutex " lock " ;
-- Do critica l section work - onl y one thread at a t ime executes this .
mutex " done " ;
return scr ipt_output ;

end

9. 7.4. Exception Hand l ing

NSE provides an exception handling mechanism which is not present in the base Lua language. It is tailored
specifically for network 1/0 operations, and follows a functional programming paradigm rather than an object:
oriented one. The nmap . new_ try API method is used to create an exception handler. This method returns
a function which takes a variable number of arguments that are assumed to be the return values of anothet
function. If an exception is detected in the return values (the first return value is false), then the script execution
is aborted and no output is produced. Optionally, you can pass a function to new_ try which will be called
if an exception is caught. The function would generally perform any required cleanup operations.

Example 9.4 shows cleanup exception handling at work. A new function named catch is defined to simply
close the newly created socket in case of an error. It is then used to protect connection and communication
attempts on that socket. If no catch function is specified, execution of the script aborts without further
ado-open sockets will remain open until the next run of Lua's garbage collector. If the verbosity level is at
least one or if the scan is performed in debugging mode a description of the uncaught error condition is
printed on standard output. Note that it is currently not easily possible to group several statements in one try
block.

Example 9.4. Exception handling example

local result , socket , try, catch

result = " "
socket = nmap . new_socket ()
catch = function ()
socket : close ()
end
try = nmap . new_try (catch)

try (socket : connect (host . ip , port . number))
result = try (socket : receive_l ines (l))
try (socket : send (result))

Writing a function which is treated properly by the try/catch mechanism is straightforward. The function
should return multiple values. The first value should be a Boolean which is t rue upon successful completion
of the function and f a l s e otherwise. If the function completed successfully, the try construct consumes
the indicator value and returns the remaining values. If the function failed then the second returned value
must be a string describing the error condition. Note that if the value is not n i l or false it is treated as
t rue so you can return your value in the normal case and return ni l , <error descript ion> if an
error occurs.

244 9.7. Nmap API

9.7.5. The Reg istry

The registry i s a Lua table (accessible as nmap . regi stry) with the special property that it i s visible by
all scripts and retains its state between script executions. The registry is transient-it is not stored between
Nmap executions. Every script can read and write to the registry. Scripts commonly use it to save information
for other instances of the same script. For example, the who i s and as n-query scripts may query one IP
address, but receive information which may apply to tens of thousands of IPs on that network. Saving the
information in the registry may prevent other script threads from having to repeat the query.

The registry may also be used to hand information to completely different scripts. For example, the
snmp-brute script saves a discovered community name in the registry where it may be used by other
SNMP scripts. Scripts which leave information behind for a second script must have a lower runlevel
than that second script, or there is no guarantee that they will run first.

Because every script can write to the registry table, it is important to avoid conflicts by choosing keys wisely
(uniquely).

9.8. Script Writ ing Tutorial
Suppose that you are convinced of the power of NSE. How do you go about writing your own script? Let's
say that you want to extract information from an identification server to determine the owner of the process
listening on a TCP port. This is not really the purpose of identd (it is meant for querying the owner of outgoing
connections, not listening daemons), but many identd servers allow it anyway. Nmap used to have this
functionality (called ident scan), but it was removed while transitioning to a new scan engine architecture.
The protocol identd uses is pretty simple, but still too complicated to handle with Nmap's version detection
language. First, you connect to the identification server and send a query of the form <port -on -server>,

<port -on-cl i en t > and terminated with a newline character. The server should then respond with a
string containing the server port, client port, response type, and address information. The address information
is omitted if there is an error. More details are available in RFC 1413, but this description is sufficient for
our purposes. The protocol cannot be modeled in Nmap's version detection language for two reasons. The
first is that you need to know both the local and the remote port of a connection. Version detection does not
provide this data. The second, more severe obstacle, is that you need two open connections to the target-one
to the identification server and one to the listening port you wish to query. Both obstacles are easily overcome
with NSE.

The anatomy of a script is described in Section 9.3, "Script Format" [21 1]. In this section we will show how
the described structure is utilized.

9.8.1 . The Head

The head of the script is essentially its meta information. This includes the fields: des er ipt i on,

categories, runleve l , author, and l i cense as well as initial NSEDoc information such as usage,
args, and output tags (see Section 9.9, "Writing Script Documentation (NSEDoc)" [248]).

The description field should contain a paragraph or more describing what the script does. If anything about
the script results might confuse or mislead users, and you can't eliminate the i ssue by improving the script
or results text, it should be documented in the de script i on. If there are multiple paragraphs, the first is

9.8. Script Writing Tutorial 245

used as a short summary where necessary. Make sure that first paragraph can serve as a stand alone abstract.
This description is short because it is such a simple script:

descript ion = [[
Attempts to find the owner of an open TCP port by querying an auth
(identd - port 1 1 3) daemon which mus t a l so be open on the target system.

l l

Next comes NSEDoc information. This script is missing the common @usage and @ args tags since it is
so simple, but it does have an NSEDoc @ output tag:

--@output
2 1 / t cp open ftp ProFTPD 1 . 3 . 1
I _ auth- owners : nobody
2 2 / t cp open ssh OpenSSH 4 . 3p2 Debian 9etch2 (protocol 2 . 0)
I _ auth-owner s : root
2 5 / tcp open smtp Pos t f i x smtpd
I _ auth-owner s : pos t f i x
8 0 / tcp open h t t p Apache httpd 2 . 0 . 6 1 ((Un i x) PHP / 4 . 4 . 7 . . .)
I _ auth-owner s : dhapache
1 1 3 /t cp open auth?
I _ auth-owner s : nobody
5 8 7/tcp open submi s s ion Pos t f i x smtpd
I _ auth-owners : post fix
5 6 6 6 / tcp open unknown

I _ auth-owners : r oot

Next come the author, l i cen se, and categories tags. This script belongs to the safe because we
are not using the service for anything it was not intended for. Because this script is one that should run by
default it is also in the de fault category. Here are the variables in context:

. author = " D iman Todorov <diman . t odorov@gma i l . com> "

l icense = " Same as Nmap--See http : / /nmap . org/book /man-legal . html "

categories = { " de fault " , " safe ")

9.8.2. The Rule

The rule section is a Lua method which decides whether to skip or execute the script's action method against
a particular service or host. This decision is usually based on the host and port information passed to the rule
function. In the case of the identification script, it is slightly more complicated than that. To decide whether
to run the identification script against a given port we need to know if there is an auth server running on the
target machine. In other words, the script should be run only if the currently scanned TCP port is open and
TCP port 1 13 is also open. For now we will rely on the fact that identification servers listen on TCP port
1 13 . Unfortunately NSE only gives us information about the currently scanned port.

To fi nd out if port 1 13 is open, we use the nmap . get_port_s tate function. If the auth port was not
scanned, the get_port_s tate function returns n i l . So we check that the table is not nil . We also
check that both ports are in the open state. If this is the case, the action is executed, otherwise we skip the

action.

246 9.8. Script Writing Tutorial

rtrule = function (ho s t , por t)

end

local auth_port = { number=l 1 3 , protocol= " tcp" }
loca l identd = nmap . get_port_state (host, auth_port)

if

then

else

end

identd - = n i l
and identd . state == " open "
and por t . protocol == " tcp"
and por t . state == "open"

return true

return false

9.8.3 . The Mechanism

At last we implement the actual functionality ! The script first connects t o the port on which we expect to
find the identification server, then it will connect to the port we want information about. Doing so involves
first creating two socket options by calling nrnap . new_socket. Next we define an error-handling catch
function which closes those sockets i f failure is detected. At this point we can safely use object methods such
as open, close, send and receive to operate on the network socket. In this case we call connect to
make the connections. NSE's exception handling mechanism. is used to avoid excessive error-handling code.
We simply wrap the networking calls in a try call which will in turn call our catch function if anything
goes wrong.

If the two connections succeed, we construct a query string and parse the response. If we received a satisfactory
response, we return the retrieved information.

action = function (ho s t , port)
local owner = " "

local cl ient_ident nmap . new_socket ()
local client_service = nmap . new_socket ()

local catch = function ()
c l i ent_ident : close ()
client_service : close ()

end

local try = nmap . new_try (catch)

try (c l ient_ident : connect (host . ip , 1 1 3))
try (c l ient_service : connect (host . ip , port . number))

local localip, localpor t , remoteip, remoteport
try (c l ient_service : get_info ())

local request = port . number . . " , " localport . . " \n "

try (cl ient_ident : send (request))

9.8. Script Writing Tutorial 247

end

owner = try (c l ient_ident : receive_line s (l))

i f string . match (owner , "ERROR ") then
owner n i l

else
owner str ing . match (owner, " USER I D

end

try (c l ient_ident : c lose ())
try (c l ient_service : close ())

return owner

. + (• +) \ n " I 1)

Note that because we know that the remote port is stored in port . number, we could have ignored the last

two return values of c l i ent_service : get_i n f o () like this:

local local ip , localport = try (cl i ent_service : get_info ())

In this example we exit quietly if the service responds with an error. This is done by assigning nil to the

owner variable which will be returned. NSE scripts generally only return messages when they succeed, so

they don't flood the user with pointless alerts.

9.9. Writ ing Script Documentation (NSEDoc)
Scripts are used by more than just their authors, so they require good documentation. NSE modules need
documentation so developers can use them in their scripts. NSE's documentation system, described in this
section, aims to meet both these needs. While reading this section, you may want to browse NSE's online
documentation, which is generated using this system. It is at http://nmap.org!nsedocl.

NSE uses a customized version of the LuaDoc9 documentation system called NSEDoc. The documentation
for scripts and modules is contained in their source code, as comments with a special form. Example 9.5 is
an NSEDoc comment taken from the stdnse . pr int_debug () function.

9 http://luadoc.luaforge.net/

248 9.9. Writing Script Documentation (NSEDoc)

Example 9.5. An NSEDoc comment for a function

a formatted debug mes sage i f the current verbosity level i s greater
or equal to a given level .

is a convenience wrapper around
<code>nmap . pr int_debug_unformatted () < / code> . The first opt ional numeric
argument , <code>verbosity</code > , i s used as the verbosity leve l neces sary
to print the message (it defaul t s to 1 if omitted) . All remaining arguments
are processed with Lua ' s <code>string . format () < /code> funct ion .
@param level Opt ional verbosity level .
@param fmt Format string .
@param . . . Arguments to format .

Documentation comments start with three dashes: ---. The body of the comment is the description of the
i>llowing code. The first paragraph of the description should be a brief summary, with the following paragraphs
providing more detail. Special tags starting with @ mark off other parts of the documentation. In the above
example you see @par am, which is used to describe each parameter of a function. A complete list of the
documentation tags is found in Section 9.9. l , "NSE Documentation Tags" [250].

Text enclosed in the HTML-like <code> and < / code> tags will be rendered in a monospace font. This
should be used for variable and function names, as well as multi-line code examples. When a sequence of
tines start with the characters "* ", they will be rendered as a bulleted list.

It is good practice to document every public function and table in a script or module. Additionally every
ICl'ipt and module should have its own file-level documentation. A documentation comment at the beginning
of a file (one that is not followed by a function or table definition) applies to the entire file. File-level

umentation can and should be several paragraphs long, with all the high-level information useful to a
developer using a module or a user running a script. Example 9.6 shows documentation for the comm module
(with a few paragraphs removed to save space).

Example 9.6. An NSEDoc comment for a module

- Common communicat ion funct ions for network di scovery tasks l ike
banner grabbing and data exchange .

These functions may be pas sed a table of opt ion s , but i t ' s not required . The
keys for the opt ions table are <code > " bytes " < / code > , <code> " l ines " < / code> ,
<code> "prot o " < / code > , and <code> " t imeout " < / code> . <code> " byte s " < /code> sets
a minimum number of bytes to read . <code > " l ines " < / code> does the same for
lines . <code>"proto " </ code> sets the protocol to commun icate with,
defaulting to <code> " tcp " < / code> if not provided . <code> " t imeout " < /code>
sets the socket t imeout (see the socket funct ion <code>set_timeout () < / code>
for deta i l s) .
@author Kris Katter j ohn 0 4 / 2 0 0 8
@copyright Same a s Nmap--See http : / / nmap . org/book/man-lega l . html

re are some special considerations for documenting scripts rather than functions and modules. In particular,
"pts _have special variables for some information which would otherwise belongs i n @-tag comments
"pt variables are described in Section 9.3, "Script Format" [2 1 1]). In particular, a script's description
ongs in the de s cr ipt i on variable rather than in a documentation comment, and the information that
ld go in @author and @ copyr i ght belong in the variables author and l i cen se instead. NSEDoc

9.9. Writing Script Documentation (NSEDoc) 249

knows about these variables and will use them in preference to fields in the comments. Scripts should also
have an @ output tag showing sample output, as well as @ args and @usage where appropriate. Example 9.7
shows proper form for script-level documentation, using a combination of documentation comments and
NSE variables.

Example 9.7. An NSEDoc comment for a script

de scr ipt ion = [[
Maps I P addres s e s to autonomous system (AS) numbers .

The script works by sending DNS TXT queries to a DNS server which in
turn queries a third-party service provided by Team Cymru
(team-cymru . or g) u s ing an in-addr . arpa style zone set up e spec ially for
use by Nmap .

l l

@ u s age
nmap --scr ipt asn-quer y . nse [--script-args dns=<DNS server>] <target>
@args dns The address of a recur s i ve name server to use (optiona l) .
@ou tput
Host script resul t s :
I AS Numbers :
I BGP : 6 4 . 1 3 . 1 2 8 . 0 / 2 1 I Country : US
I Or igin AS : 1 05 6 5 SVCOLO-AS - S i l icon Val ley Colocation, Inc .
I Peer AS : 3 5 6 1 6 4 6 1
I BGP : 6 4 . 1 3 . 1 2 8 . 0 / 1 8 I Country : US
I Origin AS : 1 05 6 5 SVCOLO-AS - S i l icon Valley Colocation , Inc .
I _ Peer AS : 1 7 4 2 9 1 4 6 4 6 1

author " j ah, Michae l "
l icense = " Same a s Nmap--See http : / /nmap . org/book /man-lega l . html "
categor ies = { "di scover y " , " externa l " }

Compiled NSE modules are also documented with NSEDoc, even though they have no Lua source code.
Each compiled module has a file <modul ename> . l uadoc that is kept in the nselib directory alongside
the Lua modules. This file lists and documents the functions and tables in the compiled module as though
they were written in Lua. Only the name of each function is required, not its definition (not even end). You
must use the @ name and @ c l a s s tags when documenting a table to assist the documentation parser in
identifying it. There are several examples of this method of documentation in the Nmap source distribution
(including nmap . l uadoc, bit . l uadoc, and pcre . 1 uadoc).

9.9.1 . NSE Documentation Tags

The following tags are understood by NSEDoc:

@ pa ram

250

Describes a function parameter. The first word following @par am is the name of the parameter being
described. The tag should appear once for each parameter of a function.

9.9. Writing Script Documentation (NSEDoc)

@see
Adds a cross-reference to another function or table.

@return
Describes a return value of a function. @ return may be used multiple times for multiple return values.

@usage
Provides a usage example of a function or script. In the case of a function, the example is Lua code; for
a script it is an Nmap command line. @ u s age may be given more than once.

@name
Defines a name for the function or table being documented. This tag i s normally not necessary because
NSEDoc infers names through code analysis.

@class
Defines the "class" of the object being modified: functi on, t able, or module. Like @ n ame, this
is normally inferred automatically.

@field
In the documentation of a table, @ f ield describes the value of a named field.

@args
Describes a script argument, as used with the --scr ipt-args option (see Section 9.2.3, "Arguments
to Scripts" [2 1 0]). The first word after @args is the name of the argument, and everything following
that is the description. This tag is special to script-level comments.

@output
This tag, which is exclusive to script-level comments, shows sample output from a script.

@author
This tag, which may be given multiple times, lists the authors of an NSE module. For scripts, use the
author variable instead.

@copyr ight

This tag describes the copyright status of a module. For scripts, use the l i cense variable i nstead.

9.1 0. Version Detection Using NSE
The version detection system built into Nmap was designed to efficiently recognize the vast majority of
protocols with a simple probe and pattern matching syntax. Some protocols require more complex
communication than version detection can handle. A generalized scripting language as provided by NSE is
perfect for these tough cases.

NSE's ver s ion category contains scripts that enhance standard version detection. Scripts in this category
are run whenever you request version detection with -sV; you don't need to use -sc to run these. This cuts
the other way too: if you use -sc, you won't get ver s ion scripts unless you also use - sv.

One protocol which we were unable to detect with normal version detection i s Skype version 2. The protocol
was likely designed to frustrate detection out of a fear that telecom-affiliated Internet service providers might

9 . 10. Version Detection Using NSE 251

consider Skype competition and interfere with the traffic. Yet we did find one way to detect it. If Skype
receives an HTTP GET request, it pretends to be a web server and returns a 404 error. But for other requests,
it sends back a chunk of random-looking data. Proper identification requires sending two probes and comparing
the two responses-an ideal task for NSE. The simple NSE script which accomplishes this is shown in
Example 9.8.

Example 9.8. A typical version detection script (Skype version 2 detection)

description = [[
Detects the Skype ver s ion 2 service .

l l
author = "Brandon Enr ight <bmenr igh@ucsd . edu> "
l icense = " Same as Nmap--See http : / / nmap . org/book /man-lega l . html "
categories = { "ver s ion " }

require " comm"

portrule = funct ion (host , port)

end

return (port . number == 8 0 or port . number == 4 4 3 or
port . service == n i l or port . service == " " or
port . service == "unknown ")

and port . protocol == "tcp" and port . state == " open "
and por t . service -= " http" and por t . service -= " s s l /http"

act ion = funct ion (host , por t)

end

local status , result = comm . exchange (ho s t , por t ,
" GET I HTTP/ 1 . 0 \r \ n \ r \ n " , { bytes=2 6 , proto=port . protocol })

i f (not statu s) then
return

end
i f (result -= " HTTP/ 1 . 0 4 0 4 Not Found \ r \ n \ r \n ") then

return
end
-- So far so good, now see i f we get random data for another request
status, result = comm . exchange (host, por t ,

" random data \ r \ n \ r \n " , { bytes= 1 5 , proto=port . protocol })

i f (not status) then
return

end
i f string . match (result , " [" % s ! --] . * [" % s ! --] . * [" % s ! --) ") then

-- Detected

end
return

port . vers ion . name = " skype2 "
port . vers ion . product = " Skype "
nmap . set_port_vers ion (host, port , " hardmatched ")
return

If the script detects Skype, it augments its port table with now-known name and product fields. It then
sends this new information to Nmap by call ing nmap . set_port_ ver s i on. Several other version fields

252 9. 10. Version Detection Using NSE

are available to be set if they are known, but in this case we only have the name and product. For the full l ist
of version fields, refer to the nmap . set_port_ver s i on documentation.

Notice that this script does nothing unless it detects the protocol. A script shouldn't produce output (other
than debug output) just to say it didn't learn anything.

9.1 1 . Example Script : finger . nse

The finger script (fi nger . nse) is a perfect example of a short and simple NSE script.

First the information fields are assigned. A detailed description of what the script actually does goes in the
des cript ion field.

description = [[
Attempts to get a l i s t of usernames via the f i nger service .

I I
author = " Eddie Bel l <ej lbe l l @ gma i l . com> "
license = "Same as Nmap--See http : / /nmap . org/book /man-legal . html "

The categories field is a table containing all the categories the script belongs to-These are used for
script selection with the --scr ipt option:

categories = { "defau lt " , " d i s covery " }

You can use the facilities provided by the nselib (Section 9.6, "NSE Libraries" [236]) with requ i re. Here
we want to use common communication functions and shorter port rules:

require "comm"
require " short por t "

We want to run the script against the finger service. S o we test whether i t i s using the well-known finger
port (79/tcp), or whether the service is named "finger" based on version detection results or in the port
number's listing in nmap- services :

portrule = shortport . por t_or_service (79 , " f inger ")

First, the script uses nmap . new_ try to create an exception handler that will quit the script in case of an
error. Next, it passes control to comm . exchange, which handles the network transaction. Here we have
asked to wait in the communication exchange until we receive at least 100 l ines, wait at least 5 seconds, or
until the remote side closes the connection. Any errors are handled by the try exception handler. The script
returns a string if the call to comm . exchange () was successful.

action = funct ion (host , por t)
local try = nmap . new_try ()

return try (comm . exchange (hos t , port , " \r \ n " ,

9.1 1 . Example Script: finger.nse 253

{ l ines= l O O , proto=por t . protoc o l , t imeout=S O OO }))
end

9.1 2. Implementation Detai ls
Now i t is time to explore the NSE implementation details in depth. Understanding how NSE works is useful
for designing efficient scripts and libraries. The canonical reference to the NSE implementation is the source
code, but this section provides an overview of key details. It should be valuable to folks trying lo understand
and extend the NSE source code, as well as to script authors who want to better-understand how their scripll
are executed.

9.1 2.1 . In it ial ization Phase

During its initialization stage, Nmap loads the Lua interpreter and its provided libraries. These libraries are
fully documented in the Lua Reference Manual 10• Here is a summary of the libraries, listed alphabetically
by their namespace name:

debug

i o

The debug library provides a low-level API to the Lua interpreter, allowing you to access functions

along the execution stack, retrieve function closures and object metatables, and more.

The Input/Output library offers functions such as reading from files or from the output from programs
you execute.

mat h

. O S

Numbers i n Lua usually correspond to the double C type, so the math library provides access to
rounding functions, trigonometric functions, random number generation, and more .

The Operating System library provides system facilities such as filesystem operations (including file
renaming or removal and temporary file creation) and system environment access.

package
Among the functions provided by Lua's package-lib is require, which is used to load nselib modules.

s t r ing
The string l ibrary provides functions for manipulating Lua strings, including printf-style string formatting,
pattern matching using Lua-style patterns, substring extraction, and more.

table
The table manipulation library is essential for operating on Lua's central data structure (tables).

In addition to loading the libraries provided by Lua, the nmap namespace functions are loaded. The search
paths are the same directories that Nmap searches for its data files, except that the nselib directory is

appended to each. At this stage any provided script arguments are stored inside the registry.

10 h11p:/lwww.lua.orglmanual/5.J/mam1al.html

254 9 . 1 2. Implementation Details

next phase of NSE initialization is loading the selected scripts, based on the defaults or arguments
'ded to the --script option. The ver s i o n category scripts are loaded as well if version detection
enabled. NSE first tries to interpret each - - s cr ipt argument as a category. This is done with a Lua

function in nse_i ni t . cc named entry based on data from the script . db script categorization
*8base. If the category is found, those scripts are loaded. Otherwise Nmap tries to interpret - - s cr ipt
11g11ments as files or directories. If no files or directories with a given name are found in Nmap's search path,
1n error is raised and the Script Engine aborts.

If a directory is specified, all of the . n s e files inside it are loaded. Each loaded file is executed by Lua. If
aponrule is present, it is saved in the porttests table with a portrule key and file closure value. Otherwise,
if the script has a hostrule, it is saved in the hosttests table in the same manner.

9.12.2. Matching Scripts with Targets

After initialization is finished, the ho strules and portrules are evaluated for each host in the current
target group. The rules of every chosen script is tested against every host and (in the case of service scripts)
each open and open I f i l t ered port on the hosts. The combination can grow quite large, so portrules
should be kept as simple as possible. Save any heavy computation for the script's acti on.

Next, a Lua thread 1 1 is created for each of the matching script-target combinations. Each thread is stored
with pertinent information such as the runlevel, target, target port (if applicable), host and port tables (passed
to the act ion), and the script type (service or host script). The main loop function then processes each
runlevel grouping of threads in order.

9.1 2.3. Script Execution

Nmap performs NSE script scanning i n parallel by taking advantage of Nmap's Nsock parallel 1/0 library
and the Lua coroutines 12 language feature. Coroutines offer collaborative multi-threading so that scripts can
suspend themselves at defined points and allow other coroutines to execute. Network 1/0, particularly waiting
for responses from remote hosts, often involves long wait times, so this is when scripts yield to others. Key
functions of the Nsock wrapper cause scripts to yield (pause). When Nsock finishes processing such a request,
it makes a callback which causes the script to be pushed from the waiting queue back into the running queue
so it can resume operations when its turn comes up again.

The mainloop function moves threads between the waiting and running queues as needed. A thread which
yields is moved from the running queue into the waiting list. Running threads execute until they either yield,
complete, or fail with an error. Threads are made ready to run (placed in the running queue) by calling
proces s_wai t i ng2runni ng. This process of scheduling running threads and moving threads between
queues continues until no threads exist i n either queue.

1 1 http:/lwww.lua.org/manual/5. J/manual.htm/#2. I I
12 http:llwww./ua.orglmanual/5.Jlmanual.htm/#2. I I

9. 1 2. Implementation Details 255

Chapter 1 0. Detecting and Subverting
Firewal ls and I ntrusion Detection
Systems

10.1 . Introduction
Many Internet pioneers envisioned a global open network with a universal I P address space allowing virtual
connections between any two nodes. This allows hosts to act as true peers, serving and retrieving information
from each other. People could access all of their home systems from work, changing the climate control
settings or unlocking the doors for early guests. This vision of universal connectivity has been stifled by
address space shortages and security concerns. In the early 1990s, organizations began deploying firewalls
for the express purpose of reducing connectivity. Huge networks were cordoned off from the unfiltered
Internet by application proxies, network address translation devices, and packet filters. The unrestricted flow
of information gave way to tight regulation of approved communication channels and the content that passes
over them.

Network obstructions such as firewalls can make mapping a network exceedingly difficult. It will not get
any easier, as stifling casual reconnaissance is often a key goal of implementing the devices. Nevertheless,
Nmap offers many features to help understand these complex networks, and to verify that filters are working
as intended. I t even supports mechanisms for bypassing poorly implemented defenses. One of the best
methods of understanding your network security posture is to try to defeat it. Place yourself in the mind-set
of an attacker and deploy techniques from this chapter against your networks. Launch an FfP bounce scan,
idle scan, fragmentation attack, or try to tunnel through one of your own proxies.

In addition to restricting network activity, companies are increasingly monitoring traffic with intrusion
detection systems (IDS). All of the major IDSs ship with rules designed to detect Nmap scans because scans
are sometimes a precursor to attacks. Many of these products have morphed into intrusion prevention systems
(IPS) that actively block traffic deemed malicious. Unfortunately for network administrators and IDS vendors,
reliably detecting bad intentions by analyzing packet data is a tough problem. Attackers with patience, skill,
and the help of certain Nmap options can usually pass by IDSs undetected. Meanwhile, administrators must
cope with large numbers of false positive results where innocent activity is misdiagnosed and alerted on or
blocked.

1 0.2. Why Wou ld Eth ical Professionals
(Wh ite-hats) Ever Do Th is?
Some of you white-hat readers may be tempted to skip this chapter. For authorized use against your own
networks, why would you ever want to evade your own security systems? Because it helps in understanding
the danger of real attackers. If you can sneak around a blocked portmapper port using Nmap direct RPC
scanning, then so can the bad guys. It is easy to make a mistake in configuring complex firewalls and other
devices. Many of them even come with glaring security holes which conscientious users must find and close.

10. 1 . Introduction 257

Regular network scanning can help find dangerous implicit rules (for example, in your Checkpoint Fire
or Windows IPsec filters) before attackers do.

There are good reasons for evading IDSs as well . Product evaluation is one of the most common. If attac
can slide under the radar by simply adding an Nmap flag or two, the system is not offering much protec ·
It may still catch the script kiddies and worms, but they are usually blazingly obvious anyway.

Occasionally people suggest that Nmap should not offer features for evading firewall rules or sneaking plll
IDSs. They argue that these features are just as likely to be misused by attackers as used by administtakll
to enhance security. The problem with this logic is that these methods would still be used by attackers,
would just find other tools or patch the functionality into Nmap. Meanwhile, administrators would find it
that much harder to do their jobs. Deploying only modern, patched FTP servers is a far more powerful defeme
than trying to prevent the distribution of tools implementing the FTP bounce attack.

1 0.3. Determin ing Fi rewal l Ru les
The first step toward bypassing firewall rules is to understand them. Where possible, Nmap distinguishes
between ports that are reachable but closed, and those that are actively filtered. An effective technique is to
start with a normal SYN port scan, then move on to more exotic techniques such as ACK scan and IP ID
sequencing to gain a better understanding of the network.

1 0.3.1 . Standard SYN Scan

One helpful feature of the TCP protocol is that systems are required by RFC 793 to send a negative response
to unexpected connection requests in the form of a TCP RST (reset) packet. The RST packet makes closed
ports easy for Nmap to recognize. Filtering devices such as firewalls, on the other hand, tend to drop packets
destined for disallowed ports. In some cases they send ICMP error messages (usually port unreachable)
instead. Because dropped packets and ICMP errors are easily distinguishable from RST packets, Nmap can
reliably detect filtered TCP ports from open or closed ones, and it does so automatical ly. This is shown in
Example 10. 1 .

258 10.3. Determining Firewall Rules

Example 10.1. Detection of closed and filtered TCP ports

I nmap -sS -T4 scanme . nmap . or g

Starting Nmap (http : / / nma p . org
Interesting ports on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) :
Not shown : 9 9 4 f i l tered p or t s
PORT STATE SERVICE
22/tcp open ssh
25/tcp closed smtp
53/tcp open domain
70/tcp closed gopher
80/tcp open http
113 /tcp closed auth

Nmap done : 1 IP address (1 host up) scanned in 5 . 4 0 seconds

One of the most important l ines in Example 10.1 is the parenthetical note "Not shown: 994 filtered ports".
In other words, this host has a proper deny-by-default firewall policy. Only those ports the administrator
explicitly allowed are reachable, while the default action is to deny (filter) them. Three of the enumerated
ports are in the open state (22, 53, and 80), and another three are closed (25, 70, and 1 13). The remaining
994 tested ports are unreachable by this standard scan (filtered).

Sneaky firewal ls that return RST

While the Nmap distinction between closed ports (which return a RST packet) and filtered ports (returning
nothing or an ICMP error) is usually accurate, many firewall devices are now capable of forging RST packets
as though they are coming from the destination host and claiming that the port is closed. One example of
this capability is the Linux iptables system, which offers many methods for rejecting undesired packets. The
iptables man page documents this feature as follows:

--reject-with type

The type given can be icmp-net-unreachable, icmp-host-unreachable, icmp-port-unreachable,
icmp-proto-unreachable, icmp-net-prohibited or icmp-host-prohibited, which return the
appropriate ICMP error message (port-unreachable is the default). The option tcp-reset
can be used on rules which only match the TCP protocol: this causes a TCP RST packet
to be sent back. This is mainly useful for blocking ident (1 1 3 / t cp) probes which
frequently occur when sending mail to broken mail hosts (which won't accept your mail
otherwise).

Forging RST packets by firewalls and IDS/IPS is not particularly common outside of port 1 1 3, as it can be
confusing to legitimate network operators and it also allows scanners to move on to the next port immediately
without waiting on the timeout caused by dropped packets. Nevertheless, it does happen. Such forgery can
usually be detected by careful analysis of the RST packet in comparison with other packets sent by the
machine. Section 10.6, "Detecting Packet Forgery by Firewall and Intrusion Detection Systems" [289]
describes effective techniques for doing so.

10.3. Determining Firewall Rules 259

1 0.3.2. ACK Scan

As described in depth in Section 5.7, "TCP ACK Scan (-sA)" [1 1 3] , the ACK scan sends TCP packets with
only the ACK bit set. Whether ports are open or closed, the target is required by RFC 793 to respond with
a RST packet. Firewalls that block the probe, on the other hand, usually make no response or send back an
ICMP destination unreachable error. This distinction al lows Nmap to report whether the ACK packets are
being filtered. The set of fil tered ports reported by an Nmap ACK scan is often smaller than for a SYN scan
against the same machine because ACK scans are more difficult to filter. Many networks allow nearly
unrestricted outbound connections, but wish to block Internet hosts from initiating connections back to them.
Blocking incoming SYN packets (without the ACK bit set) is an easy way to do this, but it still allows any
ACK packets through. Blocking those ACK packets is more difficult, because they do not tell which side
started the connection. To block unsolicited ACK packets (as sent by the Nmap ACK scan), while allowing
ACK packets belonging to legitimate connections, firewalls must statefully watch every established connection
to determine whether a given ACK is appropriate. These stateful firewalls are usually more secure because
they can be more restrictive. Blocking ACK scans is one extra available restriction. The downsides are that
they require more resources to function, and a stateful firewal l reboot can cause a device to lose state and
terminate all established connections passing through it.

While stateful firewalls are widespread and rising in popularity, the stateless approach is sti l l quite common.
For example, the Linux Netfilter/iptables system supports the -- syn convenience option to make the stateless
approach described above easy to implement.

In the previous section, a SYN scan showed that all but six of 1 ,000 common ports on scanme.nmap.org
were in the filtered state. Example 10.2 demonstrates an ACK scan against the same host to determine whether
it is using a stateful firewall .

Example 10.2. ACK scan against Scanme

nmap - sA -T4 scanme . nmap . org

Starting Nmap (http : / / nmap . org
I nterest ing port s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) :
Not shown : 9 9 4 f i ltered ports
PORT STATE SERVICE
2 2 / tcp unfi ltered ssh
2 5 / tcp u n f i l tered smtp
5 3 / tcp u n f i ltered domai n
7 0 / tcp u n f i ltered gopher
8 0 / tcp unfi ltered http
1 1 3 / tcp u n f i l tered au th

Nmap done : 1 I P address (1 host up) scanned in 5 . 96 seconds

The same six ports displayed in the SYN scan are shown here. The other 994 are sti ll filtered. This is because
Scanme is protected by this stateful iptables directive: iptables -A INPUT -m state --state
ESTABLISHED,RELATED -j ACCEPT. This only accepts packets that are part of or related to an
established connection. Unsolicited ACK packets sent by Nmap are dropped, except to the six special ports
shown. Special rules allow all packets to the ports 22, 25, 53, 70, and 80, as well as sending a RST packet
in response to port I 13 probes. Note that the six shown ports are in the unfi ltered state, since the ACK

scan cannot further divide them into open (22, 53, and 80) or closed (25, 70, 1 1 3).

260 10.3. Determining Firewall Rules

Now let us look at another example. A Linux host named Para on my local network uses the following
(simplified to save space) firewall script:

t ! /bin/sh
t
t A simple , stateles s , host-based f i rewa l l scr ipt .

First of a l l , flush & delete any exist ing tables
iptables -F
iptables - x

f Deny by default (inpu t / forward)
iptables --policy INPUT DROP
iptables --policy OUTPUT ACCEPT
iptables --policy FORWARD DROP

i I want to make ssh and www accessible from outs ide
iptables -A INPUT -m mul t iport -p t cp --dest ination-port 2 2 , 8 0 - j ACCEPT

i Allow responses to outgoing TCP reque s t s
iptables -A INPUT --proto t c p ! - - s yn - j ACCEPT

This firewall is stateless, as there is no sign of the --state option or the -m state module request.
Example 10.3 shows SYN and ACK scans against this host.

Example 10.3. Contrasting SYN and ACK scans against Para

t nmap -sS -pl - 1 0 0 -T4 para

Starting Nmap (http : / /nmap . org
Interesting port s on para (1 9 2 . 1 6 8 . 1 0 . 1 9 1) :
Not shown : 9 8 f i l tered port s
PORT STATE SERVICE
22/tcp open ssh
80/tcp closed http
MAC Address : 0 0 : 6 0 : 1 D : 3 8 : 3 2 : 9 0 (Lucent Technologies)

tfrnap done : 1 IP address (1 host up) s canned in 3 . 8 1 seconds

t nmap -sA -pl - 1 0 0 -T4 para

arting Nmap (http : / / nmap . org
1 100 scanned port s on para (1 92 . 1 6 8 . 1 0 . 1 9 1) are : unfi ltered
C Address : 0 0 : 6 0 : 1 D : 3 8 : 3 2 : 9 0 (Lucent Technologie s)

p done : 1 I P address (1 host up) scanned i n 0 . 70 seconds

In the SYN scan, 98 of 100 ports are filtered. Yet the ACK scan shows every scanned port being
unfiltered. In other words, all of the ACK packets are sneaking through unhindered and eliciting RST
responses. These responses also make the scan more than five times as fast, since it does not have to wait
on timeouts.

10.3. Determining Firewall Rules 261

Now we know how to distinguish between stateful and stateless firewalls, but what good is that? The ACK
scan of Para shows that some packets are probably reaching the destination host. I say probably because
firewall forgery is always possible. While you may not be able to establish TCP connections to those ports,
they can be useful for determining which IP addresses are in use, OS detection tests, certain IP ID shenanigans,
and as a channel for tunneling commands to rootkits installed on those machines. Other scan types, such as
FIN scan, may even be able to determine which ports are open and thus infer the purpose of the hosts. Such
hosts may be useful as zombies for an IP ID idle scan.

This pair of scans also demonstrates that what we are calling a port state is not solely a property of the port
itself. Here, the same port number is considered f i 1 tered by one scan type and unf i 1 tered by another.
What IP address you scan from, the rules of any filtering devices along the way, and which interface of the
target machine you access can all affect how Nmap sees the ports. The port table only reflects what Nmap
saw when running from a particular machine, with a defined set of options, at the given time.

1 0.3.3. IP I D Tricks

The humble identification field within IP headers can divulge a surprising amount of information. Later in
this chapter it will be used for port scanning (idle scan technique) and to detect when firewall and intrusion
detection systems are forging RST packets as though they come from protected hosts. Another neat trick is
to discern what source addresses make it through the firewall. There i s no point spending hours on a blind
spoofing attack "from" 192.168.0.1 if some firewall along the way drops all such packets.

I usually test this condition with the free network probing tool hping21 • This is a rather complex technique,
but it can be valuable sometimes. Here are the steps I take:

1 . Find at least one accessible (open or closed) port of one machine on the internal network. Routers, printers,
and Windows boxes often work well. Recent releases of Linux, Solaris, and OpenBSD have largely
resolved the issue of predictable IP ID sequence numbers and will not work. The machine chosen should
have little network traffic to avoid confusing results.

2. Verify that the machine has predictable IP ID sequences. The following command tests a Windows XP

machine named Playground. The hping2 options request that five SYN packets be sent to port 80, one
second apart.

hping2 -c 5 - i 1 -p 8 0 -s playground
HPING playground (ethO 1 9 2 . 1 6 8 . 0 . 4 0) : S s e t , 40 headers + 0 data bytes
len=46 ip= l 9 2 . 16 8 . 0 . 4 0 t t l = l 2 8 id=64473 sport= 8 0 f lags=RA seq=O rtt=0 . 7 ms
len=4 6 ip=l 9 2 . 1 6 8 . 0 . 4 0 t t l = l 2 8 id=64 474 sport= 8 0 flags=RA s eq=l rtt=0 . 3 ms
len=46 ip=l 9 2 . 1 6 8 . 0 . 4 0 t t l = l 2 8 id=64475 sport=80 f lags=RA seq=2 rtt=0 . 3 ms
len=46 ip=l 9 2 . 1 6 8 . 0 . 4 0 t t l = l 2 8 id=64476 sport=80 f lags=RA seq=3 rtt=0 . 3 ms
len=46 ip= l 9 2 . 1 6 8 . 0 . 4 0 ttl=l 2 8 id=64477 sport=80 f lags=RA seq=4 rtt=0 . 3 ms

--- p layground hping stati s t i c
5 packets transmitted, 5 packet s received , 0 % packet loss
round-tr ip min/avg/max = 0 . 3 / 0 . 3 / 0 . 7 ms

Since the IP ID fields are perfectly sequential, we can move on to the next test. If they were random or
very far apart, we would have to find a new accessible host.

1 http://www.hping.org

262 10.3. Determining Firewall Rules

3. Start a flood of probes to the target from a host near your own Gust about any host will do). An example
command is hping2 --spoof scanme.nmap.org --fast -p 80 -c 10000 -S playground. Replace
scanme . nmap . org with some other host of your choice, and pl ayground with your target host.
Getting replies back is not necessary, because the goal is simply to increment the IP ID sequences. Do
not use the real address of the machine you are running hping2 from. Using a machine nearby on the
network is advised to reduce the probability that your own ISP will block the packets.

While this is going on, redo the test from the previous step against your target machine.

I hping2 -c 5 -i 1 -p 8 0 -S p layground
HPING playground (ethO 1 92 . 1 6 8 . 0 . 4 0) : S set , 40 headers + 0 data bytes
len=46 ip= 1 9 2 . 1 6 8 . 0 . 4 0 t t l = 1 2 8 id=64672 sport=80 f lags=RA seq=O rtt=0 . 6 ms
len=46 ip= 1 9 2 . 1 6 8 . 0 . 4 0 t t l = 1 2 8 id=64683 sport=80 f lags=RA seq=l rtt=0 . 2 ms
len=46 ip=1 9 2 . 1 6 8 . 0 . 4 0 ttl=1 2 8 id=64694 sport=80 flags=RA s eq=2 rtt=0 . 2 ms
len�46 ip= 1 9 2 . 16 8 . 0 . 4 0 ttl=1 2 8 id=64705 sport=80 f lags=RA seq=3 rtt=0 . 2 ms
len=46 ip= 1 9 2 . 1 6 8 . 0 . 4 0 t t l= 1 2 8 id=64716 sport=8 0 flag s=RA seq= 4 rtt=0 . 2 ms

--- playground hping statistic
5 packets transmitted, 5 packets received, 0 % packet loss
round-trip min/avg/max = 0 . 2 / 0 . 3 / 0 . 6 ms

This time, the IP IDs are increasing by roughly 1 1 per second instead of one. The target is receiving our
IO forged packets per second, and responding to each of them. Each response increments the IP ID. Some
hosts use a unique IP ID sequence for each IP address they communicate with. If that had been the case,
we would not have seen the IP ID leaping like this and we would have to look for a different target host
on the network.

4. Repeat step 3 using spoofed addresses that you suspect may be allowed through the firewall or trusted.
Try addresses behind their firewall, as well as the RFC 1918 private networks such as 10.0.0.0/8,
192. 168.0.0/ 16, and 172.16.0.0/ 12. Also try localhost (1 27.0.0. 1) and maybe another address from
127.0.0.0/8 to detect cases where 127.0.0. I is hard coded in. There have been many security holes related
to spoofed localhost packets, including the infamous Land denial of service attack. Misconfigured systems
sometimes trust these addresses without checking whether they came from the loopback interface. If a
source address gets through to the end host, the IP ID will jump as seen in step 3. If it continues to increment
slowly as in step 2, the packets were likely dropped by a firewall or router.

The end result of this technique is a list of source address netblocks that are permitted through the firewall,
and those that are blocked. This information is valuable for several reasons. The IP addresses a company
chooses to block or allow may give clues as to what addresses are used internally or trusted. For example,
machines on a company's production network might trust IP addresses on the corporate network, or trust a
system administrator's personal machine. Machines on the same production network also sometimes trust
each other, or trust localhost. Common IP-based trust relationships are seen in NFS exports, host firewall
rules, TCP wrappers, custom applications, rlogin, etc. Another example is SNMP, where a spoofed request
to a Cisco router could cause the router to transfer (TFTP) its configuration data back to the attacker. Before
spending substantial time trying to find and exploit these problems, use the test described here to determine
whether the spoofed packets even get through.

A concrete example of this trusted-source-address problem is that I once found that a company's custom
UDP service allowed users to skip authentication if they came from special netblocks entered into a
configuration file. These netblocks corresponded to different corporate locations, and the feature was meant
to ease administration and debugging. Their Internet-facing firewall smartly tried to block those addresses,

10.3. Determining Firewall Rules 263

as actual employees could access production from a private link instead. But by using the techniques descri
in this section, I found that the firewall was not perfectly synced with the con fig fi le. There were a few
addresses from which I could successfully forge the UDP control messages and take over their application.

This technique of mapping out the firewall rules does not use Nmap, but the results are valuable for futme
runs. For example, this test can show whether to use certain decoys (-D). The best decoys will make it all
the way to the target system. In addition, forged packets must get through for the IP ID idle scan (discussed
later) to work. Testing potential source IPs with this technique is usually easier than finding and testing every
potential idle proxy machine on a network. Potential idle proxies need only be tested if they pass step number
two, above.

1 0.3.4. U DP Version Scann ing

The previous sections have all focused on the prevalent TCP protocol. Working with UDP i s often more
difficult because the protocol does not provide acknowledgment of open ports like TCP does. Many UDP
applications will simply ignore unexpected packets, leaving Nmap unsure whether the port is open or filtered.
So Nmap places these ambiguous ports in the open I f i l t ered state, as shown in Example I0.4.

Example 10.4. UDP scan against firewalled host

nmap -sU -p5 0 - 5 9 scanme . nmap . org

Start ing Nmap (http : / /nmap . org)
I nterest ing port s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 5 2) :
PORT STATE SERVICE
5 0 / udp open I f i ltered re-ma i l -ck
5 1 /udp open I f i ltered la-ma int
5 2 /udp open I f i l tered xns-t ime
5 3 / udp open I f i l t ered domain
5 4 / udp open I f i l t ered xns -ch

5 5 / udp open I f i l t ered i s i -gl
5 6 /udp open I f i ltered xns-auth
5 7/ udp open I f i l t ered pr iv-term
5 8 / udp open I f i l t ered xns-ma i l
5 9 / udp open I f i ltered pr iv- file

Nmap done : 1 I P address (1 host up) scanned in 1 . 3 8 seconds

This 10-port scan was not very helpful. No port responded to the probe packets, and so they are all l isted as

open or filtered. One way to better understand which ports are actually open is to send a whole bunch of

UDP probes for dozens of different known UDP services in the hope of eliciting a response from any open

ports. Nmap version detection (Chapter 7, Service and Application Version Detection [145]) does exactly

that. Example l0.5 shows the same scan with the addition of version detection (- s V).

264 10.3. Determining Firewall Rules

Example 10.5. UDP version scan against firewalled host

I nmap -sV -sU -p5 0 - 5 9 scanme . nmap . org

Starting Nmap (http : / / nmap . org)
Interesting ports on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 5 2) :
PORT STATE SERVICE VERS ION
50/udp open I filtered re-ma i l -ck
51 /udp open I f i l tered la-maint
52 /udp open I f i l tered xns-t ime
53 /udp open doma in ISC BIND 9 . 3 . 4
54/udp open I f i ltered xns-ch
55/udp open I f i l tered i s i-gl
56/udp open I f i ltered xns-auth
5 7/udp open I f i ltered pr i v-te rm
5 8/udp open I f i l tered xns-ma i l
5 9/udp open I f i l tered pr iv-file

Nmap done : 1 IP address (1 host u p) scanned in 5 6 . 5 9 seconds

Version detection shows beyond a doubt that port 53 (domain) is open, and even what it is running. The
other ports are still open I f i 1 tered because they did not respond to any of the probes. They are probably
filtered, though this is not guaranteed. They could be running a service such as SNMP which only responds
to packets with the correct community string. Or they could be running an obscure or custom UDP service
for which no Nmap version detection probe exists. Also note that this scan took more than 40 times as long .
as the previous scan. Sending all of those probes to each port is a relatively slow process. Adding the
- -vers ion-intens i t y 0 option would reduce scan time significantly by only sending the probes most
likely to elicit a response from services at a given port number.

1 0.4. Bypassing Fi rewal l Ru les
While mapping out firewall rules can be valuable, bypassing rules i s often the primary goal. Nmap implements
many techniques for doing this, though most are only effective against poorly configured networks.
Unfortunately, those are common. Individual techniques each have a low probability of success, so try as
many different methods as possible. The attacker need only find one misconfiguration to succeed, while the
network defenders must close every hole.

1 0.4.1 . Exotic Scan Flags

The previous section discussed using an ACK scan to map out which target network ports are filtered.
However, it could not determine which of the accessible ports were open or closed. Nmap offers several
scan methods that are good at sneaking past firewalls while still providing the desired port state information.
FIN scan is one such technique. In Section 10.3.2, "ACK Scan" [260], SYN and ACK scans were run against
a machine named Para. The SYN scan showed only two open ports, perhaps due to firewall restrictions.
Meanwhile, the ACK scan is unable to recognize open ports from closed ones. Example 10.6 shows another
scan attempt against Para, this time using a FIN scan. Because a naked FIN packet is being set, this packet
flies past the rules blocking SYN packets. While a SYN scan only found one open port below 100, the FIN
scan finds both of them.

10.4. Bypassing Firewall Rules 265

Example 10.6. FIN scan against stateless firewall

nmap - s F -pl - 1 0 0 -T4 para

Starting Nmap (http : / / nmap . org
Interesting port s on para (1 9 2 . 1 6 8 . 1 0 . 1 9 1) :
Not shown : 9 8 f i l t ered port s
PORT STATE SERVICE
2 2 / tcp open l fi ltered ssh
5 3 / t cp open l fi l tered domai n
MAC Addres s : 0 0 : 6 0 : 1D : 3 8 : 3 2 : 9 0 (Lucent Technologies)

Nmap done : 1 I P address (1 host up) scanned in 1 . 6 1 seconds

Many other scan types are worth trying, since the target firewall rules and target host type determine which
techniques will work. Some particularly valuable scan types are FIN, Maimon, Window, SYN/FIN, and
NULL scans. These are all described in Chapter 5, Port Scanning Techniques and Algorithms [95] .

1 0.4.2. Source Port Manipulation

One surprisingly common misconfiguration i s to trust traffic based only on the source port number. It is easy
to understand how this comes about. An administrator will set up a shiny new firewall , only to be flooded
with complains from ungrateful users whose applications stopped working. In particular, DNS may be broken
because the UDP DNS replies from external servers can no longer enter the network. FTP is another common
example. In active FTP transfers, the remote server tries to establish a connection back to the client to transfer
the requested file.

Secure solutions to these problems exist, often in the form of application-level proxies or protocol-parsing
firewal l modules. Unfortunately there are also easier, insecure solutions. Noting that DNS replies come from
port 53 and active FTP from port 20, many administrators have fallen into the trap of simply allowing

. incoming traffic from those ports. They often assume that no attacker would notice and exploit such firewall
holes. In other cases, administrators consider this a short-term stop-gap measure until they can implement a
more secure solution. Then they forget the security upgrade.

Overworked network administrators are not the only ones to fall into this trap. Numerous products have
shipped with these insecure rules. Even Microsoft has been guilty. The IPsec filters that shipped with Windows
2000 and Windows XP contain an implicit rule that allows all TCP or UDP traffic from port 88 (Kerberos).
Apple fans shouldn't get too smug about this because the firewall which shipped with Mac OS X Tiger is
just as bad. Jay Beale discovered that even if you enable the "Block UDP Traffic" box in the firewall GUI,
packets from port 67 (DHCP) and 5,353 (Zerocont) pass right through. Yet another pathetic example of this
configuration is that Zone Alarm personal firewall (versions up to 2.1 .25) allowed any incoming UDP packets
with the source port 53 (DNS) or 67 (DHCP).

Nmap offers the -g and - - source -port options (they are equivalent) to exploit these weaknesses.
Simply provide a port number, and Nmap will send packets from that port where possible. Nmap must use
different port numbers for certain OS detection tests to work properly. Most TCP scans, including SYN scan,
support the option completely, as does UDP scan. In May 2004, JJ Gray posted example Nmap scans to
Bugtraq that demonstrate exploitation of the Windows IPsec source port 88 bug against one of his clients.
A normal scan, followed by a -g 8 8 scan are shown in Example 10.7. Some output has been removed for
brevity and clarity.

266 10.4. Bypassing Firewal l Rules

Example 10.7. Bypassing Windows IPsec filter using source port 88

t nmap -ss -v -v -PN 1 72 . 2 5 . 0 . 1 4

Starting Nmap (http : / / nmap . or g)
Interesting ports on 1 72 . 2 5 . 0 . 1 4 :
Not shown : 1 6 5 8 fi ltered port s
PORT STATE SERVICE
88/tcp closed kerberos-sec

Nmap done : 1 I P addres s (1 hos t up) scanned in 7 . 02 seconds

t nmap -ss -v -v -PN -g 8 8 1 72 . 2 5 . 0 . 1 4

Start ing Nmap (http : / /nmap . org)
Interesting ports on 1 7 2 . 2 5 . 0 . 1 4 :
Not shown : 1 6 5 3 f i l tered por t s
PORT STATE SERVICE
135/tcp open msrpc
139 /tcp open netbios-ssn
445/tcp open microsoft-ds
1025 /tcp open NFS-or - I I S
1027/tcp open ! I S
1433/ tcp open ms-sql-s

Nmap done : 1 I P address (1 host up) scanned in 0 . 3 7 seconds

Note that the closed port 88 was the hint that lead JJ to try using it as a source port. For further information
on this vulnerability, see Microsoft Knowledge Base Article 81 1 832.

1 0.4.3 . I Pv6 Attacks

While 1Pv6 has not exactly taken the world by storm, it is reasonably popular in Japan and certain other
regions. When organizations adopt this protocol, they often forget to lock it down as they have instinctively
learned to do with 1Pv4. Or they may try to, but find that their hardware does not support 1Pv6 filtering rules.
Filtering 1Pv6 can sometimes be more critical than 1Pv4 because the expanded address space often allows
the allocation of globally addressable 1Pv6 addresses to hosts that would normally have to use the private
1Pv4 addresses specified by RFC 1918.

Performing an 1Pv6 scan rather than the 1Pv4 default is often as easy as adding - 6 to the command l ine.
Certain features such as OS detection and UDP scanning are not yet supported for this protocol, but the most
popular features work. Example 10.8 demonstrates 1Pv4 and 1Pv6 scans, performed long ago, of a well-known
1Pv6 development and advocacy organization.

10.4. Bypassing Firewall Rules 267

Example 10.8. Comparing 1Pv4 and 1Pv6 scans

> nmap www . kame . net

Start ing Nmap (http : / /nmap . org
I nteresting port s on kame2 2 0 . kame . net (2 03 . 1 7 8 . 1 4 1 . 2 2 0) :
Not shown : 9 8 4 c losed ports
Port State Service
1 9 / tcp f i ltered char gen
2 1 / t cp open ftp
2 2 / t cp open ssh
5 3 / tcp open domain
8 0 / tcp open http
1 1 1 / tcp f i l tered sunrpc
1 3 7 / tcp f i l tered netbios-ns
1 3 8 / t cp f i l tered netbios -dgm
1 3 9 / t cp f i l tered netbios-ssn
5 1 3 / tcp f i l tered login
5 1 4 / tcp f i l t ered she l l
2 0 4 9 / tcp f i ltered nfs
2 4 0 1 / tcp open cvspserver
5 9 9 9 / tcp open ncd-conf
7 5 9 7 / tcp f i l t ered qa z
3 1 3 3 7 /tcp f i l t ered E l i t e

Nmap done : 1 I P address (1 h o s t up) scanned in 3 4 . 4 7 seconds

> nmap -6 www . kame . net

Start ing Nmap (http : / /nmap . org
I nt erest ing port s on 3 f fe : 5 0 1 : 4 8 1 9 : 2 0 0 0 : 2 1 0 : f3 f f : fe03 : 4d0 :
Not shown : 9 9 4 c losed port s
Port
2 1 / t cp
2 2 / tcp
5 3 / tcp
8 0 / tcp
1 1 1 / t cp
2 4 0 1 / tcp

State
open
open
open
open
open
open

Service
ftp
ssh
domain
http
sunrpc
cvspserver

Nmap done : 1 IP address (1 host up) s canned in 1 9 . 0 1 seconds

The first scan shows numerous filtered ports, including frequently exploitable services such as SunRPC,
Windows NetBIOS, and NFS. Yet scanning the same host with 1Pv6 shows no filtered ports ! Suddenly
SunRPC (port 1 1 1) is available, and waiting to be queried by an 1Pv6-enabled rpcinfo or by Nmap version
detection, which supports 1Pv6. They fixed the issue shortly after I notified them of it.

In order to perform an 1Pv6 scan, a system must be configured for 1Pv6. It must have an 1Pv6 address and
routing information. Since my ISPs do not provide 1Pv6 addresses, I use the free 1Pv6 tunnel broker service

at http://www.tunnelbroker.net. Other tunnel brokers are listed at Wikipedia2. 6to4 tunnels are another popular,
free approach. Of course, this technique also requires that the target use 1Pv6.

2 http://en. wikipedia.orglwiki/List_of_I Pv6_t11nnel_brokers

268 10.4. Bypassing Firewall Rules

1 0.4.4. IP ID Idle Scanning

The IP ID idle scan has a reputation for being one of the most stealthy scan types, since no packets are sent
to the target from your real address. Open ports are inferred from the IP ID sequences of a chosen zombie
machine. A less recognized feature of idle scan is that the results obtained are actually those you would get
if the zombie was to scan the target host directly. In a similar way that the -g option allows exploitation of
trusted source ports, idle scan can sometimes exploit trusted source IP addresses. This ingenious scan type,
which was originally conceived by security researcher Antirez, is described ful ly in Section 5. 10, "TCP Idle
Scan (-sI)" [1 1 7) .

10.4.5. Multiple Ping Probes

A common issue when trying to scan through firewalled networks is that dropped ping probes can lead to
missed hosts. To reduce this problem, Nmap allows a very wide variety of probes to be sent in parallel.
Hopefully at least one will get through. Chapter 3, Host Discovery (Ping Scanning) [47) discusses these
techniques in depth, including empirical data on the best firewall-busting techniques.

10.4.6. Fragmentation

Some packet filters have trouble dealing with IP packet fragments. They could reassemble the packets
themselves, but that requires extra resources. There is also the possibil ity that fragments will take different
paths, preventing reassembly. Due to this complexity, some filters ignore all fragments, while others
automatically pass all but the first fragment. Interesting things can happen if the first fragment is not long
enough to contain the whole TCP header, or if the second packet partially overwrites it. The number of
filtering devices vulnerable to these problems is shrinking, though it never hurts to try.

An Nmap scan will use tiny IP fragments if the -f is specified. By default Nmap will include up to eight
bytes of data in each fragment, so a typical 20 or 24 byte (depending on options) TCP packet is sent in three
tiny fragments. Every instance of -f adds eight to the maximum fragment data size. So - f - f allows up
to 16 data bytes within each fragment. Alternatively, you can specify the --mt u option and give the maximum
data bytes as an argument. The --mt u argument must be a multiple of eight, and cannot be combined with
the -f option.

Some source systems defragment outgoing packets in the kernel. Linux with the iptables connection tracking
module is one such example. Do a scan while a sniffer such as Wireshark is running to ensure that sent
packets are fragmented. If your host OS is causing problems, try the - - send -eth option to bypass the IP
layer and send raw ethernet frames.

Fragmentation is only supported for Nmap's raw packet features, which includes TCP and UDP port scans
(except connect scan and FTP bounce scan) and OS detection. Features such as version detection and the
Nmap Scripting Engine generally don't support fragmentation because they rely on your host's TCP stack to
communicate with target services.

I-of-order and partially overlapping IP fragments can be useful for Network research and exploitation,
I that calls for an even lower-level networking tool than Nmap. Nmap sends fragments in order without

overlaps.

10.4. Bypassing Firewal l Rules 269

If a fragmented port scan gets through, a tool such as Fragroute3 can be used to fragment other tools and
exploits used to attack the host.

1 0.4. 7. Proxies

Application-level proxies, particularly for the Web, have become popular due to perceived security and
network efficiency (through caching) benefits. Like firewalls and IDS, misconfigured proxies can cause far
more security problems than they solve. The most frequent problem is a failure to set appropriate access
controls. Hundreds of thousands of wide-open proxies exist on the Internet, allowing anyone to use them as
anonymous hopping points to other Internet sites. Dozens of organizations use automated scanners to find
these open proxies and distribute the IP addresses. Occasionally the proxies are used for arguably positive
things, such as escaping the draconian censorship imposed by the Chinese government on its residents. This
"great firewall of China" has been known to block the New York Times web site as well as other news,
political, and spiritual sites that the government disagrees with. Unfortunately, the open proxies are more
frequently abused by more sinister folks who want to anonymously crack into sites, commit credit card fraud,
or flood the Internet with spam.

While hosting a wide-open proxy to Internet resources can cause numerous problems, a more serious condition
is when the open proxies allow connections back into the protected network. Administrators who decide that
internal hosts must use a proxy to access Internet resources often inadvertently allow traffic in the opposite
direction as well. The hacker Adrian Lamo is famous for breaking into Microsoft, Excite, Yahoo, WorldCom,
the New York Times, and other large networks, usually by exploiting this reverse-proxy technique.

Nmap does not presently offer a proxy scan-through option, though it is high on the priority list. Section 7.9,
"SOLUTION: Hack Version Detection to Suit Custom Needs, such as Open Proxy Detection" [1 68] discusses
a way to find open proxies using Nmap version detection. In addition, plenty of dedicated free proxy scanners
are available on Internet sites such as Packet Storm4. Lists of thousands of open proxies are widespread as
well .

1 0.4.8. MAC Address Spoofing

Ethernet devices (including Wi-Fi) are identified by a unique six-byte media access control (MAC) address.
The first three bytes make up an organizationally unique identifier (OUI). This prefix is assigned to a vendor
by the IEEE. The vendor is then responsible for assigning the remaining three bytes uniquely in the adapters
and devices it sells. Nmap includes a database which maps OUis to the vendor names they are assigned to.
This helps i n identifying devices while scanning a network, though this section describes why it can't be
completely trusted. The OUI database file, nmap-mac-prefixes, is described in Section 14.6, "MAC
Address Vendor Prefixes: nmap-mac-prefixes" [368] .

While MAC addresses are pre-assigned to ethernet devices, they can be changed with a driver on most current
hardware. But since few people change their MAC address (or even know they have one), many networks
use them for identification and authorization purposes. For example, most wireless access points provide a
configuration option for limiting access to a certain set of MAC addresses. Similarly, some paid or private
networks will force you to authenticate or pay after you connect using a web form. Then they will allow you
access to the rest of the network based on your MAC address. Given that it is generally easy to sniff MAC
addresses (they must be sent in every frame sent and received), and then to spoof that MAC to gain

3 http://www.monkey.org/-dugsonglfragroutel
4 http://packetstormsecurity.nl/

270 10.4. Bypassing Firewall Rules

unauthorized access to the network, this form of access control is rather weak. It is also only effective at the
edges of a network, since an end-host's MAC address is replaced when traversing a router.

In addition to access control, MAC addresses are sometimes used for accountability. Network admins will
record MAC addresses when they obtain a DHCP lease or when a new machine communicates on the network.
If network abuse or piracy complaints are received later, they figure out the MAC address based on the IP
address and incident time. Then they use the MAC to track down the responsible machine and its owner.
The ease of MAC address spoofing undermines this approach to some degree. Even when users are guilty,
they may raise the specter of MAC address spoofing to deflect responsibility.

Nmap supports MAC address spoofing with the -- spoof-mac option. The argument given can take several
forms. If it is simply the number 0 , Nmap chooses a completely random MAC address for the session. If the
given string is an even number of hex digits (with the pairs optionally separated by a colon), Nmap will use
those as the MAC. If fewer than 12 hex digits are provided, Nmap fills in the remainder of the six bytes with
random values. If the argument isn't a zero or hex string, Nmap looks through nmap-mac-pref ixes to
find a vendor name containing the given string (it is case insensitive). If a match is found, Nmap uses the
vendor's OUI and fi lls out the remaining three bytes randomly. Valid --spoof-mac argument examples
are Apple, 0, 0 1 : 0 2 : 0 3 : 0 4 : 0 5 : 0 6 , deadbeefcafe, 0 0 2 0F2, and Ci s co. This option implies

--send-eth to ensure that Nmap actually sends ethernet-level packets. This option only affects raw packet

scans such as SYN scan or OS detection, not connection-oriented features such as version detection or the
Nmap Scripting Engine.

Even when MAC address spoofing isn't needed for network access, it can be used for deception. If I'm at a
conference and launch a scan from my Thinkpad with --spoof-mac Apple, suspicious eyes may turn
to the MacBook users in the room.

1 0.4.9. Source Routing

This old-school technique i s still effective i n some cases. I f a particular router on the path i s causing you
trouble, try to find a route around it. Effectiveness of this technique is limited because packet filtering
problems usually occur on or near the target network. Those machines are likely to either drop all source
routed packets or to be the only way into the network. Nmap supports both loose and strict source routing
using the --ip-opt ions option. For example, specifying --ip-opt ions " L 1 9 2 . 1 6 8 . 0 . 7
1 9 2 . 1 6 8 . 3 O • 9 " requests that the packet be loose source routed through those two given IP way points.
Specify S instead of L for strict source routing. If you choose strict source routing, keep in mind that you
will have to specify every single hop along the path.

For a real-life example of source routing used to evade filtering policies on a modern network, see
Section 10.4.12, "A Practical Real-life Example of Firewall Subversion" [272) . While IPv4 source routing
is very commonly blocked, the 1Pv6 form of source routing is much more pervasive. An interesting article
on that problem is available at http://lwn.net/Articles/2327811.

If a source routed path to a target machine is discovered with Nmap, exploitability is not limited to port
scanning. Hobbit's Netcat5 is a classic tool for enabling TCP and UDP communication over source routed
paths (use the -g option).

5 http://sectools.org/#netcat

10.4. Bypassing Firewall Rules 271

1 0.4.1 0. FTP Bounce Scan

While only a small percentage of FTP servers are still vulnerable, it is worth checking all of your clients'
systems for this problem. At a minimum, it allows outside attackers to util ize vulnerable systems to scan
other parties. Worse configurations even allow attackers to bypass the organization's firewalls. Detai ls and
examples of thjs technique are provided in Section 5 . 12, "TCP FTP Bounce Scan (-b)" [1 27). Example 10.9
shows an HP printer being used to relay a port scan. If this printer is behind the organization's firewall, it
can be used to scan normally inaccessible (to the attacker) internal addresses as well.

Example 10.9. Exploiting a printer with the FTP bounce scan

felix-> nmap -p 2 2 , 2 5 , 1 3 5 -PN -v -b XXX . YY . 1 1 1 . 2 scanme . nmap . org

Start ing Nmap (http : / / nmap . org)
Attempting connection to ftp : / / anonymous : -wwwuser@ @XXX . YY . l l l . 2 : 2 1
Connected : 2 2 0 JD FTP Server Ready
Login credent i a l s accepted by ftp server !
I n i t i a t ing TCP ftp bounce scan against scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52)
Adding open port 2 2 / t cp
Adding open port 2 5/ tcp
Scanned 3 ports in 1 2 seconds via the Bounce scan .
I nterest ing port s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 5 2) :
PORT STATE SERVICE
2 2 / tcp open ssh
2 5 / tcp open smtp
1 3 5 / tcp f i ltered msrpc

Nmap done : 1 IP address (1 host up} scanned in 2 1 . 7 9 seconds

1 0.4.1 1 . Take an Alternative Path

I hate to overuse the "think outside the box" cliche, but continually banging on the front door of a well-secured
network is not always the best approach. Look for other ways in. Wardial their phone lines, attack subsidiaries
who may have special network access, or show up at their offices with Wi-Fi sniffing equipment, or even
sneak in and plug into a convenient ethernet jack. Nmap works well through all of these connections. Just
make sure that your penetration-testing contract covers these methods before your client catches you in a
ninja suit grappling onto their datacenter rooftop.

1 0.4.1 2. A Practical Real-l ife Example of Fi rewal l
Subversion

Now that many individual techniques for bypassing firewall rules have been covered, i t is time to put them
together in a real-life penetration testing scenario. It all started with a post6 to the Security Focus pen-test list
from security pro Michael Cain. He and coworker Demetris Papapetrou were penetration testing the internal
network of a large corporation and had just bypassed firewall rules meant to prevent one VLAN from accessing
another. I was pleased to read that they performed this feat using Nmap, and I wrote them for the whole

6 http://seclists.org/pen-test/2008/Mar/OOJO.html

272 10.4. Bypassing Firewall Rules

story. It is both instructional and inspirational in that it demonstrates the value of perseverance and trying
every technique you know, even after the most common exploits fail. Don't let that firewall beat you!

The story starts with Michael and Demetris performing an Nmap scan which shows that they are stuck on a
heavily fil tered network. They can reach some corporate servers, but not any of the (potentially vulnerable)
desktop client machines which have to exist somewhere on the network. Perhaps they are on a restricted
conference room or lobby network, or maybe a wireless access point set up for corporate guests. Some of
the discovered hosts and networks are shown in Example 10. 10. A few details in this story (such as IP
addresses) have been changed for confidentiality reasons. I will call the target corporation Megacorp.

Example 10.10. Some interesting hosts and networks at Megacorp

- A router/ f irewa l l which w i l l give us grief later
- Our protagon i s t s are scanning from this machine

files 2 . megacorp . com; Nmap shows this is a Windows machine
with port 4 4 5 open .
mai l . megacorp . com ; Nmap OS detection shows that it i s
Solar is 8 . Port 2 5 i s open and acce s s ible .

• 10 . 1 0 . 0/24 - Nothing shows up here, but many of the IPs have
reverse-DNS name s , so Demetris suspects that a
firewa l l may be blocking h i s probe s . The goal i s to
reach any available hosts on this subnet .

'ven the goal of determining if any hosts are hiding on the 10.10.10.0/24 network, Demetris starts with a
simple ping scan using ICMP echo request queries (-PE). The results are shown in Example 10.1 1 .

mple 10.1 1. Ping scan against the target network

ap -n -SP -PE -T4 1 0 . 1 0 . 1 0 . 0 / 2 4
rting Nmap (http : / /nmap . or g)
p done : 256 I P addresses (0 host s up) scanned in 2 6 . 1 6 7 seconds

ping scan fails to find any responsive hosts. Demetris is understandably disappointed, but at least it
es this section more interesting and instructive. Perhaps the network truly is empty, but it could also be

ked with vulnerable machines which Demetris is blocked from accessing. He needs to dig deeper. In
pie 10.12, Demetris chooses one IP on that network and performs a ping scan. He specifies the packet

ing (--packet -trace) and extra verbosity (-vv) options to determine what is going on at the packet
I . The reason for choosing just one IP is to avoid a confusing flood of hundreds of packets.

mple 10.12. Packet trace against a single IP

p -vv - n -sP -PE -T4 --packet -trace 1 0 . 1 0 . 1 0 . 7
rting Nmap (http : / /nmap . org)

(0 . 3 1 3 0 s) ICMP 1 0 . 1 0 . 5 . 4 2 > 1 0 . 1 0 . 1 0 . 7 echo request (type=B/ code=O)
t t l = 4 1 id=7 1 9 3 iplen=28

(0 . 3 1 3 0 s) I CMP 1 0 . 1 0 . 5 . 1 > 1 0 . 1 0 . 5 . 4 2 host 1 0 . 1 0 . 1 0 . 7 unreachable
(t ype= 3 /code=l) t t l = 2 5 5 id=2 5 9 8 0 iplen=56

p done : 1 I P addres s (0 host s up) scanned in 0 . 3 1 3 seconds

seems that Demetris is receiving ICMP host unreachable messages when trying to scan these IPs (or at
t this one). Routers commonly do that when a host is unavailable and so they can't determine a MAC

10.4. Bypassing Firewall Rules 273

address. It is also occasionally caused by filtering. Demetris scans the other hosts on the network and veri
that they behave the same way. It is possible that only ICMP packets are filtered, so Demetris decides to
a TCP SYN scan. He runs the command nmap -vv -n -sS -T4 -PN --reason 10.10.10.0/24. All ports
shown as filtered, and the --reason results blame some host unreachable messages and some nonresponsi
ports. The nonresponsive ports may be due to rate limiting of host unreachable messages sent by the rou
Many routers will only send one of these every few seconds. Demetris can verify whether rate limiting
the cause by running the scan again and seeing if the host unreachable messages come for exactly the
set of ports. If the ports are the same, it may be a specific port-based filter. If Nmap receives host-unreach
messages for different ports each time, rate limiting is likely the cause.

If a filter is causing the problem, it could be a simple stateless firewall as is commonly available on rou
and switches. As discussed in previous sections, these sometimes allow TCP ACK packets through unmol
Demetris repeats the scan, but specifies -sA for an ACK scan rather than - s s . Any unfi ltered

found by the scan would suggest that the ACK packets made it through and elicited a TCP RST res
from the target host. Unfortunately, the results were all f i l tered in this case, just as with the SYN

Demetris decides to try something more advanced. He already knows that port 445 is open on the Wind
machine at 10 . 10.6.30 (files2.megacorp.com) from his initial Nmap scan. While Demetris hasn't been
to reach the 10. 10.10.0/24 network directly, perhaps files2 (being an important company file server) is
to access that IP range. Demetris decides to try bouncing his scans off files2 using the IPID Idle scan. Fi
he wants to ensure that files2 works as a zombie by testing it against 10.10.6.60-a known-responsi
machine with port 25 open. The results of this test are shown in Example 10. 13 .

Example 10.13. Testing an idle scan

t nmap -vv -n -PN - s I 1 0 . 1 0 . 6 . 3 0 : 4 4 5 -p 2 5 1 0 . 1 0 . 6 . 6 0

Starting Nmap http : / / nmap . or g)

I nit iating idle scan against 1 0 . 1 0 . 6 . 6 0 at 1 3 : 1 0
Idle scan using zombie 1 0 . 1 0 . 6 . 3 0 (1 0 . 1 0 . 6 . 3 0 : 4 4 5) ; Class : Incremental
Even though your Zombie (1 0 . 1 0 . 6 . 3 0) appears to be vulnerable to IP ID
s equence predi c tion (cl as s : I ncremental) , our attempt s have failed . This
general l y means that either the Zombie uses a s eparate IP I D base for each
host (like Solar i s) , or because you cannot spoof IP packets (perhaps your IS
has enabled egress f iltering to prevent IP spoofing) , or maybe the target
network recogn i zes the packet source as bogus and drops them
QUI TT ING !

Using 10. 10.6.30 as an Idle Zombie didn't work out well . If the problem was due to heavy traffic, he could.
try again in the middle of the night. The --packet-trace option combined with thorough reading of
Section 5. 10, "TCP Idle Scan (-sl)" [1 17] could help determine why 10. 10.6.30 isn't working as a zombie.
Demetris tries the handful of other hosts he has found on the network, and none work as zombies.

Demetris begins to worry about whether he will ever crack into the 10.10.10.0/24 network. Fortunately,
is an old hand at this and has another trick up his sleeve-IP source routing. In the early days of the Int
(and even today with 1Pv6), source routing was an important and widely deployed network diagnosis fea
It allows you to specify the hops you want a packet to take to its target rather than relying on normal routilll
rules. With strict source routing, you must specify every hop. Loose source routing allows you to fill in key
IP way points, while normal Internet routing fills in hop details between those way points.

274 10.4. Bypassing Firewall Rules

g ago the networking community reached consensus that source routing is more trouble (particularly for
wity) than it is worth. Many (if not most) routers are configured to drop source routed IPv4 packets, so

IOIDC folks have considered the problem fixed since the early 90's. Yet source routing, like SYN flooding
Telnet password sniffing, continues as a rare but potent risk. Demetris tests this attack by ping-scanning
2 (I0.10.6.30) using packets loose-source-routed through the 10.10.6.60 mail server. Results are shown

il Example 10.14.

p -n -sP -PE --ip-options " L 1 0 . 1 0 . 6 . 6 0 " --reason 1 0 . 1 0 . 6 . 3 0
ting Nmap (http : / /nmap . org)

t 10 . 1 0 . 6 . 3 0 appears to be up, received echo-reply .
address (1 host up) scanned in . 3 1 3 seconds

Demetris is both surprised and delighted that the test works. He immediately turns his attention to his true
target network, repeating his initial ping scan with an additional option: --ip-opt ions " L
1 0 . 1 0 . 6 . 6 0 " . This time, Nmap reports that the machine at 10. 10. 10.7 is responsive. Demetris learns that
it wasn't reachable before because the 10.10.10.0/24 and 10. 10.5.0/24 subnets are on different router VLANs
configured to prevent them from communicating to each other. Demetris' source routing technique opened
a big loophole in that policy ! Demetris follows up with a SYN scan of the 10.10.10.7 machine, as shown in
Example 10.15.

Example 10.15. Success at last

nmap -vv -n -ss -PN --ip-opt ions " L 1 0 . 1 0 . 6 . 6 0 " --reason 1 0 . 1 0 . 1 0 . 7
rting Nmap (http : / /nmap . or g)

teresting ports on 1 0 . 1 0 . 1 0 . 7 :
t shown : 9 8 8 c losed port s

son : 9 8 8 resets
RT STATE SERVICE REASON
/tcp fi ltered ftp no-response

�/tcp fi ltered telnet no-response
�/tcp open smtp s yn-ack
�/tcp open http syn-ack
35/tcp open msrpc s yn-ack

9/tcp open netbios-ssn syn-ack
43/tcp open https s yn-ack

,45/tcp open microsoft-ds syn-ack
�15/tcp open pr inter syn-a ck �2/tcp open iad3 s yn-ack

O/tcp open j ava-or-OTGf i leshare syn-ack
2/tcp open msdtc syn-ack
p done : 1 IP addres s (1 host up) scanned in 2 1 . 2 0 3 seconds

Demetris omitted OS detection and version detection from this initial scan, but this looks like a Windows
machine from the open port profile. Demetris can now connect to and access these ports as long as he uses
tools such as Netcat which offer source routing options. I don't know what happens next in the story, but I'm
guessing that it involves Demetris fully penetrating the network and then helping the company redesign it
more securely.

10.4. Bypassing Firewall Rules 275

1 0.5. Subverting Intrusion Detection System
Firewalls are not the only obstacle that modern attackers face. Intrusion detection and prevention syste
can be problematic as wel l . Network administration staff do .not always take well to a flood of 2:00 A.
intrusion alert pages from the IDS. Considerate hackers take pains to prevent their actions from causing
of these alerts in the first place. A first step is to detect whether an IDS is even present-many small compan·
do not use them. If an IDS is suspected or detected, there are many effective techniques for subverting ·
They fall into three categories that vary by intrusiveness: avoiding the IDS as if the attacker is not th
confusing the IDS with misleading data, and exploiting the IDS to gain further network privi lege or just
shut it down. Alternatively, attackers who are not concerned with stealth can ignore the IDS completely
they pound away at the target network.

1 0.5.1 . Intrusion Detection System Detection

Early on in the never-ending battle between network administrators and malicious hackers, administraton
defended their turf by hardening systems and even installing firewalls to act as a perimeter barrier. Hackers
developed new tools to penetrate or sneak around the firewalls and exploit vulnerable hosts. The arms met
escalated with administrators introducing intrusion detection systems that constantly watch for devious
activity. Attackers responded, of course, by devising systems for detecting and deceiving the IDS. While
intrusion detection systems are meant to be passive devices, many can be detected by attackers over the
network.

The least conspicuous IDS is one that passively listens to network traffic without ever transmitting. Special
network tap hardware devices are available to ensure that the IDS cannot transmit, even if it is compromised
by attackers. Despite the security advantages of such a setup, it is not widely deployed due to practical
considerations. Modern IDSs expect to be able send alerts to central management consoles and the like. If
this was all the IDS transmitted, the risk would be minimal. But to provide more extensive data on the alert,
they often initiate probes that may be seen by attackers.

Reverse probes

One probe commonly initiated by IDSs is reverse DNS query of the attacker's IP address. A domain name
in an alert is more valuable than just an IP address, after all . Unfortunately, attackers who control their own
rDNS (quite common) can watch the logs in real time and learn that they have been detected. This is a good
time for attackers to feed misinformation, such as bogus names and cache entries to the requesting IDS.

Some IDSs go much further and send more intrusive probes to the apparent attackers. When an attacker secs
his target scan him back, there is no question that he has set off alarms. Some IDSs send Windows NetBIOS
information requests back to the attacker. ISS BlackICE Defender is one vendor that does (or at least did)
this by default. I wrote a small tool called icepick which sends a simple packet that generates an alert from
l istening BlackICE instances. Then it watches for telltale NetBIOS queries and reports any BlackICE
installations found. One could easily scan large networks looking for this IDS and then attempt to exploit
them using holes discussed later in this chapter.

Not content with simply locating BlackICE installations or detecting them during penetration tests, I wrote
a simple Unix program called windentd which replies to the probe with misinformation. Figure IO.I shows
a BlackICE console where the Intruder is l isted as "Your Mother" thanks to windentd and icepick. Those

276 10.5. Subverting Intrusion Detection Systems

simple tools are available from http://insecure.orglpresentations/CanSecWestOJ/, though they are not
supported.

Figure 10.1. BlackICE discovers an unusual intruder

Time

Sudden firewal l changes and suspicious packets

Many intrusion detection systems have morphed into what marketing departments label intrusion prevention
systems. Some can only sniff the network like a normal IDS and send triggered packet responses. The best
IPS systems are inline on the network so that they can restrict packet flow when suspicious activity is detected.
For example, an IPS may block any further traffic from an IP address that they believe has port scanned
them, or that has attempted a buffer overflow exploit. Attackers are likely to notice this if they port scan a
system, then are unable to connect to the reported open ports. Attackers can confirm that they are blocked
by trying to connect from another IP address.

Suspicious response packets can also be a tip-off that an attacker's actions have been flagged by an IDS. In
particular, many IDSs that are not inline on the network will forge RST packets in an attempt to tear down
connections. Ways to determine that these packets are forged are covered in Section 10.6, "Detecting Packet
Forgery by Firewall and Intrusion Detection Systems" [289).

Naming conventions

Naming conventions can be another giveaway of IDS presence. If an Nmap list scan returns host names such
as realsecure, ids-monitor, or dragon-ids, you may have found an intrusion detection system. The administrators
might have given away that information inadvertently, or they may think of it like the alarm stickers on house
and car windows. Perhaps they think that the script kiddies will be scared away by IDS-related names. It
could also be misinformation. You can never fully trust DNS names. For example, you might assume that
bugzilla.securityfocus.com is a web server running the popular Bugzilla web-based bug tracking software.

10.5. Subverting Intrusion Detection Systems 277

Not so. The Nmap scan in Example 10.16 shows that it is probably a Symantec Raptor firewall instead. No
web server is accessible, though there may be one hidden behind the Raptor.

Example 10.16. Host names can be deceiving

nmap -ss -sV -T4 -pl - 2 4 bugz i ll a . secur ityfocu s . com

Star t i ng Nmap (http : / / nrnap . org)
Interesting por t s on 2 0 5 . 2 06 . 23 1 . 82 :
Not s hown : 2 1 c losed ports
PORT STATE SERVICE VERSION
2 1 / t cp open
2 2 / tcp open
2 3 / tcp open

ftp-proxy Symantec Enterpr i s e F i rewa l l FTP proxy
ssh?
telnet Symantec Raptor firewal l secure gateway telnetd

Nmap done : 1 IP address (1 host up) s canned in 0 . 9 4 seconds

Unexplained TTL jumps

One more way to detect certain IDSs is to watch for unexplained gaps (or suspicious machines) in traceroutes.
While most operating systems include a traceroute command (it is abbreviated to tracert on Windows),
Nmap offers a faster and more effective alternative with the - - traceroute option. Unlike standard
traceroute, Nmap sends its probes in parallel and is able to determine what sort of probe will be most
effective based on scan results. In Example 10.17, which was contrived for simplicity, traceroute locates
nothing at hop five. That may be an inline IDS or firewall protecting the target company. Of course, this can
only detect inline IDSs as opposed to those which passively sniff the network without being part of the route.
Even some inline devices may not be spotted because they fail to decrement the TTL or refuse to pass ICMP
ttl-exceeded messages back from the protected network.

278 10.5. Subverting Intrusion Detection Systems

Example 10.17. Noting TTL gaps with traceroute

nmap --traceroute www . target . com
eresting ports on ores te s . red . target . com (1 0 . 0 . 0 . 6)

t shown : 996 fi ltered por t s
T STATE SERVICE
tcp open

/tcp open
/tcp open
/tcp closed

ssh
domain
http
au t h

CEROUTE (us ing port 2 2 / t c p)
P RTT ADDRESS

1 . 1 0 gw (2 0 5 . 2 1 7 . 1 5 3 . 4 9)
10 . 4 0 metrol -ge- 1 5 2 . pa . meer . net (2 0 5 . 2 1 7 . 1 5 2 . 1)
12 . 02 2 0 8 . 1 8 5 . 1 6 8 . 1 7 1 (2 0 8 . 1 8 5 . 1 6 8 . 1 7 1)
14 . 74 p4-2-0-0 . r 0 6 . us . bb . verio . net (1 2 9 . 25 0 . 9 . 12 9)

, 15 . 0 7 orestes . red . t arget . com (1 0 . 0 . 0 . 6)

Nmap done : 1 I P address (1 host up) scanned in 4 . 3 5 s econds

While traceroute is the best-known method for obtaining this information, it isn't the only one. IPv4 offers
an obscure option called record route for gathering this information. Due to the maximum IP header size, a
maximum of nine hops can be recorded. In addition, some hosts and routers drop packets with this option
set. It is sti ll a handy trick for those times when traditional traceroute fails. This option can be specified with
Nmap using --ip-opt ions R to set the option and --packet-t race to read it from the response. It
is generally used in conjunction with an ICMP ping scan (-sP -PE). Most operating systems offer an -R
option to their ping command, which is easier to use than Nmap for this purpose. An example of this technique
is provided in Example 10.18.

Example 10.18. Using the IP record route option

> ping -R 1 5 1 . 1 6 4 . 1 8 4 . 6 8
PING 15 1 . 1 6 4 . 1 8 4 . 6 8 (1 5 1 . 1 6 4 . 1 8 4 . 6 8) 5 6 (1 2 4) bytes of dat a .
6 4 bytes from 1 5 1 . 1 6 4 . 1 8 4 . 6 8 : i cmp_seq=l t t l = 1 2 6 t ime= l l . 7 ms
NOP
RR : 1 9 2 . 1 6 8 . 0 . 1 0 0

6 9 . 23 2 . 1 9 4 . 1 0
1 92 . 16 8 . 0 . 6
1 92 . 16 8 . 0 . 1 00

1 5 1 . 1 6 4 . 1 8 4 . 6 8 ping s t a t i s t i c s ---
1 packets transmitted, 1 received, 0% packet loss , t ime Oms
rtt min/avg/max/mdev = 1 1 . 76 5 / 1 1 . 7 6 5 / 1 1 . 7 6 5 / 0 . 00 0 ms

1 0.5.2. Avoiding Intrusion Detection Systems

The most subtle way to defeat intrusion detection systems is to avoid their watchful gaze entirely. The reality
is that rules governing IDSs are pretty brittle in that they can often be defeated by manipulating the attack
slightly. Attackers have dozens of techniques, from URL encoding to polymorphic shellcode generators for

10.5. Subverting Intrusion Detection Systems 279

escaping IDS detection of their exploits. This section focuses on stealthy port scanning, which is even easier
than stealthily exploiting vulnerabilities.

Slow down

When it comes to avoiding IDS alerts, patience is a virtue. Port scan detection is usually threshold based.
The system watches for a given number of probes in a certain timeframe. This helps prevent false positives
from innocent users. It is also essential to save resources-saving connection probes forever would consume
memory and make real-time list searching too slow. The downside to this threshold approach is that attackers
can evade it by keeping their scan rate just below the threshold. Nmap offers several canned timing modes
that can be selected with the -T option to accomplish this. For example, the -T paranoid option causes
Nmap to send just one probe at a time, waiting five minutes between them. A large scan may take weeks,
but at least it probably will not be detected. The -T sneaky option is similar, but it only waits 1 5 seconds
between probes.

Rather than specify canned timing modes such as sneaky, timing variables can be customized precisely
with options such as --max-paral l e l i sm, --mi n-rt t-t imeout, and --s can-de lay. Chapter 6,
Optimizing Nmap Performance [1 35) describes these in depth.

A practical example: bypassing default Snort 2.2.0 rules

Examining the handy open-source Snort IDS provides a lesson on sneaking under the radar. Snort has had
several generations of port scan detectors. The Flow-Portscan module is quite formidable. A scan that slips
by this is likely to escape detection by many other IDSs as well.

Flow-portscan is made up of two detection systems that can work in concert (or be enabled individually) to
detect port scanners. The system and its dozens of configuration variables are documented in
docs / README . f l ow-port scan in the Snort distribution, but I'll provide a quick summary.

The simpler detection method in Flow-portscan is known as the fixed time scale. This simply watches for

· s canner - f i xed-t hreshold probe packets in s canner-fixed-wi ndow seconds. Those two
variables, which are set in snort . con f, each default to 15 . Note that the counter includes any probes sent
from a single machine to any host on the protected network. So quickly scanning a single port on each of 15
protected machines wil l generate an alert just as surely as scanning 15 ports on a single machine.

If this were the only detection method, the solution would be pretty easy. Pass the --scan-de lay 1075
option to ensure that Nmap waits 1 .075 seconds between sending probes. The intuitive choice might be a
one second wait between packets to avoid 15 packets in 1 5 seconds, but that is not enough. There are only
14 waits between sending the first packet and the fifteenth, so the wait must be at least 15/14, or 1 .07143
seconds. Some poor sap who chooses --s can-del ay 1 0 0 0 would slow the scan down dramatically,
while �till triggering the alarm. If multiple hosts on the network are being probed, they must be scanned
separately to avoid triggering the alarm. The option --max-host group 1 would ensure that only one
host at a time is scanned, but is not completely safe because it will not enforce the --s can-delay between
the last probe sent to one host, and the first sent to the next. As long as at least 15 ports per host are being
scanned, you could compensate by making the --s can-de lay at least 1 1 55 ms, or simply start single-target
Nmap instances from a shell script, waiting 1075 ms between them. Example 10. 19 shows such a stealthy
scan of several machines on a network. Multiple Nmap instances are handled using the Bash shell syntax.
Here the IPs are specified manually. If many targets were desired, they could be enumerated into a file with
the - i L (list scan) option, then Nmap started against each using a normal shell loop. The reason these scans

280 10.5. Subverting Intrusion Detection Systems

took more than 1 .075 seconds per port is that retransmissions were required for the filtered ports to ensure
that they were not dropped due to network congestion.

Example 10.19. Slow scan to bypass the default Snort 2.2.0 Flow-portscan fixed time
scan detection method

felix�# for target in 2 0 5 . 2 1 7 . 1 5 3 . 53 2 0 5 . 2 1 7 . 1 5 3 . 5 4 2 0 5 . 2 1 7 . 1 5 3 . 6 2 ; \
do nmap --scan-delay 1 0 7 5 -p2 1 , 2 2 , 2 3 , 2 5 , 53 $target ; \
usleep 1075 0 0 0 ; \
done

Starting Nmap (http : / / nmap . org)
Interesting ports on insecure . erg (2 05 . 2 1 7 . 1 5 3 . 53) :
PORT STATE SERVICE
21/tcp filtered ftp
22 /tcp open ssh
23/tcp filtered telnet
25/tcp open smtp
53 /tcp open doma in

Nmap done : 1 IP address (1 host up) scanned i n 1 0 . 7 5 seconds

Starting Nmap (http : / / nmap . org
Interesting ports on l i s t s . insecure . or g (2 05 . 2 1 7 . 1 5 3 . 5 4) :
PORT STATE SERVICE
21/tcp fi ltered ftp
22/tcp open ssh
23/tcp filtered telnet
25/tcp open smtp
53/tcp open doma in

Nmap done : 1 IP addres s (1 host up) scanned in 1 0 . 7 8 seconds

Starting Nmap (http : / / nmap . org
Interesting ports on scanme . nmap . org (2 0 5 . 2 1 7 . 1 5 3 . 6 2) :
PORT STATE SERVICE
21/tcp f i ltered ftp
2 2/tcp open ssh
23/tcp f i ltered telnet
25/tcp open smtp
53/tcp open doma in

Nmap done : 1 IP address (1 host up) scanned in 1 0 . 8 0 seconds

Unfortunately for port scanning enthusiasts, defeating Snort is not so simple. It has another detection method,
known as sliding time scale. This method is similar to the fixed-window method just discussed, except that
it increases the window whenever a new probe from a host is detected. An alarm is raised if
scanner-sl iding-thre shold probes are detected during

·
the window. The window starts at

scanner- s l iding-wi ndow seconds, and increases for each probe detected by the amount of time
elapsed so far in the window times s canner-sl iding-scale-factor . Those three variables default
to 40 probes, 20 seconds, and a factor of 0.5 in snort . conf.

10.5 . Subverting Intrusion Detection Systems 281

The sliding scale is rather insidious in the way it grows continually as new packets come in. The simp
(if slow) solution would be to send one probe every 20. 1 seconds. This would evade both the default fi
and sliding scales. This could be done just as i n Example 10. 19, but using a higher value. You could speed
this up by an order of magnitude by sending 14 packets really fast, waiting 20 seconds for the window 18
expire, then repeating with another 14 probes. You may be able to do this with a shell script controllina
Nmap, but writing your own simple SYN scanning program for this custom job may be preferable.

Scatter probes across networks rather than scanning hosts
consecutively

As discussed in the previous section, IDSs are often programmed to alarm only after a threshold of suspicious
activity has been reached. This threshold is often global, applying to the whole network protected by the IDS

rather than just a single host. Occasionally they specifically watch for traffic from a given source address to
consecutive hosts. If a host sends a SYN packet to port 139 of host 10.0.0. 1 , that isn't too suspicious by itself.
But if that probe is followed by similar packets to 10.0.0.2, .3, .4, and .5, a port scan is clearly indicated.

One way to avoid triggering these alarms is to scatter probes among a large number of hosts rather than
scanning them consecutively. Sometimes you can avoid scanning very many hosts on the same network. If
you are only conducting a research survey, consider scattering probes across the whole Internet with -iR

rather than scanning one large network. The results are likely to be more representative anyway.

In most cases, you want to scan a particular network and Internet-wide sampling isn't enough. Avoiding the
consecutive-host probe alarms is easy. Nmap offers the --randomi ze-ho s t s option which splits up the
target networks into blocks of 16384 IPs, then randomizes the hosts in each block. If you are scanning a huge
network, such as class B or larger, you may get better (more stealthy) results by randomizing larger blocks.
You can achieve this by increasing P ING_GROUP _S Z in nmap . h and then recompiling. The block sii.e
used in a --randomi ze-ho s t s scan is four times the value of P ING_GROUP_SZ. Note that higher
values of P ING_GROUP _S Z eat up more host memory. An alternative solution is to generate the target IP
list with a list scan (- s L - n - oN <fi l ename>), randomize it with a Perl script, then provide the whole

· list to Nmap with - i L. You will probably have to use this approach if you are scanning a huge network such
as 10.0.0.0/8 and want all 16 million IP addresses randomized.

Fragment packets

IP fragments can be a major problem for intrusion detection systems, particularly because the handling of
oddities such as overlapping fragments and fragmentation assembly timeouts are ambiguous and differ
substantially between platforms. Because of this, the IDS often has to guess at how the remote system will
interpret a packet. Fragment assembly can also be resource intensive. For these reasons, many intrusion
detection systems still do not support fragmentation very well. Specify the - f to specify that a port scan use
tiny (8 data bytes or fewer) IP fragments. See Section 10.4.6, "Fragmentation" [269] for more important
details.

282 10.5. Subverting Intrusion Detection Systems

Evade specific rules

Most IDS vendors brag about how many alerts they support, but many (if not most) are easy to bypass. The
most popular IDS among Nmap users is the open-source Snort7. Example 10.20 shows all of the default rules
in Snort 2.0.0 that reference Nmap.

Example 10.20. Default Snort rules referencing Nmap

felix-/src/ snort-2 . 0 . 0 /rules >grep -i nmap *
icmp . rules : alert i cmp $EXTERNAL_NET any -> $HOME_NET any (msg : " I CMP PING NMAP " ;
dsize : O ; itype : S ; reference : arachnids , 1 6 2 ;
classtype : attempted-recon ; s id : 4 6 9 ; rev : l ;)

scan . rules : alert tcp $EXTERNAL_NET any -> $HOME_NET any (ms g : " SCAN nmap XMAS " ;
flags : FPU; reference : arachnids , 3 0 ; classtype : attempted-recon ; s id : l 2 2 8 ; rev : l ;)

scan . rules : alert tcp $EXTERNAL_NET any - > $HOME_NET any (msg : " SCAN nmap TCP " ;
flags : A ; ack : O ; reference : arachnids , 2 8 ; classtype : attempted-recon ; s id : 6 2 8 ; rev : l ;)

scan . rules : alert tcp $EXTERNAL_NET any ->
$HOME_NET any (msg : " SCAN nmap f ingerprint attempt " ;
flags : SFPU ; reference : arachnids , 0 5 ; classtype : attempted-recon ; s id : 6 2 9 ; r ev : l ;)

web-attacks . rules : al er t tcp $EXTERNAL_NET any -> $ HTTP_SERVERS $HTTP_PORTS
(msg : "WEB-ATTACKS nmap command attempt " ;
flow : to_server , establ ished; content : " nmap % 2 0 " ;
nocase ; s id : l 3 6 l ; classtype : web-applicat ion-attack ; rev : 4 ;)

Now let us look at these rules through the eyes of an attacker. The first rule looks for an ICMP ping packet
without any payload (ds i ze : O) . Simply specifying a non-zero --dat a-length option will defeat that
rule. Or the user could specify a different type of ping scan entirely, such as TCP SYN ping.

The next rule searches for TCP packets with the FIN, PSH, and URG flags set (flags:FPU) and signals an
Nmap Xmas scan alert. Adding the option --scanf lags F INPSH to the Xmas scan options will remove
the URG flag. The scan will still work as expected, but the rule will fail to trigger.

The third rule in the list looks for TCP packets with the ACK bit set but an acknowledgment number of zero
(ftags:A;ack:O). Ancient versions of Nmap had this behavior, but it was fixed in 1999 in response to the
Snort rule.

Rule number four looks for TCP packets with the SYN, FIN, PSH, and URG flags set (flags:SFPU). It then
declares an Nmap OS fingerprinting attempt. An attacker can avoid flagging this by omitting the -0 flag. If
he really wishes to do OS detection, that single test can be commented out in o s scan2 . cc. The OS detection
will still be quite accurate, but the IDS alert will not flag.

The final rule looks for people sending the string "nmap " to web servers. They are looking for attempts to
execute commands through the web server. An attacker could defeat this by renaming Nmap, using a tab
character instead of a space, or connecting with SSL encryption if available.

Of course there are other relevant rules that do not have Nmap in the name but could still be flagged by
intrusive port scans. Advanced attackers install the IDS they are concerned with on their own network, then
alter and test scans in advance to ensure that they do not trigger alarms.

1 http://www.snort.org

10.5. Subverting Intrusion Detection Systems 283

Snort was only chosen for this example because its rules database is public and it is a fellow open-source
network security tool. Commercial IDSs suffer from similar issues.

Avoid easi ly detected Nmap features

Some features of Nmap are more conspicuous than others. In particular, version detection connects to many
different services, which will often leave logs on those machines and set off alarms on intrusion detection
systems. OS detection is also easy to spot by intrusion detection systems, because a few of the tests use rather
unusual packets and packet sequences. The Snort rules shown in Example 10.20, "Default S nort rules
referencing Nmap" [283) demonstrate a typical Nmap OS detection signature.

One solution for pen-testers who wish to remain stealthy is to skip these conspicuous probes entirely. Service
and OS detection are valuable, but not essential for a successful attack. They can also be used on a case-by-case
basis against machines or ports that look interesting, rather than probing the whole target network with them.

1 0.5.3. Mislead ing Intrusion Detection Systems

The previous section discussed using subtlety to avoid the watchful eye of intrusion detection systems. An
alternative approach is to actively mislead or confuse the IDS with packet forgery. Nmap offers numerous
options for effecting this.

Decoys

Street criminals know that one effective means for avoiding authorities after a crime is to blend into any
nearby crowds. The police may not be able to tell the purse snatcher from all of the innocent passersby. In
the network realm, Nmap can construct a scan that appears to be coming from dozens of hosts across the
world. The target will have trouble determining which host represents the attackers, and which ones are
innocent decoys. While this can be defeated through router path tracing, response-dropping, and other active
mechanisms, it is generally an effective technique for hiding the scan source. Figure I0.2 shows a BlackICE
report screen that is inundated with decoys. The administrator cannot complain to the providers for every
ISP on the list. It would take a long time, and all but one of the hosts are innocent.

284 10.5. Subverting Intrusion Detection Systems

Figure 10.2. An attacker masked by dozens of decoys

JScanl unusuaJ flags to jsl'stem

Warning

•

• .
�

..
. . ' <

Many retail (dialup, cable modem, DSL, etc.) ISPs filter out most spoofed packets, though
spoofed packets from the same network range as yours may get through. Do some tests first
against some machine you control across the Internet, or you could even test this against 3rd
party servers using IP ID tricks similar to those discussed in Section 10.3.3, "IP ID Tricks" [262) .

Decoys are added with the -D option. The argument is a list of hosts, separated by commas. The string ME
can be used as one of the decoys to represent where the true source host should appear in the scan order.
Otherwise it will be a random position. Including ME in the 6th position or further in the list prevents some
common port scan detectors from reporting the activity. For example, Solar Designer's excellent Scanlogd
only reports the first five scan sources to avoid flooding its logs with decoys.

You can also use RND to request a random, non-reserved IP address, or RND : <n umber> to generate
<number> random addresses.

Note that the hosts used as decoys should be up and running. It would be pretty easy to determine which
host is scanning if only one is actually up on the network. Using too many down decoys can also cause target
ports to become temporari ly unresponsive, due to a condition known as a SYN flood. Using IP addresses

10.5. Subverting Intrusion Detection Systems 285

instead of names is advised to avoid appearing in the decoy networks' nameserver logs. The targets them
should ideally be expressed by IP addresses too.

Decoys are used both in the initial ping scan (using ICMP, SYN, ACK, or whatever) and during the
port scanning phase. Decoys are also used during remote OS detection. They are not used for DNS q
or service/version detection, so you will give yourself away if you use options such as - sV or -A. Usina
many decoys can slow a scan dramatically, and sometimes even make it less accurate.

Port scan spoofing

While a huge group of decoys is quite effective at hiding the true source of a port scan, the IDS alerts
make it obvious that someone is using decoys. A more subtle, but limited, approach is to spoof a port
from a single address. Specify - s followed by a source IP, and Nmap will launch the requested port

from that given source. No useful Nmap results will be available since the target will respond to the s
IP, and Nmap will not see those responses. IDS alarms at the target will blame the spoofed source f<r
scan. You may have to specify -e <in t erfa cename> to select the proper interface name (such as
pppO, etc.) for Nmap to send the spoofed packets through. This can be useful for framing innocent
casting doubt in the administrator's mind about the accuracy of his IDS, and denial of service attacks
will be discussed in Section 10.5.4, "DoS Attacks Against Reactive Systems" [287].

Idle scan

Idle scan is a clever technique that allows for spoofing the source IP address, as discussed in the p
section, while stil l obtaining accurate TCP port scan results. This is done by abusing properties of the
identification field as implemented by many systems. It is described in much more depth in Section S.
"TCP Idle Scan {-sI)" [1 1 7] .

DNS proxying

Even the most carefully laid plans can be foiled by one little overlooked detail. If the plan involves ultra
port scanning, that little detail can be DNS. As discussed in Section 3 .4, "DNS Resolution" [56], N
performs reverse-DNS resolution by default against every responsive host. If the target network admini
are the paranoid log-everything type or they have an extremely sensitive IDS, these DNS lookup p
could be detected. Even something as unintrusive as a list scan (-sL) could be detected this way. The
will come from the DNS server configured for the machine running Nmap. This is usually a separate mac ·
maintained by your ISP or organization, though it is sometimes your own system.

The most effective way to eliminate this risk is to specify -n to disable all reverse DNS resolution.
problem with this approach is that you lose the valuable information provided by DNS. Fortunately, N
offers a way to gather this information while concealing the source. A substantial percentage ofDNS
on the Internet are open to recursive queries from anyone. Specify one or more of those name servers to
--dn s - servers option of Nmap, and all rDNS queries will be proxied through them. Example 10
demonstrates this technique by conducting a list scan of some SecurityFocus IPs while using the
recursive DNS servers 4 . 2 . 2 . 1 and 4 . 2 . 2 . 2 to cover any tracks. Keep in mind that forward DNS
uses your host's configured DNS server, so specify target IP addresses rather than domain names to pre
even that tiny potential information leak. For this reason, Example 10.21 first shows the Linux host com
being used to look up www . securi t y f ocus . corn rather than specifying that host name in the N

command l ine. To avoid IDS thresholds based on the number of requests from a single DNS server, you

286 10.5. Subverting Intrusion Detection Systems

specify dozens of comma-separated DNS servers to --dns-server s and Nmap will round-robin its
requests among them.

Example 10.21. Using DNS Proxies (Recursive DNS) for a Stealth List Scan of
Security Focus

t host www . secur i tyfocu s . com 4 . 2 . 2 . 1
Using domain server :
Address : 4 . 2 . 2 . 1 # 5 3

www. securityfocus . com h a s addres s 2 0 5 . 2 0 6 . 2 3 1 . 1 2
www. securityfocus . com has address 2 0 5 . 2 0 6 . 2 3 1 . 1 5
www. secur ityfocu s . com has address 2 0 5 . 2 0 6 . 23 1 . 1 3

t nmap --dns-server s 4 . 2 . 2 . 1 , 4 . 2 . 2 . 2 -sL 2 05 . 2 06 . 2 3 1 . 1 2 / 2 8

Starting Nmap (http : / / nmap . org)
Host 205 . 2 06 . 23 1 . 0 not scanned
Host mail 2 . securi tyfocu s . com (2 0 5 . 2 0 6 . 2 3 1 . 1) not scanned
Host nsl . secur ityfocus . com (2 05 . 2 06 . 23 1 . 2) not scanned
Host sgs l . secur ityfocu s . com (2 0 5 . 2 06 . 2 3 1 . 3) not scanned
Host sgs2 . securityfocu s . com (2 0 5 . 2 0 6 . 2 3 1 . 4) not scanned
Host 205 . 2 06 . 2 3 1 . 5 not scanned
Host adserver . securityfocu s . com (2 0 5 . 2 06 . 23 1 . 6) not scanned
Host datafeeds . secur ityfocus . com (2 0 5 . 2 0 6 . 2 3 1 . 7) not scanned
Host sfcm . securityfocu s . com (2 0 5 . 2 0 6 . 23 1 . 8) not scanned
Host mail . securityfocu s . com (2 0 5 . 2 0 6 . 23 1 . 9) not scanned
Host www . securi tyfocu s . com (2 0 5 . 2 0 6 . 2 3 1 . 1 0) not s canned
Host wwwl . secur ityfocu s . com (2 05 . 2 06 . 2 3 1 . 1 1) not scanned
Host www2 . securi tyfocu s . com (2 0 5 . 2 0 6 . 23 1 . 1 2) not scanned
Host www3 . secur ityfocu s . com (2 0 5 . 2 0 6 . 23 1 . 1 3) not scanned
Host media . securityfocus . com (2 0 5 . 2 0 6 . 2 3 1 . 1 4) not scanned
Host www5 . secur ityfocu s . com (2 0 5 . 2 0 6 . 23 1 . 1 5) not scanned
Nmap done : 1 6 I P addresses (0 hosts up) scanned in 0 . 2 7 seconds

10.5.4. Dos Attacks Against Reactive Systems

Many vendors are pushing what they call intrusion prevention systems. These are basically IDSs that can
actively block traffic and reset established connections that are deemed malicious. These are usually inline
on the network or host-based, for greater control over network activity. Other (non-inline) systems listen
promiscuously and try to deal with suspicious connections by forging TCP RST packets. In addition to the
traditional IPS vendors that try to block a wide range of suspicious activity, many popular small programs
such as Port Sentry8 are designed specifically to block port scanners.

While blocking port scanners may at first seem like a good idea, there are many problems with this approach.
The most obvious one is that port scans are usually quite easy to forge, as previous sections have demonstrated.
It is also usually easy for attackers to tell when this sort of scan blocking software is in place, because they
will not be able to connect to purportedly open ports after doing a port scan. They will try again from another
system and successfully connect, confirming that the original IP was blocked. Attackers can then use the

8 http:llsourceforge.net/projects/sentrytools/

10.5. Subverting Intrusion Detection Systems 287

host spoofing techniques discussed previously (-S option) to cause the target host to block any systems the
attacker desires. This may include important DNS servers, major web sites, software update archives, mail
servers, and the like. It probably would not take long to annoy the legitimate administrator enough to disable
reactive blocking. While most such products offer a whitelist option to prevent blocking certain important
hosts, enumerating them all is extraordinarily difficult. Attackers can usually find a new commonly used
host to block, annoying users until the administrator determines the problem and adjusts the whitelist
accordingly.

1 0.5.5. Exploit ing Intrusion Detection Systems

The most audacious way to subvert intrusion detection systems is to hack them. Many commercial and open
source vendors have pitiful security records of product exploitability. Internet Security System's flagship
RealSecure and BlackICE IDS products had a vulnerability which allowed the Witty worm to compromise
more than ten thousand installations, then disabled the IDSs by corrupting their filesystems. Other IDS and
firewall vendors such as Cisco, Checkpoint, Netgear, and Symantec have suffered serious remotely exploitable
vulnerabilities as well . Open source sniffers have not done much better, with exploitable bugs found in Snort,
Wireshark, tcpdump, FakeBO, and many others. Protocol parsing in a safe and efficient manner is extremely
difficult, and most of the applications need to parse hundreds of protocols. Denial of service attacks that
crash the IDS (often with a single packet) are even more common than these privilege escalation vulnerabilities.
A crashed IDS will not detect any Nmap scans.

Given all of these vulnerabilities, exploiting the IDS may be the most viable way into the target network. A
nice aspect of this approach is that you do not even have to find the IDS. Sending a rogue packet to any
"protected" machine on the network is usually enough to trigger these IDS bugs.

1 0.5.6. Ignoring Intrusion Detection Systems

While advanced attackers will often employ IDS subversion techniques described in this chapter, the much
more common novice attackers (script kiddies) rarely concern themselves with IDSs. Many companies do
not even deploy an IDS, and those that do often have them misconfigured or pay little attention to the alerts.
An Internet-facing IDS will see so many attacks from script kiddies and worms that a few Nmap scans 10
locate a vulnerable service are unlikely to raise any flags.

Even if such an attacker compromises the network, is detected by a monitored IDS, and then kicked out of
the systems, that is a small loss. Hacking is often a numbers game for them, so losing one compromised
network out of thousands is inconsequential. Such a well-patrolled network would have likely quickly noticed
their usage (such as denial of service attacks, mass scanning, or spam sending) and shut them down anyway.
Hackers want to compromise negligently administered and poorly monitored networks that will provide
long-lasting nodes for criminal activity.

Being tracked down and prosecuted is rarely a concern of the IDS-ignoring set. They usually launch attacks
from other compromised networks, which are often several globe-spanning hops away from their true location.
Or they may use anonymous connectivity such as provided by some Internet cafes, school computer labs,
libraries, or the prevalent open wireless access points. Throwaway dialup accounts are also commonly used.
Even if they get kicked off, signing up again with another (or the same) provider takes only minutes. Many
attackers come from Romania, China, South Korea, and other countries where prosecution is highly unlikely.

288 10.5. Subverting Intrusion Detection Systems

Internet worms are another class of attack that rarely bothers with IDS evasion. Shameless scanning of
millions of IP addresses is preferred by both worms and script kiddies as it leads to more compromises per
hour than a careful, targeted approach that emphasizes stealth.

While most attacks make no effort at stealth, the fact that most intrusion detection systems are so easily
subverted is a major concern. Skilled attackers are a small minority, but are often the greatest threat. Do not
be lulled into complacency by the large number of alerts spewed from IDSs. They cannot detect everything,
and often miss what is most important.

Even skil led hackers sometimes ignore IDS concerns for initial reconnaissance. They simply scan away from
some untraceable IP address, hoping to blend in with all of the other attackers and probe traffic on the Internet.
After analyzing the results, they may launch more careful, stealthy attacks from other systems.

1 0.6. Detecting Packet Forgery by Fi rewal l
and Intrusion Detection Systems
Previous sections mentioned that some firewall and intrusion detection systems can be configured to forge
packets as if they came from one of the protected systems behind the device. TCP RST packets are a frequent
example. Load balancers, SSL accelerators, network address translation devices, and certain honeynets can
also lead to confusing or inconsistent results. Understanding how Nmap interprets responses helps a great
deal in piecing together complex remote network topologies. When Nmap reports unusual or unexpected
results, you can add the - -packet - trace option to see the raw packets upon which Nmap based its
conclusions. In perplexing situations, you may have to go even further and launch custom probes and analyze
packets with other tools such as hping2 and Wireshark. The goal is often to find inconsistencies that help
you understand the actual network setup. The following sections describe several useful techniques for doing
so. While most of these tests do not involve Nmap directly, they can be useful for interpreting unexpected
Nmap results.

1 0.6.1 . Look for TTL Consistency

Firewalls, load balancers, NAT gateways, and similar devices are usually located one or more hops in front
of the machines they are protecting. In this case, packets can be created with a TTL such that they reach the
network device but not the end host. If a RST is received from such a probe, it must have been sent by the
device.

During one informal assessment, I scanned the network of a large magazine publisher over the Internet (you
may remember them from Section 4.5, "SOLUTION: Scan a Large Network for a Certain Open TCP
Port" [88]). Almost every IP address showed port 1 1 3 closed. Suspecting RST forgery by a firewall , I dug
a bit deeper. Because it contained open, closed, and fil tered ports, I decided to focus on this host in particular:

nmap -ss -PN -T4 mx . ch i . playboy . com
Start ing Nmap (http : / / nmap . or g)
Interest ing ports on mx . chi . playboy . com (2 1 6 . 1 6 3 . 1 4 3 . 4) :
Not shown : 9 9 8 fi ltered port s
PORT STATE SERVICE
25 /tcp open smtp
113 /tcp closed auth

10.6. Detecting Packet Forgery by Firewall and Intrusion Detection Systems 289

Nmap done : 1 I P address (1 host up) scanned in 5 3 . 2 0 seconds

Is port 1 13 really closed, or is the firewall spoofing RST packets? I counted the distance (in network hops)
to ports 25 and 1 13 using the custom traceroute mode of the free hping2 util ity, as shown in Example 10.22.
I could have used the faster Nmap --t raceroute option to do this, but that option did not exist at the
time.

Example 10.22. Detection of closed and filtered TCP ports

hping2 -t 5 --traceroute -p 2 5 -s mx . ch i . p layboy . com
[combined with results from hping2 -i 1 --t t l \ * -p 2 5 -s mx . ch i . playboy . com]
5 ->TTL 0 during transit from 6 4 . 1 5 9 . 2 . 9 7 (ae0-5 4 . mp2 . SanJosel . Level 3 . net)
6 ->TTL 0 dur ing transit from 6 4 . 1 5 9 . 1 . 3 4 (so-3 - 0 - 0 . mp2 . Chicagol . Level3 . net)
7->TTL 0 during tran s i t from 2 00 . 2 4 7 . 1 0 . 1 7 0 (pos 9 - 0 . corel . Chicagol . level3 . net)
8->TTL 0 dur ing transit from 2 0 0 . 2 4 4 . 8 . 4 2 (gige6-0 . ipcolol . Chicagol . Level3 . net)
9 ->TTL 0 dur ing transi t from 1 6 6 . 9 0 . 73 . 2 0 5 (gel-0 . brl . ord . playboy . net)
1 0 - >TTL 0 duri ng transit from 2 1 6 . 1 6 3 . 22 8 . 2 4 7 (f 0-0 . bl . ch i . playboy . com)
1 1 ->No response
1 2 ->TTL 0 dur ing transit from 2 1 6 . 1 6 3 . 1 4 3 . 1 3 0 (fw . chi . playboy . com)
1 3 - > 4 6 byte s from 2 1 6 . 1 6 3 . 1 4 3 . 4 : f lags=SA seq=O ttl=52 id= 4 8 9 5 7 rtt=75 . 8 ms

hping2 -t 5 --traceroute -p 1 1 3 -s mx . ch i . playboy . com
[results augmented again J
5 ->TTL 0 during transit from 6 4 . 1 5 9 . 2 . 9 7 (ae 0 - 5 4 . mp2 . SanJosel . Level3 . net)
6 ->TTL 0 during transit from 6 4 . 1 5 9 . 1 . 3 4 (so-3-0-0 . mp2 . Chicagol . Level 3 . net)
7->TT L 0 duri ng transit from 2 0 0 . 2 4 7 . 1 0 . 1 70 (pos9-0 . corel . Chicagol . level3 . net)
8 ->TTL 0 dur ing transit from 2 0 0 . 2 4 4 . 8 . 4 2 (gige6- 0 . ipcolol . Chicagol . Level3 . net)
9 ->TTL 0 dur ing transit from 1 6 6 . 9 0 . 73 . 2 0 5 (ge l - 0 . brl . ord . playboy . net)
1 0->TTL 0 during transit from 2 1 6 . 1 6 3 . 22 8 . 2 4 7 (f0 - 0 . bl . ch i . playboy . com)
1 1 ->Nothing
1 2- > 4 6 bytes from 2 1 6 . 1 6 3 . 1 4 3 . 4 : f lags=RA seq=O t t l = 4 8 id=5 3 4 1 4 rtt=75 . 0 ms

This custom traceroute shows that reaching open port 25 requires 13 hops. 1 2 hops away is a firewall in
Chicago, helpfully named fw.chi.playboy.com. One would expect different ports on the same machine to be
the same hop-distance away. Yet port 1 1 3 responds with a RST after only 12 hops. That RST is being forged
by fw.chi.playboy.com. Since the firewall is known to forge port 1 13 responses, those packets should not
be taken as an indicator that a host is available at a given IP address. I found available hosts by ping scanning
the network again, using common probe types such as ICMP echo requests (-PE) and SYN packets to ports
22 and 80 (-PS2 2 , 8 0), but omitting any ping probes involving TCP port 1 13 .

1 0.6.2. Look for IP I D and Sequence Number
Consistency

Every IP packet contains a 16-bit identification field that is used for defragmentation. It can also be exploited
to gain a surprising amount of information on remote hosts. This includes port scanning using the Nmap idle
scan technique, traffic estimation, host alias detection, and much more. It can also help to detect many network
devices, such as load balancers. I once noticed strange OS detection results when scanning
beta.search.microsoft.com. So I launched hping2 SYN probes against TCP port 80 to learn what was going
on. Example 10.23 shows the results.

290 10.6. Detecting Packet Forgery by Firewall and Intrusion Detection Systems

Example 10.23. Testing IP ID sequence number consistency

t hping2 -c 1 0 -i 1 -p 8 0 -s beta . search . microsoft . com
HPING beta . search . microsoft . com . (ethO 20 7 . 4 6 . 1 9 7 . 1 1 5) : S set , 4 0 headers
46 bytes from 2 0 7 . 4 6 . 1 9 7 . 1 1 5 : flags=SA seq=O ttl=56 id=57645 win= l 6 6 1 6
4 6 bytes from 2 0 7 . 4 6 . 1 9 7 . 1 1 5 : f lags=SA seq=l tt l=56 id=57650 win= l 6 6 1 6
46 bytes from 2 0 7 . 4 6 . 1 9 7 . 1 1 5 : f lags=RA seq=2 ttl=56 id=18574 win=O
46 bytes from 2 0 7 . 4 6 . 1 9 7 . 1 1 5 : flags=RA seq=3 ttl=56 id=18587 win=O
46 bytes from 2 0 7 . 4 6 . 1 9 7 . 1 1 5 : f lags=RA seq=4 ttl=56 id=18588 win=O
46 bytes from 2 0 7 . 46 . 1 9 7 . 1 1 5 : flags=SA seq=5 ttl=56 id=57741 win= l 6 6 1 6
4 6 bytes from 2 0 7 . 46 . 1 9 7 . 1 1 5 : f lags=RA seq=6 ttl=56 id=18589 win=O
46 bytes from 2 0 7 . 46 . 1 9 7 . 1 1 5 : flags=SA seq=7 ttl=56 i d=57742 win= l 6 6 1 6
4 6 bytes from 2 0 7 . 46 . 1 9 7 . 1 1 5 : flags=SA seq=8 ttl=56 id=57743 win= l 6 6 1 6
4 6 bytes from 2 0 7 . 46 . 1 9 7 . 1 1 5 : f lags=SA seq=9 ttl=56 id=57744 win= l 6 6 1 6

Looking at the sequence o f IP I D numbers (in bold), it i s clear that there are really two machines sharing
this IP address through some sort of load balancer. One has IP ID sequences in the range of 57K, while the
other is using 18K. Given this information, it is no wonder that Nmap had trouble settling on a single operating
system guess. They may be running on very different systems.

Similar tests can be performed on other numeric fields, such as the TCP timestamp option or the initial
sequence number returned by open ports. In this particular case, you can see that the TCP window size and
TCP flags also give the hosts away.

1 0.6.3. The Bogus TCP Checksum Trick

Another handy trick for determining whether a n IDS or firewall i s spoofing response packets i s to send
probes with a bogus TCP checksum. Essentially all end hosts check the checksum before further processing
and will not respond to these corrupt packets. Firewalls, on the other hand, often omit this check for
performance reasons. We can detect this behavior the - -badsurn option, as shown in Example 10.24.

E xample 10.24. Finding a firewall with bad TCP checksums

nmap -sS -p 1 1 3 -PN --badsum google . com

Start ing Nmap (http : / /nmap . org)
Warning : Hostname goog l e . com resolves to 3 IPs . Using 6 4 . 23 3 . 1 8 7 . 99 .
Interesting ports on jc-in-f9 9 . google . com (6 4 . 2 3 3 . 1 8 7 . 9 9) :
PORT STATE SERVICE
1 1 3 / tcp closed auth

Nmap done : 1 IP addre s s (1 host up) scanned in 0 . 4 4 seconds

From Example 10.24 we can infer that there is some sort of network device, perhaps a firewall, that is handling
packets destined to google.com on port 1 1 3 without verifying TCP checksums. Normally, an end host will
silently drop packets with bad TCP checksums and we will see a filtered port instead of a closed one.
--bads um will also use bad checksums for other protocols on top of IP, including UDP, ICMP, and IGMP.

10.6. Detecting Packet Forgery by Firewal l and Intrusion Detection Systems 291

This technique, along with other reasons for deliberately sending packets with malformed checksums,
further described in Phrack 60, article 129 by Ed3f. While this is sometimes a useful technique, there
several caveats to consider:

I . Many modern firewalls now verify TCP checksums (at least when determining whether to respond to
packet) to avoid leaking this information. So this technique is more useful for proving that a - -badsllll

probe response was sent by a firewall (or other device with an incomplete TCP stack) than for proving
that a filtered --badsum probe was dropped by an end host.

2. Using --bads um does not guarantee that packets will be sent with bad checksums on all platforms. OD
a few systems, the kernel or the network card performs the checksum calculation and insert the correct
value, overwriting the desired bad value. One way to make sure this isn't happening to you is to use a
remote machine to sniff the packets you are sending. For example, when sniffing with tcpdump, packets
with bad TCP checksums will be indicated like [bad t cp ck sum aa 7 9 (->ab7 9) !] . Another
approach is to do a normal SYN scan against one of your hosts (with at least one open port). Then do the
same scan with --bads um. If the same ports are still shown as open, then - -bads um probably isn'I
working for you. Please report the problem as described in Section 15 . 17, "Bugs" [41 1) .

1 0.6.4. Round Trip Times

When a firewall forges a probe response, that response usually returns slightly sooner than a response from
the true destination host would. After all, the firewall is usually at least one hop closer. It is also optimiud
for quickly parsing and processing packets, and does little else. The destination host, on the other hand, may
be so busy running applications that it takes several milliseconds longer to respond to a probe. Thus, a close
comparison of round trip times can often give away firewall shenanigans.

A challenge with this technique is that the time discrepancy between a firewall response and a true target
response may be a fraction of a millisecond. Normal round trip time variances may be greater than that, so
sending just two probes (one that solicits a response known to be from the target host, and one suspect
response that may be from the firewall) is rarely enough. Sending a thousand of each probe type cancels out
most of the RTT variance so that fundamental differences can be discerned. This doesn't need to take all that
long-hping2 with the -c 1 0 0 0 - i u 5 0 0 0 0 sends a thousand probes in less than a minute. From those
results, calculate the median rather than using the average i t gives you. This prevents enormous times (such
as from a lost response that is retransmitted two seconds later) from skewing the data. Do the thousand probes
once or twice more to determine how consistent the results are. Then try the same with the suspect probe
and compare the two. If the times are exactly the same to the last significant digit, the same host is likely
sending both responses. If you consistently see that one probe type responds more quickly than the other,
packet forgery may be responsible.

This method isn't perfect. A time discrepancy could be caused by any number of other factors than a firewall.
It is still a valuable technique, as detecting network anomalies such as packet forgery is like proving a court
case. Every little bit of evidence helps toward reaching a conclusion. The discrepancy may even lead to more
interesting discoveries than firewall forgery. Maybe certain ports on the target are being redirected to a
honeynet to better study attacks.

9 http://mnap.org/p60- /2.html

292 10.6. Detecting Packet Forgery by Firewall and Intrusion Detection Systems

10.6.5. Close Analysis of Packet Headers and
Contents

It is surprising how many elements can differ in even a small TCP header. Refer to Chapter 8, Remote OS
Detection [1 7 1] for dozens of subtle details that can be indicative of a different OS. For example, different
systems respond with different TCP options, RST packet text, type of service values, etc. If there are several
systems behind a load balancer, or the packets are being sent by firewall or intrusion detection systems, the
packets wi ll rarely match exactly.

An excellent tool for dissecting packet headers is Wireshark because it can break the header out into individual
fields and provide textual descriptions of the binary contents of the packet. The trick to comparing packets
is to collect one packet you think may be from a firewall and another packet of the same type from the target
host or target operating system. Two packet types you are likely to be able to collect are TCP reset packets
and ICMP error packets. By using hping2 or the - - s canf lags Nmap option it should be possible to elicit
responses with different IP, TCP, or ICMP headers.

1 0.6.6. Unusual Network U niformity

When response packets are sent by a firewall, they are often more uniform than would be expected from
clusters of individual machines. While scanning the magazine company discussed in the previous
ITL-checking section, I found that hundreds of sequential-IP machines responded with a RST to port 1 13 .
In a real cluster of machines, you would expect a t least a couple to be offtine a t a given time. Additionally, ·

I was unable to elicit any other type of response from most of these addresses. This suspicious result led me
to do the TTL tests which showed that the fw . chi host was actually spoofing the RST packets.

A firewall doesn't even have to spoof packets to give itself away. Another common firewal l configuration
is to drop packets to specific ports. Many ISPs filter Windows ports 1 35, 1 39, and 445 to reduce the spread
of worms. If a large number of adjacent live hosts show up with the same set of filtered ports, a network
firewall is the likely culprit. After determining which ports are being filtered by a firewall, you can often
map out how many hosts are protected by those firewall rules by scanning many netblocks for those filtered
ports. This can lead to the discovery of any accidental holes or the organization's DMZ (demilitarized zone)
which typically hosts public services and has far looser firewall rules.

10 .6. Detecting Packet Forgery by Firewall and Intrusion Detection Systems 293

hapter 1 1 . Defenses Against Nmap

t1 . Introduction
ter 10, Detecting and Subverting Firewalls and Intrusion Detection Systems [257] discussed the myriad
that Nmap (along with a few other open-source security tools) can be used to slip through firewalls

outsmart intrusion detection systems. Now we look at the situation from the other side of the fence: How
ology such as firewalls and IDSs can defend against Nmap. Possible defenses include blocking the
s, restricting information returned, slowing down the Nmap scan, and returning misleading information.

dangers of some defenses are covered as well . Obfuscating your network to the extent that attackers
not understand what is going on is not a net win if your administrators no longer understand it either.
ilarly, defensive software meant to confuse or block port scanners is not beneficial if it opens up more

·ous vulnerabilities itself. Many of the techniques described herein protect against active probes in general,
IOljust those produced with Nmap.

1 1 .2. Scan Proactively, Then Close or B lock
Ports and Fix Vu lnerabi l ities
It is often said that the best defense is a good offense. An excellent way to defend against attackers is to think
like them. Scan your networks regularly and carefully analyze the output for vulnerabilities. Use crontab on
Unix, or the Task Scheduler on Windows, with a system such as Ndiff1 or nmap-report (see Section 1 .2.3,
"MadHat in Wonderland" [9]) to notify you of any changes.

Proactive scanning provides the opportunity to find and fix vulnerabilities before attackers do. Equally
important is closing and blocking unnecessarily available ports to prevent exploitation by vulnerabilities you
don't yet know about. Proactive scanning also makes you better aware of what information attackers can
obtain. When you have reviewed the results yourself for weaknesses and are comfortable with your security
posture, port scanners become much less threatening. The people who are most paranoid about port scanners
and employ the most defensive and detection software are often those who have the least confidence in their
network security. I do not want to dissuade anyone from using the techniques described throughout this
chapter, but only to suggest that they first seek out and fix any existing network risks and vulnerabilities.
Fixing a hole is far more effective than trying to hide it. That approach is also less stressful than constantly
worrying that attackers may find the vulnerabilities.

Once proactive scanning is in place, the first step is to fix any known vulnerabilities. Next comes audit every
open port available externally through the firewall or on the internal network. Services which the public
doesn't need to reach should be blocked at the firewall. If employees need to reach them, perhaps they can
use the VPN instead. Internal services are often listening even when they aren't being used. They might have
been installed or enabled by default, or were enabled due to past use and never disabled. Such unnecessary
services should be disabled. Even if you don't know of a vulnerability in the service, attackers might. Security
bugs might be found for the service in the future too. A closed ports is a much smaller risk than an open one.
Once known holes are fixed, private services are blocked by the firewall, and unnecessary services disabled,

1 h11p:llnmap.org/11diff/

I I . I . Introduction 295

further defensive technology such as intrusion prevention systems may be warranted Lo protect
zero-day exploits, internal threats, and any holes that your vulnerability analysis system misses.

Proactive network scanning and auditing should become a routine rather than a one-off audit. On any
network, hosts and services are added and changed regularly. You must keep on top of these if the
is to remain secure.

Remember that some poorly implemented and tested systems may -react adversely to port scans, OS de
or version detection. This is rarely a problem when scanning across the Internet, because machines that
when scanned do not last long in such a hostile environment. Internal machines are often more fragile.
beginning a proactive scanning program, ensure that it is approved and communicated to affected p ·

advance. Start with a relatively small part of the network and ensure there are no problems, then Lake it f
in stages. You may want to start with simple port scanning, then move on to OS detection or version de
later as desired.

1 1 .3. B lock and Slow Nmap with Fi rewal ls
One of the best defensive measures against scanning is a well-configured firewall. Rather than sim
obfuscate the network configuration, as some techniques described later do, well-configured firewalls
effectively block many avenues of attack.

Any decent firewall book emphasizes this cardinal rule: deny by default. Rather than trying to block sus
malicious traffic, block everything first, then specifically override that to allow essential traffic. I! is m
easier to overlook blocking something malicious than to accidentally explicitly allow the same. Addition
failing to block bad traffic may not be noticed unti l it is exploited by an attacker, while failing Lo al
legitimate traffic is usually quickly discovered by the affected users. And they will keep reminding you un
it is fixed.

The two preceding reasons should be enough to convince anyone to go with deny-by-default, but there
other benefits as well . One is to slow down large scale reconnaissance from tools like Nmap. When an N
TCP SYN scan encounters a closed port, the target machine sends back a RST packet and that port's sta
is determined within the space of only one round-trip-time. That is under a quarter of a second, even a
the world from my web server in California to an ISP in Moscow. If a firewall filters the port by droppi
the probe, on the other hand, Nmap has to wait for a worst-case timeout before giving up. Nmap then m
several retransmissions just in case the packet was dropped by some router due to overcapacity rather
by a firewall rule. In large-scale scans, the difference can be quite significant. For example, a 1 ,000-potf
TCP SYN scan against a machine on my wireless network (nmap -sS -T4 para) takes only five secondl
when all ports are open or closed. Filtering a dozen or so commonly exploited ports increases the scan time
to 12 seconds. Moving to default-deny (filtering all ports except the five open ones) nearly triples the scan
time to 33 seconds. A 28-second difference may not sound meaningful, but it can add up Lo extra days for
large-scale scans.

Filtered ports are even more frustrating to attackers when the UDP protocol is used. When firewalling is not
involved, virtually all systems respond with an ICMP port unreachable when Nmap probes a closed port.
Open ports usually do not respond at all . So if a deny-by-default firewall drops a probe packet, Nmap cannot
tell if the port is open or filtered. Retransmissions do not help here, as the port will never respond. Altackers
must then resort to slower and much more conspicuous techniques such as Nmap version detection and
SNMP community string brute forcing to make sense of the UDP ports.

296 1 1 .3. Block and Slow Nmap with Firewal ls

To actually slow Nmap down, make sure the firewall is dropping the packets rather than responding with an
ICMP error or TCP RST. Otherwise Nmap will run just as fast and accurately as if the ports were closed,
though you still reap the benefit of blocking the probes. As an example of this distinction, the Linux iptables
firewall offers the target actions DROP and REJECT. As the names imply, DROP does nothing beyond
blocking the packet, while REJECT sends an error message back. The former is better for slowing down
reconnaissance and is usually recommended, though REJECT can ease network trouble diagnosis by making
it crystal clear that the firewall is blocking certain traffic.

Another tenet of firewalls is defense in depth. Even though ports are blocked by the firewall, make sure they
are closed (no application is listening) anyway. Assume that a determined attacker will eventually breach
the firewall. Even if they get through using a technique from Chapter 10, Detecting and Subverting Firewalls
and Intrusion Detection Systems [257] , the individual machines should be locked down to present a strong
defense. This reduces the scope and damage of mistakes, which everyone makes on occasion. Attackers will
need to find weaknesses in both the firewall and individual machines. A port scanner is pretty impotent
against ports that are both closed and filtered. Using private address space (such as with network address
translation) and additional firewalls provide even more protection.

1 1 .4. Detect Nmap Scans
Some people believe that detecting port scans i s a waste of time. They are so common that any organization
connected to the Internet will be regularly scanned. Very few of these represent targeted attacks. Many are
Internet worms endlessly pounding away seeking some Windows vulnerability or another. Some scans come
from Internet research projects, others from curious or bored individuals exploring the Internet. I scanned ·
tens of thousands of IPs seeking good examples and empirical data for this book. Other scans actually are
malicious. Script kiddies regularly scan huge ranges for systems susceptible to their exploit du jour. While
these folks have bad intentions, they are likely to move along on their own after finding no vulnerable services
on your network. The biggest threat are attackers specifically targeting your organization, though those
represent such a small percentage of detected scans that they are extremely tough to distinguish. So many
administrators do not even bother recording port scans.

Other administrators take a different view. They contend that port scans are often precursors to attacks, and
should at least be logged if not responded to. They often place detection systems on internal networks to
reduce the flood of Internet port scan activity. The logs are sometimes analyzed for trends, or submitted to
3rd parties such as Dshield for world-wide correlation and analysis. Sometimes extensive logs and scary
graphs measuring attacks are submitted to management to justify adequate budgets.

System logs alone are rarely sufficient for detecting port scans. Usually only scan types that establish full
TCP connections are logged, while the default Nmap SYN scan sneaks through. Even full TCP connections
are only logged if the particular application explicitly does so. Such error messages, when available, are
often cryptic. However, a bunch of different services spouting error messages at the same time is a common
indicator of scanning activity. Intrusive scans, particularly those using Nmap version detection, can often be
detected this way. But only if the administrators actually read the system logs regularly. The vast majority
of log messages go forever unread. Log monitoring tools such as Logwatch2 and Swatch3 can certainly help,
but the reality is that system logs are only marginally effective at detecting Nmap activity.

2 http://www.logwatch.org
3 http://swatch.so11rceforge.11et/

1 1 .4. Detect Nmap Scans 297

Special purpose port scan detectors are a more effective approach to detecting Nmap activity. Two common
examples are PortSentry4 and Scanlogd5. Scanlogd has been around since 1998 and was carefully designed
for security. No vulnerabilities have been reported during its lifetime. PortSentry offers similar features, as
well as a reactive capability that blocks the source IP of suspected scanners. Note that this reactive technique
can be dangerous, as demonstrated in Section I 1 .5 .6 , "Reactive Port Scan Detection" [304].

Despite being subject to threshold-based attacks discussed in Section J0.5.2, ·�voiding Intrusion Detection
Systems" [279], these port scan detection tools work pretty well . Yet the type of administrator who cares
enough to keep tabs on port scans will also want to know about more serious attacks such as exploit attempts
and installed backdoors. For this reason, intrusion detection systems that alert on a wide range of suspicious
behavior are more popular than these special-purpose tools.

Many vendors now sell intrusion detection systems, but Nmap users gravitate to an open-source lightweight
IDS named Snort. It ranked as the third most popular security tool among a survey group of 3,243 Nmap
users (http://sectools.org). Like Nmap, Snort is improved by a global community of developers. It supports
more than two thousand rules for detecting all sorts of suspicious activity, including port scans.

A properly installed and monitored IDS can be a tremendous security asset, but do not forget the risks
discussed in Section 10.5, "Subverting Intrusion Detection Systems" [276]. Snort has had multiple remotely
exploitable vulnerabilities, and so have many of its commercial competitors. Additionally, a skilled attacker
can defeat most IDS rules, so do not let your guard down. IDSs too often lead to a false sense of security.

1 1 .5 . Clever Trickery
Nmap, like other active probing tools, obtains its information by sending out packets to target systems and
then trying to interpret and organize any responses into useful reports. Nmap must rely on information from
systems and networks that may be downright hostile environments. Some administrators take offense at
being scanned, and a small percentage try to confuse or slow Nmap with active measures beyond the firewall
and IDS techniques discussed previously.

Many of these active response methods are quite clever. I would argue that many are too clever, causing
more problems than they solve. One such problem is exploitability. Much of this custom active response
software is just a quick hack, written without careful security consideration. For example, an administrator
friend of mine named Paul was quite proud of installing FakeBO on his machine. He laughed at the prospect
of fooling script kiddies into thinking they found a Back Orifice infected machine to commandeer, when
Paul was really just logging their attempts. The joke was on Paul when a FakeBO buffer overflow was
discovered and an attacker used it to compromise his box and install a real backdoor.

The other major risk common to these technologies is displacement of time that is better spent elsewhere.
Confusing attackers can be fun and gratifying, and in some cases even hampers attacks. In the end, however,
these techniques are mostly security by obscurity. While they can still be beneficial, they aren't as important
as more resilient technologies such as firewalls and vulnerability patching. Advanced attackers will likely
see through the obfuscation anyway, and the script kiddies and worms rarely bother with reconnaissance.
The daily attempted ITS exploits against my Apache web server are testament to that. These techniques should
be considered only when you are already highly confident of your security posture. Too many people use
them as a substitute to truly securing their networks.

4 http://sourceforge.netlprojectslsentrytools/
5 http://www.openwall.comlscanlogd/

298 I 1 .5. Clever Trickery

1 1 .5.1 . Hiding Services on Obscure Ports

Occasionally administrators advocate running services on unusual ports to make it harder for attackers to
find them. In particular, they note the frequency of single-port sweeps across their address space from attackers
seeking out a vulnerable version of some software. Autonomous worms frequently do the same thing.

It is true that this sort of obfuscation may prevent some worms and script kiddies from finding services, but
they are rarely more than a marginal threat to companies that quickly patch vulnerabil i ties. And companies
who do not patch quickly will not be saved by this simple port obfuscation. Proponents often argue that even
more skillful attackers will fall for this. Some have even posted to security lists that scanning all 65,536 TCP
ports is inconceivable. They are wrong. Attackers can and do scan all TCP ports. In addition, techniques
such as Nmap version detection make it easy to determine what service is listening on an unusual port.
Example I I . I shows such a scan. Notable is that it only takes eight minutes, and this is from a slow residential
aDSL line in another state. From a faster machine, the same scan takes only three minutes. If the default
state had been filtered, the scan would have been slower but not unreasonably so. Even if a scan takes IO or
20 minutes, an attacker does not have to sit around watching. A targeted attack against a company can easily
be left overnight, and mass attackers may leave a scanner running for weeks, periodically downloading the
latest data files.

Example 11.1. An all-TCP-port version scan

I nmap -sSV -T4 -0 -p0 - 6 5 5 3 5 apol l o . sco . com

Starting Nmap (http : / / nmap . org)
Interest ing ports on apollo . sco . com (2 1 6 . 2 5 0 . 1 2 8 . 3 5) :
Not shown : 6 5 5 2 4 c losed ports
PORT STATE SERVICE VERS I ON
0/tcp fi ltered unknown
21/tcp open ftp
22/tcp open ssh
199/tcp open smux?
457/tcp open http
615/tcp open http
l035/tcp fi ltered unknown

WU-FTPD 2 . lWU (l) +SC0-2 . 6 . 1 + - sec
SSH 1 . 2 . 2 2 (protocol 1 . 5)

NCSA httpd 1 . 3
NCSA httpd 1 . 5

1521 /tcp open oracle
13722/tcp open inetd
13782/tcp open inetd

Orac l e DB Listener 2 . 3 . 4 . 0 . 0 (for SCO System V/ 3 8 6)
inetd exec err /usr/openv/netbackup/bin/bp j ava-msvc
inetd exec err / u s r / openv/netbackup/bin/bpcd

13783 /tcp open inetd
64206 /tcp open unknown

inetd exec err / u s r / openv/bin/vopied

99vice type : general purpose
\unning : SCO UnixWare

S details : SCO UnixWare 7 . 0 . 0 or OpenServer 5 . 0 . 4- 5 . 0 . 6

p done : 1 IP addres s (1 host up) scanned i n 5 0 1 . 9 0 seconds

The biggest downside to this approach is a major inconvenience to legitimate users. Some services, such as
SMTP and DNS, almost always have to run on their well-known ports for practical reasons. Even for services
such as HTTP and SSH that can be more easily changed, doing so means that all users must remember an
unusual port number such as 52, 147 whenever they connect to the service. When there are several "hidden"
services, it is particularly difficult to remember which is which. Using different ports on each machine

1 1 .5. Clever Trickery 299

becomes even more confusing, but standardizing on unusual port mappings across the organization reducea
the purported benefit of this scheme. Attackers may notice that SSH is always at 52,147. The end result is
that all-port Nmap scans against your servers may increase, as frustrated legitimate users try to find wla
essential services are hidden. Less savvy users may flood you with phone calls instead.

1 1 .5.2. Port Knocking

A technique called port knocking has recently become popular as a way to hide services from potential
attackers. The method is well described on the front page of http://www.portknocking.org/:

Port knocking is a method of establishing a connection to a networked computer that has
no open ports. Before a connection is established, ports are opened using a port knock
sequence, which is a series of connection attempts to closed ports. A remote host generates
and sends an authentic knock sequence in order to manipulate the server's firewall rules
to open one or more specific ports. These manipulations are mediated by a port knock
daemon, running on the server, which monitors the firewall log file for connection attempts
that can be translated into authentic knock sequences. Once the desired ports are opened,
the remote host can establish a connection and begin a session. Another knock sequence
may be used to trigger the closing of the port.

This method is not brand new, but it exploded in popularity in 2003 when Martin Krzywinski coined the
phrase port knocking, wrote an implementation, created the extensive web site, and wrote articles about it
for Sys Admin and Linux Journal magazines. Port knocking adds a second layer of protection to services,
though authentication is usually weaker than that provided by primary services such as SSH. Implementations
are usually subject to sniffing and replay attacks, and often suffer from brute force and denial of service
threats as wel l .

The upside i s a service concealment which i s much stronger than the simple and ineffective obscure ports
technique described previously. A port competently hidden through port knocking is nearly impossible to
discover using active probes such as those sent by Nmap. On the other hand, sniffer-based systems such as
intrusion detection systems and passive network mappers trivially detect this scheme.

Deciding whether to implement port knocking requires an analysis of the benefits and costs applicable to
the proposed implementation. Service concealment is only beneficial for a small set of applications. The
motivation is to prevent attackers from connecting to (and exploiting) vulnerable services, while still allowing
connections from authorized users all over the world. If only certain IP addresses need to connect, firewall
restrictions limiting connections to those specific IPs are usually a better approach. In an ideal world,
applications would securely handle authentication themselves and there would be no need to hide them to
prevent exploitation. Unfortunately, even security-conscious programs such as SSH have suffered numerous
remotely exploitable pre-authentication flaws. While these bugs should be fixed as soon as possible in any
case, port knocking may provide an extra window of time before a new bug is exploited. After all, some
SSH exploits spread underground long before official patches were available. Then when a bug is announced,
even the most conscientious administrator may require several hours or days to learn about the bug, test the

fix, and locate and patch all vulnerable i nstances. The response time of a home computer owner may be even
longer. After all , the vast majority of computer users do not subscribe to Bugtraq.

The good guys are not the only ones who benefit from service concealment. It is at least as popular (if not
more so) for gray hat and downright criminal uses. Many ISPs restrict users from running any server daemons
such as web or SSH services. Customers could hide a personal SSH daemon or web server (only for very

300 1 1 .5. Clever Trickery

ces
t is
ere

ial

use, as the public could not easily connect) using port knocking technology. Similarly, my friend
employer on ly permitted connections from home using a Windows-only VPN client. Tom responded
'ng up a port knocking system (before it was called that) which, upon receiving the appropriate probes,
a reverse SSH tunnel from his work server back to his home Linux box. This allowed him to work

home with full access to the work network and without having to suffer the indignities of using Windows.
h re-iterating that the service provider in both the ISP and employer examples could have detected

bterfuge using a sniffer or nettlow. Segueing into even darker uses, computer criminals frequently use
'ques like these to hide backdoors in systems that they have compromised. Script kiddies may just leave

t SSH daemon or even raw root shell listening on some high port, vulnerable to detection by the next
scan. More cautious attackers use concealment techniques including port knocking in their backdoors

rootkits.

he the service concealment provided by this system can be valuable, it comes with many l imitations.
· es intended for public use are inappropriate, since no one is going to i nstall a special knock client just
'sit your web site. In addition, publicizing the access instructions would defeat the system's primary

. Non-public service should usually be blocked by a firewal l rather than shielded with port knocking.
a group of people need access, VPNs are often a better solution as they offer encryption and user-level

s control. VPNs are also built to handle real-world networks, where packets can be dropped, duplicated,
re-ordered. A relatively simple probe using the Portknocking.Org implementation can require more than

port probes, all of which must arrive at the destination in order. For this many probes, you will need a
ial client. Using telnet or a web browser is too tedious. Additionally, all firewalls in the path must allow
to connect to these unusual ports. Given these restrictions and hassles, using a VPN may be just as

additional risk is that port knocking implementations are still immature. The best-known one, written by
in Krzywinski, warns on the download page that "this is a prototype and includes the bare minimum to

started. Do not use this for production environments." Also remember that proactive scanning to inventory
own network will be more difficult with programs such as this installed.

not let this long list of limitations dissuade you from even considering port knocking. It may be appropriate
specific circumstances, particularly those related to hidden backdoors or remote administration of a

nal machine .

1 .5 .3 . Honeypots and Honeynets

increasingly popular method for confusing attackers is to place bait systems on a network and monitor
m for attacks. These are known as honeypots. I am a member of the Honeynet Project6, which installs
works of these for research purposes. Many corporations have deployed these systems for corporate
urity purposes , though doing so is risky. The extensive monitoring required makes them high-maintenance
there is always a risk that attackers wi l l break in and use the machines to commit serious crimes. Lower

intenance solutions, such as Honeyd described in the next section, or even an IDS, may be more appropriate.
any case, honeypots are designed to catch more invasive attacks than simple Nmap scans, so they are not

· ussed further.

11.5. Clever Trickery 301

1 1 .5.4. OS Spoofing

Several programs have been developed specifically to trick Nmap OS detection. They manipulate the host
operating system to support custom responses to Nmap probes. In this way, a Linux PC can be made to
resemble an Apple LaserWriter printer or even a webcam. IP Personality7, released in 2000, is one of the
most popular systems. It extends the Linux Netfilter framework to support these shenanigans. Unfortunately,
it has not been updated since April 2002 and may not work on kernel versions beyond 2.4. 18 .

Tool availability alone does not make OS spoofing a good idea. One has to justify the effort somehow. The
IP Personality FAQ avoids the question "Why would you need this?" by responding that "If you ask this,
then you don't". Nevertheless, some people find it valuable enough to write and use these tools. One reason
is that specific OS information makes it easier for attackers to infer vulnerabilities on your network, and also
helps decide what sort of exploit to run. Of course the vulnerability itself is the real problem there, and should
be fixed. Other people run this sort of tool because they are embarrassed about the OS they run, or they are
extremely privacy conscious. If your operating system is in a legal gray area because some company is
claiming IP infringement and filing suits against users, OS spoofing might protect against such a nuisance
suit.

One serious problem with masking a host OS this way is that it can cause security and functionality problems.
Nmap tests for several important security properties, such as TCP initial sequence number and IP identification
number predictability. Emulating a different system, such as a printer, may require weakening these number
sequences so that they are predictable and vulnerable to all the attacks that implies. The obscurity gained by
spoofing your operating system fingerprint is not worth sacrificing valuable security mechanisms. This sort
of spoofing can also cripple functionality. Many Nmap OS detection tests involve asking the system what
TCP options are supported. Pretending not to support certain options such as timestamps and window scaling
will remove the efficiency benefits of those options. Pretending to support unavailable options can be
disastrous.

In Example 1 1 .2, Nmap is fooled by IP Personality into believing a Linux box is really a Sega Dreamcast
· game console. It is from a paper entitled A practical approach for defeating Nmap OS-Fingerprinting8 by
David Barroso Berrueta. That excellent paper includes far more examples, as well as detailed configuration
instructions. It also describes many similar systems, with handy warnings such as "the code is not very stable.
I loaded the module and in a few moments my Linux box got frozen."

7 http://ippersonality.so11rceforge.netl
8 http://nmap.org/misc/defeat-nmap-osdetect.html

302 1 1 .5. Clever Trickery

Example 1 1.2. Deceiving Nmap with IP Personality

, nmap -ss -0 -oN nmap2 . log 1 9 2 . 1 6 8 . 0 . 1 9

bteresting ports on 1 9 2 . 1 6 8 . 0 . 1 9 :
jThe 159 7 ports scanned but not shown below are in state : closed)

Port State Service
22/tcp open ssh
'5/tcp open smtp
80/tcp open http
J,43/tcp open imap
Remote operat ing s ystem gue s s : Sega Dreamcast
Nmap finished : 1 IP address (1 host up) scanned in 5 . 8 8 6 seconds

A newer and more popular program for operating system spoofing (among other features) is Honeyd9. It is
actively maintained by author Niels Provos and offers several major benefits over IP Personality. One is that
it is much easier to configure. Almost 100 configuration l ines were required for the Dreamcast spoofing
using IP Personality, above. Honeyd, on the other hand, simply reads the Nmap OS detection database and
emulates any OS the user chooses. (Be aware that Honeyd uses a database from Nmap's 1 st generation OS
detection, which was discontinued in 2007.) Honeyd also solves the security and functionality problems of
OS spoofing by creating synthetic hosts for the emulation. You can ask Honeyd to take over hundreds of
unused IP addresses in an organization. It responds to probes sent to those IPs based on its configuration.
This eliminates the security and functionality risks of trying to mask a host's own TCP stack. You are creating
a bunch of synthetic hosts instead, so this does not help obscure the OS of existing hosts. The synthetic hosts
basically constitute a low-maintenance honeynet that can be watched for attacks. It is mostly intended for
research purposes, such as using the worldwide network of Honeyd installations to identify new worms and
track spammer activity.

As with other techniques in this section, I recommend experimenting with OS spoofing only when completely
satisfied by your security posture. Spoofing a single OS, or even adding hundreds of decoy Honeyd instances,
is no substitute for patching vulnerable systems. Many attackers (and especially worms) do not even bother
with OS detection before sending exploit code.

It is also worth noting that these systems are easy to detect by skilled attackers. It is extraordinarily hard to
present a convincing facade, given all of application and TCP stack differences between operating systems.
Nobody will believe that the system in Example 1 1 .2, "Deceiving Nmap with IP Personality" [303] offering
IMAP, SMTP, and SSH is really a Dreamcast running its native OS. In addition, a bug in all versions up to
0.8 allowed for simple Honeyd identification with a single probe packet. There are also many TCP
characteristics that Honeyd cannot yet handle. Those can be used to detect Honeyd, though Nmap does not
automate this work. If Honeyd becomes widespread, detection functionality will l ikely be added to Nmap.

Deception programs such as Honeyd are just one reason that Nmap users should interpret Nmap results
carefully and watch for inconsistencies, particularly when scanning networks that you do not control.

1 1 .5.5. Tar Pits

Rather than trick attackers, some people a im for just slowing them down. Tar pits have long been popular
methods for slowing Internet worms and spammers. Some administrators use TCP techniques such as

9 hllp:l/www.honeyd.org

1 1 .5. Clever Trickery 303

zero-sized receive windows or slowly trickling data back byte by byte. LaBrea 10 is a popular implementa ·

of this. Others use application-level techniques such as long delays before responding to SMTP comma
While these are mostly used by anti-spammers, simi lar techniques can be used to slow Nmap scans.

example, limiting the rate of RST packets sent by closed ports can dramatically slow scanners down.

1 1 .5.6. Reactive Port Scan Detection

We previously discussed scan detection using tools such as Scanlogd. Other tools go much further than
and actually respond to the scans. Some people propose attacking back by launching exploits or denial
service attacks against the scan source. This is a terrible idea for many reasons. For one, scans are ofi
forged. If the source address is accurate, i t may be a previous victim that the attacker is using as a scapeg
Or the scan may be part of an Internet research survey or come from a legitimate employee or customer.
Even if the source address is a computer belonging to an actual attacker, striking back may disrupt innoceQl
systems and routers along the path. It may also be i l legal.

While the idea of attacking back is widely shunned in the security community, there is much more interest
in responding to detected attacks by adjusting firewall rules to block the offending IP address. The idea is
to prevent them from following up on the scan with an actual attack. There are several risks in this approach.
One is that you show your hand. It will be obvious to attackers that they have been blocked, and most have
plenty of other IP addresses they can use to continue probing. They will then know about your reactive
system, and could escalate their own attacks. A more important problem is that scans are so easily forged.
Section 1 0.5.3, "Misleading Intrusion Detection Systems" [284] describes several methods for doing so.
When an attacker notices the block, he may spoof scans from important systems, such as major web sites
and DNS servers. A target network which then blocks those IPs will be committing a denial of service attack
on itself. Restricting firewall blocks to scans that initiate a full TCP connection reduces the spoofing problem,
but that fails to stop even the default Nmap SYN scan.

1 1 .5. 7. Escalating Arms Race
.
While the primary focus of this book is on open-source tools, a number of commercial vendors have introduced
products that attempt to deceive Nmap. One example is the Cisco Security Agent. The evaluation guide
claims the following protections against Nmap.

Network Mapper (Nmap) identifies which devices are present on a network and what
operating system and services they are running by sending out a series of network probes.
The presence of a device on the network and the ports it is running are both announced by
its response to Nmap probes. The pattern of error messages returned identifies the operating
system. Nmap is surprisingly accurate. It is frequently used at the initial stage of an attack
or investigation to determine which systems might respond to an attacker's exploits.

Expected outcome of Nmap scan against Cisco Security Agent protected systems: Nmap
is unable to identify the target operating system of systems running the default server or
default desktop policies. Nmap scans appear to hang while its security tests timeout. Nmap
scans against systems not protected by Cisco Security Agent report results very quickly

I am investigating how CSA works, and whether Nmap can automatically detect and adjust for it. Scanning
technology is an arms race. Open source and commercial companies will continue to create products designed

JO http://labrea.sourceforge.11etl

304 1 1 .5. Clever Trickery

to slow down, block, or deceive Nmap and other tools. Meanwhile, Nmap continually improves, developing
resiliency in the face of these challenges.

1 1 .5. Clever Trickery 305

Chapter 1 2. Zenmap GUI Users' Guide

12.1 . Introduction
1.enmap is the official graphical user interface (GUI) for the Nmap Security Scanner. It is a multi-platform,
free and open-source application designed to make Nmap easy for beginners to use while providing advanced
features for experienced Nmap users. Frequently used scans can be saved as profiles to make them easy to
run repeatedly. A command creator allows interactive creation of Nmap command lines. Scan results can be
saved and viewed later. Saved scans can be compared with one another to see how they differ. The results
of recent scans are stored in a searchable database. A typical Zenmap screen shot is shown in Figure 1 2. 1 .

See the official Zen map web page 1 for more screen shots.

Figure 12.1. Typical Zenmap screen shot

Sca������.O.O. l;-;;.;;��;;:-.; x1
�J ftntensesu_• _______ E]

nm�·TAggres�����a�!����!�:!'..:.��-��

-=-'-----'
!los

,

st.'lto; up

MAC:

, 19'1\

G§���-:;��-�����e._,.._..._ ... _:_ _ ___ ::J

]!-�--·-·- �J
��-=====:::::::::::::::::::::::::::::

This guide is meant to make Nmap and Zenmap easy to use together, even if you haven't used either before.
For the parts of this guide that deal specifically with Nmap (command-line options and such), refer to
Chapter 15 , Nmap Reference Guide [373) .

12.1 .1 . The Purpose of a Graphical Frontend for Nmap

No frontend can replace good old command-line Nmap. The nature of a frontend i s that i t depends o n another
tool to do its job. Therefore the purpose of Zenmap is not to replace Nmap, but to make Nmap more useful.
Here are some of the advantages Zenmap offers over plain Nmap.

1 http://nmap.org/zenmapl

12 . 1 . Introduction 307

Interactive and graphical results viewing
In addition to showing Nmap's normal output, Zenmap can arrange its display to show all ports oa
host or all hosts running a particular service. It summarizes detai ls about a single host or a com
scan in a convenient display. Zenmap can even draw a topology map of discovered networks. The res
of several scans may be combined together and viewed at once.

Comparison
Zenmap has the ability to graphically show the differences between two scans. You can see what chan
between the same scan run on different days, between scans of two different hosts, between scans
the same hosts with different options, or any other combination. This allows administrator
track new hosts or services appearing on their networks, or existing ones going down.

Convenience
Zenmap keeps track of your scan results until you choose to throw them away. That means you can rui
a scan, see the results, and then decide whether to save them to a file. There is no need to think of a file
name in advance.

Repeatability
Zenmap's command profiles make it easy to run the exact same scan more than once. There's no need
to set up a shell script to do a common scan.

Discoverability
Nmap has literally hundreds of options, which can be daunting for beginners. Zenmap's interface ·
designed to always show the command that will be run, whether it comes from a profi le or was built up
by choosing options from a menu. This helps beginners learn and understand what they are doing. It
also helps experts double-check exactly what will be run before they press "Scan".

12.2. Scanning
Begin Zenmap by typing zenmap in a terminal or by clicking the Zenmap icon in the desktop environmenL
The main window, as shown in Figure 1 2.2, is displayed.

Mij:ill

j1 ntense

lnma p

I I
I

308 1 2.2. Scanning

One of Zenmap's goals is to make security scanning easy for beginners and for experts. Running a scan is
as simple as typing the target in the 'Target" field, selecting the "Intense scan" profile, and clicking the
"Scan" button. This is shown in Figure 1 2.3.

Figure 12.3. Target and profile selection

Target: lscanme.nmap.org ..:J Profi le: j1ntense scan ..:J _8
Command: jnmap -T4 -A -v -PE -PA2 1,23,80,3389 scanme.nmap.org

While a scan is running (and after it completes), the output of the Nmap command is shown on the screen.

Any number of targets, separated by spaces, may be entered in the target field. All the target specifications
supported by Nmap are also supported by Zenmap, so targets such as 1 9 2 . 1 6 8 . 0 . 0 I 2 4 and 1 0 . 0 . 0 - 5 . *
work. Zenmap remembers the targets scanned most recently. To re-scan a host, select the host from the
combo box attached to the "Target" text field.

1 2.2.1 . Profi les

The "Intense scan" is just one of several scan profiles that come with Zenmap. Choose a profile by selecting
it from the "Profile" combo box. Profiles exist for several common scans. After selecting a profile the Nmap
command line associated with it is displayed on the screen. Of course, it is possible to edit these profiles or
create new ones. This is covered in Section 1 2.7, "The Profile Editor" [323] .

I t is also possible to type in an Nmap command and have it executed without using a profile. Just type in the
command and press return or click "Scan". When you do this the "Profile" entry becomes blank to indicate
that the scan is not using any profile-it comes directly from the command field.

1 2.2.2. Scan Aggregation

Zenmap has the abi lity to combine the results of many Nmap scans into one view, a feature known a s scan
aggregation. When one scan is finished, you may start another in the same window. When the second scan
is finished, its results are merged with those from the first. The collection of scans that make up an aggregated
view is called a network inventory.

1 2.2. Scanning 309

An example of aggregation will make the concept clearer. Let's run a quick scan against scanme.nmap.org.

I .org _:J louick I:J Scanl
}nmap

I I

.'111 7n

liM!Di !Quick

lnmap

Now results for both scanme and localhost are shown. This is something you could have done with one Nmap
scan, giving both targets, although it's convenient not to have to think of all the targets in advance. Now
suppose we want some more information about scanme, so we launch an intense scan on it.

lt4h,l§il

I !i ntense

lnmap

Scans

p
•

Now scanme has a little penguin icon showing that its operating system has been detected as Linux.
Additionally some of its services have been identified. Now we're doing something you can't do with a single
Nmap scan, because you can't single out a host for more intense scanning like we did. The results for localhost

310 1 2.2. Scanning

are still present, though we won't know more about it than we did before unless we decide to do a more
in-depth scan.

It is not necessary to wait for one scan to finish before starting another. Several scans may run concurrently.
As each one finishes its results are added to the inventory. Any number of scans may make up an inventory;
the collection of scans is managed in the "Scans" scan results tab, as fully described in the section called
'The Scans tab" [3 1 5) .

It is possible to have more than one inventory open a t the same time. Zenmap uses the convention that one
window represents one network inventory. To start a new inventory, select "New Window" from the "Scan"
menu or use the ctrl+N keyboard shortcut. Starting a scan with the "Scan" button will append the scan to
the inventory in the current window. To put it in a different inventory open up a separate window and run
the scan from there. Loading scan results from a file or directory will start a new inventory, unless you use
the "Open Scan in This Window" menu item. For more on saving and loading network inventories and
individual scans see Section 12.4, "Saving and Loading Scan Results" [3 1 6) .

To close a window choose "Close Window" from the "Scan" menu or press ctrl+ W . When all open windows
are closed the application will terminate. To close all open windows select "Quit" or press ctrl+Q.

1 2.3. Interpret ing Scan Resu lts
Nmap's output i s displayed during and after a scan. This output will be familiar to Nmap users. Except for
Zenmap's color highlighting, this doesn't offer any visualization advantages over running Nmap in a terminal.
However, other parts of Zenmap's interface interpret and aggregate the terminal output in a way that makes
scan results easier to understand and use.

1 2.3.1 . Scan Results Tabs

Each scan window contains five tabs which each display different aspects of the scan results. They are:
"Nmap Output", "Ports I Hosts", "Topology", "Host Details'', and "Scans". Each of these are discussed in
this section.

12.3. Interpreting Scan Results 31 1

The "Nmap Output" tab

_n_m_a_p_-_P_E_-_P_A_2_1._2_3._a
_
o ._

33
_

8
_

9
_

-
_
A
_

-
_

v
_

-T
_

4
_

sc
_

a
_

n
_

m
_

e
_

. n
_

m
_

a
_

p_.o_
r_g

____ l__.· I Deta i ls

scanme. nmap. org

Initiating

Completed

scanme. nmap. org
scanme . nmap. org

The "Nmap Output" tab is displayed by default when a scan is run. It shows the familiar Nmap terminal
output. The display highlights parts of the output according to their meaning; for example, open and closed
ports are displayed in different colors. Custom highlights can be configured in zenmap . conf (see
Section 1 2. 1 1 , "Description of zenmap.conf' [333]).

Recall that the results of more than one scan may be shown in a window (see Section 12.2.2, "Scan
Aggregation" [309]). The drop-down combo box at the top of the tab allows you to select the scan to display.
The "Details" button brings up a window showing miscellaneous information about the scan, such as
timestamps, command-line options, and the Nmap version number used.

The "Ports I Hosts" tab

I I I J v J

The "Ports I Hosts" tab's display differs depending on whether a host or a service is currently selected. When
a host is selected, it shows all the interesting ports on that host, along with version information when available.
Host selection is further described in Section 12.3.2, "Sorting by Host" (3 1 5] .

312 12 .3 . Interpreting Scan Results

J = � J J l lversion

<1----···-···-··--·--·····-··- ·······--J�---------- :w
-·- - -- - - - - �·-

When a service is selected, the "Ports I Hosts" tab shows all the hosts which have that port open or filtered.
This is a good way to quickly answer the question "What computers are running HTTP?" Service selection
is further described in Section 1 2.3.3, "Sorting by Service" [3 1 6) .

The "Topology" tab

I I I

The "Topology" tab is an interactive view of the connections between hosts in a network. Hosts are arranged
in concentric rings. Each ring represents an additional network hop from the center node. Clicking on a node
brings it to the center. Because it shows a representation of the network paths between hosts, the "Topology"
tab benefits from the use of the - - traceroute option. Topology view is discussed in more detail in
Section 12.5, "Surfing the Network Topology" [3 17) .

12 .3 . Interpreting Scan Results 313

The "Host Details" tab

The "Host Details" tab breaks all the information about a single host into a hierarchical display. Shown are
the host's names and addresses, its state (up or down), and the number and status of scanned ports. The host's
uptime, operating system, OS icon (see Figure 12.5, "OS icons" [3 1 6)), and other associated details are shown
when available. When no exact OS match is found, the closest matches are displayed. There is also a collapsible
text field for storing a comment about the host which will be saved when the scan is saved to a file (see
Section 1 2.4, "Saving and Loading Scan Results" [3 I 6)).

Each host has an icon that provides a very rough "vulnerability" estimate, which is based solely on the number
of open ports. The icons and the numbers of open ports they correspond to are

314 12.3. Interpreting Scan Results

The "Scans" tab

I I I
The "Scans" tab shows all the scans that are aggregated to make up the network inventory. From this tab
you can add scans (from a file or directory) and remove scans.

While a scan is executing and not yet complete, its status is "Running". You may cancel a running scan by
clicking the "Cancel Scan" button.

1 2.3.2. Sorting by Host

Figure 12.4. Host selection

I

On the left side of Zen map's main window is a column headed by two buttons labeled "Hosts" and "Services".
Clicking the "Hosts" button will bring up a list of all hosts that were scanned, as in Figure 1 2.4. Commonly
this contains just a single host, but it can contain thousands in a large scan. The host list can be sorted by OS
or host name/IP address by clicking the headers at the top of the list. Selecting a host will cause the "Ports
I Hosts" tab to display the interesting ports on that host.

Each host is labeled with its host . name or IP address and has an icon indicating the operating system that
was detected for that host. The icon is meaningful only if OS detection (-0) was performed. Otherwise, the
icon will be a default one indicating that the OS is unknown. Figure 1 2.5 shows all possible icons. Note that
Nmap's OS detection cannot always provide the level of specificity implied by the icons; for example a Red
Hat Linux host will often be displayed with the generic Linux icon.

1 2.3. Interpreting Scan Results 315

Figure 12.5. OS icons

•

1 2.3.3. Sort ing by Service

Figure 12.6. Service selection

http . •

J

Above the same list that contains all the scanned hosts is a button labeled "Services". Clicking that will
change the l ist into a list of all ports that are open, f i 1 tered, or open I f i 1 tered on any of the targets,
as shown in Figure 1 2.6. (Ports that were not listed explicitly in Nmap output are not included.) The ports
are identified by service name (ht tp, ftp, etc.). The list can be sorted by clicking the header of the list.

Selecting a host will cause the "Ports I Hosts" tab to display all the hosts that have that service open or
filtered.

1 2.4. Saving and Load ing Scan Resu lts
To save an individual scan to a file, choose "Save Scan" from the "Scan" menu (or use the keyboard shortcut
ctrl+S). If there is more than one scan into the inventory you will be asked which one you want to save.
Results are saved in Nmap XML format, which is discussed in Section 13 .6, "XML Output (-oX)" [348].

You can save every scan in an inventory with "Save to Directory" under the "Scan" menu (ctrl+alt+S).
When saving an inventory for the first time, you will commonly create a new directory using the "Create

Folder" button in the save dialog. In subsequent saves you can continue saving to the same directory. To

reduce the chance of overwriting unrelated scan files, the save-to-directory function will refuse to continue

316 1 2.4. Saving and Loading Scan Results

if the chosen directory contains a file that doesn't belong to the inventory. If you are sure you want to save
to that directory, delete any offending fi les and then save again.

Saved results are loaded by choosing "Open Scan" from the "Scan" menu, or by typing the ctrl+O keyboard
shortcut . In the file selector, the "Open" button opens a single scan, while the "Open Directory" button opens
every file in the chosen directory (perhaps created using "Save to Directory").

"Open Scan" opens loaded scans in a new window, thereby creating a new inventory. To merge loaded scans
into the current inventory instead, use "Open Scan in This Window".

1 2.4.1 . The Recent Scans Database

Scan results that are not saved to a file are automatically stored in a database. Scan results that are loaded
from a file, and are then modified (such as by the addition of a host comment) but not re-saved, are also
stored in the database. The database is stored in a file called zenmap . db and its location is
platform-dependent (see Section 1 2. 10, "Files Used by Zenmap" [330]). By default, scans are kept in the
database for 60 days and then removed. This time interval can be changed by modifying the value of the ·

save_t ime variable in the [searc h] section of zenmap . conf (see Section 1 2. l l , "Description of
zenmap.conf' [333]).

Zenmap's search interface, because it searches the contents of the recent scans database by default, doubles
as a database viewer. On opening the search window every scan in the database is shown. The list of scans
may then be fi ltered by a search string. See Section 1 2.8 , "Searching Saved Results" [325).

1 2.5. Surfing the Network Topology

/ ji.oo l�I

,,...,..,..,..,,.....,.rr---- r.·
LJ Gl

j��-�'.:: j J J
fi01]

!2.00 j;J jo.70 1±1

1 2.5. Surfing the Network Topology 3 17

1 2.5.1 . An Overview of the "Topology" Tab

Zenmap's "Topology" tab provides an interactive, animated visualization of the connections between hosts
on a network. Hosts are shown as nodes on a graph that extends radially from the center. Click and drag to
pan the display, and use the controls provided to zoom in and out. Click on a host and it becomes the new
center. The graph rearranges itself in a smooth animation to reflect the new view of the network. Run a new
scan and every new host and network path will be added to the topology automatically.

The topology view is most useful when combined with Nmap's - - traceroute option, because that's the
option that discovers the network path to a host. You can view a network inventory that doesn't have traceroute
information in the topology, but network paths will not be visible. Remember, though, that you can add
traceroute information to a network inventory just by running another scan thanks to Zenmap's scan
aggregation.

Initially the topology is shown from the point of view of localhost, with you at the center. Click on a host to
move it to the center and see what the network looks like from its point of view.

The topology view is an adaptation of the RadialNet program by Joao Paulo S. Medeiros.

1 2.5.2. Legend

The topology view uses many symbols and color conventions. This section explains what they mean.

318

0

0
•

D
•

0 ' ' ' . . '
0

Each regular host in the network is represented by a little circle. The color and size of the circle
i s determined by the number of open ports on the host. The more open ports, the larger the circle.
A white circle represents an intermediate host in a network path that was not port scanned. If a
host has fewer than three open ports, it will be green; between three and six open ports, yellow;
more than six open ports; red.

If a host is a router, switch, or wireless access point, it is drawn with a square rather than a circle.

Network distance is shown as concentric gray rings. Each additional ring signifies one more
network hop from the center host.

Connections between hosts are shown with colored lines. Primary traceroute connections are
shown with blue l ines. Alternate paths (paths between two hosts where a different path already
exists) are drawn in orange. Which path is primary and which paths are alternates is arbitrary
and controlled by the order in which paths were recorded. The thickness of a line is proportional
to its round-trip time; hosts with a higher RTT have a thicker l ine. Hosts with no traceroute
information are clustered around localhost, connected with a dashed black line.

If there is no RTT for a hop (a missing traceroute entry), the connection is shown with a blue
dashed l ine and the unknown host that makes the connection is shown with a blue outline .

12.5. Surfing the Network Topology

Some special-purpose hosts may carry one or more icons describing what type of host they are:

Ill A router.

IX] A switch.

IE A wireless access point.

ES A firewall.

ffi A host with some ports filtered.

1 2.5.3. Controls

The controls appear i n a column when the "Controls" button i s clicked. The controls are divided into sections.

Action controls

The controls in the "Action" section control what happens when you click on a host. The buttons in this
section are, from left to right, "Change focus", "Show information", "Group children", and "Fil l region" . .
When the mode is "Change focus", clicking on a host rearranges the display to put the selected host at the
center. When the mode is "Show information'', clicking on a host brings up a window with information about
it.

When the mode is "Group children", clicking a host collapses into it all of its children-those nodes that are
farther from the center. When a host is grouped it appears thus: @. Clicking on a grouped node ungroups it
again. This diagram shows the process of grouping.

Figure 12.7. Grouping a host's children

When the mode is "Fil l region", clicking a host highlights the region of the display occupied by the host and
its children. The highlighted hosts are exactly the same as those that would be grouped in "Group children"
mode. You can choose different colors to highlight different regions. This diagram shows an example of
several regions highlighted in different colors.

12.5. Surfing the Network Topology 319

Figure 1 2.8. Highlighting regions of the topology

Interpolation controls

The controls in the "Interpolation" section control how quickly the animation proceeds when part of the
graph changes.

Layout controls

r I
There are two options for the automatic layout of nodes. Symmetric mode gives each subtree of a host an
equal-sized slice of the graph. It shows the network hierarchy well but hosts far from the center can be
squeezed close together. Weighted mode gives hosts with more children a larger piece of the graph.

320 12.5. Surfing the Network Topology

View controls

/�\ \W(J../ o.

J � J J
110 liJ

The checkboxes in the "View" section enable and disable parts of the display. For example, disable "hostname"
to show only an IP address for each host, or disable "address" to use no labels at all . The "latency" option
enables and disables the display of the round-trip times to each host, as determined by Nmap's
--traceroute option. If "slow in/out" is checked, the animation will not be l inear, but will go faster in
the middle of the animation and slower at the beginning and end.

The compass-like widget pans the screen in eight directions. Click the center to return to the center host. The
ring around the outside controls the rotation of the entire graph.

"Zoom" and "Ring gap" both control the overall size of the graph. "Zoom" changes the size of
everything-hosts, labels, connecting lines. "Ring gap" just increases the spacing between the concentric
rings, keeping everything else the same size. "Lower ring gap" gives a minimum spacing for the rings, useful
mainly when fisheye is enabled.

Fisheye controls

ID [I r-n--- lo.oo l£j lo.oo Iii
The fisheye controls give more space to a selected ring, compressing all the others. The slider controls which
ring gets the most attention. The "interest factor" is how many times greater the ring spacing is for the chosen
ring than it would be with no fisheye. The "spread factor" ranges from - 1 to I . It controls how many adjacent
rings are expanded around the selected ring, with higher numbers meaning more spread.

12.5. Surfing the Network Topology 321

1 2.5.4. Keyboard Shortcuts

The topology display recognizes these keyboard shortcuts:

Key Function

c Return the display to the center host.

a Show or hide host addresses.

h Show or hide hostnames.

Show or hide host icons.

Show or hide latency.

r Show or hide the rings.

1 2.5.5. The Hosts Viewer

jl ipv4J

l!PTRJ

The host viewer is an alternative way to get details about hosts. Activate the viewer by clicking the "Hosts
Viewer" button. All the hosts i n the inventory are presented in a list. Select any host to get details about it.

1 2.6. The Nmap Command Constructor
Wizard
The Nmap command constructor wizard allows the interactive creation of Nmap command lines without
having to remember, for example, that - s s means "SYN scan". Start the wizard by selecting "Command

Wizard" from the "Tools" menu or by typing the ctrl+I keyboard shortcut. The start page of the wizard will
be shown.

322 1 2.6. The Nmap Command Constructor Wizard

must decide whether you wish to save the scan description as a profile to run it again, or just make the
mand and run it once. If you choose to create a profile, you will be prompted to enter the profile's name
description.

nmap

·I
·I
·I

llltlP j j I

Next you are presented with a series of pages that prompt you interactively for Nmap options. Making a
selection from the menus or check boxes will change the command to reflect the selection. For example,
choosing a scan type of "TCP SYN Scan" will add -s S to the command line. Checking "Operating system
detection" will add -0 to the command, and unchecking it will remove it again.

When you get to the end of wizard, click "Apply". If you chose to create a new profile, it will be created and
available in the profile combo box. If you chose to create the command and run it once, it will begin to run
immediately.

12.7. The Profi le Ed itor
It is common with Nmap to want to run the same scan repeatedly. For example, a system administrator may
run a scan of an entire network once a month to keep track of things. Zenmap's mechanism for facilitating
this is called profiles.

Figure 12.9. Choosing a profile

lscanme.nmap.org I :f:J
jnmap

Each window contains a combo box labeled "Profile". Opening it shows what profiles are available. Selecting
a profile will cause the "Command" field to display the command line that will be executed. The profiles
that come with Zenmap are sufficient for many scanning purposes, but sooner or later you will want to create
your own.

1 2.7. The Profile Editor 323

1 2.7.1 . Creating a New Profi le

The commands for working with profi les are under the "Profi le" menu. To create a new profile, select "N
Profile" from the "Profile" menu or use the ctrl+P keyboard shortcut. You will see a dialog like Figure 12. 100

I

Figure 12.10. The profile editor

F'rM1le Et11tor

v !Command]

[
I

ti .D.eletel ka ncell (!IQKI
The profile editor starts by displaying a tab called "Profile'' which asks for the new profile's name and
description. The "Profile name" field is how the scan will be identified in the drop-down combo box in the
scan interface. The text in the "Description" field is a description of the purpose of the profile.

The rest of the tabs allow you to specify Nmap options, either by typing them directly in the "Command"
field or by clicking on the checkboxes. Hover the mouse pointer over an option to get a description of what
the option does and what kind of input it expects.

A profile may or may not include scan targets. If you often run the same scan against the same set of targets,
you will find it convenient to list the targets within the profile. If you plan to run the same scan against
different targets, leave the "Targets" field blank, and fill in the targets later, when you run the scan.

1 2.7.2. Ed iting a Profi le

To edit a profile, select the profi le you want to edit, then choose "Edit Selected Profile" from the "Profile"
menu or use the ctrl+E keyboard shortcut. The profile editor will open, this time with the name and description
fil led from the profile selected. Making a change to the profi le here will modify the profi le permanently.

324 12.7. The Profile Editor

To delete a profi le, click the "Delete" button within the profi le editor after opening the profile you want to
delete as if to edit it. Zenmap will present a warning before deleting the profile. To leave the editor without
modifying the profi le, use the "Cancel" button.

1 2.7.3 . Deriving a New Profi le from an Old One

To create a new profile using another profile as a template, select the template profile, then select "New
Profile with Selected" from the "Profile" menu or use the ctrl+R keyboard shortcut. This will set all the
options based on the selected profile while leaving the name and description blank for you to fill in. Any
changes made to the options will affect only the newly created profi le, not the original profile from which
it was derived.

To leave the editor without creating the derived profile, use the "Cancel" button.

12.8. Search ing Saved Resu lts
Zenmap allows you to search saved scan results files and the database of recent scans. To begin searching,
select "Search Scan Results" from the "Tools" menu or use the ctrl+F keyboard shortcut. The search dialog
appears as shown in Figure 12.1 1 .

Figure 12.11. The search dialog

I
I�

I

I I I
The search interface initially shows all the scans in the recent scans database (for which see Section 1 2.4. l ,
"The Recent Scans Database" [3 1 7]) . The reason all the scans are shown i s simple-no restrictions have yet
been placed on the search, so every possible result is returned.

Searches may be given in terms of several search criteria, however the simplest search is just a keyword

search. Just type a word like scanme in the "Search" field to find all scans that have that word as part of
their output, whether as a host name, operating system name, profile, or anything else. An example of this
is shown in Figure 12 . 12.

12.8. Searching Saved Results 325

Figure 12.12. Keyword search

lll'lmm I�
I I

I I I
Searches happen live, as you type. When you have found the scan you want click the "Open" button or
double-click on the scan name.

More complicated searches can be built up using the "Expressions" interface. Click the "Expressions" button
and graphical representation of the current search will appear. Modify the search by selecting from the combo
boxes displayed. Click "+" to add a criterion and "-" to remove one. Click the "Expressions" button again
to hide the criteria (they are still present in the search string). Editing of the search text is disabled while the
expressions are shown. An example of a more complicated search is shown in Figure 12 . 13 .

Figure 12.13. Expressions search

lscanme IJJE�pressions I!�
-'

I · f·l . - l + -
I -

I

I I I
Searches are and-based, meaning that all the criteria must be true for a scan to match and appear in the results
list. Most searches are case-insensitive. (The only case-sensitive criterion is opt ion : .) By default only the
scans in the recent scans database are searched. To recursively search files in a directory, use the "Include
Directory" expression.

You will have noticed that whenever you choose a search expression a text representation of it appears in
the search entry. The string in the "Search" field is what really controls the search; the "Expressions" interface
is j ust a convenient way to set it. When you have learned what search strings correspond to what expressions,
you may skip the expressions interface and just type in a search string directly.

326 1 2.8. Searching Saved Results

The following is a list of all the textual search criteria recognized by the search interface. Most criteria have
a short form: d : -5 is the same as date : - 5 and op : 8 0 is the same as open : 8 0 . The short form of each
criterion is given in the list below.

<keyword>
An unadorned word matches anything in a scan. For example, apache will match all Apache servers
and li nux will match all Linux hosts. There is a chance of false positives when using the keyword
search, like if a host happens to be named apache or l i nux.

Port states
Every possible port state is also a search criterion. They are

open : <port s> (op : for short)
closed : <port s> (cp : for short)
filtered : <port s> (fp : for short)
unfiltered : <port s> (ufp : for short)
open l f iltered : <port s> (ofp : for short)
closed I filtered : <port s> (cfp : for short)

Use ope n : 8 0 to match scans that have a host with port 80 open. The <port s> argument may also
be a comma-separated list.

Additionally the scanned : (sp :) criterion matches scans i n which the given ports were scanned,
whatever their final state.

date : <YYYY-MM-DD> or date : - <n> (d : for short)
Matches scans that occurred on the given date in < YYYY-MM-DD> format. Or use date : - <n> to
match scans that occurred any on the day <n> days ago. Use date : - 1 to find scans performed yesterday.

When using the <YYYY-MM-DD> format, the date may be followed by one or more - , each of which
widens the range of dates matched by one day on both sides. date : 2 0 0 7 - 1 2 -2 3 matches scans that
occurred between 00:00 and 24:00 on December 23, 2007. date : 2 0 0 7- 1 2 - 2 3 - matches scans that
took place between 00:00 on December 22 and 24:00 on December 24. This "fuzzy" date matching is
useful when you can't remember exactly when you ran a scan.

after : <YYYY-MM-DD> or after : - <n> (a : for short)
Matches scans that occurred on or after the given date in <YYYY-MM-DD> format. Or use after : - <n>

to match scans that occurred within the last <n> days. For example, after : - 7 matches scans that
happened in the last week.

before : <YYYY-MM-DD> or before : - <n> (b : for short)
Matches scans that occurred on or before the given date in < YYYY-MM-DD> format. Or use
before : - <n> to match scans that occurred any time before <n> days ago.

target : <name> (t : for short)
Matches scans of any hosts with the given name. The name may be either the name specified in the scan
or the reverse-DNS name of any host.

1 2.8. Searching Saved Results 327

opt ion : <op t i on> (o : for short)
Matches scans that used the given command-line option. Omit any leading - or -- : opt ion : A ma
scans that used the -A option.

This criterion matches only literally. opt ion : O will not match scans that used -A, even though
implies -0. Similarly opt ion : sU will not match scans that used - s su. Option matching
case-sensitive.

o s : <s tring>

Matches scans of hosts with the given string in any part of their OS description. os : windows

return scans of Microsoft Windows hosts broadly.

service : <s t ri ng> (s : for short)
Matches scans of hosts with the given string in any part of the service description of any of their po
service : s s h will return scans of hosts running any type of SSH.

profi le : <name> (pr : for short)
Matches scans that used the named profile, for example profile : " intense scan " .

inroute : <ho s t > (ir : for short)
Matches scans where the given host appears as an intermediate router in --t raceroute output.

dir : <di rec t ory>
dir : is not really a search criterion. Rather it is the way to search a directory in the filesystem in addition
to those in the recent scans database. Directories are searched recursively for files ending with certain
extensions, xml only by default. To match more file names modify the f i l e_ext ension variable
of the [s earch] section of zenmap . conf according to the instructions in Section 12. 1 1 . 1 , "Sections
of zenmap.conf' (333].

1 2.9. Comparing Resu lts

It is a common desire to run the same scan twice at different times, or run two sli
.
ghtly different scans at t�e

t·me and see how they differ. Zenmap provides an interface for comparing scan results, shown ID
same 1 , ,, "'T' 1 ,, b ·
Figure 12 . 14 . Open the comparison tool by selecting "Compare Results from the ioo s menu

.
or Y using

the ctrl+D (think "diff') keyboard shortcut. Zenmap supports comparing two scan results at a time.

Figure 12.14. Comparison tool

J J I I

J Jcompare

328

I I
_

_
_

x
_

i:
_

1o
_

se_
�

1 2.9. Comparing Results

The first step in performing a comparison is selecting the two scans to compare. The combo boxes under
"Scan Result I " and "Scan Result 2" allow you to choose from open scans. Or click the "Open" buttons to
get scan results from a file. To compare results from the recent scans database, you must first open those
scans using the search interface (see Section 12.8, "Searching Saved Results" [325)).

The distinction between Scan Result l and Scan Result 2 is important. Comparison are always done from
Scan Result I to Scan Result 2, that is, how Scan Result 2 differs from Scan Result I . Once the two results
have been chosen the comparison is done immediately.

1 2.9.1 . Graph ical Comparison

Figure 12.15 shows a comparison of a regular scan and an intense scan of the same host.

Figure 12.15. Graphical comparison

!Regular f::)Qpenl ,...llnt_e_n-se_s_ca_n_o_n s-c-an_m_e-.n-m:.:J f!)Qpenl

j Jcompare

---'®"-li
_
e
_
IP _ __..JJ �Color OescriptionsJ 4'1>0pen in Browser J __

_
x
_
�
_
los
_
•
-��

The differences and similarities of the two scans is shown hierarchically and in colors. Each color also has
a letter code that describes how that part of the scan changed (or not). The codes are: u for unchanged, A for
added, M for modified, and N for not present (or deleted). The colors can be modified by clicking the "Color
Descriptions" button.

1 2.9.2. Text Comparison

An alternative view of the comparison is the text mode, which is activated by clicking the "Text Mode"
button. A text mode comparison of the same two scans is shown in Figure 1 2. 16. An advantage of the text
mode output is that it can be copied and pasted into a file or an email message.

1 2.9. Comparing Results 329

Figure 12.16. Text mode comparison

jRegular I � I �lnt_e_n-se-s-ca_n_o_n -sc-a-nme-.n-m .:J I

l Mode/
I n I I __

_
x

_
ci

_
os

_
e _ __.,

The output of a text mode comparison is similar to that of the Unix diff tool. Each line begins with a character
indicating the meaning of the l ine. The possible character codes are shown in Table 12. 1 .

Table 12.1. Text diff character codes

Code Meaning

" " (space) The l ine is identical in both scans.

+

?

The line was added in the second scan.

The l ine was removed in the second scan.
" , + , and - characters on the remainder of the line indicate which characters were modified,

added, or removed, respectively, in the l ine immediately above.

An HTML rendering of the text difference can be viewed by clicking the "Open in Browser" button. This
view is meant to be saved for archival purposes or printed for a report.

1 2.1 0. Fi les Used by Zenmap
Zenmap uses a number of configuration and control files, and of course requires Nmap to be installed. Where
the fi les are stored depends on the platform and how Zenmap was configured. The configuration files are
divided into two categories: system files and per-user files.

1 2.1 0.1 . The nmap Executable

Zenmap depends on the nmap command-line executable being installed. The program i s first searched for

in all of the directories specified in the PATH environment variable.

330 1 2.10. Files Used by Zenmap

On some platforms the nmap command isn't commonly installed i n any of the directories in PATH. As a
convenience for those platforms, the following additional directories will be searched if the command is not
found in the PATH:

• On Mac OS X, the directory / u s r I local /bin is searched.

• On Windows, the directory containing the Zenmap executable is searched.

To use an absolute path to the executable, or if the executable is installed under a name other than nmap,
modify the nmap_command_path variable in the [paths] section of zenmap . conf. For example, if
you have installed nmap in / opt /bin, use

Jpaths]
pap_command_path = / opt /bin/nmap

Or if you have a custom-compiled version of Nmap called nmap-custom, use

= nmap-custom

See Section 12.1 1 , "Description of zenmap.conf' [333].

12.1 0.2. System Configuration Fi les

These files affect the i nstallation of Zenmap across an entire installation. On Unix and Mac OS X, they are
in <prefix>/ share/ zenmap, where <prefix> is the fi lesystem prefix Zenmap was compiled with.
1be prefix is likely /usr or /usr I local, so Zenmap's file are probably in /usr I share/ z enmap or
/usr / local I share I zenmap. On Windows, the location also depends on where Zenmap was installed.
They are probably in C : \Program F i l e s \Nmap \ share\ zenmap. The Zenmap system configuration
Rtory contains the following:

onfig/

The files under conf ig are copied to per-user configuration directories. See Section 1 2. 10.3, "Per-user
Configuration Files" [332].

The files in the docs subdirectory are Zenmap's documentation files.

subdirectory contain translations of the text used by Zenmap into other
languages.

sc/prof ile_edi tor . xml
This file defines what options are presented by the profile editor (see Section 12 .7, "The Profile
Editor" [323]). It can be edited with care to alter the profile editor system-wide.

sc/wi z ard . xml
This file defines what options are presented by the command constructor wizard (see Section 1 2.6, "The
Nmap Command Constructor Wizard" [322]). It can be edited with care to alter the wizard system-wide.

12 . 10. Files Used by Zenmap 331

1 2.1 0.3. Per-user Configuration Fi les

These files affect only one user of Zenmap. Some of them are copied from the conf ig subdirectory of
system files when Zenmap is run for the first time. Per-user files are in <HOME>/ . zenmap on Unix
Mac OS X, where <HOME> is the current user's home directory. They are in C : \User s \ <USER>\ . ze

on Windows Vista and C : \ Document s and Set t ings\ <USER>\ . zenmap on previous versio
Windows, where <USER> is the name of the current user.

recent s can s . txt
This contains a list of file names of recently saved scans. These scans are shown under the "Scan"
Scans must have been saved to a file to appear here. See Section 1 2.4, "Saving and Loading
Results" [3 16] . If this file doesn't exist it is created when Zenmap is run.

scan_pro f i l e . usp
This file contains descriptions of scan profi les, including the defaults and user-created profiles.
recommend using the profile editor (see Section 1 2.7, "The Profile Editor" [323]) to make changes
this file. This file is copied from the system configuration directory the first time Zenmap is run.

target_l i s t . txt
This file contains a list of recently scanned targets. If it doesn't exist it is created when Zenmap is run.

zenmap . conf
This i s Zenmap's main configuration file. I t holds the settings for a particular user's copy of Zenm
and is discussed in more detail in Section 1 2. 1 1 , "Description of zenmap.conf' [333].

zenmap . db
This is the database of recent scans, as described in Section 1 2.4. 1 , "The Recent Scans Database" [3 17}
It is created if it doesn't already exist.

zenmap_ver s ion
This fi le contains the version of Zenmap that was used to create this per-user configuration directory.
It may be helpful to compare the version number in this file with the file of the same name in the system

configuration directory if you suspect a version conflict. It is simply copied from the system configuration

the first rime Zenmap is run.

1 2.1 0.4. Output Fi les

Whenever a scan is run, Zenmap instructs Nmap to put XML output in a temporary fi le so that Zenmap can

parse it. Normally the XML output file is deleted when the scan is finished. However, if the command line

in Zenmap contains an -ox or -oA option, XML output is written to the named fi le instead, and that file

isn't deleted when the scan completes. In other words, -ox and -oA work the way you would expect. -oG,
-oN, and -os work too, even though Zenmap doesn't use the output fi les produced by those options.

There is one important thing to note in Zenmap's handling of these filenames. Percent characters (%) are

escaped to keep them from being interpreted as s t r f t irne-like format specifiers (see Section 1 3.2.1,

"Controlling Output Type" [338]). This is because Zenmap must know exactly what name Nmap will use for

its output file. If in Zenmap you type -ox scan-%T- % D . xrnl, the output file will be saved in the file

332 12. 10. Files Used by Zenmap

an-%T-%D . xml, not scan- 1 4 4 8 4 0 - 1 2 1 3 0 7 . xml or whatever it would have been based on the
nl lime and date if you were executing Nmap directly.

2.1 1 . Descript ion of zerunap . conf

enmap . conf i s the user-specific configuration file for Zenmap. It i s a plain text file located i n the per-user
nfiguration directory (see Section 12. 10.3, "Per-user Configuration Files" [332]). The syntax is that

�ognized by the Python ConfigParser2 module, which is similar to that of Windows INI files. Sections are
delimited by titles in square brackets. Within sections are lines containing <name>= <va l ue> or
<name> : <val ue> pairs. An excerpt from a zenmap . conf is shown.

True

= 1
ile_extens i on = xml

store_resul t s = 1
directory
llave_time = 6 0 ; days

nmap

Some of these settings can be controlled from within Zenmap without editing the configuration file directly.

12.1 1 .1 . Sections of zerunap . conf

Boolean values are normalized from True, t rue, or 1 to true or anything else to false.

[paths)
The [paths J section defines important paths used by Zenmap. Only one is defined,
nmap_command_path, which is the path to the Nmap executable. Whatever the first word is in a
command line executed by Zenmap will be replaced by the value of this variable. Its default value of
nmap is appropriate for most systems. See Section 12 . 10. 1 , "The nmap Executable" [330] for examples.

[search]
The [search J section defines how the search tool (see Section 1 2.8, "Searching Saved Results" [325])

behaves. The names in this section correspond to the options in the "Search options" tab of the search
dialog. It has the following names defined.

directory
The directory to search for saved scan results files.

file_exten s i on
A semicolon-separated list of file name extensions to search.

2 http:lldocs.pytho11.org/lib/mod11/e-ConfigParser.html

12 . 1 I . Description of zenmap.conf 333

search_db

A Boolean controlling whether to search the recent scans database.

s t ore_resul t s

A Boolean controlling whether to store scan results i n the recent scans database. See Section 12.4.1,

"The Recent Scans Database" [3 1 7) .

s ave_t ime

How long to keep scan results in the recent scans database. Results older than this are deleted whea
Zenmap is closed. The format is a number and a time interval separated by semicolons, for example
6 0 ; days or l ; year s .

[di f f]

The [d i f f] section defines how the comparison tool (see Section 1 2.9, "Comparing Results" [328])

behaves. It has the following names defined.

d i f f_mode
Controls whether comparisons are shown by default in graphical or text mode. Must be either
compare for graphical mode or text.

colored_d i f f
A Boolean that controls if comparisons use color.

[d i f f_co l or s]
The [d i f f_co l or s] section defines the colors used by the comparison tool. It has the following
names defined: unchanged, added, not_present, and mod i f ied, the meanings of which are
defined in Section 1 2.9, "Comparing Results" [328). The value of each of these is a list of three integers
in the range 0--65535 representing red, green, and blue in the format [<red>, <green>, <bl ue>] .

For example, [6 5 5 3 5 , 0 , 0 J specifies red.

[output_highl i ght]
The [output_hi gh l ight] section contains a single Boolean variable enable_highlight,
which enables output highlighting when True and disables it if Fal se.

[date_hi gnlight] , [hostname_highl ight] , [ip_highlight] , [port_l i st_highlight] ,

[open_port_hi ghl i ght] , [c l o sed_port_h i gh l ight] , [f i l tered_port_highlight] ,
[detai l s_highl i ght]

334

These sections all define the nature ofNmap output highlighting, which is discussed in the section called
''The Nmap Output tab" [3 1 2) . These are best edited from within Zen map. Within each of these sections,
the following names are defined.

regex
The regular expression that matches the relevant part of the output.

bold
A Boolean controlling whether to make this highlight bold.

i t a l i c
A Boolean controlling whether to make this highlight italic.

1 2. 1 1 . Description of zenmap.conf

under l i ne
A Boolean controlling whether to underline this highlight.

text

The color of the text in this highlight. The syntax is a l ist of three integers in the range 0--65535

representing red, green, and blue in the format [<red>, <green>, <bl ue> J • For example,
[6 5 5 3 5 , 0 , O J for a red highlight.

high l i g h t

The color of the background in this highlight. The syntax is the same as for t e x t .

12.1 2. Command-l ine Options
Being a graphical application, most of Zenmap's functionality i s exposed through its graphical interface.
l.enmap's command-line options are given here for completeness and because they are sometimes useful. In
particular, it's good to know that the command zenmap <results file> starts Zenmap with the results
in <results fi l e> already open.

1 2.1 2.1 . Synopsis

zenmap [<opt i ons>] [<resul t s fi l e>]

12.1 2.2. Options Summary

-f, --file <resul t s fi l e>

Open the given results file for viewing. The results fi le may be an Nmap XML output file (. xml, as
produced by nmap -oX), or a file previously saved by Zenmap.

-h, --help

Show a help message and exit.

n, --nmap <Nmap command 1 ine>

Run the given Nmap command within the Zenmap interface. After -n or --nmap, every remaining
command line argument is read as the command line to execute. This means that -n or --nmap must
be given last, after any other options. Note that the command l ine must include the nmap executable
name: zenmap -n nmap -sS target.

, --profi l e <profi l e>

Start with the given profile selected. The profile name is just a string: 11 Regu lar scan 11 • If combined
with -t, begin a scan with the given profile against the specified target.

, --target <targe t >

Start with the given target. I f combined with -p, begin a scan with the given profile against the specified
target.

, --verbose

Increase verbosity (of Zenmap, not Nmap). This option may be given multiple times for even more
verbosity printed to the console window used to start Zenmap.

1 2. 12. Command-line Options 335

12.12.3. Error Output

If Zenmap happens to crash, i t normally helps you send a bug report with a stack trace. Set the environ
variable ZENMAP _DEVELOPMENT (the value doesn't matter) to disable automatic crash reporting and

errors printed to the console. Try the Bash shell command ZENMAP _DEVELOPMENT= I zenmap ·V
·V to get a useful debugging output.

On Windows, standard error is redirected to the file zenmap . exe . log in the same directory
z e nmap . exe rather than being printed to the console.

1 2.1 3. History
Zenmap was originally derived from Umit3, an Nmap GUI created during the Google-sponsored Nmap
Summer of Code in 2005 and 2006. The primary author of Umit was Adriano Monteiro Marques. Whet
Umit was modified and integrated into Nmap in 2007, it was renamed Zenmap.

3 http://www.11mitprojec1.org

336 1 2. 13 . History

Chapter 1 3. Nmap Output Formats

13.1 . Introduction
A common problem with open-source security tools is confusing and disorganized output. They often spew

out many lines of irrelevant debugging information, forcing users to dig through pages of output trying to
discern important results from the noise. Program authors often devote little effort to organizing and presenting
results effectively. The output messages can be difficult to understand and poorly documented. This shouldn't
be too surprising-writing clever code to exploit some TCP/IP weakness is usually more gratifying than
documentation or UI work. Since open source authors are rarely paid, they do what they enjoy.

At the risk of offending my friend Dan Kaminsky, I'll name his Scanrand 1 port scanner as an example of a
program that was clearly developed with far more emphasis on neat technical tricks than a user friendly UI.
The sample output in Example 13 . l is from the Scanrand documentation page.

Example 13.1. Scanrand output against a local network

scanrand 1 0 . 0 . l . l - 2 5 4 : quick
1 0 . 0 . 1 . 3 8 : 8 0 (0 1] 0 . 0 0 3 s

1 0 . 0 . 1 . 1 1 0 : 4 4 3 (0 1] 0 . 0 1 7s
1 0 . 0 . 1 . 2 5 4 : 4 4 3 [0 1] 0 . 02 l s

1 0 . 0 . 1 . 5 7 : 4 4 5 (0 1] 0 . 02 4 s
1 0 . 0 . 1 . 59 : 4 4 5 (0 1] 0 . 02 4 s
1 0 . 0 . 1 . 3 8 : 22 (0 1] 0 . 0 4 7 s

1 0 . 0 . 1 . 1 1 0 : 22 (0 1] 0 . 0 5 8 s
1 0 . 0 . 1 . 1 1 0 : 23 (0 1] 0 . 05 8 s
1 0 . 0 . 1 . 2 5 4 : 22 (0 1] 0 . 0 7 7 s
1 0 . 0 . 1 . 2 5 4 : 2 3 (0 1] 0 . 0 7 7 s

1 0 . 0 . 1 . 2 5 : 1 3 5 (0 1] 0 . 0 8 8 s
1 0 . 0 . 1 . 5 7 : 1 3 5 (0 1] 0 . 0 8 9 s
1 0 . 0 . 1 . 5 9 : 1 3 5 (0 1] 0 . 0 9 0 s
1 0 . 0 . 1 . 2 5 : 1 3 9 [0 1] 0 . 0 9 7 s
1 0 . 0 . 1 . 2 7 : 1 3 9 [0 1] 0 . 0 9 8 s
1 0 . 0 . 1 . 5 7 : 1 3 9 [0 1] 0 . 0 9 9 s
1 0 . 0 . 1 . 5 9 : 1 3 9 (0 1] 0 . 09 9 s
1 0 . 0 . 1 . 3 8 : 1 1 1 [0 1] 0 . 1 2 7 s
1 0 . 0 . 1 . 5 7 : 1 0 2 5 [0 1] 0 . 1 4 7 s
1 0 . 0 . 1 . 5 9 : 1 0 2 5 [0 1] 0 . 1 4 75
1 0 . 0 . 1 . 5 7 : 5 0 0 0 [0 1] 0 . 1 5 6 s
1 0 . 0 . 1 . 5 9 : 5 0 0 0 [0 1] 0 . 1 5 7 s
1 0 . 0 . 1 . 53 : 1 1 1 [0 1] 0 . 1 8 2 s

ile Ihis does get the job done, i t i s difficult to interpret. Output i s printed based on when the response was
ived, without any option for sorting the port numbers or even grouping all open ports on a target host

ether. A bunch of space is wasted near the beginning of each line and no summary of results is provided.

1 lutp:llsectools.orgltools4.html#sca11ra11d

13 . 1 . Introduction 337

Nmap's output is also far from perfect, though I do try pretty hard to make it readable, well-organized, and
flexible. Given the number of ways Nmap is used by people and other software, no single format can please
everyone. So Nmap offers several formats, including the interactive mode for humans to read directly and
XML for easy parsing by software.

In addition to offering different output formats, Nmap provides options for controlling the verbosity of output
as well as debugging messages. Output types may be sent to standard output or to named files, which Nmap
can append to or clobber. Output fi les may also be used to resume aborted scans. This chapter includes fuU
details on these options and every output format.

1 3.2. Command- l ine Flags
A s with almost all other Nmap capabilities, output behavior i s controlled by command-line flags. These flags
are grouped by category and described in the following sections.

1 3.2.1 . Contro l l ing Output Type

The most fundamental output control is designating the format(s) of output you would like. Nmap offers
five types, as summarized in the following list and fully described in later sections.

Output formats supported by Nmap

Interactive output
This is the output that Nmap sends to the standard output stream (stdout) by default. So it has no special
command-line option. Interactive mode caters to human users reading the results directly and it is
characterized by a table of interesting ports that is shown in dozens of examples throughout this book.

Normal output (-oN)

This is very similar to interactive output, and is sent to the file you choose. It does differ from interactive
output in several ways, which derive from the expectation that this output will be analyzed after the scan
completes rather than interactively. So interactive output includes messages (depending on verbosity
level specified with -v) such as scan completion time estimates and open port alerts. Normal output

omits those as unnecessary once the scan completes and the final interesting ports table is printed. This
output type prints the nmap command-line used and execution time and date on its first line.

XML output (-ox)

XML offers a stable format that is easily parsed by software. Free XML parsers are available for all
major computer languages, including CIC++, Perl, Python, and Java. In almost all cases that a non-trivial
application interfaces with Nmap, XML is the preferred format. This chapter also discusses how XML

results can be transformed into other formats, such as HTML reports and database tables.

Grepable output (-oG)

338

This simple format is easy to manipulate on the command line with simple Unix tools such as grep,
awk, cut, and diff. Each host is l isted on one line, with the tab, slash, and comma characters used to

delimit output fields. While this can be handy for quickly grokking results, the XML format is preferred
for more significant tasks as it is more stable and contains more information.

13 .2. Command-line Flags

sCRiPt KiDDi3 OutPU+ (-os)
This format is provided for the 133t haXX:orZ!

While interactive output is the default and has no associated command-line options, the other four format
options use the same syntax. They take one argument, which is the filename that results should be stored in.
Multiple formats may be specified, but each format may only be specified once. For example, you may wish
to save normal output for your own review while saving XML of the same scan for programmatic analysis.
You might do this with the options -ox my scan . xml -oN my scan . nmap. While this chapter uses
the simple names like my scan ; xml for brevity, more descriptive names are generally recommended. The
names chosen are a matter of personal preference, though I use long ones that incorporate the scan date and
a word or two describing the scan, placed in a directory named after the company I'm scanning. As a
convenience, you may specify -oA <ba sename> to store scan results in normal, XML, and grepable
formats at once. They are stored in <ba sename>.nmap, <ba sename>.xml, and <ba sename>.gnmap,

respectively. As with most programs, you can prefix the filenames with a directory path, such as
-/nmaplogs / foocorp/ on Unix or c : \hack i ng \ sco on Windows.

While these options save results to files, Nmap still prints interactive output to stdout as usual. For example,
the command nmap -oX myscan.xml target prints XML to my scan . xml and fills standard output with
the same interactive results it would have printed if -ox wasn't specified at all. You can change this by
passing a hyphen character as the argument to one of the format types. This causes Nmap to deactivate
interactive output, and instead print results in the format you specified to the standard output stream. So the
command nmap -ox - t arget will send only XML output to stdout. Serious errors may still be printed
to the normal error stream, stderr.

When you specify a filename to an output format flag such as -oN, that file is overwritten by default. If you
prefer to keep the existing content of the file and append the new results, specify the --append-output
option. All output filenames specified in that Nmap execution will then be appended to rather than clobbered.
This doesn't work well for XML (-ox) scan data as the resultant file generally won't parse properly until
you fix it up by hand.

Unlike some Nmap arguments, the space between the logfile option flag (such as -ox) and the fi lename or
hyphen is mandatory. If you omit the flags and give arguments such as -oG- or -ox s can . xml , a backwards
compatibility feature of Nmap will cause the creation of normal format output files named G- and
Xscan . xml respectively.

All of these arguments support s t r f t ime-like conversions in the filename. % H, %M, % S, %m, %d, %y, and
%Y are all exactly the same as in s t r f t ime. % T is the same as % H%M% S, %R is the same as %H%M, and % 0
is the same a s %m%d%y. A % followed by any other character just yields that character (% % gives you a percent
symbol). So -ox ' s can-%T- % D . xml ' will use an XML file in the form of
scan- 1 4 4 8 4 0 - 1 2 1 3 0 7 . xml .

1 3.2.2. Contro l l ing Verbosity of Output

After deciding which format(s) you wish results to be saved in, you can decide how detailed those results
should be. The first -v option enables verbosity with a level of one. Specify -v twice for a slightly greater
effect. Verbosity levels greater than two aren't useful . Most changes only effect interactive output, and some
also affect normal and script kiddie output. The other output types are meant to be processed by machines,
so Nmap can give substantial detail by default in those formats without fatiguing a human user. However,
there are a few changes in other modes where output size can be reduced substantially by omitting some

13.2. Command-line Flags 339

detail . For example, a comment line in the grepable output that provides a list of all ports scanned is
printed in verbose mode because it can be quite long. The following list describes the major changes
get with at least one -v option.

Scan completion time estimates
On scans that take more than a minute or two, you will see occasional updates like this in inleracti
output mode:

SYN Stealth S can Timi ng : About 3 0 . 0 1 % done ; ETC : 1 6 : 0 4

(0 : 0 1 : 0 9 rema i n i ng)

New updates are given if the estimates change significantly. All port scanning techniques except foc
idle scan and FTP bounce scan support completion time estimation, and so does version scanning.

Open ports reported when discovered
When verbosity is enabled, open ports are printed in interactive mode as they are discovered. They are

sti l l reported in the final interesting ports table as well. This allows users to begin investigating open
ports before Nmap even completes. Open port alerts look like this:

D i s covered open port 5 3 / t cp on 6 4 . 1 3 . 1 3 4 . 5 2

Additional warnings
Nmap always prints warnings about obvious mistakes and critical problems. That standard is lowered
when verbosity is enabled, allowing more warnings to be printed. There are dozens of these warnings,
covering topics from targets experiencing excessive drops or extraordinarily long latency, to ports which
respond to probes in unexpected ways. Rate limiting prevents these warnings from flooding the screen.

Additional notes
Nmap prints many extra informational notes when in verbose mode. For example, it prints out the time
when each port scan is started along with the number of hosts and ports scanned. It later prints out a

concluding l ine disclosing how long the scan took and briefly summarizing the results.

Extra OS detection information
With verbosity, results of the TCP ISN and IP ID sequence number predictability tests are shown. These
are done as a byproduct of OS detection. With verbosity greater than one, the actual OS detection
fingerprint is shown in more cases.

Down hosts are printed in ping scan
During a ping scan with verbosity enabled, down hosts will be printed, rather than just up ones.

Birthday wishes
Nmap wishes itself a happy birthday when run in verbose mode on September I .

The changes that are usually only useful until Nmap finishes and prints its report are only sent to interactive
output mode. If you send normal output to a file with -oN, that file won't contain open port alerts or completion
time estimates, though they are still printed to stdout. The assumption is that you will review the file when
Nmap is done and don't want a lot of extra cruft, while you might watch Nmap's execution progress on
standard output and care about runtime progress. If you really want everything printed to stdout sent to a

file, use the output stream redirection provided by your shell (e.g. nmap -v scanme.nmap.org >
scanoutput.nmap) .

340 1 3.2. Command-line Flags

dozens of small changes contingent on verbosity (mostly extra messages) are too numerous to cover
. They are also always subject to change. An effective way to see them all is to unpack the latest Nmap
I I and grep for them with a command such as grep -Al o.verbose *.cc. Representative excerpts from

output are shown in Example 1 3.2.

mple 13.2. Grepping for verbosity conditionals

if (o . debugging I I o . verbose) {
log_wr ite (LOG_STDOUT, " I nitiat ing Idlescan aga inst % s \n " ,

target ->Name I P ()) ;

if (o . verbose)
output_port s_to_machine_parseable_output (por t s , o . TCPScan () ,

o . udpscan , o . ipprot scan) ;

i f (o . debugging I I o . verbose)
gh_perror (" recvfrom i n get_rpc_results ") ;

if (o . verbose & & openport ! = (uns i gned long) - 1)
log_wr ite (LOG_STDOUT, " For OSScan as suming port %d i s open, %d . . . "

if (o . verbose)
log_wr ite (LOG_NORMAL I LOG_SKI D I LOG_STDOUT,

" IP ID Sequence Generat ion : % s \n " , . . .

The following two examples put all of this together. Example 1 3.3 shows the output of a normal scan without
the -v option.

13 .2. Command-line Flags 341

Example 13.3. Interactive output without verbosity enabled

nmap -T4 -A -p- scanme . nmap . org

Start ing Nmap (http : / /nmap . org)
Interesting por t s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) :
Not shown : 6 5 5 2 9 f i ltered por t s
PORT STATE SERVICE VERS I ON
2 2 / t cp open ssh OpenSSH 4 . 3 (protocol 2 . 0)
2 5 / t cp c losed smtp
5 3 /tcp open doma in I SC BIND 9 . 3 . 4
7 0 / tcp closed gopher
8 0 / t cp open http Apache httpd 2 . 2 . 2 ((Fedora))
I _ HTML t i t l e : Go ahead and ScanMe !
1 1 3 / tcp c losed auth
Device t ype : general purpose
Running : Linux 2 . 6 . X
OS deta i l s : L i nux 2 . 6 . 1 7 - 2 . 6 . 2 1 , Linux 2 . 6 . 23

TRACEROUTE (using port 2 2 /tcp)
HOP RTT ADDRESS
1 1 6 . 92 nodem-ms fc-vl 2 4 5-act -secur ity-gw- 1 - 1 1 3 . ucsd . edu (1 3 2 . 2 3 9 . 1 . 1 13)
[. . . nine s imilar l ines c u t . . .]
1 1 2 1 . 9 7 s canme . nmap . org (6 4 . 1 3 . 1 3 4 . 5 2)

OS and Service detect ion performed . Please report any incorrect results �

at http : / / nmap . org/ submit / .
Nmap done : 1 I P address (1 host up) s canned in 1 6 8 . 1 0 seconds

Example 1 3.4 is the output of the same scan with verbosity enabled. Features such as the extra OS identification
data, completion time estimates, open port alerts, and extra informational messages are easily identified in
the latter output. This extra info is often helpful during interactive scanning, so I always specify -v when
scanning a single machine unless I have a good reason not to.

342 13 .2. Command-line Flags

Example 13.4. Interactive output with verbosity enabled

i nmap -v -T4 -A -p- scanme . nmap . org
Starting Nmap (http : / / nmap . or g)
Init iating Ping Scan at 0 0 : 1 2
Completed Ping Scan at 0 0 : 1 2 , 0 . 02 s elapsed (1 total host s)
Initiating SYN Stealth Scan a t 0 0 : 1 2
Scanning scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) [6 5 5 3 5 por t s]
Discovered open port 8 0 / tcp o n 6 4 . 1 3 . 1 3 4 . 52
Discovered open port 5 3 / t cp on 6 4 . 1 3 . 1 3 4 . 52
Discovered open port 2 2 / t cp on 6 4 . 1 3 . 1 3 4 . 52
SYN Stealth Scan Timing : About 1 6 . 6 6 % don e ; ETC : 0 0 : 1 5 (0 : 02 : 3 0 remaining)
Completed SYN Stealth Scan at 0 0 : 1 4 , 1 2 5 . 1 3 s elapsed (6 5 5 3 5 total por t s)
Scanning 3 services o n scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52)
Completed Service scan at 0 0 : 1 4 , 6 . 0 5 s elapsed (3 services on 1 host)
Init iat ing OS detection (try # 1) against scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 5 2)
[Removed some verbose traceroute and parallel DNS related mes sage s]
Init iating SCRIPT ENGINE at 0 0 : 1 4
Completed SCRIPT ENGINE at 0 0 : 1 4 , 4 . 0 9 s e lapsed
Host scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) appears to be up . . . good .
Interesting ports on scanme . nmap . or g (6 4 . 1 3 . 1 3 4 . 52) :
Not shown : 6 5 5 2 9 f i l tered por t s
PORT STATE SERVICE VERS I ON
2 2 /tcp open ssh OpenSSH 4 . 3 (protocol 2 . 0)
2 5/tcp closed smtp
5 3 /tcp open domain I SC BIND 9 . 3 . 4
70/tcp closed gopher
80/tcp open http Apache httpd 2 . 2 . 2 ((Fedora))
I _ HTML t itle : Go ahead and ScanMe !
113 /tcp c losed auth
Device type : general purpose
Running : Linux 2 . 6 . X
OS detai l s : Linux 2 . 6 . 1 7 - 2 . 6 . 2 1 , Linux 2 . 6 . 23
Upt ime guess : 1 2 . 4 7 6 days (since Wed Jul 2 1 2 : 4 8 : 56 2 0 0 8)
TCP Sequence Predict ion : Difficulty= l 9 8 (Good luck !)
IP I D Sequence Generat ion : All zeros

TRACEROUTE (us ing port 2 2 /tcp)
HOP RTT ADDRESS
1 0 . 2 5 nodem-ms fc-vl 2 4 5-act-security-gw- l - 1 1 3 . ucsd . edu (1 3 2 . 2 3 9 . 1 . 1 1 3)
[. . . nine s imilar l ines cut . . .]
1 1 2 0 . 6 7 scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52)

OS and Service detection per formed . Please report any incorrect result s �
at http : / /nmap . org/submi t / .

Nmap done : 1 I P address (1 host up) scanned in 1 4 7 . 4 6 2 seconds
Raw packets sent : 1 3 1 1 2 8 (5 . 7 7 1MB) I Rcvd : 2 8 3 6 3 7 (1 2 . 5 1 5MB)

13.2.3. Enabl ing Debugg ing Output

When even verbose mode doesn't provide sufficient data for you, debugging is available to flood you with
much more ! As with the verbosity option (-v), debugging is enabled with a command-line flag (-d) and
the debug level can be increased by specifying it multiple times. Alternatively, you can set a debug level by

13 .2. Command-line Flags 343

giving an argument to -d. For example, -d9 sets level nine. That is the highest effective level and will

produce thousands of lines unless you run a very simple scan with very few ports and targets.

Debugging output is useful when a bug is suspected in Nmap, or if you are simply confused as to what Nmap
is doing and why. As this feature is mostly intended for developers, debug l ines aren't always self-explanatory.
If you don't understand a l ine, your only recourses are to ignore it, look it up in the source code, or request
help from the development list (nmap-dev). Some lines are self explanatory, but messages become more
obscure as the debug level is increased. Example 13 .5 shows a few different debugging lines that resulted
from a -d5 scan of Scanme.

Example 13.5. Some representative debugging lines

Timeout va l s : srtt : 2 7 4 9 5 r ttvar : 2 7 4 9 5 to : 1 3 7 4 7 5 delta -2 753
==> srtt : 2 7 1 5 0 rttvar : 2 1 3 0 9 to : 1 1 2 3 86

RCVD (1 5 . 3 3 3 0 s) TCP 6 4 . 1 3 . 1 3 4 . 5 2 : 2 5 > 1 3 2 . 2 3 9 . 1 . 1 1 5 : 5 0 1 2 2 RA ttl=52
id=O iplen=40 seq=O win=O ack= 4 2 2 2 3 1 8 6 73

* * T IMING STATS * * (1 5 . 3 3 5 0 s) : I P , probes act ive/ freshports left/retry_stack/
out standing/ retranwait/onbench,

cwnd/ ccthresh/delay, t imeout/ srtt/rttvar/
Groupstats (1 / 1 incomplete) : 8 3 / * / * / * / * / * 8 2 . 8 0 / 7 5 / * 1 0 0 0 0 0 / 2 52 5 4 / 4 6 06
6 4 . 1 3 . 1 3 4 . 52 : 8 3 / 6 0 83 6 / 0 / 7 7 7 / 3 1 6 / 4 2 9 5 82 . 8 0 / 7 5 / 0 1 0 0 0 0 0 / 2 6 2 0 0 / 4223

Current sending rates : 7 1 1 . 8 8 packets I s , 3 1 3 2 2 . 5 7 bytes I s .
Overal l sending rates : 6 1 8 . 2 4 packets I s , 2 7 2 02 . 6 2 bytes I s .
Discovered filtered port 1 0 7 5 2 / t cp on 6 4 . 1 3 . 1 3 4 . 5 2
Packet capture f i lter (device ethO) : dst host 1 3 2 . 2 3 9 . 1 . 1 1 5 and

(icmp or ((tcp or udp) and
(src host 6 4 . 1 3 . 1 3 4 . 5 2)))

SCRIPT ENGINE : TCP 1 3 2 . 2 3 9 . 1 . 1 1 5 : 59 0 4 5 > 6 4 . 1 3 . 1 3 4 . 5 2 : 5 3 I CLOSE

No full example is given here because debug logs are so long. A scan against Scanme used 32 lines of text
without verbosity (Example 13 .3, "Interactive output without verbosity enabled" [342]), and 61 with it
(Example 13 .4, "Interactive output with verbosity enabled" [343]). The same scan with -d i nstead of -v

took 1 1 3 l ines. With -d2 it ballooned to 65,731 l ines, and -d5 output 396,879 l ines! The debug option
implicitly enables verbosity, so there is no need to specify them both.

Determining the best output level for a certain debug task is a matter of trial and error. I try a low level first
to understand what is going on, then i ncrease it as necessary. As I learn more, I may be able to better isolate
the problem or question. I then try to simplify the command in order to offset some increased verbiage of
the higher debug level.

Just as grep can be useful to identify the changes and levels associated with verbosity, it also helps with
investigating debug output. I recommend running this command from the nmap- <VERSION> directory in
the Nmap source tarball :

grep -Al o.debugging *.cc

1 3.2.4. Hand l ing Error and Warning Messages

Warnings and errors printed by Nmap usually go only to the screen (interactive output), leaving any
normal-format output files (usually specified with -oN) uncluttered. When you do want to see those messages
in the normal output file you specified, use the - - l og-error s option. It is useful when you aren't watching

344 13 .2. Command-line Flags

the interactive output or when you wan t to record errors while debugging a problem. The error and warning
messages will still appear in interactive mode too. This won't work for most errors related to bad command-line
arguments because Nmap may not have i nitialized its output files yet. In addition , some Nmap error and
warning messages use a different system which does not yet support this option.

An alternative to - - l og-error s is redirecting i nteractive output (including the standard error stream) to
a file. Most Unix shells make this approach easy. For example, tcsh uses the format nmap <opt ions> >&
alloutput . runap. Bash uses a slightly different syntax: nmap <options> &> alloutput . runap.
The Windows cmd.exe syntax for doing this is so convoluted that - - l og-errors is recommended instead.
For example, you can run nmap --log-errors -oN alloutput . runap <opt ions>.

1 3.2.5. Enabl ing Packet Tracing

The --packet-trace option causes Nmap to print a summary of every packet i t sends and receives. This
can be extremely useful for debugging or understanding Nmap's behavior, as examples throughout this book
demonstrate. Example 1 3.6 shows a simple ping scan of Scanme with packet tracing enabled.

Example 13.6. Using - -packet -t race to detail a ping scan of Scanme

i nmap --packet-trace -n -sP sca nme . nmap . or g

Starting Nmap (http : / /nmap . or g)
SENT (0 . 0 2 3 0 s) I CMP 1 3 2 . 23 9 . 1 . 1 1 5 > 6 4 . 1 3 . 1 3 4 . 5 2 echo request

(type=8 /code=0) ttl=38 id=5 4 2 0 iplen= 2 8
SENT (0 . 0 2 3 0 s) TCP 1 3 2 . 2 3 9 . 1 . 1 1 5 : 4 3 7 4 3 > 6 4 . 1 3 . 1 3 4 . 52 : 8 0 A t t l = 5 7

id=2 9 4 1 5 iplen = 4 0 seq=2 7 9 9 6 0 5 2 7 8 win= 2 0 4 8 a ck=2 1 2 0 8 3 4 9 0 5
RCVD (0 . 03 8 0 s) TCP 6 4 . 1 3 . 1 3 4 . 52 : 8 0 > 1 3 2 . 2 3 9 . 1 . 1 1 5 : 4 3 7 4 3 R t t l =5 2

id=O iplen=4 0 seq=2 1 2 0 8 3 4 9 0 5 win=O
Host 64 . 1 3 . 1 3 4 . 52 a ppe a r s t o be up .
Nmap done : 1 I P a ddress (1 host up) scanned in 0 . 0 4 seconds

This Nmap execution shows three extra lines caused by packet tracing (each have been wrapped for
readability). Each line contains several fields. The first is whether a packet is sent or received by Nmap, as
abbreviated to SENT and RCVD. The next field is a time counter, providing the elapsed time since Nmap
started. The time is in seconds, and in this case Nmap only required a tiny fraction of one. The next field is
the protocol: TCP, UDP, or ICMP. Next comes the source and destination IP addresses, separated with a
directional arrow. For TCP or UDP packets, each IP is followed by a colon and the source or destination
port number.

The remainder of each l ine is protocol specific. As you can see, ICMP provides a human-readable type if
avai lable (echo request in this case) followed by the ICMP type and code values. The ICMP packet
logs end with the IP TTL, ID, and packet length field. TCP packets use a slightly different format after the
destination IP and port number. First comes a list of characters representing the set TCP flags. The flag
characters are SAFRPUEC, which stand for SYN, ACK, FIN, RST, PSH, URG, ECE, and CWR, respectively.
The l atter two flags are part of TCP explicit congestion notification, described in RFC 3 168.

Because packet tracing can lead to thousands of output lines, it helps to limit scan intensity to the minimum
that still serves your purpose. A scan of a single port on a single machine won't bury you in data, while the
output ofa --packet-tr ace scan of a whole network can be overwhelming. Packet tracing is automatically
enabled when the debug level (-d) is at least three.

1 3.2. Command-line Flags 345

Sometimes - -packet -t race provides specialized data that Nmap never shows otherwise. For ex
Example 1 3.6, "Using --packet-trace to detail a ping scan of Scanme" [345] shows ICMP and TCP
packets sent to the target host. The target responds to the ICMP echo request, which can be val
information that Nmap doesn't otherwise show. It is possible that the target host replied to the TCP
as well-Nmap stops listening once it receives one response to a ping scan since that is all it takes to det
that a host is online.

1 3.2.6. Resuming Aborted Scans

Some extensive Nmap runs take a very long time-on the order of days. Such scans don't always run to
completion. Restrictions may prevent Nmap from being run during working hours, the network could
down, the machine Nmap is running on might suffer a planned or unplanned reboot, or Nmap itself c
crash. The administrator running Nmap could cancel it for any other reason as well, by pressing ctrl.C.

Restarting the whole scan from the beginning may be undesirable. Fortunately, if normal (-oN} or grepable
(-oG} logs were kept, the user can ask Nmap to resume scanning with the target it was working on w
execution ceased. Simply specify the --resume option and pass the normal/grepable output file as ill
argument. No other arguments are permitted, as Nmap parses the output file to use the same ones specified
previously. Simply call Nmap as nmap --resume < logfilename>. Nmap will append new results to the
data files specified in the previous execution. Resumption does not support the XML output format because
combining the two runs into one valid XML file would be difficult.

1 3.3. I nteractive Output
Interactive output i s what Nmap prints to the stdout stream, which usually appears o n the terminal window
you executed Nmap from. In other circumstances, you might have redirected stdout to a file or another
application such as Nessus or an Nmap GUI may be reading the results. If a larger application is i nterpreting
the results rather than printing Nmap output directly to the user, then using the XML output discussed in
Section 1 3.6, "XML Output (-oX)" [348] would be more appropriate.

This format has but one goal: to present results that will be valuable to a human reading over them. No effort
i s made to make these easily machine parsable or to maintain a stable format between Nmap versions. Better
formats exist for these things. The toughest challenge is deciding which information is valuable enough to
print. Omitting data that a user wants is a shame, though flooding the user with pages of mostly i rrelevant
output can be even worse. The verbosity, debugging, and packet tracing flags are available to shift this
balance based on individual users' preferences.

This output format needs no extensive description here, as most Nmap examples in this book already show
it. To understand Nmap's interactive output for a certain feature, see the section of this book dedicated to
that feature. Typical examples of interactive output are given in Example 1 3.3, "Interactive output without
verbosity enabled" [342] and Example 13 .4, "Interactive output with verbosity enabled" [343].

1 3.4. Normal Output (-oN)

Normal output is printed to a file when the -oN option is specified with a filename argument. It is similar
to interactive output, except that notes which lose relevance once a scan completes are removed. It is assumed
that the file will be read after Nmap completes, so estimated completion times and new open port alerts are
redundant to the actual completion time and the ordered port table. Since output may be saved a long while

346 13 .3 . Interactive Output

and reviewed among many other logs, Nmap prints the execution time, command-line arguments, and Nmap
version number on the first l ine. A similar l ine at the end of a scan divulges final timing and a host count.
Those two lines begin with a pound character to identify them as comments. If your application must parse
normal output rather than XMUgrepable formats, ensure that it ignores comments that it doesn't recognize
rather than treating them as an error and aborting. Example 13.7 is a typical example of normal output. Note
that -oN - was used to prevent interactive output and send normal output straight to stdout.

Example 13. 7. A typical example of normal output

t nmap -T4 -A -p- -oN - scanme . nmap . org

t Nmap 4 . 6 8 scan init iated Tue Jul 15 0 7 : 2 7 : 26 2 0 0 8 a s : nmap -T4 -A -p- .J
-oN - scanme . nmap . org
Interesting por t s on scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52) :
Not shown : 6 5 5 2 9 f i ltered port s
PORT STATE SERVICE VERS I ON
2 2/tcp open ssh OpenSSH 4 . 3 (protocol 2 . 0)
25/tcp closed smtp
53/tcp open domain !SC BIND 9 . 3 . 4
70/tcp closed gopher
80/tcp open http Apache httpd
I_ HTML title : Go ahead and ScanMe !
113/tcp closed au th
Device type : general purpose
Running : Linux 2 . 6 . X

2 . 2 . 2 ((Fedora))

OS details : Linux 2 . 6 . 1 7 - 2 . 6 . 2 1 , L inux 2 . 6 . 2 3

TRACEROUTE (u sing port 2 2 / tcp)
HOP RTT ADDRESS
1 2 . 9 8 nodem-msfc-vl 2 4 5 -act-secur i ty-gw- l-1 1 3 . ucsd . edu (1 3 2 . 23 9 . 1 . 1 1 3)
[• . . n ine s imilar l ines cut . . .)
11 13 . 3 4 scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52)

OS and Service detection performed . Please report any incorrect results .J
at http : / /nmap . org/ submit / .

t Nmap done at Tue Jul 1 5 0 7 : 2 9 : 4 5 2 0 0 8 -- 1 IP address (1 host up) .J
scanned in 1 3 8 . 9 3 8 seconds

1 3.5. $crlpT klddl3 OuTPut (-os)
Script kiddie output i s like interactive output, except that i t i s post-processed to better suit the '133t HaXXorZ!
They previously looked down on Nmap due to its consistent capitalization and spelling. It is best understood
by example, as given in Example 13.8.

1 3.5. $crlpT klddl3 OuTPut (-oS) 347

Example 13.8. A typical example of $crlpt KiDDi3 OutPut

nrnap -T4 -A -os - scanrne . nrnap . org

StaRt ing NMap (httP : / /nrnap . Or g)
I nt3rest l ng pOrtz On $CAnrne . nrnap . Org (6 4 . 1 3 . 1 3 4 . 52) :
NOt Shown : 6 5 5 2 9 F i l terEd p0rt $
PORT $TATE $ERVIC3 V3R$ I oN
2 2 / tcP Op3n s $h Open$ $ H 4 . 3 (pr OtOcol 2 . 0)
2 5 / TcP c losEd $rntp
5 3 /tcp op3n dOrna ! n I $C B IND 9 . 3 . 4
7 0 /tcp c lo$ed G0ph3r
8 0 / tcp Op3n htTP 4pach3 httpd 2 . 2 . 2 ((F3d0ra))
I _ HTML t I T 1 3 : gO aheAD And $canM3 !
1 1 3 / t cp c l 0 $Ed auTh
Device t ype : g3NeraL purp 0 $ 3
Runn i ng : L l Nux 2 . 6 . X
oS detA i l z : Linux 2 . 6 . 1 7 - 2 . 6 . 2 1 , L l nux 2 . 6 . 23
[Many lines cut for brevity]

NrnAp doNe : 1 ip addre $ z (1 H0$t up) $canneD iN 1 3 8 . 9 4 $ec0NdS

Some humor-impaired people take this option far too seriously, and scold me for catering to script kiddies.
It is simply a joke making fun of the script kiddies-they don't actually use this mode (I hope).

1 3.6. XML Output (-ox)
XML, the extensible markup language, has its share of critics as well as plenty of zealous proponents. I was
long in the former group, and only grudgingly incorporated XML into Nmap after volunteers performed
most of the work. Since then, I have learned to appreciate the power and flexibil ity that XML offers, and
even wrote this book in the DocBook XML format. I strongly recommend that programmers interact with

.Nmap through the XML interface rather than trying to parse the normal, interactive, or grepable output. That
format includes more information than the others and is extensible enough that new features can be added
without breaking existing programs that use it. It can be parsed by standard XML parsers, which are available
for all popular programming languages, usually for free. Editors, validators, transformation systems, and
many other applications already know how to handle the format. Normal and interactive output, on the other
hand, are custom to Nmap and subject to regular changes as I strive for a clearer presentation to end users.
Grepable output is also Nmap-specific and tougher to extend than XML. It is considered deprecated, and
many Nmap features such as MAC address detection are not presented in this output format.

An example of Nmap XML output is shown in Example 1 3.9. Whitespace has been adjusted for readability.
In this case, XML was sent to stdout thanks to the -ox - construct. Some programs executing Nmap opt
to read the output that way, while others specify that output be sent to a fi lename and then they read that file
after Nmap completes.

348 13 .6. XML Output (-oX)

Example 13.9. An example of Nmap XML output

nmap -T4 -A -p- -ox - s ca nme . nmap . org

<?xml ver s i on= " l . 0 " encoding= " ut f - 8 " ? >

<?xml -style sheet href = " / u s r / s har e / nmap/ nmap . xs l " t ype= " text / xs l " ? >

< ! -- Nmap 4 . 6 8 scan i n i t iated Tue Jul 1 5 0 7 : 2 7 : 2 6 2 0 0 8 as :

nmap -T4 -A -p- -ox - scanme . nmap . org - - >

<nmaprun scanne r = " nma p " args = " nmap - T 4 - A - p - - o x - scanme . nmap . or g "

start = " l 2 1 6 1 0 6 8 4 6 " s t a r t s t r = " Tue Jul 1 5 0 7 : 2 7 : 2 6 2 0 0 8 "

ver s i on= " 4 . 6 8 " xmloutput ver s ion= " l . 0 2 " >

<scaninfo type= " syn " protoco l = " tcp" numservices - " 6 5 5 3 5 " s ervices= " l - 6 5 5 3 5 " / >

<verbose level= " O " / > <debugg ing level= " O " / >

<ho s t startt ime= " l 2 1 6 1 06 8 4 6 " endtime= " l 2 1 6 1 0 6 9 8 5 " >

<status state= " u p " reason= " reset " / >

<addre s s addr= " 6 4 . 1 3 . 1 3 4 . 5 2 " addrtype = " ipv4 " / >

<ho s tname s > <hostname name= " s canme . nmap . or g " t ype= " PTR" / > < / ho st names >

<por t s > <extrapo r t s s t a t e= " f i ltered" count= " 6 5 5 2 9 " >

<extrareasons reason=" no-respon se s " count = " 6 5 5 2 9 " / > < /extrapor t s >

<port protoco l = " t cp " portid= " 2 2 " >

< s tate state= " open " rea son= " s yn-ack " reason_t t l= " 5 2 " / >

<service name = " s s h " product= " OpenS S H " ver s ion=" 4 . 3 "

extr a i nfo= "protocol 2 . 0 " method= "probed " conf= " l O " / > < /por t >

< ! - - Several port e leme n t s removed f o r brevi t y - - >

<port protoco l= " t cp " portid= " 8 0 " >

< s t at e s t ate= " open " reason= " syn-ack " reason_t t l = " 52 " / >

< service name= " ht t p " produ c t = " Apache httpd" ver s i on = " 2 . 2 . 2 "

extrainfo= " (Fedora) " method=" probed " conf= " l O " / >

< s cr ipt id=" HTML t i t l e " output= " Go ahead and ScanMe ! " / > < /port >

<port protoco l = " tcp" port id= " l l 3 " >

< s t ate s t ate= " c losed " rea son= " reset " reason_t t l= " 5 2 " / >

< service name = " au t h " method= " table " conf= " 3 " / > < /port > < /por t s >

<os>

<portused state= " op e n " proto= " t cp " port id= " 2 2 " />

<port used state= " closed" proto= " t cp " port id= " 2 5 " />

< o s c l a s s type= " general purpos e " vendor= " L i n u x " os fami l y = " Linux"

osgen= " 2 . 6 . X " accuracy= " l O O " / >

<osmatch name = " L i nux 2 . 6 . 1 7 - 2 . 6 . 2 1 " accuracy= " l O O " l i ne = " l l 8 8 6 " / >

<osmatch name = " L i nux 2 . 6 . 2 3 " accuracy= " l 0 0 " l ine= " l 3 8 9 5 " / > < /o s >

<uptime s e conds= " l l 0 4 0 5 0 " l a s tboot= " Wed J u l 2 1 2 : 4 8 : 5 5 2 0 0 8 " / >

<tcpsequence index= " 2 0 3 " d i f f i culty= " Good luck ! "

values = " 3 1 F 8 8BFB , 3 2 7 D2AA6 , 3 2 9B 8 1 7C , 3 2 9 D 4 1 9 1 , 3 2 1A l 5 D3 , 3 2B 3 D9 1 7 " / >

<ipidsequence c l a s s = " Al l zeros " values= " O , O , O , O , O , O " / >

<tcptssequence c l a s s= " l O O O H Z "

values = " 4 1 C E 5 8 D D , 4 1 C E 5 9 4 1 , 4 1CE59A5 , 4 1CE5A0 9 , 4 1 CE 5A6 D , 4 1CE5AD 5 " / >

<trace port = " 2 2 " proto= " t cp " >

<hop t t l= " l " rtt= " 2 . 9 8 " ipaddr = " l 3 2 . 2 3 9 . l . 1 1 3 "

ho s t = " nodem-ms fc-vl 2 4 5 -a c t - secur ity-gw- l - 1 1 3 . ucsd . edu " / >

< ! -- Several hop e l emen t s removed for brevity - - >

<hop t t l = " l l " r t t= " l 3 . 3 4 " ipaddr= " 6 4 . 1 3 . 1 3 4 . 5 2 "

hos t = " s canme . nmap . or g " / > < / trace>

<t imes srtt = " l 4 3 5 9 " r ttvar= " l 2 1 5 " t o= " l 0 0 0 0 0 " / > < /host >

<runs tat s > < f i n i shed t ime- " 1 2 1 6 1 06 9 8 5 " t imes t r = " Tue Jul 1 5 0 7 : 2 9 : 4 5 2 0 0 8 " / >

<hosts up= " l " down= " O " t o t a l= " l " / >

< ! -- Nmap done at T u e Jul 1 5 0 7 : 2 9 : 4 5 2 0 0 8 ;

</runstats>

</nmapr un>

1 IP addr e s s (1 host up) scanned in 1 3 8 . 9 3 8 seconds - - >

1 3.6. XML Output (-oX) 349

Another advantage of XML is that its verbose nature makes it easier to read and understand than other
formats. Readers familiar with Nmap in general can likely understand most of the XML output in
Example 1 3.9, "An example ofNmap XML output" [349] without further documentation. The grepable output
format, on the other hand, is tough to decipher without its own reference guide.

There are a few aspects of the example XML output which may not be self-explanatory. For example, look
at the two port elements in Example 13 . 10

Example 13.10. Nmap XML port elements

<port protocol=" tcp" portid= " 8 0 " >
< state state= " open " reason = " s yn-ack " reason_t t l= " 52 " / >
<service name = " http" product="Apache httpd " vers ion= " 2 . 2 . 2 "

extrainfo= " (Fedora) " method= " probed" conf= " l 0 " / >
<scr ipt id= " HTML t i t l e " outpu t = " Go ahead and ScanMe ! " / >

< /port >
<port protoco l = " tcp" portid� " l l 3 " >

< state state= " c losed" reason= " reset " reason ttl= " 5 2 " />
<service name=" auth " method= " table " conf= " 3 " />

< /port >

The port protocol, I D (port number), state, and service name are the same as would be shown i n the interactive
output port table. The service product, ver s i on, and extrainfo attributes come from version detection
and are combined together into one field of the interactive output port table. The method and conf attributes
aren't present in any other output types. The method can be t able, meaning the service name was simply
looked up in nmap-services based on the port number and protocol, or it can be probed, meaning that
i t was determined through the version detection system. The conf attribute measures the confidence Nmap
has that the service name is correct. The values range from one (least confident) to ten. Nmap only has a
confidence level of three for ports determined by table lookup, while it is highly confident (level 10) that
port 80 of Example 13 . 10, "Nmap XML port elements" [350] is Apache httpd, because Nmap connected to
the port and found a server exhibiting the HTTP protocol with Apache banners.

One other aspect that some users find confusing is that the attributes / nmaprun / @ start and
/ nmaprun/runstat s / f i n i s hed/ @ t ime hold timestamps given in Unix time, the number of seconds
January I , 1970. This i s often easier for programs to handle. For the convenience of human readers, versions
3.78 and newer include the equivalent calendar time written out in the attributes / nmaprun/ @startstr

and / nmaprun / runstats I f i n i s hed/ @endstr.

Nmap includes a document type definition (DTD) which allows XML parsers to validate Nmap XML
output. While it is primarily intended for programmatic use, i t can also help humans interpret Nmap XML
output. The DTD defines the legal elements of the format, and often enumerates the attributes and values
they can take on. It is reproduced in Appendix A, Nmap XML Output DTD [4 1 5] .

1 3.6.1 . Using XML Output

The Nmap XML format can be used in many powerful ways, though few users actually take any advantage
of it. I believe this is due to inexperience of many users with XML, combined with a Jack of practical,
solution-oriented documentation on using the Nmap XML format. This chapter provides several practical
examples, including Section 1 3.7, "Manipulating XML Output with Perl" [352] , Section 13.8, "Output to a
Database" [354], and Section 1 3.9, "Creating HTML Reports" [355].

350 13.6. XML Output (-oX)

A key advantage of XML is that you do not need to write your own parser as you do for specialized Nmap
output types such as grepable and interactive output. Any general XML parser should do.

The XML parser that people are most familiar with is the one in your web browser. Both IE and
Mozilla/Firefox include capable parsers that can be used to view Nmap XML data. Using them is as simple
as typing the XML filename or URL into the address bar. Figure 13 . l shows an example of XML output
rendered by a web browser. How this automatic rendering works and how to save a permanent copy of an
HTML report is covered in Section 1 3.9, "Creating HTML Reports" [355] .

Figure 13.1. XML output in a web browser

I
J64.1 3.1 34.52

t� sm�

tCQ_ [g_opher

tCQ_

Done

Nmap XML output can of course be viewed in any text editor or XML editor. Some spreadsheet programs,
including Microsoft Excel, are able to import Nmap XML data directly for viewing. These general-purpose
XML processors share the limitation that they treat Nmap XML generically, just like any other XML file.
They don't understand the relative importance of elements, nor how to organize the data for a more useful

1 3.6. XML Output (-oX) 351

presentation. The use of specialized XML processors that make sense of Nmap XML output is the su
of the following sections.

1 3.7. Man ipu lat ing XML Output with Perl
Generic XML parsers are available for all popular programming languages, often for free. Examples are
l ibxml C l ibrary and the Apache Xerces parser for Java and C++ (with Perl and COM bindings). While
parsers are sufficient for handling Nmap XML output, developers have created custom modules for se
languages which can make the task of interoperating with Nmap XML even easier.

The language with the best custom Nmap XML support is Perl . Max Schubert (affectionately known
Perldork) has created a module named Nmap: :Scanner2 while Anthony Persaud created Nmap::Pa
These two modules have many similarities: they can execute Nmap themselves or read from an output
are well documented, come with numerous example scripts, are part of the Comprehensive Perl Archi
Network (CPAN), and are popular with users. They each offer both a callback based parser for interpreti
data as Nmap runs as well as an all-at-once parser for obtaining a fully parsed document once Nmap finis
executing. Their APis are a bit different-Nmap::Scanner relies on type-safe classes while Nmap::P
relies on lighter-weight native Perl arrays. I recommend looking at each to decide which best meets y

needs and preferences.

Example 1 3 . 1 1 is a simple demonstration ofNmap::Parser. It comes from the module's documentation (which
contains many other examples as well). It performs a quick scan, then prints overall scan statistics as well
a,s information on each available target host. Notice how readable it is compared to scripts using other Nmap
output formats that are dominated by parsing logic and regular expressions. Even people with poor Perl skills
could use this as a starting point to create simple programs to automate their Nmap scanning needs.

2 http://sourceforge.11et/projec1s/11map-sca1111er/
3 h11p://11111apparser. wordpress.coml

352 1 3.7. Manipulating XML Output with Perl

Example 13.11. Nmap: :Parser sample code

e Nmap : : Parser ;

#PARSING
Snp = new Nmap : : Par ser ;

nmap_exe = ' /usr/bin/nmap ' ;
np->parsescan ($nmap_exe, ' -sT - p l - 1 0 2 3 ' , @ ip s) ;

or

$np->parsef ile (' nmap_output . xml ') ; #us ing f i l enames

#GETTING SCAN I NFORMATI ON

print "Scan Information : \n " ;
$si = Snp->get_scaninfo () ;
tget scan information by call ing methods
print
' Number of services scanned : ' . $ s i->num_of_services () . " \n " ,
' Start Time : ' . $ s i->start_t ime () . " \ n " ,
' Scan Types : ' , (j oin ' ' , $ s i ->scan_types ()) . " \n " ;

#GETTING HOST INFORMATI ON

print "Hosts scanned : \n " ;
for my $host_obj ($np->get_host_obj ect s ()) {

print
' Hostname
' Addres s
' OS mat ch

' . $host_obj->hostname () . " \n " ,
' . $host_obj ->ipv4_addr () . " \n " ,
' . $host_obj ->os_match () . " \n " ,

' Open Port s : ' . (j oin ' , ' , $hos t_obj->tcp_port s (' open ')) . " \n " ;
. . . you get the idea . . .

#frees memory--helpful when dea l i ng with memory intens ive scripts
Snp->clean (l ;

For comparison, Example 1 3 . 1 2 is a sample Perl script using Nmap: :Scanner, copied from i ts documentation.
This one uses an event-driven cal lback approach, registering the functions s can_s t arted and
port_f ound to print real-time alerts when a host is found up and when each open port is discovered on
the host.

1 3.7. Manipulating XML Output with Perl 353

Example 13.12. Nmap::Scanner sample code

my $ scanner = new Nmap : : Scanner ;
$ s canner->register_scan_started_event (\ & scan_started) ;
$ s canner->register_port_found_event (\ &port_found) ;
$ scanner->scan (' -s S -p 1 - 1 0 2 4 -0 --max-rtt-t imeout 2 0 0

sub s can_start ed
my $ s e l f shi ft ;

shi f t ; m y $host

my $hostname $host->name () ;
my $ addresses = join (' , ' , map { $_->address ()) $host->addresses ()) ;
my $ s tatus = $ host->status () ;

print " $hostname ($addresses) i s $ status \ n " ;

sub port_found
my $sel f shi ft ;
my $host shi ft ;
my $port shift ;

my $name $host->name () ;
my $ addre s s e s = join (' , ' , map { $_->addr () } $host->addresses ()) ;

print " On host $name ($addres se s) , found " ,
$port->state () , " port " ,
j o in (' / ' , $port->protocol () , $port->portid ()) , " \n " ;

1 3.8. Output to a Database
A common desire is to output Nmap results to a database for easier queries and tracking. This allows users
from an individual penetration tester to an international enterprise to store all of their scan results and easily
compare them. The enterprise might run large scans daily and schedule queries to mail administrators of
newly open ports or available machines. The penetration tester might learn of a new vulnerability and search
all of his old scan results for the affected application so that he can warn the relevant clients. Researchers
may scan millions of IP addresses and keep the results in a database for easy real-time queries.

While these goals are laudable, Nmap offers no direct database output functionality. Not only are there too
many different database types for me to support them all, but user's needs vary so dramatically that no single
database schema is suitable. The needs of the enterprise, pen-tester, and researcher all call for different table
structures.

For projects large enough to require a database, I recommend deciding on an optimal DB schema first, then
writing a simple program or script to import Nmap XML data appropriately. Such scripts often take only
minutes, thanks to the wide availability of XML parsers and database access modules. Perl often makes a
good choice, as it offers a powerful database abstraction layer and also custom Nmap XML support.
Section 1 3.7, "Manipulating XML Output with Perl" [352] shows how easily Perl scripts can make use of
Nmap XML data.

354 1 3.8. Output to a Database

Another option is to use a custom Nmap database support patch. One example is nmap-sql4, which adds
MySQL logging functionality into Nmap itself. The downsides are that it currently only supports the MySQL
database and it must be frequently ported to new Nmap versions. An XML-based approach, on the other
hand, is less likely to break when new Nmap versions are released.

Another option is PBNJ5, a suite of tools for monitoring changes to a network over time. It stores scan data
such as online hosts and open ports to a database (SQLite, MySQL or Postgres). It offers a flexible querying
and alerting system for accessing that data or displaying changes.

1 3.9. Creat ing HTML Reports
Nmap does not have an option for saving scan results i n HTML, however it is easy to get an HTML view
of Nmap XML output just by opening the XML file in a web browser. An example is shown in Figure 1 3 . 1 ,

"XML output i n a web browser" [35 1] .

How does the web browser know how to convert XML to HTML? An Nmap XML output file usually contains
a reference to an XSL 6 stylesheet called nmap . x s l that describes how the transformation takes place.

The XML processing instruction that says where the stylesheet can be found will look something like

<?xml-st ylesheet href= " / u s r / share/nmap/nmap . xs l " type=" text / xs l " ? >

The exact location may be different depending o n the platform and how Nmap was configured.

Such a stylesheet reference will work fine when viewing scan results on the same machine that i nitiated the
scan, but it will not work if the XML file is transferred to another machine where the nmap . xs l file is in
a different place or absent entirely. To make the XML styling portable, give the - -webxml option to Nmap.
This will change the processing instruction to read

<?xml-stylesheet href=" http : / / nmap . org/data/nmap . xs l " type= " text / xs l " ?>

The resultant XML output file will render as HTML on any web-connected machine. Using the network
location in this fashion is often more useful, but the local copy of nmap . xs l is used by default for privacy
reasons.

To use a different stylesheet, use the --style s heet <fi l e> option. Note that --webxml is an alias
fur --stylesheet http : / / nmap . org/data / nmap . xs l .

To omit the stylesheet entirely, use the option --no- stylesheet. This will cause web browsers to show
the output as a plain, uninterpreted XML tree.

13.9.1 . Saving a Permanent HTML Report

While web browsers can display an HTML view of Nmap XML, they don't usually make it easy to save the
generated HTML to a file. For that a standalone XSLT processor is required. Here are commands that turn
an Nmap XML output file into an HTML file using common XSLT processors.

4 http://so11rceforge.net/projectslnmapsql
5 http://pb11j.so11rceforge.net/
6 http://www.w3.org/Style/XSU

13.9. Creating HTML Reports 355

Saxon7

java -jar saxon.jar -a <runap-output . xml> -o <runap-output . html>

Xalan8

Xalan -a <runap-output . xml> -o <runap-output . html> (using Xalan C++)

java -jar xalan.jar -IN <runap-output . xml> -OUT <runap-output . html> (using Xalan Java

xsltproc9

xsltproc <nmap-output . xml> -o <nmap-output . html>

1 3.1 0. Grepable Output (-oG)

This output format is covered last because it is deprecated. The XML output format is far more powerful,
and is nearly as convenient for experienced users. XML is a standard for which dozens of excellent parsers
are available, while grepable output is my own simple hack. XML is extensible to support new Nmap features
as they are released, while I often must omit those features from grepable output for lack of a place Lo put
them.

Nevertheless, grepable output is sti l l quite popular. It is a simple format that l ists each host on one line and
can be trivially searched and parsed with standard Unix tools such as grep, awk, cut, sed, diff, and Perl . Even
I usually use it for one-off tests done at the command l ine. Finding all the hosts with the SSH port open or
that are running Solaris takes only a simple grep to identify the hosts, piped to an awk or cut command to
print the desired fields. One grepable output aficionado is MadHat (madhat@unspecific.com), who contributed
to this section.

Example 1 3 . 1 3 shows a typical example of grepable output. Normally each host takes only one line, but I
split this entry into seven l ines to fit on the page. There are also three lines starting with a hash prompt (not
counting the Nmap command line). Those are comments describing when Nmap started, the command line

. options used, and completion time and statistics. One of the comment lines enumerates the port numbers
that were scanned. I shortened it to avoid wasting dozens of l ines. That particular comment is on ly printed
in verbose (-v) m ode. Increasing the verbosity level beyond one -v will not further change the grepable
output. The times and dates have been replaced with [t irne] to reduce line length.

7 http://saxo11.sourceforge.net/
8 http://xa/a11.apache.org/
9 http://xmlsoft.org/XSLTI

356 1 3.10. Grepable Output (-oG)

Example 13.13. A typical example of grepable output

nmap -oG - -T4 -A -v scanme . nmap . org
Nmap 4 . 6 8 scan init i ated [t ime) as : nmap -oG - -T4 -A -v scanme . nmap . org
Ports scanned : TCP (1 7 1 5 ; 1 - 1 0 2 7 , 1 02 9 - 1 0 3 3 , . . . , 6 53 0 1) UDP (O ;) PROTOCOLS (O ;)

Host : 6 4 . 1 3 . 1 3 4 . 52 (scanme . nmap . or g) Ports : 2 2 / open /tcp / / s s h / / OpenSSH 4 . 3 �

(protocol 2 . 0) / , 2 5 /closed / tcp / / smtp/ / / , 53 /open /tcp / / doma in / / I SC B IND �

9 . 3 . 4 / , 70 /closed/tcp / / gopher / / / , 8 0 /open/ tcp/ /http/ /Apache httpd 2 . 2 . 2 �

((Fedora)) / , 1 1 3 /closed/tcp / /auth / / / I gnored State : f i l t ered (1 7 0 9) OS : �
Linux 2 . 6 . 2 0 - 1 (Fedora Core 5) Seq I ndex : 2 0 3 I P I D Seq : A l l zeros
Nmap done at [t ime) -- 1 IP address (1 host up) scanned in 3 4 . 96 seconds

The command-line here requested that grepable output be sent to standard output with the - argument to
-oG. Aggressive timing (-T4) as well as OS and version detection (-A) were requested. The comment l ines
are self-explanatory, leaving the meat of grepable output in the Ho s t l ine. Had I scanned more hosts, each
of the available ones would have its own Host l ine.

1 3.1 0.1 . Grepable Output Fields

The host line i s split into fields, each of which consist of a field name followed by a colon and space, then
the field content. The fields are separated by tab characters (ASCII number nine, '\t'). Example 13 . 13 , ''A
typical example of grepable output" [357] shows six fields: Host, Ports, Ignored State, OS, Seq Index, and
IP ID. A Status section is included in list (-sL) and ping (- s P) scans, and a Protocols section is included.
in I P protocol (-so) scans. The exact fields given depend on Nmap options used. For example, OS detection
triggers the OS, Seq Index, and IP ID fields. Because they are tab delimited, you might split up the fields
with a Perl line such as:

@fields = split (" \ t " , $host_l ine) ;

In the case of Example 13 . 13 , "A typical example of grepable output" [357), the array @ f i e l ds would
contain six members. $ f ields [O J would contain "Host : 6 4 . 1 3 . 1 3 4 . 52 (s canme . nmap . org) ",
and $ f ields [l) would contain the long Ports field. Scripts that parse grepable output should ignore fields
they don't recognize, as new fields may be added to support Nmap enhancements.

The eight possible fields are described in the following sections.

Host field

Example: Host: 64. 13 . 1 34.52 (scanme.nmap.org)

The Host field always comes first and is included no matter what Nmap options are chosen. The contents
are the IP address (an 1Pv6 address if -6 was specified), a space, and then the reverse DNS name in
parentheses. If no reverse name is available, the parentheses wil l be empty.

Ports field

Example: Ports: 1 1 1 /open/tcp//rpcbind (rpcbind V2)/(rpcbind: 100000*2-2)/2 (rpc # 100000)/,
1 1 3/closed/tcp//auth///

13 . 10. Grepable Output (-oG) 357

The Ports field is by far the most complex, as can be seen in Example 13 . 13 , "A typical example of grepable
output" [357) . It includes entries for every interesting port (the ones which would be included in the port table
in normal Nmap output). The port entries are separated with a comma and a space character. Each port entry
consists of seven subfields, separated by a forward slash (/). The subfields are: port number, state, protocol,
owner, service, SunRPC info, and version info. Some subfields may be empty, particularly for basic port
scans without OS or version detection. The consecutive slashes in Example 1 3 . 13, "A typical example of
grepable output" [357] reveal empty subfields. In Perl, you might split them up as so:

($por t , $state, $protocol , $owner , $ service, $rpc_info, $ver s ion)
split (' / ' , $port s) ;

Alternatively, you could grab the information from the command l ine using commands such as these:

cut -d/ - f <fi e l dn umbers>

awk - F / ' { print $ <fi e l dn umber>) '

Certain subfields can contain a slash in other output modes. For example, an SSL-enabled web server would
show up as s s l / http and the version info might contain strings such as rnod_s s l / 2 . 8 . 1 2. Since a
slash is the subfield delimiter, this would screw up parsing. To avoid this problem, slashes are changed into
the pipe character (I) when they would appear anywhere i n the Port field.

Parsers should be written to allow more than seven slash-delimited subfields and to simply ignore the extras
because future Nmap enhancements may call for new ones. The following list describes each of the seven
currently defined Port subfields.

Port number
This is simply the numeric TCP or UDP port number.

State
The same port state which would appear in the normal output port table is shown here.

Protocol
This is t cp or udp.

Owner
This used to specify the username that the remote server is running under based on results from querying
an identd (au th) server of the target host. The ident scan (- I) is no longer available with Nmap, so this
field is always empty. Ident data can still be obtained using the identd-owner s . nse NSE script,
though results are not placed in this field.

Service
The service name, as obtained from an nrnap-services lookup, or (more reliably) through version
detection (- sV) if it was requested and succeeded. With version detection enabled, compound entries
such as s s l I http and entries with a trailing question mark may be seen. The meaning is the same as
for normal output, as discussed in Chapter 7, Service and Application Version Detection [145].

SunRPC info

358

If version detection (- s V) or RPC scan (- s R) were requested and the port was found to use the SunRPC
protocol, the RPC program number and accepted version numbers are included here. A typical example
is " (rpcbi nd : 1 0 0 0 0 0 * 2-2) ". The data is always returned inside parentheses. It starts with the
program name, then a colon and the program number, then an asterisk followed by the low and high

1 3. 10. Grepable Output (-oG)

supported version numbers separated by a hyphen. So in this example, rpcbind (program number 100,000)
is listening on the port for rpcbind version 2 requests.

Version info
If version detection is requested and succeeds, the results are provided here in the same format used in
interactive output. For SunRPC ports, the RPC data is printed here too. The format for RPC results in
this column is <l ow versi on n umber>- <hi gh versi on n umber> (rpc # <rpc program

number>). When only one version number is supported, it is printed by itself rather than as a range. A
port which shows (rpcbind : 1 0 0 0 0 0 * 2 -2) in the SunRPC info subfield would show 2 (rpc
1O0 0 0 0) in the version info subfield.

Protocols field

Example: Protocols: 1 /open/icmp/, 2/openlfiltered/igmp/

The IP protocol scan (-so) has a Protocols field rather than Ports. Its contents are quite similar to the Ports
field, but it has only three subfields rather than seven. They are delimited with slashes, just as with the Ports
field. Any slashes that would appear in a subfield are changed into pipes (I), also as done in the Ports field.
The subfields are protocol number, state, and protocol name. These correspond to the three fields shown in
interactive output for a protocol scan. An example of IP protocol scan grepable output is shown in
Example 13. 14. The Host line, which would normally be all one l ine, is here wrapped for readabi lity.

Example 13.14. Grepable output for IP protocol scan

nmap -v -oG - -so localhost
Nmap 4 . 6 8 scan init iated [t ime] as : nmap -v -oG - -so localhost
Ports scanned : TCP (O ;) UDP (O ;) PROTOCOLS (2 5 6 ; 0-2 5 5)
Host : 1 2 7 . 0 . 0 . 1 (localhost)

Protocol s : 1 / open / icmp / , 2 / open l fi l tered/ igmp / , 6 /open/tcp / ,
1 7 / open /udp/ , 1 3 6 /open l fi ltered/udplite / , 2 5 5 / open l fi ltered / /

Ignored State : c losed (2 5 0)
Nmap done a t [t ime] - - 1 I P address (1 host up) scanned in 2 . 3 4 5 s econds

Ignored State field

Example: Ignored State: filtered (1 658)

To save space, Nmap may omit ports in one non-open state from the list in the Ports field. Nmap does this
in interactive output too. Regular Nmap users are familiar with the lines such as "The 1658 ports scanned
but not shown below are in state: filtered". For grepable mode, that state is given in the Ignored State field.
Following the state name is a space, then in parentheses is the number of ports found in that state.

OS field

Example: OS: Linux 2.4.0 - 2.5.20

Any perfect OS matches are listed here. If there are multiple matches, they are separated by a pipe character
as shown in Example 13 . 13, "A typical example of grepable output" [357]. Only the free-text descriptions
are provided. Grepable mode does not provide the vendor, OS family, and device type classification shown
in other output modes.

13 . 10. Grepable Output (-oG) 359

Seq Index field

Example: Seq Index: 3004446

This number is an estimate of the difficulty of performing TCP initial sequence number prediction attacks
against the remote host. These are also known as blind spoofing attacks, and they al low an attacker to forge
a full TCP connection to a remote host as if it was coming from some other IP address. This can always help
an attacker hide his or her tracks, and it can lead to privilege escalation against services such as rlogin that
commonly grant extra privi leges to trusted IP addresses. The Seq I ndex value is only available when OS
detection (-0) is requested and succeeds in probing for this. It is reported in interactive output when verbosity
(-v) is requested. More details on the computation and meaning of this value are provided in Chapter 8,
Remote OS Detection [1 7 1] .

IP ID Seq field

Example: IP ID Seq: All zeros

This simply describes the remote host's IP ID generation algorithm. It is only available when OS detection
(-0) is requested and succeeds in probing for it. Interactive mode reports this as wel l, and it is discussed in

Chapter 8, Remote OS Detection [1 7 1) .

Status field

Example: Status: Up

Ping and list scans contain only two fields in grepable mode: Host and Status. Status describes the target
host as either Up, Down, or Unknown. List scan always categorizes targets as Unknown because it does not
perform any tests. Ping scan lists a host as up if it responds to at least one ping probe, and down if no responses
are received. It used to also report Smurf if ping probes sent to the target resulted in one or more responses

· from other hosts, but that is no longer done. Down hosts are only shown when verbosity is enabled with -v.

Example 13 . 15 demonstrates a ping scan of 100 random hosts, while Example 13. 16 demonstrates a list scan
of fi ve hosts.

360 13 . 10. Grepable Output (-oG)

Example 13.15. Ping scan grepable output

nmap -sP -oG - -iR 1 0 0
nmap [vers ion] scan init iated [t ime] as : nmap - s P -oG - - i R 1 0 0
Host : 6 7 . 1 0 1 . 7 7 . 1 0 2 (h-6 7- 1 0 1 - 7 7 - 1 0 2 . nycmny83 . covad . net) Status : Up
Host : 2 1 9 . 93 . 1 6 4 . 1 9 7 () Status : Up
Host : 22 2 . 1 1 3 . 1 5 8 . 2 0 0 () Statu s : Up
Host : 6 6 . 1 3 0 . 1 55 . 1 9 0 (modemcable l 9 0 . 1 5 5 - 1 3 0 -6 6 . mc . videotron . ca) Statu s : Up
Nmap done at [t ime] -- 1 0 0 IP addresses (4 host s up) scanned in 1 3 . 2 2 seconds

Example 13.16. List scan grepable output

nmap -sL -oG - -iR 5
nmap [vers ion] scan init iated [t ime] as : nmap - s L -oG - -iR 5
Host : 1 9 9 . 2 2 3 . 2 . 1 () Statu s : Unknown
Host : 1 9 1 . 2 2 2 . 1 1 2 . 8 7 () Status : Unknown
Host : 6 2 . 2 3 . 2 1 . 1 5 7 (host . 1 5 7 . 2 1 . 2 3 . 6 2 . rev . colt france . com) Statu s : Unknown
Host : 1 3 8 . 2 1 7 . 4 7 . 1 2 7 (CPE- 1 3 8-2 1 7- 4 7 - 1 2 7 . vic . bi gpond . net . au) Status : Unknown
Host : 8 . 1 1 8 . 0 . 9 1 () Status : Unknown
Nmap done at [t ime] -- 5 IP addresses (0 host s up) scanned in 1 . 79 7 seconds

1 3.1 0 .2. Parsing Grepable Output on the Command
Line

Grepable output real ly shines when you want to gather information quickly without the overhead of writing
a script to parse XML output. Example 1 3. 17 shows a typical example of this. The goal is to find all hosts
on a class C sized network with port 80 open. Nmap is told to scan just that port of each host (skipping the
ping stage) and to output a grepable report to stdout. The results are piped to a trivial awk command which
finds lines containing I open/ and outputs fields two and three for each matching l ine. Those fields are the
IP address and hostname (or empty parentheses if the hostname is unavailable).

Example 13.17. Parsing grepable output on the command line

> nmap -p8 0 -PN -oG - 1 0 . 1 . 1 . 0 / 2 4 I awk ' /open/ { pr int $ 2 " " $ 3 } '
1 0 . 1 . 1 . 7 2 (userA . corp . foocompany . bi z)
1 0 . 1 . 1 . 73 (userB . corp . foocompany . bi z)
1 0 . 1 . 1 . 75 (userC . corp . foocompany . bi z)
1 0 . 1 . 1 . 1 4 9 (admin . corp . foocompany . bi z)
1 0 . 1 . 1 . 1 52 (printer . corp . foocompany . bi z)
1 0 . 1 . 1 . 1 6 0 (1 0- 1 - 1 - 1 6 0 . foocompany . bi z)
1 0 . 1 . 1 . 1 6 1 (1 0 - 1 - 1 - 1 6 1 . foocompany . bi z)
1 0 . 1 . 1 . 2 0 1 (1 0- 1 - 1 - 2 0 1 . foocompany . bi z)
1 0 . 1 . 1 . 2 5 4 (1 0- 1 - 1 - 2 5 4 . foocompany . bi z)

1 3 .10. Grepable Output (-oG) 361

Chapter 1 4. Understand ing and

Customizing Nmap Data Fi les

14.1 . Introduction
Nmap relies on six data files for port scanning and other operations, al l of which have names beginning with

nmap-. One example is nmap-services, a registry of port names to their corresponding port number

and protocol. The others, which this chapter describes one by one, are nmap-servi ce-probes (version

detection probe database), nmap-rpc (SunRPC program name to number database for direct RPC scanning),

nmap-os -db (OS detection database), nmap-mac-prefixes (ethernet MAC address prefix (QUI) to

vendor lookup table), and nmap-protocols (list of IP protocols for protocol scan). Additionally this
chapter covers certain files related to scripting with the Nmap Scripting Engine. The source distribution
installs these files in /u s r / loca l / s hare / nmap/ and the official Linux RPMs put them in
/usr I share I nmap / . Other distributions may install them elsewhere.

The latest versions of these fi les are kept at http://nmap.org/data/, though it is strongly recommended that
users upgrade to the most recent Nmap version rather than grabbing newer data files a la carte. There are no
guarantees that newer files will work with older versions of Nmap (though they almost always do), and the
resulting Frankenstein versions ofNmap can confuse the operating system and service fingerprint submission .
process.

Most users never change the data fi les, but it can be handy for advanced users who might want to add a
version fingerprint or port assignment for a custom daemon running at their company. This section provides
a description of each file and how they are commonly changed. The general mechanism for replacing Nmap
data files with custom versions is then discussed. A couple of the files don't relate to port scanning directly,
but they are all discussed here for convenience.

1 4.2. Wel l Known Port List : runap-services

The nmap- services file is a registry of port names to their corresponding number and protocol. Each
entry has a number representing how likely that port is to be found open. Most l ines have a comment as well.
Nmap ignores the comments, but users sometimes grep for them in the fi le when Nmap reports an open
service of a type that the user does not recognize. Example 14. l shows a typical excerpt from the file. Some
padding whitespace has been added for readability.

14. 1 . Introduction 363

Example 14.1. Excerpt from nmap-services

qotd 1 7 /tcp 0 . 0 0 2 3 4 6 # Quote of the Day
qotd 1 7/udp 0 . 009209 # Quo t e of the Day

msp 1 8/udp 0 . 0006 1 0 # Message Send Pro t ocol
char gen 1 9 / tcp 0 . 0 0 2 5 5 9 # ttytst source Character Generator
chargen 1 9 /udp 0 . 0 1 5 8 6 5 # ttytst source Character Generator
ftp-data 2 0 / tcp 0 . 0 0 1 0 7 9 # F i le Trans fer [Default Data]
ftp-data 2 0 /udp 0 . 0 0 1 8 7 8 # F i l e Trans fer [Default Data]
ftp 2 1 / tcp 0 . 1 9 7 6 6 7 # F i l e Transfer [Control]
ftp 2 1 /udp 0 . 0 0 4 8 4 4 # F i l e Trans fer [Control]
ssh 22/tcp 0 . 1 82286 # Secure Shel l Login
s

·
sh 2 2 /udp 0 . 0 0 3 9 0 5 # Secure She l l Login

telnet 2 3 /tcp 0 . 2 2 1 2 6 5
telnet 2 3 / udp 0 . 0 0 6 2 1 1
p r iv-mai l 2 4 / tcp 0 . 0 0 1 1 5 4 # any private mai l system
pr iv-mai l 2 4 /udp 0 . 0 0 0 3 2 9 # any private mai l system
smtp 2 5 /tcp 0 . 1 3 1 3 1 4 # Simple Mai l Tran s f er
smtp 2 5 /udp 0 . 0 0 1 2 8 5 # Simple Ma i l Trans fer

T h i s fi l e was or i g i n a l l y based o ff the IANA a s s i g n ed ports l i s t
http://www.iana.org/assignments/port-numbers, though many other ports have been added over the years.
The JANA does not track trojans, worms and the like, yet discovering them is important for many Nmap
users.

The grammar of this file is pretty simple. There are three whitespace-separated columns. The first is the
service name or abbreviation, as seen in the SERV I CE column of Nmap output. The second column gives
the port number and protocol , separated by a slash. That syntax is seen in the PORT column of Nmap output
The third column is the "port frequency", a measure of how often the port was found open during research
scans of the Internet. If omitted, the frequency is zero. Nmap disregards anything beyond the third column,
but most l ines continue with whitespace then and a pound (' # ') character, followed by a comment. Lines
may be blank or contain just a pound character followed by comments.

Astute readers notice the similarity in structure between nrnap- services and I etc/ services (usually
found at C : \windows \ s y s tern3 2 \drivers \etc \ s ervices on Windows). This is no coincidence.
The format was kept to allow systems administrators to copy in any custom entries from their own
/ e t c / services, or even to substitute their own version of that file entirely. The /etc/ servi ces
format allows a third column providing alias names for a service. This would conflict with the third column
being used for the port frequency, so the contents of that column are ignored if they are not numeric.

Example 14. 1 shows that UDP ports are often registered for TCP-only services such as SSH and FTP. This
was inherited from the IANA, who tend to always register services for both protocols. Having the extra
entries doesn't hurt, because by default Nmap scans ports with the highest frequencies and low-frequency
ports are simply skipped. And, though it may be unexpected, the excerpt shows that sometimes the UDP
counterparts of popular TCP ports are found open.

Administrators sometimes change this file to reflect custom services running on their network. For example,
an online services company I once consulted for had dozens of different custom daemons running on
high-numbered ports. Doing this allows Nmap to display results for these ports using their proper names
rather than unknown. Remember that if you add entries without a port frequency figure, the frequency is

364 14.2. Well Known Port List: nmap-services

taken to be zero, so the port will not be scanned by default. Use an option like -p [1 - 6 5 5 3 5] to ensure
that all named ports are scanned.

Similarly, a certain registered port may be frequently wrong for a certain organization. nmap- services

can only handle one service name per port number and protocol combination, yet sometimes several different
types of applications end up using the same default port number. In that case, I try to choose the most popular
one for nmap-servi ces. Organizations which commonly use another service on such a port number may
change the file accordingly.

Services specific to a single organization should generally stay in their own nmap-services, but other
port registrations can benefit everyone. If you find that the default port for a major worm, trojan, file sharing
application, or other service is missing from the latest nmap- servi ces, please send it to me
(<fyodor @ i n secure . org>) for inclusion in the next release. This helps all users while preventing you
from having to maintain and update your own custom version of nmap- services .

Another common customization i s to strip nmap-services down to only the most common, essential
services for an organization. Without a port specification, Nmap will not scan any ports not l isted in the
services file, so this is a way to limit the number of ports scanned without using a long argument to the -p

option. The stripped-down file should normally be placed in a custom location accessible with the --datadir
or --servi cedb option rather than where Nmap wi l l use it by default. Advice for customjzing these fi les,
including ways to prevent Nmap upgrades from wiping out your modified versions can be found in
Section 14.9, "Using Customized Data Files" [370].

1 4.3. Version Scann ing DB :
nmap-service-probes

This file contains the probes that the Nmap service/version detection system (-sV or -A options) uses during
port interrogation to determine what program is listening on a port. Example 14.2 offers a typical excerpt.

Example 14.2. Excerpt from runap-service-probes

#NEXT PROBE#
DNS Server status request : http : / /www . r fc-editor . org/rfc/rfc l 0 3 5 . txt
Probe UDP DNSStatusReques t q l \ 0 \ 0 \x l 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 1
port s 5 3 , 1 3 5
match domain m l A \ 0 \ 0 \ x 9 0 \ x 0 4 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 1
Thi s one be low came from 2 tested Windows XP boxes
match msrpc m l A \x 0 4 \ x 06 \ 0 \ 0 \ x l 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 1
[. . .)
#NEXT PROBE#
Probe UDP Help q l help\r \ n \ r \ n l
ports 7 , 1 3 , 3 7
match chargen m l @ABCDEFGH I JKLMNOPQRSTUVWXYZ I
match echo m 1 Ahelp\r \ n \ r \n $ 1
match t ime m l A [\x c O - \ xc5) . . . $ 1

The grammar of this file is fully described in Chapter 7, Service and Application Version Detection [1 45] .

While nmap- servi ce-probe s is more complex than nmap- services, the benefits of improving i t

14.3. Version Scanning DB: nmap-service-probes 365

can also be greater. Nmap can be taught to actually recognize a company's custom services, rather than
simply guessed based on nmap-services port registration.

Additionally, some administrators have been using version detection for tasks well beyond its original
intended purpose. A short probe can cause Nmap to print the title of web pages, recognize worm-infected
machines, locate open proxies, and more. A practical example of this is provided in Section 7.9, "SOLUTION:
Hack Version Detection to Suit Custom Needs, such as Open Proxy Detection" [1 68).

1 4.4. SunRPC Numbers : nmap-rpc

A s with nmap-services, nmap-rpc simply maps numbers to names. I n this case, SunRPC program
numbers are mapped to the program name which uses them. Example 14.3 offers a typical excerpt.

Example 14.3. Excerpt from nmap-rpc

rpcbind
r st at d
rusersd
nfs
ypserv
mountd
rpc . operd
DMFE/DAWS

Gqsrv
Ppt
Pmt

1 0 0 0 0 0 portmap sunrpc rpcbind
1 0 0 0 0 1 r stat rup per fmeter rstat_svc
1 0 0 0 0 2 rusers
1 0 0 0 0 3 nfsprog nfsd
1 0 0 0 0 4 ypprog
1 0 0 0 0 5 mount showmount
1 0 0 0 8 0 opermsg # Sun Online-Backup

(Defense Automated Warning System)

2 0 0 0 3 4
2 0 0 0 3 5
2 0 0 0 3 6

gqsrv
ppt
pmt

Nmap only cares about the first two whitespace-separated columns-the program name and number. It
doesn't look at any aliases or comments that may appear beyond that. Blank lines and those starting with
pound comments are permitted. This format is the same as used by /etc /rpc on Unix, so administrators
may use that file instead if they desire.

nmap-rpc is only used by the RPC grinding feature of Nmap version descriptions. That feature is covered
in Section 7.5.2, "RPC Grinding" [1 56).

Users rarely change nmap-rpc. When they do, i t is usually to add a custom service or a public one that is
missing from the latest nmap-rpc. In the latter case, please send a note to me at
< fyodor @ i n secure . org> so that I can add it to the next version. As with nmap-services, some
administrators strip the file down, removing obscure RPC programs to save scan time. The same warning
applies: specify your stripped nmap-rpc with the --da tadir option rather than installing it where it will
be used implicitly.

1 4.5. Nmap OS Detection DB : nmap-os-db

The nmap-os -db data file contains hundreds of examples of how different operating systems respond to
Nmap's specialized OS detection probes. It is divided into blocks known as.fingerprints, with each fingerprint
containing an operating system's name, its general classification, and response data. Example 14.4 is an
excerpt from the file showing a couple of typical fingerprints.

366 14.4. SunRPC Numbers: nmap-rpc

Example 14.4. Excerpt from nmap-os-db

Fingerprint FreeBSD 7 . 0-CURRENT
Class FreeBSD I FreeBSD I 7 . X I general purpose
SEQ (SP= l 0 1 - 1 0D%GCD=< 7 % I SR= l 0 8 - 1 1 2 %T I =RD% I I =R I % TS=2 0 ! 2 1 ! 2 2)

OPS (Ol=M5B4NW8NNT 1 1 %02=M5 7 8NW8NNT1 1 %03=M2 8 0NW8NNT 1 1 %0 4=M5B4NW8NNT1 1 % �
05=M2 1 8NW8NNT 1 1 %06=M l 09NNT 1 1)

WIN (Wl=FFFF%W2=FFFF%W3=FFFF%W4=FFFF%W5=FFFF%W6 =FFFF)
ECN (R=Y%DF=Y%T= 4 0 %TG=4 0 %W=FFFF %0=M5B4NW8 %CC=N%Q=)
Tl (R=Y%DF=Y%T=4 0%TG= 4 0 % S=O%A=S+%F=AS %RD=0%Q=)
T2 (R=N)
T3 (R=Y%DF=Y%T=40%TG=4 0 %W=FFFF%S=0%A=S+ % F=AS %0=M l 09NW8NNT1 1 %RD=0%Q=)
T4 (R=Y%DF=Y%T= 4 0 % TG=4 0 %W= 0 %S=A%A=Z%F=R%0= %RD=0 %Q=)
T5 (R=Y%DF=Y%T=4 0% TG=4 0 %W=0%S=Z %A=S+%F=AR%0=% RD=0%Q=)
T6 (R=Y%DF=Y%T= 4 0 % TG=4 0 %W=0%S=A%A=Z %F=R%0=%RD=0%Q=)
T7 (R=Y%DF=Y%T= 4 0%TG=4 0 %W=0 %S=Z %A=S%F=AR%0=%RD=0 %Q=)
Ul (DF=N%T=4 0 %TG=4 0 %TOS=0 % I PL=3 8 % UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUL=G%RUD=G)
IE (DFI =S%T= 4 0 %TG=4 0%TOS I =S %CD=S%S I=S%DLI=S)

Fingerpr int Linux 2 . 6 . 1 1 - 2 . 6 . 2 0
Class Linux I Linux I 2 . 6 . X I general purpose
SEQ (SP=B9-CF%GCD=< 7 % I SR=C 4 - D 7 % T I =Z % I I= I %TS= 7)

OPS (Ol=M5B4ST1 1NW1 %02=M5B4ST1 1NW1 %03=M5B4NNT1 1NW1 %04=M5B4ST 1 1 NW 1 % �
05=M5B4 ST 1 1NW1 %06=M5B4ST1 1)

WIN (Wl=l 6A0%W2=1 6A0 %W3=1 6A0%W4=1 6A0 %W5=1 6A0 %W6 = 1 6A0)
ECN (R=Y%DF=Y%T=40 %TG=4 0 %W= l 6 D 0 %0=M5B4NNSNW 1 % CC=N%Q=)
Tl (R=Y%DF=Y%T=4 0 %TG= 4 0 % S=0%A=S+%F=AS %RD=0 %Q=)
T2 (R=N)
T3 (R=Y%DF=Y%T= 4 0 %TG= 4 0 %W= l 6A0%S=0%A=S+ %F=AS%0=M5B4ST1 1NW1 % RD= 0%Q=)
T4 (R=Y%DF=Y%T= 4 0 %TG=4 0 %W=0%S=A%A=Z%F=R%0=%RD=0%Q=)
T5 (R=Y%DF=Y%T=4 0%TG= 4 0 %W=0%S=Z%A=S + %F=AR%0=%RD=0 %Q=)
T6 (R=Y%DF=Y%T= 4 0 % TG=4 0 %W= 0 %S=A%A=Z%F=R%0=%RD=0%Q=)
T7 (R=Y%DF=Y%T= 4 0 % TG=4 0 %W= 0 % S=Z %A=S+ %F=AR%0=% RD=0 %Q=)
Ul (DF=N%T= 4 0 % TG=4 0% TOS=C 0 % IPL= l 6 4 %UN=0%RI PL=G%RID=G%RIPCK=G%RUCK=G%RUL=G%RUD=G)
IE (DF I =N%T=4 0 %TG=40 % TOS I=S%CD=S %S I=S%DLI = S)

The nmap-os-db OS database is consulted when remote OS detection is requested with the - 0 option. In
short, Nmap sends special probes to a target system and compares the responses with the entries in the OS
database. If there is a match, the database entry likely describes the target system. The process of OS detection
is described fully in Chapter 8, Remote OS Detection [1 7 1) . See Section 8.5 . l , "Decoding the Subject
Fingerprint Format" [1 92] for a detailed description of the reference fingerprint format.

nmap-os -db is rarely changed by users. Adding or modifying a fingerprint is a moderately complex process
and there is usually no reason ever to remove one. The best way to get an updated version of the OS database
is to get the latest release of N map.

The OS database does not (yet) have information on every networked operating system ever made. The
database grows through the contributions of Nmap users. If Nmap can't guess an OS but you know what i t
is, please submit the fingerprint, following the instructions in Section 8.7.2, "When Nmap Fails to Find a
Match and Prints a Fingerprint" [20 1] . Occasionally fingerprints have errors or become out of date. If you
see this, consider submitting a correction as described in Section 8.7. 1 , "When Nmap Guesses Wrong" [200] .

14.5. Nmap OS Detection DB: nmap-os-db 367

Everyone benefits when the database is improved, and submitting your improvements keeps you from having

to maintain your own fork of the file.

1 4.6. MAC Address Vendor Prefixes :
nmap-mac-pref ixes

Users rarely modify this fi le, which maps MAC address prefixes to vendor names. Read on for the complete
treatment.

Ethernet devices, which have become the dominant network interface type, are each programmed with a

unique 48-bit identifier known as a MAC address. This address is placed in ethernet headers to identify which
machine on a local network sent a packet, and which machine the packet is destined for. Humans usually
represent it as a hex string, such as 0 0 : 6 0 : 1 0 : 3 8 : 3 2 : 9 0 .

To assure that MAC addresses are unique i n a world with thousands of vendors, the IEEE assigns an

Organizationally Unique Identifier (OUI) to each company manufacturing ethernet devices. The company
must use its own OUI for the first three bytes of MAC addresses for equipment it produces. For example,
the OUI of 0 0 : 6 0 : 1 D : 3 8 : 3 2 : 9 0 is 0 0 6 0 1 D. It can choose the remaining three bytes however it wishes,

as long as they are unique. A counter is the simple approach. Companies that assign all 16.8 mill ion possible
values can obtain more OUis. nmap-mac-pre f ixes maps each assigned OUI to the name of the vendor

that sells them. Example 14.5 is a typical excerpt.

Example 14.S. Excerpt from nmap-mac-pref ixes

0 06 0 1 7 Tok imec
0 0 6 0 1 8 Stellar ONE
0 0 6 0 1 9 Roche Diagnost i c s
0 0 6 0 1A Keithley Instrument s
0 0 6 0 1 8 Mesa Electronics
0 0 6 0 1 C Telxon
0 0 6 0 1 0 Lucent Technologies
0 0 6 0 1 E Soft lab
0 0 6 0 1 F Sta l l ion Technologies
0 0 6 0 2 0 Pivota l Networking
0 0 6 0 2 1 DSC
0 0 6 0 2 2 Vicom Systems
0 0 6 0 2 3 Per i com Semiconductor
0 0 6 0 2 4 Gradient Technologies
0 0 6 0 2 5 Act i ve Imaging PLC
0 0 6 0 2 6 Viking Components

The first value is the three-byte OUI as 6 hex digits. It is followed by the company name. This file is created,
using a simple Perl script, from
http:!lstandards.ieee.org/regauth/ouiloui. txt.
http:l!standards.ieee.org!faqs/OUl.html.

the
The

complete list of OUis
IEEE also offers an

available from
OUI FAQ at

Nmap can determine the MAC address of hosts on a local ethernet LAN by reading the headers off the wire.
It uses this table to look up and report the manufacturer name based on the OUI. This can be useful for
roughly identifying the type of machine you are dealing with. A device with a Cisco, Hewlett Packard, or

368 14.6. MAC Address Vendor Prefixes: nmap-mac-prefixes

Sun OUI probably identifies a router, printer, or SPARCstation, respectively. Example 14.5, "Excerpt from
nmap-mac-prefixes" [368) shows that the device at 0 0 : 6 0 : 1 D : 3 8 : 3 2 : 9 0 was made by Lucent. It is in
fact the Lucent Orinoco wireless card in my laptop.

14.7. IP Protocol Number List :
nmap-protocols

This file maps the one-byte IP protocol number in the IP header into the corresponding protocol name.
Example 14.6 is a typical excerpt.

Example 14.6. Excerpt from nmap-protocols

hopopt 0 HOPOPT # I Pv6 Hop-by-Hop Opt ion
icrnp 1 I CMP # I nternet Control Mes sage
igrnp 2 I GMP # I nternet Group Management

ggp 3 GGP # Gateway-to-Gateway
ip 4 I P # I P in I P (encapsulat ion)
st 5 ST # Stream
tcp 6 TCP # Transmi s s ion Control
cbt 7 CBT # CBT
egp 8 EGP # Exterior Gateway Protocol
[. . .

chaos 16 CHAOS # Chaos
udp 1 7 UDP # User Datagram

The first two fields are the protocol name or abbreviation and the number in decimal format. Nmap doesn't
care about anything after the protocol number. It is used for IP protocol scanning, as described at Section 5. 1 1 ,
"IP Protocol Scan (-sO)" [1 25) . Less than 140 protocols are defined and users almost never modify this file.
The raw data is made available by the IANA at http://www. iana.org/assignmentslprotocol-numbers

1 4.8. Fi les Related to Script ing
The scripts used by the Nmap Scripting Engine may be considered another kind of data file. Scripts are stored
i n a scr ipt s subdirectory of one of the directories l isted in Section 14.9, "Using Customized Data
Files" [370) . The name of each script file ends in . nse. For all the details on scripts see Chapter 9, Nmap
Scripting Engine [205) .

All of the files in the script directory are executable scripts, except for one: scr ipt . db. This file is a
plain-text cache of which categories each script belongs to. It should not be edited directly; use the
--scr ipt-upda tedb option instead.

Each of NSE's extension modules (see Section 9.6, "NSE Libraries" [236)) is stored in one of two places.
Pure Lua extensions are kept in the n s e l i b subdirectory of the Nmap data directory, normally the same
one scr ipt s is in. This is where modules l ike shortport and s tdnse are kept, in fi les whose names
end in . lua.

14.7. IP Protocol Number List: nmap-protocols 369

1 4.9. Using Customized Data Fi les
Any or all of the Nmap data files may be replaced with versions customized to the user's liking. They can
only be replaced in whole-you can not specify changes that will be merged with the original files at runtime.
When Nmap looks for each file, it searches by name in many directories and selects the first one found. This
is the analogous to the way your Unix shell finds programs you ask to execute by searching through �
directories i n your PATH one at a time in order. The following list gives the Nmap directory search order.
It shows that an nmap-services found in the directory specified by --datadir will be used in preference

to one found in - I . nmap / because the former is searched first.

Nmap data file directory search order

I . If - -datadir option was specified, check the directory given as its argument.

2. If the NMAPD I R environmental variable is set, check that directory.

3. If Nmap is not running on Windows, search in - I . nmap of the user running Nmap. It tries the real user
ID's home directory, and then the effective UID's if they differ.

4. If Nmap is running on Windows, check the directory in which the Nmap binary resides.

5. Check the compiled in NMAPDATADIR directory. That value is defined to c : \nmap on Windows, and
<$prefix>/ share/nmap on Unix. <$prefix> is /usr I l ocal for the default source build and
/ u s r for the Linux RPMs. The <$prefix> can be changed by giving Jconfigure the --prefix
option when compiling the source.

6. As a last resort, the current working directory of your shell (.) is tried. This is done last for the same
security reasons that . should not appear first on your shell execution PATH. On a shared system, a
malicious user could place bogus data files in a shared directory such as I tmp. Those files could be
malformed, causing Nmap to complain and exit, or they could cause Nmap to skip important ports. If
Nmap tried . first, other users who happened to run Nmap in that shared directory would get the bogus
versions. This could also happen by accident if you inadvertently ran Nmap in a directory that happened
to have a file named nmap- servi ces (or one of the other ones). Users who really want Nmap to try
the current directory early may set the environment variable NMAPDIR to . at their own risk.

This l ist shows the many choices users have when deciding how to replace a file with their own customized
version. The option I usually recommend is to place the customized files in a special directory named
appropriately for the change. For example, an nmap-services stripped to contain just the hundred most
common ports could be placed in - / nmap - fewpo r t s . Then specify this directory with the - -datadir
option. This ensures that the customized files are only used intentionally. Since the Nmap output-to-file
formats include the Nmap command-line used, you will know which files were used when reviewing the
logs later.

Another option is to simply edit the original i n NMAPDATADIR. This is rarely recommended, as the edited
file will likely be overwritten the next time Nmap is upgraded. Additionally, this makes it hard to use the
original fi les if you suspect that your replacements are causing a problem. This also makes it difficult to
compare your version with the original to recall what you changed.

370 14.9. Using Customized Data Files

A third option is to place the customized files in your Unix - I . nmap directory. Of course you should only
insert files that you have changed. The others will still be retrieved from NMAPDATADIR as usual. This
is very convenient, as Nmap will use the customized files implicitly whenever you run it. That can be a
disadvantage as well . Users sometimes forget the files exist. When they upgrade Nmap to a version with
newer data files, the old copies in - I . nmap will still be used, reducing the quality of results.

Setting the NMAPDIR environment variable to the directory with files is another alternative. This can be
useful when testing a new version of Nmap. Suppose you obtain Nmap version 4.68, notice the huge list of
changes, and decide to test it out before replacing your current known-working version. You might compile
it in -/src /nmap- 4 . 6 8 , but execute it there and Nmap tries to read the data files from
/usr / l oca l / share /nmap. Those are the old versions, since Nmap 4.68 has not yet been installed.
Simply set NMAPDIR to - / s r c / nmap- 4 . 6 8 , test to your heart's content, and then perform the make
install. A disadvantage to using NMAPDIR regularly is that the directory name is not recorded in Nmap
output files like it is when --datadir is used instead.

14.9. Using Customized Data Files 371

Chapter 1 5. Nmap Reference Guide

Name
nmap - Network exploration tool and security I port scanner

Synopsis

nmap [<Scan Type> . . .] [<Opt i ons>] { <target speci fi ca t i on > }

1 5.1 . Description
Nmap ("Network Mapper") is an open source tool for network exploration and security auditing. It was
designed to rapidly scan large networks, although it works fine against single hosts. Nmap uses raw IP packets
in novel ways to determine what hosts are available on the network, what services (application name and
version) those hosts are offering, what operating systems (and OS versions) they are running, what type of
packet filters/firewalls are in use, and dozens of other characteristics. While Nmap is commonly used for
security audits, many systems and network administrators find it useful for routine tasks such as network
inventory, managing service upgrade schedules, and monitoring host or service uptime.

The output from Nmap is a list of scanned targets, with supplemental information on each depending on the
options used. Key among that information is the "interesting ports table". That table lists the port number
and protocol, service name, and state. The state is either open, f i ltered, c l o sed, or unf i l tered.
Open means that an application on the target machine is listening for connections/packets on that port.
Fi 1 tered means that a firewall, filter, or other network obstacle is blocking the port so that Nmap cannot
tell whether it is open or c l osed. C l o sed ports have no application listening on them, though they could
open up at any time. Ports are classified as unfil tered when they are responsive to Nmap's probes, but
Nmap cannot determine whether they are open or closed. Nmap reports the state combinations
open I f i l tered and c l osed I f i l tered when it cannot determine which of the two states describe a
port. The port table may also include software version details when version detection has been requested.
When an IP protocol scan is requested (- so), Nmap provides information on supported IP protocols rather
than listening ports.

In addition to the interesting ports table, Nmap can provide further information on targets, including reverse
DNS names, operating system guesses, device types, and MAC addresses.

A typical Nmap scan is shown in Example 15 . 1 . The only Nmap arguments used in this example are -A, to
enable OS and version detection, script scanning, and traceroute; -T 4 for faster execution; and then the two
target hostnames.

15 . Nmap Reference Guide 373

l
Highlight

Example 15.1. A representative Nmap scan

nmap -A -T4 scanme . nmap . org

Start ing Nmap (http : / / nmap . org
I nteresting port s on scanme . nmap . or g (6 4 . 1 3 . 1 3 4 . 52) :
Not shown : 9 9 4 f i l tered ports
PORT STATE SERVICE VERS I ON
2 2 / tcp open ssh OpenSSH 4 . 3 (protocol 2 . 0)
2 5 / t cp c losed smtp
5 3 / t cp open doma in ISC BIND 9 . 3 . 4
7 0 / tcp c losed gopher
8 0 / t cp open http Apache httpd 2 . 2 . 2 ((Fedora))
I _ HTML t i t le : Go ahead and ScanMe !
1 1 3 / tcp closed auth
Device t ype : general purpose
Runni n g : Linux 2 . 6 . X
OS deta i l s : Linux 2 . 6 . 2 0 - 1 (Fedora Core 5)

TRACEROUTE (us ing port 8 0 /tcp)
HOP RTT ADDRESS
[Cut f i r s t seven hops for brev i t y)
8 1 0 . 59 so- 4 -2 - 0 . mpr3 . paol . us . above . net (6 4 . 1 2 5 . 2 8 . 1 4 2)
9 1 1 . 0 0 metroO . sv . svcolo . com (2 0 8 . 1 8 5 . 1 6 8 . 1 7 3)
1 0 9 . 93 scanme . nmap . org (6 4 . 1 3 . 1 3 4 . 52)

Nmap done : 1 I P address (1 host up) scanned i n 1 7 . 00 seconds

The newest version of Nmap can be obtained from http://nmap.org. The newest version of the man page is
available at http://nmap.org/booklman.html.

1 5.2. Options Summary
This options summary is printed when Nmap is run with no arguments, and the latest version is always
available at http://nmap.org/data!nmap.usage. txt. It helps people remember the most common options, but
is no substitute for the in-depth documentation in the rest of this manual. Some obscure options aren't even
included here.
Nmap 4.76 (http://nmap.org)
Usage: nmap [Scan Type(s)] [Options] { target specification }
TARGET SPECIFICATION:

Can pass hostnames, IP addresses, networks, etc.
Ex: scanme.nmap.org, rnicrosoft.com/24, 192. 168.0. l ; 10.0.0-255 . 1 -254
-iL <inputfilename>: Input from list of hosts/networks
-iR <num hosts>: Choose random targets
--exclude <host 1 [,host2][,host3], . . . >: Exclude hosts/networks
--excludefile <exclude_file>: Exclude list from file

HOST DISCOVERY:
-sL: List Scan - simply list targets to scan
-sP: Ping Scan - go no further than determining if host is online
-PN: Treat all hosts as online -- skip host discovery
-PS/PA/PU [portlist]: TCP SYN/ACK or UDP discovery to given ports

374 1 5.2. Options Summary

-PFJPP/PM: ICMP echo, timestamp, and netmask request discovery probes
-PO [protocol list]: IP Protocol Ping
-n/-R: Never do DNS resolution/Always resolve [default: sometimes]
-<Ins-servers <serv I [,serv2], . . . >: Specify custom DNS servers
--system-dns: Use OS's DNS resolver

SCAN TECHNIQUES:
-sS/sT/sAfsW/sM: TCP SYN/Connect()/ACK/Window/Maimon scans
-sU: UDP Scan
-sN/sF/sX: TCP Null, FIN, and Xmas scans
--scantlags <flags>: Customize TCP scan flags
-sl <zombie host[:probeport]>: Idle scan
-sO: IP protocol scan
-b <FTP relay host>: FTP bounce scan
-traceroute: Trace hop path to each host
--reason: Display the reason a port is in a particular state

PORT SPECIFICATION AND SCAN ORDER:
-p <port ranges>: Only scan specified ports
Ex: -p22; -p l -65535; -p U:53,1 1 1 , 137,T:21 -25,80, 139,8080

-F: Fast mode · Scan fewer ports than the default scan
-r: Scan ports consecutively - don't randomize
--top-ports <number>: Scan <number> most common ports
--port-ratio <ratio>: Scan ports more common than <ratio>

SERVICE/VERSION DETECTION:
-sV: Probe open ports to determine service/version info
--version-intensity <level>: Set from 0 (light) to 9 (try all probes)
--version-light: Limit to most likely probes (intensity 2)
--version-all : Try every single probe (intensity 9)
--version-trace: Show detailed version scan activity (for debugging)

SCRIPT SCAN:
-sC: equivalent to --script=default
--script=<Lua scripts>: <Lua scripts> is a comma separated list of

directories, script-files or script-categories
--script-args=<n l=v l ,[n2=v2, . . .]>: provide arguments to scripts
--script-trace: Show all data sent and received
--script-updatedb: Update the script database.

OS DETECTION:
-0: Enable OS detection
--osscan-limit: Limit OS detection to promising targets
--osscan-guess: Guess OS more aggressively

TIMING AND PERFORMANCE:
Options which take <time> are in milliseconds, unless you append 's'
(seconds), 'm' (minutes), or 'h' (hours) to the value (e.g. 30m).
-T[0-5] : Set timing template (higher is faster)
--min-hostgroup/max-hostgroup <size>: Parallel host scan group sizes
--min-parallelism/max-parallelism <time>: Probe parallelization
--min-rtt-timeout/max-rtt-timeout/initial-rtt-timeout <time>: Specifies

probe round trip time.
--max-retries <tries>: Caps number of port scan probe retransmissions.
--host-timeout <time>: Give up on target after this long

15.2. Options Summary 375

--scan-delay/--max-scan-delay <time>: Adjust delay between probes
--min-rate <number>: Send packets no slower than <number> per second
--max-rate <number>: Send packets no faster than <number> per second

FIREWALUIDS EVASION AND SPOOFING:
-f; --mtu <val>: fragment packets (optionally w/given MTU)
-D <decoy l ,decoy2[,ME], . . . >: Cloak a scan with decoys
-S <IP _Address>: Spoof source address
-e <iface>: Use specified interface
-g/--source-port <portnum>: Use given port number
--data-length <num>: Append random data to sent packets
--ip-options <options>: Send packets with specified ip options
--ttl <val>: Set IP time-to-live field
--spoof-mac <mac address/prefix/vendor name>: Spoof your MAC address
--badsum: Send packets with a bogus TCP/UDP checksum

OUTPUT:
-oN/-oX/-oS/-oG <file>: Output scan i n normal, XML, sl<ript kiddi3,

and Grepable format, respectively, to the given filename.
-oA <basename>: Output in the three major formats at once
-v: Increase verbosity level (use twice or more for greater effect)
-d[level] : Set or increase debugging level (Up to 9 is meaningful)

--open: Only show open (or possibly open) ports
--packet-trace: Show all packets sent and received
--iflist: Print host interfaces and routes (for debugging)
-�log-errors: Log errors/warnings to the normal-format output file
--append-output: Append to rather than clobber specified output files
--resume <filename>: Resume an aborted scan
--stylesheet <path/URL>: XSL stylesheet to transform XML output to HTML
--webxml: Reference stylesheet from Nmap.Org for more portable XML
--no-stylesheet: Prevent associating of XSL stylesheet w/XML output

MISC:
-6: Enable IPv6 scanning
-A: Enables OS detection and Version detection, Script scanning and Traceroute
--datadir <dirname>: Specify custom Nmap data file location
--send-eth/--send-ip: Send using raw ethernet frames or IP packets
--privileged: Assume that the user is fully privileged
--unprivileged: Assume the user lacks raw socket privileges
-V: Print version number
-h: Print this help summary page.

EXAMPLES:
nmap -v -A scanme.nmap.org
nmap -v -sP 192.168.0.0/ 16 10.0.0.0/8
nmap -v -iR 10000 -PN -p 80

SEE THE MAN PAGE FOR MANY MORE OPTIONS, DESCRIPTIONS, AND EXAMPLES

1 5.3. Target Specification
Everything on the Nmap command-line that isn't an option (or option argument) i s treated as a target host

specification. The simplest case is to specify a target IP address or hostname for scanning.

376 15.3. Target Specification

Sometimes you wish to scan a whole network of adjacent hosts. For this, Nmap supports CIDR-style
addressing. You can append l<n umbi t s> to an IP address or hostname and Nmap will scan every IP address
for which the first <n umbi t s > are the same as for the reference IP or hostname given. For example,
192. 168. 10.0/24 would scan the 256 hosts between 192. 168. 10.0 (binary: 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0

000 0 1 0 1 0 0 0 0 0 0 0 0 0) and 192.168. 10.255 (binary: 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1),
inclusive. 192. 168. 10.40/24 would do exactly the same thing. Given that the host scanme.nmap.org is at the
IP address 64. 13. 1 34.52, the specification scanme.nmap.org/16 would scan the 65,536 IP addresses between
64.13.0.0 and 64. 1 3.255.255. The smallest al lowed value is 10, which scans the whole Internet. The largest
value is /32, which scans just the named host or IP address because all address bits are fixed.

CIDR notation is short but not always flexible enough. For example, you might want to scan 192. 168.0.0/16
but skip any IPs ending with .0 or .255 because they are commonly broadcast addresses. Nmap supports this
through octet range addressing. Rather than specify a normal IP address, you can specify a comma separated
list of numbers or ranges for each octet. For example, 192.168.0-255 . 1 -254 will skip all addresses in the
range that end in .0 and or .255 . Ranges need not be limited to the final octets: the specifier 0-255.0-255.1 3.37
will perform an Internet-wide scan for all IP addresses ending in 1 3.37. This sort of broad sampling can be
useful for Internet surveys and research.

1Pv6 addresses can only be specified by their fully qualified 1Pv6 address or hostname. CIDR and octet
ranges aren't supported for IPv6 because they are rarely useful.

Nmap accepts multiple host specifications on the command line, and they don't need to be the same type.
The command nmap scanme.nmap.org 192.168.0.0/16 10.0.0,1,3-7.0-255 does what you would expect.

While targets are usually specified on the command l ines, the following options are also available to control
target selection:

-iL <input fi l ename> (Input from list)
Reads target specifications from <input fi l ename>. Passing a huge list of hosts is often awkward
on the command line, yet it is a common desire. For example, your DHCP server might export a list of
10,000 current leases that you wish to scan. Or maybe you want to scan all IP addresses except for those
to locate hosts using unauthorized static IP addresses. Simply generate the list of hosts to scan and pass
that filename to Nmap as an argument to the - i L option. Entries can be in any of the formats accepted
by Nmap on the command line (IP address, hostname, CIDR, IPv6, or octet ranges). Each entry must
be separated by one or more spaces, tabs, or newlines. You can specify a hyphen (-) as the fi lename if
you want Nmap to read hosts from standard input rather than an actual file.

-iR <num hos t s> (Choose random targets)
For Internet-wide surveys and other research, you may want to choose targets at random. The <n um

hos t s> argument tells Nmap how many IPs to generate. Undesirable IPs such as those i n certain
private, multicast, or unallocated address ranges are automatically skipped. The argument 0 can be
specified for a never-ending scan. Keep in mind that some network administrators bristle at unauthorized
scans of their networks and may complain. Use this option at your own risk ! If you find yourself really
bored one rainy afternoon, try the command nmap -sS -PS80 -iR 0 -p 80 to locate random web servers
for browsing.

--exclude <host 1 > [, <host 2 > [, . . .]] (Exclude hosts/networks)
Specifies a comma-separated list of targets to be excluded from the scan even if they are part of the
overall network range you specify. The list you pass in uses normal Nmap syntax, so it can include
hostnames, CIDR netblocks, octet ranges, etc. This can be useful when the network you wish to scan

15 .3 . Target Specification 377

includes untouchable mission-critical servers, systems that are known to react adversely to port scans,
or subnets administered by other people.

--exclude f i le <excl ude_fi l e> (Exclude list from file)
This offers the same functionality as the --exclude option, except that the excluded targets are

provided in a newline, space, or tab delimited <ex cl ude_ fi l e> rather than on the command line.

1 5.4. Host Discovery
One of the very first steps in any network reconnaissance mission is to reduce a (sometimes huge) set of IP
ranges into a list of active or interesting hosts. Scanning every port of every single IP address is slow and
usually unnecessary. Of course what makes a host i nteresting depends greatly on the scan purposes. Network
administrators may only be interested in hosts running a certain service, while security auditors may care

about every single device with an IP address. An administrator may be comfortable using just an ICMP ping
to locate hosts on his internal network, while an external penetration tester may use a diverse set of dozens
of probes i n an attempt to evade firewall restrictions.

Because host discovery needs are so diverse, Nmap offers a wide variety of options for customizing the
techniques used. Host discovery is sometimes called ping scan, but it goes well beyond the simple ICMP
echo request packets associated with the ubiquitous ping tool. Users can skip the ping step entirely with a
list scan (-sL) or by disabling ping (-PN), or engage the network with arbitrary combinations of multi-port
TCP SYN/ ACK, UDP, and ICMP probes. The goal of these probes is to solicit responses which demonstrate
that an IP address is actually active (is being used by a host or network device). On many networks, only a

small percentage of IP addresses are active at any given time. This is particularly common with private
address space such as 10.0.0.0/8. That network has 16 million IPs, but I have seen it used by companies with
less than a thousand machines. Host discovery can find those machines in a sparsely allocated sea of IP
addresses.

If no host discovery options are given, Nmap sends a TCP ACK packet destined for port 80 and an ICMP
echo request query to each target machine. An exception to this is that an ARP scan is used for any targets
which are on a local ethernet network. For unprivileged Unix shell users, a SYN packet is sent instead of
the ACK using the connect system call. These defaults are equivalent to the -PA -PE options. This host
discovery is often sufficient when scanning local networks, but a more comprehensive set of discovery probes
is recommended for security auditing.

The -P* options (which select ping types) can be combined. You can increase your odds of penetrating
strict firewalls by sending many probe types using different TCP ports/flags and ICMP codes. Also note that
ARP discovery (-PR) i s done by default against targets on a local ethernet network even if you specify other
-P* options, because i t i s almost always faster and more effective.

By default, Nmap does host discovery and then performs a port scan against each host it determines is online.
This is true even if you specify non-default host discovery types such as UDP probes (-PU). Read about the
-sP option to learn how to perform only host discovery, or use -PN to skip host discovery and port scan all
target hosts. The following options control host discovery:

- s L (List Scan)

378

The list scan is a degenerate form of host discovery that simply lists each host of the network(s) specified,
without sending any packets to the target hosts. By default, Nmap stiJI does reverse-DNS resolution on
the hosts to learn their names. It is often surprising how much useful information simple hostnames give

15 .4. Host Discovery

out. For example, fw . chi is the name of one company's Chicago firewall . Nmap also reports the total
number of IP addresses at the end. The list scan is a good sanity check to ensure that you have proper
IP addresses for your targets. If the hosts sport domain names you do not recognize, it is worth
investigating further to prevent scanning the wrong company's network.

Since the idea is to simply print a list of target hosts, options for higher level functionality such as port
scanning, OS detection, or ping scanning cannot be combined with this. If you wish to disable ping
scanning while still performing such higher level functionality, read up on the -PN option.

-sP (Ping Scan)
This option tells Nmap to only perform a ping scan (host discovery), then print out the available hosts
that responded to the scan. Traceroute and NSE host scripts are also run if requested, but no further
testing (such as port scanning or OS detection) is performed. This is by default one step more intrusive
than the list scan, and can often be used for the same purposes. It allows light reconnaissance of a target
network without attracting much attention. Knowing how many hosts are up is more valuable to attackers
than the list provided by list scan of every single IP and host name.

Systems administrators often find this option valuable as well. It can easily be used to count available
machines on a network or monitor server availability. This is often called a ping sweep, and is more
reliable than pinging the broadcast address because many hosts do not reply to broadcast queries.

The -sP option sends an ICMP echo request and a TCP ACK packet to port 80 by default. When
executed by an unprivileged user, only a SYN packet is sent (using a connect call) to port 80 on the
target. When a privileged user tries to scan targets on a local ethernet network, ARP requests are used
unless --send-ip was specified. The -sP option can be combined with any of the discovery probe
types (the -P * options, excluding -PN) for greater flexibility. If any of those probe type and port number
options are used, the default probes (ACK and echo request) are overridden. When strict firewal ls are
in place between the source host running Nmap and the target network, using those advanced techniques
is recommended. Otherwise hosts could be missed when the firewal l drops probes or their responses.

-PN {No ping)
This option skips the Nmap discovery stage altogether. Normally, Nmap uses this stage to determine
active machines for heavier scanning. By default, Nmap only performs heavy probing such as port scans,
version detection, or OS detection against hosts that are found to be up. Disabling host discovery with
-PN causes Nmap to attempt the requested scanning functions against every target IP address specified.
So if a class B sized target address space (/16) is specified on the command l ine, all 65,536 IP addresses
are scanned. Proper host discovery is skipped as with the list scan, but instead of stopping and printing
the target list, Nmap continues to perform requested functions as if each target IP is active. For machines
on a local ethernet network, ARP scanning will still be performed (unless -- send-ip is specified)
because Nmap needs MAC addresses to further scan target hosts. This option flag used to be P O (uses
zero), but was renamed to avoid confusion with protocol ping's PO (uses the letter 0) flag.

-PS <port l i s t > (TCP SYN Ping)
This option sends an empty TCP packet with the SYN flag set. The default destination port is 80

{configurable at compile time by changing DEFAULT_TCP _PROBE_PORT_SPEC in nmap . h).
Alternate ports can be specified as a parameter. The syntax is the same as for the -p except that port
type specifiers like T : are not allowed. Examples are -PS 2 2 and -PS2 2 - 2 5 , 8 0 , 1 1 3 , 1 0 5 0 , 3 5 0 0 0 .
Note that there can be n o space between -PS and the port list. I f multiple probes are specified they will
be sent in parallel.

15.4. Host Discovery 379

The SYN flag suggests to the remote system that you are attempting to establish a connection. Normally
the destination port will be closed, and a RST (reset) packet sent back. If the port happens to be open,
the target will take the second step of a TCP three-way-handshake by responding with a SYN/ACK
packet. The machine running Nmap then tears down the nascent connection by responding with a RST

rather than sending an ACK packet which would complete the three-way-handshake and establish a full
connection. The RST packet is sent by the kernel of the machine running Nmap in response to the
unexpected SYN/ACK, not by Nmap itself.

Nmap does not care whether the port is open or closed. Either the RST or SYN/ACK response discussed
previously tell Nmap that the host is available and responsive.

On Unix boxes, only the privileged user root is generally able to send and receive raw TCP packets.

For unprivileged users, a workaround is automatically employed whereby the connect system call is
initiated against each target port. This has the effect of sending a SYN packet to the target host, in an
attempt to establish a connection. If connect returns with a quick success or an ECONNREFUSED
failure, the underlying TCP stack must have received a SYN/ACK or RST and the host is marked
available. If the.connection attempt is left hanging until a timeout is reached, the host is marked as down.
This workaround is also used for 1Pv6 connections, as raw 1Pv6 packet building support is not yet
available in Nmap.

-PA <port l i s t > (TCP ACK Ping)

380

The TCP ACK ping is quite similar to the just-discussed SYN ping. The difference, as you could likely
guess, is that the TCP ACK flag is set instead of the SYN flag. Such an ACK packet purports to be
acknowledging data over an established TCP connection, but no such connection exists. So remote hosts
should always respond with a RST packet, disclosing their existence in the process.

The -PA option uses the same default port as the SYN probe (80) and can also take a list of destination
ports in the same format. If an unprivileged user tries this, or an 1Pv6 target is specified, the connect
workaround discussed previously is used. This workaround is imperfect because connect is actually
sending a SYN packet rather than an ACK.

The reason for offering both SYN and ACK ping probes is to maximize the chances of bypassing
firewalls. Many administrators configure routers and other simple firewalls to block incoming SYN
packets except for those destined for public services like the company web site or mail server. This
prevents other incoming connections to the organization, while allowing users to make unobstructed
outgoing connections to the Internet. This non-stateful approach takes up few resources on the
firewal l/router and is widely supported by hardware and software filters. The Linux Netfilter/iptables
firewal l software offers the --syn convenience option to implement this stateless approach. When

stateless firewall rules such as this are in place, SYN ping probes (-PS) are likely to be blocked when
sent to closed target ports. In such cases, the ACK probe shines as it cuts right through these rules.

Another common type of firewall uses stateful rules that drop unexpected packets. This feature was
initially found mostly on high-end firewalls, though it has become much more common over the years.
The Linux Netfilter/iptables system supports this through the --s t a t e option, which categorizes

packets based on connection state. A SYN probe is more likely to work against such a system, as
unexpected ACK packets are generally recognized as bogus and dropped. A solution to this quandary
is to send both SYN and ACK probes by specifying -PS and -PA.

15 .4. Host Discovery

-PU <port l i s t > (UDP Ping)
Another host discovery option is the UDP ping, which sends an empty (unless --dat a-length is
specified) UDP packet to the given ports. The port list takes the same format as with the previously
discussed -PS and -PA options. If no ports are specified, the default is 31 338. This default can be
configured at compile-time by changing DEFAULT_ UDP _PROBE_PORT_SPEC in nmap . h. A highly
uncommon port is used by default because sending to open ports is often undesirable for this particular
scan type.

Upon hitting a closed port on the target machine, the UDP probe should elicit an ICMP port unreachable
packet in return. This signifies to Nmap that the machine is up and available. Many other types of ICMP
errors, such as host/network unreachables or TTL exceeded are indicative of a down or unreachable
host. A lack of response is also interpreted this way. If an open port is reached, most services simply
ignore the empty packet and fail to return any response. This is why the default probe port is 3 1338,

which is highly unlikely to be in use. A few services, such as the Character Generator (chargen) protocol,
will respond to an empty UDP packet, and thus disclose to Nmap that the machine is available.

The primary advantage of this scan type is that it bypasses firewal ls and fi lters that only screen TCP.
For example, I once owned a Linksys BEFW I I S4 wireless broadband router. The external interface of
this device filtered all TCP ports by default, but UDP probes would still elicit port unreachable messages
and thus give away the device.

-PE; -PP; -PM (ICMP Ping Types)
In addition lo the unusual TCP and UDP host discovery types discussed previously, Nmap can send the
standard packets sent by the ubiquitous ping program. Nmap sends an ICMP type 8 (echo request) packet
to the target IP addresses, expecting a type 0 (echo reply) in return from available hosts. Unfortunately
for network explorers, many hosts and firewalls now block these packets, rather than responding as
required by RFC 1 122. For this reason, ICMP-only scans are rarely reliable enough against unknown
targets over the Internet. But for system administrators monitoring an internal network, they can be a
practical and efficient approach. Use the -PE option to enable this echo request behavior.

While echo request is the standard ICMP ping query, Nmap does not stop there. The ICMP standard
(RFC 792) also specifies timestamp request, information request, and address mask request packets as
codes 13, 15, and 17, respectively. While the ostensible purpose for these queries is to learn information
such as address masks and current times, they can easily be used for host discovery. A system that replies
is up and available. Nmap does not currently implement information request packets, as they are not
widely supported. RFC 1 122 insists that "a host SHOULD NOT implement these messages". Timestamp
and address mask queries can be sent with the -PP and -PM options, respectively. A timestamp reply
(ICMP code 14) or address mask reply (code 18) discloses that the host is available. These two queries
can be valuable when administrators specifically block echo request packets while forgetting that other
ICMP queries can be used for the same purpose.

-PO <prot ocol l i s t > (IP Protocol Ping)
The newest host discovery option is the IP protocol ping, which sends IP packets with the specified
protocol number set in their IP header. The protocol list takes the same format as do port lists in the
previously discussed TCP and UDP host discovery options. If no protocols are specified, the default is
to send multiple IP packets for ICMP (protocol 1), IGMP (protocol 2), and IP-in-IP (protocol 4). The
defau l t protoco l s can be config ured at compi l e - t ime by cha n g i n g
DEFAULT_PROTO_PROBE_PORT_SPEC i n nmap . h . Note that for the ICMP, IGMP, TCP (protocol

15.4. Host Discovery 381

6), and UDP (protocol 17), the packets are sent with the proper protocol headers while other protoc
are sent with no additional data beyond the IP header (unless the --data- length option is specifiedi

This host discovery method looks for either responses using the same protocol as a probe, or ICMP
protocol unreachable messages which signify that the given protocol isn 't supported on the destinatiol
host. Either type of response signifies that the target host is alive.

-PR (ARP Ping)
One of the most common Nmap usage scenarios is to scan an ethernet LAN. On most LANs, especially
those using private address ranges specified by RFC 1918, the vast majority of IP addresses are unused
at any given time. When Nmap tries to send a raw IP packet such as an ICMP echo request, the operating
system must determine the destination hardware (ARP) address corresponding to the target IP so that it
can properly address the ethernet frame. This is often slow and problematic, since operating systems
weren't written with the expectation that they would need to do millions of ARP requests against
unavailable hosts in a short time period.

ARP scan puts Nmap and its optimized algorithms in charge of ARP requests. And if it gets a response
back, Nmap doesn't even need to worry about the IP-based ping packets since it already knows the host
is up. This makes ARP scan much faster and more reliable than IP-based scans. So it is done by default
when scanning ethernet hosts that Nmap detects are on a local ethernet network. Even if different ping
types (such as -PE or -PS) are specified, Nmap uses ARP instead for any of the targets which are on
the same LAN. If you absolutely don't want to do an ARP scan, specify - -send-ip.

--tr aceroute (Trace path to host)
Traceroutes are performed post-scan using information from the scan results to determine the port and
protocol most likely to reach the target. It works with all scan types except connect scans (-s T) and
idle scans (- s I). All traces use Nmap's dynamic timing model and are performed in parallel.

Traceroute works by sending packets with a low TTL (time-to-live) in an attempt to elicit ICMP Time
Exceeded messages from intermediate hops between the scanner and the target host. Standard trnceroute
implementations start with a TTL of I and increment the TTL until the destination host is reached.
Nmap's traceroute starts with a high TTL and then decrements the TTL until it reaches zero. Doing it
backwards lets Nmap employ clever caching algorithms to speed up traces over multiple hosts. On
average Nmap sends 5-10 fewer packets per host, depending on network conditions. If a single subnet
is being scanned (i.e. 192. 168.0.0/24) Nmap may only have to send a single packet to most hosts.

-n (No DNS resolution)
Tells Nmap to never do reverse DNS resolution on the active IP addresses it finds. Since DNS can be
slow even with Nmap's built-in parallel stub resolver, this option can slash scanning times.

-R (DNS resolution for all targets)
Tel ls Nmap to always do reverse DNS resolution on the target IP addresses. Normally reverse DNS is
only performed against responsive (online) hosts.

--system-dns (Use system DNS resolver)

382

By default, Nmap resolves IP addresses by sending queries directly to the name servers configured on
your host and then listening for responses. Many requests (often dozens) are performed in parallel to
improve performance. Specify this option to use your system resolver instead (one IP at a time via the
getname i nfo call). This is slower and rarely useful u nless you find a bug in the Nmap parallel resolver
(please let us know if you do). The system resolver is always used for IPv6 scans.

15.4. Host Discovery

--do s - server s <serverl > [, <server2> [, . . .]] (Servers to use for reverse DNS queries)

By default, Nmap determines your DNS servers (for rDNS resolution) from your resolv.conf file (Unix)

or the Registry (Win32). Alternatively, you may use this option to specify alternate servers. This option

is not honored if you are using --sys tem-do s or an IPv6 scan. Using multiple DNS servers is often
faster, especially if you choose authoritative servers for your target IP space. This option can also improve
stealth, as your requests can be bounced off just about any recursive DNS server on the Internet.

This option also comes in handy when scanning private networks. Sometimes only a few name servers
provide proper rDNS information, and you may not even know where they are. You can scan the network
for port 53 (perhaps with version detection), then try Nmap l ist scans (-sL) specifying each name server
one at a time with --do s - servers until you find one which works.

15.5. Port Scann ing Basics
While Nmap has grown in functionality over the years, it began as an efficient port scanner, and that remains
its core function. The simple command nmap <target> scans more than 1660 TCP ports on the host

<targe t >. While many port scanners have traditionally lumped all ports into the open or closed states,
Nmap is much more granular. It divides ports into six states: open, c l o s ed, f i l tered, u n f i l tered,

open l f i ltered, or c l o sed l f i ltered.

These states are not intrinsic properties of the port itself, but describe how Nmap sees them. For example,
an Nmap scan from the same network as the target may show port 1 3 5 / t cp as open, while a scan at the
same time with the same options from across the Internet might show that port as f i 1 tered.

The six port states recognized by Nmap

open
An application is actively accepting TCP connections or UDP packets on this port. Finding these is often
the primary goal of port scanning. Security-minded people know that each open port is an avenue for
attack. Attackers and pen-testers want to exploit the open ports, while administrators try to close or
protect them with firewalls without thwarting legitimate users. Open ports are also interesting for
non-security scans because they show services available for use on the network.

closed
A closed port is accessible (it receives and responds to Nmap probe packets), but there is no application
listening on it. They can be helpful in showing that a host is up on an IP address (host discovery, or ping
scanning), and as part of OS detection. Because closed ports are reachable, it may be worth scanning
later in case some open up. Administrators may want to consider blocking such ports with a firewall .
Then they would appear in the filtered state, discussed next.

filtered
Nmap cannot determine whether the port is open because packet filtering prevents its probes from
reaching the port. The filtering could be from a dedicated firewall device, router rules, or host-based
firewall software. These ports frustrate attackers because they provide so l ittle information. Sometimes
they respond with ICMP error messages such as type 3 code 13 (destination unreachable: communication
administratively prohibited), but filters that simply drop probes without responding are far more common.
This forces Nmap to retry several times just in case the probe was dropped due to network congestion
rather than filtering. This slows down the scan dramatically.

15.5. Port Scanning Basics 383

unfiltered
The unfiltered state means that a port is accessible, but Nmap is unable to determine whether it is open
or closed. Only the ACK scan, which is used to map firewall rulesets, classifies ports into this state.
Scanning unfiltered ports with other scan types such as Window scan, SYN scan, or FIN scan, may help
resolve whether the port is open.

openlfiltered
Nmap places ports in this state when it is unable to determine whether a port is open or filtered. This
occurs for scan types in which open ports give no response. The lack of response could also mean that
a packet fi lter dropped the probe or any response it elicited. So Nmap does not know for sure whether
the port is open or being filtered. The UDP, IP protocol, FIN, NULL, and Xmas scans classify ports this
way.

closedlfil tered
This state is used when Nmap is unable to determine whether a port is closed or fi ltered. It is only used
for the IP ID idle scan.

1 5.6. Port Scanning Techn iques
As a novice performing automotive repair, I can struggle for hours trying to fit my rudimentary tools (hammer,
duct tape, wrench, etc.) to the task at hand. When I fail miserably and tow my jalopy to a real mechanic, he
invariably fishes around in a huge tool chest until pulling out the perfect gizmo which makes the job seem
effortless. The art of port scanning is similar. Experts understand the dozens of scan techniques and choose
the appropriate one (or combination) for a given task. Inexperienced users and script kiddies, on the other
hand, try to solve every problem with the default SYN scan. Since Nmap is free, the only barrier to port
scanning mastery is knowledge. That certain ly beats the automotive world, where it may take great skill to
determine that you need a strut spring compressor, then you still have to pay thousands of dollars for it.

Most of the scan types are only available to privileged users. This is because they send and receive raw
packets, which requires root access on Unix systems. Using an administrator account on Windows is

recommended, though Nmap sometimes works for unprivileged users on that platform when WinPcap has

already been loaded into the OS. Requiring root privileges was a serious limitation when Nmap was released

in 1997, as many users only had access to shared shell accounts. Now, the world is different. Computers are

cheaper, far more people have always-on direct Internet access, and desktop Unix systems (including Linux

and Mac OS X) are prevalent. A Windows version of Nmap is now available, al lowing it to run on even

more desktops. For all these reasons, users have less need to run Nmap from limited shared shell accounts.

This is fortunate, as the privileged options make Nmap far more powerful and flexible.

While Nmap attempts to produce accurate results, keep in mind that all of its insights are based on packets
returned by the target machines (or firewalls in front of them). Such hosts may be untrustworthy and send
responses intended to confuse or mislead Nmap. Much more common are non-RFC-compliant hosts that do
not respond as they should to Nmap probes. FIN, NULL, and Xmas scans are particularly susceptible to this
problem. Such issues are specific to certain scan types and so are discussed in the individual scan type entries.

This section documents the dozen or so port scan techniques supported by Nmap. Only one method may be
used at a time, except that UDP scan (-sU) may be combined with any one of the TCP scan types. As a
memory aid, port scan type options are of the form -s <C>, where <C> is a prominent character in the scan
name, usually the first. The one exception to this is the deprecated FTP bounce scan (-b). By default, Nmap
performs a SYN Scan, though it substitutes a connect scan if the user does not have proper privileges to send

384 1 5.6. Port Scanning Techniques

raw packets (requires root access on Unix) or if 1Pv6 targets were specified. Of the scans listed in this section,
unprivileged users can only execute connect and FTP bounce scans.

-s s (TCP SYN scan)
SYN scan is the default and most popular scan option for good reasons. It can be performed quickly,
scanning thousands of ports per second on a fast network not hampered by restrictive firewalls. SYN
scan is relatively unobtrusive and stealthy, since it never completes TCP connections. It also works
against any compliant TCP stack rather than depending on idiosyncrasies of specific platforms as Nmap's
FIN/NULUXmas, Maimon and idle scans do. It also allows clear, reliable differentiation between the
open, c l osed, and f i l t ered states.

This technique is often referred to as half-open scanning, because you don't open a ful l TCP connection.
You send a SYN packet, as if you are going to open a real connection and then wait for a response. A
SYN/ACK indicates the port is listening (open), while a RST (reset) is indicative of a non-listener. If
no response is received after several retransmissions, the port is marked as filtered. The port is also
marked filtered if an ICMP unreachable error (type 3, code 1 , 2, 3 , 9, 10, or 1 3) is received.

-sT (TCP connect scan)
TCP connect scan is the default TCP scan type when SYN scan is not an option. This is the case when
a user does not have raw packet privileges or is scanning 1Pv6 networks. Instead of writing raw packets
as most other scan types do, Nmap asks the underlying operating system to establish a connection with
the target machine and port by issuing the c onnect system call. This is the same high-level system
call that web browsers, P2P clients, and most other network-enabled applications use to establish a
connection. It is part of a programming interface known as the Berkeley Sockets APL Rather than read
raw packet responses off the wire, Nmap uses this API to obtain status information on each connection
attempt.

When SYN scan is available, it is usually a better choice. Nmap has less control over the high level
connect call than with raw packets, making it less efficient. The system call completes connections
to open target ports rather than performing the half-open reset that SYN scan does. Not only does this
take longer and require more packets to obtain the same information, but target machines are more likely
to log the connection. A decent IDS will catch either, but most machines have no such alarm system.
Many services on your average Unix system will add a note to syslog, and sometimes a cryptic error
message, when Nmap connects and then closes the connection without sending data. Truly pathetic
services crash when this happens, though that is uncommon. An administrator who sees a bunch of
connection attempts in her Jogs from a single system should know that she has been connect scanned.

-su (UDP scans)
While most popular services on the Internet run over the TCP protocol, UDP services are widely deployed.
DNS, SNMP, and DHCP (registered ports 53, 161/162, and 67/68) are three of the most common.
Because UDP scanning is generally slower and more difficult than TCP, some security auditors ignore
these ports. This is a mistake, as exploitable UDP services are quite common and attackers certainly
don't ignore the whole protocol. Fortunately, Nmap can help inventory UDP ports.

UDP scan is activated with the -su option. It can be combined with a TCP scan type such as SYN scan
(-sS) to check both protocols during the same run.

UDP scan works by sending an empty (no data) UDP header to every targeted port. If an ICMP port
unreachable error (type 3, code 3) is returned, the port is c l osed. Other ICMP unreachable errors (type
3, codes 1 , 2, 9, 10, or 1 3) mark the port as f i l tered. Occasionally, a service will respond with a

15 .6. Port Scanning Techniques 385

UDP packet, proving that it is open. If no response is received after retransmissions, the port is cl
·

as open I f i ltered. This means that the port could be open, or perhaps packet filters are bl

the communication. Version detection (- sV) can be used to help differentiate the truly open ports
the filtered ones.

A big challenge with UDP scanning is doing it quickly. Open and filtered ports rarely send any res
leaving Nmap to time out and then conduct retransmissions just in case the probe or response were I
Closed ports are often an even bigger problem. They usually send back an ICMP port unreachable
But unlike the RST packets sent by closed TCP ports in response to a SYN or connect scan, many
rate limit ICMP port unreachable messages by default. Linux and Solaris are particularly strict a
this. For example, the Linux 2.4.20 kernel limits destination unreachable messages to one per
(in net / ipv4 / i cmp . c).

Nmap detects rate limiting and slows down accordingly to avoid flooding the network with uselell
packets that the target machine will drop. Unfortunately, a Linux-style limit of one packet per sec
makes a 65,536-port scan take more than 1 8 hours. Ideas for speeding your UDP scans up include
scanning more hosts in parallel, doing a quick scan of just the popular ports first, scanning from behind
the firewall, and using --host-t imeout to skip slow hosts.

- sN; -sF; - s X (TCP NULL, FIN, and Xmas scans)

386

These three scan types (even more are possible with the --scanf lags option described in the next
section) exploit a subtle loophole in the TCP RFC to differentiate between open and closed portL
Page 65 of RFC 793 says that "if the [destination] port state is CLOSED an incoming segment not
containing a RST causes a RST to be sent in response." Then the next page discusses packets sent to
open ports without the SYN, RST, or ACK bits set, stating that: "you are unlikely to get here, but if you
do, drop the segment, and return."

When scanning systems compliant with this RFC text, any packet not containing SYN, RST, or ACK
bits will result in a returned RST if the port is closed and no response at all if the port is open. As long
as none of those three bits are included, any combination of the other three (FIN, PSH, and URG) are

· OK. Nmap exploits this with three scan types:

Null scan (- sN)
Does not set any bits (TCP flag header is 0)

FIN scan (-sF)
Sets just the TCP FIN bit.

Xmas scan (- s X)
Sets the FIN, PSH , and URG flags, lighting the packet up like a Christmas tree.

These three scan types are exactly the same in behavior except for the TCP flags set in probe packets.
If a RST packet is received, the port is considered c l o s ed, while no response means it is
open / fi l t ered. The port is marked fi l t ered if an ICMP unreachable error (type 3, code I, 2,

3, 9, 10, or 13) is received.

The key advantage to these scan types is that they can sneak through certain non-stateful firewalls and
packet filtering routers. Another advantage is that these scan types are a little more stealthy than even
a SYN scan. Don't count on this though-most modern IDS products can be configured to detect them.
The big downside is that not all systems follow RFC 793 to the letter. A number of systems send RST

1 5 .6. Port Scanning Techniques

responses to the probes regardless of whether the port is open or not. This causes all of the ports to be
labeled closed. Major operating systems that do this are Microsoft Windows, many Cisco devices,
BSDI, and IBM OS/400. This scan does work against most Unix-based systems though. Another downside
of these scans is that they can't distinguish open ports from certain f i l tered ones, leaving you with
the response open I f i l t ered.

-sA (TCP ACK scan)
This scan is different than the others discussed so far in that it never determines open (or even
open I f i ltered) ports. It is used to map out firewall rulesets, determining whether they are stateful
or not and which ports are filtered.

The ACK scan probe packet has only the ACK flag set (unless you use --scanf lags). When scanning
unfiltered systems, open and c l osed ports will both return a RST packet. Nmap then labels them as
unfiltered, meaning that they are reachable by the ACK packet, but whether they are open or
closed is undetermined. Ports that don't respond, or send certain ICMP error messages back (type 3,

code I , 2, 3, 9, IO, or 1 3), are labeled f i l tered.

-sw (TCP Window scan)
Window scan is exactly the same as ACK scan except that it exploits an implementation detail of certain
systems to differentiate open ports from closed ones, rather than always printing u n f i l tered when
a RST is returned. It does this by examining the TCP Window field of the RST packets returned. On
some systems, open ports use a positive window size (even for RST packets) while closed ones have a
zero window. So instead of always listing a port as u n f i l tered when it receives a RST back, Window
scan lists the port as open or c l osed if the TCP Window value in that reset is positive or zero,
respectively.

This scan relies on an implementation detail of a minority of systems out on the Internet, so you can't
always trust it. Systems that don't support it will usually return all ports closed. Of course, i t is possible
that the machine really has no open ports. If most scanned ports are c l o sed but a few common port
numbers (such as 22, 25, 53) are f i ltered, the system is most l ikely susceptible. Occasionally, systems
will even show the exact opposite behavior. If your scan shows 1000 open ports and three closed or
filtered ports, then those three may very well be the truly open ones.

-sM (TCP Maimon scan)
The Maimon scan is named after its discoverer, Uriel Maimon. He described the technique in Phrack
Magazine issue #49 (November 1996). Nmap, which included this technique, was released two issues
later. This technique is exactly the same as NULL, FIN, and Xmas scans, except that the probe is
FINI ACK. According to RFC 793 (TCP), a RST packet should be generated in response to such a probe
whether the port is open or closed. However, Uriel noticed that many BSD-derived systems simply drop
the packet if the port is open.

--scan flags (Custom TCP scan)
Truly advanced Nmap users need not limit themselves to the canned scan types offered. The
--scanf lags option allows you to design your own scan by specifying arbitrary TCP flags. Let your
creative juices flow, while evading intrusion detection systems whose vendors simply paged through
the Nmap man page adding specific rules !

The --scanflags argument can be a numerical flag value such as 9 (PSH and FIN), but using symbolic
names is easier. Just mash together any combination of URG, ACK, PSH, RST, SYN, and F I N. For

15.6. Port Scanning Techniques 387

example, - - s canf l ags URGACKPSHRSTSYNF IN sets everything, though it's not very usefuJ
scanning. The order these are specified in is irrelevant.

In addition to specifying the desired flags, you can specify a TCP scan type (such as -sA or -sF).
base type tells Nmap how to interpret responses. For example, a SYN scan considers no-response
indicate a f i l tered port, while a AN scan treats the same as open I f i ltered. Nmap will
the same way it does for the base scan type, except that it will use the TCP flags you specify instead.
you don't specify a base type, SYN scan is used.

- s l <zombi e h o s t > [: <probeport >] (idle scan)
This advanced scan method allows for a truly blind TCP port scan of the target (meaning no packets
sent to the target from your real IP address). Instead, a unique side-channel attack exploits predic
IP fragmentation ID sequence generation on the zombie host to glean information about the open
on the target. IDS systems wil l display the scan as coming from the zombie machine you specify (w ·
must be up and meet certain criteria). Full details of this fascinating scan type are in Section 5. IO, "
Idle Scan (-sl)" [1 1 7] .

Besides being extraordinarily stealthy (due to its blind nature), this scan type permits mapping
IP-based trust relationships between machines. The port listing shows open ports from the perspectivt
of the zombie host. So you can try scanning a target using various zombies that you think might be trusted
(via router/packet filter rules).

You can add a colon followed by a port number to the zombie host if you wish to probe a particular port
on the zombie for IP ID changes. Otherwise Nmap will use the port it uses by default for TCP pings
(80).

- so (IP protocol scan)

388

IP protocol scan allows you to determine which IP protocols (TCP, ICMP, IGMP, etc.) are supported
by target machines. This isn't technically a port scan, since it cycles through IP protocol numbers rather
than TCP or UDP port numbers. Yet it still uses the -p option to select scanned protocol numbers,
reports its results within the normal port table format, and even uses the same underlying scan engine
as the true port scanning methods. So it is close enough to a port scan that it belongs here.

Besides being useful in its own right, protocol scan demonstrates the power of open-source software.
While the fundamental idea is pretty simple, I had not thought to add it nor received any requests for
such functionality. Then in the summer of 2000, Gerhard Rieger conceived the idea, wrote an excellent
patch implementing it, and sent it to the nmap-hackers mailing l ist. I incorporated that patch into the
Nmap tree and released a new version the next day. Few pieces of commercial software have users
enthusiastic enough to design and contribute their own improvements !

Protocol scan works in a similar fashion to UDP scan. Instead of iterating through the port number field
of a UDP packet, it sends IP packet headers and iterates through the eight-bit IP protocol field. The

headers are usually empty, containing no data and not even the proper header for the claimed protocol.

The three exceptions are TCP, UDP, and ICMP. A proper protocol header for those is included since

some systems won't send them otherwise and because Nmap already has functions to create them. Instead

of watching for ICMP port unreachable messages, protocol scan is on the lookout for ICMP protocol
unreachable messages. If Nmap receives any response in any protocol from the target host, Nmap marks

that protocol as open. An ICMP protocol unreachable error (type 3, code 2) causes the protocol to be

marked as c l o sed Other ICMP unreachable errors (type 3, code 1 , 3, 9, IO, or 13) cause the protocol

15.6. Port Scanning Techniques

to be marked f i 1 tered (though they prove that ICMP is open at the same time). I f no response is
received after retransmissions, the protocol is marked open I f i l tered

-b <FTP rel ay h o s t > (FTP bounce scan)
An interesting feature of the FTP protocol (RFC 959) is support for so-called proxy FTP connections.
This allows a user to connect to one FTP server, then ask that files be sent to a third-party server. Such
a feature is ripe for abuse on many levels, so most servers have ceased supporting it. One of the abuses
this feature allows is causing the FTP server to port scan other hosts. Simply ask the FTP server to send
a file to each interesting port of a target host in turn. The error message will describe whether the port
is open or not. This is a good way to bypass firewalls because organizational FTP servers are often
placed where they have more access to other internal hosts than any old Internet host would. Nmap
supports FTP bounce scan with the -b option. It takes an argument of the form
<username>: <pa s s word>@ <server>: <port >. <Server> is the name or IP address of a
vulnerable FTP server. As with a normal URL, you may omit <username>: <pa ss word>, in which
case anonymous login credentials (user: anonymous password:-wwwuser @) are used. The port number
(and preceding colon) may be omitted as well, in which case the default FTP port (21) on <server>

is used.

This vulnerability was widespread in 1997 when Nmap was released, but has largely been fixed.
Vulnerable servers are still around, so it is worth trying when all else fails. If bypassing a firewall is
your goal, scan the target network for open port 21 (or even for any FTP services i f you scan all ports
with version detection), then try a bounce scan using each. Nmap will tell you whether the host is
vulnerable or not. If you are just trying to cover your tracks, you don't need to (and, in fact, shouldn't)
limit yourself to hosts on the target network. Before you go scanning random Internet addresses for
vulnerable FTP servers, consider that sysadmins may not appreciate you abusing their servers in this
way.

1 5.7. Port Specification and Scan Order
In addition to all o f the scan methods discussed previously, Nmap offers options for specifying which ports
are scanned and whether the scan order is randomized or sequential. By default, Nmap scans all ports up to
and including 1024 as well as higher numbered ports l isted in the nmap-services file for the protocol(s)
being scanned.

-p <port ranges> (Only scan specified ports)
This option specifies which ports you want to scan and overrides the default. Individual port numbers
are OK, as are ranges separated by a hyphen (e.g. 1 - 1 0 2 3). The beginning and/or end values of a range
may be omitted, causing Nmap to use l and 65535, respectively. So you can specify -p- to scan ports
from l through 65535. Scanning port zero is allowed if you specify it explicitly. For IP protocol scanning
(-so), this option specifies the protocol numbers you wish to scan for (0-255).

When scanning both TCP and UDP ports, you can specify a particular protocol by preceding the port
numbers by T : or u : . The qualifier lasts until you speci fy another qualifier. For example, the argument
-p U : 5 3 , 1 1 1 , 1 3 7 , T : 2 1 - 2 5 , 8 0 , 1 3 9 , 8 0 8 0 would scan UDP ports 53,1 1 1 ,and 137, as well as
the listed TCP ports. Note that to scan both UDP and TCP, you have to specify -su and at least one
TCP scan type (such as - s s , -sF, or - sT). If no protocol qualifier is given, the port numbers are added
to all protocol fists.

15 .7. Port Specification and Scan Order 389

Ports can also be specified by name according to what the port is referred to in the nmap-service

You can even use the wildcards * and ? with the names. For example, to scan FfP and all ports whOll
names begin with "http", use -p ftp, htt p * . Be careful about shell expansions and quote the argutnem
to -p if unsure.

Ranges of ports can be surrounded by square brackets to indicate ports inside that range that appear ii
nmap-services . For example, the following will scan all ports in nmap-servi ces equal to or
below 1024: -p [- 1 0 2 4 J . Be careful with shell expansions and quote the argument to -p if unsure.

-F (Fast (limited port) scan)
Specifies that you wish to scan fewer ports than the default. Normally Nmap scans the most common
1 ,000 ports for each scanned protocol. With -F, this is reduced to 100.

Nmap needs an nmap-services file with frequency information in order to know which ports arc
the most common (see Section 14.2, "Well Known Port List: nmap-services" [363) for more about port
frequencies). If port frequency information isn't available, perhaps because of the use of a custom
nmap-services file, -F means to scan only ports that are named in the services file (normally Nmap
scans all named ports plus ports 1-1024).

-r (Don't randomize ports)
By default, Nmap randomizes the scanned port order (except that certain commonly accessible ports
are moved near the beginning for efficiency reasons). This randomization is normally desirable, but you
can specify -r for sequential port scanning instead.

--por t -rat i o <decimal number between 0 and 1 >

Scans all ports i n nmap-services file with a ratio greater than the number specified as the argument
(new format nmap-services only.)

--t op-por t s < i nt eger of 1 or greater>

Scans the N highest-ratio ports found in nmap- services file. (new format nmap-services only.)

1 5.8. Service and Version Detection
Point Nmap at a remote machine and it might tell you that ports 2 5 / t cp, 8 0 /t cp, and 53 /udp are open.
Using its nmap-services database of about 2,200 well-known services, Nmap would report that those
ports probably correspond to a mail server (SMTP), web server (HTTP), and name server (DNS) respectively.
This lookup is usually accurate-the vast majority of daemons listening on TCP port 25 are, in fact, mail
servers. However, you should not bet your security on this ! People can and do run services on strange ports.

Even if Nmap is right, and the hypothetical server above is running SMTP, HTTP, and DNS servers, that is
not a lot of information. When doing vulnerability assessments (or even simple network inventories) of your
companies or clients, you really want to know which mail and DNS servers and versions are running. Having
an accurate version number helps dramatically in determining which exploits a server is vulnerable to. Version
detection helps you obtain this information.

After TCP and/or UDP ports are discovered using one of the other scan methods, version detection interrogates
those ports to determine more about what is actually running. The nmap-service-probes database

390 15.8. Service and Version Detection

contains probes for querying various services and match expressions to recognize and parse responses. Nmap
tries to determine the service protocol (e.g. FfP, SSH, Telnet, HTTP), the application name (e.g. ISC BIND,
Apache httpd, Solaris telnetd), the version number, hostname, device type (e.g. printer, router), the OS family
(e.g. Windows, Linux) and sometimes miscellaneous details like whether an X server is open to connections,
the SSH protocol version, or the KaZaA user name). Of course, most services don't provide all of this
information. If Nmap was compiled with OpenSSL support, it will connect to SSL servers to deduce the
service listening behind that encryption layer. When RPC services are discovered, the Nmap RPC grinder
(-sR) is automatically used to determine the RPC program and version numbers. Some UDP ports are left
in the open I f i l tered state after a UDP port scan is unable to determine whether the port is open or
filtered. Version detection will try to elicit a response from these ports (just as it does with open ports), and
change the state to open if it succeeds. open I fi ltered TCP ports are treated the same way. Note that
the Nmap -A option enables version detection among other things. Version detection is described in detail
in Chapter 7, Service and Application Version Detection [1 45) .

When Nmap receives responses from a service but cannot match them to its database, it prints out a special
fingerprint and a URL for you to submit if to if you know for sure what is running on the port. Please take
a couple minutes to make the submission so that your find can benefit everyone. Thanks to these submissions,
Nmap has about 3,000 pattern matches for more than 350 protocols such as SMTP, FfP, HTTP, etc.

Version detection is enabled and controlled with the following options:

-sv (Version detection)
Enables version detection, as discussed above. Alternatively, you can use -A, which enables version
detection among other things.

--al lport s (Don't exclude any ports from version detection)
By default, Nmap version detection skips TCP port 9100 because some printers simply print anything
sent to that port, leading to dozens of pages of HTTP GET requests, binary SSL session requests, etc.
This behavior can be changed by modifying or removing the Exel ude directive in
nmap- serviee -probe s, or you can specify - - a l l ports to scan al l ports regardless of any
Exel ude directive.

--ver s i on-intensity <i n t en s i ty> (Set version scan intensity)
When performing a version scan (- sV), Nmap sends a series of probes, each of which is assigned a
rarity value between one and nine. The lower-numbered probes are effective against a wide variety of
common services, while the higher numbered ones are rarely useful. The intensity level specifies which
probes should be applied. The higher the number, the more likely it is the service will be correctly
identified. However, high intensity scans take longer. The intensity must be between 0 and 9. The default
is 7. When a probe is registered to the target port via the nmap- servi ee-probe s por t s directive,
that probe is tried regardless of intensity level. This ensures that the DNS probes will always be attempted
against any open port 53, the SSL probe will be done against 443, etc.

- -ver s ion-light (Enable" light mode)
This is a convenience alias for - -ver s ion- intens i ty 2 . This light mode makes version scanning
much faster, but it is slightly less likely to identify services.

--ver s i on-all (Try every single probe)
An alias for - -ver s i o n - i nt e n s i t y 9 , ensuring that every single probe is attempted against each
port.

15.8. Service and Version Detection 391

--ve r s i on-trace (Trace version scan activity)
This causes Nmap to print out extensive debugging info about what version scanning is doing. It
subset of what you get with --packet-trace.

-sR (RPC scan)
This method works in conjunction with the various port scan methods ofNmap. It takes all the TCP
ports found open and floods them with SunRPC program NULL commands in an attempt to determi
whether they are RPC ports, and if so, what program and version number they serve up. Thus you
effectively obtain the same info as rpcinfo -p even if the target's portmapper is behind a firewall �
protected by TCP wrappers). Decoys do not currently work with RPC scan. This is automatically enab
as part of version scan (- sV) if you request that. As version detection includes this and is much m

comprehensive, - s R is rarely needed.

1 5.9. OS Detection
One of Nmap's best-known features i s remote OS detection using TCP/IP stack fingerprinting. Nmap se
a series of TCP and UDP packets to the remote host and examines practically every bit in the respon
After performing dozens of tests such as TCP ISN sampling, TCP options support and ordering, IP ID
sampling, and the initial window size check, Nmap compares the results to its nmap-os-db database of
more than a thousand known OS fingerprints and prints out the OS details if there is a match. Each fingerprint
includes a freeform textual description of the OS, and a classification which provides the vendor name (e.g.
Sun), underlying OS (e.g. Solaris), OS generation (e.g. 10), and device type (general purpose, router, switch,
game console, etc).

If Nmap is unable to guess the OS of a machine, and conditions are good (e.g. at least one open port and one
closed port were found), Nmap will provide a URL you can use to submit the fingerprint if you know (for
sure) the OS running on the machine. By doing this you contribute to the pool of operating systems known
to Nmap and thus i t will be more accurate for everyone.

OS detection enables some other tests which make use of information that is gathered during the process
anyway. One of these is TCP Sequence Predictability Classification. This measures approximately how hard
it is to establish a forged TCP connection against the remote host. It is useful for exploiting source-IP based
trust relationships (rlogin, firewall filters, etc) or for hiding the source of an attack. This sort of spoofing is
rarely performed any more, but many machines are still vulnerable to it. The actual difficulty number is
based on statistical sampling and may fluctuate. It is generally better to use the English classification such
as "worthy chal lenge" or "trivial joke". This is only reported in normal output in verbose (-v) mode. When
verbose mode is enabled along with -0, IP ID sequence generation is also reported. Most machines are in
the "incremental" class, which means that they increment the ID field in the IP header for each packet they
send. This makes them vulnerable to several advanced information gathering and spoofing attacks.

Another bit of extra information enabled by OS detection is a guess at a target's uptime. This uses the TCP
timestamp option (RFC 1 323) to guess when a machine was last rebooted. The guess can be inaccurate due
to the timestamp counter not being initialized to zero or the counter overflowing and wrapping around, so it
is printed only in verbose mode.

OS detection is covered in Chapter 8, Remote OS Detection [1 7 1] .

OS detection is enabled and controlled with the following options:

392 1 5.9. OS Detection

-0 (Enable OS detection)
Enables OS detection, as discussed above. Alternatively, you can use -A to enable OS detection along
with other things.

--osscan-l imit (Limit OS detection to promising targets)
OS detection is far more effective if at least one open and one closed TCP port are found. Set this option
and Nmap will not even try OS detection against hosts that do not meet this criteria. This can save
substantial time, particularly on -PN scans against many hosts. It only matters when OS detection is
requested with -0 or -A.

--osscan-gue s s ; --fu z z y (Guess OS detection results)
When Nmap is unable to detect a perfect OS match, it sometimes offers up near-matches as possibilities.
The match has to be very close for Nmap to do this by default. Either of these (equivalent) options make
Nmap guess more aggressively. Nmap will still tell you when an imperfect match is printed and display
its confidence level (percentage) for each guess.

--max-os-tr ies (Set the maximum number of OS detection tries against a target)
When Nmap performs OS detection against a target and fails to find a perfect match, it usually repeats
the attempt. By default, Nmap tries five times if conditions are favorable for OS fingerprint submission,
and twice when conditions aren't so good. Specifying a lower --max-os-tr ies value (such as 1)
speeds Nmap up, though you miss out on retries which could potentially identify the OS. Alternatively,
a high value may be set to allow even more retries when conditions are favorable. This is rarely done,
except to generate better fingerprints for submission and integration into the Nmap OS database.

1 5.1 0. Nmap Script ing Eng ine (NSE)
The Nmap Scripting Engine (NSE) is one of Nmap's most powerful and flexible features. It allows users to
write (and share) simple scripts (using the Lua programming language 1 ,) to automate a wide variety of
networking tasks. Those scripts are executed in parallel with the speed and efficiency you expect from Nmap.
Users can rely on the growing and diverse set of scripts distributed with Nmap, or write their own to meet
custom needs.

Tasks we had in mind when creating the system include network discovery, more sophisticated version
detection, vulnerability detection. NSE can even be used for vulnerability exploitation.

To reflect those different uses and to simplify the choice of which scripts to run, each script contains a field
associating it with one or more categories. Currently defined categories are s a fe, intrus ive, malware,

vers ion, dis covery, vuln, auth, and de fault. These are all described in Section 9.2 . 1 , "Script
Categories" [207) .

The Nmap Scripting Engine is described in detail in Chapter 9, Nmap Scripting Engine [205) and is controlled
by the fol lowing options:

-sc

Performs a script scan using the default set of scripts. It is equivalent to - - s cr ipt=de f aul t . Some
of the scripts in this category are considered intrusive and should not be run against a target network
without permission.

1 http://lua.org

15 .10. Nmap Scripting Engine (NSE) 393

- - s cr ipt <script -ca t egori es> l <di rect ory> l <fi l ename> l al l

Runs a script scan (like -sc) using the comma-separated list of script categories, individual scripts,
directories containing scripts, rather than the default set. Nmap first tries to interpret the arguments
categories, then (if that fails) as files or directories. A script or directory of scripts may be specified
an absolute or relative path. Absolute paths are used as supplied. Relative paths are searched for in
fol lowing places until found: --datadir / ; $NMAPDIR/ ; - / . nmap/ (not searched on Win
NMAPDATADIR/ or . / . A script s / subdirectory is also tried in each of these.

If a directory is specified and found, Nmap loads all NSE scripts (any filenames ending with . ns
from that directory. Filenames without the nse extension are ignored. Nmap does not search recursi
into subdirectories to find scripts. If individual file names are specified, the file extension does not
to be nse.

N map scripts are stored in a s er i pt s subdirectory of the Nmap data directory by default (see Chapter I
Understanding and Customizing Nmap Data Files [363]). For efficiency, scripts are indexed in a data
stored in s er ipt s I s er ipt . db. which lists the category or categories in which each script belon
Give the argument a l l to execute al l scripts in the Nmap script database.

Malicious scripts are not run in a sandbox and thus could damage your system or invade your priviq
Never run scripts from third parties unless you trust the authors or have carefully audited the scripll

yourself.

--scr ipt-args <namel >= <va l uel > , <name2>= { <name3>= <val ue3> } , <name4>=<val ue4>

Lets you provide arguments to NSE scripts. Arguments are passed as name=val ue pairs. The provided
argument is processed and stored inside a Lua table, to which all scripts have access. The names are
taken as strings (which must be alphanumeric values) and used as keys inside the argument -table.

Values are either strings or tables themselves (surrounded by ' { ' and ' } ') . For example, you could pass
the comma-separated arguments: user=bar , pas s=f oo , whoi s= { whodb=nof ol low+ripe } ,
String arguments are potentially used by several scripts; subtables are normally used by only one script.

. In scripts that take a subtable, the subtable is usually named after the script (like whoi s in this example).

--script-trace
This option does what --packet -trace does, just one ISO layer higher. If this option is specified
all incoming and outgoing communication performed by a script is printed. The displayed information
includes the communication protocol, the source, the target and the transmitted data. If more than 5%
of all transmitted data is not printable, then the trace output is in a hex dump format. Specifying
- -packet-trace enables script tracing too.

--scr ipt -updatedb
This option updates the script database found in script s / s cr ipt . db which is used by Nmap to
determine the available default scripts and categories. It is only necessary to update the database if you
have added or removed NSE scripts from the default script s directory or if you have changed the
categories of any script. This option is generally used by itself: nmap --script-updatedb.

1 5.1 1 . Tim ing and Performance
One of my highest Nmap development priorities has always been performance. A default scan (nmap
<hostname>) of a host on my local network takes a fifth of a second. That is barely enough time to blink,

394 15 . 1 I . Timing and Performance

but adds up when you are scanning hundreds or thousands of hosts. Moreover, certain scan options such as
UDP scanning and version detection can increase scan times substantially. So can certain firewall
configurations, particularly response rate limiting. While Nmap utilizes parallelism and many advanced
algorithms to accelerate these scans, the user has ultimate control over how Nmap runs. Expert users carefully
craft Nmap commands to obtain only the information they care about while meeting their time constraints.

Techniques for improving scan times include omitting non-critical tests, and upgrading to the latest version
of Nmap (performance enhancements are made frequently). Optimizing timing parameters can also make a
substantial difference. Those options are listed below.

Some options accept a t ime parameter. This is specified in milliseconds by default, though you can append
's', 'm', or 'h' to the value to specify seconds, minutes, or hours. So the --host-t imeout arguments
9 0 0 0 0 0 , 9 0 0 s , and 1 5m all do the same thing.

--mi n-hostgroup <numh o s t s >; --max-hostgroup <numh o s t s > (Adjust parallel scan group
sizes)

Nmap has the ability to port scan or version scan multiple hosts i n parallel. Nmap does this by dividing
the target IP space into groups and then scanning one group at a time. In general, larger groups are more
efficient. The downside is that host results can't be provided until the whole group is finished. So if
Nmap started out with a group size of 50, the user would not receive any reports (except for the updates
offered in verbose mode) until the first 50 hosts are completed.

By default, Nmap takes a compromise approach to this conflict. It starts out with a group size as low as
five so the first results come quickly and then i ncreases the groupsize to as high as 1024. The exact
default numbers depend on the options given. For efficiency reasons, Nmap uses larger group sizes for
UDP or few-port TCP scans.

When a maximum group size is specified with --max-hostgroup, Nmap will never exceed that
size. Specify a minimum size with --min-hostgroup and Nmap will try to keep group sizes above
that level. Nmap may have to use smaller groups than you specify if there are not enough target hosts
left on a given interface to fulfill the specified minimum. Both may be set to keep the group size within
a specific range, though this is rarely desired.

These options do not have an effect during the host discovery phase of a scan. This includes plain ping
scans (-sP). Host discovery always works in large groups of hosts to improve speed and accuracy.

The primary use of these options is to specify a large minimum group size so that the full scan runs more
quickly. A common choice is 256 to scan a network in Class C sized chunks. For a scan with many
ports, exceeding that number is unlikely to help much. For scans of just a few port numbers, host group
sizes of 2048 or more may be helpful.

--mi n-para l l e l i sm <n umprobes>; --max-para l le l i sm <n umprobes> (Adjust probe
parallelization)

These options control the total number of probes that may be outstanding for a host group. They are
used for port scanning and host discovery. By default, Nmap calculates an ever-changing ideal parallelism
based on network performance. If packets are being dropped, Nmap slows down and allows fewer
outstanding probes. The ideal probe number slowly rises as the network proves itself worthy. These
options place minimum or maximum bounds on that variable. By default, the ideal parallelism can drop
to one if the network proves unreliable and rise to several hundred in perfect conditions.

1 5. 1 1 . Timing and Performance 395

The most common usag
_
e is to set --mi n-paral lel i sm to a number higher than one to speed

scans of poorly performing hosts or networks. This is a risky option to play with, as setting it too
may affect accur�c

_
y. Setting this also reduces Nmap's ability to control paral lelism dynamically

on network cond1t1ons. A value of ten might be reasonable, though I only adjust this value as a
resort.

The --max-paral le l i sm option is sometimes set to one to prevent Nmap from sending more
one probe at a time to hosts. This can be useful in combination with --scan-delay (discussed J
although the latter usually serves the purpose well enough by itself.

--mi n-rtt-t imeout <t ime>, --max-rtt-t imeout <t ime>, --initial-rtt-timeo
<time> (Adjust probe timeouts) .

Nmap �a�ntains a running timeout value for determining how long it will wait for a probe res
before g1vmg up or retransmitting the probe. This is calculated based on the response times of previ
probes. The exact formula is given in Section 5. 13 , "Scan Code and Algorithms" [J 28). If the ne
latency shows itself to be significant and variable, this timeout can grow to several seconds. It also s
at a conservative (high) level and may stay that way for a while when Nmap scans unresponsive hosts.

Specifying a lower --max-rtt-timeout and - - i n i t i a l -rtt-timeout than the defaults
cut scan times significantly. This is particularly true for pingless (-PN) scans, and those against heavi
filtered networks. Don't get too aggressive though. The scan can end up taking longer if you speci
such a low value that many probes are timing out and retransmitting while the response is in transit.

_#' all fM 'SfS ate Olf 3 /oca nefwotf, rJ1 mrlff['eCOncfS [3 reasonao/e ago
--max-rt t-t imeout value. If routing is involved, ping a host on the network first with the ICMP

ping uti lity, or with a custom packet crafter such as hping2 that is more likely to get through a firewall.
Look at the maximum round trip time out of ten packets or so. You might want to double that for the
- - i n i t i al-rt t-t imeout and triple or quadruple it for the --max-rt t-t imeout. I generally
do not set the maximum RTT below 100 ms, no matter what the ping times are. Nor do I exceed IOOO ms.

--mi n-rtt-t imeout is a rarely used option that could be useful when a network is so unreliable
that even Nmap's default is too aggressive. Since Nmap only reduces the timeout down to the minimum
when the network seems to be reliable, this need is unusual and should be reported as a bug to the
nmap-dev mailing list.

--max-ret r i e s <n umtri es> (Specify the maximum number of port scan probe retransmissions)
When Nmap receives no response to a port scan probe, it could mean the port is filtered. Or maybe the
probe or response was simply lost on the network. It is also possible that the target host has rate limiting
enabled that temporarily blocked the response. So Nmap tries again by retransmitting the initial probe.
If Nmap detects poor network reliability, it may try many more times before giving up on a port. While
this benefits accuracy, it also lengthen scan times. When performance is critical, scans may be sped up
by l imiting the number of retransmissions allowed. You can even specify --max-retries 0 to
prevent any retransmissions, though that is only recommended for situations such as informal surveys
where occasional missed ports and hosts are acceptable.

396

The default (with no -T template) is to allow ten retransmissions. If a network seems reliable and the
target hosts aren't rate limiting, Nmap usually only does one retransmission. So most target scans aren't
even affected by dropping --max-ret r i e s to a low value such as three. Such values can substantially
speed scans of slow (rate limited) hosts. You usually lose some information when Nmap gives up on

1 5. 1 1 . Timing and Performance

ports early, though that may be preferable to letting the --host-t imeout expire and losing all
information about the target.

--host-t imeout <t ime> (Give up on slow target hosts)
Some hosts simply take a long time to scan. This may be due to poorly performing or unreliable
networking hardware or software, packet rate limiting, or a restrictive firewall . The slowest few percent
of the scanned hosts can eat up a majority of the scan time. Sometimes it is best to cut your losses and
skip those hosts initially. Specify --host-t imeout with the maximum amount of time you are willing
to wait. For example, specify 3 Om to ensure that Nmap doesn't waste more than half an hour on a single
host. Note that Nmap may be scanning other hosts at the same time during that half an hour, so i t isn't
a complete loss. A host that times out is skipped. No port table, OS detection, or version detection results
are printed for that host.

--scan-delay <t ime>; --max- s can-de lay <t ime> (Adjust delay between probes)
This option causes Nmap to wait at least the given amount of time between each probe it sends to a
given host. This is particularly useful in the case of rate limiting. Solaris machines (among many others)
will usually respond to UDP scan probe packets with only one ICMP message per second. Any more
than that sent by Nmap will be wasteful. A --s can-de l ay of l s will keep Nmap at that slow rate.
Nmap tries to detect rate l imiting and adjust the scan delay accordingly, but it doesn't hurt to specify it
explicitly if you already know what rate works best.

When Nmap adjusts the scan delay upward to cope with rate l imiting, the scan slows down dramatically.
The --max-s can-delay option specifies the largest delay that Nmap will allow. A low
--max-s can-de l ay can speed up Nmap, but it is risky. Setting this value too low can lead to wasteful
packet retransmissions and possible missed ports when the target implements strict rate limiting.

Another use of --s can-delay is to evade threshold based intrusion detection and prevention systems
(IDS/IPS). This technique is used in the section called "A practical example: bypassing default Snort
2.2.0 rules" [280] to defeat the default port scan detector in Snort IDS. Most other intrusion detection
systems can be defeated in the same way.

--min-rate <number>; --max-rate <n umber> (Directly control the scanning rate)
Nmap's dynamic timing does a good job of finding an appropriate speed at which to scan. Sometimes,
however, you may happen to know an appropriate scanning rate for a network, or you may have to
guarantee that a scan will be finished by a certain time. Or perhaps you must keep Nmap from scanning
too quickly. The --mi n-rate and --max-rate options are designed for these situations.

When the --mi n-rate option is given Nmap will do its best to send packets as fast as or faster than
the given rate. The argument is a positive real number representing a packet rate in packets per second.
For example, specifying --mi n-rate 3 0 0 means that Nmap will try to keep the sending rate at or
above 300 packets per second. Specifying a minimum rate does not keep Nmap from going faster if
conditions warrant.

Likewise, --max-rate l imits a scan's sending rate to a given maximum. Use --max-rate 1 0 0 ,
for example, to limit sending to 100 packets per second on a fast network. Use --max-rate o . 1 for
a slow scan of one packet every ten seconds. Use --min-rate and --max-rate together to keep
the rate inside a certain range.

These two
.
options are global, affecting an entire scan, not individual hosts. They only affect port scans

and host discovery scans. Other features like OS detection implement their own timing.

1 5 . 1 1 . Timing and Performance 397

There are two conditions when the actual scanning rate may fall below the requested minimum.
first is if the minimum is faster than the fastest rate at which Nmap can send, which is dependent
hardware. In this case Nmap will simply send packets as fast as possible, but be aware that such
rates are likely to cause a loss of accuracy. The second case is when Nmap has nothing to send,
example at the end of a scan when the last probes have been sent and Nmap is waiting for them to ·

out or be responded to. It's normal to see the scanning rate drop at the end of a scan or in bet
hostgroups. The sending rate may temporarily exceed the maximum to make up for unpredictable del
but on average the rate will stay at or below the maximum.

Specifying a minimum rate should be done with care. Scanning faster than a network can support
lead to a loss of accuracy. In some cases, using a faster rate can make a scan take longer than it
with a slower rate. This is because Nmap's adaptive retransmission algorithms will detect the net
congestion caused by an excessive scanning rate and increase the number of retransmissions in order
improve accuracy. So even though packets are sent at a higher rate, more packets are sent overall. Cap
the number of retransmissions with the --max-retr i e s option if you need to set an upper limit on
total scan time.

--de feat -rst -ratel imit

Many hosts have long used rate limiting to reduce the number of ICMP error messages (such as
port-unreachable errors) they send. Some systems now apply similar rate limits to the RST (reset) packets
they generate. This can slow Nmap down dramatically as it adjusts its timing to reflect those rate limits.
You can tell Nmap to ignore those rate limits (for port scans such as SYN scan which don't treat
non-responsive ports as open) by specifying --defeat-rst-ratelimit.

Using this option can reduce accuracy, as some ports wil l appear non-responsive because Nmap didn't
wait long enough for a rate-limited RST response. With a SYN scan, the non-response results in the
port being labeled f i l tered rather than the c l osed state we see when RST packets are received.
This optional is useful when you only care about open ports, and distinguishing between closed and
f i 1 tered ports isn't worth the extra time.

-T paranoid I s neaky I pol ite I normal I aggr e s s ive I insane (Set a timing template)

398

While the fine-grained timing controls discussed in the previous section are powerful and effective,
some people find them confusing. Moreover, choosing the appropriate values can sometimes take more
time than the scan you are trying to optimize. So Nmap offers a simpler approach, with six timing
templates. You can specify them with the -T option and their number (0--5) or their name. The template
names are paranoid (O), sneaky (1), pol i te (2), normal (3), aggress ive (4), and insane (S).
The first two are for IDS evasion. Polite mode slows down the scan to use less bandwidth and target
machine resources. Normal mode is the default and so -T 3 does nothing. Aggressive mode speeds scans
up by making the assumption that you are on a reasonably fast and reliable network. Finally insane mode
assumes that you are on an extraordinarily fast network or are willing to sacrifice some accuracy for
speed.

These templates allow the user to specify how aggressive they wish to be, while leaving Nmap to pick
the exact timing values. The templates also make some minor speed adjustments for which fine-grained
control options do not currently exist. For example, -T 4 prohibits the dynamic scan delay from exceeding
10 ms for TCP ports and -TS caps that value at 5 ms. Templates can be used in combination with
fine-grained controls, and the fine-grained controls will you specify will take precedence over the timing
template default for that parameter. I recommend using -T4 when scanning reasonably modern and

15 . 1 1 . Timing and Performance

reliable networks. Keep that option even when you add fine-grained controls so that you benefit from
those extra minor optimizations that it enables.

If you are on a decent broadband or ethernet connection, I would recommend al ways using -T 4. Some

people love -TS though it is too aggressive for my taste. People sometimes specify -T2 because they
think it is less likely to crash hosts or because they consider themselves to be polite in general. They
often don't realize just how slow -T polite really is. Their scan may take ten times longer than a
default scan. Machine crashes and bandwidth problems are rare with the default timing options (-T 3)
and so I normally recommend that for cautious scanners. Omitting version detection is far more effective
than playing with timing values at reducing these problems.

While -TO and -Tl may be useful for avoiding IDS alerts, they will take an extraordinarily long time
to scan thousands of machines or ports. For such a long scan, you may prefer to set the exact timing
values you need rather than rely on the canned -TO and -Tl values.

The main effects of TO are serializing the scan so only one port is scanned at a time, and waiting five
minutes between sending each probe. Tl and T2 are similar but they only wait 15 seconds and 0.4
seconds, respectively, between probes. T3 is Nmap's default behavior, which includes parallelization.
-T4 does the equivalent of --max-rtt-t imeout 1 2 S O - - i n i t i al -r t t -t imeout S O O
--max-retries 6 and sets the maximum TCP scan delay to I O milliseconds. TS does the equivalent
of --max-rtt-t imeout 3 0 0 --mi n-rtt-t imeout 5 0 --init i al-rtt-t imeout
2 5 0 --max-retries 2 --host-t imeout 1 5m as well as setting the maximum TCP scan
delay to 5 ms.

15.1 2. Fi rewal l/IDS Evasion and Spoofing
Many Internet pioneers envisioned a global open network with a universal IP address space allowing virtual
connections between any two nodes. This allows hosts to act as true peers, serving and retrieving information
from each other. People could access all of their home systems from work, changing the climate control
settings or unlocking the doors for early guests. This vision of universal connectivity has been stifled by
address space shortages and security concerns. In the early 1990s, organizations began deploying firewalls
for the express purpose of reducing connectivity. Huge networks were cordoned off from the unfiltered
Internet by application proxies, network address translation, and packet filters. The unrestricted flow of
information gave way to tight regulation of approved communication channels and the content that passes
over them:

Network obstructions such as firewalls can make mapping a network exceedingly difficult. It will not get
any easier, as stifling casual reconnaissance is often a key goal of implementing the devices. Nevertheless,
Nmap offers many features to help understand these complex networks, and to verify that filters are working
as intended. It even supports mechanisms for bypassing poorly implemented defenses. One of the best
methods of understanding your network security posture is to try to defeat it. Place yourself in the mind-set
of an attacker, and deploy techniques from this section against your networks. Launch an FTP bounce scan,
idle scan, fragmentation attack, or try to tunnel through one of your own proxies.

In addition to restricting network activity, companies are increasingly monitoring traffic with intrusion
detection systems (IDS). All of the major IDSs ship with rules designed to detect Nmap scans because scans
are sometimes a precursor to attacks. Many of these products have recently morphed into intrusion prevention
systems (IPS) that actively block traffic deemed malicious. Unfortunately for network administrators and

15 . 12. Firewall/IDS Evasion and Spoofing 399

IDS vendors, reliably detecting bad intentions by analyzing packet data is a tough problem. Attackers
patience, ski l l , and the help of certain Nmap options can usually pass by IDSs undetected. Mean
administrators must cope with large numbers of false positive results where innocent activity is misdiag
and alerted on or blocked.

Occasionally people suggest that Nmap should not offer features for evading firewall rules or sneaking
IDSs . They argue that these features are just as l ikely to be misused by attackers as used by adminis
to enhance security. The problem with this logic is that these methods would still be used by attackers,
would just find other tools or patch the functionality into Nmap. Meanwhile, administrators would find
that much harder to do their jobs. Deploying only modern, patched FTP servers is a far more powerful de
than trying to prevent the distribution of tools implementing the FTP bounce attack.

There is no magic bullet (or Nmap option) for detecting and subverting firewalls and IDS systems. It
skil l and experience. A tutorial is beyond the scope of this reference guide, which only lists the rel
options and describes what they do.

-f (fragment packets); --mt u (using the specified MTU)
The -f option causes the requested scan (including ping scans) to use tiny fragmented IP packets.
idea i s to split up the TCP header over several packets to make it harder for packet filters, intrusimi
detection systems, and other annoyances to detect what you are doing. Be careful with this! So
programs have trouble handling these tiny packets. The old-school sniffer named Sniffit segmentation
faulted immediately upon receiving the first fragment. Specify this option once, and Nmap splits �
packets into eight bytes or less after the IP header. So a 20-byte TCP header would be split into three
packets. Two with eight bytes of the TCP header, and one with the final four. Of course each fragment
also has an IP header. Specify -f again to use 16 bytes per fragment (reducing the number of fragments�
Or you can specify your own offset size with the --rntu option. Don't also specify -f if you use --mtu.
The offset must be a multiple of eight. While fragmented packets won't get by packet filters and firewalls
that queue all IP fragments, such as the CONF I G_I P _ALWAYS_DEFRAG option in the Linux kernel,
some networks can't afford the performance hit this causes and thus leave it disabled. Others can't enable
this because fragments may take different routes into their networks. Some source systems defragment
outgoing packets in the kernel . Linux with the iptables connection tracking module i s one such example.
Do a scan while a sniffer such as Wireshark is running to ensure that sent packets are fragmented. If
your host OS is causing problems, try the - - send- eth option to bypass the IP layer and send raw
ethernet frames.

Fragmentation is only supported for Nmap's raw packet features, which includes TCP and UDP port
scans (except connect scan and FTP bounce scan) and OS detection. Features such as version detection
and the Nmap Scripting Engine generally don't support fragmentation because they rely on your host's
TCP stack to communicate with target services.

-D <decoyl > [, <decoy2>] [, ME] [, . • •] (Cloak a scan with decoys)

400

Causes a decoy scan to be performed, which makes it appear to the remote host that the ho t(s) you
specify as decoys are scanning the target network too. Thus their IDS might report 5-10 port scans from
unique IP addresses, but they won't know which IP was scanning them and which were innocent decoys.
While this can be defeated through router path tracing, response-dropping, and other active mechanisms,
it is generally an effective technique for hiding your IP address.

Separate each decoy host with commas, and you can optionally use ME as one of the decoys to represent
the position for your real IP address. If you put ME in the sixth position or later, some common port scan

15 . 12. Firewall/IDS Evasion and Spoofing

detectors (such as Solar Designer's excellent Scanlogd) are unlikely to show your IP address at all . If
you don't use ME, Nmap will put you in a random position. You can also use RND to generate a random,
non-reserved IP address, or RND : <n umber> to generate <n umber> addresses.

Note that the hosts you use as decoys should be up or you might accidentally SYN flood your targets.
Also it will be pretty easy to determine which host is scanning if only one is actually up on the network.
You might want to use IP addresses instead of names (so the decoy networks don't see you in their
nameserver logs).

Decoys are used both in the initial ping scan (using ICMP, SYN, ACK, or whatever) and during the
actual port scanning phase. Decoys are also used during remote OS detection (-0). Decoys do not work
with version detection or TCP connect scan. When a scan delay is in effect, the delay is enforced between
each batch of spoofed probes, not between each individual probe. Because decoys are sent as a batch
all at once, they may temporarily violate congestion control limits.

It is worth noting that using too many decoys may slow your scan and potentially even make it less
accurate. Also, some ISPs will fil ter out your spoofed packets, but many do not restrict spoofed IP
packets at all .

-s <IP_Address> (Spoof source address)
In some circumstances, Nmap may not be able to determine your source address (Nmap will tell you if
this is the case). In this situation, use - s with the IP address of the interface you wish to send packets
through.

Another possible use of this flag is to spoof the scan to make the targets think that someone else is
scanning them. Imagine a company being repeatedly port scanned by a competitor! The -e option and
-PN are generally required for this sort of usage. Note that you usually won't receive reply packets back
(they will be addressed to the IP you are spoofing), so Nmap won't produce useful reports.

-e <in t erfa ce> (Use specified interface)
Tells Nmap what interface to send and receive packets on. Nmap should be able to detect this
automatically, but it will tell you if it cannot.

--source-port <port n umber> ; -g <port n umber> (Spoof source port number)
One surprisingly common misconfiguration is to trust traffic based only on the source port number. It
is easy to understand how this comes about. An administrator will set up a shiny new firewall, only to
be flooded with complains from ungrateful users whose applications stopped working. In particular,
DNS may be broken because the UDP DNS replies from external servers can no longer enter the network.
FTP is another common example. In active FTP transfers, the remote server tries to establish a connection
back to the client to transfer the requested file.

Secure solutions to these problems exist, often in the form of application-level proxies or protocol-parsing
firewall modules. Unfortunately there are also easier, insecure solutions. Noting that DNS replies come
from port 53 and active FfP from port 20, many administrators have fallen into the trap of simply
allowing incoming traffic from those ports. They often assume that no attacker would notice and exploit
such firewall holes. In other cases, administrators consider this a short-term stop-gap measure until they
can implement a more secure solution. Then they forget the security upgrade.

Overworked network administrators are not the only ones to fall into this trap. Numerous products have
shipped with these insecure rules. Even Microsoft has been guilty. The IPsec filters that shipped with

15 . 12. Firewal l/IDS Evasion and Spoofing 401

Windows 2000 and Windows XP contain an implicit rule that allows all TCP or UDP traffic from port
88 (Kerberos). In another well-known case, versions of the Zone Alarm personal firewall up to 2.1 .25
allowed any incoming UDP packets with the source port 53 (DNS) or 67 (DHCP).

Nmap offers the -g and --sour ce-port options (they are equivalent) to exploit these weaknesses.
Simply provide a port number and Nmap will send packets from that port where possible. Nmap must
use different port numbers for certain OS detection tests to work properly, and DNS requests ignore the
--sour ce-port flag because Nmap relies on system libraries to handle those. Most TCP scans,
including SYN scan, support the option completely, as does UDP scan.

--data-lengt h <n umber> (Append random data to sent packets)
Normally Nmap sends minimalist packets containing only a header. So its TCP packets are generally
40 bytes and ICMP echo requests are just 28. This option tells Nmap to append the given number of
random bytes to most of the packets it sends. OS detection (-0) packets are not affected because accuracy
there requires probe consistency, but most pinging and portscan packets support this. It slows things
down a little, but can make a scan slightly less conspicuous.

--ip-opt ions <S I R {ro u t e] / L {rou t e] / T I U . . . > ; --ip-op t i ons <hex string>

(Send packets with specified ip options)
The IP protocol offers several options which may be placed in packet headers. Unlike the ubiquitous
TCP options, IP options are rarely seen due to practicality and security concerns. In fact, many Internet
routers block the most dangerous options such as source routing. Yet options can still be useful in some
cases for determining and manipulating the network route to target machines. For example, you may be
able to use the record route option to determine a path to a target even when more traditional
traceroute-style approaches fail. Or i f your packets are being dropped by a certain firewall, you may be
able to specify a different route with the strict or loose source routing options.

The most powerful way to specify IP options is to simply pass in values as the argument to
-- ip-opt ions . Precede each hex number with \x then the two digits. You may repeat certain
characters by following them with an asterisk and then the number of times you wish them to repeat.
For example, \ x 0 1 \ x0 7 \ x 0 4 \ x 0 0 * 3 6 \ x 0 1 is a hex string containing 36 NUL bytes.

Nmap also offers a shortcut mechanism for specifying options. Simply pass the letter R, T, or u to request
record-route, record-timestamp, or both options together, respectively. Loose or strict source routing
may be specified with an L or S followed by a space and then a space-separated list of IP addresses.

If you wish to see the options in packets sent and received, specify --packet -trace. For more
i n fo r m a t i o n a n d e x a m p l e s o f u s i n g I P o p t i o n s w i t h Nmap, see
http://seclists.org/nmap-dev/2006/q3/0052.html.

--t t l <va l ue> (Set IP time-to-live field)
Sets the IPv4 time-to-live field in sent packets to the given value.

--randomi ze-ho s t s (Randomize target host order)

402

Tells Nmap to shuffle each group of up to 16384 hosts before it scans them. This can make the scans
less obvious to various network monitoring systems, especially when you combine it with slow timing
options. If you want to randomize over larger group sizes, increase P ING_GROUP _s z in nmap . h and
recompile. An alternative solution is to generate the target IP list with a list scan (-s L -n -oN
<fi l ename>), randomize it with a Perl script, then provide the whole list to Nmap with -iL.

1 5 . 1 2. Firewall/IDS Evasion and Spoofing

--spoof-mac <MAC a ddress, prefix, or vendor name> (Spoof MAC address)
Asks Nmap to use the given MAC address for all of the raw ethernet frames it sends. This option implies
-- send-eth to ensure that Nmap actually sends ethernet-level packets. The MAC given can take
several formats. If it is simply the number 0, Nmap chooses a completely random MAC address for the
session. If the given string is an even number of hex digits (with the pairs optionally separated by a
colon), Nmap will use those as the MAC. If fewer than 1 2 hex digits are provided, Nmap fills in the
remainder of the six bytes with random values. If the argument isn't a zero or hex string, Nmap looks
through nmap-mac-pref ix es to find a vendor name containing the given string (it is case insensitive).
If a match is found, Nmap uses the vendor's OUI (three-byte prefix) and fills out the remaining three
bytes randomly. Valid --spoof-mac argument examples are Apple, 0, 0 1 : 0 2 : 0 3 : 0 4 : 0 5 : 0 6 ,
deadbeefcafe, 0 0 2 0F2 , and C i s co . This option only affects raw packet scans such as SYN scan
or OS detection, not connection-oriented features such as version detection or the Nmap Scripting Engine.

--bads um (Send packets with bogus TCP/UDP checksums)
Asks Nmap to use an invalid TCP or UDP checksum for packets sent to target hosts. Since virtually all
host IP stacks properly drop these packets, any responses received are likely coming from a firewall or
IDS that didn't bother to verify the checksum. For more details on this technique, see
http://nmap.org/p60-12.html

15.1 3. Output
Any security tools i s only as useful as the output i t generates. Complex tests and algorithms are of little valu.e
if they aren't presented in an organized and comprehensible fashion. Given the number of ways Nmap is
used by people and other software, no single format can please everyone. So Nmap offers several formats,
including the interactive mode for humans to read directly and XML for easy parsing by software.

In addition to offering different output formats, Nmap provides options for controlling the verbosity of output
as well as debugging messages. Output types may be sent to standard output or to named files, which Nmap
can append to or clobber. Output files may also be used to resume aborted scans.

Nmap makes output available in five different formats. The default is called interactive output, and it is sent
to standard output (stdout). There is also normal output, which is similar to interactive except that it displays
less runtime information and warnings since it is expected to be analyzed after the scan completes rather
than interactively.

XML output is one of the most important output types, as it can be converted to HTML, easily parsed by
programs such as Nmap graphical user interfaces, or imported into databases.

The two remaining output types are the simple grepable output which includes most information for a target
host on a single line, and sCRiPt KiDDi3 OutPUt for users who consider themselves k-r4d.

While interactive output is the default and has no associated command-line options, the other four format
options use the same syntax. They take one argument, which is the filename that results should be stored in.
Multiple formats may be specified, but each format may only be specified once. For example, you may wish
to save normal output for your own review while saving XML of the same scan for programmatic analysis.
You might do this with the options -ox my scan . xml -oN my scan . nmap. While this chapter uses
the simple names like my scan . xml for brevity, more descriptive names are generally recommended. The
names chosen are a matter of personal preference, though I use long ones that incorporate the scan date and
a word or two describing the scan, placed in a directory named after the company I'm scanning.

1 5. L3 . Output 403

While these options save results to files, Nmap sti ll prints interactive output to stdout as usual. For exa
the command nmap -oX myscan.xml target prints XML to my scan . xrnl and fills standard output
the same interactive results it would have printed if -ox wasn't specified at all . You can change this
passing a hyphen character as the argument to one of the format types. This causes Nmap to deacti
interactive output, and instead print results in the format you specified to the standard output stream. So
command nmap -oX - target will send only XML output to stdout. Serious errors may still be printed to
normal error stream, stderr.

Unlike some Nmap arguments, the space between the logfile option flag (such as -ox) and the filename er

hyphen is mandatory. If you omit the flags and give arguments such as -oG- or -oXscan . xml, a backw
compatibility feature of Nmap will cause the creation of normal format output files named G

X s can . xrnl respectively.

All of these arguments support s t r f t irne-like conversions in the filename. %H, %M, %S, %m, %d, %y, and
% Y are all exactly the same as in s t r f t irne. % T is the same as % H %M%S , %R is the same as %H%M, and '0
is the same as %rn%d %y. A % followed by any other character just yields that character (%% gives you a percent
symbol). So -ox ' s can-%T-% D . xrnl ' will use an XML file in the form of
s ca n - 1 4 4 8 4 0 - 1 2 1 3 0 7 . xrnl.

Nmap also offers options to control scan verbosity and to append to output files rather than clobbering them.
All of these options are described below.

Nmap Output Formats

-oN <fi l espec> (normal output)
Requests that norma l output be directed to the given filename. As discussed above, this differs
slightly from i nteract ive output.

-ox <fi l espec> (XML output)
Requests that XML output be directed to the given filename. Nmap includes a document type definition

· (DTD) which allows XML parsers to validate Nmap XML output. While it is primarily intended for
programmatic use, it can also help humans interpret Nmap XML output. The DTD defines the legal
elements of the format, and often enumerates the attributes and values they can take on. The late t version
is always available from http://nmap.org/data!nmap.dtd.

XML offers a stable format that is easily parsed by software. Free XML parsers are available for all
major computer languages, including CIC++, Perl, Python, and Java. People have even written bindings
for most of these languages to handle Nmap output and execution specifically. Examples are

Nmap: :Scanner2 and Nmap::Parser3 in Perl CPAN. In almost all cases that a non-trivial application
interfaces with Nmap, XML is the preferred format.

The XML output references an XSL stylesheet which can be used to format the results as HTML. The
easiest way to use this is simply to load the XML output in a web browser such as Firefox or IE. By
default, this will only work on the machine you ran Nmap on (or a similarly configured one) due to the
hard-coded nrnap . x s l filesystem path. Use the --webxrnl or --style sheet options Lo create
portable XML files that render as HTML on any web-connected machine.

2 http://sourceforge.netlprojectslnmap-scannerl
3 http://nmapparser.wordpress.com/

404 15 . 1 3 . Output

-os <fi lespec> (ScRipT Klddl3 oUTpuT)
Script kiddie output is like interactive output, except that it is post-processed to better suit the 133t
HaXX:orZ who previously looked down on Nmap due to its consistent capitalization and spelling. Humor
impaired people should note that this option is making fun of the script kiddies before flaming me for
supposedly "helping them".

-oG <fi l espec> (grepable output)
This output format is covered last because it is deprecated. The XML output format is far more powerful,
and is nearly as convenient for experienced users. XML is a standard for which dozens of excellent
parsers are available, while grepable output is my own simple hack. XML is extensible to support new
Nmap features as they are released, while I often must omit those features from grepable output for lack
of a place to put them.

Nevertheless, grepable output is still quite popular. It is a simple format that lists each host on one line
and can be trivially searched and parsed with standard Unix tools such as grep, awk, cut, sed, diff, and
Perl . Even I usually use it for one-off tests done at the command l ine. Finding all the hosts with the SSH
port open or that are running Solaris takes only a simple grep to identify the hosts, piped to an awk or
cut command to print the desired fields.

Grepable output consists of comments (lines starting with a pound (#)) and target lines. A target l ine
includes a combination of six labeled fields, separated by tabs and followed with a colon. The fields are
Host, Ports , Protocol s , I gnored State, OS, Seq I ndex, I P I D, and Status .

The most important of these fields is generally Port s , which gives details on each interesting port It
is a comma separated list of port entries. Each port entry represents one interesting port, and takes the
form of seven slash (/) separated subfields. Those subfields are: Port number, State, Protocol,
Owner, Servi ce, SunRPC info, and Ver s i on info.

As with XML output, this man page does not allow for documenting the entire format. A more detailed
look at the Nmap grepable output format is available in Section 13 . 10, "Grepable Output (-oG)" [356].

-oA <ba sename> (Output to all formats)
As a convenience, you may specify -oA <ba sename> to store scan results in normal, XML, and
grepable formats at once. They are stored in <ba sename> . nmap, <ba sename> . xml , and
<ba sename> . gnmap, respectively. As with most programs, you can prefix the filenames with a
directory path, such as - / nmaplogs/ foocorp/ on Unix or c : \hack i ng \ s c o on Windows.

Verbosity and debugging options

-v (Increase verbosity level)

Increases the verbosity level, causing Nmap to print more information about the scan in progress. Open
ports are shown as they are found and completion time estimates are provided when Nmap thinks a scan
will take more than a few minutes. Use it twice or more for even greater verbosity.

Most changes only affect interactive output, and some also affect normal and script kiddie output. The
other output types are meant to be processed by machines, so Nmap can give substantial detail by default
in those formats without fatiguing a human user. However, there are a few changes in other modes where
output size can be reduced substantially by omitting some detail. For example, a comment l ine in the
grepable output that provides a list of all ports scanned is only printed in verbose mode because it can
be quite long.

15. 13 . Output 405

-d [level] (Increase or set debugging level)
When even verbose mode doesn't provide sufficient data for you, debugging is available to flood you
with much more ! As with the verbosity option (-v), debugging is enabled with a command-line Hag
(-d) and the debug level can be increased by specifying it multiple times. Alternatively, you can set a
debug level by giving an argument to -d. For example, -d9 sets level nine. That is the highest effective
level and will produce thousands of l ines unless you run a very simple scan with very few ports and
targets.

Debugging output is useful when a bug is suspected in Nmap, or if you are simply confused as to what
Nmap is doing and why. As this feature is mostly intended for developers, debug lines aren't always
self-explanatory. You may get something like: Timeout val s : srtt : - 1 rttvar : -1 t o :

1 0 0 0 0 0 0 del t a 1 4 9 8 7 ==> srtt : 1 4 9 8 7 rttvar : 1 4 9 8 7 to : 1 0 0 0 0 0 . Ifyou do�
understand a l ine, your only recourses are to ignore it, look it up in the source code, or request help from
the development list (nmap-dev). Some lines are self explanatory, but the messages become more obscure
as the debug level is increased.

--reason (Host and port state reasons)
Shows the reason each port is set to a specific state and the reason each host is up or down. This option
displays the type of the packet that determined a port or hosts state. For example, A RST packet from
a closed port or an echo reply from an alive host. The information Nmap can provide is determined by
the type of scan or ping. The SYN scan and SYN ping (- s s and -P s) are very detailed, but the TCP
connect scan (- s T) is limited by the implementation of the connect system call . This feature is
automatically enabled by the debug option (-d) and the results are stored in XML log files even if this
option is not specified.

--packet -trace (Trace packets and data sent and received)
Causes Nmap to print a summary of every packet sent or received. This is often used for debugging, but
is also a valuable way for new users to understand exactly what Nmap is doing under the covers. To
avoid printing thousands of l ines, you may want to specify a limited number of ports to scan, such as
-p2 0 - 3 0 . If you only care about the goings on of the version detection subsystem, use
--ve r s i on-trace instead. If you only care about script tracing, specify --scr ipt-trace. With
--packet -t race, you get all of the above.

--open (Show only open (or possibly open) ports)
Sometimes you only care about ports you can actually connect to (open ones), and don't want results
cluttered with c l o sed, f i l tered, and c losed I f i l tered ports. Output customization is normally
done after the scan using tools such as grep, awk, and Perl, but this feature was added due to overwhelming
requests. Specify --open to only see open, open I f i l tered, and u n f i l tered ports. These three
ports are treated just as they normally are, which means that open I f i l tered and unfiltered
may be condensed into counts if there are an overwhelming number of them.

- - i f l i st (List interfaces and routes)
Prints the interface list and system routes as detected by Nmap. This is useful for debugging routing
problems or device mischaracterization (such as Nmap treating a PPP connection as ethernet).

- - l og-errors (Log errors/warnings to normal mode output file)

406

Warnings and errors printed by Nmap usually go only to the screen (interactive output), leaving any
normal-format output fi les (usually specified with -oN) uncluttered. When you do want to see those
messages in the normal output file you specified, add this option. It is useful when you aren't watching

15 . 13 . Output

the interactive output or when you want to record errors while debugging a problem. The error and
warning messages will still appear in interactive mode too. This won't work for most errors related to
bad command-line arguments because Nmap may not have initialized its output files yet. In addition,
some Nmap error and warning messages use a different system which does not yet support this option.

An alternative to --l og-errors is redirecting interactive output (including the standard error stream)
to a file. Most Unix shells make this approach easy, though it can be difficult on Windows.

Miscellaneous output options

--append-output (Append to rather than clobber output files)
When you specify a filename to an output format flag such as -ox or -oN, that file is overwritten by
default. If you prefer to keep the existing content of the file and append the new results, specify the
--append-output option. All output filenames specified in that Nmap execution will then be
appended to rather than clobbered. This doesn't work well for XML (-ox) scan data as the resultant fi le
generally won't parse properly until you fix it up by hand.

--re sume <fi l ename> (Resume aborted scan)
Some extensive Nmap runs take a very long time-on the order of days. Such scans don't always run
to completion. Restrictions may prevent Nmap from being run during working hours, the network could
go down, the machine Nmap is running on might suffer a planned or unplanned reboot, or Nmap itself
could crash. The administrator running Nmap could cancel it for any other reason as well , by pressing
ctrl-C. Restarting the whole scan from the beginning may be undesirable. Fortunately, if normal (-oN)

or grepable (-oG) logs were kept, the user can ask Nmap to resume scanning with the target i t was
working on when execution ceased. Simply specify the --re sume option and pass the normal/grepable
output file as its argument. No other arguments are permitted, as Nmap parses the output file to use the
same ones specified previously. Simply call Nmap as nmap --resume <logfilename>. Nmap will
append new results to the data files specified in the previous execution. Resumption does not support
the XML output format because combining the two runs into one valid XML file would be difficult.

--styles heet <pa t h or URL> (Set XSL stylesheet to transform XML output)
Nmap ships with an XSL stylesheet named nmap . x s l for viewing or translating XML output to
HTML. The XML output includes an xml - style s heet directive which points to nmap . xml where
it was initially installed by Nmap (or in the current working directory on Windows). Simply load Nmap's
XML output in a modern web browser and it should retrieve nmap . xs l from the filesystem and use
it to render results. If you wish to use a different stylesheet, specify it as the argument to --style sheet.

You must pass the full pathname or URL. One common invocation is --stylesheet

http : I / nmap . org I dat a/nmap . xsl . This tells a browser to load the latest version of the stylesheet
from Nmap.Org. The --webxml option does the same thing with less typing and memorization. Loading
the XSL from Nmap.Org makes it easier to view results on a machine that doesn't have Nmap (and thus
nmap . xsl) installed. So the URL is often more useful, but the local filesystem location of nmap . xsl
i s used by default for privacy reasons.

--webxml (Load stylesheet from Nmap.Org)
Th i s conven ien ce opt i o n i s s i m ply a n a l i a s for - - s t y l e s h e e t
http : / /nmap . org/dat a / nmap . xs l .

15 . 13. Output 407

--no- s t y l e s heet (Omit XSL stylesheet declaration from XML)
Specify this option to prevent Nmap from associating any XSL stylesheet with its XML outpuL
xml - s t y l e s heet directive is omitted.

1 5.1 4. Miscel laneous Options
This section describes some important (and not-so-important) options that don't really fit anywhere else.

- 6 (Enable IPv6 scanning)
Since 2002, Nmap has offered 1Pv6 support for its most popular features. In particular, ping scanni
(TCP-only), connect scanning, and version detection all support 1Pv6. The command syntax is the
as usual except that you also add the - 6 option. Of course, you must use 1Pv6 syntax if you specify
a d d re s s r a t h e r t h a n a h o s t n a m e . A n a d d r e s s m i g h t l o ok like
3 f fe : 7 5 0 1 : 4 8 1 9 : 2 0 0 0 : 2 1 0 : f 3 f f : fe 0 3 : 1 4d0 , so hostnames are recommended. The output
looks the same as usual, with the IPv6 address on the "interesting ports" line being the only 1Pv6 give
away.

While IPv6 hasn't exactly taken the world by storm, it gets significant use in some (usually Asian)
countries and most modern operating systems support it. To use Nmap with 1Pv6, both the source and
target of your scan must be configured for IPv6. If your ISP (l ike most of them) does not allocate 1Pv6
addresses to you, free tunnel brokers are widely available and work fine with Nmap. I use the free 1Pv6
tunnel broker service at http://www.tunnelbroker.net. Other tunnel brokers are l isted at Wikipedia4• 6to4
tunnels are another popular, free approach.

-A (Aggressive scan options)
This option enables additional advanced and aggressive options. I haven't decided exactly which it stands
for yet. Presently this enables OS detection (-0), version scanning (-sv), script scanning (-sC) and
traceroute (--traceroute). More features may be added in the future. The point is lo enable a
comprehensive set of scan options without people having to remember a large set of flags. However,
because script scanning with the default set is considered intrusive, you should not use -A against target
networks without permission. This option only enables features, and not timing options (such as -T4)

or verbosity options (-v) that you might want as well.

--datadir <di rec t oryname> (Specify custom Nmap data file location)
Nmap obtains some special data at runtime in fi les named nmap-servi ce-probes,
nmap- services, nmap-protocols , nmap-rpc, nmap-mac-pre fixes, and nmap-os-db.
If the location of any of these files has been specified (using the -- servi cedb or --versiondb
options), that location is used for that file. After that, Nmap searches these files in the directory specified
with the --da tadi r option (if any). Any files not found there, are searched for in the directory specified
by the NMAPDIR environmental variable. Next comes - I . nmap for real and effective UIDs (POSIX

systems only) or location of the Nmap executable (Win32 only), and then a compiled-in location such
as /usr / l ocal / share/nmap or / u s r / s hare / nmap . As a last resort, Nmap will look in the
current directory.

4 http.lien. wikipedia.orglwik i/List_of_I Pv6_1L11111el_brokers

408 1 5. 14. Miscellaneous Options

--servi cedb <servi ces fi l e> (Specify custom services file)
Asks Nmap to use the specified services file rather than the nmap-services data file that comes with
Nmap. Using this option also causes a fast scan (-F) to be used. See the description for --datadir
for more information on Nmap's data files.

- -vers iondb <servi ce probes fi le> (Specify custom service probes file)
Asks Nmap to use the specified service probes file rather than the nmap-service -probes data file
that comes with Nmap. See the description for - -datadir for more information on Nmap's data files.

--send-eth (Use raw ethernet sending)
Asks Nmap to send packets at the raw ethernet (data link) layer rather than the higher IP (network) layer.
By default, Nmap chooses the one which is generally best for the platform it is running on. Raw sockets
(IP layer) are generally most efficient for Unix machines, while ethernet frames are required for Windows
operation since Microsoft disabled raw socket support. Nmap still uses raw IP packets on Unix despite
this option when there is no other choice (such as non-ethernet connections).

-- send-ip (Send at raw IP level)
Asks Nmap to send packets via raw IP sockets rather than sending lower level ethernet frames. It is the
complement to the -- send-eth option discussed previously.

--privi leged (Assume that the user is fully privileged)
Tells Nmap to simply assume that it is privileged enough to perform raw socket sends, packet sniffing,
and similar operations that usually require root privileges on Unix systems. By default Nmap quits. if
such operations are requested but geteuid is not zero. - -pr ivi leged is useful with Linux kernel
capabilities and similar systems that may be configured to allow unprivileged users to perform raw-packet
scans. Be sure to provide this option flag before any flags for options that require privileges (SYN scan,
OS detection, etc.) . The NMAP _PRIVILEGED environmental variable may be set as an equivalent
alternative to --pr ivileged.

--unpr ivil eged (Assume that the user lacks raw socket privileges)
This option is the opposite of --pr iv i 1 eged. It tells Nmap to treat the user as lacking network raw
socket and sniffing privileges. This is useful for testing, debugging, or when the raw network functionality
of your operating system is somehow broken. The NMAP _UNPRIVI LEGED environmental variable
may be set as an equivalent alternative to - -unpr i v i leged.

--re lease-memory (Release memory before quitting)
This option is only useful for memory-leak debugging. It causes Nmap to release allocated memory just
before it quits so that actual memory leaks are easier to spot. Normally Nmap skips this as the OS does
this anyway upon process termination.

--interactive (Start in interactive mode)
Starts Nmap in interactive mode, which offers an interactive Nmap prompt allowing easy launching of
multiple scans (either synchronously or in the background). This is useful for people who scan from
multi-user systems as they often want to test their security without letting everyone else on the system
know exactly which systems they are scanning. Use - - i nteractive to activate this mode and then
type h for help. This option is rarely used because proper shells are usually more familiar and
feature-complete. This option includes a bang (!) operator for executing shell commands, which is one
of many reasons not to install Nmap setuid root.

1 5. 14. Miscellaneous Options 409

-V; - -ver s i on (Print version number)
Prints the Nmap version number and exits.

-h; - - help (Print help summary page)
Prints a short help screen with the most common command flags. Running Nmap without any arguments
does the same thing.

1 5.1 5. Runt ime Interaction
During the execution of Nmap, all key presses are captured. This allows you to interact with the program
without aborting and restarting it. Certain special keys will change options, while any other keys will print
out a status message telling you about the scan. The convention is that lowercase letters increase the amount
of printing, and uppercase letters decrease the printing. You may also press ' ?' for help.

v / V

Increase I decrease the verbosity level

d / D
Increase I decrease the debugging Level

p / P

Turn on I off packet tracing

?
Print a runtime interaction help screen

Anything else
Print out a status message like this:

Stats: 0:00:08 elapsed; 1 1 1 hosts completed (5 up), 5 undergoing Service Scan

Service scan Timing: About 28.00% done; ETC: 16: 1 8 (0:00: 1 5 remaining)

1 5.1 6. Examples
Here are some Nmap usage examples, from the simple and routine to a little more complex and esoteric.
Some actual IP addresses and domain names are used to make things more concrete. In their place you should
substitute addresses/names from your own network . . While I don't think port scanning other networks is or
should be illegal, some network administrators don't appreciate unsolicited scanning of their networks and
may complain. Getting permission first is the best approach.

For testing purposes, you have permission to scan the host s canme . nmap . org. This permission only
includes scanning via Nmap and not testing exploits or denial of service attacks. To conserve bandwidth,
please do not initiate more than a dozen scans against that host per day. If this free scanning target service
is abused, it will be taken down and Nmap will report Fai l ed t o resolve given host name/IP :

scanme . nmap . org. These permissions also apply to the hosts s canme2 . nmap . org,
scanme3 . nmap . org, and so on, though those hosts do not currently exist.

nmap -v scanme.nmap.org

410 1 5. 1 5. Runtime Interaction

This option scans all reserved TCP ports on the machine scanme . nmap . org . The -v option enables
verbose mode.

nmap -sS -0 scanme.nmap.org/24

Launches a stealth SYN scan against each machine that is up out of the 255 machines on "class C" network
where Scanme resides. It also tries to determine what operating system is running on each host that is up and
running. This requires root privileges because of the SYN scan and OS detection.

nmap -sV -p 22,53,1 10,143,4564 198.116.0-255.1-127

Launches host enumeration and a TCP scan at the first half of each of the 255 possible eight-bit subnets i n
the 198. 1 16 class B address space. This tests whether the systems run SSH, DNS, POP3, or IMAP on their
standard ports, or anything on port 4564. For any of these ports found open, version detection is used to
determine what application is running.

nmap -v -iR 100000 -PN -p 80

Asks Nmap to choose 100,000 hosts at random and scan them for web servers (port 80). Host enumeration
is disabled with -PN since first sending a couple probes to determine whether a host is up is wasteful when
you are only probing one port on each target host anyway.

nmap -PN -p80 -oX logs/pb-port80scan.xml -oG logs/pb-port80scan.gnmap 216.163.128.20/20

This scans 4096 IPs for any web servers (without pinging them) and saves the output in grepable and XML
formats.

15.17. Bugs
Like its author, Nmap isn't perfect. But you can help make it better by sending bug reports or even writing
patches. If Nmap doesn't behave the way you expect, first upgrade to the latest version available from
http://nmap.org. lf the problem persists, do some research to determine whether it has already been discovered
and addressed. Try searching for the error message on our search page at http://insecure.org/search. html or
at Google. Also try browsing the nmap-dev archives at http://seclists.org/. Read this full manual page as
well . If nothing comes of this, mail a bug report to < nmap-dev @ i n secure . org>. Please include
everything you have learned about the problem, as well as what version of Nmap you are running and what
operating system version it is running on. Problem reports and Nmap usage questions sent to
<nmap-dev @ i n secure . org> are far more likely to be answered than those sent to Fyodor directly. If
you subscribe to the nmap-dev list before posting, your message will bypass moderation and get through
more quickly. Subscribe at http://cgi. insecure.orglmailman/listinfo/nmap-dev.

Code patches to fix bugs are even better than bug reports. Basic instructions for creating patch files with
your changes are available at http://nmap.org/data/HACKING. Patches may be sent to nmap-dev
(recommended) or to Fyodor directly.

15.1 8. Author
Fyodor < fyodor @ i n secure ·. org> (http://insecure.org)

15 . 17. Bugs 41 1

Hundreds of people have made valuable contributions to Nmap over the years. These are detailed in
CHANGELOG file which is distributed with Nmap and also available from http://nmap.org/changelog.

1 5.1 9. Legal Notices

1 5.1 9.1 . Nmap Copyright and Licensing

The Nmap Security Scanner is (C) 1996-2008 Insecure.Com LLC. Nmap is also a registered tradernark o(
Insecure.Com LLC. This program is free software; you may redistribute and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; Version 2 with the
clarifications and exceptions described below. This guarantees your right to use, modify, and redistribute
this software under certain conditions. If you wish to embed Nmap technology into proprietary software, we
sell alternative licenses (contact <sales @ i nsecure . com>). Dozens of software vendors already license
Nmap technology such as host discovery, port scanning, OS detection, and version detection.

Note that the GPL places important restrictions on "derived works", yet it does not provide a detailed definition
of that term. To avoid misunderstandings, we consider an application to constitute a "derivative work" for
the purpose of this license if it does any of the following:

• Integrates source code from Nmap

• Reads or includes Nmap copyrighted data files, such as nmap-os -db or nmap-servi ce-probes.

• Executes Nmap and parses the results (as opposed to typical shell or execution-menu apps, which simply
display raw Nmap output and so are not derivative works.)

• Integrates/includes/aggregates Nmap into a proprietary executable instal ler, such as those produced by
Install Shield.

• Links to a library or executes a program that does any of the above.

The term "Nmap" should be taken to also include any portions or derived works of Nmap. This list is not
exclusive, but is just meant to clarify our interpretation of derived works with some common examples.
These restrictions only apply when you actually redistribute Nmap. For example, nothing stops you from
writing and sel ling a proprietary front-end to Nmap. Just distribute it by itself, and point people to
http://nmap.org to download Nmap.

We don't consider these to be added restrictions on top of the GPL, but just a clarification of how we interpret
"derived works" as it applies to our GPL-licensed Nmap product. This is similar to the way Linus Torvalds
has announced his interpretation of how "derived works" applies to Linux kernel modules. Our interpretation
refers only to Nmap-we don't speak for any other GPL products.

If you have any questions about the GPL licensing restrictions on using N map in non-GPL works, we would
be happy to help. As mentioned above, we also offer alternative license to integrate Nmap into proprietary
applications and appliances. These contracts have been sold to many security vendors, and generally include
a perpetual license as well as providing for priority support and updates as well as helping to fund the
continued development of Nmap technology. Please email <sale s @ i ns ecure . com> for further
information.

412 1 5. 19. Legal Notices

As a special exception to the GPL terms, Insecure.Com LLC grants permission to link the code of this
program with any version of the Open SSL library which is distributed under a license identical to that l isted
in the included COPYING . OpenSSL file, and distribute linked combinations including the two. You must
obey the GNU GPL in all respects for all of the code used other than OpenSSL. If you modify this file, you
may extend this exception to your version of the file, but you are not obligated to do so.

If you received these files with a written license agreement or contract stating terms other than the terms
above, then that alternative license agreement takes precedence over these comments.

1 5.1 9.2. Creative Commons License for this Nmap
Gu ide

This Nmap Reference Guide is (C) 2005-2008 Insecure.Com LLC. It is hereby placed under version 2.5 of
the Creative Commons Attribution License5. This allows you redistribute and modify the work as you desire,
as long as you credit the original source. Alternatively, you may choose to treat this document as falling
under the same license as Nmap itself (discussed previously).

1 5.1 9.3. Source Code Avai lab i l ity and Community
Contributions

Source i s provided to this software because we believe users have a right to know exactly what a program
is going to do before they run it. This also allows you to audit the software for security holes (none have
been found so far).

Source code also allows you to port Nmap to new platforms, fix bugs, and add new features. You are highly
encouraged to send your changes to < f yodor @ i nsecure . org> for possible incorporation into the main
distribution. By sending these changes to Fyodor or one of the Insecure.Org development mailing lists, it is
assumed that you are offering Fyodor and Insecure.Com LLC the unlimited, non-exclusive right to reuse,
modify, and relicense the code. Nmap will always be available Open Source, but this is important because
the inability to relicense code has caused devastating problems for other Free Software projects (such as
KDE and NASM). We also occasionally relicense the code to third parties as discussed above. If you wish
to specify special license conditions of your contributions, just say so when you send them.

15.1 9.4. No Warranty

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License v2.0 for more details at http://www.gnu.org/licenses/gpl-2.0.html, or in the
COPYING file included with Nmap.

It should also be noted that Nmap has occasionally been known to crash poorly written applications, TCP/IP
stacks, and even operating systems. While this is extremely rare, it is important to keep in mind. Nmap should
never be run against mission critical systems unless you are prepared to suffer downtime. We acknowledge
here that Nmap may crash your systems or networks and we disclaim all liability for any damage or problems
Nmap could cause.

s http://creativecommons.org!lice11seslby/2.5/

15 . 19. Legal Notices 413

1 5.1 9.5. I nappropriate Usage

Because of the slight risk of crashes and because a few black hats like to use Nmap for reconnaissance
to attacking systems, there are administrators who become upset and may complain when their system
scanned. Thus, it is often advisable to request permission before doing even a light scan of a network.

Nmap should never be installed with special privileges (e.g. suid root) for security reasons.

15.19.6. Third-Party Software

This product includes software developed by the Apache Software Foundation. A modified version of
Libpcap portable packet capture library is distributed along with Nmap. The Windows version of Nmap
utilized the Libpcap-derived WinPcap l ibrary instead. Regular expression support is provided by the
l ibrary, which is open-source software, written by Philip Hazel. Certain raw networking functions use the
Libdnet networking l ibrary, which was written by Dug Song. A modified version is distributed with Nmap.
Nmap can optionally link with the OpenSSL cryptography toolkit for SSL version detection support. The
Nmap Scripting Engine uses an embedded version of the Lua programming language. All of the third-party
software described in this paragraph is freely redistributable under BSD-style software licenses.

1 5.1 9 .7. U n ited States Export Control Classification

U.S. Export Control: Insecure.Com LLC believes that Nmap fal ls under U.S. ECCN (export control
classification number) 5D992. This category is called "Information Security software not controlled by
5D002". The only restriction of this classification is AT (anti-terrorism), which applies to almost all goods

and denies export to a handful of rogue nations such as Iran and North Korea. Thus exporting Nmap does
not require any special l icense, permit, or other governmental authorization.

414 1 5. 19. Legal Notices

Appendix A. Nmap XML Output DTD

A.1 . Purpose
This document type definition (OTO) is used by XML parsers to validate Nmap XML output. The latest
version is always available at http://nmap.org/datalnmap.dtd. While it is primarily intended for programmatic
use, it is included here due to its value in helping humans interpret Nmap XML output. The OTO defines
the legal elements of the format, and often enumerates the attributes and values they can take on. Using the
DID is discussed further in Section 13 .6, "XML Output (-oX)" [348] .

A.2. The Fu l l DTD
<!-

nmap.dtd
This is the OTO for Nmap's XML output (-oX) format.
$Id: nmap.dtd 1 1010 2008- 1 1 - 10 19:05 : 12Z david $

Originally written by:
William McVey <wam@cisco.com> <wam+nmap@wamber.net>

Now maintained by Fyodor <fyodor@insecure.org> as part of Nmap.

To validate using this file, simply add a OOCTYPE line similar to:
<!OOCTYPE nmaprun SYSTEM "nmap.dtd">
lo the nmap output immediately below the prologue (the first line). This
should allow you lo run a validating parser against the output (so long
as the OTO is in your parser's OTO search path).

Bugs:
Most of the elements are "locked" into the specific order that nmap
generates, when there really is no need for a specific ordering.
This is primarily because I don't know the xml OTO construct to
specify "one each of this list of elements, in any order". If there
is a construct similar to SGML's '&' operator, please let me know.

Portions Copyright (c) 2001 -2008 Insecure.Com LLC
Portions Copyright (c) 2001 by Cisco systems, Inc.

Permission to use, copy, modify, and distribute modified and
unmodified copies of this software for any purpose and without fee is
hereby granted, provided that (a) this copyright and permission notice
appear on all copies of the software and supporting documentation, (b)
the name of Cisco Systems, Inc. not be used in advertising or
publicity pertaining to distribution of the program without specific
prior permission, and (c) notice be given in supporting documentation
that use, modification, copying and distribution is by permission of

A. I. Purpose 415

Cisco Systems, Inc.

Cisco Systems, Inc. makes no representations about the suitability
of this software for any purpose. THIS SOFTWARE IS PROVIDED "AS.
IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

-->

<!-- parameter entities to specify common "types" used elsewhere in the DTD -->
<!ENTITY % attr_alpha "CDATA" >
<!ENTITY % attr_numeric "CDATA" >
<!ENTITY % attr_ipaddr "CDATA" >
<!ENTITY % attr_percent "CDATA" >
<!ENTITY % attr�type "(ipv4 I ipv6 I mac)" >

<!ENTITY % host_states "(upldownlunknownlskipped)" >

<!-- see: nmap.c:statenum2str for list of port states -->
<!-- Maybe they should be enumerated as in scan_types below , but I -->
<!-- don't know how to escape states like openlfil tered -->
<!ENTITY % port_states "CDATA" >

<!ENTITY % hostname_types "(PTR)" >

<!-- see output.c:output_xml_scaninfo_records for scan types -->
<!ENTITY % scan_types "(synlacklbouncelconnectlnulllxmaslwindowlmaimonlfinludplipproto)" >

<!-- <!ENTITY % ip_versions "(ipv4)" > -->

<!ENTITY % port_protocols "(ipltcpludp)" >

<!-- I don't know exactly what these are, but the values were enumerated via:
grep "conf=" *

-->
<!ENTITY % service_confs "(0 1 3 1 5 1 10)" >

<!-- This element was started in nmap.c:nmap_main().
It represents to the topmost element of the output document.

-->
<!ELEMENT nmaprun (scaninfo*, verbose, debugging,

((taskbegin, taskprogress*, taskend) I host I output)*,
runstats) >

<!ATTLIST nmaprun
scanner (nmap) #REQUIRED
args CDATA #IMPLIED
start %attr_numeric; #IMPLIED
startstr CDATA #IMPLIED
version CDATA #REQUIRED

416 A.2. The Full DTD

profile_name CDATA #IMPLIED
xmloutputversion CDATA #REQUIRED

>

<!-- this element is written in output.c:doscaninfo() -->
<!ELEMENT scaninfo EMPTY >
<!AITLIST scaninfo

type o/oscan_types; #REQUIRED
scanflags CDATA #IMPLIED
protocol o/oport_protocols; #REQUIRED
numservices %attr_numeric; #REQUIRED
services CDATA #REQUIRED

>

<!-- these elements are written in nmap.c:nmap_main() -->
<!ELEMENT verbose EMPTY >
<!AITLIST verbose level %attr_numeric; #IMPLIED >

<!ELEMENT debugging EMPTY >
<!AITLIST debugging level o/oattr_numeric; #IMPLIED >

<!-- this element is written in timing.c:beginOrEndTask() -->
<!ELEMENT taskbegin EMPTY >
<!AITLIST taskbegin

>

task CDATA #REQUIRED
time %attr_numeric; #REQUIRED
extrainfo CDATA #IMPLIED

<!-- this element is written in timing.c:printStats() -->
<!ELEMENT taskprogress EMPTY >
<!AITLIST taskprogress

>

task CDATA #REQUIRED
time o/oattr_numeric; #REQUIRED
percent %attr_percent; #REQUIRED
remaining %attr_numeric; #REQUIRED
etc o/oattr_numeric; #REQUIRED

<!-- this element is written in timing.c:beginOrEndTask() -->
<!ELEMENT taskend EMPTY >
< !AITLIST taskend

>

task CDATA #REQUIRED
time %attr_numeric; #REQUIRED
extrainfo CDATA #IMPLIED

<!--

A.2. The Full DTD 417

this element is started in nmap.c:nmap_main() and filled by
output.c:write_host_status(), output.c:printportoutput(), and
output.c:printosscanoutput()

-->
< !ELEMENT host (status, address , (address I hostnames I

smurf I ports I os I distance I uptime I
tcpsequence I ipidsequence I tcptssequence I
hostscript I trace)*, times) >

<!ATTLIST host

>

starttime %attr_numeric; #IMPLIED
endtime %attr_numeric; #IMPLIED
comment CDATA #IMPLIED

<!-- these elements are written by output.c:write_xml_initial_hostinfo() -->
< !ELEMENT status EMPTY >
<!ATTLIST status state %host_states; #REQUIRED

reason CDATA #REQUIRED
>

< !ELEMENT address EMPTY >
<!ATTLIST address

>

addr %attr_ipaddr; #REQUIRED
addrtype %attr_type; "ipv4"
vendor CDATA #IMPLIED

<!ELEMENT hostnames (hostname)* >
< !ELEMENT hostname EMPTY >
<!ATTLIST hostname

name CDATA #IMPLIED
type %hostname_types; #IMPLIED

>

< !-- this element is written by output.c :write_host_status() -->
< !ELEMENT smurf EMPTY >
<!ATTLIST smurf responses %attr_numeric; #REQUIRED >

<!-- these elements are written by output.c:printportoutput() -->

< !ELEMENT ports (extraports* , port*) >

< !ELEMENT extraports (extrareasons)* >
<!ATTLIST extraports

>

state %port_states ; #REQUIRED
count %attr_numeric; #REQUIRED

418 A.2. The Full DTD

<!ELEMENT extrareasons EMPTY >
<!ATTLIST extrareasons

>

reason CDATA #REQUIRED
count CDATA #REQUIRED

<!ELEMENT port (state , owner? , service?, script*) >
<!ATTLIST port

protocol %port_protocols; #REQUIRED
portid %attr_numeric; #REQUIRED

>

<!ELEMENT state EMPTY >
<!ATTLIST state

state %port_states; #REQUIRED
reason CDATA #REQUIRED
reason_ttl CDATA #REQUIRED
reason_ip CDATA #IMPLIED

>

<!ELEMENT owner EMPTY >
<!ATTLIST owner name CDATA #REQUIRED >

<!ELEMENT service EMPTY >
<!ATTLIST service

>

name CDATA #REQUIRED
conf %service_confs; #REQUIRED

method (tableldetectionlprobed) #REQUIRED
version CDATA #IMPLIED
product CDATA #IMPLIED
extrainfo CDATA #IMPLIED

tunnel (ssl) #IMPLIED
proto (rpc) #IMPLIED
rpcnum %attr_numeric; #IMPLIED
lowver %attr_numeric; #IMPLIED
highver %attr_numeric; #IMPLIED

hostname CDATA
ostype CDATA
devicetype CDATA
servicefp CDATA

#IMPLIED
#IMPLIED

#IMPLIED
#IMPLIED

<!ELEMENT script EMPTY >
<!ATTLIST script
id CDATA #REQUIRED
output CDATA #REQUIRED

>

<!ELEMENT os (portused* , osclass*, osmatch*, osfingerprint*) >

A.2. The Full DTD 419

<!ELEMENT portused EMPTY >
<!ATILIST portused

>

state o/oport_states; #REQUIRED
proto o/oport_protocols; #REQUIRED
portid o/oattr_numeric; #REQUIRED

<!ELEMENT osclass EMPTY >
<!ATILIST osclass

>

vendor
osgen
type
accuracy
osfamily

CDATA
CDATA

CDATA
CDATA
CD AT A

<!ELEMENT osmatch EMPTY >
<!ATILIST osmatch

name CDATA #REQUIRED

#REQUIRED
#IMPLIED

#IMPLIED
#REQUIRED
#REQUIRED

accuracy o/oattr_numeric; #REQUIRED
line o/oattr_numeric; #REQUIRED

>

<!ELEMENT osfingerprint EMPTY >
<!ATILIST osfingerprint

fingerprint CDATA #REQUIRED
>

<!ELEMENT distance EMPTY >
<!ATILIST distance

value o/oattr_numeric; #REQUIRED
>

<!ELEMENT uptime EMPTY >
<!ATILIST uptime

>

seconds o/oattr_numeric; #REQUIRED
lastboot CDATA #IMPLIED

<!ELEMENT tcpsequence EMPTY >
<!ATILIST tcpsequence

>

index o/oattr_numeric; #REQUIRED
difficulty CDATA #REQUIRED
values CDATA #REQUIRED

<!ELEMENT ipidsequence EMPTY >
<!ATILIST ipidsequence

420 A.2. The Full DTD

>

class CDATA #REQUIRED
values CDATA #REQUIRED

<!ELEMENT tcptssequence EMPTY >
<!ATILIST tcptssequence

class CDATA #REQUIRED
values CDATA #IMPLIED

>

<!ELEMENT trace (hop*, error?) >
<!A TILIST trace

>

proto CDATA #REQUIRED
port CDATA #REQUIRED

<!ELEMENT hop EMPTY>
<!ATILIST hop

>

ttl CDATA #REQUIRED
rtt CDATA #IMPLIED
ipaddr CDATA #IMPLIED
host CDATA #IMPLIED

<!ELEMENT error EMPTY>
<!ATILIST error

errorstr CDATA #IMPLIED

�!ELEMENT times EMPTY>
<IAffiIST times

t CDATA #REQUIRED
mvu CDATA #REQUIRED
to CDATA #REQUIRED

- For embedding another type of output (screen output) like Zenmap does. -->
MENT output (#PCDATA)>

AITLIST output type (interactive) #IMPLIED>

- these elements are generated in output.c:printfinaloutput() -->
EMENT runstats (finished, hosts) >

mIST finished time %attr_numeric; #REQUIRED
timestr CDATA #IMPLIED

A.2. The Full DTD 421

<!ATTLIST hosts

>

up %attr_numeric; "O"

down %attr_numeric; "O"
total %attr_numeric; #REQUIRED

<!ELEMENT hostscript (script+)>

422 A.2. The Full DTD

Index

Options
summary of options, 374-376
--allports, 1 59, 391
--append-output, 87, 339, 407
--badsum, 29 1 , 403

caveats of, 292
example of, 29 1

--data-length, 63, 64, 67, 283, 402
no effect in OS detection, 1 78, 402

--datadir, 365, 366, 370, 408
--defeat-rst-ratelimit, 398
--dos-servers, 57, 58, 66, 286, 383
--exclude, 48, 377

example of, 49
--excludefile, 48, 378
--fuzzy (see --osscan-guess)
--help, 4 1 0
--host-timeout, 85, 1 06, 397

example of, 203
--iflist, 406
--initial-rtt-timeout, 67, 85, 396

example of, 89, 93, 203
--interactive, 409
--ip-options, 27 1 , 279, 402

example of, 275
--log-errors, 344, 406
--max-hostgroup, 85, 280, 395
--max-os-tries, 1 36, 1 76, 393
--max-parallelism, 67, 85, 395

example of, 1 44
--max-rate, 85, 397
--max-retries, 85, 396

example of, 203
--max-rtt-timeout, 67, 85, 1 35, 396

example of, 89, 93, 1 44, 203, 354
--max-scan-delay, 85, 397

example of, 203
--min-hostgroup, 85, I 06, 395

example of, 89, 93, 1 40, 1 44, 203
--min-paral lelism, 67, 85, 395
--min-rate, 85, 1 29, 397
--min-rtt-timeout, 67, 85, 396
--mtu, 400
--no-stylesheet, 355, 408
--open, 87, 406
--osscan-guess, 1 76, 1 99, 200, 393
--osscan-limit, 1 36, 1 76, 393

example of, 1 44
--packet-trace, 68, 86, 279, 289, 345, 406

example of, 65, 99, 1 22, 273, 345

--port-ratio, 390
--privileged, 409
--randomize-hosts, 67, 282, 402
--reason, 67, 87, 406

example of, 274, 275
implied by -d, 406

--release-memory, 409
--resume, 87, 346, 407
--scan-delay, 85, 280, 397

example of, 2 8 1
--scan flags, 1 07, 1 1 1 - 1 1 3, 283, 293, 387

example of, 1 1 2
--script, 206, 209, 255, 394

example of, 2 1 0
--script-args, 207, 209, 394

example of, 2 1 0
--script-trace, 207, 209, 394

example of, 2 1 0
--script-updatedb, 207, 2 1 0, 369, 394
--send-eth, 269, 400, 409

example of, 65
implied by --spoof-mac, 27 1 , 403

--send-ip, 59, 64, 65, 409
example of, 65

--servicedb, 365, 409
--source-port, 66, 266, 40 1

example of, 7 1
--spoof-mac, 240, 27 1 , 403
--stylesheet, 355, 407
--system-dns, 56, 1 37, 382
--top-ports, 390
--traceroute, 278, 3 1 8, 328, 382

example of, 53, 279
--ttl, 67' 402
--unprivileged, 409
--verbose, 66, 339
--version, 4 1 0

example of, 25
--version-all, 1 50, 1 52, 3 9 1
--version-intensity, I 06 , 1 50, 1 52, 39 1
--version-light, 1 50, 1 52, 39 1
--version-trace, 1 52, 392

example of, 1 52
--versiondb, 409
--webxml, 355, 407
-6, 68, 267' 408

example of, 49, 88, 268
-A, 365, 408

example of, 3, 8 1 , 1 46, 1 47, 1 48, 1 57, 203, 374
features enabled by, 82, 1 36, 1 47, 2 1 0, 408

-b, 82, 83, 1 27, 389
example of, 1 28, 272

-D, 68, 1 1 9, 264, 400
-d, 86, 343, 406

423

example of, 1 52, 344
giving more than once, 344, 345, 406

-e, 68, 286, 40 I
-F, 83, 1 02, 1 26, 1 4 1 , 390

example of, 1 44, 289
-f, 269, 400

giving twice, 400
-g, 66, 266, 40 1

example of, 267
-h, 4 1 0
-iL, 48, 67, 377

example of, 49, 7 1 , 1 44
randomizing hosts with, 280, 282, 402

-iR, 48, 67, 1 20, 377
example of, 48, 7 1 , 1 40, 36 1 , 377, 4 1 1

-n, 56, 66, 286, 382
example of, 7 I , 93, I 40

-0, 1 72, 360, 367, 393
example of, 1 44, 1 73, 299, 303, 41 I
to identify idle scan zombie candidates, 1 2 1

-oA, 86, 202, 339, 405
example of, 3, 4, 7 1 , 203
in Zenmap, 332

-oG, I 0, 86, 356, 405
example of, 93, 1 66, 357, 36 1 , 4 1 1
in Zenmap, 332

-oN, 86, 344, 346, 404
example of, 303, 347
in Zenmap, 332

-oS, 347, 405
example of, 348
in Zenmap, 332

-oX, 86, 348, 404
example of, 1 44, 349, 4 1 1
in Zenmap, 332

-p, 84, 389
example of, 97, 1 22, 1 66, 41 I
to select protocols, 1 26

-PA, 62, 380
example of, 3, 7 1

-PE, 64, 38 1
example of, 3, 6 1 , 7 1 , 1 44, 275

-PM, 64, 38 1
-PN, 59, 87, 1 37, 379

example of, 1 22, 1 28, 41 I
with idle scan, 1 2 1 , 1 22

-PO, 64, 38 1
-PP, 64, 38 1
-PR, 59, 64, 378, 382

example of, 65
-PS, 6 1 , 379

example of, 3, 48, 7 1 , 377
-PU, 63, 38 1
-R, 56, 66, I 37, 382

424

example of, 6 1
-r, 87, 390

example of, 1 22
-S, 68, 286, 40 1
-sA, 83, 1 1 3, 387

example of, 1 1 4, 1 1 5, 260, 26 1
-sC, 206, 209, 393

example of, 206, 2 1 0
-sF, 83, 1 07, 386

example of, I 09, 1 1 0, 266
-sl , 83, 1 1 7, 388

example of, 1 2 1 , 1 22, 274
-sL, 49, 57, 357, 378

example of, 3, 58, 7 1 , 36 1
-sM, 83, I I 6, 387

example of, I 1 7
-sN, 83, 1 07, 386
-sO, 83, 1 25, 357, 359, 388

example of, 1 27, 359
-sP, 58, 1 36, 357, 379

example of, 59, 6 1 , 7 1 , 345
-sR, 1 57, 358, 39 1 , 392
-sS, 1 7, 82, 96, 385

example of, 3, 48, 1 09, 26 1 , 377, 4 1 1
-sT, 1 7, 83, 1 00, 385

example of, I 0 I , 353
-sU, 83, I O I , 385

example of, I 02, 264
-sV, 1 03, 1 04, 1 07, 1 47, 2 1 0, 365, 391

example of, 88, 1 52, 1 58, 1 66
-sW, 83, 1 1 5, 387

example of, I 1 6
-sX, 83, 1 07, 386

example of, I 09
-T, 67, 85, 1 37, 1 42, 280, 398
-TO (see paranoid timing template)
-T l (see sneaky timing template)
-T2 (see polite timing template)
-T3 (see normal timing template)
-T4 (see aggressive timing template)
-T5 (see insane timing template)
-v, 66, 86, I 06, 1 2 1 , 339, 405

example of, 1 73, 343, 4 1 0
extra output enabled by, 340-343
giving more than once, 339, 405
implied by -d, 344

-Y, 4 1 0

A
A (OS detection response test), I 78, 1 79, 1 86
a: (Zenmap search criterion, short for after:), 327
acceptable use policy, 1 5
ACK ping, 62, 380

(see also -PA)

ACK scan, 83, 1 1 3- 1 1 5, 260, 387
(see also -sA)

"action" script variable, 2 1 2, 239, 247
adaptive retransmission (see retransmission)
address ranges, 4, 48, 377
administrator privileges (see privi leged users)
after: (Zenmap search criterion), 327
aggregated results (Zenmap), 309, 3 1 5, 3 1 8
aggressive (-T4) timing template, 4, 67, 1 42, 1 43, 398
"Aggressive OS guesses:", 17 4
AmigaOS, installing on, 44
Antirez, 1 1 7
Apple Developer Connection, 42
Apple Mac OS X (see Mac OS X)
apt-get, 35
ARIN (American Registry for Internet Numbers), 2, 54,
89
ARP ping, 64, 382

(see also -PR)
overriding other ping types, 59, 65

AS number (see autonomous system number)
"auth" script category, 207
auth service, 69, 7 1 , 200, 245, 290
auth-owners script, 246
"author" script variable, 2 1 1 , 253
authorized users (see privileged users)
autonomous system (AS) number, 56

B
b: (Zenmap search criterion, short for before:), 327
Beale, Jay, 266
before: (Zenmap search criterion), 327
Bell, Eddie, 253
Berrueta, David Barroso, 302
BGP (see Border Gateway Protocol)
binary packages, 32
bit NSE module, 238
black hat, 1 6, 97
blind TCP spoofing, 1 74, 1 92, 360
Border Gateway Protocol (BGP), 55
broken IP ID increment, 1 8 1
BSDs, 43
bugs, reporting, 4 1 1

c
Cain, Michael, 272
Casorran, Diego, 44
"categories" script variable, 2 1 1 , 246
CC (OS detection response test), 1 79, 1 85
CD (OS detection response test), 1 78, 1 89
cfp: (Zenmap search criterion, short for closedlfiltered:),
327
changelog, 20, 25, 4 1 2

cheats (version detection), 1 5 1
checksums, 29 1 , 403

(see also --badsum)
and OS detection, 1 88
of RST data, 1 87

Christensen, Steven, 40
CIDR (Classless Inter-Domain Routing), 2, 5, 1 7, 47,
377
Cisco Security Agent, 304
Classless Inter-Domain Routing (see CIDR)
closed port state, 6, 77, 98, 327, 373, 383
closed: (Zenmap search criterion), 327
closedlfiltered port state, 78, 1 1 8, 1 22, 327, 373, 384
closedlfiltered: (Zenmap search criterion), 327
command constructor wizard (Zenmap), 322
command-line options

of Nmap, 374-376
of Zen map, 335

comparing results (Zenmap), 328-330
compilation, 29

problems with, 32
Computer Fraud and Abuse Act, 1 5
Computer Misuse Act, 1 6
concurrent execution, 1 38
configure directives, 30
congestion control, 1 30, 1 35, 1 38
connect scan, 83, I 00- 1 0 I , 385

(see also -sT)
conspicuous scans, 284, 297
copyright, 1 , 20, 4 1 2

of scripts, 2 1 1
cp: (Zenmap search criterion, short for closed:), 327
crashing targets, 1 9, 296, 4 1 3
CT (SCAN line test), 1 93
CU (SCAN line test), 1 93
Cygwin, 37, 38

D
D (SCAN line test), 1 93
di/ (device type) version detection field, 1 6 1
d : (Zenmap search criterion, short for date:), 327
data files, 363-37 l

customizing, 370-37 l
directory search order, 209, 370, 394
used by Zenmap, 330-333

database, output to, 354
date: (Zenmap search criterion), 327
Debian, installing on, 35
debugging, 343, 406

(see also -d)
Zenmap, 336

decoys, 1 1 9, 264, 284, 400
which scans use, 286, 392

default ports, 75, 80, 83, 1 36, 389

425

"default" script category, 207, 246
DEFAULT_PROTO_PROBE_PORT_SPEC, 64, 38 1
DEFAULT_ TCP _PROBE_PORT _SPEC, 6 1 , 379
DEFAULT_UDP_PROBE_PORT_SPEC, 63, 38 1
defending against Nmap, 295
denial of service, 1 90

against reactive I DSs, 287, 304
deny by default, 5, 7, 68, 1 3 1 , 259, 26 1 , 296

(see also filtered port state)
"description" script variable, 2 1 1 , 246, 253
detecting scans, 297
device type (OS detection), 1 96
"Device type:", 1 73
OF (OS detection response test), 1 84
DFI (OS detection response test), 1 78, 1 84
diff (see comparing results)
dig command, 90, 9 1
digests, cryptographic, 27
dir: (Zenmap search modifier), 328
"discovery" script category, 208
disk image (Mac OS X), 4 1
DLI (OS detection response test), 1 78, 1 89
.dmg (Mac OS X disk image), 4 1
DNS, 56

misleading records, 277
records as source of information, 56, 204, 273, 379
selecting servers, 1 38, 286
zone transfer, 5 I

document type definition (OTO), 350, 4 1 5
downloading, 25, 26
OS (SCAN line test), 1 93
OTO (see document type definition)
dym1mic ports, 74

E
"Easy" TCP sequence generation class, 1 74
ECN (see explicit congestion notification)
ECN (OS fingerprint category line), 1 79
egress filtering, 1 20
ephemeral ports, 74
Ereet, 97, 1 03, 1 05, 1 1 2, 1 1 6, 1 2 1 , 1 26
estimating scan time, 1 40, 340
example.com, 50
exceptions in NSE, 244, 247
Exclude directive (nmap-service-probes), 149, 1 58, 1 63, 391
excluding targets, 48, 377

(see also --exclude and --excludefile)
explicit congestion notification (ECN), 1 79, 1 85, 345
export control, 4 1 4
"external" script category, 208

F
F (OS detection response test), 1 78, 1 79, 1 87

426

fallback directive (nmap-service-probes), 163
fallbacks (version detection), 149, 1 5 1
family (OS detection), 1 97
fast scan (see -F)
Fedora (Linux distribution)

installing on, with RPM, 33
installing on, with Yum, 34

Felix (penetration tester), I
filtered port state, 5, 77, 98, 327, 373, 383
filtered: (Zenmap search criterion), 327
FIN scan, 83, 1 07- 1 1 1 , 262, 265, 266, 386

(see also -sF)
finding an organization's addresses, 49

from routing information, 55
using DNS, 50
using whois, 54

finger script, 253
fingerprint (see OS fingerprint and service fingerprint)
Fingerprint (nmap-os-db), 1 95, 1 96
fingerprinting (see version detection, OS detection)
Fink, 42
firewalls, 62, 1 05, 257, 296

bypassing, 63, 1 20, 257, 265, 272, 399-403
determining the rules of, 258
stateful, 63, 260
UDP filtering, 264

fisheye, 32 1
Flow-Portscan (Snort module), 280
forged packets (see spoofed packets)
"Formidable" TCP sequence generation class, 174
fp: (Zenmap search criterion, short for filtered:), 327
fragmentation, 282

OF bit, 1 84
not used in OS detection, 1 9 1
to bypass firewalls, 269

Fragroute, 270
FreeBSD, instal ling on, 44
FTP bounce scan, 82, 83, 1 27- 1 28, 389

(see also -b)

G

bypassing firewalls with, 272
limited usefulness of, 1 28

G (SCAN line test), 1 93
GCD (OS detection response test), 1 78, 1 80
General Public License (see GNU General Public License)
generation (OS detection), 1 97
.gnmap filename extension, 339
GNU General Public License, I, 2 1 , 4 1 2
GomoR, 1 90
"Good luck!" TCP sequence generation class, 174
Google Summer of Code, 22, 336
GPL (see GNU General Public License)
graphical user interface (see Zenmap)

Gray, JJ, 266
grepable output, 1 0, 356-36 1 , 403, 405

comments in, 356, 405
deprecation of, 348, 356
fields of, 357
parsing, 36 1
resuming from, 346

GUI (see Zenmap)

H
hi/ (hostname) version detection field, 1 60
half-open scan (see SYN scan)
hashes, cryptographic, 27
Hazel, Philip, 4 1 4
"hidden" services, 299
Honeyd, 30 1 , 303
Honeynet Project, 30 I
honeynets and honeypots, 292, 30 I
host command, 50
"Host Details" scan results tab, 3 1 4
host discovery, 1 2, 47-72, 378-383

(see also -sP)
algorithms, 72
default probe types, 59, 66
disabling, 59, 379

with idle scan, 1 2 1 , 1 22
effectiveness of ICMP echo for, 60, 64
examples of, 49
port selection, 68
purpose of, 47

"hostrule" script variable, 2 1 2, 255
Hoyte, Doug, 1 66, 1 68
HP-UX, installing on, 44
hping2, 92, 1 04, 1 1 7, 262, 289, 292, 293, 396
HTML from XML output, 355, 407

ill (info) version detection field, 1 60
IANA (see Internet Assigned Numbers Authority)
icepick, 276
lCMP destination unreachable, 96, 1 26, 1 77, 1 88, 258, 274
ICMP echo, 60, 1 77, 1 78, 1 89, 38 1
ICMP ping, 60, 64, 38 1

(see also -PE, -PP, and -PM)
identd (see auth service)
idle scan, 83, 1 1 7- 1 25, 274, 388

(see also -sl)
advantages of, 1 20
disadvantages of, 1 20
example, 1 2 1
finding zombies, 1 20
implementation, 1 22

IE (OS fingerprint category line), 1 78

II (OS detection response test), 1 78, 1 8 1
inroute: (Zenmap search criterion), 328
insane (-T5) timing template, 67, 1 42, 1 43, 398
installation, 25-45

from source code, 29
interactive mode, 409
interactive output, 344, 346, 403
interface, 40 1

(see also -e)
Internet Assigned Numbers Authority (IANA), 74

assigned ports list, 74, 364
I nternet service providers (ISPs)

acceptable use policy, 1 5
and port scanning, 1 3, 1 4
filtering, 1 20

intrusion detection systems, 257, 276-289, 298
detecting, 276-279
evading, 1 42, 279-284, 387, 397, 399-403
exploiting, 288
misleading, 284-287

intrusion prevention systems, 257, 399
(see also intrusion detection systems)

Intrusion prevention systems, 277
"intrusive" script category, 208
IP ID, 1 1 7, 1 88, 262

consistency of, 290
IP ID sequence generation, 1 75, 1 76, 1 8 1 , 262, 290

classes, 1 2 1
I P options, 27 1 , 402

(see also --ip-options)
record route, 279
source routing, 27 1

IP Personality, 302
IP protocol ping, 64, 38 1

(see also -PO)
IP protocol scan, 83, 1 25 - 1 27, 388

(see also -sO)
IPL (OS detection response test), 1 80, 1 88
iptables, 62, 1 05, 1 08, 260, 269, 297, 302, 380, 400

forging RSTs, 259
1Pv6, 48, 88, 267-269, 27 1 , 408

and host discovery, 68
limitations of, 6 1 , 62, 82, 380, 382

1Pv6 tunnel broker, 88, 268, 408
ir: (Zenmap search criterion, short for inroute:), 328
IRIX, installing on, 44
ISPs (see Internet service providers)
ISR (OS detection response test), 1 78, 1 80

J
Jones, LaMont, 35
"(JUST GUESSING)", 1 73, 20 I

427

K
Kaminsky, Dan, 337
keys, cryptographic, 26
keyword search in Zenmap, 325, 327
Kismet, 202
Krzywinski, Martin, 300, 30 1

L
LaBrea, 304

(see also tar pits)
Lamo, Adrian, 270
latency, 90, 1 32, 1 38

estimating with hping2, 92
estimating with ping, 90

legal advice, 1 4
legal issues, 1 3-20
Lei, Zhao, 22
libdnet, 240, 242, 4 1 4
libpcap, 242, 4 1 4
license (see copyright)
"license" script variable, 2 1 1 , 253
Linux

compil ing on, 29
installing on, with apt-get, 35
installing on, with RPM, 33
installing on, with Yum, 34

list scan, 2, 1 2, 57, 378
(see also -sL)
purpose of, 57

loading scan results, 3 1 7
logging tools, 297
loopback interface, 36, 263
Low-level timing controls, 1 42
.lua fi lename extension, 369
Lua programming language, 206, 2 1 2, 393, 4 1 4

(see also Nmap Scripting Engine)
LuaDoc, 248
.luadoc filename extension, 250
luaL_register, 238
Lutomirski, Andy, 2 1 , 37

M
M (SCAN line test), 1 93
MAC address, 202, 239, 368, 403

spoofing, 270
(see also --spoof-mac)

Mac OS X, 4 1 -43
compiling on, 4 1
executable i nstal ler, 4 1
installing from third-party packages, 42
running Nmap on, 42

machine output (see grepable output)

428

MacPorts, 42
MadHat, 9, 356
Maiman scan, 83, 1 1 6, 266, 387

(see also -sM)
Maiman, Uriel, 1 1 6, 387
"malware" script category, 208
man page (see reference guide)
Mandrake (Linux distribution)

installing on, with RPM, 33
instal ling on, with Yum, 34

Marques, Adriano Monteiro, 22, 336
match directive (nmap-service-probes), 159, 163
MatchPoints (nmap-os-db), 1 99
Matrix, the, 8, 2 1
M E (decoy address), 285, 400
Medeiros, Joaa Paulo S., 3 1 8
"Medium" TCP sequence generation class, J 74
Metasploit, 205
Microsoft Windows (see Wi ndows)
Mitnick, Kevin, 1 74
Mizrahi, Avi, 1 6
Mogren, Jack, 1 35, 1 43
Moran, Jay, 205
Moulton, Scott, 1 5, 1 8
mutexes i n NSE, 243
MySQL, 355

N
Ndiff, 295
Nessus, 20, 1 38
NetBSD, instal ling on, 44
Netcat, 27 1
Netcraft, 53
Netfilter (see iptables)
NetStumbler, 202
network address translation, 257, 297
network distance, 1 74, 1 84, 1 94
network inventory, 1 72
network inventory (Zenmap), 309
Network Mapper (see Nmap)
Nmap

bi rthday of, 340
checking if installed, 25
description of, 373
history of, 20-24
uses of, 1

.nmap directory, 209, 370, 37 1 , 394, 408

.nmap filename extension, 339
nmap NSE module, 2 1 2, 239-245
"Nmap Output" scan results tab, 3 1 2
Nmap Project Signing Key, 26
Nmap Scripting Engine (NSE), 1 3, 82, 205-255, 393-394

API, 239
C modules, 237

documentation in, 248-25 1
for version detection, 1 55
implementation, 254
library, 2 1 2
list of modules, 236
list of scripts, 2 1 3
modules, 369
parts of, 2 1 2
sample scripts, 25 1 -254
tutorial, 245-248

nmap-dev mailing list, 2 1 , 32, 44, 1 89, 344, 396, 406, 4 1 1
nmap-diff, I 0, 1 1
nmap-hackers mailing list, 1 6, 20, 1 26, 388
nmap-mac-prefixes, 270, 368-369

excerpt, 368
nmap-os-db, 1 80, 1 9 1 , 366-368, 392

custom modifications, 202
excerpts, 1 95, 1 97, 1 99, 367

nmap-protocols, 1 26, 369
excerpt, 369

nmap-report, 1 1 , 1 2, 295
nmap-rpc, 1 56, 366

comments in, 366
excerpt, 366

nmap-service-probes, I 03, 1 58- 1 64, 365-366, 390
comments in, 1 58
complete example, 1 63
excerpt, 365

nmap-services, 73, 74, 75, 83, 1 45, 1 48, 363-365, 390
comments in, 364
excerpt, 364

nmap.h, 6 1 , 63, 64, 282, 379, 38 1 , 402
nmap.xsl, 355, 407
Nmap:: Parser, 203, 352-353, 404
Nmap::Scanner, 203, 353-354, 404
NMAPDATADIR, 209, 370, 394
NMAPDIR environment variable, 209, 370, 37 1 , 394, 408
NmapFE, 2 1 , 26
NMAP _pRI VILEGED environment variable, 409
NMAP _UNPRIVILEGED environment variable 409
"No exact OS matches for host", 1 75

'

non-controversial scanning, 1 7, 1 9, 57
non-standard ports, 299, 390
normal (-T3) timing template, 67, 1 42, 1 43, 399
normal output, 206, 346-347, 403, 404

differences from interactive output, 340, 344, 346
resuming from, 346

"Not shown:'', 80
NSE (see Nmap Scripting Engine)
.nse filename extension, 369
NSEDoc, 248-25 1

for C modules, 250
Nsock, 239, 242
NULL probe (version detection), 1 49, 1 59

cheat, 1 5 1
implicit fallback to, 1 63

NULL scan, 83, 1 07- 1 1 1 , 266, 386
(see also -sN)

0
0 (OS detection response test), 1 78, 1 79, 1 83
o/I (OS) version detection field, 1 6 1
0 1 -06 (OS detection response tests), 1 78, 1 83
o: (Zenmap search criterion, short for option:), 328
ofp: (Zenmap search criterion, short for openlfiltered:), 327
old releases, 20
op: (Zenmap search criterion, short for open:), 327
open port state, 6, 77, 97, 1 00, 1 49, 2 1 2, 255, 327, 373, 383
open proxies, 270
open source, 1 26, 1 44, 1 64, 4 1 3
Open Source Security Testing Methodology Manual
(OSSTMM), 1 4
open: (Zenmap search criterion), 327
OpenBSD, installing on, 43
OpenSSL, 1 58, 4 1 4

disabling, 3 1
linking exception, 4 1 3

openssl NSE module, 238
openlfiltered port state, 78, 1 0 1 , 1 08, 1 49, 2 1 2, 255, 327, 373,
384
openlfiltered: (Zenmap search criterion), 327
operating system detection (see OS detection)
OPS (OS fingerprint category line), 1 77
option: (Zenmap search criterion), 328
organizationally unique identifier (QUI), 270, 368, 403

(see also nmap-mac-prefixes)
"OS details:", 1 73
OS detection, 1 3, 1 7 1 -204, 392-393

! st generation, 303
2nd generation, 1 7 1
category Ii nes, 1 77- 1 80
classifications, 1 96
effects of packet filters, 200
matching algorithms, 1 98
probes sent, 1 77- 1 80
reasons for, 1 7 1
response tests, 1 80- 1 89
using version detection, 1 6 1 , 1 75

OS fingerprint
displaying with -d, 1 76
explained, 1 9 1
reference fingerprint, 1 94, 366

test expressions in, I 97
subject fingerprint, 1 76, 1 92
submission of, 20 I

OS spoofing, 302
os: (Zenmap search criterion), 328

429

OSSTMM (see Open Source Security Testing Methodology
Manual)
OT (SCAN line test), 1 93
OU! (see organizationally unique identifier) (see
organizationally unique identifier)
output

redirecting, 345
to stdout with -, 339, 347, 348, 349, 357, 404

output formats, 337-36 1 , 403-408
grepable (see grepable output)
interactive (see interactive output)
normal (see normal output)

p

scR l pT klddJ3 (see scR l pT klddl3 output)
summary of, 338
the importance of clear output, 337
XML (see XML output)

P (SCAN line test), 1 93
$P() version detection helper function, 1 6 1
pl/ (product name) version detection field, 1 60
pOf, 1 90
packet loss, 1 35, 1 38
packet tracing (see --packet-trace)
Papapetrou, Demetris, 272
paral lelism, 1 29, 1 38

in idle scan, 1 22
in NSE, 255

paranoid (-TO) timing template, 1 9, 67, 1 42, 1 43, 280, 399
passive OS fingerprinting, 1 89
PATH envirnnment variable, 25, 330, 370

additional directories searched by Zenmap, 33 1
Path on Windows, 40

PCRE (see Perl Compatible Regular Expressions)
penetration testing, 49, 205, 354

Avatar Online example, 1 -8
Megacorp example, 272-276
permission for, 14, 53, 272

performance, 1 35, 394-399
improvement example, 1 43

Perl Compatible Regular Expressions (PCRE), 1 60, 4 1 4
Permeh, Ryan, 2 1 , 37
Persaud, Anthony, 352
PGP signatures, 26
Phrack, 20, 1 1 6, 387
ping scan, 58, 379

(see also -sP and host discovery)
PING_ GROUP _SZ, 282, 402
Playboy, 89
polite (-T2) timing template, 1 9, 67, 1 42, 1 43, 399
popular ports (see port frequency)
PORT column, 364
port frequency, 69, 75, 1 4 1 , 364
port knocking, 300

430

limitations of, 30 1
port scanning, 1 2

algorithms, 95, 1 28
definition, 77
purpose of, 78

port specification, 84, 389
wildcards in, 84, 390

port states, 73, 77
closed (see closed port state)
closedlfiltered (see closedlfiltered port state)
deducing from multiple scans, 1 1 4
filtered (see filtered port state)
ignored (not shown), 80, 259, 3 1 6, 359
open (see open port state)
openlfiltered (see openlfiltered port state)
unfiltered (see unfiltered port state)

port zero, 73, 389
portmapper, 1 56
"portrule" script variable, 2 1 2, 247, 253, 255
ports

definition, 73
dynamic, 74
ephemeral, 74
"interesting", 373
private, 74
registered, 74
reserved, 73
well-known, 74

"Ports I Hosts" scan results tab, 3 1 2
ports directive (nmap-service-probes), 1 62, 1 63
PortSentry, 298
pr: (Zenmap search criterion, short for profile:), 328
printers, version detection exclusion of, 1 59
private addresses, 48, 1 94, 263, 267, 297
private ports, 7 4
privi leged users, 39, 43, 73, 82, 95, 97, 380, 384, 409
proactive scanning, 295, 323
probable ports in version detection, 1 49
Probe directive (nmap-service-probes), 1 59, 1 63
probe string (version detection), 1 49, 1 59
profile editor (Zenmap), 323
profile: (Zenmap search criterion), 328
profiles (see Zenmap: scan profiles)
protocol ping (see IP protocol ping)
protocol scan (see IP protocol scan)
Provos, Niels, 303
proxies, 270

effect on OS detection, 1 76
HTTP, 6
open, 270

PSH scan, 1 1 2
PTR record (see reverse DNS)

Q
Q (OS detection response test), 1 78, 1 79, 1 85

R
R (OS detection response test), 1 78, 1 79, 1 84
Radia!Net, 3 1 8
random targets, 48, 377

(see also -iR)
randomization of hosts, 67, 402

(see also --randomize-hosts)
randomization of ports, 390
rarity directive (nmap-service-probes), 1 62, 1 63
rarity of version detection probes, 1 50, 1 52
rate limiting, I 05, 1 26, 1 32, 304, 386, 397, 398

detection of, 1 33
raw packets, 82, 95, 380, 384

in NSE, 242
raw sockets, 409
RD (OS detection response test), 1 78, 1 79, 1 87
reason reporting (see --reason)
recent scans database, 3 1 7
record route I P option, 279, 402
record timestamp IP option, 402
Red Hat (Linux distribution)

installing on, with RPM, 33
installing on, with Yum, 34

reference guide (man page), 373-4 1 4
registered ports, 74
registry (NSE), 245, 254
regular expressions, 1 49, 1 60

(see also Perl Compatible Regular Expressions)
for syntax highlighting in Zenmap, 334

removal, 45
reserved ports, 73
resuming scans, 346, 407
retransmission, 1 32, 398

number of retransmissions, 1 32
reverse DNS, 3, 1 2, 52, 56, 57, 80, 89, 1 45, 204, 286,
327

disabling with -n, 382
from an I DS, 276
omitting to save time, 1 37

reverse probes, 276
RID (OS detection response test), 1 80, 1 88

omission of, 1 88, 1 93
Rieger, Gerhard, 2 1 , 1 26, 388
RIPCK (OS detection response test), 1 80, 1 88
RIPE (Reseaux IP Europeens), 54
RIPL (OS detection response test), 1 80, 1 88
RND (decoy address), 285, 40 1
root (see privi leged users)
rootkits, 79, 262, 301
round trip time (RTT), 292

estimating, 1 30
RPC, 1 50, 268

bypassing filtered portmapper port (see RPC grinder)
RPC grinder, 1 47, 1 48, 1 56- 1 57, 257, 366, 39 1 , 392
RPC scan (see RPC grinder)
rpcbind, 1 48, 1 56
rpcinfo, I 56, 268
RPM, 33, 45

installing from, 33
RTT (see round trip time)
RUCK (OS detection response test), 1 80, 1 88
RUD (OS detection response test), 1 80, 1 88
RUL (OS detection response test), I 80, 1 88
rules in NSE (see "portrule" and "hostrule")
run level of scripts, 2 1 I , 245
"runlevel" script variable, 2 1 1
"Running:", 1 73
runtime i nteraction, 82, 1 40, 4 1 0

s
S (OS detection response test), 1 78, 1 79, 1 86
"safe" script category, 208, 246
saving scan results, 3 1 6
Saxon, 356
SCAN (subject OS fingerprint line), 1 92, 1 93
scan delay, 1 32
scan profiles (see Zenmap: scan profiles)
Scanlogd, 285, 298, 40 1
scanme.nmap.org, 1 8, 47
Scanrand, 1 35, 337
"Scans" scan results tab, 3 1 5
Schubert, Max, 352
SCO Corporation, 2 1
script arguments, 2 1 0, 394

(see also --script-args)
script categories, 207
scR I pT klddI3 output, 347, 403, 405
script kiddies, 8, 258, 277, 288, 297, 298, 339, 384
script names, examples of, 206
script.db, 209, 255, 369, 394

(see also --script-updatedb)
scripting (see Nmap Scripting Engine)
scripts, location of, 209, 369, 394
security by obscurity, 298
SEQ (OS fingerprint category l ine), 1 77
SERVICE column, 364
service detection (see version detection)
service fi ngerprint, 1 47, 1 50

example of, 1 64
submission of, 1 47, 1 64

"Service I nfo:", 1 46, 1 75
service: (Zenmap search criterion), 328
setuid, why Nmap shouldn't be, 409, 4 1 4
Shimomura, Tsutomu, 1 74

431

SI (OS detection response test), 1 78, 1 86
SinFP, 1 90
Smith, Zach, 2 1
sneaky (-T l) timing template, 1 9, 67, 1 42, 1 43 , 280, 399
Snort, 280, 298

rules referencing Nmap, 283
social engineering, 1 72
sockets in NSE, 24 1
soft match (version detection), 1 49, 1 50
softmatch directive (nmap-service-probes), 1 6 1 , 1 63
Solar Designer, 285, 401
Solaris, instaJling on, 40
Song, Dug, 4 1 4
source address filtering, 1 20
source code, 29

advantages of, 29
source port numfur, 266, 417!

source routing, 271, 274, 402
SP (OS detection response test), 1 78, 1 80
spoofed packets, 1 1 8, 1 23, 200, 263, 286, 287, 304

detecting, 289
from localhost, 263
spoofed RST from firewall, 259, 260, 277, 290

spoofing MAC address, 270, 403
spoofing source address, 286, 40 1
SS (OS detection response test), 1 78, 1 82
SSL, 1 62

(see also sslports directive)
in version detection, 1 47, 1 50, 1 57, 39 1
tunneling, 1 50

sslports directive (nmap-service-probes), 1 62
standard error, 339, 404
standard input, 48, 49
standard output, 86, 339, 340, 348, 403
stateless scanners, 1 29, 1 32
stderr, 339, 404
stdin, 48, 49
stdout, 4, 86, 339, 340, 348, 403
stealth scan (see SYN scan and idle scan)
strftime conversions in filenames, 332, 339, 404
stylesheet, 355, 407
submission of OS corrections, 200
submission of OS fingerprints, 20 I
submission of service corrections, 1 64
submission of service fingerprints, 1 47, 1 64, 391
$SUBST() version detection helper function, 1 6 1
Subversion, 28
sudo, 43
Summer of Code (see Google Summer of Code)
Sun Solaris (see Solaris)
SunRPC (see RPC)
SUSE (Linux distribution)

installing on, with RPM, 33
sv: (Zenmap search criterion, short for service:), 328

432

SYN (see Subversion)
SYN ping, 6 1 , 379

(see also -PS)
SYN scan, 82, 96- 1 00, 258, 385

(see also -sS)
advantages of, 96

syntax highlighting, 3 1 2

T
T (OS detection response test), 178, 179, 184
T l (OS fingerprint category line), 1 77
T2-T7 (OS fingerprint category lines), 179
t: (Zenmap search criteriori, short for target:), 327
tar pits, 1 32, 303
Target Corporation, 50
1a[g,eli �.0c,a]j.on., 41. 49, 316

at random, 48, 377
from list, 48, 377

(see also -iL)
in Zenmap, 309

target.com, 50, 5 1
target: (Zenmap search criterion), 327
TCP checksum, 29 1 , 403
TCP flags, 1 87, 265, 293, 387

(see also --scanflags)
TCP Flags, 345
TCP options, 1 83

and OS detection, 1 78, 1 82
TCP sequence generation, 1 74, 1 86, 360
TCP sequence prediction, 1 74, 1 76, 1 80
TCP timestamp, 1 82
TCP window size, 1 1 5, 1 83, 1 97
TCP/IP fingerprinting (see OS detection)
TG (OS detection response test), 1 78, 1 79, 1 85
threads in NSE, 243
three-way handshake, 6 1 , 97, 380
Tl (OS detection response test), 1 78, 1 8 1
time to live (TTL), 1 76, 1 84, 402

consistency of, 289
unexplained jumps, 278

timing, 1 37, 394-399
low-level controls, 1 4 1
slow, 1 7, 1 9, 280

timing probes, 1 32
timing templates, 1 37, 1 42- 143, 280, 398

(see also paranoid, sneaky, polite, normal, aggressive,
and insane)
effects of, 1 43

TM (SCAN line test), 1 93
"Topology" scan results tab, 3 1 3, 3 1 7
TOS (see type of service)
TOS (OS detection response test), 1 80, 1 87
TOSI (OS detection response test), 1 78, 1 87
totalwaitms directive (nmap-service-probes), 162, 1 63

traceroute, 1 3, 82, 279, 382
(see also --traceroute)

Trinity, 8
"Trivial joke" TCP sequence generation class, 1 74
trust relationships, 1 1'7, I 20, 263, 388
TS (OS detection response test), 1 78, 1 82
TTL (see time to live)
type of service (TOS), 1 78, 1 87

u
U I (OS fingerprint category line), 1 79
Ubuntu, installing on, 35
UDP ping, 63, 38 1

(see also -PU)
UDP scan, 83, 1 0 1 - 1 07, 385

(see also -sU)
compared with TCP scan, I 0 I
performance of, I 05
speeding up, I 07, 1 37

ufp: (Zenmap search criterion, short for unfiltered:), 327
ultra_scan, 22, 72, 1 28
Umit, 22, 336
UN (OS detection response test), 1 80, 1 88
unfiltered port state, 78, 1 1 3, 2 1 2, 260, 26 1 , 327, 373, 384
unfiltered: (Zenmap search criterion), 327
uninstallation, 45
Unix time, 350
Unix, instal l ing on, 29
unprivileged users, 409

limitations of, 6 1 , 62, I 00, 378, 380
uptime guess, 1 74, 392

v
V (SCAN line test), 1 93
vi/ (version) version detection field, 1 60
vendor (OS detection), 1 97
verbosity, 339, 405

(see also -v)
verifyi ng the integrity of downloads, 26
version detection, 1 3, 1 45- 1 69, 209, 390-392

(see also "version" script category)
confidence of, 350
creating new probes, 1 65
default intensity, 1 52, 391
examples, 1 47- 1 49
features of, 1 46
helper functions, 1 6 1
information provided by, 148, 1 6 1 , 1 67
intensity, 1 52, 391
performance, 1 50, 1 52
post-processors, 1 55
technique, 1 49
to improve UDP scan, 1 03, 1 45, 1 50, 265

using NSE, 205, 25 1
version number of Nmap (see --version)
"version" script category, 209, 2 1 0, 25 1 , 255
virtual hosts, 1 5 1
Vogt, Jens, 37
"vuln" script category, 209
vulnerability detection, 205

w
W (OS detection response test), 1 78, 1 79, 1 83
W l -W6 (OS detection response tests), 1 78, 1 83
WAP (see wireless access points)
warranty (lack of), 4 1 3
web browser, 35 1
web scanning, 24
welcome banner, 1 49
well-known ports, 74, 363, 390
white hat, 1 6, 257
whois, 53, 89, 208, 243
wildcards (see port selection, wildcards in)
WlN (OS fingerprint category line), 1 77
windentd, 276
window scan, 83, 1 1 5 - 1 1 6, 266, 387

(see also -sW)
Windows, 36-40

compiling on, 38
limitations of, 36
performance of, 36
running Nmap on, 39
self-instal ler, 37
Windows 2000 Dependencies, 37
zip binaries, 37

WinPcap, 4 1 4
wireless access points (WAPs), 1 72, 202

dangers of, 202
Wireshark, 269, 289, 293, 400
"Worthy challenge" TCP sequence generation class, 1 74

x
x86 architecture, 33
x86_64 architecture, 33
Xalan, 356
Xcode, 4 1
Xmas scan, 83, 1 07- 1 1 I , 386

(see also -sX)
.xml filename extension, 339
XML output, 206, 348-356, 403, 404

converting to HTML, 355
document type definition, 350, 4 1 5
example, 349
getting device type from, 203
parsing, 203
parsing with Perl, 352-354

433

uses of, 350-352
viewing in a web browser, 35 1

XPath, 204
XSL, 355, 407
XSLT processors, 355
xsltproc, 356

y
Yellow Dog (Linux distribution)

installing on, with Yum, 34
Yum, 34

z
Zalewski, Michal, 1 90
Zenmap, 307-336

command-line options, 335
comparing results, 328-330
configuration file (see zenmap.conf)
dependencies of, 42
disabling, 31
history of, 336
keyword search, 327
keyword search in, 325
loading scan results, 3 1 7
network inventory, 309
profile editor, 323
purpose of, 307
recent scans database, 326, 332

disabling, 334
saving scan results, 3 1 6
scan profiles, 309, 324

creating, 324
deleting, 325

searching, 325-328
sorting by host, 3 1 5
sorting by service, 3 1 6
zenmap.db (see recent scans database)

.zenmap directory, 332
Zenmap search criteria, 327

dates in, 327
fuzzy date matching, 327

zenmap.conf, 3 1 2, 33 1 , 332, 333-335
zenmap.db (see recent scans database)
ZENMAP _DEVELOPMENT environment variable, 336
zombie host (idle scan), 1 1 7, 1 20, 1 92, 262
zone transfer, 5 1

434

Offidal Nmap Projed Guide to Network Discovery and Security Scanning
The Nmap Security Scanner is a free and open source util ity used by mil l ions of people

for network discovery, administration, inventory, and security auditing. N map uses raw I P

packets in novel ways to determine what hosts are available on a network, what services
(application name and version) those hosts are offering, what operating systems they are

running, what type of packet filters or firewal ls are in use, and more. N map was named

ulnformation Security Product of the Year" by Linux Journal and Info World. It was also used

by hackers in seven movies, including The Matrix Reloaded, Die Hard 4, and The Bourne
Ultimatum. Nmap runs on a l l major computer operating systems, plus the Amiga. A

traditional command-line interface and the Zenmap GUI are included:

1#. nmap - sVC - 0 - T4 s ca nme . nmap . o rg

Sta rt i n g Nmap (htt p : //nma p . o rg)
Interesting ports on s canme . nmap . o rg (64 . 13 . 134 . 52) :
Not shown : 1710 f i l t e red p o r t s
PORT STATE SERVICE VERSION
22/tcp open s s h OpenSSH 4 . 3 (p rotocol 2 . 0)
53/t c p open domai n
7 0 / t c p c l o sed gophe r
80/tcp open h t t p Apache httpd 2 . 2 . 2 ((Fedo ra))
I _ HTML t i t l e : Go ahead and ScanMe !
113/t c p c l o sed auth
Device type : gene ral p u rpose
Running : Linux 2 . 6 . X
OS detail s : Linux 2 . 6 . 20 - 1 (Fedo ra C o re 5)
Upt ime : 5 . 378 days
Nma_i:>_ done : 1 IP add re s s (1 host L!£.) s c a nned in 5 1 . 8 1 8 s

About this book

• Zcnmap : D X
SG>l l- 0'oftle t;.lp

o � � e D Nlow 5csl Comtnrd Wlar'd SlM! ScM � � Repcrt. � �

Ta-get: !J:avne�.ag .. A'diie Fyodr;r'Sc/Jn
Comma-d: � -T Pt;gfl!Mve -A ka'lmtlYT'leP.aQ 209.131.32.23
ftb!I ,.._I """' '"""' ...,.. "-""" --• "'" """"

lJ "'"9-l.bm-11 .- us
9*: LP
q., ..,.. 3
Fillrl'edp::r't!I: 1710
c:JowjpcOs: 2
Sc6nidpats: 1715
Lbtlmt: «8538
Lastboot: {rUI)

.............
IPY-4: 64.13.13'11.52

.............

Nmap Network Scanning is the official guide to the N map Security Scanner. From explaining
port scanning basics for novices to detai l ing low-level packet crafting methods used by
advanced hackers, this book suits al l levels of security and networking professionals. A 42-
page reference guide documents every N map feature a nd option, while the rest of the book

demonstrates how to apply those features to quickly solve real-world tasks. Topics include:
» Detecting a nd subverting firewal ls and intrusion detection systems
» Optimizing Nmap performance
» Automating common networking tasks with the N map Scripting Engine

Visit http://nmap.org/book for updates and sample chapters.

About the author
Gordon Lyon (also known by his nickname Fyodor) released N map in 1 997 and continues
to coordinate its development. He also maintains the lnsecure.Org, Nmap.Org, Seclists.Org,

and SecTools.Org security resource sites and has written seminal papers on OS detection and
stealth port scann ing. He is a founding member of the Honeynet security / Networking $49.95 u.s.
Project, a popular speaker at security conferences, and co-author of I S B N 9 7 8 - 0 - 9 7 9 9 5 8 7 - 1 - 7
the books "Know Your Enemy: Honeynets" and "Stealing the Network:

I � 1
5

4

9

1
9

1
5

How to Own a Continent'� Gordon is President of Computer
Professionals for Social Responsibil ity (CPSR), which has promoted

free speech, security, and privacy since 1 98 1 . 9 80979 9 5871

	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	Preface
	IPv4 Header
	TCP Header
	ICMP Header
	01
	The Phases of Nmap Scan

	02
	03
	Putting It All Together

	04
	Selecting Scan Techniques

	05
	-sS
	-sA
	-sT
	-sU
	-sF -sN -sX
	Custom
	-sW
	-sI
	-sO
	-b

	06
	07
	08
	09
	NSE Scripts

	10
	Determining Firewall Rules

	11
	12
	13
	14
	15

